Science.gov

Sample records for 0-70 km altitude

  1. Cape Canaveral, Florida range reference atmosphere 0-70 km altitude

    NASA Technical Reports Server (NTRS)

    Tingle, A. (Editor)

    1983-01-01

    The RRA contains tabulations for monthly and annual means, standard deviations, skewness coefficients for wind speed, pressure temperature, density, water vapor pressure, virtual temperature, dew-point temperature, and the means and standard deviations for the zonal and meridional wind components and the linear (product moment) correlation coefficient between the wind components. These statistical parameters are tabulated at the station elevation and at 1 km intervals from sea level to 30 km and at 2 km intervals from 30 to 90 km altitude. The wind statistics are given at approximately 10 m above the station elevations and at altitudes with respect to mean sea level thereafter. For those range sites without rocketsonde measurements, the RRAs terminate at 30 km altitude or they are extended, if required, when rocketsonde data from a nearby launch site are available. There are four sets of tables for each of the 12 monthly reference periods and the annual reference period.

  2. Kwajalein missile range, Kwajalein, Marshall Islands range reference atmosphere 0-70 km altitude

    SciTech Connect

    Not Available

    1982-01-01

    Atmospheric parameters are essential to the research and development of missiles and aerospace vehicles. The need for realistic atmospheric models derived in a consistent manner for each of the several major test ranges was recognized in the early 1960's. An atmospheric model which is derived from statistical data for a particular geographical location is referred to as a reference atmosphere. This committee, Task MG-1, establishes RRAs Range Reference Atmospheres for the several ranges as provided by the RCC Range Commander's Council. An RRA is a model of the Earth's atmosphere over a geographical location of interest for use by DOD and other U.S. Government range users. The RRA is used to provide planning data for evaluating environmental constraints for the particular configurations of environment-sensitive systems and components being developed or undergoing tests. Using the best available upper atmosphere data base to include rawinsonde, rocketsonde and possibly other high-altitude data sources for the range location, the task is to establish a model of certain statistics for wind and thermodynamic quantities derived in a uniform manner and published in a standardized format.

  3. Neutral Wind Observations below 200 km altitudes

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Abe, T.; Habu, H.; Kakinami, Y.; Larsen, M. F.; Pfaff, R. F., Jr.; Yamamoto, M.

    2015-12-01

    Neutral Wind Observations below 200 km altitudesS. Watanabe1, T. Abe2, H. Habu2, Y. Kakinami3, M. Larsen4, R. Pfaff5, M. Yamamoto6, M-Y. Yamamoto31Hokkaido University/Hokkaido Information University, 2JAXA/ISAS, 3Kochi University of Technology, 4Clemson University, 5NASA/Goddard Space Flight Center, 6Kyoto University, Neutral wind in the thermosphere is one of the key parameters to understand the ionosphere-thermosphere coupling process. JAXA/ISAS successfully launched sounding rockets from Uchinoura Space Center (USC) on September 2, 2007, January 12, 2012, and July 20, 2013, and NASA launched sounding rockets from Kwajalein on May 7, 2013 and from Wallops on July 4, 2013. The rockets installed Lithium and/or TMA canisters as well as instruments for plasma and electric and magnetic fields. The atomic Lithium gases were released at altitudes between 150 km and 300 km in the evening on September 2, 2007, at altitude of ~100 km in the morning on January 12, 2012, at altitude of ~120km in the midnight on July 20, 2013, at altitude between 150 km and 300 km in the evening on May 7, 2013 and at altitude of ~150 km in the noon on July 4, 2013. The Lithium atoms were scattering sunlight by resonance scattering with wavelength of 670nm. However, the Lithium atoms scattered moon light on July 20, 2013. The moon light scattering is the first time to use for thermospheric wind measurement in the midnight. The Lithium clouds/trails and TMA trails showed clearly the neutral wind shears and atmospheric waves at ~150 km altitude in the lower thermosphere for all local time.

  4. Simulation of CO2 release at 800 km altitude

    NASA Astrophysics Data System (ADS)

    Setayesh, A.

    1993-08-01

    The SOCRATES contamination-interaction code has been used to simulate the reactions of 0 + CO2 yields CO2(v) + O, O + CO2 - CO(v) + O2, and CO2 + H - CO + OH(v) at an altitude of 800 km in both ram and wake directions of the spacecraft. These simulations show that the radiation from these reactions can be measurable for the parameters which have been used in these calculations. The investigation carries out the simulations as much as 30 km from the spacecraft. The radiative intensity of CO(v) and OH(v) show the highest and lowest, respectively.

  5. Transport System for Delivery Tourists At Altitude 140 km

    NASA Technical Reports Server (NTRS)

    Bolonkin, Alexander

    2002-01-01

    The author offers a new method and installation for flight in space. This method uses the centrifugal force of a rotating circular cable that provides a means for the launch of a payload into outer space, to keep the fixed space stations at high altitudes (up to 200 km). The method may also be useful for landing to space bodies, for launching of the space ships (crafts), and for moving and accelerating other artificial apparatuses. The offered installation may be used as a propulsion system for space ships and/or probes. This system uses the material of any space body (i.e. stones) for acceleration and change of the space vehicle trajectory. The suggested system may be also used as a high capacity energy accumulator.

  6. Densities inferred from ESA's Venus Express aerobraking campaign at 130 km altitude

    NASA Astrophysics Data System (ADS)

    Bruinsma, Sean; Marty, Jean-Charles; Svedhem, Håkan; Williams, Adam; Mueller-Wodarg, Ingo

    2015-04-01

    In June-July 2014, ESA performed a planned aerobraking campaign with Venus Express to measure neutral densities above 130 km in Venus' atmosphere by means of the engineering accelerometers. To that purpose, the orbit perigee was lowered to approximately 130 km in order to enhance the atmospheric drag effect to the highest tolerable levels for the spacecraft; the accelerometer resolution and precision were not sufficient at higher altitudes. This campaign was requested as part of the Venus Express Atmospheric Drag Experiment (VExADE). A total of 18 orbits (i.e. days) were processed using the attitude quaternions to correctly orient the spacecraft bus and solar arrays in inertial space, which is necessary to accurately compute the exposed surface in the ram direction. The accelerometer data provide good measurements approximately from 130-140 km altitude; the length of the profiles is about 85 seconds, and they are on the early morning side (LST=4.5) at high northern latitude (70°N-82°N). The densities are a factor 2-3 larger than Hedin's VTS-3 thermosphere model, which is consistent with earlier results obtained via classical precise orbit determination at higher altitudes. Wavelike structures with amplitudes of 20% and more are detected, with wavelengths of about 100-500 km. We cannot entirely rule out that these waves are caused by the spacecraft or due to some unknown instrumental effect, but we estimate this probability to be very low.

  7. An Instrument Suite for the Vertical Characterization of the Ionosphere-Thermosphere System from 100 km to 700km Altitude.

    NASA Astrophysics Data System (ADS)

    Herrero, F.; Nicholas, A.

    2008-05-01

    We describe an instrument suite that includes WTS (the Wind-Temperature Spectrometer developed for the ANDE mission of the Naval Research Laboratory), a new Ion-Drift-Temperature Spectrometer (IDTS) and one each of our new Neutral (NMS) and Ion (IMS) Mass Spectrometers. The WTS and IDTS both implement Small- Deflection Energy Analyzers (SDEAs) developed at NASA Goddard; thus, they are capable of measuring the differential energy and angular distributions of neutrals and ions with the capability of detecting and characterizing non-Maxwellian ion and neutral distributions in the upper atmosphere. The mass spectrometers have a mass resolution of approximately 1/60. The suite is designed for sounding rocket investigations to obtain the vertical distribution of the neutral wind, ion drift, respective temperatures, and relative densities of the major species, e.g., O/N2; in addition it will provide ion and neutral composition, to include metals. The sensitivity of each instrument is sufficient to provide data over altitudes ranging from about 100 to about 700 km. The vertical spatial resolution in the neutral wind/temperature gradually increases from a few meters between 100 and 150 km to 100's of meters above 400 km. The ion drift measurements will have spatial resolution less than 1 m at the peak of the F- region and larger above and below. The wind and ion-drift measurements require large vehicle velocity in the sampled region. We will discuss this and other performance requirements. The capability offered in this instrument suite will make it possible to add new data in our pursuit of two long standing questions: a) the transition from Maxwellian to non-Maxwellian as the thermosphere becomes the exosphere and b) the true O/O2 and O/N2 ratio without instrument contamination due to O recombination in the ion source.

  8. Comparison between measured electron density at 600 km of altitude and IRI predictions

    NASA Astrophysics Data System (ADS)

    Ezquer, R. G.; Cabrera, M. A.; Mosert, M.; Araoz, L.

    The electron density at 600 Km of altitude (N 600) predicted by IRI are compared with the measurements for a given particular time and place (not average) obtained with the Japanese Hinotori satellite. The results show disagreements among predictions and measurements when the model uses the CCIR and URSI options to obtain the peak characteristics. Good predictions are obtained for same cases using ground ionosonde data as input parameters in the model.

  9. GPS-aided gravimetry at 30 km altitude from a balloon-borne platform

    NASA Technical Reports Server (NTRS)

    Lazarewicz, Andrew R.; Evans, Alan G.

    1989-01-01

    A balloon-borne experiment, flown at 30 km altitude over New Mexico, was used to test dynamic differential Global Positioning System (GPS) tracking in support of gravimetry at high-altitudes. The experiment package contained a gravimeter (Vibrating String Accelerometer), a full complement of inertial instruments, a TI-4100 GPS receiver and a radar transponder. The flight was supported by two GPS receivers on the ground near the flight path. From the 8 hour flight, about a forty minute period was selected for analysis. Differential GPS phase measurements were used to estimate changes in position over the sample time interval, or average velocity. In addition to average velocity, differential positions and numerical averages of acceleration were obtained in three components. Gravitational acceleration was estimated by correcting for accelerations due to translational motion, ignoring all rotational effects.

  10. Venus night side measurements of winds at 115 km altitude from NO bright patches tracking.

    NASA Astrophysics Data System (ADS)

    Bertaux, Jean-Loup

    2014-05-01

    N and O atoms produced by photo-dissociation of CO2 and N2 on the day side of Venus are transported to the night side in the thermospheric circulation. When the air parcel is descending, the recombination N+O→ NO produces the famous γ and δ bands of NO emission. Pioneer Venus (1978) suggested that the statistical center of the emission is off from the anti-solar point, about one- two hours in Local time after midnight. This is confirmed from SPICAV/VEX results, and the explanation generally accepted is the influence of retrograde super rotation. However, the emission takes place at 115 km, while VIRTIS/VEX, with maps of O2 emission (peak altitude 95 km) in the night side of Venus (recombination of O+O coming from the day side), has shown that the maximum of emission is statistically centered on the antisolar point. Therefore, there is no influence of super-rotation at 95 km. One way to explain this paradox is that the cause of the super rotation is different at 115 km and in the lower atmosphere. Alternately, some gravity waves could propagate from below, crossing the altitude 95 km with minimal interaction, and breaking around 115 km, depositing their momentum. Another consideration is that the altitude of N2 photo-dissociation is higher in the thermosphere than CO2, therefore the thermospheric circulation pattern may be different for the transport of N atoms, and O atoms. We have started building maps of the NO emission by moving around the spacecraft along its orbit on the night side. The idea is that NO emission is concentrated generally in rather well defined patches of light. Therefore, by comparing maps taken at 1 hour or 24 hr interval, we can make a "bright patch tracking", and derive directly the velocity of the moving air parcel containing N and O (we are aware that a part of the motion could be due to a phase shift of a gravity wave, if it has some influence on the NO emission). Preliminary results from this exercise with Venus Express will be

  11. Venus night side measurements of winds at 115 km altitude from Nitric Oxide bright patches tracking.

    NASA Astrophysics Data System (ADS)

    Bertaux, Jean-Loup; Marcq, Emmanuel

    N and O atoms produced by photo-dissociation of CO2 and N2 on the day side of Venus are transported to the night side in the thermospheric circulation. When the air parcel is descending, the recombination N+O-> NO produces the famous gamma and delta bands of NO emission. Pioneer Venus (1978) suggested that the statistical center of the emission is off from the anti-solar point, about one- two hours in Local time after midnight. This is confirmed from SPICAV/VEX results, and the explanation generally accepted is the influence of retrograde super rotation. However, the emission takes place at 115 km, while VIRTIS/VEX, with maps of O2 emission (peak altitude 95 km) in the night side of Venus (recombination of O+O coming from the day side), has shown that the maximum of emission is statistically centered on the antisolar point. Therefore, there is no influence of super-rotation at 95 km. One way to explain this paradox is that the cause of the super rotation is different at 115 km and in the lower atmosphere. Alternately, some gravity waves could propagate from below, crossing the altitude 95 km with minimal interaction, and breaking around 115 km, depositing their momentum. Another consideration is that the altitude of N2 photo-dissociation is higher in the thermosphere than CO2, therefore the thermospheric circulation pattern may be different for the transport of N atoms, and O atoms. We have started building maps of the NO emission by moving around the spacecraft along its orbit on the night side. The idea is that NO emission is concentrated generally in rather well defined patches of light. Therefore, by comparing maps taken at 1 hour or 24 hr interval, we can make a “bright patch tracking”, and derive directly the velocity of the moving air parcel containing N and O (we are aware that a part of the motion could be due to a phase shift of a gravity wave, if it has some influence on the NO emission). Preliminary results from this exercise with Venus Express will

  12. Corneal Opacity in a Participant of a 161-km Mountain Bike Race at High Altitude.

    PubMed

    Khodaee, Morteza; Torres, David R

    2016-06-01

    Visual dysfunction is a relatively uncommon complaint among athletes during ultraendurance races. The pathophysiology of most of these cases is unknown. Corneal opacity has been speculated as the etiology for most of reported cases. We are presenting a case of a 56-year-old man with a partial unilateral corneal opacity and edema at kilometer 150 of a 161-km mountain bike race in high altitude. He was not able to finish the race (12-hour cutoff) because of his visual symptoms. He completely recovered in 3 days with no sequelae. PMID:27095539

  13. Measured electric field in the vicinity of a thunderstorm system at an altitude of 37 km

    NASA Technical Reports Server (NTRS)

    Benbrook, J. R.; Kern, J. W.; Sheldon, W. R.

    1974-01-01

    A balloon-borne experiment to measure the atmospheric electric field was flown from the National Scientific Balloon Facility at Palestine, Texas, on July 10, 1973. The electric field and atmospheric conductivity were measured during ascent and for a 4-hour float period at 37-km altitude. Termination of the flight occurred near a thunderstorm line in west Texas. The perturbing influence of the thunderstorms on the electric field was observed at least 100 km from the storm line. The measured electric field is in reasonable agreement with calculations based on simple models of cloud structure and atmospheric conductivity. Large pulses in the measured electric field are interpreted as being the result of intracloud lightning.

  14. Simulation of CO2 release at 800 km altitude. Technical report

    SciTech Connect

    Setayesh, A.

    1993-08-31

    The SOCRATES contamination-interaction code has been used to simulate the reactions of O + CO2 --> CO2(v) + O, O + CO2 - CO(v) + O2, and CO2 + H - CO + OH(v) at an altitude of 800 km in both ram and wake directions of the spacecraft. These simulations show that the radiation from these reactions can be measurable for the parameters which have been used in these calculations. The investigation carries out the simulations as much as 30 km from the spacecraft. The radiative intensity of CO(v) and OH(v) show the highest and lowest, respectively. Gas plume, CO2, CO, and OH Emissions, Monte Carlo method, Rarefied flows.

  15. Nighttime ionization by energetic particles at Wallops Island in the altitude region 120 to 200 km

    NASA Technical Reports Server (NTRS)

    Voss, H. D.; Smith, L. G.

    1979-01-01

    Five Nike Apache rockets, each including an energetic particle spectrometer and an electron density-electron temperature experiment, have been launched from Wallops Island (L = 2.6) near midnight under varying geomagnetic conditions. On the most recent of these (5 January 1978) an additional spectrometer with a broom magnet, and a 391.4 nm photometer were flown. The data from this flight indicate that the energetic particle flux consists predominantly of protons, neutral hydrogen and possibly other energetic nuclei. The energy spectrum becomes much softer and the flux more intense with increasing Kp for 10-100 keV. The pitch angle distribution at 180 km is asymmetrical with a peak at 90 deg indicating that the majority of particles are near their mirroring altitude. Ionization rates are calculated based on the measured energy spectrum and mirror height distribution. The resulting ionization rate profile is found to be nearly constant with altitude in the region 120 to 200 km. The measured energetic particle flux and calculated ionization rate from the five flights are found to vary with magnetic activity (based on the Kp and Dst indexes) in the same way as the independently derived ionization rates deduced from the electron density profile.

  16. Characterization of cosmic rays and direction dependence in the Polar Region up to 88 km altitude

    NASA Astrophysics Data System (ADS)

    Zábori, Balázs; Hirn, Attila; Deme, Sándor; Apáthy, István; Pázmándi, Tamás

    2016-02-01

    Aims: The sounding rocket experiment REM-RED was developed to operate on board the REXUS-17 rocket in order to measure the intensity of cosmic rays. The experiment was launched from the ESRANGE Space Center (68 °N, 21 °E) on the 17th of March 2015 at the beginning of the most intense geomagnetic storm within the preceding 10 years. The experiment provided the opportunity to measure the intensity of cosmic rays in the Polar Region up to an altitude of 88 km above sea level. Methods: The experiment employed Geiger-Müller (GM) counters oriented with their axes perpendicular to each other in order to measure the cosmic ray intensity during the flight of the rocket. This measurement setup allowed performing direction-sensitive measurements as well. During the ascent phase the rocket was spinning and hence stabilized along its longitudinal axis looking close to the zenith direction. This phase of the flight was used for studying the direction dependence of the charged particle component of the cosmic rays. Results: In comparison with earlier, similar rocket experiments performed with GM tubes at lower geomagnetic latitudes, significantly higher cosmic radiation flux was measured above 50 km. A non-isotropic behavior was found below 50 km and described in detail for the first time in the Polar Region. This behavior is in good agreement with the results of the TECHDOSE experiment that used the same type of GM tubes on board the BEXUS-14 stratospheric balloon.

  17. POLAR/TIDE Survey of Thermal O+ Characteristics near 5000km Altitude over the Polar Cap

    NASA Technical Reports Server (NTRS)

    Stevenson, B. A.; Horwitz, J. L.; Su, Y. J.; Elliott, Heather A.; Comfort, Richard H.; Moore, Thomas E.; Giles, Barbara A.; Craven, Paul D.; Chandler, Michael O.; Pollock, Craig J.

    1998-01-01

    We analyze measurements of thermal 0+ parameters from the Thermal Ion Dynamics Experiment (TIDE) on POLAR for April - May, 1996 obtained near 5000 km altitude within the polar cap ionosphere - magnetosphere interface region. Certain aspects of O+ parameters in this region were explored by Su et. al. [1998]. In this report, we hope to extend our understanding of the O+ behavior by examining relationships of densities, parallel velocities, and temperatures to the convection velocities, IMF By and Bz components. Preliminary results with the convection velocities are currently being analyzed. In doing so, we are guided in part by the Cleft Ion Fountain paradigm and model developed by Horwitz and Lockwood [1985] which involves downward O+ flows in the polar magnetosphere.

  18. Detection of EUV/Soft X-ray bremsstrahlung emission at terrestrial altitudes above 750 km

    NASA Astrophysics Data System (ADS)

    Katsiyannis, A.; Dominique, M.; De Keyser, J.; Berghmans, D.; Michel, K.; Dammasch, I. E.; Borremans, K.; De Donder, E.; Ben Moussa, A.

    2015-12-01

    LYRA is a fast radiometer on-board the PROBA-2 mission designed to observe the solar activity from UV to Soft X-rays and consists of three redundant units of four different optical bandpasses each. Since the start of operation in 2010, LYRA regularly observes disturbances with a characteristic signature that have no direct solar origin. Instead the frequency of occurrence correlates with the ApA_p index of geomagnetic activity on Earth's surface and the location of these detections coincides with the McIlwain L ≈ 3 zon. By comparing the wavelength sensitivity of the main PROBA-2 instruments, the wavelength range of the detected photons can be narrowed down to the range of 0.07-1 KeV (1-17 nm) and the altitudes of their source to those above PROBA-2's orbit (~750 km). A discussion on the magnetospheric origins of this emission is included.

  19. A modified density model of the Venus atmosphere at 130-200 km altitude

    NASA Astrophysics Data System (ADS)

    Svedhem, Håkan; Mueller-Wodarg, Ingo; Rosenblatt, Pascal; Grotheer, Emmanuel

    2014-05-01

    Until recently the only information on the structure of the polar upper atmosphere of Venus available has been based on the reference atmosphere models such as the VTS3 or VIRA models. These models extrapolate the values from low latitudes to high latitudes by using equivalent solar zenith angles. New measurements by Venus Express show that such extrapolations not always give correct results and that there is a permanent overestimate of the density at high latitudes. These new results have been reached by using two different but related techniques, both using an atmospheric drag effect on the spacecraft. By reducing the pericentre altitude the total mass density in the altitude range 150-200km can be measured in situ by monitoring the orbital decay caused by the drag on the spacecraft by the atmosphere via direct tracking of the Doppler signal on the telecommunication link. Such measurements have been performed with Venus Express several times during the last years as part of the Venus Express Atmospheric Drag Experiment (VExADE). The results indicate a large variability within only a few days and have led to questions if these variations are real or within the uncertainty of the measurements. A completely different and independent measurement is given by monitoring the torque asserted by the atmosphere on the spacecraft. This is done by monitoring the momentum accumulated in the reaction wheels during the pericenter pass and at the same time considering all other perturbing forces. This requires the spacecraft to fly in an asymmetric configuration with respect to the center of gravity, center of drag and the velocity vector. This technique has proven very sensitive, in particular if the geometric asymmetry is large, and offers an additional method of measuring atmospheric densities in-situ that previously had not been explored with the Venus Express spacecraft. Similar measurements have been done in the past by Magellan at Venus and by Cassini at Titan. Between

  20. Global investigation of the Mg atom and ion layers using SCIAMACHY/Envisat observations between 70 km and 150 km altitude and WACCM-Mg model results

    NASA Astrophysics Data System (ADS)

    Langowski, M.; von Savigny, C.; Burrows, J. P.; Feng, W.; Plane, J. M. C.; Marsh, D. R.; Janches, D.; Sinnhuber, M.; Aikin, A. C.

    2014-01-01

    Mg and Mg+ concentration fields in the upper mesosphere/lower thermosphere (UMLT) region are retrieved from SCIAMACHY/Envisat limb measurements of Mg and Mg+ dayglow emissions using a 2-D tomographic retrieval approach. The time series of monthly means of Mg and Mg+ for number density as well as vertical column density in different latitudinal regions are shown. Data from the limb mesosphere-thermosphere mode of SCIAMACHY/Envisat are used, which covers the 50 km to 150 km altitude region with a vertical sampling of 3.3 km and a highest latitude of 82°. The high latitudes are not covered in the winter months, because there is no dayglow emission during polar night. The measurements were performed every 14 days from mid-2008 until April 2012. Mg profiles show a peak at around 90 km altitude with a density between 750 cm-3 and 2000 cm-3. Mg does not show strong seasonal variation at mid-latitudes. The Mg+ peak occurs 5-15 km above the neutral Mg peak at 95-105 km. Furthermore, the ions show a significant seasonal cycle with a summer maximum in both hemispheres at mid- and high-latitudes. The strongest seasonal variations of the ions are observed at mid-latitudes between 20-40° and densities at the peak altitude range from 500 cm-3 to 6000 cm-3. The peak altitude of the ions shows a latitudinal dependence with a maximum at mid-latitudes that is up to 10 km higher than the peak altitude at the equator. The SCIAMACHY measurements are compared to other measurements and WACCM model results. In contrast to the SCIAMACHY results, the WACCM results show a strong seasonal variability for Mg with a winter maximum, which is not observable by SCIAMACHY, and globally higher peak densities. Although the peak densities do not agree the vertical column densities agree, since SCIAMACHY results show a wider vertical profile. The agreement of SCIAMACHY and WACCM results is much better for Mg+, showing the same seasonality and similar peak densities. However, there are the following

  1. Global Investigation of the Mg Atom and ion Layers using SCIAMACHY/Envisat Observations between 70 km and 150 km Altitude and WACCM-MG Model Results

    NASA Technical Reports Server (NTRS)

    Langowski, M.; vonSavigny, C.; Burrows, J. P.; Feng, W.; Plane, J. M. C.; Marsh, D. R.; Janches, Diego; Sinnhuber, M.; Aikin, A. C.

    2014-01-01

    Mg and Mg+ concentration fields in the upper mesosphere/lower thermosphere (UMLT) region are retrieved from SCIAMACHY/Envisat limb measurements of Mg and Mg+ dayglow emissions using a 2-D tomographic retrieval approach. The time series of monthly means of Mg and Mg+ for number density as well as vertical column density in different latitudinal regions are shown. Data from the limb mesosphere-thermosphere mode of SCIAMACHY/Envisat are used, which covers the 50 km to 150 km altitude region with a vertical sampling of 3.3 km and a highest latitude of 82 deg. The high latitudes are not covered in the winter months, because there is no dayglow emission during polar night. The measurements were performed every 14 days from mid-2008 until April 2012. Mg profiles show a peak at around 90 km altitude with a density between 750 cm(exp-3) and 2000 cm(exp-3). Mg does not show strong seasonal variation at mid-latitudes. The Mg+ peak occurs 5-15 km above the neutral Mg peak at 95-105 km. Furthermore, the ions show a significant seasonal cycle with a summer maximum in both hemispheres at mid- and high-latitudes. The strongest seasonal variations of the ions are observed at mid-latitudes between 20-40 deg and densities at the peak altitude range from 500 cm(exp-3) to 6000 cm(exp-3). The peak altitude of the ions shows a latitudinal dependence with a maximum at mid-latitudes that is up to 10 km higher than the peak altitude at the equator. The SCIAMACHY measurements are compared to other measurements and WACCM model results. In contrast to the SCIAMACHY results, the WACCM results show a strong seasonal variability for Mg with a winter maximum, which is not observable by SCIAMACHY, and globally higher peak densities. Although the peak densities do not agree the vertical column densities agree, since SCIAMACHY results show a wider vertical profile. The agreement of SCIAMACHY and WACCM results is much better for Mg+, showing the same seasonality and similar peak densities. However

  2. 28 CFR 0.70 - General functions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false General functions. 0.70 Section 0.70 Judicial Administration DEPARTMENT OF JUSTICE ORGANIZATION OF THE DEPARTMENT OF JUSTICE Tax Division § 0.70... assigned to the Criminal Division by § 0.55(d)). (b) Criminal proceedings arising under the...

  3. Energy status and oxidation reduction status in rat liver at high altitude /3.8 km/

    NASA Technical Reports Server (NTRS)

    Reed, R. D.; Pace, N.

    1980-01-01

    Adult male rats were exposed to 3.8-km altitude for intervals ranging from 1 h-60 d. Liver samples were taken under light ether anesthesia and were examined by enzymatic analyses. Within 1-6 h of hypoxic exposure, ATP levels decreased while ADP and AMP levels increased, producing a fall in calculated ATP/ADP and adenylate charge ratios. Concurrently, lactate/pyruvate and alpha-glycerophosphate/dihydroxyacetone phosphate ratios increased markedly. Direct measurements of cellular pyridine nucleotides indicated increased NADH/NAD and NADPH/NADP ratios. Levels of total adenosine phosphates and pyridine nucleotides decreased in a significant accompanying response. Many metabolite levels and calculated ratios returned to near-normal values within 1 week of exposure, indicating secondary intracellular adjustments to hypoxic stress; however, persistence of that stress is reflected in lactate concentrations and both substrate redox ratios. Results support and explore concepts that increased oxidation-reduction status and decreased energy status are primary events during hypoxia.

  4. Martian Atmospheric Density Near 250km Altitude From MRO Radio Tracking Data

    NASA Astrophysics Data System (ADS)

    Mazarico, E.; Zuber, M. T.; Lemoine, F. G.; Smith, D. E.

    2007-12-01

    increase when we decrease the estimation periods. We calculate the density variability at different timescales from various time series (2, 3, 4 and 6 orbits). The current seasonal trend of increasing atmospheric density is clearly visible in our results, from 10- 13kg.m-3 in November 2006 to 8.10-12kg.m-3 in June 2007 (at 250km altitude above the South Pole). However, contrary to previous MGS and Odyssey results, we do not detect the solar rotation periodicity in the density time series, because of low solar activity and more efficient CO2 cooling processes at lower altitude.

  5. Modeling Relativistic Electron Precipitation Bremsstrahlung X-Ray Intensities at 10-100 km Manned Vehicle Altitudes

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Gilchrist, B. E.; Nishikawa, K.; Williams, A.

    2013-12-01

    Relativistic electron precipitation (REP) events occur when beams or bunches of relativistic electrons of magnetospheric origin enter the Earth's atmosphere, typically at auroral latitudes. REP events are associated with a variety of space weather effects, including production of transitional and bremsstrahlung radiation, catalytic depletion of stratospheric ozone, and scintillation of transionospheric radio waves. This study examines the intensities of x-rays produced at airliner, manned balloon, and suborbital Reusable Launch Vehicle (sRLV) altitudes. The monoenergetic beam is modeled in cylindrical symmetry using the paraxial ray equation. Bremsstrahlung photon production is calculated using the traditional Sauter-Elwert cross-section, providing x-ray emission spectra differential in energy and angle. Attenuation is computed for a plane-stratified standard atmosphere, and the loss processes include photoionization, Rayleigh and Compton scattering, electron-positron pair production, and photonuclear interaction. Peak altitudes of electron energy deposition and bremsstrahlung x-ray production were calculated for beams of energies from 1 MeV through 100 MeV. The altitude peak of bremsstrahlung deposition was consistently and significantly lower that that of the electron deposition due to the longer mean free paths of x-rays compared to electrons within the atmosphere. For example, for a nadir-directed monoenergetic 5 MeV beam, the peak deposition altitude was calculated to be 42 km, but the resulting bremmstrahlung deposition peaked at 25 km. This has implications for crew and passenger safety, especially with the growth of the space tourism industry that relies on sRLVs with a nominal apogee of 100 km. A survey of results covering the 1-100 MeV spectrum for the three altitude ranges of interest will be presented.

  6. The modified dispersion relation for ionacoustic instabilities of ionospheric plasma at 80-200 km altitudes and its usage for interpretation of 150km equatorial radioecho

    NASA Astrophysics Data System (ADS)

    Berngardt, O. I.; Potekhin, A. P.

    2009-04-01

    Ionacoustic instabilities of the ionospheric plasma and corresponding small-scale irregularities of the electron density significantly affect to the HF and UHF radiowaves propagation. Due to this an investigation of their characteristics is the important task staying on the border of the radiowaves propagation theory, geophysics and plasmaphysics. The theory of these instabilities in the E-layer, that are qualitatively divided into the two-stream and gradient-drift ones, is under development for a long time. The most part of the linear theories replaces investigation of the irregularities by analysis of the dispersion relation for the plasma irregularities. This dispersion relation connects oscillation frequency of the irregularities with their wave vector and defines conditions for the growth of the irregularities and their spectral characteristics in terms of plane waves approximation. There are two traditional limitations of such theories, limiting their region of applicability: 1)Magnetized electrons and unmagnetized ions requirement; 2)Low oscillation frequency of irregularities in comparison with ion-neutral and electron-neutral collision frequencies. In the paper within the approximation of the two-fluid magnetohydrodynamics and geometrooptical approximation the dispersion relation without noted limitations was obtained. The relation describes ionacoustic instabilities of the ionospheric plasma at 80-200km altitudes in three-dimensional weakly irregular ionosphere. The dispersion relation obtained has a form of the 6-th order polynomial for the oscillation frequency. Within limitations 1,2 the obtained relation has approximate solutions, close to the traditional ones for two-stream and gradient-drift instabilities. The difference between obtained and standard dispersion relation becomes significant at altitudes above 140 km. For this situation, in some special cases this new dispersion relation can be significantly simplified and some analytical solutions of

  7. Using Polar-orbiting Environmental Satellite data to specify the radiation environment up to 1200 km altitude

    NASA Astrophysics Data System (ADS)

    O'Brien, T. P.; Mazur, J. E.; Guild, T. B.; Looper, M. D.

    2015-08-01

    Data from the Deal dosimeter payload on the Rapid Pathfinder satellite provide daily maps of the radiation environment on a sphere at 1200 km altitude. Through the use of magnetic coordinates, these dosimeter maps can be projected down to lower altitudes, providing valuable information for satellite anomaly resolution for vehicles in low Earth orbit (LEO). Unfortunately, the Deal data are not widely available, and the mission has a limited lifetime. As an alternative, we present a method to estimate the Deal daily maps using belt index data from NOAA's Polar-orbiting Environmental Satellite (POES) vehicles. The method addresses only trapped radiation but could readily be supplemented with POES's own measurements of solar particle radiation reaching LEO.

  8. Normal probabilities for Vandenberg AFB wind components - monthly reference periods for all flight azimuths, 0- to 70-km altitudes

    NASA Technical Reports Server (NTRS)

    Falls, L. W.

    1975-01-01

    Vandenberg Air Force Base (AFB), California, wind component statistics are presented to be used for aerospace engineering applications that require component wind probabilities for various flight azimuths and selected altitudes. The normal (Gaussian) distribution is presented as a statistical model to represent component winds at Vandenberg AFB. Head tail, and crosswind components are tabulated for all flight azimuths for altitudes from 0 to 70 km by monthly reference periods. Wind components are given for 11 selected percentiles ranging from 0.135 percent to 99.865 percent for each month. The results of statistical goodness-of-fit tests are presented to verify the use of the Gaussian distribution as an adequate model to represent component winds at Vandenberg AFB.

  9. Modeling Relativistic Electron Precipitation Bremsstrahlung X-Ray Intensities at 10-100 km Manned Vehicle Altitudes

    NASA Technical Reports Server (NTRS)

    Krause, L. Habsh; Gilchrist, B. E.; Nishikawa, Ken-Ichi

    2013-01-01

    Relativisitic electron precipitation (REP) events occur when beams or bunches of relativistic electrons of magnetospheric origin enter the Earth's atmosphere, typically at auroral latitudes. REP events are associated with a variety of space weather effects, including production of transitional and bremsstrahlung radiation, catalytic depletion of stratospheric ozone, and scintillation of transionospheric radio waves. This study examines the intensities of x-rays produced at airliner, manned balloon, and space reuseable launch vehicles (sRLVs). The monoenergetic beam is modeled in cylindrical symetry using the paraxial ray equation. Bremsstrahlung photon production is calculated using the traditional Sauter-Elwert cross-section, providing x-ray emission spectra differential in energy and angle. Attenuation is computed for a plane-stratified standard atmosphere, and the loss processes include photoionization, Rayleigh and Compton scattering, electron-positron pair production, and photonuclear interaction. Peak altitudes of electron energy deposition and bremsstrahlung x-ray production were calculated for beams of energies from 1 MeV through 100 MeV. The altitude peak of bremsstrahlung deposition was consistently and significantly lower that that of the electron deposition due to the longer mean free paths of x-rays compared to electrons within the atmosphere. For example, for a nadir-directed monoenergetic 5 MeV beam, the peak deposition altitude was calculated to be 42 km, but the resulting bremsstrahlung deposition peaked at 25 km. This has implications for crew and passenger safety, especially with the growth of the space tourism industry. A survey of results covering the 1-100 MeV spectrum for the three altitude ranges of interest will be presented.

  10. Channel electron multiplier operated on a sounding rocket without a cryogenic vacuum pump from 120 to 80 km altitude

    NASA Astrophysics Data System (ADS)

    Dickson, Shannon; Gausa, Michael; Robertson, Scott; Sternovsky, Zoltan

    2013-04-01

    We demonstrate that a channel electron multiplier (CEM) can be operated on a sounding rocket in the pulse-counting mode from 120 km to 80 km altitude without the cryogenic evacuation used in the past. Evacuation of the CEM is provided only by aerodynamic flow around the rocket. This demonstration is motivated by the need for additional flights of mass spectrometers to clarify the fate of metallic compounds and ions ablated from micrometeorites and their possible role in the nucleation of noctilucent clouds. The CEMs were flown as guest instruments on two sounding rockets to the mesosphere. Modeling of the aerodynamic flow around the payload with Direct Simulation Monte-Carlo (DSMC) code showed that the pressure is reduced below ambient in the void behind (relative to the direction of motion) an aft-facing surface. An enclosure containing the CEM was placed forward of an aft-facing deck and a valve was opened during flight to expose the CEM to the aerodynamically evacuated region behind it. The CEM operated successfully from apogee down to ∼80 km. A Pirani gauge confirmed pressures reduced to as low as 20% of ambient with the extent of reduction dependent upon altitude and velocity. Additional DSMC simulations indicate that there are alternate payload designs with improved aerodynamic pumping for forward mounted instruments such as mass spectrometers.

  11. Channel electron multiplier operated on a sounding rocket without a cryogenic vacuum pump from 120 - 75 km altitude

    NASA Astrophysics Data System (ADS)

    Dickson, S.; Gausa, M. A.; Robertson, S. H.; Sternovsky, Z.

    2012-12-01

    We demonstrate that a channel electron multiplier (CEM) can be operated on a sounding rocket in the pulse-counting mode from 120 km to 75 km altitude without the cryogenic evacuation used in the past. Evacuation of the CEM is provided only by aerodynamic flow around the rocket. This demonstration is motivated by the need for additional flights of mass spectrometers to clarify the fate of metallic compounds and ions ablated from micrometeorites and their possible role in the nucleation of noctilucent clouds. The CEMs were flown as guest instruments on the two sounding rockets of the CHAMPS (CHarge And mass of Meteoritic smoke ParticleS) rocket campaign which were launched into the mesosphere in October 2011 from Andøya Rocket Range, Norway. Modeling of the aerodynamic flow around the payload with Direct Simulation Monte-Carlo (DSMC) code showed that the pressure is reduced below ambient in the void beneath an aft-facing surface. An enclosure containing the CEM was placed above an aft-facing deck and a valve was opened on the downleg to expose the CEM to the aerodynamically evacuated region below. The CEM operated successfully from apogee down to ~75 km. A Pirani gauge confirmed pressures reduced to as low as 20% of ambient with the extent of reduction dependent upon altitude and velocity. Additional DSMC simulations indicate that there are alternate payload designs with improved aerodynamic pumping for forward mounted instruments such as mass spectrometers.

  12. Relationship of O(+) Field-Aligned Flows and Densities to Convection Speed in the Polar Cap at 5000 km Altitude

    NASA Technical Reports Server (NTRS)

    Stevenson, B. A.; Horwitz, J. L.; Creel, B.; Elliott, H. A.; Comfort, R. H.; Su, Y. J.; Moore, T. E.; Craven, P. D.

    1999-01-01

    Measurements of thermal O(+) ion number fluxes, densities, field-aligned velocities, and convective velocities from the Thermal Ion Dynamics Experiment (TIDE) on POLAR obtained near 5000 km altitude over the Southern hemisphere are examined. We find that the O(+) parallel velocities and densities are strongly related to the convection speeds. The polar cap densities decrease rapidly with convection speed, with a linear least square fit formula to bin averaged data giving the relationship log(N(sub (sub _)O(+))) = -0.33* V(sub (sub _)conv)) + 0.07, with a linear regression coefficient of r = -0.96. The parallel bulk flow velocities are on average slightly downward (0 - 2 km/s) for V(sub (sub _)conv) < 2.5 km/s, but tend to be upward (0 - 4 km/s) for average V(sub (sub _)conv) > 2.5 km/s. We interpret these relationships in terms of the Cleft Ion Fountain paradigm [e.g., Horwitz and Lockwood, 1985]. The densities decline with convection speed owing to increased spreading and resulting dilution from the restricted cleft source over the polar cap area with convection speed. The parallel velocities tend to be downward for low convection speeds because they fall earthward after initial cleft injection at shorter distances into the polar cap for low convection speeds. At the higher convection speeds, the initially-upward flows are transported further into the polar cap and thus occupy a larger area of the polar cap.

  13. The latitudinal distribution of ozone to 35 km altitude from ECC ozonesonde observations, 1982-1990

    NASA Technical Reports Server (NTRS)

    Komhyr, W. D.; Oltmans, S. J.; Lathrop, J. A.; Kerr, J. B.; Matthews, W. A.

    1994-01-01

    Electrochemical concentration cell (ECC) ozone-sonde observations, made in recent years at ten stations whose locations range from the Arctic to Antarctica, have yielded a self-consistent ozone data base from which mean seasonal and annual latitudinal ozone vertical distributions to 35 km have been derived. Ozone measurement uncertainties are estimated, and results are presented in the Bass-Paur (1985) ozone absorption coefficient scale adopted for use with Dobson ozone spectrophotometers January 1, 1992. The data should be useful for comparison with model calculations of the global distribution of atmospheric ozone, for serving as apriori statistical information in deriving ozone vertical distributions from satellite and Umkehr observations, and for improving the satellite and Umkehr ozone inversion algorithms. Attention is drawn to similar results based on a less comprehensive data set published in Ozone in the Atmosphere, Proceedings of the 1988 Quadrennial Ozone Symposium where errors in data tabulations occurred for three of the stations due to inadvertent transposition of ozone partial pressure and air temperature values.

  14. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, James; Riris, Haris; Allan, Graham; Weaver, Clark; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William

    2010-01-01

    US Department of Energy's (DOE) SGP ARM site at altitudes from 3-8 km. These flights were coordinated with DOE investigators who flew an in-situ CO2 sensor on a Cessna aircraft under the path. The increasing CO2 line absorptions with altitudes were evident and comparison with in-situ measurements showed agreements to 6 ppm. In spring 2009 we improved the aircraft's nadir window and during July and August we made 9 additional 2 hour long flights and measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over a variety of surface types in Nebraska, Illinois, the SGP ARM site, and near and over the Chesapeake Bay in North Carolina and eastern Virginia. Strong laser signals and clear CO2 line shapes were observed at all altitudes, and some measurements were made through thin clouds. The flights over the ARM site were underflown with in-situ measurements made from the DOE Cessna. Analysis shows that the average signal levels follow predicted values, the altimetry measurements had an uncertainty of about 4 m, and that the average optical line depths follow the number density calculated from in-situ sensor readings. The Oklahoma and east coast flights were coordinated with a LaRC/ITT CO2 lidar on the LaRC UC-12 aircraft, a LaRC in-situ CO2 sensor, and the Oklahoma flights also included a JPL CO2 lidar on a Twin Otter aircraft. More details of the flights, measurements, analysis and scaling to space will be described in the presentation.

  15. Pulsed Airborne Lidar measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km altitudes

    NASA Astrophysics Data System (ADS)

    Abshire, James; Riris, Haris; Allan, Graham; Weaver, Clark; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William

    2010-05-01

    US Department of Energy's (DOE) SGP ARM site at altitudes from 3-8 km. These flights were coordinated with DOE investigators who flew an in-situ CO2 sensor on a Cessna aircraft under the path. The increasing CO2 line absorptions with altitudes were evident and comparison with in-situ measurements showed agreements to 6 ppm. In spring 2009 we improved the aircraft's nadir window and during July and August we made 9 additional 2 hour long flights and measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over a variety of surface types in Nebraska, Illinois, the SGP ARM site, and near and over the Chesapeake Bay in North Carolina and eastern Virginia. Strong laser signals and clear Co2 line shapes were observed at all altitudes, and some measurements were made through thin clouds. The flights over the ARM site were underflown with in-situ measurements made from the DOE Cessna. Analysis shows that the average signal levels follow predicted values, the altimetry measurements had an uncertainty of about 4 m, and that the average optical line depths follow the number density calculated from in-situ sensor readings. The Oklahoma and east coast flights were coordinated with a LaRC/ITT CO2 lidar on the LaRC UC-12 aircraft, a LaRC in-situ CO2 sensor, and the Oklahoma flights also included a JPL CO2 lidar on a Twin Otter aircraft. More details of the flights, measurements, analysis and scaling to space will be described in the presentation.

  16. Pulsed Airborne Lidar measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km altitudes

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C. J.; Hasselbrack, W. E.; Sun, X.

    2009-12-01

    We have developed a lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA’s planned ASCENDS mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are stepped in wavelength across the CO2 line and an O2 line region during the measurement. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser’s wavelength across a selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, laser pulse energy is 25 uJ and laser pulse widths are 1 usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during October and December 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin and broken clouds. Atmospheric CO2 column measurements using the 1571.4, 1572.02 and 1572.33 nm CO2 lines. Two flights were made above the DOE SGP ARM site at altitudes from 3-8 km. These flights were coordinated with DOE investigators who flew an in-situ CO2 sensor on a Cessna aircraft under the path. The

  17. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C.; Hasselbrack, W.; Sun, X.

    2009-01-01

    We have developed a lidar technique for measuring the tropospheric C02 concentrations as a candidate for NASA's planned ASCENDS mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a C02 absorption line in the 1570 nm band, 02 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are stepped in wavelength across the C02 line and an 02 line region during the measurement. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the C02 and 02 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. We have developed an airborne lidar to demonstrate the C02 measurement from the NASA Glenn Lear 25 aircraft. The airborne lidar steps the pulsed laser's wavelength across a selected C02 line with 20 steps per scan. The line scan rate is 450 Hz and laser pulse widths are I usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during October and December 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin and broken clouds. Atmospheric C02 column measurements using the 1571.4, 1572.02 and 1572.33 nm C02 lines. Two flights were made above the DOE SGP ARM site at altitudes from 3-8 km. These nights were coordinated with DOE investigators who Hew an in-situ C02 sensor on a Cessna aircraft under the path. The increasing C02 line absorptions with

  18. Analysis of Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Weaver, Clark J.; Riris, Haris; Mao, Jianping; Sun, Xiaoli; Allan, Graham R.; Hasselbrack, William; Browell, Edward V.

    2011-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS space mission [1]. It uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1575 nm band, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver measures the energies of the laser echoes from the surface along with the range profile of scattering in the path. The column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off-line signals via the integrated path differential absorption (IPDA) technique. The time of flight of the laser pulses is used to estimate the height of the scattering surface and to reject laser photons scattered in the atmosphere. We developed an airborne lidar to demonstrate an early version of the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar stepped the pulsed laser's wavelength across the selected CO2 line with 20 wavelength steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a NIR photomultiplier and is recorded on every other reading by a photon counting system [2]. During August 2009 we made a series of 2.5 hour long flights and measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over locations in the US, including the SGP ARM site in Oklahoma, central Illinois, north-eastern North Carolina, and over the Chesapeake Bay and the eastern shore of Virginia. Although the received signal energies were weaker than expected for ASCENDS, clear CO2 line shapes were observed at all altitudes, and some measurements were made

  19. Dayside observations of thermal-ion upwellings at 800-km altitude - An ionospheric signature of the cleft ion fountain

    NASA Technical Reports Server (NTRS)

    Tsunoda, R. T.; Livingston, R. C.; Vickrey, J. F.; Heelis, R. A.; Hanson, W. B.

    1989-01-01

    There is a growing body of evidence that energetic heavy ions observed at one or more earth radii over the polar cap originate from the dayside ionosphere in the vicinity of the dayside cleft. The ions, consisting mostly of O(+), are often characterized by conic pitch-angle distributions, suggesting that they have undergone acceleration transverse to geomagnetic field lines. This process of ion injection from a latitudinally localized source region in the dayside auroral oval followed by dispersal throughout the entire polar cap has been called the 'cleft ion fountain'. Here, results are presented of upward thermal-ion flows measured at 800-km altitude in the dayside polar ionosphere by the Hilat satellite. The characteristics of these thermal-ion upwellings (TIU) are described and shown to be closely associated with the cleft ion fountain. It is shown that TIU events are latitudinally confined and spatially collocated with cleft electron precipitation, upward field-aligned currents, and velocity gradients in magnetospheric convection.

  20. Variation of electron and ion density distribution along Earth's magnetic field line deduced from whistler mode (wm) sounding of image/rpi satellite below altitude 5000 km

    NASA Astrophysics Data System (ADS)

    Hazra, Susmita

    This thesis provides a detailed survey and analysis of whistler mode (WM) echoes observed by IMAGE/RPI satellite during the years 2000-2005 below the altitude of 5000 km. Approximately 2500 WM echoes have been observed by IMAGE during this period. This includes mostly specularly reflected whistler mode (SRWM) echoes and ~400 magnetospherically reflected whistler mode (MRWM) echoes. Stanford 2D raytracing simulations and the diffusive equilibrium density model have been applied to 82 cases of MRWM echoes, observed during August-December of the year 2005 below 5000 km to determine electron and ion density measurements along Earth's magnetic field line. These are the first results of electron and ion density measurements from WM sounding covering L-shells ~1.6-4, a wide range of geomagnetic conditions (Kp 0+ to 7), and during solar minima (F10.2~70-120) in the altitude range 90 km to 4000 km. The electron and ion density profiles obtained from this analysis were compared with in situ measurements on IMAGE (passive recording; electron density (Ne)), DMSP (~850 km; Ne and ions), CHAMP (~350 km; Ne), Alouette (~500-2000 km; Ne and ions), ISIS-1, 2 (~600-3500 km; Ne, ions), AE (~130-2000 km; ions) satellites, bottom side sounding from nearby ionosonde stations (Ne), and those by GCPM (Global Core Plasma Model), IRI-2012 (International Reference Ionosphere). Based on this analysis it is found that: (1) Ne shows a decreasing trend from L-shell 1.6 to 4 on both the day and night sides of the plasmasphere up to altitude ~1000 km, which is also confirmed by the GCPM and IRI-2012 model. (2) Above ~2000 km altitude, GCPM underestimates Ne by ~30-90% relative to RPI passive measurements, WM sounding results. (3) Below 1500 km, the Ne is higher at day side than night side MLT (Magnetic Local Time). Above this altitude, significant MLT dependence of electron density is not seen. (4) Ion densities from WM sounding measurements are within 10-35% of those from the Alouette, AE, and

  1. Analysis of the nature of excessive cosmic radiation in the area of the Brazilian magnetic anomaly at altitudes 250-500km, from Kosmos-225 satellite data

    NASA Technical Reports Server (NTRS)

    Raychenko, L. V.

    1974-01-01

    Results are presented from a study of the region of anomalous cosmic radiation in the area of the Brazilian magnetic anomaly at the altitudes 250-500 km, using data measurements taken on the Kosmos-225 satellite (14-29 June 1968). The existence of a stable intensity anomaly discovered in the experiments on the second and third Soviet spacecraft-satellites is confirmed. The total vector of the geomagnetic field at different altitudes was compared with isoline maps. An altitude profile of the South Atlantic anomaly of radiation intensity was obtained, using data from the same instrument. The nature of the anomalies in cosmic radiation intensity over the regions of negative magnetic anomalies is discussed.

  2. Estimation of precipitable water vapour using kinematic GNSS precise point positioning over an altitude range of 1 km

    NASA Astrophysics Data System (ADS)

    Webb, S. R.; Penna, N. T.; Clarke, P. J.; Webster, S.; Martin, I.

    2013-12-01

    The estimation of total precipitable water vapour (PWV) using kinematic GNSS has been investigated since around 2001, aiming to extend the use of static ground-based GNSS, from which PWV estimates are now operationally assimilated into numerical weather prediction models. To date, kinematic GNSS PWV studies suggest a PWV measurement agreement with radiosondes of 2-3 mm, almost commensurate with static GNSS measurement accuracy, but only shipborne experiments have so far been carried out. As a first step towards extending such sea level-based studies to platforms that operate at a range of altitudes, such as airplanes or land based vehicles, the kinematic GNSS estimation of PWV over an exactly repeated trajectory is considered. A data set was collected from a GNSS receiver and antenna mounted on a carriage of the Snowdon Mountain Railway, UK, which continually ascends and descends through 950 m of vertical relief. Static GNSS reference receivers were installed at the top and bottom of the altitude profile, and derived zenith wet delay (ZWD) was interpolated to the altitude of the train to provide reference values together with profile estimates from the 100 m resolution runs of the Met Office's Unified Model. We demonstrate similar GNSS accuracies as obtained from previous shipborne studies, namely a double difference relative kinematic GNSS ZWD accuracy within 14 mm, and a kinematic GNSS precise point positioning ZWD accuracy within 15 mm. The latter is a more typical airborne PWV estimation scenario i.e. without the reliance on ground-based GNSS reference stations. We show that the kinematic GPS-only precise point positioning ZWD estimation is enhanced by also incorporating GLONASS observations.

  3. Using data of gradient magnetic surveys at altitudes of 20-40 km for the analysis of map errors and models of the geomagnetic field

    NASA Astrophysics Data System (ADS)

    Brekhov, Oleg; Tsvetkov, Yury

    2016-07-01

    Gradient geomagnetic survey at altitudes of 20-40 km from the board of stratospheric balloon have a high degree of accuracy. The data of the geomagnetic field (GMF), obtained with the help of high-precision proton magnetometer and GPS navigation receivers, are considered as a benchmark for the analysis of geomagnetic data. Gradient magnetic data is obtained by us on the balloon, allowed us to estimate the quality of the analytical models of International Geomagnetic Referent Field (IGRF) and to identify the causes of anomalous GMF map errors. Research data of magnetic anomalies map for the study area on the route length of 900 km showed that their spectrum has no harmonics with a wavelength more 130 km. This is a significant defect in a ground map. Defects of magnetic anomalies map are explained by the poor quality of the main GMF and low altitude aeromagnetic survey, as well as the presence of intense local magnetic anomalies, which does not allow reliable identifying the background of weak magnetic fields of deep sources. Using a balloon and satellite magnetic data allows creating an adequate model of the geomagnetic field up to 720.

  4. Polar/Tide Observations of Field Aligned O(+) Flows at 5000 km Altitude over the Auroral Regions in Comparison to UVI Auroral Images

    NASA Technical Reports Server (NTRS)

    Stevenson, Benjamin Adam; Craven, Paul D.; Chandler, Michael O.; Moore, Thomas E.; Giles, Barbara L.; Parks, G. K.; Pollock, Craig J.

    1999-01-01

    Measurements of thermal O(+) ion parameters from the Thermal Ion Dynamics Experiment (TIDE) on POLAR obtained near 5000 km altitude are compared with auroral images from the Ultra Violet Imager (UVI), for southern perigee passes. Ion parameters, including parallel velocity, density, and flux are combined with simultaneous auroral images to investigate relationships between their properties and the structure and brightness of the auroral forms. Results indicate field aligned upflowing O(+) ions over bright auroral regions and downward flows over dark regions. These and other relationships will be presented for several POLAR passes when both ion measurements and auroral images are observed under favorable conditions for comparison.

  5. Relationships between stratospheric clear air turbulence and synoptic meteorological parameters over the western United States between 12-20 km altitude

    NASA Technical Reports Server (NTRS)

    Scoggins, J. R.; Clark, T. L.; Possiel, N. C.

    1975-01-01

    Procedures for forecasting clear air turbulence in the stratosphere over the western United States from rawinsonde data are described and results presented. Approaches taken to relate meteorological parameters to regions of turbulence and nonturbulence encountered by the XB-70 during 46 flights at altitudes between 12-20 km include: empirical probabilities, discriminant function analysis, and mountainwave theory. Results from these techniques were combined into a procedure to forecast regions of clear air turbulence with an accuracy of 70-80 percent. A computer program was developed to provide an objective forecast directly from the rawinsonde sounding data.

  6. Correcting Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) High Altitude (40 - 65 km) Temperature Retrievals for Instrumental Correlated Noise and Biases

    NASA Astrophysics Data System (ADS)

    McConnochie, T. H.; Smith, M. D.

    2011-12-01

    Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) nadir-soundings have been used to derive atmospheric temperatures up to roughly 40 km [Conrath et al., JGR 105 2000, Smith et al., JGR 106, 2001], and MGS-TES limb soundings have been used to extend the atmospheric temperature data set to > 60 km in altitude [Smith et al., JGR 106, 2001]. The ~40 - ~65 km altitude range probed by the MGS-TES limb sounding is particularly important for capturing key dynamical features such as the warm winter polar mesosphere [e.g., Smith et al., JGR 106, 2001; McCleese et al., Nature Geoscience 1, 2008], and the response of thermal tides to dust opacity [e.g. Wilson and Hamilton, J. Atmos. Sci. 53, 1996]. Thus accurate and precise temperature profiles at these altitudes are particularly important for constraining global circulation models. They are also critical for interpreting observations of mesospheric condensate aerosols [e.g., Määttänen et al., Icarus 209, 2010; McConnochie et al., Icarus 210, 2010)]. We have indentified correlated noise components in the MGS-TES limb sounding radiances that propagate into very large uncertainties in the retrieved temperatures. We have also identified a slowly varying radiance bias in the limb sounding radiances. Note that the nadir-sounding-based MGS-TES atmospheric temperatures currently available from the Planetary Data System are not affected by either of these issues. These two issues affect the existing MGS-TES limb sounding temperature data set are as follows: Considering, for example, the 1.5 Pascal pressure level (which typically falls between 50 and 60 km altitude), correlated-noise induced standard errors for individual limb-sounding temperature retrievals were 3 - 5 K in Mars Year 24, rising to 5 - 15 K in Mars Year 25 and 10 - 15 K in Mars Year 26 and 27. The radiance bias, although consistent on ~10-sol time scales, is highly variable over the course of the MGS-TES mission. It results in temperatures (at the 1

  7. Global circulation of the Earth's atmosphere at altitudes from 0 to 135 Km simulated with the ARM model. Consideration of the solar activity contribution

    NASA Astrophysics Data System (ADS)

    Krivolutsky, A. A.; Cherepanova, L. A.; Dement'eva, A. V.; Repnev, A. I.; Klyuchnikova, A. V.

    2015-11-01

    The results of simulations of the global circulation and temperature regime in the altitude range from the lower tropospheric layers to 135 km are presented. They were obtained with the Atmospheric Research Model (ARM), an advanced modification of a version of the Cologne Middle Atmosphere Model (COMMA). The ARM is characterized by higher spatial resolution and better parameterizations of the radiation sources and heat sinks. At the lower boundary of the model, wavy sources of perturbations, which are caused by internal gravity waves and planetary waves, are specified. The results of the modeling of the global temperature and wind fields for the mean solar activity level are presented, and their changes, which are caused by variations of the UV-radiation fluxes in the solar activity cycle and by solar proton flares, are also considered.

  8. Three-micron extinction of the Titan haze in the 250-700 km altitude range: Possible evidence of a particle-aging process

    NASA Astrophysics Data System (ADS)

    Courtin, Régis; Kim, Sang Joon; Bar-Nun, Akiva

    2015-01-01

    Context. The chemical nature of the Titan haze is poorly understood. The investigation carried out by the Cassini-Huygens suite of instruments is bringing new insights into this question. Aims: This work aims at deriving the vertical variation of the spectral structure of the 3.3-3.4 μm absorption feature of the Titan haze from Cassini VIMS solar occultation data recorded between 250 and 700 km altitude. Methods: We computed the transmittance of Titan's atmosphere using a spherical shell model and a radiative transfer code including the influence of CH4, CH3D, and C2H6, as well as the effects of absorption and scattering by the haze particles. We derived the haze extinction from a comparison of the synthetic spectra with the VIMS solar occultation spectra. Results: We find a marked change in the relative amplitudes of the 3.33 and 3.38 μm features, which are characteristic of aromatic (double C=C chains or rings) or aliphatic (single C-C chains) structural groups, respectively. The pseudo-ratio of aromatics to aliphatics (uncorrected for the absolute band strengths) varies from 3.3 ± 1.9 at 580-700 km to 0.9 ± 0.1 at 350-450 km, and is 0.5 ± 0.1 around 250 km. The structural change from the aromatic to the aliphatic type between 580 and 480 km appears to correspond to a spontaneous aging of the particles - a transition between unannealed and hardened particles - while the further decrease of the pseudo-ratio of aromatics to aliphatics below 480 km may be related to the coating of the core particles by condensates such as heavy alkanes. VIMS transmission spectra data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/573/A21

  9. Observations of a Breakdown of a Mountain Wave Near 84 km Altitude Over Cerro Pachon Chile from the Andes Lidar Observatory

    NASA Astrophysics Data System (ADS)

    Hecht, J. H.; Gelinas, L. J.; Rudy, R. J.; Walterscheid, R. L.; Taylor, M. J.; Pautet, P. D.; Fritts, D. C.; Smith, S. M.; Franke, S. J.; Mlynczak, M. G.

    2015-12-01

    Mountain waves are produced by flow over orography. They propagate almost vertically, and are characterized by nearly zero velocity phase speed. The altitude to which they typically propagate is not well documented. They are thought to mainly dissipate by absorption in a critical layer although large-amplitude wave breakdown is also thought to occur. There have been almost no direct observations of the breakdown of mountain waves in the upper mesosphere and lower thermosphere. The region over Cerro Pachon Chile (a 2715 meter mountain in the Andes where large astronomical telescopes are located) is especially favorable to the production of mountain waves. In 2009 Smith and colleagues reported on the first observations of such waves propagating into the mesopause region (85 to 95 km) from El Leoncito Argentina, where waves over Cerro Pachon could be seen using airglow observations. The Aerospace Corporation's Nightglow Imager (ANI) is located at the Andes Lidar Observatory near the crest of Cerro Pachon. ANI observes nighttime OH emission (near 1.6 microns) every 2 seconds over an approximate 73 degree field of view. ANI had previously been used to the breakdown of Kelvin-Helmholtz instability features not associated with a specific gravity wave. Here we present OH airglow observations, originating near 84 km, from 22 UT to 3 UT on 8/9 July 2012 that show the breakdown of a mountain wave into instability features that subsequently dissipate into turbulence. These multi-hour observations provide the most detailed images to date of the breakdown of a mountain wave. The causes for, and the results of, the breakdown of this mountain wave are discussed.

  10. Chemical composition of tropospheric air masses encountered during high altitude flights (>11.5 km) during the 2009 fall Operation Ice Bridge field campaign

    NASA Astrophysics Data System (ADS)

    Yang, Mei Ying Melissa; Vay, Stephanie A.; Stohl, Andreas; Choi, Yonghoon; Diskin, Glenn S.; Sachse, Glen W.; Blake, Donald R.

    2012-09-01

    As part of the 2009 Operation Ice Bridge campaign, the NASA DC-8 aircraft was used to fill the data-time gap in laser observation of the changes in ice sheets, glaciers and sea ice between ICESat-I (Ice, Cloud, and land Elevation Satellite) and ICESat-II. Complementing the cryospheric instrument payload were four in situ atmospheric sampling instruments integrated onboard to measure trace gas concentrations of CO2, CO, N2O, CH4, water vapor and various VOCs (Volatile Organic Compounds). This paper examines two plumes encountered at high altitude (12 km) during the campaign; one during a southbound transit flight (13°S) and the other at 86°S over Antarctica. The data presented are especially significant as the Southern Hemisphere is heavily under-sampled during the austral spring, with few if any high-resolution airborne observations of atmospheric gases made over Antarctica. Strong enhancements of CO, CH4, N2O, CHCl3, OCS, C2H6, C2H2 and C3H8 were observed in the two intercepted air masses that exhibited variations in VOC composition suggesting different sources. The transport model FLEXPART showed that the 13°S plume contained predominately biomass burning emissions originating from Southeast Asia and South Africa, while both anthropogenic and biomass burning emissions were observed at 86°S with South America and South Africa as indicated source regions. The data presented here show evidence that boundary layer pollution is transported from lower latitudes toward the upper troposphere above the South Pole, which may not have been observed in the past.

  11. The HEX experiment: Determination of the neutral wind field from 120 to 185 km altitude near a stable premidnight auroral arc by triangulating the drift of rocket-deployed chemical trails

    NASA Astrophysics Data System (ADS)

    Wescott, E. M.; Stenbaek-Nielsen, H.; Conde, M.; Larsen, Miguel; Lummerzheim, Dirk

    2006-09-01

    On 25 March 2003, Horizontal E-Region Experiment (HEX) released trimethyl aluminum trails from two rockets launched northward from Poker Flat Research Range near Fairbanks to map the vertical wind field near a stable premidnight auroral arc system. They deployed three trails of trimethyl aluminum chemical "puffs," whose subsequent motion traced the prevailing wind field. This motion was determined using triangulation from four ground observation sites. Position and speed accuracies were estimated to be ˜1 km and a few meters per second, respectively. The first rocket followed a novel flat trajectory; it released a nearly horizontal trail of length 200 km, at an average altitude of ˜145 km. The second rocket was launched 19 min later and released two trails between 125 and 175 km altitude along a conventional steep trajectory. All puffs between 130 and 175 km altitude drifted geomagnetic westward, almost exactly parallel to the aurora. From prior observations and modeling, we had expected to observe convective upwelling near the arcs. We did not; vertical winds were essentially downward throughout the horizontal trail, with speeds between 0 and 20 m s-1. Although an abatement of downward flow was observed ˜40 km equatorward of the arcs, these data alone do not establish a causal relationship between the abatement and the arcs. Vertical speeds of ≤20 m s-1 are relatively modest. However, because the observed wind field would entrain air parcels in flow parallel to the arc system, even vertical speeds around 15 m s-1 could displace individual air parcels by several scale heights if they occurred all along the arcs.

  12. Storm-time changes of geomagnetic field at MAGSAT altitudes (325-550 Km) and their comparison with changes at ground locations

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Kane, R. P.; Trivedi, N. B.

    1983-01-01

    The values of H, X, Y, Z at MAGSAT altitudes were first expressed as residuals delta H, delta X, delta Y, delta Z after subtracting the model HMD, XMD, YMD, ZMC. The storm-time variations of H showed that delta H (Dusk) was larger (negative) than delta H (Dawn) and occurred earlier, indicating a sort of hysteresis effect. Effects at MAGSAT altitudes were roughly the same (10% accuracy) as at ground, indicating that these effects were mostly of magnetospheric origin. The delta Y component also showed large storm-time changes. The latitudinal distribution of storm-time delta H showed north-south asymmetries varying in nature as the storm progressed. It seems that the central plane of the storm-time magnetospheric ring current undergoes latitudinal meanderings during the course of the storm.

  13. Recent Results of the Remote Sensing of the O/N2 Ratio in the 100 to 200 Km Altitude Region

    NASA Astrophysics Data System (ADS)

    Hecht, J. H.

    2014-12-01

    The O/N2 ratio is a sensitive indicator of dynamical changes in the composition of the lower Thermosphere. In the auroral zone the deposition of auroral energy (either through particle precipitation or Joule heating) can produce changes in vertical winds causing a decrease in the O/N2 ratio. Horizontal winds may transport O-depleted air away from the auroral zone causing composition changes in the latitude regions equatorward of the auroral zone. Large waves and tides may also affect composition. To measure such composition changes a number of complimentary remote sensing techniques exist. In the auroral zone ground-based photometers have been sued to monitor, at night, variations of the column O/N2 at a single location as a function of time. Satellite observations (most notably the GUVI instrument on TIMED) provide column O/N2 variations during the daytime as a function of latitude at a nearly fixed local time. Rockets have recently been shown to be able to measure vertical variations in an auroral arc providing altitude-based measurements. Here we review some of the most recent results with an emphasis on comparison with the model predictions of MSIS.

  14. Superconductivity of amorphous Mg 0.70Zn 0.30-xGa x alloys

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2008-06-01

    The screening dependence theoretical investigations of the superconducting state parameters (SSP) viz. electron-phonon coupling strength λ, Coulomb pseudopotential μ∗, transition temperature TC , isotope effect exponent α and effective interaction strength NOV of five Mg 0.70Zn 0.30-xGa x ( x = 0.0, 0.06, 0.10, 0.15 and 0.20) ternary amorphous alloys viz. Mg 0.70Zn 0.30Ga 0.00, Mg 0.70Zn 0.24Ga 0.06, Mg 0.70Zn 0.20Ga 0.10, Mg 0.70Zn 0.15Ga 0.15 and Mg 0.70Zn 0.10Ga 0.20 have been reported for the first time using Ashcroft’s empty core (EMC) model potential. Five local field correction functions proposed by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) are used in the present investigation to study the screening influence on the aforesaid properties. It is observed that the electron-phonon coupling strength λ and the transition temperature TC are quite sensitive to the selection of the local field correction functions, whereas the Coulomb pseudopotential μ∗, isotope effect exponent α and effective interaction strength NOV show weak dependences on the local field correction functions. The transition temperature TC obtained from H-local field correction function is found in an excellent agreement with available experimental data. Quadratic TC equation has been proposed, which provide successfully the TC values of ternary amorphous alloys under consideration. Also, the present results are found in qualitative agreement with other such earlier reported data, which confirms the superconducting phase in the ternary amorphous alloys.

  15. Magnetization reversal phenomena in (Cr0.70Ti0.30)5S6

    NASA Astrophysics Data System (ADS)

    Hashimoto, Satoshi; Matsuda, Yuji; Sato, Tetsuya; Anzai, Shuichiro

    2005-12-01

    Magnetization reversal phenomena (MRP) along magnetic order-order transitions have recently been reported on impurity-doped magnetic systems. Because imperfect long-range magnetic order exists in these systems, it is expected that a systematic investigation of MRP will give physical information on thermomagnetic processes of magnetic systems in the range from the micro- to nanoscales. As a typical order-order transition (a state doubly modulated by helical and canting orders to a collinear ferrimagnetic state) has been known to occur on Cr5S6 at a transition temperature Tt, we investigate the magnetizations of (Cr0.70Ti0.30)5S6 on heating and cooling runs in various magnetic fields. At 20Oe, the field-cooled magnetization just below the Curie temperature has a positive sign; the sign turns negative below the compensation temperature TCM (first step) and finally returns to positive below Tt (second step). The first-step MRP observed in this system is explained by the potential barriers resulting from anisotropy energy when the preferred direction of collinear ferrimagnetic moment reverses. The proposed mechanism for second-step MRP is the pinning effect caused by the impurity atoms (Ti) in the helical long-range-order chains. Comparing other examples of MRPs, we discuss the roles of local impurity centers in the thermomagnetic process in magnetic order-order transitions.

  16. Global changes in the 0-70 km thermal structure of the Mars atmosphere derived from 1975 to 1989 microwave CO spectra

    NASA Technical Reports Server (NTRS)

    Clancy, R. Todd; Muhleman, Duane O.; Berge, Glenn L.

    1990-01-01

    J = 1 - 2 (C-12)O (230 GHz) and (C-13)O (220 GHz) spectra of Mars obtained during the particularly favorable opposition of Mars in 1988 are analyzed. A CO mixing ratio is derived for November 1988 which agrees with a determination from 1967 observations. It is demonstrated that if the mixing ratio of CO was not drastically different in early 1980 and early 1982, the low- to midlatitude average thermal structure of the Mars atmosphere at these times was consistent with clear-air radiative-convective equilibrium conditions. Mars atmospheric temperature profiles derived from (C-12)O spectra are also presented.

  17. Detection of ocean color changes from high altitudes

    NASA Technical Reports Server (NTRS)

    Hovis, W. A.; Forman, M. L.; Blaine, L. R.

    1973-01-01

    The detection of ocean color changes, thought to be due to chlorophyll concentrations and gelbstoffe variations, is attempted from high altitude (11.3km) and low altitude (0.3km). The atmospheric back scattering is shown to reduce contrast, but not sufficiently to obscure color change detection at high altitudes.

  18. Investigation of a hydrogen implantation-induced blistering phenomenon in Si0.70Ge0.30

    NASA Astrophysics Data System (ADS)

    Singh, R.; Scholz, R.; Christiansen, S.; Mantl, S.; Reiche, M.

    2011-12-01

    The blistering phenomenon in hydrogen implanted and annealed Si0.70Ge0.30(0 0 1) layers was investigated. The implantation was performed with 240 keV H2+ ions with a fluence of 5 × 1016 cm-2. The blistering kinetics of H-implanted Si0.70Ge0.30 showed two different activation energies: about 1.60 eV in the lower temperature regime (350-425 °C) and 0.40 eV in the higher temperature regime (425-700 °C). Microstructural characterization of the implantation damage in SiGe layers using transmission electron microscopy revealed a damage band extending between 900 and 1200 nm below the surface. It was observed that after post-implantation annealing, a number of platelets and microcracks were formed within the damage band. These extended defects are predominantly oriented parallel to the surface, i.e. in the (0 0 1) plane. However, the extended defects oriented along the {1 1 1} planes were also observed and the density of these defects was the highest toward the end of the damage band. These experimental observations are compared with similar investigations in Si and Ge performed earlier and a plausible explanation for the blistering results in Si0.70Ge0.30 is presented in this work.

  19. Nb1.30Cr0.70S5: a layered ternary mixed-metal sulfide

    PubMed Central

    Yun, Hoseop; Kim, Gangbeom

    2009-01-01

    The new layered ternary sulfide, Nb1.30Cr0.70S5, niobium chromium penta­sulfide, is isostructural with the solid solution Nb1+xV1−xS5 and belongs to the FeNb3Se10 structure type. Each layer is composed of two unique chains of face-sharing [NbS8] bicapped trigonal prisms (m symmetry) and edge-sharing [MS6] (M= Nb, Cr) octa­hedra (m symmetry). One of the two metal sites is occupied by statistically disordered Nb and Cr atoms, with 0.3 and 0.7 occupancy, respectively. The chains are connected along the c axis, forming two-dimensional layers, which then stack on top of each other to complete the three dimensional structure. As a result, an undulating van der Waals gap is found between the layers. PMID:21581463

  20. High-Altitude Illness

    MedlinePlus

    ... altitude illness: Acute mountain sickness High-altitude pulmonary edema (also called HAPE), which affects the lungs High-altitude cerebral edema (also called HACE), which affects the brain These ...

  1. 36 new, high-probability, damped Lyα absorbers at redshift 0.42 < z < 0.70

    NASA Astrophysics Data System (ADS)

    Turnshek, David A.; Monier, Eric M.; Rao, Sandhya M.; Hamilton, Timothy S.; Sardane, Gendith M.; Held, Ryan

    2015-05-01

    Quasar damped Lyα (DLA) absorption-line systems with redshifts z < 1.65 are used to trace neutral gas over approximately 70 per cent of the most recent history of the Universe. However, such systems fall in the UV and are rarely found in blind UV spectroscopic surveys. Therefore, it has been difficult to compile a moderate-sized sample of UV DLAs in any narrow cosmic time interval. However, DLAs are easy to identify in low-resolution spectra because they have large absorption rest equivalent widths. We have performed an efficient strong-Mg II-selected survey for UV DLAs at redshifts z = [0.42, 0.70] using Hubble Space Telescope's low-resolution ACS-HRC-PR200L prism. This redshift interval covers ˜1.8 Gyr in cosmic time, i.e. t ≈ [7.2, 9.0] Gyr after the big bang. A total of 96 strong Mg II absorption-line systems identified in Sloan Digital Sky Survey spectra were successfully observed with the prism at the predicted UV wavelengths of Lyα absorption. We found that 35 of the 96 systems had a significant probability of being DLAs. One additional observed system could be a very high N_{H I} DLA (N_{H I} ˜ 2× 10^{22} atoms cm-2 or possibly higher), but since very high N_{H I} systems are extremely rare, it would be unusual for this system to be a DLA given the size of our sample. Here we present information on our prism sample, including our best estimates of N_{H I} and errors for the 36 systems fitted with DLA profiles. This list is valuable for future follow-up studies of low-redshift DLAs in a small redshift interval, although such work would clearly benefit from improved UV spectroscopy to more accurately determine their neutral hydrogen column densities.

  2. Ears and Altitude

    MedlinePlus

    ... Meeting Calendar Find an ENT Doctor Near You Ears and Altitude Ears and Altitude Patient Health Information ... uncomfortable feeling of fullness or pressure. Why do ears pop? Normally, swallowing causes a little click or ...

  3. Fulminant high altitude blindness.

    PubMed

    Mashkovskiy, Evgeny; Szawarski, Piotr; Ryzhkov, Pavel; Goslar, Tomaz; Mrak, Irena

    2016-06-01

    Prolonged altitude exposure even with acclimatization continues to present a physiological challenge to all organ systems including the central nervous system. We describe a case of a 41-year-old Caucasian female climber who suffered severe visual loss that was due to possible optic nerve pathology occurring during a high altitude expedition in the Himalayas. This case is atypical of classic high altitude cerebral oedema and highlights yet another danger of prolonged sojourn at extreme altitudes. PMID:27601532

  4. High altitude decelerator systems

    NASA Technical Reports Server (NTRS)

    Silbert, Mendel N.; Moltedo, A. David; Gilbertson, Gaylord S.

    1989-01-01

    High Altitude Decelerator Systems are used to provide a stable descending platform when deployed from a sounding rocket at altitudes greater than 40 kilometers allowing a scientific mission to be conducted in a specific altitude region. The High Altitude Decelerator is designed to provide a highly stable, high drag area system packed in a minimum volume to deploy successfully from a sounding rocket. Deployment altitudes greater than 100 kilometers have been successfully demonstrated at dynamic pressures as low as 0.004 pounds per square foot.

  5. The temperature gradient between 100 and 120 km

    NASA Technical Reports Server (NTRS)

    Donahue, T. M.; Carignan, G. R.

    1975-01-01

    Oxygen density profiles inferred from Ogo 6 green nightglow emission vary too sharply between 100 and 120 km to be consistent with temperature gradients in standard model atmospheres, and the eddy diffusion coefficient K determined from these observations reaches its maximum below 115 km. For three atomic oxygen profiles obtained at geographic latitudes of -27.69, +48.89, and +59.10 the temperature profiles required to create a downward flux that varies with altitude as the integrated photolytic production rate above that altitude are calculated, assuming K to be invariant with altitude and latitude. The oxygen distribution can be reconciled with a constant eddy coefficient above 100 km if the temperature gradient reaches a value between 10 and 20 deg K/km for low values of the eddy coefficient (about 500,000 sq cm/sec) or between 30 and 50 deg K/km for a higher eddy coefficient (about 1.6 million sq cm/sec). The maximum gradient for the Jacchia (1971) model is about 10 deg K/km. These temperature profiles predict Ar/N ratios consistent with those measured by sounding rockets. The low K profiles are large enough to remove a large part of the solar energy deposited below 120 km by thermal conduction.

  6. High-altitude headache.

    PubMed

    Marmura, Michael J; Hernandez, Pablo Bandres

    2015-05-01

    High-altitude headache is one of many neurological symptoms associated with the ascent to high altitudes. Cellular hypoxia due to decreased barometric pressure seems to be the common final pathway for headache as altitude increases. Susceptibility to high-altitude headache depends on genetic factors, history of migraine, and acclimatization, but symptoms of acute mountain sickness are universal at very high altitudes. This review summarizes the pathophysiology of acute mountain sickness and high-altitude headache as well as the evidence for treatment and prevention with different drugs and devices which may be useful for regular and novice mountaineers. This includes an examination of other headache disorders which may mimic high-altitude headache. PMID:25795155

  7. Gravity Waves Near 300 km Over the Polar Caps

    NASA Technical Reports Server (NTRS)

    Johnson, F. S.; Hanson, W. B.; Hodges, R. R.; Coley, W. R.; Carignan, G. R.; Spencer, N. W.

    1995-01-01

    Distinctive wave forms in the distributions of vertical velocity and temperature of both neutral particles and ions are frequently observed from Dynamics Explorer 2 at altitudes above 250 km over the polar caps. These are interpreted as being due to internal gravity waves propagating in the neutral atmosphere. The disturbances characterized by vertical velocity perturbations of the order of 100 m/s and horizontal wave lengths along the satellite path of about 500 km. They often extend across the entire polar cap. The associated temperature perturbations indicate that the horizontal phase progression is from the nightside to the dayside. Vertical displacements are inferred to be of the order of 10 km and the periods to be of the order of 10(exp 3) s. The waves must propagate in the neutral atmosphere, but they usually are most clearly recognizable in the observations of ion vertical velocity and ion temperature. By combining the neutral pressure calculated from the observed neutral concentration and temperature with the vertical component of the neutral velocity, an upward energy flux of the order of 0.04 erg/sq cm-s at 250 km has been calculated, which is about equal to the maximum total solar ultraviolet heat input above that altitude. Upward energy fluxes calculated from observations on orbital passes at altitudes from 250 to 560 km indicate relatively little attenuation with altitude.

  8. Local fluctuations of ozone from 16 km to 45 km deduced from in situ vertical ozone profile

    NASA Technical Reports Server (NTRS)

    Moreau, G.; Robert, C.

    1994-01-01

    A vertical ozone profile obtained by an in situ ozone sonde from 16 km to 45 km, has allowed to observe local ozone concentration variations. These variations can be observed, thanks to a fast measurement system based on a UV absorption KrF excimer laser beam in a multipass cell. Ozone standard deviation versus altitude calculated from the mean is derived. Ozone variations or fluctuations are correlated with the different dynamic zones of the stratosphere.

  9. Delirium at high altitude.

    PubMed

    Basnyat, Buddha

    2002-01-01

    A 35-year-old man on a trek to the Mount Everest region of Nepal presented with a sudden, acute confusional state at an altitude of about 5000 m. Although described at higher altitudes, delirium presenting alone has not been documented at 5000 m or at lower high altitudes. The differential diagnosis which includes acute mountain sickness and high altitude cerebral edema is discussed. Finally, the importance of travelling with a reliable partner and using proper insurance is emphasized in treks to the Himalayas. PMID:12006167

  10. Sprite initiation altitude measured by triangulation

    NASA Astrophysics Data System (ADS)

    Stenbaek-Nielsen, H. C.; Haaland, R.; McHarg, M. G.; Hensley, B. A.; Kanmae, T.

    2010-03-01

    High time resolution (10,000 frames per second) images of sprites combined with multistation concurrent video recordings have provided data for triangulation of the altitude of the initial sprite onset. The high-speed images were obtained from the Langmuir Laboratory, New Mexico, during summer campaigns in 2007 and 2008 with video observations from sites at Portales, New Mexico, and Las Vegas, New Mexico. Sprites start with one or more downward-propagating streamer heads. The triangulated onset altitudes of this initial downward streamer vary between 66 and 89 km. In some sprites the downward streamers are followed a little later by upward-propagating streamers. The upward streamers start from a lower altitude and existing luminous sprite structures and their triangulated altitudes vary from 64 to 78 km. The downward streamers create C sprite characteristics, while the upward streamers form the broad diffuse tops of carrot sprites. In the sprites analyzed the higher onset altitudes for the downward-propagating initial streamers were associated with C sprites and the lower with carrot sprites, but our larger data set indicates that this is not generally the case. It appears that the dominant sprite types vary from year to year, indicating that some longer-lasting environmental parameter, such as mesospheric conductivity and composition or thunderstorm cloud dynamics, may play an important role in determining the types of sprites observed.

  11. 157km BOTDA with pulse coding and image processing

    NASA Astrophysics Data System (ADS)

    Qian, Xianyang; Wang, Zinan; Wang, Song; Xue, Naitian; Sun, Wei; Zhang, Li; Zhang, Bin; Rao, Yunjiang

    2016-05-01

    A repeater-less Brillouin optical time-domain analyzer (BOTDA) with 157.68km sensing range is demonstrated, using the combination of random fiber laser Raman pumping and low-noise laser-diode-Raman pumping. With optical pulse coding (OPC) and Non Local Means (NLM) image processing, temperature sensing with +/-0.70°C uncertainty and 8m spatial resolution is experimentally demonstrated. The image processing approach has been proved to be compatible with OPC, and it further increases the figure-of-merit (FoM) of the system by 57%.

  12. [Mountaineering and altitude sickness].

    PubMed

    Maggiorini, M

    2001-06-01

    Almost every second trekker or climber develops two to three symptoms of the high altitude illness after a rapid ascent (> 300 m/day) to an altitude above 4000 m. We distinguish two forms of high altitude illness, a cerebral form called acute mountain sickness and a pulmonary form called high altitude pulmonary edema. Essentially, acute mountain sickness is self-limiting and benign. Its symptoms are mild to moderate headache, loss of appetite, nausea, dizziness and insomnia. Nausea rarely progresses to vomiting, but if it does, this may anticipate a progression of the disease into the severe form of acute mountain sickness, called high altitude cerebral edema. Symptoms and signs of high altitude cerebral edema are severe headache, which is not relieved by acetaminophen, loss of movement coordination, ataxia and mental deterioration ending in coma. The mechanisms leading to acute mountain sickness are not very well understood; the loss of cerebral autoregulation and a vasogenic type of cerebral edema are being discussed. High altitude pulmonary edema presents in roughly twenty percent of the cases with mild symptoms of acute mountain sickness or even without any symptoms at all. Symptoms associated with high altitude pulmonary edema are incapacitating fatigue, chest tightness, dyspnoe at the minimal effort that advances to dyspnoe at rest and orthopnoe, and a dry non-productive cough that progresses to cough with pink frothy sputum due to hemoptysis. The hallmark of high altitude pulmonary edema is an exaggerated hypoxic pulmonary vasoconstriction. Successful prophylaxis and treatment of high altitude pulmonary edema using nifedipine, a pulmonary vasodilator, indicates that pulmonary hypertension is crucial for the development of high altitude pulmonary edema. The primary treatment of high altitude illness consists in improving hypoxemia and acclimatization. For prophylaxis a slow ascent at a rate of 300 m/day is recommended, if symptoms persist, acetazolamide at a

  13. Static Stability and Control of Canard Configurations at Mach Numbers from 0.70 to 2.22 - Triangular Wing and Canard with Twin Vertical Tails

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.

    1961-01-01

    The static aerodynamic characteristics of a canard airplane configuration having twin vertical stabilizing surfaces are presented. The model consisted of a wing and canard both of triangular plan form and aspect ratio 2 mounted on a Sears-Haack body of fineness ratio 12.5 and two swept and tapered wing-mounted vertical tails of aspect ratio 1.35. Data are presented for Mach numbers from 0.70 to 2.22 and for angles of attack from -6 to +18 deg. at 0 and 5 deg. sideslip. Tests were made with the canard off and with the canard on. Nominal canard deflection angles ranged from 0 to 10 deg. The Reynolds number was 3.68 x 10(exp 6) based on the wing mean aerodynamic chord. Selected portions of the data obtained in this investigation are compared with previously published results for the same model having a single vertical tail instead of twin vertical tails. Without the canard, the directional stability at supersonic Mach numbers and high angles of attack was improved slightly by replacing the single tail with twin tails. However, at a Mach number of 0.70, the directional stability of the twin-tail model deteriorated rapidly with increasing angle of attack above 10 deg. and fell considerably below the level for the single-tail model. At subsonic speeds the directional stability of the twin-tail model with the canard was comparable to that for the single-tail model and at supersonic speed it was considerably greater at high angles of attack. Unlike the single-tail model, the twin-tail model at 50 sideslip exhibited an unstable break in the variation of pitching-moment coefficient with lift coefficient near 10 deg. angle of attack for 0.70 Mach number.

  14. Acceleration of barium ions near 8000 km above an aurora

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.; Hallinan, T. J.; Wescott, E. M.; Foeppl, H.

    1984-01-01

    A barium shaped charge, named Limerick, was released from a rocket launched from Poker Flat Research Range, Alaska, on March 30, 1982, at 1033 UT. The release took place in a small auroral breakup. The jet of ionized barium reached an altitude of 8100 km 14.5 min after release, indicating that there were no parallel electric fields below this altitude. At 8100 km the jet appeared to stop. Analysis shows that the barium at this altitude was effectively removed from the tip. It is concluded that the barium was actually accelerated upward, resulting in a large decrease in the line-of-sight density and hence the optical intensity. The parallel electric potential in the acceleration region must have been greater than 1 kV over an altitude interval of less than 200 km. The acceleration region, although presumably auroral in origin, did not seem to be related to individual auroral structures, but appeared to be a large-scale horizontal structure. The perpendicular electric field below, as deduced from the drift of the barium, was temporally and spatially very uniform and showed no variation related to individual auroral structures passing through.

  15. Ear - blocked at high altitudes

    MedlinePlus

    High altitudes and blocked ears; Flying and blocked ears; Eustachian tube dysfunction - high altitude ... you are going up or coming down from high altitudes. Chewing gum the entire time you are changing ...

  16. An efficient In0.30Ga0.70N photoelectrode by decreasing the surface recombination centres in a H2SO4 aqueous solution

    NASA Astrophysics Data System (ADS)

    Li, Mingxue; Luo, Wenjun; Liu, Qi; Zhuang, Zhe; Li, Zhaosheng; Liu, Bin; Chen, Dunjun; Zhang, Rong; Yu, Tao; Zou, Zhigang

    2013-08-01

    The surface treatment of In0.30Ga0.70N photoelectrode in different acid electrolytes (HCl, HBr and a H2SO4 aqueous solution) has been investigated. The highest photocurrent is obtained after the surface treatment in H2SO4 aqueous solution. After H2SO4 treatment, the In0.30Ga0.70N photoelectrode responds to 550 nm and the maximum incident photon-to-current efficiency reaches about 58% under 400-430 nm, which is higher than the previous highest value (42%) on an InGaN photoelectrode. A possible mechanism is also proposed to explain the reason for the highest photocurrent enhancement after H2SO4 surface treatment. The results of the x-ray photoelectron spectroscopy, the inductively coupled atomic emission spectroscope and the electrochemical impedance spectra suggest that the surface segregation layer, as recombination centres of photo-generated holes and electrons, is decreased after H2SO4 surface treatment.

  17. Endurance training at altitude.

    PubMed

    Saunders, Philo U; Pyne, David B; Gore, Christopher J

    2009-01-01

    Since the 1968 Olympic Games when the effects of altitude on endurance performance became evident, moderate altitude training ( approximately 2000 to 3000 m) has become popular to improve competition performance both at altitude and sea level. When endurance athletes are exposed acutely to moderate altitude, a number of physiological responses occur that can comprise performance at altitude; these include increased ventilation, increased heart rate, decreased stroke volume, reduced plasma volume, and lower maximal aerobic power ((.)Vo(2max)) by approximately 15% to 20%. Over a period of several weeks, one primary acclimatization response is an increase in the volume of red blood cells and consequently of (.)Vo(2max). Altitudes > approximately 2000 m for >3 weeks and adequate iron stores are required to elicit these responses. However, the primacy of more red blood cells for superior sea-level performance is not clear-cut since the best endurance athletes in the world, from Ethiopia (approximately 2000 to 3000 m), have only marginally elevated hemoglobin concentrations. The substantial reduction in (.)Vo(2max) of athletes at moderate altitude implies that their training should include adequate short-duration (approximately 1 to 2 min), high-intensity efforts with long recoveries to avoid a reduction in race-specific fitness. At the elite level, athlete performance is not dependent solely on (.)Vo(2max), and the "smallest worthwhile change" in performance for improving race results is as little as 0.5%. Consequently, contemporary statistical approaches that utilize the concept of the smallest worthwhile change are likely to be more appropriate than conventional statistical methods when attempting to understand the potential benefits and mechanisms of altitude training. PMID:19519223

  18. CAT altitude avoidance system

    NASA Technical Reports Server (NTRS)

    Gary, B. L. (Inventor)

    1982-01-01

    A method and apparatus are provided for indicating the altitude of the tropopause or of an inversion layer wherein clear air turbulence (CAT) may occur, and the likely severity of any such CAT, includes directing a passive microwave radiometer on the aircraft at different angles with respect to the horizon. The microwave radiation measured at a frequency of about 55 GHz represents the temperature of the air at an ""average'' range of about 3 kilometers, so that the sine of the angle of the radiometer times 3 kilometers equals the approximate altitude of the air whose temperature is measured. A plot of altitude (with respect to the aircraft) versus temperature of the air at that altitude, can indicate when an inversion layer is present and can indicate the altitude of the tropopause or of such an inversion layer. The plot can also indicate the severity of any CAT in an inversion layer. If CAT has been detected in the general area, then the aircraft can be flown at an altitude to avoid the tropopause or inversion layer.

  19. Environmental dynamics at orbital altitudes

    NASA Technical Reports Server (NTRS)

    Karr, G. R.

    1976-01-01

    The influence of real satellite aerodynamics on the determination of upper atmospheric density was investigated. A method of analysis of satellite drag data is presented which includes the effect of satellite lift and the variation in aerodynamic properties around the orbit. The studies indicate that satellite lift may be responsible for the observed orbit precession rather than a super rotation of the upper atmosphere. The influence of simplifying assumptions concerning the aerodynamics of objects in falling sphere analysis were evaluated and an improved method of analysis was developed. Wind tunnel data was used to develop more accurate drag coefficient relationships for studying altitudes between 80 and 120 Km. The improved drag coefficient relationships revealed a considerable error in previous falling sphere drag interpretation. These data were reanalyzed using the more accurate relationships. Theoretical investigations of the drag coefficient in the very low speed ratio region were also conducted.

  20. High altitude plumes at Mars morning terminator

    NASA Astrophysics Data System (ADS)

    Sanchez-Lavega, A.; Garcia Muñoz, A.; Garcia Melendo, E.; Perez-Hoyos, S.; Gomez Forrellad, J. M.; Pellier, C.; Delcroix, M.; Lopez Valverde, M. A.; González Galindo, F.; Jaeschke, W.; Parker, D.; Phillips, J.; Peach, D.

    2015-10-01

    In March and April 2012 two extremely high altitude plumes were observed at the Martian terminator reaching 200 -250 km or more above the surface[1]. They were located at about 195o West longitude and 45o South latitude (at Terra Cimmeria) and extended ˜500 -1,000 km in both North-South and East- West, and lasted for about 10 days. Both plumes exhibited day-to-day variability, and were seen at the morning terminator but not at the evening limb. Another large plume was captured on Hubble Space Telescope images in May 1997 at 99º West longitude and 3º South latitude, but its altitude cannot be pr ecisely determined.Broad-band photometry was performed of both events in the spectral range 255 nm -1052 nm. Based on the observed properties, we discuss different possible scenarios for the mechanism responsible for the formation of these plumes.

  1. KM3NeT

    NASA Astrophysics Data System (ADS)

    de Jong, M.

    2015-07-01

    KM3NeT is a large research infrastructure, that will consist of a network of deep-sea neutrino telescopes in the Mediterranean Sea. The main objective of KM3NeT is the discovery and subsequent observation of high-energy neutrino sources in the Universe. A further physics perspective is the measurement of the mass hierarchy of neutrinos. A corresponding study, ORCA, is ongoing within KM3NeT. A cost effective technology for (very) large water Cherenkov detectors has been developed based on a new generation of low price 3-inch photo-multiplier tubes. Following the successful deployment and operation of two prototypes, the construction of the KM3NeT research infrastructure has started. The prospects of the different phases of the implementation of KM3NeT are summarised.

  2. KM3NeT

    SciTech Connect

    Jong, M. de; Collaboration: KM3NeT Collaboration

    2015-07-15

    KM3NeT is a large research infrastructure, that will consist of a network of deep-sea neutrino telescopes in the Mediterranean Sea. The main objective of KM3NeT is the discovery and subsequent observation of high-energy neutrino sources in the Universe. A further physics perspective is the measurement of the mass hierarchy of neutrinos. A corresponding study, ORCA, is ongoing within KM3NeT. A cost effective technology for (very) large water Cherenkov detectors has been developed based on a new generation of low price 3-inch photo-multiplier tubes. Following the successful deployment and operation of two prototypes, the construction of the KM3NeT research infrastructure has started. The prospects of the different phases of the implementation of KM3NeT are summarised.

  3. Wind study for high altitude platform design

    NASA Technical Reports Server (NTRS)

    Strganac, T. W.

    1979-01-01

    An analysis of upper air winds was performed to define the wind environment at potential operating altitudes for high-altitude powered platform concepts. Expected wind conditions of the contiguous United States, Pacific area (Alaska to Sea of Japan), and European area (Norwegian and Mediterranean Seas) were obtained using a representative network of sites selected based upon adequate high-altitude sampling, geographic dispersion, and observed upper wind patterns. A data base of twenty plus years of rawinsonde gathered wind information was used in the analysis. Annual variations from surface to 10 mb (approximately 31 km) pressure altitude were investigated to encompass the practical operating range for the platform concepts. Parametric analysis for the United States and foreign areas was performed to provide a basis for vehicle system design tradeoffs. This analysis of wind magnitudes indicates the feasibility of annual operation at a majority of sites and more selective seasonal operation for the extreme conditions between the pressure altitudes of 100 to 25 mb based upon the assumed design speeds.

  4. Altitude, Gun Ownership, Rural Areas, and Suicide

    PubMed Central

    Kim, Namkug; Mickelson, Jennie B.; Brenner, Barry E.; Haws, Charlotte A.; Yurgelun-Todd, Deborah A.; Renshaw, Perry F.

    2015-01-01

    Objective The authors recently observed a correlation between state altitude and suicide rate in the United States, which could be explained by higher rates of gun ownership and lower population density in the intermountain West. The present study evaluated the relationship between mean county and state altitude in the United States and total age-adjusted suicide rates, firearm-related suicide rates, and non-firearm-related suicide rates. The authors hypothesized that altitude would be significantly associated with suicide rate. Method Elevation data were calculated with an approximate spatial resolution of 0.5 km, using zonal statistics on data sets compiled from the National Geospatial-Intelligence Agency and the National Aeronautics and Space Administration. Suicide and population density data were obtained through the Centers for Disease Control and Prevention (CDC) WONDER database. Gun ownership data were obtained through the CDC’s Behavioral Risk Factor Surveillance System. Results A significant positive correlation was observed between age-adjusted suicide rate and county elevation (r=0.51). Firearm (r=0.41) and non-firearm suicide rates (r=0.32) were also positively correlated with mean county elevation. Conclusions When altitude, gun ownership, and population density are considered as predictor variables for suicide rates on a state basis, altitude appears to be a significant independent risk factor. This association may be related to the effects of metabolic stress associated with mild hypoxia in individuals with mood disorders. PMID:20843869

  5. Imaging Resolution of the 410-km and 660-km Discontinuities

    NASA Astrophysics Data System (ADS)

    Deng, K.; Zhou, Y.

    2014-12-01

    Structure of seismic discontinuities at depths of about 410 km and 660 km provides important constraints on mantle convection as the associated phase transformations in the transition zone are sensitive to thermal perturbations. Teleseismic P-to-S receiver functions have been widely used to map the depths of the two discontinuities. In this study, we investigate the resolution of receiver functions in imaging topographic variations of the 410-km and 660-km discontinuities based on wave propagation simulations using the Spectral Element Method (SEM). We investigate finite-frequency effects of direct P waves as well as P-to-S converted waves by varying the length scale of discontinuity topography in the transition zone. We show that wavefront healing effects are significant in broadband receiver functions. For example, at a period of 10 to 20 seconds, the arrival anomaly in P-to-S converted waves is about 50% of what predicted by ray theory when the topography length scale is in the order of 400 km. The observed arrival anomaly further reduces to 10-20% when the topography length scale reduces to about 200 km. We calculate 2-D boundary sensitivity kernels for direct P waves as well as receiver functions based on surface wave mode summation and confirm that finite frequency-effects can be properly accounted for. Three-dimensional wavespeed structure beneath seismic stations can also introduce significant artifacts in transition zone discontinuity topography if time corrections are not applied, and, the effects are dependent on frequency.

  6. Altitude Modulates Concussion Incidence

    PubMed Central

    Smith, David W.; Myer, Gregory D.; Currie, Dustin W.; Comstock, R. Dawn; Clark, Joseph F.; Bailes, Julian E.

    2013-01-01

    Background: Recent research indicates that the volume and/or pressure of intracranial fluid, a physiology affected by one’s altitude (ie, elevation above sea level), may be associated with the likelihood and/or severity of a concussion. The objective was to employ an epidemiological field investigation to evaluate the relationship between altitude and concussion rate in high school sports. Hypothesis: Because of the physiologies that occur during acclimatization, including a decline in intracranial compliance (a “tighter fit”), increased altitude may be related to a reduction in concussion rates in high school athletes. Study Design: Cohort study; Level of evidence, 3. Methods: Data on concussions and athlete exposures (AEs) between 2005-2006 and 2011-2012 were obtained from a large national sample of high schools (National High School Sports-Related Injury Surveillance System [High School RIO]) and were used to calculate total, competition, and practice concussion rates for aggregated sports and for football only. Results: Altitude of participating schools ranged from 7 to 6903 ft (median, 600 ft), and a total of 5936 concussions occurred in 20,618,915 exposures (2.88 per 10,000 AEs). When concussion rates were dichotomized by altitude using the median, elevated altitude was associated with a reduction in concussion rates overall (rate ratio [RR], 1.31; P < .001), in competition (RR, 1.31; P < .001), and in practice (RR, 1.29; P < .001). Specifically, high school sports played at higher altitude demonstrated a 31% reduction (95% confidence interval [CI], 25%-38%) in the incidence of total reported concussions. Likewise, concussion rates at increased altitude were reduced 30% for overall exposures, 27% for competition exposures, and 28% for practice exposures in football players (P < .001). Conclusion: The results of this epidemiological investigation indicate increased physiological responses to altitude may be associated with a reduction in sports

  7. Statistics of 150-km echoes over Jicamarca based on low-power VHF observations

    NASA Astrophysics Data System (ADS)

    Chau, J. L.; Kudeki, E.

    2006-07-01

    In this work we summarize the statistics of the so-called 150-km echoes obtained with a low-power VHF radar operation at the Jicamarca Radio Observatory (11.97 S, 76.87 W, and 1.3 dip angle at 150-km altitude) in Peru. Our results are based on almost four years of observations between August 2001 and July 2005 (approximately 150 days per year). The majority of the observations have been conducted between 08:00 and 17:00 LT. We present the statistics of occurrence of the echoes for each of the four seasons as a function of time of day and altitude. The occurrence frequency of the echoes is ~75% around noon and start decreasing after 15:00 LT and disappear after 17:00 LT in all seasons. As shown in previous campaign observations, the 150-echoes appear at a higher altitude (>150 km) in narrow layers in the morning, reaching lower altitudes (~135 km) around noon, and disappear at higher altitudes (>150 km) after 17:00 LT. We show that although 150-km echoes are observed all year long, they exhibit a clear seasonal variability on altitudinal coverage and the percentage of occurrence around noon and early in the morning. We also show that there is a strong day-to-day variability, and no correlation with magnetic activity. Although our results do not solve the 150-km riddle, they should be taken into account when a reasonable theory is proposed.

  8. High Altitude Medical Problems

    PubMed Central

    Hultgren, Herbert N.

    1979-01-01

    Increased travel to high altitude areas by mountaineers and nonclimbing tourists has emphasized the clinical problems associated with rapid ascent. Acute mountain sickness affects most sojourners at elevations above 10,000 feet. Symptoms are usually worse on the second or third day after arrival. Gradual ascent, spending one to three days at an intermediate altitude, and the use of acetazolamide (Diamox) will prevent or ameliorate symptoms in most instances. Serious and potentially fatal problems, such as high altitude pulmonary edema or cerebral edema, occur in approximately 0.5 percent to 1.0 percent of visitors to elevations above 10,000 feet—especially with heavy physical exertion on arrival, such as climbing or skiing. Early recognition, high flow oxygen therapy and prompt descent are crucially important in management. Our knowledge of the causes of these and other high altitude problems, such as retinal hemorrhage, systemic edema and pulmonary hypertension, is still incomplete. Even less is known of the effect of high altitudes on medical conditions common at sea level or on the action of commonly used drugs. ImagesFigure 2. PMID:483805

  9. Knob manager (KM) operators guide

    SciTech Connect

    1993-10-08

    KM, Knob Manager, is a tool which enables the user to use the SUNDIALS knob box to adjust the settings of the control system. The followings are some features of KM: dynamic knob assignments with the user friendly interface; user-defined gain for individual knob; graphical displays for operating range and status of each process variable is assigned; backup and restore one or multiple process variable; save current settings to a file and recall the settings from that file in future.

  10. Altitude control performance of a natural energy driven stratospheric aerostat

    NASA Astrophysics Data System (ADS)

    Wu, Yao; Wang, Chao; Wang, Lei; Ma, Rong; Lu, Xiaochen; Yao, Wei

    2015-12-01

    The superheating induced overpressure is one of the key obstacles for long-endurance station-keeping of stratospheric aerostats. A novel stratospheric aerostat by utilizing the natural energy is presented and discussed in this paper. A thermo-mechanical dynamic model is established to analyze the altitude control performance of this novel aerostat. The simulation results show that the novel stratospheric aerostat can ascend to a high altitude about 25.8 km due to the combined heating effects of the solar radiation, the Earth albedo and the infrared radiation from the Earth's surface and keeps at an altitude about 22 km by the infrared radiation from the Earth's surface. In addition, the aerostat can be controlled within the desired altitude range by the simple open/close valve control strategy.

  11. Estimation of high altitude Martian dust parameters

    NASA Astrophysics Data System (ADS)

    Pabari, Jayesh; Bhalodi, Pinali

    2016-07-01

    Dust devils are known to occur near the Martian surface mostly during the mid of Southern hemisphere summer and they play vital role in deciding background dust opacity in the atmosphere. The second source of high altitude Martian dust could be due to the secondary ejecta caused by impacts on Martian Moons, Phobos and Deimos. Also, the surfaces of the Moons are charged positively due to ultraviolet rays from the Sun and negatively due to space plasma currents. Such surface charging may cause fine grains to be levitated, which can easily escape the Moons. It is expected that the escaping dust form dust rings within the orbits of the Moons and therefore also around the Mars. One more possible source of high altitude Martian dust is interplanetary in nature. Due to continuous supply of the dust from various sources and also due to a kind of feedback mechanism existing between the ring or tori and the sources, the dust rings or tori can sustain over a period of time. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, it is mystery how dust has reached to such high altitudes. Estimation of dust parameters before-hand is necessary to design an instrument for the detection of high altitude Martian dust from a future orbiter. In this work, we have studied the dust supply rate responsible primarily for the formation of dust ring or tori, the life time of dust particles around the Mars, the dust number density as well as the effect of solar radiation pressure and Martian oblateness on dust dynamics. The results presented in this paper may be useful to space scientists for understanding the scenario and designing an orbiter based instrument to measure the dust surrounding the Mars for solving the mystery. The further work is underway.

  12. Structure, phase transition and impedance of Zn1- x Li x O (0.10 ≤ x ≤ 0.70) ceramic

    NASA Astrophysics Data System (ADS)

    Ahmadu, U.; Salaudeen, Islamiyat Temitope

    2016-07-01

    Structural transformations of Li-doped Zn1- x Li x O (0.10 ≤ x ≤ 0.70) which was synthesised by solid-state reaction were investigated. XRD carried out on powder specimens of the samples show that they are polycrystalline in nature with a hexagonal wurtzite structure having minor impurities. The result indicates the maximum limit of substitution of Zn atoms by Li is at x = 0.4. The lattice parameter a reduced from 3.01 to 2.99 Å, while c reduced from 5.21 to 5.19 Å. However, the Zn-O bond length reduced from 1.88 to 1.87 Å for the undoped, to x = 0.60 for the doped, respectively. The c/ a ratio is 1.73 and is almost constant for all samples. The grain size of the (100) peak of the undoped ZnO is 41.73 nm and that of x = 0.10 is 41.76 nm. For x = 0.2-0.70, the grain size is 41.72 nm indicating that the grain size is almost independent of doping. The SEM results indicate a variation of grain size from 2.18 to 5.15 µm for the undoped ZnO to x = 0.50, which shows increase in grain size and reduction in grain boundaries as doping increases. The results show that x = 0.50 has the highest grain size and the one with the highest transition temperature is x = 0.6. DTA results indicate the structural phase transition temperature of the doped ZnO ranged from ~371 to ~409 K and increased as the amount of Li increases. A single arc is observed in all the impedance plots of the ZnO together with the presence of a relaxation process which is non-Debye. The impedance data show reduced resistance with increase in lithium content. A general increase in dielectric constant with increase in lithium content is observed.

  13. Statistics and variability of the altitude of elves

    NASA Astrophysics Data System (ADS)

    van der Velde, Oscar A.; Montanyà, Joan

    2016-05-01

    From June 2008 to January 2016 nearly 800 elves have been recorded by a low-light camera in northeastern Spain. Elves occur in this region mainly over the lower topped cold air mass maritime thunderstorms, peaking from November to January. Cloud-to-ground strokes still produce elves when maritime winter storms are carried inland, suggesting that the cold season thunderstorm charge configuration favors strokes with large electromagnetic pulses. Altitudes of 389 elves were determined using optical data combined with a lightning location network. The overall median altitude was 87.1 km, near the typical OH airglow height, but average heights during individual nights ranged between 83 and 93 km. The lower elve nights (~84 km) occurred during slightly elevated geomagnetic conditions (Kp >3-, Ap-index >10). Elve altitude often shifts by several kilometers during the night, apparently in response to changing background conditions in the upper mesosphere.

  14. Composition of the hot plasma near geosynchronous altitude

    NASA Technical Reports Server (NTRS)

    Johnson, R. G.; Sharp, R. D.; Shelley, E. G.

    1977-01-01

    Although there were no direct measurements of the composition of the hot (keV) plasma at geosynchronous altitudes, the combination of other observations leads to the conclusion that, at least during geomagnetically disturbed periods, there are significant fluxes of ions heavier than protons in this region. Ion composition measurements below 8000 km altitude show upward streaming fluxes of both O(+) and H(+) ions in the L-region of the geosynchronous orbit. These observations are consistent with the conclusion that at least a portion of the total ion fluxes observed at geosynchronous altitude to be highly peaked near the magnetic field lines are heavier than protons and originate in the ionosphere.

  15. Longitudinal Stability and Drag Characteristics at Mach Numbers from 0.70 to 1.37 of Rocket-propelled Models Having a Modified Triangular Wing

    NASA Technical Reports Server (NTRS)

    Chapman, Rowe, Jr; Morrow, John D

    1952-01-01

    A modified triangular wing of aspect ratio 2.53 having an airfoil section 3.7 percent thick at the root and 5.98 percent thick at the tip was designed in an attempt to improve the lift and drag characteristics of triangular wings. Free-flight drag and stability tests were made using rocket-propelled models equipped with the modified wing. The Mach number range of the test was from 0.70 to 1.37. Test results indicated the following: The lift-curve slope of wing plus fuselage approaches the theoretical value of wing alone at supersonic Mach numbers. The drag coefficient, based on total wing area, for wing plus interference was approximately 0.0035 at subsonic Mach numbers and 0.0080 at supersonic Mach numbers. The maximum shift in aerodynamic center for the complete configuration was 14 percent in the rearward direction from the forward position of 51.5 percent of mean aerodynamic chord at subsonic Mach numbers. The variation of lift and moment with angle of attack was linear at supersonic Mach numbers for the range of coefficients covered in the test. The high value of lift-curve slope was considered to be a significant result attributable to the wing modifications.

  16. Seasonal Variability of Storm Top Altitudes in the Tropics and Subtropics Observed by TRMM PR

    NASA Astrophysics Data System (ADS)

    Chen, Fengjiao; Fu, Yunfei; Liu, Peng; Yang, Yuanjian

    2016-03-01

    Seasonal variability of storm top altitudes for convective and stratiform precipitation in the tropics and subtropics are investigated based on measurements of the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) from 1998 to 2011. Statistically, the spatial distribution of mean convective storm top altitudes shows a large variation between land and ocean, while the stratiform storm tops exhibit insignificant land-ocean differences. Seasonal variances of tropical convective and stratiform storm top altitudes are small, with their means are approximately at 5 km (6 km) and 5.5 km (6 km) over the ocean (land) in each season. In the subtropics, the difference of the storm top altitudes between summer and winter reaches ~ 4 km and ~ 2 km for convective and stratiform precipitation, respectively. The zonal mean storm top altitudes of stratiform precipitation are highly correlated with the zonal averaged air temperature and sea surface temperature. Additionally, the mean storm tops of higher altitudes correspond with larger mean rain rates for both convective and stratiform precipitation at the seasonal scale. Such relationship satisfies the quadratic functions with a correlation coefficient of 0.9. On the basis of this relationship, the summer mean rain rates are retrieved from storm top altitudes, which are 1-3 mm/h and 0.3-0.9 mm/h smaller than the observed ones, for convective and stratiform precipitation, respectively. These results suggest that the quadratic function between storm top altitudes and rain rates have potential applications in precipitation parameterization of models and climatic studies.

  17. Ear - blocked at high altitudes

    MedlinePlus

    ... ears; Flying and blocked ears; Eustachian tube dysfunction - high altitude ... the middle ear and the back of the nose and upper throat. ... down from high altitudes. Chewing gum the entire time you are ...

  18. Solar altitude frequency tables

    NASA Astrophysics Data System (ADS)

    McDowell, R. S.

    1983-02-01

    A table is presented that gives the total number of hours in the year during which the sun's altitude exceeds a given value h, for h = 0-88 deg in 2 deg increments and for latitudes from the Equator to the North Pole in 2 deg increments. The table also gives corrections to these figures for the effect of atmospheric refraction and the total hours of daylight at each latitude.

  19. Isothermal transport properties and majority-type defects of BaCo(0.70)Fe(0.22)Nb(0.08)O(3-δ).

    PubMed

    Lee, Taewon; Cho, Deok-Yong; Kwon, Hyung-Soon; Yoo, Han-Ill

    2015-01-28

    (Ba,Sr)(Co,Fe)O3-δ based mixed conducting oxides, e.g. (Ba0.5Sr0.5)(Co1-xFex)O3-δ and Ba(Co0.7Fe0.3-xNbx)O3-δ, are promising candidates for oxygen permeable membranes and SOFC cathodes due to their excellent ambipolar conductivities. Despite these excellent properties, however, their mass/charge transport properties have not been fully characterized and hence, their defect structure has not been clearly elucidated. Until now, the majority types of ionic and electronic defects have been regarded as oxygen vacancies and localized holes. Holes, whether localized or not, are acceptable as majority electronic carriers on the basis of the as-measured total conductivity, which is essentially electronic, and electronic thermopower. On the other hand, the proposal of oxygen vacancies as majority ionic carriers lacks solid evidence. In this work, we document all the isothermal transport properties of Ba(Co0.70Fe0.22Nb0.08)O3-δ in terms of a 2 × 2 Onsager transport coefficient matrix and its steady-state electronic thermopower against oxygen activity at elevated temperatures, and determine the valences of Co and Fe via soft X-ray absorption spectroscopy. It turns out that the ionic and electronic defects in majority should be oxygen interstitials and at least two kinds of holes, one free and the other trapped. Furthermore, the lattice molecule should be Ba(Co0.7Fe0.3-xNbx)O2+δ, not Ba(Co0.7Fe0.3-xNbx)O3-δ, to be consistent with all the results observed. PMID:25503813

  20. Microstructural characterisation of near- α titanium alloy Ti-6Al-4Sn-4Zr-0.70Nb-0.50Mo-0.40Si

    NASA Astrophysics Data System (ADS)

    Ramachandra, C.; Singh, A. K.; Sarma, G. M. K.

    1993-06-01

    Microstructural stability in the near-α titanium alloy (alloy 834) containing Ti-6Al-4Sn-4Zr-0.70Nb-0.50Mo-0.40Si (in weight percent), in the β and (α + β) solution-treated and quenched conditions, has been investigated. The β transus for this alloy is approximately 1333 K. Solution treatment in the β phase field at 1353 K followed by quenching in water at room temperature resulted in the formation of α' martensite platelets with high dislocation density and stacking faults. Thin films of β are found to be sandwiched between interface phases, which, in turn, are sandwiched at the interplatelet boundaries of lath martensite. The interface phase is a subject of much controversy in the literature. Solution treatment at 1303 K in the (α + β) phase field followed by quenching in water at room temperature resulted in the near-equiaxed primary α and transformed β. Both the β and (α + β) solution-treated specimens were aged in the temperature range of 873 to 973 K. While aging the —treated specimen at 973 K, (α + β)-treated specimen, even at a lower temperature of 873 K for 24 hours, caused precipitation of suicides predominantly at the interplatelet boundaries of martensite laths. Electron diffraction analysis confirmed them to be hexagonal suicide S2 with a = 0.702 nm and c = 0.368 nm. The above difference in the precipitation could be attributed to the partitioning of a higher amount of β - stabilizing elements as well as silicide-forming elements to the transformed β in the (α + β) solution-treated condition. However, ordering of the α' phase was observed under all of the aging conditions studied. The ordered domains were due to the longer aging times, which cause local increases in the level of the α-stabilizing elements.

  1. Influence of buffer-layer construction and substrate orientation on the electron mobilities in metamorphic In{sup 0.70}Al{sup 0.30}As/In{sup 0.76}Ga{sup 0.24}As/In{sup 0.70}Al{sup 0.30}As structures on GaAs substrates

    SciTech Connect

    Kulbachinskii, V. A.; Oveshnikov, L. N.; Lunin, R. A.; Yuzeeva, N. A.; Galiev, G. B.; Klimov, E. A.; Pushkarev, S. S.; Maltsev, P. P.

    2015-07-15

    The influence of construction of the buffer layer and misorientation of the substrate on the electrical properties of In{sup 0.70}Al{sup 0.30}As/In{sup 0.76}Ga{sup 0.24}As/In{sup 0.70}Al{sup 0.30}As quantum wells on a GaAs substrate is studied. The temperature dependences (in the temperature range of 4.2 K < T < 300 K) and field dependences (in magnetic fields as high as 6 T) of the sample resistances are measured. Anisotropy of the resistances in different crystallographic directions is detected; this anisotropy depends on the substrate orientation and construction of the metamorphic buffer layer. In addition, the Hall effect and the Shubnikov–de Haas effect are studied. The Shubnikov–de Haas effect is used to determine the mobilities of electrons separately in several occupied dimensionally quantized subbands in different crystallographic directions. The calculated anisotropy of mobilities is in agreement with experimental data on the anisotropy of the resistances.

  2. Comparison of sprite initiation altitudes between observations and models

    NASA Astrophysics Data System (ADS)

    Gamerota, W. R.; Cummer, S. A.; Li, J.; Stenbaek-Nielsen, H. C.; Haaland, R. K.; McHarg, M. G.

    2011-02-01

    Simultaneous analyses of measured sprite initiation altitudes with predicted initiation altitudes from simulations enable an examination of our understanding of the sprite initiation mechanism and the modeling techniques to simulate this mesospheric electrical phenomenon. In this work, we selected a subset of sprites optically observed from Langmuir Laboratory, NM; locations near Las Vegas, NM, in 2007 and near Portales, NM, in 2008; and a Duke University field station. The sprites were observed by high-speed imaging with time resolutions of at least 1 ms and by low light level imagers. Sprite initiation altitudes were determined by triangulation between Langmuir Laboratory and either Portales or Las Vegas, while star field analysis determined the approximate measured initiation altitudes for Duke observations. These video observations were coordinated with electromagnetic field measurements from Yucca Ridge Field Station and Duke University, respectively. With a 2-D finite difference time domain model, we simulated the lightning-driven electric fields and predict the likely altitude of sprite initiation and compare these findings with the measured initiation altitude of each sprite analyzed. Of 20 discrete sprite events analyzed, both the measured and the simulation-predicted initiation altitudes indicate that long-delayed sprites tend to initiate at lower altitude. The average discrepancy between the measurements and the simulation results is 0.35 km with a standard deviation of 3.6 km. This consistency not only confirms previous results about the relationship between sprite initiation altitude and time delay but also helps to develop confidence in the models to reveal the sprite physics.

  3. Satellite altitude determination uncertainties

    NASA Technical Reports Server (NTRS)

    Siry, J. W.

    1972-01-01

    Satellite altitude determination uncertainties will be discussed from the standpoint of the GEOS-C satellite, from the longer range viewpoint afforded by the Geopause concept. Data are focused on methods for short-arc tracking which are essentially geometric in nature. One uses combinations of lasers and collocated cameras. The other method relies only on lasers, using three or more to obtain the position fix. Two typical locales are looked at, the Caribbean area, and a region associated with tracking sites at Goddard, Bermuda and Canada which encompasses a portion of the Gulf Stream in which meanders develop.

  4. Equatorial composition in the 137- to 225-km region from the San Marco 3 mass spectrometer

    NASA Technical Reports Server (NTRS)

    Newton, G. P.; Kasprzak, W. T.; Pelz, D. T.

    1974-01-01

    The neutral atmospheric composition experiment (Nace) carried by the San Marco 3 (SM 3) satellite measured the equatorial atmospheric composition during the reentry period of Nov. 21-28, 1971. The mass density and molecular nitrogen density measured by the Nace are in agreement with values measured by rocket experiments and inferred from satellite experiments. The average total oxygen content measured by Nace is 30% below the value suggested by von Zahn at 150-km altitude. When it is assumed that his value for the molecular oxygen density at 150 km represents averaged rocket results applicable to the equatorial thermosphere, the Nace total oxygen content results in an atomic oxygen concentration comparable to the mean value of Cira (1965). The Nace helium measurements interpreted in terms of an altitude profile have an altitude distribution similar to that of molecular nitrogen below 165 km.

  5. Crystal structure of (Na0.70)(Na0.70,Mn0.30)(Fe3+,Fe2+)2Fe2+(VO4)3, a sodium-, iron- and manganese-based vanadate with the alluaudite-type structure

    PubMed Central

    Benhsina, Elhassan; Assani, Abderrazzak; Saadi, Mohamed; El Ammari, Lahcen

    2016-01-01

    The title compound, sodium (sodium,manganese) triiron(II,III) tris[vana­date(V)], (Na0.70)(Na0.70,Mn0.30)(Fe3+,Fe2+)2Fe2+(VO4)3, was prepared by solid-state reactions. It crystallizes in an alluaudite-like structure, characterized by a partial cationic disorder. In the structure, four of the 12 sites in the asymmetric unit are located on special positions, three on a twofold rotation axis (Wyckoff position 4e) and one on an inversion centre (4b). Two sites on the twofold rotation axis are entirely filled by Fe2+ and V5+, whereas the third site has a partial occupancy of 70% by Na+. The site on the inversion centre is occupied by Na+ and Mn2+ cations in a 0.7:0.3 ratio. The remaining Fe2+ and Fe3+ atoms are statistically distributed on a general position. The three-dimensional framework of this structure is made up of kinked chains of edge-sharing [FeO6] octa­hedra stacked parallel to [10-1]. These chains are held together by VO4 tetra­hedral groups, forming polyhedral sheets perpendicular to [010]. Within this framework, two types of channels extending along [001] are present. One is occupied by (Na+/Mn2+) while the second is partially occupied by Na+. The mixed site containing (Na+/Mn2+) has an octa­hedral coordination sphere, while the Na+ cations in the second channel are coordinated by eight O atoms. PMID:26958392

  6. Crystal structure of (Na0.70)(Na0.70,Mn0.30)(Fe(3+),Fe(2+))2Fe(2+)(VO4)3, a sodium-, iron- and manganese-based vanadate with the alluaudite-type structure.

    PubMed

    Benhsina, Elhassan; Assani, Abderrazzak; Saadi, Mohamed; El Ammari, Lahcen

    2016-02-01

    The title compound, sodium (sodium,manganese) triiron(II,III) tris[vana-date(V)], (Na0.70)(Na0.70,Mn0.30)(Fe(3+),Fe(2+))2Fe(2+)(VO4)3, was prepared by solid-state reactions. It crystallizes in an alluaudite-like structure, characterized by a partial cationic disorder. In the structure, four of the 12 sites in the asymmetric unit are located on special positions, three on a twofold rotation axis (Wyckoff position 4e) and one on an inversion centre (4b). Two sites on the twofold rotation axis are entirely filled by Fe(2+) and V(5+), whereas the third site has a partial occupancy of 70% by Na(+). The site on the inversion centre is occupied by Na(+) and Mn(2+) cations in a 0.7:0.3 ratio. The remaining Fe(2+) and Fe(3+) atoms are statistically distributed on a general position. The three-dimensional framework of this structure is made up of kinked chains of edge-sharing [FeO6] octa-hedra stacked parallel to [10-1]. These chains are held together by VO4 tetra-hedral groups, forming polyhedral sheets perpendicular to [010]. Within this framework, two types of channels extending along [001] are present. One is occupied by (Na(+)/Mn(2+)) while the second is partially occupied by Na(+). The mixed site containing (Na(+)/Mn(2+)) has an octa-hedral coordination sphere, while the Na(+) cations in the second channel are coordinated by eight O atoms. PMID:26958392

  7. On the High- and Low- Altitude Limits of the Auroral Electric Field Region

    NASA Technical Reports Server (NTRS)

    Reiff, P. H.; Lu, G.; Burch, J. L.; Winningham, J. D.; Frank, L. A.; Craven, J. D.; Peterson, W. K.; Heelis, R. A.

    1993-01-01

    Using measurements from the High Altitude Plasma Instrument (HAPI) on the Dynamics-Explorer 1 (DE-1) spacecraft and the Low Altitude Plasma Instrument (LAPI) on Dynamics Explorer 2 (DE 2), we investigate both die high altitude and low altitude extents of the auroral acceleration region. To infer the high altitude limit, we searched the HAPI data base for evidence of upward-directed auroral electric fields located above the spacecraft when the HAPI spacecraft is above 9000 km altitude. We find that such acceleration is common when DE-1 flies through die auroral oval at an altitude of 9,000-11,000 km. At altitudes above 11,000 km, the fraction of the orbits with evidence of at least a 1000 V potential drop above the spacecraft falls, becoming essentially zero above an altitude of 15,000 km. Above that altitude, small (100 V) potential drops are frequently observed, but only rarely are approx. 1 kV potentials observed, typically associated with polar cap or 'theta' arcs or westward traveling surges. To investigate the low-altitude limit of the auroral acceleration region, we use conjunctions of DE 1 and DE 2 along auroral field lines and match the upgoing fluxes of ionospheric ions observed by DE 2 with the flux of accelerated upgoing ions observed at DE 1. Calculating the ionospheric scale height from the ion and electron temperatures and assuming that the parallel flow velocity is independent of height above 800 km, we calculate the altitude at which the upwelling ionospheric ions are effectively completely lost to upward acceleration. The initial lowest-altitude acceleration process could be either a perpendicular acceleration or a parallel electric field, but it must be sufficient to give the entire distribution escape energy. We find that in the two cases studied, near the region of peak auroral potential drop the altitude of this acceleration was around 1700 km (near the O/H neutral crossover altitude), but was significantly higher (approx. 2000 km) near the

  8. Gravity gradient grids at GOCE satellite altitude for lithospheric modelling

    NASA Astrophysics Data System (ADS)

    Bouman, Johannes; Ebbing, Jörg; Sebera, Josef; Fuchs, Martin; Lieb, Verena; Holzrichter, Nils; Novak, Pavel; Haagmans, Roger

    2015-04-01

    We explore how GOCE gravity gradient data can improve modeling of the Earth's lithosphere and thereby contribute to a better understanding of the Earth's dynamic processes. We study the use of gravity gradient grids to provide improved information about the lithosphere and upper mantle in the well-surveyed North-East Atlantic Margin. In particular, we present the computation of gravity gradient grids at GOCE satellite altitude combining GOCE with GRACE gravity information. It is shown that regional solutions based on a tesseroid approach may contain more signal content than global gravity field models do. The patchwork of regional grids is presented as well as the subsequent error reduction through iterative downward and upward continuation using the Poisson integral equation. The promises and pitfalls are discussed of using grids at nominal altitude of 255 km and a lower altitude of 225 km for lithospheric modeling.

  9. Conductivity and electric field variations with altitude in the stratosphere

    NASA Technical Reports Server (NTRS)

    Holzworth, Robert H.

    1991-01-01

    Data regarding electric field, derived current density, and conductivity are presented for two balloons from the Electrodynamics of the Middle Atmosphere experiment which underwent the longest period of daily altitude variation. The magnetic L values range from 4.3 to 9.5 for the 18 days of Southern Hemisphere statistics, and the average conductivity and vertical electric fields are given. Simultaneous measurements of the average conductivity scale height and the vertical electric-field scale height indicate that vertical current density does not vary with altitude in the 10-28-km range. The measured conductivity varies significantly at a given altitude on a particular day, and some conductivity data sets are similar to other measurements between 10 and 30 km. Comparisons of the measured data to predictions from models of stratospheric conductivity demonstrate significant discrepancies.

  10. Chicxulub High-Altitude Ballistic Ejecta from Central Belize

    NASA Technical Reports Server (NTRS)

    Pope, K. O.; Ocampo, A. C.

    2000-01-01

    Chicxulub ejecta are found in central Belize, 475 km southeast of the impact crater center. These deposits are ballistic ejecta launched along high-altitude trajectories above the atmosphere and deposited as a discontinuous sheet on the terminal Cretaceous land surface.

  11. Effects of high altitude and exercise on marksmanship.

    PubMed

    Tharion, W J; Hoyt, R W; Marlowe, B E; Cymerman, A

    1992-02-01

    The effects of exercise and high altitude (3,700 m to 4,300 m) on marksmanship accuracy and sighting time were quantified in 16 experienced marksmen. Subjects dry-fired a disabled rifle equipped with a laser-based system from a free-standing position. The 2.3-cm circular target was at a distance of 5 m. Marksmanship was assessed under the following conditions: 1) at rest at sea level; 2) immediately after a 21-km run/walk ascent from 1,800 m to 4,300 m elevation; 3) at rest during days 1 to 3 at altitude; 4) at rest during days 14 to 16 at altitude; and 5) immediately after a second ascent after 17 d at altitude. Exercise reduced marksmanship accuracy (p less than 0.05) but did not affect sighting time. Acute altitude exposure reduced marksmanship accuracy, and decreased sighting time (p less than 0.05). However, after residence at altitude, accuracy and sighting time at rest returned to sea level values. Exercise and acute altitude exposure had similar but independent detrimental effects on marksmanship. PMID:1546938

  12. DLR HABLEG- High Altitude Balloon Launched Experimental Glider

    NASA Astrophysics Data System (ADS)

    Wlach, S.; Schwarzbauch, M.; Laiacker, M.

    2015-09-01

    The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.

  13. Microorganisms cultured from stratospheric air samples obtained at 41 km.

    PubMed

    Wainwright, M; Wickramasinghe, N C; Narlikar, J V; Rajaratnam, P

    2003-01-21

    Samples of air removed from the stratosphere, at an altitude of 41 km, were previously found to contain viable, but non-cultureable bacteria (cocci and rods). Here, we describe experiments aimed at growing these, together with any other organisms, present in these samples. Two bacteria (Bacillus simplex and Staphylococcus pasteuri) and a single fungus, Engyodontium album (Limber) de Hoog were isolated from the samples. Although the possibility of contamination can never be ruled out when space-derived samples are studied on earth, we are confident that the organisms originated from the stratosphere. Possible mechanisms by which these organisms could have attained such a height are discussed. PMID:12583913

  14. A Proposed International Tropical Reference Atmosphere up to 80 Km

    NASA Technical Reports Server (NTRS)

    Ananthasayanam, M. R.; Narasimha, R.

    1985-01-01

    Based upon previous standard reference atmosphere, which are usually inspired by temperature regions, a proposal is made for an International Tropical Reference Atmosphere (ITRA). It is a modification of the Indian Standard Tropical Atmosphere (ISIA). The data at the available longitudinal stations in the tropics was considered in formulating the present proposal. Balloonsonde, rocketsonde, and grenade and falling sphere data was used in developing the temperature data bse fromt he stratosphere, troposphere and mesosphere. Temperature distribution and mean sea level pressures up to 80 km altitudes is discussed.

  15. Peregrine 100-km Sounding Rocket Project

    NASA Technical Reports Server (NTRS)

    Zilliac, Gregory

    2012-01-01

    The Peregrine Sounding Rocket Program is a joint basic research program of NASA Ames Research Center, NASA Wallops, Stanford University, and the Space Propulsion Group, Inc. (SPG). The goal is to determine the applicability of this technology to a small launch system. The approach is to design, build, and fly a stable, efficient liquefying fuel hybrid rocket vehicle to an altitude of 100 km. The program was kicked off in October of 2006 and has seen considerable progress in the subsequent 18 months. This research group began studying liquifying hybrid rocket fuel technology more than a decade ago. The overall goal of the research was to gain a better understanding of the fundamental physics of the liquid layer entrainment process responsible for the large increase in regression rate observed in these fuels, and to demonstrate the effect of increased regression rate on hybrid rocket motor performance. At the time of this reporting, more than 400 motor tests were conducted with a variety of oxidizers (N2O, GOx, LOx) at ever increasing scales with thrust levels from 5 to over 15,000 pounds (22 N to over 66 kN) in order to move this technology from the laboratory to practical applications. The Peregrine program is the natural next step in this development. A number of small sounding rockets with diameters of 3, 4, and 6 in. (7.6, 10.2, and 15.2 cm) have been flown, but Peregrine at a diameter of 15 in. (38.1 cm) and 14,000-lb (62.3-kN) thrust is by far the largest system ever attempted and will be one of the largest hybrids ever flown. Successful Peregrine flights will set the stage for a wide range of applications of this technology.

  16. 45 Km Horizontal Path Optical Link Experiment

    NASA Technical Reports Server (NTRS)

    Biswas, A.; Ceniceros, J.; Novak, M.; Jeganathan, M.; Portillo, A.; Erickson, D.; Depew, J.; Sanii, B.; Lesh, J. R.

    2000-01-01

    Mountain-top to mountain-top optical link experiments have been initiated at JPL, in order to perform a systems level evaluation of optical communications. Progress made so far is reported. ne NASA, JPL developed optical communications demonstrator (OCD) is used to transmit a laser signal from Strawberry Peak (SP), located in the San Bernadino mountains of California. This laser beam is received by a 0.6 m aperture telescope at JPL's Table Mountain Facility (TMF), located in Wrightwood, California. The optical link is bi-directional with the TMF telescope transmitting a continuous 4-wave (cw) 780 run beacon and the OCD sending back a 840 nm, 100 - 500 Mbps pseudo noise (PN) modulated, laser beam. The optical link path is at an average altitude of 2 km above sea level, covers a range of 46.8 km and provides an atmospheric channel equivalent to approx. 4 air masses. Average received power measured at either end fall well within the uncertainties predicted by link analysis. The reduction in normalized intensity variance (sigma(sup 2, sub I)) for the 4-beam beacon, compared to each individual beam, at SP, was from approx. 0.68 to 0.22. With some allowance for intra-beam mis-alignment, this is consistent with incoherent averaging. The sigma(sup2, sub I) measured at TMF approx. 0.43 +/- 0.22 exceeded the expected aperture averaged value of less than 0.1, probably because of beam wander. The focused spot sizes of approx. 162 +/- 6 microns at the TMF Coude and approx. 64 +/- 3 microns on the OCD compare to the predicted size range of 52 - 172 microns and 57 - 93 microns, respectively. This is consistent with 4 - 5 arcsec of atmospheric "seeing". The preliminary evaluation of OCD's fine tracking indicates that the uncompensated tracking error is approx. 3.3 micro rad compared to approx. 1.7 micro rad observed in the laboratory. Fine tracking performance was intermittent, primarily due to beacon fades on the OCD tracking sensor. The best bit error rates observed while

  17. Active Learning in the Atmospheric Science Classroom and beyond through High-Altitude Ballooning

    ERIC Educational Resources Information Center

    Coleman, Jill S. M.; Mitchell, Melissa

    2014-01-01

    This article describes the implementation of high-altitude balloon (HAB) research into a variety of undergraduate atmospheric science classes as a means of increasing active student engagement in real-world, problem-solving events. Because high-altitude balloons are capable of reaching heights of 80,000-100,000 ft (24-30 km), they provide a…

  18. A Challenge to the Highest Balloon Altitude

    NASA Astrophysics Data System (ADS)

    Saito, Yoshitaka; Akita, Daisuke; Fuke, Hideyuki; Iijima, Issei; Izutsu, Naoki; Kato, Yoichi; Kawada, Jiro; Matsuzaka, Yukihiko; Mizuta, Eiichi; Namiki, Michiyoshi; Nonaka, Naoki; Ohta, Shigeo; Sato, Takatoshi; Seo, Motoharu; Takada, Atsushi; Tamura, Keisuke; Toriumi, Michihiko; Yamagami, Takamasa; Yamada, Kazuhiko; Yoshida, Tetsuya; Matsushima, Kiyoho; Tanaka, Shigeki

    Development of a balloon to fly at higher altitudes is one of the most attractive challenges in scientific balloon technologies. After reaching the highest record setting balloon altitude of 53.0 km using the 3.4 µm film in 2002, a thinner balloon film with a thickness of 2.8 µm using a higher density resin was developed. In 2004, a 5,000 m3 balloon with the film was successfully launched, however, 60,000 m3 balloons launched in 2005, 2006, and 2007, were broken during the ascending phase. The problem was suspected to be due to the properties of the film including the uniformity and the strength, neither of which can be estimated by the conventional tensile test. Thus, we checked the strength of the film with large sample, the bi-axial tensile test properties, the creep properties, and the viscoelasticity, comparing with these to the other thick balloon films. In this conference, we are going to report our new test procedure of the balloon film, results of our current and a new 2.8 µm balloon film, and our future plan to launch the highest altitude balloon.

  19. The drag coefficient of cylindrical spacecraft in orbit at altitudes greater than 150 km

    NASA Technical Reports Server (NTRS)

    Herrero, F. A.

    1983-01-01

    The spacecraft of the Geopotential Research Mission (GRM) are cylindrical in form and designed to fly with their longitudinal axes parallel to their direction of flight. The ratio of length to diameter of these spacecraft is roughly equal to 5.0. Other spacecraft previously flown had corresponding ratios roughly equal to 1.0, and therefore the drag produced by impacts on the lateral surfaces of those spacecraft was not as large as it will be on the GRM spacecraft. Since the drag coefficient is essentially the drag force divided by the frontal area in flight, lateral impacts, when taken into account make the GRM drag coefficient significantly larger than the coefficients used before for shorter spacecraft. A simple formula is derived for the drag coefficient of a cylindrical body flying with its long axis along the direction of flight, and it is used to estimate the drag for the GRM. The formula shows that the drag due to lateral surface impacts depends on the ratio of length-to-diameter and on a coefficient C sub LS (lateral surface impact coefficient) which can be determined from previous cylindrical spacecraft flown with the same attitude, or can be obtained from laboratory measurements of momentum accommodation coefficients.

  20. Infectious Diseases at High Altitude.

    PubMed

    Basnyat, Buddha; Starling, Jennifer M

    2015-08-01

    Travel to elevations above 2,500 m is an increasingly common activity undertaken by a diverse population of individuals. These may be trekkers, climbers, miners in high-altitude sites in South America, and more recently, soldiers deployed for high-altitude duty in remote areas of the world. What is also being increasingly recognized is the plight of the millions of pilgrims, many with comorbidities, who annually ascend to high-altitude sacred areas. There are also 400 million people who reside permanently in high mountain ranges, which cover one-fifth of the Earth's surface. Many of these high-altitude areas are in developing countries, for example, the Himalayan range in South Asia. Although high-altitude areas may not harbor any specific infectious disease agents, it is important to know about the pathogens encountered in the mountains to be better able to help both the ill sojourner and the native high-altitude dweller. Often the same pathogens prevalent in the surrounding lowlands are found at high altitude, but various factors such as immunomodulation, hypoxia, poor physiological adaptation, and harsh environmental stressors at high altitude may enhance susceptibility to these pathogens. Against this background, various gastrointestinal, respiratory, dermatological, neurological, and other infections encountered at high altitude are discussed. PMID:26350326

  1. High Altitude Emissions

    NASA Technical Reports Server (NTRS)

    Bulzan, Dan

    2007-01-01

    An overview of emissions related research being conducted as part of the Fundamental Aeronautics Supersonics Project is presented. The overview includes project objectives, milestones, and descriptions of major research areas. The overview also includes information on the emissions research being conducted under NASA Research Announcements. Technical challenges include: 1) Environmental impact of supersonic cruise emissions is greater due to higher flight altitudes which makes emissions reduction increasingly important. 2) Accurate prediction tools to enable combustor designs that reduce emissions at supersonic cruise are needed as well as intelligent systems to minimize emissions. 3) Combustor operating conditions at supersonic cruise are different than at subsonic cruise since inlet fuel and air temperatures are considerably increased.

  2. Satellite altitude determination uncertainties

    NASA Technical Reports Server (NTRS)

    Siry, J. W.

    1971-01-01

    Satellite altitude determination uncertainties are discussed from the standpoint of the GEOS-C satellite. GEOS-C will be tracked by a number of the conventional satellite tracking systems, as well as by two advanced systems; a satellite-to-satellite tracking system and lasers capable of decimeter accuracies which are being developed in connection with the Goddard Earth and Ocean Dynamics Applications program. The discussion is organized in terms of a specific type of GEOS-C orbit which would satisfy a number of scientific objectives including the study of the gravitational field by means of both the altimeter and the satellite-to-satellite tracking system, studies of tides, and the Gulf Stream meanders.

  3. Altitude release mechanism

    DOEpatents

    Kulhanek, Frank C.

    1977-01-01

    An altitude release mechanism for releasing a radiosonde or other measuring instrument from a balloon carrying it up into the atmosphere includes a bottle partially filled with water, a tube sealed into the bottle having one end submerged in the water in the bottle and the free end extending above the top of the bottle and a strip of water-disintegrable paper held within the free end of the tube linking the balloon to the remainder of the package. As the balloon ascends, the lowered atmospheric air pressure causes the air in the bottle to expand, forcing the water in the bottle up the tubing to wet and disintegrate the paper, releasing the package from the balloon.

  4. Photoelectron-induced waves: A likely source of 150 km radar echoes and enhanced electron modes

    NASA Astrophysics Data System (ADS)

    Oppenheim, Meers M.; Dimant, Yakov S.

    2016-04-01

    VHF radars near the geomagnetic equator receive coherent reflections from plasma density irregularities between 130 and 160 km in altitude during the daytime. Though researchers first discovered these 150 km echoes over 50 years ago and use them to monitor vertical plasma drifts, the underlying mechanism that creates them remains a mystery. This paper uses large-scale kinetic simulations to show that photoelectrons can drive electron waves, which then enhance ion density irregularities that radars could observe as 150 km echoes. This model explains why 150 km echoes exist only during the day and why they appear at their lowest altitudes near noon. It predicts the spectral structure observed by Chau (2004) and suggests observations that can further evaluate this mechanism. It also shows the types and strength of electron modes that photoelectron-wave interactions generate in a magnetized plasma.

  5. Cardiovascular physiology at high altitude.

    PubMed

    Hooper, T; Mellor, A

    2011-03-01

    The role of the cardiovascular system is to deliver oxygenated blood to the tissues and remove metabolic effluent. It is clear that this complex system will have to adapt to maintain oxygen deliver in the profound hypoxia of high altitude. The literature on the adaptation of both the systemic and pulmonary circulations to high altitude is reviewed. PMID:21465906

  6. Cardiovascular medicine at high altitude.

    PubMed

    Whayne, Thomas F

    2014-07-01

    Altitude physiology began with Paul Bert in 1878. Chronic mountain sickness (CMS) was defined by Carlos Monge in the 1940s in the Peruvian Andes as consisting of excess polycythemia. Hurtado et al performed studies in the Peruvian Andes in the 1950s to 1960s which defined acclimatization in healthy altitude natives, including polycythemia, moderate pulmonary hypertension, and low systemic blood pressure (BP). Electrocardiographic changes of right ventricular hypertrophy (RVH) were noted. Acclimatization of newcomers to altitude involves hyperventilation stimulated by hypoxia and is usually benign. Acute mountain sickness (AMS) in travelers to altitude is characterized by hypoxia-induced anorexia, dyspnea, headache, insomnia, and nausea. The extremes of AMS are high-altitude cerebral edema and high-altitude pulmonary edema. The susceptible high-altitude resident can lose their tolerance to altitude and develop CMS, also referred to as Monge disease. The CMS includes extreme polycythemia, severe RVH, excess pulmonary hypertension, low systemic BP, arterial oxygen desaturation, and hypoventilation. PMID:23892441

  7. High altitude Venus' upper haze from SOIR onboard Venus Express

    NASA Astrophysics Data System (ADS)

    Takagi, Seiko; Mahieux, Arnaud; Wilquet, Valérie; Robert, Séverine; Drummond, Rachel; Carine Vandaele, Ann; Iwagami, Naomoto

    2015-04-01

    The Venus cloud consists of a main cloud deck at 47 - 70 km, with thinner hazes above and below. The upper haze on Venus lies above the main cloud surrounding the planet, ranging from the top of the cloud (70 km) up to as high as 90 km. The Solar Occultation in the InfraRed (SOIR) onboard Venus Express is designed to measure the atmospheric transmission at high altitudes (65 - 165 km) in the infrared (IR, 2.2 - 4.3 µm) with high spectral resolution by solar occultation. We investigated haze optical properties of Venus at above 90 km by analyzing SOIR spectral data. Vertical and latitudinal profiles of haze extinction, optical thickness, and mixing ratio were retrieved. These profiles exhibit the following characteristics. It shows that haze is present at altitude above 90 km although it has been recognized that the top of haze layer is 90 km. Extinctions vary order of magnitude every occultation. Extinctions are appeared to be independent of wavelength. This makes it clear that haze particles are sufficiently-small in size in comparison with observation wavelength. We find that haze extinction and optical thickness at low latitude are two times thicker than those at high latitude. One of the notable results is that mixing ratio of haze increases at above 90 km at both high and low latitudes. It's the first time that haze is speculated to be produced at high altitude. In this paper, haze transport and increase processes will be discussed to explain the results from SOIR observation.

  8. Microphysical Model of the Venus clouds between 40km and 80km

    NASA Astrophysics Data System (ADS)

    McGouldrick, Kevin

    2013-10-01

    I am continuing to adapt the Community Aerosol and Radiation Model for Atmospheres (CARMA) to successfully simulate the multi-layered clouds of Venus. The present version of the one-dimensional model now includes a simple parameterization of the photochemicial production of sulfuric acid around altitudes of 62km, and its thermochemical destruction below cloud base. Photochemical production in the model is limited by the availability of water vapor and insolation. Upper cloud particles are introduced into the model via binary homogeneous nucleation, while the lower and middle cloud particles are created via activation of involatile cloud condensation nuclei. Growth by condensation and coagulation and coalescence are also treated. Mass loadings and particle sizes compare favorably with the in situ observations by the Pioneer Venus Large Probe Particle Size Spectrometer, and mixing ratios of volatiles compare favorably with remotely sensed observations of water vapor and sulfuric acid vapor. This work was supported by the NASA Planetary Atmospheres Program, grant number NNX11AD79G.

  9. Altitude-adjusted corrected geomagnetic coordinates: Definition and functional approximations

    NASA Astrophysics Data System (ADS)

    Shepherd, S. G.

    2014-09-01

    Analysis of the functional approximations used to transform between geographic and Altitude-Adjusted Corrected Geomagnetic (AACGM) coordinates reveals that errors of >50 km can occur in the auroral and polar regions. These errors are the result of efforts to better approximate AACGM coordinates near the magnetic equator and the South Atlantic Anomaly. In these regions AACGM coordinates are not defined and alternate coordinates have been used. This augmentation and emphasis on the solution in regions near the equator result in spherical harmonic approximating functions that are less accurate than need be in the auroral and polar regions. In response, a new set of spherical harmonic coefficients have been derived that better represent AACGM coordinates in these regions. These new AACGM coefficients are limited to below 2000 km in altitude in order to ensure accuracy. For altitudes above 2000 km, a magnetic field-line tracing solution is recommended. A software package developed to take advantage of the new AACGM coefficients provides the capability of tracing magnetic field lines at any altitude, for improved accuracy. In addition, linear interpolation between 5 year epochs is used to produce coordinates that vary smoothly over the entire period from 1965 to present. The intent of this work is to provide a more accurate procedure for determining AACGM coordinates in the auroral and polar regions for the study of magnetospheric and ionospheric processes.

  10. High altitude reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Yazdo, Renee Anna; Moller, David

    1990-01-01

    At the equator the ozone layer ranges from 65,000 to 130,000 plus feet, which is beyond the capabilities of the ER-2, NASA's current high altitude reconnaissance aircraft. The Universities Space Research Association, in cooperation with NASA, is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozone layer at the equator. This aircraft must be able to cruise at 130,000 feet for six hours at Mach 0.7, while carrying 3,000 lbs. of payload. In addition, the aircraft must have a minimum range of 6,000 miles. In consideration of the novel nature of this project, the pilot must be able to take control in the event of unforeseen difficulties. Three aircraft configurations were determined to be the most suitable - a joined-wing, a biplane, and a twin-boom conventional airplane. The performance of each configuration was analyzed to investigate the feasibility of the project.

  11. The GRAD high-altitude balloon flight over Antarctica

    NASA Technical Reports Server (NTRS)

    Eichhorn, G.; Coldwell, R. L.; Dunnam, F. E.; Rester, A. C.; Trombka, J. I.; Starr, R.

    1989-01-01

    The Gamma Ray Advanced Detector (GRAD) consists of a n-type germanium detector inside an active bismuth-germanate Compton and charged particle shield with additional active plastic shielding across the aperture. It will be flown on a high-altitude balloon at 36 km altitude at a latitude of 78 deg S over Antarctica for observations of gamma radiation emitted by the radioactive decay of Co-56 in the supernova SN1987A, for assessment of the performance of bismuth-germanate scintillation material in the radiation environment of near space, for gathering information on the gamma-ray background over Antarctica, and for testing fault-tolerant software.

  12. Radiation measurements aboard nasa ER-2 high altitude aircraft with the liulin-4J portable spectrometer

    NASA Astrophysics Data System (ADS)

    Uchihori, Y.; Benton, E.; Moeller, J.; Bendrick, G.

    The risks to aircrew health posed by prolonged exposure to low levels of ionizing radiation at aircraft altitudes have recently received renewed attention. Civil and military aircraft currently on the drawing board are expected to operate at higher altitudes (>12 km) and fly longer ranges than do existing aircraft, thereby exposing their crews to higher levels of ionizing radiation. for longer periods of time. We are currently carrying out dosimetric measurements of the ionizing radiation environment at ˜20 km altitude using portable Si detectors aboard NASA's two ER-2 high altitude research aircraft. The instruments, Liulin-4J, have been extensively calibrated at several particle accelerators. With these instruments, we can measure not only absorbed dose, but also variation of the absorbed dose as a function of time. We report radiation dose measurements as function of time, altitude, and latitude for several ER-2 missions.

  13. Coronary heart disease at altitude.

    PubMed Central

    Alexander, J K

    1994-01-01

    In the past, it has been assumed that some basic physiologic responses to altitude, exposure in coronary patients are comparable to those in normal young subjects. In fact there are similar changes in sympathetic activation, heart rate, and blood pressure early after ascent, with decrements in plasma volume, cardiac output, and stroke volume as acclimatization proceeds. These responses are described, and experience with coronary patients is reviewed. During the 1st 2 to 3 days at altitude, coronary patients are at greatest risk of untoward events. Gradual rather than abrupt ascent, a moderate degree of physical conditioning, early limitation of activity to a level tolerated at low altitude for somewhat less), and attention to blood pressure control all appear to have protective effects. Ascent to moderate altitude appears to entail little risk in coronary patients who are asymptomatic or have moderate exercise tolerance, provided that the above precautions are observed and that activity does not exceed levels at lower altitude. If activity is to be increased, pre-ascent treadmill exercise testing or Holter monitor data secured under conditions comparable to those anticipated at altitude may provide reasonable guidelines. For coronary patients previously evaluated and known to be in a high-risk category, indications for ascent should be examined more critically, and precautionary measures should be more rigorous. Advice for patients with known coronary disease who may desire to trek at very high altitude must involve individual evaluation, and guidelines remain elusive. PMID:7888800

  14. Lung Disease at High Altitude

    PubMed Central

    Stream, JO; Luks, AM; Grissom, CK

    2016-01-01

    Large numbers of people travel to high altitudes, entering an environment of hypobaric hypoxia. Exposure to low oxygen tension leads to a series of important physiologic responses that allow individuals to tolerate these hypoxic conditions. However, in some cases hypoxia triggers maladaptive responses that lead to various forms of acute and chronic high altitude illness, such as high-altitude pulmonary edema or chronic mountain sickness. Because the respiratory system plays a critical role in these adaptive and maladaptive responses, patients with underlying lung disease may be at increased risk for complications in this environment and warrant careful evaluation before any planned sojourn to higher altitudes. In this review, we describe respiratory disorders that occur with both acute and chronic exposures to high altitudes. These disorders may occur in any individual who ascends to high altitude, regardless of his/her baseline pulmonary status. We then consider the safety of high-altitude travel in patients with various forms of underlying lung disease. The available data regarding how these patients fare in hypoxic conditions are reviewed, and recommendations are provided for management prior to and during the planned sojourn. PMID:20477353

  15. El Chichon and 'mystery cloud' aerosols between 30 and 55 km Global observations from the SME visible spectrometer

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.

    1986-01-01

    Visible limb radiances measured by the Solar Mesosphere Explorer (SME) are used to obtain volume scattering ratios for aerosol loading in the 30-55 km altitude range of the stratosphere. Global maps of these ratios are presented for the period January 1982 to August 1984. Significant aerosol scattering from the 'mystery cloud' and El Chichon aerosol layers are found above 30 km. A timescale of approximately 2 months between the appearance of the aerosol at 30.5 km and at 37.5 km is consistent with vertical transport of aerosol or vapor by eddy diffusion above 30 km. An anticorrelation exists between aerosol scattering and stratospheric temperatures. Periods of lower stratospheric temperatures may account for the formation of aerosol between 40 and 55 km altitude.

  16. Auroral energy deposition and neutral composition changes observed simultaneously by ESRO 4 and AE-C at different altitudes

    NASA Technical Reports Server (NTRS)

    Trinks, H.; Mayr, H. G.; Kayser, D. C.; Potter, W. E.

    1977-01-01

    Neutral composition data obtained simultaneously from ESRO 4 and AE-C during geomagnetically disturbed conditions at different altitudes (160 and 230 km) are used to investigate the atmospheric response to geomagnetic storms and to infer information regarding the excitation mechanism. The data are compared with a theoretical model that estimates the composition effects in terms of wind induced diffusion. A parametric study was conducted bearing on the influence of energy deposition at different altitudes and with varying latitudinal extent. In one of the observed events the composition effects at 160 km are substantially smaller than at 230 km for which we inferred by comparison with the theory that the energy mainly was deposited at 150 km altitude over a wide latitude range. Another event required energy deposition at somewhat lower altitudes near 120 km with a more localized energy source. Significant variations of the turbopause level were not necessary to explain the observed variations.

  17. Extending MGS-TES Temperature Retrievals in the Martian Atmosphere up to 90 Km: Retrieval Approach and Results

    NASA Technical Reports Server (NTRS)

    Feofilov, A. G.; Kutepov, A. A.; Rezac, L.; Smith, M. D.

    2015-01-01

    This paper describes a methodology for performing a temperature retrieval in the Martian atmosphere in the 50-90 km altitude range using spectrally integrated 15 micrometers C02 limb emissions measured by the Thermal Emission Spectrometer (TES), the thermal infrared spectrometer on board the Mars Global Surveyor (MGS). We demonstrate that temperature retrievals from limb observations in the 75-90 km altitude range require accounting for the non-local thermodynamic equilibrium (non-LTE) populations of the C02(v2) vibrational levels. Using the methodology described in the paper, we have retrieved approximately 1200 individual temperature profiles from MGS TES limb observations in the altitude range between 60 and 90 km. 0ur dataset of retrieved temperature profiles is available for download in supplemental materials of this paper. The temperature retrieval uncertainties are mainly caused by radiance noise, and are estimated to be about 2 K at 60 km and below, 4 K at 70 km, 7 K at 80 km, 10 K at 85 km, and 20 K at 90 km. We compare the retrieved profiles to Mars Climate Database temperature profiles and find good qualitative agreement. Quantitatively, our retrieved profiles are in general warmer and demonstrate strong variability with the following values for bias and standard deviations (in brackets) compared to the Martian Year 24 dataset of the Mars Climate Database: 6 (+/-20) K at 60 km, 7.5 (+/-25) K at 65 km, 9 (+/-27) K at 70 km, 9.5 (+/-27) K at 75 km, 10 (+/-28) K at 80 km, 11 (+/-29) K at 85 km, and 11.5 (+/-31) K at 90 km. Possible reasons for the positive temperature bias are discussed. carbon dioxide molecular vibrations

  18. A3 Altitude Test Facility

    NASA Technical Reports Server (NTRS)

    Dulreix, Lionel J.

    2009-01-01

    This slide presentation shows drawings, diagrams and photographs of the A3 Altitude Test Facility. It includes a review of the A3 Facility requirements, and drawings of the various sections of the facility including Engine Deck and Superstructure, Test Cell and Thrust Takeout, Structure and Altitude Support Systems, Chemical Steam generators, and the subscale diffuser. There are also pictures of the construction site, and the facility under construction. A Diagram of the A3 Steam system schematic is also shown

  19. Martian high-altitude photoelectrons independent of solar zenith angle

    NASA Astrophysics Data System (ADS)

    Xu, Shaosui; Liemohn, Michael; Bougher, Stephen; Mitchell, David

    2016-04-01

    Many aspects of the Martian upper atmosphere are known to vary with solar zenith angle (SZA). One would assume that dayside photoelectron fluxes are also SZA dependent, especially when transport along a semivertical magnetic field line is significant. However, our investigation presented here of the observed Martian high-altitude (˜400 km) photoelectron fluxes by the magnetometer/electron reflectometer (MAG/ER) instruments on board Mars Global Surveyor (MGS) shows that the photoelectron fluxes are better correlated with just the solar irradiance, without SZA factored in, and also that the median photoelectron fluxes are independent of SZA, especially for high energies (above 100 eV). For lower energies (below 70 eV), the observed fluxes tend to vary to some degree with SZA. Such counterintuitive results are due to the existence of a photoelectron exobase, only above which the photoelectrons are able to transport and escape to high altitudes. Two methods are used here to determine the altitude range of this exobase, which varies between 145 km and 165 km depending on the atmosphere and SZA. Through our SuperThermal Electron Transport (STET) model, we found that the integral of the production rate above the photoelectron exobase, and therefore the high-altitude photoelectron fluxes, is rather independent of SZA. Such an independent relationship concerns energy redistribution in the Martian upper atmosphere, using photoelectrons to map magnetic topology and connectivity, as well as ion escape. This finding can also be carefully adapted to other solar bodies with semivertical magnetic fields at ionospheric altitudes, such as Earth, Jupiter, and Saturn.

  20. Temporal, latitude and altitude absorbed dose dependences

    NASA Astrophysics Data System (ADS)

    Stozhkov, Y.; Svirzhevsky, N.; Bazilevskaya, G.

    The regular balloon measurements in the Earth's atmosphere are carried on at the Lebedev Physical Institute since 1957. The regular balloon flights have been made at the high latitude stations (near Murmansk - northern hemisphere and Mi ny -r Antarctica) and at the middle latitude (Moscow). Based on these long-term measurements as well as on the latitude data obtained in the several Soviet Antarctic expeditions the calculations of absorbed doses were fulfilled for altitudes of 10, 15, 20 and 30 km. The absorbed dose dependences on the geomagnetic cutoff rigidities and the phase of the 11-year solar cycle were found. The evaluation of the solar proton events and energetic electron precipitation contributions to the absorbed dose enhancements was made.

  1. A Daytime Aspect Camera for Balloon Altitudes

    NASA Technical Reports Server (NTRS)

    Dietz, Kurt L.; Ramsey, Brian D.; Alexander, Cheryl D.; Apple, Jeff A.; Ghosh, Kajal K.; Swift, Wesley R.; Six, N. Frank (Technical Monitor)

    2001-01-01

    We have designed, built, and flight-tested a new star camera for daytime guiding of pointed balloon-borne experiments at altitudes around 40km. The camera and lens are commercially available, off-the-shelf components, but require a custom-built baffle to reduce stray light, especially near the sunlit limb of the balloon. This new camera, which operates in the 600-1000 nm region of the spectrum, successfully provided daytime aspect information of approximately 10 arcsecond resolution for two distinct star fields near the galactic plane. The detected scattered-light backgrounds show good agreement with the Air Force MODTRAN models, but the daytime stellar magnitude limit was lower than expected due to dispersion of red light by the lens. Replacing the commercial lens with a custom-built lens should allow the system to track stars in any arbitrary area of the sky during the daytime.

  2. Daytime Aspect Camera for Balloon Altitudes

    NASA Technical Reports Server (NTRS)

    Dietz, Kurt L.; Ramsey, Brian D.; Alexander, Cheryl D.; Apple, Jeff A.; Ghosh, Kajal K.; Swift, Wesley R.

    2002-01-01

    We have designed, built, and flight-tested a new star camera for daytime guiding of pointed balloon-borne experiments at altitudes around 40 km. The camera and lens are commercially available, off-the-shelf components, but require a custom-built baffle to reduce stray light, especially near the sunlit limb of the balloon. This new camera, which operates in the 600- to 1000-nm region of the spectrum, successfully provides daytime aspect information of approx. 10 arcsec resolution for two distinct star fields near the galactic plane. The detected scattered-light backgrounds show good agreement with the Air Force MODTRAN models used to design the camera, but the daytime stellar magnitude limit was lower than expected due to longitudinal chromatic aberration in the lens. Replacing the commercial lens with a custom-built lens should allow the system to track stars in any arbitrary area of the sky during the daytime.

  3. Measurement of Unsteady Blade Surface Pressure on a Single Rotation Large Scale Advanced Prop-fan with Angular and Wake Inflow at Mach Numbers from 0.02 to 0.70

    NASA Technical Reports Server (NTRS)

    Bushnell, P.; Gruber, M.; Parzych, D.

    1988-01-01

    Unsteady blade surface pressure data for the Large-Scale Advanced Prop-Fan (LAP) blade operation with angular inflow, wake inflow and uniform flow over a range of inflow Mach numbers of 0.02 to 0.70 is provided. The data are presented as Fourier coefficients for the first 35 harmonics of shaft rotational frequency. Also presented is a brief discussion of the unsteady blade response observed at takeoff and cruise conditions with angular and wake inflow.

  4. Influence of calcium content on the structural and magnetic properties of Sr0.70-xCaxLa0.30Fe11.75Zn0.25O19 hexagonal ferrites

    NASA Astrophysics Data System (ADS)

    Yang, Yujie; Wang, Fanhou; Shao, Juxiang; Liu, Xiansong; Feng, Shuangjiu; Yang, Junsheng

    2016-03-01

    Hexagonal ferrite Sr0.70-xCaxLa0.30Fe11.75Zn0.25O19 (0≤x≤0.70) magnetic powder and magnets were prepared by the ceramic process. The phase characterization of the calcined powders was investigated by X-ray diffraction. There is a single magnetoplumbite phase in the magnetic powders with x from 0 to 0.60, and for the magnetic powders with x of 0.70, the α-Fe2O3 phase is observed. The morphology of the sintered magnets was examined by a field emission scanning electron microscopy. The magnets have formed the hexagonal structures and the particles are distributed evenly. Magnetic properties of the calcined powders and sintered magnets were measured by a vibrating sample magnetometer and a magnetic properties test instrument, respectively. The saturation magnetization, remanent magnetization and coercivity of the magnetic powders increase with the increase of x from 0 to 0.2, and then begin to decrease when x>0.2. The remanence, intrinsic coercivity, magnetic induction coercivity and maximum energy product of the sintered magnets first increase with x from 0 to 0.20, and then, start to decrease when x continues to increase. The magnetic properties of the sintered magnet at x=0.20 reach the maximum values.

  5. A method for sampling microbial aerosols using high altitude balloons.

    PubMed

    Bryan, N C; Stewart, M; Granger, D; Guzik, T G; Christner, B C

    2014-12-01

    Owing to the challenges posed to microbial aerosol sampling at high altitudes, very little is known about the abundance, diversity, and extent of microbial taxa in the Earth-atmosphere system. To directly address this knowledge gap, we designed, constructed, and tested a system that passively samples aerosols during ascent through the atmosphere while tethered to a helium-filled latex sounding balloon. The sampling payload is ~ 2.7 kg and comprised of an electronics box and three sampling chambers (one serving as a procedural control). Each chamber is sealed with retractable doors that can be commanded to open and close at designated altitudes. The payload is deployed together with radio beacons that transmit GPS coordinates (latitude, longitude and altitude) in real time for tracking and recovery. A cut mechanism separates the payload string from the balloon at any desired altitude, returning all equipment safely to the ground on a parachute. When the chambers are opened, aerosol sampling is performed using the Rotorod® collection method (40 rods per chamber), with each rod passing through 0.035 m3 per km of altitude sampled. Based on quality control measurements, the collection of ~ 100 cells rod(-1) provided a 3-sigma confidence level of detection. The payload system described can be mated with any type of balloon platform and provides a tool for characterizing the vertical distribution of microorganisms in the troposphere and stratosphere. PMID:25455021

  6. The Gravity Field of Mercury After the Messenger Low-Altitude Campaign

    NASA Technical Reports Server (NTRS)

    Mazarico, Erwan; Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Smith, David E.; Zuber, Maria T.; Neumann, Gary A.; Solomon, Sean C.

    2015-01-01

    The final year of the MESSENGER mission was designed to take advantage of the remaining propellant onboard to provide a series of lowaltitude observation campaigns and acquire novel scientific data about the innermost planet. The lower periapsis altitude greatly enhances the sensitivity to the short-wavelength gravity field, but only when the spacecraft is in view of Earth. After more than 3 years in orbit around Mercury, the MESSENGER spacecraft was tracked for the first time below 200-km altitude on 5 May 2014 by the NASA Deep Space Network (DSN). Between August and October, periapsis passages down to 25-km altitude were routinely tracked. These periods considerably improved the quality of the data coverage. Before the end of its mission, MESSENGER will fly at very low altitudes for extended periods of time. Given the orbital geometry, however the periapses will not be visible from Earth and so no new tracking data will be available for altitudes lower than 75 km. Nevertheless, the continuous tracking of MESSENGER in the northern hemisphere will help improve the uniformity of the spatial coverage at altitudes lower than 150 km, which will further improve the overall quality of the Mercury gravity field.

  7. Pure Rotational Raman Lidar for Temperature Measurements from 5-40 Km Over Wuhan, China

    NASA Astrophysics Data System (ADS)

    Li, Yajuan; Song, Shalei; Yang, Yong; Li, Faquan; Cheng, Xuewu; Chen, Zhenwei; Liu, Linmei; McCormick, M. Patrick; Gong, Shunsheng

    2016-06-01

    In this paper a pure rotational Raman lidar (PRR) was established for the atmospheric temperature measurements from 5 km to 40 km over Wuhan, China (30.5°N, 114.5°E). To extract the expected PRR signals and simultaneously suppress the elastically backscattered light, a high-spectral resolution polychromator for light splitting and filtering was designed. Observational results revealed that the temperature difference measured by PRR lidar and the local radiosonde below 30 km was less than 3.0 K. The good agreement validated the reliability of the PRR lidar. With the 1-h integration and 150-m spatial resolution, the statistical temperature error for PRR lidar increases from 0.4 K at 10 km up to 4 K at altitudes of about 30 km. In addition, the whole night temperature profiles were obtained for study of the long-term observation of atmospheric fluctuations.

  8. Solar collector with altitude tracking

    DOEpatents

    Barak, Amitzur Z.

    1977-01-01

    A device is provided for turning a solar collector about an east-west horizontal axis so that the collector is tilted toward the sun as the EWV altitude of the sun varies each day. It includes one or more heat responsive elements and a shading means aligned so that within a range of EWV altitudes of the sun during daylight hours the shading means shades the element or elements while during the rest of the daylight hours the elements or elements are heated by the sun to assume heated, stable states. Mechanical linkage between the collector and the element is responsive to the states of the element or elements to tilt the collector in accordance with variations in the EWV altitude of the sun.

  9. 28 CFR 0.70 - General functions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... forfeiture and civil penalty matters arising under laws relating to liquor, narcotics, gambling, and firearms... personnel, to taxes on liquor, narcotics, firearms, coin-operated gambling and amusement machines, and...

  10. Certification and safety aspects relating to the transport of passengers on high altitude balloons in Europe

    NASA Astrophysics Data System (ADS)

    Schoenmaker, Annelie

    2014-07-01

    High-altitude balloons typically fly between 25 and 50 km in altitude, which, while below the Karman line of 100 km, is yet far above the altitudes typically flown by aircraft. For example, the highest-flying commercial aircraft - the Concorde - had a maximum cruising altitude of only 18 km. zero2infinity, a Spanish company, is currently developing a pressurized pod named “bloon” which will be capable of lifting six people, including two pilot crew members and four paying passengers, to an altitude of 36 km through the use of high-altitude balloons. The boundary between Airspace and Outer Space has never been legally defined, mostly because of the lack of activities taking place between the altitude where airplanes fly and the lowest orbiting spacecraft. High-altitude balloons do fly at these in-between altitudes and the prospect of commercializing access to these parts of the stratosphere poses some questions in a new light. Given the relatively low altitude at which they fly, it may well be that these types of balloons would be considered to operate exclusively within air space. However, given the technology involved in crewed high altitude balloon flights, which is more similar to spacecraft engineering than to traditional hot-air or gas ballooning, it is necessary to evaluate the various legal regimes, codes, and regulations that would apply to such flights, especially regarding licenses and liabilities. For high altitude balloon flights commencing in Europe, the European Aviation Safety Agency (EASA) would very likely be the competent certification or licensing agency for these flights, although there would likely be input from various national aviation authorities as well. However, because the European Commission (EC) has not yet issued regulations regarding commercial spaceflight, particularly the use of high altitude balloons, new rules and regulations governing such flights may still need to be drafted and promulgated. With the development of

  11. Aerodynamic performance of osculating-cones waveriders at high altitudes

    NASA Astrophysics Data System (ADS)

    Graves, Rick Evan

    The steady-state aerodynamic characteristics of three-dimensional waverider configurations immersed in hypersonic rarefied flows are investigated. Representative geometries are generated using an inverse design procedure, the method of osculating cones, which defines an exit plane shock shape and approximates the flow properties of the compression surface by assuming that each spanwise station along the shock profile lies within a region of locally conical flow. Vehicle surface and flow field properties are predicted using the direct simulation Monte Carlo method, a probabilistic numerical scheme in which simulated molecules are followed through representative collisions with each other and solid surfaces, and subsequent deterministic displacement. The aerodynamic properties of high- and low-Reynolds number waverider geometries, optimized for maximum lift-to-drag ratio and subject to mission-oriented constraints, are contrasted with results from reference caret and delta wings with similar internal volumes to quantify the relevance and advantage of the waverider concept at high altitudes. The high-Reynolds number waverider, optimized for the continuum regime at Minfinity = 4 and Reinfinity = 250 million, was the focus of recent wind tunnel testing for near on-design and off-design conditions, including low subsonic speeds. The present work extends the previous analyses into the high-altitude regime. The low-Reynolds number waverider, optimized at Minfinity = 20 and Reinfinity = 2.5 million, is studied to determine if optimization potential exists for a high-Mach number waverider at high altitudes. A characteristic length of 5 m is assumed for both waverider configurations, representative of a hypersonic missile concept. The geometries are aerodynamically evaluated over a parametric space consisting of an altitude variation of 95 km to 150 km and an angle of attack range of --5° to 10°. The effect of off-design Mach number on the performance of the high

  12. Return to Activity at Altitude After High-Altitude Illness

    PubMed Central

    DeWeber, Kevin; Scorza, Keith

    2010-01-01

    Context: Sports and other activities at high altitude are popular, yet they pose the unique risk for high-altitude illness (HAI). Once those who have suffered from a HAI recover, they commonly desire or need to perform the same activity at altitude in the immediate or distant future. Evidence Acquisition: As based on key text references and peer-reviewed journal articles from a Medline search, this article reviews the pathophysiology and general treatment principles of HAI. Results: In addition to the type of HAI experienced and the current level of recovery, factors needing consideration in the return-to-play plan include physical activity requirements, flexibility of the activity schedule, and available medical equipment and facilities. Most important, adherence to prudent acclimatization protocols and gradual ascent recommendations (when above 3000 m, no more than 600-m net elevation gain per day, and 1 rest day every 1 to 2 ascent days) is powerful in its preventive value and thus strongly recommended. When these are not practical, prophylactic medications (acetazolamide, dexamethasone, salmeterol, nifedipine, or phosphodiesterase inhibitors, depending on the type of prior HAI) may be prescribed and can reduce the risk of illness. Athletes with HAI should be counseled that physical and mental performance may be adversely affected if activity at altitude continues before recovery is complete and that there is a risk of progression to a more serious HAI. Conclusion: With a thoughtful plan, most recurrent HAI in athletes can be prevented. PMID:23015950

  13. Remote detection of the maximum altitude of equatorial ionospheric plasma bubbles

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    1981-01-01

    Nearly 200 post-sunset low-altitude passes of the Alouette 2 and ISIS 1 satellites near the dip equator are studied in order to find the maximum ionospheric plasma bubble altitudes, which are determined by calculating the apex altitude of the magnetic field line passing through the satellite when it is immersed in a bubble. The calculations are made only upon the observation of conjugate hemisphere ionospheric echoes, which result from ducted HF sounder signals that are guided along field-aligned irregularities within the plasma depletion. The maximum bubble altitudes corresponding to the three longitude sectors centered on zero deg, 75 deg W, and 105 deg E, are found to often exceed 1000 km, but seldom 3000 km. The electron density depletions within these field-aligned bubbles, as measured at the point of satellite encounter with the topside ionosphere, are generally less than a factor of two but may exceed a factor of ten.

  14. Dependence of Venus ionopause altitude and ionospheric magnetic field on solar wind dynamic pressure

    NASA Technical Reports Server (NTRS)

    Phillips, J. L.; Luhmann, J. G.; Russell, C. T.

    1985-01-01

    The shape of the dayside Venus ionopause, and its dependence on solar wind parameters, is examined using Pioneer Venus Orbiter field and particle data. The ionopause is defined here as the altitude of pressure equality between magnetosheath pressure and ionospheric thermal pressure; its typical altitudes range from about 300 km near the subsolar point to about 900 km near the terminator. A strong correlation between ionopause altitude and magnetosheath magnetic pressure is demonstrated; correlation between magnetic pressure and the normally incident component of solar wind dynamic pressure is also evident. The data support the hypothesis of control of the ionopause altitude by solar wind dynamic pressure, manifested in the sheath as magnetic pressure. The presence of large scale magnetic fields in the ionosphere is observed primarily when dynamic pressure is high and the ionopause is low.

  15. Lightweight Liquid Helium Dewar for High-Altitude Balloon Payloads

    NASA Technical Reports Server (NTRS)

    Kogut, Alan; James, Bryan; Fixsen, Dale

    2013-01-01

    Astrophysical observations at millimeter wavelengths require large (2-to-5- meter diameter) telescopes carried to altitudes above 35 km by scientific research balloons. The scientific performance is greatly enhanced if the telescope is cooled to temperatures below 10 K with no emissive windows between the telescope and the sky. Standard liquid helium bucket dewars can contain a suitable telescope for telescope diameter less than two meters. However, the mass of a dewar large enough to hold a 3-to-5-meter diameter telescope would exceed the balloon lift capacity. The solution is to separate the functions of cryogen storage and in-flight thermal isolation, utilizing the unique physical conditions at balloon altitudes. Conventional dewars are launched cold: the vacuum walls necessary for thermal isolation must also withstand the pressure gradient at sea level and are correspondingly thick and heavy. The pressure at 40 km is less than 0.3% of sea level: a dewar designed for use only at 40 km can use ultra thin walls to achieve significant reductions in mass. This innovation concerns new construction and operational techniques to produce a lightweight liquid helium bucket dewar. The dewar is intended for use on high-altitude balloon payloads. The mass is low enough to allow a large (3-to-5-meter) diameter dewar to fly at altitudes above 35 km on conventional scientific research balloons without exceeding the lift capability of the balloon. The lightweight dewar has thin (250- micron) stainless steel walls. The walls are too thin to support the pressure gradient at sea level: the dewar launches warm with the vacuum space vented continuously during ascent to eliminate any pressure gradient across the walls. A commercial 500-liter storage dewar maintains a reservoir of liquid helium within a minimal (hence low mass) volume. Once a 40-km altitude is reached, the valve venting the vacuum space of the bucket dewar is closed to seal the vacuum space. A vacuum pump then

  16. Preliminary breakdown of intracloud lightning: Initiation altitude, propagation speed, pulse train characteristics, and step length estimation

    NASA Astrophysics Data System (ADS)

    Wu, Ting; Yoshida, Satoru; Akiyama, Yasuhiro; Stock, Michael; Ushio, Tomoo; Kawasaki, Zen

    2015-09-01

    Using a low-frequency lightning location system comprising 11 sites, we located preliminary breakdown (PB) processes in 662 intracloud (IC) lightning flashes during the summer of 2013 in Osaka area of Japan. On the basis of three-dimensional location results, we studied initiation altitude and upward propagation speed of PB processes. PB in most IC flashes has an initiation altitude that ranges from 5 to 10 km with an average of 7.8 km. Vertical speed ranges from 0.5 to 17.8 × 105 m/s with an average of 4.0 × 105 m/s. Vertical speed is closely related with initiation altitude, with IC flashes initiated at higher altitude having lower vertical speed during PB stage. Characteristics of PB pulse trains including pulse rate, pulse amplitude, and pulse width are also analyzed. The relationship between pulse rate and vertical speed has the strongest correlation, suggesting that each PB pulse corresponds to one step of the initial leader during the PB stage. Pulse rate, pulse amplitude, and pulse width all show decreasing trends with increasing initiation altitude and increasing trends with increasing vertical speed. Using a simple model, the step length of the initial leader during the PB stage is estimated. Most of initial leaders have step lengths that range from 40 to 140 m with an average of 113 m. Estimated step length has a strong correlation with initiation altitude, indicating that leaders initiated at higher altitude have longer steps. Based on the results of this study, we speculate that above certain altitude (~12 km), initial leaders in PB stages of IC flashes may only have horizontal propagations. PB processes at very high altitude may also have very weak radiation, so detecting and locating them would be relatively difficult.

  17. Lidar Altitude Data Read Routine

    Atmospheric Science Data Center

    2013-03-19

    ... Profile products. It is written in Interactive Data Language (IDL) and uses HDF routine calls to read the altitude data which are ... Data Read routine  (1.5 KB) Interactive Data Language (IDL) is available from  Exelis Visual Information Solutions . ...

  18. Development of Aptitude at Altitude

    ERIC Educational Resources Information Center

    Hogan, Alexandra M.; Virues-Ortega, Javier; Botti, Ana Baya; Bucks, Romola; Holloway, John W.; Rose-Zerilli, Matthew J.; Palmer, Lyle J.; Webster, Rebecca J.; Baldeweg, Torsten; Kirkham, Fenella J.

    2010-01-01

    Millions of people currently live at altitudes in excess of 2500 metres, where oxygen supply is limited, but very little is known about the development of brain and behavioural function under such hypoxic conditions. We describe the physiological, cognitive and behavioural profile of a large cohort of infants (6-12 months), children (6-10 years)…

  19. Altitude Compensating Nozzle Concepts Evaluation

    NASA Technical Reports Server (NTRS)

    Soni, Bharat

    2000-01-01

    This report contains the summary of work accomplished during summer of 2000 by Mr. Chad Hammons, undergraduate senior student, Mississippi State University/ERC in support of NASA/MSFC mission pertinent to Altitude compensating nozzle concepts evaluations. In particular, the development of automatic grid generator applicable in conducting sensitivity analysis involving Aerospike engine is described.

  20. Addition of a low altitude Tethys flyby to the nominal Cassini tour

    NASA Technical Reports Server (NTRS)

    Buffington, Brent; Strange, Nathan; Ionasescu, Rodica

    2005-01-01

    Of the eight Saturnian icy satellites. all but Mimas and Tethys had low altitude targeted flybys during the 4-year primary Cassini spacecraft tour. In November 2004, the existence of a potential low-altitude Tethys flyby was discovered; this low-altitude flyby, added to the nominal tour in March 2005, corresponded to a 1500 km non-targeted periapsis altitude on September 24, 2005 with an associated (delta)v cost of approximately 8 mis. This memo details the methods used to determine the Rev-15 non-targeted Tethys flyby altitude, driven by navigational requirements and operational constraints, in addition to several trajectory modifications implemented to reduce total (delta)v costs, and in some cases. render simultaneous increases in scientific return.

  1. Addition of a Low Altitude Tethys Flyby to the Nominal Cassini Tour

    NASA Technical Reports Server (NTRS)

    Buffington, Brent; Strange, Nathan; Ionasescu, Rodica

    2005-01-01

    Of the eight Saturnian icy satellites, all but Mimas and Tethys have low altitude targeted flybys during the 4-year nominal Cassini spacecraft tour. In November 2004, the existence of a potential low-altitude Tethys flyby was discovered; this low-altitude Tethys flyby, added to the nominal tour in March 2005, corresponds to a 1500 km nontargeted periapsis altitude on September 24, 2005 and requires a Av cost of 8 mls. This paper details the methods used to determine the Tethys non-targeted flyby altitude, driven by navigational requirements and operational constraints, in addition to several trajectory modifications implemented to reduce total Av costs, and in some cases, simultaneous increases in scientific return.

  2. Infrared emission from the atmosphere above 200 km

    NASA Technical Reports Server (NTRS)

    Simpson, J. P.

    1976-01-01

    The infrared radiation over the range from 4 to 1000 microns from atoms and molecules in the earth's atmosphere, between 200 and 400 km, was calculated. Only zenith lines of sight were considered. The excitation of the atoms and molecules is due to collisions with other molecules and to absorption of radiation from the earth and sun. In some cases, the abundances of the molecules had to be estimated. The most important lines are the forbidden lines from atomic oxygen at 63.1 and 147 micron, and the vibration-rotation band of nitric oxide at 5.3 micron. These lines can have intensities as high as a few times 0.001 ergs/sq cm/sec/steradian at 200 km altitude. In addition, the vibration-rotation bands of NO(+) at 4.3 micron and CO at 4.7 micron and the pure rotation lines of NO and NO(+) could be detected by infrared telescopes in space.

  3. Simplified Analytical Solution for Martian OH*-layer Altitude

    NASA Astrophysics Data System (ADS)

    Grygalashvyly, Mykhaylo; Sonnemann, Gerd

    2016-04-01

    In the Earth atmosphere airglow emissions of OH* are used in very diverse branches of research from gravity waves (GWs) and tides observations to minor chemical constituents and temperature measurements. Moreover, the airglow observations have good potential as, for example, for water vapor profile retrieval in the mesopause region. Recently, hydroxyl emissions were found in Mars and in Venus atmospheres. Thus, the applicability potential has been increased in spurts. Even for Earth's atmosphere there is a lack of knowledge on morphology of OH*-layer, i.e. on altitude, number density and shape variability with the intro- and extra-annual cycles, due to planetary waves (PWs), GWs, and tides. The questions on relations between OH* layer altitude, number density (volume emission, intensity), surrounding temperature, and winds (meridional and vertical) are still open. Modern satellite airglow measurements are not enough precise with a typical error in determination of altitude ~2-3 km, while the ground-based measurements are restricted by local point of observations and integrated volume emission. Thus, retrievals of emission altitudes variations to derive are awkward. The difficulties are much stronger for the investigation of the Martian OH*-layer variability and altitude diagnostics. We introduce a simplified analytical approach for OH*-layer altitude in the Martian atmosphere. The expressions for the number density and height of the OH*-layer peak, as well as relationship between both parameters, are derived for night time conditions. These OH*-layer parameters are determined by the temperature, atomic oxygen density and their vertical gradients. The approximations can be useful for analysis of ground-based and satellite-borne airglow observations. We discuss the consequences following from the derived expression.

  4. High altitude, prolonged exercise, and the athlete biological passport.

    PubMed

    Schumacher, Yorck O; Garvican, Laura A; Christian, Ryan; Lobigs, Louisa M; Qi, Jiliang; Fan, Rongyun; He, Yingying; Wang, Hailing; Gore, Christopher J; Ma, Fuhai

    2015-01-01

    The Athlete Biological Passport (ABP) detects blood doping in athletes through longitudinal monitoring of erythropoietic markers. Mathematical algorithms are used to define individual reference ranges for these markers for each athlete. It is unclear if altitude and exercise can affect the variables included in these calculations in a way that the changes might be mistaken for blood manipulation. The aim of this study was to investigate the influence of the simultaneous strenuous exercise and low to high altitude exposure on the calculation algorithms of the ABP. 14 sea level (SL) and 11 altitude native (ALT) highly trained athletes participated in a 14-day cycling stage race taking place at an average altitude of 2496 m above sea level (min. 1014 m, max. 4120 m), race distances ranged between 96 and 227 km per day. ABP blood measures were taken on days -1,3,6,10,14 (SL) and -1,9,15 (ALT) of the race. Four results from three samples of two different SL athletes exceeded the individual limits at the 99% specificity threshold and one value at 99.9%. In ALT, three results from three samples of three different athletes were beyond the individual limits at 99%, one at 99.9%. The variations could be explained by the expected physiological reaction to exercise and altitude. In summary, the abnormalities observed in the haematological ABP´s of well-trained athletes during extensive exercise at altitude are limited and in line with expected physiological changes. PMID:25252093

  5. Design concepts for the first 40 km a key step for the space elevator

    NASA Astrophysics Data System (ADS)

    Knapman, John M.; Swan, Peter A.

    2014-11-01

    The Marine Node for the Space Elevator Infrastructure is the base for all activities to load and unload the cargo and climbers. As the basic design of the space elevator power system is solar power only, the first 40 km is hazardous to operations and demands enclosed packaging of fragile tether climbers. A significant question is: how do we place a full-up tether climber, driven by solar power, above the atmosphere? Two approaches, starting at the Marine Node, allow the tether climber to initiate the climb with solar energy above the atmosphere. The third viable approach is to provide a platform at altitude for initiation of tether climb. These approaches would enable solar power to be the source of energy for climbing. The three approaches are: Option One and Two: Marine Node (MN) Starting Location. MN - Box Protection - use boxes to protect the fragile solar panel and power the climber directly with a power extension cord to climb out of the atmosphere. MN - Spring Forward - use the characteristics of the elastic factor of the tether material. Option Three: High Stage One-develop a platform at altitude. Dangers for the space elevator during the first 40 km in altitude are discussed, and the options to deploy the tether climber and its solar arrays from the ocean surface to the desired altitude are explained.

  6. News from KM3NeT

    SciTech Connect

    Katz, Ulrich F.; Collaboration: KM3NeT Collaboration

    2014-11-18

    KM3NeT is a future research infrastructure in the Mediterranean Sea, hosting a multi-cubic-kilometre neutrino telescope and nodes for Earth and Sea sciences. In this report we shortly summarise the genesis of the KM3NeT project and present key elements of its technical design. The physics objectives of the KM3NeT neutrino telescope and some selected sensitivity estimates are discussed. Finally, some first results from prototype operations and the next steps towards implementation – in particular the first construction phase in 2014/15 – are described.

  7. Frustrated exchange interactions formation at low temperatures and high hydrostatic pressures in La{sub 0.70}Sr{sub 0.30}Mn{sub O2.85}

    SciTech Connect

    Trukhanov, S. V. Trukhanov, A. V.; Vasiliev, A. N.; Szymczak, H.

    2010-08-15

    The magnetic and thermal properties of the anion-deficient La{sub 0.70}Sr{sub 0.30}MnO{sub 2.85} manganite are investigated in wide temperature (4-350 K) range, including under hydrostatic pressure (0-1.1 GPa). Throughout the pressure range investigated, the sample is spin glass with diffused phase transition into paramagnetic state. It is established, that spin glass state is a consequence of exchange interaction frustration of the ferromagnetic clusters embeded into antiferromagnetic clusters. The magnetic moment freezing temperature T{sub f} of ferromagnetic clusters increases under pressure, freezing temperature dependence on pressure is characterized by derivative value {approx}4.5 K/GPa, while the magnetic ordering T{sub MO} temperature dependence is characterized by derivative value {approx}13 K/GPa. The volume fraction of sample having ferromagnetic state is V{sub fer} {approx} 13% and it increases under a pressure of 1.1 GPa by {Delta}V{sub fer} {approx} 6%. Intensification of ferromagnetic properties of the anion-deficient La{sub 0.70}Sr{sub 0.30}MnO{sub 2.85} manganite under hydrostatic pressure is a consequence of oxygen vacancies redistribution and unit cell parameters decrease. The most likely mechanism of frustrated exchange interactions formation is discussed.

  8. Distorted weak anti-localization effects in Bi2Se3/La0.70Sr0.30MnO3 (TI/FM) heterostructures grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Hunte, Frank; Kumar, Raj; Lee, Yi-Fang; Punugupati, Sandhyarani; Schwartz, Justin; Narayan, Jay

    Topological insulator/ferromagnet (TI/FM) heterostructures with broken time reversal symmetry by interface-induced magnetism are the potential platforms for the observation of novel quantum transport phenomena, magnetic monopoles and exotic quantum magneto-electric effects. TI/FM heterostructures with low Curie temperature ferromagnets i. e. GdN, EuS have been fabricated and studied. One of the challenges encountered with these heterostructures is their low Curie temperatures which limits their potential for applications in spintronic devices at room temperature. To address this issue, we have grown Bi2Se3/La0.70Sr0.30MnO3 (TI/FM) heterostructures by the method of pulsed laser deposition. La0.70Sr0.30MnO3(LSMO) is a strong ferromagnetic material with Tc ~350 K and Bi2Se3 is the most studied topological insulator. XRD and phi scan results show that epitaxial thin films of Bi2Se3 are grown on the LSMO template. Strong in-plane magnetization is confirmed by magnetometry measurements of the Bi2Se3/LSMO heterostructure. Magneto-transport measurements show a distorted weak anti-localization effect with hysteretic behavior due to interface induced ferromagnetism in the Bi2Se3 TI films. This work was supported, in part, by National Science Foundation ECCS-1306400.

  9. CLUSTER observations of lower hybrid waves excited at high altitudes by electromagnetic whistler mode signals from the HAARP facility

    NASA Astrophysics Data System (ADS)

    Bell, T. F.; Inan, U. S.; Platino, M.; Pickett, J. S.; Kossey, P. A.; Kennedy, E. J.

    2004-03-01

    We report new observations from the CLUSTER spacecraft of strong excitation of lower hybrid (LH) waves by electromagnetic (EM) whistler mode waves at altitudes >=20,000 km outside the plasmasphere. Previous observations of this phenomenon occurred at altitudes <=7000 km. The excitation mechanism appears to be linear mode coupling in the presence of small scale plasma density irregularities. These observations provide strong evidence that EM whistler mode waves are continuously transformed into LH waves as the whistler mode waves propagate at high altitudes beyond L ~ 4. This may explain the lack of lightning generated whistlers observed in this same region of space.

  10. Variability of Cloudiness at Airline Cruise Altitudes from GASP Measurements.

    NASA Astrophysics Data System (ADS)

    Jasperson, William H.; Nastrom, Gregory D.; Davis, Richard E.; Holdeman, James D.

    1985-01-01

    A climatology of high-altitude cloud encounters using data obtained between 1975 and 1979 from commercial airliners participating in the Global Atmospheric Sampling Program (GASP) is presented. The statistics are based on three different measures of cloudiness derived from the GASP data set. This climatology depicts the seasonal, latitudinal and altitudinal variation in the cloudiness parameters, as well as differences in the high-altitude cloud structure attributed to cyclone- and convective cloud-generation mechanisms. A qualitative agreement was found between the latitudinal distribution of cloud cover derived from the GASP data and satellite-derived high-altitude cloud statistics available in the literature. Relationships between the three different measures of cloudiness and the relative vorticity at high altitudes, stratified by season, latitude and distance from the tropopause are also presented. In midlatitudes, for example, the average cloudiness, when stratified by the sign of the relative vorticity, exhibits a seasonal cycle with the 1argest differences occurring in the layer 0-1.5 km below the tropopause. Seasonal and latitudinal patterns can also be seen in the other cloudiness parameters.

  11. Status of KM3NeT

    NASA Astrophysics Data System (ADS)

    Riccobene, G.

    2016-07-01

    The recent observation of cosmic neutrinos by IceCube has pushed the quest towards the identification of cosmic sources of high-energy particles. The KM3NeT Collaboration is now ready to launch the massive construction of detection units to be installed in deep sea to build a km-cubic size neutrino telescope. The main elements of the detector, the status of the project and the expected perfomances are briefly reported.

  12. Sleep and Breathing at High Altitude.

    PubMed

    Wickramasinghe, Himanshu; Anholm, James D.

    1999-01-01

    Sleep at high altitude is characterized by poor subjective quality, increased awakenings, frequent brief arousals, marked nocturnal hypoxemia, and periodic breathing. A change in sleep architecture with an increase in light sleep and decreasing slow-wave and REM sleep have been demonstrated. Periodic breathing with central apnea is almost universally seen amongst sojourners to high altitude, although it is far less common in long-standing high altitude dwellers. Hypobaric hypoxia in concert with periodic breathing appears to be the principal cause of sleep disruption at altitude. Increased sleep fragmentation accounts for the poor sleep quality and may account for some of the worsened daytime performance at high altitude. Hypoxic sleep disruption contributes to the symptoms of acute mountain sickness. Hypoxemia at high altitude is most severe during sleep. Acetazolamide improves sleep, AMS symptoms, and hypoxemia at high altitude. Low doses of a short acting benzodiazepine (temazepam) may also be useful in improving sleep in high altitude. PMID:11898114

  13. High Altitude Cooking and Food Safety

    MedlinePlus

    ... Where to Place the Food Thermometer Recommended Internal Temperatures Is egg cookery affected at high altitudes? Is ... atmospheric pressure — affects both the time and the temperature of most everything that's cooked. Where the altitude ...

  14. Altitude, Acute Mountain Sickness and Headache

    MedlinePlus

    ... Mountain Sickness, and Headache Print Email Altitude, Acute Mountain Sickness, and Headache ACHE Newsletter Sign up for ... entering your e-mail address below. Altitude, Acute Mountain Sickness, and Headache David W. Dodick, MD, FAHS, ...

  15. High Altitude Ozone Research Balloon

    NASA Technical Reports Server (NTRS)

    Cauthen, Timothy A.; Daniel, Leslie A.; Herrick, Sally C.; Rock, Stacey G.; Varias, Michael A.

    1990-01-01

    In order to create a mission model of the high altitude ozone research balloon (HAORB) several options for flight preparation, altitude control, flight termination, and payload recovery were considered. After the optimal launch date and location for two separate HAORB flights were calculated, a method for reducing the heat transfer from solar and infrared radiation was designed and analytically tested. This provided the most important advantage of the HAORB over conventional balloons, i.e., its improved flight duration. Comparisons of different parachute configurations were made, and a design best suited for the HAORB's needs was determined to provide for payload recovery after flight termination. In an effort to avoid possible payload damage, a landing system was also developed.

  16. Evolution of the Proposed International Tropical Reference Atmosphere up to 2000 km

    NASA Astrophysics Data System (ADS)

    Ananthasayanam, M.

    There is a compelling need in many aerospace, remote sensing, and other applications to propose a global reference atmosphere encompassing the whole of the tropics, due to the following reasons among others. The tropics cover a large area and the atmospheric conditions there are quite different from those in the midlatitudes represented by the International Standard Atmosphere. Though the dictionary definition of the tropics is between 230 28' N and 230 28' S, there can be no sharp dividing line between the tropics and extra tropics, and dynamical considerations suggest 30 0 N and 300 S as more appropriate approximate boundaries. (During summer tropical conditions prevail up to about 350 N). The early work of Ramanathan in 1929 pointed out that a break in the temperature distribution occurs around 16 km at low latitudes, whereas it occurs at much lower altitudes (around 11 km) in the temperate zone. He also showed that the coldest air over the earth (temperature about 1850 K) is in the form of a flat ring at a height of some 17 km over the equator; thus while mean temperatures are higher at sea level in the tropics, they are lower at altitudes around 15 km. Pisharoty suggested in 1959 two standard atmospheres one for the Asiatic tropics and another called Universal up to 20 km. The slight differences between these two turned out to be not valid from later measurements. Based on the presently available data showing weak longitudinal variations, it indeed turns out to be possible to provide an International Tropical Reference Atmosphere (ITRA) representative of the whole of the tropical region in both the northern and southern hemispheres (Ananthasayanam and Narasimha 1990). This proposal is also consistent with the mean monthly reference atmospheres for the northern hemisphere by Cole and Kantor (1978) and for the southern hemisphere by Koshelkov (1985) and also the Nimbus satellite data of Barnett and Corney (1985) from sea level up to 80 km. For ITRA, either the

  17. Altitude characteristics of selected air quality analyzers

    NASA Technical Reports Server (NTRS)

    White, J. H.; Strong, R.; Tommerdahl, J. B.

    1979-01-01

    The effects of altitude (pressure) on the operation and sensitivity of various air quality analyzers frequently flown on aircraft were analyzed. Two ozone analyzers were studied at altitudes from 600 to 7500 m and a nitrogen oxides chemiluminescence detector and a sulfur dioxide flame photometric detector were studied at altitudes from 600 to 3000 m. Calibration curves for altitude corrections to the sensitivity of the instruments are presented along with discussion of observed instrument behavior.

  18. Hybrid fine scale climatology and microphysics of in-cloud icing: From 32 km reanalysis to 5 km mesoscale modeling

    NASA Astrophysics Data System (ADS)

    Lamraoui, Fayçal; Benoit, Robert; Perron, Jean; Fortin, Guy; Masson, Christian

    2015-03-01

    In-cloud icing can impose safety concerns and economic challenges for various industries. Icing climate representations proved beneficial for optimal designs and careful planning. The current study investigates in-cloud icing, its related cloud microphysics and introduces a 15-year time period climatology of icing events. The model was initially driven by reanalysis data from North American Regional Reanalysis and downscaled through a two-level nesting of 10 km and 5 km, using a limited-area version of the Global Environment Multiscale Model of the Canadian Meteorological Center. In addition, a hybrid approach is used to reduce time consuming calculations. The simulation realized exclusively on significant icing days, was combined with non-significant icing days as represented by data from NARR. A proof of concept is presented here for a 1000 km area around Gaspé during January for those 15 years. An increase in the number and intensity of icing events has been identified during the last 15 years. From GEM-LAM simulations and within the atmospheric layer between 10 m and 200 m AGL, supercooled liquid water contents indicated a maximum of 0.4 g m- 3, and 50% of the values are less than 0.05 g m- 3. All values of median volume diameters (MVD) are approximately capped by 70 μm and the typical values are around 15 μm. Supercooled Large Droplets represent approximately 5%. The vertical profile of icing climatology demonstrates a steady duration of icing events until the level of 60 m. The altitudes of 60 m and 100 m indicate substantial icing intensification toward higher elevations. GEM-LAM demonstrated a substantial improvement in the calculation of in-cloud icing, reducing significantly the challenge posed by complex terrains.

  19. Low altitude plume impingement handbook

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon D.

    1991-01-01

    Plume Impingement modeling is required whenever an object immersed in a rocket exhaust plume must survive or remain undamaged within specified limits, due to thermal and pressure environments induced by the plume. At high altitudes inviscid plume models, Monte Carlo techniques along with the Plume Impingement Program can be used to predict reasonably accurate environments since there are usually no strong flowfield/body interactions or atmospheric effects. However, at low altitudes there is plume-atmospheric mixing and potential large flowfield perturbations due to plume-structure interaction. If the impinged surface is large relative to the flowfield and the flowfield is supersonic, the shock near the surface can stand off the surface several exit radii. This results in an effective total pressure that is higher than that which exists in the free plume at the surface. Additionally, in two phase plumes, there can be strong particle-gas interaction in the flowfield immediately ahead of the surface. To date there have been three levels of sophistication that have been used for low altitude plume induced environment predictions. Level 1 calculations rely on empirical characterizations of the flowfield and relatively simple impingement modeling. An example of this technique is described by Piesik. A Level 2 approach consists of characterizing the viscous plume using the SPF/2 code or RAMP2/LAMP and using the Plume Impingement Program to predict the environments. A Level 3 analysis would consist of using a Navier-Stokes code such as the FDNS code to model the flowfield and structure during a single calculation. To date, Level 1 and Level 2 type analyses have been primarily used to perform environment calculations. The recent advances in CFD modeling and computer resources allow Level 2 type analysis to be used for final design studies. Following some background on low altitude impingement, Level 1, 2, and 3 type analysis will be described.

  20. Global dust altitude climatology based on CALIPSO observations

    NASA Astrophysics Data System (ADS)

    Tsamalis, C.; Chedin, A.; Peyridieu, S.

    2011-12-01

    Dust aerosols are important constituents of the earth climate as they influence many processes of the planet. They affect the earth's radiative budget via the direct, the indirect and the semi-direct effects, which cause the modification of the mesoscale dynamics at short time scales and the climate change at long time scales, they act as cloud condensation and ice nuclei and therefore have strong implications in the hydrological cycle, their deposition in the ocean supplies it with nutrients, which in turn affect the ocean biogeochemistry, they impact the atmospheric concentrations of trace gases, via heterogeneous reactions, they contribute to air pollution and they degrade the restitution of atmospheric or surface parameters from satellite instruments. An important parameter of the dust aerosols is their altitude as it defines their impact on the aforementioned processes. But this parameter is not easily measurable except from lidars and more recently from passive infrared remote sensors. Nevertheless, ground based lidars are situated at specific locations and cannot offer a global view of the dust altitude, while dedicated campaigns using lidars and in situ measurements are restricted in time. On the other hand, the passive instruments AIRS or IASI offer a good spatial coverage, but their new established results need further validation. Launched in April 2006, the satellite CALIPSO, with the on board two wavelength depolarisation lidar CALIOP, permits an accurate determination of the aerosols altitude. Moreover, the depolarisation at 532 nm allows the discrimination between dust and other types of aerosols, which generally do not depolarize light. Nevertheless, the beam diameter of 70 m at the earth's surface makes it difficult to interpret statistically the results, as the 16 days repetition cycle of CALIPSO does not cover all the earth. In order to overcome this difficulty, the L2 5 km aerosol layer product (version 3.01) is used here to calculate the

  1. How simulated fluence of photons from terrestrial gamma ray flashes at aircraft and balloon altitudes depends on initial parameters

    NASA Astrophysics Data System (ADS)

    Hansen, R. S.; ØStgaard, N.; Gjesteland, T.; Carlson, B.

    2013-05-01

    Up to a few years ago, terrestrial gamma ray flashes (TGFs) were only observed by spaceborne instruments. The aircraft campaign ADELE was able to observe one TGF, and more attempts on aircraft observations are planned. There is also a planned campaign with stratospheric balloons, COBRAT. In this context an important question that arises is what count rates we can expect and how these estimates are affected by the initial properties of the TGFs. Based on simulations of photon propagation in air we find the photon fluence at different observation points at aircraft and balloon altitudes. The observed fluence is highly affected by the initial parameters of the simulated TGFs. One of the most important parameters is the number of initial photons in a TGF. In this paper, we give a semi-analytical approach to find the initial number of photons with an order of magnitude accuracy. The resulting number varies over several orders of magnitude, depending mostly on the production altitude of the TGF. The initial production altitude is also one of the main parameters in the simulations. Given the same number of initial photons, the fluence at aircraft and balloon altitude from a TGF produced at 10 km altitude is 2-3 orders of magnitude smaller then a TGF originating from 20 km altitude. Other important parameters are altitude distribution, angular distribution and amount of feedback. The differences in altitude, altitude distribution and amount of feedback are especially important for the fluence of photons observed at altitudes less than 20 km, and for instruments with a low-energy threshold larger than 100 keV. We find that the maximum radius of observation in 14 km for a TGF with the intensity of an average RHESSI TGF is smaller than the results reported by Smith et al. (2011), and our results support the conclusion in Gjesteland et al. (2012) and Østgaard et al. (2012) that TGFs probably are a more common phenomenon than previously reported.

  2. Measurements of the ambient photoelectron spectrum from Atmosphere Explorer. I - AE-E measurements below 300 km during solar minimum conditions. II - AE-E measurements from 300 to 1000 km during solar minimum conditions

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Doering, J. P.; Potemra, T. A.; Brace, L. H.

    1980-01-01

    A study is presented of the ambient photoelectron spectrum below 300 km which includes 500 AE-E orbits observed from Dec. 13, 1975 to Feb. 24, 1976. The daytime photoelectron spectrum from 1 to 100 eV was illustrated by several spectra; high resolution 10-32 eV spectra show the widths of the photoelectron lines and the variation of the linewidth and intensity with altitude. The photoelectron flux below 300 km is constant over a period of several months; the photoelectron lines between 20 and 30 eV are very sharp when the total plasma density is low, but broaden at high altitudes as the plasma density builds up during the day. The photo-electron flux above 300 km had an intensity and energy spectrum characteristic of the 250-300 km region only in the presence of low plasma density at the satellite altitude. The flux at high altitudes was extremely variable 3 h after sunrise as a result of attenuation and energy loss to thermal plasma along the path of escaping electrons.

  3. Origins of the 520-km discontinuity

    NASA Astrophysics Data System (ADS)

    Vinnik, Lev

    2016-04-01

    The 520-km discontinuity is often explained by the phase transition from wadsleyite to ringwoodite, although the theoretical impedance of this transition is so small that the related converted and reflected seismic phases could hardly be seen in the seismograms. At the same time there are numerous reports on observations of a large discontinuity at this depth, especially in the data on SS precursors and P-wave wide-angle reflections. Revenaugh and Jordan (1991) argued that this discontinuity is related to the garnet/post-garnet transformation. Gu et al. (1998) preferred very deep continental roots extending into the transition zone. Deuss and Woodhouse proposed splitting of the 520-km discontinuity into two discontinuities, whilst Bock (1994) denied evidence of the 520-km discontinuity in the SS precursors. Our approach to this problem is based on the analysis of S and P receiver functions. Most of our data are related to hot-spots in and around the Atlantic where the appropriate converted phases are often comparable in amplitude with P410s and S410p. Both S and P receiver functions provide strong evidence of a low S velocity in a depth range from 450 km to 510 km at some locations. The 520-km discontinuity appears to be the base of this low-velocity layer. Our observations of the low S velocity in the upper transition zone are very consistent with the indications of a drop in the solidus temperature of carbonated peridotite in the same pressure range (Keshav et al. 2011), and this phenomenon provides a viable alternative to the other explanations of the 520-km discontinuity.

  4. Low-altitude trapped protons at the geomagnetic equator

    NASA Technical Reports Server (NTRS)

    Guzik, T. G.; Miah, M. A.; Mitchell, J. M.; Wefel, J. P.

    1989-01-01

    Geomagnetically trapped protons in the 0.6- to 9-MeV energy range were measured at latitudes near the geomagnetic equator by the Phoenix 1 experiment on board the S81-1 mission from May to November 1982. The protons show a distribution in latitude along the line of minimum magnetic field strength with a full width at half maximum of about 10 deg but with no appreciable longitudinal variation. Between 170 and 290 Km the peak proton flux shows a fifth-power altitude dependence, in contrast to previous measurements at higher altitudes, possibly demonstrating source attenuation. The efficiency of the telescope is calculated as a function of particle pitch angle and used to investigate the time dependence (1969-1982) of the intensity.

  5. The physical nature of interplanetary dust as inferred by particles collected at 35 km. [morphology of micrometeorites and ablation products

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.; Hodge, P. W.; Bucher, W.

    1973-01-01

    Particles were collected at an altitude of 35 km by two flights of a volume sampling micrometeorite collector. The collection scheme is very sensitive and is capable of collecting a significant number of particles. Many of the particles collected have chemical compositions similar to solar or to iron meteorites. Morphology of collected particles indicates that both true micrometeorites and ablation products were collected.

  6. Electric field dependence of nonlinearity parameters and third order elastic constants of 0.70Pb(Mg1∕3Nb2∕3)O3–0.30PbTiO3 single crystal

    PubMed Central

    Liu, Xiaozhou; Zhang, Shujun; Luo, Jun; Shrout, Thomas R.; Cao, Wenwu

    2010-01-01

    Through second harmonic measurements, the ultrasonic nonlinearity parameters of [001]c and [111]c polarized 0.70Pb(Mg1∕3Nb2∕3)O3–0.30PbTiO3(PMN–0.3PT) single crystals have been measured as a function of bias electric field. It was found that the nonlinearity parameter increases almost linearly with field at low field but shows a drastic increase near the coercive field. The [111]c polarized single domain crystal has much smaller nonlinearity parameter than that of the [001]c polarized multidomain crystal. Based on effective symmetries of these crystals, we were able to derive the field dependence of several third order elastic constants, which are important parameters for high field applications. PMID:20198132

  7. Extrinsic mechanism for giant dielectric response in Ba{sub 0.70}Sr{sub 0.30}(Fe{sub 0.5}Nb{sub 0.5})O{sub 3} ceramic

    SciTech Connect

    Patel, Piyush Kumar Yadav, K. L. Durgesh

    2014-04-24

    To obtain the high dielectric constant, the effect of sintering process on the electrical properties of Ba{sub 0.70}Sr{sub 0.30}(Fe{sub 0.5}Nb{sub 0.5})O{sub 3} ceramics were investigated. X-ray diffraction pattern of the samples at room temperature shows a monoclinic structure. Microstructure analysis shows well-grown and dense microstructure in all the samples. We found giant dielectric constant (∼3.59 × 10{sup 5}) with low dielectric loss (∼0.49) at room temperature for 2 hr sintered sample at 1250 °C. The extrinsic phenomena like interfacial polarization due to space charge accumulation at grain boundaries are discussed.

  8. Electromechanical coupling coefficient of 0.70Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 single crystal resonator with arbitrary aspect ratio

    NASA Astrophysics Data System (ADS)

    Huang, Naixing; Zhang, Rui; Cao, Wenwu

    2007-09-01

    Based on mode coupling theory and the fundamental energy ratio definition of the electromechanical coupling coefficient, a unified formula has been derived to calculate the effective electromechanical coupling coefficient keff of 0.70Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 (PMN-30%PT) ferroelectric single crystal cylindrical resonator with arbitrary aspect ratio. The keff dependence on resonator aspect ratio of PMN-30%PT crystal shows similar characteristics as that of the conventional piezoelectric ceramics Pb(ZrxTi1-x)O3 (PZT). However, compared to PZT-5 ceramics, PMN-30%PT single crystal has a smaller aspect ratio where the keff changes dramatically and there is also a stronger coupling between thickness and radial modes causing much larger mode splitting.

  9. Aero-thermo-dynamic analysis of the Spaceliner-7.1 vehicle in high altitude flight

    NASA Astrophysics Data System (ADS)

    Zuppardi, Gennaro; Morsa, Luigi; Sippel, Martin; Schwanekamp, Tobias

    2014-12-01

    SpaceLiner, designed by DLR, is a visionary, extremely fast passenger transportation concept. It consists of two stages: a winged booster, a vehicle. After separation of the two stages, the booster makes a controlled re-entry and returns to the launch site. According to the current project, version 7-1 of SpaceLiner (SpaceLiner-7.1), the vehicle should be brought at an altitude of 75 km and then released, undertaking the descent path. In the perspective that the vehicle of SpaceLiner-7.1 could be brought to altitudes higher than 75 km, e.g. 100 km or above and also for a speculative purpose, in this paper the aerodynamic parameters of the SpaceLiner-7.1 vehicle are calculated in the whole transition regime, from continuum low density to free molecular flows. Computer simulations have been carried out by three codes: two DSMC codes, DS3V in the altitude interval 100-250 km for the evaluation of the global aerodynamic coefficients and DS2V at the altitude of 60 km for the evaluation of the heat flux and pressure distributions along the vehicle nose, and the DLR HOTSOSE code for the evaluation of the global aerodynamic coefficients in continuum, hypersonic flow at the altitude of 44.6 km. The effectiveness of the flaps with deflection angle of -35 deg. was evaluated in the above mentioned altitude interval. The vehicle showed longitudinal stability in the whole altitude interval even with no flap. The global bridging formulae verified to be proper for the evaluation of the aerodynamic coefficients in the altitude interval 80-100 km where the computations cannot be fulfilled either by CFD, because of the failure of the classical equations computing the transport coefficients, or by DSMC because of the requirement of very high computer resources both in terms of the core storage (a high number of simulated molecules is needed) and to the very long processing time.

  10. Empirical modeling the topside ion density around 600 km based on ROCSAT-1 satellite observations

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Huijun Le, lake709.; Chen, Yiding; Wan, Weixing; Huang, He

    ROCSAT-1 satellite was operated in circular orbit at an altitude of 600 km with an inclination of 35 degree during the period from 1999 to 2004. Ionospheric Plasma and Electrodynamics Instrument (IPEI) on board the satellite includes an Ion Trap (IT), which was mainly used to measure the total ion concentration. An empirical model of ion density was constructed by using the data obtained from IT with the temporal resolution of 1s in the range of solar proxy P10.7 from 100 to 240sfu under relatively quiet geomagnetic conditions (Ap≤22). The model describes the ion density variations as functions of local time, day of year, solar activity level, longitude, and height within the altitude range of 560-660 km. An outstanding merit of the model is that it can take the altitude variation of the electron density into account. The model reproduces the ROCSAT-1 ion density accurately with 0.141 root mean square error (RMSE), performing better than International Reference Ionosphere 2007 (IRI2007) with 5.986 RMSE. Furthermore, we use it to predict ion density observed within the similar ROCSAT-1 altitudes, such as the Japanese HINOTORI satellite, to further validate our model. The comparisons show the relative error of 94.5% data located in ±5% and more than 99% data located in ±15%. The model provides a way to describe temporal and spatial variation of topside ion density. It can capture the variations of ion density under given conditions (including height), without doing altitude normalization before modeling. With this model, it is more conducive to understand the climatological features of topside ion density. Acknowledgements: Ionosonde data are provided from BNOSE of IGGCAS. This research was supported by the projects of Chinese Academy of Sciences (KZZD-EW-01-3), National Key Basic Research Program of China (2012CB825604), and National Natural Science Foundation of China (41231065, 41174137).

  11. Venusian atmospheric equilibrium chemistry at the Pioneer Venus anomalous event altitude

    NASA Technical Reports Server (NTRS)

    Craig, Roger A.

    1994-01-01

    No convincing explanation for the anomalous behavior of the Atmospheric Structure Experiment temperature sensors at approximately 13 km altitude has been found. It occurred on all of the widely-spaced probes, in a similar fashion. A preliminary effort has been made to determine atmospheric chemical species which might be present at 13 km. The purpose of this effort is to initiate suggestions of possible chemical interactions and to explore the effects of the presence of possible metal reactants including condensation. Equilibrium fractions of chemical species were calculated at a variety of conditions. Baseline calculations were made for the altitudes near 13 km. For comparison calculations were also made at 13 km but with the introduction of plausible metal atoms.

  12. High Altitude Observatory YBJ and ARGO Project

    NASA Astrophysics Data System (ADS)

    Tan, Y.; ARGO Collaboration

    A 5800 m2 RPC (Resistive Plate Chamber) full coverage air shower array is under construction in the YangBaJing Cosmic Ray Observatory, Tibet of China, by the ChinaItaly ARGO Collaboration. YBJ is a large flat grassland with an area 10 × 70 km2 at 4300m altitude, about 90 north west from Lhasa. Its nearby power station, asphalt road to Lhasa, passing railway (will be constructed during the coming 5 years), optical fiber link to the INTERNET, rare snow and other favourable weather conditions are well suitable for setting an Astrophysical Observatory here. The installation of a large area carpet-like detector in this peculiar site will allow one to perform an all-sky and high duty cycle study of high energy gamma rays from 100GeV to 50 TeV as well as accurate measurements on UHE cosmic rays. To insure the stable and uniform working condition of RPCs, a 104 M2 carpet hall was constructed, the RPC installation have be started in it since last November. The natural distribution and daily variation of temperature in the hall, the data concerning the performances of the installed RPCs, have been measured, the results are presented. ce

  13. Measurement of the Space Radiation Dose for the Flight Aircrew at High-Altitude

    NASA Astrophysics Data System (ADS)

    Lee, Jaewon; Park, Inchun; Kim, Junsik; Lee, Jaejin; Hwang, Junga; Kim, Young-chul

    2014-03-01

    This paper describes an experimental approach to evaluate the effective doses of space radiations at high-altitude by combining the measured data from the Liulin-6K spectrometer loaded onto the air-borne RC-800 cockpit and the calculated data from CARI-6M code developed by FAA. In this paper, 15 exposed dose experiments for the flight missions at a highaltitude above 10 km and 3 experiments at a normal altitude below 4 km were executed over the Korean Peninsula in 2012. The results from the high-altitude flight measurements show a dramatic change in the exposed doses as the altitude increases. The effective dose levels (an average of 15.27 mSv) of aircrew at the high-altitude are an order of magnitude larger than those (an average of 0.30 mSv) of the normal altitude flight. The comparison was made between the measure dose levels and the calculated dose levels and those were similar each other. It indicates that the annual dose levels of the aircrew boarding RC- 800 could be above 1 mSv. These results suggest that a proper procedure to manage the exposed dose of aircrew is required for ROK Air Force.

  14. In-situ Measurements of the Cosmic Radiation on the Aircraft Altitude over Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Lee, J.; Park, I.; Lee, J.; Oh, S.; Kim, Y. C.

    2014-12-01

    This study presents the comparison between the measured and modeled cosmic radiation on aircraft altitude over Korean peninsula. We performed the measurement with a radiation spectrometer, Liulin-6K on board a Republic of Korea (ROK) Air Force aircraft accomplishing the high-altitude (above 9 km) flight over Korea, and the modeled data was obtained from the operational modeling program, CARI-6M developed by FAA. A number of measurements for the flight mission at high-altitude have been executed to evaluate the exposed dose of cosmic radiation. Both the measured and the calculated data show that the exposed radiation dose enhances dramatically as the altitude increases. The results reveal that the exposed dose rate of aircrews at high-altitude flight is 2-3 orders of magnitude (1-2 mSv/hour) higher than the exposure rate at sea level. It is inferred that the annual total dose of radiation for the aircrews at high-altitude could be higher than the annually public limit (1 mSv) recommended by ICRP. Finally, since neutrons are the dominant components reflecting among total cosmic radiation above 9 km, we try to analyze the relationship between the neutron count from the neutron monitor on the ground and the effective dose from the on board spectrometer. Based on these results, it is suggested that the annual criterion and the proper managing procedure of exposed dose for the flight aircrews of ROK Air Force should be regulated.

  15. On the sources of energization of molecular ions at ionospheric altitudes

    SciTech Connect

    Peterson, W.K.; Abe, T.; Fukunishi, H.; Greffen, M.J.; Hayakawa, H.; Kasahara, Y.; Kimura, I.; Matsuoka, A.; Mukai, T.; Nagatsuma, T. ||||

    1994-12-01

    During geomagnetically active times, the suprathermal mass spectrometer on the Akebono satellite frequency observes upflowing molecular ions (NO(+), N2(+), O2(+)) in the 2-3 Earth radii geocentric distance regions in the auroral zone. Molecular ions originating at ionospheric altitudes must acquire an energy of the order of 10 eV in order to overcome gravitation and reach altitudes greater than 2 R(sub E). This energy must be acquired in a time short compared with the local dissociative recombination lifetime of the ions; the latter is of the order of minutes in the F region ionosphere (300-500 km altitude). Upflowing molecular ions thus provide a test particle probe into the mechanisms responsible for heavy ion escape from the ionosphere. In this paper we analyze the extensive complement of plasma, field, and wave data obtained on the Akebono satellite in a number of upflowing molecular ion events observed at high altitudes (5000-10,000 km). We use these data to investigate the source of energization of the molecular ions at ionospheric altitudes. We show that Joule heating and ion resonance heating do not transfer enough energy or do not transfer it fast enough to account for the observed fluxes of upflowing molecular ions. We found that the observed field-aligned currents were too weak to support large-scale field-aligned current instabilities at ionospheric altitudes.

  16. Airborne reconnaissance in the civilian sector - Agricultural monitoring from high-altitude powered platforms

    NASA Technical Reports Server (NTRS)

    Youngblood, J. W.; Jackson, R. D.

    1983-01-01

    Design concepts and mission applications for unmanned high-altitude powered platforms (HAPPs) are discussed. A chemically powered HAPP (operating altitude 18-21 km, wingspan 26 m, payload 91 kg, endurance 2-3 days) would use current turboprop technology. A microwave-powered HAPP (operating altitude around 21 km, wingspan 57.9 m, payload 500 kg, endurance weeks or months) would circle within or perform boost-glide maneuvers around a microwave beam of density 1.1 kw/sq m. Of two solar-powered-HAPP designs presented, the more promising uses five vertical solar-panel-bearing fins, two of which can be made horizontal at night, (wingspan 57.8/98.3 m, payload 113 kg, endurance weeks or months). The operating altitude depends on the latitude and season: this HAPP design is shown to be capable of year-round 20-km-altitude flights over the San Joaquin Valley in California, where an agricultural-monitoring mission using Landsat-like remote sensors is proposed. Other applications may be better served by the characteristics of the other HAPPs. The primary advantage of HAPPs over satellites is found to be their ability to provide rapidly available high-resolution continuous or repetitive coverage of specific areas at relatively low cost.

  17. Ozone over McMurdo Station, Antarctica, austral spring 1986 - Altitude profiles for the middle and upper stratosphere

    NASA Technical Reports Server (NTRS)

    Connor, Brian J.; Barrett, J. W.; Parrish, A.; Solomon, P. M.; De Zafra, R. L.

    1987-01-01

    In the austral spring of 1986, a program of measurements of the ozone altitude profile (for the z values between 25 and 55 km), relevant to an understanding of the ozone hole, was conducted at McMurdo Station, Antarctica. The measurements were performed using ground-based millimeter-wave spectrometry. It was found that the ozone mixing ratio peaked at altitudes ranging from 28 to 34 km, with peak values between 5 and 9 ppm by volume. During the period between September 12 and October 29, the ozone mixing ratio decreased, with great variability, by about 15 percent at 25 km, with no significant decrease at higher altitudes. The observation of the depletion occurring only below 25 km is consistent with ozone-sonde observations during previous years.

  18. Rummy high-altitude pressure measurements and analysis

    SciTech Connect

    Banister, J.R.; Hereford, W.V.

    1982-01-01

    Five pressure-measurement canisters equipped with parachutes were deployed from an A7C aircraft on the Rummy test. Their altitudes above Yucca flat were over 8.5 km when the pressure pulse arrived. Three successful measurements were obtained. These time histories showed a more complicated behavior than histories obtained on Pahute Mesa tests because the Rummy event developed double spall closures over a large area. Excellent agreement was obtained between the observed pressure histories and those calculated from surface acceleration measurements. The Yucca Flat terrain was so level that pressure pulses were not appreciably changed or weakened by elevation differences.

  19. SAGE II aerosol validation - Selected altitude measurements, including particle micromeasurements

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Russell, Philip B.; Pueschel, Rudolf F.; Snetsinger, Kenneth G.; Ferry, Guy V.; Livingston, John M.; Rosen, James N.; Osborn, Mary T.; Kritz, Mark A.

    1989-01-01

    The validity of particulate extinction coefficients derived from limb path solar radiance measurements obtained during the Stratospheric Aerosol and Gas Experiment (SAGE) II is tested. The SAGE II measurements are compared with correlative aerosol measurements taken during January 1985, August 1985, and July 1986 with impactors, laser spectrometers, and filter samplers on a U-2 aircraft, an upward pointing lidar on a P-3 aircraft, and balloon-borne optical particle counters. The data for July 29, 1986 are discussed in detail. The aerosol measurements taken on this day at an altitude of 20.5 km produce particulate extinction values which validate the SAGE II values for similar wavelengths.

  20. Altitude Stress During Participation of Medical Congress.

    PubMed

    Kim, Soon Bae; Kim, Jong Sung; Kim, Sang Jun; Cho, Su Hee; Suh, Dae Chul

    2016-09-01

    Medical congresses often held in highlands. We reviewed several medical issues associated with altitude stress especially while physicians have participated medical congress held in high altitude. Altitude stress, also known as an acute mountain sickness (AMS), is caused by acute exposure to low oxygen level at high altitude which is defined as elevations at or above 1,200 m and AMS commonly occurs above 2,500 m. Altitude stress with various symptoms including insomnia can also be experienced in airplane. AMS and drunken state share many common features in symptoms, neurologic manifestations and even show multiple microbleeds in corpus callosum and white matter on MRI. Children are more susceptible to altitude stress than adults. Gradual ascent is the best method for the prevention of altitude stress. Adequate nutrition (mainly carbohydrates) and hydration are recommended. Consumption of alcohol can exacerbate the altitude-induced impairments in judgment and the visual senses and promote psychomotor dysfunction. For prevention or treatment of altitude stress, acetazolamide, phosphodiesterase inhibitors, dexamethasone and erythropoietin are helpful. Altitude stress can be experienced relatively often during participation of medical congress. It is necessary to remind the harmful effect of AMS because it can cause serious permanent organ damage even though the symptoms are negligible in most cases. PMID:27621942

  1. Altitude Stress During Participation of Medical Congress

    PubMed Central

    Kim, Soon Bae; Kim, Jong Sung; Kim, Sang Jun; Cho, Su Hee

    2016-01-01

    Medical congresses often held in highlands. We reviewed several medical issues associated with altitude stress especially while physicians have participated medical congress held in high altitude. Altitude stress, also known as an acute mountain sickness (AMS), is caused by acute exposure to low oxygen level at high altitude which is defined as elevations at or above 1,200 m and AMS commonly occurs above 2,500 m. Altitude stress with various symptoms including insomnia can also be experienced in airplane. AMS and drunken state share many common features in symptoms, neurologic manifestations and even show multiple microbleeds in corpus callosum and white matter on MRI. Children are more susceptible to altitude stress than adults. Gradual ascent is the best method for the prevention of altitude stress. Adequate nutrition (mainly carbohydrates) and hydration are recommended. Consumption of alcohol can exacerbate the altitude-induced impairments in judgment and the visual senses and promote psychomotor dysfunction. For prevention or treatment of altitude stress, acetazolamide, phosphodiesterase inhibitors, dexamethasone and erythropoietin are helpful. Altitude stress can be experienced relatively often during participation of medical congress. It is necessary to remind the harmful effect of AMS because it can cause serious permanent organ damage even though the symptoms are negligible in most cases. PMID:27621942

  2. ALT space shuttle barometric altimeter altitude analysis

    NASA Technical Reports Server (NTRS)

    Killen, R.

    1978-01-01

    The accuracy was analyzed of the barometric altimeters onboard the space shuttle orbiter. Altitude estimates from the air data systems including the operational instrumentation and the developmental flight instrumentation were obtained for each of the approach and landing test flights. By comparing the barometric altitude estimates to altitudes derived from radar tracking data filtered through a Kalman filter and fully corrected for atmospheric refraction, the errors in the barometric altitudes were shown to be 4 to 5 percent of the Kalman altitudes. By comparing the altitude determined from the true atmosphere derived from weather balloon data to the altitude determined from the U.S. Standard Atmosphere of 1962, it was determined that the assumption of the Standard Atmosphere equations contributes roughly 75 percent of the total error in the baro estimates. After correcting the barometric altitude estimates using an average summer model atmosphere computed for the average latitude of the space shuttle landing sites, the residual error in the altitude estimates was reduced to less than 373 feet. This corresponds to an error of less than 1.5 percent for altitudes above 4000 feet for all flights.

  3. Rocket Engine Altitude Simulation Technologies

    NASA Technical Reports Server (NTRS)

    Woods, Jody L.; Lansaw, John

    2010-01-01

    John C. Stennis Space Center is embarking on a very ambitious era in its rocket engine propulsion test history. The first new large rocket engine test stand to be built at Stennis Space Center in over 40 years is under construction. The new A3 Test Stand is designed to test very large (294,000 Ibf thrust) cryogenic propellant rocket engines at a simulated altitude of 100,000 feet. A3 Test Stand will have an engine testing chamber where the engine will be fired after the air in the chamber has been evacuated to a pressure at the simulated altitude of less than 0.16 PSIA. This will result in a very unique environment with extremely low pressures inside a very large chamber and ambient pressures outside this chamber. The test chamber is evacuated of air using a 2-stage diffuser / ejector system powered by 5000 lb/sec of steam produced by 27 chemical steam generators. This large amount of power and flow during an engine test will result in a significant acoustic and vibrational environment in and around A3 Test Stand.

  4. High-altitude reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Yazdi, Renee Anna

    1991-01-01

    At the equator the ozone layer ranges from 65,000 to 130,000+ ft, which is beyond the capabilities of the ER-2, NASA's current high-altitude reconnaissance aircraft. This project is geared to designing an aircraft that can study the ozone layer. The aircraft must be able to satisfy four mission profiles. The first is a polar mission that ranges from Chile to the South Pole and back to Chile, a total range of 6000 n.m. at 100,000 ft with a 2500-lb payload. The second mission is also a polar mission with a decreased altitude and an increased payload. For the third mission, the aircraft will take off at NASA Ames, cruise at 100,000 ft, and land in Chile. The final mission requires the aircraft to make an excursion to 120,000 ft. All four missions require that a subsonic Mach number be maintained because of constraints imposed by the air sampling equipment. Three aircraft configurations were determined to be the most suitable for meeting the requirements. The performance of each is analyzed to investigate the feasibility of the mission requirements.

  5. A comparison of measured and calculated upwelling radiance over water as a function of sensor altitude

    NASA Technical Reports Server (NTRS)

    Coney, T. A.; Salzman, J. A.

    1979-01-01

    The present paper compares remote sensing data measured over water at altitudes ranging from 30 m to 15.2 km to data calculated for corresponding altitudes using surface measurements and an atmospheric radiative transfer model. The data were acquired on June 22, 1978 in Lake Erie and it was found that suspended solids and chlorophyll concentrations were 0.59 + or - 0.02 mg/liter and 2.42 + or - 0.03 micro gram/liter respectively throughout the duration of the experiment. Calculated and measured nadir radiances for altitudes of 152 m and 12.5 km agree to within 16% and 14% respectively. It is noted that the model offered a poor simulation of the variation in measured radiance with look angle. Finally, it is concluded that an accurate assessment of the source of error will require the inclusion in the analysis of the contributions made by the sea state and specular sky reflectance

  6. Statistical retrieval of precipitation cell-top altitude using passive 118-GHz observations

    NASA Technical Reports Server (NTRS)

    Gasiewski, A. J.; Staelin, D. H.

    1989-01-01

    A nonlinear statistical-retrieval operator for precipitation cell-top altitude using high-spatial-resolution passive 118-GHz O2 brightness spectra is demonstrated. The retrieval operator consists of a Karhunen-Loeve transformation followed by a rank reduction, a linearization, and a linear minimum mean-square-error estimator. Information from the 118-GHz data on the ambient atmospheric-temperature profile and the precipitation cell size is also incorporated into the linear stage of the retrieval operator. The rms retrieval error is 1.5 km for cumulus-stage cells with tops ranging from 1.5 to 16 km. The sensitivity of nadiral 118-GHz spectra to the cell-top altitude is predominantly due to the scattering and absorption of radiation originating from low, warm atmospheric levels by colder liquid and frozen precipitation This effect causes cold perturbations in the brightness spectrum, which typically become stronger with increasing cell-top altitude.

  7. Relationship of High-Altitude Photoelectron Fluxes and Solar Zenith Angle

    NASA Astrophysics Data System (ADS)

    Xu, Shaosui; Liemohn, Michael; Bougher, Stephen W.; Mitchell, David L.

    2015-04-01

    Numerous studies have shown the ionosphere quantities' dependence on solar zenith angle (SZA), following Chapman theory. One would assume that photoelectron fluxes are also SZA dependent. However, high-altitude (~400 km) electron observations from magnetometer/electron reflectometer (MAG/ER) on board Mars Global Surveyor (MGS) show that the high energy (>100 eV) photoelectron fluxes are better correlated with the solar irradiance solely, without SZA factored in, while the low energy is somehow insensitive to SZA. Such counterintuitive results are due to the existence of a photoelectron exobase, only above which the photoelectrons are able to transport and escape to high altitudes. Through our SuperThermal Electron Transport (STET) model, we have determined that this exobase is around an altitude of 150-160 km, above which the production rate is rather independent of SZA.

  8. Circulation of the atmosphere from the surface to 100 km. [for Venus

    NASA Technical Reports Server (NTRS)

    Kerzhanovich, V. V.; Limaye, S. S.

    1985-01-01

    A reference model of the atmospheric circulation on Venus based on available observations is presented. The reference atmosphere has the following main features: (1) the entire atmosphere below 85 km moves predominantly from east to west in the planet's reference system (in the same direction as the rotation of the solid planet itself) with the possible exception of the lowest 10 km where velocities are low, (2) a jet is present near the cloud-top level at 45 deg latitude in both hemispheres, with a magnitude of approximately 100 m/s, (3) a weak meridional (north-south component) flow directed towards either pole is superimposed on the zonal (east-west motion at cloud-top level (about 68 km) altitudes, and, (4) eddies or wave motions are present in the atmosphere, with amplitudes of less than 16/ms in the upper atmosphere.

  9. Gravity wave and tidal structures between 60 and 140 km inferred from space shuttle reentry data

    NASA Technical Reports Server (NTRS)

    Fritts, David C.; Wang, Ding-Yi; Blanchard, Robert C.

    1993-01-01

    This study presents an analysis of density measurements made using high-resolution accelerometers aboard several space shuttles at altitudes from 60 to 140 km during reentry into the earth's atmosphere. The observed density fluctuations are interpreted in terms of gravity waves and tides and provide evidence of the importance of such motions well into the thermosphere. Height profiles of fractional density variance reveal that wave amplitudes increase at a rate consistent with observations at lower levels up to about 90 km. The rate of amplitude growth decreases at greater heights, however, and appears to cease above about 110 km. Wave amplitudes are nevertheless large at these heights and suggest that gravity waves may play an important role in forcing of the lower thermosphere.

  10. Aerodynamic Loads on an External Store Adjacent to a 45 Degree Sweptback Wing at Mach Numbers from 0.70 to 1.96, Including an Evaluation of Techniques Used

    NASA Technical Reports Server (NTRS)

    Guy, Lawrence D; Hadaway, William M

    1955-01-01

    Aerodynamic forces and moments have been obtained in the Langley 9- by 12-inch blowdown tunnel on an external store and on a 45 degree swept-back wing-body combination measured separately at Mach numbers from 0.70 to 1.96. The wing was cantilevered and had an aspect ratio of 4.0; the store was independently sting-mounted and had a Douglas Aircraft Co. (DAC) store shape. The angle of attack range was from -3 degrees to 12 degrees and the Reynolds number (based on wing mean aerodynamic chord) varied from 1.2 x10(6) to 1.7 x 10(6). Wing-body transonic forces and moments have been compared with data of a geometrically similar full-scale model tested in the Langley 16-foot and 8-foot transonic tunnels in order to aid in the evaluation of transonic-tunnel interference. The principal effect of the store, for the position tested, was that of delaying the wing-fuselage pitch-up tendency to higher angles of attack at Mach numbers from 0.70 to 0.90 in a manner similar to that of a wing chord extension. The most critical loading condition on the store was that due to side force, not only because the loads were of large magnitude but also because they were in the direction of least structural strength of the supporting pylon. These side loads were greatest at high angles of attack in the supersonic speed range. Removal of the supporting pylon (or increasing the gap between the store and wing) reduced the values of the variation of side-force coefficientwith angle of attack by about 50 percent at all test Mach numbers, indicating that important reductions in store side force may be realized by proper design or location of the necessary supporting pylon. A change of the store skew angle (nose inboard) was found to relieve the excessive store side loads throughout the Mach number range. It was also determined that the relative position of the fuselage nose to the store can appreciably affect the store side forces at supersonic speeds.

  11. High-Altitude Laser Altimetry from the Global Hawk UAV for Regional Mapping of Surface Topography

    NASA Astrophysics Data System (ADS)

    Blair, J. B.; Rabine, D.; Wake, S.; Hofton, M. A.; Michell, S.

    2012-12-01

    NASA's Land, Vegetation, and Ice Sensor (LVIS) is a high-altitude, full-waveform, geodetic-imaging laser altimeter system of which a UAV-based version (LVIS-GH) is currently being tested. From 20 km above the surface in the Global Hawk UAV, LVIS-GH images surface topography and roughness (including forest height) across a 4 km wide swath using 15 m diameter footprints. In recent years, the LVIS has been flown at altitudes of up to 14 km over Greenland and Antarctica on flights up to 12 hours in duration, enabling the efficient and precise mapping of large areas from the air. The Global Hawk will extend this capability to up to 32 hours and altitudes approaching 20 km. In order to achieve decimeter level vertical precision and accuracy from high altitude, advanced parameter estimation techniques, based on those implemented in NASA's GEODYN software, are used to estimate the angular, spatial, and temporal biases required to accurately georeference the component lidar data sets. Data from specific in-air maneuvers are utilized in order to isolate the effects of different error sources and to break correlations between biases. Examples of high-altitude data and airborne/spaceborne sensor intercomparison and fusion will be shown. For example, the comparison of data from NASA's ICESat-1 mission with coincident LVIS data collected around 86S (the maximum extent of data collected during ICESat) to quantify inter-campaign biases in Icesat-1 elevation measurements and improve estimates of long -term elevation change rates of ice sheets will be shown. These results illustrate the utility of high-altitude wide swath imaging, particularly from platforms such as the Global-Hawk, for enhancing spacebased data sets.

  12. Km3Net Italy - Seafloor network

    NASA Astrophysics Data System (ADS)

    Papaleo, Riccardo

    2016-04-01

    The KM3NeT European project aims to construct a large volume underwater neutrino telescope in the depths of the Mediterranean Sea. INFN and KM3NeT collaboration, thanks to a dedicated funding of 21.000.000 € (PON 2007-2013), are committed to build and deploy the Phase 1 of the telescope, composed of a network of detection units: 8 towers, equipped with single photomultiplier optical modules, and 24 strings, equipped with multi-photomultipliers optical modules. All the towers and strings are connected to the main electro optical cable by means of a network of junction boxes and electro optical interlink cables. Each junction box is an active node able to provide all the necessary power to the detection units and to guarantee the data transmission between the detector and the on-shore control station. The KM3NeT Italia project foresees the realization and the installation of the first part of the deep sea network, composed of three junction boxes, one for the towers and two for the strings. In July 2015, two junction boxes have been deployed and connected to the new cable termination frame installed during the same sea campaign. The third and last one will be installed in November 2015. The status of the deep sea network is presented together with technical details of the project.

  13. Large Circular Basin - 1300-km diameter

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Close-up view of one-half of a 1300-km diameter circular basin the largest observed on Mercury. The other half is hidden beyond the terminator to the left. Hills and valleys extend in a radial fashion outward from the main ring. Interior of the large basin is completely flooded by plains materials; adjacent lowlands are also partially flooded and superimposed on the plains are bowl shaped craters. Wrinkle ridges are abundant on the plains materials. The area shown is 1008 miles (1600 km) from the top to the bottom of the picture. Sun's illumination is from the right. Blurred linear lines extending across the picture near bottom are missing data lines that have been filled in by the computer. Mariner 10 encountered Mercury on Friday, March 29th, 1974, passing the planet on the darkside 431 miles (690-km) from the surface.

    The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.

    NOTE: This image was scanned from physical media.

  14. Lidar Observations of Tropical High-altitude Cirrus Clouds: Results form Dual Wavelength Raman Lidar Measurements During the ALBATROSS Campaign 1996

    NASA Technical Reports Server (NTRS)

    Neuber, R.; Wegener, Alfred; Schrems, O.; McDermid, I. S.

    1997-01-01

    Results from dual wavelength Raman Lidar Observations of tropical high-altitude cirrus clouds are reported. Based on 107 hours of night-time measurements cirrus cloud were present in more than 50% of the observations at latitudes between 23.5 degress S and 23.5 degrees N and altitudes between 11 and 16km.

  15. Barometric pressures at extreme altitudes on Mt. Everest: physiological significance.

    PubMed

    West, J B; Lahiri, S; Maret, K H; Peters, R M; Pizzo, C J

    1983-05-01

    Barometric pressures were measured on Mt. Everest from altitudes of 5,400 (base camp) to 8,848 m (summit) during the American Medical Research Expedition to Everest. Measurements at 5,400 m were made with a mercury barometer, and above this most of the pressures were obtained with an accurate crystal-sensor barometer. The mean daily pressures were 400.4 +/- 2.7 (SD) Torr (n = 35) at 5,400 m, 351.0 +/- 1.0 Torr (n = 16) at 6,300 m, 283.6 +/- 1.5 Torr (n = 6) at 8,050 m, and 253.0 Torr (n = 1) at 8,848 m. All these pressures are considerably higher than those predicted from the ICAO Standard Atmosphere. The chief reason is that pressures at altitudes between 2 and 16 km are latitude dependent, being higher near the equator because of the large mass of cold air in the stratosphere of that region. Data from weather balloons show that the pressure at the altitude of the summit of Mt. Everest varies considerably with season, being about 11.5 Torr higher in midsummer than in midwinter. Although the mountain has been climbed without supplementary O2, the very low O2 partial pressure at the summit means that it is at the limit of man's tolerance, and even day-by-day variations in barometric pressure apparently affect maximal O2 uptake. PMID:6863078

  16. Sudden Infant Death Syndrome and Residential Altitude

    PubMed Central

    Shore, Supriya; Bandle, Brian; Niermeyer, Susan; Bol, Kirk A.; Khanna, Amber

    2015-01-01

    BACKGROUND: Theories of sudden infant death syndrome (SIDS) suggest hypoxia is a common pathway. Infants living at altitude have evidence of hypoxia; however, the association between SIDS incidence and infant residential altitude has not been well studied. METHODS: We performed a retrospective cohort study by using data from the Colorado birth and death registries from 2007 to 2012. Infant residential altitude was determined by geocoding maternal residential address. Logistic regression was used to determine adjusted association between residential altitude and SIDS. We evaluated the impact of the Back to Sleep campaign across various altitudes in an extended cohort from 1990 to 2012 to assess for interaction between sleep position and altitude. RESULTS: A total of 393 216 infants born between 2007 and 2012 were included in the primary cohort (51.4% boys; mean birth weight 3194 ± 558 g). Overall, 79.6% infants resided at altitude <6000 feet, 18.5% at 6000 to 8000 feet, and 1.9% at >8000 feet. There were no meaningful differences in maternal characteristics across altitude groups. Compared with residence <6000 feet, residence at high altitude (>8000 feet), was associated with an adjusted increased risk of SIDS (odds ratio 2.30; 95% confidence interval 1.01–5.24). Before the Back to Sleep campaign, the incidence of SIDS in Colorado was 1.99/1000 live births and dropped to 0.57/1000 live births after its implementation. The Back to Sleep campaign had similar effect across different altitudes (P = .45). CONCLUSIONS: Residence at high altitude was significantly associated with an increased adjusted risk for SIDS. Impact of the Back to Sleep campaign was similar across various altitudes. PMID:26009621

  17. Measurement of Altitude in Blind Flying

    NASA Technical Reports Server (NTRS)

    Brombacher, W G

    1934-01-01

    In this note, instruments for measuring altitude and rate of change of altitude in blind flying and landing of aircraft and their performance are discussed. Of those indicating the altitude above ground level, the sonic altimeter is the most promising. Its present bulk, intermittent operation, and more or less unsatisfactory means of indication are serious drawbacks to its use. The sensitive type aneroid altimeter is also discussed and errors in flying at a pressure level and in landing are discussed in detail.

  18. Hot-Injection Synthesis of Cu-Doped Cu₂ZnSnSe₄ Nanocrystals to Reach Thermoelectric zT of 0.70 at 450°C.

    PubMed

    Chen, Dongsheng; Zhao, Yan; Chen, Yani; Wang, Biao; Wang, Yuanyuan; Zhou, Jun; Liang, Ziqi

    2015-11-11

    As a new class of potential midrange temperature thermoelectric materials, quaternary chalcogenides like Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) suffer from low electrical conductivity due to insufficient doping. In this work, Cu-doped CZTSe nanocrystals consisting of polygon-like nanoparticles are synthesized with sufficient Cu doping contents. The hot-injection synthetic method, rather than the traditional one-pot method, in combination with the hot-pressing method is employed to produce the CZTSe nanocrystals. In Cu-doped CZTSe nanocrystals, the electrical conductivity is enhanced by substitution of Zn(2+) with Cu(+), which introduces additional holes as charge carriers. Meanwhile, the existence of boundaries between nanoparticles in as-synthesized CZTSe nanocrystals collectively results in intensive phonon-boundary scatterings, which remarkably reduce the lattice thermal conductivity. As a result, an average thermoelectric figure of merit of 0.70 is obtained at 450 °C, which is significantly larger than that of the state-of-the-art quaternary chalcogenides thermoelectric materials. The theoretical calculations from the Boltzmann transport equations and the modified effective medium approximation are in good agreement with the experimental data. PMID:26497358

  19. Tunability of optical gain (SWIR region) in type-II In0.70Ga0.30As/GaAs0.40Sb0.60 nano-heterostructure under high pressure

    NASA Astrophysics Data System (ADS)

    Nirmal, H. K.; Yadav, Nisha; Dalela, S.; Rathi, Amit; Siddiqui, M. J.; Alvi, P. A.

    2016-06-01

    The interest in applying an external pressure on a nano-heterostructure is to attempt to extract more information about the electronic structure through distortion of the electronic structure. This paper reports the tunability of the optical gain under the high pressure effect in M-shaped type-II In0.70Ga0.30As/GaAs0.40Sb0.60 symmetric lasing nano-heterostructure designed for SWIR generation. In order to simulate the optical gain, the heterostructure has been modeled with the help of six band k.p method. The 6×6 diagonalized k.p Hamiltonian has been solved to evaluate the valence sub-bands (i.e. light and heavy hole energies); and then optical matrix elements and optical gain within TE (Transverse Electric) mode has been calculated. For the injected carrier density of 5×1012/cm2, the optimized optical gain within TE mode is as high as ~9000/cm at the wavelength of ~1.95 μm, thus providing a very important alternative material system for the generation of SWIR wavelength region. The application of very high pressure (2, 5 and 8 GPa) on the structure along [110] direction shows that the gain as well as lasing wavelength both approach to higher values. Thus, the structure can be tuned externally by the application of high pressure within the SWIR region.

  20. Observation of bi-relaxor characteristic in multiferroic 0.70Bi0.90Ca0.10FeO3-0.30PbTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Tirupathi, Patri; Chandra, Amreesh

    2013-09-01

    The coexistence of bi-relaxor property, i.e. ferroelectric relaxor as well as spin glass type behaviour, is observed in disordered multiferroic ceramic 0.70Bi0.90Ca0.10FeO3-0.30PbTiO3. The real parts of dielectric permittivity and magnetic susceptibility show pronounced frequency dispersion near the corresponding phase transition temperatures, namely, Tc ≈ 550 K and TN ≈ 110 K, respectively. The relaxor behaviour observed in temperature-dependent dielectric constant measurement is confirmed by fitting of the Vogel-Fulcher equation. Similarly, magnetic spin glass behaviour is proven by power law fitting. The origin of such bi-relaxor in the present system can be attributed to the disorder and frustration among the uncompensated spins of the Fe-ion. This has been confirmed by analysing the x-ray photoelectron (XPS) spectrum of the sample under investigation. Using FESEM micrographs, the coexistence of nano-sized and bulk grains is shown. The importance of such coexistence is discussed and also presented in the paper.

  1. Aerodynamic Loads at Mach Numbers from 0.70 to 2.22 on a Airplane Model Having a Wing and Canard of Triangular Plan Form and Either Single or Twin Vertical Tails

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Menees, Gene P.

    1961-01-01

    Results of an investigation of the aerodynamic loads on a canard airplane model are presented without detailed analysis for the Mach number range of 0.70 t o 2.22. The model consisted of a triangular wing and canard of aspect ratio 2 mounted on a Sears-Haack body of fineness ratio 12.5 and either a single body-mounted vertical tail or twin wing mounted vertical tails of low aspect ratio and sweptback plan form. The body, right wing panel, single vertical tail, and left twin vertical tail were instrumented for measuring pressures. Data were obtained for angles of attack ranging from -4 degrees to +16 degrees, nominal canard deflection angles of 0 degrees and 10 degrees, and angles of sideslip of 0 degrees and 5.3 degrees. The Reynolds number was 2.9 x 10(exp 6) based on the wing mean aerodynamic chord. Selected portions of the data are presented in graphical form and attention is directed to some of the results of the investigation. All of the experimental results have been tabulated in the form of pressure coefficients and integrations of the pressure coefficients and are available as supplements to this paper. A brief summary of the contents of the tabular material is given.

  2. A study on H2-TPR of Pt/Ce0.27Zr0.73O2 and Pt/Ce0.27Zr0.70La0.03Ox for soot oxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Hailong; Wang, Jianli; Zhang, Yanhua; Jiao, Yi; Ren, Chengjun; Gong, Maochu; Chen, Yaoqiang

    2016-07-01

    Pt/Ce0.27Zr0.73O2 and Pt/Ce0.27Zr0.70La0.03Ox catalysts, prepared by co-precipitation and impregnation methods, were thermally treated at different temperatures for 10 h and then characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR), thermogravimetric analysis (TGA) and soot temperature-programmed oxidation (soot-TPO). Due to thermal effect on the structural and textural properties, the aged catalysts show increased reduction temperatures. But, interestingly, more H2 consumption is detected, which would be ascribed to the increased mobility of bulk oxygen and surface lattice oxygen. The promoting and synergistic roles of Pt in H2-TPR are discussed and it reveals that the sintering and encapsulation of Pt would weaken the H2 spillover mechanism and the addition of La is beneficial to stabilize the synergistic effect between Pt and Ce. On the other hand, a humble role of Pt on promoting soot oxidation activity is found in this study. Not all oxygen species available in H2-TPR can be used for soot oxidation. The deactivation of the aged catalysts is closely related to the reduction temperature.

  3. Hormonal contraceptives and travel to high altitude.

    PubMed

    Keyes, Linda E

    2015-03-01

    Women frequently ask about the safety and efficacy of using hormonal contraception (HC), either oral contraceptive pills (OC) or other forms, when traveling to high altitude locales. What are the risks and benefits of using HC at high altitude? Does HC affect acclimatization, exercise performance, or occurrence of acute mountain sickness? This article reviews current data regarding the risks and benefits of HC at high altitude, both demonstrated and theoretical, with the aim of helping health care providers to advise women traveling above 2500 meters. Most healthy women can safely use HC when traveling to high altitude, but should be aware of the potential risks and inconveniences. PMID:25759908

  4. Low Altitude Space Communication System

    NASA Astrophysics Data System (ADS)

    Namiki, Michiyoshi; Matsuzaka, Yukihiko; Honda, Hideyuki; Toriumi, Michihiko; Kamioka, Eiji; Saito, Yoshitaka; Izutsu, Naoki; Ohta, Sigeo; Yamagami, Takamasa; Yajima, Nobuyuki; Hirosawa, Haruto; Ohya, Nobuhiko; Takezawa, Fukashi; Yamaguchi, Kenji

    We describe a new Low Altitude Space Communication System (LASCOS), which was completed in 1996 by the Institute of Space and Astronautical Science in Japan. This system consists of a mobile balloon tracking and receiving station and networks which connect them to the Sanriku Balloon Center in Iwate Municipality and the Institute of Space and Astronautical Science (ISAS) in Kanagawa Municipality. This station and the SBC receiving station are connected via telephone lines, i. e. an Integrated Services Digital Network (ISDN) or an analog communication network. Balloon trajectory monitoring, telecommand transmission operation and telemetry data acquisition can be done from any computer terminal through the LASCOS. LASCOS has built-in flexibility to adapt to a foreign balloon station. The number of individuals necessary to operate it minimum. LASCOS will be used for long range tracking and balloon expedition. We present the results of its first test with an actual balloon flight

  5. The high-altitude brain.

    PubMed

    Hornbein, T F

    2001-09-01

    The highest place on our planet, Mount Everest (8850 m), appears to be close to the limit of how high an acclimatized human can go, albeit slowly. In this paper, I will explore the possibility that what limits human performance at such extreme degrees of hypoxia is the availability of oxygen to the brain. Also, one of the known costs of such extreme exposure is residual mild impairment of performance on neuropsychometric tests after return to sea level, implying injury to brain cells. That such injury could occur in the absence of any overt impairment of function, much less without loss of consciousness, is unexpected. I will speculate about physiological mechanisms that might cause or contribute to both decrements in real-time performance while at altitude and residual deficits for a time after return to low elevations; the effects of hypoxia on brain cells are an even greater puzzle at the present time. PMID:11581326

  6. Fire Fighting from High Altitude

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent; Ambrosia, Vince

    2007-01-01

    A viewgraph presentation on high altitude fire fighting is shown. The topics include: 1) Yellowstone Fire - 1988; 2) 2006 Western States Fire Mission Over-View; 3) AMS-Wildfire Scanner; 4) October 24-25 Mission: Yosemite NP and NF; 5) October 24-25 Mission MODIS Overpass; 6) October 24-25 Mission Highlights; 7) October 28-29 Mission Esperanza Fire, California; 8) Response to the Esperanza Fire in Southern California -- Timeline Oct 27-29 2006; 9) October 28-29 Mission Esperanza Fire Altair Flight Routing; 10) October 28-29 Mission Esperanza Fire Altair Over-Flights; 11) October 28-29 Mission Highlights; 12) Results from the Esperanza Fire Response; 13) 2007 Western States Fire Mission; and 14) Western States UAS Fire Mission 2007

  7. Radiation Safety Issues in High Altitude Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, Francis A.; Shinn, Judy L.

    1995-01-01

    The development of a global economy makes the outlook for high speed commercial intercontinental flight feasible, and the development of various configurations operating from 20 to 30 km have been proposed. In addition to the still unresolved issues relating to current commercial operations (12-16 km), the higher dose rates associated with the higher operating altitudes makes il imperative that the uncertainties in the atmospheric radiation environment and the associated health risks be re-examined. Atmospheric radiation associated with the galactic cosmic rays forms a background level which may, under some circumstances, exceed newly recommended allowable exposure limits proposed on the basis of recent evaluations of the A -bomb survivor data (due to increased risk coefficients). These larger risk coefficients, within the context of the methodology for estimating exposure limits, are resulting in exceedingly low estimated allowable exposure limits which may impact even present day flight operations and was the reason for the CEC workshop in Luxembourg (1990). At higher operating altitudes, solar particles events can produce exposures many orders of magnitude above background levels and pose significant health risks to the most sensitive individuals (such as during pregnancy). In this case the appropriate quality factors are undefined, and some evidence exists which indicates that the quality factor for stochastic effects is a substantial underestimate.

  8. Change in turbopause altitude at 52 and 70° N

    NASA Astrophysics Data System (ADS)

    Hall, Chris M.; Holmen, Silje E.; Meek, Chris E.; Manson, Alan H.; Nozawa, Satonori

    2016-02-01

    The turbopause is the demarcation between atmospheric mixing by turbulence (below) and molecular diffusion (above). When studying concentrations of trace species in the atmosphere, and particularly long-term change, it may be important to understand processes present, together with their temporal evolution that may be responsible for redistribution of atmospheric constituents. The general region of transition between turbulent and molecular mixing coincides with the base of the ionosphere, the lower region in which molecular oxygen is dissociated, and, at high latitude in summer, the coldest part of the whole atmosphere. This study updates previous reports of turbopause altitude, extending the time series by half a decade, and thus shedding new light on the nature of change over solar-cycle timescales. Assuming there is no trend in temperature, at 70° N there is evidence for a summer trend of ˜ 1.6 km decade-1, but for winter and at 52° N there is no significant evidence for change at all. If the temperature at 90 km is estimated using meteor trail data, it is possible to estimate a cooling rate, which, if applied to the turbopause altitude estimation, fails to alter the trend significantly irrespective of season. The observed increase in turbopause height supports a hypothesis of corresponding negative trends in atomic oxygen density, [O]. This supports independent studies of atomic oxygen density, [O], using mid-latitude time series dating from 1975, which show negative trends since 2002.

  9. Theoretical atmospheric transmission in the mid-and far-infrared at four altitudes.

    PubMed

    Traub, W A; Stier, M T

    1976-02-01

    The ir transmission of the terrestrial atmosphere is calculated at four altitudes of interest: Mauna Kea at 4.2 km (2-1000 microm), aircraft at 14 km (5-1000 microm), and balloon at 28 km and 41 km (10-1000 microm). We show both high resolution spectra (0.05 cm(-1)) and broadband averages. The results are intended to serve both as a detailed guide to the interference that is expected from the atmosphere for astronomical spectroscopy and also as an indicator of the relative change in absorption and emission that can be expected at various observing altitudes. One salient result for the spectral region around 100 microm is that the absorption (and emissivity) of the atmosphere drops by a factor of 10 for each increase in altitude of 15 km throughout the aircraft and balloon range; thus balloon-borne astronomical photometry and spectroscopy should both enjoy a considerable advantage over aircraft observations in the 30-300-microm region. PMID:20164977

  10. High altitude medicine education in China: exploring a new medical education reform.

    PubMed

    Luo, Yongjun; Luo, Rong; Li, Weiming; Huang, Jianjun; Zhou, Qiquan; Gao, Yuqi

    2012-03-01

    China has the largest plateau in the world, which includes the whole of Tibet, part of Qinghai, Xinjiang, Yunnan, and Sichuan. The plateau area is about 257.2×10(4) km(2), which accounts for about 26.8% of the total area of China. According to data collected in 2006, approximately twelve million people were living at high altitudes, between 2200 to 5200 m high, on the Qinghai-Tibetan Plateau. Therefore, there is a need for medical workers who are trained to treat individuals living at high altitudes. To train undergraduates in high altitude medicine, the College of High Altitude Military Medicine was set up at the Third Military Medical University (TMMU) in Chongqing in 1999. This is the only school to teach high altitude medicine in China. Students at TMMU study natural and social sciences, basic medical sciences, clinical medical sciences, and high altitude medicine. In their 5(th) year, students work as interns at the General Hospital of Tibet Military Command in Lhasa for 3 months, where they receive on-site teaching. The method of on-site teaching is an innovative approach for training in high altitude medicine for undergraduates. Three improvements were implemented during the on-site teaching component of the training program: (1) standardization of the learning progress; (2) integration of formal knowledge with clinical experience; and (3) coaching students to develop habits of inquiry and to engage in ongoing self-improvement to set the stage for lifelong learning. Since the establishment of the innovative training methods in 2001, six classes of high altitude medicine undergraduates, who received on-site teaching, have graduated and achieved encouraging results. This evidence shows that on-site teaching needs to be used more widely in high altitude medicine education. PMID:22429234

  11. Plasma density enhancements in the high-altitude polar cap region observed on Akebono

    NASA Astrophysics Data System (ADS)

    Ichikawa, Yoh-ichi; Abe, Takumi; Yau, Andrew W.

    2002-05-01

    The plasma density in the polar cap ionosphere is generally low (<103 cm-3 above 3000 km), mainly because of plasma escape from the ionosphere along open magnetic-field lines. The Akebono satellite occasionally encounters regions of unusually high plasma density (>=103 cm-3) above 4000 km altitude, in which the thermal plasma exhibits a distinctively low electron temperature (<3000 K) and low parallel ion drift velocity (<=1 km/s). Such events are almost always observed on the dusk side. The occurrence of low electron temperature and ion drift velocity appears to suggest the antisunward convection of high-density plasma into the polar cap, and the decrease in electron temperature due to the disruption of field-aligned heat flux in the high-altitude polar cap.

  12. An innovative rotational Raman lidar to measure the temperature profile from the surface to 30 km altitude

    NASA Astrophysics Data System (ADS)

    Hauchecorne, Alain; Keckhut, Philippe; Mariscal, Jean-François; d'Almeida, Eric; Dahoo, Pierre-Richard; Porteneuve, Jacques

    2016-06-01

    A concept of innovative rotational Raman lidar with daylight measurement capability is proposed to measure the vertical profile of temperature from the ground to the middle stratosphere. The optical filtering is made using a Fabry-Pérot Interferometer with line spacing equal to the line spacing of the Raman spectrum. The detection is made using a linear PMT array operated in photon counting mode. We plan to build a prototype and to test it at the Haute-Provence Observatory lidar facility. to achieve a time resolution permitting the observation of small-scale atmospheric processes playing a role in the troposphere-stratosphere interaction as gravity waves. If successful, this project will open the possibility to consider a Raman space lidar for the global observation of atmospheric temperature profiles.

  13. Distribution of the O2 emission on the night side of Venus and circulation at around 100 km altitude

    NASA Astrophysics Data System (ADS)

    Zasova, Ludmila; Khatuntsev, Igor; Shakun, Alexey; Piccioni, Giuseppe; Drossart, Pierre

    A night glow of O2 at 1.27um in the Venus atmosphere as a function of latitude and local time was investigated from the nadir VIRTIS-M VEX data averaged over 700 orbits. Two bright spots were observed. The first one, described earlier by Piccioni et al, is near the antisolar point. The other one is observed at 22 -23 h local time in the latitude range 20-60S. Both sources have a similar averaged intensity of about 1 MR. A position of the second spot cannot be explained by superposition of the SS-AS and zonal superrotation, because in this case the maximum intensity would appear after midnight. Wind speed, calculated from the same set of orbits (except for the equatorial region due to the absence of convenient data needed for wind calculations) shows a clear minimum there and reveals the change of its direction indicating the existence of the downward flow in the region of the second spot

  14. EURECA TICCE - A nine-month survey of cosmic dust and space debris at 500 KM altitude

    NASA Astrophysics Data System (ADS)

    Stevenson, T. J.

    1988-09-01

    The Eureca-A timeband capture cell experiment is a modest extension of the time honored single foil capture cell technique for recovery of extraterrestrial material. The spacecraft, ostensibly designed for microgravity experimentation in low earth orbit, is the European retrievable carrier which takes advantage of the specific dimensions and payload launch capabilities of the United States Space Transportation System (the Space Shuttle), to provide a low cost reusable platform for missions, with durations of up to 9 months, not requiring celestial pointing. The experiment, of area 0.2 m, will probably return with about 1300 impact sites, each resolvable into a 2-3 day timeband during the flight.

  15. Ionosphere variations at 700 km altitude observed by the DEMETER satellite during the 29 March 2006 solar eclipse

    NASA Astrophysics Data System (ADS)

    Wang, X.; Berthelier, J. J.; Lebreton, J. P.

    2010-11-01

    We present an experimental and modeling study of the effects of the 29 March 2006 solar eclipse in the topside ionosphere. Measurements of the densities and temperatures of the thermal electrons and ions were provided by instruments aboard the Centre National d'Etudes Spatiales microsatellite DEMETER, which flew over Europe and Africa near the time of maximum solar obscuration. Data from several orbits, either on the same day or on days encompassing the eclipse day, were available to determine a reference state of the ionosphere along the orbit in absence of eclipse. The comparison between this latter and the actual observations along the eclipse orbit reveal a clear thermal effect with a fast drop of about 200 K of the electron and ion temperatures that follows the variations of the solar UV flux in the F region of the ionosphere conjugate to the satellite position. The plasma density decreases by about 30% but with a significant delay and is better correlated with the solar UV flux averaged over the previous 1 to 2 h in the conjugate F region. This delayed and prolonged decrease of density induces an increase of the electron temperature to be higher than the reference ionosphere. We have also performed a modeling of the ionosphere using the SAMI2 code, after having introduced adequate modifications to reproduce fairly realistic eclipse conditions. Applied to the DEMETER conditions of observation, the model reproduces the observations very well. This work shows that the plasma temperature responds very quickly along the magnetic field lines to the variations of the energy available from the photoelectrons while the plasma density variations are controlled by more complex and slower transport processes.

  16. Lidar Soundings Between 30 and 100 km Altitude During Day and Night for Observation of Temperatures, Gravity Waves and Tides

    NASA Astrophysics Data System (ADS)

    Gerding, Michael; Baumgarten, Kathrin; Höffner, Josef; Lübken, Franz-Josef

    2016-06-01

    Ground-based temperature measurements by lidar are an important tool for the understanding of long-term temperature changes as well as the propagation of gravity waves and tides. Though, mesospheric soundings are often limited to nighttime conditions due to the low signal-tonoise ratio during the day. We developed a daylight-capable RMR lidar for temperature soundings in the middle atmosphere. The influences of the narrowband detector on the calculated hydrostatic temperatures as well as their correction are described. The RMR lidar is complemented by a co-located resonance lidar. We present an example for tidal analyses and short-term variability of tidal amplitudes.

  17. Exhaust emission calibration of two J-58 afterburning turbojet engines at simulated high-altitude, supersonic flight conditions

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1976-01-01

    Emissions of total oxides of nitrogen, nitric oxide, unburned hydrocarbons, carbon monoxide, and carbon dioxide from two J-58 afterburning turbojet engines at simulated high-altitude flight conditions are reported. Test conditions included flight speeds from Mach 2 to 3 at altitudes from 16.0 to 23.5 km. For each flight condition exhaust measurements were made for four or five power levels, from maximum power without afterburning through maximum afterburning. The data show that exhaust emissions vary with flight speed, altitude, power level, and radial position across the exhaust. Oxides of nitrogen emissions decreased with increasing altitude and increased with increasing flight speed. Oxides of nitrogen emission indices with afterburning were less than half the value without afterburning. Carbon monoxide and hydrocarbon emissions increased with increasing altitude and decreased with increasing flight speed. Emissions of these species were substantially higher with afterburning than without.

  18. Global modeling with GEOS-5 from 50-km to 1-km with a single unified GCM

    NASA Astrophysics Data System (ADS)

    Putman, William; Suarez, Max; Molod, Andrea; Barahona, Donifan

    2015-04-01

    The Goddard Earth Observing System model (GEOS-5) of the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center is uniquely designed to adapt to increasing resolution. This supports application of GEOS-5 for decadal scale climate simulation and reanalysis with a horizontal resolution of 50-kilometers (km), high-resolution numerical weather prediction at 25- to 14-km, and global mesoscale modeling at resolutions of 7- to 1.5-km. Resolution-aware parameterizations and dynamics support this diverse portfolio of applications within a single unified GEOS-5 GCM code-base. We will discuss the adaptation of physics parameterizations with increasing resolution. This includes the role of deep convective parameterization, the move to an improved two-moment microphysics scheme, the need for shallow convective parameterization, and the role of non-hydrostatic dynamics and implicit/explicit damping. Parameterization and dynamics evaluation are explored not only in global integrations with GEOS-5 but with radiative convective equilibrium tests that permit the rapid exploration of high-resolution simulations in a smaller doubly periodic Cartesian domain. Simulation results will highlight intercomparisons of model biases in cloud forcing and precipitation from the 30-year 50-km MERRA-2 reanalysis, 50- to 25-km free-running AMIP simulations, a 2-year 7-km global mesoscale simulation, and monthly global simulations at 3.5-km. A global 1.5-km simulation with GEOS-5 highlights our pursuit of truly convection permitting global simulations with GEOS-5. The tuning evaluation for this simulation using doubly periodic radiative convective equilibrium experiments will be discussed.

  19. High-altitude dust layers on Mars: Observations with the Thermal Emission Spectrometer

    NASA Astrophysics Data System (ADS)

    Guzewich, Scott D.; Talaat, Elsayed R.; Toigo, Anthony D.; Waugh, Darryn W.; McConnochie, Timothy H.

    2013-06-01

    Limb-scanning observations of Martian atmospheric dust with the Thermal Emission Spectrometer (TES) over 3 Mars years indicate two distinct altitude layers with persistent maxima in the dust mixing ratio vertical profile. The first, lower maximum in the dust distribution profile is the "high-altitude tropical dust maximum" (HATDM) centered at 20-30 km, previously detected by the Mars Climate Sounder (MCS). Through the observation period, the HATDM followed a repeatable seasonal cycle with a brief absence in early northern spring and reached its highest altitudes and largest amplitude during the dust storm season in southern spring and summer. The HATDM is likely maintained during the day by a combination of convective and topographic updrafts and then degraded at night by scavenging from water ice clouds. The second, upper maximum in the dust distribution profile, which we refer, for convenience, to as the upper dust maximum (UDM), is centered at 45-65 km and is only detected in daytime observations. We see additional evidence of its presence in the limited number of MCS aerosol opacity retrievals available at these altitudes. Comparable dust mixing ratios are nearly absent from this altitude range at night. This upper maximum is generally a northern hemisphere phenomenon, peaking in amplitude in northern summer and nearly absent from the TES observational domain during the dust storm season. We suggest topographic updrafts over Martian volcanoes, small particle size, diurnal transport associated with thermal tides, and scavenging by water ice as probable key factors in the creation of the UDM.

  20. 75 FR 24790 - IFR Altitudes; Miscellaneous Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ...This amendment adopts miscellaneous amendments to the required IFR (instrument flight rules) altitudes and changeover points for certain Federal Airways, jet routes, or direct routes for which a minimum or maximum en route authorized IFR altitude is prescribed. This regulatory action is needed because of changes occurring in the National Airspace System. These changes are designed to provide......

  1. 76 FR 11675 - IFR Altitudes; Miscellaneous Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ...This amendment adopts miscellaneous amendments to the required IFR (instrument flight rules) altitudes and changeover points for certain Federal airways, jet routes, or direct routes for which a minimum or maximum en route authorized IFR altitude is prescribed. This regulatory action is needed because of changes occurring in the National Airspace System. These changes are designed to provide......

  2. High Altitude Illnesses in Hawai‘i

    PubMed Central

    2014-01-01

    High Altitude Headache (HAH), Acute Mountain Sickness (AMS), and High Altitude Cerebral Edema (HACE) are all high altitude related illnesses in order of severity from the mildly symptomatic to the potentially life-threatening. High altitude illnesses occur when travelers ascend to high altitudes too rapidly, which does not allow enough time for the body to adjust. Slow graded ascent to the desired altitude and termination of ascent if AMS symptoms present are keys to illness prevention. Early recognition and rapid intervention of AMS can halt progression to HACE. Pharmacologic prophylaxis with acetazolamide is a proven method of prevention and treatment of high altitude illness. If prevention fails then treatment modalities include supplemental oxygen, supportive therapy, hyperbaric treatment, and dexamethasone. Given the multitude of visitors to the mountains of Hawai‘i, high altitude illness will continue to persist as a prevalent local condition. This paper will emphasize the prevention and early diagnosis of AMS so that the illness does not progress to HACE. PMID:25478293

  3. An Optical Altitude Indicator for Night Landing

    NASA Technical Reports Server (NTRS)

    Warner, John A C

    1923-01-01

    One of the most ingenious of the devices intended for use in night landing, especially emergency landing, is a very simple optical instrument known as the Jenkins night altitude indicator. The design and operation of this instrument, which allows a pilot to determine the altitude of the aircraft, is discussed. The author discusses various modifications and improvements that might be made to the instrument.

  4. Longitudinal Stability Characteristics of the Consolidated Vultee XFY-1 Airplane with Windmilling Propellers as Obtained from Flight of 0.133-Scale Rocket-Propelled Model at Mach Numbers from 0.70 to 1.13

    NASA Technical Reports Server (NTRS)

    Hastings, Earl C.; Mitcham, Grady L.

    1954-01-01

    A flight test has been conducted to determine the longitudinal stability and control characteristics of a 0.133-scale model of the Consolidated Vultee XFY-1 airplane with windmilling propellers for the Mach number range between 0.70 and 1.13. The variation of lift-curve slope C(sub L(sub alpha) with Mach number was gradual with a maximum value of 0.074 occurring at a Mach number of 0.97. Propellers had little effect upon the values of lift-curve slope or the linearity of lift coefficient with angle of attack. At lift coefficients between approximately 0.25 and 0.45 with an elevon angle of approximately -l0 deg, there was a region of neutral longitudinal stability at Mach numbers below 0.93 introduced by the addition of windmilling propellers. Below a lift coefficient of 0.10 and above a lift coefficient of 0.45, the model was longitudinally stable throughout the Mach number range of the test. There was a forward shift in the aerodynamic center of about 3-percent mean aerodynamic chord introduced by the addition of propellers. The aerodynamic center as determined at low lift moved gradually from a value of 28.5-percent mean aerodynamic chord at a Mach number of 0.75 to a value of 47-percent mean aerodynamic chord at a Mach number of 1.10. There was an abrupt decrease in pitch damping between Mach numbers of 0.88 and 0.99 followed by a rapid increase in damping to a Mach number of 1.06. The propellers had little effect upon the pitch damping characteristics . The transonic trim change was a large pitching-down tendency with and without windmilling propellers. The elevons were effective pitch controls throughout the speed range; however, their effectiveness was reduced about 50 percent at supersonic speeds. The propellers had no appreciable effect upon the control effectiveness.

  5. Jupiter's High-Altitude Clouds

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The New Horizons Multispectral Visible Imaging Camera (MVIC) snapped this incredibly detailed picture of Jupiter's high-altitude clouds starting at 06:00 Universal Time on February 28, 2007, when the spacecraft was only 2.3 million kilometers (1.4 million miles) from the solar system's largest planet. Features as small as 50 kilometers (30 miles) are visible. The image was taken through a narrow filter centered on a methane absorption band near 890 nanometers, a considerably redder wavelength than what the eye can see. Images taken through this filter preferentially pick out clouds that are relatively high in the sky of this gas giant planet because sunlight at the wavelengths transmitted by the filter is completely absorbed by the methane gas that permeates Jupiter's atmosphere before it can reach the lower clouds.

    The image reveals a range of diverse features. The south pole is capped with a haze of small particles probably created by the precipitation of charged particles into the polar regions during auroral activity. Just north of the cap is a well-formed anticyclonic vortex with rising white thunderheads at its core. Slightly north of the vortex are the tendrils of some rather disorganized storms and more pinpoint-like thunderheads. The dark 'measles' that appear a bit farther north are actually cloud-free regions where light is completely absorbed by the methane gas and essentially disappears from view. The wind action considerably picks up in the equatorial regions where giant plumes are stretched into a long wave pattern. Proceeding north of the equator, cirrus-like clouds are shredded by winds reaching speeds of up to 400 miles per hour, and more pinpoint-like thunderheads are visible. Although some of the famous belt and zone structure of Jupiter's atmosphere is washed out when viewed at this wavelength, the relatively thin North Temperate Belt shows up quite nicely, as does a series of waves just north of the belt. The north polar region of

  6. Atomic oxygen between 80 and 120 km: Evidence for a rapid spatial variation in vertical transport near the ionosphere

    NASA Technical Reports Server (NTRS)

    Donahue, T. M.; Wasser, B.

    1977-01-01

    Analysis of OGO-6 OI green line photometer results was carried out for 8 cases when the alignment of the spacecraft was such that local emission rates could be determined below the altitude of maximum emission and down to about 80 km. Results show a variation on a scale of 6 deg to 8 deg in latitude between regions where the emission rate increases rapidly between 90 and 95 km and regions where it increases slowly from 80 km to 95 km. Latitude-altitude maps of iso-emissivity contours and iso-density contours for oxygen concentration are presented. The latter are computed under 3 assumptions concerning excitation mechanisms. Comparisons of the spatial variations of oxygen density with the results of a time dependent theory suggest the regions of strong downward transport alternate on a scale of about 1000 km with regions of weak transport near 90 km. In the first case conversion of O to O3 at night appears to be overwhelmed by downward transport of O.

  7. Predicted optical performance of the high-altitude balloon experiment (HABE) telescope in an adverse thermal environment

    SciTech Connect

    Akau, R.L.; Givler, R.C.; Eastman, D.R.

    1994-04-01

    The High-Altitude Balloon Experiment (HABE) telescope was designed to operate at an ambient temperature of {minus}55 C and an altitude of 26 km, using a precooled primary mirror. Although at this altitude the air density is only 1.4 percent of the value at sea level, the temperature gradients within the telescope are high enough to deform the optical wavefront. This problem is considerably lessened by precooling the primary mirror to {minus}35 C. This paper describes the application of several codes to determine the range of wavefront deformation during a mission.

  8. Sleep at high altitude: guesses and facts.

    PubMed

    Bloch, Konrad E; Buenzli, Jana C; Latshang, Tsogyal D; Ulrich, Silvia

    2015-12-15

    Lowlanders commonly report a poor sleep quality during the first few nights after arriving at high altitude. Polysomnographic studies reveal that reductions in slow wave sleep are the most consistent altitude-induced changes in sleep structure identified by visual scoring. Quantitative spectral analyses of the sleep electroencephalogram have confirmed an altitude-related reduction in the low-frequency power (0.8-4.6 Hz). Although some studies suggest an increase in arousals from sleep at high altitude, this is not a consistent finding. Whether sleep instability at high altitude is triggered by periodic breathing or vice versa is still uncertain. Overnight changes in slow wave-derived encephalographic measures of neuronal synchronization in healthy subjects were less pronounced at moderately high (2,590 m) compared with low altitude (490 m), and this was associated with a decline in sleep-related memory consolidation. Correspondingly, exacerbation of breathing and sleep disturbances experienced by lowlanders with obstructive sleep apnea during a stay at 2,590 m was associated with poor performance in driving simulator tests. These findings suggest that altitude-related alterations in sleep may adversely affect daytime performance. Despite recent advances in our understanding of sleep at altitude, further research is required to better establish the role of gender and age in alterations of sleep at different altitudes, to determine the influence of acclimatization and of altitude-related illness, and to uncover the characteristics of sleep in highlanders that may serve as a study paradigm of sleep in patients exposed to chronic hypoxia due to cardiorespiratory disease. PMID:26229000

  9. Diving at altitude: from definition to practice.

    PubMed

    Egi, S Murat; Pieri, Massimo; Marroni, Alessandro

    2014-01-01

    Diving above sea level has different motivations for recreational, military, commercial and scientific activities. Despite the apparently wide practice of inland diving, there are three major discrepancies about diving at altitude: threshold elevation that requires changes in sea level procedures; upper altitude limit of the applicability of these modifications; and independent validation of altitude adaptation methods of decompression algorithms. The first problem is solved by converting the normal fluctuation in barometric pressure to an altitude equivalent. Based on the barometric variations recorded from a meteorological center, it is possible to suggest 600 meters as a threshold for classifying a dive as an "altitude" dive. The second problem is solved by proposing the threshold altitude of aviation (2,400 meters) to classify "high" altitude dives. The DAN (Divers Alert Network) Europe diving database (DB) is analyzed to solve the third problem. The database consists of 65,050 dives collected from different dive computers. A total of 1,467 dives were found to be classified as altitude dives. However, by checking the elevation according to the logged geographical coordinates, 1,284 dives were disqualified because the altitude setting had been used as a conservative setting by the dive computer despite the fact that the dive was made at sea level. Furthermore, according to the description put forward in this manuscript, 72 dives were disqualified because the surface level elevation is lower than 600 meters. The number of field data (111 dives) is still very low to use for the validation of any particular method of altitude adaptation concerning decompression algorithms. PMID:25562941

  10. Case study of polar cap scintillation modeling using DE 2 irregularity measurements at 800 km

    SciTech Connect

    Basu, S.; Basu, S.; Weber, E.J.; Coley, W.R.

    1988-08-01

    High-resolution in situ Dynamics Explorer 2 data on thermal plasma densities are used here to study the small-scale irregularity structure of the F layer patches. It is shown that spatially discrete density structures associated with polar cap patches can be detected fairly high in the topside by an in situ irregularity sensor and that they correspond to temporally discrete scintillation patches. It is also shown that it is possible to model phase and amplitude scintillation occurrence from a knowledge of irregularity amplitude at a satellite altitude of about 800 km provided that independent measurements of the peak density and scale height of the F region are available. 19 references.

  11. Processing techniques for global land 1-km AVHRR data

    USGS Publications Warehouse

    Eidenshink, Jeffery C.; Steinwand, Daniel R.; Wivell, Charles E.; Hollaren, Douglas M.; Meyer, David

    1993-01-01

    The U.S. Geological Survey's (USGS) Earth Resources Observation Systems (EROS) Data Center (EDC) in cooperation with several international science organizations has developed techniques for processing daily Advanced Very High Resolution Radiometer (AVHRR) 1-km data of the entire global land surface. These techniques include orbital stitching, geometric rectification, radiometric calibration, and atmospheric correction. An orbital stitching algorithm was developed to combine consecutive observations acquired along an orbit by ground receiving stations into contiguous half-orbital segments. The geometric rectification process uses an AVHRR satellite model that contains modules for forward mapping, forward terrain correction, and inverse mapping with terrain correction. The correction is accomplished by using the hydrologic features coastlines and lakes from the Digital Chart of the World. These features are rasterized into the satellite projection and are matched to the AVHRR imagery using binary edge correlation techniques. The resulting coefficients are related to six attitude correction parameters: roll, roll rate, pitch, pitch rate, yaw, and altitude. The image can then be precision corrected to a variety of map projections and user-selected image frames. Because the AVHRR lacks onboard calibration for the optical wavelengths, a series of time-variant calibration coefficients derived from vicarious calibration methods and are used to model the degradation profile of the instruments. Reducing atmospheric effects on AVHRR data is important. A method has been develop that will remove the effects of molecular scattering and absorption from clear sky observations, using climatological measurements of ozone. Other methods to remove the effects of water vapor and aerosols are being investigated.

  12. Neurological conditions at altitude that fall outside the usual definition of altitude sickness.

    PubMed

    Basnyat, Buddha; Wu, Tianyi; Gertsch, Jeffrey H

    2004-01-01

    Altitude sickness in its commonly recognized forms consists of acute mountain sickness and the two life-threatening forms, high altitude cerebral and pulmonary edema. Less well known are other conditions, chiefly neurological, that may arise completely outside the usual definition of altitude sickness. These, often focal, neurological conditions are important to recognize so that they do not become categorized as altitude sickness because, besides oxygen and descent, treatment may be vastly different. Transient ischemic attacks, cerebral venous thrombosis, seizures, syncope, double vision, and scotomas are some of the well-documented neurological disturbances at high altitude discussed here in order to enhance their recognition and treatment. PMID:15265338

  13. Predicting km-scale shear zone formation

    NASA Astrophysics Data System (ADS)

    Gerbi, Christopher; Culshaw, Nicholas; Shulman, Deborah; Foley, Maura; Marsh, Jeffrey

    2015-04-01

    Because km-scale shear zones play a first-order role in lithospheric kinematics, accurate conceptual and numerical models of orogenic development require predicting when and where they form. Although a strain-based algorithm in the upper crust for weakening due to faulting appears to succeed (e.g., Koons et al., 2010, doi:10.1029/2009TC002463), a comparable general rule for the viscous crust remains unestablished. Here we consider two aspects of the geological argument for a similar algorithm in the viscous regime, namely (1) whether predicting km-scale shear zone development based on a single parameter (such as strain or shear heating) is reasonable; and (2) whether lithologic variability inherent in most orogenic systems precludes a simple predictive rule. A review of tectonically significant shear zones worldwide and more detailed investigations in the Central Gneiss belt of the Ontario segment of the Grenville Province reveals that most km-scale shear zones occur at lithological boundaries and involve mass transfer, but have fairly little else in common. As examples, the relatively flat-lying Twelve Mile Bay shear zone in the western Central Gneiss belt bounds the Parry Sound domain and is likely the product of both localized anatexis and later retrograde hydration with attendant metamorphism. Moderately dipping shear zones in granitoids of the Grenville Front Tectonic Zone apparently resulted from cooperation among several complementary microstructural processes, such as grain size reduction, enhanced diffusion, and a small degree of metamorphic reaction. Localization into shear zones requires the operation of some spatially restricted processes such as stress concentration, metamorphism/fluid access, textural evolution, and thermal perturbation. All of these could be due in part to strain, but not necessarily linearly related to strain. Stress concentrations, such as those that form at rheological boundaries, may be sufficient to nucleate high strain

  14. High altitude aircraft flight tests

    NASA Astrophysics Data System (ADS)

    Helmken, Henry; Emmons, Peter; Homeyer, David

    1996-03-01

    In order to make low earth orbit L-band propagation measurements and test new voice communication concepts, a payload was proposed and accepted for flight aboard the COMET (now METEOR) spacecraft. This Low Earth Orbiting EXperiment payload (LEOEX) was designed and developed by Motorola Inc. and sponsored by the Space Communications Technology Center (SCTC), a NASA Center for the Commercial Development of Space (CCDS) located at Florida Atlantic University. In order to verify the LEOEX payload for satellite operation and obtain some preliminary propagation data, a series of 9 high altitude aircraft (SR-71 and ER-2) flight tests were conducted. These flights took place during a period of 7 months, from October 1993 to April 1994. This paper will summarize the operation of the LEOEX payload and the particular configuration used for these flights. The series of flyby tests were very successful and demonstrated how bi-directional, Time Division Multiple Access (TDMA) voice communication will work in space-to-ground L-band channels. The flight tests also acquired propagation data which will be representative of L-band Low Earth Orbiting (LEO) communication systems. In addition to verifying the LEOEX system operation, it also uncovered and ultimately aided the resolution of several key technical issues associated with the payload.

  15. Impact of altitude on emission rates of ozone precursors from gasoline-driven light-duty commercial vehicles

    NASA Astrophysics Data System (ADS)

    Nagpure, A. S.; Gurjar, B. R.; Kumar, Prashant

    2011-03-01

    Vehicle emissions are major precursors for the formation of tropospheric ozone that can have adverse effect on human health, buildings and vegetation. The aim of this study is to investigate the impact of altitude on emission rates of ozone precursors (e.g., CO, NOx and VOCs) from gasoline-driven light-duty commercial vehicles (LDCVs) in three Indian cities (i.e. Delhi, Dehradun, and Mussoorie). Basic equations of the International Vehicle Emission (IVE) model are applied to estimate emission rates from the LDCVs. Topography (altitude) and meteorology (temperature) specific parameters of the IVE model were modified to Indian conditions for estimating emission rates. Unlike NOx, emission rates of CO and VOCs have increased with altitude. For example, CO emission rate has considerably increased from 36.5 g km-1 in Delhi to 51.3 g km-1 (i.e. by ∼41%) in Mussoorie, whereas VOCs emission rate marginally increased from 3.2 g km-1 to 3.6 g km-1. Findings and their implications are important from human health perspective, especially for the people residing in high altitude cities where a peculiar combination of lower oxygen levels and high concentrations of CO and VOCs can adversely affect the public health. Also, increased levels of CO and VOCs at high altitudes may conspicuously influence the chemistry of tropospheric ozone.

  16. Lightning strikes to a NASA airplane penetrating thunderstorms at low altitudes

    NASA Technical Reports Server (NTRS)

    Mazur, V.; Fisher, B. D.; Gerlach, J. C.

    1986-01-01

    The NASA Storm Hazards program was dedicated during the 1984 storm season to a study of lightning strikes on an instrumented F-106B aircraft, during penetrations of thunderstorms at altitudes lower than the 6-8 km center of lightning flash density. These altitudes coincide with the negative charge region of thunderstorms. An analysis of the correlation between the UHF band radar data obtained and TV images of lightning strikes indicates that, with a known aircraft position relative to the radar, the lightning channel motion can be adequately interpreted on the basis of radar echo evolution.

  17. Characteristics and drivers of high-altitude ladybird flight: insights from vertical-looking entomological radar.

    PubMed

    Jeffries, Daniel L; Chapman, Jason; Roy, Helen E; Humphries, Stuart; Harrington, Richard; Brown, Peter M J; Handley, Lori-J Lawson

    2013-01-01

    Understanding the characteristics and drivers of dispersal is crucial for predicting population dynamics, particularly in range-shifting species. Studying long-distance dispersal in insects is challenging, but recent advances in entomological radar offer unique insights. We analysed 10 years of radar data collected at Rothamsted Research, U.K., to investigate characteristics (altitude, speed, seasonal and annual trends) and drivers (aphid abundance, air temperature, wind speed and rainfall) of high-altitude flight of the two most abundant U.K. ladybird species (native Coccinella septempunctata and invasive Harmonia axyridis). These species cannot be distinguished in the radar data since their reflectivity signals overlap, and they were therefore analysed together. However, their signals do not overlap with other, abundant insects so we are confident they constitute the overwhelming majority of the analysed data. The target species were detected up to ∼1100 m above ground level, where displacement speeds of up to ∼60 km/h were recorded, however most ladybirds were found between ∼150 and 500 m, and had a mean displacement of 30 km/h. Average flight time was estimated, using tethered flight experiments, to be 36.5 minutes, but flights of up to two hours were observed. Ladybirds are therefore potentially able to travel 18 km in a "typical" high-altitude flight, but up to 120 km if flying at higher altitudes, indicating a high capacity for long-distance dispersal. There were strong seasonal trends in ladybird abundance, with peaks corresponding to the highest temperatures of mid-summer, and warm air temperature was the key driver of ladybird flight. Climatic warming may therefore increase the potential for long-distance dispersal in these species. Low aphid abundance was a second significant factor, highlighting the important role of aphid population dynamics in ladybird dispersal. This research illustrates the utility of radar for studying high-altitude insect

  18. Characteristics and Drivers of High-Altitude Ladybird Flight: Insights from Vertical-Looking Entomological Radar

    PubMed Central

    Jeffries, Daniel L.; Chapman, Jason; Roy, Helen E.; Humphries, Stuart; Harrington, Richard; Brown, Peter M. J.; Handley, Lori-J. Lawson

    2013-01-01

    Understanding the characteristics and drivers of dispersal is crucial for predicting population dynamics, particularly in range-shifting species. Studying long-distance dispersal in insects is challenging, but recent advances in entomological radar offer unique insights. We analysed 10 years of radar data collected at Rothamsted Research, U.K., to investigate characteristics (altitude, speed, seasonal and annual trends) and drivers (aphid abundance, air temperature, wind speed and rainfall) of high-altitude flight of the two most abundant U.K. ladybird species (native Coccinella septempunctata and invasive Harmonia axyridis). These species cannot be distinguished in the radar data since their reflectivity signals overlap, and they were therefore analysed together. However, their signals do not overlap with other, abundant insects so we are confident they constitute the overwhelming majority of the analysed data. The target species were detected up to ∼1100 m above ground level, where displacement speeds of up to ∼60 km/h were recorded, however most ladybirds were found between ∼150 and 500 m, and had a mean displacement of 30 km/h. Average flight time was estimated, using tethered flight experiments, to be 36.5 minutes, but flights of up to two hours were observed. Ladybirds are therefore potentially able to travel 18 km in a “typical” high-altitude flight, but up to 120 km if flying at higher altitudes, indicating a high capacity for long-distance dispersal. There were strong seasonal trends in ladybird abundance, with peaks corresponding to the highest temperatures of mid-summer, and warm air temperature was the key driver of ladybird flight. Climatic warming may therefore increase the potential for long-distance dispersal in these species. Low aphid abundance was a second significant factor, highlighting the important role of aphid population dynamics in ladybird dispersal. This research illustrates the utility of radar for studying high-altitude

  19. Solar wind proton reflection by lunar crustal magnetic fields observed at low altitude

    NASA Astrophysics Data System (ADS)

    Nishino, M. N.; Fujimoto, M.; Tsunakawa, H.; Saito, Y.; Yokota, S.; Shibuya, H.; Matsushima, M.; Shimizu, H.; Takahashi, F.

    2012-12-01

    We study interaction between the solar wind flow and lunar crustal magnetic fields observed at lower altitudes by SELENE (Kaguya), predominantly focusing on proton reflection above strong crustal fields. Several studies revealed interaction between the solar wind and the Moon, while detailed observation at low altitude including ion measurements has been hardly reported yet. Previous observations at higher altitude revealed that the solar wind protons are not reflected toward the sun but deflected downstream around the solar wind flow direction. Here we report detailed observations of solar wind proton reflection/deflection observed above South Pole-Aitken (SPA) basin at low altitude (typically, lower than 30 km) and at several solar zenith angles. Above wide crustal fields inside the SPA basin, a large amount of incident solar wind protons are deflected and sometimes reflected to come back sunward; in particular, the sunward proton beams are observed at lower solar zenith angle regions. The reflected/deflected protons at times consist of two (or more-than-two) separate components that have been mirror-reflected at different crustal fields. Our result shows that the mirror reflection of incident protons takes place at the altitude much lower than the spacecraft orbit, and suggests that strong compression of the crustal fields at lower solar zenith angle and at lower altitude by the solar wind dynamic pressure is essential.

  20. High altitude syndromes at intermediate altitudes: a pilot study in the Australian Alps.

    PubMed

    Slaney, Graham; Cook, Angus; Weinstein, Philip

    2013-10-01

    Our hypothesis is that symptoms of high altitude syndromes are detectable even at intermediate altitudes, as commonly encountered under Australian conditions (<2500 m above sea level). High altitude medicine has long recognised several syndromes associated with rapid ascent to altitudes above 2500 m, including high altitude pulmonary oedema (HAPE), high altitude cerebral oedema (HACE) and high altitude flatus expulsion (HAFE). Symptoms of high altitude syndromes are of growing concern because of the global trend toward increasing numbers of tourists and workers exposed to both rapid ascent and sustained physical activity at high altitude. However, in Australia, high altitude medicine has almost no profile because of our relatively low altitudes by international standards. Three factors lead us to believe that altitude sickness in Australia deserves more serious consideration: Australia is subject to rapid growth in alpine recreational industries; altitude sickness is highly variable between individuals, and some people do experience symptoms already at 1500 m; and there is potential for an occupational health and safety issue amongst workers. To test this hypothesis we examined the relationship between any high altitude symptoms and a rapid ascent to an intermediate altitude (1800 m) by undertaking an intervention study in a cohort of eight medical clinic staff, conducted during July of the 2012 (Southern Hemisphere) ski season, using self-reporting questionnaires, at Mansfield (316 m above sea level) and at the Ski Resort of Mt Buller (1800 m), Victoria, Australia. The intervention consisted of ascent by car from Mansfield to Mt Buller (approx. 40 min drive). Participants completed a self-reporting questionnaire including demographic data and information on frequency of normal homeostatic processes (fluid intake and output, food intake and output, symptoms including thirst and headaches, and frequency of passing wind or urine). Data were recorded in hourly periods

  1. Plasma density increase in the high altitude polar cap

    NASA Astrophysics Data System (ADS)

    Kitanoya, Yugo; Abe, Takumi; Mukai, Toshifumi

    In general situation, the electron density in the ionosphere decreases with altitude. As for the latitudinal variation, the electron density is generally smaller in the polar cap than in the midor low-latitude region. Few reliable measurements have been made to estimate thermal electron density and temperature with a simple instrument such as Langmuir probe in the highaltitude polar cap region. For example, only the limited amount of the electron temperature and density data are available for the high-altitude (> 3000 km) polar cap, where the density is generally less than 2.0*103 [/cm3 ]. Since the plasma density significantly correlates with the solar activity, thermal plasma density becomes smaller for the minimum solar activity period. Thermal Electron energy Distribution (TED) instrument onboard "AKEBONO" (EXOS-D) satellite has been operated in two modes; 1) DC mode to obtain the probe characteristic, 2) SH (second harmonic) mode to estimate the electron energy distribution function based on Druyvesteyn method, from which the electron temperature and density can be estimated even on the condition of low electron density. On the basis of statistical study of the Akebono observation for over 10 years, it is found that the electron number density occasionally increases up to 3.0-4.0*103 [/cm3 ] above altitude of 3000 km. While the electron temperature is believed to be about 8000 K at such a high altitude, the temperature inside the high density region is observed to be lower than that by several thousand degrees. It is noticeable that such a density enhancement occurs during the geomagnetically active period at solar maximum. The high density region is observed to exist not in whole but in part of the polar cap. In addition, it is obvious from the Suprathermal Mass Spectrometer (SMS) observations that the H+ velocity parallel to the upward field aligned direction is observed to be lower in the high density region than the surrounding region. Also, it is

  2. [Sildenafil and exercise performance at altitude].

    PubMed

    Peidro, Roberto M

    2015-01-01

    Barometric pressure and partial oxygen pressure decrease with increasing altitude. Hypobaric hypoxia produced is responsible for altitude-related diseases and it can cause severe decrements in exercise performance. The physiological adaptations to the altitude are multiple and they contribute to alter different athletic qualities. The VO2 worsening could be associated to increased pulmonary vascular resistance and nitric oxide diffusion alteration. Performance impairments at altitude can also be accentuated by hypoxia-induced elevations in pulmonary arterial pressure. Clinical studies have demonstrated the beneficial effects of sildenafil on the treatment of pulmonary hypertension. These effects have led to suggest that its indication for competitions at altitude might improve athletic performance. The investigations demonstrate different results depending on the altitude level and times and intensities of exercise. Some studies show performance improvements, although not in all participants. Individual responses vary widely between different athletes. This presentation examines the effects of altitude on exercise capacity and shows studies about the use of sildenafil to improve sport performance. This text also discusses the possible side effects and implications for the use of sildenafil in athletes, indication that is not the basic one of the drug. The physicians must know in each athlete the individual sildenafil side effects that could arise and that would influence negatively on health and performance. PMID:26339884

  3. Acclimatization and tolerance to extreme altitude

    NASA Technical Reports Server (NTRS)

    West, J. B.

    1993-01-01

    During the last ten years, two major experiments have elucidated the factors determining acclimatization and tolerance to extreme altitude (over 7000 m). These were the American Medical Research Expedition to Everest, and the low pressure chamber simulation, Operation Everest II. Extreme hyperventilation is one of the most important responses to extreme altitude. Its chief value is that it allows the climber to maintain an alveolar PO2 which keeps the arterial PO2 above dangerously low levels. Even so, there is evidence of residual impairment of central nervous system function after ascents to extreme altitude, and maximal oxygen consumption falls precipitously above 7000 m. The term 'acclimatization' is probably not appropriate for altitudes above 8000 m, because the body steadily deteriorates at these altitudes. Tolerance to extreme altitude is critically dependent on barometric pressure, and even seasonal changes in pressure probably affect climbing performance near the summit of Mt Everest. Supplementary oxygen always improves exercise tolerance at extreme altitudes, and rescue oxygen should be available on climbing expeditions to 8000 m peaks.

  4. Cerebral blood flow at high altitude.

    PubMed

    Ainslie, Philip N; Subudhi, Andrew W

    2014-06-01

    This brief review traces the last 50 years of research related to cerebral blood flow (CBF) in humans exposed to high altitude. The increase in CBF within the first 12 hours at high altitude and its return to near sea level values after 3-5 days of acclimatization was first documented with use of the Kety-Schmidt technique in 1964. The degree of change in CBF at high altitude is influenced by many variables, including arterial oxygen and carbon dioxide tensions, oxygen content, cerebral spinal fluid pH, and hematocrit, but can be collectively summarized in terms of the relative strengths of four key integrated reflexes: 1) hypoxic cerebral vasodilatation; 2) hypocapnic cerebral vasoconstriction; 3) hypoxic ventilatory response; and 4) hypercapnic ventilatory response. Understanding the mechanisms underlying these reflexes and their interactions with one another is critical to advance our understanding of global and regional CBF regulation. Whether high altitude populations exhibit cerebrovascular adaptations to chronic levels of hypoxia or if changes in CBF are related to the development of acute mountain sickness are currently unknown; yet overall, the integrated CBF response to high altitude appears to be sufficient to meet the brain's large and consistent demand for oxygen. This short review is organized as follows: An historical overview of the earliest CBF measurements collected at high altitude introduces a summary of reported CBF changes at altitude over the last 50 years in both lowlanders and high-altitude natives. The most tenable candidate mechanism(s) regulating CBF at altitude are summarized with a focus on available data in humans, and a role for these mechanisms in the pathophysiology of AMS is considered. Finally, suggestions for future directions are provided. PMID:24971767

  5. High-Altitude Hydration System

    NASA Technical Reports Server (NTRS)

    Parazynski, Scott E.; Orndoff, Evelyne; Bue, Grant C.; Schaefbauer, Mark E.; Urban, Kase

    2010-01-01

    Three methods are being developed for keeping water from freezing during high-altitude climbs so that mountaineers can remain hydrated. Three strategies have been developed. At the time of this reporting two needed to be tested in the field and one was conceptual. The first method is Passive Thermal Control Using Aerogels. This involves mounting the fluid reservoir of the climber s canteen to an inner layer of clothing for better heat retention. For the field test, bottles were mounted to the inner fleece layer of clothing, and then aerogel insulation was placed on the outside of the bottle, and circumferentially around the drink straw. When climbers need to drink, they can pull up the insulated straw from underneath the down suit, take a sip, and then put it back into the relative warmth of the suit. For the field test, a data logger assessed the temperatures of the water reservoir, as well as near the tip of the drink straw. The second method is Passive Thermal Control with Copper-Shielded Drink Straw and Aerogels, also mounted to inner layers of clothing for better heat retention. Braided wire emanates from the inside of the fleece jacket layer, and continues up and around the drink straw in order to use body heat to keep the system-critical drink straw warm enough to keep water in the liquid state. For the field test, a data logger will be used to compare this with the above concept. The third, and still conceptual, method is Active Thermal Control with Microcontroller. If the above methods do not work, microcontrollers and tape heaters have been identified that could keep the drink straw warm even under extremely cold conditions. Power requirements are not yet determined because the thermal environment inside the down suit relative to the external environment has not been established. A data logger will be used to track both the external and internal temperatures of the suit on a summit day.

  6. A new technique for remote sensing of O2 density from 140 to 180 km

    NASA Astrophysics Data System (ADS)

    Hecht, James H.; Christensen, Andrew B.; Yee, Jeng-Hwa; Crowley, Geoff; Bishop, Rebeeca L.; Budzien, Scott A.; Stephan, Andrew W.; Evans, J. Scott

    2015-01-01

    Observations of molecular oxygen are difficult to make in the Earth's atmosphere between 140 and 200 km altitude. Perhaps the most accurate measurements to date have been obtained from satellite instruments that measure solar occultations of the limb. These do provide height-resolved O2 density measurements, but the nature of this technique is such that the temporal/spatial distribution of the measurements is uneven. Here a new space-based technique is described that utilizes two bright dayglow emissions, the (0,0) transition of the O2 atmospheric band and the O I (630 nm), to derive the height-resolved O2 density from 140 to 180 km. Data from the Remote Atmospheric and Ionospheric Detection System, which was placed on the International Space Station in late 2009, are used to illustrate this technique. The O2 density results for periods in May 2010 that were geomagnetically quiet and disturbed are compared to model predictions.

  7. Application of Multilayer Feedforward Neural Networks to Precipitation Cell-Top Altitude Estimation

    NASA Technical Reports Server (NTRS)

    Spina, Michelle S.; Schwartz, Michael J.; Staelin, David H.; Gasiewski, Albin J.

    1998-01-01

    The use of passive 118-GHz O2 observations of rain cells for precipitation cell-top altitude estimation is demonstrated by using a multilayer feed forward neural network retrieval system. Rain cell observations at 118 GHz were compared with estimates of the cell-top altitude obtained by optical stereoscopy. The observations were made with 2 4 km horizontal spatial resolution by using the Millimeter-wave Temperature Sounder (MTS) scanning spectrometer aboard the NASA ER-2 research aircraft during the Genesis of Atlantic Lows Experiment (GALE) and the COoperative Huntsville Meteorological EXperiment (COHMEX) in 1986. The neural network estimator applied to MTS spectral differences between clouds, and nearby clear air yielded an rms discrepancy of 1.76 km for a combined cumulus, mature, and dissipating cell set and 1.44 km for the cumulus-only set. An improvement in rms discrepancy to 1.36 km was achieved by including additional MTS information on the absolute atmospheric temperature profile. An incremental method for training neural networks was developed that yielded robust results, despite the use of as few as 56 training spectra. Comparison of these results with a nonlinear statistical estimator shows that superior results can be obtained with a neural network retrieval system. Imagery of estimated cell-top altitudes was created from 118-GHz spectral imagery gathered from CAMEX, September through October 1993, and from cyclone Oliver, February 7, 1993.

  8. [Human oxygen metabolism at high altitudes].

    PubMed

    Dabrowski, Wojciech; Dabrowski, Roman; Wyciszczok, Tomasz; Falk, Joanna

    2006-01-01

    The rapid tourism development resulted in higher incidence of the diseases related to oxygen metabolism pathologies at high altitudes. On the other hand, the lack of ability of close monitoring of changes during oxygen breathing in these conditions still makes it a subject of high interest for clinical studies. It seems that the main problem in oxygen metabolism at high altitudes is the disorder of pulmonary oxygen diffusion. In this paper the authors present the current knowledge, based on available literature, about the high-altitude oxygen metabolism. PMID:16813271

  9. Teleportation of entanglement over 143 km.

    PubMed

    Herbst, Thomas; Scheidl, Thomas; Fink, Matthias; Handsteiner, Johannes; Wittmann, Bernhard; Ursin, Rupert; Zeilinger, Anton

    2015-11-17

    As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for unknown quantum states. This calls for more advanced techniques in a future global quantum network, e.g., for cloud quantum computing. A unique solution is the teleportation of an entangled state, i.e., entanglement swapping, representing the central resource to relay entanglement between distant nodes. Together with entanglement purification and a quantum memory it constitutes a so-called quantum repeater. Since the aforementioned building blocks have been individually demonstrated in laboratory setups only, the applicability of the required technology in real-world scenarios remained to be proven. Here we present a free-space entanglement-swapping experiment between the Canary Islands of La Palma and Tenerife, verifying the presence of quantum entanglement between two previously independent photons separated by 143 km. We obtained an expectation value for the entanglement-witness operator, more than 6 SDs beyond the classical limit. By consecutive generation of the two required photon pairs and space-like separation of the relevant measurement events, we also showed the feasibility of the swapping protocol in a long-distance scenario, where the independence of the nodes is highly demanded. Because our results already allow for efficient implementation of entanglement purification, we anticipate our research to lay the ground for a fully fledged quantum repeater over a realistic high-loss and even turbulent quantum channel. PMID:26578764

  10. Teleportation of entanglement over 143 km

    PubMed Central

    Herbst, Thomas; Scheidl, Thomas; Fink, Matthias; Handsteiner, Johannes; Wittmann, Bernhard; Ursin, Rupert; Zeilinger, Anton

    2015-01-01

    As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for unknown quantum states. This calls for more advanced techniques in a future global quantum network, e.g., for cloud quantum computing. A unique solution is the teleportation of an entangled state, i.e., entanglement swapping, representing the central resource to relay entanglement between distant nodes. Together with entanglement purification and a quantum memory it constitutes a so-called quantum repeater. Since the aforementioned building blocks have been individually demonstrated in laboratory setups only, the applicability of the required technology in real-world scenarios remained to be proven. Here we present a free-space entanglement-swapping experiment between the Canary Islands of La Palma and Tenerife, verifying the presence of quantum entanglement between two previously independent photons separated by 143 km. We obtained an expectation value for the entanglement-witness operator, more than 6 SDs beyond the classical limit. By consecutive generation of the two required photon pairs and space-like separation of the relevant measurement events, we also showed the feasibility of the swapping protocol in a long-distance scenario, where the independence of the nodes is highly demanded. Because our results already allow for efficient implementation of entanglement purification, we anticipate our research to lay the ground for a fully fledged quantum repeater over a realistic high-loss and even turbulent quantum channel. PMID:26578764

  11. Development of Ultra-Thin Polyethylene Balloons for High Altitude Research upto Mesosphere

    NASA Astrophysics Data System (ADS)

    Kumar, B. Suneel; Nagendra, N.; Ojha, D. K.; Peter, G. Stalin; Vasudevan, R.; Anand, D.; Kulkarni, P. M.; Reddy, V. Anmi; Rao, T. V.; Sreenivasan, S.

    Ever since its inception four decades back, Balloon Facility of Tata Institute of Fundamental Research (TIFR), Hyderabad has been functioning with the needs of its user scientists at its focus. During the early nineties, when the X-ray astronomy group at TIFR expressed the need for balloons capable of carrying the X-ray telescopes to altitudes up to 42 km, the balloon group initiated research and development work on indigenous balloon grade films in various thickness not only for the main experiment but also in parallel, took up the development of thin films in thickness range 5 to 6 μm for fabrication of sounding balloons required for probing the stratosphere up to 42 km as the regular 2000-gram rubber balloon ascents could not reach altitudes higher than 38 km. By the year 1999, total indigenization of sounding balloon manufacture was accomplished. The work on balloon grade ultra-thin polyethylene film in thickness range 2.8 to 3.8 μm for fabrication of balloons capable of penetrating mesosphere to meet the needs of user scientists working in the area of atmospheric dynamics commenced in 2011. Pursuant to the successful trials with 61,000-m3 balloon made of 3.8-μm Antrix film reaching stratopause (48 km) for the first time in the history of balloon facility in the year 2012, fine tuning of launch parameters like percentage free lift was carried out to take the same volume balloons to higher mesospheric altitudes. Three successful flights with a total suspended load of 10 kg using 61,000-m3 balloons were carried out in the month of January 2014 and all the three balloons crossed into the mesosphere reaching altitudes of over 51 km. All the balloons flown so far are closed system with no escape ducts. Balloon fabrication, development of launch hardware, flight control instruments and launch technique for these mesospheric balloon flights are discussed in this paper.

  12. Seasonal dependence of mesospheric gravity waves ( <100 Km) at Peach Mountain Observatory, Michigan

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Killeen, T. L.

    We present results from a 14-month study of all-sky camera observations of the Hydroxyl (OH) nightglow made at the Peach Mountain Observatory, Michigan (42.3°N 83.7°W) Spatial variations in the observed OH airglow images have been used to assess gravity-wave (GW) occurrence frequency at ∼85 km altitude as a function of season. A Strong seasonal dependence of mesospheric GW activity is observed, with peak activity in the summer months and much reduced activity during the winter months. Gravity waves (as defined by observed coherent variations in relative OH brightnesses of >∼7.5) were found to be present on about 70% of the clear-sky nights during the summer months. During the spring, fall, and winter months, however, the observed GW occurrence frequency was very low (<10%). Most of the GWs were observed to propagate towards the eastward hemisphere. We suggest that the tropospherically-generated GWs are anisotropic (eastward) thus passing through to the mesosphere only in the summer and being filtered out by the intervening neutral winds during other seasons. It is also possible that the GWs are able to reach higher altitudes without breaking because of their smaller amplitudes at lower altitudes during the summer season relative to the winter season.

  13. The two stellar occultations of November 14, 2003: revealing Titan's stratosphere at sub-km resolution

    NASA Astrophysics Data System (ADS)

    Sicardy, B.; Colas, F.; Widemann, T.; Fienga, A.; Lacour, S.; Lecacheux, J.; Lellouch, E.; Pau, S.; Renner, S.; Roques, F.; Glass, I.; Baba, D.; Nagata, T.; Ferri, F.; Martinez, C.; Beisker, W.; Enke, S.; Bath, K.-L.; Bode, F.; Bode, H.-J.; Fiel, D.; Kretlow, M.; Hernandez, M.; Horns, D.; Luedemann, J.; Luedemann, H.; Tegtmeier, A.; deWitt, C.; Fraser, B.; Jones, T.; Shonau, P.; Turk, C.; Meintjies, P.; Howell, R. R.; Kidger, M.; Ortiz, J. L.; Rosenzweig, P.; Naranjo, O.; Rapaport, M.

    2004-11-01

    On November 14, 2003, Titan occulted two bright Tycho stars (V= 8.4 and V= 10.3). The first event was observed in the Indian Ocean and southern Africa, while the second one was followed from western Europe, northern and central Americas. Data were gathered by both professional and amateur astronomers, using fixed and portable telescopes at wavelengths ranging from visible to near IR (K band). Inversion of the light curves provide sub-km resolution density and temperature profiles of Titan's upper stratosphere (altitude range ˜ 250-550 km, pressure ˜ 1-250 μ bar). A well confined inversion layer, with a temperature increase of more than 15 K in about 6 km, is ubiquitous in the data near 510 km altitude (1 μ bar). This global feature is either due to a localized heating source or to dynamical processes yet to be determined. A central flash is visible in five of the light curves taken from the first event. We model the flash shape and intensity, using ray tracing with a prescribed limb shape (linked to a given zonal wind regime) and opacity. Observations are consistent with a strong jet at northern latitudes ( ˜ 200 m s-1 at latitude 55N), decreasing to ˜ 140m s-1 at equator, and tapering off to zero in the sourthern hemisphere. We do not detect the northern polar hood predicted by some GCM models, up to latitude 67N. Thus, the polar hood is either non-existent, or is present at latitudes north of 67N.

  14. Living altitude influences endurance exercise performance change over time at altitude.

    PubMed

    Chapman, Robert F; Karlsen, Trine; Ge, R-L; Stray-Gundersen, James; Levine, Benjamin D

    2016-05-15

    For sea level based endurance athletes who compete at low and moderate altitudes, adequate time for acclimatization to altitude can mitigate performance declines. We asked whether it is better for the acclimatizing athlete to live at the specific altitude of competition or at a higher altitude, perhaps for an increased rate of physiological adaptation. After 4 wk of supervised sea level training and testing, 48 collegiate distance runners (32 men, 16 women) were randomly assigned to one of four living altitudes (1,780, 2,085, 2,454, or 2,800 m) where they resided for 4 wk. Daily training for all subjects was completed at a common altitude from 1,250 to 3,000 m. Subjects completed 3,000-m performance trials on the track at sea level, 28 and 6 days before departure, and at 1,780 m on days 5, 12, 19, and 26 of the altitude camp. Groups living at 2,454 and 2,800 m had a significantly larger slowing of performance vs. the 1,780-m group on day 5 at altitude. The 1,780-m group showed no significant change in performance across the 26 days at altitude, while the groups living at 2,085, 2,454, and 2,800 m showed improvements in performance from day 5 to day 19 at altitude but no further improvement at day 26 The data suggest that an endurance athlete competing acutely at 1,780 m should live at the altitude of the competition and not higher. Living ∼300-1,000 m higher than the competition altitude, acute altitude performance may be significantly worse and may require up to 19 days of acclimatization to minimize performance decrements. PMID:26968028

  15. Altitude Testing of Large Liquid Propellant Engines

    NASA Technical Reports Server (NTRS)

    Maynard, Bryon; Raines, Nickey

    2008-01-01

    Altitude Testing of the J2-X engine at 100,000 feet (start capability). Chemical Steam Generation for providing vacuum. Project Started Mar 07. Test Stand Activation around Late 2010. J-2X Testing around early 2011.

  16. ALTITUDE AS A FACTOR IN AIR POLLUTION

    EPA Science Inventory

    Air pollution is affected by change in altitude. Cities with surface elevations above 1500 meters have atmospheric pressures which are approximately fifteen percent (15%) below pressures at sea level. Consequently, mobile sources designed to operate at pressures of one atmosphere...

  17. High-altitude cerebral oedema mimicking stroke.

    PubMed

    Yanamandra, Uday; Gupta, Amul; Patyal, Sagarika; Varma, Prem Prakash

    2014-01-01

    High-altitude cerebral oedema (HACO) is the most fatal high-altitude illness seen by rural physicians practising in high-altitude areas. HACO presents clinically with cerebellar ataxia, features of raised intracranial pressure (ICP) and coma. Early identification is important as delay in diagnosis can be fatal. We present two cases of HACO presenting with focal deficits mimicking stroke. The first patient presented with left-sided hemiplegia associated with the rapid deterioration in the sensorium. Neuroimaging revealed features suggestive of vasogenic oedema. The second patient presented with monoplegia of the lower limb. Neuroimaging revealed perfusion deficit in anterior cerebral artery territory. Both patients were managed with dexamethasone and they improved dramatically. Clinical picture and neuroimaging closely resembled acute ischaemic stroke in both cases. Thrombolysis in these patients would have been disastrous. Recent travel to high altitude, young age, absence of atherosclerotic risk factors and features of raised ICP concomitantly directed the diagnosis to HACO. PMID:24671373

  18. Paul Bikle's Record Altitude Sailplane Flight

    NASA Video Gallery

    On a cold and windy February afternoon 50 years ago, the late Paul Bikle, then director of NASA's Flight Research Center, soared into the stratosphere with one goal in mind - a world altitude recor...

  19. Aeronautic Instruments. Section II : Altitude Instruments

    NASA Technical Reports Server (NTRS)

    Mears, A H; Henrickson, H B; Brombacher, W G

    1923-01-01

    This report is Section two of a series of reports on aeronautic instruments (Technical Report nos. 125 to 132, inclusive). This section discusses briefly barometric altitude determinations, and describes in detail the principal types of altimeters and barographs used in aeronautics during the recent war. This is followed by a discussion of performance requirements for such instruments and an account of the methods of testing developed by the Bureau of Standards. The report concludes with a brief account of the results of recent investigations. For accurate measurements of altitude, reference must also be made to thermometer readings of atmospheric temperature, since the altitude is not fixed by atmospheric pressure alone. This matter is discussed in connection with barometric altitude determination.

  20. 77 FR 14269 - IFR Altitudes; Miscellaneous Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... ``significant rule'' under DOT Regulatory Policies and Procedures (44 ] FR 11034; February 26, 1979); and (3... Points From To MEA MAA Sec. 95.3000 Low Altitude RNAV Routes Sec. 95.3223 RNAV Route T223 Is Amended...

  1. Atmospheric drag model for Cassini orbit determination during low altitude Titan flybys

    NASA Technical Reports Server (NTRS)

    Pelletier, F. J.; Antreasian, P. G.; Bordi, J. J.; Criddle, K. E.; Ionasescu, R.; Jacobson, R. A.; Mackenzie, R. A.; Parcher, D. W.; Stauch, J. R.

    2006-01-01

    On April 16, 2005, the Cassini spacecraft performed its lowest altitude flyby of Titan to date, the Titan-5 flyby, flying 1027 km above the surface of Titan. This document discusses the development of a Titan atmospheric drag model for the purpose of the orbit determination of Cassini. Results will be presented for the Titan A flyby, the Titan-5 flyby as well as the most recent low altitude Titan flyby, Titan-7. Different solutions will be compared against OD performance in terms of the flyby B-plane parameters, spacecraft thrusting activity and drag estimates. These low altitude Titan flybys were an excellent opportunity to observe the effect of Titan's atmospheric drag on the orbit determination solution and results show that the drag was successfully modeled to provide accurate flyby solutions.

  2. The distribution of large volcanoes on Venus as a function of height and altitude

    NASA Technical Reports Server (NTRS)

    Keddie, S. T.; Head, J. W.

    1993-01-01

    Theory predicts that the slower cooling of lava flows on Venus should result in lava flows that are typically 20 percent longer than their terrestrial counterparts and that the development of neutral buoyancy zones (NBZ) on Venus may be strongly influenced by altitude-controlled variations in surface pressure. Observations that support these predictions would include relatively low heights for Venus volcanoes, and an increase in both the number and development of large edifices with increasing basal altitude. The results of an analysis of the height and altitude distribution of 123 large (diameter greater than 100 km) volcanoes made using Magellan image and altimetry data are presented and these results are used to begin to test the predications of the above theories.

  3. Daytime ClO over McMurdo in September 1987: Altitude profile retrieval accuracy

    NASA Technical Reports Server (NTRS)

    Barrett, J.; Solomon, P.; Jaramillo, M.; Dezafra, R. L.; Parrish, A.; Emmons, L.

    1988-01-01

    During the 1987 National Ozone Expedition, mm-wave emission line spectra of the 278.6 GHz rotational stratospheric ClO were observed at McMurdo Station, Antarctica. The results confirm the 1986 discovery of a lower stratospheric layer with approximately 100 times the normal amount of ClO; the 1987 observations, made with a spectrometer bandwidth twice that used in 1986, make possible a more accurate retrieval of the altitude profile of the low altitude component of stratospheric ClO from the pressure broadened line shape, down to approximately 16 km. The accuracy of the altitude profile retrievals is discussed, using the daytime (09:30 to 19:30, local time) data from 20 to 24 September, 1987 as an example. The signal strength averaged over this daytime period is approx. 85 percent of the midday peak value. The rate of ozone depletion implied by the observed ClO densities is also discussed.

  4. HF echoes from ionization potentially produced by high-altitude discharges

    SciTech Connect

    Roussel-Dupre, R.A.; Blanc, E.

    1997-03-01

    The presence of ionization associated with high-altitude discharges has been detected using an HF radar operating at 2.2, 2.5, and 2.8 MHz. On several occasions, oblique echoes lasting several hundred ms at night and 1{r_arrow}10s during the day were observed. The echoes turned on in several interpulse times of 70 ms and were generally correlated with strong lightning activity prior to onset. The angles of arrival of sferics detected at three goniometer stations were used to determine the distance to thunderstorms. The data are consistent with specular reflections from columns of ionization produced at 55{endash}65 km altitude and having minimum electron densities of 6{times}10{sup 4}{endash}10{sup 5}cm{sup {minus}3}. The source of the ionization is believed to be high-altitude discharges.{copyright} 1997 American Geophysical Union

  5. Dual-bell altitude compensating nozzles

    NASA Technical Reports Server (NTRS)

    Horn, M.; Fisher, S.

    1993-01-01

    The primary objective of this cold flow test effort was to assess the performance characteristics of dual bell nozzles and to obtain preliminary design criteria by testing a number of configurations. Characteristics of interest included low altitude performance, high altitude performance, and the flow transition process. In combination with this performance data, other factors such as cost, weight, fabricability, and vehicle related issues could then be traded to establish the feasibility of the concept.

  6. Python Engine Installed in Altitude Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1949-01-01

    An engine mechanic checks instrumentation prior to an investigation of engine operating characteristics and thrust control of a large turboprop engine with counter-rotating propellers under high-altitude flight conditions in the 20-foot-dianieter test section of the Altitude Wind Tunnel at the Lewis Flight Propulsion Laboratory of the National Advisory Committee for Aeronautics, Cleveland, Ohio, now known as the John H. Glenn Research Center at Lewis Field.

  7. Child health and living at high altitude.

    PubMed

    Niermeyer, S; Andrade Mollinedo, P; Huicho, L

    2009-10-01

    The health of children born and living at high altitude is shaped not only by the low-oxygen environment, but also by population ancestry and sociocultural determinants. High altitude and the corresponding reduction in oxygen delivery during pregnancy result in lower birth weight with higher elevation. Children living at high elevations are at special risk for hypoxaemia during infancy and during acute lower respiratory infection, symptomatic high-altitude pulmonary hypertension, persistence of fetal vascular connections, and re-entry high-altitude pulmonary oedema. However, child health varies from one population group to another due to genetic adaptation as well as factors such as nutrition, intercurrent infection, exposure to pollutants and toxins, socioeconomic status, and access to medical care. Awareness of the risks uniquely associated with living at high altitude and monitoring of key health indicators can help protect the health of children at high altitude. These considerations should be incorporated into the scaling-up of effective interventions for improving global child health and survival. PMID:19066173

  8. Nasal peak inspiratory flow at altitude.

    PubMed

    Barry, P W; Mason, N P; Richalet, J P

    2002-01-01

    The present study investigated whether there are changes in nasal peak inspiratory flow (NPIF) during hypobaric hypoxia under controlled environmental conditions. During operation Everest III (COMEX '97), eight subjects ascended to a simulated altitude of 8,848 m in a hypobaric chamber. NPIF was recorded at simulated altitudes of 0 m, 5,000 m and 8,000 m. Oral peak inspiratory and expiratory flow (OPIF, OPEF) were also measured. Ambient air temperature and humidity were controlled. NPIF increased by a mean +/- SD of 16 +/- 12% from sea level to 8,000 m, whereas OPIF increased by 47 +/- 14%. NPIF rose by 0.085 +/- 0.03 L x s(-1) per kilometre of ascent (p<0.05), significantly less than the rise in OPIF and OPEF of 0.35 +/- 0.10 and 0.33 +/- 0.04 L x s(-1) per kilometre (p<0.0005). Nasal peak inspiratory flow rises with ascent to altitude. The rise in nasal peak inspiratory flow with altitude was far less than oral peak inspiratory flow and less than the predicted rise according to changes in air density. This suggests flow limitation at the nose, and occurs under controlled environmental conditions, refuting the hypothesis that nasal blockage at altitude is due to the inhalation of cold, dry air. Further work is needed to determine if nasal blockage limits activity at altitude. PMID:11843316

  9. Cabin cruising altitudes for regular transport aircraft.

    PubMed

    2008-04-01

    The adverse physiological effects of flight, caused by ascent to altitude and its associated reduction in barometric pressure, have been known since the first manned balloon flights in the 19th century. It soon became apparent that the way to protect the occupant of an aircraft from the effects of ascent to altitude was to enclose either the individual, or the cabin, in a sealed or pressurized environment. Of primary concern in commercial airline transport operations is the selection of a suitable cabin pressurization schedule that assures adequate oxygen partial pressures for all intended occupants. For the past several decades, 8000 ft has been accepted as the maximum operational cabin pressure altitude in the airline industry. More recent research findings on the physiological and psycho-physiological effects of mild hypoxia have provided cause for renewed discussion of the "acceptability" of a maximum cabin cruise altitude of 8000 ft; however, we did not find sufficient scientific data to recommend a change in the cabin altitude of transport category aircraft. The Aerospace Medical Association (AsMA) should support further research to evaluate the safety, performance and comfort of occupants at altitudes between 5000 and 10,000 ft. PMID:18457303

  10. Early history of high-altitude physiology.

    PubMed

    West, John B

    2016-02-01

    High-altitude physiology can be said to have begun in 1644 when Torricelli described the first mercury barometer and wrote the immortal words "We live submerged at the bottom of an ocean of the element air." Interestingly, the notion of atmospheric pressure had eluded his teacher, the great Galileo. Blaise Pascal was responsible for describing the fall in pressure with increasing altitude, and Otto von Guericke gave a dramatic demonstration of the enormous force that could be developed by atmospheric pressure. Robert Boyle learned of Guericke's experiment and, with Robert Hooke, constructed the first air pump that allowed small animals to be exposed to a low pressure. Hooke also constructed a small low-pressure chamber and exposed himself to a simulated altitude of about 2400 meters. With the advent of ballooning, humans were rapidly exposed to very low pressures, sometimes with tragic results. For example, the French balloon, Zénith, rose to over 8000 m, and two of the three aeronauts succumbed to the hypoxia. Paul Bert was the first person to clearly state that the deleterious effects of high altitude were caused by the low partial pressure of oxygen (PO2), and later research was accelerated by high-altitude stations and expeditions to high altitude. PMID:25762218

  11. NGC 1252: a high altitude, metal poor open cluster remnant

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, R.; de la Fuente Marcos, C.; Moni Bidin, C.; Carraro, G.; Costa, E.

    2013-09-01

    If stars form in clusters but most stars belong to the field, understanding the details of the transition from the former to the latter is imperative to explain the observational properties of the field. Aging open clusters are one of the sources of field stars. The disruption rate of open clusters slows down with age but, as an object gets older, the distinction between the remaining cluster or open cluster remnant (OCR) and the surrounding field becomes less and less obvious. As a result, finding good OCR candidates or confirming the OCR nature of some of the best candidates still remain elusive. One of these objects is NGC 1252, a scattered group of about 20 stars in Horologium. Here we use new wide-field photometry in the UBVI passbands, proper motions from the Yale/San Juan SPM 4.0 catalogue and high-resolution spectroscopy concurrently with results from N-body simulations to decipher NGC 1252's enigmatic character. Spectroscopy shows that most of the brightest stars in the studied area are chemically, kinematically and spatially unrelated to each other. However, after analysing proper motions, we find one relevant kinematic group. This sparse object is relatively close (˜1 kpc), metal poor and is probably not only one of the oldest clusters (3 Gyr) within 1.5 kpc from the Sun but also one of the clusters located farthest from the disc, at an altitude of nearly -900 pc. That makes NGC 1252 the first open cluster that can be truly considered a high Galactic altitude OCR: an unusual object that may hint at a star formation event induced on a high Galactic altitude gas cloud. We also conclude that the variable TW Horologii and the blue straggler candidate HD 20286 are unlikely to be part of NGC 1252. NGC 1252 17 is identified as an unrelated, Population II cannonball star moving at about 400 km s-1.

  12. High resolution spectroscopy from low altitude satellites. [gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Nakano, G. H.; Imhof, W. L.

    1978-01-01

    The P 78 1 satellite to be placed in a synchronous polar orbit at an altitude of 550-660 km will carry two identical high resolution spectrometers each consisting of a single (approximately 85 cc) intrinsic germanium IGE detector. The payload also includes a pair of phoswitch scintillators, an array of CdTe detectors and several particle detectors, all of which are mounted on the wheel of the satellite. The intrinsic high purity IGE detectors receive cooling from two Stirling cycle refrigerators and facilitate the assembly of large and complex detector arrays planned for the next generation of high sensitivity instruments such as those planned for the gamma ray observatory. The major subsystems of the spectrometer are discussed as well as its capabilities.

  13. Airborne Doppler radar detection of low altitude windshear

    NASA Technical Reports Server (NTRS)

    Bracalente, Emedio M.; Jones, William R.; Britt, Charles L.

    1990-01-01

    As part of an integrated windshear program, the Federal Aviation Administration, jointly with NASA, is sponsoring a research effort to develop airborne sensor technology for the detection of low altitude windshear during aircraft take-off and landing. One sensor being considered is microwave Doppler radar operating at X-band or above. Using a Microburst/Clutter/Radar simulation program, a preliminary feasibility study was conducted to assess the performance of Doppler radars for this application. Preliminary results from this study are presented. Analysis show, that using bin-to-bin Automatic Gain Control (AGC), clutter filtering, limited detection range, and suitable antenna tilt management, windshear from a wet microburst can be accurately detected 10 to 65 seconds (.75 to 5 km) in front of the aircraft. Although a performance improvement can be obtained at higher frequency, the baseline X-band system that was simulated detected the presence of a windshear hazard for the dry microburst. Although this study indicates the feasibility of using an airborne Doppler radar to detect low altitude microburst windshear, further detailed studies, including future flight experiments, will be required to completely characterize the capabilities and limitations.

  14. Temperature minima in the average thermal structure of the middle mesosphere (70 - 80 km) from analysis of 40- to 92-km SME global temperature profiles

    NASA Technical Reports Server (NTRS)

    Clancy, R. Todd; Rusch, David W.; Callan, Michael T.

    1994-01-01

    Global temperatures have been derived for the upper stratosphere and mesosphere from analysis of Solar Mesosphere Explorer (SME) limb radiance profiles. The SME temperature represent fixed local time observations at 1400 - 1500 LT, with partial zonal coverage of 3 - 5 longitudes per day over the 1982-1986 period. These new SME temperatures are compared to the COSPAR International Ionosphere Reference Atmosphere 86 (CIRA 86) climatology (Fleming et al., 1990) as well as stratospheric and mesospheric sounder (SAMS); Barnett and Corney, 1984), National Meteorological Center (NMC); (Gelman et al., 1986), and individual lidar and rocket observations. Significant areas of disagreement between the SME and CIRA 86 mesospheric temperatures are 10 K warmer SME temperatures at altitudes above 80 km. The 1981-1982 SAMS temperatures are in much closer agreement with the SME temperatures between 40 and 75 km. Although much of the SME-CIRA 86 disagreement probably stems from the poor vertical resolution of the observations comprising the CIRA 86 modelm, some portion of the differences may reflect 5- to 10-year temporal variations in mesospheric temperatures. The CIRA 86 climatology is based on 1973-1978 measurements. Relatively large (1 K/yr) 5- to 10-year trends in temperatures as functions of longitude, latitude, and altitude have been observed for both the upper stratosphere (Clancy and Rusch, 1989a) and mesosphere (Clancy and Rusch, 1989b; Hauchecorne et al., 1991). The SME temperatures also exhibit enhanced amplitudes for the semiannual oscillation (SAO) of upper mesospheric temperatures at low latitudes, which are not evident in the CIRA 86 climatology. The so-called mesospheric `temperature inversions' at wintertime midlatitudes, which have been observed by ground-based lidar (Hauschecorne et al., 1987) and rocket in situ measurements (Schmidlin, 1976), are shown to be a climatological aspect of the mesosphere, based on the SME observations.

  15. Atmospheric Sampling of Aerosols to Stratospheric Altitudes using High Altitude Balloons

    NASA Astrophysics Data System (ADS)

    Jerde, E. A.; Thomas, E.

    2010-12-01

    Although carbon dioxide represents a long-lived atmospheric component relevant to global climate change, it is also understood that many additional contributors influence the overall climate of Earth. Among these, short-lived components are more difficult to incorporate into models due to uncertainties in the abundances of these both spatially and temporally. Possibly the most significant of these short-lived components falls under the heading of “black carbon” (BC). There are numerous overlapping definitions of BC, but it is basically carbonaceous in nature and light absorbing. Due to its potential as a climate forcer, an understanding of the BC population in the atmosphere is critical for modeling of radiative forcing. Prior measurements of atmospheric BC generally consist of airplane- and ground-based sampling, typically below 5000 m and restricted in time and space. Given that BC has a residence time on the order of days, short-term variability is easily missed. Further, since the radiative forcing is a result of BC distributed through the entire atmospheric column, aircraft sampling is by definition incomplete. We are in the process of planning a more comprehensive sampling of the atmosphere for BC using high-altitude balloons. Balloon-borne sampling is a highly reliable means to sample air through the entire troposphere and into the lower stratosphere. Our system will incorporate a balloon and a flight train of two modules. One module will house an atmospheric sampler. This sampler will be single-stage (samples all particle sizes together), and will place particles directly on an SEM sample stub for analysis. The nozzle depositing the sample will be offset from the center of the stub, placing the aerosol particles toward the edge. At various altitudes, the stub will be rotated 45 degrees, providing 6-8 sample “cuts” of particle populations through the atmospheric column. The flights will reach approximately 27 km altitude, above which the balloons

  16. On-vehicle emission measurement of a light-duty diesel van at various speeds at high altitude

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Yin, Hang; Ge, Yunshan; Yu, Linxiao; Xu, Zhenxian; Yu, Chenglei; Shi, Xuejiao; Liu, Hongkun

    2013-12-01

    As part of the research on the relationship between the speed of a vehicle operating at high altitude and its contaminant emissions, an on-vehicle emission measurement of a light-duty diesel van at the altitudes of 1000 m, 2400 m and 3200 m was conducted. The test vehicle was a 2.8 L turbocharged diesel Ford Transit. Its settings were consistent in all experiments. Regulated gaseous emissions, including CO, HC and NOx, together with particulate matter was measured at nine speeds ranged from 10 km h-1 to 90 km h-1 with 10 km h-1 intervals settings. At each speed, measurement lasted for at least 120 s to ensure the sufficiency and reliability of the collected data. The results demonstrated that at all altitudes, CO and HC emissions decreased as the vehicle speed increased. However both NOx and PM increased with vehicle speed. In terms of the effects of altitude, an increase in CO, HC and PM was observed with the rising of altitude at each vehicle speed. NOx behaved different: emission of NOx initially increased as the vehicle was raised from 1000 m to 2400 m, but it decreased when the vehicle was further elevated to 3200 m.

  17. Determination of auroral electrostatic potentials using high- and low-altitude particle distributions

    NASA Technical Reports Server (NTRS)

    Reiff, P. H.; Collin, H. L.; Craven, J. D.; Burch, J. L.; Winningham, J. D.

    1988-01-01

    The auroral electrostatic potential differences were determined from the particle distribution functions obtained nearly simultaneously above and below the auroral acceleration region by DE-1 at altitudes 9000-15,000 km and DE-2 at 400-800 km. Three independent techniques were used: (1) the peak energies of precipitating electrons observed by DE-2, (2) the widening of loss cones for upward traveling electrons observed by DE-1, and (3) the energies of upgoing ions observed by DE-1. The assumed parallel electrostatic potential difference calculated by the three methods was nearly the same. The results confirmed the hypothesis that parallel electrostatic fields of 1-10 kV potential drop at 1-2 earth radii altitude are an important source for auroral particle acceleration.

  18. High altitude color photography as a tool for regional analysis: As demonstrated for southeastern Florida

    NASA Technical Reports Server (NTRS)

    Eyre, L. A.

    1972-01-01

    High altitude color and color infrared photography of the tri-county region of southeast Florida made it feasible to evaluate its potential for quantifying the dimensions of regional change. Attention was focused upon three main aspects of change in the region, which in fact overlap. These were; (1) the transformation of the southeast Florida wetlands; (2) the expansion of agriculture; and (3) the growth of the urbanized area. The development analyzed covered the period of thirteen years from 1956 to 1969. Results using this new 18 km photography were superior because of the degree of resolution, the combined power of color and color infrared interpretation, and the large area covered by each frame. The greatest advantage of high altitude imagery is the time-saving element, since it is possible to delineate and identify major geographic patterns over thousands of sq km very rapidly.

  19. A Cryosampler Payload for Aseptic Air Sample Collection at Stratospheric Altitudes Using Balloons.

    NASA Astrophysics Data System (ADS)

    Sreenivasan, S.; Dutt, C. B. S.; Bhargava, P.; Shivaji, S.; Manchanda, R. K.

    A balloon borne Astrobiology program is being conducted from the National Balloon Facility of the Tata Institute of Fundamental Research at Hyderabad India in which a liquid Neon cooled cryo pump collects air samples under sterile conditions in the altitude regime 19 - 41 Km Pursuant to the encouraging results obtained from an earlier experiment conducted on January 2001 a new payload was configured and the balloon flight was conducted on April 20 2005 after implementing much more rigorous and enhanced sterilization protocol to completely rule out contamination from ground Air samples were collected in the altitude region 20 - 41 Km and are under analysis in the National laboratories in India for detecting the presence of living microbial cells In this paper we discuss the design and fabrication of the air sample collection probes the stringent sterilization protocol evolved for ensuring that the probes are aseptic before the commencement of the experiment and the sample retrival methods for analysis in the laboratory

  20. The source altitude, electric current, and intrinsic brightness of terrestrial gamma ray flashes

    NASA Astrophysics Data System (ADS)

    Cummer, Steven A.; Briggs, Michael S.; Dwyer, Joseph R.; Xiong, Shaolin; Connaughton, Valerie; Fishman, Gerald J.; Lu, Gaopeng; Lyu, Fanchao; Solanki, Rahulkumar

    2014-12-01

    Many details of how thunderstorms generate terrestrial gamma ray flashes (TGFs) and other forms of high-energy radiation remain uncertain, including the basic question of where they are produced. We exploit the association of distinct low-frequency radio emissions with generation of terrestrial gamma ray flashes (TGFs) to directly measure for the first time the TGF source altitude. Analysis of two events reveals source altitudes of 11.8 ± 0.4 km and 11.9 ± 0.9 km. This places the source region in the interior of the thunderstorm between the two main charge layers and implies an intrinsic TGF brightness of approximately 1018 runaway electrons. The electric current in this nontraditional lightning process is found to be strong enough to drive nonlinear effects in the ionosphere, and in one case is comparable to the highest peak current lightning processes on the planet.

  1. Altitude dependence of nightside Martian suprathermal electron depletions as revealed by MAVEN observations

    NASA Astrophysics Data System (ADS)

    Steckiewicz, M.; Mazelle, C.; Garnier, P.; André, N.; Penou, E.; Beth, A.; Sauvaud, J.-A.; Toublanc, D.; Mitchell, D. L.; McFadden, J. P.; Luhmann, J. G.; Lillis, R. J.; Connerney, J. E. P.; Espley, J. R.; Andersson, L.; Halekas, J. S.; Larson, D. E.; Jakosky, B. M.

    2015-11-01

    The MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft is providing new detailed observations of the Martian ionosphere thanks to its unique orbital coverage and instrument suite. During most periapsis passages on the nightside ionosphere suprathermal electron depletions were detected. A simple criterion was implemented to identify the 1742 depletions observed from 16 November 2014 to 28 February 2015. A statistical analysis reveals that the main ion and electron populations within the depletions are surprisingly constant in time and altitude. Absorption by CO2 is the main loss process for suprathermal electrons, and electrons that strongly peaked around 6 eV are resulting from this interaction. The observation of depletions appears however highly dependent on altitude. Depletions are mainly located above strong crustal magnetic sources above 170 km, whereas the depletions observed for the first time below 170 km are globally scattered onto the Martian surface with no particular dependence on crustal fields.

  2. Altitude profiles of O2 on Mars from SPICAM stellar occultations

    NASA Astrophysics Data System (ADS)

    Sandel, B. R.; Gröller, H.; Yelle, R. V.; Koskinen, T.; Lewis, N. K.; Bertaux, J.-L.; Montmessin, F.; Quémerais, E.

    2015-05-01

    We determine the first altitude profiles of O2 in the important photochemical region below 120 km in the atmosphere of Mars by analyzing Mars Express/SPICAM ultraviolet observations of six occultations of stars by the atmosphere. Over the range of 90-130 km the altitude-averaged mixing ratio of O2 relative to the major constituent CO2 varies in space and time in the range of 3.1 ×10-3 - 5.8 ×10-3 , with a mean value of 4.0 ×10-3 . This mean value exceeds by a factor of 3-4 those reported earlier for the lower atmosphere. However, some of the O2 abundance and mixing ratio profiles determined here are similar to those measured by Viking in 1976 in the upper atmosphere.

  3. Laboratory evaluation of an airborne ozone instrument that compensates for altitude/sensitivity effects

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Hudgins, C. H.; Edahl, R. A., Jr.

    1983-01-01

    One problem encountered in the use of air-quality instrumentation on aircraft is the variation of instrument sensitivity with pressure as the result of altitude changes of the aircraft. Many instruments experience sensitivity changes of as much as a factor of 2 at altitudes of 6 km. Discussed are recent modifications to a chemiluminescent (ethylene) ozone detector that allow the instrument to automatically compensate for pressure/sensitivity effects. The modification provides automated mass flow rate control for both the sample and ethylene gas flows. The flow control systems maintain flow rate to within 15 percent for a 100-torr instantaneous pressure change, and flow rates are returned to the desired set points within 10 s after the pressure change. During simulated altitude changes (300 m/min from mean sea level to 3-km altitude), flow rates were controlled to within 3 percent of the set point. Laboratory data are summarized verifying the operation of the instrument for a pressure range of 760 torr (sea level) to 350 torr (approximately 20,000 ft) and an ozone concentration range from 20 to approximately 700 ppb.

  4. Nitric oxide in adaptation to altitude

    PubMed Central

    Laskowski, Daniel; Erzurum, Serpil C.

    2012-01-01

    This review summarizes published information on levels of nitric oxide gas (NO) in the lungs and NO-derived liquid phase molecules in the acclimatization of visitors newly arrived at altitudes of 2500m or more and adaptation of populations whose ancestors arrived thousands of years ago. Studies of acutely exposed visitors to high altitude focus on the first 24–48 hours with just a few extending to days or weeks. Among healthy visitors, NO levels in the lung, plasma and/or red blood cells fell within three hours, but then returned toward baseline or slightly higher by 48 hours, and increased above baseline by 5 days. Among visitors ill with high-altitude pulmonary edema at the time of the study or in the past, NO levels were lower than their healthy counterparts. As for highland populations, Tibetans had NO levels in the lung, plasma and red blood cells that were at least double and in some cases orders of magnitude greater than other populations regardless of altitude. Red blood cell associated nitrogen oxides were more than two hundred times higher. Other highland populations had generally higher levels although not to the degree showed by Tibetans. Overall, responses of those acclimatized and those presumed to be adapted are in the same direction although the Tibetans have much larger responses. Missing are long-term data on lowlanders at altitude showing how similar they become to the Tibetan phenotype. Also missing are data on Tibetans at low altitude to see the extent to which their phenotype is a response to the immediate environment or expressed constitutively. The mechanisms causing the visitors’ and the Tibetans’ high levels of NO and NO-derived molecules at altitude remain unknown. Limited data suggest processes including hypoxic upregulation of NO synthase gene expression, hemoglobin-NO reactions and genetic variation. Gains in understanding will require integrating appropriate methods and measurement techniques with indicators of adaptive function

  5. Magnetospheric plasma studies using data from the Dynamics high and low altitude plasma instruments. Technical report

    SciTech Connect

    Barfield, J.N.

    1983-05-15

    Plasma data from the High and Low Altitude Plasma Instruments aboard the Dynamics 1 and 2 (DE-1 and DE-2) satellites have been analyzed to investigate high latitude plasma characteristics. DE-1 hot plasma observations in the mid-altitude polar cusp have shown evidence of a significant velocity filtering phenomenon which is consistent with a latitudinally narrow region of plasma injection located at a geocentric distance of about 8 earth radii (RE). This velocity filtering effect allows the measurement of much smaller flow velocities (about km/s) than have heretofore been possible with plasma measurements. Observations at altitudes of 2-3 RE indicate two distinct types of counterstreaming electron events. The type 1 event is characterized by two Maxwellian distribution functions, an isotropic high-temperature component and a field-aligned low temperature component. Type 1 events appear to involve wave-particle interactions while type 2 events imply direct acceleration by oppositely-directed electric fields pointing toward the satellite along magnetic field lines. The data indicate that cold ionospheric electrons, which carry the downward region-1 Birkeland currents on the morning side, are accelerated upward by potential drops of tens of eV at altitudes of several thousand kilometers. This acceleration process allows spacecraft above those altitudes to measure routinely the charge carriers of both downward and upward current systems.

  6. Macroscopic time and altitude distribution of plasma turbulence induced in ionospheric modification experiments

    SciTech Connect

    Rose, H.; Dubois, D.; Russell, D.; Hanssen, A.

    1996-03-01

    This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This research concentrated on the time dependence of the heater, induced-turbulence, and electron-density profiles excited in the ionosphere by a powerful radio-frequency heater wave. The macroscopic density is driven by the ponderomotive pressure and the density self-consistently determines the heater propagation. For typical parameters of the current Arecibo heater, a dramatic quasi-periodic behavior was found. For about 50 ms after turn-on of the heater wave, the turbulence is concentrated at the first standing-wave maximum of the heater near reflection altitude. From 50--100 ms the standing-wave pattern drops by about 1--2 km in altitude and the quasi-periodicity reappears at the higher altitudes with a period of roughly 50 ms. This behavior is due to the half-wavelength density depletion grating that is set up by the ponderomotive pressure at the maxima of the heater standing-wave pattern. Once the grating is established the heater can no longer propagate to higher altitudes. The grating is then unsupported by the heater at these altitudes and decays, allowing the heater to propagate again and initiate another cycle. For stronger heater powers, corresponding to the Arecibo upgrade and the HAARP heater now under construction, the effects are much more dramatic.

  7. CLUSTER observations of lower hybrid waves excited at high altitudes by electromagnetic whistler mode signals from HAARP

    NASA Astrophysics Data System (ADS)

    Bell, T. F.; Inan, U. S.; Platino, M.; Pickett, J.; Kossey, P. A.; Kennedy, E. J.

    2003-12-01

    We report new observations from the CLUSTER spacecraft of strong excitation of lower hybrid waves by electromagnetic whistler mode waves at altitudes of roughly 20,000 km outside the plasmasphere. Previous observations of this phenomenon have been limited to altitudes less than 7000 km. The excitation mechanism appears to be linear mode coupling in the presence of small scale plasma density irregularities. The wavelengths of the excited lower hybrid waves, as deduced from their doppler shifts, appear to lie in the 15 - 1500 m range. These observations provide strong evidence that electromagnetic whistler mode waves are continuously transformed into lower hybrid waves as the whistler mode waves propagate at high altitudes beyond L = 4. This finding may explain the lack of lightning generated whistlers observed in this same region of space.

  8. Design study for a gound microwave power transmission system for use with a high-altitude powered platform

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1983-01-01

    The conceptual design of a ground-based microwave power transmission system is described. This system is intended to supply electrical power via an air link to a high-altitude (21 km) powered platform. The platform must be equipped with the required instrumentation (RECTENNA) to convert the RF energy to dc power.

  9. HIGH ALTITUDE TESTING OF RESIDENTIAL WOOD-FIRED COMBUSTION EQUIPMENT

    EPA Science Inventory

    To determine whether emissions from operating a wood stove at high altitude differ from those at low altitude, a high altitude sampling program was conducted which was compared to previously collected low altitude data. Emission tests were conducted in the identical model stove u...

  10. Extremely Low Ionospheric Peak Altitudes in the Polar-Hole Region

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Grebowsky, Joseph M.

    1999-01-01

    Vertical electron-density (N (sub e)) profiles, deduced from newly-available ISIS-II digital ionospheric topside-sounder data, are used to investigate the "polar-hole" region within the winter, nighttime polar cap ionosphere during solar minimum. The hole region is located around 0200 MLT near the poleward side of the auroral oval. Earlier investigations had revealed very low N (sub e) values in this region (down to 200/cu cm near 300 km). In the present study, such low N, values (approx. 100/cu cm) were only found near the ISIS (International Satellite for Ionospheric Study)-II altitude of 1400 km. The peak ionospheric concentration below the spacecraft remained fairly constant (approx. 10 (exp 5)/cu cm across the hole region but the altitude of the peak dropped dramatically. This peak dropped, surprisingly, to the vicinity of 100 km. These observations suggest that the earlier satellite in situ measurements, interpreted as deep holes in the ionospheric F-region concentration, could have been made during conditions of an extreme decrease in the altitude of the ionospheric N (sub e) peak. The observations, in combination with other data, indicate that the absence of an F-layer peak may be a frequent occurrence at high latitudes.

  11. High altitude pulmonary edema in mountain climbers.

    PubMed

    Korzeniewski, Krzysztof; Nitsch-Osuch, Aneta; Guzek, Aneta; Juszczak, Dariusz

    2015-04-01

    Every year thousands of ski, trekking or climbing fans travel to the mountains where they stay at the altitude of more than 2500-3000m above sea level or climb mountain peaks, often exceeding 7000-8000m. High mountain climbers are at a serious risk from the effects of adverse environmental conditions prevailing at higher elevations. They may experience health problems resulting from hypotension, hypoxia or exposure to low temperatures; the severity of those conditions is largely dependent on elevation, time of exposure as well as the rate of ascent and descent. A disease which poses a direct threat to the lives of mountain climbers is high altitude pulmonary edema (HAPE). It is a non-cardiogenic pulmonary edema which typically occurs in rapidly climbing unacclimatized lowlanders usually within 2-4 days of ascent above 2500-3000m. It is the most common cause of death resulting from the exposure to high altitude. The risk of HAPE rises with increased altitude and faster ascent. HAPE incidence ranges from an estimated 0.01% to 15.5%. Climbers with a previous history of HAPE, who ascent rapidly above 4500m have a 60% chance of illness recurrence. The aim of this article was to present the relevant details concerning epidemiology, pathophysiology, clinical symptoms, prevention, and treatment of high altitude pulmonary edema among climbers in the mountain environment. PMID:25291181

  12. Patients with Obstructive Sleep Apnea at Altitude.

    PubMed

    Bloch, Konrad E; Latshang, Tsogyal D; Ulrich, Silvia

    2015-06-01

    Bloch, Konrad E., Tsogyal D. Latshang, and Silvia Ulrich. Patients with obstructive sleep apnea at altitude. High Alt Med Biol 16:110-116, 2015.--Obstructive sleep apnea (OSA) is highly prevalent in the general population, in particular in men and women of older age. In OSA patients sleeping near sea level, the apneas/hypopneas associated with intermittent hypoxemia are predominantly due to upper airway collapse. When OSA patients stay at altitudes above 1600 m, corresponding to that of many tourist destinations, hypobaric hypoxia promotes frequent central apneas in addition to obstructive events, resulting in combined intermittent and sustained hypoxia. This induces strong sympathetic activation with elevated heart rate, cardiac arrhythmia, and systemic hypertension. There are concerns that these changes expose susceptible OSA patients, in particular those with advanced age and co-morbidities, to an excessive risk of cardiovascular and other adverse events during a stay at altitude. Based on data from randomized trials, it seems advisable for OSA patients to use continuous positive airway pressure treatment with computer controlled mask pressure adjustment (autoCPAP) in combination with acetazolamide during an altitude sojourn. If CPAP therapy is not feasible, acetazolamide alone is better than no treatment at all, as it improves oxygenation and sleep apnea and prevents excessive blood pressure rises of OSA patients at altitude. PMID:25973669

  13. Wind study for high altitude platform design

    NASA Technical Reports Server (NTRS)

    Strganac, T. W.

    1979-01-01

    An analysis of upper air winds was performed to define the wind environment at potential operating altitudes for high altitude powered platform concepts. Wind conditions of the continental United States, Pacific area (Alaska to Sea of Japan), and European area (Norwegian and Mediterranean Sea) were obtained using a representative network of sites selected based upon adequate high altitude sampling, geographic dispersion, and observed upper wind patterns. A data base of twenty plus years of rawinsonde gathered wind information was used in the analysis. Annual variations from surface to 10 mb pressure altitude were investigated to encompass the practical operating range for the platform concepts. Parametric analysis for the United States and foreign areas was performed to provide a basis for vehicle system design tradeoffs. This analysis of wind magnitudes indicates the feasibility of annual operation at a majority of sites and more selective seasonal operation for the extreme conditions between the pressure altitudes of 100 to 25 mb based upon the assumed design speeds.

  14. Responses of the autonomic nervous system in altitude adapted and high altitude pulmonary oedema subjects

    NASA Astrophysics Data System (ADS)

    Mathew, Lazar; Purkayastha, S. S.; Jayashankar, A.; Radhakrishnan, U.; Sen Gupta, J.; Nayar, H. S.

    1985-06-01

    Studies were carried out to ascertain the role of sympatho-parasympathetic responses in the process of adaptation to altitude. The assessment of status of autonomic balance was carried out in a group of 20 young male subjects by recording their resting heart rate, blood pressure, oral temperature, mean skin temperature, extremity temperatures, pupillary diameter, cold pressor response, oxygen consumption, cardioacceleration during orthostasis and urinary excretion of catecholamines; in a thermoneutral laboratory. The same parameters were repeated on day 3 and at weekly intervals for a period of 3 weeks, after exposing them to 3,500 m; and also after return to sea level. At altitude, similar studies were carried out in a group of 10 acclimatized lowlanders, 10 high altitude natives and 6 patients who had recently recovered from high altitude pulmonary oedema. In another phase, similar studies were done in two groups of subjects, one representing 15 subjects who had stayed at altitude (3,500 4,000 m) without any ill effects and the other comprising of 10 subjects who had either suffered from high altitude pulmonary oedema (HAPO) or acute mountain sickness (AMS). The results revealed sympathetic overactivity on acute induction to altitude which showed gradual recovery on prolonged stay, the high altitude natives had preponderance to parasympathetic system. Sympathetic preponderance may not be an essential etiological factor for the causation of maladaptation syndromes.

  15. Altitude Performance of J35-A-17 Turbojet Engine in an Altitude Chamber

    NASA Technical Reports Server (NTRS)

    Vincent, K. R.; Gale, B. M.

    1951-01-01

    An investigation of the altitude performance characteristics of an Allison J35-A-17 turbojet engines have been conducted in an altitude chamber at the NACA Lewis laboratory. Engine performance was obtained over a range of altitudes from 20,000 to 60,000 feet at a flight Mach number of 0.62 and a range of flight Mach numbers from 0.42 to 1.22 at an altitude of 30,000 feet. The performance of the engine over the range investigated could be generalized up to an altitude of 30,000 feet. Performance of the engine at any flight Mach number in the range investigated can be predicted for those operating condition a t which critical flow exits in the exhaust nozzle with the exception of the variables corrected net thrust, and net-thrust specific fuel consumption.

  16. Tests of artificial flight at high altitudes

    NASA Technical Reports Server (NTRS)

    Gradenwitz, Arthur

    1920-01-01

    If we wish to form an accurate idea of the extraordinary progress achieved in aeronautics, a comparison must be made of the latest altitude records and the figures regarded as highest attainable limit some ten years ago. It is desirable, for two reasons, that we should be able to define the limit of the altitudes that can be reached without artificial aid. First, to know to what extent the human body can endure the inhalation of rarified air. Second, the mental capacity of the aviator must be tested at high altitudes and the limit known below which he is able to make reliable observations without being artificially supplied with oxygen. A pneumatic chamber was used for the most accurate observations.

  17. Sonic Thermometer for High-Altitude Balloons

    NASA Technical Reports Server (NTRS)

    Bognar, John

    2012-01-01

    The sonic thermometer is a specialized application of well-known sonic anemometer technology. Adaptations have been made to the circuit, including the addition of supporting sensors, which enable its use in the high-altitude environment and in non-air gas mixtures. There is a need to measure gas temperatures inside and outside of superpressure balloons that are flown at high altitudes. These measurements will allow the performance of the balloon to be modeled more accurately, leading to better flight performance. Small thermistors (solid-state temperature sensors) have been used for this general purpose, and for temperature measurements on radiosondes. A disadvantage to thermistors and other physical (as distinct from sonic) temperature sensors is that they are subject to solar heating errors when they are exposed to the Sun, and this leads to issues with their use in a very high-altitude environment

  18. Paschen Considerations for High Altitude Airships

    NASA Technical Reports Server (NTRS)

    Ferguson, D. C.; Hillard, G. B.

    2004-01-01

    Recently, there have been several proposals submitted to funding agencies for long-lived high altitude (about 70,000 feet) airships for communications, surveillance, etc. In order for these airships to remain at altitude, high power, high efficiency, lightweight solar arrays must be used, and high efficiency power management and distribution systems must be employed. The needs for high power and high efficiency imply high voltage systems. However, the air pressure at these extreme altitudes is such that electrical power systems will be near the Paschen discharge minimum over a wide range of electrode separations. In this paper, preliminary calculations are made for acceptable high voltage design practices under ambient, hydrogen and helium gas atmospheres.

  19. Long-term stay at low altitude (1,200 m) promotes better hypoxia adaptation and performance.

    PubMed

    Singh, Krishan; Gupta, R K; Soree, Poonam; Rai, Lokesh; Himashree, G

    2014-01-01

    Acute exposure to high altitude hypoxia is known to decrease physical performance. The exercise performance increases during moderate altitude training (2000-3000 m) but benefits are overshadowed by adverse effect associated with hypoxia. Therefore, the study was designed to address whether low altitude of 1200 m could increase exercise performance without any adverse effects and a correlation with stay period (stay > 6 month) was optimized. In the present study residents of lower altitude (1200 m altitude) (LA) and sea level (SL) residents were subjected to sub-maximal exercise test and their exercise response in terms of post-exercise heart rate and change in oxygen saturation was compared. Post-exercise peak heart rate (129.89 ± 13.42 vs 146.00 ± 11.81, p < 0.05) was significantly lower and arterial oxygen saturation (SpO2) after exercise had a significant fall (95.3 ± 2.26% vs 98 ± 0% p < 0.001) in LA residents. The hematological parameters like hemoglobin (Hb) and hematocrit (Hct) taken as markers of physiological adaptation, were also found to be significantly higher in LA as compared to SL residents (Hb 16.13 ± 0.70 vs 14.2 ± 0.87, p < 0.001 and Hct 47.4 ± ?2.08 vs 44.0 ± ?0.72, p <0.001). Overall, the study highlights that physiological adaptation at 1200 m results into a better exercise response and hematological benefit compared to sea level residents. PMID:26215004

  20. Low-Altitude Magnetic Topology with MAVEN SWEA and MAG

    NASA Astrophysics Data System (ADS)

    Mitchell, David; Xu, Shaosui; Mazelle, Christian; Luhmann, Janet; McFadden, James; Connerney, John; Liemohn, Michael; Dong, Chuanfei; Bougher, Stephen; Fillingim, Matthew

    2016-04-01

    The Solar Wind Electron Analyzer (SWEA) and Magnetometer (MAG) onboard the MAVEN spacecraft measure electron pitch angle and energy distributions at 2-second resolution (~8 km along the orbit track) to determine the topology of magnetic fields from both external and crustal sources. Electrons from different regions of the Mars environment can be distinguished by their energy distributions. Thus, pitch angle resolved energy spectra can be used to determine the plasma source regions sampled by a field line at large distances from the spacecraft. From 12/1/2014 to 2/15/2015, when periapsis was at high northern latitudes, SWEA observed ionospheric photoelectrons at low altitudes (140-200 km) and high solar zenith angles (120-145 degrees) on ~35% of the orbits. Since this electron population is unambiguously produced in the dayside ionosphere, these observations demonstrate that the deep Martian nightside is at times magnetically connected to the sunlit hemisphere. The BATS-R-US Mars multi-fluid MHD model suggests the presence of closed crustal magnetic field lines over the northern hemisphere that straddle the terminator and extend to high SZA. Simulations with the SuperThermal Electron Transport (STET) model show that photoelectron transport along such field lines can take place without significant attenuation. Precipitation of photoelectrons onto the night-side atmosphere should cause ionization and possibly auroral emissions in localized regions. On one orbit, the O2+ energy flux measured by STATIC correlates well with precipitating photoelectron fluxes.

  1. Images of Bottomside Irregularities Observed at Topside Altitudes

    NASA Technical Reports Server (NTRS)

    Burke, William J.; Gentile, Louise C.; Shomo, Shannon R.; Roddy, Patrick A.; Pfaff, Robert F.

    2012-01-01

    We analyzed plasma and field measurements acquired by the Communication/ Navigation Outage Forecasting System (C/NOFS) satellite during an eight-hour period on 13-14 January 2010 when strong to moderate 250 MHz scintillation activity was observed at nearby Scintillation Network Decision Aid (SCINDA) ground stations. C/NOFS consistently detected relatively small-scale density and electric field irregularities embedded within large-scale (approx 100 km) structures at topside altitudes. Significant spectral power measured at the Fresnel (approx 1 km) scale size suggests that C/NOFS was magnetically conjugate to bottomside irregularities similar to those directly responsible for the observed scintillations. Simultaneous ion drift and plasma density measurements indicate three distinct types of large-scale irregularities: (1) upward moving depletions, (2) downward moving depletions, and (3) upward moving density enhancements. The first type has the characteristics of equatorial plasma bubbles; the second and third do not. The data suggest that both downward moving depletions and upward moving density enhancements and the embedded small-scale irregularities may be regarded as Alfvenic images of bottomside irregularities. This interpretation is consistent with predictions of previously reported theoretical modeling and with satellite observations of upward-directed Poynting flux in the low-latitude ionosphere.

  2. Measurement of the condensation nuclei profile to 31 km in the Arctic in January 1989 and comparisons with Antarctic measurements

    SciTech Connect

    Hofmann, D.J. )

    1990-03-01

    The first measurement of the condensation nuclei (CN) profile in the Arctic during winter was made to 31 km on 30 January 1989 from Kiruna Sweden (68{degree}N). Enhanced levels of CN were observed in the colder regions above 18 km suggesting homogeneous or ion nucleation of CN as observed previously in Antarctica. A CN layer reaching a concentration of about 40 cm{sup {minus}3} was observed between 22.5 and 26 km. Comparison with data obtained in Antarctica in 1987 and 1988 indicate that this layer is similar to those observed at the same altitude in Antarctica under similar solar illumination conditions. The latter are believed to be of photochemical origin as suggested by measurements before and after stratospheric sunrise. This CN layer may thus serve as a measure of the amount of time an air parcel has spent in sunlight, an important parameter during the early stages of spring ozone depletion.

  3. MODIS 3km Aerosol Product: Algorithm and Global Perspective

    NASA Technical Reports Server (NTRS)

    Remer, L. A.; Mattoo, S.; Levy, R. C.; Munchak, L.

    2013-01-01

    After more than a decade of producing a nominal 10 km aerosol product based on the dark target method, the MODIS aerosol team will be releasing a nominal 3 km product as part of their Collection 6 release. The new product differs from the original 10 km product only in the manner in which reflectance pixels are ingested, organized and selected by the aerosol algorithm. Overall, the 3 km product closely mirrors the 10 km product. However, the finer resolution product is able to retrieve over ocean closer to islands and coastlines, and is better able to resolve fine aerosol features such as smoke plumes over both ocean and land. In some situations, it provides retrievals over entire regions that the 10 km product barely samples. In situations traditionally difficult for the dark target algorithm, such as over bright or urban surfaces the 3 km product introduces isolated spikes of artificially high aerosol optical depth (AOD) that the 10 km algorithm avoids. Over land, globally, the 3 km product appears to be 0.01 to 0.02 higher than the 10 km product, while over ocean, the 3 km algorithm is retrieving a proportionally greater number of very low aerosol loading situations. Based on collocations with ground-based observations for only six months, expected errors associated with the 3 km land product are determined to be greater than for the 10 km product: 0.05 0.25 AOD. Over ocean, the suggestion is for expected errors to be the same as the 10 km product: 0.03 0.05 AOD. The advantage of the product is on the local scale, which will require continued evaluation not addressed here. Nevertheless, the new 3 km product is expected to provide important information complementary to existing satellite-derived products and become an important tool for the aerosol community.

  4. First observation of mesospheric wind shear as high as 330 m s-1 km-1

    NASA Astrophysics Data System (ADS)

    Wu, Yong-Fu; Widdel, H.-U.; Offermann, D.

    1995-09-01

    Mesospheric wind profiles with an altitude resolution of 25 m have been obtained by means of radar tracking of foil chaff clouds. Such experiments were performed during winter 1990 at Biscarrosse, France (44°N, 1°W). On one flight, a wind shear as high as 330 m s-1 km-1 at 87.4 km and a region of dynamical instability between 86 and 88 km was measured. This wind shear is believed to be the largest value ever measured in the mesosphere. The region of dynamical instability results from a superposition of two wave motions, and is found to link well with enhanced turbulence and small-scale wave activity. Acknowledgements. I thank D. R. McDiarmid of the Herzberg Institute of Astrophysics, National Research Council, Canada, for important ideas and discussions during the development of this work. I thank the referees for useful comments which have improved the paper. I also thank E.M. Poulter of NIWA for helpful suggestions, and for reading the manuscript and making useful comments. The work was supported by contract CO1309 of the New Zealand Foundation for Research, Science and Technology. Topical Editor C.-G. Fälthammar thanks K. Mursula and W. J. Hughes for their help in evaluating this paper.--> Correspondence to: W. Allan-->

  5. Extension of photomultiplier tube dynamic range for the LHAASO-KM2A electromagnetic particle detectors

    NASA Astrophysics Data System (ADS)

    Lv, Hongkui; Sheng, Xiangdong; He, Huihai; Liu, Jia; Zhang, Zhongquan; Hou, Chao; Zhao, Jing

    2015-05-01

    In the Large High Altitude Air Shower Observatory (LHAASO), the 1 km2 array (KM2A) requires linear measurement of optical intensity with a wide dynamic range. Over 5000 photomultiplier tubes (PMTs) are employed in this experiment and developed as "two outputs" device (anode and dynode) to meet the relevant requirements. In this study, the linearity of the anode and the eighth dynode (DY8), which is limited by space charge effects and mainly related to the relative dynode voltage ratios of the PMT divider, is examined. A voltage divider for the Hamamatsu R11102 PMT is designed and a dramatically enhanced linearity is demonstrated. Test results show that this design can cover a wide dynamic range from 20 to 2×105 photoelectrons and achieve a peak anode current of 380 mA at a PMT gain of 105, which satisfies the requirements of KM2A electromagnetic particle detectors. The circuit design has been successfully simulated using the simulation software Multisim. The details of PMT performance tests and simulations are described.

  6. The Power of Aircraft Engines at Altitude

    NASA Technical Reports Server (NTRS)

    Ragazzi, Paolo

    1939-01-01

    The subject of the present paper is confined to the investigations and methods employed by the Fiat company in their studies on the altitude performance of an air-cooled engine of the production type. The experimental set-up as well as test engine data are provided.

  7. Sickle Cell Trait, Exercise, and Altitude.

    ERIC Educational Resources Information Center

    Eichner, Edward R.

    1986-01-01

    Sickle cell trait is generally benign and does not shorten life, but it may confer some small risk with extremes of exercise or altitude. Research concerning these risks is presented, and it is concluded sickle cell trait is no barrier to outstanding athletic performance. (Author/MT)

  8. AWT aerodynamic design status. [Altitude Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Davis, Milt W.

    1984-01-01

    The aerodynamic design of the NASA Altitude Wind Tunnel is presented in viewgraph format. The main topics covered are: analysis of a plenum evacuation system; airline definition and pressure loss code development; contraction geometry and code analysis; and design of the two stage fan. Flow characteristics such as pressure ratio, mach number distribution, adiabatic efficiency, and losses are shown.

  9. Sextant measures spacecraft altitude without gravitational reference

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Horizon-sensing sextant measures the altitude of an orbiting spacecraft without gravitational reference by optically measuring the dip angle to the horizon along a line of sight in each of two planes. The sextant scans over a relatively limited field of view.

  10. SRB Altitude Switch Assembly Wire Harness Failure

    NASA Astrophysics Data System (ADS)

    Blanche, Jim

    2002-01-01

    This paper presents an assessment of two wire harness failures that had occurred in Solid Rocket Booster Altitude Switch Assemblies S/N 200001 and S/N 20002. A list of modifications to EDU #4 and modification of qualification units 2000001 and 2000002 are also presented.

  11. Dietary Recommendations for Cyclists during Altitude Training

    PubMed Central

    Michalczyk, Małgorzata; Czuba, Miłosz; Zydek, Grzegorz; Zając, Adam; Langfort, Józef

    2016-01-01

    The concept of altitude or hypoxic training is a common practice in cycling. However, several strategies for training regimens have been proposed, like “live high, train high” (LH-TH), “live high, train low” (LH-TL) or “intermittent hypoxic training” (IHT). Each of them combines the effect of acclimatization and different training protocols that require specific nutrition. An appropriate nutrition strategy and adequate hydration can help athletes achieve their fitness and performance goals in this unfriendly environment. In this review, the physiological stress of altitude exposure and training will be discussed, with specific nutrition recommendations for athletes training under such conditions. However, there is little research about the nutrition demands of athletes who train at moderate altitude. Our review considers energetic demands and body mass or body composition changes due to altitude training, including respiratory and urinary water loss under these conditions. Carbohydrate intake recommendations and hydration status are discussed in detail, while iron storage and metabolism is also considered. Last, but not least the risk of increased oxidative stress under hypoxic conditions and antioxidant supplementation suggestions are presented. PMID:27322318

  12. High power synchronous altitude satellite system

    SciTech Connect

    Keigler, J.E.

    1981-12-01

    The design and attitude control system of the illustrated momentum stabilized synchronous altitude spacecraft are such that relatively large amounts of electrical power may be derived from its sun oriented planar solar array. The system is illustrated and the control of the spacecraft to stabilize it about all three axes with respect to the sun is described.

  13. High-altitude physiology: lessons from Tibet

    NASA Astrophysics Data System (ADS)

    Wagner, Peter D.; Simonson, Tatum S.; Wei, Guan; Wagner, Harrieth; Wuren, Tanna; Yan, Ma; Qin, Ga; Ge, Rili

    2013-05-01

    Polycythemia is a universal lowlander response to altitude; healthy Andean high-altitude natives also have elevated [Hb]. While this may enhance O2 transport to tissues, studies have shown that acute isovolumic changes in [Hb] do not affect exercise capacity. Many high-altitude Tibetans have evolved sea-level values of [Hb], providing a natural opportunity to study this issue. In 21 young healthy male Tibetans with [Hb] between 15 and 23 g/dl, we measured VO2MAX and O2 transport capacity at 4200m. VO2MAX was higher when [Hb] was lower (P<0.05), enabled by both higher cardiac output and muscle O2 diffusional conductance, but neither ventilation nor the alveolar-arterial PO2 difference (AaPO2) varied with [Hb]. In contrast, Andean high altitude natives remain polycythemic with larger lungs and higher lung diffusing capacity, a smaller exercising AaPO2, and lower ventilation. The challenges now are (1) to understand the different adaptive pathways used by Andeans and Tibetans, and (2) to determine in Tibetans whether, during evolution, reduced [Hb] appeared first, causing compensatory cardiac and muscle adaptations, or if enhanced cardiac function and muscle O2 transport capacity appeared first, permitting secondary reduction in [Hb]. For (2), further research is necessary to determine the basis of enhanced cardiac function and muscle O2 transport, and identify molecular targets of evolution in heart and muscle. Putative mutations can then be timed and compared to appearance of those affecting [Hb].

  14. The visually guided control of simulated altitude

    NASA Technical Reports Server (NTRS)

    Johnson, W. W.; Tsang, P. S.; Bennett, C. T.; Phatak, A. V.

    1989-01-01

    Simulated "flights" over three different ground textures were used to examine people's ability to extract optical information useful for active regulation of altitude. The textures were regularly spaced lines as follows: 1) orthogonal to the direction of flight (latitude texture); 2) parallel to the direction of flight (meridian texture); and 3) both parallel and orthogonal (square texture). Visual constant velocity forward flight simulations were displayed on a CRT screen, and subjects asked to maintain one of three initial altitudes using a rate control stick. This task was made difficult by the presence of lateral (irrelevant) and vertical (relevant) "wind gusts." The attitude never varied as winds, forward speed, and vertical rate control resulted in only translational movements. Adjusted root mean square errors (ARMSE) showed altitude regulation was more difficult at higher altitudes and when flying over meridian textures. Refined analysis of a single subject's data showed that this was due both to poorer regulation of the vertical wind disturbance and to a tendency to confuse the lateral wind disturbance for a vertical disturbance.

  15. Safely Enabling Low-Altitude Airspace Operations

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal

    2015-01-01

    Near-term Goal: Enable initial low-altitude airspace and UAS operations with demonstrated safety as early as possible, within 5 years. Long-term Goal: Accommodate increased UAS operations with highest safety, efficiency, and capacity as much autonomously as possible (10-15 years).

  16. Safely Enabling Low-Altitude Airspace Operations

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal

    2015-01-01

    Near-term Goal - Enable initial low-altitude airspace and UAS operations with demonstrated safety as early as possible, within 5 years. Long-term Goal - Accommodate increased UAS operations with highest safety, efficiency, and capacity as much autonomously as possible (10-15 years).

  17. High-altitude solar power platform

    SciTech Connect

    Bailey, M.D.; Bower, M.V.

    1992-04-01

    Solar power is a preeminent alternative to conventional aircraft propulsion. With the continued advances in solar cells, fuel cells, and composite materials technology, the solar powered airplane is no longer a simple curiosity constrained to flights of several feet in altitude or minutes of duration. A high altitude solar powered platform (HASPP) has several potential missions, including communications and agriculture. In remote areas, a HASPP could be used as a communication link. In large farming areas, a HASPP could perform remote sensing of crops. The impact of HASPP in continuous flight for one year on agricultural monitoring mission is presented. This mission provides farmers with near real-time data twice daily from an altitude which allows excellant resolution on water conditions, crop diseases, and insect infestation. Accurate, timely data will enable farmers to increase their yield and efficiency. A design for HASPP for the foregoing mission is presented. In the design power derived from solar cells covering the wings is used for propulsion, avionics, and sensors. Excess power produced midday will be stored in fuel cells for use at night to maintain altitude and course.

  18. Altitude Adaptation: A Glimpse Through Various Lenses

    PubMed Central

    2015-01-01

    Abstract Simonson, Tatum S. Altitude adaptation: A glimpse through various lenses. High Alt Med Biol 16:125–137, 2015.—Recent availability of genome-wide data from highland populations has enabled the identification of adaptive genomic signals. Some of the genomic signals reported thus far among Tibetan, Andean, and Ethiopian are the same, while others appear unique to each population. These genomic findings parallel observations conveyed by decades of physiological research: different continental populations, resident at high altitude for hundreds of generations, exhibit a distinct composite of traits at altitude. The most commonly reported signatures of selection emanate from genomic segments containing hypoxia-inducible factor (HIF) pathway genes. Corroborative evidence for adaptive significance stems from associations between putatively adaptive gene copies and sea-level ranges of hemoglobin concentration in Tibetan and Amhara Ethiopians, birth weights and metabolic factors in Andeans and Tibetans, maternal uterine artery diameter in Andeans, and protection from chronic mountain sickness in Andean males at altitude. While limited reports provide mechanistic insights thus far, efforts to identify and link precise genetic variants to molecular, physiological, and developmental functions are underway, and progress on the genomics front continues to provide unprecedented movement towards these goals. This combination of multiple perspectives is necessary to maximize our understanding of orchestrated biological and evolutionary processes in native highland populations, which will advance our understanding of both adaptive and non-adaptive responses to hypoxia. PMID:26070057

  19. 78 FR 9583 - IFR Altitudes; Miscellaneous Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... ``significant rule'' under DOT Regulatory Policiesand Procedures (44 FR 11034; February 26, 1979); and (3) does... Changeover Points FROM TO MEA MAA Sec. 95.3000 Low Altitude RNAV Routes Sec. 95.3254 RNAV Route T254 is Amended to Read in Part COLLEGE STATION, TX VORTAC HIPPS, TX FIX 3000 15000 HIPPS, TX FIX EAKES, TX...

  20. Measurement of aircraft speed and altitude

    NASA Technical Reports Server (NTRS)

    Gracey, W.

    1980-01-01

    Problems involved in measuring speed and altitude with pressure-actuated instruments (altimeter, airspeed indicator, true-airspeed indicator, Machmeter, and vertical-speed indicator) are examined. Equations relating total pressure and static pressure to the five flight quantities are presented, and criteria for the design of total and static pressure tubes are given. Calibrations of typical static pressure installations (fuselage nose, wing tip, vertical fin, and fuselage vent) are presented, various methods for flight calibration of these installations are described, and the calibration of a particular installation by two of the methods is described in detail. Equations are given for estimating the effects of pressure lag and leaks. Test procedures for the laboratory calibration of the five instruments are described, and accuracies of mechanical and electrical instruments are presented. Operational use of the altimeter for terrain clearance and vertical separation of aircraft is discussed, along with flight technical errors and overall altitude errors of aircraft in cruise operations. Altitude-measuring techniques based on a variety of properties of the Earth and the atmosphere are included. Two appendixes present airspeed and altitude tables and sample calculations for determining the various flight parameters from measured total and static pressures.

  1. The morbid anatomy of high altitude

    PubMed Central

    Heath, Donald

    1979-01-01

    The morbid anatomical changes which take place in man and animals exposed to the chronic hypoxia of residence at high altitude are briefly reviewed. ImagesFig. 1Fig. 2Fig. 3Fig. 5Fig. 4Fig. 6Fig. 7Fig. 8 PMID:493205

  2. Dietary Recommendations for Cyclists during Altitude Training.

    PubMed

    Michalczyk, Małgorzata; Czuba, Miłosz; Zydek, Grzegorz; Zając, Adam; Langfort, Józef

    2016-01-01

    The concept of altitude or hypoxic training is a common practice in cycling. However, several strategies for training regimens have been proposed, like "live high, train high" (LH-TH), "live high, train low" (LH-TL) or "intermittent hypoxic training" (IHT). Each of them combines the effect of acclimatization and different training protocols that require specific nutrition. An appropriate nutrition strategy and adequate hydration can help athletes achieve their fitness and performance goals in this unfriendly environment. In this review, the physiological stress of altitude exposure and training will be discussed, with specific nutrition recommendations for athletes training under such conditions. However, there is little research about the nutrition demands of athletes who train at moderate altitude. Our review considers energetic demands and body mass or body composition changes due to altitude training, including respiratory and urinary water loss under these conditions. Carbohydrate intake recommendations and hydration status are discussed in detail, while iron storage and metabolism is also considered. Last, but not least the risk of increased oxidative stress under hypoxic conditions and antioxidant supplementation suggestions are presented. PMID:27322318

  3. Mercury's Internal Magnetic Field: Results from MESSENGER's Low-altitude Campaign

    NASA Astrophysics Data System (ADS)

    Johnson, C. L.; Purucker, M. E.; Philpott, L. C.; Korth, H.; Anderson, B. J.; Winslow, R. M.; Al Asad, M.; Nicholas, J. B.; Tsyganenko, N. A.; Hauck, S. A., II; Head, J. W., III; Phillips, R. J.; Solomon, S. C.

    2014-12-01

    Magnetic field measurements made by the MESSENGER spacecraft in orbit around Mercury have shown that, to first order, Mercury's internal field can be described by an axially aligned dipole, offset by 479 km north of the geographic equator (the offset axial dipole, hereafter OAD). Near-periapsis MESSENGER magnetic field measurements at altitudes less than 200 km have been obtained since April 2014. We use these observations, together with higher altitude data from orbits that have been characterized with low magnetic activity , to identify non-OAD internal field structure and to establish whether it is of crustal and/or core origin. Magnetospheric models developed with MESSENGER data allow estimated contributions from magnetopause, magnetotail, and OAD fields to be subtracted from vector magnetic field measurements, and the sources of residual signatures to be examined. For measurements made at spacecraft altitudes above 200 km, determining the magnitude and sources of additional regional and global-scale contributions to the internal field has been challenging because of MESSENGER's orbit geometry and because the residuals are dominated by additional external fields that are organized in the local time frame and that vary with magnetospheric activity. After accounting for the large-scale magnetospheric fields, any additional external field contributions to the residual fields are estimated empirically in the local time frame. We investigate crustal and core contributions to the remaining signals, in particular to the low altitude signals, by examining repeatability in the body-fixed frame and using global (spherical harmonic) and local (equivalent source dipole) basis functions with regularization. Crustal sources associated with large-scale regional geological provinces such as the northern lowlands, the northern rise, and major impact basins are investigated and equivalent spherical harmonic core/crustal field spectra computed.

  4. SHARP (Stationary High Altitude Relay Platform) - Rectenna and low altitude tests

    NASA Astrophysics Data System (ADS)

    Schlesak, J. J.; Alden, A.; Ohno, T.

    This paper describes a planned low-altitude microwave-powered flight test to demonstrate several key features of the SHARP (Stationary High Altitude Relay Platform) concept. A small-scale airplane will be flown at an altitude of about 50 m, powered by microwave energy transmitted from the ground. RF power at a frequency of 2.45 GHz will be converted to dc by an array of rectennas mounted on the lower surfaces of the airplane's wings. A novel dual-polarized rectenna system has been developed for powering the scaled model. The RF to dc power conversion efficiency of this rectenna is about 60 percent.

  5. Italian high altitude laboratories: past and present.

    PubMed

    Cogo, A; Ponchia, A; Pecchio, O; Losano, G; Cerretelli, P

    2000-01-01

    Italy is a mountainous country with a total of 88 huts and bivouacs at altitudes higher than 3,000 m. Starting in the 19th century a great deal of research in high altitude pathophysiology has been carried out in Italy and many Italian physicians have been involved in mountain medicine. Most of the Italian research has been carried out at two locations: the scientific laboratories "Angelo Mosso" on Monte Rosa (Capanna Regina Margherita and Laboratorio Angelo Mosso), and the "Pyramid" in Nepal. The Capanna Regina Margherita, located on the top of Punta Gnifetti (Monte Rosa, 4,559 m), was inaugurated in 1893. With the support of Queen Margherita of Savoy, an Observatory for scientific studies was built beside this hut in 1894. In 1980 the hut was completely rebuilt by the Italian Alpine Club. The Istituto Angelo Mosso at Col d'Olen, at the base of Monte Rosa (at 2,900 m) was inaugurated in 1907. The high altitude laboratory named the "Pyramid" was built in 1990. Made of glass and aluminium, this pyramid-shaped structure is situated in Nepal at 5,050 m. The scientific laboratories "Angelo Mosso" on Monte Rosa (mainly the Capanna Regina Margherita) and the Pyramid form a nucleus for high altitude research: the former is especially devoted to research regarding acute mountain sickness and the response to subacute hypoxia, whereas the latter is a unique facility for research responses to chronic hypoxia, the effect of exposure to very high altitude, and the study of the resident population living in the Himalayas for at least 25,000 years. PMID:11256565

  6. Reducing body fat with altitude hypoxia training in swimmers: role of blood perfusion to skeletal muscles.

    PubMed

    Chia, Michael; Liao, Chin-An; Huang, Chih-Yang; Lee, Wen-Chih; Hou, Chien-Wen; Yu, Szu-Hsien; Harris, M Brennan; Hsu, Tung-Shiung; Lee, Shin-Da; Kuo, Chia-Hua

    2013-02-28

    Swimmers tend to have greater body fat than athletes from other sports. The purpose of the study was to examine changes in body composition after altitude hypoxia exposure and the role of blood distribution to the skeletal muscle in swimmers. With a constant training volume of 12.3 km/day, young male swimmers (N = 10, 14.8 ± 0.5 years) moved from sea-level to a higher altitude of 2,300 meters. Body composition was measured before and after translocation to altitude using dual-energy X-ray absorptiometry (DXA) along with 8 control male subjects who resided at sea level for the same period of time. To determine the effects of hypoxia on muscle blood perfusion, total hemoglobin concentration (THC) was traced by near-infrared spectroscopy (NIRS) in the triceps and quadriceps muscles under glucose-ingested and insulin-secreted conditions during hypoxia exposure (16% O2) after training. While no change in body composition was found in the control group, subjects who trained at altitude had unequivocally decreased fat mass (-1.7 ± 0.3 kg, -11.4%) with increased lean mass (+0.8 ± 0.2 kg, +1.5%). Arterial oxygen saturation significantly decreased with increased plasma lactate during hypoxia recovery mimicking 2,300 meters at altitude (~93% versus ~97%). Intriguingly, hypoxia resulted in elevated muscle THC, and sympathetic nervous activities occurred in parallel with greater-percent oxygen saturation in both muscle groups. In conclusion, the present study provides evidence that increased blood distribution to the skeletal muscle under postprandial condition may contribute to the reciprocally increased muscle mass and decreased body mass after a 3-week altitude exposure in swimmers. PMID:23347012

  7. High altitude bird migration at temperate latitudes: a synoptic perspective on wind assistance.

    PubMed

    Dokter, Adriaan M; Shamoun-Baranes, Judy; Kemp, Michael U; Tijm, Sander; Holleman, Iwan

    2013-01-01

    At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts. PMID:23300969

  8. Altitude and forest edges influence the density and distribution of pygmy tarsiers (Tarsius pumilus).

    PubMed

    Grow, Nanda; Gursky, Sharon; Duma, Yulius

    2013-05-01

    In this study, we examine how high-altitude ecology and anthropogenic edges relate to the density and distribution of pygmy tarsiers. Pygmy tarsiers (Tarsius pumilus) are extremely small-bodied primates (55 g) that are endemic to high-altitude forest and exhibit several differences from lowland Sulawesian tarsier species. From June to September 2010 and January to March 2012, we conducted a population census of pygmy tarsiers across multiple altitudes. Sampling took place within a 1.2 km(2) area encompassing altitudes of 2,000-2,300 m a.s.l. on Mt. Rore Katimbu in Lore Lindu National Park, central Sulawesi, Indonesia. We observed 22 individuals, with an estimated population density of 92 individuals per 100 ha. These results indicate that pygmy tarsiers live at a lower density than lowland Sulawesian tarsier species. Lower density was associated with decreased resources at higher altitudes, including decreased tree size, tree density, and insect biomass. Within the sample area, we found pygmy tarsiers in only 8 of 24 (33%) quadrats, suggesting a nonrandom distribution that probably overinflated this population density estimate. Pygmy tarsiers exhibited a clumped distribution near anthropogenic edges that were associated with increased insect abundance and biomass. Airborne insects were more abundant along forest edges than within the forest interior, and pygmy tarsiers were observed to forage along edges where there was a higher abundance of Lepidoptera and Orthoptera. Tarsiers may mitigate the decreased availability of insects at high altitudes by adjusting their ranging patterns to remain near forest edges. PMID:23325720

  9. High Altitude Bird Migration at Temperate Latitudes: A Synoptic Perspective on Wind Assistance

    PubMed Central

    Dokter, Adriaan M.; Shamoun-Baranes, Judy; Kemp, Michael U.; Tijm, Sander; Holleman, Iwan

    2013-01-01

    At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts. PMID:23300969

  10. Comparing the contributions of ionospheric outflow and high-altitude production to O+ loss at Mars

    NASA Astrophysics Data System (ADS)

    Liemohn, Michael; Curry, Shannon; Fang, Xiaohua; Johnson, Blake; Fraenz, Markus; Ma, Yingjuan

    2013-04-01

    The Mars total O+ escape rate is highly dependent on both the ionospheric and high-altitude source terms. Because of their different source locations, they appear in velocity space distributions as distinct populations. The Mars Test Particle model is used (with background parameters from the BATS-R-US magnetohydrodynamic code) to simulate the transport of ions in the near-Mars space environment. Because it is a collisionless model, the MTP's inner boundary is placed at 300 km altitude for this study. The MHD values at this altitude are used to define an ionospheric outflow source of ions for the MTP. The resulting loss distributions (in both real and velocity space) from this ionospheric source term are compared against those from high-altitude ionization mechanisms, in particular photoionization, charge exchange, and electron impact ionization, each of which have their own (albeit overlapping) source regions. In subsequent simulations, the MHD values defining the ionospheric outflow are systematically varied to parametrically explore possible ionospheric outflow scenarios. For the nominal MHD ionospheric outflow settings, this source contributes only 10% to the total O+ loss rate, nearly all via the central tail region. There is very little dependence of this percentage on the initial temperature, but a change in the initial density or bulk velocity directly alters this loss through the central tail. However, a density or bulk velocity increase of a factor of 10 makes the ionospheric outflow loss comparable in magnitude to the loss from the combined high-altitude sources. The spatial and velocity space distributions of escaping O+ are examined and compared for the various source terms, identifying features specific to each ion source mechanism. These results are applied to a specific Mars Express orbit and used to interpret high-altitude observations from the ion mass analyzer onboard MEX.

  11. Experimental single-photon exchange along a space link of 7000 km

    NASA Astrophysics Data System (ADS)

    Dequal, Daniele; Vallone, Giuseppe; Bacco, Davide; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo

    2016-01-01

    Extending the single-photon transmission distance is a basic requirement for the implementation of quantum communication on a global scale. In this work we report the single-photon exchange from a medium Earth orbit satellite (MEO) at more than 7000 km of slant distance to the ground station at the Matera Laser Ranging Observatory. The single-photon transmitter was realized by exploiting the corner cube retroreflectors mounted on the LAGEOS-2 satellite. Long duration of data collection is possible with such altitude, up to 43 min in a single passage. The mean number of photons per pulse (μsat) has been limited to 1 for 200 s, resulting in an average detection rate of 3.0 counts/s and a signal-to-noise ratio of 1.5. The feasibility of single-photon exchange from MEO satellites paves the way to tests of quantum mechanics in moving frames and to global quantum Information.

  12. Pioneer Venus 12.5 km Anomaly Workshop Report, volume 1

    NASA Technical Reports Server (NTRS)

    Seiff, A.; Sromovsky, L.; Borucki, W.; Craig, R.; Juergens, D.; Young, R. E.; Ragent, B.

    1995-01-01

    A workshop was convened at Ames Research Center on September 28 and 29, 1993, to address the unexplained electrical anomalies experienced in December 1978 by the four Pioneer Venus probes below a Venus altitude of 12.5 km. These anomalies caused the loss of valuable data in the deep atmosphere, and, if their cause were to remain unexplained, could reoccur on future Venus missions. The workshop participants reviewed the evidence and studied all identified mechanisms that could consistently account for all observed anomalies. Both hardware problems and atmospheric interactions were considered. Based on a workshop recommendation, subsequent testing identified the cause as being an insulation failure of the external harness. All anomalous events are now explained.

  13. Is High Altitude Pulmonary Edema Relevant to Hawai‘i?

    PubMed Central

    2014-01-01

    High altitude clinical syndromes have been described in the medical literature but may be under recognized in the state of Hawai‘i. As tourism increases, high altitude injuries may follow given the easy access to high altitude attractions. Visitors and clinicians should be aware of the dangers associated with the rapid ascent to high altitudes in the perceived comfort of a vehicle. This paper will review the basic pathophysiology, prevention, and treatment of the most serious of the high altitude clinical syndromes, high altitude pulmonary edema. PMID:25478294

  14. The effect of sudden depressurization on pilots at cruising altitude.

    PubMed

    Muehlemann, Thomas; Holper, Lisa; Wenzel, Juergen; Wittkowski, Martin; Wolf, Martin

    2013-01-01

    The standard flight level for commercial airliners is ∼12 km (40 kft; air pressure: ∼ 200 hPa), the maximum certification altitude of modern airliners may be as high as 43-45 kft. Loss of structural integrity of an airplane may result in sudden depressurization of the cabin potentially leading to hypoxia with loss of consciousness of the pilots. Specialized breathing masks supply the pilots with oxygen. The aim of this study was to experimentally simulate such sudden depressurization to maximum design altitude in a pressure chamber while measuring the arterial and brain oxygenation saturation (SaO(2) and StO(2)) of the pilots. Ten healthy subjects with a median age of 50 (range 29-70) years were placed in a pressure chamber, breathing air from a cockpit mask. Pressure was reduced from 753 to 148 hPa within 20 s, and the test mask was switched to pure O(2) within 2 s after initiation of depressurization. During the whole procedure SaO(2) and StO(2) were measured by pulse oximetry, respectively near-infrared spectroscopy (NIRS; in-house built prototype) of the left frontal cortex. During the depressurization the SaO(2) dropped from median 93% (range 91-98%) to 78% (62-92%) by 16% (6-30%), while StO(2) decreased from 62% (47-67%) to 57% (43-62%) by 5% (3-14%). Considerable drops in oxygenation were observed during sudden depressurization. The inter-subject variability was high, for SaO(2) depending on the subjects' ability to preoxygenate before the depressurization. The drop in StO(2) was lower than the one in SaO(2) maybe due to compensation in blood flow. PMID:22879031

  15. Seasonal variation of Titan's haze at low and high altitudes from HST-STIS spectroscopy

    NASA Astrophysics Data System (ADS)

    Karkoschka, Erich

    2016-05-01

    The Space Telescope Imaging Spectrograph accumulated image cubes of Titan in five years between 1997 and 2004 that we calibrated and analyzed. The observations probe Titan's early northern fall to early winter. Methane bands between 543 and 990 nm wavelength are well resolved spectrally, and Titan's latitudinal and center-to-limb reflectivity variations are resolved spatially. A principal component analysis revealed two large components and two small components of less significance. The first principal component describes a variation of Titan's haze below 80 ± 20 km altitude. Haze particles change their size, opacity, and/or shape of the single scattering phase function. The largest and smallest opacities occurred both in 1997 at high southern latitudes and northern latitudes, respectively. The hemispherical asymmetry switched sign in 2002 at low latitudes, in 2003 at mid latitudes, and in early 2004 at high latitudes. The seasonal amplitude increased almost linearly with distance from the Equator. Tropical latitudes had slightly lower opacities than the annual and global average if the observed variation is seasonally symmetric and shaped like a sine curve. The cause for the variation may be condensation of gases onto aerosols seasonally driven by atmospheric dynamics. The second principal component describes a variation of haze opacity at altitudes above 150 ± 50 km. Largest and smallest opacities both occurred in 2004 at northern and high southern latitudes, respectively. The asymmetry switched in late 2001. Tropical latitudes had significantly higher haze opacity than the annual and global average, opposite to the case at low altitudes. The cause for the high-altitude variation may be aerosols transported at varying speeds driven by atmospheric dynamics. We present a seasonal model that completely describes the haze parameters at each altitude, latitude, and time. It compares fairly well with Cassini results obtained since 2004. The north-south asymmetry may

  16. Why Are High-Altitude Natives So Strong at Altitude? Maximal Oxygen Transport to the Muscle Cell in Altitude Natives.

    PubMed

    Lundby, Carsten; Calbet, Jose A L

    2016-01-01

    In hypoxia aerobic exercise performance of high-altitude natives is suggested to be superior to that of lowlanders; i.e., for a given altitude natives are reported to have higher maximal oxygen uptake (VO2max). The likely basis for this is a higher pulmonary diffusion capacity, which in turn ensures higher arterial O2 saturation (SaO2) and therefore also potentially a higher delivery of O2 to the exercising muscles. This review focuses on O2 transport in high-altitude Aymara. We have quantified femoral artery O2 delivery, arterial O2 extraction and calculated leg VO2 in Aymara, and compared their values with that of acclimatizing Danish lowlanders. All subjects were studied at 4100 m. At maximal exercise SaO2 dropped tremendously in the lowlanders, but did not change in the Aymara. Therefore arterial O2 content was also higher in the Aymara. At maximal exercise however, fractional O2 extraction was lower in the Aymara, and the a-vO2 difference was similar in both populations. The lower extraction levels in the Aymara were associated with lower muscle O2 conductance (a measure of muscle diffusion capacity). At any given submaximal exercise intensity, leg VO2 was always of similar magnitude in both groups, but at maximal exercise the lowlanders had higher leg blood flow, and hence also higher maximum leg VO2. With the induction of acute normoxia fractional arterial O2 extraction fell in the highlanders, but remained unchanged in the lowlanders. Hence high-altitude natives seem to be more diffusion limited at the muscle level as compared to lowlanders. In conclusion Aymara preserve very high SaO2 during hypoxic exercise (likely due to a higher lung diffusion capacity), but the effect on VO2max is reduced by a lower ability to extract O2 at the muscle level. PMID:27343089

  17. Coherent scatter radar observations of 150-km echoes and vertical plasma drifts in the Brazilian sector

    NASA Astrophysics Data System (ADS)

    Rodrigues, F. S.; de Paula, E. R.; Hysell, D. L.; Chau, J. L.

    2008-12-01

    Coherent scatter echoes coming from the valley region (~150 km altitude) in the equatorial ionosphere during daytime have been detected by the Jicamarca radar in Peru for several decades (Basley, 1945). More recently, it was found that the vertical Doppler shift of these echoes corresponds to the vertical velocity of the F-region background plasma (Kudeki and Fawcett, 1993; Woodman and Villanueva,1995, Chau and Woodman, 2004). Jicamarca now uses observations of 150-km echoes to provide estimates of the diurnal variation of the equatorial vertical plasma drifts in addition to traditional incoherent scatter radar drift measurements. These 150-km echoes have also been observed in other longitude sectors (e.g. Tsunoda and Ecklund,2004; Patra et al., 2008). Additionally, these echoes have also been detected in a semi-routine basis with a small, low-power radar in Sao Luis, Brazil. Initial results of our analysis suggest that vertical plasma drifts can be estimated from these observations. These measurements combined with simultaneous measurements made by the Jicamarca radar and the C/NOFS satellite can help us better understand the day-to-day variability and longitudinal variation of equatorial electric fields. In this talk we will present examples of 150-km echoes observations made with the Sao Luis radar. We will describe how vertical drifts can be estimated from the observations and how the vertical drifts over Sao Luis compare with the drifts measured simultaneously at Jicamarca. These new measurements can provide important new information about the low-latitude electrodynamics, and consequently to the C/NOFS mission.

  18. Cone structure and focusing of VLF and LF electromagnetic waves at high altitudes in the ionosphere

    NASA Technical Reports Server (NTRS)

    Alpert, Ya. L.; Green, J. L.

    1994-01-01

    The frequency and angle dependencies of the electric field radiated by an electric dipole E = E(sub 0) cos omega(t) are studied through numerical calculations of absolute value of E in the VLF and LF frequency bands where F is less than or equal 0.02 to 0.05 f(sub b) in a model ionosphere over an altitude region of 800-6000 km where the wave frequency and electron gyrofrequency varies between F approximately 4-500 kHz and f(sub b) is approximately equal (1.1 to 0.2) MHz respectively. It is found that the amplitudes of the electric field have large maxima in four regions: close to the direction of the Earth magnetic field line B(sub 0) (it is called the axis field E(sub 0), in the Storey E(sub St), reversed Storey E(sub RevSt), and resonance E(sub Res) cones. The maximal values of E(sub 0), E(sub Res), and E(sub RevSt) are the most pronounced close to the lower hybrid frequency, F approximately F(sub L). The flux of the electric field is concentrated in very narrow regions, with the apex angles of the cones Delta-B is approximately (0.1-1) deg. The enhancement and focusing of the electric field increases with altitude starting at Z greater than 800 km. At Z greater than or equal to 1000 up to 6000 km, the relative value of absolute value of E, in comparison with its value at Z = 800 km is about (10(exp 2) to 10(exp 4)) times larger. Thus the flux of VLF and LF electromagnetic waves generated at high altitudes in the Earth's ionosphere are trapped into very narrow conical beams similar to laser beams.

  19. A comparison of measured and calculated upwelling radiance over water as a function of sensor altitude

    NASA Technical Reports Server (NTRS)

    Coney, T. A.; Salzman, J. A.

    1979-01-01

    A comparison is made between remote sensing data measured over water at altitudes ranging from 30 m to 15.2 km and data calculated for corresponding altitudes using surface measurements and an atmospheric radiative transfer model. Data were acquired on June 22, 1978 in Lake Erie, a cloudless, calm, near haze free day. Suspended solids and chlorophyll concentrations were 0.59 + or - 0.02 mg/1 and 2.42 + or - 0.03 micrograms/1 respectively throughout the duration of the experiment. Remote sensor data were acquired by two multispectral scanners each having 10 bands between 410 nm and 1040 nm. Calculated and measured nadir radiances for altitudes of 152 m and 12.5 km agree to within 16% and 14% respectively. The variation in measured radiance with look angle was poorly simulated by the model. It was concluded that an accurate assessment of the source of error will require the inclusion in the analysis of the contributions made by the sea state and specular sky reflectance.

  20. High-altitude structure of the magnetic anomalies using the gradient measurements in stratosphere

    NASA Astrophysics Data System (ADS)

    Tsvetkov, Yu.; Rotanova, N.; Belikova, M.

    2003-04-01

    HIGH-ALTITUDE STRUCTURE OF THE MAGNETIC ANOMALIES USING THE GRADIENT MEASUREMENTS IN STRATOSPHERE Yu. Tsvetkov, N. ROTANOVA, M. Belikova Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS, Troitsk, Moscow Region, 142190, Russia rotanova@izmiran.rssi.ru/FAX: +7-095-3340124 Method of the recalculation of the anomaly magnetic field over the range of the altitudes of 20-40 km is suggested. Technique is based on the experimental data of the anomaly magnetic field, its vertical gradient and the gradient increment along vertical line, obtained from the aerostat gradient magnetic surveys in stratosphere. The high-altitude structure of the magnetic anomalies, obtained for the Baikal region has been constructed. These results were used to obtain the estimations of the deep magnetic sources. The numerous values of the low boundary of the sources are 30-35 km. These estimations of the depth coincide with the ones, obtained from the results of the spectral analysis of the same magnetic anomalies.

  1. Plasma waves observed at low altitudes in the tenuous Venus nightside ionosphere

    NASA Technical Reports Server (NTRS)

    Strangeway, R. J.; Russell, C. T.; Ho, C. M.; Brace, L. H.

    1993-01-01

    The Pioneer Venus (PV) Orbiter Electric Field Detector (OEFD) measured many plasma wave bursts throughout the low altitude ionosphere during the final entry phase of the spacecraft. Apart from 100 Hz bursts observed at very low altitudes (approx. 130 km), the bursts fall into two classes. The first of these is a wideband signal that is observed in regions of low magnetic field, but average densities, in comparison to the prevailing ionospheric condition. This wideband signal is not observed in the 30 kHz channel of the OEFD, but is resricted to the 5.4 kHz channel and lower. Since these bursts are observed with roughly constant burst rate above 160 km altitude, we attribute them to ion acoustic mode waves generated by precipitating solar wind electrons. The second type of signal is restricted to 100 Hz only, and is observed in the regions of low electron beta, consistent with whistler-mode waves. These waves could be generated by lightning in the Venus atmosphere if the vertical component of the magnetic field greater than 3.6 nT. Because the ionosphere is very different during the entry phase, compared to the ionosphere as observed early in the Pioneer Venus mission, any conclusions regarding the source of the plasma waves detected during entry phase cannot be applied directly to the earlier observations.

  2. The paradox of extreme high-altitude migration in bar-headed geese Anser indicus

    USGS Publications Warehouse

    Hawkes, L.A.; Balachandran, S.; Batbayar, N.; Butler, P.J.; Chua, B.; Douglas, D.C.; Frappell, P.B.; Hou, Y.; Milsom, W.K.; Newman, S.H.; Prosser, D.J.; Sathiyaselvam, P.; Scott, G.R.; Takekawam, J.Y.; Natsagdorj, T.; Wikelski, M.; Witt, M.J.; Yan, B.; Bishop, C.M.

    2012-01-01

    Bar-headed geese are renowned for migratory flights at extremely high altitudes over the world's tallest mountains, the Himalayas, where partial pressure of oxygen is dramatically reduced while flight costs, in terms of rate of oxygen consumption, are greatly increased. Such a mismatch is paradoxical, and it is not clear why geese might fly higher than is absolutely necessary. In addition, direct empirical measurements of high-altitude flight are lacking. We test whether migrating bar-headed geese actually minimize flight altitude and make use of favourable winds to reduce flight costs. By tracking 91 geese, we show that these birds typically travel through the valleys of the Himalayas and not over the summits. We report maximum flight altitudes of 7290 m and 6540 m for southbound and northbound geese, respectively, but with 95 per cent of locations received from less than 5489 m. Geese travelled along a route that was 112 km longer than the great circle (shortest distance) route, with transit ground speeds suggesting that they rarely profited from tailwinds. Bar-headed geese from these eastern populations generally travel only as high as the terrain beneath them dictates and rarely in profitable winds. Nevertheless, their migration represents an enormous challenge in conditions where humans and other mammals are only able to operate at levels well below their sea-level maxima.

  3. The paradox of extreme high-altitude migration in bar-headed geese Anser indicus

    PubMed Central

    Hawkes, L. A.; Balachandran, S.; Batbayar, N.; Butler, P. J.; Chua, B.; Douglas, D. C.; Frappell, P. B.; Hou, Y.; Milsom, W. K.; Newman, S. H.; Prosser, D. J.; Sathiyaselvam, P.; Scott, G. R.; Takekawa, J. Y.; Natsagdorj, T.; Wikelski, M.; Witt, M. J.; Yan, B.; Bishop, C. M.

    2013-01-01

    Bar-headed geese are renowned for migratory flights at extremely high altitudes over the world's tallest mountains, the Himalayas, where partial pressure of oxygen is dramatically reduced while flight costs, in terms of rate of oxygen consumption, are greatly increased. Such a mismatch is paradoxical, and it is not clear why geese might fly higher than is absolutely necessary. In addition, direct empirical measurements of high-altitude flight are lacking. We test whether migrating bar-headed geese actually minimize flight altitude and make use of favourable winds to reduce flight costs. By tracking 91 geese, we show that these birds typically travel through the valleys of the Himalayas and not over the summits. We report maximum flight altitudes of 7290 m and 6540 m for southbound and northbound geese, respectively, but with 95 per cent of locations received from less than 5489 m. Geese travelled along a route that was 112 km longer than the great circle (shortest distance) route, with transit ground speeds suggesting that they rarely profited from tailwinds. Bar-headed geese from these eastern populations generally travel only as high as the terrain beneath them dictates and rarely in profitable winds. Nevertheless, their migration represents an enormous challenge in conditions where humans and other mammals are only able to operate at levels well below their sea-level maxima. PMID:23118436

  4. A statistical study of high-altitude electric fields measured on the Viking satellite

    SciTech Connect

    Lindqvist, P.A.; Marklund, G.T. )

    1990-05-01

    Characteristics of high-altitude data from the Viking electric field instrument are presented in a statistical study based on 109 Viking orbits. The study is focused in particular on the signatures of and relationships between various parameters measured by the electric field instrument, such as the parallel and transverse (to B) components of the electric field instrument, such as electric field variability. A major goal of the Viking mission was to investigate the occurrence and properties of parallel electric fields and their role in the auroral acceleration process. The results in this paper on the altitude distribution of the electric field variability confirm earlier findings on the distribution of small-scale electric fields and indicate the presence of parallel fields up to about 11,000 km altitude. The directly measured parallel electric field is also investigated in some detail. It is in general directed upward with an average value of 1 mV/m, but depends on, for example, altitude and plasma density. Possible sources of error in the measurement of the parallel field are also considered and accounted for.

  5. 14 CFR 135.93 - Autopilot: Minimum altitudes for use.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... minimum altitude engagement certification restriction; (2) The system is not engaged prior to the minimum engagement certification restriction specified in the Airplane Flight Manual, or an altitude specified by...

  6. Acute high-altitude illness: a clinically orientated review

    PubMed Central

    Smedley, Tom

    2013-01-01

    Acute high-altitude illness is an encompassing term for the range of pathology that the unacclimatised individual can develop at increased altitude. This includes acute mountain sickness, high-altitude cerebral oedema and high-altitude pulmonary oedema. These conditions represent an increasing clinical problem as more individuals are exposed to the hypobaric hypoxic environment of high altitude for both work and leisure. In this review of acute high-altitude illness, the epidemiology, risk factors and pathophysiology are explored, before their prevention and treatment are discussed. Appropriate ascent rate remains the most effective acute high-altitude illness prevention, with pharmacological prophylaxis indicated in selected individuals. Descent is the definitive treatment for acute high-altitude illness, with the adjuncts of oxygen and specific drug therapies. PMID:26516505

  7. DETAIL OF VACUUM PIPE OPENING WITHIN ALTITUDE CHAMBER R, FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF VACUUM PIPE OPENING WITHIN ALTITUDE CHAMBER R, FACING SOUTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  8. Dust observations at orbital altitudes surrounding Mars

    NASA Astrophysics Data System (ADS)

    Andersson, L.; Weber, T. D.; Malaspina, D.; Crary, F.; Ergun, R. E.; Delory, G. T.; Fowler, C. M.; Morooka, M. W.; McEnulty, T.; Eriksson, A. I.; Andrews, D. J.; Horanyi, M.; Collette, A.; Yelle, R.; Jakosky, B. M.

    2015-11-01

    Dust is common close to the martian surface, but no known process can lift appreciable concentrations of particles to altitudes above ~150 kilometers. We present observations of dust at altitudes ranging from 150 to above 1000 kilometers by the Langmuir Probe and Wave instrument on the Mars Atmosphere and Volatile Evolution spacecraft. Based on its distribution, we interpret this dust to be interplanetary in origin. A comparison with laboratory measurements indicates that the dust grain size ranges from 1 to 12 micrometers, assuming a typical grain velocity of ~18 kilometers per second. These direct observations of dust entering the martian atmosphere improve our understanding of the sources, sinks, and transport of interplanetary dust throughout the inner solar system and the associated impacts on Mars’s atmosphere.

  9. HAWC - The High Altitude Water Cherenkov Detector

    NASA Astrophysics Data System (ADS)

    Tepe, Andreas; HAWC Collaboration

    2012-07-01

    The high altitude water Cherenkov observatory (HAWC) is an instrument for the detection of high energy cosmic gamma-rays. Its predecessor Milagro has successfully proven that the water Cherenkov technology for gamma-ray astronomy is a useful technique. HAWC is currently under construction at Sierra Negra in Mexico at an altitude of 4100 m and will include several improvements compared to Milagro. Two complementary DAQ systems of the HAWC detector allow for the observation of a large fraction of the sky with a very high duty cycle and independent of environmental conditions. HAWC will observe the gamma-ray sky from about 100 GeV up to 100 TeV. Also the cosmic ray flux anisotropy on different angular length scales is object of HAWC science. Because of HAWC's large effective area and field of view, we describe its prospects to observe gamma-ray bursts (GRBs) as an example for transient sources.

  10. Antidiuretic hormone excretion at high altitude.

    PubMed

    Harber, M J; Williams, J D; Morton, J J

    1981-01-01

    Urinary excretion of electrolytes, creatinine, urea, and antidiuretic hormone--measured as arginine vasopressin (AVP) by radioimmunoassay--was investigated in eight Himalayan mountaineers during ascent on foot from 1900- 5400 m. Specimens were collected from each individual whenever urine was voided, preserved with 1% boric acid, and subsequently pooled to give samples representative of 24-h collections. AVP was found to be reasonably stable under simulated conditions of storage. In all subjects, the observed AVP excretion rates were mostly in the lower region of the normal range and there was generally no correlation with altitude, urine osmolality, electrolyte excretion, or occurrence of AMS symptoms--even in a fatal case of cerebral oedema. It is concluded that AVP does not play a primary role in the changes in fluid balance which accompany either acclimatization to high altitude or the onset of AMS. PMID:7213286

  11. The visual control of simulated altitude

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W.; Bennett, C. Thomas; Tsang, Pamela S.; Phatak, Anil V.

    1987-01-01

    The ability of a subject flying an experimental flight to use the different sources of visual information by looking at the vertical tracking error was investigated using a 3 (altitude) x 3 (texture) x 2 (replication) factorial design. Each subject flew these 18 flights in the same partially counterbalanced order, constructed such that there was one flight at each of the three altitudes, and over each of the three surface textures within each successive set of three flights. The three ground-surface textures used consisted of meridian, latitudinal, and square textures described by Wolpert et al. (1983). The results showed that, in displays where only splay information was available, the subjects tended to confuse lateral motion with vertical.

  12. Dust observations at orbital altitudes surrounding Mars.

    PubMed

    Andersson, L; Weber, T D; Malaspina, D; Crary, F; Ergun, R E; Delory, G T; Fowler, C M; Morooka, M W; McEnulty, T; Eriksson, A I; Andrews, D J; Horanyi, M; Collette, A; Yelle, R; Jakosky, B M

    2015-11-01

    Dust is common close to the martian surface, but no known process can lift appreciable concentrations of particles to altitudes above ~150 kilometers. We present observations of dust at altitudes ranging from 150 to above 1000 kilometers by the Langmuir Probe and Wave instrument on the Mars Atmosphere and Volatile Evolution spacecraft. Based on its distribution, we interpret this dust to be interplanetary in origin. A comparison with laboratory measurements indicates that the dust grain size ranges from 1 to 12 micrometers, assuming a typical grain velocity of ~18 kilometers per second. These direct observations of dust entering the martian atmosphere improve our understanding of the sources, sinks, and transport of interplanetary dust throughout the inner solar system and the associated impacts on Mars's atmosphere. PMID:26542578

  13. Pulmonary Embolism in Young Natives of High Altitude.

    PubMed

    Singhal, Sanjay; Bhattachar, Srinivasa Alasinga; Paliwal, Vivek; Malhotra, Vineet Kumar; Addya, Kalyani; Kotwal, Atul

    2016-01-01

    Thrombotic events are relatively common in high altitude areas and known to occur in young soldiers working at high altitude without usual risk factors associated with thrombosis at sea-level. However, till now, cases with thrombotic events were reported only in lowlanders staying at high altitude. These two cases of pulmonary embolism demonstrate that thrombotic events can occur in highlanders after a prolonged stay at the extreme altitude. PMID:27512534

  14. Pulmonary Embolism in Young Natives of High Altitude

    PubMed Central

    Singhal, Sanjay; Bhattachar, Srinivasa Alasinga; Paliwal, Vivek; Malhotra, Vineet Kumar; Addya, Kalyani; Kotwal, Atul

    2016-01-01

    Thrombotic events are relatively common in high altitude areas and known to occur in young soldiers working at high altitude without usual risk factors associated with thrombosis at sea-level. However, till now, cases with thrombotic events were reported only in lowlanders staying at high altitude. These two cases of pulmonary embolism demonstrate that thrombotic events can occur in highlanders after a prolonged stay at the extreme altitude. PMID:27512534

  15. Observations from a constant-altitude stratospheric balloon

    NASA Technical Reports Server (NTRS)

    Mollo-Christensen, Erik; Vermillion, Charles H.; Chan, Paul H.; Mcbrien, Gary E.; Ward, William; Coronado, Patrick

    1991-01-01

    The paper describes a constant-altitude stratospheric balloon system, called Earthwinds, designed for high-altitude atmospheric observations. Special attention is given to the balloon's variable ballast system for altitude control; reactions of the balloon system to air motions in a stratified atmosphere; instruments for locating the balloon position, controlling the altitude, and making observations of atmospheric movements; balloon dynamics; and the atmospheric phenomena that will be observed by the balloon instruments.

  16. Altitude Compensating Nozzle Cold Flow Test Results

    NASA Technical Reports Server (NTRS)

    Ruf, J. H.; McDaniels, D. M.

    2002-01-01

    A suite of four altitude compensating nozzle (ACN) concepts were evaluated by NASA MSFC in the Nozzle Test Facility. The ACN concepts were a dual bell, a dual expander, an annular plug nozzle and an expansion deflection nozzle. Two reference bell nozzles were also tested. Axial thrust and nozzle wall static pressures were measured for each nozzle over a wide range of nozzle pressure ratios. The nozzle hardware and test program are described. Sample test results are presented.

  17. Renal adrenomedullin and high altitude diuresis.

    PubMed

    Haditsch, B; Roessler, A; Hinghofer-Szalkay, H G

    2007-01-01

    Previous investigations revealed that most of the fluid regulating hormones showed no consistent relationship to the hypoxic diuretic response (HDR). In this study we examined if adrenomedullin (AM), a hypoxia-mediated diuretic/natriuretic peptide is connected to HDR. Thirty-three persons were examined at low altitude (LA), on the third exposure day at 3440 m (medium altitude, MA) and on the fourteenth day at 5050 m (high altitude, HA). Nocturnal diuresis rose from 460 ml [interquartile range 302 ml] at LA to 560 [660] ml at MA to 1015 [750] ml at HA (p<0.005). Sodium excretion was similar at LA and MA (41.8 [27.0] vs. 41.4 [28.4] mM) and increased to 80.2 [29.1] mM at HA (p<0.005). Urinary AM excretion was 7.9 [3.9] at LA, 7.5 [5.7] pM at MA, and increased to 10.5 [5.1] pM (p<0.05) at HA. Urinary AM excretion was correlated to diuresis (r=0.72, p<0.005) and sodium excretion (r=0.57, p<0.005). Plasma AM concentration rose from 16.4 [3.1] to 18.8 [4.9] pM/l at MA (p<0.005) and to 18.3 [4.3] pM/l at HA (p<0.005). Plasma AM concentration and urinary AM excretion were not correlated, neither were plasma AM concentration and diuresis or natriuresis. Our data suggest the involvement of increased renal AM production in the pathophysiology of high altitude fluid and sodium loss. PMID:17087599

  18. Infrared reflectance of high altitude clouds.

    PubMed

    Hovis, W A; Blaine, L R; Forman, M L

    1970-03-01

    The spectral reflectance characteristics of cirrostratus, cirrus clouds, and a jet contrail, in the 0.68-2.4-micro spectral interval, are of interest for remote sensing of cloud types from orbiting satellites. Measurements made with a down-looking spectrometer from a high altitude aircraft show differences between the signatures of naturally formed ice clouds, a fresh jet contrail, and a snow covered surface. PMID:20076243

  19. Mitochondrial function at extreme high altitude.

    PubMed

    Murray, Andrew J; Horscroft, James A

    2016-03-01

    At high altitude, barometric pressure falls and with it inspired P(O2), potentially compromising O2 delivery to the tissues. With sufficient acclimatisation, the erythropoietic response increases red cell mass such that arterial O2 content (C(aO2)) is restored; however arterial P(O2)(P(aO2)) remains low, and the diffusion of O2 from capillary to mitochondrion is impaired. Mitochondrial respiration and aerobic capacity are thus limited, whilst reactive oxygen species (ROS) production increases. Restoration of P(aO2) with supplementary O2 does not fully restore aerobic capacity in acclimatised individuals, possibly indicating a peripheral impairment. With prolonged exposure to extreme high altitude (>5500 m), muscle mitochondrial volume density falls, with a particular loss of the subsarcolemmal population. It is not clear whether this represents acclimatisation or deterioration, but it does appear to be regulated, with levels of the mitochondrial biogenesis factor PGC-1α falling, and shows similarities to adapted Tibetan highlanders. Qualitative changes in mitochondrial function also occur, and do so at more moderate high altitudes with shorter periods of exposure. Electron transport chain complexes are downregulated, possibly mitigating the increase in ROS production. Fatty acid oxidation capacity is decreased and there may be improvements in biochemical coupling at the mitochondrial inner membrane that enhance O2 efficiency. Creatine kinase expression falls, possibly impairing high-energy phosphate transfer from the mitochondria to myofibrils. In climbers returning from the summit of Everest, cardiac energetic reserve (phosphocreatine/ATP) falls, but skeletal muscle energetics are well preserved, possibly supporting the notion that mitochondrial remodelling is a core feature of acclimatisation to extreme high altitude. PMID:26033622

  20. High Altitude Balloons as a Platform for Space Radiation Belt Science

    NASA Astrophysics Data System (ADS)

    Mazzino, L.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Johnson, W.; Mann, I. R.; Rae, J.; University of Alberta High Altitude Balloons (UA-HAB)

    2011-12-01

    The goals of the University of Alberta High Altitude Balloons Program (UA-HAB) are to i) use low cost balloons to address space radiation science, and ii) to utilise the excitement of "space mission" involvement to promote and facilitate the recruitment of undergraduate and graduate students in physics, engineering, and atmospheric sciences to pursue careers in space science and engineering. The University of Alberta High Altitude Balloons (UA-HAB) is a unique opportunity for University of Alberta students (undergraduate and graduate) to engage in the hands-on design, development, build, test and flight of a payload to operate on a high altitude balloon at around 30km altitude. The program development, including formal design and acceptance tests, reports and reviews, mirror those required in the development of an orbital satellite mission. This enables the students to gain a unique insight into how space missions are flown. UA-HAB is a one and half year program that offers a gateway into a high-altitude balloon mission through hands on experience, and builds skills for students who may be attracted to participate in future space missions in their careers. This early education will provide students with the experience necessary to better assess opportunities for pursuing a career in space science. Balloons offer a low-cost alternative to other suborbital platforms which can be used to address radiation belt science goals. In particular, the participants of this program have written grant proposal to secure funds for this project, have launched several 'weather balloon missions', and have designed, built, tested, and launched their particle detector called "Maple Leaf Particle Detector". This detector was focussed on monitoring cosmic rays and space radiation using shielded Geiger tubes, and was flown as one of the payloads from the institutions participating in the High Altitude Student Platform (HASP), organized by the Louisiana State University and the Louisiana

  1. The High Altitude Water Cherenkov Observatory

    NASA Astrophysics Data System (ADS)

    Mostafa, Miguel; HAWC Collaboration

    2016-03-01

    The High Altitude Water Cherenkov (HAWC) Observatory is a continuously operated, wide field of view experiment comprised of an array of 300 water Cherenkov detectors (WCDs) to study transient and steady emission of TeV gamma and cosmic rays. Each 200000 l WCD is instrumented with 4 PMTs providing charge and timing information. The array covers ~22000 m2 at an altitude of 4100 m a.s.l. inside the Pico de Orizaba national park in Mexico. The high altitude, large active area, and optical isolation of the PMTs allows us to reliably estimate the energy and determine the arrival direction of gamma and cosmic rays with significant sensitivity over energies from several hundred GeV to a hundred TeV. Continuously observing 2 / 3 of the sky every 24 h, HAWC plays a significant role as a survey instrument for multi-wavelength studies. The performance of HAWC makes possible the detection of both transient and steady emissions, the study of diffuse emission and the measurement of the spectra of gamma-ray sources at TeV energies. HAWC is also sensitive to the emission from GRBs above 100 GeV. I will highlight the results from the first year of operation of the full HAWC array, and describe the ongoing site work to expand the array by a factor of 4 to explore the high energy range.

  2. Use of ultrasound in altitude decompression modeling

    NASA Technical Reports Server (NTRS)

    Olson, Robert M.; Pilmanis, Andrew A.

    1993-01-01

    A model that predicts the probability of developing decompression sickness (DCS) with various denitrogenation schedules is being developed by the Armstrong Laboratory, using human data from previous exposures. It was noted that refinements are needed to improve the accuracy and scope of the model. A commercially developed ultrasonic echo imaging system is being used in this model development. Using this technique, bubbles images from a subject at altitude can be seen in the gall bladder, hepatic veins, vena cava, and chambers of the heart. As judged by their motion and appearance in the vena cava, venous bubbles near the heart range in size from 30 to 300 M. The larger bubbles skim along the top, whereas the smaller ones appear as faint images near the bottom of the vessel. Images from growing bubbles in a model altitude chamber indicate that they grow rapidly, going from 20 to 100 M in 3 sec near 30,000 ft altitude. Information such as this is valuable in verifying those aspects of the DCS model dealing with bubble size, their growth rate, and their site of origin.

  3. Altitude and arteriolar hyalinosis after kidney transplantation.

    PubMed

    Cippà, Pietro E; Grebe, Scott O; Fehr, Thomas; Wüthrich, Rudolf P; Mueller, Thomas F

    2016-09-01

    The kidney is very susceptible to hypoxic injury. Calcineurin inhibitors (CNIs) induce vasoconstriction and might reduce renal tissue oxygenation. We aimed to investigate if the synergistic deleterious effects of CNI-treatment and hypoxia of high altitude living might accelerate the development of arteriolar hyalinosis in kidney allografts. We stratified all patients who received a kidney graft from 2000 to 2010 in our centre (n = 477) in three groups according to the residential elevation (below 400, between 400 to 600 and above 600 m above sea level) and we retrospectively re-evaluated all transplant biopsies performed during follow-up, specifically looking at the degree of arteriolar hyalinosis, the hallmark of chronic CNI nephrotoxicity. Living at high altitude was markedly associated with a higher degree of arteriolar hyalinosis (P < 0.001). Haemoglobin levels confirmed the functional relevance of different arterial oxygenation among the groups (P = 0.01). Thus, patients living at high altitude seem to be more susceptible to the development of arteriolar hyalinosis after kidney transplantation. PMID:26823025

  4. The high-latitude winter F region at 300 km - Thermal plasma observations from AE-C

    NASA Technical Reports Server (NTRS)

    Brinton, H. C.; Grebowsky, J. M.; Brace, L. H.

    1978-01-01

    Results are presented for a comprehensive survey of thermal ion composition and electron temperature (Te) variations in the southern high-latitude winter F region near 300-km altitude. The data are obtained from the Atmosphere Explorer (AE-C) satellite during a magnetically quiet period centered on the June 1976 solstice. Prominent ionospheric features, including the nightside main trough, a high-latitude ionization hole, and the dayside auroral zone-cusp region, are characterized in terms of composition and Te variations. The structures under study are qualitatively interpreted in terms of known processes.

  5. Long-term variation of OH peak emission altitude and volume emission rate over Indian low latitudes

    NASA Astrophysics Data System (ADS)

    Sivakandan, Mani; Thokuluwa, Ramkumar; Kandula, Niranjan; Taori, Alok

    2016-07-01

    Using 13 (April 2002 -December 2014) years of Sounding of the Atmosphere using Broadband Emission Radiometry (SABER/TIMED) 1.6µm OH airglow emission data, we have studied the long-term variation of OH peak emission altitude and volume emission rate (VER) for 0-10 N latitude and 70-90 E longitude grid. We have noted that, during day time the OH peak emission altitude is varying from 80 to 87 km with mean value of 83.5 km and from 82 to 88 km with mean value of 85 km during night time. The signature of semi-annual oscillation (SAO), annual oscillation (AO) and quasi-biennial oscillation (QBO) in the OH peak emission altitude as well as the VER is evident. Our analysis reveals that the SAO and QBO signatures but not the AO signature are very strong in the equatorial region during night time. Apart from the SAO, AO and QBO signatures, the presence of oscillation related to the El Niño oscillation (ENSO) is also noted. After the removal of these oscillations, we find the evidence of the influence of solar activity and a long term trend in the OH emission layer. It is also found good correlation between the mesospheric and stratospheric variations (ECMWF data).

  6. Long-term variation of OH peak emission altitude and volume emission rate over Indian low latitudes

    NASA Astrophysics Data System (ADS)

    Sivakandan, M.; Ramkumar, T. K.; Taori, A.; Rao, Venkateshwara; Niranjan, K.

    2016-02-01

    Using 13 (April 2002-December 2014) years of Sounding of the Atmosphere using Broadband Emission Radiometry (SABER/TIMED) 1.6 μm OH airglow emission data, we have studied the long-term variation of OH peak emission altitude and volume emission rate (VER) for 0-10°N latitude and 70-90°E longitude grid. We have noted that, during day time the OH peak emission altitude is varying from 80 to 87 km with mean value of 83.5 km and from 82 to 88 km with mean value of 85 km during night time. The signature of semi-annual oscillation (SAO), annual oscillation (AO) and quasi-biennial oscillation (QBO) in the OH peak emission altitude as well as the VER is evident. Our analysis reveals that the SAO and QBO signatures but not the AO signature are very strong in the equatorial region during night time. Apart from the SAO, AO and QBO signatures, the presence of oscillation related to the El Niño oscillation (ENSO) is also noted. After the removal of these oscillations, we find the evidence of the influence of solar activity and a long term trend in the OH emission layer. It is also found good correlation between the mesospheric and stratospheric variations (ECMWF data).

  7. 7 CFR 29.1035 - Mixed color (KM).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Mixed color (KM). 29.1035 Section 29.1035 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1035 Mixed color (KM). Distinctly different colors of the type mingled together....

  8. 7 CFR 29.1035 - Mixed color (KM).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Mixed color (KM). 29.1035 Section 29.1035 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1035 Mixed color (KM). Distinctly different colors of the type mingled together....

  9. 7 CFR 29.1035 - Mixed color (KM).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Mixed color (KM). 29.1035 Section 29.1035 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1035 Mixed color (KM). Distinctly different colors of the type mingled together....

  10. 7 CFR 29.1035 - Mixed color (KM).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Mixed color (KM). 29.1035 Section 29.1035 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1035 Mixed color (KM). Distinctly different colors of the type mingled together....

  11. 7 CFR 29.1035 - Mixed color (KM).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Mixed color (KM). 29.1035 Section 29.1035 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1035 Mixed color (KM). Distinctly different colors of the type mingled together....

  12. Human Behaviour and Development under High-Altitude Conditions

    ERIC Educational Resources Information Center

    Virues-Ortega, Javier; Garrido, Eduardo; Javierre, Casimiro; Kloezeman, Karen C.

    2006-01-01

    Although we are far from a universally accepted pattern of impaired function at altitude, there is evidence indicating motor, perceptual, memory and behavioural deficits in adults. Even relatively low altitudes (2500 m) may delay reaction time, and impair motor function. Extreme altitude exposure (greater than 5000 m) may result in more pronounced…

  13. Comparison of the space radiation environment at Foton M3 satellite altitudes and on aircraft altitudes for minimum of solar activity

    NASA Astrophysics Data System (ADS)

    Ploc, Ondrej; Dachev, Tsvetan; Spurny, Frantisek; Tomov, Borislav; Dimitrov, Plamen; Matviichuk, Yury; Bankov, Nikolay

    The space radiation environments at Foton M3 and aircraft altitudes were measured by using of practically equal silicon detector based on a deposited energy spectrometers in the fall of 2007. The aircraft measurements were performed on commercial flights of CSA airlines, while the Foton M3 measurements were inside of the ESA Biopan 6 experiment. Foton M3 orbit was close to circular between 260 and 289 km altitude and about 63° inclination. The relatively high inclination and small shielding of the detector (0.81 g/cm2 ) allow us to observe doses by electrons in the outer radiation belt as high as 2.3 mGy/hour. The comparison of the total GCR deposited doses for the Foton M3 time interval, which coincides with the absolute cycle 23 minimum of the solar activity is about 15% higher than the measured during the Foton M2 satellite doses in 2005. Comparisons of the latitudinal profiles for ISS in 2001, Foton 2 and 3 satellites and aircrafts show that the ratio of doses is as 1:2:3. Aircraft measurements are characterised through average values of exposure during frequent, statistically well based measurements on the routes Prague - New York. Dose absorbed in Si-detector per flight on these routes was about 8% higher in 2007 than in 2005. Different comparisons with the existing models for the radiation environment on aircraft and spacecraft altitudes are presented in the paper also and discussed.

  14. Wave-like perturbations observed at low altitudes by the Pioneer Venus Orbiter Neutral Mass Spectrometer during orbiter entry

    NASA Technical Reports Server (NTRS)

    Kasprzak, W. T.; Niemann, H. B.; Hedin, A. E.; Bougher, S. W.

    1993-01-01

    Wave-like perturbations have been observed in the nightside neutral density data acquired for He, N, O, N2 and CO2 by the Pioneer Venus Orbiter Neutral Mass Spectrometer (ONMS) during entry in late 1992. The data cover an altitude range of 133-200 km from 0.5-4.5 hours local solar time and occur at medium solar activity (F(sub 10.7) = 120). The perturbations, with an effective wavelength along the orbit of about 100 to 600 km, have similar amplitudes for the various species and helium is out of phase with respect to the heavier mass species. The measurements are comparable to those observed in 1978-80 at solar maximum activity (F(sub 10.7) = 200) above 145 km. Between 133 and 160 km the rms amplitudes grow with altitude at a rate of about (1.6, 2.1, 2.7, 4.4) x 10(exp 3)/km for N, O, N2, and CO2, respectively. The average rms amplitudes above 145 km of 0.08 for N and O and 0.1 for N2 are comparable in magnitude to those observed in the earlier 1978-80 data of 0.06, 0.08, and 0.095 respectively. CO2 is an exception for which the entry value is 0.17 compared to 0.09 earlier. By combining the two overlapping data sets there is a suggestion that the CO2 amplitudes grow in value with altitude up to about 140-170 km and then decrease in amplitude. Like the earlier data, the entry data are consistent with the interpretation that the neutral density perturbations are due to gravity waves propagating upward from the lower thermosphere.

  15. Exploring KM Features of High-Performance Companies

    NASA Astrophysics Data System (ADS)

    Wu, Wei-Wen

    2007-12-01

    For reacting to an increasingly rival business environment, many companies emphasize the importance of knowledge management (KM). It is a favorable way to explore and learn KM features of high-performance companies. However, finding out the critical KM features of high-performance companies is a qualitative analysis problem. To handle this kind of problem, the rough set approach is suitable because it is based on data-mining techniques to discover knowledge without rigorous statistical assumptions. Thus, this paper explored KM features of high-performance companies by using the rough set approach. The results show that high-performance companies stress the importance on both tacit and explicit knowledge, and consider that incentives and evaluations are the essentials to implementing KM.

  16. High-Altitude Aircraft-Based Electric-Field Measurements Above Thunderstorms

    NASA Technical Reports Server (NTRS)

    Bateman, M. G.; Blakeslee, R. J.; Bailey, J. C.; Stewart, M. F.; Blair, A. K.

    1999-01-01

    We have developed a new set of eight electric field mills that were flown on a NASA ER-2 high-altitude aircraft. During the Third Convection And Moisture EXperiment (CAMEX-3; Fall, 1998), measurements of electric field, storm dynamics, and ice microphysics were made over several hurricanes. Concurrently, the TExas-FLorida UNderflights (TEFLUN) program was being conducted to make the same measurements over Gulf Coast thunderstorms. Sample measurements are shown: typical flight altitude is 20km. Our new mills have an internal 16-bit A/D, with a resolution of 0.25V/m per bit at high gain, with a noise level less than the least significant bit. A second, lower gain channel gives us the ability to measure fields as high as 150 kV/m.

  17. On the Accuracy of Stratospheric Meteorological Reanalyses Using Wind Measurements at High Altitude in the Stratosphere

    NASA Astrophysics Data System (ADS)

    Huret, N.; Duruisseau, F.; Andral, A.

    2015-09-01

    This study is motivated by the improvement of the knowledge of stratospheric dynamics and the evaluation of the ability of models to represent wind variability in the stratosphere. We deduce from the Zero Pressure Balloons trajectories, operated by CNES during the last decade, zonal and meridional wind to provide a unique database in the altitude range [25-40] km. The collected data are associated with ZBP flights launch during winter and summer in polar region above the Esrange (Sweden) launch base and in equatorial region above the Teresina (Brazil) during easterly and westerly Quasibiennal Oscillation phase. We performed systematic comparisons between wind measurements and ERA—interim reanalysis from ECMWF (European Centre for Medium-Range Weather Forecasts) and present the vertical profile of biases for both wind component in winter at high latitude. The biases and the standard deviation obtained increase with altitude.

  18. Plasma injection and transport in the mid-altitude polar cusp

    SciTech Connect

    Burch, J.L.; Reiff, P.H.; Heelis, R.A.; Winningham, J.D.; Hanson, W.B.; Gurgiolo, C.; Menietti, J.D.; Hoffman, R.A.; Barfield, J.N.

    1982-09-01

    DE-1 hot plasma observations in the mid-altitude polar cusp have shown evidence of a significant velocity filtering phenomenon which is consistent with a latitudinally narrow region of plasma injection located at a geocentric distance of about 8 R/sub E/ (in a dipole approximation). Plasma convection from the injection region into the polar cap results in a 'V'-shaped log E vs. ..cap alpha../sub 0/ relation at geocentric distances near 4 R/sub E/. This velocity filtering effect allows the measurement of much smaller flow velocities (approx.10 km/s) than have heretofore been possible with hot plasma measurements. The flows thus determined are consistent with ionospheric flows measured nearly simultaneously by the DE-2 spacecraft, although the magnitudes of the higher altitude flows are higher by a factor of 2 or more than an approx.r/sup 3/2/ dipole-field mapping would predict.

  19. Field-aligned electron density irregularities near 500 km Equator to polar cap topside sounder observations

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    1985-01-01

    In addition to spread F, evidence for field-aligned electron density irregularities is commonly observed on Alouette 2 topside sounder ionograms recorded near perigee (500 km). This evidence is provided by distinctive signal returns from sounder-generated Z mode waves. At low latitudes these waves become guided in wave ducts caused by field-aligned electron density irregularities and give rise to strong long-duration echoes. At high latitudes, extending well into the polar cap, these Z mode waves (and stimulated electrostatic waves at the plasma frequency) produce a series of vertical bars on the ionogram display as the satellite traverses discrete field-aligned density structures. The radio frequency (RF) noise environment to be expected in the 400 to 500 km altitude region from low to high latitudes was examined by analyzing perigee Alouette 2 topside sounder data. All observed noise bands were scaled on nearly 200 topside sounder ionograms recorded near perigee at low, mid, and high latitude telemetry stations. The minimum and maximum frequencies of each noise band were entered into a data base or computer analysis. The signals of primary interest in the perigee study were found to be sounder-generated.

  20. Prototype of readout electronics for the LHAASO KM2A electromagnetic particle detectors

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Chang, Jing-Fan; Wang, Zheng; Fan, Lei

    2016-07-01

    The KM2A (one kilometer square extensive air shower array) is the largest detector array in the LHAASO (Large High Altitude Air Shower Observatory) project. The KM2A consists of 5242 EDs (Electromagnetic particle Detectors) and 1221 MDs (Muon Detectors). The EDs are distributed and exposed in the wild. Two channels, anode and dynode, are employed for the PMT (photomultiplier tube) signal readout. The readout electronics designed in this paper aims at accurate charge and arrival time measurement of the PMT signals, which cover a large amplitude range from 20 P.E. (photoelectrons) to 2 × 105 P.E. By using a “trigger-less” architecture, we digitize signals close to the PMTs. All digitized data is transmitted to DAQ (Data Acquisition) via a simplified White Rabbit protocol. Compared with traditional high energy experiments, high precision of time measurement over such a large area and suppression of temperature effects in the wild become the key techniques. Experiments show that the design has fulfilled the requirements in this project. Supported by National Natural Science Foundation of China (11375210) and the Knowledge Innovation Fund of IHEP, Beijing

  1. Marshall Space Flight Center Propulsion Systems Department (PSD) KM Initiative

    NASA Technical Reports Server (NTRS)

    Caraccioli, Paul; Varnadoe, Tom; McCarter, Mike

    2006-01-01

    NASA Marshall Space Flight Center s Propulsion Systems Department (PSD) is four months into a fifteen month Knowledge Management (KM) initiative to support enhanced engineering decision making and analyses, faster resolution of anomalies (near-term) and effective, efficient knowledge infused engineering processes, reduced knowledge attrition, and reduced anomaly occurrences (long-term). The near-term objective of this initiative is developing a KM Pilot project, within the context of a 3-5 year KM strategy, to introduce and evaluate the use of KM within PSD. An internal NASA/MSFC PSD KM team was established early in project formulation to maintain a practitioner, user-centric focus throughout the conceptual development, planning and deployment of KM technologies and capabilities with in the PSD. The PSD internal team is supported by the University of Alabama's Aging Infrastructure Systems Center Of Excellence (AISCE), Intergraph Corporation, and The Knowledge Institute. The principle product of the initial four month effort has been strategic planning of PSD KM implementation by first determining the "as is" state of KM capabilities and developing, planning and documenting the roadmap to achieve the desired "to be" state. Activities undertaken to support the planning phase have included data gathering; cultural surveys, group work-sessions, interviews, documentation review, and independent research. Assessments and analyses have been performed including industry benchmarking, related local and Agency initiatives, specific tools and techniques used and strategies for leveraging existing resources, people and technology to achieve common KM goals. Key findings captured in the PSD KM Strategic Plan include the system vision, purpose, stakeholders, prioritized strategic objectives mapped to the top ten practitioner needs and analysis of current resource usage. Opportunities identified from research, analyses, cultural/KM surveys and practitioner interviews include

  2. Mercury's Crustal Magnetic Field from Low-Altitude Measurements by MESSENGER.

    NASA Astrophysics Data System (ADS)

    Johnson, C. L.; Phillips, R. J.; Purucker, M. E.; Anderson, B. J.; Byrne, P. K.; Denevi, B. W.; Fan, K. A.; Feinberg, J. M.; Hauck, S. A., II; Head, J. W., III; Korth, H.; James, P. B.; Mazarico, E.; Neumann, G. A.; Philpott, L. C.; Siegler, M. A.; Strauss, B. E.; Tsyganenko, N. A.; Solomon, S. C.

    2015-12-01

    Magnetized rocks can record the history of a planet's magnetic field, a key constraint for understanding interior evolution. From orbital vector magnetic field measurements of Mercury taken by the MESSENGER spacecraft at altitudes below 150 km, we have detected fields indicative of crustal magnetization. Fields from non-crustal sources, which dominate the observations even at low altitudes, were estimated and subtracted from the observations using both magnetospheric models and signal filtering. The resulting high-pass filtered fields have amplitudes of a few to 20 nT. The first low-altitude signals were detected over the Suisei Planitia region and were confirmed by upward continuation to be of crustal origin. At least some contribution from thermoremanent magnetization is required to account for these signals, and we infer a lower bound on the average age of magnetization of 3.7-3.9 Ga on the basis of correlation of crustal magnetic fields with volcanic units of that age range. Ancient field strengths that range from those similar to Mercury's present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury's crust derived from MESSENGER elemental composition data. Here, we extend these initial results with observations obtained at spacecraft altitudes below 60 km at all body-fixed longitudes from ~40°N to ~75°N. The strongest crustal fields occur in the region 120°E to 210°E, and weaker signals characterize the northern volcanic plains. We test the hypothesis that the longest-wavelength crustal field signals in this region reflect magnetization contrasts between the Caloris basin and the surrounding intercrater plains and circum-Caloris plains. We report the spatial distribution of observed crustal fields, together with magnetization models derived from them and the implications of these models, particularly for the depth distribution of sources compatible with the observations.

  3. Rationale and operational plan for a U.S. high-altitude magnetic survey

    USGS Publications Warehouse

    Hildenbrand, Thomas G.; Acuna, Mario; Bracken, Robert E.; Hardwick, Doug; Hinze, William J.; Keller, Gordon R.; Phillips, Jeff; Roest, Walter

    2002-01-01

    On August 8, 2002, twenty-one scientists from the federal, private and academic sectors met at a workshop in Denver, Co., to discuss the feasibility of collecting magnetic anomaly data on a Canberra aircraft (Figure 1). The need for this 1-day workshop arose because of an exciting and cost-effective opportunity to collect invaluable magnetic anomaly data during a Canberra mission over the U.S. in 2003 and 2004. High Altitude Mapping Missions (HAMM) is currently planning a mission to collect Interferometric Synthetic Aperture Radar (IFSAR) imagery at an altitude of about 15 km and with a flight-line spacing of about 18 km over the conterminous U.S. and Alaska. The additional collection of total and vector magnetic field data would represent a secondary mission objective (i.e., a "piggy-back" magnetometer system). Because HAMM would fund the main flight costs of the mission, the geomagnetic community would obtain invaluable magnetic data at a nominal cost. These unique data would provide new insights on fundamental tectonic and thermal processes and give a new view of the structural and lithologic framework of the crust and possibly the upper mantle. This document highlights: (1) the reasons to conduct this national survey and (2) a preliminary operational plan to collect high-altitude magnetic data of a desired quality and for the expected resources. Although some operational plan issues remain to be resolved, the important conclusions of the workshop are that the Canberra is a very suitable platform to measure the magnetic field and that the planned mission will result in quality high-altitude magnetic data to greatly expand the utility of our national magnetic database.

  4. Global Trends in Glacial Cirque Floor Altitudes and Their Relationships with Climate, Equilibrium Line Altitudes, and Mountain Range Heights

    NASA Astrophysics Data System (ADS)

    Mitchell, S. G.; Humphries, E.

    2013-12-01

    Glacial erosion at the base of cirque headwalls and the creation of threshold slopes above cirque floors may contribute to the 'glacial buzzsaw' effect in limiting the altitude of some mountain ranges. Since glacial extent and therefore glacial erosion rate depends on the equilibrium line altitude (ELA) of a region, the altitude of cirque formation should be a function of the ELA. Several regional studies have shown that cirque floors form at an altitude approximating average Quaternary ELAs in some mountain ranges, but a global correlation has not yet been demonstrated. We examined the correlation between cirque altitudes and global ELA trends by compiling existing and new cirque altitude and morphometry data from > 30 mountain ranges at a wide range of latitudes. Where available, we calculate or present the average cirque altitude, relief, and latitude. We compared these altitudes to both the global East Pacific ELA and local ELAs where available. For the locations analyzed, the majority of average cirque altitudes fall between the Eastern Pacific modern and LGM ELAs, and mountain range height is typically limited to < 600 m above that altitude. This evidence supports the hypothesis that cirque formation is dependent upon the ELA, and that cirques likely form as a result of average, rather than extreme, glacial conditions. Furthermore, the correlation between cirque altitude and ELA, along with the restricted window of relief, implies that cirque formation is a factor in limiting peak altitude in ranges that rise above the ELA.

  5. Diffusive modeling of global river and floodplain dynamics based on 1km-resolution DEM

    NASA Astrophysics Data System (ADS)

    Yamazaki, D.; Kanae, S.; Oki, T.

    2009-12-01

    Terrestrial water circulation is important both as a component of the climate system and as a freshwater supplying system for human beings. Recent advances in remote sensing have achieved global-scale observation of surface water storage and movement from satellites (e.g. inundated area extent by microwave imagers, terrestrial water storage by GRACE, water surface altitude and river discharge possibly by SWOT). On the other hand, global river routing models, which are practically the only available tool for simulating terrestrial water circulation, have not adequately represented the physical mechanism of terrestrial water storage and movement, such as floodplain inundation dynamics regulated by much smaller-scale topography than global model resolution. A newly developed global river routing model named “Catchment-based Macro-scale Floodplain model” (CaMa-Flood) overcomes this drawback by detailed representation of sub-grid-scale topography (ex. river channel cross-section, catchment boundaries, and floodplain elevation profile). These sub-grid features regulating surface water dynamics are objectively parameterized based on 1km-resolution global DEM and flow direction map. This approach enables explicit prediction of surface water altitude, which is essential for diffusive wave modeling of floodplain inundation dynamics. Thus, CaMa-Flood is expected to simulate not only realistic river discharge but also water depth, inundated area extent, and surface water storage. Improvements from previous global river routing models achieved by CaMa-Flood are summarized as follows: (1) objective parameterization of sub-grid topographies using 1km-resolution datasets, (2) explicit representation of floodplain inundation dynamics, (3) diffusive wave modeling for flow computation instead of kinematic wave modeling, and (4) two dimensional expression of inundated area extent which can be validated against satellite observations. Ability of CaMa-Flood is tested by comparing

  6. High altitude pulmonary oedema (HAPE) in an Indian pilgrim.

    PubMed

    Panthi, Sagar; Basnyat, Buddha

    2013-11-01

    Increasing number of Hindu pilgrims visit the Himalayas where some of them suffer from high altitude illness including the life threatening forms, high altitude pulmonary oedema (HAPE) and high altitude cerebral oedema. Compared to tourists and trekkers, pilgrims are usually ignorant about altitude illness. This is a case of a pilgrim who suffered from HAPE on his trip to Kailash-Mansarovar and is brought to a tertiary level hospital in Kathmandu. This report emphasises on how to treat a patient with HAPE, a disease which is increasingly being seen in the high altitude pilgrim population. PMID:24974506

  7. Aerodynamics of heat exchangers for high-altitude aircraft

    NASA Technical Reports Server (NTRS)

    Drela, Mark

    1996-01-01

    Reduction of convective beat transfer with altitude dictates unusually large beat exchangers for piston- engined high-altitude aircraft The relatively large aircraft drag fraction associated with cooling at high altitudes makes the efficient design of the entire heat exchanger installation an essential part of the aircraft's aerodynamic design. The parameters that directly influence cooling drag are developed in the context of high-altitude flight Candidate wing airfoils that incorporate heat exchangers are examined. Such integrated wing-airfoil/heat-exchanger installations appear to be attractive alternatives to isolated heat.exchanger installations. Examples are drawn from integrated installations on existing or planned high-altitude aircraft.

  8. Wave-Like Perturbations Observed at Low Altitudes by the Pioneer Venus Orbiter Neutral Mass Spectrometer During Orbiter Entry

    NASA Technical Reports Server (NTRS)

    Kasprzak, W. T.; Niemann, H. B.; Hedin, A. E.; Bougher, S. W.

    1993-01-01

    Wave-like perturbations have been observed in the nightside neutral density data acquired for He, N, O, N2 and CO2 by the Pioneer Venus Orbiter Neutral Mass Spectrometer (ONMS) during entry in late 1992. The data cover an altitude range of 133-200 km from 0.5-4.5 hours local solar time and occur at medium solar activity (F(sub 10.7) = 120) The perturbations, with an effective wavelength along the orbit of about 100 to 600 km, have similar amplitudes for the various species and helium is out of phase with respect to the heavier mass species. The measurements are comparable to those observed in 1978-80 at solar maximum activity (F(sub 10.7) = 200) above 145 km. Between 133 and 160 km the rms amplitudes grow with altitude at a rate of about (1.6, 2.1, 2.7, 4.4) x 10(exp -3)/ km for N, O, N2, and CO2 respectively. The average rms amplitudes above 145 km of 0.08 for N and O and 0.1 for N2 are comparable in magnitude to those observed in the earlier 1978-80 data of 0.06, 0.08 and 0.095 respectively. CO2 is an exception for which the entry value is 0.17 compared to 0.09 earlier. By combining the two overlapping data sets there is a suggestion that the CO2 amplitudes grow in value with altitude up to about 140-170 km and then decrease in amplitude. Like the earlier data, the entry data are consistent with the interpretation that the neutral density perturbations are due to gravity waves propagating upward from the lower thermosphere. Earlier data sampled a higher altitude region where dissipation is important in limiting and ultimately reversing the growth of gravity waves while the lower altitude entry data probed the region where growth of these waves can be observed.

  9. Gravity anomalies near the east Pacific rise with wavelengths shorter than 3300 km recovered from GEOS-3/ATS-6 satellite-to-satellite Doppler tracking data

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Marsh, B. D.; Conrad, T. D.; Wells, W. T.; Williamson, R. G.

    1977-01-01

    The velocity of the GEOS-3 satellite measured by Doppler as a function of time from the ATS-6 satellite was used to recover gravity anomalies in the region of the East Pacific. The orbit GEOS-3 at an altitude of 840 km was perturbed by spatial changes in Earth's gravitational field. These perturbations were measured via ATS-6 which is in a synchronous orbit at an altitude of about 40,000 km. The range-rate data were reduced using a gravitational field model complete to the 12 degree and order. A simulation of the possible effects causing the remaining range-rate residuals relative to the 12, 12 field shows that in general the dominant effect is the neglect of the higher degree and order coefficients of the gravitational field model.

  10. Radar-anomalous, high-altitude features on Venus

    NASA Technical Reports Server (NTRS)

    Muhleman, Duane O.; Butler, Bryan J.

    1992-01-01

    Over nearly all of the surface of Venus the reflectivity and emissivity at centimeter wavelengths are about 0.15 and 0.85 respectively. These values are consistent with moderately dense soils and rock populations, but the mean reflectivity is about a factor of 2 greater than that for the Moon and other terrestrial planets. Pettingill and Ford, using Pioneer Venus reflectivities and emissivities, found a number of anomalous features on Venus that showed much higher reflectivities and much lower emissivities with both values approaching 0.5. These include Maxwell Montes, a number of high regions in Aphrodite Terra and Beta Regio, and several isolated mountain peaks. Most of the features are at altitudes above the mean radius by 2 to 3 km or more. However, such features have been found in the Magellan data at low altitudes and the anomalies do not exist on all high structures, Maat Mons being the most outstanding example. A number of papers have been written that attempt to explain the phenomena in terms of the geochemistry balance of weathering effects on likely surface minerals. The geochemists have shown that the fundamentally basaltic surface would be stable at the temperatures and pressures of the mean radius in the form of magnetite, but would evolve to pyrite and/or pyrrhotite in the presence of sulfur-bearing compounds such as SO2. Pyrite will be stable at altitudes above 4 or 5 km on Venus. Although the geochemical arguments are rather compelling, it is vitally important to rationally look at other explanations for radar and radio emission measurements such as that presented by Tryka and Muhleman. The radar reflectivity values are retrieved from the raw Magellan backscatter measurements by fitting the Hagfors' radar scattering model in which a surface roughness parameters and a normal incidence electrical reflectivity are estimated. The assumptions of the theory behind the model must be considered carefully before the results can be believed. These include

  11. Intensity of nightside MARSIS AIS surface reflections and implications for low-altitude ionospheric densities

    NASA Astrophysics Data System (ADS)

    Němec, F.; Morgan, D. D.; Diéval, C.; Gurnett, D. A.

    2015-04-01

    Spacecraft radar sounding signals at frequencies higher than the ionospheric peak plasma frequency are not reflected by the ionosphere. Instead, they make it to the ground where they are reflected by the planetary surface. We analyze the intensity of the surface reflections measured by the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) ionospheric radar sounder on board the Mars Express spacecraft. Apart from the surface reflectivity and the spacecraft altitude, the detected intensity of surface reflections is controlled primarily by the signal attenuation during the ionospheric propagation. We focus on the nightside region, where the ionospheric densities in the main layer are too low to cause a significant attenuation and allow sampling of the surface reflections at frequencies down to 3 MHz. The attenuation occurs mainly at altitudes below 100 km, where the electron-neutral collision frequency is a maximum. The intensity of surface reflections can thus serve as a proxy for electron densities at low altitudes not accessible by the direct ionospheric radar sounding. We analyze the intensity of surface reflections as a function of relevant controlling parameters. The intensity of surface reflections is lower at higher solar zenith angles on the nightside and during the periods of larger solar activity. Moreover, it exhibits a seasonal variation that is related to the dust storm occurrence. The intensity of surface reflections is lower in areas of closed magnetic field lines, suggesting that nightside electron densities behave rather differently at low altitudes than at higher altitudes. This is confirmed by comparison with simultaneous observations of the main ionospheric layer.

  12. Growth among Tibetans at high and low altitudes in India.

    PubMed

    Tripathy, Vikal; Gupta, Ranjan

    2007-01-01

    In India, Tibetans have been living at different altitudes for more than 40 years. This study describes physical growth in terms of height, weight, sitting height, skinfold thickness at triceps and upper arm circumference of Tibetans born and raised at three Tibetan refugee settlements (3,521; 970; and 800 m) from the view point of the hypothesis that growth is retarded at high altitude. Samples consist of individuals between the ages of 2 and 40 years. Tibetans at high altitude in India show a growth pattern similar to that previously observed among Tibetans in Tibet. Tibetans at high altitude are taller and heavier compared to Andean highlanders. The general trends show that Tibetan children and adults of both sexes at low altitude in India are advanced in terms of height, weight, skinfold thickness at triceps and upper arm circumference compared to Tibetans at high altitude. Trunk length (sitting height) is similar at the two altitudes but relative sitting height is greater at high altitude. Greater relative sitting height and lesser leg length at high altitude than at low altitudes is discussed in terms of effect of altitude, temperature, and nutritional status. PMID:17691098

  13. High-Altitude Illnesses: Physiology, Risk Factors, Prevention, and Treatment

    PubMed Central

    Taylor, Andrew T.

    2011-01-01

    High-altitude illnesses encompass the pulmonary and cerebral syndromes that occur in non-acclimatized individuals after rapid ascent to high altitude. The most common syndrome is acute mountain sickness (AMS) which usually begins within a few hours of ascent and typically consists of headache variably accompanied by loss of appetite, nausea, vomiting, disturbed sleep, fatigue, and dizziness. With millions of travelers journeying to high altitudes every year and sleeping above 2,500 m, acute mountain sickness is a wide-spread clinical condition. Risk factors include home elevation, maximum altitude, sleeping altitude, rate of ascent, latitude, age, gender, physical condition, intensity of exercise, pre-acclimatization, genetic make-up, and pre-existing diseases. At higher altitudes, sleep disturbances may become more profound, mental performance is impaired, and weight loss may occur. If ascent is rapid, acetazolamide can reduce the risk of developing AMS, although a number of high-altitude travelers taking acetazolamide will still develop symptoms. Ibuprofen can be effective for headache. Symptoms can be rapidly relieved by descent, and descent is mandatory, if at all possible, for the management of the potentially fatal syndromes of high-altitude pulmonary and cerebral edema. The purpose of this review is to combine a discussion of specific risk factors, prevention, and treatment options with a summary of the basic physiologic responses to the hypoxia of altitude to provide a context for managing high-altitude illnesses and advising the non-acclimatized high-altitude traveler. PMID:23908794

  14. Medium altitude airborne Geiger-mode mapping LIDAR system

    NASA Astrophysics Data System (ADS)

    Clifton, William E.; Steele, Bradley; Nelson, Graham; Truscott, Antony; Itzler, Mark; Entwistle, Mark

    2015-05-01

    Over the past 15 years the Massachusetts Institute of Technology, Lincoln Laboratory (MIT/LL), Defense Advanced Research Projects Agency (DARPA) and private industry have been developing airborne LiDAR systems based on arrays of Geiger-mode Avalanche Photodiode (GmAPD) detectors capable of detecting a single photon. The extreme sensitivity of GmAPD detectors allows operation of LiDAR sensors at unprecedented altitudes and area collection rates in excess of 1,000 km2/hr. Up until now the primary emphasis of this technology has been limited to defense applications despite the significant benefits of applying this technology to non-military uses such as mapping, monitoring critical infrastructure and disaster relief. This paper briefly describes the operation of GmAPDs, design and operation of a Geiger-mode LiDAR, a comparison of Geiger-mode and traditional linear mode LiDARs, and a description of the first commercial Geiger-mode LiDAR system, the IntelliEarth™ Geospatial Solutions Geiger-mode LiDAR sensor.

  15. Lightning leader altitude progression in terrestrial gamma-ray flashes

    NASA Astrophysics Data System (ADS)

    Cummer, Steven A.; Lyu, Fanchao; Briggs, Michael S.; Fitzpatrick, Gerard; Roberts, Oliver J.; Dwyer, Joseph R.

    2015-09-01

    Radio emissions continue to provide insight into the production of terrestrial gamma ray flashes (TGFs) by thunderstorms, including the critical question of the conditions under which they are generated. We have identified several TGF-associated lightning radio emissions in which the altitudes of in-cloud lightning leader pulses that precede and follow the TGF can be measured. We combine these with high absolute timing accuracy TGF observations from the Fermi satellite to determine the development of the lightning channel before, during, and after the TGF production. All of these TGFs were produced several milliseconds after the leader had initiated and when the leaders reached 1-2 km in length. After the TGFs, the leaders all continued to ascend for several more kilometers with no dramatic change in their characteristics, although they all exhibited high average velocities of 0.8-1.0 × 106 m/s. Implications in the context of TGF models are discussed. These results paint the first clear picture of the lightning processes that occur before, during, and after TGF production.

  16. An extremely high altitude plume seen at Mars morning terminator

    NASA Astrophysics Data System (ADS)

    Sanchez-Lavega, Agustin; Garcia-Muñoz, Antonio; Garcia-Melendo, Enrique; Perez-Hoyos, Santiago; Gomez-Forrellad, Josep M.; Pellier, Christophe; Delcroix, Marc; Lopez-Valverde, Miguel Angel; Gonzalez-Galindo, Francisco; Jaeschke, Wayne; Parker, Donald C.; Phillips, James H.; Peach, Damian

    2014-11-01

    We report the occurrence in March and April 2012 of two bright very high altitude plumes at the Martian terminator at 250 km or more above the surface, thus well into the ionosphere and bordering on the exosphere. They were located at about 195 deg West longitude and -45 deg latitude (at Terra Cimmeria) and lasted for about 10 days. The features showed day-to-day variability, and were seen at the morning terminator but not at the evening limb, which indicates rapid evolution in less than 10 hours and a cyclic behavior. Photometric measurements are used to explore two possible scenarios to explain their nature. If the phenomenon is due to suspended particles (dust, CO2 or H2O ice clouds) reflecting solar radiation, the mean size is about 0.1 microns with a nadir optical depth > 0.06. Alternatively, the plume could be auroral emission above a region with a strong magnetic anomaly and where aurora has previously been detected. Importantly, both explanations defy our current understanding of the Mars upper atmosphere.AcknowledgementsThis work was supported by the Spanish MINECO projects AYA2012-36666 with FEDER support, CONSOLIDER program ASTROMOL CSD2009-00038 and AYA2011-30613-CO2-1. Grupos Gobierno Vasco IT765-13 and UPV/EHU UFI11/55.

  17. The KM phase in semi-realistic heterotic orbifold models

    SciTech Connect

    Giedt, Joel

    2000-07-05

    In string-inspired semi-realistic heterotic orbifolds models with an anomalous U(1){sub X},a nonzero Kobayashi-Masakawa (KM) phase is shown to arise generically from the expectation values of complex scalar fields, which appear in nonrenormalizable quark mass couplings. Modular covariant nonrenormalizable superpotential couplings are constructed. A toy Z{sub 3} orbifold model is analyzed in some detail. Modular symmetries and orbifold selection rules are taken into account and do not lead to a cancellation of the KM phase. We also discuss attempts to obtain the KM phase solely from renormalizable interactions.

  18. Dose-response of altitude training: how much altitude is enough?

    PubMed

    Levine, Benjamin D; Stray-Gundersen, James

    2006-01-01

    Altitude training continues to be a key adjunctive aid for the training of competitive athletes throughout the world. Over the past decade, evidence has accumulated from many groups of investigators that the "living high--training low" approach to altitude training provides the most robust and reliable performance enhancements. The success of this strategy depends on two key features: 1) living high enough, for enough hours per day, for a long enough period of time, to initiate and sustain an erythropoietic effect of high altitude; and 2) training low enough to allow maximal quality of high intensity workouts, requiring high rates of sustained oxidative flux. Because of the relatively limited access to environments where such a strategy can be practically applied, numerous devices have been developed to "bring the mountain to the athlete," which has raised the key issue of the appropriate "dose" of altitude required to stimulate an acclimatization response and performance enhancement. These include devices using molecular sieve technology to provide a normobaric hypoxic living or sleeping environment, approaches using very high altitudes (5,500m) for shorter periods of time during the day, and "intermittent hypoxic training" involving breathing very hypoxic gas mixtures for alternating 5 minutes periods over the course of 60-90 minutes. Unfortunately, objective testing of the strategies employing short term (less than 4 hours) normobaric or hypobaric hypoxia has failed to demonstrate an advantage of these techniques. Moreover individual variability of the response to even the best of living high--training low strategies has been great, and the mechanisms behind this variability remain obscure. Future research efforts will need to focus on defining the optimal dosing strategy for these devices, and determining the underlying mechanisms of the individual variability so as to enable the individualized "prescription" of altitude exposure to optimize the performance of

  19. Altitude Testing of Large Liquid Propellant Engines

    NASA Technical Reports Server (NTRS)

    Maynard, Bryon T.; Raines, Nickey G.

    2010-01-01

    The National Aeronautics and Space Administration entered a new age on January 14, 2004 with President Bush s announcement of the creation the Vision for Space Exploration that will take mankind back to the Moon and on beyond to Mars. In January, 2006, after two years of hard, dedicated labor, engineers within NASA and its contractor workforce decided that the J2X rocket, based on the heritage of the Apollo J2 engine, would be the new engine for the NASA Constellation Ares upper stage vehicle. This engine and vehicle combination would provide assured access to the International Space Station to replace that role played by the Space Shuttle and additionally, would serve as the Earth Departure Stage, to push the Crew Excursion Vehicle out of Earth Orbit and head it on a path for rendezvous with the Moon. Test as you fly, fly as you test was chosen to be the guiding philosophy and a pre-requisite for the engine design, development, test and evaluation program. An exhaustive survey of national test facility assets proved the required capability to test the J2X engine at high altitude for long durations did not exist so therefore, a high altitude/near space environment testing capability would have to be developed. After several agency concepts the A3 High Altitude Testing Facility proposal was selected by the J2X engine program on March 2, 2007 and later confirmed by a broad panel of NASA senior leadership in May 2007. This facility is to be built at NASA s John C. Stennis Space Center located near Gulfport, Mississippi. 30 plus years of Space Shuttle Main Engine development and flight certification testing makes Stennis uniquely suited to support the Vision For Space Exploration Return to the Moon. Propellant handling infrastructure, engine assembly facilities, a trained and dedicated workforce and a broad and varied technical support base will all ensure that the A3 facility will be built on time to support the schedule needs of the J2X engine and the ultimate flight

  20. Prototype detector development for measurement of high altitude Martian dust using a future orbiter platform

    NASA Astrophysics Data System (ADS)

    Pabari, Jayesh; Patel, Darshil; Chokhawala, Vimmi; Bogavelly, Anvesh

    2016-07-01

    Dust devils mostly occur during the mid of Southern hemisphere summer on Mars and play a key role in the background dust opacity. Due to continuous bombardment of micrometeorites, secondary ejecta come out from the Moons of the Mars and can easily escape. This phenomenon can contribute dust around the Moons and therefore, also around the Mars. Similar to the Moons of the Earth, the surfaces of the Martian Moons get charged and cause the dust levitation to occur, adding to the possible dust source. Also, interplanetary dust particles may be able to reach the Mars and contribute further. It is hypothesized that the high altitude Martian dust could be in the form of a ring or tori around the Mars. However, no such rings have been detected to the present day. Typically, width and height of the dust torus is ~5 Mars radii wide (~16950 km) in both the planes as reported in the literature. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, a langmuir probe cannot explain the source of such dust particles. It is a puzzling question to the space scientist how dust has reached to such high altitudes. A dedicated dust instrument on future Mars orbiter may be helpful to address such issues. To study origin, abundance, distribution and seasonal variation of Martian dust, a Mars Orbit Dust Experiment (MODEX) is proposed. In order to measure the Martian dust from a future orbiter, design of a prototype of an impact ionization dust detector has been initiated at PRL. This paper presents developmental aspects of the prototype dust detector and initial results. The further work is underway.

  1. 4-km body(ies?) embedded in Saturn's Huygens Ringlet

    NASA Astrophysics Data System (ADS)

    Spitale, Joseph N.; Hahn, Joseph M.; Tamayo, Daniel

    2016-05-01

    Saturn's 20-km-wide Huygens ringlet, located ~250 km exterior to the B ring, displays unusual kinematics, as evidenced by a time variable width-relation. The cause of this behavior is not clear, but may be related to the presence of large embedded bodies (Spitale and Hahn 2016). The largest such bodies produce half-propeller-shaped disturbances originating at the inner edge of the ringlet, whose radial widths imply a size of ~4 km, based on simple scaling from A-ring propellers. Here, we show that a numerical N-body model of the ringlet with a 4-km body embedded near the inner edge produces features that are consistent with the observed half propellers.

  2. High energy neutrino detection with KM3NeT

    NASA Astrophysics Data System (ADS)

    Migliozzi, Pasquale; KM3NeT Collaboration

    2016-05-01

    The KM3NeT Collaboration has started the construction of a next generation high-energy neutrino telescope in the Mediterranean Sea: the largest and most sensitive neutrino research infrastructure. The full KM3NeT detector will be a several cubic kilometres distributed, networked infrastructure. In Italy, off the coast of Capo Passero, and in France, off the coast of Toulon. Thanks to its location in the Northern hemisphere and to its large instrumented volume, KM3NeT will be the optimal instrument to search for neutrinos from the Southern sky and in particular from the Galactic plane, thus making it complementary to IceCube. In this work the technologically innovative component of the detector, the status of construction and the first results from prototypes of the KM3NeT detector will be described as well as its capability to discover neutrino sources are reported.

  3. Akeno 20 km (2) air shower array (Akeno Branch)

    NASA Technical Reports Server (NTRS)

    Teshima, M.; Ohoka, H.; Matsubara, Y.; Hara, T.; Hatano, Y.; Hayashida, N.; He, C. X.; Honda, M.; Ishikawa, F.; Kamata, K.

    1985-01-01

    As the first stage of the future huge array, the Akeno air shower array was expanded to about 20 sq. km. by adding 19 scintillation detectors of 2.25 sq m area outside the present 1 sq. km. Akeno array with a new data collection system. These detectors are spaced about 1km from each other and connected by two optical fiber cables. This array has been in partial operation from 8th, Sep. 1984 and full operation from 20th, Dec. 1984. 20 sq m muon stations are planned to be set with 2km separation and one of them is now under construction. The origin of the highest energy cosmic rays is studied.

  4. Regression of altitude-produced cardiac hypertrophy.

    NASA Technical Reports Server (NTRS)

    Sizemore, D. A.; Mcintyre, T. W.; Van Liere, E. J.; Wilson , M. F.

    1973-01-01

    The rate of regression of cardiac hypertrophy with time has been determined in adult male albino rats. The hypertrophy was induced by intermittent exposure to simulated high altitude. The percentage hypertrophy was much greater (46%) in the right ventricle than in the left (16%). The regression could be adequately fitted to a single exponential function with a half-time of 6.73 plus or minus 0.71 days (90% CI). There was no significant difference in the rates of regression for the two ventricles.

  5. High altitude balloon experiments at IIA

    NASA Astrophysics Data System (ADS)

    Nayak, Akshata; Sreejith, A. G.; Safonova, Margarita; Murthy, Jayant

    Recent advances in balloon experiments as well as in electronics have made it possible to fly scientific payloads at costs accessible to university departments. We have begun a program of high altitude ballooning at the Indian Institute of Astrophysics, Bengaluru. The primary purpose of this activity is to test low-cost ultraviolet (UV) payloads for eventual space flight, but we will also try scientific exploration of the phenomena occurring in the upper atmosphere, including sprites and meteorite impacts. We present the results of the initial experiments carried out at the CREST campus of IIA, Hosakote, and describe our plans for the future.

  6. Determining the Altitude of Iridium Flares

    NASA Technical Reports Server (NTRS)

    Foster, James; Owe, Manfred

    1999-01-01

    Iridium flares have nothing to do with the element iridium. Iridium is also the name of a telecommunications company that has been launching satellites into low orbits around the Earth. These satellites are being used for a new type of wireless phone and paging service. Flares have been observed coming from these satellites. These flares have the potential, especially when the full fleet of satellites is in orbit, to disrupt astronomical observations. The paper reviews using simple trigonometry how to calculate the altitude of one of these satellites.

  7. Science requirements and feasibility/design studies of a very-high-altitude aircraft for atmospheric research

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Lux, David P.; Reed, R. Dale; Loewenstein, Max; Wegener, Steven

    1991-01-01

    The advantages and shortcomings of currently available aircraft for use in very high altitude missions to study such problems as polar ozone or stratosphere-troposphere exchange pose the question of whether to develop advanced aircraft for atmospheric research. To answer this question, NASA conducted a workshop to determine science needs and feasibility/design studies to assess whether and how those needs could be met. It was determined that there was a need for an aircraft that could cruise at an altitude of 30 km with a range of 6,000 miles with vertical profiling down to 10 km and back at remote points and carry a payload of 3,000 lbs.

  8. Influence of the superposition approximation on calculated effective dose rates from galactic cosmic rays at aerospace-related altitudes

    NASA Astrophysics Data System (ADS)

    Copeland, Kyle

    2015-07-01

    The superposition approximation was commonly employed in atmospheric nuclear transport modeling until recent years and is incorporated into flight dose calculation codes such as CARI-6 and EPCARD. The useful altitude range for this approximation is investigated using Monte Carlo transport techniques. CARI-7A simulates atmospheric radiation transport of elements H-Fe using a database of precalculated galactic cosmic radiation showers calculated with MCNPX 2.7.0 and is employed here to investigate the influence of the superposition approximation on effective dose rates, relative to full nuclear transport of galactic cosmic ray primary ions. Superposition is found to produce results less than 10% different from nuclear transport at current commercial and business aviation altitudes while underestimating dose rates at higher altitudes. The underestimate sometimes exceeds 20% at approximately 23 km and exceeds 40% at 50 km. Thus, programs employing this approximation should not be used to estimate doses or dose rates for high-altitude portions of the commercial space and near-space manned flights that are expected to begin soon.

  9. How does music aid 5 km of running?

    PubMed

    Bigliassi, Marcelo; León-Domínguez, Umberto; Buzzachera, Cosme F; Barreto-Silva, Vinícius; Altimari, Leandro R

    2015-02-01

    This research investigated the effects of music and its time of application on a 5-km run. Fifteen well-trained male long-distance runners (24.87 ± 2.47 years; 78.87 ± 10.57 kg; 178 ± 07 cm) participated in this study. Five randomized experimental conditions during a 5-km run on an official track were tested (PM: motivational songs, applied before 5 km of running; SM: slow motivational songs, applied during 5 km of running; FM: fast and motivational songs, applied during 5 km of running; CS: calm songs, applied after 5 km of running; CO: control condition). Psychophysiological assessments were performed before (functional near-infrared spectroscopy, heart rate variability [HRV], valence, and arousal), during (performance time, heart rate, and rate of perceived exertion [RPE]), and after (mood, RPE, and HRV) tests. The chosen songs were considered pleasurable and capable of activating. Furthermore, they activated the 3 assessed prefrontal cortex (PFC) areas (medial, right dorsolateral, and left dorsolateral) similarly, generating positive emotional consequences by autonomous system analysis. The first 800 m was accomplished faster for SM and FM compared with other conditions (p ≤ 0.05); moreover, there was a high probability of improving running performance when music was applied (SM: 89%; FM: 85%; PM: 39%). Finally, music was capable of accelerating vagal tonus after 5 km of running with CS (p ≤ 0.05). In conclusion, music was able to activate the PFC area, minimize perceptions, improve performance, and accelerate recovery during 5 km of running. PMID:25029009

  10. Kursk Magnetic Anomaly at Satellite Altitude: Revisited with the Orsted Satellite

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.; VonFrese, Ralph R. B.; Kim, Hyung Rae

    2000-01-01

    The Kursk Magnetic Anomaly (KMA) of Russia (51 deg north, 37 deg east) has long been recognized as one of the largest magnetic anomalies on Earth. It is associated with the massive iron-ore formations of this region, however, model studies have revealed that the relationship between the two is not obvious. In an early effort to demonstrate the validity of Magsat data for crustal research a detailed study of the KMA, at an average altitude of 350 km and the surrounding region was made. They recorded a 27 nT high and a -9 nT low giving a 37 nT peak-to-trough anomaly over the immediate area of the KMA. Despite the much higher altitude of Orsted (620 to 850 km) we revisited the KMA to determine if this mission would also be able to record an associated anomalous crustal signature. The Orsted profiles we selected were from April to August 1999. From these data we chose those with an altitude range of 644 to 700 km and they were subsequently gridded, by least-squares collocation, to a mean elevation of 660 km. Both ascending and descending data were examined and signals common to both were extracted and averaged. A correlation coefficient between these two orbit orientations of 0.82 was computed. The quadrant-swapping method of Kim et al. was applied. Removal of the main geomagnetic field was accomplished with a polynomial fitting procedure. A positive anomaly of >2.5 nT with ari associated negative of <-0.5 nT for a >3 nT peak-to-trough range were computed. These Magsat and Orsted results are consistent with the decay of a dipole field over the studied altitude range. Significant differences between these two anomaly fields are due to the greater number of orbit profiles and therefore greater number of intersecting orbits (ascending and descending) available in the Orsted compilation. Of the four largest amplitude anomalies in the Orsted field three are present in the Magsat map. The fourth (>2.5 nT), however, is associated with the Belorussian-Lithuanian anteclise

  11. Observations of the plasma density enhancement in the high-altitude polar region during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Kitamura, Naritoshi; Shinbori, Atsuki; Nishimura, Yukitoshi; Ono, Takayuki; Iizima, Masahide; Kumamoto, Atsushi; Yamada, Manabu; Watanabe, Shigeto; Abe, Takumi; Yau, Andrew W.

    Recent satellite observations have clarified that plasma outflows play an important role in abrupt changes in the ion composition in the plasmasheet and ring current during geomagnetic storms. In the present study, we perform case studies of enhancement of the plasma density and ion upflow in the high-altitude polar region during geomagnetic storms using the data observed by the Akebono satellite. We use the electron density data observed by the plasma wave and sounder experiments (PWS), and the ion composition and field-aligned velocity measured by the suprathermal ion mass spectrometer (SMS) onboard the Akebono satellite. We perform case studies for the geomagnetic storm events which occurred on June 6, June 9, 1989 and March 30, 1990. Enhancements of the electron density are identified in the entire polar cap associated with the period of the main phase of geomagnetic storms. The electron density in June 7 and 9 enhanced up to 100 times larger than the quiet-time level. During the main phase of the March 30 storm, Akebono crossed the dayside polar region directed from dawn to dusk, and the electron density enhanced up to 30 times larger than the quiet-time level in the auroral zone and dayside polar cap in an altitude range of 7000-10000 km. The SMS instrument measured ion upflows in the entire polar cap along the satellite path. Eighty percent of the upflowing ions were composed of oxygen ions and the field-aligned upward velocity of oxygen ions reached 5-10 km/s. Existence of ion upflows dominated by oxygen ions indicates that the plasma is originated from the ionosphere. The upflow flux of the oxygen ion mapped to 1000 km altitude corresponded to 1-4*109 /cm2 /s. The flux is about the same as the maximum flux observed by DE-1 [Pollock et al., 1990] and Polar during a geomagnetic storm [Moore et al., 1999], and the flux was observed continuously (8-16 h in magnetic local time) in the polar cap. These results indicate that a large amount of the ionospheric

  12. Status of the KM3NeT project

    NASA Astrophysics Data System (ADS)

    Margiotta, A.

    2014-04-01

    KM3NeT is a deep-sea research infrastructure being constructed in the Mediterranean Sea. It will be installed at three sites: KM3NeT-Fr, offshore Toulon, France, KM3NeT-It, offshore Portopalo di Capo Passero, Sicily (Italy) and KM3NeT-Gr, offshore Pylos, Peloponnese, Greece. It will host the next generation Cherenkov neutrino telescope and nodes for a deep sea multidisciplinary observatory, providing oceanographers, marine biologists, and geophysicists with real time measurements. The neutrino telescope will search for Galactic and extra-Galactic sources of neutrinos, complementing IceCube in its field of view. The detector will have a modular structure and consists of six building blocks, each including about one hundred Detection Units (DUs). Each DU will be equipped with 18 multi-PMT digital optical modules. The first phase of construction has started and shore and deep-sea infrastructures hosting the future KM3NeT detector are being prepared in France near Toulon and in Italy, near Capo Passero in Sicily. The technological solutions for KM3NeT and the expected performance of the detector are presented and discussed.

  13. Ion chromatographic determination of anions collected on filters at altitudes between 9.6 and 13.7 kilometers

    NASA Technical Reports Server (NTRS)

    Otterson, D. A.

    1977-01-01

    The investigation of atmospheric pollution to determine the anion-containing particulates in the atmosphere at altitudes between 9.6 and 13.7 km is discussed. Air samples collected on cellulose fiber discs impregnated with dibutoxyethylphthalate require very sensitive methods of analysis. It is concluded that ion chromatography is suited for the determination of anions collected on the filters. Methods to control contamination and interfering side reactions are described.

  14. High Altitude Ballooning and Site Selection

    NASA Astrophysics Data System (ADS)

    Metcalf, John

    2008-10-01

    High altitude ballooning provides a near-space platform for amateur research projects in science and engineering. This venue allows new experiments, otherwise not conducted from costs or lack of transportation, from WSU and surrounding areas to be flown into the upper atmosphere. A highly skilled and motivated group of scientist and engineering students from WSU have contrived its own high altitude balloon to lift payload capsules filled with experiments and tracking equipment up to 120,000 feet where it then bursts and payload capsules are parachuted into a landing zone. Launch site selection is based upon the safety of those that come within the balloons projected flight path and terrain accessibility from the launch and landing zones. Restricted ground and airspace, mountainous regions, lakes and rivers, and densely populated or high air traffic areas were obstacles to be avoided. Computer flight simulations and region analysis show that there are several viable launch and recovery sites in Utah as well as SE Idaho, SW Wyoming, and NW Colorado.

  15. Optic neuropathy following an altitude exposure.

    PubMed

    Steigleman, Allan; Butler, Frank; Chhoeu, Austin; O'Malley, Timothy; Bower, Eric; Giebner, Stephen

    2003-09-01

    This case report describes a 20-yr-old man who presented with retro-orbital pain and blurred vision in his left eye 3 wk after an altitude exposure in a hypobaric chamber. He was found to have significant deficits in color vision and visual fields consistent with an optic neuropathy in his left eye. The patient was diagnosed with decompression sickness and treated with hyperbaric oxygen with a U.S. Navy Treatment Table VI. All signs and symptoms resolved with a single hyperbaric oxygen treatment but recurred. A head MRI revealed a left frontoethmoid sinus opacity. A concomitant sinusitis was diagnosed. The patient had full resolution of symptoms after a total of four hyperbaric oxygen treatments and antibiotic therapy at 6-wk follow-up. Although a para-infectious etiology for this patient's optic neuropathy cannot be excluded, his history of altitude exposure and significant, rapid response to hyperbaric oxygen treatment strongly implies decompression sickness in this case. PMID:14503679

  16. Detection of the structure near the 410 km and 660 km discontinuities in Japan subduction zone from the waveform triplication

    NASA Astrophysics Data System (ADS)

    Cui, H.; Zhou, Y.

    2015-12-01

    Slab subduction plays an important role in the mantle material circulation [Stern, 2002], and can also affect the feature of the 410 km and 660 km seismic discontinuities (410 and 660) [Lebedev et al., 2002]. Japan subduction zone is a natural laboratory for studying the mantle composition and velocity structure associated with the deep subduction of the Pacific plate. In this study, triplicated waveforms of an intermediate-depth earthquake at the Hokkaido of Japan (2011/10/21, 08:02:37.62, 142.5315°E, 43.8729°N, Mb6.0, relocated depth: 188 km) are retrieved from the dense Chinese Digital Seismic Network (CDSN). P and S waveforms are filtered with the band of 0.05-1.0 Hz and 0.02-0.5 Hz, respectively, and then integrated into the displacement data. The relative traveltime and synthetic waveform fitting is applied to mapping the deep structure. The best fitting models are obtained through the trial and error tests. We find a 15 km uplift of the 410 and a 25 km depression of the 660, indicating the cold environment caused by the subduction slab; both the 410 and 660 show the sharp discontinuity, but a smaller velocity contrast than the IASP91 model [Kennett and Engdahl, 1991]. Atop the 410 and 660, there are high-velocity layers associated with the subduction (or stagnant) slab. We also find a low-velocity anomaly with the thickness of ~65 km below the 660, which may relate to the slab dehydration or the hot upwelling at the top of the lower mantle. The seismic velocity ratio (VP/VS) shows a lower zone at the depth of ~210-395 km, showing the consistency with the low Poisson's ratio signature of the oceanic plate; a higher zone at the depth of ~560-685 km, implying the hydrous mantle transition zone.

  17. Similarities and Differences in Pacing Patterns in a 161-km and 101-km Ultra-Distance Road Race.

    PubMed

    Tan, Philip L S; Tan, Frankie H Y; Bosch, Andrew N

    2016-08-01

    Tan, PLS, Tan, FHY, and Bosch, AN. Similarities and differences in pacing patterns in a 161-km and 101-km ultra-distance road race. J Strength Cond Res 30(8): 2145-2155, 2016-The purpose of this study was to establish and compare the pacing patterns of fast and slow finishers in a tropical ultra-marathon. Data were collected from the Craze Ultra-marathon held on the 22nd and 21st of September in 2012 and 2013, respectively. Finishers of the 161-km (N = 47) and 101-km (N = 120) categories of the race were divided into thirds (groups A-C) by merit of finishing time. Altogether, 17 and 11 split times were recorded for the 161-km and 101-km finishers, respectively, and used to calculate the mean running speed for each distance segment. Running speed for the first segment was normalized to 100, with all subsequent splits adjusted accordingly. Running speed during the last 5 km was calculated against the mean race pace to establish the existence of an end spurt. A reverse J-shaped pacing profile was demonstrated in all groups for both distance categories and only 38% of the finishers executed an end spurt. In the 101-km category, in comparison with groups B and C, group A maintained a significantly more even pace (p = 0.013 and 0.001, respectively) and completed the race at a significantly higher percent of initial starting speed (p = 0.001 and 0.001, respectively). Descriptive data also revealed that the top 5 finishers displayed a "herd-behavior" by staying close to the lead runner in the initial portion of the race. These findings demonstrate that to achieve a more even pace, recreational ultra-runners should adopt a patient sustainable starting speed, with less competitive runners setting realistic performance goals whereas competitive runners with a specific time goal to consider running in packs of similar pace. PMID:26808845

  18. Stereoscopic determination of all-sky altitude map of aurora using two ground-based Nikon DSLR cameras

    NASA Astrophysics Data System (ADS)

    Kataoka, R.; Miyoshi, Y.; Shigematsu, K.; Hampton, D.; Mori, Y.; Kubo, T.; Yamashita, A.; Tanaka, M.; Takahei, T.; Nakai, T.; Miyahara, H.; Shiokawa, K.

    2013-09-01

    A new stereoscopic measurement technique is developed to obtain an all-sky altitude map of aurora using two ground-based digital single-lens reflex (DSLR) cameras. Two identical full-color all-sky cameras were set with an 8 km separation across the Chatanika area in Alaska (Poker Flat Research Range and Aurora Borealis Lodge) to find localized emission height with the maximum correlation of the apparent patterns in the localized pixels applying a method of the geographical coordinate transform. It is found that a typical ray structure of discrete aurora shows the broad altitude distribution above 100 km, while a typical patchy structure of pulsating aurora shows the narrow altitude distribution of less than 100 km. Because of its portability and low cost of the DSLR camera systems, the new technique may open a unique opportunity not only for scientists but also for night-sky photographers to complementarily attend the aurora science to potentially form a dense observation network.

  19. Preliminary results for an aeromagnetic survey flown over Italy using the HALO (High Altitude and LOng range) research aircraft

    NASA Astrophysics Data System (ADS)

    Lesur, V.; Gebler, A.; Schachtschneider, R.

    2012-12-01

    In June 2012 the GEOHALO mission was flown over Italy using the high altitude and long-range German research aircraft HALO (Gulfstream jet - G550). One goal of the mission was to demonstrate the feasibility of using geodetic and geophysical instrumentation on such fast flying aircraft. Several types of data were acquired including gravity, GNSS signals (reflectometry, spectrometry and occultation), laser altimetry and magnetic data. The magnetic data were collected through two independent acquisition chains placed inside under-wing containers. Each chain included a total intensity cesium magnetometer, a three-component fluxgate magnetometer, several temperature censors and a digitizer. Magnetic and temperature data were collected at a 10 Hz sampling rate. Seven parallel profiles, each around 1000 km long, were flown over the Apennine peninsula from north-west to south-east. The flight altitude was about 3500 m and the survey line spacing around 40 km. These long profiles were complemented by four crossing profiles, and a repeated flight line at a higher altitude (approx. 10500 m). The ground speed during the flight was generally around 125 m/s (450 km/h). The output from the first steps of the magnetic data processing will be shown. The measured magnetic data appear to be consistent with the expected signal.

  20. Aircraft Low Altitude Wind Shear Detection and Warning System.

    NASA Astrophysics Data System (ADS)

    Sinclair, Peter C.; Kuhn, Peter M.

    1991-01-01

    There is now considerable evidence to substantiate the causal relationship between low altitude wind shear (LAWS) and the recent increase in low-altitude aircraft accidents. The National Research Council has found that for the period 1964 to 1982, LAWS was involved in nearly all the weather-related air carrier fatalities. However, at present, there is no acceptable method, technique, or hardware system that provides the necessary safety margins, for spatial and timely detection of LAWS from an aircraft during the critical phases of landing and takeoff. The Federal Aviation Administration (FAA) has addressed this matter and supports the development of an airborne system for detecting hazardous LAWS with at least a one minute warning of the potential hazard to the pilot. One of the purposes of this paper is to show from some of our preliminary flight measurement research that a forward looking infrared radiometer (FLIR) system can be used to successfully detect the cool downdraft of downbursts [microbursts/macrobursts (MB)] and thunderstorm gust front outflows that are responsible for most of the LAWS events. The FLIR system provides a much greater safety margin for the pilot than that provided by reactive designs such as inertial-air speed systems that require the actual penetration of the MB before a pilot warning can be initiated. Our preliminary results indicate that an advanced airborne FLIR system could provide the pilot with remote indication of MB threat, location, movement, and predicted MB hazards along the flight path ahead of the aircraft.In a proof-of-concept experiment, we have flight tested a prototype FLIR system (nonscanning, fixed range) near and within Colorado MBs with excellent detectability. The results show that a minimum warning time of one-four minutes (5×10 km), depending on aircraft speed, is available to the pilot prior to a MB encounter. Analysis of the flight data with respect to a modified `hazard index' indicates the severe hazard

  1. An equivalent layer magnetization model for the United States derived from satellite altitude magnetic anomalies

    NASA Technical Reports Server (NTRS)

    Mayhew, M. A.

    1982-01-01

    Long wavelength magnetic anomalies measured by the Pogo series satellites at altitudes 400-700 km over the United States and adjacent areas are inverted to an equivalent layer magnetization model based on an equal area dipole source array at the earth's surface. Minimum source spacing giving a stable solution and a physically meaningful magnetization distribution is 300 km, and a scheme is presented for effectively sampling the distribution on a grid twice as fine. The model expresses lateral variation in the vertical integral of magnetization and is a starting point for models of lateral variation in the form of the magnetization-depth curve in the magnetic crust. The magnetization model contours correlate with large-scale tectonic features, and in the western part of the country, probably reflect Curie isotherm undulations.

  2. Is a high-altitude meteorological analysis necessary to simulate thermosphere-stratosphere coupling?

    NASA Astrophysics Data System (ADS)

    Siskind, D. E.; Sassi, F.; Randall, C. E.; Harvey, V. L.; Hervig, M. E.; Bailey, S. M.

    2015-10-01

    We compare simulations of mesospheric tracer descent in the winter and spring of 2009 with two versions of the Whole Atmosphere Community Climate Model (WACCM), both with specified dynamics. One is constrained with data from the Modern-Era Retrospective Analysis for Research and Applications which extends from 0 to 50 km; the other uses the Navy Operational Global Atmospheric Prediction System-Advanced Level Physics High Altitude (NOGAPS-ALPHA) which extends up to 92 km. By comparison with Solar Occultation for Ice Experiment data we show that constraining WACCM to NOGAPS-ALPHA yields a dramatic improvement in the simulated descent of enhanced nitric oxide (NO) and very low methane (CH4). We suggest that constraining to NOGAPS-ALPHA compensates for an underestimate of nonorographic gravity wave drag in WACCM. Other possibilities, such as missing energetic particle precipitation or underestimated eddy diffusion, are less likely for the Arctic winter and spring of 2009.

  3. The KM3NeT Digital Optical Module

    NASA Astrophysics Data System (ADS)

    Vivolo, Daniele

    2016-04-01

    KM3NeT is a European deep-sea multidisciplinary research infrastructure in the Mediterranean Sea. It will host a km3-scale neutrino telescope and dedicated instruments for long-term and continuous measurements for Earth and Sea sciences. The KM3NeT neutrino telescope is a 3-dimensional array of Digital Optical Modules, suspended in the sea by means of vertical string structures, called Detection Units, supported by two pre-stretched Dyneema ropes, anchored to the seabed and kept taut with a system of buoys. The Digital Optical Module represents the active part of the neutrino telescope. It is composed by a 17-inch, 14 mm thick borosilicate glass (Vitrovex) spheric vessel housing 31 photomultiplier tubes with 3-inch photocathode diameter and the associated front-end and readout electronics. The technical solution adopted for the KM3NeT optical modules is characterized by an innovative design, considering that existing neutrino telescopes, Baikal, IceCube and ANTARES, all use large photomultipliers, typically with a diameter of 8″ or 10″. It offers several advantages: higher sensitive surface (1260 cm2), weaker sensitivity to Earth's magnetic field, better distinction between single-photon and multi-photon events (photon counting) and directional information with an almost isotropic field of view. In this contribution the design and the performance of the KM3NeT Digital Optical Modules are discussed, with a particular focus on enabling technologies and integration procedure.

  4. Bronchial asthma: advice for patients traveling to high altitude.

    PubMed

    Cogo, Annalisa; Fiorenzano, Giuseppe

    2009-01-01

    This article examines the possibility of traveling to altitude for patients suffering from bronchial asthma. The mountain environment, the adaptations of the respiratory system to high altitude, the underlying patho-physiologies of asthma, and the recommendations for patients, according to altitude, are discussed. In summary, staying at low altitude has a significant beneficial effect for asthmatic patients, due to the reduction of airway inflammation and the lower response to bronchoconstrictor stimuli; for staying at moderate altitude, there is conflicting information and no clinical data; at high altitude, the environment seems beneficial for well-controlled asthmatics, but intense exercise and upper airway infections (frequent during trekking) can be additional risks and should be avoided. Further, in remote areas health facilities are often difficult to reach. PMID:19519226

  5. Atmospheric Solar Absorption measurements in the lowest 3-km of the atmosphere with small UAVs

    NASA Astrophysics Data System (ADS)

    Ramana, M. V.; Ramanathan, V.; Roberts, G.; Corrigan, C.; Nguyen, H. V.; McFarquhar, G.

    2007-12-01

    This paper reports unique measurements of atmospheric solar absorption and heating rates in the visible (0.4- 0.7 Ým) and broadband (0.3-2.8 Ým) spectral regions using vertically stacked multiple light weight autonomous unmanned aerial vehicles (UAVs) during the Maldives autonomous UAV campaign (MAC). The UAVs and ground based remote sensing instruments determined most of the parameters required for calculating the albedo and vertical distribution of solar fluxes. Measured fluxes have been compared with those derived from a Monte-Carlo radiative transfer algorithm which can incorporate both gaseous and aerosol components. The analysis focuses on a cloud-free day when the air was polluted due to long range transport from India, and the mean aerosol optical depth (AOD) was 0.31 and mean single scattering albedo was 0.92. The UAV measured absorption AOD was 0.019 which agreed within 20% of the value of 0.024 reported by a ground based instrument. The observed and simulated solar absorption agreed within 5% above 1.0 km and aerosol absorption accounted for 30% to 50% of the absorption depending upon the altitude and solar zenith angle. Thus there was no need to invoke anomalous or excess absorption or unknown physics in clear skies, provided we account for aerosol black carbon. The diurnal mean absorption values for altitudes between 0.5 and 3.0 km msl were observed to be 41¡Ó3 Wm-2 (1.5 K/day) in the broadband region and 8¡Ó2 Wm-2 (0.3 K/day) in the visible region. Future investigations into the atmospheric absorption in cloudy skies will characterize the spatial and temporal variation of the cloudy atmosphere in sufficient detail to simulate the vertical distribution of net solar fluxes to permit comparison with the collected radiative observations. This next phase will utilize 4 stacked UAVs to observe the extended cloud decks off the coast of California. A combination of observations and models will then be used to assess if the amount of solar absorption

  6. Control of erythropoiesis after high altitude acclimatization.

    PubMed

    Savourey, Gustave; Launay, Jean-Claude; Besnard, Yves; Guinet, Angélique; Bourrilhon, Cyprien; Cabane, Damien; Martin, Serge; Caravel, Jean-Pierre; Péquignot, Jean-Marc; Cottet-Emard, Jean-Marie

    2004-10-01

    Erythropoiesis was studied in 11 subjects submitted to a 4-h hypoxia (HH) in a hypobaric chamber (4,500 m, barometric pressure 58.9 kPa) both before and after a 3-week sojourn in the Andes. On return to sea level, increased red blood cells (+3.27%), packed cell volume (+4.76%), haemoglobin (+6.55%) ( P<0.05), and increased arterial partial pressure of oxygen (+8.56%), arterial oxygen saturation (+7.40%) and arterial oxygen blood content ( C(a)O(2)) (+12.93%) at the end of HH ( P<0.05) attested high altitude acclimatization. Reticulocytes increased during HH after the sojourn only (+36.8% vs +17.9%, P<0.01) indicating a probable higher reticulocyte release and/or production despite decreased serum erythropoietin (EPO) concentrations (-46%, P<0.01). Hormones (thyroid, catecholamines and cortisol), iron status (serum iron, ferritin, transferrin and haptoglobin) and renal function (creatinine, renal, osmolar and free-water clearances) did not significantly vary (except for lower thyroid stimulating hormone at sea level, P<0.01). Levels of 2,3-diphosphoglycerate (2,3-DPG) increased throughout HH on return (+14.7%, P<0.05) and an inverse linear relationship was found between 2,3-DPG and EPO at the end of HH after the sojourn only ( r=-0.66, P<0.03). Inverse linear relationships were also found between C(a)O(2) and EPO at the end of HH before ( r=-0.63, P<0.05) and after the sojourn ( r=-0.60, P=0.05) with identical slopes but different ordinates at the origin, suggesting that the sensitivity but not the gain of the EPO response to hypoxia was modified by altitude acclimatization. Higher 2,3-DPG levels could partly explain this decreased sensitivity of the EPO response to hypoxia. In conclusion, we show that altitude acclimatization modifies the control of erythropoiesis not only at sea level, but also during a subsequent hypoxia. PMID:15248067

  7. Exhausted Plume Flow Field Prediction Near the Afterbody of Hypersonic Flight Vehicles in High Altitudes

    NASA Technical Reports Server (NTRS)

    Chou, Lynn Chen; Mach, Kervyn D.; Deng, Zheng-Tao; Liaw, Goang-Shin

    1995-01-01

    A two-dimensional computer code to solve the Burnett equations has been developed which computes the flow interaction between an exhausted plume and hypersonic external flow near the afterbody of a flight vehicle. This Burnett-2D code extends the capability of Navier-Stokes solver (RPLUS2D code) to include high-order Burnett source terms and slip-wall conditions for velocity and temperature. Higher-order Burnett viscous stress and heat flux terms are discretized using central-differencing and treated as source terms. Blocking logic is adopted in order to overcome the difficulty of grid generation. The computation of exhaust plume flow field is divided into two steps. In the first step, the thruster nozzle exit conditions are computed which generates inflow conditions in the base area near the afterbody. Results demonstrated that at high altitudes, the computations of nozzle exit conditions must include the effects of base flow since significant expansion exists in the base region. In the second step, Burnett equations were solved for exhaust plume flow field near the afterbody. The free stream conditions are set at an altitude equal to 80km and the Mach number is equal to 5.0. The preliminary results show that the plume expansion, as altitude increases, will eventually cause upstream flow separation.

  8. Work at high altitude and oxidative stress: antioxidant nutrients.

    PubMed

    Askew, E W

    2002-11-15

    A significant portion of the world's geography lies above 10,000 feet elevation, an arbitrary designation that separates moderate and high altitude. Although the number of indigenous people living at these elevations is relatively small, many people travel to high altitude for work or recreation, exposing themselves to chronic or intermittent hypoxia and the associated risk of acute mountain sickness (AMS) and less frequently, high altitude pulmonary edema (HAPE) and high altitude cerebral edema (HACE). The symptoms of AMS (headache, nausea, anorexia, fatigue, lassitude) occur in those who travel too high, too fast. Some investigators have linked the development of these symptoms with the condition of altered blood-brain barrier permeability, possibly related to hypoxia induced free radical formation. The burden of oxidative stress increases during the time spent at altitude and may even persist for some time upon return to sea level. The physiological and medical consequences of increased oxidative stress engendered by altitude is unclear; indeed, hypoxia is believed to be the trigger for the cascade of signaling events that ultimately leads to adaptation to altitude. These signaling events include the generation of reactive oxygen species (ROS) that may elicit important adaptive responses. If produced in excess, however, these ROS may contribute to impaired muscle function and reduced capillary perfusion at altitude or may even play a role in precipitating more serious neurological and pulmonary crisis. Oxidative stress can be observed at altitude without strenuous physical exertion; however, environmental factors other than hypoxia, such as exercise, UV light exposure and cold exposure, can also contribute to the burden. Providing antioxidant nutrients via the diet or supplements to the diet can reduce oxidative stress secondary to altitude exposure. In summary, the significant unanswered question concerning altitude exposure and antioxidant supplementation is

  9. High-altitude pulmonary edema: diagnosis, prevention, and treatment.

    PubMed

    Pennardt, Andre

    2013-01-01

    High-altitude pulmonary edema (HAPE) is a lethal, noncardiogenic form of pulmonary edema that afflicts susceptible individuals after rapid ascent to high altitude above 2,500 m. Prevention of HAPE is achieved most effectively by gradual ascent allowing time for proper acclimatization. Certain prophylactic medications may further reduce the risk of ascending to high altitude in individuals with a prior history of HAPE. The most effective and reliable treatment of HAPE is immediate descent and administration of supplemental oxygen. PMID:23478563

  10. The -145 km/S Absorption System of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Vieira, G.; Gull, T. R.; Danks, A.; Johansson, S.

    2002-01-01

    With the STIS E230H mode (R-118,000) , we have identified about twenty absorption components in line of sight from Eta Carinae. Two components, one at -513 km/s and another at -145 W s , are quite different in character from the others, mostly at intermediate velocities. The -145 km/s component is significantly wider in fwhm, is seen in many more species, and the lower level can be above 20,000/cm, well above the 2000/cm noted in the -513 km/s component. In the spectral region from 2400 to 3160A, approximately 500 absorption lines have been identified. In this poster, we will present line identifications and atomic parameters of the measured lines, hopefully providing insight as to what levels are being excited and by what processes.

  11. Whipple bumper shield tests at over 10 km/s

    SciTech Connect

    Chhabildas, L.C.; Hertel, E.S. ); Hill, S.A. . George C. Marshall Space Flight Center)

    1991-01-01

    A series of experiments has been performed on the the Sandia HyperVelocity Launcher (HVL) to evaluate the effectiveness of a thin Whipple bumper shield at impact velocities up to 10.5 km/s by orbital space debris. Upon impact by an 0.67gm (0.87 mm thick) flier plate the thin aluminum bumper shield completely disintegrates into a debris cloud. The debris cloud front propagates axially at velocities in excess of 14 km/s and expands radially at a velocity of {approximately}7 km/s. Subsequent loading on a 3.2 mm thick aluminum substructure by the debris cloud penetrates the substructure completely. 8 refs., 4 figs.

  12. Mass balance, meteorological, ice motion, surface altitude, runoff, and ice thickness data at Gulkana Glacier, Alaska, 1995 balance year

    USGS Publications Warehouse

    March, Rod S.

    2000-01-01

    The 1995 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier basin were evaluated on the basis of meteorological, hydrological, and glaciological data obtained in the basin. Averaged over the glacier, the measured winter snow balance was 0.94 meter on April 19, 1995, 0.6 standard deviation below the long-term average; the maximum winter snow balance, 0.94 meter, was reached on April 25, 1995; the net balance (from September 18, 1994 to August 29, 1995) was -0.70 meter, 0.76 standard deviation below the long-term average. The annual balance (October 1, 1994, to September 30, 1995) was -0.86 meter. Ice-surface motion and altitude changes measured at three index sites document seasonal ice speed and glacier-thickness changes. Annual stream runoff was 2.05 meters averaged over the basin, approximately equal to the long-term average. The 1976 ice-thickness data are reported from a single site near the highest measurement site (180 meters thick) and from two glacier cross profiles near the mid-glacier (270 meters thick on centerline) and low glacier (150 meters thick on centerline) measurement sites. A new area-altitude distribution determined from 1993 photogrammetry is reported. Area-averaged balances are reported from both the 1967 and 1993 area-altitude distribution so the reader may directly see the effect of the update. Briefly, loss of ablation area between 1967 and 1993 results in a larger weighting being applied to data from the upper glacier site and hence, increases calculated area-averaged balances. The balance increase is of the order of 15 percent for net balance.

  13. Long-Duration Altitude-Controlled Balloons for Venus: A Feasibility Study Informed by Balloon Flights in Remote Environments on Earth

    NASA Astrophysics Data System (ADS)

    Voss, P. B.; Nott, J.; Cutts, J. A.; Hall, J. L.; Beauchamp, P. M.; Limaye, S. S.; Baines, K. H.; Hole, L. R.

    2013-12-01

    In situ exploration of the upper atmosphere of Venus, approximately 65-77 km altitude, could answer many important questions (Limaye 2013, Crisp 2013). This region contains a time-variable UV absorber of unknown composition that controls many aspects of the heat balance on Venus. Understanding the composition and dynamics of this unknown absorber is an important science goal; in situ optical and chemical measurements are needed. However, conventional approaches do not provide access to this altitude range, repeated traverses, and a mission lifetime of several months needed to effectively carry out the science. This paper examines concepts for altitude-controlled balloons not previously flown on planetary missions that could potentially provide the desired measurements. The concepts take advantage of the fact that at 60 km altitude, for example, the atmospheric density on Venus is about 40% of the sea-level density on earth and the temperature is a moderate 230 K. The solar flux is approximately double that on earth, creating some thermal challenges, but making photovoltaic power highly effective. Using a steady-state thermodynamic model and flight data from Earth, we evaluate the suitability of two types of altitude-controlled balloons for a potential mission on Venus. Such balloons could repeatedly measure profiles, avoid diurnal temperature extremes, and navigate using wind shear. The first balloon design uses air ballast (AB) whereby ambient air can be compressed into or released from a constant-volume balloon, causing it to descend or ascend accordingly. The second design uses lift-gas compression (LGC) to change the volume of a zero-pressure balloon, thereby changing its effective density and altitude. For an altitude range of 60-75 km on Venus, we find that the superpressure volume for a LGC balloon is about 5% of that needed for an AB balloon while the maximum pressurization is the same for both systems. The compressor work per km descent of the LGC balloon

  14. Variations of water vapor and cloud top altitude in the Venus' mesosphere from SPICAV/VEx observations

    NASA Astrophysics Data System (ADS)

    Fedorova, A.; Marcq, E.; Luginin, M.; Korablev, O.; Bertaux, J.-L.; Montmessin, F.

    2016-09-01

    SPICAV VIS-IR spectrometer on-board the Venus Express mission measured the H2O abundance above Venus' clouds in the 1.38 μm band, and provided an estimation of the cloud top altitude based on CO2 bands in the range of 1.4-1.6 μm. The H2O content and the cloud top altitude have been retrieved for the complete Venus Express dataset from 2006 to 2014 taking into account multiple scattering in the cloudy atmosphere. The cloud top altitude, corresponding to unit nadir aerosol optical depth at 1.48 μm, varies from 68 to 73 km at latitudes from 40ºS to 40ºN with an average of 70.2 ± 0.8 km assuming the aerosol scale height of 4 km. In high northern latitudes, the cloud top decreases to 62-68 km. The altitude of formation of water lines ranges from 59 to 66 km. The H2O mixing ratio at low latitudes (20ºS-20ºN) is equal to 6.1 ± 1.2 ppm with variations from 4 to 11 ppm and the effective altitude of 61.9 ± 0.5 km. Between 30º and 50º of latitude in both hemispheres, a local minimum was observed with a value of 5.4 ± 1 ppm corresponding to the effective altitude of 62.1 ± 0.6 km and variations from 3 to 8 ppm. At high latitudes in both hemispheres, the water content varies from 4 to 12 ppm with an average of 7.2 ± 1.4 ppm which corresponds to 60.6 ± 0.5 km. Observed variations of water vapor within a factor of 2-3 on the short timescale appreciably exceed individual measurement errors and could be explained as a real variation of the mixing ratio or/and possible variations of the cloud opacity within the clouds. The maximum of water at lower latitudes supports a possible convection and injection of water from lower atmospheric layers. The vertical gradient of water vapor inside the clouds explains well the increase of water near the poles correlating with the decrease of the cloud top altitude and the H2O effective altitude. On the contrary, the depletion of water in middle latitudes does not correlate with the H2O effective altitude and cannot be completely

  15. Evaluation of triggering schemes for KM3NeT

    NASA Astrophysics Data System (ADS)

    Seitz, T.; Herold, B.; Shanidze, R.

    2013-10-01

    The future neutrino telescope KM3NeT, to be built in the Mediterranean Sea, will be the largest of its kind. It will include nearly two hundred thousand photomultiplier tubes (PMT) mounted in multi-PMT digital optical modules (DOM). The dominant source of the PMT signals is decays of 40K and marine fauna bioluminescence. Selection of neutrino and muon events from this continuous optical background signals requires the implementation of fast and efficient triggers. Various schemes for the filtering of background data and the selection of neutrino and muon events were evaluated for the KM3NeT telescope using Monte Carlo simulations.

  16. Cascade sensitivity studies for KM3NeT

    NASA Astrophysics Data System (ADS)

    Fusco, Luigi Antonio

    2016-07-01

    KM3NeT is a future research infrastructure in the deep seas of the Mediterranean housing a large scale neutrino telescope. The first phase of construction of the telescope has started. Next step is an intermediate phase realising a detector volume of about one-third of the final detector volume. We report on calculations of the sensitivity of the KM3NeT detector to showering neutrino events, the strategy to optimise the detector to a cosmic neutrino flux analogous to the one reported by the IceCube Collaboration and the results of this strategy applied to the intermediate phase detector.

  17. Does 'altitude training' increase exercise performance in elite athletes?

    PubMed

    Lundby, Carsten; Robach, Paul

    2016-07-01

    What is the topic of this review? The aim is to evaluate the effectiveness of various altitude training strategies as investigated within the last few years. What advances does it highlight? Based on the available literature, the foundation to recommend altitude training to athletes is weak. Athletes may use one of the various altitude training strategies to improve exercise performance. The scientific support for such strategies is, however, not as sound as one would perhaps imagine. The question addressed in this review is whether altitude training should be recommended to elite athletes or not. PMID:27173805

  18. APOLLO 16 COMMANDER JOHN YOUNG ENTERS ALTITUDE CHAMBER FOR TESTS

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Apollo 16 commander John W. Young prepares to enter the lunar module in an altitude chamber in the Manned Spacecraft Operations Building at the spaceport prior to an altitude run. During the altitude run, in which Apollo 16 lunar module pilot Charles M. Duke also participated, the chamber was pumped down to simulate pressure at an altitude in excess of 200,000 feet. Young, Duke and command module pilot Thomas K. Mattingly II, are training at the Kennedy Space Center for the Apollo 16 mission. Launch is scheduled from Pad 39A, March 17, 1972.

  19. A study of altitude-constrained supersonic cruise transport concepts

    NASA Technical Reports Server (NTRS)

    Tice, David C.; Martin, Glenn L.

    1992-01-01

    The effect of restricting maximum cruise altitude on the mission performance of two supersonic transport concepts across a selection of cruise Mach numbers is studied. Results indicate that a trapezoidal wing concept can be competitive with an arrow wing depending on the altitude and Mach number constraints imposed. The higher wing loading of trapezoidal wing configurations gives them an appreciably lower average cruise altitude than the lower wing loading of the arrow wing configurations, and this advantage increases as the maximum allowable cruise altitude is reduced.

  20. Variability of cloudiness at airline cruise altitudes from GASP measurements

    NASA Technical Reports Server (NTRS)

    Jasperson, W. H.; Nastrom, G. D.; Davis, R. E.; Holdeman, J. D.

    1985-01-01

    Additional statistics relating to the climatology of cloud cover at airline cruise altitudes are presented. The data were obtained between 1975 and 1979 from commercial airliners participating in the Global Atmospheric Sampling Program (GASP). The statistics describe the seasonal, latitudinal and altitudinal variation in cloudiness parameters as well as differences in the high-altitude cloud structure attributed to cyclone and convective-cloud generation processes. The latitudinal distribution of cloud cover derived form the GASP data was found to agree with high-altitude satellite observations. The relationships between three different measures of cloudiness and the relative vorticity at high altitudes is also discussed.

  1. The pulmonary circulation of some domestic animals at high altitude

    NASA Astrophysics Data System (ADS)

    Anand, I.; Heath, D.; Williams, D.; Deen, M.; Ferrari, R.; Bergel, D.; Harris, P.

    1988-03-01

    Pulmonary haemodynamics and the histology of the pulmonary vasculature have been studied at high altitude in the yak, in interbreeds between yaks and cattle, and in domestic goats and sheep indigenous to high altitudes together with crosses between them and low-altitude strains. Cattle at high altitude had a higher pulmonary arterial pressure than cattle at low altitude. The yak and two interbreeds with cattle (dzos and stols) had a low pulmonary arterial pressure compared with cattle, while the medial thickness of the small pulmonary arteries was less than would be expected in cattle, suggesting that the yak has a low capacity for hypoxic pulmonary vasoconstriction and that this characteristic is transmitted genetically. Goats and sheep showed haemodynamic evidence of a limited response of the pulmonary circulation to high altitude, but no evidence that the high altitude breeds had lost this response. There were no measurable differences in the thickness of the media of the small pulmonary arteries between high- and low-altitude breeds of goats and sheep. All these species showed prominent intimal protrusions of muscle into the pulmonary veins but no specific effect of high altitude in this respect.

  2. Pulmonary hemodynamics in children living at high altitudes.

    PubMed

    Penaloza, Dante; Sime, Francisco; Ruiz, Luis

    2008-01-01

    There are numerous publications on altitude-related diseases in adults. In addition, an International Consensus Statement published in 2001 deals with altitude-related illnesses occurring in lowland children who travel to high altitudes. However, despite the millions of children living permanently at high altitudes around the world, there are few publications on altitude-related diseases and pulmonary hemodynamics in this pediatric population. In this paper, we review the published literature on this subject. First, the pulmonary hemodynamics of healthy children (newborns, infants, children, and adolescents) residing at altitudes above 4000 m are summarized. Asymptomatic pulmonary hypertension, which slowly declines with increasing age, is found in these children. This is followed by a discussion of the functional closure of ductus arteriosus, which is delayed at high altitude. Then, the high prevalence of patent ductus arteriosus (PDA) in highland children and the pulmonary hemodynamics in these patients are described. Next, the pulmonary hemodynamics in highland children who suffer high altitude pulmonary edema (HAPE) after a short stay at lower levels is discussed, and the possible reasons for susceptibility to reentry HAPE in this pediatric population are postulated. The pulmonary hemodynamics in children with subacute mountain sickness (SMS) are then described. Moderate to severe pulmonary hypertension is a common finding in all these altitude-related diseases. Finally, the management of these clinical conditions is outlined. PMID:18800956

  3. Power Budget Analysis for High Altitude Airships

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Elliott, James R.; King, Glen C.

    2006-01-01

    The High Altitude Airship (HAA) has various potential applications and mission scenarios that require onboard energy harvesting and power distribution systems. The energy source considered for the HAA s power budget is solar photon energy that allows the use of either photovoltaic (PV) cells or advanced thermoelectric (ATE) converters. Both PV cells and an ATE system utilizing high performance thermoelectric materials were briefly compared to identify the advantages of ATE for HAA applications in this study. The ATE can generate a higher quantity of harvested energy than PV cells by utilizing the cascaded efficiency of a three-staged ATE in a tandem mode configuration. Assuming that each stage of ATE material has the figure of merit of 5, the cascaded efficiency of a three-staged ATE system approaches the overall conversion efficiency greater than 60%. Based on this estimated efficiency, the configuration of a HAA and the power utility modules are defined.

  4. Threshold altitude resulting in decompression sickness

    NASA Technical Reports Server (NTRS)

    Kumar, K. V.; Waligora, James M.; Calkins, Dick S.

    1990-01-01

    A review of case reports, hypobaric chamber training data, and experimental evidence indicated that the threshold for incidence of altitude decompression sickness (DCS) was influenced by various factors such as prior denitrogenation, exercise or rest, and period of exposure, in addition to individual susceptibility. Fitting these data with appropriate statistical models makes it possible to examine the influence of various factors on the threshold for DCS. This approach was illustrated by logistic regression analysis on the incidence of DCS below 9144 m. Estimations using these regressions showed that, under a noprebreathe, 6-h exposure, simulated EVA profile, the threshold for symptoms occurred at approximately 3353 m; while under a noprebreathe, 2-h exposure profile with knee-bends exercise, the threshold occurred at 7925 m.

  5. Anticoagulation Considerations for Travel to High Altitude.

    PubMed

    DeLoughery, Thomas G

    2015-09-01

    DeLoughery, Thomas G. Anticoagulation considerations for travel to high altitude. High Alt Med Biol 16:181-185, 2015.-An increasing percentage of the population are on anticoagulation medicine for clinical reasons ranging from stroke prevention in atrial fibrillation to long term prevention of deep venous thrombosis. In recent years, several new direct oral anticoagulants have entered the market. The key questions that should be kept in mind when approaching a potential traveler on anticoagulation are: 1) why is the patient on anticoagulation? 2) do they need to stay on anticoagulation? 3) what are the choices for their anticoagulation? 4) will there be any drug interactions with medications needed for travel? and 5) how will they monitor their anticoagulation while traveling? Knowing the answers to these questions then can allow for proper counseling and planning for the anticoagulated traveler's trip. PMID:26186419

  6. Aviation fuel property effects on altitude relight

    NASA Technical Reports Server (NTRS)

    Venkataramani, K.

    1987-01-01

    The major objective of this experimental program was to investigate the effects of fuel property variation on altitude relight characteristics. Four fuels with widely varying volatility properties (JP-4, Jet A, a blend of Jet A and 2040 Solvent, and Diesel 2) were tested in a five-swirl-cup-sector combustor at inlet temperatures and flows representative of windmilling conditions of turbofan engines. The effects of fuel physical properties on atomization were eliminated by using four sets of pressure-atomizing nozzles designed to give the same spray Sauter mean diameter (50 + or - 10 micron) for each fuel at the same design fuel flow. A second series of tests was run with a set of air-blast nozzles. With comparable atomization levels, fuel volatility assumes only a secondary role for first-swirl-cup lightoff and complete blowout. Full propagation first-cup blowout were independent of fuel volatility and depended only on the combustor operating conditions.

  7. High Altitude Supersonic Decelerator Test Vehicle

    NASA Technical Reports Server (NTRS)

    Cook, Brant T.; Blando, Guillermo; Kennett, Andrew; Von Der Heydt, Max; Wolff, John Luke; Yerdon, Mark

    2013-01-01

    The Low Density Supersonic Decelerator (LDSD) project is tasked by NASA's Office of the Chief Technologist (OCT) to advance the state of the art in Mars entry and descent technology in order to allow for larger payloads to be delivered to Mars at higher altitudes with better accuracy. The project will develop a 33.5 m Do Supersonic Ringsail (SSRS) parachute, 6m attached torus, robotic class Supersonic Inflatable Aerodynamic Decelerator (SIAD-R), and an 8 m attached isotensoid, exploration class Supersonic Inflatable Aerodynamic Decelerator (SIAD-E). The SSRS and SIAD-R should be brought to TRL-6, while the SIAD-E should be brought to TRL-5. As part of the qualification and development program, LDSD must perform a Mach-scaled Supersonic Flight Dynamics Test (SFDT) in order to demonstrate successful free flight dynamic deployments at Mars equivalent altitude, of all three technologies. In order to perform these tests, LDSD must design and build a test vehicle to deliver all technologies to approximately 180,000 ft and Mach 4, deploy a SIAD, free fly to approximately Mach 2, deploy the SSRS, record high-speed and high-resolution imagery of both deployments, as well as record data from an instrumentation suite capable of characterizing the technology induced vehicle dynamics. The vehicle must also be recoverable after splashdown into the ocean under a nominal flight, while guaranteeing forensic data protection in an off nominal catastrophic failure of a test article that could result in a terminal velocity, tumbling water impact.

  8. Uav Borne Low Altitude Photogrammetry System

    NASA Astrophysics Data System (ADS)

    Lin, Z.; Su, G.; Xie, F.

    2012-07-01

    In this paper,the aforementioned three major aspects related to the Unmanned Aerial Vehicles (UAV) system for low altitude aerial photogrammetry, i.e., flying platform, imaging sensor system and data processing software, are discussed. First of all, according to the technical requirements about the least cruising speed, the shortest taxiing distance, the level of the flight control and the performance of turbulence flying, the performance and suitability of the available UAV platforms (e.g., fixed wing UAVs, the unmanned helicopters and the unmanned airships) are compared and analyzed. Secondly, considering the restrictions on the load weight of a platform and the resolution pertaining to a sensor, together with the exposure equation and the theory of optical information, the principles of designing self-calibration and self-stabilizing combined wide-angle digital cameras (e.g., double-combined camera and four-combined camera) are placed more emphasis on. Finally, a software named MAP-AT, considering the specialty of UAV platforms and sensors, is developed and introduced. Apart from the common functions of aerial image processing, MAP-AT puts more effort on automatic extraction, automatic checking and artificial aided adding of the tie points for images with big tilt angles. Based on the recommended process for low altitude photogrammetry with UAVs in this paper, more than ten aerial photogrammetry missions have been accomplished, the accuracies of Aerial Triangulation, Digital orthophotos(DOM)and Digital Line Graphs(DLG) of which meet the standard requirement of 1:2000, 1:1000 and 1:500 mapping.

  9. Cluster II Mid-Altitude Cusp Observations

    NASA Astrophysics Data System (ADS)

    Winningham, J. D.

    2002-05-01

    Thirty plus years after its discovery the cusp is still an enigma. Questions such as is it open, closed, or mixed; where does it map; what constitutes a cusp etc still abound. Cusps have been defined on the basis of satellite, rocket, and ground based data from single and multiple sensor types. Cartoons and detailed models have been put forward to define what constitutes a cusp. An equal number of questions abound relative to the role the cusp plays in magnetospheric dynamics, mass and momentum transfer, and even energization to populate the rest of the magnetosphere. In a recent series of papers Savin et al have presented both Interball and Prognoz results in the high altitude cusp and sash region. In these papers they divide the high cusp into several new regions. They have an outer throat (OT) exterior to the MP with field lines connected to the earth and heated, stagnant plasma, a turbulent boundary layer (TBL) just at and outside the MP, an outer cusp (OC) that is inside the MP. They state an indentation depth of 1-2 RE. In the TBL large amplitude, low-frequency waves are observed. We will present multi-instrument/satellite Cluster II data that indicates the depth of the OT may be much deeper than thought by Savin. This stems from the higher spatial temporal resolution available from Cluster. Mid altitudes (~5RE) passes will be shown that exhibit the same morphology as Savin. This leads to a new definition of the cusp as the focus of open magnetopause current layer field lines.

  10. Altitude distribution of neutral wind responses to external forces in the polar upper atmosphere

    NASA Astrophysics Data System (ADS)

    Jee, Geonhwa; Lee, Changsup; Song, In-Sun; Kim, Jeong-Han; Kim, Yong Ha; Wu, Qian

    2016-04-01

    Neutral winds in the polar upper atmosphere are mainly determined, in addtion to solar and auroral heatings, by external forces such as plasma convection driven by magnetospheric electric field and atmospheric waves propagated from the lower atmosphere. In particular, the effects of plasma convection via ion drag also rely on the ion density produced not only by solar production but also by energetic particle precipitation. On the other hand, the atmospheric waves such as gravity wave, planetary wave, and tide, propagating from the lower atmosphere, should deposit energy and momentum into the upper atmosphere and affect the neutral winds in the polar region. Then, which external forces dominate the neutral winds in the polar upper atmosphere? What is the boundary region in which the transition occurs from one to the other forces? In order to address these questions, in this study, the effects of the external forces on the neutral winds are investigated using the observations for the neutral winds by Fabry-Perot Interferometer (FPI) at Jang Bogo Station (JBS), Antarctica. The initial result indicates that the effects of plasma convection dominates the neutral winds even at 97 km altitude but the winds at 87 km altitude seem to be dominated by the lower atmospheric wave effects, regardless of season.

  11. ELF and VLF signatures of sprites registered onboard the low altitude satellite DEMETER

    NASA Astrophysics Data System (ADS)

    Błecki, J.; Parrot, M.; Wronowski, R.

    2009-06-01

    We report the observation of ELF and VLF signature of sprites recorded on the low altitude satellite DEMETER during thunderstorm activity. At an altitude of ~700 km, waves observed on the E-field spectrograms at mid-to-low latitudes during night time are mainly dominated by up-going 0+ whistlers. During the night of 20 July 2007 two sprites have been observed around 20:10:08 UT from the observatory located on the top of the mountain Śnieżka in Poland (50°44'09" N, 15°44'21" E, 1603 m) and, ELF and VLF data have been recorded by the satellite at about 1200 km from the region of thunderstorm activity. During this event, the DEMETER instruments were switched in the burst mode and it was possible to register the wave forms. It is shown that the two sprites have been triggered by two intense +CG lightning strokes (100 kA) occurring during the same millisecond but not at the same location. Despite the distance DEMETER has recorded at the same time intense and unusual ELF and VLF emissions. It is shown that the whistler wave propagates from the thunderstorm regions in the Earth-ionosphere guide and enters in the ionosphere below the satellite. They last several tens of milliseconds and the intensity of the ELF waveform is close to 1 mV/m. A particularly intense proton whistler is also associated with these emissions.

  12. High altitude E region echoes observed with the MAARSY VHF radar

    NASA Astrophysics Data System (ADS)

    Chau, J. L.; Renkwitz, T.; Stober, G.; Latteck, R.; Schult, C.; Sommer, S.

    2013-12-01

    We present the observations of unique high altitude E region echoes with the VHF MAARSY located at Andøya, Norway. Previously using a smaller radar system (ALWIN), weak E region echoes occurring between 93 and 114 km and mainly during the local summer have been reported by Rapp et al, [2011]. Such echoes lasted for few minutes and its occurrence was explained in terms of partial reflection in association with sporadic E layers. The new echoes we report here occur in altitudes as high as 130-140 km, last between hundreds of milliseconds to few seconds, and expand from few hundred meters to few kilometers. These new observations have been made possible due to: (a) the higher radar sensitivity (~13 dB), and (b) the possibility of recording raw data voltages with a larger sampling window. Preliminary results indicate that the echoes present a wide variety of spectral signatures (narrow and wide), are highly localized, and occur all year long. We will discuss the occurrence of these echoes in terms of partial reflection, turbulence, and enhanced incoherent scattering.

  13. Gravity wave vertical energy flux at 95 km

    NASA Technical Reports Server (NTRS)

    Jacob, P. G.; Jacka, F.

    1985-01-01

    A three-field photometer (3FP) located at Mt. Torrens near Adelaide, is capable of monitoring different airglow emissions from three spaced fields in the sky. A wheel containing up to six different narrow bandpass interference filters can be rotated, allowing each of the filters to be sequentially placed into each of the three fields. The airglow emission of interest is the 557.7 nm line which has an intensity maximum at 95 km. Each circular field of view is located at the apexes of an equilateral triangle centered on zenith with diameters of 5 km and field separations of 13 km when projected to the 95-km level. The sampling period was 30 seconds and typical data lengths were between 7 and 8 hours. The analysis and results from the interaction of gravity waves on the 557.7 nm emission layer are derived using an atmospheric model similar to that proposed by Hines (1960) where the atmosphere is assumed isothermal and perturbations caused by gravity waves are small and adiabatic, therefore, resulting in linearized equations of motion. In the absence of waves, the atmosphere is also considered stationary. Thirteen nights of quality data from January 1983 to October 1984, covering all seasons, are used in this analysis.

  14. The KM3NeT neutrino telescope

    NASA Astrophysics Data System (ADS)

    de Jong, M.; KM3NeT Consortium

    2010-11-01

    KM3NeT is a deep-sea research infrastructure to be constructed in the Mediterranean Sea hosting a neutrino telescope with a volume of at least one cubic kilometre. The scientific case for a neutrino telescope of a cubic kilometre scale is overwhelming. The infrastructure it requires will be shared by a host of other sciences, making continuous and long-term measurements in the fields of oceanography, geophysics, and marine biological sciences possible. The feasibility of neutrino astronomy with a detector in the deep sea was proven by the successful deployment and operation of the ANTARES prototype detector. The potential of the detection technique, based on the reconstruction of the tracks of muons, the possible reaction products of the sought after neutrinos, has been demonstrated. With two other pilot projects, NEMO and NESTOR, different detector configurations and techniques were explored. The three projects have provided a wealth of information on the technologies required for a large deep-sea neutrino telescope. KM3NeT will reap the benefits. It is planned to make KM3NeT a CO2-neutral facility, using wind or solar energy to supply the required power for the underwater system as well as the shore station. The proposed infrastructure will be built by a European consortium (KM3NeT). The total cost is estimated at 220-250 M€.

  15. The -145 km/s Absorption System of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Vieira, G. L.; Gull, T. R.; Danks, A. C.; Johansson, S.

    2002-12-01

    With the STIS E230H mode (R 118,000), we have identified about twenty absorption components in line of sight from Eta Carinae. Two components, one at -513 km/s and another at -145 km/s, are quite different in character from the others, mostly at intermediate velocities (See adjacent posters by T. Gull and A. Danks). The -145 km/s component is significantly wider in fwhm, is seen in many more species, and the lower level can be above 20,000 cm-1, well above the 2000 cm-1 noted in the -513 km/s component. In the spectral region from 2400 to 3160A, approximately 500 absorption lines have been identified. In this poster, we will present line identifications and atomic parameters of the measured lines, hopefully providing insight as to what levels are being excited and by what processes. Observations were accomplished through STScI under proposal 9242 (Danks, P.I.). Funding is through the STIS GTO resources.

  16. Models of earth's atmosphere (90 to 2500 km)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This monograph replaces a monograph on the upper atmosphere which was a computerized version of Jacchia's model. The current model has a range from 90 to 2500 km. In addition to the computerized model, a quick-look prediction method is given that may be used to estimate the density for any time and spatial location without using a computer.

  17. Body Composition Measurements of 161-km Ultramarathon Participants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study compares body composition characteristics with performance among participants in a 161-km trail ultramarathon. Height, mass, and percent body fat from bioimpedence spectroscopy were measured on 72 starters. Correlation analyses were used to compare body characteristics with finish time, ...

  18. Plasma Waves Observed at Low Altitudes in the Tenuous Venus Nightside Ionosphere

    NASA Technical Reports Server (NTRS)

    Strangeway, R. J.; Russell, C. T.; Ho, C. M.; Brace, L. H.

    1993-01-01

    The Pioneer Venus Orbiter Electric Field Detector (OEFD) measured many plasma wave bursts throughout the low altitude ionosphere during the final entry phase of the spacecraft. Apart from 100 Hz bursts observed at very low altitudes (approx. 130 km), the bursts fall into two classes. The first of these is a wideband signal that is observed in regions of low magnetic field, but average densities, in comparison to the prevailing ionospheric condition. This wideband signal is not observed in the 30 kHz channel of the OEFD, but is restricted to the 5.4 kHz channel and lower. Since these bursts are observed with roughly constant burst rate above 160 km altitude, we attribute them to ion acoustic mode waves generated by precipitating solar wind electrons. The second type of signal is restricted to 100 Hz only, and is observed in regions of low electron beta, consistent with whistler-mode waves. These waves could be generated by lightning in the Venus atmosphere if the vertical component of the magnetic field greater than 3.6 nT. Unfortunately, the spacecraft spin axis is mainly horizontal, and only that component of magnetic field can be measured. Alternatively, the 100 Hz bursts could be generated locally through gradient drift instabilities, provided the ambient magnetic field is horizontal. Because the ionosphere is very different during the entry phase, compared to the ionosphere as observed early in the Pioneer Venus mission, any conclusions regarding the source of the plasma waves detected during entry phase cannot be applied directly to the earlier observations.

  19. Effects of Ascent to High Altitude on Human Antimycobacterial Immunity

    PubMed Central

    Aldridge, Robert W.; Siedner, Mark J.; Necochea, Alejandro; Leybell, Inna; Valencia, Teresa; Herrera, Beatriz; Wiles, Siouxsie; Friedland, Jon S.; Gilman, Robert H.; Evans, Carlton A.

    2013-01-01

    Background Tuberculosis infection, disease and mortality are all less common at high than low altitude and ascent to high altitude was historically recommended for treatment. The immunological and mycobacterial mechanisms underlying the association between altitude and tuberculosis are unclear. We studied the effects of altitude on mycobacteria and antimycobacterial immunity. Methods Antimycobacterial immunity was assayed in 15 healthy adults residing at low altitude before and after they ascended to 3400 meters; and in 47 long-term high-altitude residents. Antimycobacterial immunity was assessed as the extent to which participants’ whole blood supported or restricted growth of genetically modified luminescent Bacille Calmette-Guérin (BCG) mycobacteria during 96 hours incubation. We developed a simplified whole blood assay that could be used by a technician in a low-technology setting. We used this to compare mycobacterial growth in participants’ whole blood versus positive-control culture broth and versus negative-control plasma. Results Measurements of mycobacterial luminescence predicted the number of mycobacterial colonies cultured six weeks later. At low altitude, mycobacteria grew in blood at similar rates to positive-control culture broth whereas ascent to high altitude was associated with restriction (p≤0.002) of mycobacterial growth to be 4-times less than in culture broth. At low altitude, mycobacteria grew in blood 25-times more than negative-control plasma whereas ascent to high altitude was associated with restriction (p≤0.01) of mycobacterial growth to be only 6-times more than in plasma. There was no evidence of differences in antimycobacterial immunity at high altitude between people who had recently ascended to high altitude versus long-term high-altitude residents. Conclusions An assay of luminescent mycobacterial growth in whole blood was adapted and found to be feasible in low-resource settings. This demonstrated that ascent to or

  20. Ventilation during simulated altitude, normobaric hypoxia and normoxic hypobaria

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Icenogle, M.; Scotto, P.; Robergs, R.; Hinghofer-Szalkay, H.; Roach, R. C.; Leoppky, J. A. (Principal Investigator)

    1997-01-01

    To investigate the possible effect of hypobaria on ventilation (VE) at high altitude, we exposed nine men to three conditions for 10 h in a chamber on separate occasions at least 1 week apart. These three conditions were: altitude (PB = 432, FIO2 = 0.207), normobaric hypoxia (PB = 614, FIO2 = 0.142) and normoxic hypobaria (PB = 434, FIO2 = 0.296). In addition, post-test measurements were made 2 h after returning to ambient conditions at normobaric normoxia (PB = 636, FIO2 = 0.204). In the first hour of exposure VE was increased similarly by altitude and normobaric hypoxia. The was 38% above post-test values and end-tidal CO2 (PET(CO2) was lower by 4 mmHg. After 3, 6 and 9 h, the average VE in normobaric hypoxia was 26% higher than at altitude (p < 0.01), resulting primarily from a decline in VE at altitude. The difference between altitude and normobaric hypoxia was greatest at 3 h (+ 39%). In spite of the higher VE during normobaric hypoxia, the PET(CO2) was higher than at altitude. Changes in VE and PET(CO2) in normoxic hypobaria were minimal relative to normobaric normoxia post-test measurements. One possible explanation for the lower VE at altitude is that CO2 elimination is relatively less at altitude because of a reduction in inspired gas density compared to normobaric hypoxia; this may reduce the work of breathing or alveolar deadspace. The greater VE during the first hour at altitude, relative to subsequent measurements, may be related to the appearance of microbubbles in the pulmonary circulation acting to transiently worsen matching. Results indicate that hypobaria per se effects ventilation under altitude conditions.

  1. Improving oxygenation at high altitude: acclimatization and O2 enrichment.

    PubMed

    West, John B

    2003-01-01

    When lowlanders go to high altitude, the resulting oxygen deprivation impairs mental and physical performance, quality of sleep, and general well-being. This paper compares the effects of ventilatory acclimatization and oxygen enrichment of room air on the improvement of oxygenation as judged by the increase in the alveolar P(O2) and the reduction in equivalent altitude. The results show that, on the average, complete ventilatory acclimatization at an altitude of 5000 m increases the alveolar P(O2) by nearly 8 torr, which corresponds to a reduction in equivalent altitude of about 1000 m, although there is considerable individual variability. By comparison, oxygen enrichment to 27% at 5000 m can easily reduce the equivalent altitude to 3200 m, which is generally well tolerated. Because full ventilatory acclimatization at altitudes up to about 3600 m reduces the equivalent altitude to about 3000 m, oxygen enrichment is not justified for well-acclimatized persons. At an altitude of 4200 m, where several telescopes are located on the summit of Mauna Kea, full acclimatization reduces the equivalent altitude to about 3400 m, but the pattern of commuting probably would not allow this. Therefore, at this altitude, oxygen enrichment would be beneficial but is not essential. At higher altitudes such as 5050 m, where other telescopes are located or planned, the gain in oxygenation from acclimatization is insufficient to produce an adequate mental or physical performance for most work, and oxygen enrichment is highly desirable. Full ventilatory acclimatization requires at least a week of continuous exposure, although much of the improvement is seen in the first 2 days. PMID:14561244

  2. Characteristics of Deep Tropical and Subtropical Convection from Nadir-Viewing High-Altitude Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Heymsfield, Andrew J.; Li, Lihua; Guimond, Stephen

    2010-01-01

    This paper presents observations of deep convection characteristics in the tropics and subtropics that have been classified into four categories: tropical cyclone, oceanic, land, and sea breeze. Vertical velocities in the convection were derived from Doppler radar measurements collected during several NASA field experiments from the nadir-viewing high-altitude ER-2 Doppler radar (EDOP). Emphasis is placed on the vertical structure of the convection from the surface to cloud top (sometimes reaching 18-km altitude). This unique look at convection is not possible from other approaches such as ground-based or lower-altitude airborne scanning radars. The vertical motions from the radar measurements are derived using new relationships between radar reflectivity and hydrometeor fall speed. Various convective properties, such as the peak updraft and downdraft velocities and their corresponding altitude, heights of reflectivity levels, and widths of reflectivity cores, are estimated. The most significant findings are the following: 1) strong updrafts that mostly exceed 15 m/s, with a few exceeding 30 m/s, are found in all the deep convection cases, whether over land or ocean; 2) peak updrafts were almost always above the 10-km level and, in the case of tropical cyclones, were closer to the 12-km level; and 3) land-based and sea-breeze convection had higher reflectivities and wider convective cores than oceanic and tropical cyclone convection. In addition, the high-resolution EDOP data were used to examine the connection between reflectivity and vertical velocity, for which only weak linear relationships were found. The results are discussed in terms of dynamical and microphysical implications for numerical models and future remote sensors.

  3. Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0 - 120 km

    NASA Technical Reports Server (NTRS)

    Fleming, Eric L.; Chandra, Sushil; Schoeberl, Mark R.; Barnett, John J.

    1988-01-01

    A monthly mean climatology is presented of temperature, wind, and geopotential height with nearly pole-to-pole coverage (80 S to 80 N) for 0 to 210 km, which can be used as a function of altitude and pressure. The purpose is to provide a reference for various atmospheric research and analysis activities. Data sources and methods of computation are described; in general, hydrostatic and thermal wind balance are maintained at all levels and latitudes. As observed in a series of cross-sectional plots, this climatology accurately reproduces most of the characteristic features of the atmosphere such as equatorial wind and the general structure of the tropopause, stratopause, and mesopause. A series of zonal wind profiles is also represented comparing this climatological wind with monthly mean climatological direct wind measurements in the upper mesosphere and lower thermosphere. The temperature and zonal wind climatology at stratospheric levels is compared with corresponding data from the National Meteorological Center, and general agreement is observed between the two data sets. Tables of the climatological values as a function of latitude and height for each month are contained in Appendix B, and are also available in floppy disk.

  4. Low-Altitude Operation of Unmanned Rotorcraft

    NASA Astrophysics Data System (ADS)

    Scherer, Sebastian

    Currently deployed unmanned rotorcraft rely on preplanned missions or teleoperation and do not actively incorporate information about obstacles, landing sites, wind, position uncertainty, and other aerial vehicles during online motion planning. Prior work has successfully addressed some tasks such as obstacle avoidance at slow speeds, or landing at known to be good locations. However, to enable autonomous missions in cluttered environments, the vehicle has to react quickly to previously unknown obstacles, respond to changing environmental conditions, and find unknown landing sites. We consider the problem of enabling autonomous operation at low-altitude with contributions to four problems. First we address the problem of fast obstacle avoidance for a small aerial vehicle and present results from over a 1000 rims at speeds up to 10 m/s. Fast response is achieved through a reactive algorithm whose response is learned based on observing a pilot. Second, we show an algorithm to update the obstacle cost expansion for path planning quickly and demonstrate it on a micro aerial vehicle, and an autonomous helicopter avoiding obstacles. Next, we examine the mission of finding a place to land near a ground goal. Good landing sites need to be detected and found and the final touch down goal is unknown. To detect the landing sites we convey a model based algorithm for landing sites that incorporates many helicopter relevant constraints such as landing sites, approach, abort, and ground paths in 3D range data. The landing site evaluation algorithm uses a patch-based coarse evaluation for slope and roughness, and a fine evaluation that fits a 3D model of the helicopter and landing gear to calculate a goodness measure. The data are evaluated in real-time to enable the helicopter to decide on a place to land. We show results from urban, vegetated, and desert environments, and demonstrate the first autonomous helicopter that selects its own landing sites. We present a generalized

  5. 14 CFR 91.119 - Minimum safe altitudes: General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Minimum safe altitudes: General. 91.119... § 91.119 Minimum safe altitudes: General. Except when necessary for takeoff or landing, no person may... fails, an emergency landing without undue hazard to persons or property on the surface. (b)...

  6. 14 CFR 135.203 - VFR: Minimum altitudes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false VFR: Minimum altitudes. 135.203 Section 135... Operating Limitations and Weather Requirements § 135.203 VFR: Minimum altitudes. Except when necessary for... above the surface or less than 500 feet horizontally from any obstacle; or (2) At night, at an...

  7. 14 CFR 135.203 - VFR: Minimum altitudes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false VFR: Minimum altitudes. 135.203 Section 135... Operating Limitations and Weather Requirements § 135.203 VFR: Minimum altitudes. Except when necessary for... above the surface or less than 500 feet horizontally from any obstacle; or (2) At night, at an...

  8. 14 CFR 135.203 - VFR: Minimum altitudes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false VFR: Minimum altitudes. 135.203 Section 135... Operating Limitations and Weather Requirements § 135.203 VFR: Minimum altitudes. Except when necessary for... above the surface or less than 500 feet horizontally from any obstacle; or (2) At night, at an...

  9. 14 CFR 91.119 - Minimum safe altitudes: General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Minimum safe altitudes: General. 91.119... § 91.119 Minimum safe altitudes: General. Except when necessary for takeoff or landing, no person may... fails, an emergency landing without undue hazard to persons or property on the surface. (b)...

  10. 14 CFR 91.119 - Minimum safe altitudes: General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Minimum safe altitudes: General. 91.119... § 91.119 Minimum safe altitudes: General. Except when necessary for takeoff or landing, no person may... fails, an emergency landing without undue hazard to persons or property on the surface. (b)...

  11. 14 CFR 135.203 - VFR: Minimum altitudes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false VFR: Minimum altitudes. 135.203 Section 135... Operating Limitations and Weather Requirements § 135.203 VFR: Minimum altitudes. Except when necessary for... above the surface or less than 500 feet horizontally from any obstacle; or (2) At night, at an...

  12. 14 CFR 91.119 - Minimum safe altitudes: General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Minimum safe altitudes: General. 91.119... § 91.119 Minimum safe altitudes: General. Except when necessary for takeoff or landing, no person may... fails, an emergency landing without undue hazard to persons or property on the surface. (b)...

  13. Photocopy of drawing, RIGHT ALTITUDE CHAMBER REACTIVATION. NASA, John F. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing, RIGHT ALTITUDE CHAMBER REACTIVATION. NASA, John F. Kennedy Space Center, Florida. Drawing 82K06032, Boeing, December, 1997. ACCESS PLATFORM INSTALLATION. Sheet S2 - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  14. Photocopy of drawing. RIGHT ALTITUDE CHAMBER REACTIVATION. NASA, John F. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. RIGHT ALTITUDE CHAMBER REACTIVATION. NASA, John F. Kennedy Space Center, Florida. Drawing 82K06032, Boeing, December, 1997. 15 FT LEVEL EQUIPMENT LAYOUT. Sheet E13 - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  15. Photocopy of drawing. RIGHT ALTITUDE CHAMBER REACTIVATION. NASA, John F. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. RIGHT ALTITUDE CHAMBER REACTIVATION. NASA, John F. Kennedy Space Center, Florida. Drawing 82K06032, Boeing, December, 1997. ACCESS PLATFORM DEMOLITION. Sheet S1 - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  16. 10 CFR 862.6 - Voluntary minimum altitude.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Voluntary minimum altitude. 862.6 Section 862.6 Energy DEPARTMENT OF ENERGY RESTRICTIONS ON AIRCRAFT LANDING AND AIR DELIVERY AT DEPARTMENT OF ENERGY NUCLEAR SITES § 862.6 Voluntary minimum altitude. In addition to complying with all applicable FAA prohibitions...

  17. Quadrant to Measure the Sun's Altitude

    ERIC Educational Resources Information Center

    Windsor, A Morgan, Jr.

    2013-01-01

    The changing altitude of the Sun (either over the course of a day or longer periods) is a phenomenon that students do not normally appreciate. However, the altitude of the Sun affects many topics in disciplines as diverse as astronomy, meteorology, navigation, or horology, such as the basis for seasons, determination of latitude and longitude, or…

  18. Comparative aspects of high-altitude adaptation in human populations.

    PubMed

    Moore, L G; Armaza, F; Villena, M; Vargas, E

    2000-01-01

    The conditions and duration of high-altitude residence differ among high-altitude populations. The Tibetan Plateau is larger, more geographically remote, and appears to have been occupied for a longer period of time than the Andean Altiplano and, certainly, the Rocky Mountain region as judged by archaeological, linguistic, genetic and historical data. In addition, the Tibetan gene pool is less likely to have been constricted by small numbers of initial migrants and/or severe population decline, and to have been less subject to genetic admixture with lowland groups. Comparing Tibetans to other high-altitude residents demonstrates that Tibetans have less intrauterine growth retardation better neonatal oxygenation higher ventilation and hypoxic ventilatory response lower pulmonary arterial pressure and resistance lower hemoglobin concentrations and less susceptibility to CMS These findings are consistent with the conclusion that "adaptation" to high altitude increases with time, considering time in generations of high-altitude exposure. Future research is needed to compare the extent of IUGR and neonatal oxygenation in South American high-altitude residents of Andean vs. European ancestry, controlling for gestational age and other characteristics. Another fruitful line of inquiry is likely to be determining whether persons with CMS or other altitude-associated problems experienced exaggerated hypoxia during prenatal or neonatal life. Finally, the comparison of high-altitude populations with respect to the frequencies of genes involved in oxygen sensing and physiologic response to hypoxia will be useful, once candidate genes have been identified. PMID:10849648

  19. Altitude acclimatization. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Mauk, S. C.

    1980-01-01

    This bibliography of citations to the international literature covers aspects of altitude acclimatization. Included are articles concerning high altitude environments, hypoxia, heart function and hemodynamic responses, physical exercise, human tolerances and reactions, physiological responses, and oxygen consumption. This updated bibliography contains 164 citations, 35 of which are new entries to the previous edition.

  20. 14 CFR 121.661 - Initial approach altitude: Flag operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Initial approach altitude: Flag operations... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.661 Initial approach altitude: Flag operations. When making an initial approach to a...