Science.gov

Sample records for 1-butene 2-methylpropene trans-2-butene

  1. Metabolism of 2-methylpropene (isobutylene) by the aerobic bacterium Mycobacterium sp. strain ELW1.

    PubMed

    Kottegoda, Samanthi; Waligora, Elizabeth; Hyman, Michael

    2015-03-01

    An aerobic bacterium (Mycobacterium sp. strain ELW1) that utilizes 2-methylpropene (isobutylene) as a sole source of carbon and energy was isolated and characterized. Strain ELW1 grew on 2-methylpropene (growth rate = 0.05 h(-1)) with a yield of 0.38 mg (dry weight) mg 2-methylpropene(-1). Strain ELW1 also grew more slowly on both cis- and trans-2-butene but did not grow on any other C2 to C5 straight-chain, branched, or chlorinated alkenes tested. Resting 2-methylpropene-grown cells consumed ethene, propene, and 1-butene without a lag phase. Epoxyethane accumulated as the only detected product of ethene oxidation. Both alkene consumption and epoxyethane production were fully inhibited in cells exposed to 1-octyne, suggesting that alkene oxidation is initiated by an alkyne-sensitive, epoxide-generating monooxygenase. Kinetic analyses indicated that 1,2-epoxy-2-methylpropane is rapidly consumed during 2-methylpropene degradation, while 2-methyl-2-propen-1-ol is not a significant metabolite of 2-methylpropene catabolism. Degradation of 1,2-epoxy-2-methylpropane by 2-methylpropene-grown cells led to the accumulation and further degradation of 2-methyl-1,2-propanediol and 2-hydroxyisobutyrate, two sequential metabolites previously identified in the aerobic microbial metabolism of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Growth of strain ELW1 on 2-methylpropene, 1,2-epoxy-2-methylpropane, 2-methyl-1,2-propanediol, and 2-hydroxyisobutyrate was fully inhibited when cobalt ions were omitted from the growth medium, while growth on 3-hydroxybutyrate and other substrates was unaffected by the absence of added cobalt ions. Our results suggest that, like aerobic MTBE- and TBA-metabolizing bacteria, strain ELW1 utilizes a cobalt/cobalamin-dependent mutase to transform 2-hydroxyisobutyrate. Our results have been interpreted in terms of their impact on our understanding of the microbial metabolism of alkenes and ether oxygenates. PMID:25576605

  2. Metabolism of 2-Methylpropene (Isobutylene) by the Aerobic Bacterium Mycobacterium sp. Strain ELW1

    PubMed Central

    Kottegoda, Samanthi; Waligora, Elizabeth

    2015-01-01

    An aerobic bacterium (Mycobacterium sp. strain ELW1) that utilizes 2-methylpropene (isobutylene) as a sole source of carbon and energy was isolated and characterized. Strain ELW1 grew on 2-methylpropene (growth rate = 0.05 h?1) with a yield of 0.38 mg (dry weight) mg 2-methylpropene?1. Strain ELW1 also grew more slowly on both cis- and trans-2-butene but did not grow on any other C2 to C5 straight-chain, branched, or chlorinated alkenes tested. Resting 2-methylpropene-grown cells consumed ethene, propene, and 1-butene without a lag phase. Epoxyethane accumulated as the only detected product of ethene oxidation. Both alkene consumption and epoxyethane production were fully inhibited in cells exposed to 1-octyne, suggesting that alkene oxidation is initiated by an alkyne-sensitive, epoxide-generating monooxygenase. Kinetic analyses indicated that 1,2-epoxy-2-methylpropane is rapidly consumed during 2-methylpropene degradation, while 2-methyl-2-propen-1-ol is not a significant metabolite of 2-methylpropene catabolism. Degradation of 1,2-epoxy-2-methylpropane by 2-methylpropene-grown cells led to the accumulation and further degradation of 2-methyl-1,2-propanediol and 2-hydroxyisobutyrate, two sequential metabolites previously identified in the aerobic microbial metabolism of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Growth of strain ELW1 on 2-methylpropene, 1,2-epoxy-2-methylpropane, 2-methyl-1,2-propanediol, and 2-hydroxyisobutyrate was fully inhibited when cobalt ions were omitted from the growth medium, while growth on 3-hydroxybutyrate and other substrates was unaffected by the absence of added cobalt ions. Our results suggest that, like aerobic MTBE- and TBA-metabolizing bacteria, strain ELW1 utilizes a cobalt/cobalamin-dependent mutase to transform 2-hydroxyisobutyrate. Our results have been interpreted in terms of their impact on our understanding of the microbial metabolism of alkenes and ether oxygenates. PMID:25576605

  3. The barrier to the methyl rotation in Cis-2-butene and its isomerization energy to Trans-2-butene, revisited.

    PubMed

    Matta, Chérif F; Sadjadi, Seyed Abdolreza; Braden, Dale A; Frenking, Gernot

    2016-01-01

    We respond to the two questions posed by Weinhold, Schleyer, and McKee (WSM) in their study of cis-2-butene (Weinhold et al., J Comput Chem 2014, 35, 1499), in which they solicit explanations for the relative conformational energies of this molecule in terms of the Quantum Theory of Atoms in Molecules (QTAIM). WSM requested answers to the questions: (1) why is cis-2-butene less stable than trans-2-butene despite the presence of a hydrogen-hydrogen (H?H) bond path in the former but not in the latter if the H?H bond path is stabilizing? (2) Why is the potential well of the conformational global minimum of cis-2-butene only 0.8 kcal/mol deep when the H?H bonding is stabilizing by 5 kcal/mol? Both questions raised by WSM are answered by considering the changes in the energies of all atoms as a function of the rotation of one of the two methyl groups from the minimum-energy structure, which exhibits the H?H bond path, to the transition state, which is devoid of this bond path. It is found that the stability gained by the H?H bonding interaction is cancelled by the destabilization of one of the ethylenic carbon atoms which, alone, destabilizes the system by as much as 5 kcal/mol in the global minimum conformation. Further, it is found that the 1.1 kcal/mol stability of trans-2-butene with respect to the cis-isomer is driven by the considerable destabilization of the ethylenic carbons by 11 kcal/mol, while the changes in the atomic energies of the other corresponding atoms in the two isomers account for the observed different stabilities. The error introduced into QTAIM atomic energies by neglecting the virials of the forces on the nuclei for partially optimized structures is discussed. © 2015 Wiley Periodicals, Inc. PMID:26581645

  4. The Bond Dissociation Energies of 1-Butene

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    The bond dissociation energies of 1-butene and several calibration systems are computed using the G2(MP2) approach. The agreement between the calibration systems and experiment is very good. The computed values for 1-butene are compared with calibration systems and the agreement between the computed results for 1-butene and the "rule of thumb" values from the smaller systems is remarkably good.

  5. Dissociation Channels of the 1-Buten-2-yl Radical and Its Photolytic Precursor 2-Bromo-1-butene

    E-print Network

    Butler, Laurie J.

    Dissociation Channels of the 1-Buten-2-yl Radical and Its Photolytic Precursor 2-Bromo-1-butene as those of the products, allows for the identification of the energetic onset of each dissociation channel vibrationally excited 1-butyne and 1,2-butadiene. In the subsequent dissociation of these C4H6 isomers

  6. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Viscosity. Poly-1-butene resins and the butene/ethylene copolymers have an intrinsic viscosity 1.0 to 3.2 as determined by ASTM method D1601-78, “Standard Test Method for Dilute Solution Viscosity of Ethylene...

  7. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... characteristic infrared spectra. (ii) Viscosity. Poly-1-butene resins and the butene/ethylene copolymers have an intrinsic viscosity 1.0 to 3.2 as determined by ASTM method D1601-78, “Standard Test Method for Dilute Solution Viscosity of Ethylene Polymers,” which is incorporated by reference. Copies may be obtained...

  8. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... their characteristic infrared spectra. (ii) Viscosity. Poly-1-butene resins and the butene/ethylene copolymers have an intrinsic viscosity 1.0 to 3.2 as determined by ASTM method D1601-78, “Standard Test Method for Dilute Solution Viscosity of Ethylene Polymers,” which is incorporated by reference....

  9. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... their characteristic infrared spectra. (ii) Viscosity. Poly-1-butene resins and the butene/ethylene copolymers have an intrinsic viscosity 1.0 to 3.2 as determined by ASTM method D1601-78, “Standard Test Method for Dilute Solution Viscosity of Ethylene Polymers,” which is incorporated by reference....

  10. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... their characteristic infrared spectra. (ii) Viscosity. Poly-1-butene resins and the butene/ethylene copolymers have an intrinsic viscosity 1.0 to 3.2 as determined by ASTM method D1601-78, “Standard Test Method for Dilute Solution Viscosity of Ethylene Polymers,” which is incorporated by reference....

  11. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...characteristic infrared spectra. (ii) Viscosity. Poly-1-butene resins and the...ethylene copolymers have an intrinsic viscosity 1.0 to 3.2 as determined by ASTM method...Standard Test Method for Dilute Solution Viscosity of Ethylene Polymers,”...

  12. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...characteristic infrared spectra. (ii) Viscosity. Poly-1-butene resins and the...ethylene copolymers have an intrinsic viscosity 1.0 to 3.2 as determined by ASTM method...Standard Test Method for Dilute Solution Viscosity of Ethylene Polymers,”...

  13. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...characteristic infrared spectra. (ii) Viscosity. Poly-1-butene resins and the...ethylene copolymers have an intrinsic viscosity 1.0 to 3.2 as determined by ASTM method...Standard Test Method for Dilute Solution Viscosity of Ethylene Polymers,”...

  14. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...characteristic infrared spectra. (ii) Viscosity. Poly-1-butene resins and the...ethylene copolymers have an intrinsic viscosity 1.0 to 3.2 as determined by ASTM method...Standard Test Method for Dilute Solution Viscosity of Ethylene Polymers,”...

  15. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...characteristic infrared spectra. (ii) Viscosity. Poly-1-butene resins and the...ethylene copolymers have an intrinsic viscosity 1.0 to 3.2 as determined by ASTM method...Standard Test Method for Dilute Solution Viscosity of Ethylene Polymers,”...

  16. Extensional flow-induced crystallization of isotactic poly-1-butene using a filament stretching rheometer

    E-print Network

    Rothstein, Jonathan

    Extensional flow-induced crystallization of isotactic poly-1-butene using a filament stretching August 2010; final revision received 20 April 2011; published 27 May 2011 Synopsis A filament stretching the stretch is imposed. The deformed filament is then allowed to crystallize fully at T=98°C. The extensional

  17. Electron momentum spectroscopy of 1-butene: a theoretical analysis using molecular dynamics and molecular quantum similarity.

    PubMed

    Shojaei, S H Reza; Vandenbussche, Jelle; Deleuze, Michael S; Bultinck, Patrick

    2013-09-01

    The results of experimental studies of the valence electronic structure of 1-butene by means of electron momentum spectroscopy (EMS) have been reinterpreted on the basis of molecular dynamical simulations in conjunction with the classical MM3 force field. The computed atomic trajectories demonstrate the importance of thermally induced nuclear dynamics in the electronic neutral ground state, in the form of significant deviations from stationary points on the potential energy surface and considerable variations of the C-C-C-C dihedral angle. These motions are found to have a considerable influence on the computed spectral bands and outer-valence electron momentum distributions. Euclidean distances between spherically averaged electron momentum densities confirm that thermally induced nuclear motions need to be fully taken into account for a consistent interpretation of the results of EMS experiments on conformationally flexible molecules. PMID:23902590

  18. Palladium salts of heteropolyacids as catalysts in the Wacker oxidation of 1-butene

    SciTech Connect

    Stobbe-Kreemers, A.W.; van der Lans, G.; Makkee, M.

    1995-07-01

    Palladium salts of heteropolyacids (PdHPAs) of the Keggin series H{sub 3+n}PV{sub n}Mo{sub 12-n}O{sub 40} supported on silica, have been used successfully as catalysts in the gas-phase Wacker oxidation of 1-butene. In such catalysts the palladium reaction centre and the redox component are combined in one complex. At 343 K and atmospheric pressure a high initial butanone yield of more than 0.2 g g{sup -1}{sub cat}h{sup -1}, in combination with a very high butanone selectivity of more than 98%, can be obtained. In the steady state, the activity of the catalyst is more than a factor of 10 lower than the initial activity, due to slow reoxidation of reduced palladium-heteropolyanion complexes. The rate of reoxidation depends on the composition of the HPA, the palladium loading, and the reaction conditions. The reaction order of 0.5 in the O{sub 2} partial pressure indicates the dissociation of dioxygen to be rate determining. The degree of hydration of the HPA appears to be important for the activity and stability of the catalysts. Spent catalysts can be regenerated by an oxidation treatment in air at temperatures around 525 K. Regeneration becomes more difficult with high palladium loading of the catalyst. 8 refs., 8 figs.

  19. Partial oxidation of hydrocarbons on silver: conversion of 1-butene to maleic anhydride by atomically adsorbed oxygen on Ag(110)

    NASA Astrophysics Data System (ADS)

    Roberts, Jeffrey T.; Capote, Armand J.; Madix, Robert J.

    1991-08-01

    The reaction of 1-butene with atomically adsorbed oxygen on Ag(110) has been studied using temperature-programmed reaction mass spectrometry (TPRS) and high-resolution electron-energy-loss vibrational spectroscopy (HREELS). The reaction was studied as a function of oxygen coverage from 0.00 to 0.50 ML. 1-Butene is oxidized by atomically chemisorbed oxygen via a sequence of reactions on the surface to 1,3-butadiene, 2,5-dihydrofuran, furan, carbon dioxide, and small amounts of maleic anhydride. 1,3-Butadiene is the principal oxidation product; the 2,5-dihydrofuran and furan yields are approximately 50% and 10%, respectively, of the 1,3-butadiene yield for oxygen atom coverages of 0.50 monolayers. 1,3-Butadiene is formed from 1-butene via C-H bond activation of the acidic allylic C-H bonds by atomically chemisorbed oxygen, a reaction that has a precedent in the oxidation of cyclohexene on Ag(110). The oxygen-containing products are formed via oxygen atom addition to 1,3-butadiene; this addition resembles the epoxidation of norbornene and styrene on Ag(110) and the epoxidation of styrene and 3,3-dimethylbutene on Ag(111).

  20. A molecular approach to heterogeneous catalysis. Part 2. 1-Butene isomerization catalyzed by silica-anchored osmium carbonyls

    SciTech Connect

    Dossi, C. ); Fusi, A.; Grilli, E.; Psaro, R.; Ugo, R. ); Zanoni, R. )

    1990-05-01

    The title reaction has been investigated at 115{degree}C using HOs{sub 3}(CO){sub 10}(OSi chemical bond) as catalyst or catalyst precursor. By FTIR and XP spectroscopy and by TPDE, evidence exists for the in situ formation of molecular oxidized osmium moieties, covalently anchored to the surface, which are the active catalytic species. The intermediate formation of an olefin adduct during the in situ decomposition of the cluster precursors is supported by chemical extraction of the surface species and further FTIR and {sup 1}H NMR characterization. The reversible poisoning effect of CO and the beneficial influence of H{sub 2} on the catalytic activity and selectivity are also reported and discussed. The catalytic behavior of preformed oxidized osmium surface species has been found to be markedly dependent on the preparation method. The highest activity was obtained when they are formed in situ in the presence of 1-butene. Silica-supported metallic osmium catalysts displayed different activity and selectivity, thus confirming the molecular nature of the catalytic process.

  1. Electrical conductivity and equation of state of liquid nitrogen, oxygen, benzene, and 1-butene shocked to 60 GPa

    SciTech Connect

    Hamilton, D.C.

    1986-10-08

    Measurements are reported for the electrical conductivity of liquid nitrogen (N/sub 2/), oxygen (O/sub 2/) and benzene (C/sub 6/H/sub 6/), and Hugoniot equation of state of liquid 1-butene (C/sub 4/H/sub 8/) under shock compressed conditions. The conductivity data span 7 x 10/sup -4/ to 7 x 10/sup 1/ ..cap omega../sup -1/cm/sup -1/ over a dynamic pressure range 18.1 to 61.5 GPa and are discussed in terms of amorphous semiconduction models which include such transport phenomena as hopping, percolation, pseudogaps, and metallization. Excellent agreement is found between the equation-of-state measurements, which span a dynamic pressure range 12.3 to 53.8 GPa, and Ree's calculated values which assume a 2-phase mixture consisting of molecular hydrogen and carbon in a dense diamond-like phase. There is a 2-1/2 fold increase in the thermal pressure contribution over a less dense, stoichiometrically equivalent liquid. 90 refs., 48 figs., 8 tabs.

  2. Evaluated kinetics of terminal and non-terminal addition of hydrogen atoms to 1-alkenes: a shock tube study of H + 1-butene.

    PubMed

    Manion, Jeffrey A; Awan, Iftikhar A

    2015-01-22

    Single-pulse shock tube methods have been used to thermally generate hydrogen atoms and investigate the kinetics of their addition reactions with 1-butene at temperatures of 880 to 1120 K and pressures of 145 to 245 kPa. Rate parameters for the unimolecular decomposition of 1-butene are also reported. Addition of H atoms to the ? bond of 1-butene results in displacement of either methyl or ethyl depending on whether addition occurs at the terminal or nonterminal position. Postshock monitoring of the initial alkene products has been used to determine the relative and absolute reaction rates. Absolute rate constants have been derived relative to the reference reaction of displacement of methyl from 1,3,5-trimethylbenzene (135TMB). With k(H + 135TMB ? m-xylene + CH3) = 6.7 × 10(13) exp(-3255/T) cm(3) mol(-1) s(-1), we find the following: k(H + 1-butene ? propene + CH3) = k10 = 3.93 × 10(13) exp(-1152 K/T) cm(3) mol(-1) s(-1), [880-1120 K; 145-245 kPa]; k(H + 1-butene ? ethene + C2H5) = k11 = 3.44 × 10(13) exp(-1971 K/T) cm(3) mol(-1) s(-1), [971-1120 K; 145-245 kPa]; k10/k11 = 10((0.058±0.059)) exp [(818 ± 141) K/T), 971-1120 K. Uncertainties (2?) in the absolute rate constants are about a factor of 1.5, while the relative rate constants should be accurate to within ±15%. The displacement rate constants are shown to be very close to the high pressure limiting rate constants for addition of H, and the present measurements are the first direct determination of the branching ratio for 1-olefins at high temperatures. At 1000 K, addition to the terminal site is favored over the nonterminal position by a factor of 2.59 ± 0.39, where the uncertainty is 2? and includes possible systematic errors. Combining the present results with evaluated data from the literature pertaining to temperatures of <440 K leads us to recommend the following: k?(H + 1-butene ? 2-butyl) = 1.05 × 10(9)T(1.40) exp(-366/T) cm(3) mol(-1) s(-1), [220-2000 K]; k?(H + 1-butene ? 1-butyl) = 9.02 × 10(8)T(1.40) exp(-1162/T) cm(3) mol(-1) s(-1) [220-2000 K]. Analogous rate constants for other unbranched 1-olefins should be very similar. Despite this, a factor of three discrepancy in the branching ratio for terminal and nonterminal addition is noted when comparing the present values with recommendations from a recent model of the important H + propene reaction. This difference is suggested to be well outside of the possible experimental errors of the present study or the expected differences with 1-butene. There thus appear to be inconsistencies in the current model for propene. In particular the addition branching ratio from that model should not be used as a reference value in extrapolations to other systems via rate rules or automated mechanism generation techniques. PMID:25517498

  3. Conformationally disordered crystals and their influence on material properties: The cases of isotactic polypropylene, isotactic poly(1-butene), and poly(L-lactic acid)

    NASA Astrophysics Data System (ADS)

    Cocca, Mariacristina; Androsch, René; Righetti, Maria Cristina; Malinconico, Mario; Di Lorenzo, Maria Laura

    2014-12-01

    This article provides a comprehensive review of the physical properties of the conformationally disordered (condis) structures of isotactic polypropylene (iPP), isotactic poly(1-butene) (iPB-1) and poly(L-lactic acid) (PLLA), in comparison with the respective more stable crystalline forms. The aim of this review is to define the influence of the condis modifications on the thermal and mechanical properties of these materials. The condis structures of the three polymers are metastable and spontaneously transform into the more stable crystalline structures upon annealing above a critical temperature. The transition from the mesophase to the more stable crystalline structure becomes possible when the chains have sufficient mobility to allow rearrangements of chain conformations. A rigid amorphous fraction develops during solidification of iPP, iPB-1 and PLLA. Crystallization of iPB-1 and PLLA into the more stable forms leads to a larger coupling of the amorphous and crystalline chain segments, compared to the conformationally disordered arrangements, which results in a higher fraction of rigid amorphous chain segments. The difference in chain packing, together with the varied mobility of the coupled amorphous chain portions, affects both the initial resistance to the tensile strain and the large strain properties. All the three stable crystalline forms have a higher Young's modulus compared to the condis mesophases, and can sustain lower deformation under mechanical stimuli.

  4. Reactions of OH with Butene Isomers. Measurements of the Overall Rates and a Theoretical Study

    SciTech Connect

    Vasu, Subith; Huynh, Lam; Davidson, David F.; Hanson, Ronald K.; Golden, David

    2011-03-09

    Reactions of hydroxyl (OH) radicals with 1-butene (k1), trans-2-butene (k2), and cis-2-butene (k3) were studied behind reflected shock waves over the temperature range 880-1341 K and at pressures near 2.2 atm. OH radicals were produced by shock-heating tert-butyl hydroperoxide, (CH3)3-CO-OH, and monitored by narrow-line width ring dye laser absorption of the well-characterized R1(5) line of the OH A-X (0, 0) band near 306.7 nm. OH time histories were modeled using a comprehensive C5 oxidation mechanism, and rate constants for the reaction of OH with butene isomers were extracted by matching modeled and measured OH concentration time histories. We present the first high-temperature measurement of OH + cis-2-butene and extend the temperature range of the only previous high-temperature study for both 1-butene and trans-2-butene. With the potential energy surface calculated using CCSD(T)/6-311++G(d,p)//QCISD/6-31G(d), the rate constants and branching fractions for the H-abstraction channels of the reaction of OH with 1-butene were calculated in the temperature range 300-1500 K. Corrections for variational and tunneling effects as well as hindered-rotation treatments were included. The calculations are in good agreement with current and previous experimental data and with a recent theoretical study.

  5. Processing-structure-property studies of: (I) submicron polymeric fibers produced by electrospinning and (II) films of linear low density polyethylenes as influenced by the short chain branch length in copolymers of ethylene/1-butene, ethylene/1-hexene and ethylene/1-octene synthesized by a single site metallocene catalyst

    NASA Astrophysics Data System (ADS)

    Gupta, Pankaj

    The overall theme of the research discussed in this dissertation has been to explore processing-structure-property relationships for submicron polymeric fibers produced by electrospinning (Part I) and to ascertain whether or not the length of the short chain branch has any effect on the physical properties of films of linear low-density polyethylenes (LLDPEs) (Part II). The research efforts discussed in Part I of this dissertation relate to some fundamental as well as more applied investigations involving electrospinning. These include investigating the effects of solution rheology on fiber formation and developing novel methodologies to fabricate polymeric mats comprising of high specific surface submicron fibers of more than one polymer, high chemical resistant substrates produced by in situ photo crosslinking during electrospinning, superparamagnetic flexible substrates by electrospinning a solution of an elastomeric polymer containing ferrite nanoparticles of Mn-Zn-Ni and substrates for filtration applications. Bicomponent electrospinning of poly(vinyl chloride)-polyurethane and poly(vinylidiene fluoride)-polyurethane was successfully performed. In addition, filtration properties of single and bicomponent electrospun mats of polyacrylonitrile and polystyrene were investigated. Results indicated lower aerosol penetration or higher filtration efficiencies of the filters based on submicron electrospun fibers in comparison to the conventional filter materials. In addition, Part II of this dissertation explores whether or not the length of the short chain branch affects the physical properties of blown and compression molded films of LLDPEs that were synthesized by a single site metallocene catalyst. Here, three resins based on copolymers of ethylene/1-butene, ethylene/1-hexene, and ethylene/1-octene were utilized that were very similar in terms of their molecular weight and distribution, melt rheology, density, crystallinity and short chain branching content and its distribution. Interestingly, at higher deformation rates (ca. 1m/s), the breaking, tear and impact strengths of films based on ethylene/1-hexene and ethylene/1-octene were found to be superior than those based on ethylene/1-butene. (Abstract shortened by UMI.)

  6. Mesophases in polyethylene, polypropylene, and poly(1-butene)

    SciTech Connect

    Androsch, Rene J; Di Lorenzo, Maria; Schick, Christoph; Wunderlich, Bernhard {nmn}

    2010-01-01

    This paper contains new views about the amorphous and partially ordered phases of the three polymers listed in the title. The discussion is based on information on structure, thermodynamic stability, and large-amplitude molecular motion. Polyethylene is the basic backbone of all alkene polymers, and the other two are the first members of the vinyl polymers which have stereospecifically placed alkyl side chains. Their multiphase structures consist of metastable crystals, mesophases, and surrounding rigid and mobile amorphous fractions. All these phases have sizes ranging from micrometer dimensions down to nanometers. Besides the phase structures, information about the molecular coupling between the phases must be considered. Depending on temperature, the polymer phases can vary from solid (rigid) to liquid (mobile). New knowledge is also gained by cross-comparison of the title polymers. The experimental information was gained from (a) various forms of slow, fast, and temperature-modulated thermal analysis to identify equilibrium and non-equilibrium states, (b) measurement of structure and morphology at various length scales, and (c) tracing of the large-amplitude molecular motion, the kinetics of order/disorder changes, and the liquid/solid transitions (glass transitions). It is shown that much more needs to be known about the various phases and their coupling to characterize a given polymer and to fine-tune its properties for a given application.

  7. [Os{sub 2}(CO){sub 8}({mu}{sub 2}-{eta}{sup 1},{eta}{sup 1}-propene)] and related complexes as vibrational models for alkenes chemisorbed on single-crystal metal surfaces

    SciTech Connect

    Anson, C.E.; Sheppard, N.; Bender, B.R.; Norton, J.R.

    1999-01-27

    The FTIR spectra of [Os{sub 2}(CO){sub 8}({mu}{sub 2}-{eta}{sup 1},{eta}{sup 1}-C{sub 2}H{sub 3}CH{sub 3})] and of its methyl-d{sub 3} and d{sub 6} isotopologues have been measured and assigned. Comparison of these vibrational data with previously published EELS and RAIRS studies of propene chemisorbed on Pt(111) and Ni(111) at low temperatures indicates that, on these surfaces, the propene species are chemisorbed via a ({mu}{sub 2}-P{eta}{sup 1},{eta}{sup 1}-C{sub 2}H{sub 3}CH{sub 3}) bonding mode. However, differences in the intensity patterns between the spectra of the adsorbed species compared with that of the model compound imply additional twisting or tilting with respect to the surface. Assignment of the FTIR spectra of the corresponding 1-butene and trans-2-butene complexes [Os{sub 2}(CO){sub 8}({mu}{sub 2}-{eta}{sup 1},{eta}{sup 1}-C{sub 2}H{sub 3}C{sub 2}H{sub 5})] and [Os{sub 2}(CO){sub 8}({mu}{sub 2}{eta}{sup 1},{eta}{sup 1}-CH{sub 3}C{sub 2}H{sub 2}CH{sub 3})] indicates similar bonding modes for chemisorbed 1-butene and trans-2-butene on Pt(111). Infrared data for the mononuclear propene complex [Os(CO){sub 4}({eta}{sup 2}-C{sub 2}H{sub 3}CH{sub 3})], on the other hand, are in good agreement with published EEL data for propene on Ru(0001) and Rh(111), indicating that at low temperatures on these surfaces, propene is chemisorbed as a methyl-substituted metallacyclopropane-like species. These bonding modes are analogous to those established for low-temperature ethene chemisorption on these surfaces.

  8. Laboratory spectroscopic analyses of electron irradiated alkanes and alkenes in solar system ices

    NASA Astrophysics Data System (ADS)

    Hand, K. P.; Carlson, R. W.

    2012-03-01

    We report results from laboratory experiments of 10 keV electron irradiation of thin ice films of water and short-chain hydrocarbons at ˜10-8 Torr and temperatures ranging from 70-100 K. Hydrocarbon mixtures include water with C3H8, C3H6, C4H10 (butane and isobutane), and C4H8, (1-butene and cis/trans-2-butene). The double bonds of the alkenes in our initial mixtures were rapidly destroyed or converted to single carbon bonds, covalent bonds with hydrogen, bonds with -OH (hydroxyl), bonds with oxygen (C-O), or double bonds with oxygen (carbonyl). Spectra resulting from irradiation of alkane and alkene ices are largely indistinguishable; the initial differences in film composition are destroyed and the resulting mixture includes long-chain, branched aliphatics, aldehydes, ketones, esters, and alcohols. Methane was observed as a product during radiolysis but CO was largely absent. We find that while some of the carbon is oxidized and lost to CO2 formation, some carbon is sequestered into highly refractory, long-chain aliphatic compounds that remain as a thin residue even after the ice film has been raised to standard temperature and pressure. We conclude that the high availability of hydrogen in our experiments leads to the formation of the formyl radical which then serves as the precursor for formaldehyde and polymerization of longer hydrocarbon chains.

  9. Diosmacycloalkanes as models for the formation of hydrocarbons from surface methylenes. Progress report, April 1, 1988--March 31, 1989

    SciTech Connect

    Norton, J.R.

    1989-01-01

    We have obtained a neutron diffraction data set for Os{sub 2}(CO){sub 8}({mu}-C{sub 2}H{sub 4}). While the structure is still being solved, it is already clear that the hybridization at both of the ethylene carbons is sp{sup 3}. Our first interpretation of our liquid crystal NMR results had suggested a very acute H-C-H angle. We have also obtained {sup 13}C liquid crystal data for Os{sub 2}(CO){sub 8}({mu}-C{sub 2}H{sub 4}). Liquid crystal NMR ({sup 13}C as well as {sup 1}H) spectra have been obtained for Os(CO){sub 4}(C{sub 2}H{sub 4}) and its solution structure determined, in order to test our methodology on a molecule with a rigid structure. The normal modes of Os(CO){sub 4}({mu}-C{sub 2}H{sub 4}) and its deuterated and {sup 13}C-labelled isotopomers have been completely assigned. A partial vibrational analysis of Os{sub 2}(CO){sub 8}({mu}-propene), Os{sub 2}(CO){sub 8}(trans-2-butene), and Os{sub 2}(CO){sub 8}(1-butene) has been completed. We have prepared Os(CO){sub 4}({mu}-CH{sub 2}CH{sub 2}CH{sub 2}) and its 3,3-dideuterio analog. In the course of this work the reaction of Na{sub 2}Os(CO){sub 4} with a number of 1,3-propanediol derivatives has been examined. 1,3-Propanediol ditosylate afforded much better yields of the osmacycle than did either the ditriflate or diiodide. 2,2-Dideutero-1,3-propanediol ditosylate was used to prepare the deuterium-labelled osmacyclobutane.

  10. Diosmacycloalkanes as models for the formation of hydrocarbons from surface methylenes

    SciTech Connect

    Norton, J.R.

    1989-01-01

    We have obtained a neutron diffraction data set for Os{sub 2}(CO){sub 8}({mu}-C{sub 2}H{sub 4}). While the structure is still being solved, it is already clear that the hybridization at both of the ethylene carbons is sp{sup 3}. Our first interpretation of our liquid crystal NMR results had suggested a very acute H-C-H angle. We have also obtained {sup 13}C liquid crystal data for Os{sub 2}(CO){sub 8}({mu}-C{sub 2}H{sub 4}). Liquid crystal NMR ({sup 13}C as well as {sup 1}H) spectra have been obtained for Os(CO){sub 4}(C{sub 2}H{sub 4}) and its solution structure determined, in order to test our methodology on a molecule with a rigid structure. The normal modes of Os(CO){sub 4}({mu}-C{sub 2}H{sub 4}) and its deuterated and {sup 13}C-labelled isotopomers have been completely assigned. A partial vibrational analysis of Os{sub 2}(CO){sub 8}({mu}-propene), Os{sub 2}(CO){sub 8}(trans-2-butene), and Os{sub 2}(CO){sub 8}(1-butene) has been completed. We have prepared Os(CO){sub 4}({mu}-CH{sub 2}CH{sub 2}CH{sub 2}) and its 3,3-dideuterio analog. In the course of this work the reaction of Na{sub 2}Os(CO){sub 4} with a number of 1,3-propanediol derivatives has been examined. 1,3-Propanediol ditosylate afforded much better yields of the osmacycle than did either the ditriflate or diiodide. 2,2-Dideutero-1,3-propanediol ditosylate was used to prepare the deuterium-labelled osmacyclobutane.

  11. Kinetics of hydrogen abstraction reactions of butene isomers by OH radical

    SciTech Connect

    Sun, Hongyan; Law, Chung K.

    2010-11-26

    The rate coefficients of H-abstraction reactions of butene isomers by the OH radical were determined by both canonical variational transition-state theory and transition-state theory, with potential energy surfaces calculated at the CCSD(T)/6-311++G(d,p)//BH&HLYP/6-311G(d,p) level and CCSD(T)/6-311++G(d,p)//BH&HLYP/cc-pVTZ level and quantum mechanical tunneling effect corrected by either the small-curvature tunneling method or the Eckart method. While 1-butene contains allylic, vinylic, and alkyl hydrogens that can be abstracted to form different butene radicals, results reveal that s-allylic H-abstraction channels have low and broad energy barriers, and they are the most dominant channels which can occur via direct and indirect H-abstraction channels. For the indirect H-abstraction s-allylic channel, the reaction can proceed via forming two van der Waals prereactive complexes with energies that are 2.7-2.8 kcal mol-1 lower than that of the entrance channel at 0 K. Assuming that neither mixing nor crossover occurs between different reaction pathways, the overall rate coefficient was calculated by summing the rate coefficients of the s-allyic, methyl, and vinyl H-abstraction paths and found to agree well with the experimentally measured OH disappearance rate. Furthermore, the rate coefficients of p-allylic H abstraction of cis-2-butene, trans-2-butene, and isobutene by the OH radical were also determined at 300-1500 K, with results analyzed and compared with available experimental data.

  12. Fluid inclusion volatile analysis by gas chromatography with photoionization/micro-thermal conductivity detectors: Applications to magmatic MoS sub 2 and other H sub 2 O-CO sub 2 and H sub 2 O-CH sub 4 fluids

    SciTech Connect

    Bray, C.J.; Spooner, E.T.C. )

    1992-01-01

    Eighteen fluid inclusion volatile peaks have been detected and identified from 1-2 g samples (quartz) by gas chromatography using heated on-line crushing, helium carrier gas, a single porous polymer column, two temperature programmed conditions for separate sample aliquots, micro-thermal conductivity (TCD) and photoionization detectors (PID), and off-line digital peak processing. In order of retention time these volatile peaks are: N{sub 2}, Ar, CO, CH{sub 4}, CO{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}, C{sub 2}H{sub 2}, COS, C{sub 3}H{sub 6}, C{sub 3}H{sub 8}, C{sub 3}H{sub 4} (propyne), H{sub 2}O, SO{sub 2} {plus minus} iso-C{sub 4}H{sub 10} {plus minus} C{sub 4}H{sub 8} (1-butene) {plus minus} CH{sub 3}SH, C{sub 4}H{sub 8} (iso-butylene), ( ) C{sub 4}H{sub 6} (1,3 butadiene), and {plus minus} n-C{sub 4}H{sub 10} {plus minus}C{sub 4}H{sub 8} (trans-2-butene). H{sub 2}O is analyzed directly. O{sub 2} can be analyzed cryogenically between N{sub 2} and Ar, but has not been detected in natural samples to date in this study. Initial inclusion volatile analyses of fluids of interpreted magmatic origin from the Cretaceous Boss Mtn. monzogranite stock-related MoS{sub 2} deposit, central British Columbia of 97 mol% H{sub 2}O, 3% CO{sub 2}, 140-150 ppm N{sub 2}, and 16-39 ppm CH{sub 4} are reasonable in comparison with high temperature volcanic gas analyses from four, active calc-alkaline volcanoes, e.g., the H{sub 2}O contents of volcanic gases from the White Island (New Zealand), Mount St. Helens (Washington, USA), Merapi (Bali, Indonesia), and Momotombo (Nicaragua) volcanoes are 88-95%, > 90%, 88-95% and 93%, respectively; CO{sub 2} contents are 3-10%, 1-10%, 3-8%, and 3.5%. It appears that low, but significant concentrations of alkanes, alkenes, and alkynes have been detected in magmatically derived fluids.

  13. KINETIC ANALYSIS OF THE ALKYLATION REACTION OF ISOBUTANE WITH 1-BUTENE ON A SOLID ACID CATALYST IN GAS, LIQUID, AND SUPERCRITICAL REACTION MEDIA. (R826694C669)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  14. Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes

    SciTech Connect

    WICK,COLLIN D.; MARTIN,MARCUS G.; SIEPMANN,J. ILJA

    2000-07-12

    The Transferable Potentials for Phase Equilibria-United Atom (TraPPE-UA) force field for hydrocarbons is extended to alkenes and alkylbenzenes by introducing the following pseudo-atoms: CH{sub 2}(sp{sup 2}), CH(sp{sup 2}), CH(aro), R-C(aro) for the link to aliphatic side chains, and C(aro) for the link of two benzene rings. In this united-atom force field, the nonbonded interactions of the hydrocarbon pseudo-atoms are solely governed by Lennard-Jones 12-6 potentials, and the Lennard-Jones well depth and size parameters for the new pseudo-atoms were determined by fitting to the single-component vapor-liquid phase equilibria of a few selected model compounds. Configurational-bias Monte Carlo simulations in the NVT version of the Gibbs ensemble were carried out to calculate the single-component vapor-liquid coexistence curves for ethene, propene, 1-butene, trans- and cis-2-butene. 2-methylpropene, 1,5-hexadiene, 1-octene, benzene, toluene, ethylbenzene, propylbenzene, isopropylbenzene, o-, m-, and p-xylene, and naphthalene. The phase diagrams for the binary mixtures of (supercritical) ethene/n-heptane and benzene/n-pentane were determined from simulations in the NpT Gibbs ensemble. Although the TraPPE-UA force field is rather simple and makes use of relatively few different pseudo-atoms, its performance, as judged by comparisons to other popular force fields and available experimental data, is very satisfactory.

  15. Biogenic Emissions of Light Alkenes from a Coniferous Forest

    NASA Astrophysics Data System (ADS)

    Rhew, R. C.; Turnipseed, A. A.; Martinez, L.; Shen, S.; De Gouw, J. A.; Warneke, C.; Koss, A.; Lerner, B. M.; Miller, B. R.; Smith, J. N.; Guenther, A. B.

    2014-12-01

    Alkenes are reactive hydrocarbons that play important roles in the photochemical production of tropospheric ozone and in the formation of secondary organic aerosols. The light alkenes (C2-C4) originate from both biogenic and anthropogenic sources and include C2H4 (ethene), C3H6 (propene) and C4H8 (1-butene, 2-butene, 2-methylpropene). Light alkenes are used widely as chemical feedstocks because their double bond makes them versatile for industrial reactions. Their biogenic sources are poorly characterized, with most global emissions estimates relying on laboratory-based studies; net ecosystem emissions have been measured at only one site thus far. Here we report net ecosystem fluxes of light alkenes and isoprene from a semi-arid ponderosa pine forest in the Rocky Mountains of Colorado, USA. Canopy scale fluxes were measured using relaxed eddy accumulation (REA) techniques on the 28-meter NCAR tower in the Manitou Experimental Forest Observatory. Updrafts and downdrafts were determined by sonic anemometry and segregated into 'up' and 'down' reservoirs over the course of an hour. Samples were then measured on two separate automated gas chromatographs (GCs). The first GC measured light hydrocarbons (C2-C6 alkanes and C2-C5 alkenes) by flame ionization detection (FID). The second GC measured halocarbons (methyl chloride, CFC-12, and HCFC-22) by electron capture detection (ECD). Additional air measurements from the top of the tower included hydrocarbons and their oxidation products by Proton Transfer Reaction Mass Spectrometry (PTR-MS). Three field intensives were conducted during the summer of 2014. The REA flux measurements showed that ethene, propene and the butene emissions have significant diurnal cycles, with maximum emissions at midday. The light alkenes contribute significantly to the overall biogenic source of reactive hydrocarbons and have a temporal variability that may be associated with physical and biological parameters. These ecosystem scale measurements will be compared with estimates used in global emissions models.

  16. Low temperature rate coefficients for reactions of the butadiynyl radical, C4H, with various hydrocarbons. Part II: reactions with alkenes (ethylene, propene, 1-butene), dienes (allene, 1,3-butadiene) and alkynes (acetylene, propyne and 1-butyne).

    PubMed

    Berteloite, Coralie; Le Picard, Sébastien D; Balucani, Nadia; Canosa, André; Sims, Ian R

    2010-04-21

    The kinetics of the reactions of the linear butadiynyl radical, C4H (CCCCH), with a variety of unsaturated hydrocarbons have been studied over the temperature range of 39-300 K using a CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, or reaction kinetics in uniform supersonic flow) apparatus combined with the pulsed laser photolysis-laser induced fluorescence technique. The rate coefficients for all the reactions studied are found to all be in excess of 10(-10) cm(3) molecule(-1) s(-1) over the entire temperature range. They can be fitted with the following expressions (valid from 39 K to 300 K, with RMS deviations of the experimental points from the predicted values shown, to which should be added 10% possible systematic error) for reaction of C4H with alkenes: k(C2H4) = (1.95 +/- 0.17) x 10(-10) (T/298 K)(-0.40) exp(9.4 K/T) cm3 molecule(-1) s(-1); k(C3H6) = (3.25 +/- 0.12) x 10(-10) (T/298 K)(-0.84) exp(-48.9 K/T) cm3 molecule(-1) s(-1); k(1-C4H8) = (6.30 +/- 0.35) x 10(-10) (T/298 K)(-0.61) exp(-65.0 K/T) cm3 molecule(-1) s(-1), for reaction of C4H with dienes: k(C3H4) = (3.70 +/- 0.34) x 10(-10) (T/298 K)(-1.18) exp(-91.1 K/T) cm3 molecule(-1) s(-1); k(1,3-C4H6) = (5.37 +/- 0.30) x 10(-10) (T/298 K)(-1.25) exp(-116.8 K/T) cm3 molecule(-1) s(-1), and for reaction of C4H with alkynes: k(C2H2) = (1.82 +/- 0.19) x 10(-10) (T/298 K)(-1.06) exp(-65.9 K/T) cm3 molecule(-1) s(-1); k(C3H4) = (3.20 +/- 0.08) x 10(-10) (T/298 K)(-0.82) exp(-47.5 K/T) cm3 molecule(-1) s(-1); k(1-C4H6) = (3.48 +/- 0.14) x 10(-10) (T/298 K)(-0.65) exp(-58.4 K/T) cm3 molecule(-1) s(-1). Possible reaction mechanisms and product channels are discussed in detail for each of these reactions. Potential implications of these results for models of low temperature chemical environments, in particular cold interstellar clouds and star-forming regions, are considered. PMID:20358064

  17. Survival of aerosolized bacteriophage phi X174 in air containing ozone--olefin mixtures.

    PubMed Central

    Mik, G.; de Groot, I.; Gerbrandy, J. L.

    1977-01-01

    The effects of ozone and ozonized olefins on aerosol survival of bacteriophage phiX174 were studied. The ozone concentrations used were between 0 and 110 parts/10(9), giving decay rates up to 0-03 min-1. The olefins used were trans-2-butene and cyclohexene in concentrations of 500 parts/10(9) and 2-4 parts/10(6), respectively. Olefins alone have no effect, whereas in combination with ozone, decay rates of 0-1 min-1 and higher were obtained. The results are discussed in relation to the viricidal effect of open air. PMID:265341

  18. Enantioselective Construction of Cyclic Quaternary Centers: (-)-Mesembrine

    E-print Network

    Taber, Douglass

    inhibitor1 isolated from the Mesembryanthemaceae family (Sceletium tortuosum), has become an interesting of the inexpensive 1-chloro-2-methylpropene.9 With the alkylating agent 4 in hand, we effected alkylation of the acetoacetate dianion10 to give the ketoester 5 in good yield. Reduction then gave the secondary alcohol 6. We

  19. Metal-containing plasma-polymerized coatings for laser-fusion targets

    SciTech Connect

    Letts, S.A.; Jordan, C.W.

    1981-09-14

    Addition of metal to plastic layers in some direct drive laser fusion targets is needed to reduce electron induced fuel preheat. A plasma polymerization coating system was constructed to produce a metal seeded polymer by adding an organometallic gas to the usual trans-2-butene and hydrogen feedstocks. Since organometallic gases are highly reactive and toxic, safety is a major concern in the design of a coating system. Our coating apparatus was designed with three levels of containment to assure protection of the operator. The gas handling system has redundant valves and was designed to fail safe. Several sensor controlled interlocks assure safe operating conditions. Waste materials are collected on a specially designed cold trap. Waste disposal is accomplished by heating the traps and purging volatile products through a reactor vessel. The design, operating procedure, and safety interlocks of this novel coating system are described.

  20. Use of propane as a quench gas in argon-filled proportional counters and comparison with other quench gases

    NASA Technical Reports Server (NTRS)

    Agrawal, P. C.; Ramsey, B. D.

    1988-01-01

    An experimental investigation of propane and six other quench gases was carried out in argon-filled proportional counters. The objective of the study was to find the best gas mixture for optimizing the gas gain and the energy resolution as well as to understand the role of the ionization potential of quench gases in determining these parameters. It was found that the best gas gains and energy resolutions are obtained with propane, ethane, and isobutane in that order. The ionization potentials of these three lie below the argon metastable potentials and have the lowest value of resonance defect compared to the other quench gases. The better results obtained with these mixtures can be explained by an increased ionization yield resulting from the Penning effect. Propylene and trans-2-butene give inferior performance compared to the above three gases. Methane and carbon dioxide, the most commonly used quench gases in the argon-filled detectors, provide the worst results.

  1. 40 CFR 414.70 - Applicability; description of the bulk organic chemicals subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Acid Propylene Glycol Sec-Butyl Alcohol Sodium Formate Sorbitol...Calcium Salt (Wax) Tert-Butyl Alcohol 1-Butene 1-Pentene... *Alkyl Benzenes *Alkyl Phenols *Alkylbenzene Sulfonic Acids...Toluene, Xylene (Mixed) Butyl Octyl Phthalate Coal...

  2. Enthalpy and entropy barriers explain the effects of topology on the kinetics of zeolite-catalyzed reactions.

    PubMed

    Van der Mynsbrugge, Jeroen; De Ridder, Jeroen; Hemelsoet, Karen; Waroquier, Michel; Van Speybroeck, Veronique

    2013-08-26

    The methylation of ethene, propene, and trans-2-butene on zeolites H-ZSM-58 (DDR), H-ZSM-22 (TON), and H-ZSM-5 (MFI) is studied to elucidate the particular influence of topology on the kinetics of zeolite-catalyzed reactions. H-ZSM-58 and H-ZSM-22 are found to display overall lower methylation rates compared to H-ZSM-5 and also different trends in methylation rates with increasing alkene size. These variations may be rationalized based on a decomposition of the free-energy barriers into enthalpic and entropic contributions, which reveals that the lower methylation rates on H-ZSM-58 and H-ZSM-22 have virtually opposite reasons. On H-ZSM-58, the lower methylation rates are caused by higher enthalpy barriers, owing to inefficient stabilization of the reaction intermediates in the large cage-like pores. On the other hand, on H-ZSM-22, the methylation rates mostly suffer from higher entropy barriers, because excessive entropy losses are incurred inside the narrow-channel structure. These results show that the kinetics of crucial elementary steps hinge on the balance between proper stabilization of the reaction intermediates inside the zeolite pores and the resulting entropy losses. These fundamental insights into their inner workings are indispensable for ultimately selecting or designing better zeolite catalysts. PMID:23897717

  3. Pulmonary function in normal and elastase-treated hamsters exposed to a complex mixture of olefin-ozone-sulfur dioxide reaction products

    SciTech Connect

    Raub, J.A.; Miller, F.J.; Graham, J.A.; Gardner, D.E.; O'Neil, J.J.

    1983-01-01

    An elastase-induced emphysema model was utilized to determine if hamsters with preexisting lung disease were more susceptible to lung damage from air-pollutant exposure. Male golden hamsters, divided into two treatment groups, were given a single intratracheal injection of either 6 units of porcine pancreatic elastase (EMP) or buffer (CNT). After a 4-week recovery period, equal numbers of each group were exposed 23 hr/day x 28 day to filtered air (AIR) or to the complex by-products from a dark-phase-reaction mixture of trans-2-butene, ozone, and sulfur dioxide (MIX). Lung-function measurements on the elastase-treated groups showed changes consistent with mild emphysema. There were no significant differences in lung volumes or lung compliance between the AIR- and MIX-exposed animals. However, the nitrogen washout slope decreased and the diffusing capacity for carbon monoxide increased in both the CNT and EMP hamsters exposed to the MIX. The change in diffusing capacity was greater in normal hamsters than in hamsters with emphysema, and it is hypothesized that animals with impaired lung function had a decreased ability to respond to a pulmonary insult from the mix.

  4. A sputtering derived atomic oxygen source for studying fast atom reactions

    NASA Technical Reports Server (NTRS)

    Ferrieri, Richard A.; Yung, Y. Chu; Wolf, Alfred P.

    1987-01-01

    A technique for the generation of fast atomic oxygen was developed. These atoms are created by ion beam sputtering from metal oxide surfaces. Mass resolved ion beams at energies up to 60 KeV are produced for this purpose using a 150 cm isotope separator. Studies have shown that particles sputtered with 40 KeV Ar(+) on Ta2O5 were dominantly neutral and exclusively atomic. The atomic oxygen also resided exclusively in its 3P ground state. The translational energy distribution for these atoms peaked at ca 7 eV (the metal-oxygen bond energy). Additional measurements on V2O5 yielded a bimodal distribution with the lower energy peak at ca 5 eV coinciding reasonably well with the metal-oxygen bond energy. The 7 eV source was used to investigate fast oxygen atom reactions with the 2-butene stereoisomers. Relative excitation functions for H-abstraction and pi-bond reaction were measured with trans-2-butene. The abstraction channel, although of minor relative importance at thermal energy, becomes comparable to the addition channel at 0.9 eV and dominates the high-energy regime. Structural effects on the specific channels were also found to be important at high energy.

  5. An extended baseline examination of indoor VOCs in a city of low ambient pollution: Perth, Western Australia

    NASA Astrophysics Data System (ADS)

    Maisey, S. J.; Saunders, S. M.; West, N.; Franklin, P. J.

    2013-12-01

    This study of indoor air quality reports VOC concentrations in 386 suburban homes located in Perth Western Australia, a city of low ambient pollution and temperate climate. Details of indoor VOC concentrations, temperature, relative humidity, and information on house characteristics and occupant activities were collected during the sampling periods. The concentration of VOCs observed in typical homes was low and individual compounds rarely exceeded 5 ?g m-3. Median individual VOC concentrations ranged from 0.06 ?g m-3 for 1,1,1 trichloroethane and butyl ether to 26.6 ?g m-3 for cis/trans 2-butene. Recently renovated homes had higher concentrations of VOCs than non renovated homes, including ?VOCs (p = 0.026), ?BTEX (p = 0.03), ?xylene (p = 0.013), toluene (p = 0.05), cyclohexane (p = 0.039), and propyl benzene (p = 0.039). Statistical analyses showed house age and attached garages were not significant factors for any of the VOCs tested. The concentrations of indoor VOCs in Perth were lower than overseas observations and those reported in recent Australian studies, with inferences made to differences in the climate and the occupant behaviour. The results are a baseline profile of indoor VOCs over the period 2006-2011, in an Australian city of low population density and of generally low ambient pollution.

  6. Moessbauer spectra of ferrite catalysts used in oxidative dehydrogenation

    NASA Technical Reports Server (NTRS)

    Cares, W. R.; Hightower, J. W.

    1971-01-01

    Room temperature Mossbauer spectroscopy was used to examine bulk changes which occur in low surface area CoFe2O4 and CuFe2O4 catalysts as a result of contact with various mixtures of trans-2-butene and O2 during oxidative dehydrogenation reactions at about 420 C. So long as there was at least some O2 in the gas phase, the CoFe2O4 spectrum was essentially unchanged. However, the spectrum changed from a random spinel in the oxidized state to an inverse spinel as it was reduced by oxide ion removal. The steady state catalyst lies very near the fully oxidized state. More dramatic solid state changes occurred as the CuFe2O4 underwent reduction. Under severe reduction, the ferrite was transformed into Cu and Fe3O4, but it could be reversibly recovered by oxidation. An intense doublet located near zero velocity persisted in all spectra of CuFe2O4 regardless of the state of reduction.

  7. Evaluation of Fluidized Beds for Mass Production of IFE Targets

    SciTech Connect

    Huang, H.; Vermillion, B.A.; Brown, L.C.; Besenbruch, G.E.; Goodin, D.T.; Stemke, R.W.; Stephens, R.B.

    2005-01-15

    Of the building blocks of an inertial fusion energy (IFE) plant, target fabrication remains a significant credibility issue. For this reason, an extensive parametric study has been conducted on mass production of glow discharge polymer (GDP) shells in a vertical fluidized bed. Trans-2-butene was used as a reactant gas with hydrogen as a diluting and etching agent. Coating rates in the range of 1 to 2 {mu}m/h were demonstrated on batches of 30 shells where National Ignition Facility-quality surfaces were obtained for 3- to 5-{mu}m-thick coatings. Thick coatings up to 325 {mu}m were also demonstrated that are visually transparent, without void and stress fracture. A phenomenological understanding of the GDP growth mechanisms to guide future experiments was further established. Specifically, gas-phase precipitation and high-impact collisions were identified as the main surface-roughening mechanisms. The former produces dense cauliflower-like surface patterns that can be eliminated by adjusting the gas flow rates and the flow ratio. The latter produces isolated domelike surface defects that can be reduced by introducing concerted motion between the shells. By converting from a vertical to a horizontal configuration, fully transparent coatings were obtained on 350 shells. Collisions in a fluidized bed have been identified as the limiting factor in meeting IFE specifications, and a related-rotary kiln technique is recommended for scale-up.

  8. The Use of Conditional Probability Functions and Potential Source Contribution Functions to Identify Source Regions and Advection Pathways of Hydrocarbon Emissions in Houston, Texas

    SciTech Connect

    Xie, YuLong; Berkowitz, Carl M.

    2007-09-01

    In this study, we demonstrate the utility of conditional probability functions (CPFs), potential source contribution functions (PSCFs), and hierarchical clustering analysis to identify the source region and transport pathways of hydrocarbons measured at five photochemical assessment monitoring stations (PAMS) near the Houston ship channel from June to October 2003. Over 50 volatile organic compound (VOC) concentrations were measured on the hourly collected samples. Routine surface observations of wind directions measured at each of the receptor sites were used extensively. We show that VOCs with similar CPF patterns likely have common transport pathways. This was established with the multivariate technique, which uses the hierarchical clustering analysis to allow clusters of groups of VOCs to form with similar CPF patterns. This method revealed that alkenes, and in particular those with geometric isomers such as cis-/trans-2-butene and cis-/trans-2-pentene, have similar CPF patterns. The alkane isomers often show CPF patterns among themselves, and similarly, aromatic compounds often show similar patterns among themselves too. We also show how trajectory information can be used in conjunction with the PSCF analysis to produce a graphic analysis suggesting specific source areas for a given VOC. The use of these techniques in the chemically and meteorologically complex environment of Houston, Texas, suggests its further utility in other areas with relatively simpler conditions.

  9. The use of design-of-experiments methodology to optimize polymer capsule fabrication. 1998 summer research program for high school juniors at the University of Rochester`s Laboratory for Laser Energetics: Student research reports

    SciTech Connect

    Lai, L.

    1999-03-01

    Future inertial-fusion experiments on Omega will utilize {approximately} 1 mm-diameter cryogenic targets that have a {approximately} 100-{micro}m-thick, uniformly-frozen fuel layer on their interior. It is desired that they have a stress-free wall thickness < 1 {micro}m and an rms surface roughness < 20 nm. A design-of-experiments (DOE) approach was used to characterize a glow-discharge-polymerization coater built at LLE to fabricate smooth, stress-free capsules with submicron wall thicknesses. The DOE approach was selected because several parameters can be changed simultaneously in a manner which allows the minimum number of runs to be performed to obtain statistically-relevant data. Planar, silicon substrates were coated with {approximately} 3--5 {micro}m of polymer and profilometry was used to determine the coating rate, the film stress, and the surface roughness. The coating rate was found to depend on the trans-2-butene/hydrogen ratio, the total gas-flow rate, the total chamber pressure, and the RF power. In addition, a two-parameter interaction between the total pressure and the RF power also affects the coating rate. The film stress depends on the total chamber pressure and the total mass-flow rate. The surface roughness is independent of the parameters studied. Preliminary results indicate that capsules can be produced rapidly without affecting the smoothness of their outside surface and without residual stress in their walls.

  10. Synthesis and biological activity of new conformationally restricted analogues of pepstatin.

    PubMed

    Szewczuk, Z; Rebholz, K L; Rich, D H

    1992-01-01

    A new statine derivative, 3-hydroxy-4-amino-5-mercaptopentanoic acid; cysteinylstatine (CySta), was synthesized and used to prepare a series of conformationally restricted analogues of pepstatin (Iva-Val-Val-Sta-Ala-Sta) in which the conformational constraint was introduced via a bis-sulfide connecting the appropriately substituted residues in the P1 and the P3 inhibitor side chains. The precursor peptide, Iva-Cys-Val-CySta-Ala-Iaa, was synthesized and alkylated with a series of dibromoalkanes and alkenes to produce the cyclic structures. This strategy permitted the carbon atom spacing between the P1 and the P3 inhibitor side chains to be systematically varied so as to produce inhibitors with 15-, 16-, and 17-membered ring systems. Additional non-cyclic analogues were synthesized as controls by alkylating the bisthiol intermediates with methyl iodide. The inhibitory potency of the analogues were determined against porcine pepsin and penicillopepsin by using standard enzyme kinetic assays. The cyclic inhibitor were found to be potent inhibitors of both aspartic proteases; inhibitor that contained a trans-2-butene link between the two sulfur atoms was found to be the most potent inhibitor with a Ki less than 1 nM against pepsin and 3.94 nM against penicillopepsin. This series of compounds illustrates a new type of conformational restriction that can be used to probe for the bioactive conformation of peptides. PMID:1478780

  11. (e.g. SiO2) Strong and high Tg, Tm

    E-print Network

    Katsumoto, Shingo

    effect Low-energy excitation #12;#12;Propane Propene 1-Butene 1-Pentene 3-Methylpentane Tg / K 45.5 56-Gibbs Theory) Propene 1-Butene 1-Pentene 3MP Propane #12;CS2 60 K 70 K #12;Q Q #12;Sm (Q) = Sm u (Q) + Sm (Q.5 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 #12;(1) CCl4, CS2, propene, propane (2) CS2 Tg (3) CRR (4

  12. Roughness Optimization at High Modes for GDP CHx Microshells

    SciTech Connect

    Theobald, M.; Dumay, B.; Chicanne, C.; Barnouin, J.; Legaie, O.; Baclet, P.

    2004-03-15

    For the ''Megajoule'' Laser (LMJ) facility of the CEA, amorphous hydrogenated carbon (a-C:H) is the nominal ablator to be used for inertial confinement fusion (ICF) experiments. These capsules contain the fusible deuterium-tritium mixture to achieve ignition. Coatings are prepared by glow discharge polymerization (GDP) with trans-2-butene and hydrogen. The films properties have been investigated. Laser fusion targets must have optimized characteristics: a diameter of about 2.4 mm for LMJ targets, a thickness up to 175 {mu}m, a sphericity and a thickness concentricity better than 99% and an outer and an inner roughness lower than 20 nm at high modes. The surface finish of these laser fusion targets must be extremely smooth to minimize hydrodynamic instabilities.Movchan and Demchishin, and later Thornton introduced a structure zone model (SZM) based on both evaporated and sputtered metals. They investigated the influence of base temperature and the sputtering gas pressure on structure and properties of thick polycrystalline coatings of nickel, titanium, tungsten, aluminum oxide. An original cross-sectional analysis by atomic force microscopy (AFM) allows amorphous materials characterization and permits to make an analogy between the amorphous GDP material and the existing model (SZM). The purpose of this work is to understand the relationship between the deposition parameters, the growing structures and the surface roughness.The coating structure as a function of deposition parameters was first studied on plane silicon substrates and then optimized on PAMS shells. By adjusting the coating parameters, the structures are modified, and in some case, the high modes roughness decreases dramatically.

  13. Sources of Volatile Organic Compounds (VOCs) in the UAE

    NASA Astrophysics Data System (ADS)

    Abbasi, Naveed; Majeed, Tariq; Iqbal, Mazhar; Riemer, Daniel; Apel, Eric; Lootah, Nadia

    The gas chromatography-flame ionization detection/mass spectrometry system has been used to identify major volatile organic compounds (VOCs) sources in the UAE (latitude 24.45N; longitude 54.22E). VOCs are emitted from an extensive number of sources in urban environments including fuel production, distribution, and consumption. Transport sources contribute a substantial portion of the VOC burden to the urban atmosphere in developed regions. UAE is located at the edge of the Persian Gulf and is highly affected by emissions from petrochemical industries in neighbouring Saudi Arabia, Qatar, and Iran. VOCs emerging from these industries can be transported to the UAE with jet streams. The analysis of the collected air samples at three locations in Sharjah, UAE during the autumn and winter seasons indicates the presence of more than 100 VOC species. The concentrations of these species vary in magnitudes but the most prominent are: acetylene, ethane, propane, butane, pentane, benzene, and toluene. The possible tracers for various emission sources have also been identified such as 2-methylpentane, 1, 3-butadiene and 2, 2-dimethlybutane for vehicle exhaust, the light hydrocarbons, namely n-butane, trans-2-butene, and n-pentane for gasoline vapor, and n-nonane, n-decane, and n-undecane for diesel vapor and asphalt application processes. As various emission sources are characterized by overlapping VOC species, the ratio of possible VOC tracers are used to quantify the contribution of different sources. Our aim in this paper is to explore and discuss possible impacts of transported emissions on the local VOC emission inventory from various sources for the UAE. This work is partially supported by Office of Development and Alumni Affairs at the American University of Sharjah, U.A.E.

  14. Source profiles of volatile organic compounds (VOCs) measured in China: Part I

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Shao, Min; Fu, Linlin; Lu, Sihua; Zeng, Limin; Tang, Dagang

    The profiles of major volatile organic compound (VOC) sources in China, including vehicle exhaust, gasoline vapor, paint, asphalt, industrial and residential coal burning, biomass burning, and the petrochemical industry, were experimentally determined. Source samples were taken using a dilution chamber for mobile and stationary sources, biomass burning in an actual Chinese farmer's house, and ambient air in a petrochemical industrial area. The concentrations of 92 VOC species were quantified using canister sampling and a gas chromatography-flame ionization detection/mass spectrometry system, and VOC source profiles were developed for source apportionment of VOCs in the Pearl River Delta region. Based on the measurement of source profiles, possible tracers for various emission sources were identified; e.g., 2-methylpentane and 1,3-butadiene could be used as tracers for vehicle exhaust; the characteristic compounds of architectural coating were aromatics such as toluene and m, p-xylene; the light hydrocarbons, namely n-butane, trans-2-butene, and n-pentane, dominated the composition of gasoline vapor; and n-nonane, n-decane, and n-undecane were found to be typical of diesel vapor and asphalt application processes. As different emission sources are characterized by overlapping VOC species, the ratio of possible VOC tracers could be used to assess the contribution of various sources. The ratios between n-butane and isobutane, 1,3-butadiene and isoprene, and the ratios of aromatics (e.g., toluene to benzene and ethylbenzene to m, p-xylene) in the measured sources were compared.

  15. Determination of Tamoxifen and its Major Metabolites in Exposed Fish

    EPA Science Inventory

    Tamoxifen (TAM), (Z)-1-(p-dimethylaminoethoxyphenyl)-1, 2-diphenyl-1-butene, is a nonsteroidal agent that has been used in breast cancer treatment for decades. Its major metabolites are 4-hydroxytamoxifen (4-OHT), N-desmethyltamoxifen (DMT), and endoxifen. While TAM and metabolit...

  16. 40 CFR 60.489 - List of chemicals produced by affected facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...mercaptans. 1322-06-1 Amyl phenol. 62-53-3 Aniline...1-butene. 123-86-4 n-butyl acetate. 141-32-2 n-butyl... 98-73-7 p-tert-butyl benzoic acid. 107-88-0...p-phenetidine. 108-95-2 Phenol. 98-67-9,...

  17. Systematic preparation of selective heterogeneous catalysts. Final report, September 1, 1984--August 31, 1991

    SciTech Connect

    Augustine, R.L.

    1991-11-07

    The Single Turnover (STO) procedure, involving pulses of hydrogen and 1-butene, was developed for studying the types of active sites present on supported metal catalysts. The STO procedure was used to study direct saturated sites and other topics. Frontier molecular orbital studies were also made.

  18. Systematic preparation of selective heterogeneous catalysts

    SciTech Connect

    Augustine, R.L.

    1991-11-07

    The Single Turnover (STO) procedure, involving pulses of hydrogen and 1-butene, was developed for studying the types of active sites present on supported metal catalysts. The STO procedure was used to study direct saturated sites and other topics. Frontier molecular orbital studies were also made.

  19. Isobutane/butene alkylation on microporous and mesoporous solid acid catalysts: probing the pore transport effects with liquid and near critical reaction media

    E-print Network

    Sarsani, V. R.; Subramaniam, Bala

    2008-11-13

    The alkylation of isobutane with 1-butene was investigated on microporous (?-zeolite) and mesoporous (silica supported heteropolyacids) catalysts in a slurry reactor. The reaction was investigated in the range of 25–100 bar and 15–95 °C in liquid...

  20. C4H8[radical sign]+ isomerizations by theory

    NASA Astrophysics Data System (ADS)

    Hudson, Charles E.; Wang, David; McAdoo, David J.

    2004-08-01

    Structures, energies and reaction coordinates for much of the C4H8[radical sign]+ potential surface were obtained by ab initio and density functional theories. Most C4H8[radical sign]+ isomers are demonstrated to be mutually accessible below the threshold for the lowest energy dissociation, consistent with inferences from earlier experimental data. The "virtual intermediates" (point that reactions pass through corresponding to a conventional structure but lacking a corresponding potential minimum) CH3+CHCH2CH2[radical sign] and +CH2CH(CH3)CH2[radical sign] are found to be very important in C4H8[radical sign]+ rearrangements. CH3+CHCH2CH2[radical sign] is accessed from the 1-butene cation by a 1,4- and a 1,2-H-shift, the 2-butene cation by a 1,2-H-shift and the 1-methylcyclopropane cation by ring opening. All reactions through CH3+CHCH2CH2[radical sign] begin or end with a 1,2-H-shift going to or from the 1-butene ion. The 1-butene cation appears to form rather than the more stable 2-butene cation because the minimum energy pathways down from higher energy transition states go to the 1-butene cation side of the transition state that connects the 1-butene and the 2-butene ions. Perhaps charge localization on the CH carbon directs these pathways to the 1-butene cation by a carbocation-like rearrangement. Predicted competition between 1,3- and consecutive 1,2-transfers across double bonds, despite 1,2-shifts being energetically strongly favored over 1,3-shifts in other systems, is another interesting feature of C4H8[radical sign]+ reactions. The lowest energy isomerization found in this work was a 1,5-H-shift in the 1-pentene ion. In contrast to CH3+CH CH2CH2[radical sign], CH3+CHCH2CH2CH2[radical sign] appears to inhabit a potential energy minimum, albeit a shallow one. The order of the critical energies for different ring sized transfers is 1,4 > 1,3 [congruent with] 1,2 > 1,5 in the CnH2n[radical sign]+ ions examined, differing from the order 1,3 > 1,4 > 1,2 > 1,5 established for other homologous series of aliphatic radical cations.

  1. The Origin of Regioselectivity in 2-butanol Dehydration on Solid Acid Catalysts

    SciTech Connect

    Kwak, Ja Hun; Rousseau, Roger J.; Mei, Donghai; Peden, Charles HF; Szanyi, Janos

    2011-10-17

    The origin in the variations of trans-/cis-2-butene product selectivity ratios in 2-butanol dehydration over solid acid catalysts were investigated using a combined experimental-theory approach. Reactivity measurements over ?-Al2O3, AlOx/SBA-15, and H-form zeolites with widely varying Si/Al ratios and pore structures showed over two orders of magnitude change in the trans-/cis-2-butene product ratio. Activation energy barriers calculated for the concerted C-O and ?-C-H bond breakings of adsorbed butoxy intermediates by dispersion-corrected DFT calculations correctly predicted the trans-/cis-2-butene product ratio observed on ?-Al2O3. The very low trans-2-butene selectivity on ?-Al2O3 can now be understood by the formation of a late transition state with high energy barrier caused by the strong van der Waals interaction between the ?-H atoms and the flat catalyst surface. Decreasing the dispersive attractive force between the adsorbed butoxide and the surface (e.g., by moving it further away from the support surface in AlOx/SBA-15) leads to almost equimolar formation of the trans- and cis-2-butene isomers. Trans-/cis-2-butene selectivity ratios much higher than that dictated by thermodynamic equilibrium can be achieved by introducing additional geometric constraints around the active catalytic site (e.g., varying the 3D environment around the active center in zeolites). We propose a model to explain the widely varying trans-/cis-2-butene selectivity in 2-butanol dehydration over solid acid catalysts that is consistent with the experimental results in this study. A key outcome of the study is the realization that van der Waals interactions between the reactant and the active catalyst surface must be included in the theoretic models in order to be able to accurately predict product selectivities. This information, in turn, significantly advances our ability to develop catalyst materials with designed active centers in order to achieve desired regioselectivities.

  2. The Effect of Cavitating Ultrasound on the Aqueous Phase Hydrogenation of Cis-2-buten-1-ol and Cis-2-penten-1-ol on Pd-black

    SciTech Connect

    Disselkamp, Robert S.; Denslow, Kayte M.; Hart, Todd R.; White, James F.; Peden, Charles HF.

    2005-07-15

    We have studied the effect of cavitating ultrasound on the heterogeneous aqueous hydrogenation of cis-2-buten-1-ol (C4 olefin) and cis-2-penten-1-ol (C5 olefin) on Pd-black to form the trans-olefins (trans-2-buten-1-ol and trans-2-penten-1-ol) and saturated alcohols (1-butanol and 1-pentanol, respectively). Silent (and magnetically stirred) experiments served as control experiments. As described in an earlier publication by our group, we have added an inert dopant, 1-propanol, in the reaction mixture to ensure the rapid onset of cavitation in the ultrasound-assisted reactions that can lead to altered selectivity compared to silent reaction systems [Disselkamp et al., J. Catal., 227 (2004) 552]. The motivation for this study is to examine whether cavitating ultrasound can reduce the [trans-olefin/saturated alcohol] molar ratio during the course of the reaction. This could have practical application in that it may offer an alternative processing methodology of synthesizing healthier edible seed oils by reducing trans-fat content. We have observed that cavitating ultrasound results in a [(trans-olefin/saturated alcohol)ultrasound/(trans-olefin/saturated alcohol)silent] ratio quantity less than 0.5 at the reaction mid-point for both the C4 and C5 olefin systems. This indicates that ultrasound reduces trans-olefin production compared to the silent control experiment. Furthermore, there is an added 30% reduction for the C5 versus C4 olefin compounds again at reaction mid-point. We attribute differences in the ratio quantity as a moment of inertia effect. In principle, the C4 versus C5 olefins has a {approx}52% increase in moment of inertia about C2=C3 double bond slowing isomerization. Since seed oils are C18 multiple cis olefins and have an moment of inertia even greater than our C5 olefin here, our study suggests that even a greater reduction in trans-olefin content may occur for partial hydrogenation of C18 seed oils.

  3. The effect of cavitating ultrasound on the aqueous phase hydrogenation of cis-2-buten-1-ol and cis-2-penten-1-ol on Pd-black

    SciTech Connect

    Disselkamp, Robert S.; Denslow, Kayte M.; Hart, Todd R.; White, James F.; Peden, Charles HF.

    2005-07-15

    We have studied the effect of cavitating ultrasound on the heterogeneous aqueous hydrogenation of cis-2-buten-1-ol (C4 olefin) and cis-2-penten-1-ol (C5 olefin) on Pd-black to form the trans-olefins (trans-2-buten-1-ol and trans-2-penten-1-ol) and saturated alcohols (1-butanol and 1-pentanol, respectively). Silent (and magnetically stirred) experiments served as control experiments. As described in an earlier publication by our group, we have added an inert dopant, 1-propanol, in the reaction mixture to ensure the rapid onset of cavitation in the ultrasound-assisted reactions that can lead to altered selectivity compared to silent reaction systems [R.S. Disselkamp, Ya-Huei Chin, C.H.F. Peden, J. Catal. 227 (2004) 552]. The motivation for this study is to examine whether cavitating ultrasound can reduce the [trans-olefin/saturated alcohol] molar ratio during the course of the reaction. This could have practical application in that it may offer an alternative processing methodology of synthesizing healthier edible seed oils by reducing trans-fat content.We have observed that cavitating ultrasound results in a [(trans-olefin/saturated alcohol)ultrasound/(trans-olefin/saturated alcohol)silent] ratio quantity less than 0.5 at the reaction mid-point for both the C4 and C5 olefin systems. This indicates that ultrasound reduces trans-olefin production compared to the silent control experiment. Furthermore, there is an added 30% reduction for the C5 versus C4 olefin compounds again at reaction mid-point. We attribute differences in the ratio quantity as a moment of inertia effect. In principle, the C4 versus C5 olefins has a {approx}52% increase in moment of inertia about C2 C3 double bond slowing isomerization. Since seed oils are C18 multiple cis-olefins and have a moment of inertia even greater than our C5 olefin here, our study suggests that even a greater reduction in trans-olefin content may occur for partial hydrogenation of C18 seed oils.

  4. Study on Sources of Volatile Organic Compounds (CMB) in Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Shao, M.; Lu, S.; Chang, C.; Wang, C. J.; Wang, B.

    2007-05-01

    The profiles of major Volatile organic compounds (VOCs) sources including vehicle exhaust, gasoline vapor, painting, asphalt, liquefied petroleum gas (LPG), biomass burning and petrochemical industry in Pearl River Delta were experimentally determined. Source samples were taken by using dilution chamber for mobile and stationary sources, laboratory simulation for biomass burning. The concentrations of 108 VOC species of sources were quantified by using canister with pre-concentration-GC/MS system, from which 52 PAMS hydrocarbons and one kind of chlorinated hydrocarbon were deployed to build the source profiles for source apportionment of VOCs. Based the measurement of source profiles, the possible tracers for various emission sources were identified, e.g 2-methylbutane and 1,3-butadiene were the tracers for motor vehicle exhaust, the characteristic compounds of architectural and furnishing coatings are aromatics such as toluene and m/p-xylene; the light hydrocarbons, namely n-butane, trans-2-butene and n-pentane, dominated the composition of gasoline vapor; and the nonane, decane and undecane are found to represent the asphalt emissions etc.. The CMB receptor model was applied to source apportionment of 58 hydrocarbons measured at seven sites during the PRD campaign, 2004. The 12 kinds of VOC sources include gasoline/diesel-powered vehicle exhaust, gasoline/diesel headspace vapor, vehicle evaporative emissions, liquid petroleum gas (LPG) leakage, painting vapors, asphalt emission from paved road, biomass burning, coal burning, chemical industry and petroleum refinery. Vehicle exhaust was the largest sources contributing over half of the ambient VOCs at the three urban sites (GuangZhou, FoShan and ZhongShan). LPG leakage played an important role with the percentage of 8- 16% in most sites in PRD. Contributions from solvents usage were highest at DongGuan, an industrial site. At XinKen, the solvents and coatings had the largest percentage of 31% probably due to the influence of its upwind area of DongGuan. The local biomass burning was also found to be a noticeable source at XK.

  5. Synthesis of amphiphilic diblock copolymer for surface modification of Ethylene-Norbornene Copolymers

    NASA Astrophysics Data System (ADS)

    Levinsen, Simon; Svendsen, Winnie Edith; Horsewell, Andy; Almdal, Kristoffer

    2014-03-01

    The aim of this work is to produce polymer modifiers in order to develop hydrophilic polymeric surfaces for use in microfluidics. The use of hydrophilic polymers in microfluidics will have many advantages e.g. preventing protein absorbance. Here we present an amphiphilic diblock copolymer consisting of a bulk material compatible block and a hydrophilic block. To utilize the possibility of incorporating diblock copolymers into ethylene-norbornene copolymers, we have in this work developed a model poly(ethylene-1-butene) polymer compatible with the commercial available ethylene-norbornene copolymer TOPAS. Through matching of the radius of gyration for the model polymer and TOPAS the miscibility was achieved. The poly(ethylene-1-butene) polymer was synthesized from a hydrogenated anionic polymerized polybutadiene polymer. As hydrophilic block poly(ethylene oxide) was subsequently added also with anionic polymerization. Recent miscibility results between the model polymer and TOPAS will be presented, as well ongoing efforts to study the hydrophilic surface.

  6. Tensile True Stress - Strain Curves and Essential Work of Fracture Analysis of Polyethylene Blown Films 

    E-print Network

    Lee, Chin-Fu

    2015-05-12

    and varying amounts of ?-olefin comonomers, such as 1-butene, 1-hexene, and 1-octene, using Ziegler-Natta 2 (ZN) or metallocene (m) catalysts. The ?-olefin comonomer introduces short chain branches, such as ethyl, butyl and hexyl branches... of comonomers and are considered to be a mixture of fractions of polyethylene copolymers with a range of molecular weights and short chain branch content. With the single site metallocene catalysts, narrow molecular weight distribution LLDPEs...

  7. The Thermodynamic Conjugation Stabilization of 1,3-Butadiyne Is Zero

    ERIC Educational Resources Information Center

    Rogers, Donald W.; Zavitsas, Andreas A.; Matsunaga, Nikita

    2010-01-01

    Many textbooks point out that the thermodynamic stabilization enthalpy of 1 mol of 1,3-butadiene relative to 2 mol of 1-butene or to 1 mol of 1,4-pentadiene is slightly less than 4 kcal mol[superscript -1], owing to conjugation between the double bonds in the 1,3 configuration. It is reasonable to suppose that the analogous thermochemical…

  8. Replacing precious metals with carbide catalysts for hydrogenation reactions

    DOE PAGESBeta

    Ruijun, Hou; Chen, Jingguang G.; Chang, Kuan; Wang, Tiefeng

    2015-03-03

    Molybdenum carbide (Mo?C and Ni/Mo?C) catalysts were compared with Pd/SiO? for the hydrogenation of several diene molecules, 1,3- butadiene, 1,3- and 1,4-cyclohexadiene (CHD). Compared to Pd/SiO?, Mo?C showed similar hydrogenation rate for 1,3-butadiene and 1,3-CHD and even higher rate for 1,4-CHD, but with significant deactivation rate for 1,3-CHD hydrogenation. However, the hydrogenation activity of Mo?C could be completely regenerated by H? treatment at 723 K for the three molecules. The Ni modified Mo?C catalysts retained similar activity for 1,3-butadiene hydrogenation with significantly enhanced selectivity for 1-butene production. The 1-butene selectivity increased with increasing Ni loading below 15%. Among the Nimore »modified Mo?C catalysts, 8.6%Ni/Mo?C showed the highest selectivity to 1-butene, which was even higher selectivity than that over Pd/SiO?. Compared to Pd/SiO?, both Mo?C and Ni/Mo?C showed combined advantages in hydrogenation activity and catalyst cost reduction, demonstrating the potential to use less expensive carbide catalysts to replace precious metals for hydrogenation reactions.« less

  9. Replacing precious metals with carbide catalysts for hydrogenation reactions

    SciTech Connect

    Ruijun, Hou; Chen, Jingguang G.; Chang, Kuan; Wang, Tiefeng

    2015-03-03

    Molybdenum carbide (Mo?C and Ni/Mo?C) catalysts were compared with Pd/SiO? for the hydrogenation of several diene molecules, 1,3- butadiene, 1,3- and 1,4-cyclohexadiene (CHD). Compared to Pd/SiO?, Mo?C showed similar hydrogenation rate for 1,3-butadiene and 1,3-CHD and even higher rate for 1,4-CHD, but with significant deactivation rate for 1,3-CHD hydrogenation. However, the hydrogenation activity of Mo?C could be completely regenerated by H? treatment at 723 K for the three molecules. The Ni modified Mo?C catalysts retained similar activity for 1,3-butadiene hydrogenation with significantly enhanced selectivity for 1-butene production. The 1-butene selectivity increased with increasing Ni loading below 15%. Among the Ni modified Mo?C catalysts, 8.6%Ni/Mo?C showed the highest selectivity to 1-butene, which was even higher selectivity than that over Pd/SiO?. Compared to Pd/SiO?, both Mo?C and Ni/Mo?C showed combined advantages in hydrogenation activity and catalyst cost reduction, demonstrating the potential to use less expensive carbide catalysts to replace precious metals for hydrogenation reactions.

  10. Stereoselective synthesis and molecular modeling of chiral cyclopentanes.

    PubMed

    Abdel-Jalil, Raid J; Steinbrecher, Thomas; Al-Harthy, Thuraya; Mahal, Ahmed; Abou-Zied, Osama K; Voelter, Wolfgang

    2015-10-13

    The reaction of 3-methyseleno-2-methylselenomethyl-propene with benzyl 2,3-anhydro-4-O-triflyl-?-L-ribopyranoside provides a major convenient enantiomeric product of 1-methylene-(benzyl3,4-dideoxy-?-D-arabinopyranoso)-[3,4-c]-cyclopentane, with benzyl-2,3-anhydro-4-deoxy-4-C-(2-methyl- propen-3-yl)-?-D-lyxopyranoside as a minor product. While the reaction of 3-methyseleno-2-[methylselenomethyl]-propene with benzyl 2,3-anhydro-4-O-triflyl-?-D-ribopyranoside produces a good yield of benzyl-2,3-anhydro-4-deoxy-4-C-(2-methylpropen-3-yl)-?-D-lyxo-pyranoside. Molecular modeling and molecular dynamics simulations indicate that the intermediate in the reaction of the ?-L sugar frequently occupies an optimal conformation that leads to the formation of cyclopentane, while the intermediate in the reaction of the ?-D sugar has a very small probability. The results point to the dominant role of the ?-L sugar intermediate in controlling the cyclopentane formation. PMID:26267888

  11. DFT studies of the structure and vibrational and NMR spectra of 1-(2-methylpropenyl)-2-methylbenzimidazole

    NASA Astrophysics Data System (ADS)

    Infante-Castillo, Ricardo; Hernández-Rivera, Samuel P.

    2009-01-01

    Synthesis of two new 1-(2-methylpropenyl)-2-methylbenzimidazoles by reaction of 2-methylbenzimidazole with 3-chloro-2-methylpropene using a strong base as a catalyst is described. Gas chromatography-mass spectrometry (GC-MS) allowed the characterization of the structural isomers: the slightly more stable 1-(2-methyl-1-propenyl)-2-methylbenzimidazole (51%) and a less stable 1-(2-methyl-2-propenyl)-2-methylbenzimidazole (49%). The results of theoretical calculations indicate that the difference in the energy between the two structural isomers is 3.21 kcal mol -1 at the B3LYP/6-311+G ?? level. The structures were confirmed by 1H and 13C Nuclear Magnetic Resonance, elemental analysis and spectroscopic methods such as FT-Raman, FT-IR and UV-VIS. The experimental results were supported by performing DFT calculations for energies, geometries, vibrational frequencies and shieldings constants using 6-311+G ?? basis sets and B3LYP functional. The theoretical data have satisfactorily reproduced the experimental results. The consistency and efficiency of the GIAO method used to calculate absolute shielding of the studied compounds were checked by the analysis of statistical parameters and were found to be in excellent agreement with experimental values. This correlation has been used for unambiguous NMR signal assignments for studied compounds.

  12. Development of a pulsed uniform supersonic gas expansion system based on an aerodynamic chopper for gas phase reaction kinetic studies at ultra-low temperatures.

    PubMed

    Jiménez, E; Ballesteros, B; Canosa, A; Townsend, T M; Maigler, F J; Napal, V; Rowe, B R; Albaladejo, J

    2015-04-01

    A detailed description of a new pulsed supersonic uniform gas expansion system is presented together with the experimental validation of the setup by applying the CRESU (French acronym for Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in a Uniform Supersonic Flow) technique to the gas-phase reaction of OH radicals with 1-butene at ca. 23 K and 0.63 millibars of helium (carrier gas). The carrier gas flow, containing negligible mixing ratios of OH-precursor and 1-butene, is expanded from a high pressure reservoir (337 millibars) to a low pressure region (0.63 millibars) through a convergent-divergent nozzle (Laval type). The novelty of this experimental setup is that the uniform supersonic flow is pulsed by means of a Teflon-coated aerodynamic chopper provided with two symmetrical apertures. Under these operational conditions, the designed Laval nozzle achieves a temperature of (22.4 ± 1.4) K in the gas jet. The spatial characterization of the temperature and the total gas density within the pulsed uniform supersonic flow has also been performed by both aerodynamical and spectroscopic methods. The gas consumption with this technique is considerably reduced with respect to a continuous CRESU system. The kinetics of the OH+1-butene reaction was investigated by the pulsed laser photolysis/laser induced fluorescence technique. The rotation speed of the disk is temporally synchronized with the exit of the photolysis and the probe lasers. The rate coefficient (k(OH)) for the reaction under investigation was then obtained and compared with the only available data at this temperature. PMID:25933898

  13. Development of a pulsed uniform supersonic gas expansion system based on an aerodynamic chopper for gas phase reaction kinetic studies at ultra-low temperatures

    NASA Astrophysics Data System (ADS)

    Jiménez, E.; Ballesteros, B.; Canosa, A.; Townsend, T. M.; Maigler, F. J.; Napal, V.; Rowe, B. R.; Albaladejo, J.

    2015-04-01

    A detailed description of a new pulsed supersonic uniform gas expansion system is presented together with the experimental validation of the setup by applying the CRESU (French acronym for Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in a Uniform Supersonic Flow) technique to the gas-phase reaction of OH radicals with 1-butene at ca. 23 K and 0.63 millibars of helium (carrier gas). The carrier gas flow, containing negligible mixing ratios of OH-precursor and 1-butene, is expanded from a high pressure reservoir (337 millibars) to a low pressure region (0.63 millibars) through a convergent-divergent nozzle (Laval type). The novelty of this experimental setup is that the uniform supersonic flow is pulsed by means of a Teflon-coated aerodynamic chopper provided with two symmetrical apertures. Under these operational conditions, the designed Laval nozzle achieves a temperature of (22.4 ± 1.4) K in the gas jet. The spatial characterization of the temperature and the total gas density within the pulsed uniform supersonic flow has also been performed by both aerodynamical and spectroscopic methods. The gas consumption with this technique is considerably reduced with respect to a continuous CRESU system. The kinetics of the OH+1-butene reaction was investigated by the pulsed laser photolysis/laser induced fluorescence technique. The rotation speed of the disk is temporally synchronized with the exit of the photolysis and the probe lasers. The rate coefficient (kOH) for the reaction under investigation was then obtained and compared with the only available data at this temperature.

  14. Difference-NMR techniques for selection of components on the basis of relaxation times

    NASA Astrophysics Data System (ADS)

    Harris, Douglas J.; de Azevedo, Eduardo R.; Bonagamba, Tito J.

    2003-05-01

    This work describes a numerical methodology to obtain more efficient relaxation filters to selectively retain or remove components based on relaxation times. The procedure uses linear combinations of spectra with various recycle or filter delays to obtain components that are both quantitative and pure. Modulation profiles are calculated assuming exponential relaxation behavior. The method is general and can be applied to a wide range of solution or solid-state NMR experiments including direct-polarization (DP), or filtered cross-polarization (CP) spectra. 13C NMR experiments on isotactic poly(1-butene) and dimethyl sulfone showed the utility of the technique for selectively suppressing peaks.

  15. XAFS Study of the Photo-Active Site of Mo/MCM-41

    NASA Astrophysics Data System (ADS)

    Miyamoto, Daisuke; Ichikuni, Nobuyuki; Shimazu, Shogo

    2007-02-01

    An Mo/MCM-41 catalyst was prepared and used for study of propene and 1-butene photo-metathesis reactions. XAFS analysis revealed that hydrogen reduction leads to a decreased role for the Mo=O site. The Mo-O site plays an important role for the olefin photo-metathesis reaction on the H2 reduced Mo/MCM-41. From EXAFS analysis, the active site of photo-metathesis reaction is the Mo=O part for oxidized Mo/MCM-41, whereas it is the Mo-O site for reduced Mo/MCM-41.

  16. Abscission: The Role of Ethylene, Ethylene Analogues, Carbon Dioxide, and Oxygen

    PubMed Central

    Abeles, F. B.; Gahagan, H. E.

    1968-01-01

    Ethylene was the most effective abscission accelerant examined, with decreasing activity shown by propene, carbon monoxide, acetylene, vinyl fluoride, 1-butene, and 1,3-butadiene. Carbon dioxide inhibited abscission, but its effect was overcome by ethylene. Oxygen was required for abscission as an electron acceptor for respiration and not as a potentiator or activator of the ethylene attachment site. The molecular requirements for abscission were similar to those shown by other workers for other biological processes under the influence of ethylene. PMID:16656908

  17. Conversion of methanol to light olefins on SAPO-34: kinetic modeling and reactor design 

    E-print Network

    Al Wahabi, Saeed M. H.

    2005-02-17

    -pentene...................................62 Figure IV-8. Single event rate coefficients for elementary cracking steps. Curve (a): 2,2-diMe-4-hexyl R+ into 1-butene and 2-Me-2- propyl R+. Curve (b): 2,2,4-triMe-4-pentyl R+ into isobutylene and 2-Me-2....3 Total 100.0 100.0 Olefins Yields, wt% Ethylene 6.1 0.8 Propylene 21.0 4.9 Isobutylene 5.1 1.9 Total butylenes 14.3 8.1 II.3 Paraffins Dehydrogenation Propane dehydrogenation technology has gained importance in recent years due...

  18. Action spectroscopy for single-molecule reactions - Experiments and theory

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Motobayashi, K.; Frederiksen, T.; Ueba, H.; Kawai, M.

    2015-05-01

    We review several representative experimental results of action spectroscopy (AS) of single molecules on metal surfaces using a scanning tunneling microscope (STM) by M. Kawai's group over last decade. The experimental procedures to observe STM-AS are described. A brief description of a low-temperature STM and experimental setup are followed by key experimental techniques of how to determine an onset bias voltage of a reaction and how to measure a current change associated with reactions and finally how to observe AS for single molecule reactions. The experimental results are presented for vibrationally mediated chemical transformation of trans-2-butene to 1.3-butadiene molecule and rotational motion of a single cis-2-butene molecule among four equivalent orientations on Pd(1 1 0). The AS obtained from the motion clearly detects more vibrational modes than inelastic electron tunneling spectroscopy with an STM. AS is demonstrated as a useful and novel single molecule vibrational spectroscopy. The AS for a lateral hopping of water dimer on Pt(1 1 1) is presented as an example of novelty. Several distinct vibrational modes are detected as the thresholds in the AS. The assignment of the vibrational modes determined from the analysis of the AS is made from a view of the adsorption geometry of hydrogen-bond donor or acceptor molecules in water dimer. A generic theory of STM-AS, i.e., a reaction rate or yield as a function of bias voltage, is presented using a single adsorbate resonance model for single molecule reactions induced by the inelastic tunneling current. Formulas for the reaction rate R (V) and Y (V) , i.e., reaction yield per electron Y (V) = eR (V) / I are derived. It provides a versatile framework to analyze any vibrationally mediated reactions of single adsorbates on metal surfaces. Numerical examples are presented to demonstrate generic features of the vibrational generation rate and Y (V) at different levels of approximations and to show how the effective broadening of the vibrational density of states (as described by Gaussian or Lorentzian functions) manifest themselves in Y (V) near the threshold bias voltage corresponding to a vibrational excitation responsible for reactions. A prefactor of Y (V) is explicitly derived for various types of elementary processes. Our generic formula of Y (V) also underlines the need to observe Y (V) at both bias voltage polarities, which can provide additional insight into the adsorbate projected density of states near the Fermi level within a span of the vibrational energy. The theory is applied to analysis of some highlights of the experimental results: Xe transfer, hopping of a single CO molecule on Pd(1 1 0), a dissociation of a single dimethyl disulfide (CH3S)2 and a hopping of a dissociated product, i.e., single methyl thiolate CH3S on Cu(1 1 1). It underlines that an observation of Y (V) at both bias polarities permits us to certain insight into the molecular alignment with respect to the Fermi level.

  19. Protonation sites and dissociation mechanisms of t-butylcarbamates in tandem mass spectrometric assays for newborn screening.

    PubMed

    Spá?il, Zden?k; Hui, Renjie; Gelb, Michael H; Ture?ek, František

    2011-10-01

    Structures of tert-butylcarbamate ions in the gas-phase and methanol solution were studied for simple secondary and tertiary carbamates as well as for carbamate-containing products and internal standards for lysosomal enzyme assays used in newborn screening of a ?-galactosidase A deficiency (Fabry disease), mucopolysaccharidosis I (Hurler disease), and mucopolysaccharidosis II (Hunter disease). The protonation of simple t-butylcarbamates can occur at the carbonyl group, which is the preferred site in the gas phase. Protonation in methanol solution is more favorable if occurring at the carbamate nitrogen atom. The protonation of more complex t-butylcarbamates occurs at amide and carbamate carbonyl groups, and the ions are stabilized by intramolecular hydrogen bonding, which is affected by solvation. Tertiary carbamates containing aminophenol amide groups were calculated to have substantially greater gas-phase basicities than secondary carbamates containing coumarin amide groups. The main diagnostically important ion dissociation by elimination of 2-methylpropene (isobutylene, i-C(4)H(8)) and carbon dioxide is shown by experiment and theory to proceed in two steps. Energy-resolved collision-induced dissociation of the Hurler's disease enzymatic product ion, which is a coumarin-diamine linker-t-butylcarbamate conjugate (3a(+)), indicated separate energy thresholds for the loss of i-C(4)H(8) and CO(2). Computational investigation of the potential energy surface along two presumed reaction pathways indicated kinetic preference for the migration of a t-butyl hydrogen atom to the carbamate carbonyl resulting in the isobutylene loss. The consequent loss of CO(2) required further proton migrations that had to overcome energy barriers. PMID:22012676

  20. Electron collisions with methyl-substituted ethylenes: Cross section measurements and calculations for 2-methyl-2-butene and 2,3-dimethyl-2-butene

    NASA Astrophysics Data System (ADS)

    Szmytkowski, Czes?aw; Stefanowska, Sylwia; Zawadzki, Mateusz; Ptasi?ska-Denga, El?bieta; Mo?ejko, Pawe?

    2015-08-01

    We report electron-scattering cross sections determined for 2-methyl-2-butene [(H3C)HC = C(CH3)2] and 2,3-dimethyl-2-butene [(H3C)2C = C(CH3)2] molecules. Absolute grand-total cross sections (TCSs) were measured for incident electron energies in the 0.5-300 eV range, using a linear electron-transmission technique. The experimental TCS energy dependences for the both targets appear to be very similar with respect to the shape. In each TCS curve, three features are discernible: the resonant-like structure located around 2.6-2.7 eV, the broad distinct enhancement peaking near 8.5 eV, and a weak hump in the vicinity of 24 eV. Theoretical integral elastic (ECS) and ionization (ICS) cross sections were computed up to 3 keV by means of the additivity rule (AR) approximation and the binary-encounter-Bethe method, respectively. Their sums, (ECS+ICS), are in a reasonable agreement with the respective measured TCSs. To examine the effect of methylation of hydrogen sides in the ethylene [H2C = CH2] molecule on the TCS, we compared the TCS energy curves for the sequence of methylated ethylenes: propene [H2C = CH(CH3)], 2-methylpropene [H2C = C(CH3)2], 2-methyl-2-butene [(H3C)HC = C(CH3)2], and 2,3-dimethyl-2-butene [(H3C)2C = C(CH3)2], measured in the same laboratory. Moreover, the isomeric effect is also discussed for the C5H10 and C6H12 compounds.

  1. A simplified chemistry module for atmospheric transport and dispersion models: Proof-of-concept using SCIPUFF

    NASA Astrophysics Data System (ADS)

    Burns, Douglas S.; Rottmann, Shawn D.; Plitz, Angela B. L.; Wiseman, Floyd L.; Moore, William; Chynwat, Veeradej

    2012-09-01

    An atmospheric chemistry module was developed to predict the fate of environmentally hazardous compounds discharged into the atmosphere. The computationally efficient model captures the diurnal variation within the environment and in the degradation rates of the released compounds, follows the formation of toxic degradation products, runs rapidly, and in principle can be integrated with any atmospheric transport and dispersion model. To accomplish this, a detailed atmospheric chemistry mechanism for a target toxic industrial compound (TIC) was reduced to a simple empirical effective degradation rate term (keff). Empirically derived decay functions for keff were developed as a function of important meteorological parameters such as solar flux, temperature, humidity, and cloud cover for various land uses and locations by statistically analyzing data generated from a detailed chemistry mechanism run over a wide range of (typical) atmospheric conditions. 1-Butene and two degradation products (propanal and nitrooxybutanone) were used as representative chemicals in the algorithm development for this proof-of-concept demonstration of the capability of the model. The quality of the developed model was evaluated via comparison with experimental chamber data and the results (decay rates) compared favorably for ethene, propene, and 1-butene (within a factor of two 75% or more of the time).

  2. Volatile organic compound constituents from an integrated iron and steel facility.

    PubMed

    Tsai, Jiun-Horng; Lin, Kuo-Hsiung; Chen, Chih-Yu; Lai, Nina; Ma, Sen-Yi; Chiang, Hung-Lung

    2008-09-15

    This study measured the volatile organic compound (VOC) constituents of four processes in an integrated iron and steel industry; cokemaking, sintering, hot forming, and cold forming. Toluene, 1,2,4-trimethylbenzene, isopentane, m,p-xylene, 1-butene, ethylbenzene, and benzene were the predominant VOC species in these processes. However, some of the chlorinated compounds were high (hundreds ppbv), i.e., trichloroethylene in all four processes, carbon tetrachloride in the hot forming process, chlorobenzene in the cold forming process, and bromomethane in the sintering process. In the sintering process, the emission factors of toluene, benzene, xylene, isopentane, 1,2,4-trimethylbenzene, and ethylbenzene were over 9 g/tonne-product. In the vicinity of the manufacturing plant, toluene, isopentane, 1,2,4-trimethylbenzene, xylene and ethylbenzene were high. Toluene, 1,2,4-trimethylbenzene, xylene, 1-butene and isopentane were the major ozone formation species. Aromatic compounds were the predominant VOC groups, constituting 45-70% of the VOC concentration and contributing >70% to the high ozone formation potential in the stack exhaust and workplace air. The sequence of VOC concentration and ozone formation potential was as follows: cold forming>sintering>hot forming>cokemaking. For the workplace air, cokemaking was the highest producer, which was attributed to the fugitive emissions of the coke oven and working process release. PMID:18289777

  3. Near-threshold absolute photoionization cross-sections of some reaction intermediates in combustion

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Yang, Bin; Cool, Terrill A.; Hansen, Nils; Kasper, Tina

    2008-02-01

    The use of photoionization mass spectrometry for the development of quantitative kinetic models for the complex combustion chemistry of both conventional hydrocarbon fuels and oxygenated biofuels requires near-threshold measurements of absolute photoionization cross-sections for numerous reaction intermediates. Near-threshold absolute cross-sections for molecular and dissociative photoionization for 20 stable reaction intermediates (methane, ethane, propane, n-butane, cyclopropane, methylcyclopentane, 1-butene, cis-2-butene, isobutene, 1-pentene, cyclohexene, 3,3-dimethyl-1-butene, 1,3-hexadiene, 1,3-cyclohexadiene, methyl acetate, ethyl acetate, tetrahydrofuran, propanal, 1-butyne, 2-butyne) are presented. Previously measured total photoionization cross-sections for 9 of these molecules are in good agreement with the present results. The measurements are performed with photoionization mass spectrometry (PIMS) using a monochromated VUV synchrotron light source with an energy resolution of 40 meV (fwhm) comparable to that used for flame-sampling molecular beam PIMS studies of flame chemistry and reaction kinetics.

  4. Palladium-mediated hydrogenation of unsaturated hydrocarbons with hydrogen gas released during anaerobic cellulose degradation. [Neocallimastix frontalis; Ruminococcus albus; methanospirillum hungatei

    SciTech Connect

    Mountfort, D.O.; Kaspar, H.F.

    1986-10-01

    Among five hydrogenation catalysts, palladium on charcoal was the most reactive one when suspended in anaerobic culture medium, and Lindlar catalyst (Pd on CaCO/sub 3/) was the most reactive one when suspended in the gas phase of culture tubes. Palladium on charcoal in the culture medium (40 to 200 mg 10 ml/sup -1/) completely inhibited growth of Neocallimastix frontalis and partly inhibited Ruminococcus albus. Lindlar catalyst (40 to 200 mg per tube) suspended in a glass pouch above the culture medium did not affect the rate of cellulose degradation or the ration of fermentation products by these organisms. Acetylene added to tubes containing Lindlar catalyst in pouches, and either of the two organisms in monoculture or coculture with Methanospirillum hungatei, was reduced to ethylene and then ethane, followed by hydrogen production. Similar results were obtained with 1-pentene. Neither acetylene nor 1-pentene affected cellulose degradation but both inhibited methanogenesis. In the presence of Lindlar catalyst and propylene or 1-butene, fermenter-methanogen cocultures continued to produce methane at the same rate as controls and no olefin reduction occurred. Upon addition of bromoethanesulfonic acid, methanogenesis stopped and olefin reduction took place followed by hydrogen evolution. In a gas mixture consisting of propylene, 1-butene, and 1-pentene, the olefins were reduced at rates which decreased with increasing molecular size.

  5. Three-Dimensional Conformation of Folded Polymers in Single Crystals

    NASA Astrophysics Data System (ADS)

    Hong, You-lee; Yuan, Shichen; Li, Zhen; Ke, Yutian; Nozaki, Koji; Miyoshi, Toshikazu

    2015-10-01

    The chain-folding mechanism and structure of semicrystalline polymers have long been controversial. Solid-state NMR was applied to determine the chain trajectory of 13C CH3 -labeled isotactic poly(1-butene) (i PB 1 ) in form III chiral single crystals blended with nonlabeled i PB 1 crystallized in dilute solutions under low supercooling. An advanced 13C - 13C double-quantum NMR technique probing the spatial proximity pattern of labeled 13C nuclei revealed that the chains adopt a three-dimensional (3D) conformation in single crystals. The determined results indicate a two-step crystallization process of (i) cluster formation via self-folding in the precrystallization stage and (ii) deposition of the nanoclusters as a building block at the growth front in single crystals.

  6. Reaction mechanism studies of unsaturated molecules using photofragment translational spectroscopy

    SciTech Connect

    Longfellow, C.A. |

    1996-05-01

    A number of molecules have been studied using the technique of photofragment translational spectroscopy. In Chapter One a brief introduction to the experimental technique is given. In Chapter Two the infrared multiphoton dissociation (IRMPD) of acetic acid is discussed. Carbon dioxide and methane were observed for the first time as products from dissociation under collisionless conditions. Chapter Three relates an IRMPD experiment of hexafluoropropene. The predominant channel produces CFCF{sub 3} or C{sub 2}F{sub 4} and CF{sub 2}, with the heavier species undergoing further dissociation to two CF{sub 2} fragments. In Chapter Four the ultraviolet (UV) dissociation of hexafluoropropene is investigated. Chapter Five explores the IRMPD of octafluoro-1-butene and octafluoro-2-butene.

  7. Shock tube study of the fuel structure effects on the chemical kinetic mechanisms responsible for soot formation, part 2

    NASA Technical Reports Server (NTRS)

    Frenklach, M.; Clary, D. W.; Ramachandra, M. K.

    1985-01-01

    Soot formation in oxidation of allene, 1,3-butadiene, vinylacetylene and chlorobenzene and in pyrolysis of ethylene, vinylacetylene, 1-butene, chlorobenzene, acetylen-hydrogen, benzene-acetylene, benzene-butadiene and chlorobenzene-acetylene argon-diluted mixtures was studied behind reflected shock waves. The results are rationalized within the framework of the conceptual models. It is shown that vinylacetylene is much less sooty than allene, which indicates that conjugation by itself is not a sufficient factor for determining the sooting tendency of a molecule. Structural reactivity in the context of the chemical kinetics is the dominant factor in soot formation. Detailed chemical kinetic modeling of soot formation in pyrolysis of acetylene is reported. The main mass growth was found to proceed through a single dominant route composed of conventional radical reactions. The practically irreversible formation reactions of the fused polycyclic aromatics and the overshoot by hydrogen atom over its equilibrium concentration are the g-driving kinetic forces for soot formation.

  8. Three-Dimensional Conformation of Folded Polymers in Single Crystals.

    PubMed

    Hong, You-Lee; Yuan, Shichen; Li, Zhen; Ke, Yutian; Nozaki, Koji; Miyoshi, Toshikazu

    2015-10-16

    The chain-folding mechanism and structure of semicrystalline polymers have long been controversial. Solid-state NMR was applied to determine the chain trajectory of ^{13}C CH_{3}-labeled isotactic poly(1-butene) (iPB1) in form III chiral single crystals blended with nonlabeled iPB1 crystallized in dilute solutions under low supercooling. An advanced ^{13}C-^{13}C double-quantum NMR technique probing the spatial proximity pattern of labeled ^{13}C nuclei revealed that the chains adopt a three-dimensional (3D) conformation in single crystals. The determined results indicate a two-step crystallization process of (i) cluster formation via self-folding in the precrystallization stage and (ii) deposition of the nanoclusters as a building block at the growth front in single crystals. PMID:26550905

  9. A remarkable shape-catalytic effect of confinement on the rotational isomerization of small hydrocarbons

    SciTech Connect

    Santiso, Erik E; Gubbins, Keith E; Buongiorno Nardelli, Marco

    2008-01-01

    As part of an effort to understand the effect of confinement by porous carbons on chemical reactions, we have carried out density functional theory calculations on the rotational isomerization of three four-membered hydrocarbons: n-butane, 1-butene, and 1,3-butadiene. Our results show that the interactions with the carbon walls cause a dramatic change on the potential energy surface for pore sizes comparable to the molecular dimensions. The porous material enhances or hinders reactions depending on how similar is the shape of the transition state to the shape of the confining material. The structure of the stable states and their equilibrium distributions are also drastically modified by confinement. Our results are consistent with a doubly exponential behavior of the reaction rates as a function of pore size, illustrating how the shape of a catalytic support can dramatically change the efficiency of a catalyst. (51 refs.)

  10. Synthesis of an un-supported, high-flow ZSM-22 zeolite membrane

    DOEpatents

    Thoma, Steven G. (Albuquerque, NM); Nenoff, Tina M. (Albuquerque, NM)

    2006-10-10

    Novel methods for synthesizing wholly un-supported, high-flow catalytic membranes consisting of 100% crystalline ZSM-22 crystals with no binder phase, having sufficient porosity to allow high Weight Hourly Space Velocities of feedstock to pass through without generating back pressure. The ZSM-22 membranes perform favorably to existing bulk ZSM-22 catalysts (e.g., via 1-butene conversion and selectivity). The method of membrane synthesis, based on Vapor Phase Transport, allows free-standing, binder-less membranes to be fabricated in varied geometries and sizes so that membranes can be tailor-made for particular geometries applications. The ZSM-22 precursor gel may be consolidated into a semi-cohesive body prior to vapor phase crystallization, for example, by uniaxial pressing. These crystalline membranes may be modified by ion exchange, pore ion exchange, framework exchange, synthesis modification techniques to incorporate other elements into the framework, such as K, H, Mg, Zn, V, Ga, and Pt.

  11. Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities

    DOEpatents

    Dumesic, James A [Verona, WI; Ruiz, Juan Carlos Serrano [Madison, WI; West, Ryan M [Madison, WI

    2014-01-07

    Described is a method to make liquid chemicals. The method includes deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to .gamma.-valerolactone, and converting the .gamma.-valerolactone to pentanoic acid. Alternatively, the .gamma.-valerolactone can be conveted to a mixture of n-butenes. The pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C.sub.9 and C.sub.18 olefins, which can be hydrogenated to yield a mixture of alkanes.

  12. Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities

    SciTech Connect

    Dumesic, James A.; Ruiz, Juan Carlos Serrano; West, Ryan M.

    2015-06-30

    Described is a method to make liquid chemicals. The method includes deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to .gamma.-valerolactone, and converting the .gamma.-valerolactone to pentanoic acid. Alternatively, the .gamma.-valerolactone can be converted to a mixture of n-butenes. The pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C.sub.9 and C.sub.18 olefins, which can be hydrogenated to yield a mixture of alkanes.

  13. Flame temperature, fuel structure, and fuel concentration effects on soot formation in inverse diffusion flames

    SciTech Connect

    Sidebotham, G.W.; Glassman, I. )

    1992-09-01

    Insights into soot formation processes are gained from chemical sampling and thermocouple probing of co-flowing inverse diffusion flames (IDFs), with the oxidizer in the center. In this paper the transition from near-to slightly sooting flames and the effects of flame temperature, fuel concentration, and fuel structure (using methane, ethene, propene and 1-butene) are investigated. The aromatic content of IDFS scales with the fuel's sooting tendency, and suggests that the formation of the aromatic ring is a controlling step in soot formation. In addition to the relatively well-established reactions involving C4 and C2 species, benzene may form directly from two C3 species for fuels that readily produce C3 species during pyrolysis and/or oxidative pyrolysis. The total concentration of growth species increases almost linearly with fuel concentration, but depends more weakly on flame temperature than would be expected if pure pyrolysis governed the intermediate hydrocarbon behavior.

  14. Decarboxylative-coupling of allyl acetate catalyzed by group 10 organometallics, [(phen)M(CH3)]+.

    PubMed

    Woolley, Matthew; Ariafard, Alireza; Khairallah, George N; Kwan, Kim Hong-Yin; Donnelly, Paul S; White, Jonathan M; Canty, Allan J; Yates, Brian F; O'Hair, Richard A J

    2014-12-19

    Gas-phase carbon-carbon bond forming reactions, catalyzed by group 10 metal acetate cations [(phen)M(O2CCH3)](+) (where M = Ni, Pd or Pt) formed via electrospray ionization of metal acetate complexes [(phen)M(O2CCH3)2], were examined using an ion trap mass spectrometer and density functional theory (DFT) calculations. In step 1 of the catalytic cycle, collision induced dissociation (CID) of [(phen)M(O2CCH3)](+) yields the organometallic complex, [(phen)M(CH3)](+), via decarboxylation. [(phen)M(CH3)](+) reacts with allyl acetate via three competing reactions, with reactivity orders (% reaction efficiencies) established via kinetic modeling. In step 2a, allylic alkylation occurs to give 1-butene and reform metal acetate, [(phen)M(O2CCH3)](+), with Ni (36%) > Pd (28%) > Pt (2%). Adduct formation, [(phen)M(C6H11O2)](+), occurs with Pt (24%) > Pd (21%) > Ni(11%). The major losses upon CID on the adduct, [(phen)M(C6H11O2)](+), are 1-butene for M = Ni and Pd and methane for Pt. Loss of methane only occurs for Pt (10%) to give [(phen)Pt(C5H7O2)](+). The sequences of steps 1 and 2a close a catalytic cycle for decarboxylative carbon-carbon bond coupling. DFT calculations suggest that carbon-carbon bond formation occurs via alkene insertion as the initial step for all three metals, without involving higher oxidation states for the metal centers. PMID:25329236

  15. Characterization of dispersed heteropoly Acid on mesoporous zeolite using solid-state 31P NMR spin-lattice relaxation.

    PubMed

    Zhu, Kake; Hu, Jianzhi; She, Xiaoyan; Liu, Jun; Nie, Zimin; Wang, Yong; Peden, Charles H F; Kwak, Ja Hun

    2009-07-22

    Dispersion and quantitative characterization of supported catalysts is a grand challenge in catalytic science. In this paper, heteropoly acid H(3)PW(12)O(40) (HPA) is dispersed on mesoporous zeolite silicalite-1 derived from hydrothermal synthesis using carbon black nanoparticle templates, and the catalytic activity is studied for 1-butene isomerization. The HPAs supported on conventional zeolite and on mesoporous zeolite exhibit very different activities and thus provide good model systems to investigate the structure dependence of the catalytic properties. The HPA on mesoporous silicalite-1 shows enhanced catalytic activity for 1-butene isomerization, while HPA on conventional silicalite-1 exhibits low activity. To elucidate the structural difference, supported HPA catalysts are characterized using a variety of techniques, including (31)P magic angle spinning nuclear magnetic resonance, and are shown to contain a range of species on both mesoporous and conventional zeolites. However, contrary to studies reported in the literature, conventional NMR techniques and chemical shifts alone do not provide sufficient information to distinguish the dispersed and aggregated surface species. The dispersed phase and the nondispersed phase can only be unambiguously and quantitatively characterized using spin-lattice relaxation NMR techniques. The HPA supported on mesoporous zeolite contains a fast relaxation component related to the dispersed catalyst, giving a much higher activity, while the HPA supported on conventional zeolite has essentially only the slow relaxation component with very low activity. The results obtained from this work demonstrate that the combination of spinning sideband fitting and spin-lattice relaxation techniques can provide detailed structural information on not only the Keggin structure for HPA but also the degree of dispersion on the support. PMID:19601683

  16. Characterization of Dispersed Heteropoly Acid on Mesoporous Zeolite Using Solid-State P-31 NMR Spin-Lattice Relaxation

    SciTech Connect

    Zhu, Kake; Hu, Jian Z.; She, Xiaoyan; Liu, Jun; Nie, Zimin; Wang, Yong; Peden, Charles HF; Kwak, Ja Hun

    2009-09-01

    Dispersion and quantitative characterization of supported catalysts is a grand challenge in catalytic science. In this paper, heteropoly acid H3PW12O40 (HPA) is dispersed on mesoporous zeolite silicalite-1 derived from hydrothermal synthesis using carbon black nanoparticle templates, and the catalytic activity is studied for 1-butene isomerization. The HPAs supported on conventional zeolite and on mesoporous zeolite exhibit very different activities and thus provide good model systems to investigate the structure dependence of the catalytic properties. The HPA on mesoporous silicalite-1 shows enhanced catalytic activity for 1-butene isomerization, while HPA on conventional silicalite-1 exhibits low activity. To elucidate the structural difference, supported HPA catalysts are characterized using a variety of techniques, including 31P magic angle spinning nuclear magnetic resonance, and are shown to contain a range of species on both mesoporous and conventional zeolites. However, contrary to studies reported in the literature, conventional NMR techniques and chemical shifts alone do not provide sufficient information to distinguish the dispersed and aggregated surface species. The dispersed phase and the nondispersed phase can only be unambiguously and quantitatively characterized using spin-lattice relaxation NMR techniques. The HPA supported on mesoporous zeolite contains a fast relaxation component related to the dispersed catalyst, giving a much higher activity, while the HPA supported on conventional zeolite has essentially only the slow relaxation component with very low activity. The results obtained from this work demonstrate that the combination of spinning sideband fitting and spin-lattice relaxation techniques can provide detailed structural information on not only the Keggin structure for HPA but also the degree of dispersion on the support.

  17. Inhibitory potency of 4-carbon alkanes and alkenes toward CYP2E1 activity.

    PubMed

    Hartman, Jessica H; Miller, Grover P; Boysen, Gunnar

    2014-04-01

    CYP2E1 has been implicated in the bioactivation of many small molecules into reactive metabolites which form adducts with proteins and DNA, and thus a better understanding of the molecular determinants of its selectivity are critical for accurate toxicological predictions. In this study, we determined the potency of inhibition of human CYP2E1 for various 4-carbon alkanes, alkenes and alcohols. In addition, known CYP2E1 substrates and inhibitors including 4-methylpyrazole, aniline, and dimethylnitrosamine were included to determine their relative potencies. Of the 1,3-butadiene-derived metabolites studied, 3,4-epoxy-1-butene was the strongest inhibitor with an IC50 of 110 ?M compared to 1700 ?M and 6600 ?M for 1,2-butenediol and 1,2:3,4-diepoxybutane, respectively. Compared to known inhibitors, inhibitory potency of 3,4-epoxy-1-butene is between 4-methylpyrazole (IC50 = 1.8 ?M) and dimethylnitrosamine (IC50 = 230 ?M). All three butadiene metabolites inhibit CYP2E1 activity through a simple competitive mechanism. Among the 4-carbon compounds studied, the presence and location of polar groups seems to influence inhibitory potency. To further examine this notion, the investigation was extended to include structurally and chemically similar analogues, including propylene oxide and various butane alcohols. Those results demonstrated preferential recognition of CYP2E1 toward the type and location of polar and hydrophobic structural elements. Taken together, CYP2E1 metabolism may be modified in vivo by exposure to 4-carbon compounds, such as drugs, and nutritional constituents, a finding that highlights the complexity of exposure to mixtures. PMID:24561005

  18. Structure-property evolution during polymer crystallization

    NASA Astrophysics Data System (ADS)

    Arora, Deepak

    The main theme of this research is to understand the structure-property evolution during crystallization of a semicrystalline thermoplastic polymer. A combination of techniques including rheology, small angle light scattering, differential scanning calorimetry and optical microscopy are applied to follow the mechanical and optical properties along with crystallinity and the morphology. Isothermal crystallization experiments on isotactic poly-1-butene at early stages of spherulite growth provide quantitative information about nucleation density, volume fraction of spherulites and their crystallinity, and the mechanism of connecting into a sample spanning structure. Optical microscopy near the fluid-to-solid transition suggests that the transition, as determined by time-resolved mechanical spectroscopy, is not caused by packing/jamming of spherulites but by the formation of a percolating network structure. The effect of strain, Weissenberg number (We ) and specific mechanical work (w) on rate of crystallization (nucleation followed by growth) and on growth of anisotropy was studied for shear-induced crystallization of isotactic poly-1-butene. The samples were sheared for a finite strain at the beginning of the experiment and then crystallized without further flow (Janeschitz-Kriegl protocol). Strain requirements to attain steady state/leveling off of the rate of crystallization were found to be much larger than the strain needed to achieve steady state of flow. The large strain and We>1 criteria were also observed for morphological transition from spherulitic growth to oriented growth. An apparatus for small angle light scattering (SALS) and light transmission measurements under shear was built and tested at the University of Massachusetts Amherst. As a new development, the polarization direction can be rotated by a liquid crystal polarization rotator (LCPR) with a short response time of 20 ms. The experiments were controlled and analyzed with a LabVIEW(TM) based code (LabVIEW(TM) 7.1) in real time. The SALS apparatus was custom built for ExxonMobil Research in Clinton NJ.

  19. Corona discharge of Titan's troposphere

    NASA Astrophysics Data System (ADS)

    Navarro-González, Rafael; Ramírez, Sandra I.

    1997-05-01

    The atmosphere of Titan is constantly bombarded by galactic cosmic rays and Saturnian magnetospheric electrons causing the formation of free electrons and primary ions, which are then stabilized by ion cluster formation and charging of aerosols. These charged particles accumulate in drops in cloud regions of the troposphere. Their abundance can substantially increase by friction, fragmentation or collisions during convective activity. Charge separation occurs with help of convection and gravitational settling leading to development of electric fields within the cloud and between the cloud and the ground. Neutralization of these charge particles leads to corona discharges which are characterized by low current densities. These electric discharges could induce a number of chemical reactions in the troposphere and hence it is of interest to explore such effects. We have therefore, experimentally studied the corona discharge of a simulated Titan's atmosphere (10% methane and 2% argon in nitrogen) at 500 Torr and 298 K by GC-FTIR-MS techniques. The main products have been identified as hydrocarbons (ethane, ethyne, ethene, propane, propene + propyne, cyclopropane, butane, 2-methylpropane, 2-methylpropene, n-butene, 2-butene, 2,2-dimethylpropane, 2-methylbutane, 2-methylbutene, n-pentane, 2,2-dimethylbutane, 2-methylpentane, 3-methylpentane, n-hexane, 2,2-dimethylhexane, 2,2-dimethylpentane, 2,2,3-trimethylbutane, 2,3-dimethylpentane and n-heptane), nitriles (hydrogen cyanide, cyanogen, ethanenitrile, propanenitrile, 2-methylpropanenitrile and butanenitrile) and an uncharacterized film deposit. We present their trends of formation as a function of discharge time in an ample interval and have derived their initial yields of formation. These results clearly demonstrate that a complex organic chemistry can be initiated by corona processes in the lower atmosphere. Although photochemistry and charged particle chemistry occurring in the stratosphere can account for many of the observed hydrocarbon species in Titan, the predicted abundance of ethene is to low by a factor of 10 to 40. While some ethene will be produced by charged-particle chemistry, its production by corona processes and subsequent diffusion into the stratosphere appears to be an adequate source. Because little UV penetrates to the lower atmosphere to destroy the molecules formed there, the corona-produced species may be long-lived and contribute significantly to the composition of the lower atmosphere and surface.

  20. Synthesis, characterization and catalytic applications of vanadia and silica-based materials

    NASA Astrophysics Data System (ADS)

    Yeragi, Dinesh Chandrakant

    Vanadia gels synthesized from a peroxovanadate precursor were used as catalysts for the selective oxidation of 1,3-butadiene. These vanadia gels were previously characterized using 51V and 17O MAS NMR spectroscopy [Fontenot et al., J. Phys. Chem. B 105, p10496 (2000) and J. Am. Chem. Soc. 124, p8435 (2002)]. These studies had shown the presence of an incommensurate shifted layer (+- 1.7 A° along a-axis and +- 0.5 A° along the b-axis) between two commensurate layers of the vanadia gel. This created a special site for water adsorption in which the oxygen of the water molecule was adsorbed trans to the vanadyl oxygen and the two hydrogen atoms co-ordinated with two vanadyl oxygens of the next layer. Selective oxidation studies of 1,3-butadiene were carried out with and without water addition to the feed stream to understand the role of oxygen sites and the water adsorption site in the vanadia gel structure for hydrocarbon oxidation. The reaction mechanism involved intermediates such as 3,4-epoxy-1-butetne, crotonaldehyde, 2,5-dihydrofuran, 2-butene-1,4-dial and furan. The effect of water addition on the pathway for 1,3-butadiene selective oxidation was also investigated over peroxovanadate-derived vanadia and VMoO catalysts by using 3,4-epoxy-1-butene, crotonaldehyde, 2,5-dihydrofuran and furan as feed. Addition of 0-12% water to a reactant feed of 1.4% butadiene in an air-He mixture significantly increased catalytic activity and selectivity for crotonaldehyde and furan. Competitive adsorption was believed to occur between the hydrocarbon products and water; formation of acid sites through dissociative adsorption of water was also believed to be important. Temperature programmed desorption (TPD) experiments revealed five distinct adsorption sites that could be associated with terminal V=O, corner sharing V-O-V, and edge sharing V-O oxygen. The adsorption of water trans to the vanadyl oxygen (V=O) formed an equilibrium structure resulting in the increased reactivity of the vanadyl oxygen species for 1,2-electrophilic addition across the C=C double bond in 1,3-butadiene to form 3,4-epoxy-1-butene. A proposed dissociative mechanism of adsorbed water on the catalyst surface resulted in acidic H+ species that participated in ring opening mechanisms and nucleophilic O-2 species that could easily exchange with the lattice oxygen sites, thus replenishing the catalytic activity.

  1. (Phenoxyimidazolyl-salicylaldimine)iron complexes: synthesis, properties and iron catalysed ethylene reactions.

    PubMed

    Yankey, Margaret; Obuah, Collins; Guzei, Ilia A; Osei-Twum, Emmanuel; Hearne, Giovanni; Darkwa, James

    2014-10-01

    The reaction of 2-{[2-(1H-imidazol-4-yl)-ethylimino]-methyl}-phenol (L1), 2,4-di-tert-butyl-6-{[2-(1H-imidazol-4-yl)-ethylimino]-methyl}-phenol (L2) or 4-tert-butyl-2-{[2-(1H-imidazol-4-yl)-ethylimino]-methyl}-phenol (L3) with iron(ii) precursors produced either iron(ii) or iron(iii) complexes, depending on the nature of the anions in the iron(ii) precursor and the ligand. When the anion is chloride and the ligand L1, the product is [(L1)2Fe][FeCl4] (1), but when the anion is triflate (OTf(-)) and the ligand is L2, the product is [(L2)2Fe][OTf]2 (2). With iron(ii) halides and tert-butyl groups on the phenoxy ligands L2 and L3, the iron(iii) complexes [(L2)FeX2] {where X = Cl (3), Br (4) and I = (5)} and [(L3)FeCl2] (6) were formed. Complexes 1-6 were characterised by a combination of elemental analyses, IR spectroscopy and mass spectrometry; and in selected cases (3 and 4) by single crystal X-ray crystallography. The crystal structures of 3 and 4 indicated that the iron(ii) precursors oxidised to iron(iii) in forming complexes 3-6; an observation that was corroborated by the magnetic properties and the (57)Fe Mössbauer spectra of 3 and 4. The iron(iii) complexes 3-6 were used as pre-catalysts for the oligomerisation and polymerisation of ethylene. Products of these ethylene reactions depended on the solvent used. In toluene ethylene oligomerised mainly to 1-butene and was followed by the 1-butene alkylating the solvent to form butyl-toluenes via a Friedel-Crafts alkylation reaction. In chlorobenzene, ethylene oligomerised mainly to a mixture of C4-C12 alkenes. Interestingly small amounts of butyl-chlorobenzenes and hexyl-chlorobenzenes were also formed via a Friedel-Crafts alkylation with butenes and hexenes from the oligomerisation of ethylene. PMID:25111396

  2. Ruta montana L. leaf essential oil and extracts: characterization of bioactive compounds and suppression of crown gall disease

    PubMed Central

    Hammami, Inés; Smaoui, Slim; Hsouna, Anis Ben; Hamdi, Naceur; Triki, Mohamed Ali

    2015-01-01

    The aims of this study were to assess the antimicrobial efficacy of the leaf essential oil and the leaf extracts of R. montana against Botrytis cinerea, Fusarium oxysporum, Verticillium dahliae, Aspergillus oryzae and Fusarium solani. The oil (1.000 µg/disk) and the extracts (1.500 µg/disk) revealed a remarkable antifungal effect against the tested plant pathogenic fungi with a radial growth inhibition percentage of 40.0-80.0 % and 5.0-58.0 %, respectively along with their respective MIC values ranging from 100 to 1100 µg/mL and 250 to 3000 µg/mL. The oil had a strong detrimental effect on spore germination of all the tested plant pathogens along with the concentration as well as time-dependent kinetic inhibition of Fusarium oxysporum. Also, the oil exhibited a potent in vivo antifungal effect against Botrytis cinerea on tomato plants. Experiments carried out in plant revealed that the essential oil was slightly effective in suppression of gall formation induced by Agrobacterium tumefaciens on bitter almond. The results of this study indicate that the oil and extracts of R. montana leaves could become natural alternatives to synthetic fungicides to control certain important plant microbial diseases. The GC-MS analysis determined that 28 compounds, which represented 89.03 % of total oil, were present in the oil containing mainly 1-butene, methylcyclopropane, 2-butene and caryophyllene oxide. PMID:26417353

  3. Temperature and Loading-Dependent Diffusion of Light Hydrocarbons in ZIF-8 as Predicted Through Fully Flexible Molecular Simulations.

    PubMed

    Verploegh, Ross J; Nair, Sankar; Sholl, David S

    2015-12-23

    Accurate and efficient predictions of hydrocarbon diffusivities in zeolitic imidazolate frameworks (ZIFs) are challenging, due to the small pore size of materials such as ZIF-8 and the wide range of diffusion time scales of hydrocarbon molecules in ZIFs. Here we have computationally measured the hopping rates of 15 different molecules (kinetic diameters of 2.66-5.10 Å) in ZIF-8 via dynamically corrected transition state theory (dcTST). Umbrella sampling combined with the one-dimensional weighted histogram analysis method (WHAM) was used to calculate the diffusion free energy barriers. Both the umbrella sampling and dynamical correction calculations included ZIF-8 flexibility, which is found to be critical in accurately describing molecular diffusion in this material. Comparison of the computed diffusivities to extant experimental results shows remarkable agreement within an order of magnitude for all the molecules. The dcTST method was also applied to study the effect of hydrocarbon loadings. Self and transport diffusion coefficients of methane, ethane, ethylene, propane, propylene, n-butane, and 1-butene in ZIF-8 are reported over a temperature range of 0-150 °C and loadings from infinite dilution to liquid-like loadings. PMID:26606267

  4. On the performance of FAU and MFI zeolites for the adsorptive removal of a series of volatile organic compounds from air using molecular simulation.

    PubMed

    Calero, S; Gómez-Álvarez, P

    2015-10-21

    Volatile organic compound (VOC) emissions can cause serious risk to human health and the environment. In this work, we used Monte Carlo simulations to assess the performance of industrially important zeolites for the adsorption-based removal of a number of common air pollutants, particularly small saturated and unsaturated hydrocarbons: propane, butane, propene, and 1-butene. We focused on the cage-like FAU and channel-like MFI zeolites. The adsorption isotherms of the multicomponent N2/O2/Ar/VOC mixtures at real concentrations and room temperature reveal a considerable influence of the host topology and pore dimensions. While the adsorption of the VOCs from the mixture in FAU is almost negligible, it is remarkable in MFI. The adsorption selectivity of each VOC over the air compounds exhibits a maximum at about 10(6)-10(7) Pa, and then decreases to virtually zero due to entropic effects. This behaviour for selectivity is maintained regardless of the chain length and the presence of double bonds in the VOC, but the values are indeed affected. Also, we examined the selectivity at 10(7) Pa for a number of other widely used zeolites, with pore features ensuring the diffusion of the adsorbates. Apart from MFI, we also found the channel-like MEL and MTW zeolite candidates for the targeted air decontamination. PMID:26392021

  5. Exploring Molecular Dimension and Trajectory of Polymer Chains Embedded in Single Crystals

    NASA Astrophysics Data System (ADS)

    Hong, Youlee; Miyoshi, Toshikazu

    2015-03-01

    Semicrystalline polymers are crystallized as folded chains in thin lamellae of ca. 5-20 nm from random coils in the melt and solution states.. Even though there are continuous efforts on understanding of crystallization mechanisms at molecular levels for understanding of crystallization mechanism of polymers at molecular levels, the fundamental questions - when, where, and how do semicrystalline polymers fold during crystallization?- have not been clarified due to experimental limitations. Recently, we developed a novel strategy to access chain trajectory of semi-crystalline polymers using 13C -13C double Quantum (DQ) NMR. In this work, we recently investigated determined molecular dimension as well as chain-trajectory of 13C CH3-labeled isotactic poly(1-butene) (iPB1) in form III chiral single crystals blended with nonlabeled iPB1 crystallized under low supercooling, using solid-state NMR. Comparisons of 13C -13C double quantum (DQ) NMR results at multiple sites with spin dynamics simulation revealed individual chains form the three dimensional nanoclusters via folding. This result supports proves two step process of i) cluster formation by chain-folding the prestage of crystallization. and ii) depositions of the cluster on the growth front of single crystal. National Science Foundation.

  6. On the Radiolysis of Ethylene Ices by Energetic Electrons and Implications to the Extraterrestrial Hydrocarbon Chemistry

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Maity, Surajit; Abplanalp, Matt; Turner, Andrew; Kaiser, Ralf I.

    2014-07-01

    The chemical processing of ethylene ices (C2H4) by energetic electrons was investigated at 11 K to simulate the energy transfer processes and synthesis of new molecules induced by secondary electrons generated in the track of galactic cosmic ray particles. A combination of Fourier transform infrared spectrometry (solid state) and quadrupole mass spectrometry (gas phase) resulted in the identification of six hydrocarbon molecules: methane (CH4), the C2 species acetylene (C2H2), ethane (C2H6), the ethyl radical (C2H5), and—for the very first time in ethylene irradiation experiments—the C4 hydrocarbons 1-butene (C4H8) and n-butane (C4H10). By tracing the temporal evolution of the newly formed molecules spectroscopically online and in situ, we were also able to fit the kinetic profiles with a system of coupled differential equations, eventually providing mechanistic information, reaction pathways, and rate constants on the radiolysis of ethylene ices and the inherent formation of smaller (C1) and more complex (C2, C4) hydrocarbons involving carbon-hydrogen bond ruptures, atomic hydrogen addition processes, and radical-radical recombination pathways. We also discuss the implications of these results on the hydrocarbon chemistry on Titan's surface and on ice-coated, methane-bearing interstellar grains as present in cold molecular clouds such as TMC-1.

  7. Measurement of proton transfer reaction rates in a microwave cavity discharge flowing afterglow

    NASA Astrophysics Data System (ADS)

    Brooke, George M., IV

    The reaction rate coefficients between the hydronium ion and the molecules ethene (C2H4), propene (C 3H6), 1-butene (C4H8) and hydrogen sulfide (H2S) were measured at 296 K. The measured reaction rates were compared to collision rates calculated using average dipole orientation (ADO) theory. Reaction efficiency depends primarily upon the proton affinity of the molecules. All the measurements were obtained using the newly developed microwave cavity discharge flowing afterglow (MCD-FA) apparatus. This device uses an Asmussen-type microwave cavity discharge ion source that is spatially separated from the flow tube, eliminating many of the problems inherent with the original FA devices. In addition to measuring reaction rate coefficients, the MCD-FA was shown to be an effective tool for measuring trace compounds in atmospheric air. This method has many advantages over current detection techniques since compounds can be detected in almost real time, large mass ranges can be scanned quickly, and repeated calibration is not required. Preliminary measurements were made of car exhaust and exhaled alveolar air. Car exhaust showed the presence of numerous hydrocarbons, such as butene, benzene and toluene while the exhaled alveolar air showed the presence of various volatile organic compounds such as methanol and acetone.

  8. Preventive activity of olive oil phenolic compounds on alkene epoxides induced oxidative DNA damage on human peripheral blood mononuclear cells.

    PubMed

    Fuccelli, Raffaela; Sepporta, Maria Vittoria; Rosignoli, Patrizia; Morozzi, Guido; Servili, Maurizio; Fabiani, Roberto

    2014-01-01

    The aim of this study was to investigate the ability of epoxides of styrene (styrene-7,8-oxide; SO) and 1,3-butadiene (3,4-epoxy-1-butene; 1,2:3,4:-diepoxybutane) to cause oxidative stress and oxidative DNA damage on human peripheral blood mononuclear cells (PBMCs) and whether a complex mixture of olive oil phenols (OOPE) could prevent these effects. The DNA damage was measured by the single-cell gel electrophoresis (SCGE; comet assay). We found that the DNA damage induced by alkene epoxides could be prevented by N-acetyl-cysteine (10 mM) and catalase (100 U/ml). Alkene epoxides caused a significant (P < 0.05) increase of both peroxide concentration in extra- and intracellular environment and formamidopyrimidine DNA glycosylase (FPG)- and Endonuclease III (ENDO III)-sensitive sites in PBMCs, demonstrating the presence of oxidized bases. OOPE (1 ?g of total phenols/ml) was able to prevent the alkene epoxide induced DNA damage both after 2 and 24 h of incubation. In addition, OOPE completely inhibited the SO-induced intracellular peroxide accumulation in PBMCs and prevented the oxidative DNA damage induced by SO, as evidenced by the disappearance of both FPG- and ENDO III-sensitive sites. This is the first study demonstrating the ability of OOPE to prevent the DNA damage induced by alkene epoxides providing additional information about the chemopreventive properties of olive oil. PMID:25299479

  9. A New Process for Maleic Anhydride Synthesis from a Renewable Building Block: The Gas-Phase Oxidehydration of Bio-1-butanol.

    PubMed

    Pavarelli, Giulia; Velasquez Ochoa, Juliana; Caldarelli, Aurora; Puzzo, Francesco; Cavani, Fabrizio; Dubois, Jean-Luc

    2015-07-01

    We investigated the synthesis of maleic anhydride by oxidehydration of a bio-alcohol, 1-butanol, as a possible alternative to the classical process of n-butane oxidation. A vanadyl pyrophosphate catalyst was used to explore the one-pot reaction, which involved two sequential steps: 1)?1-butanol dehydration to 1-butene, catalysed by acid sites, and 2)?the oxidation of butenes to maleic anhydride, catalysed by redox sites. A non-negligible amount of phthalic anhydride was also formed. The effect of different experimental parameters was investigated with chemically sourced 1-butanol, and the results were then confirmed by using genuinely bio-sourced 1-butanol. In the case of bio-1-butanol, however, the purity of the product remarkably affected the yield of maleic anhydride. It was found that the reaction mechanism includes the oxidation of butenes to crotonaldehyde and the oxidation of the latter to either furan or maleic acid, both of which are transformed to produce maleic anhydride. PMID:26073302

  10. Hydrocarbon Source Signatures in Houston, Texas: Influence of the Petrochemical Industry

    SciTech Connect

    Jobson, B Tom T.; Berkowitz, Carl M.; Kuster, W. C.; Goldan, P. D.; Williams, E. J.; Fesenfeld, F.; Apel, Eric; Karl, Thomas G.; Lonneman, William A.; Riemer, D.

    2004-12-22

    Observations of C1-C10 hydrocarbon mixing ratios measured by in-situ instrumentation at the La Porte super site during the TexAQS 2000 field experiment are reported. The La Porte data were compared to a roadway vehicle exhaust signature obtained from canister samples collected in the Houston Washburn tunnel during the same summer to better understand the impact of petrochemical emissions of hydrocarbons at the site. It is shown that the abundance of ethene, propene, 1-butene, C2-C4 alkanes, hexane, cyclohexane, methylcyclohexane, isopropylbenzene, and styrene at La Porte were systematically impacted by petrochemical industry emissions. Coherent power law relationships between frequency distribution widths of hydrocarbon mixing ratios and their local lifetimes clearly identify two major source groups, roadway vehicle emissions and industrial emissions. Distributions of most aromatics and long chain alkanes were consistent with roadway vehicle emissions as the dominant source. Airmass reactivity was generally dominated by C1-C3 aldehydes. Propene and ethene sometimes dominated air mass reactivity with HO loss frequencies often greater than 10 s-1. Ozone mixing ratios near 200 ppbv were observed on two separate occasions and these air masses appear to have been impacted by industrial emissions of alkenes from the Houston Ship Channel. The La Porte data provide evidence of the importance of industrial emissions of ethene and propene on air masses reactivity and ozone formation in Houston.

  11. Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities

    SciTech Connect

    Dumesic, James A.; Ruiz, Juan Carlos Serrano; West, Ryan M.

    2012-04-03

    Described is a method to make liquid chemicals, such as functional intermediates, solvents, and liquid fuels from biomass-derived cellulose. The method is cascading; the product stream from an upstream reaction can be used as the feedstock in the next downstream reaction. The method includes the steps of deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to .gamma.-valerolactone, and converting the .gamma.-valerolactone to pentanoic acid. Alternatively, the .gamma.-valerolactone can be converted to a mixture of n-butenes. The pentanoic acid so formed can be further reacted to yield a host of valuable products. For example, the pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C.sub.9 and C.sub.18 olefins, which can be hydrogenated to yield a mixture of alkanes. Alternatively, the nonene may be isomerized to yield a mixture of branched olefins, which can be hydrogenated to yield a mixture of branched alkanes. The mixture of n-butenes formed from .gamma.-valerolactone can also be subjected to isomerization and oligomerization to yield olefins in the gasoline, jet and Diesel fuel ranges.

  12. Gas-Phase Reactions of Doubly Charged Lanthanide Cations with Alkanes and Alkenes. Trends in Metal(2+) Reactivity

    SciTech Connect

    Gibson, John K.; Marcalo, Joaquim; Santos, Marta; Pires de Matos, Antonio; Haire, Richard G.

    2008-12-08

    The gas-phase reactivity of doubly-charged lanthanide cations, Ln2+ (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), with alkanes (methane, ethane, propane, n-butane) and alkenes (ethene, propene, 1-butene) was studied by Fourier transform ion cyclotron resonance mass spectrometry. The reaction products consisted of different combinations of doubly-charged organometallic ions?adducts or species formed via metal-ion-induced hydrogen, dihydrogen, alkyl, or alkane eliminations from the hydrocarbons?and singly-charged ions that resulted from electron, hydride, or methide transfers from the hydrocarbons to the metal ions. The only lanthanide cations capable of activating the hydrocarbons to form doubly-charged organometallic ions were La2+, Ce2+, Gd2+, and Tb2+, which have ground-state or low-lying d1 electronic configurations. Lu2+, with an accessible d1 electronic configuration but a rather high electron affinity, reacted only through transfer channels. The remaining Ln2+ reacted via transfer channels or adduct formation. The different accessibilities of d1 electronic configurations and the range of electron affinities of the Ln2+ cations allowed for a detailed analysis of the trends for metal(2+) reactivity and the conditions for occurrence of bond activation, adduct formation, and electron, hydride, and methide transfers.

  13. Fluid loss agents for oil well cementing composition

    SciTech Connect

    Savoly, A.; Villa, J.L.; Garvey, C.M.; Resnick, A.L.

    1987-06-23

    This patent describes a method of cementing a conduit in a borehole penetrating an earthen formation by introducing a cementing composition into the space. The cementing composition comprises: water; hydraulic cement; a water dispersible fluid loss additive comprised of a terpolymer of (1) from about 10 to about 75 weight percent of an acid selected from the group consisting of 2-acrylamido-2 methylpropane sulfonic acid, sodium vinyl sulfonate and vinyl benzene sulfonate; (2) from about 10 to 76 weight percent of a nonionic monomer selected from the group consisting of acrylamide, N,N-dimethylacrylamide, N-vinyl pyrrolidone, N-vinyl acetamide and dimethylamino ethyl methacrylate; and (3) from about 1 to 60 weight percent of an unsaturated polybasic acid selected from the group consisting of itaconic acid, maleic acid, fumaric acid, citraconic acid, mesaconic acid, glutaconic acid, aconitic acid, dimethylmuconic acid and 1-butene 2,3,4-tricarboxylic acid, the polymer having an average molecular weight of between about 200,000 and about 1,000,000 being in its free acid or partially or completely neutralized form and being at least water dispersible.

  14. The effect of rhenium, sulfur and alumina on the conversion of hydrocarbons over platinum single crystals: Surface science and catalytic studies

    SciTech Connect

    Kim, C.

    1992-04-01

    Conversion reactions of hydrocarbons over Pt-Re model catalyst surfaces modified by sulfur and alumina have been studied. A plasma deposition source has been developed to deposit Pt, Re, and Al on metal substrates variable coverage in ultrahigh vacuum without excessive heating. Conversion of n-hexane was performed over the Re-covered Pt and Pt-covered Re surfaces. The presence of the second metal increased hydrogenolysis activity of both Pt-Re surfaces. Addition of sulfur on the model Catalyst surfaces suppressed hydrogenolysis activity and increased the cyclization rate of n-hexane to methylcyclopentane over Pt-Re surfaces. Sulfiding also increased the dehydrogenation rate of cyclohexane to benzene Over Pt-Re surfaces. It has been proposed that the PtRe bimetallic catalysts show unique properties when combined with sulfur, and electronic interactions exist between platinum, rhenium and sulfur. Decomposition of hydrocarbons on the sulfur-covered Pt-Re surfaces supported that argument. For the conversion of 1-butene over the planar Pt/AlO[sub x], the addition of Pt increased the selectivity of hydrogenation over isomerization.

  15. The effect of rhenium, sulfur and alumina on the conversion of hydrocarbons over platinum single crystals: Surface science and catalytic studies

    SciTech Connect

    Kim, C.

    1992-04-01

    Conversion reactions of hydrocarbons over Pt-Re model catalyst surfaces modified by sulfur and alumina have been studied. A plasma deposition source has been developed to deposit Pt, Re, and Al on metal substrates variable coverage in ultrahigh vacuum without excessive heating. Conversion of n-hexane was performed over the Re-covered Pt and Pt-covered Re surfaces. The presence of the second metal increased hydrogenolysis activity of both Pt-Re surfaces. Addition of sulfur on the model Catalyst surfaces suppressed hydrogenolysis activity and increased the cyclization rate of n-hexane to methylcyclopentane over Pt-Re surfaces. Sulfiding also increased the dehydrogenation rate of cyclohexane to benzene Over Pt-Re surfaces. It has been proposed that the PtRe bimetallic catalysts show unique properties when combined with sulfur, and electronic interactions exist between platinum, rhenium and sulfur. Decomposition of hydrocarbons on the sulfur-covered Pt-Re surfaces supported that argument. For the conversion of 1-butene over the planar Pt/AlO{sub x}, the addition of Pt increased the selectivity of hydrogenation over isomerization.

  16. Gas-Phase and Computational Study of Identical Nickel- and Palladium-Mediated Organic Transformations Where Mechanisms Proceeding via M(II) or M(IV) Oxidation States Are Determined by Ancillary Ligands.

    PubMed

    Vikse, Krista L; Khairallah, George N; Ariafard, Alireza; Canty, Allan J; O'Hair, Richard A J

    2015-10-28

    Gas-phase studies utilizing ion-molecule reactions, supported by computational chemistry, demonstrate that the reaction of the enolate complexes [(CH2CO2-C,O)M(CH3)](-) (M = Ni (5a), Pd (5b)) with allyl acetate proceed via oxidative addition to give M(IV) species [(CH2CO2-C,O)M(CH3)(?(1)-CH2-CH?CH2)(O2CCH3-O,O')](-) (6) that reductively eliminate 1-butene, to form [(CH2CO2-C,O)M(O2CCH3-O,O')](-) (4). The mechanism contrasts with the M(II)-mediated pathway for the analogous reaction of [(phen)M(CH3)](+) (1a,b) (phen = 1,10-phenanthroline). The different pathways demonstrate the marked effect of electron-rich metal centers in enabling higher oxidation state pathways. Due to the presence of two alkyl groups, the metal-occupied d orbitals (particularly dz(2)) in 5 are considerably destabilized, resulting in more facile oxidative addition; the electron transfer from dz(2) to the C?C ?* orbital is the key interaction leading to oxidative addition of allyl acetate to M(II). Upon collision-induced dissociation, 4 undergoes decarboxylation to form 5. These results provide support for the current exploration of roles for Ni(IV) and Pd(IV) in organic synthesis. PMID:26469559

  17. Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments.

    PubMed

    Lange, C C; Wackett, L P; Minton, K W; Daly, M J

    1998-10-01

    Thousands of waste sites around the world contain mixtures of toxic chlorinated solvents, hydrocarbon solvents, and radionuclides. Because of the inherent danger and expense of cleaning up such wastes by physicochemical methods, other methods are being pursued for cleanup of those sites. One alternative is to engineer radiation-resistant microbes that degrade or transform such wastes to less hazardous mixtures. We describe the construction and characterization of recombinant Deinococcus radiodurans, the most radiation-resistant organism known, expressing toluene dioxygenase (TDO). Cloning of the tod genes (which encode the multicomponent TDO) into the chromosome of this bacterium imparted to the strain the ability to oxidize toluene, chlorobenzene, 3,4-dichloro-1-butene, and indole. The recombinant strain was capable of growth and functional synthesis of TDO in the highly irradiating environment (60 Gy/h) of a 137Cs irradiator, where 5x10(8)cells/ml degraded 125 nmol/ml of chlorobenzene in 150 min. D. radiodurans strains were also tolerant to the solvent effects of toluene and trichloroethylene at levels exceeding those of many radioactive waste sites. These data support the prospective use of engineered D. radiodurans for bioremediation of mixed wastes containing both radionuclides and organic solvents. PMID:9788348

  18. New analytical method for the determination of styrene oligomers formed from polystyrene decomposition and its application at the coastlines of the North-West Pacific ocean.

    PubMed

    Saido, Katsuhiko; Koizumi, Koshiro; Sato, Hideto; Ogawa, Naoto; Kwon, Bum Gun; Chung, Seon-Yong; Kusui, Takashi; Nishimura, Masahiko; Kodera, Yoichi

    2014-03-01

    The pollution caused by plastic debris is an environmental problem with increasing concern in the oceans. Among the plastic polymers, polystyrene (PS) is one of the most problematic plastics due to the direct public health risk associated with their dispersion, as well as the numerous adverse environmental impacts which arise both directly from the plastics and from their degradation products. Little is known about their potential distribution characteristics throughout the oceans. For the first time, we report here on the regional distribution of styrene monomer (SM), styrene dimers (SD; 2,4-diphenyl-1-butene, SD1; 1,3-diphenyl propane, SD2), and styrene trimer (2,4,6-triphenyl-1-hexene: ST1), as products of PS decomposition determined from samples of sand and seawater from the shorelines of the North-West Pacific ocean. In order to quantitatively determine SM, SD (=SD1+SD2), and ST1, a new analytical method was developed. The detection limit was 3.3 ?g L(-1), based on a signal-to-noise ratio of three, which was well-suited to quantify levels of SM, SD, and ST1 in samples. Surprisingly, the concentrations of SM, SD, and ST1 in sand samples from the shorelines were consistently greater than those in seawater samples from the same location. The results of this study suggest that SM, SD, and ST1 can be widely dispersed throughout the North-West Pacific oceans. PMID:24394362

  19. [Emission Characteristics of VOCs from Typical Restaurants in Beijing].

    PubMed

    Cui, Tong; Cheng, Jing-chen; He, Wan-qing; Ren, Pei-fang; Nie, Lei; Xu, Dong-yao; Pan, Tao

    2015-05-01

    Using the EPA method, emission of volatile organic compounds (VOCs) , sampled from barbecue, Chinese and Western fast-food, Sichuan cuisine and Zhejiang cuisine restaurants in Beijing was investigated. VOCs concentrations and components from different cuisines were studied. The results indicated that based on the calibrated baseline ventilation volume, the VOCs emission level from barbecue was the highest, reaching 12.22 mg · m(-3), while those from fast-food of either Chinese or Western, Sichuan cuisine and Zhejiang cuisine were about 4 mg · m(-3). The components of VOCs from barbecue were different from those in the other cuisines, which were mainly propylene, 1-butene, n-butane, etc. The non-barbecue cuisines consisted of high concentration of alcohols, and Western fast-food contained relatively high proportion of aldehydes and ketones organic compounds. According to emission concentration of baseline ventilation volume, barbecue released more pollutants than the non-barbecue cuisines at the same scale. So, barbecue should be supervised and controlled with the top priority. PMID:26314095

  20. Isolation and functional analysis of cytochrome P450 CYP153A genes from various environments.

    PubMed

    Kubota, Mitsutoshi; Nodate, Miho; Yasumoto-Hirose, Mina; Uchiyama, Taku; Kagami, Osamu; Shizuri, Yoshikazu; Misawa, Norihiko

    2005-12-01

    The cytochrome P450 CYP153 family is thought to mediate the terminal hydroxylation reactions of n-alkanes. We isolated 16 new P450 CYP153A genes (central region) from various environments such as petroleum-contaminated soil and groundwater, as well as one from the n-alkane-degrading bacterium Alcanivorax borkumensis SK2 (designated P450balk). The sequences of the new P450 genes were extended by PCR to generate full-length chimeric P450 genes, using the N- and C-terminal domains of P450balk. A differential CO-reduced P450 spectral analysis indicated that 8 P450 genes among the 16 chimeric genes were expressed in Escherichia coli to generate a soluble and functional enzyme. The several functional chimeric P450s and P450balk were further fused to the reductase domain of the self-sufficient P450 monooxygenase (P450RhF) at the C-terminus. E. coli cells expressing these self-sufficient P450 chimeric genes converted n-alkanes, cyclohexane, 1-octene, n-butylbenzene, and 4-phenyl-1-butene into 1-alkanols, cyclohexanol, 1,2-epoxyoctane, 1-phenyl-4-butanol, and 2-phenethyl-oxirane, respectively. PMID:16377903

  1. Effects of straw return on C2-C5 non-methane hydrocarbon (NMHC) emissions from agricultural soils

    NASA Astrophysics Data System (ADS)

    Wang, Ran; Wu, Ting; Dai, Wanhong; Liu, Hui; Zhao, Juan; Wang, Xinming; Huang, Feiyu; Wang, Zhe; Shi, Chengfei

    2015-01-01

    The effect of crop straw return on C2-C5 non-methane hydrocarbon (NMHC) emissions from agricultural soils is investigated using a laboratory-controlled incubation of agricultural soils amended with crop straw for a period of 56 days. The average emission fluxes of total C2-C5 NMHCs from amended agricultural soils are 304 and 173 ng kg-1 h-1 under non-flooded and flooded conditions, respectively. Alkenes are the principal emitted C2-C5 NMHCs from amended agricultural soils, where a predominance of ethene, propene and 1-butene together shared 65% and 59% of the total C2-C5 NMHCs under non-flooded and flooded conditions, respectively. The emissions rates of the above top three alkenes and the total C2-C5 alkenes from amended agricultural soils under non-flooded conditions are one to four times those under flooded conditions, and these average values are 14-89 and 5-34 times those in their corresponding control treatments, respectively. These results imply that straw return contributes substantially to the emissions of light alkenes from agricultural soils, particularly under non-flooded conditions. The high correlation between microorganisms and C2-C5 NMHC fluxes from amended agricultural soils suggest that microbes play an important role in C2-C5 NMHC emissions from straw-amended agricultural soils. A rough estimate indicates that crop straw return could contribute insignificantly to global C2-C5 hydrocarbon budgets.

  2. An operando FTIR spectroscopic and kinetic study of carbon monoxide pressure influence on rhodium-catalyzed olefin hydroformylation.

    PubMed

    Kubis, Christoph; Sawall, Mathias; Block, Axel; Neymeyr, Klaus; Ludwig, Ralf; Börner, Armin; Selent, Detlef

    2014-09-01

    The influence of carbon monoxide concentration on the kinetics of the hydroformylation of 3,3-dimethyl-1-butene with a phosphite-modified rhodium catalyst has been studied for the pressure range p(CO)=0.20-3.83?MPa. Highly resolved time-dependent concentration profiles of the organometallic intermediates were derived from IR spectroscopic data collected in situ for the entire olefin-conversion range. The dynamics of the catalyst and organic components are described by enzyme-type kinetics with competitive and uncompetitive inhibition reactions involving carbon monoxide taken into account. Saturation of the alkyl-rhodium intermediates with carbon monoxide as a cosubstrate occurs between 1.5 and 2?MPa of carbon monoxide pressure, which brings about a convergence of aldehyde regioselectivity. Hydrogenolysis of the acyl intermediate is fast at 30?°C and low pressure of p(CO)=0.2?MPa, but is of minus first order with respect to the solution concentration of carbon monoxide. Resting 18-electron hydrido and acyl complexes that correspond to early and late rate-determining states, respectively, coexist as long as the conversion of the substrate is not complete. PMID:25081298

  3. Calculational and Experimental Investigations of the Pressure Effects on Radical - Radical Cross Combinations Reactions: C2H5 + C2H3

    NASA Technical Reports Server (NTRS)

    Fahr, Askar; Halpern, Joshua B.; Tardy, Dwight C.

    2007-01-01

    Pressure-dependent product yields have been experimentally determined for the cross-radical reaction C2H5 + C2H3. These results have been extended by calculations. It is shown that the chemically activated combination adduct, 1-C4H8*, is either stabilized by bimolecular collisions or subject to a variety of unimolecular reactions including cyclizations and decompositions. Therefore the "apparent" combination/disproportionation ratio exhibits a complex pressure dependence. The experimental studies were performed at 298 K and at selected pressures between about 4 Torr (0.5 kPa) and 760 Torr (101 kPa). Ethyl and vinyl radicals were simultaneously produced by 193 nm excimer laser photolysis of C2H5COC2H3 or photolysis of C2H3Br and C2H5COC2H5. Gas chromatograph/mass spectrometry/flame ionization detection (GC/MS/FID) were used to identify and quantify the final reaction products. The major combination reactions at pressures between 500 (66.5 kPa) and 760 Torr are (1c) C2H5 + C2H3 yields 1-butene, (2c) C2H5 + C2H5 yields n-butane, and (3c) C2H3 + C2H3 yields 1,3-butadiene. The major products of the disproportionation reactions are ethane, ethylene, and acetylene. At moderate and lower pressures, secondary products, including propene, propane, isobutene, 2-butene (cis and trans), 1-pentene, 1,4-pentadiene, and 1,5-hexadiene are also observed. Two isomers of C4H6, cyclobutene and/or 1,2-butadiene, were also among the likely products. The pressure-dependent yield of the cross-combination product, 1-butene, was compared to the yield of n-butane, the combination product of reaction (2c), which was found to be independent of pressure over the range of this study. The [ 1-C4H8]/[C4H10] ratio was reduced from approx.1.2 at 760 Torr (101 kPa) to approx.0.5 at 100 Torr (13.3 kPa) and approx.0.1 at pressures lower than about 5 Torr (approx.0.7 kPa). Electronic structure and RRKM calculations were used to simulate both unimolecular and bimolecular processes. The relative importance of C-C and C-H bond ruptures, cyclization, decyclization, and complex decompositions are discussed in terms of energetics and structural properties. The pressure dependence of the product yields were computed and dominant reaction paths in this chemically activated system were determined. Both modeling and experiment suggest that the observed pressure dependence of [1-C4H8]/[C4H10] is due to decomposition of the chemically activated combination adduct 1-C4H8* in which the weaker allylic C-C bond is broken: H2C=CHCH2CH3 yields C3H5 + CH3. This reaction occurs even at moderate pressures of approx.200 Torr (26 kPa) and becomes more significant at lower pressures. The additional products detected at lower pressures are formed from secondary radical-radical reactions involving allyl, methyl, ethyl, and vinyl radicals. The modeling studies have extended the predictions of product distributions to different temperatures (200-700 K) and a wider range of pressures (10(exp -3) - 10(exp 5) Torr). These calculations indicate that the high-pressure [1-C4H8]/[C4H10] yield ratio is 1.3 +/- 0.1.

  4. On the radiolysis of ethylene ices by energetic electrons and implications to the extraterrestrial hydrocarbon chemistry

    SciTech Connect

    Zhou, Li; Maity, Surajit; Abplanalp, Matt; Turner, Andrew; Kaiser, Ralf I.

    2014-07-20

    The chemical processing of ethylene ices (C{sub 2}H{sub 4}) by energetic electrons was investigated at 11 K to simulate the energy transfer processes and synthesis of new molecules induced by secondary electrons generated in the track of galactic cosmic ray particles. A combination of Fourier transform infrared spectrometry (solid state) and quadrupole mass spectrometry (gas phase) resulted in the identification of six hydrocarbon molecules: methane (CH{sub 4}), the C2 species acetylene (C{sub 2}H{sub 2}), ethane (C{sub 2}H{sub 6}), the ethyl radical (C{sub 2}H{sub 5}), and—for the very first time in ethylene irradiation experiments—the C4 hydrocarbons 1-butene (C{sub 4}H{sub 8}) and n-butane (C{sub 4}H{sub 10}). By tracing the temporal evolution of the newly formed molecules spectroscopically online and in situ, we were also able to fit the kinetic profiles with a system of coupled differential equations, eventually providing mechanistic information, reaction pathways, and rate constants on the radiolysis of ethylene ices and the inherent formation of smaller (C1) and more complex (C2, C4) hydrocarbons involving carbon-hydrogen bond ruptures, atomic hydrogen addition processes, and radical-radical recombination pathways. We also discuss the implications of these results on the hydrocarbon chemistry on Titan's surface and on ice-coated, methane-bearing interstellar grains as present in cold molecular clouds such as TMC-1.

  5. Heteropolyanions as redox components in heterogeneous Wacker oxidation catalysts

    SciTech Connect

    Kreemers-Stobbe, A.W.; Deilis, R.B.; Makkee, M.

    1995-07-01

    Heteropolyanions (HPAs) of the Keggin type have been successfully applied as redox components in heterogeneous Wacker catalysts. The catalysts consist of a silica support covered with a layer of HPA of the series H{sub 3=n}PV{sub n}Mo{sub 12{minus}n}O{sub 40} on which a submonolayer of palladium sulfate is deposited. The initial butanone yield in the oxidation of 1-butene at 343 K is approximately 0.10 g butanone per gram of catalyst per hour. The steady-state activity increases with increasing number (n) of vanadium atoms per Keggin unit and when the protons of the HPA are replaced by Cu{sup 2+} or by Ni{sup 2+}. Even higher activity is obtained with palladium salts of heteropolyacids. In these palladium salts, the palladium reaction centre and the redox component are combined in one complex. The butanone selectivity of the catalysts with n > 0 is high, viz. >95%, and increases with increasing values of n to more than 98%. The butanone selectivity also increases when the protons are exchanged for metal cations, such as Cu{sup 2+}, Ni{sup 2+}, Pd{sup 2+}, or Cs{sup +}. The stability of the Keggin units under reaction conditions is high. Under Wacker oxidation conditions the HPAs are partly reduced, but DRIFT and ESR spectroscopy and TPR analysis of used catalysts show that the Keggin structure remains intact. Reoxidation of the reduced HPAs is, however, slow under reaction conditions. 31 refs., 12 figs., 2 tabs.

  6. High throughput HPLC-ESI(-)-MS/MS methodology for mercapturic acid metabolites of 1,3-butadiene: Biomarkers of exposure and bioactivation.

    PubMed

    Kotapati, Srikanth; Esades, Amanda; Matter, Brock; Le, Chap; Tretyakova, Natalia

    2015-11-01

    1,3-Butadiene (BD) is an important industrial and environmental carcinogen present in cigarette smoke, automobile exhaust, and urban air. The major urinary metabolites of BD in humans are 2-(N-acetyl-l-cystein-S-yl)-1-hydroxybut-3-ene/1-(N-acetyl-l-cystein-S-yl)-2-hydroxybut-3-ene (MHBMA), 4-(N-acetyl-l-cystein-S-yl)-1,2-dihydroxybutane (DHBMA), and 4-(N-acetyl-l-cystein-S-yl)-1,2,3-trihydroxybutyl mercapturic acid (THBMA), which are formed from the electrophilic metabolites of BD, 3,4-epoxy-1-butene (EB), hydroxymethyl vinyl ketone (HMVK), and 3,4-epoxy-1,2-diol (EBD), respectively. In the present work, a sensitive high-throughput HPLC-ESI(-)-MS/MS method was developed for simultaneous quantification of MHBMA and DHBMA in small volumes of human urine (200?l). The method employs a 96 well Oasis HLB SPE enrichment step, followed by isotope dilution HPLC-ESI(-)-MS/MS analysis on a triple quadrupole mass spectrometer. The validated method was used to quantify MHBMA and DHBMA in urine of workers from a BD monomer and styrene-butadiene rubber production facility (40 controls and 32 occupationally exposed to BD). Urinary THBMA concentrations were also determined in the same samples. The concentrations of all three BD-mercapturic acids and the metabolic ratio (MHBMA/(MHBMA+DHBMA+THBMA)) were significantly higher in the occupationally exposed group as compared to controls and correlated with BD exposure, with each other, and with BD-hemoglobin biomarkers. This improved high throughput methodology for MHBMA and DHBMA will be useful for future epidemiological studies in smokers and occupationally exposed workers. PMID:25727266

  7. Polar organic marker compounds in atmospheric aerosols: Determination, time series, size distributions and sources

    NASA Astrophysics Data System (ADS)

    Kourtchev, Ivan

    Terrestrial vegetation releases substantial amounts of reactive volatile organic compounds (VOCs; e.g., isoprene, monoterpenes) into the atmosphere. The VOCs can be rapidly photooxidized under conditions of high solar radiation, yielding products that can participate in new particle formation and growth processes above forests. This thesis focuses on the characterization, identification and quantification of oxidation products of biogenic VOC (BVOCs) as well as other species (tracer compounds) that provide information on aerosol sources and source processes. Atmospheric aerosols from various forested sites (i.e., Hyytiala, southern Finland; Rondonia, Brazil; K-Puszta, Hungary and Julich, Germany) were analyzed with Gas Chromotography/Mass Spectrometry (GC/MS) using analytical procedure that targets polar organic compounds. The study demonstrated that isoprene (i.e., 2-methyerythritol, 2-methylthreitol, 2-methylglyceric acid and C5-alkene triols (2-methyl-1,3,4-trihydroxy-l-butene (cis and trans) and 3 methyl-2,3,4-trihydroxy-1-butene)) and monoterpene (pinic acid, norpinic acid, 3-hydroxyglutaric acid and 3-methyl-1,2,3-butanetricarboxylic acid) oxidation products were present in substantial concentrations in atmospheric aerosols suggesting that oxidation of BVOC from the vegetation is an important process in all studied sites. On the other hand, presence of levoglucosan, biomass burning marker, especially in Amazonian rain forest site at Rondonia, Brazil, pointed that all sites were affected by anthropogenic activities, namely biomass burning. Other identified compounds included plyols, arabitol, mannitol and erythritol, which are marker compounds for fungal spores and monosacharides, glucose and fructose, markers for plant polens. Temporal variations as well as mass size distributions of the detected species confirmed the possible formation mechanisms of marker compounds.

  8. ANALYSIS OF VAPORS FROM METHYLENE CHLORIDE EXTRACTS OF NUCLEAR GRADE HEPA FILTER FIBERGLASS SAMPLES

    SciTech Connect

    FRYE JM; ANASTOS HL; GUTIERREZ FC

    2012-06-07

    While several organic compounds were detected in the vapor samples used in the reenactment of the preparation of mounts from the extracts of nuclear grade high-efficiency particulate air filter fiberglass samples, the most significant species present in the samples were methylene chloride, phenol, phenol-d6, and 2-fluorophenol. These species were all known to be present in the extracts, but were expected to have evaporated during the preparation of the mounts, as the mounts appeared to be dry before any vapor was collected. These species were present at the following percentages of their respective occupational exposure limits: methylene chloride, 2%; phenol, 0.4%; and phenol-d6, 0.6%. However, there is no established limit for 2-fluorophenol. Several other compounds were detected at low levels for which, as in the case of 2-fluorophenol, there are no established permissible exposure limits. These compounds include 2-chlorophenol; N-nitroso-1-propanamine; 2-fluoro-1,1{prime}-biphenyl; 1,2-dihydroacenaphthylene; 2,5-cyclohexadiene-1,4-dione,2,6-bis(1,1-dimethylethyl); trimethyl oxirane; n-propylpropanamine; 2-(Propylamino)ethanol; 4-methoxy-1-butene; 6-methyl-5-hepten-2-one; and 3,4-dimethylpyridine. Some of these were among those added as surrogates or spike standards as part ofthe Advanced Technologies and Laboratories International, Inc. preparation ofthe extract of the HEPA filter media and are indicated as such in the data tables in Section 2, Results; other compounds found were not previously known to be present. The main inorganic species detected (sulfate, sodium, and sulfur) are also consistent with species added in the preparation of the methylene chloride extract of the high-efficiency particulate air sample.

  9. Characterizations of volatile organic compounds during high ozone episodes in Beijing, China.

    PubMed

    An, Jun-lin; Wang, Yue-si; Wu, Fang-kun; Zhu, Bin

    2012-04-01

    Air samples were collected in Beijing from June through August 2008, and concentrations of volatile organic compounds (VOCs) in those samples are here discussed. This sampling was performed to increase understanding of the distributions of their compositions, illustrate the overall characteristics of different classes of VOCs, assess the ages of air masses, and apportion sources of VOCs using principal compound analysis/absolute principal component scores (PCA/APCS). During the sampling periods, the relative abundance of the four classes of VOCs as determined by the concentration-based method was different from that determined by the reactivity approach. Alkanes were found to be most abundant (44.3-50.1%) by the concentration-based method, but aromatic compounds were most abundant (38.2-44.5%) by the reactivity approach. Aromatics and alkenes contributed most (73-84%) to the ozone formation potential. Toluene was the most abundant compound (11.8-12.7%) during every sampling period. When the maximum incremental reactivity approach was used, propene, toluene, m,p-xylene, 1-butene, and 1,2,4-trimethylbenzene were the five most abundant compounds during two sampling periods. X/B, T/B, and E/B ratios in this study were lower than those found in other cities, possibly due to the aging of the air mass at this site. Four components were extracted from application of PCA to the data. It was found that the contribution of vehicle exhaust to total VOCs accounted for 53% of VOCs, while emissions due to the solvent use contributed 33% of the total VOCs. Industrial sources contributed 3% and biogenic sources contributed 11%. The results showed that vehicle exhausts (i.e., unburned vehicle emissions + vehicle internal engine combustion) were dominant in VOC emissions during the experimental period. The solvent use made the second most significant contribution to ambient VOCs. PMID:21552987

  10. Characterization and Dynamics of Substituted Ruthenacyclobutanes Relevant to the Olefin Cross-Metathesis Reaction

    PubMed Central

    Blake, Garrett; VanderVelde, David G.; Grubbs, Robert H.

    2011-01-01

    The reaction of the phosphonium alkylidene [(H2IMes)RuCl2=CHP(Cy)3)]+ BF4– with propene, 1-butene, and 1-hexene at –45 °C affords various substituted, metathesis-active ruthenacycles. These metallacycles were found to equilibrate over extended reaction times in response to decreases in ethylene concentrations, which favored increased populations of ?-monosubstituted and ?,?’-disubstituted (both cis and trans) ruthenacycles. On an NMR timescale, rapid chemical exchange was found to preferentially occur between the ?-hydrogens of the cis and trans stereoisomers prior to olefin exchange. Exchange on an NMR timescale was also observed between the ?- and ?-methylene groups of the monosubstituted ruthenacycle (H2IMes)Cl2Ru(CHRCH2CH2) (R = CH3, CH2CH3, (CH2)3CH3). EXSY NMR experiments at –87 °C were used to determine the activation energies for both of these exchange processes. In addition, new methods have been developed for the direct preparation of metathesis-active ruthenacyclobutanes via the protonolysis of dichloro(1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)(benzylidene) bis(pyridine)ruthenium(II) and its 3-bromopyridine analog. Using either trifluoroacetic acid or silica-bound toluenesulfonic acid as the proton source, the ethylene-derived ruthenacyclobutane (H2IMes)Cl2Ru(CH2CH2CH2) was observed in up to 98% yield via NMR at –40 °C. On the basis of these studies, mechanisms accounting for the positional and stereochemical exchange within ruthenacyclobutanes are proposed, as well as the implications of these dynamics towards olefin metathesis catalyst and reaction design are described. PMID:21452876

  11. Alcohol dehydrogenase- and rat liver cytosol-dependent bioactivation of 1-chloro-2-hydroxy-3-butene to 1-chloro-3-buten-2-one, a bifunctional alkylating agent.

    PubMed

    Elfarra, Adnan A; Zhang, Xin-Yu

    2012-11-19

    1,3-Butadiene (BD) is an air pollutant whose toxicity and carcinogenicity have been considered primarily mediated by its reactive metabolites, 3,4-epoxy-1-butene and 1,2,3,4-diepoxybutane, formed in liver and extrahepatic tissues by cytochromes P450s. A possible alternative metabolic pathway in bone marrow and immune cells is the conversion of BD to the chlorinated allylic alcohol 1-chloro-2-hydroxy-3-butene (CHB) by myeloperoxidase in the presence of hydrogen peroxide and chloride ion. In the present study, we investigated the in vitro bioactivation of CHB by alcohol dehydrogenases (ADH) under in vitro physiological conditions (pH 7.4, 37 °C). The results provide clear evidence for CHB being converted to 1-chloro-3-buten-2-one (CBO) by purified horse liver ADH and rat liver cytosol. CBO readily reacted with glutathione (GSH) under assay conditions to form three products: two CBO-mono-GSH conjugates [1-chloro-4-(S-glutathionyl)butan-2-one (3) and 1-(S-glutathionyl)-3-buten-2-one (4)] and one CBO-di-GSH conjugate [1,4-bis(S-glutathionyl)butan-2-one (5)]. CHB bioactivation and the ratios of the three GSH conjugates formed were dependent upon incubation time, GSH and CHB concentrations, and the presence of ADH or rat liver cytosol. The ADH enzymatic reaction followed Michaelis-Menten kinetics with a K(m) at 3.5 mM and a k(cat) at 0.033 s(-1). After CBO was incubated with freshly isolated mouse erythrocytes, globin dimers were detected using SDS-PAGE and silver staining, providing evidence that CBO can act as a protein cross-linking agent. Collectively, the results provide clear evidence for CHB bioactivation by ADH and rat liver cytosol to yield CBO. The bifunctional alkylating ability of CBO suggests that it may play a role in BD toxicity and/or carcinogenicity. PMID:23110628

  12. Cytotoxic evaluation of volatile oil from Descurainia sophia seeds on MCF-7 and HeLa cell lines.

    PubMed

    Khodarahmi, E; Asghari, G H; Hassanzadeh, F; Mirian, M; Khodarahmi, G A

    2015-01-01

    Descurainia sophia is a plant widely distributed and used as folk medicine throughout the world. Different extracts of aerial parts and seeds of this plant have been shown to inhibit the growth of different cancer cell lines in vitro. In this study, cytotoxic activity of D. sophia seed volatile oil was evaluated. D. sophia seed powder was mixed with distilled water and left at 25 °C for 17 h (E1), 23 h (E2) and 28 h (E3) to autolyse. Then, the volatile fractions of E1, E2, and E3 were collected after steam distillation for 3 h. Cytotoxic effects of the volatile oils alone or in combination with doxorubicin (mixture of E1 or E2 at 50 ?g/ml or E1 at 100 ?g/ml with doxorubicin at 0.1, 1, 10 ?M) against MCF-7 cell line were determined using MTT assay. Cytotoxic effect of E1 volatile oil was also determined on HeLa cell line. The results indicated that 1-buten-4-isothiocyanate was the major isothiocyanate found in the volatile oils. The results of cytotoxic evaluations showed that volatile constituents were more toxic on MCF-7 cells with IC50< 100 ?g/ml than HeLa cells with IC50> 100 ?g/ml. No significant differences were observed between cytotoxic activities of E1, E2 and E3 on MCF-7 cell line. Concomitant use of E1 and E2 (50 ?g/ml) with doxurubicin (1 ?M) significantly reduced the viability of MCF-7 cells compared to the negative control, doxorubicin alone, or each volatile fraction. The same result was obtained on HeLa cells, when E1 (100 ?g/ml) was concurrently used with doxorubicin (1 ?M). PMID:26487894

  13. Use of ferric sulfate: acid media for the desulfurization of model compounds of coal. [Dibenzothiophene, diphenyl sulfide, di-n-butyl sulfide

    SciTech Connect

    Clary, L.R.; Vermeulen, T.; Lynn, S.

    1980-12-01

    The objective of this work has been to investigate the ability of ferric sulfate-acid leach systems to oxidize the sulfur in model compounds of coal. Ferric iron-acid leach systems have been shown to be quite effective at removal of inorganic sulfur in coal. In this study, the oxidative effect of ferric iron in acid-leach systems was studied using dibenzothiophene, diphenyl sulfide, and di-n-butyl sulfide as models of organic sulfur groups in coal. Nitrogen and oxygen, as well as various transition metal catalysts and oxidants, were utilized in this investigation. Dibenzothiophene was found to be quite refractory to oxidation, except in the case where metavanadate was added, where it appears that 40% oxidation to sulfone could have occurred per hour at 150/sup 0/C and mild oxygen pressure. Diphenyl sulfide was selectively oxidized to sulfoxide and sulfone in an iron and oxygen system. Approximately 15% conversion to sulfone occurred per hour under these conditions. Some of the di-n-butyl sulfide was cracked to 1-butene and 1-butanethiol under similar conditions. Zinc chloride and ferric iron were used at 200/sup 0/C in an attempt to desulfonate dibenzothiophene sulfone, diphenyl sulfone, and di-n-butyl sulfone. Di-n-butyl sulfone was completely desulfurized on one hour and fragmented to oxidized parafins, while dibenzothiophene sulfone and diphenyl sulfone were unaffected. These results suggest that an iron-acid leach process could only selectively oxidize aryl sulfides under mild conditions, representing only 20% of the organic sulfur in coal (8% of the total sulfur). Removal through desulfonation once selective sulfur oxidation had occurred was only demonstrated for alkyl sulfones, with severe oxidation of the fragmented paraffins also occurring in one hour.

  14. Laser absorption diagnostic for measuring acetylene concentrations in shock tubes

    NASA Astrophysics Data System (ADS)

    Stranic, Ivo; Hanson, Ronald K.

    2014-07-01

    A fixed-wavelength direct absorption laser diagnostic for high-temperature measurements of acetylene concentration was developed. The diagnostic, based on a tunable continuous wave distributed feedback diode laser, was optimized primarily for studying chemical kinetics behind reflected shock waves. The center wavelength (3335.55 cm-1) of the tunable diagnostic was typically set at the peak of the 3300 cm-1 absorption band of acetylene at high temperatures. The absorption spectrum of acetylene diluted in argon was characterized using scanned-wavelength direct absorption measurements from 1070 to 1720 K and 0.8 to 4.0 atm. Line fitting of the measured absorption spectra was not possible due to the large number of transitions overlapped by pressure broadening that contribute to the spectrum. Instead, empirical fits for the peak absorption coefficient and its corresponding wavelength as a function of temperature and pressure were generated. Furthermore, in order to allow for characterization of interference absorption in kinetic studies, empirical fits for the acetylene absorption coefficient in the region around the primary absorption feature were developed. Absorption coefficient measurements of propyne and 1-butyne, which may be the primary interference candidates, reveal that their absorption coefficients are constant in the wavelength range of interest, and are much smaller than those of acetylene. Therefore, the acetylene concentration in the presence of these interfering species can be inferred using two-color techniques. The utility of the acetylene diagnostic was demonstrated by measuring acetylene mole fraction time-histories during the pyrolysis of propene and 1-butene.

  15. Cl atom initiated oxidation of 1-alkenes under atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Walavalkar, M.; Sharma, A.; Alwe, H. D.; Pushpa, K. K.; Dhanya, S.; Naik, P. D.; Bajaj, P. N.

    2013-03-01

    In view of the importance of the oxidation pathways of alkenes in the troposphere, and the significance of Cl atom as an oxidant in marine boundary layer (MBL) and polluted industrial atmosphere, the reactions of four 1-alkenes (C6-C9) with Cl atoms are investigated. The rate coefficients at 298 K are measured to be (4.0 ± 0.5), (4.4 ± 0.7), (5.5 ± 0.9) and (5.9 ± 1.7) × 10-10 cm3 molecule-1 s-1 for 1-hexene, 1-heptene, 1-octene and 1-nonene, respectively. The quoted errors include the experimental 2?, along with the error in the reference rate coefficients. From the systematic increase in the rate coefficients with the number of carbon atoms, an approximate value for the average rate coefficient for hydrogen abstraction per CH2 group in alkenes is estimated to be (4.9 ± 0.3) × 10-11 cm3 molecule-1 s-1. Based on these rate coefficients, the contribution of Cl atom reactions towards the degradation of these molecules is found to be comparable to that of OH radical reactions, under MBL conditions. The products identified in gas phase indicate that Cl atom addition occurs mainly at the terminal carbon, leading to the formation of 1-chloro-2-ketones and 1-chloro-2-ols. The major gas phase products from the alkenyl radicals (formed by H atom abstraction) are different positional isomers of long chain enols and enones. A preference for dissociation leading to an allyl radical, resulting in aldehydes, lower by three carbon atoms, is indicated. The observed relative yields suggest that in general, the increased contribution of the reactions of Cl atoms towards degradation of 1-alkenes in NOx free air does not result in an increase in the generation of small aldehydes (carbon number < 4), including chloroethanal, as compared to that in the reaction of 1-butene.

  16. Chemical dynamics in time and energy space

    SciTech Connect

    Myers, J.D.

    1993-04-01

    The development of a versatile picosecond ultraviolet/vacuum ultraviolet temporal spectrometer and its potential use for measuring internal energy redistribution in isolated molecules are described in detail. A detailed description of the double-pass Nd:YAG amplifier and the dye amplifiers is given with the pulse energies achieved in the visible, ultraviolet, and vacuum ultraviolet. The amplified visible pulses are shown to be of sub-picosecond duration and near transform limited. The instrument`s temporal response ({le}10 ps) is derived from an instrument limited measurement of the dissociation lifetime of methyl iodide at 266 nm. The methyl iodide experiment is used to discuss the various sources of noise and background signals that are intrinsic to this type of experiment. Non-time-resolved experiments measuring the branching ratio and kinetic energy distributions of products from the 193 nm photodissociation of cyclopentadiene and thiophene are presented. These studies were done using the molecular beam Photofragment Translational Spectroscopy (PTS) technique. The results from the cyclopentadiene experiment confirm that H atom elimination to yield the cyclopentadienyl radical is the dominant dissociation channel. A barrier of {ge}5 kcal/mol can be understood in terms of the delocalization of the radical electron of the cyclopentadienyl fragment. A concerted elimination yielding cyclopropene and acetylene was also observed and is proposed to occur via a bicyclo-[2.1.0]pent-2-ene intermediate. Two other channels, yielding acetylene plus the CH{sub 2}CHCH triplet carbene, and CH{sub 2} plus 1-buten-3-yne, are postulated to occur via ring opening. The implications of the experimental results for bulk thermal oxidation and pyrolysis models are discussed. The thiophene experiment shows six competing dissociation channels. The postulated intermediates for the various thiophene dissociation channels include bicyclo, ring opened, and possibly ring contracted forms.

  17. SmoXYB1C1Z of Mycobacterium sp. Strain NBB4: a Soluble Methane Monooxygenase (sMMO)-Like Enzyme, Active on C2 to C4 Alkanes and Alkenes

    PubMed Central

    Martin, Kiri E.; Ozsvar, Jazmin

    2014-01-01

    Monooxygenase (MO) enzymes initiate the aerobic oxidation of alkanes and alkenes in bacteria. A cluster of MO genes (smoXYB1C1Z) of thus-far-unknown function was found previously in the genomes of two Mycobacterium strains (NBB3 and NBB4) which grow on hydrocarbons. The predicted Smo enzymes have only moderate amino acid identity (30 to 60%) to their closest homologs, the soluble methane and butane MOs (sMMO and sBMO), and the smo gene cluster has a different organization from those of sMMO and sBMO. The smoXYB1C1Z genes of NBB4 were cloned into pMycoFos to make pSmo, which was transformed into Mycobacterium smegmatis mc2-155. Cells of mc2-155(pSmo) metabolized C2 to C4 alkanes, alkenes, and chlorinated hydrocarbons. The activities of mc2-155(pSmo) cells were 0.94, 0.57, 0.12, and 0.04 nmol/min/mg of protein with ethene, ethane, propane, and butane as substrates, respectively. The mc2-155(pSmo) cells made epoxides from ethene, propene, and 1-butene, confirming that Smo was an oxygenase. Epoxides were not produced from larger alkenes (1-octene and styrene). Vinyl chloride and 1,2-dichloroethane were biodegraded by cells expressing Smo, with production of inorganic chloride. This study shows that Smo is a functional oxygenase which is active against small hydrocarbons. M. smegmatis mc2-155(pSmo) provides a new model for studying sMMO-like monooxygenases. PMID:25015887

  18. Final report on EURAMET.QM-S6/1195: Bilateral comparison of liquefied hydrocarbon mixtures in constant pressure (piston) cylinders

    NASA Astrophysics Data System (ADS)

    Brown, Andrew S.; Downey, Michael L.; Milton, Martin J. T.; van der Veen, Adriaan M. H.; Zalewska, Ewelina T.; Li, Jianrong

    2013-01-01

    Traceable liquid hydrocarbon mixtures are required in order to underpin measurements of the composition and other physical properties of LPG (liquefied petroleum gas) and LNG (liquefied natural gas), thus meeting the needs of an increasingly large European industrial market. The development of traceable liquid hydrocarbon standards by National Measurement Institutes (NMIs) was still at a relatively early stage at the time this comparison was proposed in 2011. NPL and VSL, who were the only NMIs active in this area, had developed methods for the preparation and analysis of such standards in constant pressure (piston) cylinders, but neither laboratory had Calibration and Measurement Capabilities (CMCs) for these mixtures. This report presents the results of EURAMET 1195, the first comparison of liquid hydrocarbon mixtures between NMIs, which assessed the preparation and analytical capabilities of NPL and VSL for these mixtures. The comparison operated between August 2011 and January 2012. Each laboratory prepared a liquid hydrocarbon standard with nominally the same composition and these standards were exchanged for analysis. The results of the comparison show a good agreement between the laboratories' results and the comparison reference values for the six components with amount fractions greater than 1.0 cmol/mol (propane, propene, iso-butene, n-butane, iso-butane and 1-butene). Measurement of the three components with lower amount fractions (1,3-butadiene, iso-pentane and n-pentane) proved more challenging. In all but one case, the differences from the comparison reference values for these three components were greater than the expanded measurement uncertainty. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by EURAMET, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  19. Gas-phase chemistry of bare and oxo-ligated protactinium ions: a contribution to a systematic understanding of actinide chemistry.

    PubMed

    Gibson, John K; Haire, Richard G

    2002-11-01

    Gas-phase chemistry of bare and oxo-ligated protactinium ions has been studied for the first time. Comparisons were made with thorium, uranium, and neptunium ion chemistry to further the systematic understanding of 5f elements. The rates of oxidation of Pa(+) and PaO(+) by ethylene oxide compared with those of the homologous uranium ions indicate that the first and second bond dissociation energies, BDE[Pa(+)-O] and BDE[OPa(+)-O], are approximately 800 kJ mol(-1). The relatively facile fluorination of Pa(+) to PaF(4)(+) by SF(6) is consistent with the high stability of the pentavalent oxidation state of Pa. Reactions with ethene, propene, 1-butene, and iso-butene revealed that Pa(+) is a very reactive metal ion. In analogy with U(+) chemistry, ethene was trimerized by Pa(+) to give PaC(6)H(6)(+). Reactions of Pa(+) with larger alkenes resulted in secondary and tertiary products not observed for U(+) or Np(+). The bare protactinium ion is significantly more reactive with organic substrates than are heavier actinide ions. The greatest difference between Pa and heavier actinide congeners was the exceptional dehydrogenation activity of PaO(+) with alkenes; UO(+) and NpO(+) were comparatively inert. The striking reactivity of PaO(+) is attributed to the distinctive electronic structure at the metal center in this oxide, which is considered to reflect the greater availability of the 5f electrons for participation in bonding, either directly or by promotion/hybridization with higher-energy valence orbitals. PMID:12401099

  20. Cytotoxic evaluation of volatile oil from Descurainia sophia seeds on MCF-7 and HeLa cell lines

    PubMed Central

    Khodarahmi, E.; Asghari, G.H.; Hassanzadeh, F.; Mirian, M.; Khodarahmi, G.A.

    2015-01-01

    Descurainia sophia is a plant widely distributed and used as folk medicine throughout the world. Different extracts of aerial parts and seeds of this plant have been shown to inhibit the growth of different cancer cell lines in vitro. In this study, cytotoxic activity of D. sophia seed volatile oil was evaluated. D. sophia seed powder was mixed with distilled water and left at 25 °C for 17 h (E1), 23 h (E2) and 28 h (E3) to autolyse. Then, the volatile fractions of E1, E2, and E3 were collected after steam distillation for 3 h. Cytotoxic effects of the volatile oils alone or in combination with doxorubicin (mixture of E1 or E2 at 50 ?g/ml or E1 at 100 ?g/ml with doxorubicin at 0.1, 1, 10 ?M) against MCF-7 cell line were determined using MTT assay. Cytotoxic effect of E1 volatile oil was also determined on HeLa cell line. The results indicated that 1-buten-4-isothiocyanate was the major isothiocyanate found in the volatile oils. The results of cytotoxic evaluations showed that volatile constituents were more toxic on MCF-7 cells with IC50< 100 ?g/ml than HeLa cells with IC50> 100 ?g/ml. No significant differences were observed between cytotoxic activities of E1, E2 and E3 on MCF-7 cell line. Concomitant use of E1 and E2 (50 ?g/ml) with doxurubicin (1 ?M) significantly reduced the viability of MCF-7 cells compared to the negative control, doxorubicin alone, or each volatile fraction. The same result was obtained on HeLa cells, when E1 (100 ?g/ml) was concurrently used with doxorubicin (1 ?M). PMID:26487894

  1. The chemistry of tributyl phosphate at elevated temperatures in the Plutonium Finishing Plant Process Vessels

    SciTech Connect

    Barney, G.S.; Cooper, T.D.

    1994-06-01

    Potentially violent chemical reactions of the tributyl phosphate solvent used by the Plutonium Finishing Plant at the Hanford Site were investigated. There is a small probability that a significant quantity of this solvent could be accidental transferred to heated process vessels and react there with nitric acid or plutonium nitrate also present in the solvent extraction process. The results of laboratory studies of the reactions show that exothermic oxidation of tributyl phosphate by either nitric acid or actinide nitrates is slow at temperatures expected in the heated vessels. Less than four percent of the tributyl phosphate will be oxidized in these vented vessels at temperatures between 125{degrees}C and 250{degrees}C because the oxidant will be lost from the vessels by vaporization or decomposition before the tributyl phosphate can be extensively oxidized. The net amounts of heat generated by oxidation with concentrated nitric acid and with thorium nitrate (a stand-in for plutonium nitrate) were determined to be about -150 and -220 joules per gram of tributyl phosphate initially present, respectively. This is not enough heat to cause violent reactions in the vessels. Pyrolysis of the tributyl phosphate occurred in these mixtures at temperatures of 110{degrees}C to 270{degrees}C and produced mainly 1-butene gas, water, and pyrophosphoric acid. Butene gas generation is slow at expected process vessel temperatures, but the rate is faster at higher temperatures. At 252{degrees}C the rate of butene gas generated was 0.33 g butene/min/g of tributyl phosphate present. The measured heat absorbed by the pyrolysis reaction was 228 J/g of tributyl phosphate initially present (or 14.5 kcal/mole of tributyl phosphate). Release of flammable butene gas into process areas where it could ignite appears to be the most serious safety consideration for the Plutonium Finishing Plant.

  2. Transferable Anisotropic United-Atom Force Field Based on the Mie Potential for Phase Equilibrium Calculations: n-Alkanes and n-Olefins.

    PubMed

    Hemmen, Andrea; Gross, Joachim

    2015-09-01

    A new transferable force field parametrization for n-alkanes and n-olefins is proposed in this work. A united-atom approach is taken, where hydrogen atoms are lumped with neighboring atoms to single interaction sites. A comprehensive study is conducted for alkanes, optimizing van der Waals force field parameters in 6 dimensions. A Mie n-6 potential is considered for the van der Waals interaction, where for n-alkanes we simultaneously optimize the energy parameters ?CH3 and ?CH2 as well as the size parameters ?CH3 and ?CH2 of the CH3(sp(3)) and CH2(sp(3)) groups. Further, the repulsive exponent n of the Mie n-6 potential is varied. Moreover, we investigate the bond length toward the terminal CH3 group as a degree of freedom. According to the AUA (anisotropic united-atom) force field, the bond length between the terminal CH3 group and the neighboring interaction site should be increased by ?l compared with the carbon-carbon distance in order to better account for the hydrogen atoms. The parameter ?l is considered as a degree of freedom. The intramolecular force field parametrization is taken from existing force fields. A single objective function for the optimization is defined as squared relative deviations in vapor pressure and in liquid density of propane, n-butane, n-hexane, and n-octane. A similar study is also done for olefins, where the objective function includes 1-butene, 1-hexene, 1-octene, cis-2-pentene, and trans-2-pentene. Molecular simulations are performed in the grand canonical ensemble with transition-matrix sampling where the phase equilibrium properties are obtained with the histogram reweighting technique. The 6-dimensional optimization of strongly correlated parameters is possible, because the analytic PC-SAFT equation of state is used to locally correlate simulation results. The procedure is iterative but leads to very efficient convergence. An implementation is proposed, where the converged result is not affected (disturbed) by the analytic equation of state. The resulting transferable anisotropic Mie-potential (TAMie) force field shows average relative deviations in vapor pressure of 1.1% and in liquid density of 0.9% for alkanes, and 2% and 1.5% for olefins, respectively, in a wide range of (reduced) temperature, Tr = 0.55-0.97. For substances that were not members of the objective function, the TAMie force field enables predictions of phase equilibrium properties with good accuracy. PMID:26274900

  3. Capillary HPLC-accurate mass MS/MS quantitation of N7-(2,3,4-trihydroxybut-1-yl)-guanine adducts of 1,3-butadiene in human leukocyte DNA.

    PubMed

    Sangaraju, Dewakar; Villalta, Peter; Goggin, Melissa; Agunsoye, Maria O; Campbell, Colin; Tretyakova, Natalia

    2013-10-21

    1,3-Butadiene (BD) is a high volume industrial chemical commonly used in polymer and rubber production. It is also present in cigarette smoke, automobile exhaust, and urban air, leading to widespread exposure of human populations. Upon entering the body, BD is metabolized to electrophilic epoxides, 3,4-epoxy-1-butene (EB), diepoxybutane (DEB), and 3,4-epoxy-1,2-diol (EBD), which can alkylate DNA nucleobases. The most abundant BD epoxide, EBD, modifies the N7-guanine positions in DNA to form N7-(2, 3, 4-trihydroxybut-1-yl) guanine (N7-THBG) adducts, which can be useful as biomarkers of BD exposure and metabolic activation to DNA-reactive epoxides. In the present work, a capillary HPLC-high resolution ESI?-MS/MS (HPLC-ESI?-HRMS/MS) methodology was developed for accurate, sensitive, and reproducible quantification of N7-THBG in cell culture and in human white blood cells. In our approach, DNA is subjected to neutral thermal hydrolysis to release N7-guanine adducts from the DNA backbone, followed by ultrafiltration, solid-phase extraction, and isotope dilution HPLC-ESI?-HRMS/MS analysis on an Orbitrap Velos mass spectrometer. Following method validation, N7-THBG was quantified in human fibrosarcoma (HT1080) cells treated with micromolar concentrations of DEB and in DNA isolated from blood of smokers, nonsmokers, individuals participating in a smoking cessation program, and occupationally exposed workers. N7-THBG concentrations increased linearly from 31.4 ± 4.84 to 966.55 ± 128.05 adducts per 10? nucleotides in HT1080 cells treated with 1-100 ?M DEB. N7-THBG amounts in leukocyte DNA of nonsmokers, smokers, and occupationally exposed workers were 7.08 ± 5.29, 8.20 ± 5.12, and 9.72 ± 3.80 adducts per 10? nucleotides, respectively, suggesting the presence of an endogenous or environmental source for this adduct. The availability of sensitive HPLC-ESI?-HRMS/MS methodology for BD-induced DNA adducts in humans will enable future population studies of interindividual and ethnic differences in BD bioactivation to DNA-reactive epoxides. PMID:23937706

  4. Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: constraints from mineral buffered laboratory experiments

    NASA Astrophysics Data System (ADS)

    Seewald, Jeffrey S.

    2001-05-01

    Organic matter, water, and minerals coexist at elevated temperatures and pressures in sedimentary basins and participate in a wide range of geochemical processes that includes the generation of oil and natural gas. A series of laboratory experiments were conducted at 300 to 350°C and 350 bars to examine chemical interactions involving low molecular weight aqueous hydrocarbons with water and Fe-bearing minerals under hydrothermal conditions. Mineral buffers composed of hematite-magnetite-pyrite, hematite-magnetite, and pyrite-pyrrhotite-magnetite were added to each experiment to fix the redox state of the fluid and the activity of reduced sulfur species. During each experiment the chemical system was externally modified by addition of ethene, ethane, propene, 1-butene, or n-heptane, and variations in the abundance of aqueous organic species were monitored as a function of time and temperature. Results of the experiments indicate that decomposition of aqueous n-alkanes proceeds through a series of oxidation and hydration reactions that sequentially produce alkenes, alcohols, ketones, and organic acids as reaction intermediaries. Organic acids subsequently undergo decarboxylation and/or oxidation reactions to form carbon dioxide and shorter chain saturated hydrocarbons. This alteration assemblage is compositionally distinct from that produced by thermal cracking under anhydrous conditions, indicating that the presence of water and minerals provide alternative reaction pathways for the decomposition of hydrocarbons. The rate of hydrocarbon oxidation decreases substantially under reducing conditions and in the absence of catalytically active aqueous sulfur species. These results represent compelling evidence that the stability of aqueous hydrocarbons at elevated temperatures in natural environments is not a simple function of time and temperature alone. Under the appropriate geochemical conditions, stepwise oxidation represents a mechanism for the decomposition of low molecular weight hydrocarbons and the production of methane-rich ("dry") natural gas. Evaluation of aqueous reaction products generated during the experiments within a thermodynamic framework indicates that alkane-alkene, alkene-ketone, and alkene-alcohol reactions attained metastable thermodynamic equilibrium states. This equilibrium included water and iron-bearing minerals, demonstrating the direct involvement of inorganic species as reactants during organic transformations. The high reactivity of water and iron-bearing minerals suggests that they represent abundant sources of hydrogen and oxygen available for the formation of hydrocarbons and oxygenated alteration products. Thus, variations in elemental kerogen composition may not accurately reflect the timing and extent of hydrocarbon, carbon dioxide, and organic acid generation in sedimentary basins. This study demonstrates that the stabilities of aqueous hydrocarbons are strongly influenced by inorganic sediment composition at elevated temperatures. Incorporation of such interactions into geochemical models will greatly improve prediction of the occurrence of hydrocarbons in natural environments over geologic time.

  5. Pathway and Surface Mechanism Studies of 1,3-butadiene Selective Oxidation Over Vanadium-Molybdenum-Oxygen Catalysts

    SciTech Connect

    William David Schroeder

    2002-05-27

    The partial oxidation of 1,3-butadiene has been investigated over VMoO catalysts synthesized by sol-gel techniques. Surface areas were 9-14 m{sup 2}/g, and compositions were within the solid solution regime, i.e. below 15.0 mol % MoO{sub 3}/(MoO{sub 3} + V{sub 2}O{sub 5}). Laser Raman Spectroscopy and XRD data indicated that solid solutions were formed, and pre- and post-reaction XPS data indicated that catalyst surfaces contained some V{sup +4} and were further reduced in 1,3-butadiene oxidation. A reaction pathway for 1,3-butadiene partial oxidation to maleic anhydride was shown to involve intermediates such as 3,4-epoxy-1-butene, crotonaldehyde, furan, and 2-butene-1,4-dial. The addition of water to the reaction stream substantially increased catalyst activity and improved selectivity to crotonaldehyde and furan at specific reaction temperatures. At higher water addition concentrations, furan selectivity increased from 12% to over 25%. The catalytic effects of water addition were related to competitive adsorption with various V{sub 2}O{sub 5}-based surface sites, including the vanadyl V=O, corner sharing V-O-V and edge sharing V-O oxygen. Higher levels of water addition were proposed to impose acidic character by dissociative adsorption. In addition, a novel combinatorial synthesis technique for VMoO was used to investigate the phase transitions of V{sub 2}O{sub 5}, solid solutions of Mo in V{sub 2}O{sub 5}, V{sub 9}Mo{sub 6}O{sub 40}, and other reduced VMoO compounds, characterized by laser Raman spectroscopy. The natural composition gradient imposed by the sputter deposition apparatus was used to create VMoO arrays containing 225 samples ranging from 7.0-42 mol% MoO{sub 3}/(V{sub 2}O{sub 5} + MoO{sub 3}), determined by EDS analysis.

  6. Adsorption and desorption kinetics of alkanethiols on gold(100) and silver(111)

    NASA Astrophysics Data System (ADS)

    Yu, Yan

    The work reported here is concerned with the adsorption and desorption kinetics of short chain-length alkanethiols and hydrogen sulfide on the Au(100) and Ag(111) substrates. A combination of temperature programmed desorption/reaction (TPD/R), low energy electron diffraction (LEED), Auger electron spectroscopy (AES) and molecular beam (MB) methods were used in a UHV system. This study has given insight in to the kinetic mechanism of thiol self-assembled monolayers (SAMs) formation. Similar adsorption and desorption kinetics were observed for methanethiol, ethanethiol, propanethiol, butanethiol, and pentanethiol on Au(100). The TPD/R results clearly show that these short chain-length alkanethiols adsorbs into both a chemisorbed and a physisorbed state. A detail study was performed for butanethiol on the Au(100) substrate. Desorption of physisorbed butanethiol occurs molecularly at ˜38 K. By contrast, desorption of the chemisorbed butanethiolate species occurs with decomposition at ˜500 K to yield primarily 1-butene; the thiol sulfur remained adsorbed on the surface and either desorbed or possibly dissolved into the bulk of the gold sample at above 700 K. The substrate temperature dependence of the chemisorption process suggests a precursor mechanism for the chemisorption kinetics. The TPD results also show that chemisorption does not occur on a very clean and ordered Au(100)-(5x20) surface at 100 K, and that low coverages of pre-adsorbed sulfur atoms facilitate the chemisorption process, suggesting a defect-mediated precursor mechanism. Precursor-mediated adsorption kinetics were observed for the adsorption of H2S on the Au(100)-(5x20) and Ag(111) between 80 and 100 K, while Langmuir adsorption kinetics were observed for the adsorption of H 2S on the sulfide covered Au(100)-(1x1)-SH and Ag(111). The TPD/R of H2S from Au(100)-(1x1)-SH showed additional features at higher temperatures which were associated with the disproportionation of chemisorbed HS(ad). Those features were not observed for H2S from sulfide Ag(111).

  7. Investigation of potential interferences in the detection of atmospheric ROx radicals by laser-induced fluorescence under dark conditions

    NASA Astrophysics Data System (ADS)

    Fuchs, H.; Tan, Z.; Hofzumahaus, A.; Broch, S.; Dorn, H.-P.; Holland, F.; Künstler, C.; Gomm, S.; Rohrer, F.; Schrade, S.; Tillmann, R.; Wahner, A.

    2015-11-01

    Direct detection of highly reactive, atmospheric hydroxyl radicals (OH) is widely accomplished by laser-induced fluorescence (LIF) instruments. The technique is also suitable for the indirect measurement of HO2 and RO2 peroxy radicals by chemical conversion to OH. It requires sampling of ambient air into a low pressure cell, where OH fluorescence is detected after excitation by 308 nm laser radiation. Although the residence time of air inside the fluorescence cell is typically only on the order of milliseconds, there is potential that additional OH is internally produced, which would artificially increase the measured OH concentration. Here, we present experimental studies investigating potential interferences in the detection of OH and peroxy radicals for the LIF instruments of Forschungszentrum Jülich for nighttime conditions. For laboratory experiments, the inlet of the instrument was overflown by excess synthetic air containing one or more reactants. In order to distinguish between OH produced by reactions upstream of the inlet and artificial signals produced inside the instrument, a chemical titration for OH was applied. Additional experiments were performed in the simulation chamber SAPHIR where simultaneous measurements by an open-path differential optical absorption spectrometer (DOAS) served as reference for OH to quantify potential artifacts in the LIF instrument. Experiments included the investigation of potential interferences related to the nitrate radical (NO3, N2O5), related to the ozonolysis of alkenes (ethene, propene, 1-butene, 2,3-dimethyl-2-butene, ?-pinene, limonene, isoprene), and the laser photolysis of acetone. Experiments studying the laser photolysis of acetone yield OH signals in the fluorescence cell, which are equivalent to 0.05 × 106 cm-3 OH for a mixing ratio of 5 ppbv acetone. Under most atmospheric conditions, this interference is negligible. No significant interferences were found for atmospheric concentrations of reactants during ozonolysis experiments. Only for ?-pinene, limonene, and isoprene at reactant concentrations which are orders of magnitude higher than in the atmosphere artificial OH could be detected. The value of the interference depends on the turnover rate of the ozonolysis reaction. For example, an apparent OH concentration of approximately 1 × 106 cm-3 is observed, if 5.8 ppbv limonene reacts with 600 ppbv ozone. Experiments with the nitrate radical NO3 reveal a small interference signal in the OH, HO2 and RO2 detection. Dependencies on experimental parameters point to artificial OH formation by surface reactions at the chamber walls or in molecular clusters in the gas expansion. The signal scales with the presence of NO3 giving equivalent radical concentrations of 1.1 × 105 cm-3 OH, 1 × 107 cm-3 HO2, and 1.7 × 107 cm-3 RO2 per 10 pptv NO3.

  8. Quantitation of DNA Adducts Induced by 1,3-Butadiene

    NASA Astrophysics Data System (ADS)

    Sangaraju, Dewakar; Villalta, Peter W.; Wickramaratne, Susith; Swenberg, James; Tretyakova, Natalia

    2014-07-01

    Human exposure to 1,3-butadiene (BD) present in automobile exhaust, cigarette smoke, and forest fires is of great concern because of its potent carcinogenicity. The adverse health effects of BD are mediated by its epoxide metabolites such as 3,4-epoxy-1-butene (EB), which covalently modify genomic DNA to form promutagenic nucleobase adducts. Because of their direct role in cancer, BD-DNA adducts can be used as mechanism-based biomarkers of BD exposure. In the present work, a mass spectrometry-based methodology was developed for accurate, sensitive, and precise quantification of EB-induced N-7-(1-hydroxy-3-buten-2-yl) guanine (EB-GII) DNA adducts in vivo. In our approach, EB-GII adducts are selectively released from DNA backbone by neutral thermal hydrolysis, followed by ultrafiltration, offline HPLC purification, and isotope dilution nanoLC/ESI+-HRMS3 analysis on an Orbitrap Velos mass spectrometer. Following method validation, EB-GII lesions were quantified in human fibrosarcoma (HT1080) cells treated with micromolar concentrations of EB and in liver tissues of rats exposed to sub-ppm concentrations of BD (0.5-1.5 ppm). EB-GII concentrations increased linearly from 1.15 ± 0.23 to 10.11 ± 0.45 adducts per 106 nucleotides in HT1080 cells treated with 0.5-10 ?M DEB. EB-GII concentrations in DNA of laboratory rats exposed to 0.5, 1.0, and 1.5 ppm BD were 0.17 ± 0.05, 0.33 ± 0.08, and 0.50 ± 0.04 adducts per 106 nucleotides, respectively. We also used the new method to determine the in vivo half-life of EB-GII adducts in rat liver DNA (2.20 ± 0.12 d) and to detect EB-GII in human blood DNA. To our knowledge, this is the first application of nanoLC/ESI+-HRMS3 Orbitrap methodology to quantitative analysis of DNA adducts in vivo.

  9. Multinuclear group 4 catalysis: olefin polymerization pathways modified by strong metal-metal cooperative effects.

    PubMed

    McInnis, Jennifer P; Delferro, Massimiliano; Marks, Tobin J

    2014-08-19

    Polyolefins are produced today catalytically on a vast scale, and the manufactured polymers find use in everything from artificial limbs and food/medical packaging to automotive and electrical components and lubricants. Although polyolefin monomers are typically cheap (e.g., ethylene, propylene, ?-olefins), the resulting polymer properties can be dramatically tuned by the particular polymerization catalyst employed, and reflect a rich interplay of macromolecular chemistry, materials science, and physics. For example, linear low-density polyethylene (LLDPE), produced by copolymerization of ethylene with linear ?-olefin comonomers such as 1-butene, 1-hexene, or 1-octene, has small but significant levels of short alkyl branches (C2, C4, C6) along the polyethylene backbone, and is an important technology material due to outstanding rheological and mechanical properties. In 2013, the total world polyolefin production was approximately 211 million metric tons, of which about 11% was LLDPE. Historically, polyolefins were produced using ill-defined but highly active heterogeneous catalysts composed of supported groups 4 or 6 species (usually halides) activated by aluminum alkyls. In 1963, Karl Ziegler and Giulio Natta received the Nobel Prize for these discoveries. Beginning in the late 1980s, a new generation of group 4 molecule-based homogeneous olefin polymerization catalysts emerged from discoveries by Walter Kaminsky, a team led by James Stevens at The Dow Chemical Company, this Laboratory at Northwestern University, and a host of talented groups in Germany, Italy, Japan, the United Kingdom, and the United States. These new "single-site" catalysts and their activating cocatalysts were far better defined and more rationally tunable in terms of structure, mechanism, thermodynamics, and catalyst activity and selectivity than ever before possible. An explosion of research advances led to new catalysts, cocatalysts, deeper mechanistic understanding of both the homogeneous and heterogeneous systems, macromolecules with dramatically altered properties, and large-scale industrial processes. It is noteworthy that many metalloenzymes employ multiple active centers operating in close synergistic proximity to achieve high activity and selectivity. Such enzymes were the inspiration for the research discussed in this Account, focused on the properties of multimetallic olefin polymerization catalysts. Here we discuss how modifications in organic ligand architecture, metal···metal proximity, and cocatalyst can dramatically modify polyolefin molecular weight, branch structure, and selectively for olefinic comonomer enchainment. We first discuss bimetallic catalysts with identical group 4 metal centers and then heterobimetallic systems with either group 4 or groups 4 + 6 catalytic centers. We compare and contrast the polymerization properties of the bimetallic catalysts with their monometallic analogues, highlighting marked cooperative enchainment effects and unusual polymeric products possible via the proximate catalytic centers. Such multinuclear olefin polymerization catalysts exhibit the following distinctive features: (1) unprecedented levels of polyolefin branching; (2) enhanced enchainment selectivity for linear and encumbered ?-olefin comonomers; (3) enhanced polyolefin tacticity and molecular weight; (4) unusual 1,2-insertion regiochemistry for styrenic monomers; (5) modified chain transfer kinetics, such as M-polymer ?-hydride transfer to the metal or incoming monomer; (6) LLDPE synthesis with a single binuclear catalyst and ethylene. PMID:25075755

  10. Insights into functional-group-tolerant polymerization catalysis with phosphine-sulfonamide palladium(II) complexes.

    PubMed

    Jian, Zhongbao; Falivene, Laura; Wucher, Philipp; Roesle, Philipp; Caporaso, Lucia; Cavallo, Luigi; Göttker-Schnetmann, Inigo; Mecking, Stefan

    2015-01-26

    Two series of cationic palladium(II) methyl complexes {[(2-MeOC6 H4 )2 PC6 H4 SO2 NHC6 H3 (2,6-R(1) ,R(2) )]PdMe}2 [A]2 ((X) 1(+) -A: R(1) =R(2) =H: (H) 1(+) -A; R(1) =R(2) =CH(CH3 )2 : (DIPP) 1(+) -A; R(1) =H, R(2) =CF3 : (CF3) 1(+) -A; A=BF4 or SbF6 ) and neutral palladium(II) methyl complexes {[(2-MeOC6 H4 )2 PC6 H4 SO2 NC6 H3 (2,6-R(1) ,R(2) )]PdMe(L)} ((X) 1-acetone: L=acetone; (X) 1-dmso: L=dimethyl sulfoxide; (X) 1-pyr: L=pyridine) chelated by a phosphine-sulfonamide were synthesized and fully characterized. Stoichiometric insertion of methyl acrylate (MA) into all complexes revealed that a 2,1 regiochemistry dominates in the first insertion of MA. Subsequently, for the cationic complexes (X) 1(+) -A, ?-H elimination from the 2,1-insertion product (X) 2(+) -AMA-2,1 is overwhelmingly favored over a second MA insertion to yield two major products (X) 4(+) -AMA-1,2 and (X) 5(+) -AMA . By contrast, for the weakly coordinated neutral complexes (X) 1-acetone and (X) 1-dmso, a second MA insertion of the 2,1-insertion product (X) 2MA-2,1 is faster than ?-H elimination and gives (X) 3MA as major products. For the strongly coordinated neutral complexes (X) 1-pyr, no second MA insertion and no ?-H elimination (except for (DIPP) 2-pyrMA-2,1 ) were observed for the 2,1-insertion product (X) 2-pyrMA-2,1 . The cationic complexes (X) 1(+) -A exhibited high catalytic activities for ethylene dimerization, affording butenes (C4 ) with a high selectivity of up to 97.7?% (1-butene: 99.3?%). Differences in activities and selectivities suggest that the phosphine-sulfonamide ligands remain coordinated to the metal center in a bidentate fashion in the catalytically active species. By comparison, the neutral complexes (X) 1-acetone, (X) 1-dmso, and (X) 1-pyr showed very low activity towards ethylene to give traces of oligomers. DFT analyses taking into account the two possible coordination modes (O or N) of the sulfonamide ligand for the cationic system (CF3) 1(+) suggested that the experimentally observed high activity in ethylene dimerization is the result of a facile first ethylene insertion into the O-coordinated PdMe isomer and a subsequent favored ?-H elimination from the N-coordinated isomer formed by isomerization of the insertion product. Steric hindrance by the N-aryl substituent in the neutral systems (CF3) 1 and (H) 1 appears to contribute significantly to a higher barrier of insertion, which accounts for the experimentally observed low activity towards ethylene oligomerization. PMID:25487160

  11. A Unique Equation to Estimate Flash Points of Selected Pure Liquids Application to the Correction of Probably Erroneous Flash Point Values

    NASA Astrophysics Data System (ADS)

    Catoire, Laurent; Naudet, Valérie

    2004-12-01

    A simple empirical equation is presented for the estimation of closed-cup flash points for pure organic liquids. Data needed for the estimation of a flash point (FP) are the normal boiling point (Teb), the standard enthalpy of vaporization at 298.15 K [?vapH°(298.15 K)] of the compound, and the number of carbon atoms (n) in the molecule. The bounds for this equation are: -100?FP(°C)?+200; 250?Teb(K)?650; 20??vap H°(298.15 K)/(kJ mol-1)?110; 1?n?21. Compared to other methods (empirical equations, structural group contribution methods, and neural network quantitative structure-property relationships), this simple equation is shown to predict accurately the flash points for a variety of compounds, whatever their chemical groups (monofunctional compounds and polyfunctional compounds) and whatever their structure (linear, branched, cyclic). The same equation is shown to be valid for hydrocarbons, organic nitrogen compounds, organic oxygen compounds, organic sulfur compounds, organic halogen compounds, and organic silicone compounds. It seems that the flash points of organic deuterium compounds, organic tin compounds, organic nickel compounds, organic phosphorus compounds, organic boron compounds, and organic germanium compounds can also be predicted accurately by this equation. A mean absolute deviation of about 3 °C, a standard deviation of about 2 °C, and a maximum absolute deviation of 10 °C are obtained when predictions are compared to experimental data for more than 600 compounds. For all these compounds, the absolute deviation is equal or lower than the reproductibility expected at a 95% confidence level for closed-cup flash point measurement. This estimation technique has its limitations concerning the polyhalogenated compounds for which the equation should be used with caution. The mean absolute deviation and maximum absolute deviation observed and the fact that the equation provides unbiaised predictions lead to the conclusion that several flash points have been reported erroneously, whatever the reason, in one or several reference compilations. In the following lists, the currently accepted flash points for bold compounds err, or probably err, on the hazardous side by at least 10 °C and for the nonbolded compounds, the currently accepted flash points err, or probably err, on the nonhazardous side by at least 10 °C: bicyclohexyl, sec-butylamine, tert-butylamine, 2-cyclohexen-1-one, ethanethiol, 1,3-cyclohexadiene, 1,4-pentadiene, methyl formate, acetonitrile, cinnamaldehyde, 1-pentanol, diethylene glycol, diethyl fumarate, diethyl phthalate, trimethylamine, dimethylamine, 1,6-hexanediol, propylamine, methanethiol, ethylamine, bromoethane, 1-bromopropane, tert-butylbenzene, 1-chloro-2-methylpropane, diacetone alcohol, diethanolamine, 2-ethylbutanal, and formic acid. For some other compounds, no other data than the currently accepted flash points are available. Therefore, it cannot be assessed that these flash point data are erroneous but it can be stated that they are probably erroneous. At least, they need experimental re-examination. They are probably erroneous by at least 15 °C: 1,3-cyclopentadiene, di-tert-butyl sulfide, dimethyl ether, dipropyl ether, 4-heptanone, bis(2-chloroethyl)ether, 1-decanol, 1-phenyl-1-butanone, furan, ethylcyclopentane, 1-heptanethiol, 2,5-hexanediol, 3-hexanone, hexanoic acid methyl ester, 4-methyl-1,3-pentadiene, propanoyl chloride, tetramethylsilane, thiacyclopentane, 1-chloro-2-methyl-1-propene, trans-1,3-pentadiene, 2,3-dimethylheptane, triethylenetetramine, methylal, N-ethylisopropylamine, 3-methyl-2-pentene, and 2,3-dimethyl-1-butene.

  12. Chromatography and mass spectrometry of prebiological and biological molecules

    NASA Astrophysics Data System (ADS)

    Navale, Vivek

    The detection and identification of prebiological and biological molecules are of importance for understanding chemical and biological processes occurring within the solar system. Molecular mass measurements, peptide mapping, and disulfide bond analysis of enzymes and recombinant proteins are important in the development of therapeutic drugs for human diseases. Separation of hydrocarbons (C1 to C6) and nitriles was achieved by 14%-cyanopropylphenyl-86%- dimethylpolysiloxane (CPPS-DMPS) stationary phase in a narrow bore metal capillary column. The calculation of modeling numbers enabled the differentiation of the C4 hydrocarbon isomers of 1-butene (cis and trans). The modeled retention time values for benzene, toluene, xylene, acetonitrile, propane, and propene nitriles were in good agreement with the measurements. The separation of C2 hydrocarbons (ethane and ethene) from predominantly N2 matrix was demonstrated for the first time on wall coated narrow bore low temperature glassy carbon column. Identification and accurate mass measurements of pepsin, an enzymatic protein with less number of basic amino acid residues were successfully demonstrated by matrix- assisted laser desorption ionization mass spectrometry (MALDI-MS). The molecular mass of pepsin was found to be 34,787 Da. Several decomposition products of pepsin, in m/z range of 3,500 to 4,700 were identified. Trypsin, an important endopeptidase enzyme had a mass of 46829.7 Da. Lower mass components with m/z 8047.5, 7776.6, 5722, 5446.2 and 5185 Da were also observed in trypsin spectrum. Both chemokine and growth factor recombinant proteins were mass analyzed as 8848.1 ± 3.5 and 16178.52 ± 4.1 Da, respectively. The accuracy of the measurements was in the range of 0.01 to 0.02%. Reduction and alkylation experiments on the chemokine showed the presence of six cysteines and three disulfide bonds. The two cysteines of the growth factor contained the free sulfhydryl groups and the accurate average mass of the growth factor protein was 16175.6 Da. MALDI analysis of trypsin digest of Myeloid progenitor inhibitory factor chemokine verified the disulfide bridging among cysteine residues. Several partially digested trypsin and V8 peptides were detected that verified significant portions of the primary structure of the chemokine. Mass difference amounting to the loss of a single amino acid, serine was also identified. The cyanogen bromide (CNBr) treated chemokine produced three peptides 7051, 6910.1 and 1492 Da. The analysis of Keratinocyte growth factor (KGF) peptide mixtures showed suppression effects during the MALDI ionization process. Several partially digested peptides with mass values 3214, 9980, 10325 and 10497 Da were identified. Direct MALDI-MS analysis of cyanogen bromide treated KGF molecule demonstrated the formation of peptides with mass 7567.3, 4992.6 and 3118.6 Da. The high sensitivity of MALDI-MS provided a rapid method for confirming the fidelity of gene expression in the host system. The present work showed that the combined methods of chromatography and mass spectrometry are efficient means for identification and characterization of prebiological and biological molecules.