Science.gov

Sample records for 1,4-dihydroxyanthraquinone

  1. Photochemical hole-burning study of 1,4-dihydroxyanthraquinone doped in amorphous silica prepared by alcoholate method

    NASA Astrophysics Data System (ADS)

    Tani, T.; Namikawa, H.; Arai, K.; Makishima, A.

    1985-11-01

    The preparation of 1,4-dihydroxyanthraquinone, an amorphous silica doped with organic dye molecules, is described. The amorphous structure of this system is studied using photochemical hole burning (PHB), and the results are reported together with absorption and fluorescence spectra measured at room temperature. The PHB results for this material are compared with those for alcoholic organic glass, and mechanisms which dominate the temperature dependence of the holewidth are discussed. The introduction of various organic molecules into inorganic oxide glasses may provide a new field in material science. These materials are promising for various optical and optoelectronic applications, including PHB memory, due to the rigidity and stability of the glassy matrices preserving the function of the organic molecules. These materials may also be highly significant for molecular electronic materials.

  2. Combined spectral experiment and theoretical calculation to study the interaction of 1,4-dihydroxyanthraquinone for metal ions in solution

    NASA Astrophysics Data System (ADS)

    Yin, Caixia; Zhang, Jingjing; Huo, Fangjun

    2013-11-01

    The interaction between 1,4-dihydroxyanthraquinone (1,4-DHA) and metal ions was studied by UV-Visible and fluorescence spectroscopies in solution. Time-dependent density functional theory calculations confirmed complex structures. The investigation results showed 1,4-DHA can selectively respond some metal ions and can be monitored by UV-Vis, fluorescence spectra and naked-eye. So 1,4-DHA has a potential application in the design of metal ions probe. More, as typical metal ions, Hg2+ and Er3+, their reaction abilities for 1,4-DHA were studied in detailed. Experimental results showed they have better response for 1,4-DHA. And theoretical calculation concluded that Er3+ easily reacts with 1,4-DHA over Hg2+ attributed to the low reaction energy of Er3+-1,4-DHA than Hg2+-1,4-DHA.

  3. Exploring 1,4-dihydroxyanthraquinone as long-range emissive ratiometric fluorescent probe for signaling Zn(2+)/PO4(3-): Ensemble utilization for live cell imaging.

    PubMed

    Sinha, Sougata; Gaur, Pankaj; Mukherjee, Trinetra; Mukhopadhyay, Subhrakanti; Ghosh, Subrata

    2015-07-01

    Fluorescent 1,4-dihydroxyanthraquinone 1 was found to demonstrate its ratiometric signaling property upon interaction with divalent zinc (Zn(2+)). While the probe itself exhibited fluorescence emission in the yellow region (λem=544 nm and 567 nm), binding with Zn(2+) induced strong emission in the orange region (λem=600 nm) which was mainly due to a combination of CHEF and ICT mechanism. The probe was found to be highly sensitive toward the detection of zinc and the limit of detection (LOD) was calculated to be 9×10(-7) M. The possibility of using this probe for real-time analysis was strongly supported by the striking stability of fluorescence signal for more than five days with similar fluorescence intensity as observed during instant signaling. The present probe works within physiological pH range and is devoid of any interference caused by the same group elements such as Cd(2+)/Hg(2+). The probe possesses excellent excitation/emission wavelength profile and can penetrate cell membrane to image low concentration of zing inside living system. The in situ formed zinc-probe ensemble was further explored as ratiometric sensing platform for detecting another bio-relevant analyte phosphate anion through a zinc-displacement approach. PMID:25956560

  4. 21 CFR 74.1205 - D&C Green No. 5.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... more than 0.2 percent. 1,4-Dihydroxyanthraquinone, not more than 0.2 percent. 2-Amino-m-toluenesulfonic acid, not more than 0.2 percent. Subsidiary colors, not more than 5 percent. Lead (as Pb), not more... safely used to color nylon 66 (the copolymer of adipic acid and hexamethylenediamine) and/or nylon...

  5. 21 CFR 74.1205 - D&C Green No. 5.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... more than 0.2 percent. 1,4-Dihydroxyanthraquinone, not more than 0.2 percent. 2-Amino-m-toluenesulfonic acid, not more than 0.2 percent. Subsidiary colors, not more than 5 percent. Lead (as Pb), not more... safely used to color nylon 66 (the copolymer of adipic acid and hexamethylenediamine) and/or nylon...

  6. Polymerization of novel methacrylated anthraquinone dyes

    PubMed Central

    Dollendorf, Christian; Kreth, Susanne Katharina; Choi, Soo Whan

    2013-01-01

    Summary A new series of polymerizable methacrylated anthraquinone dyes has been synthesized by nucleophilic aromatic substitution reactions and subsequent methacrylation. Thereby, green 5,8-bis(4-(2-methacryloxyethyl)phenylamino)-1,4-dihydroxyanthraquinone (2), blue 1,4-bis(4-((2-methacryloxyethyl)oxy)phenylamino)anthraquinone (6) and red 1-((2-methacryloxy-1,1-dimethylethyl)amino)anthraquinone (12), as well as 1-((1,3-dimethacryloxy-2-methylpropan-2-yl)amino)anthraquinone (15) were obtained. By mixing of these brilliant dyes in different ratios and concentrations, a broad color spectrum can be generated. After methacrylation, the monomeric dyes can be covalently emplaced into several copolymers. Due to two polymerizable functionalities, they can act as cross-linking agents. Thus, diffusion out of the polymer can be avoided, which increases the physiological compatibility and makes the dyes promising compounds for medical applications, such as iris implants. PMID:23503994

  7. Synthesis of new cytotoxic aminoanthraquinone derivatives via nucleophilic substitution reactions.

    PubMed

    Nor, Siti Mariam Mohd; Sukari, Mohd Aspollah Hj Md; Azziz, Saripah Salbiah Syed Abdul; Fah, Wong Chee; Alimon, Hasimah; Juhan, Siti Fadilah

    2013-01-01

    Aminoanthraquinones were successfully synthesized via two reaction steps. 1,4-Dihydroxyanthraquinone (1) was first subjected to methylation, reduction and acylation to give an excellent yield of anthracene-1,4-dione (3), 1,4-dimethoxyanthracene-9,10-dione (5) and 9,10-dioxo-9,10-dihydroanthracene-1,4-diyl diacetate (7). Treatment of 1, 3, 5 and 7 with BuNH2 in the presence of PhI(OAc)2 as catalyst produced seven aminoanthraquinone derivatives 1a, b, 3a, and 5a-d. Amination of 3 and 5 afforded three new aminoanthraquinones, namely 2-(butylamino)anthracene-1,4-dione (3a), 2-(butylamino)anthracene-9,10-dione (5a) and 2,3-(dibutylamino)anthracene-9,10-dione (5b). All newly synthesised aminoanthraquinones were examined for their cytotoxic activity against MCF-7 (estrogen receptor positive human breast) and Hep-G2 (human hepatocellular liver carcinoma) cancer cells using MTT assay. Aminoanthraquinones 3a, 5a and 5b exhibited strong cytotoxicity towards both cancer cell lines (IC50 1.1-13.0 µg/mL). PMID:23884135

  8. Anthraquinones quinizarin and danthron unwind negatively supercoiled DNA and lengthen linear DNA

    SciTech Connect

    Verebová, Valéria; Adamcik, Jozef; Danko, Patrik; Podhradský, Dušan; Miškovský, Pavol; Staničová, Jana

    2014-01-31

    Highlights: • Anthraquinones quinizarin and danthron unwind negatively supercoiled DNA. • Anthraquinones quinizarin and danthron lengthen linear DNA. • Anthraquinones quinizarin and danthron possess middle binding affinity to DNA. • Anthraquinones quinizarin and danthron interact with DNA by intercalating mode. - Abstract: The intercalating drugs possess a planar aromatic chromophore unit by which they insert between DNA bases causing the distortion of classical B-DNA form. The planar tricyclic structure of anthraquinones belongs to the group of chromophore units and enables anthraquinones to bind to DNA by intercalating mode. The interactions of simple derivatives of anthraquinone, quinizarin (1,4-dihydroxyanthraquinone) and danthron (1,8-dihydroxyanthraquinone), with negatively supercoiled and linear DNA were investigated using a combination of the electrophoretic methods, fluorescence spectrophotometry and single molecule technique an atomic force microscopy. The detection of the topological change of negatively supercoiled plasmid DNA, unwinding of negatively supercoiled DNA, corresponding to appearance of DNA topoisomers with the low superhelicity and an increase of the contour length of linear DNA in the presence of quinizarin and danthron indicate the binding of both anthraquinones to DNA by intercalating mode.

  9. Solvent effects on the photophysical properties of poly[1,4-dihydroxyanthraquinoneimine-1,3-bis(phenylene-ester-methylene)tetramethyldisiloxane

    NASA Astrophysics Data System (ADS)

    Dorneanu, Petronela Pascariu; Homocianu, Mihaela; Tigoianu, Ionut Radu; Airinei, Anton; Zaltariov, Mirela; Cazacu, Maria

    2015-01-01

    Absorption and fluorescence spectra of a polyquinoneimine, PQI, built on 1,4-dihydroxyanthraquinone and a siloxane diamine, 1,3-bis(amino-phenylene-ester-methylene)tetramethyldisiloxane, have been investigated in solvents of different polarities. The effect of solvents on the spectral properties was investigated using Lippert-Mataga and Bakhshiev polarity functions and Catalán's multiple linear regression approach. Absorption and fluorescence spectra in studied solvents exhibit hypsochromic and bathochromic shifts, respectively. The polarity of the solvent was the main parameter which changes the spectral properties of PQI. Also, the binary mixtures of chloroform with methanol and dimethyl sulfoxide were used to analyze the intermolecular interactions and preferential solvation. The preferential solvation parameters (local mole fraction (X2L) , excess function (δs2) and preferential solvation constant (KPS)) were calculated from spectral data and discussed as a function of cosolvent content. The values of quantum yield, decreased linearly with increasing solvent polarity (for non-polar and polar solvents).

  10. Characterization of secondary metabolites of an endophytic fungus from Curcuma wenyujin.

    PubMed

    Yan, Jvfen; Qi, Ningbo; Wang, Suping; Gadhave, Kiran; Yang, Shulin

    2014-11-01

    Endophytic fungi are ubiquitous in the plant kingdom and they produce a variety of secondary metabolites to protect plant communities and to show some potential for human use. However, secondary metabolites produced by endophytic fungi in the medicinal plant Curcuma wenyujin are sparsely explored and characterized. The aim of this study was to characterize the secondary metabolites of an active endophytic fungus. M7226, the mutant counterpart of endophytic fungus EZG0807 previously isolated from the root of C. wenyujin, was as a target strain. After fermentation, the secondary metabolites were purified using a series of purification methods including thin layer chromatography, column chromatography with silica, ODS-C18, Sephadex LH-20, and macroporous resin, and were analyzed using multiple pieces of data (UV, IR, MS, and NMR). Five compounds were isolated and identified as curcumin, cinnamic acid, 1,4-dihydroxyanthraquinone, gibberellic acid, and kaempferol. Interestingly, curcumin, one of the main active ingredients of C. wenyujin, was isolated as a secondary metabolite from a fungal endophyte for the first time. PMID:25002358