Science.gov

Sample records for 1-2 ghz system

  1. A cooled 1-2 GHz balanced HEMT amplifier

    NASA Astrophysics Data System (ADS)

    Padin, Stephen; Ortiz, Gerardo G.

    1991-07-01

    The design details and measurement results for a cooled 1-GHz-bandwidth L-band HEMT amplifier are presented. The HEMT noise parameters were measured at a physical temperature of 12 K, and a balanced configuration was adopted. This has the advantage of providing a good input match even though the amplifiers in the two arms of the balanced circuit are poorly matched. However, there are disadvantages. The loss of the input hybrid degrades the noise temperature and coupling errors in the hybrids, and differences between the amplifiers reduce the gain and result in a noise contribution from the input load. In the amplifier described, these effects degrade the noise temperature by less than 1 K. The amplifier uses commercially available packaged HEMT devices. At a physical temperature of 12 K the amplifier achieves noise temperatures between 3 and 6 K over the 1-2-GHz band. The associated gain is about 20 dB.

  2. 47 CFR 101.525 - 24 GHz system operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false 24 GHz system operations. 101.525 Section 101... FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.525 24 GHz system operations. (a) A licensee using the 24 GHz band may construct and operate any number of fixed...

  3. 600-GHz Electronically Tunable Vector Measurement System

    NASA Technical Reports Server (NTRS)

    Dengler, Robert; Maiwald, Frank; Siegel, Peter

    2007-01-01

    A compact, high-dynamic-range, electronically tunable vector measurement system that operates in the frequency range from approximately 560 to approximately 635 GHz has been developed as a prototype of vector measurement systems that would be suitable for use in nearly-real-time active submillimeter-wave imaging. As used here, 'vector measurement system" signifies an instrumentation system that applies a radio-frequency (RF) excitation to an object of interest and measures the resulting amplitude and phase response, relative to either the applied excitatory signal or another reference signal related in a known way to applied excitatory signal.

  4. 47 CFR 101.525 - 24 GHz system operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.525 24 GHz system... 47 Telecommunication 5 2010-10-01 2010-10-01 false 24 GHz system operations. 101.525 Section 101... construction under § 17.4 of this chapter. (b) Whenever a licensee constructs or makes system changes...

  5. The 94 GHz MMW imaging radar system

    NASA Technical Reports Server (NTRS)

    Alon, Yair; Ulmer, Lon

    1993-01-01

    The 94 GHz MMW airborne radar system that provides a runway image in adverse weather conditions is now undergoing tests at Wright-Patterson Air Force Base (WPAFB). This system, which consists of a solid state FMCW transceiver, antenna, and digital signal processor, has an update rate of 10 times per second, 0.35x azimuth resolution and up to 3.5 meter range resolution. The radar B scope (range versus azimuth) image, once converted to C scope (elevation versus azimuth), is compatible with the standard TV presentation and can be displayed on the Head Up Display (HUD) or Head Down Display (HDD) to aid the pilot during landing and takeoff in limited visibility conditions.

  6. DUAL FREQUENCY RESONATOR FOR 1.2 GHZ EPR/16.2 MHZ NMR CO-IMAGING

    PubMed Central

    Petryakov, Sergey; Samouilov, Alexandre; Kesselring, Eric; Caia, George L.; Sun, Ziqi; Zweier, Jay L.

    2010-01-01

    The development of a dual frequency resonator that enables both EPR and proton NMR imaging within the same resonator, magnet and gradient system is described. A novel design allows the same resonator to perform both EPR and proton NMR operation without moving resonator cables or switches. The resonator is capable of working at frequencies of 16.18 MHz for proton NMR and 1.2 GHz for EPR and is optimized for isolated rat heart experiments, measuring 22 mm in inner diameter and 19 mm in length. In EPR mode, the resonator functions as a one loop two gap resonator, electrically coupled through a half wavelength inverter. In NMR mode, it functions a single turn coil. Using the same loop for both modalities maximizes filling factor at both frequencies. Placing the tuning and switching controls away from the resonator prevents any inadvertent movement that would cause errors of EPR and NMR co-imaging registration. The resonator enabled good quality EPR and proton MRI of isolated rat hearts with precise registration. PMID:20434379

  7. SINGLE LOOP - MULTI GAP RESONATOR FOR WHOLE BODY EPR IMAGING OF MICE AT 1.2 GHZ

    PubMed Central

    Petryakov, Sergey; Samouilov, Alexandre; Kesselring, Eric; Wasowicz, Tomasz; Caia, George L.; Zweier, Jay L.

    2009-01-01

    For whole body EPR imaging of small animals, typically low frequencies of 250–750 MHz have been used due to the microwave losses at higher frequencies and the challenges in designing suitable resonators to accommodate these large lossy samples. However, low microwave frequency limits the obtainable sensitivity. L-band frequencies can provide higher sensitivity, and have been commonly used for localized in vivo EPR spectroscopy. Therefore, it would be highly desirable to develop an L-band microwave resonator suitable for in vivo whole body EPR imaging of small animals such as living mice. A 1.2 GHz 16 gap resonator with inner diameter of 43 mm and 48 mm length was designed and constructed for whole body EPR imaging of small animals. The resonator has good field homogeneity and stability to animal induced motional noise. Resonator stability was achieved with electrical and mechanical design utilizing a fixed position double coupling loop of novel geometry, thus minimizing the number of moving parts. Using this resonator, high quality EPR images of lossy phantoms and living mice were obtained. This design provides good sensitivity, ease of sample access, excellent stability and uniform B1 field homogeneity for in vivo whole body EPR imaging of mice at 1.2 GHz. PMID:17625940

  8. The 30/20 GHz communications system functional requirements

    NASA Technical Reports Server (NTRS)

    Siperko, C. M.; Frankfort, M.; Markham, R.; Wall, M.

    1981-01-01

    The characteristics of 30/20 GHz usage in satellite systems to be used in support of projected communication requirements of the 1990's are defined. A requirements analysis which develops projected market demand for satellite services by general and specialized carriers and an analysis of the impact of propagation and system constraints on 30/20 GHz operation are included. A set of technical performance characteristics for the 30/20 GHz systems which can serve the resulting market demand and the experimental program necessary to verify technical and operational aspects of the proposed systems is also discussed.

  9. Single-Chip T/R Module for 1.2 GHz

    NASA Technical Reports Server (NTRS)

    Moussessian, Alina; Mojarradi, Mohammad; Johnson, Travis; Davis, John; Grigorian, Edwin; Hoffman, James; Caro, Edward; Kuhn, William

    2006-01-01

    A single-chip CMOS-based (complementary-metal-oxide-semiconductorbased) transmit/receive (T/R) module is being developed for L-band radar systems. Previous T/R module implementations required multiple chips employing different technologies (GaAs, Si, and others) combined with off-chip transmission lines and discrete components including circulators. The new design eliminates the bulky circulator, significantly reducing the size and mass of the T/R module. Compared to multi-chip designs, the single-chip CMOS can be implemented with lower cost. These innovations enable cost-effective realization of advanced phased array and synthetic aperture radar systems that require integration of thousands of T/R modules. The circulator is a ferromagnetic device that directs the flow of the RF (radio frequency) power during transmission and reception. During transmission, the circulator delivers the transmitted power from the amplifier to the antenna, while preventing it from damaging the sensitive receiver circuitry. During reception, the circulator directs the energy from the antenna to the low-noise amplifier (LNA) while isolating the output of the power amplifier (PA). In principle, a circulator could be replaced by series transistors acting as electronic switches. However, in practice, the integration of conventional series transistors into a T/R chip introduces significant losses and noise. The prototype single-chip T/R module contains integrated transistor switches, but not connected in series; instead, they are connected in a shunt configuration with resonant circuits (see figure). The shunt/resonant circuit topology not only reduces the losses associated with conventional semiconductor switches but also provides beneficial transformation of impedances for the PA and the LNA. It provides full singlepole/ double-throw switching for the antenna, isolating the LNA from the transmitted signal and isolating the PA from the received signal. During reception, the voltage on

  10. The 20/30 GHz satellite systems technology needs assessment

    NASA Technical Reports Server (NTRS)

    Stevens, G.; Wright, D.

    1978-01-01

    Rain attenuation in the 20/30 GHz bands, and the resultant impact on system user costs were estimated for a variety of satellite communication system concepts. Results of previous and current NASA Lewis contractual and in-house studies on system design are reported as well as market studies conducted to evaluate the concepts and test their relevancy against forecasted market needs. The 20/30 GHz bands appear attractive economically and, with certain technology, appear to offer a virtually unlimited spectrum resource. This attractiveness is especially relevant to high density trunking where there is sufficient traffic to justify dual-station site diversity.

  11. Fractional-N PLL based FMCW sweep generator for an 80 GHz radar system with 24.5 GHz bandwidth

    NASA Astrophysics Data System (ADS)

    Jaeschke, T.; Bredendiek, C.; Vogt, M.; Pohl, N.

    2012-09-01

    A phase-locked loop (PLL) based frequency synthesizer capable of generating highly linear broadband frequency sweeps as signal source of a high resolution 80 GHz FMCW radar system is presented. The system achieves a wide output range of 24.5 GHz starting from 68 GHz up to 92.5 GHz. High frequencies allow the use of small antennas for small antenna beam angles. The wide bandwidth results in a radar system with a very high range resolution of below 1.5 cm. Furthermore, the presented synthesizer provides a very low phase noise performance of -80 dBc/Hz at 80 GHz carrier frequency and 10 kHz offset, which enables high precision distance measurements with low range errors. This is achieved by using two nested phase-looked loops with high order loop filters. The use of a fractional PLL divider and a high phase frequency discriminator (PFD) frequency assures an excellent ramp linearity.

  12. Modeling of NASA's 30/20 GHz satellite communications system

    NASA Technical Reports Server (NTRS)

    Kwatra, S. C.; Maples, B. W.; Stevens, G. A.

    1984-01-01

    NASA is in the process of developing technology for a 30/20 GHz satellite communications link. Currently hardware is being assembled for a test transponder. A simulation package is being developed to study the link performance in the presence of interference and noise. This requires developing models for the components of the system. This paper describes techniques used to model the components for which data is available. Results of experiments performed using these models are described. A brief overview of NASA's 30/20 GHz communications satellite program is also included.

  13. Passive 350 GHz Video Imaging Systems for Security Applications

    NASA Astrophysics Data System (ADS)

    Heinz, E.; May, T.; Born, D.; Zieger, G.; Anders, S.; Zakosarenko, V.; Meyer, H.-G.; Schäffel, C.

    2015-10-01

    Passive submillimeter-wave imaging is a concept that has been in the focus of interest as a promising technology for personal security screening for a number of years. In contradiction to established portal-based millimeter-wave scanning techniques, it allows for scanning people from a distance in real time with high throughput and without a distinct inspection procedure. This opens up new possibilities for scanning, which directly address an urgent security need of modern societies: protecting crowds and critical infrastructure from the growing threat of individual terror attacks. Considering the low radiometric contrast of indoor scenes in the submillimeter range, this objective calls for an extremely high detector sensitivity that can only be achieved using cooled detectors. Our approach to this task is a series of passive standoff video cameras for the 350 GHz band that represent an evolving concept and a continuous development since 2007. Arrays of superconducting transition-edge sensors (TES), operated at temperatures below 1 K, are used as radiation detectors. By this means, background limited performance (BLIP) mode is achieved, providing the maximum possible signal to noise ratio. At video rates, this leads to a temperature resolution well below 1 K. The imaging system is completed by reflector optics based on free-form mirrors. For object distances of 5-25 m, a field of view up to 2 m height and a diffraction-limited spatial resolution in the order of 1-2 cm is provided. Opto-mechanical scanning systems are part of the optical setup and capable of frame rates of up to 25 frames per second.

  14. The 30/20 GHz experimental communications satellite system

    NASA Technical Reports Server (NTRS)

    Sivo, J. N.

    1981-01-01

    NASA is continuing to pursue an agressive satellite communications technology development program focused on the 30/20 GHz frequency band. A review of the program progress to date is presented. Included is a discussion of the technology program status as well as a description of the experimental system concept under study. Expected system performance characteristics together with spacecraft and payload configuration details including weight and power budget is presented. Overall program schedules of both the technology development and the flight system development are included.

  15. 1.2-17.6 GHz Ring-Oscillator-Based Phase-Locked Loop with Injection Locking in 65 nm Complementary Metal Oxide Semiconductor

    NASA Astrophysics Data System (ADS)

    Lee, Sang-yeop; Ito, Hiroyuki; Amakawa, Shuhei; Tanoi, Satoru; Ishihara, Noboru; Masu, Kazuya

    2012-02-01

    A wide-frequency-range phase-locked loop (PLL) with subharmonic injection locking is proposed. The PLL is equipped with a wide tunable ring-type voltage-controlled oscillator (ring VCO), frequency dividers, and a doubler in order to the widen injection-locked tuning range (ILTR). In addition, high-frequency injection signals are used to improve phase noise, which is supposed to be generated by a reference PLL. The proposed circuit is fabricated by using a 65 nm Si complementary metal oxide semiconductor (CMOS) process. The measured frequency tuning range is from 1.2 to 17.6 GHz with a frequency doubler and dividers. The phase noise at 14.4 GHz (=32×450 MHz) with injection locking was -109 dBc/Hz, which shows a 21-dB reduction compared with that in the case without injection locking.

  16. 20 GHz high power onboard beam switching circuit for multi-beam satellite systems

    NASA Astrophysics Data System (ADS)

    Araki, K.; Tanaka, T.

    A newly developed K-band beam switching circuit is presented. The K-band beam switching circuit for multibeam satellite system is effective to improve the transponder utilization efficiency. The beam switching circuit divides the output of a transponder among several different light traffic beams in a time division manner. The single pole double throw (SPDT) beam switching circuit consists of one circulator, one 90 degree hybrid coupler, and two 0/pi reflection type PIN diode phase shifters. A trially manufactured SPDT switching circuit has high power handling capability of more than 10 watts, low insertion loss of less than 1.2 dB, high isolation of more than 23 dB, and high speed switching time of faster than 100 nanoseconds in the frequency band between 18.85 GHz and 19.15 GHz.

  17. Few-hundred GHz carbon nanotube nanoelectromechanical systems (NEMS).

    PubMed

    Island, J O; Tayari, V; McRae, A C; Champagne, A R

    2012-09-12

    We study 23-30 nm long suspended single-wall carbon nanotube quantum dots and observe both their stretching and bending vibrational modes. We use low-temperature DC electron transport to excite and measure the tubes' bending mode by making use of a positive feedback mechanism between their vibrations and the tunneling electrons. In these nanoelectromechanical systems (NEMS), we measure fundamental bending frequencies f(bend) ≈ 75-280 GHz and extract quality factors Q ∼ 10(6). The NEMS's frequencies can be tuned by a factor of 2 with tension induced by mechanical breakjunctions actuated by an electrostatic force or tension from bent suspended electrodes. PMID:22888989

  18. The 18/30 GHz fixed communications system service demand assessment. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Gabriszeski, T.; Reiner, P.; Rogers, J.; Terbo, W.

    1979-01-01

    The total demand for voice, video, and data communications services, and satellite transmission services at the 4/6 GHz, 12/14 GHz, and 18/30 GHz frequencies is discussed. Major study objectives, overall methodology, results, and general observations about a satellite systems market characteristics and trends are summarized.

  19. A 35 GHz vector system for non destructive applications

    NASA Astrophysics Data System (ADS)

    Glay, D.; Lasri, T.; Mamouni, A.; Leroy, Y.

    2000-05-01

    It has been demonstrated that microwave techniques are well suited for nondestructive testing (NDT) of materials. The challenge now is to propose systems that can compete, in terms of reliability, precision and fabrication cost, with those already existing. Microwaves are expected to play a fundamental role if we are able to develop both methods and systems to fulfill the increasing demand of characterization in this dynamic field. We have developed devices operating at 2.45 and 10 GHz that have been used successfully for layer thickness and material parameters (permittivity, moisture,…) measurement. In order to tackle other problems met by the NDT community, that need to operate at higher frequencies we have conceived a sensor for the determination of the material under test reflection coefficient (magnitude and phase) at 35 GHz. This system conceived around a complex correlator (or IQ demodulator), made in microstrip technology, is used for the detection of flaws inside dielectric materials or on surface conductors. These investigations concern defects with various shapes, sizes, and dielectric properties.

  20. Modeling Results for Proposed NSTX 28 GHz and EBWH System

    SciTech Connect

    Taylor, G; Ellis, R A; Fredd, E; Greenough, N; Hosea, J C; Wilgen, J B; Harvey, R W; Smirnov, A P; Preinhaelter, J; Urban, J; Ram, A K

    2008-03-20

    A 28 GHz electron cyclotron heating (ECH) and electron Bernstein wave heating (EBWH) system has been proposed for installation on the National Spherical Torus Experiment (NSTX). A 350 kW gyrotron connected to a fixed horn antenna is proposed for ECH-assisted solenoid-free plasma startup. Modeling predicts strong first pass on-axis EC absorption, even for low electron temperature, Te ~ 20 eV, Coaxial Helicity Injection (CHI) startup plasmas. ECH will heat the CHI plasma to Te ~ 300 eV, providing a suitable target plasma for 30 MHz high-harmonic fast wave heating. A second gyrotron and steered O-X-B mirror launcher is proposed for EBWH experiments. Radiometric measurements of thermal EBW emission detected via B-X-O coupling on NSTX support implementation of the proposed system. 80% B-X-O coupling efficiency was measured in L-mode plasmas and 60% B-X-O coupling efficiency was recently measured in H-mode plasmas conditioned with evaporated lithium. Modeling predicts local on-axis EBW heating and current drive using 28 GHz power in β ~ 20% NSTX plasmas should be possible, with current drive efficiencies ~ 40 kA/MW.

  1. Spacecraft multibeam antenna system for 30/20 GHz

    NASA Technical Reports Server (NTRS)

    Roberts, T. E.; Scott, W. F.

    1984-01-01

    The major technical tasks that led to the definitions of operational and demonstration multiple beam antenna (MBA) flight systems and a proof of concept model (POC) are described. Features of the POC Model and its measured performance are presented in detail. Similar MBA's are proposed for transmitting and receiving with the POC Model representing the 20 GHz transmitting antenna. This POC MBA is a dual shaped-surface reflector system utilizing a movable free array to simulate complete CONUS coverage. The beam forming network utilizes ferrite components for switching from one beam to another. Measured results for components, subsystems and the complete MBA confirm the feasibility of the approach and also show excellent correlation with calculated values.

  2. Heterodyne laser-Doppler vibrometer with a slow-shear-mode Bragg cell for vibration measurements up to 1.2 GHz

    NASA Astrophysics Data System (ADS)

    Rembe, Christian; Boedecker, Sebastian; Dräbenstedt, Alexander; Pudewills, Fred; Siegmund, Georg

    2008-06-01

    Several new applications for optical ultra-high frequency (UHF) measurements have been evolved during the last decade by advancements in ultra-sonic filters and actuators as well as by the progress in micro- and nanotechnology. These new applications require new testing methods. Laser-based, non-influencing optical testing is the best choice. In this paper we present a laser-Doppler vibrometer for vibration measurements at frequencies up to 1.2 GHz. The frequency-shifter in the heterodyne interferometer is a slow-shear-mode Bragg cell. The light source in the interferometer is a green DPSS (diode pumped solid state) laser. At this wavelength the highest possible frequency shift between zero and first diffraction order is a few MHz above 300 MHz for a slow shear-mode Bragg cell and, therefore, the highest possible bandwidth of the laser-Doppler vibrometer should usually be around 300 MHz. A new optical arrangement and a novel signal processing of the digitized photo-detector signal is employed to expand the bandwidth to 1.2 GHz. We describe the utilized techniques and present the characterization of the new ultra-high-frequency (UHF) vibrometer. An example measurement on a surface acoustic wave (SAW) resonator oscillating at 262 MHz is also demonstrated. The light-power of the measurement beam can be switched on rapidly by a trigger signal to avoid thermal influences on the sample.

  3. 110 GHz ECH on DIII-D: System overview and initial operation

    SciTech Connect

    Cary, W.P.; Allen, J.C.; Callis, R.W.; Doane, J.L.; Harris, T.E.; Moeller, C.P.; Nerem, A.; Prater, R.; Remsen, D.

    1991-11-01

    A new high power electron cyclotron heating (ECH) system has been introduced on D3-D. This system is designed to operate at 110 GHz with a total output power of 2 MW. The system consists of four Varian VGT-8011 gyrotrons, (output power of 500 kW), and their associated support equipment. All components have been designed for up to a 10 second pulse duration. The 110 GHz system is intended to further progress in rf current drive experiments on D3-D when used in conjunction with the existing 60 GHz ECH (1.6 MW), and the 30--60 MHz ICH (2 MW) systems. H-mode physics, plasma stabilization experiments and transport studies are also to be conducted at 110 GHz. The present system design philosophy was based on experience gained from the existing 60 GHz ECH system. The consequences of these design decisions will be addressed as will the actual performance of various 110 GHz components.

  4. Control system renewal for efficient operation in RIKEN 18 GHz electron cyclotron resonance ion source.

    PubMed

    Uchiyama, A; Ozeki, K; Higurashi, Y; Kidera, M; Komiyama, M; Nakagawa, T

    2016-02-01

    A RIKEN 18 GHz electron cyclotron resonance ion source (18 GHz ECRIS) is used as an external ion source at the Radioactive Ion Beam Factory (RIBF) accelerator complex to produce an intense beam of medium-mass heavy ions (e.g., Ca and Ar). In most components that comprise the RIBF, the control systems (CSs) are integrated by the Experimental Physics and Industrial Control System (EPICS). On the other hand, a non-EPICS-based system has hardwired controllers, and it is used in the 18 GHz ECRIS CS as an independent system. In terms of efficient and effective operation, the 18 GHz ECRIS CS as well as the RIBF CS should be renewed using EPICS. Therefore, we constructed an 18 GHz ECRIS CS by using programmable logic controllers with embedded EPICS technology. In the renewed system, an operational log system was developed as a new feature, for supporting of the 18 GHz ECRIS operation. PMID:26931940

  5. Control system renewal for efficient operation in RIKEN 18 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Uchiyama, A.; Ozeki, K.; Higurashi, Y.; Kidera, M.; Komiyama, M.; Nakagawa, T.

    2016-02-01

    A RIKEN 18 GHz electron cyclotron resonance ion source (18 GHz ECRIS) is used as an external ion source at the Radioactive Ion Beam Factory (RIBF) accelerator complex to produce an intense beam of medium-mass heavy ions (e.g., Ca and Ar). In most components that comprise the RIBF, the control systems (CSs) are integrated by the Experimental Physics and Industrial Control System (EPICS). On the other hand, a non-EPICS-based system has hardwired controllers, and it is used in the 18 GHz ECRIS CS as an independent system. In terms of efficient and effective operation, the 18 GHz ECRIS CS as well as the RIBF CS should be renewed using EPICS. Therefore, we constructed an 18 GHz ECRIS CS by using programmable logic controllers with embedded EPICS technology. In the renewed system, an operational log system was developed as a new feature, for supporting of the 18 GHz ECRIS operation.

  6. Special cascade LMS equalization scheme suitable for 60-GHz RoF transmission system.

    PubMed

    Liu, Siming; Shen, Guansheng; Kou, Yanbin; Tian, Huiping

    2016-05-16

    We design a specific cascade least mean square (LMS) equalizer and to the best of our knowledge, it is the first time this kind of equalizer has been employed for 60-GHz millimeter-wave (mm-wave) radio over fiber (RoF) system. The proposed cascade LMS equalizer consists of two sub-equalizers which are designated for optical and wireless channel compensations, respectively. We control the linear and nonlinear factors originated from optical link and wireless link separately. The cascade equalization scheme can keep the nonlinear distortions of the RoF system in a low degree. We theoretically and experimentally investigate the parameters of the two sub-equalizers to reach their best performances. The experiment results show that the cascade equalization scheme has a faster convergence speed. It needs a training sequence with a length of 10000 to reach its stable status, which is only half as long as the traditional LMS equalizer needs. With the utility of a proposed equalizer, the 60-GHz RoF system can successfully transmit 5-Gbps BPSK signal over 10-km fiber and 1.2-m wireless link under forward error correction (FEC) limit 10-3. An improvement of 4dBm and 1dBm in power sensitivity at BER 10-3 over traditional LMS equalizer can be observed when the signals are transmitted through Back-to-Back (BTB) and 10-km fiber 1.2-m wireless links, respectively. PMID:27409882

  7. a 33GHZ and 95GHZ Cloud Profiling Radar System (cprs): Preliminary Estimates of Particle Size in Precipitation and Clouds.

    NASA Astrophysics Data System (ADS)

    Sekelsky, Stephen Michael

    1995-11-01

    The Microwave Remote Sensing Laboratory (MIRSL) st the University of Massachusetts has developed a unique single antenna, dual-frequency polarimetric Cloud Profiling Radar System (CPRS). This project was funded by the Department of Energy's Atmospheric Radiation Measurement (ARM) program, and was intended to help fill the void of ground-based remote sensors capable of characterizing cloud microphysical properties. CPRS is unique in that it can simultaneously measure the complex power backscattered from clouds at 33 GHz and 95 GHz through the same aperture. Both the 33 GHz and 95 GHz channels can transmit pulse-to-pulse selectable vertical or horizontal polarization, and simultaneously record both the copolarized and crosspolarized backscatter. CPRS Doppler, polarimetric and dual-wavelength reflectivity measurements combined with in situ cloud measurements should lead to the development of empirical models that can more accurately classify cloud-particle phase and habit, and make better quantitative estimates of particle size distribution parameters. This dissertation describes the CPRS hardware, and presents colocated 33 GHz and 95 GHz measurements that illustrate the use of dual-frequency measurements to estimate particle size when Mie scattering, is observed in backscatter from rain and ice-phase clouds. Polarimetric measurements are presented as a means of discriminating cloud phase (ice-water) and estimating crystal shape in cirrus clouds. Polarimetric and dual-wavelength observations of insects are also presented with a brief discussion of their impact on the interpretation of precipitation and liquid cloud measurements. In precipitation, Diermendjian's equations for Mie backscatter (1) and the Marshal-Palmer drop-size distribution are used to develop models relating differences in the reflectivity and mean velocity at 33 GHz and 95 GHz to the microphysical parameters of rain. These models are then used to estimate mean droplet size from CPRS measurements of

  8. Status of the DIII-D 110 GHz ECH system

    SciTech Connect

    Callis, R.W.; Lohr, J.; O`Neill, R.C.; Tooker, J.F.; Ponce, D.

    1996-06-01

    The DIII-D program is presently commissioning the first NM gyrotron of a planned 3 MW, I 10 GHz electron cyclotron heating (ECH) system for off-axis electron heating and current drive. Advanced tokamak (AT) research in DIII-D and other tokamaks requires the ability to control the current density profile. ECH offers the ability to localize the heating and driven current in a controllable manner and is not dependent upon, the local plasma conditions, so it appears to be an ideal tool for AT research. The planned rf sources for the DIII-D system are I MW state-of-the-art internal mode-converter gyrotrons, with one gyrotron being manufactured by GYCOM, a Russian company, and two gyrotrons being manufactured by CPI (formerly Varian). The GYCOM gyrotron has been tested at the factory to 960 kW, 2 seconds and has been shipped to GA where it is now undergoing initial checkout and testing. The first CPI gyrotron has been assembled and factory tested to 530 kW, 2 seconds and 350 1352 kW, 10 seconds. Both the GYCOM and CPI gyrotrons are limited in pulse length at full power by thermal limits on the output window. The second CPI gyrotron is expected to be ready for testing in April 1996. This paper will report on the initial experiences of using the GYCOM I MW, 110 GHz internal mode- converter gyrotron, at General Atomics, and the observed effects the ECRH power has on the DIII-D plasma.

  9. A deep/wide 1-2 GHz snapshot survey of SDSS Stripe 82 using the Karl G. Jansky Very Large Array in a compact hybrid configuration

    NASA Astrophysics Data System (ADS)

    Heywood, I.; Jarvis, M. J.; Baker, A. J.; Bannister, K. W.; Carvalho, C. S.; Hardcastle, M.; Hilton, M.; Moodley, K.; Smirnov, O. M.; Smith, D. J. B.; White, S. V.; Wollack, E. J.

    2016-08-01

    We have used the Karl G. Jansky Very Large Array to image ˜100 deg2 of SDSS Stripe 82 at 1-2 GHz. The survey consists of 1026 snapshot observations of 2.5 min duration, using the hybrid CnB configuration. The survey has good sensitivity to diffuse, low surface brightness structures and extended radio emission, making it highly synergistic with existing 1.4 GHz radio observations of the region. The principal data products are continuum images, with 16 × 10 arcsec resolution, and a catalogue containing 11 782 point and Gaussian components resulting from fits to the thresholded Stokes-I brightness distribution, forming approximately 8948 unique radio sources. The typical effective 1σ noise level is 88 μJy beam-1. Spectral index estimates are included, as derived from the 1 GHz of instantaneous bandwidth. Astrometric and photometric accuracy are in excellent agreement with existing narrowband observations. A large-scale simulation is used to investigate clean bias, which we extend into the spectral domain. Clean bias remains an issue for snapshot surveys with the VLA, affecting our total intensity measurements at the ˜1σ level. Statistical spectral index measurements are in good agreement with existing measurements derived from matching separate surveys at two frequencies. At flux densities below ˜35σ the median in-band spectral index measurements begin to exhibit a bias towards flatness that is dependent on both flux density and the intrinsic spectral index. In-band spectral curvature measurements are likely to be unreliable for all but the very brightest components. Image products and catalogues are publicly available via an FTP server.

  10. A deep/wide 1-2 GHz snapshot survey of SDSS Stripe 82 using the Karl G. Jansky Very Large Array in a compact hybrid configuration

    NASA Astrophysics Data System (ADS)

    Heywood, I.; Jarvis, M. J.; Baker, A. J.; Bannister, K. W.; Carvalho, C. S.; Hardcastle, M.; Hilton, M.; Moodley, K.; Smirnov, O. M.; Smith, D. J. B.; White, S. V.; Wollack, E. J.

    2016-08-01

    We have used the Karl G. Jansky Very Large Array to image ~100 sq. deg. of SDSS Stripe 82 at 1-2 GHz. The survey consists of 1,026 snapshot observations of 2.5 minutes duration, using the hybrid CnB configuration. The survey has good sensitivity to diffuse, low surface brightness structures and extended radio emission, making it highly synergistic with existing 1.4 GHz radio observations of the region. The principal data products are continuum images, with 16 x 10 arcsecond resolution, and a catalogue containing 11,782 point and Gaussian components resulting from fits to the thresholded Stokes-I brightness distribution, forming approximately 8,948 unique radio sources. The typical effective 1{\\sigma} noise level is 88 {\\mu}Jy / beam. Spectral index estimates are included, as derived from the 1 GHz of instantaneous bandwidth. Astrometric and photometric accuracy are in excellent agreement with existing narrowband observations. A large-scale simulation is used to investigate clean bias, which we extend into the spectral domain. Clean bias remains an issue for snapshot surveys with the VLA, affecting our total intensity measurements at the ~1{\\sigma} level. Statistical spectral index measurements are in good agreement with existing measurements derived from matching separate surveys at two frequencies. At flux densities below ~35{\\sigma} the median in-band spectral index measurements begin to exhibit a bias towards flatness that is dependent on both flux density and the intrinsic spectral index. In-band spectral curvature measurements are likely to be unreliable for all but the very brightest components. Image products and catalogues are publicly available via an FTP server.

  11. 76 FR 35176 - Operation of Radar Systems in the 76-77 GHz Band

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... emission limits be modified for vehicular radar systems operating within the 76- 77 GHz band. Specifically... proposes to modify its rules for vehicular radar systems operating in the 76-77 GHz band as TMC requests... there is very little likelihood that vehicular radar systems operating at either the current or...

  12. A 90GHz Bolometer Camera Detector System for the Green

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.

    2004-01-01

    We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3 mm) for the 100m Green Bank Telescope (GBT). This system will provide high sensitivity (less than 1mJy in 1s) rapid imaging (15'x15' to 150 micron Jy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close-packed, Nyquist-sampled array of superconducting transition edge sensor (TES) bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approximately 2 x 10(exp -17) W/square root of Hz, the TES bolometers will provide fast, linear, sensitive response for high performance imaging. The detectors are read out by an 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.

  13. Design of a GHz high-speed memory system

    NASA Astrophysics Data System (ADS)

    Lim, Teck Y.; Foo, Say W.; Chan, Kheng Kang

    1999-12-01

    Digital application has moved towards operating speed of hundreds of Mega Hertz, with the sampling speed of ADC moving into Giga Hertz range. There is an increasing need for the design and development of a high-speed data acquisition system that is capable of capturing and processing digitized analogue signal at high speed. Due to the tight timing budget, high operating speed components, Emitter-Coupled-Logic families components with rise time of typically less than 300 ps were used in the design. With this operating speed and short rise time, signal integrity issues like reflections due to impedance mismatches and crosstalk among the traces of the printed circuit board can no longer be neglected. A quick and reliable approach was taken in the design and implementation of a 1 GHz high-speed data acquisition system using commercial-off-the-shelf discrete components. High-speed digital design issues and methodology were explored in this project and verified with the implemented hardware. This paper gives an overview of the system and focuses on the use of functional and signal- integrity computer simulation software to confirm system performance at the early design stage before actual hardware implementation. Simulation results were further confirmed with the actual hardware implemented, and was found to be close. This has helped to reduce the design cycle time and development cost of the project.

  14. The DIII-D 3 MW, 110 GHz ECH System

    SciTech Connect

    Callis, R.W.; Lohr, J.; Ponce, D.; O'Neill, R.C.; Prater, R.; Luce, T.C.

    1999-07-01

    Three 110 GHz gyrotrons with nominal output power of 1 MW each have been installed and are operational on the DIII-D tokamak. One gyrotron is built by Gycom and has a nominal rating of 1 MW and a 2 s pulse length, with the pulse length being determined by the maximum temperature allowed on the edge cooled Boron Nitride window. The second and third gyrotrons were built by Communications and Power Industries (CPI). The first CPI gyrotron uses a double disc FC-75 cooled sapphire window which has a pulse length rating of 0.8 s at 1 MW, 2s at 0.5 MW and 10s at 0.35 MW. The second CPI gyrotron, utilizes a single disc chemical-vapor-deposition diamond window, that employs water cooling around the edge of the disc. Calculation predict that the diamond window should be capable of full 1 MW cw operation. All gyrotrons are connected to the tokamak by a low-loss-windowless evacuated transmission line using circular corrugated waveguide for propagation in the HEl 1 mode. Each waveguide system incorporates a two mirror launcher which can steer the rf beam poloidally from the center to the outer edge of the plasma. Central current drive experiments with the two gyrotrons with 1.5 MW of injected power drove about 0.17 MA. Results from using the three gyrotron systems will be reported as well as the plans to upgrade the system to 6 MW.

  15. GHz - THz plasmonic circuits using low dimensional electronic systems

    NASA Astrophysics Data System (ADS)

    Ham, Donhee

    2012-02-01

    Nature offers a broad variety of plasma systems consisting of electrons unbound from atoms, e.g.; astrophysical plasmas in intergalactic, interstellar, and stellar media; the Earth's ionosphere; and solid-state plasma, the free electrons in metals and semiconductors, only to name a few. A key feature of many plasma systems is collective motions of electrons; as the electron density profile is perturbed from equilibrium, Coulomb restoring forces (and sometimes quantum pressure in dense plasma) arise to power these collective motions, usually in the form of bulk electron density oscillations or electron density waves. Solid-state plasmas are particularly interesting, as the fabrication technologies available for solid-state materials allow us to alter the boundaries and interfaces of the plasma media in various ways to engineer the collective motion. A notable example is the surface plasmons, which have been a source of many breakthroughs in photonics. I will talk about a set of our recent developments where the plasmons are brought down to the electronics-regime (GHz˜THz) and manipulated to produce a range of functionalities, while offering unique advantages to electronics over their purely electromagnetic counterparts. (Co-workers) William Andress (Harvard), Hosang Yoon (Harvard), Kitty Yeung (Harvard), Ling Qin (Harvard), Ken West (Princeton), and Loren Pfeiffer (Princeton).

  16. 77 FR 48097 - Operation of Radar Systems in the 76-77 GHz Band

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... modify the emission limits for vehicular radar systems operating within the 76-77 GHz band. Specifically.... 15.253 of the rules for vehicular radar systems operating in the 76-77 GHz band. Vehicular radars can... (NPRM), 77 FR 35176, June 16, 2011, in which it sought public comment on proposed amendments to Sec....

  17. A 94/183 GHz aircraft radiometer system for Project Storm Fury

    NASA Technical Reports Server (NTRS)

    Gagliano, J. A.; Stratigos, J. A.; Forsythe, R. E.; Schuchardt, J. M.; Welch, J. M.; Gallentine, D. O.

    1980-01-01

    A radiometer design suitable for use in NASA's WB-57F aircraft to collect data from severe storm regions was developed. The design recommended was a 94/183 GHz scanning radiometer with 3 IF channels on either side of the 183.3 GHz water vapor line and a single IF channel for a low loss atmospheric window channel at 94 GHz. The development and construction of the 94/183 GHz scanning radiometer known as the Advanced Microwave Moisture Sounder (AMMS) is presented. The radiometer scans the scene below the aircraft over an angle of + or - 45 degrees with the beamwidth of the scene viewed of approximately 2 degrees at 94 GHz and 1 degree at 183 GHz. The AMMS data collection system consists of a microcomputer used to store the radiometer data on the flight cartridge recorder, operate the stepper motor driven scanner, and collect housekeeping data such as thermistor temperature readings and aircraft time code.

  18. Propagation effects on satellite systems at frequencies below 10 GHz: A handbook for satellite systems design

    NASA Technical Reports Server (NTRS)

    Flock, Warren L.

    1987-01-01

    Frequencies below 10 GHz continue to be used for a large portion of satellite service, and new applications, including mobile satellite service and the global positioning system, use frequencies below 10 GHz. As frequency decreases below 10 GHz, attenuation due to precipitation and gases decreases and ionospheric effects increase. Thus the ionosphere, which can be largely neglected above 10 GHz, receives major attention. Although attenuation and depolarization due to rain are less severe below 10 GHz than above, they are nevertheless still important and constitute another major topic. The handbook emphasizes the propagation effects on satellite communications but material that is pertinent to radio navigation and positioning systems and deep-space telecommunications is included as well. Chapter 1 through 7 describe the various propagation impairments, and Chapter 9 is devoted to the estimation or calculation of the magnitudes of these effects for use in system design. Chapter 10 covers link power budget equations and the role of propagation effects in these equations. Chapter 8 deals with the complex subject of interference between space and terrestrial systems.

  19. The DIII-D 3 MW, 110 GHz ECH system

    SciTech Connect

    Callis, R. W.; Lohr, J.; Ponce, D.; O'Neill, R. C.; Prater, R.; Luce, T. C.

    1999-09-20

    Three 110 GHz gyrotrons with nominal output power of 1 MW each have been installed and are operational on the DIII-D tokamak. One gyrotron is built by Gycom and has a nominal rating of 1 MW and a 2 s pulse length, with the pulse length being determined by the maximum temperature allowed on the edge cooled Boron Nitride window. The second and third gyrotrons were built by Communications and Power Industries (CPI). The first CPI gyrotron uses a double disc FC-75 cooled sapphire window which has a pulse length rating of 0.8 s at 1 MW, 2 s at 0.5 MW and 10 s at 0.35 MW. The second CPI gyrotron, utilizes a single disc chemical-vapor-deposition diamond window, that employs water cooling around the edge of the disc. Calculation predict that the diamond window should be capable of full 1 MW cw operation. All gyrotrons are connected to the tokamak by a low-loss-windowless evacuated transmission line using circular corrugated waveguide for propagation in the HE{sub 11} mode. Each waveguide system incorporates a two mirror launcher which can steer the rf beam poloidally from the center to the outer edge of the plasma. Central current drive experiments with the two gyrotrons with 1.5 MW of injected power drove about 0.17 MA. Results from using the three gyrotron systems will be reported as well as the plans to upgrade the system to 6 MW. (c) 1999 American Institute of Physics.

  20. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission...

  1. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission...

  2. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission...

  3. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission...

  4. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... fundamental frequency following the provisions of § 15.31(m). (3) For systems operating in the 23.12-29.0 GHz... are used only for back-up assistance and that operate only when the vehicle is engaged in reverse. (1... emission appear shall be greater than 24.075 GHz. (4) These devices shall operate only when the vehicle...

  5. Market capture by 30/20 GHz satellite systems. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Gamble, R. B.; Saporta, L.

    1981-01-01

    Demand for 30/20 GHz satellite systems over the next two decades is projected. Topics include a profile of the communications market, switched, dedicated, and packet transmission modes, deferred and real-time traffic, quality and reliability considerations, the capacity of competing transmission media, and scenarios for the growth and development of 30/20 GHz satellite communications.

  6. Demonstrations of 10 and 40 Gbps upstream transmissions using 1.2 GHz RSOA-based ONU in long-reach access networks

    NASA Astrophysics Data System (ADS)

    Yeh, C. H.; Chow, C. W.; Wu, Y. F.; Chen, H. Y.

    2012-03-01

    Carrier-distributed long-reach passive optical network (LR-PON) is a promising candidate for future access networks. In this work, we analyze and compare the 4 × 2.5 Gb/s and 4 × 10 Gb/s upstream traffics in a carrier-distributed LR-PON using four wavelength-multiplexed 2.5 Gb/s on-off keying (OOK) and 10 Gb/s optical orthogonal frequency division multiplexing-quadrature amplitude modulation (OFDM-QAM) signals. Four commercial 1.2 GHz bandwidth reflective semiconductor optical amplifiers (RSOAs) are used in each optical networking unit (ONU) for the generation of the upstream signal. Due to the limited bandwidth of the RSOA, only up to 2.5 Gb/s upstream OOK signal can be generated. However, by using the spectral efficient modulation, such as OFDM-QAM, 10 Gb/s data rate can be achieved. 20, 50 and 75 km fiber transmissions are also compared using the two different kinds of modulation respectively.

  7. Inter-spin distance determination using L-band (1-2 GHz) non-adiabatic rapid sweep electron paramagnetic resonance (NARS EPR)

    PubMed Central

    Kittell, Aaron W.; Hustedt, Eric J.; Hyde, James S.

    2014-01-01

    Site-directed spin-labeling electron paramagnetic resonance (SDSL EPR) provides insight into the local structure and motion of a spin probe strategically attached to a molecule. When a second spin is introduced to the system, macromolecular information can be obtained through measurement of inter-spin distances either by continuous wave (CW) or pulsed electron double resonance (ELDOR) techniques. If both methodologies are considered, inter-spin distances of 8 to 80 Å can be experimentally determined. However, there exists a region at the upper limit of the conventional X-band (9.5 GHz) CW technique and the lower limit of the four-pulse double electron-electron resonance (DEER) experiment where neither method is particularly reliable. The work presented here utilizes L-band (1.9 GHz) in combination with non-adiabatic rapid sweep (NARS) EPR to address this opportunity by increasing the upper limit of the CW technique. Because L-band linewidths are three to seven times narrower than those at X-band, dipolar broadenings that are small relative to the X-band inhomogeneous linewidth become observable, but the signal loss due to the frequency dependence of the Boltzmann factor, has made L-band especially challenging. NARS has been shown to increase sensitivity by a factor of five, and overcomes much of this loss, making L-band distance determination more feasible [1]. Two different systems are presented and distances of 18–30 Å have been experimentally determined at physiologically relevant temperatures. Measurements are in excellent agreement with a helical model and values determined by DEER. PMID:22750251

  8. The design and evaluation of a 5.8 ghz laptop-based radar system

    NASA Astrophysics Data System (ADS)

    Teng, Kevin Chi-Ming

    This project involves design and analysis of a 5.8 GHz laptop-based radar system. The radar system measures Doppler, ranging and forming Synthetic Aperture Radar (SAR) images utilizing Matlab software provided from MIT Open Courseware and performs data acquisition and signal processing. The main purpose of this work is to bring new perspective to the existing radar project by increasing the ISM band frequency from 2.4 GHz to 5.8 GHz and to carry out a series of experiments on the implementation of the radar kit. Demonstrating the radar at higher operating frequency is capable of providing accurate data results in Doppler, ranging and SAR images.

  9. The 4.8 GHz LHC Schottky pick-up system

    SciTech Connect

    Caspers, Fritz; Jimenez, Jose Miguel; Jones, Rhodri Owain; Kroyer, Tom; Vuitton, Christophe; Hamerla, Timothy W.; Jansson, Andreas; Misek, Joel; Pasquinelli, Ralph J.; Seifrid, Peter; Sun, Ding; /Fermilab

    2007-06-01

    The LHC Schottky observation system is based on traveling wave type high sensitivity pickup structures operating at 4.8 GHz. The choice of the structure and operating frequency is driven by the demanding LHC impedance requirements, where very low impedance is required below 2 GHz, and good sensitivity at the selected band at 4.8 GHz. A sophisticated filtering and triple down -mixing signal processing chain has been designed and implemented in order to achieve the specified 100 dB instantaneous dynamic range without range switching. Detailed design aspects for the complete systems and test results without beam are presented and discussed.

  10. The 30/20 GHz fixed communications systems service demand assessment. Volume 3: Appendices

    NASA Technical Reports Server (NTRS)

    Gabriszeski, T.; Reiner, P.; Rogers, J.; Terbo, W.

    1979-01-01

    The market analysis of voice, video, and data 18/30 GHz communications systems services and satellite transmission services is discussed. Detail calculations, computer displays of traffic, survey questionnaires, and detailed service forecasts are presented.

  11. Concepts for 18/30 GHz satellite communication system, volume 1

    NASA Technical Reports Server (NTRS)

    Jorasch, R.; Baker, M.; Davies, R.; Cuccia, L.; Mitchell, C.

    1979-01-01

    Concepts for 18/30 GHz satellite communication systems are presented. Major terminal trunking as well as direct-to-user configurations were evaluated. Critical technologies in support of millimeter wave satellite communications were determined.

  12. The 30/20 GHz flight experiment system, phase 2. Volume 2: Experiment system description

    NASA Technical Reports Server (NTRS)

    Bronstein, L.; Kawamoto, Y.; Ribarich, J. J.; Scope, J. R.; Forman, B. J.; Bergman, S. G.; Reisenfeld, S.

    1981-01-01

    A detailed technical description of the 30/20 GHz flight experiment system is presented. The overall communication system is described with performance analyses, communication operations, and experiment plans. Hardware descriptions of the payload are given with the tradeoff studies that led to the final design. The spacecraft bus which carries the payload is discussed and its interface with the launch vehicle system is described. Finally, the hardwares and the operations of the terrestrial segment are presented.

  13. The 18/30 GHz fixed communications system service demand assessment. Volume 2: Main text

    NASA Technical Reports Server (NTRS)

    Gabriszeski, T.; Reiner, P.; Rogers, J.; Terbo, W.

    1979-01-01

    The total demand for communications services, and satellite transmission services at the 4/6 GHz, 12/14 GHz, and 18/30 GHz frequencies is assessed. The services are voice, video, and data services. Traffic demand, by service, is distributed by geographical regions, population density, and distance between serving points. Further distribution of traffic is made among four major end user groups: business, government, institutions and private individuals. A traffic demand analysis is performed on a typical metropolitan city to examine service distribution trends. The projected cost of C and Ku band satellite systems are compared on an individual service basis to projected terrestrial rates. Separation of traffic between transmission systems, including 18/30 GHz systems, is based on cost, user, and technical considerations.

  14. High-Frequency Wireless Communications System: 2.45-GHz Front-End Circuit and System Integration

    ERIC Educational Resources Information Center

    Chen, M.-H.; Huang, M.-C.; Ting, Y.-C.; Chen, H.-H.; Li, T.-L.

    2010-01-01

    In this article, a course on high-frequency wireless communications systems is presented. With the 145-MHz baseband subsystem available from a prerequisite course, the present course emphasizes the design and implementation of the 2.45-GHz front-end subsystem as well as system integration issues. In this curriculum, the 2.45-GHz front-end…

  15. Magnetic dimers and trimers in the disordered S =3/2 spin system BaTi1/2Mn1/2O3

    NASA Astrophysics Data System (ADS)

    Garcia, F. A.; Kaneko, U. F.; Granado, E.; Sichelschmidt, J.; Hölzel, M.; Duque, J. G. S.; Nunes, C. A. J.; Amaral, R. P.; Marques-Ferreira, P.; Lora-Serrano, R.

    2015-06-01

    We report a structural-magnetic investigation by x-ray absorption spectroscopy (XAS), neutron diffraction, dc susceptibility (χdc), and electron spin resonance (ESR) of the 12R-type perovskite BaTi1/2Mn1/2O3 . Our structural analysis by neutron diffraction supports the existence of structural trimers with chemically disordered occupancy of Mn4+ and Ti4+ ions, with the valence of the Mn ions confirmed by the XAS measurements. The magnetic properties are explored by combining dc-susceptibility and X -band (9.4 GHz) electron spin resonance, both in the temperature interval of 2 ≤T ≤1000 K. A scenario is presented under which the magnetism is explained by considering magnetic dimers and trimers, with exchange constants Ja/kB=200 (2 ) K and Jb/kB=130 (10 ) K, and orphan spins. Thus, BaTi1/2Mn1/2O3 is proposed as a rare case of an intrinsically disordered S =3/2 spin gap system with a frustrated ground state.

  16. Active wideband 350GHz imaging system for concealed-weapon detection

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Hall, Thomas E.; Severtsen, Ronald H.; McMakin, Douglas L.; Hatchell, Brian K.; Valdez, Patrick L. J.

    2009-05-01

    A prototype active wideband 350 GHz imaging system has been developed to address the urgent need for standoff concealed-weapon detection. This system is based on a wideband, heterodyne, frequency-multiplier-based transceiver system coupled to a quasi-optical focusing system and high-speed conical scanner. This system is able to quickly scan personnel for concealed weapons. Additionally, due to the wideband operation, this system provides accurate ranging information, and the images obtained are fully three-dimensional. Waves in the microwave, millimeter-wave, and terahertz (3 GHz to 1 THz) frequency bands are able to penetrate many optical obscurants, and can be used to form the basis of high-resolution imaging systems. Waves in the sub-millimeter-wave band (300 GHz to 1 THz) are particularly interesting for standoff concealed-weapon detection at ranges of 5 - 20+ meters, due to their unique combination of high resolution and clothing penetration. The Pacific Northwest National Laboratory (PNNL) has previously developed portal screening systems that operate at the lower end of the millimeter-wave frequency range around 30 GHz. These systems are well suited for screening within portals; however, increasing the range of these systems would dramatically reduce the resolution due to diffraction at their relatively long wavelength. In this paper, the standoff 350 GHz imaging system is described in detail and numerous imaging results are presented.

  17. Progress in preparing equipment for the preoperational demonstration of the 1.6 GHz satellite system

    NASA Astrophysics Data System (ADS)

    Goebel, W.; Kesenheimer, H.

    1985-10-01

    The receiving equipment developed for the 1.6 GHz satellite system is described. Emphasis is given to eight new EPIRBs which were tested during the Coordinated Trials Program in Germany. Some design improvements incorporated into the new EPIRBS are discussed, including: a cradle-release mechanism for free float activation; inductive linkage for data inputs; and an active radar homing transponder operating at 9 GHz. A photograph of the EPIRB encoder is provided.

  18. The 30/20 GHz flight experiment system, phase 2. Volume 4: Experiment system development plan

    NASA Technical Reports Server (NTRS)

    Bronstein, L.; Kawamoto, Y.; Riberich, J. J.; Scope, J. R.; Forman, B. J.; Bergman, S. G.; Reisenfeld, S.

    1981-01-01

    The development plan for the 30/20 GHz flight experiment system is presented. A master program schedule with detailed development plans for each subsystem is planned with careful attention given to how technology items to ensure a minimal risk. The work breakdown structure shows the organization of the program management with detailed task definitions. The ROM costs based on the development plan are also given.

  19. 20/30 GHz satellite systems technology needs assessment. [for domestic communications

    NASA Technical Reports Server (NTRS)

    Stevens, G.; Wright, D.

    1978-01-01

    The paper surveys the system and market work done at NASA-Lewis with regard to exploring the potential of the 20/30 GHz bands for domestic satellite communications. The 20/30 GHz bands appear attractive economically and, with certain technology advances, appear to offer a virtually unlimited spectrum resource. This attractiveness is especially relevant to high density trunking where there is sufficient traffic to justify dual-station site diversity. Ongoing system and market studies actively involve satellite system suppliers and carriers as well as the government in a cooperative, mutually beneficial effort. It is considered that this is the approach most likely to result in a spectrum-efficient acceptable-risk high-capacity 30/30 GHz satellite system which is relevant to anticipated markets.

  20. The 30/20 GHz fixed communications systems service demand assessment. Volume 3: Annex

    NASA Technical Reports Server (NTRS)

    Gamble, R. B.; Seltzer, H. R.; Speter, K. M.; Westheimer, M.

    1979-01-01

    A review of studies forecasting the communication market in the United States is given. The applicability of these forecasts to assessment of demand for the 30/20 GHz fixed communications system is analyzed. Costs for the 30/20 satellite trunking systems are presented and compared with the cost of terrestrial communications.

  1. Market capture by 30/20 GHz satellite systems, volume 2

    NASA Technical Reports Server (NTRS)

    Gamble, R. B.; Saporta, L.

    1981-01-01

    Results of a telecommunications demand study are presented. Forecasts of demand for 30/20 GHz satellite systems, and the expected build up of traffic on these systems are given as a function of time for each of several operational scenarios.

  2. Operational upgrades to the DIII-D 60 GHz electron cyclotron resonant heating system

    SciTech Connect

    Harris, T.E.; Cary, W.P.

    1993-10-01

    One of the primary components of the DIII-D radio frequency (rf) program over the past seven years has been the 60 GHz electron cyclotron resonant heating (ECRH) system. The system now consists of eight units capable of operating and controlling eight Varian VGE-8006 60 GHz, 200 kW gyrotrons along with their associated waveguide components. This paper will discuss the operational upgrades and the overall system performance. Many modifications were instituted to enhance the system operation and performance. Modifications discussed in this paper include an improved gyrotron tube-fault response network, a computer controlled pulse-timing and sequencing system, and an improved high-voltage power supply control interface. The discussion on overall system performance will include operating techniques used to improve system operations and reliability. The techniques discussed apply to system start-up procedures, operating the system in a conditioning mode, and operating the system during DIII-D plasma operations.

  3. Status of KSTAR 170 GHz, 1 MW Electron Cyclotron Heating and Current Drive System

    SciTech Connect

    Joung, M.; Bae, Y. S.; Jeong, J. H.; Park, S.; Kim, H. J.; Yang, H. L.; Park, H.; Cho, M. H.; Namkung, W.; Hosea, J.; Ellis, R.; Sakamoto, K.; Kajiwara, K.; Doane, J.

    2011-12-23

    A 170 GHz Electron Cyclotron Heating and Current Drive (ECH/CD) system on KSTAR is designed to launch total 2.4 MW of power for up to 300 sec into the plasma. At present the first 1 MW ECH/CD system is under installation and commissioning for 2011 KSTAR campaign. The 170 GHz, 1 MW, 300 sec gyrotron and the matching optics unit (MOU) will be provided from JAEA under collaboration between NFRI and JAEA. The transmission line consists of MOU and 70 m long 63.5 mm ID corrugated waveguides with the eight miter bends. The 1 MW, 10 sec launcher is developed based on the existing two-mirror front-end launcher in collaboration with Princeton Plasma Physics Laboratory and Pohang University of Science and Technology, and is installed on the low field side in the KSTAR equatorial plane. The mirror pivot is located at 30 cm below from the equatorial plane. 3.6 MVA power supply system is manufactured and now is under commissioning to meet the triode gun operation of JAEA gyrotron. The power supply consists of 66 kV/55 A cathode power supply, mode-anode system, and 50 kV/160 mA body power supply. In this paper, the current status of KSTAR 170 GHz, 1 MW ECH/CD system will be presented as well as the experimental plan utilizing 170 GHz new ECH/CD system.

  4. Status of KSTAR 170 GHz, 1 MW Electron Cyclotron Heating and Current Drive System

    NASA Astrophysics Data System (ADS)

    Joung, M.; Bae, Y. S.; Jeong, J. H.; Park, S.; Kim, H. J.; Yang, H. L.; Park, H.; Cho, M. H.; Namkung, W.; Hosea, J.; Ellis, R.; Sakamoto, K.; Kajiwara, K.; Doane, J.

    2011-12-01

    A 170 GHz Electron Cyclotron Heating and Current Drive (ECH/CD) system on KSTAR is designed to launch total 2.4 MW of power for up to 300 sec into the plasma. At present the first 1 MW ECH/CD system is under installation and commissioning for 2011 KSTAR campaign. The 170 GHz, 1 MW, 300 sec gyrotron and the matching optics unit (MOU) will be provided from JAEA under collaboration between NFRI and JAEA. The transmission line consists of MOU and 70 m long 63.5 mm ID corrugated waveguides with the eight miter bends. The 1 MW, 10 sec launcher is developed based on the existing two-mirror front-end launcher in collaboration with Princeton Plasma Physics Laboratory and Pohang University of Science and Technology, and is installed on the low field side in the KSTAR equatorial plane. The mirror pivot is located at 30 cm below from the equatorial plane. 3.6 MVA power supply system is manufactured and now is under commissioning to meet the triode gun operation of JAEA gyrotron. The power supply consists of 66 kV/55 A cathode power supply, mode-anode system, and 50 kV/160 mA body power supply. In this paper, the current status of KSTAR 170 GHz, 1 MW ECH/CD system will be presented as well as the experimental plan utilizing 170 GHz new ECH/CD system.

  5. Wireless Channel Characterization in the 5 GHz Microwave Landing System Extension Band for Airport Surface Areas

    NASA Technical Reports Server (NTRS)

    Matolak, David W.

    2007-01-01

    In this project final report, entitled "Wireless Channel Characterization in the 5 GHz Microwave Landing System Extension Band for Airport Surface Areas," we provide a detailed description and model representation for the wireless channel in the airport surface environment in this band. In this executive summary, we review report contents, describe the achieved objectives and major findings, and highlight significant conclusions and recommendations.

  6. Design studies of the output system of a 95 GHz, 100 kW, CW gyrotron

    SciTech Connect

    Vamshi Krishna, P.; Kartikeyan, M.V. E-mail: kartik@iitr.ernet.in; Thumm, M.

    2011-07-01

    This paper presents the design studies of the output system of a 95 GHz, 100 kW, CW gyrotron for ECRH7ECRIS applications. During this course, the design studies of an advanced dimpled-wall quasi optical launcher, non-linear taper and RF window will be carried out. (author)

  7. An FDMA system concept for 30/20 GHz high capacity domestic satellite service

    NASA Technical Reports Server (NTRS)

    Berk, G.; Jean, P. N.; Rotholz, E.; White, B. E.

    1982-01-01

    The paper summarizes a feasibility study of a multibeam FDMA satellite system operating in the 30/20 GHz band. The system must accommodate a very high volume of traffic within the restrictions of a 5 kW solar cell array and a 2.5 GHz bandwidth. Multibeam satellite operation reduces the DC power demand and allows reuse of the available bandwidth. Interferences among the beams are brought to acceptable levels by appropriate frequency assignments. A transponder design is presented; it is greatly simplified by the application of a regional concept. System analysis shows that MSK modulation is appropriate for a high-capacity system because it conserves the frequency spectrum. Rain attenuation, a serious problem in this frequency band, is combatted with sufficient power margins and with coding. Link budgets, cost analysis, and weight and power calculations are also discussed. A satellite-routed FDMA system compares favorably in performance and cost with a satellite-switched TDMA system.

  8. ECH control system for new 1 MW 110 GHz gyrotrons at DIII-D

    SciTech Connect

    Wright, A.L.; Tooker, J.; Allen, J.C.; Cary, W.P.; Harris, T.E.

    1995-10-01

    Two new Varian 1 MW 110 GHz gyrotrons are currently being developed and are due to be tested at General Atomics next year. A new cost-effective gyrotron control system to operate multiple gyrotrons simultaneously is being developed. Different systems and combinations that were considered include CAMAC, PLC, VXIbus, and a local computer. This paper will explain the decision making processes used in choosing and implementing the new control system architecture.

  9. Physics design of a 28 GHz electron heating system for the National Spherical Torus experiment upgrade

    SciTech Connect

    Taylor, G.; Bertelli, N.; Ellis, R. A.; Gerhardt, S. P.; Hosea, J. C.; Poli, F.; Harvey, R. W.; Raman, R.; Smirnov, A. P.

    2014-02-12

    A megawatt-level, 28 GHz electron heating system is being designed to support non-inductive (NI) plasma current (I{sub p}) start-up and local heating and current drive (CD) in H-mode discharges in the National Spherical Torus Experiment Upgrade (NSTX-U). The development of fully NI I{sub p} start-up and ramp-up is an important goal of the NSTXU research program. 28 GHz electron cyclotron (EC) heating is predicted to rapidly increase the central electron temperature (T{sub e}(0)) of low density NI plasmas generated by Coaxial Helicity Injection (CHI). The increased T{sub e}(0) will significantly reduce the I{sub p} decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. Also 28 GHz electron Bernstein wave (EBW) heating and CD can be used during the I{sub p} flat top in NSTX-U discharges when the plasma is overdense. Ray tracing and Fokker-Planck numerical simulation codes have been used to model EC and EBW heating and CD in NSTX-U. This paper presents a pre-conceptual design for the 28 GHz heating system and some of the results from the numerical simulations.

  10. Physics Design of a 28 GHz Electron Heating System for the National Spherical Torus Experiment Upgrade

    SciTech Connect

    2013-07-09

    A megawatt-level, 28 GHz electron heating system is being designed to support non-inductive (NI) plasma current (I{sub p}) start-up and local heating and current drive (CD) in H-mode discharges in the National Spherical Torus Experiment Upgrade (NSTX-U). The development of fully NI I{sub p} start-up and ramp-up is an important goal of the NSTX-U research program. 28 GHz electron cyclotron (EC) heating is predicted to rapidly increase the central electron temperature (T{sub e}(0)) of low density NI plasmas generated by Coaxial Helicity Injection (CHI). The increased T{sub e}(0) will significantly reduce the Ip decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. Also 28 GHz electron Bernstein wave (EBW) heating and CD can be used during the I{sub p} flat top in NSTX-U discharges when the plasma is overdense. Ray tracing and Fokker-Planck numerical simulation codes have been used to model EC and EBW heating and CD in NSTX-U. This paper presents a pre-conceptual design for the 28 GHz heating system and some of the results from the numerical simulations.

  11. Customer premise service study for 30/20 GHz satellite system

    NASA Technical Reports Server (NTRS)

    Milton, R. T.; Ross, D. P.; Harcar, A. R.; Freedenberg, P.; Schoen, D.

    1983-01-01

    Satellite systems in which the space segment operates in the 30/20 GHz frequency band are defined and compared as to their potential for providing various types of communications services to customer premises and the economic and technical feasibility of doing so. Technical tasks performed include: market postulation, definition of the ground segment, definition of the space segment, definition of the integrated satellite system, service costs for satellite systems, sensitivity analysis, and critical technology. Based on an analysis of market data, a sufficiently large market for services is projected so as to make the system economically viable. A large market, and hence a high capacity satellite system, is found to be necessary to minimize service costs, i.e., economy of scale is found to hold. The wide bandwidth expected to be available in the 30/20 GHz band, along with frequency reuse which further increases the effective system bandwidth, makes possible the high capacity system. Extensive ground networking is required in most systems to both connect users into the system and to interconnect Earth stations to provide spatial diversity. Earth station spatial diversity is found to be a cost effective means of compensating the large fading encountered in the 30/20 GHz operating band.

  12. Concepts for 18/30 GHz satellite communication system study. Executive summary

    NASA Technical Reports Server (NTRS)

    Baker, M.; Davies, R.; Cuccia, L.; Mitchell, C.

    1979-01-01

    An examination of a multiplicity of interconnected parameters ranging from specific technology details to total system economic costs for satellite communication systems at the 18/30 GHz transmission bands are presented. It was determined that K sub A band systems can incur a small communications outage during very heavy rainfall periods and that reducing the outage to zero would lead to prohibitive system costs. On the other hand, the economics of scale, ie, one spacecraft accommodating 2.5 GHz of bandwidth coupled with multiple beam frequency reuse, leads to very low costs for those users who can tolerate the 5 to 50 hours per year of downtime. A multiple frequency band satellite network can provide the ultimate optimized match to the consumer performance/economics demands.

  13. Earth station equipment development on 30/20 GHz Japanese CS systems

    NASA Astrophysics Data System (ADS)

    Shimayama, H.; Torikai, T.; Fukuda, S.; Tsuchiya, T.; Kosukegama, K.

    The development of earth station hardware for the Japanese 30/20 GHz domestic communications satellite system is described. Attention is focused on the technical features of the antennas, low-noise amplifier (LNA), high-power amplifier, (HPA) and radio frequency terminal (RFT) for the system. Data are presented for the mechanical performance of the devices, and several photographs describing the main operational features of the instruments are provided.

  14. Defining Mesoscale Convective Systems by Their 85-GHz Ice-Scattering Signatures.

    NASA Astrophysics Data System (ADS)

    Mohr, Karen I.; Zipser, Edward J.

    1996-06-01

    Mesoseale Convective systems are composed of numerous deep convective cells with varying amounts of large, convectively produced ice particles aloft. The magnitude of the 85-GHz brightness temperature depression resulting from scattering by large ice is believed to be related to the convective intensity and to the magnitude of the convective fluxes through a deep layer. The 85-GHz ice-scattering signature can be used to map the distribution of organized mesoscale regions of convectively produced large ice particles. The purpose of this article is to demonstrate the usefulness of the 85-GHz ice-scattering signature for describing the frequency, convective intensity, and geographic distribution of mesoscale convective systems.Objective criteria were developed to identify mesoscale convective systems from raw data from January, April, July, and October 1993. To minimize the effects of background contamination and to ensure that bounded areas contained convective elements, a "mesoscale convective system" was defined as an area bounded by 250 K of at least 2000 km2 of 85 GHz, with a minimum brightness temperature 225 K. Mesoscale convective systems extracted from the raw data were sorted and plotted by their areas and by their minimum brightness temperatures. Four area and brightness temperature classes were used to account for a spectrum of organized convection ranging from small to very large and from less organized to highly organized. The populations of mesoscale convective systems by this study's definition were consistent with infrared-based climatologies and large-scale seasonal dynamics. Land/water differences were high-lighted by the plots of minimum brightness temperature. Most of the intense mesoscale convective systems were located on or near land and seemed to occur most frequently in particular areas in North America, South America, Africa, and India.

  15. Standoff concealed weapon detection using a 350 GHz radar imaging system

    SciTech Connect

    Sheen, David M.; Hall, Thomas E.; Severtsen, Ronald H.; McMakin, Douglas L.; Hatchell, Brian K.; Valdez, Patrick LJ

    2010-04-01

    The Pacific Northwest National Laboratory is currently developing a 350 GHz, active, wideband, three-dimensional, radar imaging system to evaluate the feasibility of active sub-mm imaging for standoff concealed weapon detection. The prototype radar imaging system is based on a wideband, heterodyne, frequency-multiplier-based transceiver system coupled to a quasi-optical focusing system and high-speed rotating conical scanner. The wideband operation of this system provides accurate ranging information, and the images obtained are fully three-dimensional. Recent improvements to the system include increased imaging speed using improved balancing techniques, wider bandwidth, and image display techniques.

  16. A Novel 24 Ghz One-Shot Rapid and Portable Microwave Imaging System (Camera)

    NASA Technical Reports Server (NTRS)

    Ghasr, M.T.; Abou-Khousa, M.A.; Kharkovsky, S.; Zoughi, R.; Pommerenke, D.

    2008-01-01

    A novel 2D microwave imaging system at 24 GHz based on MST techniques. Enhanced sensitivity and SNR by utilizing PIN diode-loaded resonant slots. Specific slot and array design to increase transmission and reduce cross -coupling. Real-time imaging at a rate in excess of 30 images per second. Reflection as well transmission mode capabilities. Utility and application for electric field distribution mapping related to: Nondestructive Testing (NDT), imaging applications (SAR, Holography), and antenna pattern measurements.

  17. 2 MW 110 GHz ECH heating system for DIII-D

    SciTech Connect

    Moeller, C.; Prater, R.; Callis, R.; Remsen, D.; Doane, J.; Cary, W.; Phelps, R.; Tupper, M.

    1990-09-01

    A 2 MW 110 GHz ECH system using Varian 0.5 MW gyrotrons is under construction for use on the DIII-D tokamak by late 1991. Most of the components are being design and fabricated at General Atomics, including the gyrotron tanks, superconducting magnets, and transmission line. These components are intended for operation with 10 second pulses and, in the future, with 1 MW gyrotrons. 6 refs., 5 figs.

  18. The 30/20 GHz demonstration system SSUS-D/BSE

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The systems consisting of a 30/20 GHz communication satellite featuring a multiple fixed beam and scanning beam antenna, SS-TDMA, onboard processing and high power TWT's and IMPATT amplifiers, a trunking space-diversity Earth station, a customer premise system (CPS) portable Earth station and a Master Control Station. Hardware, software and personnel are included to build and launch one satellite and to carry on a two year experimentation and demonstration period of advanced Ka-band systems concepts and technology. Included are first level plans identifying all tasks, a schedule for system development and an assessment of critical technology and risk and a preliminary experiments plan.

  19. Feasibility of an EHF (40/50 GHz) mobile satellite system using highly inclined orbits

    NASA Technical Reports Server (NTRS)

    Falciasecca, G.; Paraboni, A.; Ruggieri, M.; Valdoni, F.; Vatalaro, F.

    1990-01-01

    The pan-European L-band terrestrial cellular system (GSM) is expected to provide service to more than 10 million users by the year 2000. Discussed here is the feasibility of a new satellite system at EHF (40/50 GHz) to complement, at the end of the decade, the GSM system or its decendants in order to provide additional services at 64 kbits/s, or so. The main system aspects, channel characteristics, technology issues, and both on-board and earth terminal architectures are highlighted. Based on the performed analyses, a proposal was addressed to the Italian Space Agency (ASI), aimed at the implementation of a national plan.

  20. NASA's climate data system primer, version 1.2

    NASA Technical Reports Server (NTRS)

    Closs, James W.; Reph, Mary G.; Olsen, Lola M.

    1989-01-01

    This is a beginner's manual for NASA's Climate Data System (NCDS), an interactive scientific information management system that allows one to locate, access, manipulate, and display climate-research data. Additional information on the use of the system is available from the system itself.

  1. The 94 GHz Cloud Radar System on a NASA ER-2 Aircraft

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Heymsfield, Gerald M.; Racette, Paul E.; Tian, Lin; Zenker, Ed

    2003-01-01

    The 94-GHz (W-band) Cloud Radar System (CRS) has been developed and flown on a NASA ER-2 high-altitude (20 km) aircraft. The CRS is a fully coherent, polarimeteric Doppler radar that is capable of detecting clouds and precipitation from the surface up to the aircraft altitude in the lower stratosphere. The radar is especially well suited for cirrus cloud studies because of its high sensitivity and fine spatial resolution. This paper describes the CRS motivation, instrument design, specifications, calibration, and preliminary data &om NASA s Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE) field campaign. The unique combination of CRS with other sensors on the ER-2 provides an unprecedented opportunity to study cloud radiative effects on the global energy budget. CRS observations are being used to improve our knowledge of atmospheric scattering and attenuation characteristics at 94 GHz, and to provide datasets for algorithm implementation and validation for the upcoming NASA CloudSat mission that will use a 94-GHz spaceborne cloud radar to provide the first direct global survey of the vertical structure of cloud systems.

  2. Effect of B-Ions Substitution in [(K1/2Bi1/2)-(Na1/2Bi1/2)](Ti-B)O3 System with B=Zr, Fe1/2Nb1/2, Zn1/3Nb2/3 or Mg1/3Nb2/3

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuyuki; Akutsu, Tatsuya; Asada, Hiroshi; Nozawa, Koji; Hachiga, Shinji; Kurosaki, Takeshi; Ikagawa, Osamu; Fujiki, Hiroyuki; Hozumi, Katsuhiro; Kawamura, Takeshi; Amakawa, Takashi; Hirota, Ken-ichi; Ikeda, Takuro

    1995-09-01

    Phase relationship in the [(K1/2Bi1/2)1- y(Na1/2Bi1/2) y](Ti1- xB x)O3 system with B=Zr, Fe1/2Nb1/2, Zn1/3Nb2/3 or Mg1/3Nb2/3 has been investigated by dielectric measurement and X-ray diffractometry. All of the bi-binary systems were solid-soluble throughout the entire composition range. With increasing y and x, ferroelectric Curie point decreased and the ɛ-T curve became flat. Composition dependence of the transition temperature was examined by varying x or y. Phase diagrams were mostly determined at room temperature on square diagrams except for a restricted area in the vicinity of (Na1/2B1/2)ZrO3, which involved a tetragonally distorted phase and could not be accounted for. The ferroelectric tetragonal phase was confined within a narrow range of x<0.1 and the rhombohedral phase was dominant in all of the systems studied here.

  3. Classical models of the spin 1/2 system

    NASA Astrophysics Data System (ADS)

    Salazar-Lazaro, Carlos H.

    We proposed a Quaternionic mechanical system motivated by the Foucault pendulum as a classical model for the dynamics of the spin ½ system. We showed that this mechanical system contains the dynamics of the spin state of the electron under a uniform magnetic field as it is given by the Schrodinger-Pauli-Equation (SPE). We closed with a characterization of the dynamics of this generalized classical system by showing that it is equivalent with the dynamics of the Schrodinger Pauli Equation as long as the solutions to the generalized classical system are roots of the Lagrangian, that is the condition L = 0 holds.

  4. An 8.4-GHz dual-maser front-end system for Parkes reimplementation

    NASA Technical Reports Server (NTRS)

    Trowbridge, D. L.; Loreman, J. R.; Brunzie, T. J.; Quinn, R.

    1990-01-01

    An 8.4-GHz front-end system consisting of a feedhorn, a waveguide feed assembly, dual masers, and downconverters was reimplemented at Parkes as part of the Parkes Canberra Telemetry Array for the Voyager Neptune encounter. The front-end system was originally assembled by the European Space Agency and installed on the Parkes antenna for the Giotto project. It was also used on a time-sharing basis by the Deep Space Network as part of the Parkes Canberra Telemetry Array to enhance the data return from the Voyager Uranus encounter. At the conclusion of these projects in 1986, part of the system was then shipped to JPL on loan for reimplementation at Parkes for the Voyager Neptune encounter. New design and implementation required to make the system operable at Parkes included new microwave front-end control cabinets, closed-cycle refrigeration monitor system, noise-adding radiometer system, front-end controller assembly, X81 local oscillator multiplier, and refurbishment of the original dual 8.4-GHz traveling-wave masers and waveguide feed system. The front-end system met all requirements during the encounter and was disassembled in October 1989 and returned to JPL.

  5. An 8.4-GHz dual-maser front-end system for Parkes reimplementation

    NASA Astrophysics Data System (ADS)

    Trowbridge, D. L.; Loreman, J. R.; Brunzie, T. J.; Quinn, R.

    1990-02-01

    An 8.4-GHz front-end system consisting of a feedhorn, a waveguide feed assembly, dual masers, and downconverters was reimplemented at Parkes as part of the Parkes Canberra Telemetry Array for the Voyager Neptune encounter. The front-end system was originally assembled by the European Space Agency and installed on the Parkes antenna for the Giotto project. It was also used on a time-sharing basis by the Deep Space Network as part of the Parkes Canberra Telemetry Array to enhance the data return from the Voyager Uranus encounter. At the conclusion of these projects in 1986, part of the system was then shipped to JPL on loan for reimplementation at Parkes for the Voyager Neptune encounter. New design and implementation required to make the system operable at Parkes included new microwave front-end control cabinets, closed-cycle refrigeration monitor system, noise-adding radiometer system, front-end controller assembly, X81 local oscillator multiplier, and refurbishment of the original dual 8.4-GHz traveling-wave masers and waveguide feed system. The front-end system met all requirements during the encounter and was disassembled in October 1989 and returned to JPL.

  6. A Compact 600 GHz Electronically Tunable Vector Measurement System for Submillimeter Wave Imaging

    NASA Technical Reports Server (NTRS)

    Dengler, Robert J.; Maiwald, Frank; Siegel, Peter H.

    2006-01-01

    A compact submillimeter wave transmission / reflection measurement system has been demonstrated at 560-635 GHz, with electronic tuning over the entire band. Maximum dynamic range measured at a single frequency is 90 dB (60 dB typical), and phase noise is less than +/- 2(deg). By using a frequency steerable lens at the source output and mixer input, the frequency agility of the system can be used to scan the source and receive beams, resulting in near real-time imaging capability using only a single pixel.

  7. The 30/20 GHz flight experiment system, phase 2. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Bronstein, L.; Kawamoto, Y.; Ribarich, J. J.; Scope, J. R.; Forman, B. J.; Bergman, S. G.; Reisenfeld, S.

    1981-01-01

    Summary information on the final communication system design, communication payload, space vehicle, and development plan for the 30/20 GHz flight experiment will be installed on the LEASAT spacecraft which will be placed into orbit from the space shuttle cargo bay. The communication concept has two parts: a truck service and a customer premise service (CPS). The trucking system serves four spot beams which are interconnected in a satellite switched time division multiple access mode by an IF switch matrix. The CPS covers two large areas of the eastern United States with a pair of scanning beams.

  8. Optical-network-connected multi-channel 96-GHz-band distributed radar system

    NASA Astrophysics Data System (ADS)

    Kanno, Atsushi; Kuri, Toshiaki; Kawanishi, Tetsuya

    2015-05-01

    The millimeter-wave (MMW) radar is a promising candidate for high-precision imaging because of its short wavelength and broad range of available bandwidths. In particular in the frequency range of 92-100 GHz, which is regulated for radiolocation, an atmospheric attenuation coefficient less than 1 dB/km limits the imaging range. Therefore, a combination of MMW radar and distributed antenna system directly connected to optical fiber networks can realize both high-precision imaging and large-area surveillance. In this paper, we demonstrate a multi-channel MMW frequency-modulated continuous-wave distributed radar system connected to an analog radio-over-fiber network.

  9. A system analysis of the 13.3 GHz scatterometer. [antenna patterns and signal transmission

    NASA Technical Reports Server (NTRS)

    Wang, J. R.

    1977-01-01

    The performance of the 13.3 GHz airborne scatterometer system which is used as a microwave remote sensor to detect moisture content of soil is analyzed with respect to its antenna pattern, the signal flow in the receiver data channels, and the errors in the signal outputs. The operational principle and the sensitivity of the system, as well as data handling are also described. The dielectric property of the terrain surface, as far as the scatterometer is concerned, is contained in the assumed forms of the functional dependence of the backscattering coefficient of the incident angle.

  10. The 18 and 30 GHz fixed service communications satellite system study. [to determine the cost and performance characteristics

    NASA Technical Reports Server (NTRS)

    Bronstein, L. M.

    1979-01-01

    The use of the 18 and 30 GHz bands for fixed service satellite communications is examined. The cost and performance expected of 18 and 30 GHz hardware is assessed, selected trunking and direct to user concepts are optimized, and the cost of these systems are estimated. The effect of rain attenuation on the technical and economic viability of the system and methods circumventing the problem are discussed. Technology developments are investigated and cost estimates of these developments are presented.

  11. Lewis Investigates Frequency Sharing Between Future NASA Space Systems and Local Multipoint Distribution Systems in the 27-GHz Band

    NASA Technical Reports Server (NTRS)

    1997-01-01

    At the request of the Federal Communications Commission (FCC), the NASA Lewis Research Center undertook an intensive study to examine the feasibility of frequency sharing between future NASA space services and proposed Local Multipoint Distribution Systems (LMDS) in the 25.25- to 27.5-GHz band. This follows NASA's earlier involvement in the FCC's 1994 Negotiated Rule Making Committee which studied frequency sharing between Ka-band Fixed Satellite Services and LMDS in the 27.5- to 29.5-GHz band. LMDS is a terrestrial, cellular, wireless communication service primarily intended to provide television distribution from hub stations located within relatively small cells to fixed subscriber receivers. Some proposed systems, however, also plan to offer interactive services via subscriber-to-hub transmissions. LMDS providers anticipate that their systems will be a cost-effective alternative to cable television systems, especially in urban areas. LMDS proponents have expressed an interest in using frequencies below 27.5 GHz. NASA, however, plans to operate three types of space systems below 27.5 GHz. The H, I, and J follow-on satellites for the Tracking and Data Relay Satellite System (TDRSS), which are planned for launch beginning in 1999, are designed to receive high-data-rate transmissions (up to 800 Mbps) from low-Earth orbiting "user" spacecraft in the 25.25- to 27.5-GHz band. In this case, the potential interference is the aggregate interference from LMDS transmitters (both hubs and subscribers) into the TDRSS tracking receive beams as they sweep over the Earth's surface while tracking lower altitude user spacecraft.

  12. 14 CFR Sec. 1-2 - Waivers from this system of accounts and reports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Waivers from this system of accounts and reports. Sec. 1-2 Section 1-2 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... AIR CARRIERS General Accounting Provisions Sec. 1-2 Waivers from this system of accounts and...

  13. A 20 GHz low noise, low cost receiver for digital satellite communication system, ground terminal applications

    NASA Technical Reports Server (NTRS)

    Allen, Glen

    1988-01-01

    A 45 month effort for the development of a 20 GHz, low-noise, low-cost receiver for digital, satellite communication system, ground terminal applications is discussed. Six proof-of-concept receivers were built in two lots of three each. Performance was generally consistent between the two lots. Except for overall noise figure, parameters were within or very close to specification. While noise figure was specified as 3.5 dB, typical performance was measured at 3.0 to 5.5 dB, over the full temperature range of minus 30 C to plus 75 C.

  14. A cooperative transponder system for improved traffic safety, localizing road users in the 5 GHz band

    NASA Astrophysics Data System (ADS)

    Schaffer, B.; Kalverkamp, G.; Chaabane, M.; Biebl, E. M.

    2012-09-01

    We present a multi-user cooperative mobile transponder system which enables cars to localize pedestrians, bicyclists and other road users in order to improve traffic safety. The system operates at a center frequency of 5.768 GHz, offering the ability to test precision localization technology at frequencies close to the newly designated automotive safety related bands around 5.9 GHz. By carrying out a roundtrip time of flight measurement, the sensor can determine the distance from the onboard localization unit of a car to a road user who is equipped with an active transponder, employing the idea of a secondary radar and pulse compression. The onboard unit sends out a pseudo noise coded interrogation pulse, which is answered by one or more transponders after a short waiting time. Each transponder uses a different waiting time in order to allow for time division multiple access. We present the system setup as well as range measurement results, achieving an accuracy up to centimeters for the distance measurement and a range in the order of hundred meters. We also discuss the effect of clock drift and offset on distance accuracy for different waiting times and show how the system can be improved to further increase precision in a multiuser environment.

  15. 3 MW, 110 GHz ECH system for the DIII-D tokamak

    SciTech Connect

    Callis, R.W.; Lohr, J.; Ponce, D.; Harris, T.E.; O`Neill, R.C.; Remsen, D.B.; Prater, R.; Luce, T.C.

    1998-07-01

    To support the Advanced Tokamak (AT) operating regimes in the DIII-D tokamak, methods need to be developed to control the current and pressure profiles across the plasma discharge. In particular, AT plasmas require substantial off-axis current in contrast to normal tokamak discharges where the current peaks on-axis. An effort is under way to use Electron Cyclotron Current Drive (ECCD) as a method of sustaining the off-axis current in AT plasmas. The first step in this campaign is the installation of three megawatts of electron cyclotron heating power. This involves the installation of three rf systems operating at 110 GHz, the second harmonic resonance frequency on DIII-D, with each system generating nominally 1 MW. The three systems will use one GYCOM (Russian) gyrotron and two CPI (formerly Varian) gyrotrons, all with windowless evacuated corrugated low loss transmission lines. The first two of three 1 MW ECH systems is operating routinely at DIII-D with injected power at 110 GHz of approximately 1.5 MW with good power accountability. Transport experiments using modulated ECH have been performed confirming the power deposition location. On-axis and off-axis current drive experiments have been successfully performed with on-axis ECCD currents of 170 kA being observed.

  16. More than 100 channel supercontinuum CW optical source with precise 25GHz spacing for 10Gbit/s DWDM systems

    NASA Astrophysics Data System (ADS)

    Wang, Jianping; Nan, Yinbo; Zhou, Xianwei

    2006-01-01

    We experimentally demonstrate the generation of supercontinuum (SC) with a 12.5GHz DFB/EAM ultrashort optical pulse broadened in the high nonlinear fiber (HNLF). Through longitudinal mode-carving of the SC spectrum, a novel multiwavelength continuous wave (CW) optical source with precise 25GHz channel spacing is realized. The bit error rate (BER) curve and eye diagram show that the multiwavelength CW optical source is promising for dense wavelength division multiplexing (DWDM) systems.

  17. 3.6MW Power Supply System of the 170GHz ECH&CD System in KSTAR

    NASA Astrophysics Data System (ADS)

    Shim, Eun-yong; Ahn, Il-kun; Seo, Tae-won; Lee, Seung-kyo; Bae, Young-soon; Joung, Jin-Hyun; Joung, Mi

    2012-09-01

    A 3.6 MW (-66 kV/55 A) Gyrotron power supply system was developed for the 170 GHz ECH&CD gyrotron system in KSTAR. This power supply system consists of Cathode Power Supply(CPS), Anode Power Supply(APS) and Body Power Supply(BPS). The CPS is using the Pulse Step Modulation by the 32set of IGBT choppers. The respons time of Chopper is very fast. So the cathode voltaget is able to be controlled rapidly. The APS is a sort of voltage devider using zener and switch component. It was achieved 3kHz modulation operation. The BPS is combined the commercial power supply and special high voltage switches. It is very simple topology but 5kHz modulation was accomplished easily. Theses power supply system were installed and commissioned successfully in 2011. This paper presents the topology of the each power supply and test result for 170 GHz gyrotron in KSTAR.

  18. Design of the Transmission Lines for 140 GHz ECRH System on HL-2A

    NASA Astrophysics Data System (ADS)

    Xia, Donghui; Zhou, Jun; Rao, Jun; Huang, Mei; Lu, Zhihong; Wang, He; Chen, Gangyu; Wang, Chao; Lu, Bo; Zhuang, Ge

    2014-03-01

    A new 140 GHz/2 MW/3 s electron cyclotron resonance heating (ECRH) system composed of two units is now being constructed on HL-2A. As a part of the system, two transmission lines marked No.7 & 8 play the role of carrying microwave power from two gyrotrons to the tokamak port. Based on the oversized circular corrugated waveguide technology, an evacuated transmission system with high power capability and high transmission efficiency is designed. Details are presented for the design of the corrugated waveguide, the layout of the proposed lines and the vacuum pumping system. Then mode conversion losses due to coupling, misalignment, bends and gaps are discussed to serve as a reference for analyzing the transmission efficiency and alignment. Finally, a dual-modes propagation case consisting of the HE11 and LP11 even modes is discussed.

  19. The 60 GHz antenna system analyses for intersatellite links, phase A

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A tradeoff study for 60 GHz antenna systems applicable to an advanced Tracking and Data Acquisition System is also discussed. A conceptual design of a preferred antenna system is also discussed. The tradeoff results for four types of antenna systems are presented: (1) Reflector/fixed feed, (2) Mechanical scan, (3) Electronic scan; and (4) Hybrid mechanical/electronic scan. The 12 candidate antennas were assessed on the basis of a preliminary design and a performance analysis then were scored against 15 weighted parameters. This process resulted in the ranking of the 12 candidates for the two applications, namely, for the geostationary TDAS only with a narrow field of view and for low orbit user satellites with a wide field of view.

  20. A Megawatt-level 28z GHz Heating System For The National Spherical Torus Experiment Upgrade

    SciTech Connect

    Taylor, Gary

    2014-04-01

    The National Spherical Torus Experiment Upgrade (NSTX-U) will operate at axial toroidal fields of < 1 T and plasma currents, Ip < 2 MA. The development of non-inductive (NI) plasmas is a major long-term research goal for NSTX-U. Time dependent numerical simulations of 28 GHz electron cyclotron (EC) heating of low density NI start-up plasmas generated by Coaxial Helicity Injection (CHI) in NSTX-U predict a significant and rapid increase of the central electron temperature (Te(0)) before the plasma becomes overdense. The increased Te(0) will significantly reduce the Ip decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. A megawatt-level, 28 GHz electron heating system is planned for heating NI start-up plasmas in NSTX-U. In addition to EC heating of CHI start-up discharges, this system will be used for electron Bernstein wave (EBW) plasma start-up, and eventually for EBW heating and current drive during the Ip flattop.

  1. Modeling Results for Proposed Nstx 28 GHZ Ech/ebwh System

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Diem, S. J.; Ellis, R. A.; Fredd, E.; Greenough, N.; Hosea, J. C.; Bigelow, T. S.; Caughman, J. B.; Rasmussen, D. A.; Ryan, P.; Wilgen, J. B.; Harvey, R. W.; Smirnov, A. P.; Preinhaelter, J.; Urban, J.; Ram, A. K.

    2009-04-01

    A 28 GHz electron cyclotron heating (ECH) and electron Bernstein wave heating (EBWH) system has been proposed for installation on the National Spherical Torus Experiment (NSTX). A 350 kW gyrotron connected to a fixed horn antenna is proposed for ECH-assisted solenoid-free plasma startup. Modeling predicts strong first pass on-axis EC absorption, even for low electron temperature, Te ~ 20 eV, Coaxial Helicity Injection (CHI) startup plasmas. ECH will heat the CHI plasma to Te ~ 300 eV, providing a suitable target plasma for 30 MHz high-harmonic fast wave heating. A second gyrotron and steered O-X-B mirror launcher is proposed for EBWH experiments. Radiometric measurements of thermal EBW emission detected via B-X-O coupling on NSTX support implementation of the proposed system. 80% B-X-O coupling efficiency was measured in L-mode plasmas and 60% B-X-O coupling efficiency was recently measured in H-mode plasmas conditioned with evaporated lithium. Modeling predicts local on-axis EBW heating and current drive using 28 GHz power in β ~ 20% NSTX plasmas should be possible, with current drive efficiencies ~40 kA/MW.

  2. A 28 GHz ECH/EBW System for the Proto-MPEX plasma source

    NASA Astrophysics Data System (ADS)

    Bigelow, Tim; Caughman, John; Campbell, Ian; Diem, Stephanie; Dukes, Carl; Goulding, Richard; Killough, Stephen; Rapp, Juergen

    2015-11-01

    The Prototype Materials Plasma Exposure Experiment (Proto-MPEX) is a linear high-intensity RF plasma source that requires plasma electron heating in overdense conditions to provide target parameters in the density and temperature range needed for plasma facing material studies. In Proto-MPEX, a dense helicon plasma is produced by 13.56 MHz RF power and is further heated by 28 GHz microwaves via Electron Bernstein Waves (EBW). A 28 GHz 200 kW cw gyrotron system from earlier experiments at ORNL provides the microwave power and has been successful to date at generating >150 kW in short pulses into a dummy load and >100 kW into the plasma via a 88.9 mm corrugated waveguide system and compact launcher near the plasma edge. For successful coupling via EBW into an overdense plasma, the launcher must be optimized and if possible have adjustable launch angle to maximize the efficiency. Modeling of the EBW coupling has been performed using the GENRAY-C code for the expected plasma profile in order to determine the best beam profile and polarization requirements. A compact HE11 mode waveguide launch with adjustable launch angle has been installed that is tightly coupled to the plasma. The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725.

  3. LARP LHC 4.8 GHZ Schottky System Initial Commissioning with Beam

    SciTech Connect

    Pasquinelli, Ralph J.; Jansson, Andreas; Jones, O.Rhodri; Caspers, Fritz; /CERN

    2011-03-18

    The LHC Schottky system consists for four independent 4.8 GHz triple down conversion receivers with associated data acquisition systems. Each system is capable of measuring tune, chromaticity, momentum spread in either horizontal or vertical planes; two systems per beam. The hardware commissioning has taken place from spring through fall of 2010. With nominal bunch beam currents of 10{sup 11} protons, the first incoherent Schottky signals were detected and analyzed. This paper will report on these initial commissioning results. A companion paper will report on the data analysis curve fitting and remote control user interface of the system. The Schottky system for the LHC was proposed in 2004 under the auspices of the LARP collaboration. Similar systems were commissioned in 2003 in the Fermilab Tevatron and Recycler accelerators as a means of measuring tunes noninvasively. The Schottky detector is based on the stochastic cooling pickups that were developed for the Fermilab Antiproton Source Debuncher cooling upgrade completed in 2002. These slotted line waveguide pickups have the advantage of large aperture coupled with high beam coupling characteristics. For stochastic cooling, wide bandwidths are integral to cooling performance. The bandwidth of slotted waveguide pickups can be tailored by choosing the length of the pickup and slot spacing. The Debuncher project covered the 4-8 GHz band with eight bands of pickups, each with approximately 500 MHz of bandwidth. For use as a Schottky detector, bandwidths of 100-200 MHz are required for gating, resulting in higher transfer impedance than those used for stochastic cooling. Details of hardware functionality are reported previously.

  4. A 2-GHz discrete-spectrum waveband-division microscopic imaging system

    NASA Astrophysics Data System (ADS)

    Xing, Fangjian; Chen, Hongwei; Lei, Cheng; Chen, Minghua; Yang, Sigang; Xie, Shizhong

    2015-03-01

    Limited by dispersion-induced pulse overlap, the frame rate of serial time-encoded amplified microscopy is confined to the megahertz range. Replacing the ultra-short mode-locked pulse laser by a multi-wavelength source, based on waveband-division technique, a serial time stretch microscopic imaging system with a line scan rate of in the gigahertz range is proposed and experimentally demonstrated. In this study, we present a surface scanning imaging system with a record line scan rate of 2 GHz and 15 pixels. Using a rectangular spectrum and a sufficiently large wavelength spacing for waveband-division, the resulting 2D image is achieved with good quality. Such a superfast imaging system increases the single-shot temporal resolution towards the sub-nanosecond regime.

  5. Radiofrequency testing of satellite segment of simulated 30/20 GHz satellite communications system

    NASA Technical Reports Server (NTRS)

    Leonard, R. F.; Kerczewski, R.

    1985-01-01

    A laboratory communications system has been developed that can serve as a test bed for the evaluation of advanced microwave (30/20 GHz) components produced under NASA technology programs. The system will ultimately permit the transmission of a stream of high-rate (220 Mbps) digital data from the originating user, through a ground terminal, through a hardware-simulated satellite, to a receiving ground station, to the receiving user. This report contains the results of radiofrequency testing of the satellite portion of that system. Data presented include output spurious responses, attainable signal-to-noise ratios, a baseline power budget, usable frequency bands, phase and amplitude response data for each of the frequency bands, and the effects of power level variation.

  6. A 60GHz-Band 3-Dimensional System-in-Package Transmitter Module with Integrated Antenna

    NASA Astrophysics Data System (ADS)

    Suematsu, Noriharu; Yoshida, Satoshi; Tanifuji, Shoichi; Kameda, Suguru; Takagi, Tadashi; Tsubouchi, Kazuo

    A low cost, ultra small Radio Frequency (RF) transceiver module with integrated antenna is one of the key technologies for short range millimeter-wave wireless communication. This paper describes a 60GHz-band transmitter module with integrated dipole antenna. The module consists of three pieces of low-cost organic resin substrate. These substrates are vertically stacked by employing Cu ball bonding 3-dimensional (3-D) system-in-package (SiP) technology and the MMIC's are mounted on each organic substrates by using Au-stud bump bonding (SBB) technique. The planer dipole antenna is fabricated on the top of the stacked organic substrate to avoid the influence of the grounding metal on the base substrate. At 63GHz, maximum actual gain of 6.0dBi is obtained for fabricated planar dipole antenna. The measured radiation patterns are agreed with the electro-magnetic (EM) simulated result, therefore the other RF portion of the 3-D front-end module, such as flip chip mounted IC's on the top surface of the module, does not affect the antenna characteristics. The results show the feasibility of millimeter-wave low cost, ultra small antenna integrated module using stacked organic substrates.

  7. Implementation of an operator intervention system for remote control of the RIKEN 28 GHz superconducting electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Uchiyama, A.; Furukawa, K.; Higurashi, Y.; Nakagawa, T.

    2014-02-01

    The control system for the RIKEN 28 GHz superconducting electron cyclotron resonance ion source (28 GHz SC-ECRIS) consists of a distributed control system based on the experimental physics and industrial control system. To maintain the beam quality for the long beam-service time at the radioactive isotope beam factory, beam tuning to prevent subtle changes in the 28 GHz SC-ECRIS conditions is required. Once this is achieved, it should then be possible to check conditions and operate the ion source at any time. We have designed a web-based operational interface to remotely control the ion source, but for access and control from several locations, suitable access security, policies, and methods are required. We thus implemented an operator intervention system that makes it possible to safely access the network externally with the permission of on-site accelerator operators in the control room.

  8. Passively mode-locked 1 GHz MOPA system generating sub-500-fs pulses after external compression

    NASA Astrophysics Data System (ADS)

    Ulm, Thorsten; Harth, Florian; Klehr, Andreas; Erbert, Götz; L'huillier, Johannes

    2012-06-01

    We compared the performance of DQW and TQW edge-emitters in a passively mode-locked 1GHz MOPA system at 1075 nm wavelength. Passive mode-locking is induced by applying a reverse DC voltage to the absorber section. The average power is increased up to 0.9Wby a single-stripe pre-amplifier and a tapered amplifier. After compensation of the quadratic chirp in a grating compressor we achieved a pulse duration of 342 fs. We found that the oscillator gain current and the absorber bias voltage have significant impact on the pulse duration. Both parameters were used to optimize the MOPA system with respect to the shortest pulse length after compression.

  9. Inter-BSs virtual private network for privacy and security enhanced 60 GHz radio-over-fiber system

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Chen, Chen; Zhang, Wei; Jin, Wei; Qiu, Kun; Li, Changchun; Jiang, Ning

    2013-06-01

    A novel inter-basestations (inter-BSs) based virtual private network (VPN) for the privacy and security enhanced 60 GHz radio-over-fiber (RoF) system using optical code-division multiplexing (OCDM) is proposed and demonstrated experimentally. By establishing inter-BSs VPN overlaying the network structure of a 60 GHz RoF system, the express and private paths for the communication of end-users under different BSs can be offered. In order to effectively establish the inter-BSs VPN, the OCDM encoding/decoding technology is employed in the RoF system. In each BS, a 58 GHz millimeter-wave (MMW) is used as the inter-BSs VPN channel, while a 60 GHz MMW is used as the common central station (CS)-BSs communication channel. The optical carriers used for the downlink, uplink and VPN link transmissions are all simultaneously generated in a lightwave-centralized CS, by utilizing four-wave mixing (FWM) effect in a semiconductor optical amplifier (SOA). The obtained results properly verify the feasibility of our proposed configuration of the inter-BSs VPN in the 60 GHz RoF system.

  10. Performance of the DIII-D 110 GHz ECH system during the first year of operations and testing

    SciTech Connect

    Wright, A.L.; Allen, J.C.; Cary, W.P.; Harris, T.E.

    1993-10-01

    The first of four Varian 500 kW 110 GHz gyrotrons (VGT-8011) to be used in the new 2 MW 110 GHz electron cyclotron heating system being developed for the DIII-D tokamak was put into test at General Atomics within the last year. This gryotron has been used to demonstrate the overall system efficiency and to validate the design of individual transmission line components. The first plasma heating observed with a 110 GHz was consistent with the power expected for the greater than 85% transmission efficiency of HE{sub 1,1} power. A comparison of the General Atomics` TE{sub 15,2} to HE{sub 1,1} mode converter with the Vlasov-type mode convertor designed by the University of Wisconsin showed similar conversion efficient. The overall ECH system performance during the first year of testing will also be discussed.

  11. High resolution GHz and THz (FTIR) spectroscopy and theory of parity violation and tunneling for 1,2-dithiine (C4H4S2) as a candidate for measuring the parity violating energy difference between enantiomers of chiral molecules.

    PubMed

    Albert, S; Bolotova, I; Chen, Z; Fábri, C; Horný, L'; Quack, M; Seyfang, G; Zindel, D

    2016-08-01

    We report high resolution spectroscopic results of 1,2-dithiine-(1,2-dithia-3,5-cyclohexadiene, C4H4S2) in the gigahertz and terahertz spectroscopic ranges and exploratory theoretical calculations of parity violation and tunneling processes in view of a possible experimental determination of the parity violating energy difference ΔpvE in this chiral molecule. Theory predicts that the parity violating energy difference between the enantiomers in their ground state (ΔpvE ≃ 1.1 × 10(-11)(hc) cm(-1)) is in principle measurable as it is much larger than the calculated tunneling splitting for the symmetrical potential ΔE± < 10(-24) (hc) cm(-1). With a planar transition state for stereomutation at about 2500 cm(-1) tunneling splitting becomes appreciable above 2300 cm(-1). This makes levels of well-defined parity accessible to parity selection by the available powerful infrared lasers and thus useful for one of the existing experimental approaches towards molecular parity violation. The new GHz spectroscopy leads to greatly improved ground state rotational parameters for 1,2-dithiine. These are used as starting points for the first successful analyses of high resolution interferometric Fourier transform infrared (FTIR, THz) spectra of the fundamentals ν17 (1308.873 cm(-1) or 39.23903 THz), ν22 (623.094 cm(-1) or 18.67989 THz) and ν3 (1544.900 cm(-1) or 46.314937 THz) for which highly accurate spectroscopic parameters are reported. The results are discussed in relation to current efforts to measure ΔpvE. PMID:27439591

  12. 14 CFR Sec. 1-2 - Waivers from this system of accounts and reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Waivers from this system of accounts and reports. Sec. 1-2 Section 1-2 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE...

  13. Pierce-Wiggler electron beam system for 250 GHz GYRO-BWO: Final report

    SciTech Connect

    Pirkle, D.R.; Alford, C.W.; Anderson, M.H.; Garcia, R.F.; Legarra, J.R.; Nordquist, A.L.

    1989-01-01

    This final report summarizes the design and performance of the VUW-8028 Pierce-Wiggler electron beam systems, which can be used to power high frequency gyro-BWO's. The operator's manual for this gyro-BWO beamstick is included as appendix A. Researchers at Lawrence Livermore National Laboratory (LLNL) are developing a gyro-BWO with a center frequency of 250 GHz, 6% bandwidth, and 10 kV peak output power. The gyro-BWO will be used to drive a free electron laser amplifier at LLNL. The electron beam requirements of the gyro-BWO application are: Small beam size, .100 inch at 2500 gauss axial magnetic field; a large fraction of the electron energy in rotational velocity; ability to vary the electrons' axial velocity easily, for electronic tuning; and low velocity spread i.e. little variation in the axial velocities of the electrons in the interaction region. 1 ref., 13 figs.

  14. Laser system generating 250-mJ bunches of 5-GHz repetition rate, 12-ps pulses.

    PubMed

    Agnesi, Antonio; Braggio, Caterina; Carrà, Luca; Pirzio, Federico; Lodo, Stefano; Messineo, Giuseppe; Scarpa, Daniele; Tomaselli, Alessandra; Reali, Giancarlo; Vacchi, Carla

    2008-09-29

    We report on a high-energy solid-state laser based on a master-oscillator power-amplifier system seeded by a 5-GHz repetition-rate mode-locked oscillator, aimed at the excitation of the dynamic Casimir effect by optically modulating a microwave resonator. Solid-state amplifiers provide up to 250 mJ at 1064 nm in a 500-ns (macro-)pulse envelope containing 12-ps (micro-)pulses, with a macro/micropulse format and energy resembling that of near-infrared free-electron lasers. Efficient second-harmonic conversion allowed synchronous pumping of an optical parametric oscillator, obtaining up to 40 mJ in the range 750-850 nm. PMID:18825218

  15. Distribution of high-stability 10 GHz local oscillator over 100 km optical fiber with accurate phase-correction system.

    PubMed

    Wang, Siwei; Sun, Dongning; Dong, Yi; Xie, Weilin; Shi, Hongxiao; Yi, Lilin; Hu, Weisheng

    2014-02-15

    We have developed a radio-frequency local oscillator remote distribution system, which transfers a phase-stabilized 10.03 GHz signal over 100 km optical fiber. The phase noise of the remote signal caused by temperature and mechanical stress variations on the fiber is compensated by a high-precision phase-correction system, which is achieved using a single sideband modulator to transfer the phase correction from intermediate frequency to radio frequency, thus enabling accurate phase control of the 10 GHz signal. The residual phase noise of the remote 10.03 GHz signal is measured to be -70  dBc/Hz at 1 Hz offset, and long-term stability of less than 1×10⁻¹⁶ at 10,000 s averaging time is achieved. Phase error is less than ±0.03π. PMID:24562233

  16. High power continuous wave microwave system at 3.7 GHz

    NASA Astrophysics Data System (ADS)

    Bora, D.; Dani, S.; Gangopadhyay, S.; Jadav, B.; Jha, M.; Kadia, B. R.; Khilar, P. L.; Kulkarni, S. V.; Kushwah, M.; Patel, A. P.; Parmar, K. G.; Parmar, K. M.; Parmar, P.; Rajnish, K.; Raghuraj, S.; Rao, S. L.; Samanta, K. K.; Sathyanarayana, K.; Shah, P.; Sharma, P. K.; Srinivas, Y. S. S.; Trivedi, R. G.; Verghese, G.

    2001-03-01

    The lower hybrid current drive (LHCD) system is an important system in superconducting steady state tokamak (SST-1). It is used to drive and maintain the plasma current for 1000 s with a duty cycle of 17%. The LHCD system is being designed to launch 1 MW of radio frequency (rf) power at 3.7 GHz. The rf source is comprised of two high power klystron amplifiers, each capable of delivering 500 kW rf power. In this article, the results obtained during installation and commissioning of these klystrons are presented. Two klystrons (model TH2103D) have been successfully installed and commissioned on dummy loads, delivering ˜200 kW power for more than 1000 s. The maximum output power that could be obtained is limited due to the available direct current (dc) power supply. The test system is comprised of a TH2103D klystron, a low power rf (3.7 GHz/25 W) source, two high power four port circulators, two high power dual directional couplers, two arc detector systems, and two dummy water loads. To avoid rf breakdown in the rf components of the transmission line, the system has been pressurized with dry air to 3 bar. To energize and operate the klystron, a high voltage dc power supply, a magnet power supply, an ion pump power supply, a -65 kV floating anode modulator power supply, and a filament power supply are used. An arc detector unit has been installed to detect and initiate action within a few microseconds to protect the klystron, waveguides, and other rf passive components during arcing. To protect the klystron in the event of an arc, a fast responding (<10 μs), rail gap based pressurized crowbar unit has been used. The entire system is water cooled to avoid excess temperature rise during high power continuous wave operation of the klystron and other rf components. The tube requires initial conditioning. Thereafter, the output rf power is studied as a function of beam parameters such as cathode voltage and beam current.

  17. Multi-GHz bandpass, high-repetition rate single channel mobile diagnostic system for ultra-wideband applications

    NASA Astrophysics Data System (ADS)

    Miner, Lynn M.; Voss, Donald E.

    1993-01-01

    Characterizing radiated ultra-wideband (UWB) signals poses challenges due to requirements for (1) multi-GHz bandpass recording of the signal's leading edge; (2) GHz-bandpass recording of long record lengths (10s-100s of ns); and (3) determining shot-to-shot reproducibility at rep-rates exceeding 10 kHz. The System Verification Apparatus (SVA) is a novel diagnostic system which can measure 60-ps rise-time signals on a single-shot basis, while monitoring pulse-to-pulse variation. The fully-integrated SVA includes a broadband sensor, signal and trigger conditioning electronics, multiple parallel digitizers with deep local storge, and automated software for acquiring, archiving, and analyzing waveform data with rapid (secs-minute) turnaround time. The instruments are housed in a portable 100-dB shielded aluminum enclosure. The SVA utilizes a 6-GHz bandpass free-field D-dot sensor to measure the incident electric field. Three separate digitizers together meet the requirements of high bandwidth, long record length, and high repetition rate. A 6-GHz bandpass scan converter digitizer captures the leading edge (few ns) of the radiated signal. 1-GHz and 600 MHz bandwidth solid-state digitizers supporting long record lengths (greater than 2 micrometers) record the balance of the signal, which typically contains negligible content above 1 GHz. These solid-state digitizers can store greater than 900 waveforms locally at rep-rates exceeding 65 Hz and 100 kHz, respectively. Data management and instrument control use an 80486-based PC, operating in a user-friendly Windows environment. All waveform and system configuration data are automatically stored in a built-in database. A fiber-optic link, up to 2 km long, provides electromagnetic isolation of the computer.

  18. A Novel 24 GHz One-Shot, Rapid and Portable Microwave Imaging System

    NASA Technical Reports Server (NTRS)

    Ghasr, M. T.; Abou-Khousa, M. A.; Kharkovsky, S.; Zoughi, R.; Pommerenke, D.

    2008-01-01

    Development of microwave and millimeter wave imaging systems has received significant attention in the past decade. Signals at these frequencies penetrate inside of dielectric materials and have relatively small wavelengths. Thus. imaging systems at these frequencies can produce images of the dielectric and geometrical distributions of objects. Although there are many different approaches for imaging at these frequencies. they each have their respective advantageous and limiting features (hardware. reconstruction algorithms). One method involves electronically scanning a given spatial domain while recording the coherent scattered field distribution from an object. Consequently. different reconstruction or imaging techniques may be used to produce an image (dielectric distribution and geometrical features) of the object. The ability to perform this accuratev and fast can lead to the development of a rapid imaging system that can be used in the same manner as a video camera. This paper describes the design of such a system. operating at 2-1 GHz. using modulated scatterer technique applied to 30 resonant slots in a prescribed measurement domain.

  19. A 90GHz Bolometer Camera Detector System for the Green Bank Telescope

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest D.; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.

    2004-01-01

    We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3mm) for the 100 m Green Bank Telescope (GBT) This system will provide high sensitivity (<1mjy in 1s rapid imaging (15'x15' to 250 microJy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close packed, Nyquist-sampled array of superconducting transition edge sensor bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approx. 2.10(exp 17) W/square root Hz, the TES bolometers will provide fast linear sensitive response for high performance imaging. The detectors are read out by and 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.

  20. First results of LHCD experiments with 4.6 GHz system toward steady-state plasma in EAST

    NASA Astrophysics Data System (ADS)

    Liu, F. K.; Ding, B. J.; Li, J. G.; Wan, B. N.; Shan, J. F.; Wang, M.; Liu, L.; Zhao, L. M.; Li, M. H.; Li, Y. C.; Yang, Y.; Wu, Z. G.; Feng, J. Q.; Hu, H. C.; Jia, H.; Huang, Y. Y.; Wei, W.; Cheng, M.; Xu, L.; Zang, Q.; Lyu, B.; Lin, S. Y.; Duan, Y. M.; Wu, J. H.; Peysson, Y.; Decker, J.; Hillairet, J.; Ekedahl, A.; Luo, Z. P.; Qian, J. P.; Shen, B.; Gong, X. Z.; Hu, L. Q.; the EAST Team

    2015-11-01

    A 4.6 GHz lower-hybrid current drive (LHCD) system has been firstly commissioned in EAST in the 2014 campaign. The first LHCD results with 4.6 GHz show that LHW can be coupled to plasma with a low reflection coefficient, drive plasma current and plasma rotation, modify the plasma current profile, and heat plasma effectively. By means of configuration optimization and local gas puffing near the LHW antenna, good LHW-plasma coupling with a reflection coefficient less than 5% is obtained. The maximum LHW power coupled to plasma is up to 3.5 MW. The current drive (CD) efficiency is up to 1.1  ×  1019 A m-2 W-1 and the central electron temperature is above 4 keV, suggesting that LH power could be mainly deposited in the core region, which is in agreement with code simulation. Experiments show that the current profile is effectively modified and toroidal rotation in the co-current direction is driven by the LHCD. Also, the CD efficiency and current profile depend on the launched wave spectrum, suggesting the possibility of controlling the current profile by changing the phase difference. Repeatable H-mode plasma is obtained by either the 4.6 GHz LHCD system alone, or together with a 2.45 GHz LHCD system, the NBI (neutral beam injection) system. The different ELM features of H-mode between the different heating methods are under investigation.

  1. Development of the 3.7 GHz LHCD system on HL-2A

    NASA Astrophysics Data System (ADS)

    Lu, B.; Huang, M.; Zeng, H.; Bai, X. Y.; Mao, X. H.; Lu, Z. H.; Liang, J.; Kang, Z. H.; Wang, M. W.; Feng, K.; Wang, H.; Wang, C.; Wang, J. Q.; Wei, S.; Yao, T.; Bu, Y. N.; Feng, J.; Cheng, G. Y.; Song, S. D.; Xia, D. H.; Rao, J.

    2014-10-01

    A 2 MW-3.7 GHz lower hybrid current drive (LHCD) system is under development for physics experiments on the HL-2A device. The RF Power is generated by four TH2103A klystron amplifiers and propagates in the TE10 mode through WR284 waveguides. The transmission lines with a length of 20 m to 30 m are pressurized with 2 bars of nitrogen to decrease the possibility of arcing. The launcher, based on the passive-active multi-junction (PAM) concept, has been developed and is currently being realized. It was designed for a power spectrum peaked at N|| = 2.75 with good coupling properties over a wide range of plasma parameters. The four klystrons are fed by a high-voltage power supply (HVPS) based on the pulse step modulation (PSM) concept with a fast switch-off time of less than ten μs. This system is expected to be in operation within 1 years and will explore many international thermonuclear experimental reactor (ITER) related LH experiments in the following years.

  2. Recent Results using a 28 GHz EBW Heating and Current Drive System on MAST

    NASA Astrophysics Data System (ADS)

    Bigelow, Tim; Caughman, John; Peng, Martin; Diem, Stephanie; Hawes, Julian; Gurl, Chris; Griffiths, Jonathan; Shevchenko, Vladimir; Finburg, Paul; Mailloux, Joelle; Taylor, Gary

    2013-10-01

    Improvements to a high power 28 GHz gyrotron system have been made to the MAST Electron Bernstein Wave (EBW) heating, start up, and current drive system in the past few years as collaborative research between ORNL and CCFE. Recent EBW heating and CD experiments on MAST have improved upon previous RF generated plasma current levels. The goals of the research were to extend the initial EBW CD study by increasing substantially the power level and pulse length of the gyrotron hardware and improve transmission line efficiency used in initial experiments. A dummy-load power level of up to 200 kW and a pulse length approaching 0.5 s has been achieved. Arcing, localized to the launcher box, has been observed to limit the launched power level to ~80 kW for up to 450 ms. Several days of high power plasma operation have been recently completed with good progress in increasing the previously attainable solenoid-free plasma current levels. Up to 75 kA of plasma current was achieved at this injected power level. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  3. Validation of statistical channel models for 60 GHz radio systems in hospital environments.

    PubMed

    Kyrö, Mikko; Takizawa, Ken-ichi; Haneda, Katsuyuki; Vainikainen, Pertti

    2013-05-01

    Statistical channel models for 60 GHz communications systems in hospital environments are validated using channel capacity and throughput of a physical layer as figures of merit. The channel models are validated by comparing the performance figures with channels from the measurements and the channel models. The throughput evaluation is based on system specifications given by the IEEE 802.15.3 c standard for high data rate wireless personal area networks, namely orthogonal frequency division multiplexing and single carrier transmissions. The channel capacity serves as a metric of the potential of the two transmission schemes since it defines the upper bound of the throughput. The capacity is derived based on the signal formats of the transmission schemes. The capacity shows that 97 % of the measurement results are within 2σ range of the modeled results. The throughput shows that the channel models predict the maximum achievable throughput of the measured channels precisely, while the mean throughput in some cases shows difference because of the interpolation effect of the small-scale fading in the statistical channel models. Due to the interpolation effect, the channel model is more suitable for a precise analysis of the outage performance than the measurements where the number of channel samples is limited and the worst faded channels are not necessarily included. PMID:23221798

  4. The 110 GHz Gyrotron System on DIII-D: Gyrotron Tests and Physics Results

    SciTech Connect

    J. Lohr; P. Calahan; R.W. Callis; T.S. Chu; J.S. deGrassie; I. Gorelov; H. Ikezi; R.A. Legg; T.C. Luce; C.C. Petty; D. Ponce; R. Prater; D.J. Schuster; S.E. Tsimring

    1999-12-01

    The DIII-D tokamak has installed a system with three gyrotrons at the 1 MW level operating at 110 GHz. Physics experiments on electron cyclotron current drive, heating, and transport have been performed. Good efficiency has been achieved both for on-axis and off-axis current drive with relevance for control of the current density profile leading to advanced regimes of tokamak operation, although there is a difference between off-axis ECCD efficiency inside and outside the magnetic axis. Heating efficiency is excellent and electron temperatures up to 10 keV have been achieved. The gyrotron system is versatile, with poloidal scan and control of the polarization of the injected rf beam. Phase correcting mirrors form a Gaussian beam and focus it into the waveguide. Both perpendicular and oblique launch into the tokamak have been used. Three different gyrotron designs are installed and therefore unique problems specific to each have been encountered, including parasitic oscillations, mode hops during modulation and polarization control problems. Two of the gyrotrons suffered damage during operations, one due to filament failure and one due to a vacuum leak. The repairs and subsequent testing will be described. The transmission system uses evacuated, windowless waveguide and the three gyrotrons have output windows of three different materials. One gyrotron uses a diamond window and generates a Gaussian beam directly. The development of the system and specific tests and results from each of the gyrotrons will be presented. The DIII-D project has committed to an upgrade of the system, which will add three gyrotrons in the 1 MW class, all using diamond output windows, to permit operation at up to ten seconds per pulse at one megawatt output for each gyrotron.

  5. User's Guide to the Testing 1-2-3 Test Development and Delivery System.

    ERIC Educational Resources Information Center

    Edwards, Ethan A.

    Testing 1-2-3 is a general purpose testing system developed at the Computer-Based Education Research Laboratory at the University of Illinois for use on NovaNET computer-based education systems. The testing system can be used for: short, teacher-made quizzes, individualized examinations, computer managed instruction curriculum testing,…

  6. Vapor-liquid equilibria for 1,1,1,2-tetrafluoroethane + 1-chloro-1,2,2,2-tetrafluoroethane and 1-chloro-1,2,2,2-tetrafluoroethane + 1-chloro-1,1-difluoroethane systems

    SciTech Connect

    Lee, J.; Lee, J.; Kim, H.

    1996-07-01

    Isothermal vapor-liquid equilibria were determined for two binary mixtures of refrigerants with a circulation type apparatus. The 1,1,1,2-tetrafluoroethane (HFC-134a) + 1-chloro-1,2,2,2-tetrafluoroethane (HCFC-124) system was studied at 296.45, 302.25, and 307.25 K. The 1-chloro-1,2,2,2-tetrafluoroethane (HCFC-124) + 1-chloro-1,1-difluoroethane (HCFC-142b) system was studied at 298.15 and 312.15 K. At each temperature, the pressure and vapor and liquid compositions were measured. Results were correlated with the Peng-Robinson equation of state.

  7. THE 110 GHz MICROWAVE HEATING SYSTEM ON THE DIII-D TOKAMAK

    SciTech Connect

    LOHR,J; CALLIS,RW; DOANE,JL; ELLIS,RA; GORELOV,YA; KAJIWARA,K; PONCE,D; PRATER,R

    2003-07-01

    OAK-B135 Six 110 GHz gyrotrons in the 1 MW class are operational on DIII-D. Source power is > 4.0 MW for pulse lengths {le} 2.1 s and {approx} 2.8 MW for 5.0 s. The rf beams can be steered poloidally across the tokamak upper half plane at off-perpendicular injection angles in the toroidal direction up to {+-} 20{sup o}. measured transmission line loss is about -1 dB for the longest line, which is 92 m long with 11 miter bends. Coupling efficiency into the waveguide is {approx} 93% for the Gaussian rf beams. The transmission lines are evacuated and windowless except for the gyrotron output window and include flexible control of the elliptical polarization of the injected rf beam with remote controlled grooved mirrors in two of the miter bends on each line. The injected power can be modulated according to a predetermined program or controlled by the DIII-D plasma control system using real time feedback based on diagnostic signals obtained during the plasma pulse. Three gyrotrons have operated at 1.0 MW output power for 5.0 s. Peak central temperatures of the artificially grown diamond gyrotron output windows are < 180 C at equilibrium.

  8. Tailoring ergodicity through selective A-site doping in the Bi1/2Na1/2TiO3-Bi1/2K1/2TiO3 system

    NASA Astrophysics Data System (ADS)

    Acosta, Matias; Liu, Na; Deluca, Marco; Heidt, Sabrina; Ringl, Ines; Dietz, Christian; Stark, Robert W.; Jo, Wook

    2015-04-01

    The morphotropic phase boundary composition Bi1/2Na1/2TiO3-20 mol. % Bi1/2K1/2TiO3 was chosen as initial material to do selective A-site aliovalent doping replacing Na and K by 1 at. % La, respectively. The materials were studied macroscopically by measuring dielectric and electromechanical properties. The Na-replaced material has a lower freezing temperature Tfr, lower remanent polarization and remanent strain, and thus a higher degree of ergodicity than the K-replaced material. These results are contrasted with local poling experiments and hysteresis loops obtained from piezoresponse force microscopy. The faster relaxation of the tip-induced local polarization and the lower remanent state in bias-on and -off loops confirm the higher degree of ergodicity of the Na-replaced material. The difference in functional properties is attributed to small variations in chemical pressure achieved through selective doping. Raman results support this working hypothesis.

  9. DPAL pump system exceeding 3kW at 766nm and 30 GHz bandwidth

    NASA Astrophysics Data System (ADS)

    Koenning, Tobias; McCormick, Dan; Irwin, David; Stapleton, Dean; Guiney, Tina; Patterson, Steve

    2016-03-01

    Due to their low quantum defect, diode pumped alkali metal vapor lasers (DPALs) offer the promise of scalability to very high average power levels while maintaining excellent beam quality. Research on DPALs has progressed to ever increasing power levels across multiple gain media species over the last years, necessitating pump power in the kW range. Each material requires a specific pump wavelength: near 852nm for cesium, 780nm for rubidium, 766nm for potassium, and 670nm for lithium atoms. The shorter pump wavelength below 800nm are outside the typical wavelength range for pump diodes developed for diode pumped solid state lasers (DPSS). The biggest challenge in pumping these materials efficiently is the need for maintaining the narrow gain media absorption band of approximately 0.01nm while greatly increasing power. Typical high power diode lasers achieve spectral widths around 3nm (FWHM) in the near infrared spectrum, but optical gratings may be used internal or external to the cavity to reduce the spectral width. Recently, experimental results have shown yet narrower line widths ranging from picometers at very low power levels to sub-100 picometers for water cooled stacks around 1kW of output power. The focus of this work is the development of a fiber-based pump system for potassium DPAL. The individual tasks are the development of high power 766nm chip material, a fiber-coupled module as a building block, and a scalable system design to address power requirements from hundreds of watts to tens of kilowatts. Results for a 3kW system achieving ~30GHz bandwidth at 766nm will be shown. Approaches for power-scaling and size reduction will be discussed.

  10. The 110-GHz Electron Cyclotron Range of Frequency System on JT-60U: Design and Operation

    SciTech Connect

    Ikeda, Y.; Kasugai, A.; Moriyama, S.; Kajiwara, K.; Seki, M.; Tsuneoka, M.; Takahashi, K.; Anno, K.; Hamamatsu, K.; Hiranai, S.; Ikeda, Yu.; Imai, T.; Sakamoto, K.; Shimono, M.; Shinozaki, S.; Terakado, M.; Yamamoto, T.; Yokokura, K.; Fujii, T.

    2002-09-15

    The electron cyclotron range of frequency (ECRF) system was designed and operated on the JT-60U to locally heat and control plasmas. The frequency of 110 GHz was adopted to inject the fundamental O-mode from the low field side with an oblique injection angle. The system is composed of four 1 MW-level gyrotrons, four transmission lines, and two antennae. The gyrotron is featured by a collector potential depression (CPD) and a gaussian beam output through a diamond window. The CPD enables JAERI to drive the gyrotron under the condition of the main DC voltage of 60 kV without a thyristor regulation. The gaussian mode from the gyrotron is effectively transformed to HE{sub 11} mode in the 31.75 mm diameter corrugated waveguide. About 75% of the output power of the gyrotrons can be injected into plasmas through the waveguides about 60 m in length. There are two antennae to control the deposition position of the EC wave during a plasma discharge. One is connected with three RF lines to steer the EC beams in the poloidal direction. The other is to control the EC beam in the toroidal and poloidal directions by two steerable mirrors.On the operation in 2000, the power of 1.5 to 1.6 MW for 3 s was successfully injected into plasmas using three gyrotrons. Local profile control was demonstrated by using the antennae. This capability was devoted to improve the plasma performance such as high T{sub e} production more than 15 keV and suppression of the MHD activities. In 2001, the fourth gyrotron, whose structure was improved for long pulse operation, has been installed for a total injection power of {approx}3 MW.

  11. Use of the 30/20 GHz band by multipurpose satellite systems

    NASA Astrophysics Data System (ADS)

    McNeil, Stephen; Mimis, Vassilios; Sahay, Vishnu; Bowen, Robert

    The World Administrative Radio Conference (WARC) held in 1992 allocated the bands 19.7-20.2 GHz and 29.5-30.0 GHz to both the Mobile Satellite Service (MSS) and the Fixed Satellite Service (FSS) on a co-primary basis. An economic and flexible solution for the provision of both services is to place both payloads on one spacecraft. Some of the proposed applications of such a hybrid satellite network are described. It also examines the facility for spectrum sharing between the various applications and discusses the impact on coordination. It is concluded that the coordination process would not be more onerous than traditional FSS inter-satellite coordination.

  12. Use of the 30/20 GHz band by multipurpose satellite systems

    NASA Technical Reports Server (NTRS)

    Mcneil, Stephen; Mimis, Vassilios; Sahay, Vishnu; Bowen, Robert

    1993-01-01

    The World Administrative Radio Conference (WARC) held in 1992 allocated the bands 19.7-20.2 GHz and 29.5-30.0 GHz to both the Mobile Satellite Service (MSS) and the Fixed Satellite Service (FSS) on a co-primary basis. An economic and flexible solution for the provision of both services is to place both payloads on one spacecraft. Some of the proposed applications of such a hybrid satellite network are described. It also examines the facility for spectrum sharing between the various applications and discusses the impact on coordination. It is concluded that the coordination process would not be more onerous than traditional FSS inter-satellite coordination.

  13. Controlled Quantum Teleportation via the GHZ Entangled Ions in the Ion-Trapped System

    NASA Astrophysics Data System (ADS)

    Xu, Xiong; Wang, Xiaoxue

    2016-08-01

    In this paper, we present a controlled quantum teleportation protocol. In the protocol, quantum information of an unknown state is faithfully transmitted from a sender (Alice) to a remote receiver (Bob) via the GHZ entangled ions under the control of the supervisor Charlie. The apparent Bell-state measurements that Alice should perform in order to teleport her ions are not needed.

  14. Controlled Quantum Teleportation via the GHZ Entangled Ions in the Ion-Trapped System

    NASA Astrophysics Data System (ADS)

    Xu, Xiong; Wang, Xiaoxue

    2016-03-01

    In this paper, we present a controlled quantum teleportation protocol. In the protocol, quantum information of an unknown state is faithfully transmitted from a sender (Alice) to a remote receiver (Bob) via the GHZ entangled ions under the control of the supervisor Charlie. The apparent Bell-state measurements that Alice should perform in order to teleport her ions are not needed.

  15. Design and RF measurements of a 5 GHz 500 kW window for the ITER LHCD system

    NASA Astrophysics Data System (ADS)

    Hillairet, J.; Achard, J.; Bae, Y. S.; Bernard, J. M.; Dechambre, N.; Delpech, L.; Ekedahl, A.; Faure, N.; Goniche, M.; Kim, J.; Larroque, S.; Magne, R.; Marfisi, L.; Namkung, W.; Park, H.; Park, S.; Poli, S.; Vulliez, K.

    2014-02-01

    CEA/IRFM is conducting R&D efforts in order to validate the critical RF components of the 5 GHz ITER LHCD system, which is expected to transmit 20 MW of RF power to the plasma. Two 5 GHz 500 kW BeO pill-box type window prototypes have been manufactured in 2012 by the PMB Company, in close collaboration with CEA/IRFM. Both windows have been validated at low power, showing good agreement between measured and modeling, with a return loss better than 32 dB and an insertion loss below 0.05 dB. This paper reports on the window RF design and the low power measurements. The high power tests up to 500kW have been carried out in March 2013 in collaboration with NFRI. Results of these tests are also reported.

  16. Comparative study of FDMA, TDMA and hybrid 30/20 GHz satellite communications systems for small users

    NASA Technical Reports Server (NTRS)

    Berk, G.; Jean, P. N.; Rotholz, E.

    1982-01-01

    This study compares several satellite uplink and downlink accessing schemes for a Customer Premises Service. Four conceptual system designs are presented: Satellite-Routed FDMA, Frequency-Routed TDMA, Satellite-Switched TDMA, and Processor-Routed TDMA, operating in the 30/20 GHz band. The designs are compared on the basis of estimated satellite weight, power consumption, and cost. The system capacities are analyzed for a fixed multibeam coverage of CONUS. Analysis shows that the system capacity is limited by the available satellite resources and by the terminal size and cost.

  17. The 30/20 GHz flight experiment system, phase 2. Volume 3: Experiment system requirement document

    NASA Technical Reports Server (NTRS)

    Bronstein, L.; Kawamoto, Y.; Ribarich, J. J.; Scope, J. R.; Forman, B. J.; Berman, S. G.; Reisenfeld, S.

    1981-01-01

    An approach to the requirements document to be used to procure the system by NASA is presented. The basic approach is similar to the requirements document used in the commercial communication satellite. Enough detail requirements are given to define the system without tight constraints.

  18. Bacterial cyclic beta-(1,2)-glucan acts in systemic suppression of plant immune responses.

    PubMed

    Rigano, Luciano Ariel; Payette, Caroline; Brouillard, Geneviève; Marano, Maria Rosa; Abramowicz, Laura; Torres, Pablo Sebastián; Yun, Maximina; Castagnaro, Atilio Pedro; Oirdi, Mohamed El; Dufour, Vanessa; Malamud, Florencia; Dow, John Maxwell; Bouarab, Kamal; Vojnov, Adrian Alberto

    2007-06-01

    Although cyclic glucans have been shown to be important for a number of symbiotic and pathogenic bacterium-plant interactions, their precise roles are unclear. Here, we examined the role of cyclic beta-(1,2)-glucan in the virulence of the black rot pathogen Xanthomonas campestris pv campestris (Xcc). Disruption of the Xcc nodule development B (ndvB) gene, which encodes a glycosyltransferase required for cyclic glucan synthesis, generated a mutant that failed to synthesize extracellular cyclic beta-(1,2)-glucan and was compromised in virulence in the model plants Arabidopsis thaliana and Nicotiana benthamiana. Infection of the mutant bacterium in N. benthamiana was associated with enhanced callose deposition and earlier expression of the PATHOGENESIS-RELATED1 (PR-1) gene. Application of purified cyclic beta-(1,2)-glucan prior to inoculation of the ndvB mutant suppressed the accumulation of callose deposition and the expression of PR-1 in N. benthamiana and restored virulence in both N. benthamiana and Arabidopsis plants. These effects were seen when cyclic glucan and bacteria were applied either to the same or to different leaves. Cyclic beta-(1,2)-glucan-induced systemic suppression was associated with the transport of the molecule throughout the plant. Systemic suppression is a novel counterdefensive strategy that may facilitate pathogen spread in plants and may have important implications for the understanding of plant-pathogen coevolution and for the development of phytoprotection measures. PMID:17601826

  19. Developments of 60 ghz antenna and wireless interconnect inside multi-chip module for parallel processor system

    NASA Astrophysics Data System (ADS)

    Yeh, Ho-Hsin

    In order to carry out the complicated computation inside the high performance computing (HPC) systems, tens to hundreds of parallel processor chips and physical wires are required to be integrated inside the multi-chip package module (MCM). The physical wires considered as the electrical interconnects between the processor chips, however, have the challenges on placements and routings because of the unequal progress between the semiconductor and I/O size reductions. The primary goal of the research is to overcome package design challenges---providing a hybrid computing architecture with implemented 60 GHz antennas as the high efficient wireless interconnect which could generate over 10 Gbps bandwidth on the data transmissions. The dissertation is divided into three major parts. In the first part, two different performance metrics, power loss required to be recovered ( PRE) and wireless link budget, on evaluating the antenna's system performance within the chip to chip wireless interconnect are introduced to address the design challenges and define the design goals. The second part contains the design concept, fabrication procedure and measurements of implemented 60 GHz broadband antenna in the application of multi-chip data transmissions. The developed antenna utilizes the periodically-patched artificial magnetic conductor (AMC) structure associated with the ground-shielded conductor in order to enhance the antenna's impedance matching bandwidth. The validation presents that over 10 GHz -10 dB S11 bandwidth which indicates the antenna's operating bandwidth and the horizontal data transmission capability which is required by planar type chip to chip interconnect can be achieved with the design concept. In order to reduce both PRE and wireless link budget numbers, a 60 GHz two-element array in the multi-chip communication is developed in the third part. The third section includes the combined-field analysis, the design concepts on two-element array and feeding

  20. Student understanding of the time dependence of spin-1/2 systems

    NASA Astrophysics Data System (ADS)

    Passante, Gina

    2016-03-01

    Time dependence is one of the most difficult concepts in quantum mechanics and one that is relevant throughout instruction. In this talk I will explore student responses to written questions regarding the time dependence for spin-1/2 systems after lecture instruction and again after a tutorial on the topic. These questions were asked in a junior-level quantum mechanics course that is taught using a spins-first curriculum.

  1. TVA`s Cumberland Units 1&2 SO{sub 2} removal system - an update

    SciTech Connect

    Buckner, J.H.; Brodsky, I.S.; Muraskin, D.J.

    1995-06-01

    Tennessee Valley Authority`s Cumberland Fossil Plant (CUF) is a Phase I facility listed under the 1990 CAA Amendments. Units 1 & 2 are two 1300 MWe coal fired units which presently bum an eastern bituminous coal containing approximately 2.8% sulfur. The Flue Gas Desulfurization (FGD) system reduces sulfur dioxide (SO{sub 2}) emissions from Units 1 and 2 by means of wet limestone - forced oxidation scrubbing. The absorber modules were provided by ABB Environmental Systems (ABBES) with balance of plant engineering, construction management, and startup provided by Raytheon Engineers and Constructors (RE&C) under a partnership arrangement with TVA. The FGD systems for Unit 1 & 2 were brought on-line October 12, 1994 and December 14, 1994, respectively. This paper will present a brief description of the overall project, the design basis, challenging problems and solutions during construction and initial startup. Specific topics will include: (1) Optimization studies underway; (2) Unique design aspects of the facility; (3) A description of the absorber and supporting systems including the limestone barge unloader, ball mill system for reagent preparation, and draft system upgrades; and (4) Experience gained in management of a large project under the unique partnership agreement.

  2. Determining potential 30/20 GHZ domestic satellite system concepts and establishment of a suitable experimental configuration

    NASA Technical Reports Server (NTRS)

    Stevens, G. H.; Anzic, G.

    1979-01-01

    NASA is conducting a series of millimeter wave satellite communication systems and market studies to: (1) determine potential domestic 30/20 GHz satellite concepts and market potential, and (2) establish the requirements for a suitable technology verification payload which, although intended to be modest in capacity, would sufficiently demonstrate key technologies and experimentally address key operational issues. Preliminary results and critical issues of the current contracted effort are described. Also included is a description of a NASA-developed multibeam satellite payload configuration which may be representative of concepts utilized in a technology flight verification program.

  3. Technical specification for the Product Evaluation Management Information System (PREMIS) Version 1. 1. 2

    SciTech Connect

    Eaton, D.S.; Hall, R.C.; Orman, J.L.; Klamerus, J.

    1990-06-01

    This document contains the technical specifications and implementation details for the Product Evaluation Management Information System (PREMIS) Version 1.1.2. This document does not include the requirements analysis or design information and is not intended as a user's guide. The INGRES Applications-by-Forms (ABF) software development tool was used to specify and define the modules and screens which comprise the PREMIS application. Several external procedures are called by the ABF procedures; these have been written in VAX/VMS DCL (Digital Command Language) and SQL (Standard Query Language). These specifications together with the PREMIS information model and corresponding database definition constitute the PREMIS Version 1.1.2 technical specification and implementation description presented herein.

  4. Estimation of Transmitting Power to Compensate for Rain Attenuation for a Broadcasting Satellite System in the 21-GHz Band

    NASA Astrophysics Data System (ADS)

    Minematsu, Fumiaki; Tanaka, Shoji; Nakagawa, Hitoshi; Kawaguchi, Yutaka

    2002-01-01

    1. INTRODUCTION Rain attenuation in the 21-GHz band is much larger than that in the conventionally used 12-GHz band and the rain attenuation causes more serious program interruptions compared with that in the 12-GHz band. We are now studying an advanced broadcasting satellite in the 21-GHz band that enables adaptive compensation for heavy rain area by boosted beams using an on-board phased-array-transmitting antenna. To know the scale of this satellite system, it is important to estimate transmitting power needed to compensate for rain attenuation. Rain attenuation has so close association with rainfall that it is possible to estimate rain attenuation by measured rainfall. Japan meteorological agency is measuring 1-hour rainfalls for about 1300 locations in Japan. In this study, 1-hour rainfall data accumulated at more than 1000 locations over a period of 20 years were used statistically to grasp rainfall distribution throughout Japan and the transmitting power for compensation was estimated by use of these data. 2. CALCULATION MODEL FOR TRANSMITTING POWER ESTIMATION Assumed rain attenuation compensation area for Japanese archipelago was divided into 112 square areas. A size of each square was 0.1 degree in terms of azimuth and elevation angle for the beam direction of satellite transmitting antenna. For calculation, the link margin of 3.5 dB for clear sky was given to the area where 1-hour rainfall not larger than 3 mm was detected. For other square areas where 1-hour rainfall larger than 3 mm was detected, the link margin of 12 dB was given. The former link margin corresponds to the service availability of 99 % and the latter does to that of 99.9 % in an average year in Tokyo. A total system efficiency included radiation efficiency of the transmitting antenna of 1.0 was assumed. As modulation scheme, trellis coded 8-PSK (TC8PSK) was assumed. The required reception CN ratio for TC8PSK is 10.7 dB. As to TC8PSK, the baud rate of 57.72 Mbaud gives more than 100 Mbps

  5. Multi-megawatt 110 GHz ECH system for the DIII-D tokamak

    SciTech Connect

    Callis, R.W.; Lohr, J.; O`Neill, R.C.; Ponce, D.; Prater, R.

    1997-11-01

    Two 110 GHz gyrotrons with nominal output power of 1 MW each have been installed on the DIII-D tokamak. The first 110 GHz gyrotron built by Gycom has a nominal rating of 1 MW and a 2s pulse length, with the pulse length being determined by the maximum temperature allowed on the edge cooled boron nitride window. This gyrotron was first operated into the DIII-D tokamak in late 1996. The second gyrotron was built by Communications and Power Industries (CPI) was commissioned during the spring of 1997. The CPI gyrotron uses a double disc FC-75 cooled sapphire window which has a pulse length rating of 0.8s at 1 MW, 2s at 0.5 MW and 10s at 0.2 MW. Both gyrotrons are connected to the tokamak by a low-loss-windowless evacuated transmission line using circular corrugated waveguide for propagation in the HE(11) mode. Using short pulse lengths to avoid breakdown inside the air filled waveguide, the microwave beam has been measured inside the DIII-D vacuum vessel using a paper target and an IR camera. The resultant microwave beam was found to be well focused with a spot size of approximately 8 cm. The beam can be steered poloidially from the center to the outer edge of the plasma. The initial operation of the Gycom gyrotron with about 0.5 MW delivered to a low density plasma for 0.5 s showed good central electron heating, with peak temperature in excess of 10 keV. A third gyrotron, being built by CPI, will be installed later this year. Progress with the first CPI tube will also be discussed and future plans for the ECH installation and physics experiments will be presented.

  6. Propagation effects on satellite systems at frequencies below 10 GHz, a handbook for satellite systems design, 1st edition

    NASA Technical Reports Server (NTRS)

    Flock, W. L.

    1983-01-01

    Satellite communications below about 6 GHz may need to contend with ionospheric effects, including Faraday rotation and ionospheric scintillation, which become increasingly significant with decreasing frequency. Scintillation is most serious in equatorial, auroral, and polar latitudes; even the 4 to 6 GHz frequency range turns out to be subject to scintillation to a significant degree of equatorial latitudes. Faraday rotation, excess range or time delay, phase advance, Doppler frequency fluctuations, and dispersion are proportional to total electron content (TEC) or its variation along the path. Tropospheric refraction and fading affects low angle satellite transmissions as well as terrestrial paths. Attenuation and depolarization due to rain become less important with decreasing frequency but need consideration for frequencies of about 4 GHz and higher. Empirically derived relations are useful for estimating the attenuation expected due to rain for particular percentages of time. Aeronautical, maritime, and land mobile satellite services are subject to fading due to multipath propagation.

  7. Sensing glucose concentrations at GHz frequencies with a fully embedded Biomicro-electromechanical system (BioMEMS)

    PubMed Central

    Birkholz, M.; Ehwald, K.-E.; Basmer, T.; Kulse, P.; Reich, C.; Drews, J.; Genschow, D.; Haak, U.; Marschmeyer, S.; Matthus, E.; Schulz, K.; Wolansky, D.; Winkler, W.; Guschauski, T.; Ehwald, R.

    2013-01-01

    The progressive scaling in semiconductor technology allows for advanced miniaturization of intelligent systems like implantable biosensors for low-molecular weight analytes. A most relevant application would be the monitoring of glucose in diabetic patients, since no commercial solution is available yet for the continuous and drift-free monitoring of blood sugar levels. We report on a biosensor chip that operates via the binding competition of glucose and dextran to concanavalin A. The sensor is prepared as a fully embedded micro-electromechanical system and operates at GHz frequencies. Glucose concentrations derive from the assay viscosity as determined by the deflection of a 50 nm TiN actuator beam excited by quasi-electrostatic attraction. The GHz detection scheme does not rely on the resonant oscillation of the actuator and safely operates in fluidic environments. This property favorably combines with additional characteristics—(i) measurement times of less than a second, (ii) usage of biocompatible TiN for bio-milieu exposed parts, and (iii) small volume of less than 1 mm3—to qualify the sensor chip as key component in a continuous glucose monitor for the interstitial tissue. PMID:25332510

  8. Sensing glucose concentrations at GHz frequencies with a fully embedded Biomicro-electromechanical system (BioMEMS)

    NASA Astrophysics Data System (ADS)

    Birkholz, M.; Ehwald, K.-E.; Basmer, T.; Kulse, P.; Reich, C.; Drews, J.; Genschow, D.; Haak, U.; Marschmeyer, S.; Matthus, E.; Schulz, K.; Wolansky, D.; Winkler, W.; Guschauski, T.; Ehwald, R.

    2013-06-01

    The progressive scaling in semiconductor technology allows for advanced miniaturization of intelligent systems like implantable biosensors for low-molecular weight analytes. A most relevant application would be the monitoring of glucose in diabetic patients, since no commercial solution is available yet for the continuous and drift-free monitoring of blood sugar levels. We report on a biosensor chip that operates via the binding competition of glucose and dextran to concanavalin A. The sensor is prepared as a fully embedded micro-electromechanical system and operates at GHz frequencies. Glucose concentrations derive from the assay viscosity as determined by the deflection of a 50 nm TiN actuator beam excited by quasi-electrostatic attraction. The GHz detection scheme does not rely on the resonant oscillation of the actuator and safely operates in fluidic environments. This property favorably combines with additional characteristics—(i) measurement times of less than a second, (ii) usage of biocompatible TiN for bio-milieu exposed parts, and (iii) small volume of less than 1 mm3—to qualify the sensor chip as key component in a continuous glucose monitor for the interstitial tissue.

  9. Physical chemistry of binary organic eutectic and monotectic alloys; 1,2,4,5-tetrachlorobenzene-β-naphthol and 1,2,4,5-tetramethylbenzene-succinonitrile systems

    NASA Astrophysics Data System (ADS)

    Rai, U. S.; Pandey, Pinky; Rai, R. N.

    2000-12-01

    Phase diagrams of 1,2,4,5-tetrachlorobenzene-β-naphthol and 1,2,4,5-tetramethylbenzene-succinonitrile systems which are organic analogues of a nonmetal-nonmetal and a nonmetal-metal system, respectively, show the formation of a simple eutectic (melting point 103.7°C) with 0.71 mole fraction of β-naphthol in the former case and a monotectic (melting point 76.0°C) with 0.07 mole fraction of succinonitrile and a eutectic (melting point 52.5°C) with 0.97 mole fraction of succinonitrile in the latter case. The growth behaviour of the pure components, the eutectics and the monotectic studied by measuring the rate of movement of the solid-liquid interface in a capillary, suggests that the data obey the Hillig-Turnbull equation, v= u(Δ T) n, where v is the growth velocity, Δ T is the undercooling and u and n are constants depending on the nature of the materials involved. From the values of enthalpy of fusion determined by the DSC method using Mettler DSC-4000 system, entropy of fusion, interfacial energy, enthalpy of mixing and excess thermodynamic functions were calculated. The optical microphotographs of pure components and polyphase materials show their characteristic features.

  10. Federal Emergency Management Information System (FEMIS) system administration guide. Version 1.2

    SciTech Connect

    Burford, M.J.; Burnett, R.A.; Curtis, L.M.

    1996-05-01

    The Federal Emergency Management Information System (FEMIS) is an emergency management planning and analysis tool that is being developed under the direction of the US Army Chemical biological Defense Command. The FEMIS System Administration Guide defines FEMIS hardware and software requirements and gives instructions for installing the FEMIS system package. System administrators, database administrators, and general users can use this guide to install, configure, and maintain the FEMIS client software package. This document provides a description of the FEMIS environment; distribution media; data, communications, and electronic mail servers; user workstations; and system management.

  11. Molecular hydrogen and excitation in the HH 1-2 system

    NASA Technical Reports Server (NTRS)

    Noriega-Crespo, A.; Garnavich, P. M.

    1994-01-01

    We present a series of molecular hydrogen images of the Herbig-Haro 1-2 system in the 1-0 S(1) transition at 2.121 microns, with a spatial resolution of approximately 2 sec. The distribution of H2 is then compared with that of the excitation, given by the (S II) 6717+6731 to H-alpha line ratio. We find that most optical condensations in the HH 1-2 system, including the VLA 1 jet, have H2 counterparts. H2 emission is detected in most low excitation knots, as expected for low velocity shocks (50 km/s less than), but also in high excitation regions, like in HH 1F and HH 2A min. For these latter objects, the H2 emission could be due to the interaction of the preionizing flux, produced by 150-200 km/s shocks, with the surrounding interstellar matter, i.e., fluorescence. The lack fluorescent lines in the ultraviolet (UV), however, suggest a different mechanism. H2 is detected at the tip of the VLA 1 jet, where the knot morphology suggests the presence of a second bow shock. H2 is detected also SE of HH 2E and SW of HH 1F, in regions with known NH3 emission.

  12. Phase-space spinor amplitudes for spin-1/2 systems

    NASA Astrophysics Data System (ADS)

    Watson, P.; Bracken, A. J.

    2011-04-01

    The concept of phase-space amplitudes for systems with continuous degrees of freedom is generalized to finite-dimensional spin systems. Complex amplitudes are obtained on both a sphere and a finite lattice, in each case enabling a more fundamental description of pure spin states than that previously given by Wigner functions. In each case the Wigner function can be expressed as the star product of the amplitude and its conjugate, so providing a generalized Born interpretation of amplitudes that emphasizes their more fundamental status. The ordinary product of the amplitude and its conjugate produces a (generalized) spin Husimi function. The case of spin-(1)/(2) is treated in detail, and it is shown that phase-space amplitudes on the sphere transform correctly as spinors under rotations, despite their expression in terms of spherical harmonics. Spin amplitudes on a lattice are also found to transform as spinors. Applications are given to the phase space description of state superposition, and to the evolution in phase space of the state of a spin-(1)/(2) magnetic dipole in a time-dependent magnetic field.

  13. Nonlinear quantum-mechanical system associated with Sine-Gordon equation in (1 + 2) dimensions

    SciTech Connect

    Zarmi, Yair

    2014-10-15

    Despite the fact that it is not integrable, the (1 + 2)-dimensional Sine-Gordon equation has N-soliton solutions, whose velocities are lower than the speed of light (c = 1), for all N ≥ 1. Based on these solutions, a quantum-mechanical system is constructed over a Fock space of particles. The coordinate of each particle is an angle around the unit circle. U, a nonlinear functional of the particle number-operators, which obeys the Sine-Gordon equation in (1 + 2) dimensions, is constructed. Its eigenvalues on N-particle states in the Fock space are the slower-than-light, N-soliton solutions of the equation. A projection operator (a nonlinear functional of U), which vanishes on the single-particle subspace, is a mass-density generator. Its eigenvalues on multi-particle states play the role of the mass density of structures that emulate free, spatially extended, relativistic particles. The simplicity of the quantum-mechanical system allows for the incorporation of perturbations with particle interactions, which have the capacity to “annihilate” and “create” solitons – an effect that does not have an analog in perturbed classical nonlinear evolution equations.

  14. Quantum refrigeration cycles using spin-1/2 systems as the working substance.

    PubMed

    He, Jizhou; Chen, Jincan; Hua, Ben

    2002-03-01

    The cycle model of a quantum refrigerator composed of two isothermal and two isomagnetic field processes is established. The working substance in the cycle consists of many noninteracting spin-1/2 systems. The performance of the cycle is investigated, based on the quantum master equation and semigroup approach. The general expressions of several important performance parameters, such as the coefficient of performance, cooling rate, and power input, are given. Especially, the case at high temperatures is analyzed in detail. The results obtained are further generalized and discussed, so that they may be directly used to describe the performance of the quantum refrigerator using spin-J systems as the working substance. Finally, the optimum characteristics of the quantum Carnot refrigerator are derived simply. PMID:11909203

  15. Practical synthesis and cytotoxic evaluation of the pyrazino[1,2-b]-isoquinoline ring system.

    PubMed

    Hernández-Vázquez, Eduardo; Miranda, Luis D

    2016-06-01

    A practical three-step protocol for the synthesis of pyrazino[1,2-b]isoquinolines is reported. This approach includes a one-pot parallel cyclization/cyclization parallel process followed by a non-common 6-endo Heck cyclization that transformed previously constructed Ugi adducts into diversely decorated tricyclic systems. Compounds bearing a t-butyl or 2,6-dimethylphenyl substituent showed significant cytotoxic activity. The most active analogue (6p) showed significant activity against HCT-15 and K562 (IC50 = 41.8 ± 3.3 and 57.7 ± 2.1 μM, respectively) with no cytotoxicity against human gingival fibroblasts. PMID:27161451

  16. Phase diagram of S= 1 /2 two-leg XXZ spin-ladder systems

    NASA Astrophysics Data System (ADS)

    Hijii, Keigo; Kitazawa, Atsuhiro; Nomura, Kiyohide

    2005-07-01

    We investigate the ground-state phase diagram of the S=(1)/(2) two-leg XXZ spin-ladder system with an isotropic interchain coupling. In this model, there is the Berezinskii-Kosterlitz-Thouless transition which occurs at the XY -Haldane and XY -rung singlet phase boundaries. It was difficult to determine the transition line using traditional methods. We overcome this difficulty using the level spectroscopy method combined with the twisted boundary condition method, and we check the consistency. We find out that the phase boundary between XY phase and Haldane phase lies on Δ=0 line. And we show that there exist two different XY phases, which we can distinguish investigating a XX correlation function.

  17. 100 GHz ultra-wideband (UWB) fiber-to-the-antenna (FTTA) system for in-building and in-home networks.

    PubMed

    Chow, C W; Kuo, F M; Shi, J W; Yeh, C H; Wu, Y F; Wang, C H; Li, Y T; Pan, C L

    2010-01-18

    Fiber-to-the-antenna (FTTA) system can be a cost-effective technique for distributing high frequency signals from the head-end office to a number of remote antenna units via passive optical splitter and propagating through low-loss and low-cost optical fibers. Here, we experimentally demonstrate an optical ultra-wideband (UWB) - impulse radio (IR) FTTA system for in-building and in-home applications. The optical UWB-IR wireless link is operated in the W-band (75 GHz - 110 GHz) using our developed near-ballistic unitraveling-carrier photodiode based photonic transmitter (PT) and a 10 GHz mode-locked laser. 2.5 Gb/s UWB-IR FTTA systems with 1,024 high split-ratio and transmission over 300 m optical fiber are demonstrated using direct PT modulation. PMID:20173867

  18. Triple quantum filtered spectroscopy of homonuclear three spin-1/2 systems employing isotropic mixing

    NASA Astrophysics Data System (ADS)

    Kirwai, Amey; Chandrakumar, N.

    2016-08-01

    We report the design and performance evaluation of novel pulse sequences for triple quantum filtered spectroscopy in homonuclear three spin-1/2 systems, employing isotropic mixing (IM) to excite triple quantum coherence (TQC). Our approach involves the generation of combination single quantum coherences (cSQC) from antisymmetric longitudinal or transverse magnetization components employing isotropic mixing (IM). cSQC's are then converted to TQC by a selective 180° pulse on one of the spins. As IM ideally causes magnetization to evolve under the influence of the spin coupling Hamiltonian alone, TQC is generated at a faster rate compared to sequences involving free precession. This is expected to be significant when the spins have large relaxation rates. Our approach is demonstrated experimentally by TQC filtered 1D spectroscopy on a 1H AX2 system (propargyl bromide in the presence of a paramagnetic additive), as well as a 31P linear AMX system (ATP in agar gel). The performance of the IM-based sequences for TQC excitation are compared against the standard three pulse sequence (Ernst et al., 1987) and an AX2 spin pattern recognition sequence (Levitt and Ernst, 1983). The latter reaches the unitary bound on TQC preparation efficiency starting from thermal equilibrium in AX2 systems, not considering relaxation. It is shown that in systems where spins relax rapidly, the new IM-based sequences indeed perform significantly better than the above two known TQC excitation sequences, the sensitivity enhancement being especially pronounced in the case of the proton system investigated. An overview of the differences in relaxation behavior is presented for the different approaches. Applications are envisaged to Overhauser DNP experiments and to in vivo NMR.

  19. Triple quantum filtered spectroscopy of homonuclear three spin-1/2 systems employing isotropic mixing.

    PubMed

    Kirwai, Amey; Chandrakumar, N

    2016-08-01

    We report the design and performance evaluation of novel pulse sequences for triple quantum filtered spectroscopy in homonuclear three spin-1/2 systems, employing isotropic mixing (IM) to excite triple quantum coherence (TQC). Our approach involves the generation of combination single quantum coherences (cSQC) from antisymmetric longitudinal or transverse magnetization components employing isotropic mixing (IM). cSQC's are then converted to TQC by a selective 180° pulse on one of the spins. As IM ideally causes magnetization to evolve under the influence of the spin coupling Hamiltonian alone, TQC is generated at a faster rate compared to sequences involving free precession. This is expected to be significant when the spins have large relaxation rates. Our approach is demonstrated experimentally by TQC filtered 1D spectroscopy on a (1)H AX2 system (propargyl bromide in the presence of a paramagnetic additive), as well as a (31)P linear AMX system (ATP in agar gel). The performance of the IM-based sequences for TQC excitation are compared against the standard three pulse sequence (Ernst et al., 1987) and an AX2 spin pattern recognition sequence (Levitt and Ernst, 1983). The latter reaches the unitary bound on TQC preparation efficiency starting from thermal equilibrium in AX2 systems, not considering relaxation. It is shown that in systems where spins relax rapidly, the new IM-based sequences indeed perform significantly better than the above two known TQC excitation sequences, the sensitivity enhancement being especially pronounced in the case of the proton system investigated. An overview of the differences in relaxation behavior is presented for the different approaches. Applications are envisaged to Overhauser DNP experiments and to in vivo NMR. PMID:27253727

  20. Wireless Channel Characterization: Modeling the 5 GHz Microwave Landing System Extension Band for Future Airport Surface Communications

    NASA Technical Reports Server (NTRS)

    Matolak, D. W.; Apaza, Rafael; Foore, Lawrence R.

    2006-01-01

    We describe a recently completed wideband wireless channel characterization project for the 5 GHz Microwave Landing System (MLS) extension band, for airport surface areas. This work included mobile measurements at large and small airports, and fixed point-to-point measurements. Mobile measurements were made via transmission from the air traffic control tower (ATCT), or from an airport field site (AFS), to a receiving ground vehicle on the airport surface. The point-to-point measurements were between ATCT and AFSs. Detailed statistical channel models were developed from all these measurements. Measured quantities include propagation path loss and power delay profiles, from which we obtain delay spreads, frequency domain correlation (coherence bandwidths), fading amplitude statistics, and channel parameter correlations. In this paper we review the project motivation, measurement coordination, and illustrate measurement results. Example channel modeling results for several propagation conditions are also provided, highlighting new findings.

  1. Mechanical design and engineering of the 3.9 GHZ, 3rd harmonic SRF system at Fermilab

    SciTech Connect

    Don Mitchell et al.

    2004-08-05

    The mechanical development of the 3.9 GHz, 3rd Harmonic SRF System is summarized to include: the development of a full scale copper prototype cavity structure; the design of the niobium 3 cell and niobium 9 cell structures; the design of the helium vessel and cryostat; the HOM coupler design; and a preliminary look at the main coupler design. The manufacturing processes for forming, rolling, and e-beam welding the HOM coupler, cavity cells, and end tubes are also described. Due to the exotic materials and manufacturing processes used in this type of device, a cost estimate for the material and fabrication is provided. The 3rd harmonic design is organized via a web-based data management approach.

  2. VLBI observations of the RS Canum Venaticorum binary systems UX Arietis and HR 1099 at 1.65 GHz

    NASA Technical Reports Server (NTRS)

    Mutel, R. L.; Doiron, D. J.; Phillips, R. B.; Lestrade, J. F.

    1984-01-01

    VLBI observations of the RS CVn binaries UX Arietis and HR 1099 have been made at 1.65 GHz using a three-element array with a minimum fringe spacing of 11.5 milli-arcsec. Both sources were found to be unresolved within measurement uncertainties. In both cases, the derived upper limit to the source size was comparable to the overall size of each binary system. The lower limits to the brightness temperature were 1.4 x 10 to the 10th K for UX Arietis and 2.9 x 10 to the 10th K for HR 1099. Simultaneous polarization measurements at the VLA showed 4-8 percent circular polarization and less than 2 percent linear polarization. It is found that the data are consistent with gyrosynchrotron emission from a power-law energy distribution of electrons in a magnetic field B less than or approximately equal to 6 gauss.

  3. 1.6 GHz distress radio call system (DRCS) via geostationary satellite (Inmarsat-E) - Results of the preoperational demonstration

    NASA Astrophysics Data System (ADS)

    Goebel, Walter

    1990-10-01

    The paper discusses features and operations of the spaceborne Emergency Position Indicating Radio Beacons (EPIRBs) system for distress alerting, which is expected to be used on every ship by August 1, 1993. Two types of EPIRBs that were developed to date are described: the floatable EPIRB, used by vessels over 300 GRT (convention ships subjected to the IMO rules) and the hand-held EPIRB used by smaller vessels such as fishing boats or yachts. The transmitted message formats of both are fully compatible. The distress alerts are presently transmitted through the polar orbiting satellite service at 406 MHz. However, the 36th Inmarsat Council in 1990 passed a decision to the effect that the Inmarsat geostationary satellite shall provide service at 1.6 GHz.

  4. 60-GHz optical/wireless MIMO system integrated with optical subcarrier multiplexing and 2x2 wireless communication.

    PubMed

    Lin, Chi-Hsiang; Lin, Chun-Ting; Huang, Hou-Tzu; Zeng, Wei-Siang; Chiang, Shou-Chih; Chang, Hsi-Yu

    2015-05-01

    This paper proposes a 2x2 MIMO OFDM Radio-over-Fiber scheme based on optical subcarrier multiplexing and 60-GHz MIMO wireless transmission. We also schematically investigated the principle of optical subcarrier multiplexing, which is based on a dual-parallel Mach-Zehnder modulator (DP-MZM). In our simulation result, combining two MIMO OFDM signals to drive DP-MZM gives rise to the PAPR augmentation of less than 0.4 dB, which mitigates nonlinear distortion. Moreover, we applied a Levin-Campello bit-loading algorithm to compensate for the uneven frequency responses in the V-band. The resulting system achieves OFDM signal rates of 61.5-Gbits/s with BER of 10(-3) over 25-km SMF transmission followed by 3-m wireless transmission. PMID:25969299

  5. Biodegradation of cis-1,2-Dichloroethene in Simulated Underground Thermal Energy Storage Systems.

    PubMed

    Ni, Zhuobiao; van Gaans, Pauline; Smit, Martijn; Rijnaarts, Huub; Grotenhuis, Tim

    2015-11-17

    Underground thermal energy storage (UTES) use has showed a sharp rise in numbers in the last decades, with aquifer thermal energy storage (ATES) and borehole thermal energy storage (BTES) most widely used. In many urban areas with contaminated aquifers, there exists a desire for sustainable heating and cooling with UTES and a need for remediation. We investigated the potential synergy between UTES and bioremediation with batch experiments to simulate the effects of changing temperature and liquid exchange that occur in ATES systems, and of only temperature change occurring in BTES systems on cis-DCE reductive dechlorination. Compared to the natural situation (NS) at a constant temperature of 10 °C, both UTES systems with 25/5 °C for warm and cold well performed significantly better in cis-DCE (cis-1,2-dichloroethene) removal. The overall removal efficiency under mimicked ATES and BTES conditions were respectively 13 and 8.6 times higher than in NS. Inoculation with Dehalococcoides revealed that their initial presence is a determining factor for the dechlorination process. Temperature was the dominating factor when Dehalococcoides abundance was sufficient. Stimulated biodegradation was shown to be most effective in the mimicked ATES warm well because of the combined effect of suitable temperature, sustaining biomass growth, and regular cis-DCE supply. PMID:26503690

  6. Magnetic excitations from an S = 1/2 antiferromagnetic tetramer system Cu2 PO 4OH

    NASA Astrophysics Data System (ADS)

    Matsuda, M.; Abernathy, D. L.; Totsuka, K.; Belik, A. A.

    2011-03-01

    Cu 2 PO4 OH is a candidate material for the S = 1/2 diamond-shaped antiferromagnetic tetramer system. The magnetic susceptibility shows a spin-gap behavior and the exchange interaction J was estimated to be 138 K. Since there have not been so many experimental studies in the spin tetramer systems, it is important to clarify the magnetism in this compound. We have performed inelastic neutron scattering experiments on a powder sample of Cu 2 PO4 OH on a chopper neutron spectrometer ARCS installed at SNS at ORNL in order to study the magnetic excitations from the tetramer spin system. We have clearly observed two magnetic excitations at ~ 12 and ~ 20 meV, whose widths in energy are broader than the instrumental resolution. It was found that the energy levels cannot be explained with the simple antiferromagnetic tetramer model with only nearest-neighbor interaction. We will discuss the results including further-neighbor interactions. A. A. Belik et al., Inorg. Chem. 46, 8684 (2007).

  7. Implementation and Analysis of ISM 2.4 GHz Wireless Sensor Network Systems in Judo Training Venues.

    PubMed

    Lopez-Iturri, Peio; Aguirre, Erik; Azpilicueta, Leyre; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2016-01-01

    In this work, the performance of ISM 2.4 GHz Wireless Sensor Networks (WSNs) deployed in judo training venues is analyzed. Judo is a very popular martial art, which is practiced by thousands of people not only at the competition level, but also as part of physical education programs at different school levels. There is a great variety of judo training venues, and each one has specific morphological aspects, making them unique scenarios in terms of radio propagation due to the presence of furniture, columns, equipment and the presence of human beings, which is a major issue as the person density within this kind of scenarios could be high. Another key aspect is the electromagnetic interference created by other wireless systems, such as WiFi or other WSNs, which make the radio planning a complex task in terms of coexistence. In order to analyze the impact of these features on the radio propagation and the performance of WSNs, an in-house developed 3D ray launching algorithm has been used. The obtained simulation results have been validated with a measurement campaign carried out in the sport facilities of the Public University of Navarre. The analysis is completed with the inclusion of an application designed to monitor biological constants of judokas, aimed to improve their training procedures. The application, that allows the simultaneous monitoring of multiple judokas (collective workouts) minimizing the efforts of the coach and medical supervisor, is based on commercial off-the-shelf products. The presented assessment of the presence of interfering wireless systems and the presence of human beings within judo training venues shows that an in-depth radio planning is required as these issues can have a great impact in the overall performance of a ISM 2.4 GHz WSN, affecting negatively the potential applications supported by wireless channel. PMID:27509501

  8. Frequency sharing between passive sensors and aeronautical radionavigation systems employing ground transponders in the band 4.2 - 4.4 GHz

    NASA Technical Reports Server (NTRS)

    Degroot, N. F.

    1982-01-01

    The 4.2 to 4.4 GHz band is reserved for radio altimeters aboard aircraft and for associated transponders on the ground. A radar altimeter system which utilizes associated ground transponders is described and the feasibility of co-channel operation of such a system with a typical passive sensor is analyzed.

  9. Description of the Earth system model of intermediate complexity LOVECLIM version 1.2

    NASA Astrophysics Data System (ADS)

    Goosse, H.; Brovkin, V.; Fichefet, T.; Haarsma, R.; Huybrechts, P.; Jongma, J.; Mouchet, A.; Selten, F.; Barriat, P.-Y.; Campin, J.-M.; Deleersnijder, E.; Driesschaert, E.; Goelzer, H.; Janssens, I.; Loutre, M.-F.; Morales Maqueda, M. A.; Opsteegh, T.; Mathieu, P.-P.; Munhoven, G.; Pettersson, E. J.; Renssen, H.; Roche, D. M.; Schaeffer, M.; Tartinville, B.; Timmermann, A.; Weber, S. L.

    2010-03-01

    The main characteristics of the new version 1.2 of the three-dimensional Earth system model of intermediate complexity LOVECLIM are briefly described. LOVECLIM 1.2 includes representations of the atmosphere, the ocean and sea ice, the land surface (including vegetation), the ice sheets, the icebergs and the carbon cycle. The atmospheric component is ECBilt2, a T21, 3-level quasi-geostrophic model. The oceanic component is CLIO3, which is made up of an ocean general circulation model coupled to a comprehensive thermodynamic-dynamic sea-ice model. Its horizontal resolution is 3° by 3°, and there are 20 levels in the ocean. ECBilt-CLIO is coupled to VECODE, a vegetation model that simulates the dynamics of two main terrestrial plant functional types, trees and grasses, as well as desert. VECODE also simulates the evolution of the carbon cycle over land while the oceanic carbon cycle is represented in LOCH, a comprehensive model that takes into account both the solubility and biological pumps. The ice sheet component AGISM is made up of a three-dimensional thermomechanical model of the ice sheet flow, a visco-elastic bedrock model and a model of the mass balance at the ice-atmosphere and ice ocean interfaces. For both the Greenland and Antarctic ice sheets, calculations are made on a 10 km by 10 km resolution grid with 31 sigma levels. LOVECLIM 1.2 reproduces well the major characteristics of the observed climate both for present-day conditions and for key past periods such as the last millennium, the mid-Holocene and the Last Glacial Maximum. However, despite some improvements compared to earlier versions, some biases are still present in the model. The most serious ones are mainly located at low latitudes with an overestimation of the temperature there, a too symmetric distribution of precipitation between the two hemispheres, an overestimation of precipitation and vegetation cover in the subtropics. In addition, the atmospheric circulation is too weak. The model

  10. Description of the Earth system model of intermediate complexity LOVECLIM version 1.2

    NASA Astrophysics Data System (ADS)

    Goosse, H.; Brovkin, V.; Fichefet, T.; Haarsma, R.; Huybrechts, P.; Jongma, J.; Mouchet, A.; Selten, F.; Barriat, P.-Y.; Campin, J.-M.; Deleersnijder, E.; Driesschaert, E.; Goelzer, H.; Janssens, I.; Loutre, M.-F.; Morales Maqueda, M. A.; Opsteegh, T.; Mathieu, P.-P.; Munhoven, G.; Pettersson, E. J.; Renssen, H.; Roche, D. M.; Schaeffer, M.; Tartinville, B.; Timmermann, A.; Weber, S. L.

    2010-11-01

    The main characteristics of the new version 1.2 of the three-dimensional Earth system model of intermediate complexity LOVECLIM are briefly described. LOVECLIM 1.2 includes representations of the atmosphere, the ocean and sea ice, the land surface (including vegetation), the ice sheets, the icebergs and the carbon cycle. The atmospheric component is ECBilt2, a T21, 3-level quasi-geostrophic model. The ocean component is CLIO3, which consists of an ocean general circulation model coupled to a comprehensive thermodynamic-dynamic sea-ice model. Its horizontal resolution is of 3° by 3°, and there are 20 levels in the ocean. ECBilt-CLIO is coupled to VECODE, a vegetation model that simulates the dynamics of two main terrestrial plant functional types, trees and grasses, as well as desert. VECODE also simulates the evolution of the carbon cycle over land while the ocean carbon cycle is represented by LOCH, a comprehensive model that takes into account both the solubility and biological pumps. The ice sheet component AGISM is made up of a three-dimensional thermomechanical model of the ice sheet flow, a visco-elastic bedrock model and a model of the mass balance at the ice-atmosphere and ice-ocean interfaces. For both the Greenland and Antarctic ice sheets, calculations are made on a 10 km by 10 km resolution grid with 31 sigma levels. LOVECLIM1.2 reproduces well the major characteristics of the observed climate both for present-day conditions and for key past periods such as the last millennium, the mid-Holocene and the Last Glacial Maximum. However, despite some improvements compared to earlier versions, some biases are still present in the model. The most serious ones are mainly located at low latitudes with an overestimation of the temperature there, a too symmetric distribution of precipitation between the two hemispheres, and an overestimation of precipitation and vegetation cover in the subtropics. In addition, the atmospheric circulation is too weak. The model

  11. 30 GHz Commercial Satellite Receivers

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Ponchak, George E.; Romanofsky, Robert R.

    1989-01-01

    NASA's research and development work in satellite communications for the past 10 years has included a major technology thrust aimed at opening the Ka frequency band to commercial exploitation. This has included the development and testing of advanced system network architectures, on-board switching and processing, multibeam and phased array antennas, and satellite and ground terminal RF and digital hardware. Development work in system hardware has focused on critical components including power amplifiers, satellite IF switch matrices, low noise receivers, baseband processors, and high data rate bandwidth efficient modems. This paper describes NASA's work in developing and testing 30 GHz low noise satellite receivers for commercial space communications uplink applications. Frequencies allotted for fixed service commercial satellite communications in the Ka band are 27.5 - 30.0 GHz for uplink transmission and 17.7 - 20.2 GHz for downlink transmission. The relatively large 2.5 GHz bandwidth lends itself to wideband, high data rate digital transmission applications.

  12. Development and Preliminary Commissioning Results of a Long Pulse 140 GHz ECRH System on EAST Tokamak (Invited)

    NASA Astrophysics Data System (ADS)

    Xu, Handong; Wang, Xiaojie; Liu, Fukun; Zhang, Jian; Huang, Yiyun; Shan, Jiafang; Wu, Dajun; Hu, Huaichuan; Li, Bo; Li, Miaohui; Yang, Yong; Feng, Jianqiang; Xu, Weiye; Tang, Yunying; Wei, Wei; Xu, Liqing; Liu, Yong; Zhao, Hailin; Lohr, J.; A. Gorelov, Y.; P. Anderson, J.; Ma, Wendong; Wu, Zege; Wang, Jian; Zhang, Liyuan; Guo, Fei; Sun, Haozhang; Yan, Xinsheng; East Team

    2016-04-01

    A long pulse electron cyclotron resonance heating (ECRH) system has been developed to meet the requirements of steady-state operation for the EAST superconducting tokamak, and the first EC wave was successfully injected into plasma during the 2015 spring campaign. The system is mainly composed of four 140 GHz gyrotron systems, 4 ITER-Like transmission lines, 4 independent channel launchers and corresponding power supplies, a water cooling, control & inter-lock system etc. Each gyrotron is expected to deliver a maximum power of 1 MW and be operated at 100-1000 s pulse lengths. The No.1 and No.2 gyrotron systems have been installed. In the initial commissioning, a series of parameters of 1 MW 1 s, 900 kW 10 s, 800 kW 95 s and 650 kW 753 s have been demonstrated successfully on the No.1 gyrotron system based on calorimetric dummy load measurements. Significant plasma heating and MHD instability suppression effects were observed in EAST experiments. In addition, high confinement (H-mode) discharges triggered by ECRH were obtained. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2011GB102000, 2012GB103000 and 2015GB103000)

  13. A network control concept for the 30/20 GHz communication system baseband processor

    NASA Technical Reports Server (NTRS)

    Sabourin, D. J.; Hay, R. E.

    1982-01-01

    The architecture and system design for a satellite-switched TDMA communication system employing on-board processing was developed by Motorola for NASA's Lewis Research Center. The system design is based on distributed processing techniques that provide extreme flexibility in the selection of a network control protocol without impacting the satellite or ground terminal hardware. A network control concept that includes system synchronization and allows burst synchronization to occur within the system operational requirement is described. This concept integrates the tracking and control links with the communication links via the baseband processor, resulting in an autonomous system operational approach.

  14. Broadband Upgrade for the 1.668-GHz (L-Band) Radio Astronomy Feed System on the DSN 70-m Antennas

    NASA Astrophysics Data System (ADS)

    Hoppe, D.; Khayatian, B.; Lopez, B.; Torrez, T.; Long, E.; Sosnowski, J.; Franco, M.; Teitelbaum, L.

    2015-08-01

    Currently, each of the three Deep Space Network (DSN) 70-m antennas provides a narrowband, 1.668-GHz (L-band) receive capability for radio astronomy observations. This capability is delivered by a large feedhorn mounted on the exterior of one of the feedcones. It provides a single polarization into a pair of redundant low-noise amplifiers. Recently, funding was obtained to upgrade this system to wideband (1.4-1.9 GHz) dual-polarization operation. This required development of a new feedhorn, polarizer, orthomode transducer (OMT), and waveguide transitions. In this article, we describe the design and laboratory testing of these components.

  15. Dielectric relaxation in complex systems: quality sensing and dielectric properties of honeydew melons from 10 MHz to 1.8 GHz

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Based on new data treatment methods, it is possible to identify the fitting function for the complex permittivity e(jw) measured for a complex system representing plant tissues of honeydew melons in the frequency range from 10 MHz to 1.8 GHz at 25 degrees C. The identified fitting function contains...

  16. Weather monitor station and 225 GHz radiometer system installed at Sierra Negra: the Large Millimeter Telescope site

    NASA Astrophysics Data System (ADS)

    Ferrusca, D.; Contreras R., J.

    2014-07-01

    The Large Millimeter Telescope (LMT) is a 50-m dish antenna designed to observe in the wavelength range of 0.85 to 4 mm at an altitude of 4600 m on the summit of Sierra Negra Puebla, Mexico. The telescope has a new atmospheric monitoring system that allows technical staff and astronomers to evaluate the conditions at the site and have enough information to operate the antenna in safe conditions, atmospheric data is also useful to schedule maintenance activities and conduct scientific observations, opacity data is used to calibrate the astronomical data and evaluate the quality of the sky at millimeter wavelengths. In this paper we describe the integration of a weather atmospheric monitoring system and a 225 GHz radiometer to the facilities around the telescope and also describe the hardware integration of these systems and the software methodology used to save and process the data and then make it available in real time to the astronomers and outside world through an internet connection. Finally we present a first set of atmospheric measurements and statistics taken with this new equipment during the wet and dry seasons of 2013/2014.

  17. SYSTEM PERFORMANCE AND EXPERIMENTS WITH THE 110 GHZ MICROWAVE INSTALLATION ON THE DIII-D TOKAMAK

    SciTech Connect

    J.M. LOHR; F.W. BAITY,JR.; G.C. BARBER; R.W. CALLIS; I. GORELOV; C.M. GREENFIELD; R.A. LEGG; T.C. LUCE; C.C. PETTY; D. PONCE; R. PRATER

    2000-09-01

    A powerful microwave system operating at the second harmonic of the electron cyclotron frequency has been commissioned on the DIII-D tokamak. The primary mission of the microwave system is to permit current profile control leading to the improved performance of advanced tokamak operation in quasi-steady state. Initial performance tests and experiments on current drive both near and away from the tokamak axis and on transport have been performed.

  18. Very long baseline interferometry observations of the RS Canum Venaticorum system HR 5110 at 8.4 GHz

    NASA Technical Reports Server (NTRS)

    Mutel, R. L.; Preston, R. A.; Scheid, J. A.; Phillips, R. B.; Lestrade, J.-F.

    1984-01-01

    The RS CVn binary system HR 5110 was observed with a well-calibrated four-element VLBI array at a frequency of 8.4 GHz. The total flux density, which was nearly constant at 32 + or - 2 mJy, was monitored throughout the experiment with a 20 km baseline interferometer allowing accurate visibilities to be calculated. The observed visibilities are consistent with a source unresolved on all the baselines. The maximum size of the equivalent Gaussian source is 1.4 milli-arcsec (FWHM), corresponding to a linear size of 1.1 x 10 to the 12th cm at 52 pc. This maximum size is comparable with the overall size of the binary system. The inferred lower limit of the brightness temperature is 4 x 10 to the 8th K, which is higher than the coronal temperature of 10 to the 7th K measured in a soft X-ray survey. This is consistent with a nonthermal mechanism for the radiation process of the moderate radio outburst observed.

  19. MMIC Amplifiers for 90 to 130 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Pukala, David; Peralta, Alejandro; Bryerton, Eric; Morgan, Matt; Boyd, T.; Hu, Ming; Schmitz, Adele

    2007-01-01

    This brief describes two monolithic microwave integrated-circuit (MMIC) amplifier chips optimized to function in the frequency range of 90 to 130 GHz, covering nearly all of F-band (90 - 140 GHz). These amplifiers were designed specifically for local-oscillator units in astronomical radio telescopes such as the Atacama Large Millimeter Array (ALMA). They could also be readily adapted for use in electronic test equipment, automotive radar systems, and communications systems that operate between 90 and 130 GHz.

  20. Propagation effects handbook for satellite systems design. A summary of propagation impairments on 10 to 100 GHz satellite links with techniques for system design

    NASA Technical Reports Server (NTRS)

    Ippolito, Louis J.

    1989-01-01

    The NASA Propagation Effects Handbook for Satellite Systems Design provides a systematic compilation of the major propagation effects experienced on space-Earth paths in the 10 to 100 GHz frequency band region. It provides both a detailed description of the propagation phenomenon and a summary of the impact of the effect on the communications system design and performance. Chapter 2 through 5 describe the propagation effects, prediction models, and available experimental data bases. In Chapter 6, design techniques and prediction methods available for evaluating propagation effects on space-Earth communication systems are presented. Chapter 7 addresses the system design process and how the effects of propagation on system design and performance should be considered and how that can be mitigated. Examples of operational and planned Ku, Ka, and EHF satellite communications systems are given.

  1. The 20 and 30 GHz MMIC technology for future space communication antenna system

    NASA Technical Reports Server (NTRS)

    Anzic, G.; Connolly, D. J.

    1984-01-01

    The development of fully monolithic gallium arsenide receive and transmit modules is described. These modules are slated for phased array antenna applications in future 30/20 gigahertz communications satellite systems. Performance goals and various approaches to achieve them are discussed. The latest design and performance results of components, submodules and modules are presented.

  2. The Upgrade of the DIII-D GHz ECH System to 6 MW

    SciTech Connect

    Cary, W.P.; Callis, R.W.; Lohr, J.M.; Ponce, D.; Legg, R.A.

    1999-11-01

    ECH power has proven capabilities to both heat and drive current in energetic plasmas. Recent developments in high power sources have made the use of these capabilities in energetic plasmas feasible. For the second phase of ECH power on DIII-D, there will be three 1 MW sources added to the existing 3 MW for a total generated power of 6 MW. The upgrade is based on the use of single disc CVD (chemical vapor deposition) diamond windows on 1 MW gyrotrons developed by CPI. AU gyrotrons are connected to the tokamak by low-loss-windowless evacuated transmission lines using circular corrugated waveguide for propagation in the HE{sub 11} mode. Each waveguide system incorporates a two-mirror launcher which can steer the rf beam poloidally from the center to the outer edge of the plasma and toroidally for either co- or counter-current drive. The total system overview and integration with existing systems will be discussed along with the new aspects of the upgrade from building modifications to the new launchers. Much of the upgrade is comprised of existing designs, which will need only slight modifications, while some components have required new designs because of longer pulse lengths.

  3. A propagation effects handbook for satellite systems design. A summary of propagation impairments on 10-100 GHz satellite links, with techniques for system design. [tropospheric scattering

    NASA Technical Reports Server (NTRS)

    Kaul, R.; Wallace, R.; Kinal, G.

    1980-01-01

    This handbook provides satellite system engineers with a concise summary of the major propagation effects experienced on Earth-space paths in the 10 to 100 GHz frequency range. The dominant effect, attenuation due to rain, is dealt with in terms of both experimental data from measurements made in the U.S. and Canada, and the mathematical and conceptual models devised to explain the data. Rain systems, rain and attenuation models, depolarization and experimental data are described. The design techniques recommended for predicting propagation effects in Earth-space communications systems are presented. The questions of where in the system design process the effects of propagation should be considered, and what precautions should be taken when applying the propagation results are addressed in order to bridge the gap between the propagation research data and the classical link budget analysis of Earth-space communications system.

  4. On the design and assessment of a 2.45 GHz radio telecommand system for remote patient monitoring.

    PubMed

    Crumley, G C; Evans, N E; Burns, J B; Trouton, T G

    1998-12-01

    This paper discusses the design and operational assessment of a minimum-power, 2.45 GHz portable pulse receiver and associated base transmitter comprising the interrogation link in a duplex, cross-band RF transponder designed for short-range, remote patient monitoring. A tangential receiver sensitivity of - 53 dBm was achieved using a 50 ohms microstrip stub-matched zero-bias diode detector and a CMOS baseband amplifier consuming 20 microA from + 3 V. The base transmitter generated an on-off keyed peak output of 0.5 W into 50 ohms. Both linear and right-hand circularly-polarised antennas were employed in system evaluations carried out within an operational Coronary Care Unit ward. For transmitting antenna heights of between 0.3 and 2.2 m above floor level. transponder interrogations were 95% reliable within the 82 m2 area of the ward, falling to an average of 46% in the surrounding rooms and corridors. Separating the polarisation modes, using the circular antenna set gave the higher overall reliability. PMID:10223644

  5. Recent results from the 60 GHz inside launch ECH system on the DIII-D tokamak

    SciTech Connect

    Luce, T.C.; Petty, C.C.; Prater, R.; Harvey, R.W.; Lin-Liu, Y.R.; Lohr, J.; Matsuda, K.; Moeller, C.P. ); James, R.A. )

    1992-11-01

    Electron cyclotron heating (ECH) is a useful tool in global transport and local confinement studies. Operational experience with the inside launch ECH system on DIII-D shows that reliable operations are possible with power densities up to 0.7 GW/m[sup 2] in vacuum waveguide. Global confinement is roughly predicted by the Rebut-Lallia or ITER-89P scaling law, but direct analysis indicates a nearly linear scaling with toroidal field not found in these scaling laws. Local transport studies with off-axis heating clearly show inward transport in the electron fluid. This implies that diffusive and critical gradient models cannot completely describe plasma transport.

  6. Recent results from the 60 GHz inside launch ECH system on the DIII-D tokamak

    SciTech Connect

    Luce, T.C.; Petty, C.C.; Prater, R.; Harvey, R.W.; Lin-Liu, Y.R.; Lohr, J.; Matsuda, K.; Moeller, C.P.; James, R.A.

    1992-11-01

    Electron cyclotron heating (ECH) is a useful tool in global transport and local confinement studies. Operational experience with the inside launch ECH system on DIII-D shows that reliable operations are possible with power densities up to 0.7 GW/m{sup 2} in vacuum waveguide. Global confinement is roughly predicted by the Rebut-Lallia or ITER-89P scaling law, but direct analysis indicates a nearly linear scaling with toroidal field not found in these scaling laws. Local transport studies with off-axis heating clearly show inward transport in the electron fluid. This implies that diffusive and critical gradient models cannot completely describe plasma transport.

  7. A multi-sample 94 GHz dissolution dynamic-nuclear-polarization system.

    PubMed

    Batel, Michael; Krajewski, Marcin; Weiss, Kilian; With, Oliver; Däpp, Alexander; Hunkeler, Andreas; Gimersky, Martin; Pruessmann, Klaas P; Boesiger, Peter; Meier, Beat H; Kozerke, Sebastian; Ernst, Matthias

    2012-01-01

    We describe the design and initial performance results of a multi-sample dissolution dynamic-nuclear-polarization (DNP) polarizer based on a Helium-temperature NMR cryostat for use in a wide-bore NMR magnet with a room-temperature bore. The system is designed to accommodate up to six samples in a revolver-style sample changer that allows changing samples at liquid-Helium temperature and at pressures ranging from ambient pressure down to 1 mbar. The multi-sample setup is motivated by the desire to do repetitive in vivo measurements and to characterize the DNP process by investigating samples of different chemical composition. The system can be loaded with up to six samples simultaneously to reduce sample loading and unloading. Therefore, series of experiments can be carried out faster and more reliably. The DNP probe contains an oversized microwave cavity and includes EPR and NMR capabilities for monitoring the DNP process. In the solid state, DNP enhancements corresponding to ∼45% polarization for [1-(13)C]pyruvic acid with a trityl radical have been measured. In the initial liquid-state acquisition experiments described here, the polarization was found to be ∼13%, corresponding to an enhancement factor exceeding 16,000 relative to thermal polarization at 9.4 T and ambient temperature. PMID:22142831

  8. A multi-sample 94 GHz dissolution dynamic-nuclear-polarization system

    NASA Astrophysics Data System (ADS)

    Batel, Michael; Krajewski, Marcin; Weiss, Kilian; With, Oliver; Däpp, Alexander; Hunkeler, Andreas; Gimersky, Martin; Pruessmann, Klaas P.; Boesiger, Peter; Meier, Beat H.; Kozerke, Sebastian; Ernst, Matthias

    2012-01-01

    We describe the design and initial performance results of a multi-sample dissolution dynamic-nuclear-polarization (DNP) polarizer based on a Helium-temperature NMR cryostat for use in a wide-bore NMR magnet with a room-temperature bore. The system is designed to accommodate up to six samples in a revolver-style sample changer that allows changing samples at liquid-Helium temperature and at pressures ranging from ambient pressure down to 1 mbar. The multi-sample setup is motivated by the desire to do repetitive in vivo measurements and to characterize the DNP process by investigating samples of different chemical composition. The system can be loaded with up to six samples simultaneously to reduce sample loading and unloading. Therefore, series of experiments can be carried out faster and more reliably. The DNP probe contains an oversized microwave cavity and includes EPR and NMR capabilities for monitoring the DNP process. In the solid state, DNP enhancements corresponding to ˜45% polarization for [1- 13C]pyruvic acid with a trityl radical have been measured. In the initial liquid-state acquisition experiments described here, the polarization was found to be ˜13%, corresponding to an enhancement factor exceeding 16,000 relative to thermal polarization at 9.4 T and ambient temperature.

  9. Design of collective Thomson scattering system using 77 GHz gyrotron for bulk and tail ion diagnostics in the large helical device

    SciTech Connect

    Nishiura, M.; Tanaka, K.; Kubo, S.; Kawahata, K.; Shimozuma, T.; Mutoh, T.; Saito, T.; Tatematsu, Y.; Notake, T.

    2008-10-15

    Collective Thomson scattering (CTS) system is expected to be a strong diagnostic tool for measuring thermal and fast ion distribution function at a local point inside plasmas. The electron cyclotron resonance heating system using a gyrotron at the frequency range of 77 GHz has been installed at the large helical device (LHD). The feasibility of CTS system using the 77 GHz gyrotron is assessed in terms of scattering spectrum and a background noise of the electron cyclotron emission, which affect the signal to noise ratio, with the realistic plasma parameters and incident port locations of LHD. Based on the calculated scattering spectra for bulk and tail fast ion diagnostics, the scattering radiation receiver system with gyrotron frequency feedback circuit is proposed to avoid the frequency chirping.

  10. Design of collective Thomson scattering system using 77 GHz gyrotron for bulk and tail ion diagnostics in the large helical device.

    PubMed

    Nishiura, M; Tanaka, K; Kubo, S; Saito, T; Tatematsu, Y; Notake, T; Kawahata, K; Shimozuma, T; Mutoh, T

    2008-10-01

    Collective Thomson scattering (CTS) system is expected to be a strong diagnostic tool for measuring thermal and fast ion distribution function at a local point inside plasmas. The electron cyclotron resonance heating system using a gyrotron at the frequency range of 77 GHz has been installed at the large helical device (LHD). The feasibility of CTS system using the 77 GHz gyrotron is assessed in terms of scattering spectrum and a background noise of the electron cyclotron emission, which affect the signal to noise ratio, with the realistic plasma parameters and incident port locations of LHD. Based on the calculated scattering spectra for bulk and tail fast ion diagnostics, the scattering radiation receiver system with gyrotron frequency feedback circuit is proposed to avoid the frequency chirping. PMID:19044547

  11. Using a 1.2 GHz bandwidth reflective semiconductor optical amplifier with seeding light by 64-quadrature amplitude modulation orthogonal frequency division multiplexing modulation to achieve a 10-gbits/s upstream rate in long-reach passive optical network access

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Chen, Hsing-Yu; Chow, Chi-Wai; Wu, Yu-Fu

    2012-01-01

    We use a commercially available 1.2 GHz bandwidth reflective semiconductor optical amplifier (RSOA)--based optical network unit (ONU) to achieve 10-gbits/s upstream traffic for an optical orthogonal frequency division multiplexing (OFDM) long-reach passive optical network (LR-PON). This is the first time the 64--quadrature amplitude modulation (QAM) OFDM format has been applied to RSOA-ONU to achieve a 75 km fiber transmission length. In the proposed LR-PON, the upstream power penalty of 5.2 dB at the bit error rate of 3.8×10-3 is measured by using a 64-QAM OFDM modulation after the 75 km fiber transmission without dispersion compensation.

  12. PVTx properties of the binary difluoromethane + 1,1,1,2-tetrafluoroethane system

    SciTech Connect

    Sato, Takahiro; Kiyoura, Hideaki; Sato, Haruki; Watanabe, Koichi . Dept. of Mechanical Engineering)

    1994-10-01

    Pressure-volume-temperature-composition (PVTx) properties of the binary refrigerant difluoromethane (HFC-32) + 1,1,1,2-tetrafluoroethane (HFC-134a) have been measured by means of a constant-volume apparatus coupled with an expansion procedure. Two hundred sixty PVTx values were measured in a range of temperatures from 320 to 440 K, pressures from 1.5 to 6.2 MPa, and densities from 61 to 183 kg/m[sup 3].

  13. Studying integrated silicon-lens antennas for radio communication systems operated in the 60 GHz frequency band

    NASA Astrophysics Data System (ADS)

    Artemenko, A. A.; Mal'tsev, A. A.; Maslennikov, R. O.; Sevastyanov, A. G.; Ssorin, V. N.

    2013-01-01

    We consider the development of an integrated lens antenna for LAN radio communication systems operated in the 60 GHz frequency band. The antenna is an extended hemispherical silicon lens. On its flat surface, a microstrip antenna element is located. The use of silicon, which has a dielectric permittivity ɛ = 11.7, as the lens material ensures the maximum range of scanning angles for the minimum axial size of the lens. The approximate analytical formulas, which are used for initial calculations of the lens parameters, allow one to evaluate the basic parameters of the lens antenna integrated with the microstrip antenna element. For further optimizing the parameters of the lens and the antenna element, 3D simulation of the electromagnetic-field distribution was performed. Based on its results, we have developed and manufactured extended hemispherical silicon lenses, which had radii of 6 and 12 mm. The planar microstrip antenna element was manufactured by the low temperature co-fired ceramics (LTCC) technology. The results of simulation and experimental studies of the manufactured prototypes demonstrate that the developed lens antennas has directivities of 17.6 and 23.1 dBi for lenses with radii of 6 and 12 mm, respectively. In this case, the maximum beam deflection angle is achieved, which is equal to 55°, while the permissible decrease in the directivity is no more than 6 dBi compared with the case of a non-deflected beam. The obtained results show that the developed integrated lens antennas can find applications in high-speed radio communication systems operated in the millimeter-wave range.

  14. Ferromagnetism and d+id superconductivity in 1/2 doped correlated systems on triangular lattice

    NASA Astrophysics Data System (ADS)

    Ye, Bing; Mesaros, Andrej; Ran, Ying

    We investigate the quantum phase diagrams of t-J model on triangular lattice at 1/2 doping with various lattice sizes by using a combination of density matrix renormalization group (DMRG), variational Monte Carlo and quantum field theories. To sharply distinguish different phases, we calculated the symmetry quantum numbers of the ground state wave functions, and the results are further confirmed by looking into correlation functions. Our results show there is a first order phase transition from ferromagnetism to d+id superconductor, with the transition taking place at J / t = 0 . 4 +/- 0 . 2 .

  15. Genetic effects of microwave exposure on mammalian cells in vitro. Volume 2. Appendix B. Cytogenetics and growth kinetics data, 1. 2 GHz. Annual report, 1 July 1981-30 September 1982

    SciTech Connect

    Meltz, M.L.; Harris, C.R.; Walker, K.A.

    1984-10-01

    This work is a continuation of studies designed to answer the question of whether radiofrequency radiation (RFR) at lower levels (no greater than 10 mW/sq cm), where measurable heating in the exposure system cannot be detected, causes any transient or permanent alteration in a series of subtle biochemical processes elicited in the DNA of mammalian cells. The specific process(es) being studied are: the effects of RFR on repair synthesis in normal human fibroblasts after ultraviolet light damage of the DNA; and the possible induction by RFR of sister chromatid exchanges or chromosome aberrations in Chinese Hamster Ovary cells. Additional information obtained in the latter studies includes any effects on cell viability (by cloning efficiency) or on cell growth (increase in cell number).

  16. Pumped helium system for cooling positron and electron traps to 1.2 K

    NASA Astrophysics Data System (ADS)

    Wrubel, J.; Gabrielse, G.; Kolthammer, W. S.; Larochelle, P.; McConnell, R.; Richerme, P.; Grzonka, D.; Oelert, W.; Sefzick, T.; Zielinski, M.; Borbely, J. S.; George, M. C.; Hessels, E. A.; Storry, C. H.; Weel, M.; Müllers, A.; Walz, J.; Speck, A.

    2011-06-01

    Extremely precise tests of fundamental particle symmetries should be possible via laser spectroscopy of trapped antihydrogen ( H¯) atoms. H¯ atoms that can be trapped must have an energy in temperature units that is below 0.5 K—the energy depth of the deepest magnetic traps that can currently be constructed with high currents and superconducting technology. The number of atoms in a Boltzmann distribution with energies lower than this trap depth depends sharply upon the temperature of the thermal distribution. For example, ten times more atoms with energies low enough to be trapped are in a thermal distribution at a temperature of 1.2 K than for a temperature of 4.2 K. To date, H¯ atoms have only been produced within traps whose electrode temperature is 4.2 K or higher. A lower temperature apparatus is desirable if usable numbers of atoms that can be trapped are to eventually be produced. This report is about the pumped helium apparatus that cooled the trap electrodes of an H¯ apparatus to 1.2 K for the first time. Significant apparatus challenges include the need to cool a 0.8 m stack of 37 trap electrodes separated by only a mm from the substantial mass of a 4.2 K Ioffe trap and the substantial mass of a 4.2 K solenoid. Access to the interior of the cold electrodes must be maintained for antiprotons, positrons, electrons and lasers.

  17. Bismuth-induced dielectric relaxation in the (1-x)La(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-xBi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3} perovskite system

    SciTech Connect

    Salak, Andrei N.; Pullar, Robert C.; Alford, Neil McN.

    2008-07-01

    The temperature variation of the dielectric permittivity and loss of the solid solutions (1-x)La(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-xBi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3} [(1-x)LMT-xBMT] (0{<=}x{<=}0.3) measured at radio, microwave, and far infrared frequency ranges has been analyzed in comparison with that observed in other bismuth-containing and bismuth-free perovskite ceramics based on LMT. It has been found that the low temperature dielectric response of the (1-x)LMT-xBMT compositions with x{>=}0 is frequency dependent over a wide range from radio to microwave frequencies. The considerable compositional growth of the dielectric permittivity and loss associated with the amount of bismuth in the system was revealed to be not contributed by the lattice polar phonon modes. The effect was suggested to be related to the low-temperature dielectric relaxation process due to a hopping movement of charge carriers in crystallographic A-sites of the perovskite lattice. Particular role of local lattice distortions caused by the anisotropic chemical bonds involving bismuth 6s{sup 2} electrons in a localization of hopping charge carriers in perovskites and other oxygen-octahedral compositions is considered. The characteristic features of the Bi-induced dielectric relaxation and those typical of the ferroelectric relaxors are compared and discussed.

  18. Reductive transformation and sorption of cis- and trans-1,2-dichloroethene in a metallic iron-water system

    SciTech Connect

    Allen-King, R.M.; Halket, R.M.; Burris, D.R.

    1997-03-01

    Reductive transformation kinetic and sorption coefficients were determined for both cis- and trans-1,2-dichloroethene (DCE) in batch systems with zero-valent iron and water. Sorption quasi-equilibrium occurred rapidly for both compounds. Freundlich-type isotherms adequately described sorption over the measured concentration range. The magnitude of sorption was greater for trans-1,2-DCE than for the more soluble cis-1,2-DCE, indicating a possible influence of hydrophobicity. The trans-isomer was more reactive than the cis-isomer. The reaction order for trans-1,2-DCE was 1.22 and for cis-1,2-DCE was 1.77 and 1.64 in relatively high and low initial concentration experiments, respectively. The fact that the reaction order for the cis-isomer could not be reduced to unity by assuming that the bulk of observed sorption was to nonreactive sorption sites suggests that either the assumption may not be valid or that a more complex process exists for this isomer. Chloride was produced by the transformation reaction and chlorine mass balances for the batch systems were 80 to 85%. Other products observed were acetylene, ethene, ethane, C{sub 3}-C{sub 5} alkanes, and vinyl chloride.

  19. Integrated Safety Management System Phase I Verification for the Plutonium Finishing Plant (PFP) [VOL 1 & 2

    SciTech Connect

    SETH, S.S.

    2000-01-10

    U.S. Department of Energy (DOE) Policy 450.4, Safety Management System Policy commits to institutionalizing an Integrated Safety Management System (ISMS) throughout the DOE complex as a means of accomplishing its missions safely. DOE Acquisition Regulation 970.5204-2 requires that contractors manage and perform work in accordance with a documented safety management system.

  20. Novel imidazo[1,2-a]naphthyridinic systems (part 1): synthesis, antiproliferative and DNA-intercalating activities.

    PubMed

    Andaloussi, Mounir; Moreau, Emmanuel; Masurier, Nicolas; Lacroix, Jacques; Gaudreault, René C; Chezal, Jean-Michel; El Laghdach, Anas; Canitrot, Damien; Debiton, Eric; Teulade, Jean-Claude; Chavignon, Olivier

    2008-11-01

    Novel imidazo[1,2-a]naphthyridinic systems 6a-15a and 6b-15b were obtained from Friedländer's reaction in imidazo[1,2-a]pyridine series. Most of the compounds were evaluated for their antitumor activity in the NCIs in vitro human tumor cell line screening panel. Among them, pentacyclic derivatives 13b and 14a exhibited in vitro activity comparable to anticancer agent such as amsacrine. Their mechanism of cytotoxicity action was unrelated to poisoning or inhibiting abilities against topo1. On the contrary, we highlighted a direct intercalation of the drugs into DNA by electrophoresis on agarose gel. PMID:18403058

  1. Side mode suppression and dispersion compensation analysis of a 60 GHz radio-over-fibre system based on a gain switched laser

    NASA Astrophysics Data System (ADS)

    Martin, Eamonn; Barry, Liam

    2014-02-01

    The research and technical community have designated a band of 7 GHz between 57 and 64 GHz for short-range wireless communications. This paper utilizes a simple and cost effective technique for generating a 60 GHz millimeter-wave (mm-wave) signal using an optical comb source based on a gain-switched laser (GSL). This research investigates the effects unwanted comb lines have on the overall system performance with 2.5 Gb/s data transmission. To do this, a programmable optical filter is used to suppress the unwanted comb lines to varying levels. Bit-error rate (BER) measurements were carried out against received optical power to demonstrate the detrimental effects the unwanted comb lines have on the modulated mm-wave signal when not sufficiently suppressed. As chromatic dispersion is a limiting factor to the system's transmission distance, this work also investigates pre-compensation for dispersion utilizing the programmable group delay capabilities of the programmable optical filter, demonstrating the ability to extend the transmission distance by 12 km. All experimental results obtained are reinforced through simulation.

  2. Structural and magnetic phase transition in samarium hydrogen system SmHx (x=1, 2, 3)

    NASA Astrophysics Data System (ADS)

    Priyanga, G. Sudha; Rajeswarapalanichamy, R.; Santhosh, M.; Iyakutti, K.

    2015-06-01

    We report ab-initio calculations for the structural and magnetic phase transition of SmHx (x= 1, 2, 3) using the Vienna ab-initio simulation package (VASP). The non-spin polarized (NSP) and spin polarized (SP) calculations are performed for these hydrides at normal and high pressure. It is found that these compounds are stable in ferromagnetic state at normal pressure. The calculated lattice parameters and bulk modulus of these hydrides are in good agreement with the available experimental results. A pressure-induced structural phase transition from cubic to hexagonal phase in SmH and SmH2 and hexagonal to cubic phase in SmH3 is predicted. A pressure-induced ferromagnetic to nonmagnetic phase transition is observed in SmH, SmH2 and SmH3 at the pressures of 104 GPa, 76 GPa and 81 GPa respectively. Ferromagnetism is quenched in mono, di and tri hydrides at high pressures.

  3. NASA Electronic Library System (NELS) database schema, version 1.2

    NASA Technical Reports Server (NTRS)

    Melebeck, Clovis J.

    1991-01-01

    The database tables used by NELS version 1.2 are discussed. To provide the current functional capability offered by NELS, nineteen tables were created with ORACLE. Each table lists the ORACLE table name and provides a brief description of the tables intended use or function. The following sections cover four basic categories of tables: NELS object classes, NELS collections, NELS objects, and NELS supplemental tables. Also included in each section is a definition and/or relationship of each field to other fields or tables. The primary key(s) for each table is indicated with a single asterisk (*), while foreign keys are indicated with double asterisks (**). The primary key(s) indicate the key(s) which uniquely identifies a record for that table. The foreign key(s) is used to identify additional information in other table(s) for that record. The two appendices are the command which is used to construct the ORACLE tables for NELS. Appendix A contains the commands which create the tables which are defined in the following sections. Appendix B contains the commands which build the indices for these tables.

  4. A Reflection on the Fate of Chiral 1,2,4-Triazole Fungicides in Biological Systems

    EPA Science Inventory

    In biological systems, stereoisomers of chiral compounds can exhibit significantly different pharmacokinetics (absorption, distribution, metabolism, and elimination) and pharmacodynamics (physiological effects). Pharmacokinetic processes (i.e., what the body does to the chemical)...

  5. Federal Emergency Management Information system (FEMIS) data management guide. Version 1.2

    SciTech Connect

    Burnett, R.A.; Downing, T.R.; Gaustad, K.L.; Johnson, S.M.; Loveall, R.M.; Winters, C.

    1996-05-01

    The Federal Emergency Management Information System (FEMIS) is an emergency management planning and analysis tool that is being developed under the direction of the US Army Chemical and Biological Defense Command. The FEMIS Data Management Guide provides the background, as well as the operations and procedures needed to generate and maintain the data resources in the system. Database administrators, system administrators, and general users can use this guide to manage the data files and database that support the administrative, user-environment, database management, and operational capabilities of FEMIS. This document provides a description of the relational and spatial information present in FEMIS. It describes how the data was assembled, how it is loaded, and how it is managed while the system is in operation.

  6. Integrated radwaste treatment system lessons learned from 2{1/2} years of operation

    SciTech Connect

    Baker, M.N.; Fussner, R.J.

    1997-05-01

    The Integrated Radwaste Treatment System (IRTS) at the West Valley Demonstration Project (WVDP) is a pretreatment scheme to reduce the amount of salts in the high-level radioactive waste (vitrification) stream. Following removal of cesium-137 (Cs-137) by ion-exchange in the Supernatant Treatment System (STS), the radioactive waste liquid is volume-reduced by evaporation. Trace amounts of Cs-137 in the resulting distillate are removed by ion-exchange, then the distillate is discharged to the existing plant water treatment system. The concentrated product, 37 to 41 percent solids by weight, is encapsulated in cement producing a stable, low-level waste form. The Integrated Radwaste Treatment System (IRTS) operated in this mode from May 1988 through November 1990, decontaminating 450,000 gallons of high-level waste liquid; evaporating and encapsulating the resulting concentrates into 10,393 71-gallon square drums. A number of process changes and variations from the original operating plan were required to increase the system flow rate and minimize waste volumes. This report provides a summary of work performed to operate the IRTS, including system descriptions, process highlights, and lessons learned.

  7. Bacterial Cyclic β-(1,2)-Glucan Acts in Systemic Suppression of Plant Immune Responses[W

    PubMed Central

    Rigano, Luciano Ariel; Payette, Caroline; Brouillard, Geneviève; Marano, Maria Rosa; Abramowicz, Laura; Torres, Pablo Sebastián; Yun, Maximina; Castagnaro, Atilio Pedro; Oirdi, Mohamed El; Dufour, Vanessa; Malamud, Florencia; Dow, John Maxwell; Bouarab, Kamal; Vojnov, Adrian Alberto

    2007-01-01

    Although cyclic glucans have been shown to be important for a number of symbiotic and pathogenic bacterium–plant interactions, their precise roles are unclear. Here, we examined the role of cyclic β-(1,2)-glucan in the virulence of the black rot pathogen Xanthomonas campestris pv campestris (Xcc). Disruption of the Xcc nodule development B (ndvB) gene, which encodes a glycosyltransferase required for cyclic glucan synthesis, generated a mutant that failed to synthesize extracellular cyclic β-(1,2)-glucan and was compromised in virulence in the model plants Arabidopsis thaliana and Nicotiana benthamiana. Infection of the mutant bacterium in N. benthamiana was associated with enhanced callose deposition and earlier expression of the PATHOGENESIS-RELATED1 (PR-1) gene. Application of purified cyclic β-(1,2)-glucan prior to inoculation of the ndvB mutant suppressed the accumulation of callose deposition and the expression of PR-1 in N. benthamiana and restored virulence in both N. benthamiana and Arabidopsis plants. These effects were seen when cyclic glucan and bacteria were applied either to the same or to different leaves. Cyclic β-(1,2)-glucan–induced systemic suppression was associated with the transport of the molecule throughout the plant. Systemic suppression is a novel counterdefensive strategy that may facilitate pathogen spread in plants and may have important implications for the understanding of plant–pathogen coevolution and for the development of phytoprotection measures. PMID:17601826

  8. Liquid Effluent Monitoring Information System test plans release 1.2

    SciTech Connect

    Adams, R.T.

    1994-10-11

    The Liquid Effluent Monitoring Information System (LEMIS) is being developed as the organized information repository facility in support of the liquid effluent monitoring requirements of the Tri-Party Agreement. It is necessary to provide an automated repository into which the results from liquid effluent sampling will be placed. This repository must provide for effective retention, review, and retrieval of selected sample data by authorized persons and organizations. This System Architecture document is the aggregation of the DMR P+ methodology project management deliverables. Together they represent a description of the project and its plan through four Releases, corresponding to the definition and prioritization of requirements defined by the user.

  9. LOTUS 1-2-3-BASED SYSTEM FOR RECORDING AND MAINTAINING BODY WEIGHT OF LABORATORY ANIMALS

    EPA Science Inventory

    Body weight maintenance is required in a variety of behavioral and physiological studies. C-based animal weighing system is described which features automated data collection and allows for accurate control of body weight in test animals via manipulation of food intake. ajor syst...

  10. Hydrogen Macro System Model User Guide, Version 1.2.1

    SciTech Connect

    Ruth, M.; Diakov, V.; Sa, T.; Goldsby, M.; Genung, K.; Hoseley, R.; Smith, A.; Yuzugullu, E.

    2009-07-01

    The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

  11. 180-GHz Interferometric Imager

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka P.; Lim, Boon H.; O'Dwyer, Ian J.; Soria, Mary M.; Owen, Heather R.; Gaier, Todd C.; Lambrigtsen, Bjorn, H.; Tanner, Alan B.; Ruf, Christopher

    2011-01-01

    A 180-GHz interferometric imager uses compact receiver modules, combined high- and low-gain antennas, and ASIC (application specific integrated circuit) correlator technology, enabling continuous, all-weather observations of water vapor with 25-km resolution and 0.3-K noise in 15 minutes of observation for numerical weather forecasting and tropical storm prediction. The GeoSTAR-II prototype instrument is broken down into four major subsystems: the compact, low-noise receivers; sub-array modules; IF signal distribution; and the digitizer/correlator. Instead of the single row of antennas adopted in GeoSTAR, this version has four rows of antennas on a coarser grid. This dramatically improves the sensitivity in the desired field of view. The GeoSTAR-II instrument is a 48-element, synthetic, thinned aperture radiometer operating at 165-183 GHz. The instrument has compact receivers integrated into tiles of 16 elements in a 4x4 arrangement. These tiles become the building block of larger arrays. The tiles contain signal distribution for bias controls, IF signal, and local oscillator signals. The IF signals are digitized and correlated using an ASIC correlator to minimize power consumption. Previous synthetic aperture imagers have used comparatively large multichip modules, whereas this approach uses chip-scale modules mounted on circuit boards, which are in turn mounted on the distribution manifolds. This minimizes the number of connectors and reduces system mass. The use of ASIC technology in the digitizers and correlators leads to a power reduction close to an order of magnitude.

  12. Amplitude Linearizers for PEP-II 1.2 MW Klystrons and LLRF Systems

    SciTech Connect

    Van Winkle, D.; Browne, J.; Fox, J.D.; Mastorides, T.; Rivetta, C.; Teytelman, D.; /SLAC

    2006-07-18

    The PEP-II B-factory has aggressive current increases planned for luminosity through 2008. At 2.2A (HER) on 4A (LER) currents, we estimate that longitudinal growth rates will be comparable to the damping rates currently achieved in the existing low level RF and longitudinal feedback systems. Prior to having a good non-linear time domain model [1] it was postulated that klystron small signal gain non-linearity may be contributing to measured longitudinal growth rates being higher than linearly predicted growth rates. Five prototype klystron amplitude modulation linearizers have been developed to explore improved linearity in the LLRF system. The linearizers operate at 476 MHz with 15 dB dynamic range and 1 MHz linear control bandwidth. Results from lab measurements and high current beam tests are presented. Future development plans, conclusions from beam testing and ideas for future use of this linearization technique are presented.

  13. Automated Procurement System (APS): Project management plan (DS-03), version 1.2

    NASA Technical Reports Server (NTRS)

    Murphy, Diane R.

    1994-01-01

    The National Aeronautics and Space Administration (NASA) Marshall Space Flight Center (MSFC) is implementing an Automated Procurement System (APS) to streamline its business activities that are used to procure goods and services. This Project Management Plan (PMP) is the governing document throughout the implementation process and is identified as the APS Project Management Plan (DS-03). At this point in time, the project plan includes the schedules and tasks necessary to proceed through implementation. Since the basis of APS is an existing COTS system, the implementation process is revised from the standard SDLC. The purpose of the PMP is to provide the framework for the implementation process. It discusses the roles and responsibilities of the NASA project staff, the functions to be performed by the APS Development Contractor (PAI), and the support required of the NASA computer support contractor (CSC). To be successful, these three organizations must work together as a team, working towards the goals established in this Project Plan. The Project Plan includes a description of the proposed system, describes the work to be done, establishes a schedule of deliverables, and discusses the major standards and procedures to be followed.

  14. FGD system retrofit of the Dalhousie Station Units 1&2, an Orimulsion conversion

    SciTech Connect

    Legere, M.; Rich, T.J.; Nischt, W.

    1995-06-01

    The Dalhousie Thermal Station is an electric generating station owned and operated by New Brunswick Power. The station consists of two boiler units, Unit 1 having a capacity of 100 MW and Unit 2 having a capacity of 215 MW. Both units were converted to burn Orimulsion{trademark} due to the economics of the fuel. Unit 1 returned to service in August, 1994, while Unit 2 returned to service in September, 1994 burning the new fuel. In order to comply with Canadian National Government through Environment Canada emissions standards, New Brunswick Power decided to install a flue gas desulfurization (FGD) system consisting of a single 315 MW absorber module utilizing limestone forced oxidation (LSFO) technology. The unit is designed to generate a marketable grade gypsum product. This paper describes Orimulsion{trademark} and the modifications required to convert the Dalhousie station to Orimulsion{trademark} firing. The FGD system is described and the philosophy used to ensure high reliability in the system is discussed. Commissioning and operational performance results are also presented.

  15. Systems Biology Graphical Notation: Activity Flow language Level 1 Version 1.2.

    PubMed

    Mi, Huaiyu; Schreiber, Falk; Moodie, Stuart; Czauderna, Tobias; Demir, Emek; Haw, Robin; Luna, Augustin; Le Novère, Nicolas; Sorokin, Anatoly; Villéger, Alice

    2015-01-01

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Activity Flow language represents the influences of activities among various entities within a network. Unlike SBGN PD and ER that focus on the entities and their relationships with others, SBGN AF puts the emphasis on the functions (or activities) performed by the entities, and their effects to the functions of the same or other entities. The nodes (elements) describe the biological activities of the entities, such as protein kinase activity, binding activity or receptor activity, which can be easily mapped to Gene Ontology molecular function terms. The edges (connections) provide descriptions of relationships (or influences) between the activities, e.g., positive influence and negative influence. Among all three languages of SBGN, AF is the closest to signaling pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge. PMID:26528563

  16. Poynting Flux in the Region 1/2 Current Systems and Magnetic Cusp

    NASA Astrophysics Data System (ADS)

    Patrick, M.; Knudsen, D. J.; Burchill, J. K.; Stolle, C.; Rauberg, J.; Buchert, S. C.

    2015-12-01

    We present a global survey of ionospheric Poynting flux using the instruments onboard the three ESA Swarm spacecraft. The three Swarm satellites each carry an Electric Field Instrument (EFI) that can be used to measure ion drift velocities. Data from each EFI are combined with magnetometer measurements to create global poynting flux maps in each hemisphere, which are used to infer how electromagnetic energy dissipation in the Magnetosphere-Ionosphere-Thermosphere system changes with scale size, solar illumination, and interplanetary magnetic conditions. Acknowledgements: The EFIs were developed and built by a consortium thatincludes the University of Calgary, the Swedish Institute for Space Physics inUppsala, and COM DEV Canada. The Swarm EFI project is managed and funded by theEuropean Space Agency with additional funding from the Canadian Space Agency.

  17. Collective uncertainty in partially polarized and partially decohered spin-(1/2) systems

    SciTech Connect

    Baragiola, Ben Q.; Chase, Bradley A.; Geremia, JM

    2010-03-15

    It has become common practice to model large spin ensembles as an effective pseudospin with total angular momentum J=Nj, where j is the spin per particle. Such approaches (at least implicitly) restrict the quantum state of the ensemble to the so-called symmetric Hilbert space. Here, we argue that symmetric states are not generally well preserved under the type of decoherence typical of experiments involving large clouds of atoms or ions. In particular, symmetric states are rapidly degraded under models of decoherence that act identically but locally on the different members of the ensemble. Using an approach [Phys. Rev. A 78, 052101 (2008)] that is not limited to the symmetric Hilbert space, we explore potential pitfalls in the design and interpretation of experiments on spin-squeezing and collective atomic phenomena when the properties of the symmetric states are extended to systems where they do not apply.

  18. SUSY partners for spin-1/2 systems in nonrelativistic limits

    NASA Astrophysics Data System (ADS)

    Takou, Daniel Sabi; Avossevou, Gabriel Y. H.; Kounouhewa, Basile B.

    2015-02-01

    In this paper, we use some well-known techniques of Supersymmetric QuantumMechanics (SUSYQM) namely the factorization method and shape invariance, to generate new analytically solvable potentials from some interacting fermionic models in nonrelativistic limits. These systems are described by the ordinary and the harmonically trapped Schrödinger-Pauli particle models and the Dirac-Coulomb Hamiltonian, this latter being set in its nonrelativistic limits. The spectrum for each of these models is obtained in a simple and transparent way. We then generate new solvable potentials that describe interactions between electromagnetic field and matter, paying due attention to the subtleties inherent in the application of SUSY to higher dimensional problems. SUSY breaking problems related to the partner singularities are dicussed along with the paper.

  19. Propagation effects handbook for satellite systems design. A summary of propagation impairments on 10 to 100 GHz satellite links with techniques for system design

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J.; Kaul, R. D.; Wallace, R. G.

    1983-01-01

    This Propagation Handbook provides satellite system engineers with a concise summary of the major propagation effects experienced on Earth-space paths in the 10 to 100 GHz frequency range. The dominant effect, attenuation due to rain, is dealt with in some detail, in terms of both experimental data from measurements made in the U.S. and Canada, and the mathematical and conceptual models devised to explain the data. In order to make the Handbook readily usable to many engineers, it has been arranged in two parts. Chapters 2-5 comprise the descriptive part. They deal in some detail with rain systems, rain and attenuation models, depolarization and experimental data. Chapters 6 and 7 make up the design part of the Handbook and may be used almost independently of the earlier chapters. In Chapter 6, the design techniques recommended for predicting propagation effects in Earth-space communications systems are presented. Chapter 7 addresses the questions of where in the system design process the effects of propagation should be considered, and what precautions should be taken when applying the propagation results.

  20. Intelligent Engine Systems Work Element 1.2: Malfunction and Operator Error Reduction

    NASA Technical Reports Server (NTRS)

    Wiseman, Matthew

    2005-01-01

    Jet engines, although highly reliable and safe, do experience malfunctions that cause flight delays, passenger stress, and in some cases, in conjunction with inappropriate crew response, contribute to airplane accidents. On rare occasions, the anomalous engine behavior is not recognized until it is too late for the pilots to do anything to prevent or mitigate the resulting engine malfunction causing in-flight shutdowns (IFSDs), aborted takeoffs (ATOs), or loss of thrust control (LOTC). In some cases, the crew response to a myriad of external stimuli and existing training procedures is the source of the problem mentioned above. The problem is the reduction of jet engine malfunctions (IFSDs, ATOs, and LOTC) and inappropriate crew response (PSM+ICR) through the use of evolving and advanced technologies. The solution is to develop the overall system health maintenance architecture, detection and accommodation technologies, processes, and enhanced crew interfaces that would enable a significant reduction in IFSDs, ATOs, and LOTC. This program defines requirements and proposes a preliminary design concept of an architecture that enables the realization of the solution.

  1. Aerodynamic characteristics of the National Launch System (NLS) 1 1/2 stage launch vehicle

    NASA Technical Reports Server (NTRS)

    Springer, A. M.; Pokora, D. C.

    1994-01-01

    The National Aeronautics and Space Administration (NASA) is studying ways of assuring more reliable and cost effective means to space. One launch system studied was the NLS which included the l l/2 stage vehicle. This document encompasses the aerodynamic characteristics of the 1 l/2 stage vehicle. To support the detailed configuration definition two wind tunnel tests were conducted in the NASA Marshall Space Flight Center's 14x14-Inch Trisonic Wind Tunnel during 1992. The tests were a static stability and a pressure test, each utilizing 0.004 scale models. The static stability test resulted in the forces and moments acting on the vehicle. The aerodynamics for the reference configuration with and without feedlines and an evaluation of three proposed engine shroud configurations were also determined. The pressure test resulted in pressure distributions over the reference vehicle with and without feedlines including the reference engine shrouds. These pressure distributions were integrated and balanced to the static stability coefficients resulting in distributed aerodynamic loads on the vehicle. The wind tunnel tests covered a Mach range of 0.60 to 4.96. These ascent flight aerodynamic characteristics provide the basis for trajectory and performance analysis, loads determination, and guidance and control evaluation.

  2. Fractional Quantum Hall Effect at ν = 1 / 2 in Hole Systems Confined to GaAs Wide Quantum Wells

    NASA Astrophysics Data System (ADS)

    Hasdemir, Sukret; Liu, Yang; Graninger, Aurelius; Shayegan, Mansour; Pfeiffer, Loren; West, Ken; Baldwin, Kirk; Winkler, Roland

    2014-03-01

    We observe fractional quantum Hall effect (FQHE) at the even-denominator Landau level filling factor ν = 1 / 2 in two-dimensional hole systems confined to GaAs quantum wells of width 30 to 50 nm and having bilayer-like charge distributions. The ν = 1 / 2 FQHE is stable when the charge distribution is symmetric and only in a range of intermediate densities, qualitatively similar to what is seen in two-dimensional electron systems confined to approximately twice wider GaAs quantum wells. Despite the complexity of the hole Landau level structure, originating from the coexistence and mixing of the heavy- and light-hole states, we find the hole ν = 1 / 2 FQHE to be consistent with a two-component, Halperin-Laughlin (Ψ331) state. We acknowledge support through the DOE BES (DE-FG02-00-ER45841) for measurements, and the Gordon and Betty Moore Foundation (Grant GBMF2719), Keck Foundation, and the NSF (DMR-0904117, DMR-1305691 and MRSEC DMR-0819860) for sample fabrication. Work at Arg.

  3. Process Test Evaluation Report Waste Retrieval Sluicing System Emissions Collection (Phase 1 - 2 and 3)

    SciTech Connect

    PARKMAN, D.B.

    1999-12-29

    During sluicing of the first batch of sludge from tank 241-C-106 on November 18, 1998, an unexpected high concentration of volatile organic compounds was measured in the 296-C-006 ventilation stack. Eleven workers reported irritation related symptoms and were sent to Hanford Environmental Health Foundation (HEHF) and Kadlec Hospital for medical evaluations. No residual health effects were reported. As a result of the unexpectedly high concentrations of volatile organic compounds encountered during this November sluicing event, a phased process test designed to characterize the emission constituents was conducted on December 16, 1998, March 7, 1999, and March 28, 1999. The primary focus of this evaluation was to obtain samples of the 296-C-006 ventilation stack effluent and surrounding areas at elevated levels of volatile organic compounds initiated by sluicing. Characterization of the emission constituents was necessary to establish appropriate procedural and administrative exposure controls for continued sluicing. Additionally, this information would be used to evaluate the need for engineered equipment to mitigate any further potential chemical stack emissions. This evaluation confirms that the following actions taken during Phase I, Phase II, and Phase III of the Waste Retrieval Sluicing System Emissions Collection Process Test were conservative and appropriate for continued sluicing: Implement stack limit of 500 ppm volatile organic compounds, with lower administrative limits; Ensure worker involvement through enhanced planning; Continue using the existing fenced boundary location; Continue using pressure demand fresh air respiratory protection inside the C-Farm as recommended by Industrial Hygiene; Continue using the existing respiratory protection/ take cover requirements outside the C-Farm boundary as recommended by Industrial Hygiene; Continue using existing anti-contamination clothing; Minimize the number of workers exposed to emissions; Maintain the

  4. Neutron scattering study of a quasi-2D spin-1/2 dimer system Piperazinium Hexachlorodicuprate under hydrostatic pressure

    SciTech Connect

    Hong, Tao; Stock, C.; Cabrera, I.; Broholm, C.; Qiu, Y.; Leao, J. B.; Poulton, S. J.; Copley, J.R.D.

    2010-01-01

    We report inelastic neutron scattering study of a quasi-two-dimensional S=1/2 dimer system piperazinium hexachlorodicuprate under hydrostatic pressure. The spin gap {Delta} becomes softened with the increase of the hydrostatic pressure up to P = 9.0 kbar. The observed threefold degenerate triplet excitation at P = 6.0 kbar is consistent with the theoretical prediction and the bandwidth of the dispersion relation is unaffected within the experimental uncertainty. At P = 9.0 kbar the spin gap is reduced to {Delta} = 0.55 meV from {Delta} = 1.0 meV at ambient pressure.

  5. Comparison of Transduction Efficiency of Recombinant AAV Serotypes 1, 2, 5, and 8 in the Rat Nigrostriatal System

    PubMed Central

    McFarland, Nikolaus R.; Lee, Jeng-Shin; Hyman, Bradley T.; McLean, Pamela J.

    2009-01-01

    Enhanced delivery and expression of genes in specific neuronal systems is critical for the development of genetic models of neurodegenerative disease and potential gene therapy. Recent discovery of new recombinant adeno-associated viral (rAAV) capsid serotypes has resulted in improved transduction efficiency, but expression levels, spread of transgene, and potential toxicity can differ depending on brain region and among species. We compared the transduction efficiency of titer-matched rAAV 2/1, 2/5 and 2/8 to the commonly used rAAV2/2 in the rat nigrostriatal system via expression of the reporter transgene, enhanced green fluorescent protein (EGFP). Newer rAAV serotypes 2/1, 2/5 and 2/8 demonstrated marked increase in transduction and spread of EGFP expression in dopaminergic nigrostriatal neurons and projections to the striatum and globus pallidus compared to rAAV2/2 at 2 weeks post injection. The number of nigral cells transduced was greatest for rAAV2/1, but for serotypes 2/5 and 2/8 was still 2 to 3-fold higher than that for 2/2. Enhanced transduction did not cause an increase in glial cell response or toxicity. New rAAV serotypes thus promise improved gene delivery to nigrostriatal system with the potential for better models and therapeutics for Parkinson disease and other neurodegenerative disorders. PMID:19250335

  6. Design and simulation of the active support system for a 1.2m meniscus primary mirror

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Fan, Bin; Zeng, Zhige; Li, Xiaojin; Wang, Hongqiao; Liu, Rong

    2015-07-01

    Thin meniscus primary mirrors with active support have been used successfully in many large telescopes, and also draw attention of many optical fabricators. Because the active support system can correct the low order figure errors, such as astigmatism, coma, trefoil 3rd astigmatism, the optical fabricators can just focus on to remove high order figure errors. This will shorten the fabrication time. In this paper, we present an active support system for a 1.2m meniscus parabolic primary mirror. It contains 37 axial push-pull force supports, 3 axial fixed points, and 4 lateral restraints. Some basic performance of the active support system is analyzed and the figure error correction capability is also studied based on Zernike modes.

  7. Photon polarization version of the GHz-Mermin Gedanken

    NASA Technical Reports Server (NTRS)

    Kiess, Thomas E.

    1992-01-01

    We have defined a photon polarization analog of the Greenberger, Horne, and Zeilinger (GHZ) experiment that was initially proposed for spin-1/2 quanta. Analogs of the ket states and Pauli spin matrix operators are presented.

  8. Precision waveguide system for measurement of complex permittivity of liquids at frequencies from 60 to 90Â GHz

    NASA Astrophysics Data System (ADS)

    Hunger, J.; Cerjak, I.; Schoenmaker, H.; Bonn, M.; Bakker, H. J.

    2011-10-01

    We describe a variable path length waveguide setup developed to accurately measure the complex dielectric permittivity of liquids. This is achieved by measuring the complex scattering parameter of the liquid in a waveguide section with a vector network analyzer in combination with an E-band frequency converter. The automated measurement procedure allows fast acquisition at closely spaced intervals over the entire measurement bandwidth: 60-90 GHz. The presented technique is an absolute method and as such is not prone to calibration errors. The technique is suited to investigate low-loss as well as high-loss liquids in contrast to similar setups described previously. We present measurements for a high-loss liquid (water), an intermediate-loss sample (ethanol), and for nearly loss-less n-octane. Due to the available phase information, the present data have an improved accuracy in comparison with literature data.

  9. Precision waveguide system for measurement of complex permittivity of liquids at frequencies from 60 to 90 GHz.

    PubMed

    Hunger, J; Cerjak, I; Schoenmaker, H; Bonn, M; Bakker, H J

    2011-10-01

    We describe a variable path length waveguide setup developed to accurately measure the complex dielectric permittivity of liquids. This is achieved by measuring the complex scattering parameter of the liquid in a waveguide section with a vector network analyzer in combination with an E-band frequency converter. The automated measurement procedure allows fast acquisition at closely spaced intervals over the entire measurement bandwidth: 60-90 GHz. The presented technique is an absolute method and as such is not prone to calibration errors. The technique is suited to investigate low-loss as well as high-loss liquids in contrast to similar setups described previously. We present measurements for a high-loss liquid (water), an intermediate-loss sample (ethanol), and for nearly loss-less n-octane. Due to the available phase information, the present data have an improved accuracy in comparison with literature data. PMID:22047313

  10. Initial results from the multi-megawatt 110 GHz ECH system for the DIII-D tokamak

    SciTech Connect

    Callis, R.W.; Lohr, J.; O`Neill, R.C.; Ponce, D.; Luce, T.C.; Prater, R.; Austin, M.E.

    1997-04-01

    The first of three MW-level 110 GHz gyrotrons was operated into the DIII-D tokamak in late 1996. Two additional units will be commissioned during 1997. Each gyrotron is connected to the tokamak by a low loss, windowless, evacuated transmission line using circular corrugated waveguide carrying the HE{sub 11} mode. The microwave beam spot is well focused with a spot size of approximately 6 cm and can be steered poloidally from the center to the outer edge of the plasma. The initial operation with about 0.5 MW delivered to a low density plasma for 0.5 s showed good central electron heating, with peak temperature in excess of 10 keV. The injection was 19{degree} off perpendicular for current drive.

  11. Initial results from the multi-megawatt 110 GHz ECH system for the DIII-D tokamak

    SciTech Connect

    Callis, R.W.; Lohr, J.; ONeill, R.C.; Ponce, D.; Prater, R.; Austin, M.E.; Luce, T.C.

    1997-04-01

    The first of three MW-level 110 GHz gyrotrons was operated into the DIII-D tokamak in late 1996. Two additional units will be commissioned during 1997. Each gyrotron is connected to the tokamak by a low loss, windowless, evacuated transmission line using circular corrugated waveguide carrying the HE{sub 11} mode. The microwave beam spot is well focused with a spot size of approximately 6 cm and can be steered poloidally from the center to the outer edge of the plasma. The initial operation with about 0.5 MW delivered to a low density plasma for 0.5 s showed good central electron heating, with peak temperature in excess of 10 keV. The injection was 19{degree} off perpendicular for current drive. {copyright} {ital 1997 American Institute of Physics.}

  12. Enhanced critical currents by high-pressure impregnation of 1-2-3 systems with normal conductors

    NASA Astrophysics Data System (ADS)

    Ortabasi, Ugur; Watson, J. H.; Black, James A.

    1990-10-01

    In this paper we present the preliminary analytical and experimental results of a novel low temperature metal impregnation method to increase the critical currents in thick film and bulk HTSC materials. The method described results in a structurally more controllable and effective microcomposite than the ones obtained with metal- and metal-oxide precursors. The physical procedure involves the infiltration of the interstices of the porous, fully treated superconductor with low-melting point, low T superconductor under high pressure. Deep penetration of the metal into the granular superconducting matrix creates large surface areas of strong Proximity Effect. Improved intergrain coupling increases the DC Josephson current and therefore J, the critical current. Prior to the experimental work a theoretical study was conducted. Indium was chosen as the impregnation material. Computations showed.that the infiltrated system should have at least a four orders higher critical current (4.47 x 104 A/cm2) as compared to the same array with vacuum barriers of 20A thickness between the grains (0.31 A/cm2). On the experimental side, high T, porous, 1-2-3 samples impregnated with gallium exhibited very low contact resistance (2. 1 x 10-6 cm2) at 85°K, a value about two orders of magnitude better than the 1-2-3 systems containing intergranular silver. Further experiments with indium impregnated samples are planned. This new low temperature method allows the manufacture of highly flexible wires and films when used with suitable substrates.

  13. Graphene based GHz detectors

    NASA Astrophysics Data System (ADS)

    Boyd, Anthony K.; El Fatimy, Abdel; Barbara, Paola; Nath, Anindya; Campbell, Paul M.; Myers-Ward, Rachael; Daniels, Kevin; Gaskill, D. Kurt

    Graphene demonstrates great promise as a detector over a wide spectral range especially in the GHz range. This is because absorption is enhanced due to the Drude contribution. In the GHz range there are viable detection mechanisms for graphene devices. With this in mind, two types of GHz detectors are fabricated on epitaxial graphene using a lift off resist-based clean lithography process to produce low contact resistance. Both device types use asymmetry for detection, consistent with recent thoughts of the photothermoelectric effect (PTE) mechanism. The first is an antenna coupled device. It utilizes two dissimilar contact metals and the work function difference produces the asymmetry. The other device is a field effect transistor constructed with an asymmetric top gate that creates a PN junction and facilitates tuning the photovoltaic response. The response of both device types, tested from 100GHz to 170GHz, are reported. This work was sponsored by the U.S. Office of Naval Research (Award Number N000141310865).

  14. Orbit-spectrum sharing between the fixed-satellite and broadcasting-satellite services with applications to 12 GHz domestic systems

    NASA Technical Reports Server (NTRS)

    Reinhart, E. E.

    1974-01-01

    A systematic, tutorial analysis of the general problem of orbit-spectrum sharing among inhomogeneous satellite system is presented. Emphasis is placed on extrapolating and applying the available data on rain attenuation and on reconciling differences in the results of various measurements of the subjective effects of interference on television picture quality. An analytic method is presented for determining the approximate values of the intersatellite spacings required to keep mutual interference levels within prescribed limits when many dissimilar satellites share the orbit. A computer model was developed for assessing the interference compatibility of arbitrary configurations of large numbers of geostationary satellite systems. It is concluded that the band from 11.7 c GHz can be shared effectively by broadcasting-satellite and fixed-satellite systems. Recommendations for future study are included.

  15. Monolithic 20-GHz Transmitting Module

    NASA Technical Reports Server (NTRS)

    Kascak, T.; Kaelin, G.; Gupta, A.

    1986-01-01

    20-GHz monolithic microwave/millimeter-wave integrated circuit (MMIC) with amplification and phase-shift (time-delay) capabilities developed. Use of MMIC module technology promises to make feasible development of weight- and cost-effective phased-array antenna systems, identified as major factor in achieving minimum cost and efficient use of frequency and orbital resources of future generations of communication satellite systems. Use of MMIC transmitting modules provides for relatively simple method for phase-shift control of many separate radio-frequency (RF) signals required for phased-array antenna systems.

  16. The design of an active support control system for a thin 1.2m primary mirror

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Li, Xiaojin; Liu, Haitao; Wang, Hongqiao

    2014-09-01

    Active support system is a low-frequency wavefront error correction system, which is often used to correct the mirror deformation resulting from gravity, temperature, wind load, manufacture, installation and other factors. In addition, the active support technology can improve the efficiency of grinding and polishing by adjusting the surface shape in the process of manufacturing large mirrors. This article describes the design of an active support control system for a thin 1.2m primary mirror. The support system consists of 37 axial pneumatic actuators. And in order to change the shape of thin primary mirror we need to precisely control the 37 pneumatic actuators. These 37 pneumatic actuators are divided into six regions. Each region is designed with a control circuit board to realize force closed-loop control for the pneumatic actuators, and all control panels are connected to the PC by CAN bus. The control panels have to support: receive commands from the host PC; control the actuators; periodically return result of control. The whole control system is composed by hardware and control algorithm and communication program.

  17. Further Characterization of 394-GHz Gyrotron FU CW GII with Additional PID Control System for 600-MHz DNP-SSNMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ueda, Keisuke; Matsuki, Yoh; Fujiwara, Toshimichi; Tatematsu, Yoshinori; Ogawa, Isamu; Idehara, Toshitaka

    2016-09-01

    A 394-GHz gyrotron, FU CW GII, has been designed at the University of Fukui, Japan, for dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SSNMR) experiments at 600-MHz 1H resonant frequency. After installation at the Institute for Protein Research (IPR), Osaka University, Japan, a PID feedback control system was equipped to regulate the electron gun heater current for stabilization of the electron beam current, which ultimately achieved stabilization of output power when operating in continuous wave (CW) mode. During exploration to further optimize operating conditions, a continuous tuning bandwidth of approximately 1 GHz was observed by varying the operating voltage at a fixed magnetic field. In the frequency range required for positive DNP enhancement, the output power was improved by increasing the magnetic field and the operating voltage from their initial operational settings. In addition, fine tuning of output frequency by varying the cavity cooling water temperature was demonstrated. These operating conditions and ancillary enhancements are expected to contribute to further enhancement of SSNMR signal.

  18. Further Characterization of 394-GHz Gyrotron FU CW GII with Additional PID Control System for 600-MHz DNP-SSNMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ueda, Keisuke; Matsuki, Yoh; Fujiwara, Toshimichi; Tatematsu, Yoshinori; Ogawa, Isamu; Idehara, Toshitaka

    2016-04-01

    A 394-GHz gyrotron, FU CW GII, has been designed at the University of Fukui, Japan, for dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SSNMR) experiments at 600-MHz 1H resonant frequency. After installation at the Institute for Protein Research (IPR), Osaka University, Japan, a PID feedback control system was equipped to regulate the electron gun heater current for stabilization of the electron beam current, which ultimately achieved stabilization of output power when operating in continuous wave (CW) mode. During exploration to further optimize operating conditions, a continuous tuning bandwidth of approximately 1 GHz was observed by varying the operating voltage at a fixed magnetic field. In the frequency range required for positive DNP enhancement, the output power was improved by increasing the magnetic field and the operating voltage from their initial operational settings. In addition, fine tuning of output frequency by varying the cavity cooling water temperature was demonstrated. These operating conditions and ancillary enhancements are expected to contribute to further enhancement of SSNMR signal.

  19. Possible solution to the riddle of HD 82943 multiplanet system: the three-planet resonance 1:2:5?

    NASA Astrophysics Data System (ADS)

    Baluev, Roman V.; Beaugé, Cristian

    2014-03-01

    We carry out a new analysis of the published radial velocity data for the planet-hosting star HD 82943. We include the recent Keck/HIRES measurements as well as the aged but much more numerous CORALIE data. We find that the CORALIE radial velocity measurements are polluted by a systematic annual variation which affected the robustness of many previous results. We show that after purging this variation, the residuals still contain a clear signature of an additional ˜1100 d periodicity. The latter variation leaves significant hints in all three independent radial velocity subsets that we analysed: the CORALIE data, the Keck data acquired prior to a hardware upgrade and the Keck data taken after the upgrade. We mainly treat this variation as a signature of a third planet in the system, although we cannot rule out other interpretations, such as long-term stellar activity. We find it easy to naturally obtain a stable three-planet radial velocity fit close to the three-planet mean-motion resonance 1:2:5, with the two main planets (those in the 1:2 resonance) in an aligned apsidal corotation. The dynamical status of the third planet is still uncertain: it may reside in as well as slightly out of the 5:2 resonance. We obtain the value of about 1075 d for its orbital period and ˜0.3MJup for its minimum mass, while the eccentric parameters are uncertain.

  20. Cosmic Metallicity from ZnII-Selected QSO Absorption Line Systems Near Redshift z=1.2

    NASA Astrophysics Data System (ADS)

    Monier, Eric

    2010-09-01

    We have searched nearly 15,000 strong intervening MgII systems in SDSS quasar spectra to measure spectral regions where weak, unsaturated metal lines are predicted to exist, with the aim of finding a representative sample of the strongest metal-line column density systems in the universe. These systems are clearly damped Lyman-alpha {DLA} systems, which track cosmologically intervening neutral gas regions that fall along the sightlines to background quasars. We propose STIS G230L spectroscopy of seven strong-ZnII-selected systems from this sample in order to measure their Lyman-alpha absorption profiles and derive their HI column densities. Since Zn is not depleted onto grains, measurement of N{HI} allows a direct measurement of the metal abundance in such systems. We expect the results to be representative of the upper envelope of the distribution of neutral-gas-phase metallicities near redshift z=1.2. If these systems are high-N{HI} DLAs {e.g., 6E21 atoms/cm^2} they will have metallicities typical of those normally found in DLAs {e.g., one-tenth solar}. However, if they are low-N{HI} DLAs {e.g., 2E20 atoms/cm(2) }, they will have supersolar metallicities. Since these DLAs are selected on the basis of their extreme metal-line properties, analysis of their metallicities and dust-to-gas ratios will lead to strong constraints on the range of properties exhibited by DLA systems.

  1. A calibration system for the Green Bank Telescope 4mm receiver: On-telescope, RFI-free calibration for 68-92 GHz observations

    NASA Astrophysics Data System (ADS)

    Watts, Galen

    2012-11-01

    Calibration for spectral line observations covering 68-92 GHz on the Green Bank Telescope uses a different calibration scheme than lower frequency receivers. In addition and extremely important is that any calibration scheme must not generate radio frequency interference (RFI) to other experiments ongoing at the Green Bank Observatory. An asynchronous logic network interfaces between the telescope control system, a brushless AC motor and three bit position encoding to place or remove reflectors, absorber or a quarter wave plate in the beam of the feeds to enable observers to calibrate their data during observations or configure the receiver for Very Long Baseline Interferometer network observations. This system is free of RFI that schemes utilizing more commonly available technology create.

  2. Electric Charge Transfer and Scattering of Its Carriers in Cuprates of the 1-2-3 System

    NASA Astrophysics Data System (ADS)

    Vovk, R. V.; Khadzhai, G. Ya.; Dobrovolskiy, O. V.; Kamchatnaya, S. N.; Nazyrov, Z. F.

    2016-04-01

    We show that the temperature dependences of the basal-plane electrical resistance in cuprates of the 1-2-3 system can be described as a consequence of scattering of charge carriers on phonons and defects in conjunction with the fluctuation conductivity. The electron-phonon parameters values deduced from fitting the experimental data to recognized models are close to those for metallic alloys of complex composition. It is revealed that at a large oxygen deficit (low superconducting transition temperatures T_c), the superconducting behavior of the studied cuprates has similarities with that of complex superconducting alloys. At the optimum oxygen deficit (maximal T_cs), superconductivity in the investigated cuprates is likely governed by some other mechanisms.

  3. Cryogenic 160-GHz MMIC Heterodyne Receiver Module

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Soria, Mary M.; Owen, Heather R.; Dawson, Douglas E.; Kangaslahti, Pekka P.; Gaier, Todd C.; Voll, Patricia; Lau, Judy; Sieth, Matt; Church, Sarah

    2011-01-01

    A cryogenic 160-GHz MMIC heterodyne receiver module has demonstrated a system noise temperature of 100 K or less at 166 GHz. This module builds upon work previously described in Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation (NPO-47664), NASA Tech Briefs, Vol. 35, No. 8 (August 2011), p. 27. In the original module, the local oscillator signal was saturating the MMIC low-noise amplifiers (LNAs) with power. In order to suppress the local oscillator signal from reaching the MMIC LNAs, the W-band (75 110 GHz) signal had to be filtered out before reaching 140 170 GHz. A bandpass filter was developed to cover 120 170 GHz, using microstrip parallel-coupled lines to achieve the desired filter bandwidth, and ensure that the unwanted W-band local oscillator signal would be sufficiently suppressed. With the new bandpass filter, the entire receiver can work over the 140 180-GHz band, with a minimum system noise temperature of 460 K at 166 GHz. The module was tested cryogenically at 20 K ambient temperature, and it was found that the receiver had a noise temperature of 100 K over an 8-GHz bandwidth. The receiver module now includes a microstrip bandpass filter, which was designed to have a 3-dB bandwidth of approximately 120-170 GHz. The filter was fabricated on a 3-mil-thick alumina substrate. The filter design was based on a W-band filter design made at JPL and used in the QUIET (Q/U Imaging ExperimenT) radiometer modules. The W-band filter was scaled for a new center frequency of 150 GHz, and the microstrip segments were changed accordingly. Also, to decrease the bandwidth of the resulting scaled design, the center gaps between the microstrip lines were increased (by four micrometers in length) compared to the gaps near the edges. The use of the 150-GHz bandpass filter has enabled the receiver module to function well at room temperature. The system noise temperature was measured to be less than 600 K (at room temperature) from 154 to 168 GHz

  4. Feasibility demonstration of booster cross-over system for 3 1/2 inch SRB/MLP frangible nut system

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Recent testing of the SRB/MLP Frangible Nut System (SOS Part Number 114850-9/Boosters P/N 114848-3) at NASA indicated a need to reduce the function time between boosters (2) within a single frangible nut. These boosters are initiated separately by electrical impulse(s). Coupling the output of each detonator with an explosive cross-over would reduce the function time between boosters (independent of electrical impulse) while providing additional redundancy to the system. The objectives of this program were to: provide an explosive cross-over between boosters, reduce function time between boosters to less than one (1) millisecond within a given nut, reduce cost of boosters, be compatible with the existing frangible nut system, and meet requirements of USBI Spec's (nut 10SPC-0030, booster 10SPC-0031).

  5. An automated alkaline elution system: DNA damage induced by 1,2-dibromo-3-chloropropane in vivo and in vitro.

    PubMed

    Brunborg, G; Holme, J A; Søderlund, E J; Omichinski, J G; Dybing, E

    1988-11-01

    An automated alkaline elution system for the detection of DNA damage has been developed. After manual application of samples, which is completed within 5 min, the subsequent supply of liquids, changes in flow rates, and temperature are controlled automatically. The system operates 16 filters and may easily be expanded. The sensitivity of the fluorometric DNA determinations with the Hoechst 33258 dye is increased by using an elution buffer (20 mM Na2EDTA, pH 12.50) with low background fluorescence. DNA is determined using an automated setup similar to the one recently presented by Sterzel et al. (1985, Anal. Biochem. 147, 462-467). The most significant modification is the use of a neutralization buffer which allows variations in the pH of eluted fractions. This change increases the sensitivity of the DNA measurements. The automated alkaline elution system was evaluated using the nematocide 1,2-dibromo-3-chloropropane (DBCP) in a study of its genotoxic effects in the testes and the kidneys. Significant DNA damage was induced in testicular cells by 2.5 microM DBCP (1 h) in vitro and 85 mumol/kg DBCP ip (3 h) in vivo. The damage appeared after short treatment times (10 min in vivo). Variations in the observed DBCP response in vivo were largely due to interanimal variations. The automated alkaline elution system proved to be a sensitive assay also for the detection of DNA damage in kidney nuclei prepared from rats exposed to DBCP. Provided that kidney nuclei from untreated rats, mice, or hamster were kept ice-cold until lysing, 85-100% of their DNA was retained after 16 h of elution, indicating highly intact DNA. Under the same conditions, guinea pig DNA was rapidly degraded unless the nuclei were prepared in a buffer with a higher concentration of Na2EDTA (20 mM). PMID:3239754

  6. A 10 GHz bandwidth, single transient, digitized oscilloscope with 20 GHz capability

    SciTech Connect

    Hudson, C.L.; Kocimski, S.M.; Spector, J.; Thomas, J.B.; Woodstra, R.R.

    1993-12-31

    EG&G/EM has developed an oscilloscope with a {minus}3 dB bandwidth greater than 10 GHz. Its rolloff characteristics are such that single-transient data greater than 20 GHz may be captured. A demountable CCD camera records the oscilloscope trace and is provided with PC-compatible capture and data processing software. The capabilities of the oscilloscope, camera, and its processing software are described and examples of the system`s performance is shown.

  7. Global ab initio potential energy surfaces for the lowest three doublet states (1 2A', 2 2A', and 1 2A″) of the BrH2 system

    NASA Astrophysics Data System (ADS)

    Kurosaki, Yuzuru; Takayanagi, Toshiyuki

    2003-10-01

    Global adiabatic potential energy surfaces (PESs) of the lowest three doublet states (1 A2A', 2 2A', and 1 2A″) for the BrH2 system have been calculated using the multireference configuration interaction (MRCI) method including the Davidson's correction (Q) with the aug-cc-pVTZ basis set. Spin-orbit effects were considered on the basis of the Breit-Pauli Hamiltonian using the MRCI wave functions. The calculated adiabatic energies were fitted to the analytical functional form of many-body expansion. The barrier heights of the H+HBr→H2+Br abstraction and H+H'Br→H'+HBr exchange reactions on the ground-state PES were calculated to be 1.28 and 11.71 kcal mol-1, respectively, both of which are slightly smaller than the values obtained in the previous work [G. C. Lynch, D. G. Truhlar, F. B. Brown, and J.-G. Zhao, J. Phys. Chem. 99, 207 (1995)]. The fits for the 1 2A', 2 2A', and 1 2A″ PESs were successful within an accuracy of 0.1 kcal mol-1 in the important regions of PESs such as the transition states and van der Waals wells. Thermal rate constants for the abstraction and exchange reactions and their isotopic variants were calculated with the fitted 1 2A' PES using the improved canonical variational transition-state theory with the least-action adiabatic ground-state approximation method. The calculated rate constants were found to agree better with experiment than those obtained by Lynch et al.

  8. Klystron Linearizer for Use with 1.2 MW 476 MHz Klystrons in PEP-II RF Systems

    SciTech Connect

    Fox, J.; Mastorides, T.; Teytelman, D.; Van Winkle, D.; Zhou, Y.; Gallo, A.; /Frascati

    2005-06-15

    The direct and comb loop feedback around the RF cavities in PEP-II is critical in reducing longitudinal instabilities driven by the cavity impedance. The non-linear 1.2 MW klystron is in the signal path for these feedback loops. As a result, the effective small-signal gain of the klystron at 85% saturation reduces the impedance control by factors of 5 to 20 as compared to a linear power amplifier. A klystron linearizer circuit has been developed which operates in series with the power amplifier and acts to equalize the small and large signal gains through the combination. The technique must implement a 1 MHz linear control bandwidth over roughly 15 dB of RF signal level variation. The dynamics of this system is operating point dependent, and the channel must have dynamic gain compensation to keep the linearity compensation loop stable over changes in operating point. The design of this non-linear signal processing channel (incorporating RF and DSP techniques) and measured results from full-power klystron testing are presented.

  9. GHz repetition rate tabletop X-band photoinjector for free-electron laser applications

    SciTech Connect

    Le Sage, G.P.; Fochs, S.N.; Feng, H.X.C.

    1995-12-31

    A 1-1/2 cell {pi}-mode X-bend (8.568 GHz) photoinjector system capable of producing trains of up to one hundred, 1 nC, 1ps, 5 MeV, {epsilon}{sub n} < 2.5 {pi} mm-mrad photoelectron bunches, at a micropulse repetition rate of 1-10 Hz, is currently under development at LLNL, in the UC Davis DAS coherent millimeter-wave group. The system is powered by a 20 MW, 8.568 GHz SLAC development klystron. The system also uses a Cs{sub 2}Te (Cesium Telluride) photocathode which has a quantum efficiency > 5% in the UV (210 nm). The compact UV laser system is composed of a synchronously modelocked AlGaAs semiconductor laser oscillator which produces pulses with a duration of 250 fs and 100 pJ energy at 830 nm, at a repetion rate of 2.142 GHz with less 400 is jitter, a 5 GHz bandwidth Lithium Niobate Mach-Zender fiber modulator, an 8-pass, 10{sup 6} gain, TiAl{sub 2}O{sub 3} (Titanium:Sapphire) chirped pulse amplifier, and 2 BBO frequency doublers in series to quadruple the laser frequency into the UV (207 nm).

  10. High power pulsed magnicon at 34-GHz

    SciTech Connect

    Nezhevenko, O.A.; Yakovlev, V.P.; Ganguly, A.K.; Hirshfield, J.L.

    1999-05-01

    A high efficiency, high power magnicon amplifier at 34.272 GHz has been designed as a radiation source to drive multi-TeV electron-positron linear colliders. Simulations show peak output power of 45 MW in a 1.5 microsecond wide pulse with an efficiency of 45{percent} and gain of 55 dB. The repetition rate is 10 Hz. The amplifier is a frequency tripler, or third harmonic amplifier, in that the output frequency of 34.272 GHz is three times the input drive frequency of 11.424 GHz. Thus the rotating TM{sub 110} modes in the drive cavity, 3 gain cavities and double decoupled penultimate cavities are resonant near 11.424 GHz; and the rotating TM{sub 310} mode in the output cavity is resonant at 34.272 GHz. A 500 kV, 200 A high area compression electron gun will provide a low emittance electron beam with a diameter of about 0.8 mm. A superconducting solenoid magnet will provide a magnetic field of 13 kG in the deflection system and 22 kG in the output cavity. A collector for the spent beam has also been designed. Detailed simulation results for the operation of the entire magnicon amplifier (gun, magnetic system, rf system and collector) will be given. {copyright} {ital 1999 American Institute of Physics.}

  11. On board low noise 30 GHz receiver

    NASA Astrophysics Data System (ADS)

    Dambrosio, A.; Castelli, G.; Mazzini, C.

    An advanced receiver for onboard application in a 30/20 GHz SS-TDMA satellite communication system is described. The basic requirements of the receiver are a total noise temperature of 1000 K and a bandwidth of 250 MHz. Attention is given to system requirements, the receiver configuration, the parametric preamplifier, and the down converter and IF preamplifier.

  12. Statistical determination of whole-body average SARs in a 2 GHz whole-body exposure system for unrestrained pregnant and newborn rats

    NASA Astrophysics Data System (ADS)

    Wang, Jianqing; Wake, Kanako; Kawai, Hiroki; Watanabe, Soichi; Fujiwara, Osamu

    2012-01-01

    A 2 GHz whole-body exposure to rats over a multigeneration has been conducted as part of bio-effect research in Japan. In this study, the rats moved freely in the cage inside the exposure system. From observation of the activity of rats in the cage, we found that the rats do not stay in each position with uniform possibility. In order to determine the specific absorption rate (SAR) during the entire exposure period with high accuracy, we present a new approach to statistically determine the SAR level in an exposure system. First, we divided the rat cage in the exposure system into several small areas, and derived the fraction of time the rats spent in each small area based on the classification of the documentary photos of rat activity. Then, using the fraction of time spent in each small area as a weighting factor, we calculated the statistical characteristics of the whole-body average SAR for pregnant rats and young rats during the entire exposure period. As a result, this approach gave the statistical distribution as well as the corresponding mean value, median value and mode value for the whole-body SAR so that we can reasonably clarify the relationship between the exposure level and possible biological effect.

  13. A 30-GHz Hexagonal Ferrite Phase Shifter

    NASA Astrophysics Data System (ADS)

    Semenov, A. S.; Slavin, A. N.; Mantese, J. V.

    2005-03-01

    Highly-anisotropic hexaferrites, such as barium ferrite BaFe12O19 (BFO), are ideal for millimeter wave phase shifters due to a large ferromagnetic resonance frequency at low magnetic bias field H. It enables one to make millimeter-wave devices with compact magnetic systems. Here we discuss the design, fabrication and characterization of a BFO phase shifter. A microstrip line deposited on a ferrite substrate supports the propagation of electromagnetic wave, leading to a phase shift kb, where k is the wave number and b is the length of the microstrip line. As k is a function of the bias H, we obtain a differential phase shift with a change of H. A phase shifter consisting of a single crystal (7 x 7 x 0.5 mm^3) BFO and a 500 μm wide stripline was evaluated at 30 GHz. A differential phase shift of 30 deg. was measured for H=1.2 kOe. The measured value of the insertion loss was about 10 dB. -Work supported by a grant from the Delphi Automotive Corporation.

  14. BaV3O8: A possible Majumdar-Ghosh system with S = (1)/(2)

    NASA Astrophysics Data System (ADS)

    Chakrabarty, T.; Mahajan, A. V.; Gippius, A. A.; Tkachev, A. V.; Büttgen, N.; Kraetschmer, W.

    2013-07-01

    BaV3O8 contains magnetic V4+(S=1/2) ions and also nonmagnetic V5+(S=0) ions. The V4+ ions are arranged in a coupled Majumdar-Ghosh chainlike network. A Curie-Weiss fit of our magnetic susceptibility χ(T) data in the temperature region of 80-300 K yields a Curie constant C=0.39 cm3K/mole V4+ and an antiferromagnetic Weiss temperature θ=-26K. The χ(T) curve shows a broad maximum at T≃25 K indicative of short-range order (SRO) and an anomaly corresponding to long-range order (LRO) at TN˜6 K. The value of the “frustration parameter” (f=|θ/TN|˜5) suggests that the system is moderately frustrated. Above the LRO temperature, the experimental magnetic susceptibility data match well with the coupled Majumdar-Ghosh (or Jnn-Jnnn Heisenberg) chain model with the ratio of the nnn (next-nearest neighbor) to nn (nearest neighbor) magnetic coupling α=2 and Jnnn/kB=40 K. In a mean-field approach when considering the interchain interactions, we obtain the total interchain coupling to be about 16 K. The LRO anomaly at TN is also observed in the specific heat CP(T) data and is not sensitive to an applied magnetic field up to 90 kOe. A 51V NMR signal corresponding to the nonmagnetic vanadium was observed. Anomalies at 6 K were observed in the variation with temperature of the 51V NMR linewidth and the spin-lattice relaxation rate 1/T1 indicating that they are sensitive to the LRO onset and fluctuations at the magnetic V sites. The existence of two components (one short and another long) is observed in the spin-spin relaxation rate 1/T2 data in the vicinity of TN. The shorter component seems to be intimately connected with the magnetically ordered state. We suggest that both magnetically ordered and nonlong-range-ordered (non-LRO) regions coexist in this compound below the long-range-ordering temperature.

  15. Initial response and cellular protection through the Keap1/Nrf2 system during the exposure of primary mouse hepatocytes to 1,2-naphthoquinone.

    PubMed

    Miura, Takashi; Shinkai, Yasuhiro; Jiang, Hai-Yan; Iwamoto, Noriko; Sumi, Daigo; Taguchi, Keiko; Yamamoto, Masayuki; Jinno, Hideto; Tanaka-Kagawa, Toshiko; Cho, Arthur K; Kumagai, Yoshito

    2011-04-18

    Quinones are reactive chemical species that cause cellular damage by modifying protein thiols and/or catalyzing the reduction of oxygen to reactive oxygen species, thereby promoting oxidative stress. Transcription factor Nrf2 plays a crucial role in cellular defense against electrophilic modification and oxidative stress. In studies using 1,2-naphthoquinone (1,2-NQ) as a model quinone, we found that Keap1, the negative regulator of Nrf2, was readily arylated at its reactive thiols by 1,2-NQ. Exposure of primary mouse hepatocytes to 1,2-NQ resulted in the activation of Nrf2 and the upregulation of some of Nrf2's downstream genes. This interaction was further investigated in hepatocytes from Nrf2 knockout mice in which the proteins responsible for the metabolism and excretion of 1,2-NQ are minimally expressed. The chemical modification of cellular proteins by 1,2-NQ was enhanced by Nrf2 deletion, resulting in increased toxicity. However, deletion of the negative regulatory protein, Keap1, drastically reduced the covalent binding by 1,2-NQ and its cellular toxicity. Experiments with chemicals that inhibit the biotransformation and extracellular excretion of 1,2-NQ suggest that 1,2-NQ undergoes detoxification and excretion into the extracellular space predominantly by two-electron reduction and subsequent glucuronidation by NAD(P)H:quinone oxidoreductase 1 and uridine 5'-diphosphate-glucuronosyltransferases, followed by multidrug resistance-associated protein-dependent excretion. These findings suggest that the Keap1/Nrf2 system is essential for the prevention of cell damage resulting from exposure to 1,2-NQ. PMID:21384861

  16. A 30 GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Mondal, J.; Contolatis, T.; Geddes, J.; Bauhahn, P.; Sokolov, V.

    1990-01-01

    The technical achievements and deliveries made during the duration of the program to develop a 30 GHz monolithic receive module for communication feed array applications and to deliver submodules and 30 GHz monolithic receive modules for experimental evaluation are discussed. Key requirements include an overall receive module noise figure of 5 dB, a 30 dB RF-to-RF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. In addition, the monolithic receive module design addresses a cost goal of less than one thousand dollars (1980 dollars) per module in unit buys of 5,000 or more, and a mechanical configuration that is applicable to a spaceborne phase array system. An additional task for the development and delivery of 32 GHz phase shifter integrated circuit (IC) for deep space communication is also described.

  17. Environmental assessment for the Satellite Power System (SPS): studies of honey bees exposed to 2. 45 GHz continuous-wave electromagnetic energy

    SciTech Connect

    Gary, N E; Westerdahl, B B

    1980-12-01

    A system for small animal exposure was developed for treating honey bees, Apis mellifera L., in brood and adult stages, with 2.45 GHz continuous wave microwaves at selected power densities and exposure times. Post-treatment brood development was normal and teratological effects were not detected at exposures of 3 to 50 mw/cm/sup 2/ for 30 minutes. Post-treatment survival, longevity, orientation, navigation, and memory of adult bees were also normal after exposures of 3 to 50 mw/cm/sup 2/ for 30 minutes. Post-treatment longevity of confined bees in the laboratory was normal after exposures of 3 to 50 mw/cm/sup 2/ for 24 hours. Thermoregulation of brood nest, foraging activity, brood rearing, and social interaction were not affected by chronic exposure to 1 mw/cm/sup 2/ during 28 days. In dynamic behavioral bioassays the frequency of entry and duration of activity of unrestrained, foraging adult bees was identical in microwave-exposed (5 to 40 mw/cm/sup 2/) areas versus control areas.

  18. Propagation handbook, frequencies above 10 GHz

    NASA Technical Reports Server (NTRS)

    Ippolito, Louis J.

    1988-01-01

    The progress and accomplishments in the developmet of the Fourth Edition of the NASA Propagation Effects Handbook for Satellite Systems Design, for frequencies 10 to 100 GHz, NASA Reference Publication 1082(04), dated May 1988, prepared by Westighouse Electric Corporation for the Jet Propulsion Laboratory are discussed.

  19. Spin-1/2 XXZ chain system Cs2CoCl4 in a transverse magnetic field.

    PubMed

    Breunig, O; Garst, M; Sela, E; Buldmann, B; Becker, P; Bohatý, L; Müller, R; Lorenz, T

    2013-11-01

    Comparing high-resolution specific heat and thermal expansion measurements to exact finite-size diagonalization, we demonstrate that Cs(2)CoCl(4) for a magnetic field along the crystallographic b axis realizes the spin-1/2 XXZ chain in a transverse field. Exploiting both thermal as well as virtual excitations of higher crystal-field states, we find that the spin chain is in the XY limit with an anisotropy J(z)/J[perpindicular] ≈ 0.12, substantially smaller than previously believed. A spin-flop Ising quantum phase transition occurs at a critical field of μ(0)H(b)(cr) ≈ 2 T before around 3.5 T the description in terms of an effective spin-1/2 chain becomes inapplicable. PMID:24237555

  20. Spacecraft in switch matrix for wide band service applicatons in 30/20 GHz communications satellite systems

    NASA Technical Reports Server (NTRS)

    Cory, B. J.

    1982-01-01

    Bandwidth, switching speed, off-state isolation, and reliability over a ten-year mission were factors in determining the optimum available technology for satellite communications switching in 1982. A proof of concept model for a 20 x 20 coupled crossbar switch matrix designed with FET devices for microwave switching and with high speed CMOS LIS for switch crosspoint addressing was fabricated and tested. Results show the design is feasible for application in a multichannel SS-TDMA communications system. Expandibility can readily be achieved with this design. A conceptual design study for a 100 x 100 switch matrix utilizing a coupled crossbar architecture implemented with a monolithic microwave integrated circuits revealed technology needs for high capacity switch matrices.

  1. An SIS Waveguide heterodyne Reciever for 600 GHz - 635 GHz

    NASA Technical Reports Server (NTRS)

    Salez, Morvan; Febvre, Pascal; McGrath, William R.; Bumble, Bruce; LeDuc, Henry G.

    1994-01-01

    A waveguide SIS heterodyne receiver using a Nb/A10xNb junction has been built for astronomical observations of molecular tranitions in the frequency range 600GHz - 635GHZ, and has been successfully used at the Caltech Submillimeter Observatory (CSO).

  2. Description and evaluation of tropospheric chemistry and aerosols in the Community Earth System Model (CESM1.2)

    DOE PAGESBeta

    Tilmes, S.; Lamarque, J. -F.; Emmons, L. K.; Kinnison, D. E.; Ma, P. -L.; Liu, X.; Ghan, S.; Bardeen, C.; Arnold, S.; Deeter, M.; et al

    2015-01-01

    The Community Atmosphere Model (CAM), version 5, is now coupled to extensive tropospheric and stratospheric chemistry, called CAM5-chem, and is available in addition to CAM4-chem in the Community Earth System Model (CESM) version 1.2. The main focus of this paper is to compare the performance of configurations with internally derived "free running" (FR) meteorology and "specified dynamics" (SD) against observations from surface, aircraft, and satellite, as well as understand the origin of the identified differences. We focus on the representation of aerosols and chemistry. All model configurations reproduce tropospheric ozone for most regions based on in situ and satellite observations.more » However, shortcomings exist in the representation of ozone precursors and aerosols. Tropospheric ozone in all model configurations agrees for the most part with ozonesondes and satellite observations in the tropics and the Northern Hemisphere within the variability of the observations. Southern hemispheric tropospheric ozone is consistently underestimated by up to 25%. Differences in convection and stratosphere to troposphere exchange processes are mostly responsible for differences in ozone in the different model configurations. Carbon monoxide (CO) and other volatile organic compounds are largely underestimated in Northern Hemisphere mid-latitudes based on satellite and aircraft observations. Nitrogen oxides (NOx) are biased low in the free tropical troposphere, whereas peroxyacetyl nitrate (PAN) is overestimated in particular in high northern latitudes. The present-day methane lifetime estimates are compared among the different model configurations. These range between 7.8 years in the SD configuration of CAM5-chem and 8.8 years in the FR configuration of CAM4-chem and are therefore underestimated compared to observational estimations. We find that differences in tropospheric aerosol surface area between CAM4 and CAM5 play an important role in controlling the burden of

  3. Description and evaluation of tropospheric chemistry and aerosols in the Community Earth System Model (CESM1.2)

    SciTech Connect

    Tilmes, S.; Lamarque, J. -F.; Emmons, L. K.; Kinnison, D. E.; Ma, P. -L.; Liu, X.; Ghan, S.; Bardeen, C.; Arnold, S.; Deeter, M.; Vitt, F.; Ryerson, T.; Elkins, J. W.; Moore, F.; Spackman, J. R.; Val Martin, M.

    2015-01-01

    The Community Atmosphere Model (CAM), version 5, is now coupled to extensive tropospheric and stratospheric chemistry, called CAM5-chem, and is available in addition to CAM4-chem in the Community Earth System Model (CESM) version 1.2. The main focus of this paper is to compare the performance of configurations with internally derived "free running" (FR) meteorology and "specified dynamics" (SD) against observations from surface, aircraft, and satellite, as well as understand the origin of the identified differences. We focus on the representation of aerosols and chemistry. All model configurations reproduce tropospheric ozone for most regions based on in situ and satellite observations. However, shortcomings exist in the representation of ozone precursors and aerosols. Tropospheric ozone in all model configurations agrees for the most part with ozonesondes and satellite observations in the tropics and the Northern Hemisphere within the variability of the observations. Southern hemispheric tropospheric ozone is consistently underestimated by up to 25%. Differences in convection and stratosphere to troposphere exchange processes are mostly responsible for differences in ozone in the different model configurations. Carbon monoxide (CO) and other volatile organic compounds are largely underestimated in Northern Hemisphere mid-latitudes based on satellite and aircraft observations. Nitrogen oxides (NOx) are biased low in the free tropical troposphere, whereas peroxyacetyl nitrate (PAN) is overestimated in particular in high northern latitudes. The present-day methane lifetime estimates are compared among the different model configurations. These range between 7.8 years in the SD configuration of CAM5-chem and 8.8 years in the FR configuration of CAM4-chem and are therefore underestimated compared to observational estimations. We find that differences in tropospheric aerosol surface area between CAM4 and CAM5 play an important role in controlling the

  4. Rain and cloud effects on a satellite dual-frequency radar altimeter system operating at 13.5 and 35 GHz

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.; Monaldo, F. M.; Goldhirsh, J.

    1984-01-01

    The influence of clouds and rain on the return waveform signatures from satellite borne radar altimeters operating at 13.5 and 35 GHz are examined. It is specifically demonstrated that spatial nonuniformity in the cloud liquid water content or variations of the rain rate may result in significant distortions of the altimeter signature. The distorted signal is produced as a result of nonuniform attenuation occurring at the different range bins associated with the reflected signal. Determination of the mean sea height by employing tracking algorithms on these distorted echoes may result in gross errors. Although the influence of clouds on the altimeter signature and hence tracking precision is minimal at 13.5 GHz (e.g., less than 4 cm for a 1-s average), it may produce unacceptable mean sea level uncertainties at 35 GHz (e.g., 20 cm for a 1-s average) assuming a significant waveheight of 4 m. On the other hand, the signatures at both 13.5 GHz and 35 GHz become grossly distorted for rain rates of 10 mm/h and higher resulting in mean sea height errors of 46 and 65 cm, respectively, for significant wave heights of 2 m.

  5. Spectroscopic properties of the low-lying electronic states of RbHen (n = 1, 2) and their comparison with lighter alkali metal-helium systems

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Anjan

    2012-02-01

    Ab initio-based configuration interaction studies on RbHe and He-Rb-He have explored some key features of the low-lying electronic states of these van der Waals systems. The radiative lifetime of the Rb*He exciplex has been calculated to be around 24.5 ns, which is slightly higher than the HeRb*He lifetime (˜20 ns) and lower than the atomic fluorescence lifetime of Rb, by roughly 3.5 ns. Better exciplex stability of the symmetric triatomic system is evidenced by its higher binding energy value in comparison to the diatomic system by a substantial margin. BSSE-corrected spin-orbit calculations of RbHe have predicted a potential barrier of the 12Π1/2 state with a height of 15 cm-1 and width of 2.57 Å. The 2Πu state of the triatomic molecule shows a conical intersection of its Renner-Teller components (12A1 and 12B2) near a 99° bond angle along the bending path. Their unstable higher excited states (12Σ+1/2 or 12Σ+g,1/2) can trigger the pumping of the blue side of the ns2S1/2 → np2P3/2 transition, and this may eventually lead to the np2P1/2 →ns2S1/2 lasing transition. The broad fluorescence band with a peak near 11 900 cm-1 is found to arise from the 12Π3/2-X2Σ+1/2 transition of RbHe.

  6. Lack of promoting effects of chronic exposure to 1.95-GHz W-CDMA signals for IMT-2000 cellular system on development of N-ethylnitrosourea-induced central nervous system tumors in F344 rats.

    PubMed

    Shirai, Tomoyuki; Ichihara, Toshio; Wake, Kanako; Watanabe, So-ichi; Yamanaka, Yukio; Kawabe, Mayumi; Taki, Masao; Fujiwara, Osamu; Wang, Jianqing; Takahashi, Satoru; Tamano, Seiko

    2007-10-01

    The present study was performed to evaluate effects of a 2-year exposure to an electromagnetic near-field (EMF) equivalent to that generated by cellular phones on tumor development in the central nervous system (CNS) of rats. For this purpose, pregnant F344 rats were given a single administration of N-ethylnitrosourea (ENU) on gestational day 18. A total of 500 pups were divided into five groups, each composed of 50 males and 50 females: Group 1, untreated controls; Group 2, ENU alone; Groups 3 to 5, ENU + EMF (sham exposure and two exposure levels). A 1.95-GHz wide-band code division multiple access (W-CDMA) signal, which is a feature of the International Mobile Telecommunication 2000 (IMT-2000) cellular system was employed for exposure of the rat head starting from 5 weeks of age, 90 min a day, 5 days a week, for 104 weeks. Brain average specific absorption rates (SARs) were designed to be .67 and 2.0 W/kg for low and high exposures, respectively. The incidence and numbers of brain tumors in female rats exposed to 1.95-GHz W-CDMA signals showed tendencies to increase but without statistical significance. Overall, no significant increase in incidences or numbers, either in the males or females, was detected in the EMF-exposed groups. In addition, no clear changes in tumor types in the brain were evident. Thus, under the present experimental conditions, exposure of heads of rats to 1.95-GHz W-CDMA signals for IMT-2000 for a 2-year period was not demonstrated to accelerate or otherwise affect ENU-initiated brain tumorigenesis. PMID:17516507

  7. Vapor-liquid equilibria for the difluoromethane (HFC-32) + 1,1,1,2-tetrafluoroethane (HFC-134a) system

    SciTech Connect

    Chung, E.Y.; Kim, M.S.

    1997-11-01

    Isothermal vapor-liquid equilibrium data of the binary mixture of difluoromethane (HFC-32) + 1,1,1,2-tetrafluoroethane (HFC-134a) have been measured in the temperature range between 263 K and 323 K. The experiment was carried out with a circulation type apparatus with the measurement of temperature, pressure, and compositions of the liquid and vapor phases. The experimental data were correlated with the Peng-Robinson and Redlich-Kwong-Soave equations of state, and comparison with literature results has been made.

  8. Signaling through ERK1/2 controls myelin thickness during myelin repair in the adult central nervous system.

    PubMed

    Fyffe-Maricich, Sharyl L; Schott, Alexandra; Karl, Molly; Krasno, Janet; Miller, Robert H

    2013-11-20

    Oligodendrocytes, the myelin-forming cells of the CNS, exquisitely tailor the thickness of individual myelin sheaths to the diameter of their target axons to maximize the speed of action potential propagation, thus ensuring proper neuronal connectivity and function. Following demyelinating injuries to the adult CNS, newly formed oligodendrocytes frequently generate new myelin sheaths. Following episodes of demyelination such as those that occur in patients with multiple sclerosis, however, the matching of myelin thickness to axon diameter fails leaving remyelinated axons with thin myelin sheaths potentially compromising function and leaving axons vulnerable to damage. How oligodendrocytes determine the appropriate thickness of myelin for an axon of defined size during repair is unknown and identifying the signals that regulate myelin thickness has obvious therapeutic implications. Here, we show that sustained activation of extracellular-regulated kinases 1 and 2 (ERK1/2) in oligodendrocyte lineage cells results in accelerated myelin repair after injury, and is sufficient for the generation of thick myelin sheaths around remyelinated axons in the adult mouse spinal cord. Our findings suggest a model where ERK1/2 MAP kinase signaling acts as a myelin thickness rheostat that instructs oligodendrocytes to generate axon-appropriate quantities of myelin. PMID:24259565

  9. Spectrum allocations above 40 GHz

    NASA Technical Reports Server (NTRS)

    Katzenstein, W. E.; Moore, R. P.; Kimball, H. G.

    1981-01-01

    The 1979 World Administrative Radio Conference (WARC-79) revised the International Table of Frequency Allocations to reflect increased interest and activity in the region of the EM spectrum above 40 GHz. The total width of the spectrum allocated (235 GHz) in the region above 40 GHz indicates the extent of this new spectrum resource, made accessible by advances in the state-of-the-art of telecommunications equipment. There are some striking differences between the approach to allocation above and below 40 GHz. For example, there are not bands allocated exclusively. This reflects the characteristics of propagation and the small antenna beamwidths achievable at these frequencies. Attention is given to atmospheric window and absorption band limits, allocations to satellite services, allocations to scientific services, allocations to terrestrial services, the future refinement of the radio regulations above 40 GHz, and allocations of WARC-79 and frequency management.

  10. Neutron scattering study in the spin-1/2 ladder system: Sr{sub 14}Cu{sub 24}O{sub 41}

    SciTech Connect

    Matsuda, M.; Katsumata, K.; Shapiro, S.M.; Shirane, G.

    1996-10-01

    Inelastic neutron scattering measurements were performed on the S=1/2 quasi-one-dimensional system Sr{sub 14}Cu{sub 24}O{sub 41}, which has both simple chains and two-leg ladders of copper ions. We have observed that both the chain and the ladder exhibit a spin gap, which originates from a dimerized state.

  11. 1.8.2.1.2 Site system engineering implementation Fiscal Year 1998 multi-year work plan

    SciTech Connect

    Ferguson, J. E.

    1997-10-03

    Manage the Site Systems Engineering process to provide a traceable, integrated, requirements-driven, and technically defensible baseline., Through the Site Integration Group, Systems Engineering ensures integration of technical activities across all site projects. Systems Engineering`s primary interfaces are with the Project Direction Office and with the projects, as well as with the Planning organization.

  12. 14/12-GHz-band satellite communication services

    NASA Astrophysics Data System (ADS)

    Hayashi, Kunihiro; Nagaki, Kiyoaki; Mori, Yasuo

    1990-01-01

    Three new systems for integrated TV-relay services have been developed: Satellite Video Comunication Service (SVCS) and Satellite Digital Communication Service (SDCS), with Japan's 14/12-GHz-band commercial communication satellites. These systems have been in commercial use since May 1989. Usually SVCS and SDCS have been provided using Ka-band (30/20 GHz-band) of CS-2 and Cs-3. This paper provides an overview of the design, the performance, and the systems of the new 14/12-GHz-band satellite communication services.

  13. Cosmic Microwave Background Observations with a Compact Heterogeneous 150 GHz Interferometer in Chile

    NASA Astrophysics Data System (ADS)

    Fowler, J. W.; Doriese, W. B.; Marriage, T. A.; Tran, H. T.; Aboobaker, A. M.; Dumont, C.; Halpern, M.; Kermish, Z. D.; Loh, Y.-S.; Page, L. A.; Staggs, S. T.; Wesley, D. H.

    2005-01-01

    We report on the design, first observing season, and analysis of data from a new prototype millimeter-wave interferometer, MINT. MINT consists of four 145 GHz SIS mixers operating in double-sideband mode in a compact heterogeneous configuration. The signal band is subdivided by a monolithic channelizer, after which the correlations between antennas are performed digitally. The typical receiver sensitivity in a 2 GHz band is 1.4 mK s1/2. The primary beams are 0.45d and 0.30d FWHM, with fringe spacing as small as 0.1d. MINT observed the cosmic microwave background (CMB) from Cerro Toco, in the Chilean Altiplano. The site quality at 145 GHz is good, with median nighttime atmospheric temperature of 9 K at zenith (exclusive of the CMB). Repeated observations of Mars, Jupiter, and a telescope-mounted calibration source establish the phase and magnitude stability of the system. MINT is the first interferometer dedicated to CMB studies to operate above 50 GHz. The same type of system can be used to probe the Sunyaev-Zel'dovich effect in galaxy clusters near the SZ null at 217 GHz. We give the essential features of MINT and present an analysis of sideband-separated, digitally sampled data recorded by the array. Based on 215 hours of data taken in late 2001, we set an upper limit on the CMB anisotropy in a band of width Δl=700 around l=1540 of δT<105 μK (95% confidence). Increased sensitivity can be achieved with more integration time, greater bandwidth, and more elements.

  14. 177-207 GHz Radiometer Front End: Single Sideband Measurements

    NASA Technical Reports Server (NTRS)

    Galin, I.; Schnitzer, C. A.; Dengler, R. J.; Quintero, O.

    1999-01-01

    Twenty years of progress in 200 GHz receivers for spaceborne remote sensing has yielded a 180-220 GHz technology with maturing characteristics, as evident by increasing availability of relevant hardware, paralleled by further refinement in receiver performance requirements at this spectrum band. The 177-207 GHz superheterodyne receiver, for the Earth observing system (EOS) microwave limb sounder (MLS), effectively illustrates such technology developments. This MLS receiver simultaneously detects six different signals, located at sidebands below and above its 191.95 GHZ local-oscillator (LO). The paper describes the MLS 177-207 GHz receiver front-end (RFE), and provides measured data for its lower and upper sidebands. Sideband ratio data is provided as a function of IF frequency, at different LO power drive, and for variation in the ambient temperature.

  15. Structural and magnetic phase transition in samarium hydrogen system SmH{sub x} (x=1, 2, 3)

    SciTech Connect

    Priyanga, G. Sudha; Rajeswarapalanichamy, R.; Santhosh, M.; Iyakutti, K.

    2015-06-24

    We report ab-initio calculations for the structural and magnetic phase transition of SmH{sub x} (x= 1, 2, 3) using the Vienna ab-initio simulation package (VASP). The non-spin polarized (NSP) and spin polarized (SP) calculations are performed for these hydrides at normal and high pressure. It is found that these compounds are stable in ferromagnetic state at normal pressure. The calculated lattice parameters and bulk modulus of these hydrides are in good agreement with the available experimental results. A pressure-induced structural phase transition from cubic to hexagonal phase in SmH and SmH{sub 2} and hexagonal to cubic phase in SmH{sub 3} is predicted. A pressure-induced ferromagnetic to nonmagnetic phase transition is observed in SmH, SmH{sub 2} and SmH{sub 3} at the pressures of 104 GPa, 76 GPa and 81 GPa respectively. Ferromagnetism is quenched in mono, di and tri hydrides at high pressures.

  16. Cu_2(1,4-diazacycloheptane)_2Cl_4: a Quasi-1D S=1/2 Spin Liquid System

    NASA Astrophysics Data System (ADS)

    Hammar, P. R.; Broholm, C.; Reich, D. H.; Trouw, F.

    1996-03-01

    The material Cu_2(1,4-diazacycloheptane)_2Cl4 consists of well-separated double chains of Cu atoms, whose structure suggests the possibility of significant antiferromagnetic next-nearest-neighbor interactions(B. Chiari, et al., Inorg. Chem 29), 1172 (1990).. We report on measurements of magnetic susceptibility, \\chi(H,T), heat capacity, C_p(T), and neutron scattering that show that this material has a singlet ground state and a gap to spin-carrying excitations. \\chi(H=0,T) shows a broad peak at T_Peak = 8K indicative of 1D antiferromagnetic correlations. Below the peak, \\chi drops dramatically towards zero. For T << T_Peak, \\chi(H)≈ 0 below a critical field HC = 6.6T and rises sharply above HC to a plateau at 8T. Below T_Peak, C_p(T) ∝ T-3/2exp(-Δ/T) with an activation energy Δ = 10K. Inelastic neutron scattering on powders shows a gap of 0.8 meV and a magnetic bandwidth of 0.6 meV. Comparison of these data to predictions for S=1/2 spin ladders and next-near-neighbor chains will be discussed. Supported by NSF grants DMR93-02065 and DMR94-53362, DOE BES-Materials Science contract W-31-109-ENG-38 with IPNS-ANL, and by the David and Lucile Packard Foundation

  17. Integrability in Dynamical Systems: Florida Workshop in Nonlinear Astronomy, 3rd, University of Florida, Gainesville, Oct. 1, 2, 1987, Proceedings

    SciTech Connect

    Buchler, J.R.; Ipser, J.R.; Williams, C.A.

    1988-01-01

    Recent advances in theoretical celestial mechanics are examined in reviews and reports. Topics addressed include resonant integrable models of galaxies, new integrable systems, Painleve expansions for integrable and nonintegrable ordinary differential equations, and particle-simulation solutions of the Vlasov equation in general relativity. Consideration is given to repulsive and attractive double-bubble space-times, the integrability of magnetic-confinement systems, Hannay's angle and Berry's phase in the classical adiabatic motion of charged particles, the integrability of the nonlinear wave equations, normalization in the face of integrability, and simplifications toward the integrability of perturbed Keplerian systems.

  18. System Critical Design Audit (CDA). Books 1, 2 and 3; [Small Satellite Technology Initiative (SSTI Lewis Spacecraft Program)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Small Satellite Technology Initiative (SSTI) Lewis Spacecraft Program is evaluated. Spacecraft integration, test, launch, and spacecraft bus are discussed. Payloads and technology demonstrations are presented. Mission data management system and ground segment are also addressed.

  19. Design of the 0.5 - 1 GHz Planar Recycler Pickup and Kicker Antennas

    SciTech Connect

    Deibele, C.; /Fermilab

    1999-01-01

    The stochastic cooling system in the Recycler ring at Fermilab required the addition of a 0.5-1 GHz cooling system. This requirement dictated the design of a new antenna for this band of the system. The design problem is defined, method of design is illustrated, and the measurement data are reported. The Recycler is a storage ring comprised of mostly permanent magnets located in the tunnel of the Main Injector at Fermilab. The goal for the construction of the Recycler is to collect and store unused antiprotons from collisions in the Tevatron for use in future collisions in the Tevatron. It will both stochastically and electron cool these unused antiprotons before another collision experiment is possible in the Tevatron. By reusing the antiprotons the luminosity of the experiment can be increased faster. The Recycler will use three bands for its stochastic cooling system. It will reuse the existing designs from the Antiproton Source for the 1-2 GHz and 2-4 GHz systems, and it requires a new design for an additional lower frequency band for the 0.5-1 GHz system. Since the existing designs were fabricated using a microstrip topology it was desired that the new design use a similar topology so that the vacuum tank designs and supporting hardware be identical for all three bands. A primary difference between the design of the pickups/kickers of the Antiproton Source and the Recycler is a different aperture in the machine itself. The Recycler has a bigger aperture and consequently reusing the designs for the existing Antiproton Source pickups/kickers is not electrically optimal but is cost efficient. Measurements will be shown later in this paper for the design of the 0.5-1 GHz system showing the effect of the aperture on the antenna performance. A mockup of the Recycler tank was manufactured for designing and testing the 0.5-1 GHz pickups/kickers. The design procedure was an iterative process and required both a constant dialogue and also a strong relationship with a

  20. The research on property of servo-control and drive system for 1.2 m Alt-Az telescope. The function of servo system compensation network in control system (2)

    NASA Astrophysics Data System (ADS)

    Li, Zhu-Lian; Xiong, Yao-Heng

    2005-06-01

    According to the requirement of SLR (Satellite Laser Range) using 1.2 m Alt-Az telescope of Yunnan Observatory, and the analysis of function of cascade compensation network in control system and the observation results, the compensation network of servo system of 1.2 m Alt-Az telescope, and the performance of control system after its compensation are discussed in this article. When friction drive is fulfilled by two torque motors, and PD compensation network in servo control system is used, it is found that the capability of rapid tracking of the 1.2 m telescope is actually improved, and the telescope can achieve 10°/s2 of maximum azimuth angle acceleration, 5°/s of maximum azimuth angle velocity, and it can meet the demand of tracking satellites near the Earth.

  1. Child and Adolescent Service System Program Technical Assistance Research Meeting: Summary of Proceedings (Washington, DC, May 1-2, 1990).

    ERIC Educational Resources Information Center

    Stroul, Beth A.

    Proceedings are presented from a meeting designed to encourage and assist university-based researchers and public policy-makers in the formation of meaningful, long-term collaborations that would ultimately increase chances of competing successfully for research grants on the efficacy of services and systems of care for children and adolescents…

  2. Compact 0.3-to-1.125 GHz self-biased phase-locked loop for system-on-chip clock generation in 0.18 µm CMOS

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Liu, Liyuan; Feng, Peng; Liu, Jian; Wu, Nanjian

    2016-04-01

    In this paper, we propose a compact ring-oscillator-based self-biased phase-locked loop (SBPLL) for system-on-chip (SoC) clock generation. It adopts the proposed triple-well NMOS source degeneration voltage-to-current (V-I) converter instead of the operational amplifier (OPAMP) based V-I converter and a proposed simple start-up circuit with a negligible area to save power and area. The SBPLL is implemented in the 0.18 µm CMOS process, and it occupies 0.048 mm2 active core. The measurement results show the SBPLL can generate output frequency in a wide range from 300 MHz to 1.125 GHz with a constant loop bandwidth that is around 5 MHz and a relatively low jitter performance that is less than 4.9 mUI over the entire covered frequency range. From -20 to 70 °C the rms jitter variation and loop bandwidth variation at 1.125 GHz are 0.2 ps and 350 kHz, respectively. The rms jitter performance variation of all covered frequency points is less than 10% in the supply range from 1.5 to 1.7 V. Such SBPLL shows robustness over environmental variation. The maximum power consumption is 5.6 mW with 1.6 V supply at an output frequency of 1.125 GHz.

  3. Federal Emergency Management Information System (FEMIS). Bill of Materials (BOM), FEMIS: Phase I, Version 1.2

    SciTech Connect

    Coonelly, T.F.; Gerhardstein, L.H.; Hucks, J.A.

    1995-07-01

    This paper describes the Bill of Materials (BOM) for the Federal Emergency Management Information System (FEMIS) for release 1.1. FEMIS runs on two computer platforms: A UNIX platform, employed as a data server, and a personal computer (PC) using a Windows NT operating environment. FEMIS will support the use of commercial off-the-shelf software (COTS) software applications and tools. The hardware set includes a UNIX data server, a PC Communications server (at the source of MET data only), and a number of PC Client workstations, peripheral devices and network support equipment as described in this document. Servers and PCs require the operating system, utility software, communications and other internal cards also listed in the following sections. Several configuration are possible at a CSEPP Site. In this description, a Site is understood to be comprised of several installations, including the depot, surrounding Immediate Response Zone (IRZ) and Protective Action Zone (PAZ) counties, and the state EOC. In general, the main differences between possible configurations are the number of users at an installation, the location of the UNIX data server, and the WAN link between installations. Two typical installation configurations are With Data Server and Without Data Server. The number of PC workstations may vary at an installation.

  4. Molecular modeling of oscillating GHz electric field influence on the kinesin affinity to microtubule

    NASA Astrophysics Data System (ADS)

    R. Saeidi, H.; S. Setayandeh, S.; Lohrasebi, A.

    2015-08-01

    Kinesin is a microtubule-associated motor protein which can respond to the external electric field due to its polarity. Using a molecular dynamics simulation method, the effect of such a field on the affinity of kinesin to the αβ-tubulin is investigated in this study. To consider kinesin affinity, the system is exposed to an electric field of 0.03 V/nm with frequency values of 1, 2, …, 9, and 10 GHz. It is found that the applied electric field can change kinesin affinity to the microtubule. These changes could perturb the normal operation of kinesin, such as the processive motility of kinesin on the microtubule.

  5. Injection system design for the LBL (Lawrence Berkeley Laboratory) 1-2 GeV synchrotron radiation source

    SciTech Connect

    Selph, F.; Jackson, A.; Zisman, M.S.

    1987-03-01

    The injection system for the LBL 1 to 2 GeV Synchrotron Radiation Source is designed to provide an electron beam of 400 mA at 1.5 GeV to the storage ring in a filling time of less than 5 minutes. An alternate mode of operation requires that 7.6 mA be delivered to one, or a few rf bunches in the storage ring. To accomplish these tasks, a high intensity electron gun, a 50 MeV electron linac, and a 1.5 GeV booster synchrotron are used. The performance requirements of the injector complex are summarized. The electron gun and subharmonic buncher, linac design, and linac to booster and booster to storage ring transport are discussed as well as the booster synchrotron. (LEW)

  6. Magnetic specific heat studies of two Ising spin 1/2 chain systems M(N3)2(bpy)

    NASA Astrophysics Data System (ADS)

    Hamida, Youcef; Danilovic, Dusan; Yuen, Tan; Li, Kunhao; Li, Jing

    2012-04-01

    M(N3)2(bpy) [where M = Cu(II), Co(II), N3 = azide, and bpy = 4,4'-bipyridine] are two newly synthesized metal-organic framework (MOF) systems, in which the divalent M ions are connected though the azide ligands forming almost ideal magnetic 1 D chains. Specific heat measurements were performed on these compounds and the magnetic specific heats were deduced using appropriate methods for estimating the lattice specific heat. The magnetic specific heat data were analyzed and fit to the Ising model. The exchange interaction J/kB values of 13.1 K for Cu(N3)2(bpy) and 8.2 K for Co(N3)2(bpy) were obtained and compared to the J values from fitting the measured magnetic susceptibility data.

  7. ATS-6 attenuation diversity measurements at 20 and 30 GHz

    NASA Technical Reports Server (NTRS)

    Vogel, W. J.; Straiton, A. W.; Fannin, B. M.; Wagner, N. K.

    1975-01-01

    The results of data obtained at The University of Texas at Austin in conjunction with the ATS-6 millimeter wave experiment are presented. Attenuation measurements at 30 GHz and sky noise data at 20 GHz were obtained simultaneously at each of two sites separated by 11 km. Space diversity reduces outage time for a system in Austin, Texas with a 10 dB fade margin at 30 GHz from 15 hours to 16 minutes per year. The maximum cloud height shows a good correlation to the maximum attenuations measured.

  8. High efficiency IMPATT diodes for 60 GHz intersatellite link applications

    NASA Technical Reports Server (NTRS)

    Haugland, E. J.

    1984-01-01

    Intersatellite links are expected to play an increasingly important role in future satellite systems. Improved components are required to properly utilize the wide bandwidth allocated for intersatellite link applications around 60 GHz. IMPATT diodes offer the highest potential performance as solid state power sources for a 60 GHz transmitter. Presently available devices do not have the desired power and efficiency. High efficiency, high power IMPATT diodes for intersatellite link applications are being developed by NASA and other government agencies. The development of high efficiency 60 GHz IMPATT diodes by NASA is described.

  9. User's manual for the upper Delaware River riverine environmental flow decision support system (REFDSS), Version 1.1.2

    USGS Publications Warehouse

    Talbert, Colin; Maloney, Kelly O.; Holmquist-Johnson, Chris; Hanson, Leanne

    2014-01-01

    Between 2002 and 2006, the Fort Collins Science Center (FORT) at the U.S. Geological Survey (USGS) conducted field surveys, organized workshops, and performed analysis of habitat for trout and shad in the Upper Delaware River Basin. This work culminated in the development of decision support system software (the Delaware River DSS–DRDSS, Bovee and others, 2007) that works in conjunction with the Delaware River Basin Commission’s reservoir operations model, OASIS, to facilitate comparison of the habitat and water-delivery effects of alternative operating scenarios for the Basin. This original DRDSS application was developed in Microsoft Excel and is available to all interested parties through the FORT web site (http://www.fort.usgs.gov/Products/Software/DRDSS/). Initial user feedback on the original Excel-based DSS highlighted the need for a more user-friendly and powerful interface to effectively deliver the complex data and analyses encapsulated in the DSS. In order to meet this need, the USGS FORT and Northern Appalachian Research Branch (NARB) developed an entirely new graphical user interface (GUI) application. Support for this research was through the DOI WaterSmart program (http://www.doi.gov/watersmart/html/index.php) of which the USGS component is the National Water Census (http://water.usgs.gov/watercensus/WaterSMART.html). The content and methodology of the new GUI interface emulates those of the original DSS with a few exceptions listed below. Refer to Bovee and others (2007) for the original information. Significant alterations to the original DSS include: • We moved from Excel-based data storage and processing to a more powerful database back end powered by SQLite. The most notable effect of this is that the previous maximum temporal extent of 10 years has been replaced by a dynamic extent that can now cover the entire period of record for which we have data (1928–2000). • We incorporated interactive geographic information system (GIS

  10. Performance of Versions 1,2 and 3 of the Goddard Earth Observing System (GEOS) Chemistry-Climate Model (CCM)

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Stolarski, Richard S.; Nielsen, J. Eric; Duncan, Bryan N.

    2008-01-01

    Version 1 of the Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM) was used in the first CCMVa1 model evaluation and forms the basis for several studies of links between ozone and the circulation. That version of the CCM was based on the GEOS-4 GCM. Versions 2 and 3 of the GEOS CCM are based on the GEOS-5 GCM, which retains the "Lin-Rood" dynamical core but has a totally different set of physical parameterizatiOns to GEOS-4. In Version 2 of the GEOS CCM the Goddard stratospheric chemistry module is retained. Difference between Versions 1 and 2 thus reflect the physics changes of the underlying GCMs. Several comparisons between these two models are made, several of which reveal improvements in Version 2 (including a more realistic representation of the interannual variability of the Antarctic vortex). In Version 3 of the GEOS CCM, the stratospheric chemistry mechanism is replaced by the "GMI COMBO" code that includes tropospheric chemistry and different computational approaches. An advantage of this model version. is the reduction of high ozone biases that prevail at low chlorine loadings in Versions 1 and 2. This poster will compare and contrast various aspects of the three model versions that are relevant for understanding interactions between ozone and climate.

  11. SOFish ver. 1.2 - A Decision Support System for Fishery Managers in Managing Complex Fish Stocks

    NASA Astrophysics Data System (ADS)

    Supriatna, A. K.; Sholahuddin, A.; Ramadhan, A. P.; Husniah, H.

    2016-01-01

    Sustainability is an important issue in a fishery industry. A manager of the fishery industry is responsible in deciding the best harvest that is able to sustain the industry while it should also guarantee the profitability of the industry. The most used concept in determining the best harvest in many fisheries industries is the Maximum Sustainable Yield (MSY). It represents the maximum amount of biomass that can be taken out from the fish population without harming the sustainability of the fishery. In other words, it is used to keep the population size stay over a threshold value of population level whenever harvesting activities is going on until indefinite time. In this paper we discuss a Decision Support System (DSS) for fishery managers in estimating the best harvest in a fishery industry. The best harvest is known as the Maximum Sustainable Yield (MSY) of the fishery. The DSS produces the MSY based on the discretization of some mathematical models of population growth, including the most popular models, such as Verhulst, Gompertz and Richards models. We also adding a biological complexity into the models, i.e. the presence of various degree of intra-specific competition of the population, which enhances the realism of the model and the DSS.

  12. Terephthalate 1,2-dioxygenase system from Comamonas testosteroni T-2: purification and some properties of the oxygenase component.

    PubMed Central

    Schläfli, H R; Weiss, M A; Leisinger, T; Cook, A M

    1994-01-01

    Comamonas testosteroni T-2, grown in terephthalate (TER)-salts medium, synthesizes inducible enzymes that convert TER to (1R,2S)-dihydroxy-3,5-cyclohexadiene-1,4-dicarboxylic acid (DCD) and protocatechuate (PC). Anion-exchange chromatography of cell extracts yielded two sets of fractions, R and Z, that were necessary for oxygenation of TER to DCD; we termed this activity the TER dioxygenase system (TERDOS). An NAD(+)-dependent DCD dehydrogenase, which converted DCD to PC, overlapped all fractions R. No significant purification from fraction R, which contained an NADH-dependent reductase function(s) of TERDOS, was attained. Fraction Z, at the end of the gradient, contained essentially one protein, which was further purified by hydrophobic interaction chromatography. This component, Z, had the UV-visible spectrum and electron paramagnetic resonance characteristics of a Rieske [2Fe-2S] protein and was considered to be the oxygenase. M(r)s of about 126,000 for oxygenase Z under native conditions were observed. Oxygenase Z consisted of two subunits, alpha and beta, with M(r)s of 49,000 and 18,000, respectively, under denaturing conditions. We presume that this oxygenase has an alpha 2 beta 2 structure. The sequences of the N-terminal amino acids of each subunit were determined. The activity of the purified enzyme was enhanced about fivefold by addition of Fe2+. In the presence of O2, NADH, and fraction R, component Z catalyzed the stoichiometric transformation of TER to PC, with the intermediate formation of DCD. The reaction was confirmed as a dioxygenation when we observed incorporation of two oxygen atoms from 18O2 into PC. The substrate range of TERDOS appeared to be narrow; apart from TER, only 2,5-dicarboxypyridine and 1,4-dicarboxynaphthalene (of 11 compounds tested) were converted to a product. Images PMID:7961417

  13. The COMSAT 13 and 18 GHz Propagation Experiment

    NASA Technical Reports Server (NTRS)

    King, J. L.; Hyde, G.

    1975-01-01

    The ATS-6 COMSAT Propagation Experiment was designed to gather statistical data on attenuation caused by rain and snow at 13 and 18 GHz. These data will be used to determine system design parameters for future communications satellite systems operating at frequencies above 10 GHz. The experiment used 25, 18 GHz, and 15, 13 GHz unattended ground transmitters at 25 locations in the eastern U.S. to transmit to the ATS-6. The ATS-6 transponder converts these carriers to frequencies around 4150 MHz and transmits these signals to the COMSAT large horn antenna/data acquisition and receiving facility at Andover, Me. This facility calibrates and digitally records each carrier once per second. These data have been processed and analyzed for the period from July to Nov. 2, 1972. Plans are being made to conduct the experiment in Europe and India during the 35 deg E longitude site phase of ATS-6 operations.

  14. The 8-18 GHz radar spectrometer

    NASA Technical Reports Server (NTRS)

    Bush, T. F.; Ulaby, F. T.

    1973-01-01

    The design, construction, testing, and accuracy of an 8-18 GHz radar spectrometer, an FM-CW system which employs a dual antenna system, is described. The antennas, transmitter, and a portion of the receiver are mounted at the top of a 26 meter hydraulic boom which is in turn mounted on a truck for system mobility. HH and VV polarized measurements are possible at incidence angles ranging from 0 deg. to 80 deg. Calibration is accomplished by referencing the measurements against a Luneberg lens of known radar cross section.

  15. Feasibility study of 35 GHz microwave power transmission in space

    NASA Technical Reports Server (NTRS)

    Chang, K.; Mccleary, J. C.; Pollock, M. A.

    1989-01-01

    This paper is a study of the feasibility of a 35-GHz microwave power transmission system in space. It was found that a dc to dc transmission efficiency better than 50 percent can be achieved over a distance of 50 km by using a transmitting antenna of 20 m in diameter and a receiving antenna of 40 m in diameter. Technology requirements at 35 GHz have been assessed and several stages of development have been proposed.

  16. Design of a 140 GHz, 100 W Gyroklystron Amplifier

    NASA Astrophysics Data System (ADS)

    Joye, Colin; Shapiro, Michael; Sirigiri, Jagadishwar; Temkin, Richard

    2004-11-01

    We present the design and the simulation results for a 140 GHz, 100 watt CW gyroklystron amplifier for use in Dynamic Nuclear Polarization (DNP) experiments. The amplifier was designed for a 15 kV, 150 mA annular electron beam and simulations show a saturated gain of 36 dB at a pitch factor of 1.5 for the TE02 mode with an efficiency of 6% and output power of 130 watts. The -3dB bandwidth is 1 GHz (0.7%) and 1.2 GHz of bandwidth is available at the 50-watt level. This design is also capable of emitting pulses on the nanosecond scale. The circuit consists of an input cavity, three bunching cavities and an output cavity with a nonlinear uptaper. This project is supported by NIBIB grant #5R01EB1965.

  17. Evolution of polar order in (1 - x)Pb(In1/2Nb1/2)O3-xPbTiO3 (0 ≤ x ≤ 1) system as investigated by dielectric and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ramesh, G.; Subramanian, V.; Sivasubramanian, V.

    2013-02-01

    We have investigated the (1 - x)Pb(In1/2Nb1/2)O3 - xPbTiO3 (PIN-PT) solid solution by Raman scattering and temperature variation of dielectric measurement. The dielectric analysis indicates that the Burn's temperature (TB) raises upto x = 0.30 and then decreases due to the enhancement in the long range ferroelectric order. At x = 0.60, TB coincides with the temperature at which dielectric constant is maximum, Tm, (TB ˜ Tm). It suggests that the polar nanoregions (PNRs) are not present in 0.40PIN-0.60PT. The investigation confirms that PT addition in PIN transforms the PNRs into the macroscopic ferroelectric domains. The composition dependent Raman spectra are used to interpret the evolution of polar order. Qualitative Raman analysis reveals that the changes in the vibration bands are associated with the structural transition from R3m to P4mm at morphotrophic phase region. For the values of x > 0.41, the line-width of all the bands decreases as the concentration of PT increases. The observed two mode behavior in the highest frequency region (800 cm-1) hints the existence of chemical inhomogenetiy at nanometer scale such as the local segregation of Ti and In/Nb-rich regions.

  18. Phase equilibria of CFC alternative refrigerant mixtures: Binary systems of isobutane + 1,1,1,2-tetrafluoroethane, + 1,1-difluoroethane, and + difluoromethane

    SciTech Connect

    Lim, J.S.; Park, J.Y.; Lee, B.G.; Lee, Y.W.; Kim, J.D.

    1999-12-01

    Isothermal vapor-liquid equilibria were measured in the binary systems 1,1,1,2-tetrafluoroethane + isobutane at 303.2 and 323.2 K, 1,1-difluoroethane + isobutane at 303.2, 313.2, 323.2, and 333.2 K, and difluoromethane + isobutane at 301.8 and 321.8 K in a circulation-type equilibrium apparatus. The experimental data were well correlated with the Peng-Robinson equation of state using the Wong and Sandler mixing rules.

  19. Dynamics of the two-dimensional S=1/2 dimer system (C5H6N2F)2CuCl4

    SciTech Connect

    Hong, Tao; Gvasaliya, S. N.; Herringer, S.; Turnbull, M. M.; Landee, C.; Regnault, L.-P.; Boehm, Martin; Zheludev, A

    2011-01-01

    Inelastic neutron scattering was used to study a quantum S=1/2 antiferromagnetic Heisenberg system Bis(2-amino-5-fluoropyridinium) Tetrachlorocuprate(II). The magnetic excitation spectrum was shown to be dominated by long-lived excitations with an energy gap 1.07(3) meV. The measured dispersion relation is consistent with a simple two-dimensional square lattice of weakly-coupled spin dimers. Comparing the data to a random phase approximation treatment of this model gives the intra-dimer and inter-dimer exchange constants J=1.45(2) meV and J =0.31(3) meV, respectively.

  20. Imaging, Doppler, and spectroscopic radars from 95 to 700 GHz

    NASA Astrophysics Data System (ADS)

    Cooper, Ken B.

    2016-05-01

    Imaging, Doppler, and spectroscopic radars from 95 to 700 GHz, all using the frequency-modulated continuous-wave technique, are in various stages of development for both defense and science applications at the Jet Propulsion Laboratory. For standoff security screening, a 340 GHz imaging radar now achieves an 8.3 Hz frame, and it has been tested using power-efficient MMIC-based active multiplier sources into its front end. That system evolved from a 680 GHz security radar platform, which has also been modified to operate in a Doppler mode for probing the dynamics of blowing sand and sensing small-amplitude target vibrations. Meanwhile, 95 and 183 GHz radars based on similar RF architectures are currently being developed to probe cometary jets in space and, using a differential absorption technique, humidity inside upper-tropospheric clouds.

  1. One GHz digitizer for space based laser altimeter

    NASA Technical Reports Server (NTRS)

    Staples, Edward J.

    1991-01-01

    This is the final report for the research and development of the one GHz digitizer for space based laser altimeter. A feasibility model was designed, built, and tested. Only partial testing of essential functions of the digitizer was completed. Hybrid technology was incorporated which allows analog storage (memory) of the digitally sampled data. The actual sampling rate is 62.5 MHz, but executed in 16 parallel channels, to provide an effective sampling rate of one GHz. The average power consumption of the one GHz digitizer is not more than 1.5 Watts. A one GHz oscillator is incorporated for timing purposes. This signal is also made available externally for system timing. A software package was also developed for internal use (controls, commands, etc.) and for data communication with the host computer. The digitizer is equipped with an onboard microprocessor for this purpose.

  2. A 20-GHz IMPATT transmitter

    NASA Technical Reports Server (NTRS)

    Chan, J. L.; Sun, C.

    1983-01-01

    The engineering development of a solid state transmitter amplifier operating in the 20 GHz frequency band. The development effort involved a variety of disciplines including IMPATT device development, circulator design, simple and multiple diode circuits designs, and amplifier integration and test.

  3. An inductorless CMOS programmable-gain amplifier with a > 3 GHz bandwidth for 60 GHz wireless transceivers

    NASA Astrophysics Data System (ADS)

    Wei, Zhu; Baoyong, Chi; Lixue, Kuang; Wen, Jia; Zhihua, Wang

    2014-10-01

    An inductorless wideband programmable-gain amplifier (PGA) for 60 GHz wireless transceivers is presented. To attain wideband characteristics, a modified Cherry—Hooper amplifier with a negative capacitive neutralization technique is employed as the gain cell while a novel circuit technique for gain adjustment is adopted; this technique can be universally applicable in wideband PGA design and greatly simplifying the design of wideband PGA. By cascading two gain cells and an output buffer stage, the PGA achieves the highest gain of 30 dB with the bandwidth much wider than 3 GHz. The PGA has been integrated into one whole 60 GHz wireless transceiver and implemented in the TSMC 65 nm CMOS process. The measurements on the receiver front-end show that the receiver front-end achieves an 18 dB variable gain range with a > 3 GHz bandwidth, which proves the proposed PGA achieves an 18 dB variable gain range with a bandwidth much wider than 3 GHz. The PGA consumes 10.7 mW of power from a 1.2-V supply voltage with a core area of only 0.025 mm2.

  4. 1,2-Dichloropropane

    Integrated Risk Information System (IRIS)

    1,2 - Dichloropropane ; CASRN 78 - 87 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  5. 1,2-Dichloroethane

    Integrated Risk Information System (IRIS)

    1,2 - Dichloroethane ; CASRN 107 - 06 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  6. 1,2-Diphenylhydrazine

    Integrated Risk Information System (IRIS)

    1,2 - Diphenylhydrazine ; CASRN 122 - 66 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcin

  7. 1,2-Dichlorobenzene

    Integrated Risk Information System (IRIS)

    1,2 - Dichlorobenzene ; CASRN 95 - 50 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  8. 1,2-Dibromoethane

    Integrated Risk Information System (IRIS)

    1,2 - Dibromoethane ; CASRN 106 - 93 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogen

  9. Design and Field-of-View Calibration of 114-660-GHz Optics of the Earth Observing System Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    Cofield, Richard E.; Stek, Paul C.

    2006-01-01

    This paper describes the optics design and field-of view (FOV) calibration for five radiometers covering 114-660 GHz which share a common antenna in the Microwave Limb Sounder instrument on the National Aeronautics and Space Administration's Aura satellite. Details of near-field pattern measurements are presented. Estimated systematic scaling uncertainties (3/spl sigma/) on calibrated limb emissions, due to FOV calibration uncertainties, are below 0.4%. 3/spl sigma/ uncertainties in beamwidth and relative pointing of radiometer boresights are 0.006A(deg) and 0.003A(deg) , respectively. The uncertainty in modeled instrument response, due to the scan dependence of FOV patterns, is less than +/- 0.24 K equivalent blackbody temperature. Refinements to the calibration using in-flight data are presented.

  10. Atmospheric sounding near 118 GHz

    NASA Technical Reports Server (NTRS)

    Ali, A. D. S.; Rosenkranz, P. W.; Staelin, D. H.

    1980-01-01

    The thermal emission spectrum of the atmosphere near the 118 GHz oxygen resonance has been measured from the NASA Convair-990 aircraft as it flew over clear air and storms. The instrument viewed the ground 45 deg from nadir with a 7.5 deg beamwidth. Brightness temperatures were measured in six bands 200 MHz wide centered at frequencies 821-1891 MHz from the line at 118.7505 GHz. The double-sideband super-heterodyne receiver had 1 K sensitivity for 1 s integration. Comparison of observed clear air brightness temperatures (from 238 mb) with those computed for a coincident dropsonde yielded agreement within 1.4 K; the retrieved temperature profile agreed with the dropsonde with an average magnitude error of 1.4 K.

  11. Faddeev fixed-center approximation to the NK-barK system and the signature of a N*(1920)(1/2{sup +}) state

    SciTech Connect

    Xie Jujun; Martinez Torres, A.; Oset, E.

    2011-06-15

    We perform a calculation for the three-body NK-barK scattering amplitude by using the fixed-center approximation to the Faddeev equations, taking the interaction between N and K-bar, N and K, and K-bar and K from the chiral unitary approach. The resonant structures show up in the modulus squared of the three-body scattering amplitude and suggest that a NK-barK hadron state can be formed. Our results are in agreement with others obtained in previous theoretical works, which claim a new N* resonance around 1920 MeV with spin-parity J{sup P}=1/2{sup +}. The existence of these previous works allows us to test the accuracy of the fixed center approximation in the present problem and sets the grounds for possible application in similar problems, as an explorative tool to determine bound or quasibound three-hadron systems.

  12. An efficient one-pot two catalyst system in the construction of 2-substituted benzimidazoles: synthesis of benzimidazo[1,2-c]quinazolines.

    PubMed

    Cimarelli, Cristina; Di Nicola, Matteo; Diomedi, Simone; Giovannini, Riccardo; Hamprecht, Dieter; Properzi, Roberta; Sorana, Federico; Marcantoni, Enrico

    2015-12-28

    The benzimidazole core is a common moiety in a large number of natural products and pharmacologically active small molecules. The synthesis of novel benzimidazole derivatives remains a main focus in medicinal research. In continuation of the efforts towards Ce(III) catalysts for organic transformations, we observed for the first time the activity of the iodide ion and copper cation in activating CeCl3·7H2O in the selective formation of prototypical 2-substituted benzimidazoles. The one-pot CeCl3·7H2O-CuI catalytic system procedure includes the cyclo-dehydrogenation of aniline Schiff's bases, generated in situ from the condensation of 1,2-phenylenediamine and aldehydes, followed by the oxidation with iodine, which works as a hydrogen sponge. Mild reaction conditions, good to excellent yields, and clean reactions make the procedure a useful contribution to the synthesis of biologically active fused heterocycles containing benzimidazoquinazolines. PMID:26477673

  13. 338-GHz Semiconductor Amplifier Module

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Gaier, Todd C.; Soria, Mary M.; Fung, King Man; Rasisic, Vesna; Deal, William; Leong, Kevin; Mei, Xiao Bing; Yoshida, Wayne; Liu, Po-Hsin; Uyeda, Jansen; Lai, Richard

    2010-01-01

    Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers.

  14. Sixty GHz IMPATT diode development

    NASA Technical Reports Server (NTRS)

    Ma, Y. E.; Chen, J.; Benko, E.; Barger, M. J.; Nghiem, H.; Trinh, T. Q.; Kung, J.

    1985-01-01

    The objective of this program is to develop 60 GHz GaAs IMPATT Diodes suitable for communications applications. The performance goal of the 60 GHz IMPATT is 1W CW output power with a conversion efficiency of 15 percent and 10 year life time. During the course of the program, double drift (DD) GaAs IMPATT Diodes have been developed resulting in the state of the art performance at V band frequencies. A CW output power of 1.12 W was demonstrated at 51.9 GHz with 9.7 percent efficiency. The best conversion efficiency achieved was 15.3 percent. V band DD GaAs IMPATTs were developed using both small signal and large signal analyses. GaAs wafers of DD flat, DD hybrid, and DD Read profiles using molecular beam epitaxy (MBE) were developed with excellent doping profile control. Wafer evaluation was routinely made by the capacitance versus voltage (C-V) measurement. Ion mass spectrometry (SIMS) analysis was also used for more detailed profile evaluation.

  15. Measurement of homonuclear magnetic dipole-dipole interactions in multiple 1/2-spin systems using constant-time DQ-DRENAR NMR

    NASA Astrophysics Data System (ADS)

    Ren, Jinjun; Eckert, Hellmut

    2015-11-01

    A new pulse sequence entitled DQ-DRENAR (Double-Quantum based Dipolar Recoupling Effects Nuclear Alignment Reduction) was recently described for the quantitative measurement of magnetic dipole-dipole interactions in homonuclear spin-1/2 systems involving multiple nuclei. As described in the present manuscript, the efficiency and performance of this sequence can be significantly improved, if the measurement is done in the constant-time mode. We describe both the theoretical analysis of this method and its experimental validation of a number of crystalline model compounds, considering both symmetry-based and back-to-back (BABA) DQ-coherence excitation schemes. Based on the combination of theoretical analysis and experimental results we discuss the effect of experimental parameters such as the chemical shift anisotropy (CSA), the spinning rate, and the radio frequency field inhomogeneity upon its performance. Our results indicate that constant-time (CT-) DRENAR is a method of high efficiency and accuracy for compounds with multiple homonuclear spin systems with particular promise for the analysis of stronger-coupled and short T2 spin systems.

  16. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics.

    PubMed

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP. PMID:24593475

  17. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics

    SciTech Connect

    Yorita, T. Hatanaka, K.; Fukuda, M.; Ueda, H.; Yasuda, Y.; Morinobu, S.; Tamii, A.; Kamakura, K.

    2014-02-15

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  18. Initial tests and operation of a 110 GHz, 1 MW gyrotron with evacuated waveguide system on the DIII-D tokamak

    SciTech Connect

    Lohr, J.; Ponce, D.; Tooker, J.F.

    1996-08-01

    A gyrotron producing nominally 1 MW at 110 GHz has been installed at the DIII-D tokamak and operated in a program of initial tests with a windowless evacuated transmission line. The alignment and first test operation were performed in an air environment at atmospheric pressure. Under these conditions, the tube produced rf output in excess of 800 kW for pulse lengths greater than 10 msec and power near 500 kW for pulse lengths of about 100 msec into a free space dummy load. The gyrotron was operated into evacuated corrugated waveguide in the full power parameter regime for pulse lengths of up to 500 msec injecting greater than 0.5 MW into DIII-D for a preliminary series of experiments. Generated powers greater than 900 kW were achieved. A parasitic oscillation at various frequencies between 20 and 100 MHz, which was generated during the pulsing of the gyrotron electron beam, was suppressed somewhat by a capacitive filter attached to the gyrotron itself. Addition of a magnetic shield intended to alter the magnetic field geometry below the cathode eliminated internal tube sparks. Rework of the external power and interlock circuitry to improve the immunity to electromagnetic interference was also done in parallel so that the fast interlock circuitry could be used. The latest results of the test program, the design of the free space load and other test hardware, and the transmission line will be presented.

  19. The Feasibility of a Combined Training System Compatible with LMS (Learning Mastery System) for Harper & Row 1, 2, and Bank Street 1.

    ERIC Educational Resources Information Center

    Hylton, John A.

    Considerations pertinent to the development of a combined training system for users of the Learning Mastery Systems (LMSs) for the Harper & Row grade-one and grade-two and Bank Street grade-one reading programs are presented in this document. An LMS is a set of materials and procedures prepared by the Southwest Regional Laboratory (SWRL) as an…

  20. Effect of buspirone and its metabolite 1-(2-pyrimidinyl)-piperazine on hippocampal serotoninergic system, studied in freely moving rats.

    PubMed

    Grazia De Simoni, M; Imeri, L; De Luigi, A; Fodritto, F; Garattini, S

    1990-01-01

    The effects of the anxiolytic drug buspirone and its metabolite 1-(2-pyrimidinyl)-piperazine (1PP) were studied on the serotoninergic system in the hippocampus of freely moving rats. Pulse voltammetry was used in association with chronically implanted carbon fiber microelectrodes to record 5HIAA, the serotonin metabolite in the extracellular space, almost continuously. Buspirone, 2.5 mg/kg i.p. was ineffective, but the dose of 10 mg/kg lowered 5HIAA between about 45 and 150 min; the same decrease was obtained with 40 mg/kg. This effect can be explained by an agonistic action on 5HT1 A receptors. The metabolite 1PP, which displays alpha 2 adrenoceptor blocking properties, either had no effect or raised extracellular 5HIAA, depending on the dose (1.5 or 6 mg/kg). The rapid metabolization of buspirone to 1PP can thus explain the short time course of the drug effect. Pretreatment with 1PP could only partially prevent buspirone's effect on the serotoninergic system. PMID:1689445

  1. Crystal Field Excitations in a Frustrated Heavy Fermion System, Pr_1.2Bi_0.8Ru_2O_7

    NASA Astrophysics Data System (ADS)

    van Duijn, Joost; Broholm, Collin; Adroja, Devashibhai; Perring, Toby; Adams, Mark; Hur, N.; Cheong, S.-W.

    2004-03-01

    Pr_1-xBi_xRu_2O7 is a recently pyrochlore oxide, with the Pr and Bi ions randomly distributed on octahedral sites. For x≈ 1 it is one of the few highly frustrated magnetic materials that is also metallic and it displays strongly renormalize low T properties. For x=1.2 the low temperature coefficient to the linear term of the specific heat (γ _S= 0.7 J/mole K^2) is for example more than 3 orders of magnitude larger than for a simple independent electron system. This material also fails to develop long-range magnetic ordering down to 2 K. Magnetic neutron scattering experiments have been carried out using the HET and IRIS spectrometers at the ISIS facility. Five Pr crystal field transitions in were found in the energy range from 10-120 meV. Analysis of the data indicates that the ground state is a doublet with a first excited singlet at 10 meV. The ground state doublet has a quasi-elastic response that is likely the origin of heavy fermion behavior in this system. This research was funded by the U.S. Department of Energy, under Grant No. DE-FG02-02ER45983, and by the National Science Foundation, under Grant No. NSF-DMR-0103858.

  2. Protection against 1,2-di-methylhydrazine-induced systemic oxidative stress and altered brain neurotransmitter status by probiotic Escherichia coli CFR 16 secreting pyrroloquinoline quinone.

    PubMed

    Pandey, Sumeet; Singh, Ashish; Chaudhari, Nirja; Nampoothiri, Laxmipriya P; Kumar, G Naresh

    2015-05-01

    Exposure to environmental pollutant 1,2-dimethylhydrazine (DMH) is attributed to systemic oxidative stress and is known to cause neurotropic effect by altering brain neurotransmitter status. Probiotics are opted as natural therapeutic against oxidative stress and also have the ability to modulate gut-brain axis. Pyrroloquinoline quinone (PQQ) is water-soluble, heat-stable antioxidant molecule. Aim of the present study was to evaluate the antioxidant efficacy of PQQ-producing probiotic E. coli CFR 16 on DMH-induced systemic oxidative damage and altered neurotransmitter status in rat brain. Adult virgin Charles Forster rats (200-250 g) were given DMH dose (25 mg/kg body weight, s.c.) for 8 weeks. Blood lipid peroxidation levels exhibited a marked increase while antioxidant enzyme activities of superoxide dismutase, catalase, glucose-6-phosphate dehydrogenase and glutathione peroxidase were found to be reduced in DMH-treated rats. Likewise, brain serotonin and norepinephrine levels displayed a significant decrease, whereas epinephrine levels demonstrated a marked increase in brain of these rats. PQQ-producing E. coli CFR 16 supplementation reduced systemic oxidative stress and also restored brain neurotransmitter status. However, E. coli CFR 16 did not show any effect on these parameters. In contrast, E. coli CFR 16:: vgb-gfp and E. coli CFR 16:: vgb-gfp vector exhibited some degree of protection again oxidative stress but they were not able to modulate neurotransmitter levels. In conclusion, continuous and sustained release of PQQ by probiotic E. coli in rat intestine ameliorates systemic oxidative stress and restored brain neurotransmitter levels. PMID:25586077

  3. Microwave interferometer using 94-GHz solid-state sources

    SciTech Connect

    Coffield, F.E.; Thomas, S.R.; Lang, D.D.; Stever, R.D.

    1983-11-14

    A 94-GHz microwave interferometer has been designed for the Tandem Mirror Experiment Upgrade and the Mirror Fusion Test Facility to replace the 140-GHz system. The new system is smaller and has modular single-channel units designed for high reliability. It is magnetically shielded and can be mounted close to the machine, which allows the use of lower power solid-state sources. Test results of the 94-GHz prototype indicate that the phase resolution is better than 1/sup 0/, the Impatt FM noise is 5 MHz wide, and the Gunn FM noise is 6 kHz wide. This paper presents the antenna designs along with the test results and discusses the unique problems associated with diagnosing a high electron temperature plasma in the presence of electron cyclotron resonant heating.

  4. Phase locking and frequency locking of a 140 GHz klystron and a 280 GHz carcinotron

    SciTech Connect

    Sprehn, D.W.; Rettig, C.L.; Luhmann, N.C. Jr. )

    1992-10-01

    A phase and frequency-locked loop to synchronize two microwave tube oscillators for a high density plasma collective scattering diagnostic has been designed, assembled, and tested. A Varian (VRT2121A16) reflex klystron was down converted by mixing with the eighth harmonic of a 17.437 GHz phase-locked Gunn oscillator, and the resulting baseband was used to lock the klystron phase to a 200 MHz crystal. The down-converted 140 GHz klystron frequency spectrum shows a linewidth {lt}50 Hz and sideband power {lt}50 dB below the carrier (dBc). Frequency locking of a Thomson CSF TH4224S 280 GHz carcinotron was performed and the klystron was then down converted by the stabilized carcinotron and phase locked to the 200 MHz crystal. The klystron would track the frequency excursions of the carcinotron when the system was perturbed by direct modulation with frequencies of up to 10 MHz and remained locked as long as modulation sidebands were kept {lt}15 dBc. The locked states of both configurations show 3 to 4 orders of magnitude improvement in short and long term stability over the unlocked states.

  5. Transmission of Duobinary Signal in Optical 40 GHz Millimeter-Wave Radio-Over-Fiber Systems Utilizing Dual-Arm LiNbO3 Mach-Zehnder Modulator for Downstream

    NASA Astrophysics Data System (ADS)

    Dong-Nhat, Nguyen; Malekmohammadi, Amin

    2016-06-01

    In this paper, for the first time transmission of 2.5 Gb/s duobinary signal is investigated for the downlink direction in 40 GHz optical millimeter-wave generation or up-conversion, utilizing a dual-arm LiNb{O}_3 Mach-Zehnder modulator based on different modulation schemes, namely double- and single-sideband (DSB and SSB) and optical carrier suppression (OCS). The up-converted optical millimeter-wave employing OCS modulation scheme indicates the highest back-to-back received optical power and the smallest power penalty after long propagation in the single-mode fiber, in comparison to DSB and SSB. Directly modulated laser in association with OCS modulation scheme has been used to generate duobinary optical millimeter-wave signal in order to minimize the cost and complexity of the system.

  6. FINAL REPORT TESTS ON THE DURAMELTER 1200 HLW PILOT MELTER SYSTEM USING AZ-101 HLW SIMULANTS VSL-02R0100-2 REV 1 2/17/03

    SciTech Connect

    KRUGER AA; MATLACK KS; KOT WK; BARDAKCI T; GONG W; D'ANGELO NA; SCHATZ TR; PEGG IL

    2011-12-29

    This document provides the final report on data and results obtained from a series of nine tests performed on the one-third scale DuraMelter{trademark} 1200 (DM1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part B1 [1]. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plans. The nine tests reported here were preceded by an initial series of short-duration tests conducted to support the start-up and commissioning of this system. This report is a followup to the previously issued Preliminary Data Summary Reports. The DM1200 system was deployed for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. These tests include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The primary objective of the present series of tests was to determine the effects of a variety of parameters on the glass production rate in comparison to the RPP-WTP HL W design basis of 400 kg/m{sup 2}/d. Previous testing on the DMIOOO system [1] concluded that achievement of that rate with simulants of projected WTP melter feeds (AZ-101 and C-106/AY-102) was unlikely without the use of bubblers. As part of those tests, the same feed that was used during the cold-commissioning of the West Valley Demonstration Project (WVDP) HLW vitrification system was run on the DM1000 system. The DM1000 tests reproduced the rates that were obtained at the

  7. 28 GHz Gyrotron ECRH Upgrade for LDX

    NASA Astrophysics Data System (ADS)

    Michael, P. C.; Woskov, P. P.; Ellsworth, J. L.; Kesner, J.; Garnier, D. T.; Mauel, M. E.; Ellis, R. F.

    2009-11-01

    A 10 kW, CW, 28 GHz gyrotron is being implemented on LDX to increase the plasma density and to more fully explore the potential of high beta plasma stability in a dipole magnetic configuration. Higher density increases the heating of ions by thermal equilibration and allows for improved wave propagation in planned ICRF experiments. This represents over a 50% increase in the 17 kW ECRH from sources at 2.45, 6.4, and 10.5 GHz. The higher frequency will also make possible access to plasma densities of up to 10^13 cm-3. The 1 Tesla resonances are located above and below the floating coil near the dipole axial region. The gyrotron beam will be transmitted in TE01 mode in 32.5 mm diameter guide using one 90 bend and a short < 5 m straight waveguide run. A Vlasov launch antenna in LDX will direct the beam to the upper 1 Tesla resonance region. A layout of the planned system will be presented.

  8. A 492 GHz cooled Schottky receiver for radio-astronomy

    NASA Technical Reports Server (NTRS)

    Hernichel, J.; Schieder, R.; Stutzki, J.; Vowinkel, B.; Winnewisser, G.; Zimmermann, Peter

    1992-01-01

    We developed a 492 GHz cooled GaAs Schottky receiver driven by a solid state local oscillator with a DSB noise temperature of 550 K measured at the telescope. The receiver-bandwidth is approx. equal to 1.0 GHz. Quasi-optical mirrors focus the sky and local oscillator radiation into the mixer. Stability analysis via the Allan variance method shows that the total system including a 1 GHz bandwidth acousto-optical spectrometer built in Cologne allows integration times up to 100 sec per half switching cycle. We successfully used the receiver at the KOSMA 3 m telescope on Gornergrat (3150m) located in the central Swiss Alps near Zermatt during January-February 1992 for observations of the 492 GHz, (CI) (3)P1 to (3)P0 fine structure line in several galactic sources. These observations confirm that Gornergrat is an excellent winter submillimeter site in accordance with previous predictions based on the atmospheric opacity from KOSMA 345 GHz measurements.

  9. 47 CFR 25.136 - Licensing provisions for user transceivers in the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile Satellite Services. 25.136 Section 25.136 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS..., 1.5/1.6 GHz, and 2 GHz Mobile Satellite Services. In addition to the technical...

  10. FIA-automated system used to electrochemically measure nitrite and its interfering chemicals through a 1-2 DAB / Au electrode: gain of sensitivity at upper potentials

    NASA Astrophysics Data System (ADS)

    Almeida, F. L.; dos Santos Filho, S. G.; Fontes, M. B. A.

    2013-03-01

    The measurement of nitrite and its interfering-chemicals (paracetamol, ascorbic acid and uric acid) was performed employing a Flow-injection Analysis (FIA) system, which was automated using solenoid valves and air-pump. It is very important to quantify nitrite from river water, food and biologic fluids due to its antibacterial capacity in moderated concentrations, or its toxicity for human health even at low concentrations (> 20 μmol L-1 in blood fluids). Electrodes of the electrochemical planar sensor were defined by silk-screen technology. The measuring electrode was made from gold paste covered with 1-2 cis Diaminobenzene (DAB), which allowed good selectivity, linearity, repeatability, stability and optimized gain of sensitivity at 0.5 VAg/AgCl Nafion®117 (6.93 μA mol-1 L mm-2) compared to 0.3 VAg/AgCl Nafion® 117. The reference electrode was obtained from silver/palladium paste modified with chloride and covered with Nafion® 117. The auxiliary electrode was made from platinum paste. It was noteworthy that nitrite response adds to the response of the studied interfering-chemicals and it is predominant for concentrations lower than 175 μmol L-1.

  11. High sensitivity broadband 360GHz passive receiver for TeraSCREEN

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Oldfield, Matthew; Maestrojuán, Itziar; Platt, Duncan; Brewster, Nick; Viegas, Colin; Alderman, Byron; Ellison, Brian N.

    2016-05-01

    TeraSCREEN is an EU FP7 Security project aimed at developing a combined active, with frequency channel centered at 360 GHz, and passive, with frequency channels centered at 94, 220 and 360 GHz, imaging system for border controls in airport and commercial ferry ports. The system will include automatic threat detection and classification and has been designed with a strong focus on the ethical, legal and practical aspects of operating in these environments and with the potential threats in mind. Furthermore, both the passive and active systems are based on array receivers with the active system consisting of a 16 element MIMO FMCW radar centered at 360 GHz with a bandwidth of 30 GHz utilizing a custom made direct digital synthesizer. The 16 element passive receiver system at 360 GHz uses commercial Gunn diode oscillators at 90 GHz followed by custom made 90 to 180 GHz frequency doublers supplying the local oscillator for 360 GHz sub-harmonic mixers. This paper describes the development of the passive antenna module, local oscillator chain, frequency mixers and detectors used in the passive receiver array of this system. The complete passive receiver chain is characterized in this paper.

  12. Modeling the impact of tropical mesoscale convective systems on Sahelian mineral dust budget: a case study during AMMA SOPs 1-2

    NASA Astrophysics Data System (ADS)

    Bouet, C.; Cautenet, G.; Marticorena, B.; Bergametti, G.; Chatenet, B.; Rajot, J.-L.; Descroix, L.

    2009-04-01

    Tropical mesoscale convective systems (MCSs) are a prominent feature of the African meteorology. A continuous monitoring of the aeolian activity in an experimental site located in Niger showed that such events are responsible for the major part of the annual local wind erosion, i.e. for most of the Sahelian dust emission [Rajot, 2001]. However, the net effect of these MCSs on mineral dust budget has to be estimated: on the one hand, these systems produce extremely high surface wind velocities leading to intense dust uptake, but on the other hand, rainfalls associated with these systems can efficiently remove the emitted dust from the atmosphere. High resolution modeling of MCSs appears as the most relevant approach to assess the budget between dust emission and deposition in such local meteorological systems. As a first step, in order to properly estimate dust emissions, it is necessary to accurately describe the surface wind fields at the local scale. Indeed, dust emission is a threshold phenomenon that depends on the third power of surface wind velocity. This study focuses on a case study of dust emission associated with the passage of a MCS observed during one of the intensive observation period of the international African Monsoon Multidisciplinary Analysis (AMMA - SOPs 1-2) program. The simulations were made using the Regional Atmospheric Modeling System (RAMS) coupled online with the dust production model (DPM) developed by Marticorena and Bergametti [1995] and recently improved by Laurent et al. [2008] for Africa. Two horizontal resolutions were tested (5 km and 2.5 km) as well as two microphysical schemes (a 1-moment scheme [Walko et al., 1995] and a 2-moment scheme [Meyers et al., 1997]). The use of the two convective parameterizations now available in the version 6 of RAMS (Kuo [1995] modified by Molinari [1985] and Molinari and Corsetti [1985], and Kain and Fritsch [1992; 1993]) to simulate cloud convection was also tested. Sensitivity tests have been

  13. Locoregional Recurrence Risk for Patients With T1,2 Breast Cancer With 1-3 Positive Lymph Nodes Treated With Mastectomy and Systemic Treatment

    SciTech Connect

    McBride, Andrew; Allen, Pamela; Woodward, Wendy; Kim, Michelle; Kuerer, Henry M.; Drinka, Eva Katherine; Sahin, Aysegul; Strom, Eric A.; Buzdar, Aman; Valero, Vicente; Hortobagyi, Gabriel N.; Hunt, Kelly K.; Buchholz, Thomas A.

    2014-06-01

    Purpose: Postmastectomy radiation therapy (PMRT) has been shown to benefit breast cancer patients with 1 to 3 positive lymph nodes, but it is unclear how modern changes in management have affected the benefits of PMRT. Methods and Materials: We retrospectively analyzed the locoregional recurrence (LRR) rates in 1027 patients with T1,2 breast cancer with 1 to 3 positive lymph nodes treated with mastectomy and adjuvant chemotherapy with or without PMRT during an early era (1978-1997) and a later era (2000-2007). These eras were selected because they represented periods before and after the routine use of sentinel lymph node surgery, taxane chemotherapy, and aromatase inhibitors. Results: 19% of 505 patients treated in the early era and 25% of the 522 patients in the later era received PMRT. Patients who received PMRT had significantly higher-risk disease features. PMRT reduced the rate of LRR in the early era cohort, with 5-year rates of 9.5% without PMRT and 3.4% with PMRT (log-rank P=.028) and 15-year rates 14.5% versus 6.1%, respectively; (Cox regression analysis: adjusted hazard ratio [AHR] 0.37, P=.035). However, PMRT did not appear to benefit patients treated in the later cohort, with 5-year LRR rates of 2.8% without PMRT and 4.2% with PMRT (P=.48; Cox analysis: AHR 1.41, P=.48). The most significant factor predictive of LRR for the patients who did not receive PMRT was the era in which the patient was treated (AHR 0.35 for later era, P<.001). Conclusion: The risk of LRR for patients with T1,2 breast cancer with 1 to 3 positive lymph nodes treated with mastectomy and systemic treatment is highly dependent on the era of treatment. Modern treatment advances and the selected use of PMRT for those with high-risk features have allowed for identification of a cohort at very low risk for LRR without PMRT.

  14. A 32 GHz microstrip array antenna for microspacecraft application

    NASA Technical Reports Server (NTRS)

    Huang, J.

    1994-01-01

    JPL/NASA is currently developing microspacecraft systems for future deep space applications. One of the frequency bands being investigated for microspacecraft is the Ka-band (32 GHz), which can be used with smaller equipment and provides a larger bandwidth. This article describes the successful development of a circularly polarized microstrip array with 28 dBic of gain at 32 GHz. This antenna, which is thin, flat, and small, can be surface-mounted onto the microspacecraft and, hence, takes very little volume and mass of the spacecraft. The challenges in developing this antenna are minimizing the microstrip antenna's insertion loss and maintaining a reasonable frequency bandwidth.

  15. Solid-State Power Amplifier For 61.5 GHz

    NASA Technical Reports Server (NTRS)

    Powers, Michael K.; Mcclymonds, James; Vye, David; Arthur, Thomas

    1992-01-01

    Power amplifiers based on impact-avalanche-transit-time (IMPATT) diodes developed for operation in communication systems at frequencies near 60 GHz. Built in seven modular stages, power transferred through sections of waveguide and isolator/circulator assemblies. Intended as replacements for bulkier and heavier traveling-wave-tube amplifiers.

  16. Investigations Into Accumulator 4-8 GHz Pickup Loop / Combiner Board Performance

    SciTech Connect

    Vander Meuler, D.; /Fermilab

    2000-04-17

    A set of pickup measurements performed in August of 1999 (see Pbar note 618) indicated problems with the pickup sensitivity for frequencies above {approx}4.8 GHz. This note describes the effort made to determine if the problems with system performance were due to the design of the 4-8 GHz circuit board.

  17. Characteristics of ocular temperature elevations after exposure to quasi- and millimeter waves (18-40 GHz)

    NASA Astrophysics Data System (ADS)

    Kojima, Masami; Suzuki, Yukihisa; Tsai, Cheng-Yu; Sasaki, Kensuke; Wake, Kanako; Watanabe, Soichi; Taki, Masao; Kamimura, Yoshitsugu; Hirata, Akimasa; Sasaki, Kazuyuki; Sasaki, Hiroshi

    2015-04-01

    In order to investigate changes in ocular temperature in rabbit eyes exposed to different frequencies (18 to 40 GHz) of quasi-millimeter waves, and millimeter waves (MMW). Pigmented rabbits were anesthetized with both general and topical anesthesia, and thermometer probes (0.5 mm in diameter) were inserted into their cornea (stroma), lens (nucleus) and vitreous (center of vitreous). The eyes were exposed unilaterally to 200 mW/cm2 by horn antenna for 3 min at 18, 22 and 26.5 GHz using a K band exposure system or 26.5, 35 and 40 GHz using a Ka band exposure system. Changes in temperature of the cornea, lens and vitreous were measured with a fluoroptic thermometer. Since the ocular temperatures after exposure to 26.5 GHz generated by the K band and Ka band systems were similar, we assumed that experimental data from these 2 exposure systems were comparable. The highest ocular temperature was induced by 40 GHz MMW, followed by 35 GHz. The 26.5 and 22 GHz corneal temperatures were almost the same. The lowest temperature was recorded at 18 GHz. The elevation in ocular temperature in response to exposure to 200 mW/cm2 MMW is dependent on MMW frequency. MMW exposure induced heat is conveyed not only to the cornea but also the crystalline lens.

  18. New space research frequency band proposals in the 20- to 40.5-GHz range

    NASA Technical Reports Server (NTRS)

    Bishop, D. F.

    1991-01-01

    Future space research communications systems may require spectra above 20 GHz. Frequency bands above 20 GHz are identified that are suitable for space research. The selection of the proper bands depends on consideration of interference with other radio services, adequate bandwidths, link performance, and technical requirements for practical implementation.

  19. Cross-impact study of foreign satellite communications on NASA's 30/20 GHz program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A comprehensive traffic demand forecast and a scenario for the transition process from current satellite systems to more advanced systems of the 1990's are presented. Systems configurations with and without the use of 30/20 GHz are described and these two alternatives are compared. It is concluded that: (1) the use of 30/20 GHz will result in increased satellite capacity, which will be needed to satisfy demand; (2) the use of 30/20 GHz will decrease the transmission cost, especially for broadband communications; (3) in some areas, particularly Europe and Japan but also the U.S., 30/20 GHz is the only available frequency band for customer premise Earth stations because of the dense terrestrial microwave networks; and (4) the development of 30/20 GHz technology will improve U.S. markets for equipment and satellites in many world regions.

  20. Operation of the SUPARAMP at 33GHz

    NASA Technical Reports Server (NTRS)

    Chiao, R. Y.; Parrish, P. T.

    1975-01-01

    A 9mm degenerate parametric amplifier was constructed using a linear, series array of unbiased Josephson junctions as the active, nonlinear element. A balanced diode mixer was used as a synchronous detector, with a single source serving both as the pump and as the mixer local oscillator. A stable, net gain of 15 dB in an instantaneous bandwith (FWHM) of 3.4 GHz was achieved. A system noise temperature of 220 K + or - 5 K (DSB) was measured with a SUPARAMP contribution of only 20 K x or - 10 K. Output saturation was observed and complicates the interpretation of the noise temperature measurements and may render them upper limits. A comparison was made with the results of an earlier 3 cm suparamp. The data is in substantial agreement with theoretical predictions.

  1. A 150 GHz Receiver Module for Astronomical Observations

    NASA Astrophysics Data System (ADS)

    Voll, Patricia; Lau, J.; Sieth, M.; Church, S.; Samoska, L. A.; Kangaslahti, P. P.; Soria, M.; Gaier, T. C.; Van Winkle, D.; Tantawi, S.

    2011-01-01

    A compact, wide-band, heterodyne amplifier module has been designed to operate in the 150 GHz atmospheric window using High Electron Mobility Transistor (HEMT) amplifier technology. This frequency range is important for many astrophysical science applications, including spectral line studies, separating the cosmic microwave background (CMB) radiation from foregrounds, and detecting the hot gas around galaxy clusters using the Sunyaev-Zeldovich effect. HEMT-based receiver arrays with excellent noise and scalability are already being manufactured around 100 GHz, but recent advances have made it possible to extend this technology to even higher frequencies. The prototype 150 GHz module housing utilizes Monolithic Millimeter-Wave Integrated Circuit (MMIC) InP Low Noise Amplifiers (LNAs). These amplifiers, along with a second harmonic mixer, bias circuitry, and connectors, are contained in a single, split-block housing approximately one inch cubed in size. Preliminary cryogenic tests have measured a system noise temperature of 150 K over a bandwidth of 25 GHz with a minimum noise temperature of less than 100 K at 168 GHz. The minimum noise temperature is less than 100 K at 168 GHz. Module improvements for the second phase are expected to reduce the noise temperature to the minimum allowed by the device limit. Development of a 4-element array to demonstrate the scalability of these receivers is currently underway, and will serve as a prototype for much larger, 100-element arrays for astrophysical applications. In the future, a space mission incorporating an array of these modules could be used to detect the curl modes (B-modes) of the CMB polarization, which is important for the search for the signature of inflation.

  2. Effect of benzoic acid on the removal of 1,2-dichloroethane by a siderite-catalyzed hydrogen peroxide and persulfate system.

    PubMed

    Li, Shengpin; Li, Mengjiao; Luo, Ximing; Huang, Guoxin; Liu, Fei; Chen, Honghan

    2016-01-01

    Benzoic acid can affect the iron-oxide mineral dissolution and react with hydroxyl radical. This study investigated its effect on 1,2-dichloroethane removal process by siderite-catalyzed hydrogen peroxide and persulfate. The variation of benzoic acid concentrations can affect pH value and soluble iron concentrations; when benzoic acid varied from 0 to 0.5 mmol/L, pH increased while Fe(2+) and Fe(3+) concentrations decreased, resulting in 1,2-dichloroethane removal efficiency which decreased from 91.2 to 5.0%. However, when benzoic acid varied from 0.5 to 10 mmol/L, pH decreased while Fe(2+) and Fe(3+) concentrations increased, resulting in 1,2-dichloroethane removal efficiency which increased from 5.0 to 83.4%. PMID:26308917

  3. Regioselective, Solvent- and Metal-Free Chalcogenation of Imidazo[1,2-a]pyridines by Employing I2 /DMSO as the Catalytic Oxidation System.

    PubMed

    Rafique, Jamal; Saba, Sumbal; Rosário, Alisson R; Braga, Antonio L

    2016-08-01

    Highly efficient molecular-iodine-catalyzed chalcogenations (S and Se) of imidazo[1,2-a]pyridines were achieved by using diorganoyl dichalcogenides under solvent-free conditions. This approach afforded the desired products that had been chalcogenated regioselectively at the C3 position in up to 96 % yield by using DMSO as an oxidant, in the absence of a metal catalyst, and under an inert atmosphere. This mild, green approach allowed the preparation of different types of chalcogenated imidazo[1,2-a]pyridines with structural diversity. Furthermore, the current protocol was also extended to other N-heterocyclic cores. PMID:27388454

  4. Teleportation of a 3-dimensional GHZ State

    NASA Astrophysics Data System (ADS)

    Cao, Hai-Jing; Wang, Huai-Sheng; Li, Peng-Fei; Song, He-Shan

    2012-05-01

    The process of teleportation of a completely unknown 3-dimensional GHZ state is considered. Three maximally entangled 3-dimensional Bell states function as quantum channel in the scheme. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional GHZ state.

  5. Upgraded Waveguide Components for New 1.2 and 1.5 MW Gyrotrons on the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Gorelov, Y. A.; Doane, J. L.; Cengher, M.; Lohr, J.; Ponce, D.

    2012-10-01

    The present gyrotron system on the DIII-D tokamak comprises 110 GHz gyrotrons in the 1 MW class with designed pulse lengths of 10 s. The system is being upgraded with two types of depressed collector gyrotrons producing 1.2 MW at 110 GHz and 1.5 MW at 117.5 GHz, for which waveguide components having higher power ratings will be required. New power monitors and polarizers have been designed and fabricated, which are capable of operating for 10 s pulses at the higher power levels. This presentation reports an analysis of the component heat loading to obtain a thermal equilibrium. Using this equilibrium, a stress strain analysis was performed to calculate life expectancies. The calculations take into account the temperature dependence of the heat transfer coefficient in the component coolant channels. Although the high heat load components required upgrading, the waveguide lines themselves have adequate margins for the expected power and pulse length. A summary of the thermal capabilities of other components will also be presented.

  6. Gyrotron Performance on the 110 GHZ Installation at the DIII-D Tokamak

    SciTech Connect

    Gorelov, I.; Lohr, J.M.; Ponce, D.; Callis, R.W.; Ikezi, H.; Legg, R.A.; Tsimring, S.E.

    1999-06-01

    The 110 GHz gyrotron system on the DIII-D tokamak comprises three different gyrotrons in the 1 MW class. The individual gyrotron characteristics and the operational experience with the system are described.

  7. 12 GHz Radio-Holographic Surface Measurements of the RRI 10.4~m Telescope

    NASA Astrophysics Data System (ADS)

    Balasubramanyam, R.; Venkatesh, S.; Raju, S. B.

    2009-09-01

    A modern Q-band low noise amplifier (LNA) front-end is being fitted to the 10.4~m millimeter-wave telescope at the Raman Research Institute (RRI) to support observations in the 40-50~GHz frequency range. To assess the suitability of the surface for this purpose, we measured the deviations of the primary surface from an ideal paraboloid using radio holography. We used the 11.6996 GHz beacon signal from the GSAT3 satellite, a 1.2~m reference antenna, commercial Ku-band Low Noise Block Convereters (LNBC) as the receiver front-ends and a Stanford Research Systems (SRS) lock-in amplifier as the backend. The LNBCs had independent free-running first local oscillators (LO). Yet, we recovered the correlation by using a radiatively injected common tone that served as the second local oscillator. With this setup, we mapped the surface deviations on a 64 × 64 grid and measured an rms surface deviation of ˜ 350~μm with a measurement accuracy of ˜ 50~μm.

  8. High power testing of a 17 GHz photocathode RF gun

    SciTech Connect

    Chen, S.C.; Danly, B.G.; Gonichon, J.

    1995-12-31

    The physics and technological issues involved in high gradient particle acceleration at high microwave (RF) frequencies are under study at MIT. The 17 GHz photocathode RF gun has a 1 1/2 cell ({pi} mode) room temperature cooper cavity. High power tests have been conducted at 5-10 MW levels with 100 ns pulses. A maximum surface electric field of 250 MV/m was achieved. This corresponds to an average on-axis gradient of 150 MeV/m. The gradient was also verified by a preliminary electron beam energy measurement. Even high gradients are expected in our next cavity design.

  9. Spacecraft IF switch matrix for wideband service applications in 30/20 GHz communications satellite systems: Proof-of-concept model, executive summary

    NASA Technical Reports Server (NTRS)

    Ho, P. T.; Coban, E.; Pelose, J.

    1983-01-01

    The design and development of a unique coupler crossbar 20 x 20 microwave switch matrix are described. The test results of the proof of concept model that meets the requirements for a high speed satellite switched, time division multiple access (SS-TDMA) system are presented.

  10. Surveillance receiver spans VHF to 40 GHz

    NASA Astrophysics Data System (ADS)

    Manz, B.

    1986-06-01

    A new addition to a line of surveillance receivers is described: the SMR-1600 from Adams-Russell's Micro-Tel Division. The system can be configured to operate from 100 MHz to 40 GHz and can accommodate up to 64 separate tuners. Nearly all functions are maintained and orchestrated by the receiver's on-board microprocessor. Programming can be performed by either the internal processor or an external computer (such as the IBM PC) via an IEEE-488 bus. The SMR-1600 consists of up to seven basic instruments. The SMR1610 controller allows the operator to program each instrument in the system from the front panel. The SMR-1615 system interface unit can communicate with up to 18 instruments in the system via 18 RS-422 balanced digital blocks. The SMR-1620 series tuners are independent units with internal power supplies, microprocessors, and RF circuitry to provide two different IF outputs. The SMR-1635 IF demodulators have four bandwidths that are field-replaceable. The SMR-1638 analysis demodulator accepts eight IF inputs and simultaneously supplies outputs of 160 MHz, 21.4 MHz, log video, and scan video for each of the eight channels. The SMR-1640 scan display shows up to four channels at a time, with each trace independently controllable for the store/erase functions, sweep rate, and decay. The SMR-1650 log video matrix switch connects up to 16 inputs to any of the eight outputs.

  11. A 20-GHz low-noise HEMT amplifier for satellite communications

    NASA Astrophysics Data System (ADS)

    Tokumitsu, Y.; Niori, M.; Saito, T.

    1984-03-01

    A description is given of a 20-Ghz low-noise amplifier that uses a new device, a low-noise high electron mobiity transistor (HEMT), developed for the receiver front-end in earth stations for 30/20-GHz satellite communications systems. The minimum noise figure of the HEMT is 3.1 dB, and the associated gain is 7.5 dB at 20 GHz. It is believed that before too long the HEMT will surpass the GaAs FET as a low-noise device. In the test amplifier at an operating frequency range from 17.6 GHz to 19.2 Ghz, the noise figure is 4.2 dB and the gain is 28.6 dB. The minimum noise figure is 3.9 dB. It is expected that cooling the amplifier will give a significant improvement in the noise figure.

  12. Early life exposure to 2.45GHz WiFi-like signals: effects on development and maturation of the immune system.

    PubMed

    Sambucci, Manolo; Laudisi, Federica; Nasta, Francesca; Pinto, Rosanna; Lodato, Rossella; Lopresto, Vanni; Altavista, Pierluigi; Marino, Carmela; Pioli, Claudio

    2011-12-01

    The development of the immune system begins during embryogenesis, continues throughout fetal life, and completes its maturation during infancy. Exposure to immune-toxic compounds at levels producing limited/transient effects in adults, results in long-lasting or permanent immune deficits when it occurs during perinatal life. Potentially harmful radiofrequency (RF) exposure has been investigated mainly in adult animals or with cells from adult subjects, with most of the studies showing no effects. Is the developing immune system more susceptible to the effects of RF exposure? To address this question, newborn mice were exposed to WiFi signals at constant specific absorption rates (SAR) of 0.08 or 4 W/kg, 2h/day, 5 days/week, for 5 consecutive weeks, starting the day after birth. The experiments were performed with a blind procedure using sham-exposed groups as controls. No differences in body weight and development among the groups were found in mice of both sexes. For the immunological analyses, results on female and male newborn mice exposed during early post-natal life did not show any effects on all the investigated parameters with one exception: a reduced IFN-γ production in spleen cells from microwaves (MW)-exposed (SAR 4 W/kg) male (not in female) mice compared with sham-exposed mice. Altogether our findings do not support the hypothesis that early post-natal life exposure to WiFi signals induces detrimental effects on the developing immune system. PMID:21907730

  13. NASA 60 GHz intersatellite communication link definition study. Baseline document

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The overall system and component concepts for a 60 GHz intersatellite communications link system (ICLS) are described. The ICLS was designed to augment the capabilities of the current Tracking and Data Relay Satellite System (TDRSS), providing a data rate capacity large enough to accommodate the expected rates for user satellites (USAT's) in the post-1995 timeframe. The use of 60 GHz for the anticipated successor to TDRSS, the Tracking and Data Acquisition System (TDAS), was selected because of current technology development that will enable multigigibit data rates. Additionally, the attenuation of the earth's atmosphere at 60 GHz means that there is virtually no possibility of terrestrially generated interference (intentional or accidental) or terrestrially based intercept. The ICLS includes the following functional areas: (1) the ICLS payload package on the GEO TDAS satellite that communicates simultaneously with up to five LEO USAT's; (2) the payload package on the USAT that communicates with the TDAS satellite; and (3) the crosslink payload package on the TDAS satellite that communicates with another TDAS satellite. Two methods of data relay on-board the TDAS spacecraft were addressed. One is a complete baseband system (demod and remod) with a bi-directional 2 Gbps data stream; the other is a channelized system wherein some of the channels are baseband and others are merely frequency translated before re-transmission. Descriptions of the TDAS antenna, transmitter, receiver, and mechanical designs are presented.

  14. 60 GHz low noise wideband receiver

    NASA Technical Reports Server (NTRS)

    Knust-Graichen, R. A.; Bui, L.

    1985-01-01

    The printed circuit and GaAs beam lead technology-based, low noise integrated receiver presented was developed for low cost space communications and operates in the 59-64 GHz range, using a phase-locked Gunn oscillator at 51.5 GHz. An IF output of 7.5-12.5 GHz is obtained. With the exception of the IF amplifier, and of the E-plane technology-based RF preselect filter, all circuits of the device employ suspended stripline construction.

  15. Dielectric relaxation in complex systems: quality sensing and dielectric properties of honeydew melons from 10 MHz to 1.8 GHz

    NASA Astrophysics Data System (ADS)

    Nigmatullin, R. R.; Arbuzov, A. A.; Nelson, S. O.; Trabelsi, S.

    2006-10-01

    Based on new data treatment methods, it is possible to identify the fitting function for the complex permittivity ɛ(jω) measured for a complex system representing plant tissues of honeydew melons in the frequency range (107 to 1.8×109 Hz) at 25°C. The identified fitting function contains 9 fitting parameters and well describes the plant tissue permittivity. These parameters vary for different tissues; their correlation behavior with respect to soluble solids content (SSC), tissue density (TD) and moisture content (MC) are found by a new approach based on the statistics of the fractional moments (SFM). These correlation dependencies expressed in the form of correlation functions can be used for quality sensing of different complex systems, in particular, for ripe fruits and vegetables, where direct relationships between molecular and fitting parameters are not easy to find. These correlation functions can be used for practical purposes to construct a desired calibration curve with respect to quality factors, as for example, moisture content or degree of maturity, expressed in terms of SSC value. The discovered common ``universality'' in dielectric behavior of such complex materials as plant tissues opens a possibility to use dielectric spectroscopy as a nondestructive method of control in analysis of electrical behavior (measured in the form of complex permittivity or impedance) for other complex materials.

  16. The Low Band Observatory (LOBO): Expanding the VLA Low Frequency Commensal System for Continuous, Broad-band, sub-GHz Observations

    NASA Astrophysics Data System (ADS)

    Kassim, Namir E.; Clarke, Tracy E.; Helmboldt, Joseph F.; Peters, Wendy M.; Brisken, Walter; Hyman, Scott D.; Polisensky, Emil; Hicks, Brian

    2015-01-01

    The Naval Research Laboratory (NRL) and the National Radio Astronomy Observatory (NRAO) are currently commissioning the VLA Low Frequency Ionosphere and Transient Experiment (VLITE) on a subset of JVLA antennas at modest bandwidth. Its bounded scientific goals are to leverage thousands of JVLA on-sky hours per year for ionospheric and transient studies, and to demonstrate the practicality of a prime-focus commensal system on the JVLA. Here we explore the natural expansion of VLITE to a full-antenna, full-bandwidth Low Band Observatory (LOBO) that would follow naturally from a successful VLITE experience. The new Low Band JVLA receivers, coupled with the existing primary focus feeds, can access two frequency bands: 4 band (54 - 86 MHz) and P band (236-492 MHz). The 4 band feeds are newly designed and now undergoing testing. If they prove successful then they can be permanently mounted at the primary focus, unlike their narrow band predecessors. The combination of Low Band receivers and fixed, primary-focus feeds could provide continuous, broad-band data over two complimentary low-frequency bands. The system would also leverage the relatively large fields-of-view of ~10 degrees at 4 band, and ~2.5 degrees at P band, coupling an excellent survey capability with a natural advantage for serendipitous discoveries. We discuss the compelling science case that flows from LOBO's robust imaging and time domain capabilities coupled with thousands of hours of wide-field, JVLA observing time each year. We also touch on the possibility to incorporate Long Wavelength Array (LWA) stations as additional 'dishes' through the LOBO backend, to improve calibration and sensitivity in LOBO's 4 band.

  17. Beyond G-band : a 235 GHz InP MMIC amplifier

    NASA Technical Reports Server (NTRS)

    Dawson, Douglas; Samoska, Lorene; Fung, A. K.; Lee, Karen; Lai, Richard; Grundbacher, Ronald; Liu, Po-Hsin; Raja, Rohit

    2005-01-01

    We present results on an InP monolithic millimeter- wave integrated circuit (MMIC) amplifier having 10-dB gain at 235 GHz. We designed this circuit and fabricated the chip in Northrop Grumman Space Technology's (NGST) 0.07- m InP high electron mobility transistor (HEMT) process. Using a WR3 (220-325 GHz) waveguide vector network analyzer system interfaced to waveguide wafer probes, we measured this chip on-wafer for -parameters. To our knowledge, this is the first time a WR3 waveguide on-wafer measurement system has been used to measure gain in a MMIC amplifier above 230 GHz.

  18. AIAA/NASA International Symposium on Space Information Systems, 2nd, Pasadena, CA, Sept. 17-19, 1990, Proceedings. Vols. 1 & 2

    NASA Technical Reports Server (NTRS)

    Tavenner, Leslie A. (Editor)

    1991-01-01

    These proceedings overview major space information system projects and lessons learned from current missions. Other topics include the science information system requirements for the 1990s, an information systems design approach for major programs, the technology needs and projections, the standards for space data information systems, the artificial intelligence technology and applications, international interoperability, and spacecraft data systems and architectures advanced communications. Other topics include the software engineering technology and applications, the multimission multidiscipline information system architectures, the distributed planning and scheduling systems and operations, and the computer and information systems architectures. Paper presented include prospects for scientific data analysis systems for solar-terrestrial physics in the 1990s, the Columbus data management system, data storage technologies for the future, the German aerospace research establishment, and launching artificial intelligence in NASA ground systems.

  19. Superconducting Complementary Output Switching Logic Operating at 10 - 18 GHz

    NASA Astrophysics Data System (ADS)

    Jeffery, Mark; van Duzer, T.; Perold, Willem

    1998-03-01

    We have developed a new type of superconducting voltage-state logic called Complementary Output Switching Logic (COSL)(M. Jeffery, W. Perold, and T. Van Duzer, Appl. Phys. Lett., 69) (18), 2746 (1996). The basic COSL gates have been demonstrated at 10 GHz and complex 2-bit encoder circuits have operated at 5 - 8 GHz. The COSL gates have extremely low power dissipation, of order 10 μW/gate, and we have measured bit error rates less than 10-12 at 2 GHz. For these results we used the HYPRES 1 kA/cm^2 critical current density Nb Josephson fabrication process. In the present work we describe our recent test results using the new HYPRES 2.5 kA/cm^2 process. The increased critical current density process significantly improves the switching speed of the COSL devices. We will describe the Monte Carlo method used to optimize the COSL gates for 20 - 30 GHz operation, and the optimal circuit layouts including moats, or ground plane holes, to shield the circuits from trapped magnetic flux. Experimental test results will be presented for the basic COSL devices operating at 10 - 18 GHz. These are the fastest superconducting voltage-state logic devices ever reported, and may have many applications in low power ultra-high-speed digital systems of the future.

  20. The Implications of ACTS Technology on the Requirements of Rain Attenuation Modeling for Communication System Specification and Analysis at 30/20 GHz and Beyond

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1996-01-01

    The advent of the use of the Ka-Band for space communications, coupled with the introduction of digital modulation techniques as well as multiple-beam methodology for satellites, has deemed it necessary to reassess the plethora of rain attenuation prediction models in use. The Advanced Communication Technology Satellite (ACTS) Project, undertaken by the National Aeronautics and Space Administration in 1983, offered such challenges to rain attenuation prediction modeling. Up to 1983, no such single modeling formalism existed that could fill such requirements. Not even the work done by the NASA Propagation Experimenters (NAPEX) Group had envisioned such requirements, so no dynamic Ka-Band data existed from which one could draw conclusions. In this paper, the basic rudiments of what has become to be known as the 'ACTS Rain Attenuation Prediction Model' will be presented. The concept of rain fade mitigation control availability will be introduced. A new evaluation is then presented for the performance of satellite communication systems, in particular, those to be operating within the Ka-Band and above, that will necessarily employ some type of dynamic rain fade mitigation procedure.

  1. 183-GHz Radiometer Handbook - November 2006

    SciTech Connect

    MP Cadeddu

    2006-11-30

    The G-Band Vapor Radiometer (GVR) provides time-series measurements of brightness temperatures from four double sideband channels centered at ± 1, ± 3, ± 7, and ± 14 GHz around the 183.31-GHz water vapor line. Atmospheric emission in this spectral region is primarily due to water vapor, with some influence from liquid water. The 183.31 ± 14-GHz channel is particularly sensitive to the presence of liquid water. The sensitivity to water vapor of the 183.31-GHz line is approximately 30 times higher than at the frequencies of the two-channel microwave radiometer (MWR) for a precipitable water vapor (PWV) amount of less than 2.5 mm. Measurements from this nstrument are therefore especially useful during low-humidity conditions (PWV < 5 mm).

  2. Future mobile satellite communication concepts at 20/30 GHz

    NASA Technical Reports Server (NTRS)

    Barton, S. K.; Norbury, J. R.

    1990-01-01

    The outline of a design of a system using ultra small earth stations (picoterminals) for data traffic at 20/30 GHz is discussed. The picoterminals would be battery powered, have an RF transmitter power of 0.5 W, use a 10 cm square patch antenna, and have a receiver G/T of about -8 dB/K. Spread spectrum modulation would be required (due to interference consideration) to allow a telex type data link (less than 200 bit/s data rate) from the picoterminal to the hub station of the network and about 40 kbit/s on the outbound patch. An Olympus type transponder at 20/30 GHz could maintain several thousand simultaneous picoterminal circuits. The possibility of demonstrating a picoterminal network with voice traffic using Olympus is discussed together with fully mobile systems based on this concept.

  3. Submillimeter Spectroscopy with a 500-1000 GHz SIS Receiver

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1997-01-01

    Sub-millimeter Spectroscopy with a 500-1000 GHz SIS Receiver, which extended over the period October 1, 1991 through January 31, 1997. The purpose of the grant was to fund the development and construction of a sensitive heterodyne receiver system for the submillimeter band (500-1000 GHz), using our newly-developed sensitive superconducting (SIS) detectors, and to carry out astronomical observations with this system aboard the NASA Kuiper Air- borne Observatory (a Lockheed C-141 aircraft carrying a 91 cm telescope). A secondary purpose of the grant was to stimulate the continued development of sensitive submillimeter detectors, in order to prepare for the next-generation airborne observatory, SOFIA, as well as future space missions (such as the ESA/NASA FIRST mission).

  4. MMIC DHBT Common-Base Amplifier for 172 GHz

    NASA Technical Reports Server (NTRS)

    Paidi, Vamsi; Griffith, Zack; Wei, Yun; Dahlstrom, Mttias; Urteaga, Miguel; Rodwell, Mark; Samoska, Lorene; Fung, King Man; Schlecht, Erich

    2006-01-01

    Figure 1 shows a single-stage monolithic microwave integrated circuit (MMIC) power amplifier in which the gain element is a double-heterojunction bipolar transistor (DHBT) connected in common-base configuration. This amplifier, which has been demonstrated to function well at a frequency of 172 GHz, is part of a continuing effort to develop compact, efficient amplifiers for scientific instrumentation, wide-band communication systems, and radar systems that will operate at frequencies up to and beyond 180 GHz. The transistor is fabricated from a layered structure formed by molecular beam epitaxy in the InP/InGaAs material system. A highly doped InGaAs base layer and a collector layer are fabricated from the layered structure in a triple mesa process. The transistor includes two separate emitter fingers, each having dimensions of 0.8 by 12 m. The common-base configuration was chosen for its high maximum stable gain in the frequency band of interest. The input-matching network is designed for high bandwidth. The output of the transistor is matched to a load line for maximum saturated output power under large-signal conditions, rather than being matched for maximum gain under small-signal conditions. In a test at a frequency of 172 GHz, the amplifier was found to generate an output power of 7.5 mW, with approximately 5 dB of large-signal gain (see Figure 2). Moreover, the amplifier exhibited a peak small-signal gain of 7 dB at a frequency of 176 GHz. This performance of this MMIC single-stage amplifier containing only a single transistor represents a significant advance in the state of the art, in that it rivals the 170-GHz performance of a prior MMIC three-stage, four-transistor amplifier. [The prior amplifier was reported in "MMIC HEMT Power Amplifier for 140 to 170 GHz" (NPO-30127), NASA Tech Briefs, Vol. 27, No. 11 (November 2003), page 49.] This amplifier is the first heterojunction- bipolar-transistor (HBT) amplifier built for medium power operation in this

  5. Recent operating experience with Varian 70 GHz and 140 GHz gyrotrons

    SciTech Connect

    Felch, K.; Bier, R.; Fox, L.; Huey, H.; Ives, L.; Jory, H.; Lopez, N.; Shively, J.; Spang, S.

    1985-01-01

    The design features and initial test results of Varian 70 GHz and 140 GHz CW gyrotrons are presented. The first experimental 140 GHz tube has achieved an output power of 102 kW at 24% efficiency under pulsed conditions in the desired TE031 cavity mode. Further tests aimed at achieving the design goal of 100 kW CW are currently underway. The 70 GHz tube has achieved an output power of 200 kW under pulsed conditions and possesses a wide dynamic range for output power variations. 6 refs., 8 figs.

  6. Microwave ablation at 10.0 GHz achieves comparable ablation zones to 1.9 GHz in ex vivo bovine liver.

    PubMed

    Luyen, Hung; Gao, Fuqiang; Hagness, Susan C; Behdad, Nader

    2014-06-01

    We demonstrate the feasibility of using high-frequency microwaves for tissue ablation by comparing the performance of a 10 GHz microwave ablation system with that of a 1.9 GHz system. Two sets of floating sleeve dipole antennas operating at these frequencies were designed and fabricated for use in ex vivo experiments with bovine livers. Combined electromagnetic and transient thermal simulations were conducted to analyze the performance of these antennas. Subsequently, a total of 16 ablation experiments (eight at 1.9 GHz and eight at 10.0 GHz) were conducted at a power level of 42 W for either 5 or 10 min. In all cases, the 1.9 and 10 GHz experiments resulted in comparable ablation zone dimensions. Temperature monitoring probes revealed faster heating rates in the immediate vicinity of the 10.0 GHz antenna compared to the 1.9 GHz antenna, along with a slightly delayed onset of heating farther from the 10 GHz antenna, suggesting that heat conduction plays a greater role at higher microwave frequencies in achieving a comparably sized ablation zone. The results obtained from these experiments agree very well with the combined electromagnetic/thermal simulation results. These simulations and experiments show that using lower frequency microwaves does not offer any significant advantages, in terms of the achievable ablation zones, over using higher frequency microwaves. Indeed, it is demonstrated that high-frequency microwave antennas may be used to create reasonably large ablation zones. Higher frequencies offer the advantage of smaller antenna size, which is expected to lead to less invasive interstitial devices and may possibly lead to the development of more compact multielement arrays with heating properties not available from single-element antennas. PMID:24845280

  7. Design of a 60 GHz beam waveguide antenna positioner

    NASA Technical Reports Server (NTRS)

    Emerick, Kenneth S.

    1989-01-01

    A development model antenna positioner mechanism with an integral 60 GHz radio frequency beam waveguide is discussed. The system features a 2-ft diameter carbon-fiber reinforced epoxy antenna reflector and support structure, and a 2-degree-of-freedom elevation over azimuth mechanism providing hemispherical field of view. Emphasis is placed on the constraints imposed on the mechanism by the radio frequency subsystems and how they impacted the mechanical configuration.

  8. 50 MW, 35 GHz Gyroklystron Design for Advanced Accelerators

    NASA Astrophysics Data System (ADS)

    Arjona, Melany; Lawson, Wes

    1999-11-01

    We present the design results for a 50 MW, 35 GHz, 4-cavity gyroklystron system. We present both the design of the double-anode magnetron injection gun and the microwave circuit. The gun produces a 500 kV, 300 A beam with a velocity ratio of 1.5 and an axial spread of about 5The interaction efficiency is near 4050 dB. Details of the simulations, including sensitivity studies, will be given in the talk.

  9. Initial Testing of a 140 GHz 1 MW Gyrotron

    NASA Astrophysics Data System (ADS)

    Cauffman, Stephen; Felch, Kevin; Blank, Monica; Borchard, Philipp; Cahalan, Pat; Chu, Sam; Jory, Howard

    2001-10-01

    CPI has completed the fabrication of a 140 GHz 1 MW CW gyrotron to be used on the W7-X stellarator at IPP Greifswald. Testing of the initial build of this gyrotron had just begun when this abstract was prepared, and was expected to finish in September, at which time a planned rebuild of the device was scheduled to begin. This poster will summarize the gyrotron design, present results of initial testing, and outline any design changes planned as a consequence of these results. This gyrotron's design employs a number of advanced features, including a diode electron gun for simplified operation, a single-stage depressed collector to enhance overall efficiency, a CVD diamond output window, an internal mode converter that converts the excited TE28,7 cavity mode to a Gaussian output beam, and a high-voltage layout that locates all external high voltage below the superconducting magnet system without requiring an oil tank for insulation. Similar features are being used for an 84 GHz 500 kW system being built for the KSTAR tokamak program and for a 110 GHz 1.5 MW system being designed in collaboration with MIT, UMd, UW, GA, and Calabazas Creek Research with funding provided by DOE.

  10. A shadowgraph study of the National Launch System's 1 1/2 stage vehicle configuration and Heavy Lift Launch Vehicle configuration. [Using the Marshall Space Flight Center's 14-Inch Trisonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Pokora, Darlene C.; Springer, Anthony M.

    1994-01-01

    A shadowgraph study of the National Launch System's (NLS's) 1 1/2 stage and heavy lift launch vehicle (HLLV) configurations is presented. Shadowgraphs are shown for the range of Mach numbers from Mach 0.6 to 5.0 at various angles-of-attack and roll angles. Since the 1 1/2 stage configuration is generally symmetric, no shadowgraphs of any roll angle are shown for this configuration. The major flow field phenomena over the NLS 1 1/2 stage and HLLV configurations are shown in the shadowgraphs. These shadowgraphs are used in the aerothermodynamic analysis of the external flow conditions the launch vehicle would encounter during the ascent stage of flight. The shadowgraphs presented in this study were obtained from configurations tested in the Marshall Space Flight Center's 14-Inch Trisonic Wind Tunnel during 1992.

  11. 47 CFR 15.251 - Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz. 15.251 Section 15.251 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission...

  12. 47 CFR 15.251 - Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz. 15.251 Section 15.251 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission...

  13. 47 CFR 15.251 - Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz. 15.251 Section 15.251 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission...

  14. 47 CFR 15.251 - Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz. 15.251 Section 15.251 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission...

  15. 47 CFR 15.251 - Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz. 15.251 Section 15.251 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission...

  16. First Results of the Superconducting ECR Ion Source Venus with 28 GHz

    NASA Astrophysics Data System (ADS)

    Leitner, D.; Lyneis, C. M.; Abbott, S. R.; Dwinell, R. D.; Collins, D.; Leitner, M.

    2005-03-01

    VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end. The magnetic confinement configuration consists of three superconducting axial coils and six superconducting radial coils in a sextupole configuration. The nominal design fields of the axial magnets are 4T at injection and 3T at extraction; the nominal radial design field strength at the plasma chamber wall is 2T, making VENUS the world most powerful ECR plasma confinement structure. From the beginning, VENUS has been designed for optimum operation at 28 GHz with high power (10 kW). In 2003 the VENUS ECR ion source was commissioned at 18 GHz, while preparations for 28 GHz operation were being conducted. During this commissioning phase with 18 GHz, tests with various gases and metals have been performed with up to 2000 W RF power. At the initial commissioning tests at 18 GHz, 1100 eμA of O6+, 160 eμA of Xe20+, 160 eμA of Bi25+ and 100 eμA of Bi30+ and 11 eμA of Bi41+ were produced. In May 2004 the 28 GHz microwave power has been coupled into the VENUS ECR ion source. At initial operation more than 320 eμA of Xe20+ (twice the amount extracted at 18 GHz), 240 eμA of Bi24+ and Bi25+, and 245 eμA of Bi29+ were extracted. The paper briefly describes the design of the VENUS source, the 28 GHz microwave system and its beam analyzing system. First results at 28 GHz including emittance measurements are presented.

  17. Snow backscatter in the 1-8 GHz region

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.

    1976-01-01

    The 1-8 GHz microwave active spectrometer system was used to measure the backscatter response of snow covered ground. The scattering coefficient was measured for all linear polarization combinations at angles of incidence between nadir and 70 deg. Ground truth data consisted of soil moisture, soil temperature profile, snow depth, snow temperature profile, and snow water equivalent. The radar sensitivity to snow water equivalent increased in magnitude with increasing frequency and was almost angle independent for angles of incidence higher than 30 deg, particularly at the higher frequencies. In the 50 deg to 70 deg angular range and in the 6 to 8 GHz frequency range, the sensitivity was typically between -0.4 dB/.1 g/sq cm and -0.5 dB/,1 g/sq cm, and the associated linear correlation coefficient had a magnitude of about 0.8.

  18. Building an LO source at 1036 GHz for a receiver

    NASA Technical Reports Server (NTRS)

    Erickson, Neal R.

    1995-01-01

    The goal of the UMass work on this grant was to build an LO source at 1036 GHz for a receiver which was to be built at JPL. The 1 THz source will consist of a high power Gunn oscillator at 86 GHz followed by a cascaded pair of planar diode doublers and finally a whisker contacted tripler. All multipliers will use single mode waveguide mounts. This use of single mode waveguide even for the final mount is a departure from the original plan, and reflects the progress that has been made in fabricating small structures. The advantages to the use of waveguide over a quasi-optical approach are that the complete system is much more compact, and much easier to use.

  19. Architecture for a 1-GHz Digital RADAR

    NASA Technical Reports Server (NTRS)

    Mallik, Udayan

    2011-01-01

    An architecture for a Direct RF-digitization Type Digital Mode RADAR was developed at GSFC in 2008. Two variations of a basic architecture were developed for use on RADAR imaging missions using aircraft and spacecraft. Both systems can operate with a pulse repetition rate up to 10 MHz with 8 received RF samples per pulse repetition interval, or at up to 19 kHz with 4K received RF samples per pulse repetition interval. The first design describes a computer architecture for a Continuous Mode RADAR transceiver with a real-time signal processing and display architecture. The architecture can operate at a high pulse repetition rate without interruption for an infinite amount of time. The second design describes a smaller and less costly burst mode RADAR that can transceive high pulse repetition rate RF signals without interruption for up to 37 seconds. The burst-mode RADAR was designed to operate on an off-line signal processing paradigm. The temporal distribution of RF samples acquired and reported to the RADAR processor remains uniform and free of distortion in both proposed architectures. The majority of the RADAR's electronics is implemented in digital CMOS (complementary metal oxide semiconductor), and analog circuits are restricted to signal amplification operations and analog to digital conversion. An implementation of the proposed systems will create a 1-GHz, Direct RF-digitization Type, L-Band Digital RADAR--the highest band achievable for Nyquist Rate, Direct RF-digitization Systems that do not implement an electronic IF downsample stage (after the receiver signal amplification stage), using commercially available off-the-shelf integrated circuits.

  20. Lightning and 85-GHz MCSs in the Global Tropics

    NASA Technical Reports Server (NTRS)

    Toracinta, E. Richard; Zipser, E. J.

    1999-01-01

    Numerous observations of tropical convection show that tropical continental mesoscale convective systems (MCSs) are much more prolific lightning producers than their oceanic counterparts. Satellite-based climatologies using 85-GHz passive microwave ice-scattering signatures from the Special Sensor Microwave/Imager (SSM/I) indicate that MCSs of various size and intensity are found throughout the global tropics. In contrast, global lightning distributions show a strong land bias with an order of magnitude difference between land and ocean lightning. This is somewhat puzzling, since 85-GHz ice-scattering and the charge separation processes that lead to lightning are both thought to depend upon the existence of large graupel particles. The fact that low 85-GHz brightness temperatures are observed in tropical oceanic MCSs containing virtually no lightning leads to the postulate that tropical oceanic and tropical continental MCSs have fundamentally different hydrometeor profiles through the mixed phase region of the cloud (0 C <= T <= 20 C). Until recently, validation of this postulate has not been practicable on a global scale. Recent deployment of the Tropical Rainfall Measuring Mission (TRMM) satellite presents a unique opportunity for MCS studies. The multi-sensor instrument ensemble aboard TRMM, including a multi-channel microwave radiometer, the Lightning Imaging Sensor (LIS), and the first space-borne radar, facilitates high-resolution case studies of MCS structure throughout the global tropics. An important precursor, however, is to better understand the distribution of MCSs and lightning in the tropics. With that objective in mind, this research undertakes a systematic comparison of 85-GHz-defined MCSs and lightning over the global tropics for a full year, as an initial step toward quantifying differences between land and ocean convective systems.

  1. Space nuclear power systems 1989; Proceedings of the 6th Symposium, Albuquerque, NM, Jan. 8-12, 1989. Vols. 1 & 2

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S. (Editor); Hoover, Mark D. (Editor)

    1992-01-01

    The present conference discusses such space nuclear power (SNP) issues as current design trends for SDI applications, ultrahigh heat-flux systems with curved surface subcooled nucleate boiling, design and manufacturing alternatives for low cost production of SNPs, a lightweight radioisotope heater for the Galileo mission, compatible materials for uranium fluoride-based gas core SNPs, Johnson noise thermometry for SNPs, and uranium nitride/rhenium compatibility studies for the SP-100 SNP. Also discussed are system issues in antimatter energy conversion, the thermal design of a heat source for a Brayton cycle radioisotope power system, structural and thermal analyses of an isotope heat source, a novel plant protection strategy for transient reactors, and beryllium toxicity.

  2. 47 CFR 25.136 - Licensing provisions for user transceivers in the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .../2.4 GHz Mobile-Satellite Service or 2 GHz Mobile-Satellite Service may not be operated on civil... rules and regulations in this Part and the applicable engineering standards. Prior to engaging in...

  3. 47 CFR 25.136 - Licensing provisions for user transceivers in the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .../2.4 GHz Mobile-Satellite Service or 2 GHz Mobile-Satellite Service may not be operated on civil... rules and regulations in this Part and the applicable engineering standards. Prior to engaging in...

  4. Next generation ECR ion sources: First results of the superconducting 28 GHz ECRIS VENUS

    NASA Astrophysics Data System (ADS)

    Leitner, D.; Lyneis, C. M.; Abbott, S. R.; Collins, D.; Dwinell, R. D.; Galloway, M. L.; Leitner, M.; Todd, D. S.

    2005-07-01

    VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (rare isotope accelerator) front end. The goal of the VENUS ECR ion source project as the RIA R&D injector is the production of 200 eμA of U30+, a high current medium charge state beam. On the other hand, as an injector ion source for the 88-Inch Cyclotron the design objective is the production of 5 eμA of U48+, a low current, very high charge state beam. To achieve those ambitious goals, the VENUS ECR ion source has been designed for optimum operation at 28 GHz. The nominal design fields of the axial magnets are 4 T at injection and 3 T at extraction; the nominal radial design field strength at the plasma chamber wall is 2 T, making VENUS currently the world’s most powerful ECR plasma confinement structure. Recently, the six year project has made significant progress. In June 2002, the first plasma was ignited at 18 GHz. During 2003, the VENUS ECR ion source was commissioned at 18 GHz, while preparations for 28 GHz operation were being conducted. In May 2004 28 GHz microwave power has been coupled into the VENUS ECR ion source for the first time. Preliminary performance-tests with oxygen, xenon and bismuth at 18 GHz and 28 GHz have shown promising results. Intensities close to or exceeding the RIA requirements have been produced for those few test beams. The paper will briefly describe the design of the VENUS source and its beam analyzing system. Results at 18 GHz and 28 GHz including first emittance measurements will be described.

  5. Generation of 14 GHz radiation using a two frequency iodine laser

    NASA Astrophysics Data System (ADS)

    Nicholson, J. W.; Rudolph, W.; Hager, G.

    1998-06-01

    A mode-locked and gain-switched photolytic iodine laser Zeeman tuned to operate simultaneously on the two strongest hyperfine transitions is shown to emit 1.315 μm radiation modulated at 13.9 GHz. The interaction of this laser radiation with suitable targets leads to the generation of microwave pulses that consist of only a few cycles at 13.9 GHz, making the system attractive for ultra-wide-band, short pulse radar applications.

  6. Optimal GHZ Paradox for Three Qubits.

    PubMed

    Ren, Changliang; Su, Hong-Yi; Xu, Zhen-Peng; Wu, Chunfeng; Chen, Jing-Ling

    2015-01-01

    Quatum nonlocality as a valuable resource is of vital importance in quantum information processing. The characterization of the resource has been extensively investigated mainly for pure states, while relatively less is know for mixed states. Here we prove the existence of the optimal GHZ paradox by using a novel and simple method to extract an optimal state that can saturate the tradeoff relation between quantum nonlocality and the state purity. In this paradox, the logical inequality which is formulated by the GHZ-typed event probabilities can be violated maximally by the optimal state for any fixed amount of purity (or mixedness). Moreover, the optimal state can be described as a standard GHZ state suffering flipped color noise. The maximal amount of noise that the optimal state can resist is 50%. We suggest our result to be a step toward deeper understanding of the role played by the AVN proof of quantum nonlocality as a useful physical resource. PMID:26272658

  7. Optimal GHZ Paradox for Three Qubits

    PubMed Central

    Ren, Changliang; Su, Hong-Yi; Xu, Zhen-Peng; Wu, Chunfeng; Chen, Jing-Ling

    2015-01-01

    Quatum nonlocality as a valuable resource is of vital importance in quantum information processing. The characterization of the resource has been extensively investigated mainly for pure states, while relatively less is know for mixed states. Here we prove the existence of the optimal GHZ paradox by using a novel and simple method to extract an optimal state that can saturate the tradeoff relation between quantum nonlocality and the state purity. In this paradox, the logical inequality which is formulated by the GHZ-typed event probabilities can be violated maximally by the optimal state for any fixed amount of purity (or mixedness). Moreover, the optimal state can be described as a standard GHZ state suffering flipped color noise. The maximal amount of noise that the optimal state can resist is 50%. We suggest our result to be a step toward deeper understanding of the role played by the AVN proof of quantum nonlocality as a useful physical resource. PMID:26272658

  8. Optimal GHZ Paradox for Three Qubits

    NASA Astrophysics Data System (ADS)

    Ren, Changliang; Su, Hong-Yi; Xu, Zhen-Peng; Wu, Chunfeng; Chen, Jing-Ling

    2015-08-01

    Quatum nonlocality as a valuable resource is of vital importance in quantum information processing. The characterization of the resource has been extensively investigated mainly for pure states, while relatively less is know for mixed states. Here we prove the existence of the optimal GHZ paradox by using a novel and simple method to extract an optimal state that can saturate the tradeoff relation between quantum nonlocality and the state purity. In this paradox, the logical inequality which is formulated by the GHZ-typed event probabilities can be violated maximally by the optimal state for any fixed amount of purity (or mixedness). Moreover, the optimal state can be described as a standard GHZ state suffering flipped color noise. The maximal amount of noise that the optimal state can resist is 50%. We suggest our result to be a step toward deeper understanding of the role played by the AVN proof of quantum nonlocality as a useful physical resource.

  9. Two compact preamps cover 38-GHz bandwidth

    NASA Astrophysics Data System (ADS)

    Osbrink, N. K.; Fake, S. R.; Rosenberg, J. C.

    1985-09-01

    The design and performance characteristics of two compact preamplifiers that provide complete coverage of the 2-18 and 18-40 GHz frequency bands are examined. The 2-18-GHz prototype amplifier consists of four stages of thin-film hybrid microwave integrated circuit (MIC) amplification modules each of which incorporates a single GaAs distributed microwave integrated circuit (MMIC). The amplifier weights about 2 ounces and measures 1.75 x 1.15 x 0.67 inches. The 18-40-GHz amplifier consists of five thin-film MIC balanced gain stages and a MIC voltage regulator module with a throughline. The amplifier displays worst-case noise figures of 11.6 dB at the low frequency end of the band and less than 8 dB over much of the band.

  10. A Focused Salivary Gland Infection with attenuated MCMV: An Animal Model with Prevention of Pathology Associated with Systemic MCMV Infection1, 2

    PubMed Central

    Pilgrim, Mark J.; Kasman, Laura; Grewal, Jasvir; Bruorton, Mary E.; Werner, Phil; London, Lucille; London, Steven D.

    2010-01-01

    While the salivary gland has been recognized as an important effector site of the common mucosal immune system, a useful model for studying anti-viral salivary gland immune responses in vivo and for exploring the role of the salivary gland within the common mucosal system has been lacking. Murine cytomegalovirus (MCMV) is a beta-herpesvirus that displays a strong tropism for the salivary gland and produces significant morbidity in susceptible mice when introduced by intraperitoneal (i.p.) inoculation. This study tested the hypothesis that MCMV morbidity and pathology could be reduced by injecting the virus directly the submandibular salivary gland (intraglandular (i.g.)), using either in vivo derived MCMV or the less virulent, tissue culture-derived MCMV (tcMCMV). Peak salivary gland viral titers were completely unaffected by infection route (i.p vs. i.g.) after inoculation with either MCMV or tcMCMV. However, i.g. tcMCMV inoculation reduced viremia in all systemic tissues tested compared to i.p. inoculation. Further, systemic organ pathology observed in the liver and spleen after i.p. inoculation with either MCMV or tcMCMV was completely eliminated by i.g. inoculation with tcMCMV. Cellular infiltrates in the salivary glands, after i.p. or i.g. inoculation were composed of both B and T cells, indicating the potential for a local immune response to occur in the salivary gland. These results demonstrate that a focused MCMV infection of the salivary gland without systemic organ pathology is possible using i.g. delivery of tcMCMV. PMID:17320076

  11. Assignment of the 290-nm electronic band system of indazole [1,2-benzodiazole] as π ∗ - π by rotational band contour analysis

    NASA Astrophysics Data System (ADS)

    Cané, E.; Trombetti, A.; Velino, B.; Caminati, W.

    1992-10-01

    The 0 00 band of the S1- S0 electronic absorption system of indazole at 290 nm has been analyzed, and the results of the computer simulation of its rotational contour have shown that this band is and {A}/{B} hybrid with an intensity ratio {A}/{B} = 1.22 . The S1- S0 electronic system is assigned as Ã1A'(ππ ∗)- X˜1A' . The same result has already been reached for benzimidazole (E. Cané et al., J. Mol. Spectrosc.150, 222-228 (1991)), and other ring-condensed aza-aromatic compounds although the relative amount of the type B and A components is different in each band. The transition moment is in the molecular plane nearly equidistant from the a- and b-inertial axes ( θ = ±42°).

  12. Implementation of the Community Earth System Model (CESM) version 1.2.1 as a new base model into version 2.50 of the MESSy framework

    NASA Astrophysics Data System (ADS)

    Baumgaertner, A. J. G.; Jöckel, P.; Kerkweg, A.; Sander, R.; Tost, H.

    2016-01-01

    The Community Earth System Model (CESM1), maintained by the United States National Centre for Atmospheric Research (NCAR) is connected with the Modular Earth Submodel System (MESSy). For the MESSy user community, this offers many new possibilities. The option to use the Community Atmosphere Model (CAM) atmospheric dynamical cores, especially the state-of-the-art spectral element (SE) core, as an alternative to the ECHAM5 spectral transform dynamical core will provide scientific and computational advances for atmospheric chemistry and climate modelling with MESSy. The well-established finite volume core from CESM1(CAM) is also made available. This offers the possibility to compare three different atmospheric dynamical cores within MESSy. Additionally, the CESM1 land, river, sea ice, glaciers and ocean component models can be used in CESM1/MESSy simulations, allowing the use of MESSy as a comprehensive Earth system model (ESM). For CESM1/MESSy set-ups, the MESSy process and diagnostic submodels for atmospheric physics and chemistry are used together with one of the CESM1(CAM) dynamical cores; the generic (infrastructure) submodels support the atmospheric model component. The other CESM1 component models, as well as the coupling between them, use the original CESM1 infrastructure code and libraries; moreover, in future developments these can also be replaced by the MESSy framework. Here, we describe the structure and capabilities of CESM1/MESSy, document the code changes in CESM1 and MESSy, and introduce several simulations as example applications of the system. The Supplements provide further comparisons with the ECHAM5/MESSy atmospheric chemistry (EMAC) model and document the technical aspects of the connection in detail.

  13. Implementation of the Community Earth System Model (CESM1, version 1.2.1) as a new basemodel into version 2.50 of the MESSy framework

    NASA Astrophysics Data System (ADS)

    Baumgaertner, A. J. G.; Jöckel, P.; Kerkweg, A.; Sander, R.; Tost, H.

    2015-08-01

    The Community Earth System Model (CESM1), maintained by the United States National Centre for Atmospheric Research (NCAR) is connected with the Modular Earth Submodel System (MESSy). For the MESSy user community, this offers many new possibilities. The option to use the CESM1(CAM) atmospheric dynamical cores, especially the spectral element (SE) core, as an alternative to the ECHAM5 spectral transform dynamical core will provide scientific and computational advances for atmospheric chemistry and climate modelling with MESSy. The SE dynamical core does not require polar filters since the grid is quasi-uniform. By advecting the surface pressure rather then the logarithm of surface pressure the SE core locally conserves energy and mass. Furthermore, it has the possibility to scale to up to 105 compute cores, which is useful for current and future computing architectures. The well-established finite volume core from CESM1(CAM) is also made available. This offers the possibility to compare three different atmospheric dynamical cores within MESSy. Additionally, the CESM1 land, river, sea ice, glaciers and ocean component models can be used in CESM1/MESSy simulations, allowing to use MESSy as a comprehensive Earth System Model. For CESM1/MESSy setups, the MESSy process and diagnostic submodels for atmospheric physics and chemistry are used together with one of the CESM1(CAM) dynamical cores; the generic (infrastructure) submodels support the atmospheric model component. The other CESM1 component models as well as the coupling between them use the original CESM1 infrastructure code and libraries, although in future developments these can also be replaced by the MESSy framework. Here, we describe the structure and capabilities of CESM1/MESSy, document the code changes in CESM1 and MESSy, and introduce several simulations as example applications of the system. The Supplements provide further comparisons with the ECHAM5/MESSy atmospheric chemistry (EMAC) model and document

  14. Development and application of optimal design capability for coal gasification systems - Task 1 (Volume 1, 2 and 3). Topical report, July 1995

    SciTech Connect

    1995-09-01

    Selective catalytic reduction (SCR) is a process for the post-combustion removal of NO{sub x} from the flue gas of fossil-fuel-fired power plants. SCR is capable of NO{sub x} reduction efficiencies of up to 80 or 90 percent. SCR technology has been applied for treatment of flue gases from a variety of emission sources, including natural gas- and oil-fired gas turbines, process steam boilers in refineries, and coal-fired power plants. SCR applications to coal-fired power plants have occurred in Japan and Germany. Full-scale SCR systems have not been applied to coal-fired power plants in the U.S., although there have been small-scale demonstration projects. SCR has become increasingly widely applied in the U.S. to natural-gas fired gas turbine combined cycle systems. In the remainder of this section, we review the applicability of SCR, as well as the need for post-combustion NO{sub x} control, for several power generation systems.

  15. The 60 GHz solid state power amplifier

    NASA Technical Reports Server (NTRS)

    Mcclymonds, J.

    1991-01-01

    A new amplifier architecture was developed during this contract that is superior to any other solid state approach. The amplifier produced 6 watts with 4 percent efficiency over a 2 GHz band at 61.5 GHz. The unit was 7 x 9 x 3 inches in size, 5.5 pounds in weight, and the conduction cooling through the baseplate is suitable for use in space. The amplifier used high efficiency GaAs IMPATT diodes which were mounted in 1-diode circuits, called modules. Eighteen modules were used in the design, and power combining was accomplished with a proprietary passive component called a combiner plate.

  16. 95 GHz gyrotron with ferroelectric cathode.

    PubMed

    Einat, M; Pilossof, M; Ben-Moshe, R; Hirshbein, H; Borodin, D

    2012-11-01

    Ferroelectric cathodes were reported as a feasible electron source for microwave tubes. However, due to the surface plasma emission characterizing this cathode, operation of millimeter wave tubes based on it remains questionable. Nevertheless, the interest in compact high power sources of millimeter waves and specifically 95 GHz is continually growing. In this experiment, a ferroelectric cathode is used as an electron source for a gyrotron with the output frequency extended up to 95 GHz. Power above a 5 kW peak and ~0.5 μs pulses are reported; a duty cycle of 10% is estimated to be achievable. PMID:23215293

  17. 17 GHz High Gradient Accelerator Research

    SciTech Connect

    Temkin, Richard J.; Shapiro, Michael A.

    2013-07-10

    This is a report on the MIT High Gradient Accelerator Research program which has included: Operation of the 17 GHz, 25 MeV MIT/Haimson Research Corp. electron accelerator at MIT, the highest frequency, stand-alone accelerator in the world; collaboration with members of the US High Gradient Collaboration, including the design and test of novel structures at SLAC at 11.4 GHz; the design, construction and testing of photonic bandgap structures, including metallic and dielectric structures; the investigation of the wakefields in novel structures; and the training of the next generation of graduate students and postdoctoral associates in accelerator physics.

  18. A high-power 95 GHz gyro-TWT amplifier

    SciTech Connect

    Kreischer, K.E.; Basten, M.; Blank, M.; Danly, B.G.; Guss, W.C.; Temkin, R.J.

    1992-07-01

    The need for radar systems with greater resolution has led to renewed interest in the development of efficient high-power amplifiers at 95 GHz. The gyro-TWT is capable of producing high power with the added attraction of having lower ohmic loading on the smooth fast-wave interaction circuit than conventional slow-wave sources. We have completed a comprehensive desip of a 95 GHz gyro-TWT amplifier that is capable of producing 120 kill of output power with an efficiency of 30%, a saturated gain of 38 dB and an instantaneous bandwidth of over 5 GHz. Our concept uses an annular beam produced by a MIG electron source and operates in the TE{sub 5,1} cylindrical waveguide mode. Realistic beam parameters from gun simulations were, included in our efficiency calculations. In addition, our design includes the use of a compact superconducting magnet, quasi-optical input and output couplers and a sever to supress oscillations. The overall mechanical design shows that a compact, lightweight amplifier with adequate beam clearance is possible. This report also includes a study of a gyro-TWT using a solid on-axis beam from a Pierce-wiggler electron source coupling with a TE{sub 1,n} waveguide mode. Nonlinear models indicated that an efficient interaction with the waveguide mode was possible, however, beam simulations indicated that the high current density beam had large internal space charge forces that caused a substantial degradation of the beam quality.

  19. A high-power 95 GHz gyro-TWT amplifier

    SciTech Connect

    Kreischer, K.E.; Basten, M.; Blank, M.; Danly, B.G.; Guss, W.C.; Temkin, R.J.

    1992-07-01

    The need for radar systems with greater resolution has led to renewed interest in the development of efficient high-power amplifiers at 95 GHz. The gyro-TWT is capable of producing high power with the added attraction of having lower ohmic loading on the smooth fast-wave interaction circuit than conventional slow-wave sources. We have completed a comprehensive desip of a 95 GHz gyro-TWT amplifier that is capable of producing 120 kill of output power with an efficiency of 30%, a saturated gain of 38 dB and an instantaneous bandwidth of over 5 GHz. Our concept uses an annular beam produced by a MIG electron source and operates in the TE[sub 5,1] cylindrical waveguide mode. Realistic beam parameters from gun simulations were, included in our efficiency calculations. In addition, our design includes the use of a compact superconducting magnet, quasi-optical input and output couplers and a sever to supress oscillations. The overall mechanical design shows that a compact, lightweight amplifier with adequate beam clearance is possible. This report also includes a study of a gyro-TWT using a solid on-axis beam from a Pierce-wiggler electron source coupling with a TE[sub 1,n] waveguide mode. Nonlinear models indicated that an efficient interaction with the waveguide mode was possible, however, beam simulations indicated that the high current density beam had large internal space charge forces that caused a substantial degradation of the beam quality.

  20. 47 CFR 25.136 - Licensing provisions for user transceivers in the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Footnote 5.353A in 47 CFR 2.106 and the priority and real-time preemption requirements imposed by Footnote... the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile-Satellite Services. 25.136 Section 25.136 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE...

  1. AMMONIA AND CO OBSERVATIONS TOWARD LOW-LUMINOSITY 6.7 GHz METHANOL MASERS

    SciTech Connect

    Wu, Y. W.; Xu, Y.; Yang, J.; Zhang, S. B.; Pandian, J. D.; Henkel, C.; Menten, K. M.

    2010-09-01

    To investigate whether distinctions exist between low- and high-luminosity Class II 6.7 GHz methanol masers, we have undertaken multi-line mapping observations of various molecular lines, including the NH{sub 3} (1,1), (2,2), (3,3), (4,4), and {sup 12}CO (1-0) transitions, toward a sample of nine low-luminosity 6.7 GHz masers and {sup 12}CO (1-0) observations toward a sample of eight high-luminosity 6.7 GHz masers, for which we already had NH{sub 3} spectral line data. Emission in the NH{sub 3} (1,1), (2,2), and (3,3) transitions was detected in eight out of nine low-luminosity maser sources, in which 14 cores were identified. We derive densities, column densities, temperatures, core sizes, and masses of both low- and high-luminosity maser regions. A comparative analysis of the physical quantities reveals marked distinctions between the low-luminosity and high-luminosity groups: in general, cores associated with high-luminosity 6.7 GHz masers are larger and more massive than those traced by low-luminosity 6.7 GHz masers; regions traced by the high-luminosity masers have larger column densities but lower densities than those of the low-luminosity maser regions. Further, strong correlations between 6.7 GHz maser luminosity and NH{sub 3} (1,1) and (2,2) line widths are found, indicating that internal motions in high-luminosity maser regions are more energetic than those in low-luminosity maser regions. A {sup 12}CO (1-0) outflow analysis also shows distinctions in that outflows associated with high-luminosity masers have wider line wings and larger sizes than those associated with low-luminosity masers.

  2. The 20 GHz GaAs monolithic power amplifier module development

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The development of a 20 GHz GaAs FET monlithic power amplifier module for advanced communication applications is described. Four-way power combing of four 0.6 W amplifier modules is used as the baseline approach. For this purpose, a monolithic four-way traveling-wave power divider/combiner was developed. Over a 20 GHz bandwidth (10 to 30 GHz), an insertion loss of no more than 1.2 dB was measured for a pair of back-to-back connected divider/combiners. Isolation between output ports is better than 20 dB, and VSWRs are better than 21:1. A distributed amplifier with six 300 micron gate width FETs and gate and drain transmission line tapers has been designed, fabricated, and evaluated for use as an 0.6 W module. This amplifier has achieved state-of-the-art results of 0.5 W output power with at least 4 dB gain across the entire 2 to 21 GHz frequency range. An output power of 2 W was achieved at a measurement frequency of 18 GHz when four distributed amplifiers were power-combined using a pair of traveling-wave divider/combiners. Another approach is the direct common-source cascading of three power FET stages. An output power of up to 2W with 12 dB gain and 20% power-added efficiency has been achieved with this approach (at 17 GHz). The linear gain was 14 dB at 1 W output. The first two stages of the three-stage amplifier have achieved an output power of 1.6 W with 9 dB gain and 26% power-added efficiency at 16 GHz.

  3. A 670 GHz gyrotron with record power and efficiency

    NASA Astrophysics Data System (ADS)

    Glyavin, M. Yu.; Luchinin, A. G.; Nusinovich, G. S.; Rodgers, J.; Kashyn, D. G.; Romero-Talamas, C. A.; Pu, R.

    2012-10-01

    A 670 GHz gyrotron with record power and efficiency has been developed in joint experiments of the Institute of Applied Physics, Russian Academy of Sciences (Nizhny Novgord, Russia), and the University of Maryland (USA) teams. The magnetic field of 27-28 T required for operation at the 670 GHz at the fundamental cyclotron resonance is produced by a pulsed solenoid. The pulse duration of the magnetic field is several milliseconds. A gyrotron is driven by a 70 kV, 15 A electron beam, so the beam power is on the order of 1 MW in 10-20 ms pulses. The ratio of the orbital to axial electron velocity components is in the range of 1.2-1.3. The gyrotron is designed to operate in the TE31,8-mode. Operation in a so high-order mode results in relatively low ohmic losses (less than 10% of the radiated power). Achieved power of the outgoing radiation (210 kW) and corresponding efficiency (about 20%) represent record numbers for high-power sources of sub-THz radiation.

  4. Detection of 183 GHz H2O megamaser emission towards NGC 4945

    NASA Astrophysics Data System (ADS)

    Humphreys, E. M. L.; Vlemmings, W. H. T.; Impellizzeri, C. M. V.; Galametz, M.; Olberg, M.; Conway, J. E.; Belitsky, V.; De Breuck, C.

    2016-08-01

    Aims: The aim of this work is to search Seyfert 2 galaxy NGC 4945, a well-known 22 GHz water megamaser galaxy, for H2O (mega)maser emission at 183 GHz. Methods: We used APEX SEPIA Band 5 (an ALMA Band 5 receiver on the APEX telescope) to perform the observations. Results: We detected 183 GHz H2O maser emission towards NGC 4945 with a peak flux density of ~3 Jy near the galactic systemic velocity. The emission spans a velocity range of several hundred km s-1. We estimate an isotropic luminosity of >1000 L⊙, classifying the emission as a megamaser. A comparison of the 183 GHz spectrum with that observed at 22 GHz suggests that 183 GHz emission also arises from the active galactic nucleus (AGN) central engine. If the 183 GHz emission originates from the circumnuclear disk, then we estimate that a redshifted feature at 1084 km s-1 in the spectrum should arise from a distance of 0.022 pc from the supermassive black hole (1.6 × 105 Schwarzschild radii), i.e. closer than the water maser emission previously detected at 22 GHz. This is only the second time 183 GHz maser emission has been detected towards an AGN central engine (the other galaxy being NGC 3079). It is also the strongest extragalactic millimetre/submillimetre water maser detected to date. Conclusions: Strong millimetre 183 GHz H2O maser emission has now been shown to occur in an external galaxy. For NGC 4945, we believe that the maser emission arises, or is dominated by, emission from the AGN central engine. Emission at higher velocity, i.e. for a Keplerian disk closer to the black hole, has been detected at 183 GHz compared with that for the 22 GHz megamaser. This indicates that millimetre/submillimetre H2O masers can indeed be useful for tracing out more of AGN central engine structures and dynamics than previously probed. Future observations using ALMA Band 5 should unequivocally determine the origin of the emission in this and other galaxies.

  5. A 1.1-1.9 GHz SETI SURVEY OF THE KEPLER FIELD. I. A SEARCH FOR NARROW-BAND EMISSION FROM SELECT TARGETS

    SciTech Connect

    Siemion, Andrew P. V.; Korpela, Eric; Werthimer, Dan; Cobb, Jeff; Lebofsky, Matt; Marcy, Geoffrey W.; Demorest, Paul; Maddalena, Ron J.; Langston, Glen; Howard, Andrew W.; Tarter, Jill

    2013-04-10

    We present a targeted search for narrow-band (<5 Hz) drifting sinusoidal radio emission from 86 stars in the Kepler field hosting confirmed or candidate exoplanets. Radio emission less than 5 Hz in spectral extent is currently known to only arise from artificial sources. The stars searched were chosen based on the properties of their putative exoplanets, including stars hosting candidates with 380 K > T{sub eq} > 230 K, stars with five or more detected candidates or stars with a super-Earth (R{sub p} < 3 R{sub Circled-Plus }) in a >50 day orbit. Baseband voltage data across the entire band between 1.1 and 1.9 GHz were recorded at the Robert C. Byrd Green Bank Telescope between 2011 February and April and subsequently searched offline. No signals of extraterrestrial origin were found. We estimate that fewer than {approx}1% of transiting exoplanet systems host technological civilizations that are radio loud in narrow-band emission between 1 and 2 GHz at an equivalent isotropically radiated power (EIRP) of {approx}1.5 Multiplication-Sign 10{sup 21} erg s{sup -1}, approximately eight times the peak EIRP of the Arecibo Planetary Radar, and we limit the number of 1-2 GHz narrow-band-radio-loud Kardashev type II civilizations in the Milky Way to be <10{sup -6} M{sub Sun }{sup -1}. Here we describe our observations, data reduction procedures and results.

  6. A 1.1-1.9 GHz SETI Survey of the Kepler Field. I. A Search for Narrow-band Emission from Select Targets

    NASA Astrophysics Data System (ADS)

    Siemion, Andrew P. V.; Demorest, Paul; Korpela, Eric; Maddalena, Ron J.; Werthimer, Dan; Cobb, Jeff; Howard, Andrew W.; Langston, Glen; Lebofsky, Matt; Marcy, Geoffrey W.; Tarter, Jill

    2013-04-01

    We present a targeted search for narrow-band (<5 Hz) drifting sinusoidal radio emission from 86 stars in the Kepler field hosting confirmed or candidate exoplanets. Radio emission less than 5 Hz in spectral extent is currently known to only arise from artificial sources. The stars searched were chosen based on the properties of their putative exoplanets, including stars hosting candidates with 380 K > T eq > 230 K, stars with five or more detected candidates or stars with a super-Earth (R p < 3 R ⊕) in a >50 day orbit. Baseband voltage data across the entire band between 1.1 and 1.9 GHz were recorded at the Robert C. Byrd Green Bank Telescope between 2011 February and April and subsequently searched offline. No signals of extraterrestrial origin were found. We estimate that fewer than ~1% of transiting exoplanet systems host technological civilizations that are radio loud in narrow-band emission between 1 and 2 GHz at an equivalent isotropically radiated power (EIRP) of ~1.5 × 1021 erg s-1, approximately eight times the peak EIRP of the Arecibo Planetary Radar, and we limit the number of 1-2 GHz narrow-band-radio-loud Kardashev type II civilizations in the Milky Way to be {<}10^{-6}\\ M^{-1}_\\odot. Here we describe our observations, data reduction procedures and results.

  7. The design, fabrication, operation and maintenance of D0 prototype 1/2 H. P. 170 S. C. F. H. gas recirculating-filtration-blending system

    SciTech Connect

    Sellberg, G.; Rapp, P.

    1991-10-01

    Fermi National Accelerator Laboratory (Fermilab) D{null} collider, E-740, uses 150 proportional drift tube (P.D.T.) modules connected to a common multiple header to supply clean low pressure gas. A second multiple header returns the gas to the mixing area and exhausts it to the atmosphere. To test and debug the major construction problems associated with a large and long term experiment, a small cosmic ray test stand was constructed in the Wilson Hall ground floor Physics area. The first four P.D.T.'s that were constructed at FNAL's lab 5 Assembly area were installed in an 110 ton cosmic ray test stand. Two P.D.T.'s were installed above the double 50 ton magnet toroids and two were installed below. A prototype gas system was fabricated for the purpose of conducting development of a recirculating, filtering, and blending system for gas components as called upon by daily requirements set by the current needs of a collider experiment.

  8. Commissioning of the superconducting ECR ion source VENUS at 18 GHz

    SciTech Connect

    Leitner, Daniela; Abbott, Steven R.; Dwinell, Roger D.; Leitner, Matthaeus; Taylor, Clyde E.; Lyneis, Claude M.

    2004-06-01

    During the last year, the VENUS ECR ion source was commissioned at 18 GHz and preparations for 28 GHz operation are now underway. During the commissioning phase with 18 GHz, tests with various gases and metals have been performed with up to 2000 W RF power. The ion source performance is very promising [1,2]. VENUS (Versatile ECR ion source for Nuclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end. The goal of the VENUS ECR ion source project as the RIA R&D injector is the production of 240e{micro}A of U{sup 30+}, a high current medium charge state beam. On the other hand, as an injector ion source for the 88-Inch Cyclotron the design objective is the production of 5e{micro}A of U{sup 48+}, a low current, very high charge state beam. To meet these ambitious goals, VENUS has been designed for optimum operation at 28 GHz. This frequency choice has several design consequences. To achieve the required magnetic confinement, superconducting magnets have to be used. The size of the superconducting magnet structure implies a relatively large plasma volume. Consequently, high power microwave coupling becomes necessary to achieve sufficient plasma heating power densities. The 28 GHz power supply has been delivered in April 2004.

  9. Experimental study of a megawatt 200--300 GHz gyrotron oscillator

    SciTech Connect

    Grimm, T.L.; Kreischer, K.E.; Temkin, R.J. )

    1993-11-01

    A detailed experimental study is presented of a pulsed megawatt gyrotron oscillator operating in the 200--300 GHz range, whose design is consistent with continuous operation for electron cyclotron resonance heating (ECRH) of fusion plasmas. Two different radii beams produced by magnetron injection guns (MIG's) were used to excite the cylindrical waveguide cavity. The emission was found experimentally to be single mode, single frequency with a single rotation, which can be mode converted for transmission. The highest power reached with the larger radius electron beam was 1.2 MW at 230 GHz in the TE[sub 34,6] mode with an efficiency of 20% and beam parameters of 59 A and 100 kV. The highest power reached with the smaller radius electron beam was 0.78 MW at 280 GHz in the TE[sub 25,13] mode with an efficiency of 17% and beam parameters of 51 A and 92 kV. The smaller radius beam gave a peak efficiency of 18% at 0.72 MW, 290 GHz in the TE[sub 25,14] mode. Efficiencies obtained in this experiment are about half that of less highly overmoded gyrotrons. Analysis of the experiment suggests that the low efficiency is primarily caused by azimuthal mode competition, in agreement with multimode theory for a tapered cavity. These experimental results show that megawatt power levels can be generated in continuous wave (cw) gyrotron oscillators at 200--300 GHz with efficiencies approaching 20%.

  10. Electrooptic modulation up to 40 GHz in a barium titanate thin film waveguide modulator

    NASA Astrophysics Data System (ADS)

    Tang, Pingsheng; Towner, D. J.; Hamano, T.; Meier, A. L.; Wessels, B. W.

    2004-11-01

    The high frequency operation of a low-voltage electrooptic modulator based on a strip-loaded BaTiO3 thin film waveguide structure has been demonstrated. The epitaxial BaTiO3 thin film on an MgO substrate forms a composite structure with a low effective dielectric constant of 20.8 at 40 GHz. A 3.9 V half-wave voltage with a 3.7 GHz 3-dB bandwidth and a 150 pm/V effective electrooptic coefficient is obtained for the 3.2mm-long modulator at 1.55 μm. Broadband modulation up to 40 GHz is measured with a calibrated detection system. Numerical simulations indicate that the BaTiO3 thin film modulator has the potential for a 3-dB operational bandwidth in excess of 40 GHz through optimized design.

  11. Development of 24GHz Rectenna for Receiving and Rectifying Modulated Waves

    NASA Astrophysics Data System (ADS)

    Shinohara, Naoki; Hatano, Ken

    2014-11-01

    In this paper, we show experimental results of RF-DC conversion with modulated 24GHz waves. We have already developed class-F MMIC rectenna with resonators for higher harmonics at no modulated 24GHz microwave for RF energy transfer. Dimensions of the MMIC rectifying circuit is 1 mm × 3 mm on GaAs. Maximum RF-DC conversion efficiency is measured 47.9% for a 210 mW microwave input of 24 GHz with a 120 Ω load. The class-F rectenna is based on a single shunt full-wave rectifier. For future application of a simultaneous energy and information transfer system or an energy harvesting from broadcasting waves, input microwave will be modulated. In this paper, we show an experimental result of RF-DC conversion of the class-F rectenna with 24GHz waves modulated by 16QAM as 1st modulation and OFDM as 2nd modulation.

  12. 1,2,4-Tribromobenzene

    Integrated Risk Information System (IRIS)

    1,2,4 - Tribromobenzene ; CASRN 615 - 54 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcin

  13. 1,2,3-Trichloropropane

    Integrated Risk Information System (IRIS)

    1,2,3 - Trichloropropane ; CASRN 96 - 18 - 4 Human health assessment information on a chemical substance is included in IRIS only after a comprehensive review of toxicity data by U.S . EPA health scientists from several program offices , regional offices , and the Office of Research and Development

  14. trans-1,2-Dichloroethylene

    Integrated Risk Information System (IRIS)

    trans - 1,2 - Dichloroethylene ; CASRN 156 - 60 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for No

  15. 1,1,2-Trichloropropane

    Integrated Risk Information System (IRIS)

    1,1,2 - Trichloropropane ; CASRN 598 - 77 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarci

  16. 1,1,2-Trichloroethane

    Integrated Risk Information System (IRIS)

    1,1,2 - Trichloroethane ; CASRN 79 - 00 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcino

  17. 1,2,4-Trichlorobenzene

    Integrated Risk Information System (IRIS)

    1,2,4 - Trichlorobenzene ; CASRN 120 - 82 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarci

  18. cis-1,2-Dichloroethylene

    Integrated Risk Information System (IRIS)

    cis - 1,2 - Dichloroethylene ; CASRN 156 - 59 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Nonc

  19. 1,2-Epoxybutane (EBU)

    Integrated Risk Information System (IRIS)

    1,2 - Epoxybutane ( EBU ) ; CASRN 106 - 88 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarc

  20. Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka P.; Samoska, Lorene A.; Gaier, Todd C.; Soria, Mary M.; Lau, Judy M.; Sieth, Matthew M.; VanWinkle, Daniel; Tantawi, Sami

    2011-01-01

    HEMT-based receiver arrays with excellent noise and scalability are already starting to be manufactured at 100 GHz, but the advances in technology should make it possible to develop receiver modules with even greater operation frequency up to 200 GHz. A prototype heterodyne amplifier module has been developed for operation from 140 to 170 GHz using monolithic millimeter-wave integrated circuit (MMIC) low-noise InP high electron mobility transistor (HEMT) amplifiers. The compact, scalable module is centered on the 150-GHz atmospheric window using components known to operate well at these frequencies. Arrays equipped with hundreds of these modules can be optimized for many different astrophysical measurement techniques, including spectroscopy and interferometry. This module is a heterodyne receiver module that is extremely compact, and makes use of 35-nm InP HEMT technology, and which has been shown to have excellent noise temperatures when cooled cryogenically to 30 K. This reduction in system noise over prior art has been demonstrated in commercial mixers (uncooled) at frequencies of 160-180 GHz. The module is expected to achieve a system noise temperature of 60 K when cooled. An MMIC amplifier module has been designed to demonstrate the feasibility of expanding heterodyne amplifier technology to the 140 to 170-GHz frequency range for astronomical observations. The miniaturization of many standard components and the refinement of RF interconnect technology have cleared the way to mass-production of heterodyne amplifier receivers, making it a feasible technology for many large-population arrays. This work furthers the recent research efforts in compact coherent receiver modules, including the development of the Q/U Imaging ExperimenT (QUIET) modules centered at 40 and 90 GHz, and the production of heterodyne module prototypes at 90 GHz.

  1. Gyroharmonic Conversion at 11.4 GHz

    NASA Astrophysics Data System (ADS)

    Lapointe, M. A.; Wang, Changbiao; Yoder, R. B.; Ganguly, A. K.; Wang, Mei; Hirshfield, J. L.

    1997-11-01

    First results on the generation of 11.4 GHz microwaves by gyroharmonic conversion are presented. A helical rotating beam is prepared in a 2.857 GHz cyclotron autoresonant accelerator (CARA(M.A. LaPointe, R.B. Yoder, Changbiao Wang, A.K. Ganguly and J.L. Hirshfield, Phys. Rev. Lett. 76), 2718 (1996); J.L. Hirshfield, M.A. LaPointe, A.K. Ganguly, R.B. Yoder and Changbiao Wang, Phys. Plasmas 3, 2163 (1996).). The resulting 27A, 190 kV beam is injected into a cavity whose TE_411 mode is resonant at the 4th harmonic of the CARA drive frequency. With an appropriate magnetic field profile, power at 11.428 GHz has been observed. The spectrum at the 4th harmonic has a FWHM of 400 kHz, the Fourier limit for a 3 μsec pulse. Calorimeter measurements give an 11.4 GHz power level of about 300 kW, more than 20 dB above the nearest competing mode (TE_311). These results are compared with theory, especially regarding spreads in beam guiding center and axial velocity.

  2. Loss of Projections, Functional Compensation, and Residual Deficits in the Mammalian Vestibulospinal System of Hoxb1-Deficient Mice1,2,3

    PubMed Central

    Boulland, Jean-Luc; Krezel, Wojciech; Setti, Eya

    2015-01-01

    Abstract The genetic mechanisms underlying the developmental and functional specification of brainstem projection neurons are poorly understood. Here, we use transgenic mouse tools to investigate the role of the gene Hoxb1 in the developmental patterning of vestibular projection neurons, with particular focus on the lateral vestibulospinal tract (LVST). The LVST is the principal pathway that conveys vestibular information to limb-related spinal motor circuits and arose early during vertebrate evolution. We show that the segmental hindbrain expression domain uniquely defined by the rhombomere 4 (r4) Hoxb1 enhancer is the origin of essentially all LVST neurons, but also gives rise to subpopulations of contralateral medial vestibulospinal tract (cMVST) neurons, vestibulo-ocular neurons, and reticulospinal (RS) neurons. In newborn mice homozygous for a Hoxb1-null mutation, the r4-derived LVST and cMVST subpopulations fail to form and the r4-derived RS neurons are depleted. Several general motor skills appear unimpaired, but hindlimb vestibulospinal reflexes, which are mediated by the LVST, are greatly reduced. This functional deficit recovers, however, during the second postnatal week, indicating a substantial compensation for the missing LVST. Despite the compensatory plasticity in balance, adult Hoxb1-null mice exhibit other behavioral deficits that manifest particularly in proprioception and interlimb coordination during locomotor tasks. Our results provide a comprehensive account of the developmental role of Hoxb1 in patterning the vestibular system and evidence for a remarkable developmental plasticity in the descending control of reflex limb movements. They also suggest an involvement of the lateral vestibulospinal tract in proprioception and in ensuring limb alternation generated by locomotor circuitry. PMID:26730404

  3. 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators.

    PubMed

    Zuo, Chengjie; Van der Spiegel, Jan; Piazza, Gianluca

    2010-01-01

    This paper reports on the first demonstration of a 1.05-GHz microelectromechanical (MEMS) oscillator based on lateral-field-excited (LFE) piezoelectric AlN contourmode resonators. The oscillator shows a phase noise level of -81 dBc/Hz at 1-kHz offset frequency and a phase noise floor of -146 dBc/Hz, which satisfies the global system for mobile communications (GSM) requirements for ultra-high frequency (UHF) local oscillators (LO). The circuit was fabricated in the AMI semiconductor (AMIS) 0.5-microm complementary metaloxide- semiconductor (CMOS) process, with the oscillator core consuming only 3.5 mW DC power. The device overall performance has the best figure-of-merit (FoM) when compared with other gigahertz oscillators that are based on film bulk acoustic resonator (FBAR), surface acoustic wave (SAW), and CMOS on-chip inductor and capacitor (CMOS LC) technologies. A simple 2-mask process was used to fabricate the LFE AlN resonators operating between 843 MHz and 1.64 GHz with simultaneously high Q (up to 2,200) and kt 2 (up to 1.2%). This process further relaxes manufacturing tolerances and improves yield. All these advantages make these devices suitable for post-CMOS integrated on-chip direct gigahertz frequency synthesis in reconfigurable multiband wireless communications. PMID:20040430

  4. Quasi-Optical Transmission Line for 94-GHz Radar

    NASA Technical Reports Server (NTRS)

    Perez, Raul M.; Veruttipong, Watt

    2008-01-01

    A quasi-optical transmission line (QOTL) has been developed as a low-loss transmission line for a spaceborne cloudobserving radar instrument that operates at a nominal frequency of 94 GHz. This QOTL could also readily be redesigned for use in terrestrial millimeter-wave radar systems and millimeter-wave imaging systems. In the absence of this or another lowloss transmission line, it would be necessary to use a waveguide transmission line in the original radar application. Unfortunately, transmission losses increase and power-handling capacities of waveguides generally decrease with frequency, such that at 94 GHz, the limitation on transmitting power and the combined transmission and reception losses (greater than 5 dB) in a waveguide transmission line previously considered for the original application would be unacceptable. The QOTL functions as a very-lowloss, three-port circulator. The QOTL includes a shaped input mirror that can be rotated to accept 94-GHz transmitter power from either of two high-power amplifiers. Inside the QOTL, the transmitter power takes the form of a linearly polarized beam radiated from a feed horn. This beam propagates through a system of mirrors, each of which refocuses the beam to minimize diffraction losses. A magnetically biased ferrite disc is placed at one of the foci to utilize the Faraday effect to rotate the polarization of the beam by 45 degrees. The beam is then transmitted via an antenna system. The radar return (scatter from clouds, and/or reflections from other objects) is collected by the same antenna and propagates through the Faraday rotator in the reverse of the direction of propagation of the transmitted beam. In the Faraday rotator, the polarization of the received signal is rotated a further 45 degrees, so that upon emerging from the Faraday rotator, the received beam is polarized at 90 with respect to the transmitted beam. The transmitted and received signals are then separated by a wire-grid polarizer.

  5. A 30/20 GHz FSS feasibility study

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The near term feasibility of direct-to-subscriber services were determined using the 30/20 GHz Fixed Satellite Service (FSS) frequency bands. Those technologies which need to be further developed before such a system can be implemented, were identified. To determine this feasibility, dozens of potential applications were examined for their near-term viability, and the subscriber base of three promising applications were estimated. The system requirements, terminal design, and satellite architecture were all investigated to determine whether a 30/20 GHz FSS system is technically and economically feasible by mid-1990s. It was concluded that such a system is feasible, although maturation of some technologies is needed. This system would likely consist of one or two multibeam satellites serving hub/spoke networks of simple user terminals and more complex, mutli-channel terminals of the service providers. Rain compensation would be accomplished non-adaptively through the use of coding, nonuniform satellite TWT power that is a function of a beam's anticipated downlink fading, and signal regeneration of traffic to the wettest climate regions. It was estimated that a potential market of almost two million users could exist in in the mid-1990s time frame for home banking and financial services via Ka-band satellites.

  6. Design of a 50 MW, 34 GHz second harmonic coaxial gyroklystron for advanced accelerators

    SciTech Connect

    Arjona, M.R.; Lawson, W.

    1999-07-01

    At the University of Maryland, the authors have been investigating the feasibility of using gyroklystrons and gyroklystrons as drivers for linear colliders and advanced accelerators for a number of years. The most recent experimental tube achieved a peak power of about 80 MW at 8.57 GHz with 32% efficiency and over 30 dB gain with a three-cavity first harmonic circuit. The current experimental effort is devoted to producing about 100 MW of peak power at 17.14 GHz with a second-harmonic three-cavity tube. Some schemes for advanced linear colliders with center-of-mass energies of 5 TeV or more expect to require higher frequency sources, perhaps near 35 GHz or 91 GHz. A design study at 95 GHz indicated that peak powers near 7 MW were possible. In this design study, they present the simulated operating characteristics of a four cavity 34 GHz second-harmonic gyroklystron tube which is capable of producing about 60 MW of peak power with an efficiency of about 40% and a gain above 50 dB. The electron gun is a single-anode magnetron injection gun. The input cavity is a TE{sub 011} cavity which is driven at 17 GHz. The remainder of the cavities are TE{sub 021} cavities which interact near the second harmonic of the cyclotron frequency. The gain cavity and the output cavities are at twice the drive frequency, but the penultimate cavity is detuned to enhance efficiency. All cavities are abrupt-transition cavities. Both systems are derived from scaled versions of the 17 GHz tube. In this paper, they present detailed designs and performance predictions for both the electron gun and the microwave circuit.

  7. Design and Development of Thermistor based Power Meter at 140 GHz Frequency Band

    NASA Astrophysics Data System (ADS)

    Roy, Rajesh; Kush, Abhimanyue Kumar; Dixit, Rajendra Prasad

    2011-12-01

    Design and development of thermistor based power meter at 140 gigahertz (GHz) frequency band have been presented. Power meter comprises power sensor, amplifier circuit and dialog based graphical user interface in visual C++ for the average power measurement. The output power level of a component or system is very critical design factor. Thus there was a need of a power meter for the development of millimeter wave components at 140 GHz frequency band. Power sensor has been designed and developed using NTC (Negative Temperature Coefficient) thermistors. The design aims at developing a direct, simple and inexpensive power meter that can be used to measure absolute power at 140 GHz frequency band. Due to absorption of 140 GHz frequencies, resistance of thermistor changes to a new value. This change in resistance of thermistor can be converted to a dc voltage change and amplified voltage change can be fed to computer through data acquisition card. Dialog based graphical user interface (GUI) has been developed in visual C++ language for average power measurement in dBm. WR6 standard rectangular waveguide is the input port for the sensor of power meter. Temperature compensation has been achieved. Moderate sensor return loss greater than 20 dB has been found over the frequency range 110 to 170 GHz. The response time of the power sensor is 10 second. Average power accuracy is better than ±0.25 dB within the power range from -10 to 10 dBm at 140 GHz frequency band.

  8. 164-GHz MMIC HEMT Frequency Doubler

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Radisic, Vesna; Micovic, Miro; Hu, Ming; Janke, Paul; Ngo, Catherine; Nguyen, Loi; Morgan, Matthew

    2003-01-01

    A monolithic microwave integrated circuit (MMIC) that includes a high-electron-mobility transistor (HEMT) has been developed as a prototype of improved frequency doublers for generating signals at frequencies greater than 100 GHz. Signal sources that operate in this frequency range are needed for a variety of applications, notably including general radiometry and, more specifically, radiometric remote sensing of the atmosphere. Heretofore, it has been common practice to use passive (diode-based) frequency multipliers to obtain frequencies greater than 100 GHz. Unfortunately, diode-based frequency multipliers are plagued by high DC power consumption and low conversion efficiency. Moreover, multiplier diodes are not easily integrated with such other multiplier-circuit components as amplifiers and oscillators. The goals of developing the present MMIC HEMT frequency doubler were (1) to utilize the HEMT as an amplifier to increase conversion efficiency (more precisely, to reduce conversion loss), thereby increasing the output power for a given DC power consumption or, equivalently, reducing the DC power consumption for a given output power; and (2) to provide for the integration of amplifier and oscillator components on the same chip. The MMIC frequency doubler (see Figure 1) contains an AlInAs/GaInAs/InP HEMT biased at pinch-off to make it function as a class-B amplifier (meaning that it conducts in half-cycle pulses). Grounded coplanar waveguides (GCPWs) are used as impedance-matching transmission lines. Air bridges are placed at discontinuities to suppress undesired slot electromagnetic modes. Another combination of GCPWs also serves both as a low-pass filter to suppress undesired oscillations at frequencies below 60 GHz and as a DC blocker. Large decoupling capacitors and epitaxial resistors are added in the drain and gate lines to suppress bias oscillations. At the output terminal, the fundamental frequency is suppressed by a quarter-wave open stub, which presents

  9. Traveling-Wave Maser for 32 GHz

    NASA Technical Reports Server (NTRS)

    Shell, James; Clauss, Robert

    2009-01-01

    The figure depicts a traveling-wave ruby maser that has been designed (though not yet implemented in hardware) to serve as a low-noise amplifier for reception of weak radio signals in the frequency band of 31.8 to 32.3 GHz. The design offers significant improvements over previous designs of 32-GHz traveling-wave masers. In addition, relative to prior designs of 32-GHz amplifiers based on high-electron-mobility transistors, this design affords higher immunity to radio-frequency interference and lower equivalent input noise temperature. In addition to the basic frequency-band and low-noise requirements, the initial design problem included a requirement for capability of operation in a closed-cycle helium refrigerator at a temperature .4 K and a requirement that the design be mechanically simplified, relative to prior designs, in order to minimize the cost of fabrication and assembly. Previous attempts to build 32- GHz traveling-wave masers involved the use of metallic slow-wave structures comprising coupled transverse electromagnetic (TEM)-mode resonators that were subject to very tight tolerances and, hence, were expensive to fabricate and assemble. Impedance matching for coupling signals into and out of these earlier masers was very difficult. A key feature of the design is a slow-wave structure, the metallic portions of which would be mechanically relatively simple in that, unlike in prior slow-wave structures, there would be no internal metal steps, irises, or posts. The metallic portions of the slow-wave structure would consist only of two rectangular metal waveguide arms. The arms would contain sections filled with the active material (ruby) alternating with evanescent-wave sections. This structure would be transparent in both the signal-frequency band (the aforementioned range of 31.8 to 32.3 GHz) and the pump-frequency band (65.75 to 66.75 GHz), and would impose large slowing factors in both frequency bands. Resonant ferrite isolators would be placed in the

  10. Feasiblity study for a 34 GHz (Ka band) gyroamplifier

    NASA Technical Reports Server (NTRS)

    Stone, D. S.; Bier, R. E.; Caplan, M.; Huey, H. E.; Pirkle, D. R.; Robinson, J. D.; Thompson, L.

    1984-01-01

    The feasibility of using a gyroklystron power tube as the final amplifier in a 400 kW CW 34 GHz transmitter on the Goldstone Antenna is investigated. A conceptual design of the gyroklystron and the transmission line connecting it with the antenna feed horn is presented. The performance characteristics of the tube and transmission line are compared to the transmitter requirements for a deep space radar system. Areas of technical risk for a follow-on hardware development program for the gyroklystron amplifier and overmoded transmission line components are discussed.

  11. A compact 500GHz SIS receiver developed for space observations

    NASA Astrophysics Data System (ADS)

    Liu, D.; Yao, Q. J.; Li, J.; Shi, S. C.

    2011-08-01

    The submillimeter (submm) regime, ranging from 100 to 1000um, is an important frequency band for radio astronomy. A large number of astronomical spectral lines are located in this frequency region. Compared with ground-based observation, which is limited by the atmospheric absorption of signal, space borne platform provides perfect condition for submm observation. Here we introduce some preliminary results for a compact 500GHz SIS (Superconductor- Insulator-Superconductor) heterodyne receiver system developed for future space borne observation. Considering low power consumption requirement for space applications, we adopt a high critical temperature (Tc) NbN/AlN/NbN SIS tunnel junction for the mixer, a key component of the receiver system, which may work at relatively high temperature around 10 K. All the components, including the SIS mixer, HEMT low noise amplifier and optical lens, are assembled into a compact system. The whole system is cooled by a close-cycled 4K cryo-cooler in laboratory and test result shows a good noise performance, less than 250K at the 500GHz band. Detailed simulation and experimental results will be presented in this paper.

  12. 25 GHz methanol masers in regions of massive star formation

    NASA Astrophysics Data System (ADS)

    Britton, Tui R.; Voronkov, Maxim A.

    2012-07-01

    The bright 25 GHz series of methanol masers is formed in highly energetic regions of massive star formation and provides a natural signpost of shocked gas surrounding newly forming stars. A systematic survey for the 25 GHz masers has only recently been carried out. We present the preliminary results from the interferometric follow up of 51 masers at 25 GHz in the southern sky.

  13. NASA 60 GHz intersatellite communication link definition study. Addendum A: Mixed baseband and IF signals

    NASA Technical Reports Server (NTRS)

    1986-01-01

    As part of a definition study for a 60 GHz intersatellite communications link system (ICLS), baseline design concepts for a channelized crosslink were identified. The crosslink would allow communications between geostationary satellites of the planned Tracking and Data Acquisition System (TDAS) and would accommodate a mixture of frequency translation coherent links (bent pipe links) and baseband-in/baseband-out links (mod/demod links). A 60 GHz communication system was developed for sizing and analyzing the crosslink. For the coherent links this system translates incoming signals directly up to the 60 GHz band; trunks the signals across from one satellite to a second satellite at 60 GHz then down converts to the proper frequency for re-transmission from the second satellite without converting to any intermediate frequencies. For the baseband-in/baseband-out links the baseband data is modulated on to the 60 GHz carrier at the transmitting satellite and demodulated at the receiving satellite. The frequency plan, equipment diagrams, and link calculations are presented along with results from sizing and reliability analyses.

  14. Modified kagome physics in the natural spin-1/2 kagome lattice systems: kapellasite Cu3Zn(OH)6Cl2 and haydeeite Cu3Mg(OH)6Cl2.

    PubMed

    Janson, O; Richter, J; Rosner, H

    2008-09-01

    The recently discovered natural minerals Cu3Zn(OH)6Cl2 and Cu3Mg(OH)6Cl2 are spin 1/2 systems with an ideal kagome geometry. Based on electronic structure calculations, we develop a realistic model which includes couplings across the kagome hexagons beyond the original kagome model that are intrinsic in real kagome materials. Exact diagonalization studies for the derived model reveal a strong impact of these couplings on the magnetic ground state. Our predictions could be compared to and supplied with neutron scattering, thermodynamic data, and NMR data. PMID:18851233

  15. 802GHz integrated horn antennas imaging array

    NASA Astrophysics Data System (ADS)

    Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.; Dave, Hemant; Chin, Gordon

    1991-05-01

    Pattern measurements at 802GHz of a single element in 256-element integrated horn imaging array are presented. The integrated-horn antenna consists of a dipole-antenna suspended on a 1-micron dielectric membrane inside a pyramidal cavity etched in silicon. The theoretical far-field patterns, calculated using reciprocity and Floquet-modes representation of the free-space field, agree well with the measured far-field patterns at 802GHz. The associated directivity for a 1.40 lambda horn aperture, calculated from the measured E and H-plane patterns is 12.3dB + or - 0.2dB. This work demonstrates that high-efficiency integrated-horn antennas are easily scalable to terahertz frequencies and could be used for radio-astronomical and plasma-diagnostic applications.

  16. SEVENTH HARMONIC 20 GHz CO-GENERATOR

    SciTech Connect

    Hirshfield, Jay L

    2014-04-08

    To satisfy the need for multi-MW rf sources in frequency ranges where commercial sources do not exist, a study was undertaken on a class of devices based on gyro-harmonic frequency multiplication. This mechanism relies upon adding energy in gyrating motion to a linear electron beam that traverses a rotating-mode TE111-mode drive cavity in a dc magnetic field. The beam then drifts along the magnetic field into a second cavity, operating in the TEn11-mode tuned to the nth harmonic of the drive cavity. Studies of this configuration have been carried out for 2 < n < 7. Results are given for multi-MW, efficient operation of a 7th harmonic device operating at 20 GHz, and a 2nd harmonic device operating at 22.4 GHz.

  17. Tree attenuation at 20 GHz: Foliage effects

    NASA Astrophysics Data System (ADS)

    Vogel, Wolfhard J.; Goldhirsh, Julius

    1993-08-01

    Static tree attenuation measurements at 20 GHz (K-Band) on a 30 deg slant path through a mature Pecan tree with and without leaves showed median fades exceeding approximately 23 dB and 7 dB, respectively. The corresponding 1% probability fades were 43 dB and 25 dB. Previous 1.6 GHz (L-Band) measurements for the bare tree case showed fades larger than those at K-Band by 3.4 dB for the median and smaller by approximately 7 dB at the 1% probability. While the presence of foliage had only a small effect on fading at L-Band (approximately 1 dB additional for the median to 1% probability range), the attenuation increase was significant at K-Band, where it increased by about 17 dB over the same probability range.

  18. Tree attenuation at 20 GHz: Foliage effects

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Goldhirsh, Julius

    1993-01-01

    Static tree attenuation measurements at 20 GHz (K-Band) on a 30 deg slant path through a mature Pecan tree with and without leaves showed median fades exceeding approximately 23 dB and 7 dB, respectively. The corresponding 1% probability fades were 43 dB and 25 dB. Previous 1.6 GHz (L-Band) measurements for the bare tree case showed fades larger than those at K-Band by 3.4 dB for the median and smaller by approximately 7 dB at the 1% probability. While the presence of foliage had only a small effect on fading at L-Band (approximately 1 dB additional for the median to 1% probability range), the attenuation increase was significant at K-Band, where it increased by about 17 dB over the same probability range.

  19. Multiple teleportation via partially entangled GHZ state

    NASA Astrophysics Data System (ADS)

    Xiong, Pei-Ying; Yu, Xu-Tao; Zhan, Hai-Tao; Zhang, Zai-Chen

    2016-08-01

    Quantum teleportation is important for quantum communication. We propose a protocol that uses a partially entangled Greenberger-Horne-Zeilinger (GHZ) state for single hop teleportation. Quantum teleportation will succeed if the sender makes a Bell state measurement, and the receiver performs the Hadamard gate operation, applies appropriate Pauli operators, introduces an auxiliary particle, and applies the corresponding unitary matrix to recover the transmitted state.We also present a protocol to realize multiple teleportation of partially entangled GHZ state without an auxiliary particle. We show that the success probability of the teleportation is always 0 when the number of teleportations is odd. In order to improve the success probability of a multihop, we introduce the method used in our single hop teleportation, thus proposing a multiple teleportation protocol using auxiliary particles and a unitary matrix. The final success probability is shown to be improved significantly for the method without auxiliary particles for both an odd or even number of teleportations.

  20. 94 GHz doppler wind radar satellite mission concept

    NASA Astrophysics Data System (ADS)

    Lin, Chung-Chi; Rommen, Björn; Buck, Christopher; Schüttemeyer, Dirk

    2015-10-01

    Extreme weather such as storms, hurricanes and typhoons, also called `high impact weather', is a high priority area of research for the atmospheric dynamics and meteorological science communities. 94 GHz Doppler wind radar satellite mission concepts have been elaborated, which use cloud and precipitation droplets/particles as tracers to measure 3-D wind fields. The so-called polarisation-diversity pulse-pair (PDPP) technique enables to derive line-of-sight wind speed with good accuracy (< 2-3 m/s) and large unambiguous dynamic range (e.g. 75 m/s). Two distinct system concepts have been elaborated: (1) a conically scanning radar concept with large coverage (> 800 km) and ˜50 km along-track sampling, and; (2) a stereo viewing concept with high sampling resolution (< 4 km) within an inclined cut through the atmosphere. The former concept is adequate for studying large-scale severe/extreme weather systems, whereas the latter would be more suitable for understanding of small-scale convective phenomena. For demonstrating the potential of the FDPP technique for deriving accurate Doppler observations, ground-based and airborne Doppler radar campaigns are in preparation. The Galileo 94 GHz radar, upgraded recently to include a FDPP capability, at Chilbolton in the UK, will be used for an extended ground-based campaign (6 months). For the airborne campaign, the dual-frequency (9.4 + 94 GHz) NAWX radar on board a Convair-580 aircraft of the National Science Council of Canada will be upgraded and flown. This paper describes the observation requirements, preliminary satellite mission concepts, associated wind retrieval aspects and the planned demonstration campaigns.

  1. The VLBA Imaging And Polarimetry Survey at 5 GHz

    SciTech Connect

    Helmboldt, J.F.; Taylor, G.B.; Tremblay, S.; Fassnacht, C.D.; Walker, R.C.; Myers, S.T.; Sjouwerman, L.O.; Pearson, T.J.; Readhead, A.C.S.; Weintraub, L.; Gehrels, N.; Romani, R.W.; Healey, S.; Michelson, P.F.; Blandford, R.D.; Cotter, G.; /New Mexico U. /UC, Davis /NRAO, Socorro /Caltech /NASA, Goddard /Stanford U., Phys. Dept. /KIPAC, Menlo Park /Oxford U.

    2006-11-20

    We present the first results of the VLBA Imaging and Polarimetry Survey (VIPS), a 5 GHz VLBI survey of 1,127 sources with flat radio spectra. Through automated data reduction and imaging routines, we have produced publicly available I, Q, and U images and have detected polarized flux density from 37% of the sources. We have also developed an algorithm to use each source's I image to automatically classify it as a point-like source, a core-jet, a compact symmetric object (CSO) candidate, or a complex source. Using data from the Sloan Digital Sky Survey (SDSS), we have found no significant trend between optical flux and 5 GHz flux density for any of the source categories. Using the velocity width of the H{beta} emission line and the monochromatic luminosity at 5100 to estimate the central black hole mass, M{sub BH}, we have found a weak trend between M{sub BH} and 5 GHz luminosity density for objects with SDSS spectra. Ongoing optical follow-up for all VIPS sources will allow for more detailed explorations of these issues. The mean ratio of the polarized to total 5 GHz flux density for VIPS sources with detected polarized flux density ranges from 1% to 20% with a median value of about 5%. This ratio is a factor of {approx}3 larger if only the jet components of core-jet systems are considered and is noticeably higher for relatively large core-jet systems than for other source types, regardless of which components (i.e., core, jet, or both) are considered. We have also found significant evidence that the directions of the jets in core-jet systems tend to be perpendicular to the electric vector position angles (EVPAs). The data is consistent with a scenario in which {approx}24% of the polarized core-jets have EVPAs that are anti-aligned with the directions of their jet components and which have a substantial amount of Faraday rotation. Follow-up observations at multiple frequencies will address this issue in more detail. In addition to these initial results, plans for

  2. An 8.4-GHz cryogenically cooled HEMT amplifier for DSS 13

    NASA Technical Reports Server (NTRS)

    Tanida, L.

    1988-01-01

    A prototype 8.4 GHz (X-band) high electron mobility transistor (HEMT) amplifier/closed cycle refrigerator system was installed in the Deep Space Station 13 feedcone in August 1987. The amplifier is cryogenically cooled to a physical temperature of 12 K and provides 31 K antenna noise temperature (zenith) and 35 dB of gain at a frequency of 8.2 to 8.6 GHz. Antenna system noise temperature is less than 50 K from 7.2 to 9.4 MHz. The low noise HEMT amplifier system is intended for use as a radio astronomy or space communications receiver front end.

  3. VLBI survey at 2. 29 GHz

    SciTech Connect

    Preston, R.A.; Morabito, D.D.; Williams, J.G.; Faulkner, J.; Jauncey, D.L.

    1985-09-01

    VLBI observations at 2.29 GHz with fringe spacings of about 3 milliarcsec have been performed on 1398 radio sources spread over the entire sky. 917 sources were detected, including 93 percent of the identified BL Lacertae objects, 86 percent of the quasars, and 36 percent of the galaxies. The resulting catalog of compact radio sources is useful for various astrophysical studies and in the formation of VLBI celestial reference frames. 252 references.

  4. Novel 140 GHz gyro-TWT amplifier

    SciTech Connect

    Hu, W.; Kreischer, K.E.; Shapiro, M.; Temkin, R.J.

    1996-12-31

    The authors have designed and are currently building a novel gyro-TWT amplifier at powers up to 100 kW at a frequency of 140 GHz. The electron beam will be provided by an existing MIG electron gun which has been previously used in gyrotron oscillator research at the 100 kW power level at 140 GHz. The gun operates at 65 kV and up to 8A with {nu}{sub {perpendicular}}/{nu}{sub {parallel}} equal to 1.5. The novel wave circuit consists of two facing mirrors with confocal profiles in the transverse direction and flat profiles in the longitudinal direction. The mode is Gaussian-like in the transverse direction. This cavity design effectively reduces the mode competition problem in conventional amplifiers from two dimensions to one dimension. Another advantage of this circuit is the relatively large circuit size, which improves power capacity. Preliminary calculations indicate that the linear gain is about 2.7 dB/cm with an efficiency exceeding 20%. The driver of the Gyro-TWT amplifier is a 95 GHz Varian EIO generator with 100 W peak output power. The amplifier also employs a confocal mode converter which launches a gaussian beam along the axis. The slot size of the cavity is optimized to have minimal operating mode loss while maximizing losses of competing modes. A preliminary experiment using an oscillator configuration has also been designed. The device could easily be scaled to 95 GHz to meet D.O.D. needs at that frequency.

  5. 35-GHz Measurements of Carbon Dioxide Crystals

    NASA Technical Reports Server (NTRS)

    Foster, J.; Chang, A.; Hall, D.; Tait, A.; Klein, A.

    1998-01-01

    In order to maximize our knowledge of the martian polar caps, it is important to compare and contrast the behavior of both frozen H2O and CO2 in different parts of the electromagnetic spectrum. Relatively little attention has been given, thus far, to observing the thermal microwave part of the spectrum. In this experiment, passive microwave radiation emanating from within a 33-cm snowpack was measured with a 35-GHz hand-held radiometer, and in addition to the natural snow measurements, the radiometer was used to measure the microwave emission and scattering from layers of manufactured CO2 (dry ice) crystals. A 1 square meter plate of aluminum sheet metal was positioned beneath the natural snow so that microwave emissions from the underlying soil layers would be minimized. 35 GHz measurements of this plate were made through the 33-cm snowpack. Layers of the snow were removed and measurements were repeated for the diminishing snowpack until the bare plate was in view. Then, 9 cm of CO2 crystals were deposited onto the sheet-metal plate, and as was the case for the natural snow, hand-held measurements were made each time the thickness of the deposit was altered. These CO2 crystals were -0.65 cm in diameter and were cylindrical. The temperature of the dry ice was -76 C, whereas the temperature at the top of the snowpack was -1.9 C (the air temperature was -3 C). Two additional 9-cm increments were placed on top of the existing CO2 crystals, resulting in a total thickness of 27 cm of dry ice. After this series of measurements was made, the CO2 crystals were then placed on top of the snowpack, and as before, measurements were made using the 35-GHz radiometer. As a final part of this experiment, soil particles were spread on top of the dry ice, and once again, microwave measurements were made with the 35-GHz radiometer.

  6. Australia 31-GHz brightness temperature exceedance statistics

    NASA Technical Reports Server (NTRS)

    Gary, B. L.

    1988-01-01

    Water vapor radiometer measurements were made at DSS 43 during an 18 month period. Brightness temperatures at 31 GHz were subjected to a statistical analysis which included correction for the effects of occasional water on the radiometer radome. An exceedance plot was constructed, and the 1 percent exceedance statistics occurs at 120 K. The 5 percent exceedance statistics occurs at 70 K, compared with 75 K in Spain. These values are valid for all of the three month groupings that were studied.

  7. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Sokolov, V.; Geddes, J.; Bauhahn, P.

    1983-01-01

    Key requirements for a 30 GHz GaAs monolithic receive module for spaceborne communication antenna feed array applications include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five-bit phase shifter, and a maximum power consumption of 250 mW. The RF designs for each of the four submodules (low noise amplifier, some gain control, phase shifter, and RF to IF sub-module) are presented. Except for the phase shifter, high frequency, low noise FETs with sub-half micron gate lengths are employed in the submodules. For the gain control, a two stage dual gate FET amplifier is used. The phase shifter is of the passive switched line type and consists of 5-bits. It uses relatively large gate width FETs (with zero drain to source bias) as the switching elements. A 20 GHz local oscillator buffer amplifier, a FET compatible balanced mixer, and a 5-8 GHz IF amplifier constitute the RF/IF sub-module. Phase shifter fabrication using ion implantation and a self-aligned gate technique is described. Preliminary RF results obtained on such phase shifters are included.

  8. The 60 GHz IMPATT diode development

    NASA Technical Reports Server (NTRS)

    Dat, Rovindra; Ayyagari, Murthy; Hoag, David; Sloat, David; Anand, Yogi; Whitely, Stan

    1986-01-01

    The objective is to develop 60 GHz IMPATT diodes suitable for communications applications. The performance goals of the 60 GHz IMPATT is 1W CW output power with a conversion efficiency of 15 percent and 10-year lifetime. The final design of the 60 GHz IMPATT structure evolved from computer simulations performed at the University of Michigan. The initial doping profile, involving a hybrid double-drift (HDD) design, was derived from a drift-diffusion model that used the static velocity-field characteristics for GaAs. Unfortunately, the model did not consider the effects of velocity undershoot and delay of the avalanche process due to energy relaxation. Consequently, the initial devices were oscillating at a much lower frequency than anticipated. With a revised simulation program that included the two effects given above, a second HDD profile was generated and was used as a basis for fabrication efforts. In the area of device fabrication, significant progress was made in epitaxial growth and characterization, wafer processing, and die assembly. The organo-metallic chemical vapor deposition (OMCVD) was used. Starting with a baseline X-Band IMPATT technology, appropriate processing steps were modified to satisfy the device requirements at V-Band. In terms of efficiency and reliability, the device requirements dictate a reduction in its series resistance and thermal resistance values. Qualitatively, researchers were able to reduce the diodes' series resistance by reducing the thickness of the N+ GaAs substrate used in its fabrication.

  9. Dynamic nuclear polarization at 700 MHz/460 GHz.

    PubMed

    Barnes, Alexander B; Markhasin, Evgeny; Daviso, Eugenio; Michaelis, Vladimir K; Nanni, Emilio A; Jawla, Sudheer K; Mena, Elijah L; DeRocher, Ronald; Thakkar, Ajay; Woskov, Paul P; Herzfeld, Judith; Temkin, Richard J; Griffin, Robert G

    2012-11-01

    We describe the design and implementation of the instrumentation required to perform DNP-NMR at higher field strengths than previously demonstrated, and report the first magic-angle spinning (MAS) DNP-NMR experiments performed at (1)H/e(-) frequencies of 700 MHz/460 GHz. The extension of DNP-NMR to 16.4 T has required the development of probe technology, cryogenics, gyrotrons, and microwave transmission lines. The probe contains a 460 GHz microwave channel, with corrugated waveguide, tapers, and miter-bends that couple microwave power to the sample. Experimental efficiency is increased by a cryogenic exchange system for 3.2 mm rotors within the 89 mm bore. Sample temperatures ≤85 K, resulting in improved DNP enhancements, are achieved by a novel heat exchanger design, stainless steel and brass vacuum jacketed transfer lines, and a bronze probe dewar. In addition, the heat exchanger is preceded with a nitrogen drying and generation system in series with a pre-cooling refrigerator. This reduces liquid nitrogen usage from >700 l per day to <200 l per day and allows for continuous (>7 days) cryogenic spinning without detrimental frost or ice formation. Initial enhancements, ε=-40, and a strong microwave power dependence suggests the possibility for considerable improvement. Finally, two-dimensional spectra of a model system demonstrate that the higher field provides excellent resolution, even in a glassy, cryoprotecting matrix. PMID:23000974

  10. Dynamic Nuclear Polarization at 700 MHz/460 GHz

    PubMed Central

    Barnes, Alexander B.; Markhasin, Evgeny; Daviso, Eugenio; Michaelis, Vladimir K.; Nanni, Emilio A.; Jawla, Sudheer; Mena, Elijah L.; DeRocher, Ronald; Thakkar, Ajay; Woskov, Paul; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

    2014-01-01

    We describe the design and implementation of the instrumentation required to perform DNP-NMR at higher field strengths than previously demonstrated, and report the first magic-angle spinning (MAS) DNP-NMR experiments performed at H/e frequencies of 700 MHz/460 GHz. The extension of DNP-NMR to 16.4 T has required the development of probe technology, cryogenics, gyrotrons, and microwave transmission lines. The probe contains a 460 GHz microwave channel, with corrugated waveguide, tapers, and miter-bends that couple microwave power to the sample. Experimental efficiency is increased by a cryogenic exchange system for 3.2 mm rotors within the 89 mm bore. Sample temperatures ≤85 K, resulting in improved DNP enhancements, are achieved by a novel heat exchanger design, stainless steel and brass vacuum jacketed transfer lines, and a bronze probe dewar. In addition, the heat exchanger is preceded with a nitrogen drying and generation system in series with a pre-cooling refrigerator. This reduces liquid nitrogen usage from >400 liters per day to <100 liters per day and allows for continuous (>7 days) cryogenic spinning without detrimental frost or ice formation. Initial enhancements, ε=−40, and a strong microwave power dependence suggests the possibility for considerable improvement. Finally, two-dimensional spectra of a model system demonstrate that the higher field provides excellent resolution, even in a glassy, cryoprotecting matrix. PMID:23000974

  11. Dynamic nuclear polarization at 700 MHz/460 GHz

    NASA Astrophysics Data System (ADS)

    Barnes, Alexander B.; Markhasin, Evgeny; Daviso, Eugenio; Michaelis, Vladimir K.; Nanni, Emilio A.; Jawla, Sudheer K.; Mena, Elijah L.; DeRocher, Ronald; Thakkar, Ajay; Woskov, Paul P.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

    2012-11-01

    We describe the design and implementation of the instrumentation required to perform DNP-NMR at higher field strengths than previously demonstrated, and report the first magic-angle spinning (MAS) DNP-NMR experiments performed at 1H/e- frequencies of 700 MHz/460 GHz. The extension of DNP-NMR to 16.4 T has required the development of probe technology, cryogenics, gyrotrons, and microwave transmission lines. The probe contains a 460 GHz microwave channel, with corrugated waveguide, tapers, and miter-bends that couple microwave power to the sample. Experimental efficiency is increased by a cryogenic exchange system for 3.2 mm rotors within the 89 mm bore. Sample temperatures ⩽85 K, resulting in improved DNP enhancements, are achieved by a novel heat exchanger design, stainless steel and brass vacuum jacketed transfer lines, and a bronze probe dewar. In addition, the heat exchanger is preceded with a nitrogen drying and generation system in series with a pre-cooling refrigerator. This reduces liquid nitrogen usage from >700 l per day to <200 l per day and allows for continuous (>7 days) cryogenic spinning without detrimental frost or ice formation. Initial enhancements, ε = -40, and a strong microwave power dependence suggests the possibility for considerable improvement. Finally, two-dimensional spectra of a model system demonstrate that the higher field provides excellent resolution, even in a glassy, cryoprotecting matrix.

  12. 47 CFR 15.253 - Operation within the bands 46.7-46.9 GHz and 76.0-77.0 GHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-77.0 GHz is restricted to vehicle-mounted field disturbance sensors used as vehicle radar systems... operation is as a vehicle-mounted field disturbance sensor. Operation under the provisions of this section...-mounted field disturbance sensors, if the vehicle is in motion the power density of any emission...

  13. 47 CFR 15.253 - Operation within the bands 46.7-46.9 GHz and 76.0-77.0 GHz.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-77.0 GHz is restricted to vehicle-mounted field disturbance sensors used as vehicle radar systems... operation is as a vehicle-mounted field disturbance sensor. Operation under the provisions of this section...-mounted field disturbance sensors, if the vehicle is in motion the power density of any emission...

  14. Copper-induced overexpression of genes encoding antioxidant system enzymes and metallothioneins involve the activation of CaMs, CDPKs and MEK1/2 in the marine alga Ulva compressa.

    PubMed

    Laporte, Daniel; Valdés, Natalia; González, Alberto; Sáez, Claudio A; Zúñiga, Antonio; Navarrete, Axel; Meneses, Claudio; Moenne, Alejandra

    2016-08-01

    Transcriptomic analyses were performed in the green macroalga Ulva compressa cultivated with 10μM copper for 24h. Nucleotide sequences encoding antioxidant enzymes, ascorbate peroxidase (ap), dehydroascorbate reductase (dhar) and glutathione reductase (gr), enzymes involved in ascorbate (ASC) synthesis l-galactose dehydrogenase (l-gdh) and l-galactono lactone dehydrogenase (l-gldh), in glutathione (GSH) synthesis, γ-glutamate-cysteine ligase (γ-gcl) and glutathione synthase (gs), and metal-chelating proteins metallothioneins (mt) were identified. Amino acid sequences encoded by transcripts identified in U. compressa corresponding to antioxidant system enzymes showed homology mainly to plant and green alga enzymes but those corresponding to MTs displayed homology to animal and plant MTs. Level of transcripts encoding the latter proteins were quantified in the alga cultivated with 10μM copper for 0-12 days. Transcripts encoding enzymes of the antioxidant system increased with maximal levels at day 7, 9 or 12, and for MTs at day 3, 7 or 12. In addition, the involvement of calmodulins (CaMs), calcium-dependent protein kinases (CDPKs), and the mitogen-activated protein kinase kinase (MEK1/2) in the increase of the level of the latter transcripts was analyzed using inhibitors. Transcript levels decreased with inhibitors of CaMs, CDPKs and MEK1/2. Thus, copper induces overexpression of genes encoding antioxidant enzymes, enzymes involved in ASC and GSH syntheses and MTs. The increase in transcript levels may involve the activation of CaMs, CDPKs and MEK1/2 in U. compressa. PMID:27395803

  15. First demonstration of a vehicle mounted 250GHz real time passive imager

    NASA Astrophysics Data System (ADS)

    Mann, Chris

    2009-05-01

    This paper describes the design and performance of a ruggedized passive Terahertz imager, the frequency of operation is a 40GHz band centred around 250GHz. This system has been specifically targeted at vehicle mounted operation, outdoors in extreme environments. The unit incorporates temperature stabilization along with an anti-vibration chassis and is sealed to allow it to be used in a dusty environment. Within the system, a 250GHz heterodyne detector array is mated with optics and scanner to allow real time imaging out to 100 meters. First applications are envisaged to be stand-off, person borne IED detection to 30 meters but the unique properties in this frequency band present other potential uses such as seeing through smoke and fog. The possibility for use as a landing aid is discussed. A detailed description of the system design and video examples of typical imaging output will be presented.

  16. 60 GHz wireless data transfer for tracker readout systems—first studies and results

    NASA Astrophysics Data System (ADS)

    Dittmeier, S.; Berger, N.; Schöning, A.; Soltveit, H. K.; Wiedner, D.

    2014-11-01

    To allow highly granular trackers to contribute to first level trigger decisions or event filtering, a fast readout system with very high bandwidth is required. Space, power and material constraints, however, pose severe limitations on the maximum available bandwidth of electrical or optical data transfers. A new approach for the implementation of a fast readout system is the application of a wireless data transfer at a carrier frequency of 60 GHz. The available bandwidth of several GHz allows for data rates of multiple Gbps per link. 60 GHz transceiver chips can be produced with a small form factor and a high integration level. A prototype transceiver currently under development at the University of Heidelberg is briefly described in this paper. To allow easy and fast future testing of the chip's functionality, a bit error rate test has been developed with a commercially available transceiver. Crosstalk might be a big issue for a wireless readout system with many links in a tracking detector. Direct crosstalk can be avoided by using directive antennas, linearly polarized waves and frequency channeling. Reflections from tracking modules can be reduced by applying an absorbing material like graphite foam. Properties of different materials typically used in tracking detectors and graphite foam in the 60 GHz frequency range are presented. For data transmission tests, links using commercially available 60 GHz transmitters and receivers are used. Studies regarding crosstalk and the applicability of graphite foam, Kapton horn antennas and polarized waves are shown.

  17. Initiation of phospholipomannan β-1,2 mannosylation involves Bmts with redundant activity, influences its cell wall location and regulates β-glucans homeostasis but is dispensable for Candida albicans systemic infection.

    PubMed

    Courjol, F; Mille, C; Hall, R A; Masset, A; Aijjou, R; Gow, N A R; Poulain, D; Jouault, T; Fradin, C

    2016-01-01

    Pathogenic and non-pathogenic fungi synthesize glycosphingolipids, which have a crucial role in growth and viability. Glycosphingolipids also contribute to fungal-associated pathogenesis. The opportunistic yeast pathogen Candida albicans synthesizes phospholipomannan (PLM), which is a glycosphingolipid of the mannosylinositol phosphorylceramide family. Through its lipid and glycan moieties, PLM contributes to the initial recognition of the yeast, causing immune system disorder and persistent fungal disease through activation of host signaling pathways. The lipid moiety of PLM activates the deregulation signaling pathway involved in yeast phagocytosis whereas its glycan moiety, composed of β-1,2 mannosides (β-Mans), participates to inflammatory processes through a mechanism involving Galectin-3. Biosynthesis of PLM β-Mans involves two β-1,2 mannosyltransferases (Bmts) that initiate (Bmt5) and elongate (Bmt6) the glycan chains. After generation of double bmtsΔ mutants, we show that Bmt5 has redundant activity with Bmt2, which can replace Bmt5 in bmt5Δ mutant. We also report that PLM is located in the inner layer of the yeast cell wall. PLM seems to be not essential for systemic infection of the yeast. However, defect of PLM β-mannosylation increases resistance of C. albicans to inhibitors of β-glucans and chitin synthesis, highlighting a role of PLM in cell wall homeostasis. PMID:26427558

  18. High power continuous wave microwave test bench at 4.6 GHz for experimental advanced superconducting tokamak.

    PubMed

    Ma, Wendong; Hu, Huaichuan; Shan, Jiafang; Xu, Handong; Wang, Mao; Wu, Zege; Zhu, Liang

    2013-01-01

    The lower hybrid current drive (LHCD) is an effective approach for auxiliary heating and non-inductive current drive in the experimental advanced superconducting tokamak. The 6 MW/4.6 GHz LHCD system is being designed and installed with twenty-four 250 KW/4.6 GHz high power klystron amplifiers. The test bench operating at 250 KW/4.6 GHz in continuous wave mode has been set up, which can test and train microwave components for the 6 MW/4.6 GHz LHCD system. In this paper, the system architecture and software of the microwave test bench are presented. Moreover, the test results of these klystrons and microwave units are described here in detail. The long term operation of the test bench and improved performance of all microwave component samples indicated that the related technologies on test bench can be applied in the large scale LHCD systems. PMID:23387646

  19. Low-Noise MMIC Amplifiers for 120 to 180 GHz

    NASA Technical Reports Server (NTRS)

    Pukala, David; Samoska, Lorene; Peralta, Alejandro; Bayuk, Brian; Grundbacher, Ron; Oliver, Patricia; Cavus, Abdullah; Liu, Po-Hsin

    2009-01-01

    Three-stage monolithic millimeter-wave integrated-circuit (MMIC) amplifiers capable of providing useful amounts of gain over the frequency range from 120 to 180 GHz have been developed as prototype low-noise amplifiers (LNAs) to be incorporated into instruments for sensing cosmic microwave background radiation. There are also potential uses for such LNAs in electronic test equipment, passive millimeter- wave imaging systems, radar receivers, communication receivers, and systems for detecting hidden weapons. The main advantage afforded by these MMIC LNAs, relative to prior MMIC LNAs, is that their coverage of the 120-to-180-GHz frequency band makes them suitable for reuse in a wider variety of applications without need to redesign them. Each of these MMIC amplifiers includes InP transistors and coplanar waveguide circuitry on a 50- mthick chip (see Figure 1). Coplanar waveguide transmission lines are used for both applying DC bias and matching of input and output impedances of each transistor stage. Via holes are incorporated between top and bottom ground planes to suppress propagation of electromagnetic modes in the substrate. On the basis of computational simulations, each of these amplifiers was expected to operate with a small-signal gain of 14 dB and a noise figure of 4.3 dB. At the time of writing this article, measurements of noise figures had not been reported, but on-chip measurements had shown gains approaching their simulated values (see Figure 2).

  20. 42GHz ECRH assisted Plasma Breakdown in tokamak SST-1

    NASA Astrophysics Data System (ADS)

    Shukla, B. K.; Pradhan, S.; Patel, Paresh; Babu, Rajan; Patel, Jatin; Patel, Harshida; Dhorajia, Pragnesh; Tanna, V.; Atrey, P. K.; Manchanda, R.; Gupta, Manoj; Joisa, Shankar; Gupta, C. N.; Danial, Raju; Singh, Prashant; Jha, R.; Bora, D.

    2015-03-01

    In SST-1, 42GHz ECRH system has been commissioned to carry out breakdown and heating experiments at 0.75T and 1.5T operating toroidal magnetic fields. The 42GHz ECRH system consists of high power microwave source Gyrotron capable to deliver 500kW microwave power for 500ms duration, approximately 20 meter long transmission line and a mirror based launcher. The ECRH power in fundamental O-mode & second harmonic X-mode is launched from low field side (radial port) of the tokamak. At 0.75T operation, approximately 300 kW ECH power is launched in second harmonic X-mode and successful ECRH assisted breakdown is achieved at low loop_voltage ~ 3V. The ECRH power is launched around 45ms prior to loop voltage. The hydrogen pressure in tokamak is maintained ~ 1×10-5mbar and the pre-ionized density is ~ 4×1012/cc. At 1.5T operating toroidal magnetic field, the ECH power is launched in fundamental O-mode. The ECH power at fundamental harmonic is varied from 100 kW to 250 kW and successful breakdown is achieved in all ECRH shots. In fundamental harmonic there is no delay in breakdown while at second harmonic ~ 40ms delay is observed, which is normal in case of second harmonic ECRH assisted breakdown.

  1. A 140 GHz pulsed EPR/212 MHz NMR spectrometer for DNP studies

    NASA Astrophysics Data System (ADS)

    Smith, Albert A.; Corzilius, Björn; Bryant, Jeffrey A.; DeRocher, Ronald; Woskov, Paul P.; Temkin, Richard J.; Griffin, Robert G.

    2012-10-01

    We described a versatile spectrometer designed for the study of dynamic nuclear polarization (DNP) at low temperatures and high fields. The instrument functions both as an NMR spectrometer operating at 212 MHz (1H frequency) with DNP capabilities, and as a pulsed-EPR operating at 140 GHz. A coiled TE011 resonator acts as both an NMR coil and microwave resonator, and a double balanced (1H, 13C) radio frequency circuit greatly stabilizes the NMR performance. A new 140 GHz microwave bridge has also been developed, which utilizes a four-phase network and ELDOR channel at 8.75 GHz, that is then multiplied and mixed to obtain 140 GHz microwave pulses with an output power of 120 mW. Nutation frequencies obtained are as follows: 6 MHz on S = 1/2 electron spins, 100 kHz on 1H, and 50 kHz on 13C. We demonstrate basic EPR, ELDOR, ENDOR, and DNP experiments here. Our solid effect DNP results demonstrate an enhancement of 144 and sensitivity gain of 310 using OX063 trityl at 80 K and an enhancement of 157 and maximum sensitivity gain of 234 using Gd-DOTA at 20 K, which is significantly better performance than previously reported at high fields (⩾3 T).

  2. Spacecraft mass trade-offs versus radio-frequency power and antenna size at 8 GHz and 32 GHz

    NASA Technical Reports Server (NTRS)

    Gilchriest, C. E.

    1987-01-01

    The purpose of this analysis is to help determine the relative merits of 32 GHz over 8 GHz for future deep space communications. This analysis is only a piece of the overall analysis and only considers the downlink communication mass, power, and size comparisons for 8 and 32 GHz. Both parabolic antennas and flat-plate arrays are considered. The Mars Sample Return mission is considered in some detail as an example of the tradeoffs involved; for this mission the mass, power, and size show a definite advantage of roughly 2:1 in using the 32 GHz over 8 GHz.

  3. A 75-116-Ghz LNA with 23-K Noise Temperature at 108 Ghz

    NASA Technical Reports Server (NTRS)

    Varonen, Mikko; Reeves, Rodrigo; Kangaslahti, Pekka; Samoska, Lorene; Cleary, Kieran; Gawande, Rohit; Fung, Andy; Gaier, Todd; Weinreb, Sander; Readhead, Anthony C. S.; Sarkozy, Stephen; Lai, Richard

    2013-01-01

    In this paper we present the design and measurement results, both on-wafer and in package, of an ultra-low-noise and wideband monolithic microwave integrated circuit (MMIC) amplifier in the frequency range of 75 to 116 GHz. The three-stage amplifier packaged in a WR10 waveguide housing and fabricated using a 35-nm InP HEMT technology achieves a record noise temperature of 23 K at 108 GHz when cryogenically cooled to 27 K. The measured gain is 22 to 27 dB for frequency range of 75 to 116 GHz. Furthermore, the amplifier utilizes four finger devices with total gate width of 60 um resulting for improved linearity.

  4. Demonstration of An Image Rejection Mixer for High Frequency Applications (26-36 GHz)

    NASA Technical Reports Server (NTRS)

    Bankston, Cheryl D.; Carlstrom, John E.

    1999-01-01

    A new high frequency image-rejection mixer was successfully tested in a 26-36 GHz band receiver. This paper briefly describes the motivation for implementation of an image rejection mixer in a receiver system, the basic operation of an image rejection mixer, and the development and testing of an image rejection mixer for a high frequency, cryogenic receiver system.

  5. Configuration study for a 30 GHz monolithic receive array, volume 2

    NASA Technical Reports Server (NTRS)

    Nester, W. H.; Cleaveland, B.; Edward, B.; Gotkis, S.; Hesserbacker, G.; Loh, J.; Mitchell, B.

    1984-01-01

    The formalism of the sidelobe suppression algorithm and the method used to calculate the system noise figure for a 30 GHz monolithic receive array are presented. Results of array element weight determination and performance studies of a Gregorian aperture image system are also given.

  6. Magnetic and dielectric properties of one-dimensional array of S = 1/2 linear trimer system Na{sub 2}Cu{sub 3}Ge{sub 4}O{sub 12}

    SciTech Connect

    Yasui, Yukio; Kawamura, Yuji; Kobayashi, Yoshiaki; Sato, Masatoshi

    2014-05-07

    Magnetic susceptibility χ, specific heat C, capacitance C{sub p}, and {sup 23}Na-NMR measurements have been carried out on polycrystalline samples of quantum spin linear trimer system Na{sub 2}Cu{sub 3}Ge{sub 4}O{sub 12}, which has the one-dimensional array of Cu{sub 3}O{sub 8} trimers formed of edge-sharing three CuO{sub 4} square planes. The exchange interactions between the Cu{sup 2+} (S = 1/2) spins have been determined by analyzing χ-T and C-T curves. By employing the isolated S = 1/2 Heisenberg trimer model above 70 K, the nearest-neighbor exchange couplings J{sub 1} and the second-neighbor one J{sub 2} in trimer have been evaluated to J{sub 1}/k{sub B} = 30 ± 20 K (antiferromagnetic) and J{sub 2}/k{sub B} = 340 ± 20 K. At low temperature region, two spins of the edge in the Cu{sub 3}O{sub 8} trimers form a nonmagnetic singlet by strong antiferromagnetic interaction J{sub 2}, and the spin left in the center of the Cu{sub 3}O{sub 8} trimer forms one-dimensional chains by the exchange interaction J{sub 3} between the trimers. By employing the S = 1/2 uniform Heisenberg chain model below 70 K, we have evaluated to J{sub 3}/k{sub B} = 18 ± 1 K. The mechanism of multiferroic behavior at T{sub c} = 2 K is discussed.

  7. Feasibility studies for a wireless 60 GHz tracking detector readout

    NASA Astrophysics Data System (ADS)

    Dittmeier, S.; Schöning, A.; Soltveit, H. K.; Wiedner, D.

    2016-09-01

    The amount of data produced by highly granular silicon tracking detectors in high energy physics experiments poses a major challenge to readout systems. At high collision rates, e.g. at LHC experiments, only a small fraction of data can be read out with currently used technologies. To cope with the requirements of future or upgraded experiments new data transfer techniques are required which offer high data rates at low power and low material budget. Wireless technologies operating in the 60 GHz band or at higher frequencies offer high data rates and are thus a promising upcoming alternative to conventional data transmission via electrical cables or optical fibers. Using wireless technology, the amount of cables and connectors in detectors can be significantly reduced. Tracking detectors profit most from a reduced material budget as fewer secondary particle interactions (multiple Coulomb scattering, energy loss, etc.) improve the tracking performance in general. We present feasibility studies regarding the integration of the wireless technology at 60 GHz into a silicon tracking detector. We use spare silicon strip modules of the ATLAS experiment as test samples which are measured to be opaque in the 60 GHz range. The reduction of cross talk between links and the attenuation of reflections is studied. An estimate of the maximum achievable link density is given. It is shown that wireless links can be placed as close as 2 cm next to each other for a layer distance of 10 cm by exploiting one or several of the following measures: highly directive antennas, absorbers like graphite foam, linear polarization and frequency channeling. Combining these measures, a data rate area density of up to 11 Tb/(s·m2) seems feasible. In addition, two types of silicon sensors are tested under mm-wave irradiation in order to determine the influence of 60 GHz data transmission on the detector performance: an ATLAS silicon strip sensor module and an HV-MAPS prototype for the Mu3e

  8. Cloud Images and Turbulent Spectra Taken by the NRL 94 GHz WARLOC Radar

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace

    2003-10-01

    Gyroklystron development has been reported at APS DPP meetings for years. One of these, a 94 GHz, 100 kW gyroklystron has been incorporated into an NRL radar system called WARLOC, situated on the west shore of Chesapeake Bay. One application of WARLOC has been the study of clouds[1,2]. The added power of the gyroklystron has made possible the rapid resolution of cloud structure with about 10 meter resolution. Images of a variety of clouds have been rapidly acquired. With this fine resolution, it is possible to measure density correlation functions and turbulent spectra, and there are a number of interesting results here which we believe have been obtained for the first time. While there have been many measurements of turbulent spectra in the atmosphere, some with a wide range of wavelength, vitually all (at least with fine resolution) have been in one dimension. WARLOC has to measured turbulent correlation functions with good resolution in 2 dimensions. It confirms that the spectral index is about -5/3 as the Kolmogorov theory predicts, but it also shows that the spectrum is quite anisotropic, in contradiction to one of the principle assumptions of the theory. Furthermore, it shows that unlike mosts fluid instabilities in stratified media (for instance Rayleigh Taylor or Kelvin Helmholtz) , the spectrum is wavelike parallel to the stratification and random perpendicular to it. It has more like a Weibel instability structure, perhaps suggesting that velocity stream lines in clouds attract one another as do current elements in a plasma.

  9. Relative performance of 8.5-GHz and 32-GHz telemetry links on the basis of total data return per pass

    NASA Astrophysics Data System (ADS)

    Koerner, M. A.

    1986-11-01

    The performance of X-band (8.5-GHz) and 32-GHz telemetry links is compared on the basis of the total data return per DSN station pass. Differences in spacecraft transmitter efficiency, transmit circuit loss, and transmitting antenna area efficiency and pointing loss are not considered in these calculations. Thus, the performance differentials calculated in this memo are those produced by a DSN 70-m station antenna gain and clear weather receiving system noise temperature and by weather. These calculations show that, assuming mechanical compensation of the DSN 70-m antenna for 32-GHz operation, a performance advantage for 32 GHz over X-band of 8.2 dB can be achieved for at least one DSN station location. Even if only Canberra and Madrid are used, a performance advantage of 7.7 dB can be obtained for at least one DSN station location. A system using a multiple beam feed (electronic compensation) should achieve similar results.

  10. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Bauhahn, P.; Geddes, J.; Sokolov, V.; Contolatis, T.

    1988-01-01

    The fourth year progress is described on a program to develop a 27.5 to 30 GHz GaAs monolithic receive module for spaceborne-communication antenna feed array applications, and to deliver submodules for experimental evaluation. Program goals include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. Submicron gate length single and dual gate FETs are described and applied in the development of monolithic gain control amplifiers and low noise amplifiers. A two-stage monolithic gain control amplifier based on ion implanted dual gate MESFETs was designed and fabricated. The gain control amplifier has a gain of 12 dB at 29 GHz with a gain control range of over 13 dB. A two-stage monolithic low noise amplifier based on ion implanted MESFETs which provides 7 dB gain with 6.2 dB noise figure at 29 GHz was also developed. An interconnected receive module containing LNA, gain control, and phase shifter submodules was built using the LNA and gain control ICs as well as a monolithic phase shifter developed previously under this program. The design, fabrication, and evaluation of this interconnected receiver is presented. Progress in the development of an RF/IF submodule containing a unique ion implanted diode mixer diode and a broadband balanced mixer monolithic IC with on-chip IF amplifier and the initial design of circuits for the RF portion of a two submodule receiver are also discussed.

  11. Electron gun simulation for 95 GHz gyrotron

    SciTech Connect

    Singh, Udaybir; Kumar, Nitin; Sinha, A.K. E-mail: aksinha@ceeri.ernet.in; Purohit, L.P.

    2011-07-01

    A triode type Magnetron Injection Gun (MIG) for a 2 MW, 95 GHz Gyrotron has been designed by using commercially available code EGUN and another in-house developed code MIGANS. The operating mode of the gyrotron is TE{sub 24.8} and it is operated in the fundamental harmonic. The operating voltages of the modulating anode and the accelerating anode are 61 kV and 85 kV respectively. The parametric dependences of modulating anode voltage and cathode magnetic field on the beam quality have also been studied. (author)

  12. An LTCC 94 GHz Antenna Array

    SciTech Connect

    Aguirre, J; Pao, H; Lin, H; Garland, P; O'Neill, D; Horton, K

    2007-12-21

    An antenna array is designed in low-temperature cofired ceramic (LTCC) Ferro A6M{trademark} for a mm-wave application. The antenna is designed to operate at 94 GHz with a few percent bandwidth. A key manufacturing technology is the use of 3 mil diameter vias on a 6 mil pitch to construct the laminated waveguides that form the beamforming network and radiating elements. Measurements for loss in the laminated waveguide are presented. The slot-fed cavity-radiating element is designed to account for extremely tight mutual coupling between elements. The array incorporates a slot-fed multi-layer beamforming network.

  13. A wideband 12 GHz down converter

    NASA Technical Reports Server (NTRS)

    Newman, B. A.; Rosenbaum, F. J.

    1972-01-01

    The design, fabrication, and evaluation of a single ended 12 GHz down-converter suitable for use in a low cost satellite ground terminal is described. The mixer uses waveguide, coaxial and MIC (microwave integrated circuit) transmission line components. Theoretical and experimental analyses of several microstrip circuit elements are presented including the traveling wave-directional filter, quarter wave-length proximity directional coupler, low pass filter and the quarterwave band stop filter. The optimum performance achieved for the mixer using a packaged diode was 9.4 db conversion loss and a bandwidth of 275 MHz.

  14. 5-GHz fully differential multifunctional circuit

    NASA Astrophysics Data System (ADS)

    Plessas, F.; Tsitouras, A.; Kalivas, G.

    2012-09-01

    This letter presents a multifunctional circuit realising the functions of oscillation, frequency multiplication and frequency division at 5-GHz. A theoretical and experimental description of the circuit is given. The injection signal, which is used to stabilise the oscillation, is at a sub- or super-harmonic of the oscillation frequency having a power level as low as -30 dBm. Calculations and measurements of the phase noise are reported which indicate a phase noise improvement. The implementation of the circuit exhibits a phase noise of -110 dBc/Hz at 100 KHz offset whereas the improvement depends on the relative noise of the injected signal.

  15. SUPESv.4.1.2

    Energy Science and Technology Software Center (ESTSC)

    2001-04-25

    SUPES is a collection of subprograms that perform frequently used non-numerical services for the engineering applications programmer. The three functional categories of SUPES are: (1) input command parsing, (2) dynamic memory management, and (3) system dependent utilities. The subprograms in categories one and two are written in standard FORTRAN-77, while the subprograms in category three are written provide a standarized FORTRAN interface to several system dependent features.

  16. Heterodyne detection of the 752.033-GHz H2O rotational absorption line

    NASA Technical Reports Server (NTRS)

    Dionne, G. F.; Fitzgerald, J. F.; Chang, T. S.; Litvak, M. M.; Fetterman, H. R.

    1980-01-01

    A tunable high resolution two stage heterodyne radiometer was developed for the purpose of investigating the intensity and lineshape of the 752.033 GHz rotational transition of water vapor. Single-sideband system noise temperatures of approximately 45,000 K were obtained using a sensitive GaAs Schottky diode as the first stage mixer. First local oscillator power was supplied by a CO2 laser pumped formic acid laser (761.61 GHz), generating an X-band IF signal with theoretical line center at 9.5744 GHz. Second local oscillator power was provided by means of a 3 GHz waveguide cavity filter with only 9 dB insertion loss. In absorption measurements of the H2O taken from a laboratory simulation of a high altitude rocket plume, the center frequency of the 752 GHz line was determined to within 1 MHz of the reported value. A rotational temperature 75 K, a linewidth 5 MHz and a Doppler shift 3 MHz were measured with the line-of-sight intersecting the simulated-plume axis at a distance downstream of 30 nozzle diameters. These absorption data were obtained against continuum background radiation sources at temperatures of 1175 and 300 K.

  17. Phase equilibria and crystal chemistry of the CaO–1/2 Nd{sub 2}O{sub 3}–CoO{sub z} system at 885 °C in air

    SciTech Connect

    Wong-Ng, W.; Laws, W.; Talley, K.R.; Huang, Q.; Yan, Y.; Martin, J.; Kaduk, J.A.

    2014-07-01

    The phase diagram of the CaO–1/2 Nd{sub 2}O{sub 3}–CoO{sub z} system at 885 °C in air has been determined. The system consists of two calcium cobaltate compounds that have promising thermoelectric properties, namely, the 2D thermoelectric oxide solid solution, (Ca{sub 3−x}Nd{sub x})Co{sub 4}O{sub 9−z} (0≤x≤0.5), which has a misfit layered structure, and Ca{sub 3}Co{sub 2}O{sub 6} which consists of 1D chains of alternating CoO{sub 6} trigonal prisms and CoO{sub 6} octahedra. Ca{sub 3}Co{sub 2}O{sub 6} was found to be a point compound without the substitution of Nd on the Ca site. The reported Nd{sub 2}CoO{sub 4} phase was not observed at 885 °C. A ternary (Ca{sub 1−x}Nd{sub 1+x})CoO{sub 4−z} (x=0) phase, or (CaNdCo)O{sub 4−z}, was found to be stable at this temperature. A solid solution region of distorted perovskite (Nd{sub 1−x}Ca{sub x})CoO{sub 3−z} (0≤x≤0.25, space group Pnma) was established. In the peripheral binary systems, while a solid solution region was identified for (Nd{sub 1−x}Ca{sub x}){sub 2}O{sub 3−z} (0≤x≤0.2), Nd was not found to substitute in the Ca site of CaO. Six solid solution tie-line regions and six three-phase regions were determined in the CaO–Nd{sub 2}O{sub 3}–CoO{sub z} system in air. - Graphical abstract: Phase diagram of the 1/2 Nd{sub 2}O{sub 3}–CaO–CoO{sub x} system at 885 °C, showing the limits of various solid solutions, and the tie-line relationships of various phases. - Highlights: • Phase diagram of the CaO–1/2 Nd{sub 2}O{sub 3}–CoO{sub z} system constructed. • System consists of thermoelectric oxide (Ca{sub 3−x}Nd{sub x})Co{sub 4}O{sub 9−z} (0≤x≤0.5). • Structures of (Nd{sub 1−x}Ca{sub x})CoO{sub 3−z} and (CaNdCo)O{sub 4−z} determined.

  18. 35 GHz gyroklystron amplifier development at NRL

    SciTech Connect

    Choi, J.J.; Ganguly, A.K.; Blank, M.

    1996-12-31

    Experiments on a two-cavity gyroklystron are underway to demonstrate a 140 kW, 35 GHz gyroklystron amplifier, operating at a fundamental beam cyclotron mode and a TE{sub 011} cylindrical cavity mode. A high power electron beam of 70 kV, 6.6A is produced from a magnetron-injection-gun which is optimally designed for the TE{sub 01} mode at 35 GHz. Drift tubes consisting of lossy ceramic rings (80% BeO, 20% SiC) are designed to suppress undesired oscillations. A drive power is injected into the first cavity through a multi-hole coaxial coupler. A capacitive probe is placed directly before the input cavity to measure the beam velocity ratio. Large signal nonlinear calculations predict a peak efficiency of 30% (extracted power = 140 kW) and a saturated gain of 20dB over a 0.3% bandwidth at {alpha} = 1.5, {Delta}v{sub z}/v{sub z} = 20% at 13.3 kG and Q{sub 1} = Q{sub 2} = 200. Design parameters and initial hot-test results of the amplifier will be presented.

  19. 28 GHz Gyrotron ECRH on LDX

    NASA Astrophysics Data System (ADS)

    Woskov, P. P.; Kesner, J.; Michael, P. C.; Garnier, D. T.; Mauel, M. E.

    2010-12-01

    A 10 kW, CW, 28 GHz gyrotron has been implemented on LDX to increase the plasma density and to more fully explore the potential of high beta plasma stability in a dipole magnetic configuration. This added power represents about a 60% increase in ECRH to a new total of 26.9 kW with sources at 2.45, 6.4, and 10.5 GHz. The 1 Tesla resonances in LDX form small rings encompassing the entire plasma cross-section above and below the floating coil (F-coil) near the dipole axial region. A 32.5 mm diameter TE01 waveguide with a partial Vlasov step cut launches a diverging beam from above the F-coil that depends on internal wall reflections for plasma coupling. Initial gyrotron only plasmas exhibit steep natural profiles with fewer hot electrons than with the other sources. The background scattered radiation suggests that only about half the power is being absorbed with the present launcher.

  20. High Power 35GHz Gyroklystron Amplifiers

    NASA Astrophysics Data System (ADS)

    Choi, Jin; McCurdy, A.; Wood, F.; Kyser, R.; Danly, B.; Levush, B.; Parker, R.

    1997-05-01

    High power coherent radiation sources at 35GHz are attractive for next generation high gradient particle accelerators. A multi-cavity gyroklystron amplifier is considered a promising candidate for high power millimeter wave generation. Experiments on two-cavity and three cavity gyroklystron amplifiers are underway to demonstrate a 140kW, 35GHz coherent radiation amplification. Though this power is low compared with that needed for colliders, many of the issues associated with the bandwidth of such devices can be addressed in the present experiments. High bandwidth is important to permit the rapid phase shifts required for RF pulse compression schemes presently under investigation. Large signal calculations (P.E. Latham, W. Lawson, V. Irwin, IEEE Trans. Plasma Sci., Vol. 22, No. 5, pp. 804-817, 1994.) predict that the two-cavity gyroklystron produces a peak power of 140kW, corresponding to 33% efficiency. Calculations also show that a stagger tuned three cavity circuit increases a bandwidth to more than 0.7%. Experimental results of the amplifier will be presented and compared with the theory.

  1. The 90 GHz radiometric imaging. [for terrain analysis

    NASA Technical Reports Server (NTRS)

    King, H. E.; White, J. D.; Wilson, W. J.; Mori, T. T.; Hollinger, J. P.; Troy, B. E.; Kenney, J. E.; Mcgoogan, J. T.

    1976-01-01

    A 90-GHz (3 mm wavelength) radiometer with a noise output fluctuation of 0.22 K (RMS), with a scanning antenna beam mirror, and the data processing system are described. Real-time radiometric imaging of terrain and man-made objects are shown. Flying at an altitude of 1500 ft a radiometer antenna with a 2 degrees halfpower beamwidth can distinguish landforms, waterways, roads, runways, bridges, ships at sea and their wakes, aircraft on runways, and athletic fields. A flight taken at an altitude of 3000 ft with approximately 2000 ft of clouds below the radiometer demonstrates the ability to distinguish bridges, rivers, marshland and other landforms even though the clouds are optically opaque. The radiometric images of a few representative scenes along with photographs of the corresponding scenes are presented to demonstrate the resolution of the imager system.

  2. ATS-6 - Preliminary results from the 13/18-GHz COMSAT Propagation Experiment

    NASA Technical Reports Server (NTRS)

    Hyde, G.

    1975-01-01

    The 13/18-GHz COMSAT Propagation Experiment (CPE) is reviewed, the data acquisition and processing are discussed, and samples of preliminary results are presented. The need for measurements of both hydrometeor-induced attenuation statistics and diversity effectiveness is brought out. The facilitation of the experiment - CPE dual frequency and diversity site location, the CPE ground transmit terminals, the CPE transponder on Applications Technology Satellite-6 (ATS-6), and the CPE receive and data acquisition system - is briefly examined. The on-line preprocessing of the received signal is reviewed, followed by a discussion of the off-line processing of this database to remove signal fluctuations not due to hydrometeors. Finally, samples of the results of first-level analysis of the resultant data for the 18-GHz diversity site near Boston, Mass., and for the dual frequency 13/18-GHz site near Detroit, Mich., are presented and discussed.

  3. The Arcetri 40-50 GHz receiver for the Medicina Radiotelescope.

    NASA Astrophysics Data System (ADS)

    Tofani, G.; Catarzi, M.; Natale, V.

    Numerous spectral lines of relevant astronomical importance are available in the wavelength range between 20 and 70 GHz. In this band transitions of several molecules like SiO, CS, HNCO, CH3OH, H2CO plays a central role in the different phases of the interstellar medium. In order to extend the observations with the Medicina Radiotelescope of Galactic masers, a cooled receiver operating in the range 40-50 GHz has been built for continuum and line observations. The system has been tested at the Cassegrain focus of the Medicina Radiotelescope on continuum and SiO maser sources.

  4. Clean Beam Patterns with Low Crosstalk Using 850 GHz Microwave Kinetic Inductance Detectors

    NASA Astrophysics Data System (ADS)

    Yates, S. J. C.; Baselmans, J. J. A.; Baryshev, A. M.; Doyle, S.; Endo, A.; Ferrari, L.; Hochgürtel, S.; Klein, B.

    2014-09-01

    We present modeling of distributed /4 microwave kinetic inductance detectors (MKIDs) showing how electromagnetic cross coupling between the MKID resonators can occur at frequencies corresponding to the microwave readout signal (4-8 GHz). We then show system beam pattern measurements in the reimaged focal plane of a 72 detector array of lens-antenna coupled MKIDs at 850 GHz, which enables a direct measure of any residual optical crosstalk. With use of transmission line bridges we see no residual cross coupling between MKIDs and hence low crosstalk down to the 30 dB level, with near Gaussian shape (limited by reimaging optics) to 10 dB level.

  5. Twenty-GHz broadband microstrip array with electromagnetically coupled high-{Tc} superconducting feed network

    SciTech Connect

    Herd, J.S.; Poles, L.D.; Kenney, J.P.

    1996-07-01

    The use of high-temperature superconducting (HTS) feed lines and phase shifters can substantially improve the performance of microwave and millimeter-wave printed phased array antennas. A novel antenna architecture is described that provides a broadband radiating aperture to be used as a scanning array with compatible low-loss HTS phase shifters. The approach follows an earlier design demonstrated at 12 GHz, and this work extends the approach to 20 GHz. The antenna design, radiation patterns, bandwidth measurements, and thermal analysis are reported. A prototype thermal isolator design is described that reduces the heat load of coaxial interconnections between cryocooled and room temperature systems.

  6. A Novel Quantum Blind Signature Scheme with Four-particle GHZ States

    NASA Astrophysics Data System (ADS)

    Fan, Ling; Zhang, Ke-Jia; Qin, Su-Juan; Guo, Fen-Zhuo

    2016-02-01

    In an arbitrated quantum signature scheme, the signer signs the message and the receiver verifies the signature's validity with the assistance of the arbitrator. We present an arbitrated quantum blind signature scheme by using four-particle entangled Greenberger-Horne-Zeilinger (GHZ) states. By using the special relationship of four-particle GHZ states, we cannot only support the security of quantum signature, but also guarantee the anonymity of the message owner. It has a wide application to E-payment system, E-government, E-business, and etc.

  7. Direct stress optic coefficients for YTZP ceramic and PTFE at GHz frequencies.

    PubMed

    Schemmel, Peter; Diederich, Gilles; Moore, Andrew J

    2016-04-18

    We report the first measurement of the direct stress optic coefficient for yttria-partially stabilized zirconia (YTZP) ceramic, using illumination between 260 and 380 GHz with applied stresses up to 27 MPa. YTZP exhibited a linear change in refractive index as a function of stress across the entire applied stress domain. A direct stress optic coefficient was also measured for polytetrafluoroethylene (PTFE). PTFE showed viscoelastic behavior at stress values above 4.5 MPa. These results open the way for quantitative sub-surface stress measurements in structural ceramics and ceramic coating systems at GHz and THz frequencies. PMID:27137250

  8. EPR of Cu2+ Prion Protein Constructs at 2 GHz Using the g⊥ Region to Characterize Nitrogen Ligation

    PubMed Central

    Hyde, James S.; Bennett, Brian; Walter, Eric D.; Millhauser, Glenn L.; Sidabras, Jason W.; Antholine, William E.

    2009-01-01

    Abstract A double octarepeat prion protein construct, which has two histidines, mixed with copper sulfate in a 3:2 molar ratio provides at most three imidazole ligands to each copper ion to form a square-planar Cu2+ complex. This work is concerned with identification of the fourth ligand. A new (to our knowledge) electron paramagnetic resonance method based on analysis of the intense features of the electron paramagnetic resonance spectrum in the g⊥ region at 2 GHz is introduced to distinguish between three and four nitrogen ligands. The methodology was established by studies of a model system consisting of histidine imidazole ligation to Cu2+. In this spectral region at 2 GHz (S-band), g-strain and broadening from the possible rhombic character of the Zeeman interaction are small. The most intense line is identified with the MI = +1/2 extra absorption peak. Spectral simulation demonstrated that this peak is insensitive to cupric Ax and Ay hyperfine interaction. The spectral region to the high-field side of this peak is uncluttered and suitable for analysis of nitrogen superhyperfine couplings to determine the number of nitrogens. The spectral region to the low-field side of the intense extra absorption peak in the g⊥ part of the spectrum is sensitive to the rhombic distortion parameters Ax and Ay. Application of the method to the prion protein system indicates that two species are present and that the dominant species contains four nitrogen ligands. A new loop-gap microwave resonator is described that contains ∼1 mL of frozen sample. PMID:19383478

  9. Amplification of picosecond pulses in a 140-GHz gyrotron-traveling wave tube.

    PubMed

    Kim, H J; Nanni, E A; Shapiro, M A; Sirigiri, J R; Woskov, P P; Temkin, R J

    2010-09-24

    An experimental study of picosecond pulse amplification in a gyrotron-traveling wave tube (gyro-TWT) has been carried out. The gyro-TWT operates with 30 dB of small signal gain near 140 GHz in the HE₀₆ mode of a confocal waveguide. Picosecond pulses show broadening and transit time delay due to two distinct effects: the frequency dependence of the group velocity near cutoff and gain narrowing by the finite gain bandwidth of 1.2 GHz. Experimental results taken over a wide range of parameters show good agreement with a theoretical model in the small signal gain regime. These results show that in order to limit the pulse broadening effect in gyrotron amplifiers, it is crucial to both choose an operating frequency at least several percent above the cutoff of the waveguide circuit and operate at the center of the gain spectrum with sufficient gain bandwidth. PMID:21230783

  10. Physical Conditions around 6.7 GHz Methanol Masers. I. Ammonia

    NASA Astrophysics Data System (ADS)

    Pandian, J. D.; Wyrowski, F.; Menten, K. M.

    2012-07-01

    Methanol masers at 6.7 GHz are known to be tracers of high-mass star formation in our Galaxy. In this paper, we study the large-scale physical conditions in the star-forming clumps/cores associated with 6.7 GHz methanol masers using observations of the (1, 1), (2, 2), and (3, 3) inversion transitions of ammonia with the Effelsberg telescope. The gas kinetic temperature is found to be higher than in infrared dark clouds, highlighting the relatively evolved nature of the maser sources. Other than a weak correlation between maser luminosity and the ammonia line width, we do not find any differences between low- and high-luminosity methanol masers.

  11. HBAR-based 3.6 GHz oscillator with low power consumption and low phase noise.

    PubMed

    Yu, Hongyu; Lee, Chuang-yuan; Pang, Wei; Zhang, Hao; Brannon, Alan; Kitching, John; Kim, Eun Sok

    2009-02-01

    We have designed and built 2 oscillators at 1.2 and 3.6 GHz based on high-overtone bulk acoustic resonators (HBARs) for application in chip-scale atomic clocks (CSACs). The measured phase noise of the 3.6 GHz oscillator is -67 dBc/Hz at 300 Hz offset and -100 dBc/Hz at 10 kHz offset. The Allan deviation of the free-running oscillator is 1.5 x 10(-9) at one second integration time and the power consumption is 3.2 mW. The low phase noise allows the oscillator to be locked to a CSAC physics package without significantly degrading the clock performance. PMID:19251528

  12. Amplification of Picosecond Pulses in a 140-GHz Gyrotron-Traveling Wave Tube

    PubMed Central

    Kim, H. J.; Nanni, E. A.; Shapiro, M. A.; Sirigiri, J. R.; Woskov, P. P.; Temkin, R. J.

    2011-01-01

    An experimental study of picosecond pulse amplification in a gyrotron-traveling wave tube (gyro-TWT) has been carried out. The gyro-TWT operates with 30 dB of small signal gain near 140 GHz in the HE06 mode of a confocal waveguide. Picosecond pulses show broadening and transit time delay due to two distinct effects: the frequency dependence of the group velocity near cutoff and gain narrowing by the finite gain bandwidth of 1.2 GHz. Experimental results taken over a wide range of parameters show good agreement with a theoretical model in the small signal gain regime. These results show that in order to limit the pulse broadening effect in gyrotron amplifiers, it is crucial to both choose an operating frequency at least several percent above the cutoff of the waveguide circuit and operate at the center of the gain spectrum with sufficient gain bandwidth. PMID:21230783

  13. 32 GHz Celestial Reference Frame Survey for Dec < -45 deg.

    NASA Astrophysics Data System (ADS)

    Horiuchi, Shinji; Phillips, Chris; Jacobs, Christopher; Sotuela, Ioana; Garcia miro, Cristina

    2012-04-01

    We propose to conduct a LBA survey of compact radio sources at 32 GHz near the south pole region. This is the first attempt to fill the gap in the existing 32 GHz catalogue establish by NASA Deep Space Network toward completing the full sky celestial reference frame at 32 GHz. The catalogue will be used for future spacecraft navigation by NASA and other space agencies as well as for radio astronomical observations with southern radio telescope arrays such as ATCA and LBA.

  14. Highly efficient Bell state purification and GHZ preparation and purification

    NASA Astrophysics Data System (ADS)

    Krastanov, Stefan; Jiang, Liang

    2016-05-01

    We investigate novel protocols for entanglement purification with Bell states. Employing genetic algorithms for the design of the purification circuit, we obtain shorter circuits giving higher success rates and better final fidelities than what is available in the literature. We generalize these circuits in order to prepare GHZ states from Bell pairs and to subsequently purify these GHZ states. We provide new threshold estimates for codes using these GHZ states for fault-tolerant stabilizer measurements.

  15. Frequencies above 10 GHz. [for satellite communication services

    NASA Technical Reports Server (NTRS)

    Mcavoy, N.

    1976-01-01

    The paper discusses some of the problems associated with extending the frequencies used by satellite communication services above 10 GHz. The principal propagation limitation above 10 GHz occurs when precipitation intercepts the earth-space propagation path and causes attenuation and depolarization of the transmitted signal. World attenuation statistics at 12 GHz for earth-space paths are discussed, revealing the effect of climate on attenuation properties. Space diversity is discussed as an effective means of overcoming precipitation-caused attenuation problems.

  16. Microwave ablation at 915 MHz vs 2.45 GHz: A theoretical and experimental investigation

    SciTech Connect

    Curto, Sergio; Taj-Eldin, Mohammed; Fairchild, Dillon; Prakash, Punit

    2015-11-15

    Purpose: The relationship between microwave ablation system operating frequency and ablation performance is not currently well understood. The objective of this study was to comparatively assess the differences in microwave ablation at 915 MHz and 2.45 GHz. Methods: Analytical expressions for electromagnetic radiation from point sources were used to compare power deposition at the two frequencies of interest. A 3D electromagnetic-thermal bioheat transfer solver was implemented with the finite element method to characterize power deposition and thermal ablation with asymmetrical insulated dipole antennas (single-antenna and dual-antenna synchronous arrays). Simulation results were validated against experiments in ex vivo tissue. Results: Theoretical, computational, and experimental results indicated greater power deposition and larger diameter ablation zones when using a single insulated microwave antenna at 2.45 GHz; experimentally, 32 ± 4.1 mm and 36.3 ± 1.0 mm for 5 and 10 min, respectively, at 2.45 GHz, compared to 24 ± 1.7 mm and 29.5 ± 0.6 mm at 915 MHz, with 30 W forward power at the antenna input port. In experiments, faster heating was observed at locations 5 mm (0.91 vs 0.49 °C/s) and 10 mm (0.28 vs 0.15 °C/s) from the antenna operating at 2.45 GHz. Larger ablation zones were observed with dual-antenna arrays at 2.45 GHz; however, the differences were less pronounced than for single antennas. Conclusions: Single- and dual-antenna arrays systems operating at 2.45 GHz yield larger ablation zone due to greater power deposition in proximity to the antenna, as well as greater role of thermal conduction.

  17. Contrasting Roles of the Apoplastic Aspartyl Protease APOPLASTIC, ENHANCED DISEASE SUSCEPTIBILITY1-DEPENDENT1 and LEGUME LECTIN-LIKE PROTEIN1 in Arabidopsis Systemic Acquired Resistance1,2[W

    PubMed Central

    Breitenbach, Heiko H.; Wenig, Marion; Wittek, Finni; Jordá, Lucia; Maldonado-Alconada, Ana M.; Sarioglu, Hakan; Colby, Thomas; Knappe, Claudia; Bichlmeier, Marlies; Pabst, Elisabeth; Mackey, David; Parker, Jane E.; Vlot, A. Corina

    2014-01-01

    Systemic acquired resistance (SAR) is an inducible immune response that depends on ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). Here, we show that Arabidopsis (Arabidopsis thaliana) EDS1 is required for both SAR signal generation in primary infected leaves and SAR signal perception in systemic uninfected tissues. In contrast to SAR signal generation, local resistance remains intact in eds1 mutant plants in response to Pseudomonas syringae delivering the effector protein AvrRpm1. We utilized the SAR-specific phenotype of the eds1 mutant to identify new SAR regulatory proteins in plants conditionally expressing AvrRpm1. Comparative proteomic analysis of apoplast-enriched extracts from AvrRpm1-expressing wild-type and eds1 mutant plants led to the identification of 12 APOPLASTIC, EDS1-DEPENDENT (AED) proteins. The genes encoding AED1, a predicted aspartyl protease, and another AED, LEGUME LECTIN-LIKE PROTEIN1 (LLP1), were induced locally and systemically during SAR signaling and locally by salicylic acid (SA) or its functional analog, benzo 1,2,3-thiadiazole-7-carbothioic acid S-methyl ester. Because conditional overaccumulation of AED1-hemagglutinin inhibited SA-induced resistance and SAR but not local resistance, the data suggest that AED1 is part of a homeostatic feedback mechanism regulating systemic immunity. In llp1 mutant plants, SAR was compromised, whereas the local resistance that is normally associated with EDS1 and SA as well as responses to exogenous SA appeared largely unaffected. Together, these data indicate that LLP1 promotes systemic rather than local immunity, possibly in parallel with SA. Our analysis reveals new positive and negative components of SAR and reinforces the notion that SAR represents a distinct phase of plant immunity beyond local resistance. PMID:24755512

  18. Synchrotron Spectral Curvature from 22 MHZ to 23 GHZ

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.

    2012-01-01

    We combine surveys of the radio sky at frequencies 22 MHz to 1.4 GHz with data from the ARCADE-2 instrument at frequencies 3 GHz to 10 GHz to characterize the frequency spectrum of diffuse synchrotron emission in the Galaxy. The radio spectrum steepens with frequency from 22 MHz to 10 GHz. The projected spectral index at 23 GHz derived from the low-frequency data agrees well with independent measurements using only data at frequencies 23 GHz and above. Comparing the spectral index at 23 GHz to the value from previously published analyses allows extension of the model to higher frequencies. The combined data are consistent with a power-law index beta = -2.64 +/-= 0.03 at 0.31 GHz, steepening by an amount of Delta-beta = 0.07 every octave in frequency. Comparison of the radio data to models including the cosmic-ray energy spectrum suggests that any break in the synchrotron spectrum must occur at frequencies above 23 GHz.

  19. Double dipole antenna SIS receivers at 100 and 400 GHz

    NASA Technical Reports Server (NTRS)

    Skalare, A.; Vandestadt, H.; Degraauw, T.; Panhuyzen, R. A.; Dierichs, M. M. T. M.

    1992-01-01

    Antenna patterns were measured between 95 and 120 GHz for a double dipole antenna / ellipsoidal lens combination. The structure produces a non-astigmatic beam with low side lobe levels over that whole band. A heterodyne SIS receiver based on this concept gave a best noise temperature of 145 K DSB at 98 GHz. Measurements were also made with a 400 GHz heterodyne SIS receiver, using a double dipole antenna in conjunction with a hyperhemispherical lens. The best noise temperature was 220 K DSB at 402 GHz. On-chip stubs were used to tune out the SIS junction capacitance.

  20. SYNCHROTRON SPECTRAL CURVATURE FROM 22 MHz TO 23 GHz

    SciTech Connect

    Kogut, A.

    2012-07-10

    We combine surveys of the radio sky at frequencies 22 MHz to 1.4 GHz with data from the ARCADE-2 instrument at frequencies 3 GHz to 10 GHz to characterize the frequency spectrum of diffuse synchrotron emission in the Galaxy. The radio spectrum steepens with frequency from 22 MHz to 10 GHz. The projected spectral index at 23 GHz derived from the low-frequency data agrees well with independent measurements using only data at frequencies 23 GHz and above. Comparing the spectral index at 23 GHz to the value from previously published analyses allows extension of the model to higher frequencies. The combined data are consistent with a power-law index {beta} = -2.64 {+-} 0.03 at 0.31 GHz, steepening by an amount of {Delta}{beta} = 0.07 every octave in frequency. Comparison of the radio data to models including the cosmic-ray energy spectrum suggests that any break in the synchrotron spectrum must occur at frequencies above 23 GHz.