Sample records for 1-butene 2-methylpropene trans-2-butene

  1. Metabolism of 2-Methylpropene (Isobutylene) by the Aerobic Bacterium Mycobacterium sp. Strain ELW1

    PubMed Central

    Kottegoda, Samanthi; Waligora, Elizabeth


    An aerobic bacterium (Mycobacterium sp. strain ELW1) that utilizes 2-methylpropene (isobutylene) as a sole source of carbon and energy was isolated and characterized. Strain ELW1 grew on 2-methylpropene (growth rate = 0.05 h?1) with a yield of 0.38 mg (dry weight) mg 2-methylpropene?1. Strain ELW1 also grew more slowly on both cis- and trans-2-butene but did not grow on any other C2 to C5 straight-chain, branched, or chlorinated alkenes tested. Resting 2-methylpropene-grown cells consumed ethene, propene, and 1-butene without a lag phase. Epoxyethane accumulated as the only detected product of ethene oxidation. Both alkene consumption and epoxyethane production were fully inhibited in cells exposed to 1-octyne, suggesting that alkene oxidation is initiated by an alkyne-sensitive, epoxide-generating monooxygenase. Kinetic analyses indicated that 1,2-epoxy-2-methylpropane is rapidly consumed during 2-methylpropene degradation, while 2-methyl-2-propen-1-ol is not a significant metabolite of 2-methylpropene catabolism. Degradation of 1,2-epoxy-2-methylpropane by 2-methylpropene-grown cells led to the accumulation and further degradation of 2-methyl-1,2-propanediol and 2-hydroxyisobutyrate, two sequential metabolites previously identified in the aerobic microbial metabolism of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Growth of strain ELW1 on 2-methylpropene, 1,2-epoxy-2-methylpropane, 2-methyl-1,2-propanediol, and 2-hydroxyisobutyrate was fully inhibited when cobalt ions were omitted from the growth medium, while growth on 3-hydroxybutyrate and other substrates was unaffected by the absence of added cobalt ions. Our results suggest that, like aerobic MTBE- and TBA-metabolizing bacteria, strain ELW1 utilizes a cobalt/cobalamin-dependent mutase to transform 2-hydroxyisobutyrate. Our results have been interpreted in terms of their impact on our understanding of the microbial metabolism of alkenes and ether oxygenates. PMID:25576605

  2. Productivity selectivity in the infrared laser induced reaction of trans-2-butene

    SciTech Connect

    Guckert, J.R.; Carr, R.W.


    The infrared multiple-photon photolysis of trans-2-butene was investigated at five CO/sub 2/ wavelengths from 942 to 1031 cm/sup -1/ and at conversions from a few percent to approximately 95%. The reaction products at 50 m Torr and fluences of approximately 125 J/cm/sup 2/ were cis-2-butene, ethylene, ethane, propylene, propyne, 1,3-butadiene, 1-butene, and 2-butyne. Relative product yields of cis-2-butene and propyne varied significantly with both wavelength and conversion. The results of an investigation of the observed product selectivity are presented.

  3. FT-IR product study of the gas-phase Br-initiated oxidation of trans-2-butene under atmospheric conditions between 246 and 298 K

    NASA Astrophysics Data System (ADS)

    Bierbach, A.; Barnes, I.; Becker, K. H.


    The products of the Br-atom initiated oxidation of trans-2-butene have been studied in a largevolume reaction chamber between 246 and 298 K using in situ FT-IR for the analysis. 3-Bromobutan-2-one, acetaldehyde and acetylbromide were the major products of this oxidation process. Additional products included formaldehyde and hydrogen bromide and evidence was found for the formation of 3-bromobutan-2-hydroperoxide. Decreasing the temperature from 298 K down to 246 K resulted in an increase in the yield of 3-bromobutan-2-one and a decrease in the yields of acetaldehyde, acetylbromide, formaldehyde and hydrogen bromide. Addition of NO to the reaction system resulted in nearly a doubling of the yields of 3-bromobutan-2-one, acetaldehyde and formaldehyde. The reaction mechanism is discussed and possible consequences of the results for the involvement of bromine/alkene chemistry in the springtime depletion of ozone in the Arctic are considered.

  4. Isomerization of 1-butene on silica-alumina: Kinetic modeling and catalyst deactivation

    SciTech Connect

    Garcia-Ochoa, F.; Santos, A. (Univ. Complutense, Madrid (Spain). Dept. de Ingenieria Quimica)


    In the study of 1-butene isomerization on a silica-alumina catalyst 448--523 K, cis-2-butene and trans-2-butene are detected. Based on BSTR experimental data and zero-time prediction kinetic models using the Langmuir-Hinshelwood mechanism are assumed to develop kinetic equations for which a triangular reaction scheme is used. In four different mechanisms, one and two active sites take part in the surface reaction as the controlling step and then the deactivation rate determined considering two types of experimental data from BSTR and by measuring weight changes of a catalyst particle from coke deposition in an electrobalance. A coke precursor is assumed formed by reaction of adsorbed molecules (of any butene isomer) and gas-phase molecules. Activity and coke-content-time data allow one to choose a model whose activation energies of the deactivation kinetic parameter are closer in value. Coke is assumed deposited in a monolayer. The model chosen shows a triangular scheme, kinetic equations of the reaction for fresh catalyst with two active sites in the surface reaction, and the deactivation rate according to a coke formation mechanism in which a precursor is formed by reaction of 3 adsorbed molecules and 1 molecule in the gas phase. It accurately fits both BSTR conversion-time data and electrobalance coke-content data. The coke formation mechanism establishes relationships of activity vs. coke content and catalyst acidity which are supported by experimental results.

  5. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2011 CFR


    ...Identity. Poly-1-butene resins are produced by the catalytic polymerization of 1-butene liquid monomer. Butene/ethylene copolymers are produced by the catalytic polymerization of 1-butene liquid monomer in the presence of small...

  6. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2014 CFR


    ...Identity. Poly-1-butene resins are produced by the catalytic polymerization of 1-butene liquid monomer. Butene/ethylene copolymers are produced by the catalytic polymerization of 1-butene liquid monomer in the presence of small...

  7. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2013 CFR


    ...Identity. Poly-1-butene resins are produced by the catalytic polymerization of 1-butene liquid monomer. Butene/ethylene copolymers are produced by the catalytic polymerization of 1-butene liquid monomer in the presence of small...

  8. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2012 CFR


    ...Identity. Poly-1-butene resins are produced by the catalytic polymerization of 1-butene liquid monomer. Butene/ethylene copolymers are produced by the catalytic polymerization of 1-butene liquid monomer in the presence of small...

  9. Catalytic conversion of methane and propylene to 1-butene

    SciTech Connect

    Lunsford, J.H.; Rosynek, M.P.; Smith, C.E.; Xu, M.; Yu, Z. [Texas A& M Univ., College Station, TX (United States)


    The oxidative cross-coupling of methane with propylene has been studied over several catalysts. A material containing 1.9 wt % Mn and 5 wt % NaCl on SiO{sub 2} was found to be the most effective for this reaction. At 650{degree}C, it was possible to attain selectivities to 1-butene and butadiene of 57% and 8.0%, respectively, at a propylene conversion of 38%. Experiments utilizing {sup 13}CH{sub 4} confirm that methane was indeed involved in the formation of the C{sub 4} products. Methyl radicals derived from CH{sub 4} and allyl radicals derived from C{sub 3}D{sub 6} were simultaneously detected over the catalysts using a matrix isolation electron spin resonance method. These surface-generated radicals enter the gas phase, where most of the coupling is believed to occur. In addition to the cross-coupling reaction, methyl radicals couple to form ethane, and allyl radicals couple to form 1,5-hexadiene. The latter hydrocarbon reacts extensively back to propylene over the catalysts at 650{degree}C. 28 refs., 4 figs., 10 tabs.

  10. Fluid phase equilibria for the binary system dimethyl ether/1-butene

    SciTech Connect

    De Fernandez, M.E.P.; Noles, J.; Zollweg, J.A.; Streett, W.B.


    Vapor-liquid equilibrium data (P-T-x-y) for the binary system dimethyl ether/1-butene have been measured from 283 K to 366 K. This region of vapor-liquid coexistence has been explored for the first time. The experimental apparatus and analysis system is described in detail. Barker's method of data reduction has been used to test the consistency, and the ability of cubic equations of state to represent the experimental results has been examined.

  11. Surface energy of ethylene -co-1-butene copolymers determined by contact angle methods

    Microsoft Academic Search

    T. A Mykhaylyk; S. D Evans; C. M Fernyhough; I. W Hamley; J. R Henderson


    Wilhelmy plate measurements of contact angles with a series of test liquids are used to calculate the surface energies of two poly(ethylene-co-1-butene) random copolymers. Results from five methods of calculation are reported: one-liquid (Good–Girifalco and Neumann), two-liquid (harmonic mean and geometric mean), and three-liquid (Lifshitz–van der Waals acid–base) methods. We find that all five methods are sensitive to the choice

  12. Potassium promotion of iron oxide dehydrogenation catalysts supported on magnesium oxide: 2. 1-Butene dehydrogenation activity

    SciTech Connect

    Stobbe, D.E.; Buren, F.R. van (Dow Benelux, Terneuzen (Netherlands)); Dillen, A.J. van.; Geus, J.W. (State Univ. of Utrecht (Netherlands))


    Potassium promotion of iron oxide catalysts supported on magnesium oxide results in considerably more active and selective 1-butene dehydrogenation catalysts. Upon promotion the activation energy was found to decrease from 194 to 156 kJ/mol. KFeO[sub 2] appeared to be the active phase under dehydrogenation conditions. No reduction of KFeO[sub 2] was observed. KFeO[sub 2] shows high 1-butene dehydrogenation activity, yet is not sufficiently effective to suppress coking entirely. For that purpose the presence of highly dispersed potassium carbonate at the catalyst surface is a prerequisite. Under identical dehydrogenation conditions, a commercial unsupported catalyst, S-105, which contains the more easily reducible KF[sub 11]O[sub 13], is reduced to Fe[sub 3]O[sub 4]. Compared with this unsupported S-105 catalyst, the supported catalysts show significantly higher 1,3-butadiene selectivities at comparable conversion levels, which is to be attributed to the different natures of their respective active phases.

  13. Conversion of 1-butene to aromatics over AlPO/sub 4/-11

    SciTech Connect

    Bhatia, T.K.; Phillips, M.J.


    The activity of the crystalline molecular sieve AlPO/sub 4/-11 for the conversion of 1-butene to benzene, toluene, ethylbenzene, and the xylenes (BTEX) was followed as a function of temperature, time on stream, nickel loading, and methane dilution of the olefin feed. A maximum in liquid production, selectivity to BTEX, and cracking to C(1), C(2), and C(3) products was observed at 773 K. Over 8 h on stream at this temperature, selectivity to benzene and total liquid product increased significantly, the amount of cracked gases increased somewhat, and selectivity to toluene, ethylbenzene, and xylenes decreased somewhat. Nickel loading depressed the amount of BTEX produced probably due to rapid coking of the catalyst. Methane dilution of the feed stream caused a decrease in total liquid product but increased the liquid density as a result of changes in component selectivities. Even in the most favorable case, the activity of AlPO/sub 4/-11 was far less than that of HZSM-5 for the same reaction. The results support a mechanism that proceeds via partial dehydrogenation to butadiene which then participates in a dimerization step, possibly of a Diels-Adler type. C(1) to C(3) products arise from cracking of oligomers and not directly from the 1-butene feed.

  14. Electron momentum spectroscopy of 1-butene: a theoretical analysis using molecular dynamics and molecular quantum similarity.


    Shojaei, S H Reza; Vandenbussche, Jelle; Deleuze, Michael S; Bultinck, Patrick


    The results of experimental studies of the valence electronic structure of 1-butene by means of electron momentum spectroscopy (EMS) have been reinterpreted on the basis of molecular dynamical simulations in conjunction with the classical MM3 force field. The computed atomic trajectories demonstrate the importance of thermally induced nuclear dynamics in the electronic neutral ground state, in the form of significant deviations from stationary points on the potential energy surface and considerable variations of the C-C-C-C dihedral angle. These motions are found to have a considerable influence on the computed spectral bands and outer-valence electron momentum distributions. Euclidean distances between spherically averaged electron momentum densities confirm that thermally induced nuclear motions need to be fully taken into account for a consistent interpretation of the results of EMS experiments on conformationally flexible molecules. PMID:23902590

  15. Hydrogenation of 1-butene on nanosized Pd/ZnO catalysts.


    Agelakopoulou, T; Roubani-Kalantzopoulou, F


    The reaction concerning the hydrogenation of 1-butene has occupied the researchers conducting research based on the method of reversed-flow inverse gas chromatography (RF-IGC), for extended time periods. This work aims to define and record, with the utmost accuracy, the phenomena and their possible parallel reactions. It was a challenge for the RF-IGC, which was met. The venture consisted of many parts. Answers had to be provided to the following questions: (a) Can RF-IGC deal with issues of catalysis? (b) Can RF-IGC be applied to thin films? (c) Can RF-IGC identify peaks? (d) Can RF-IGC define the gnostic regions of adsorption, desorption, surface diffusion, surface reaction, the existence of more than one reaction? (e) Can it kinetically follow the above? The answer is certainly yes. The effort made is presented in this work and aims to answer all the above questions. PMID:18565530

  16. Exploratory study on upgrading 1-butene using spent FCC catalyst\\/additive under simulated conditions of FCCU’s stripper

    Microsoft Academic Search

    Yong Lu; Ming-Yuan He; Xing-Tian Shu; Bao-Ning Zong


    A novel method for upgrading n-butene into more useful propylene, iso-butene, iso-butane even gasoline using spent fluid catalytic cracking (FCC) catalysts\\/additives in the stripper part of fluid catalytic cracking unit (FCCU) has been proposed. The simulative tests were carried out on a widely used MAT equipment, using 1-butene as feed. High temperature and low space velocity favor the formation of

  17. Partial oxidation of hydrocarbons on silver: conversion of 1-butene to maleic anhydride by atomically adsorbed oxygen on Ag(110)

    NASA Astrophysics Data System (ADS)

    Roberts, Jeffrey T.; Capote, Armand J.; Madix, Robert J.


    The reaction of 1-butene with atomically adsorbed oxygen on Ag(110) has been studied using temperature-programmed reaction mass spectrometry (TPRS) and high-resolution electron-energy-loss vibrational spectroscopy (HREELS). The reaction was studied as a function of oxygen coverage from 0.00 to 0.50 ML. 1-Butene is oxidized by atomically chemisorbed oxygen via a sequence of reactions on the surface to 1,3-butadiene, 2,5-dihydrofuran, furan, carbon dioxide, and small amounts of maleic anhydride. 1,3-Butadiene is the principal oxidation product; the 2,5-dihydrofuran and furan yields are approximately 50% and 10%, respectively, of the 1,3-butadiene yield for oxygen atom coverages of 0.50 monolayers. 1,3-Butadiene is formed from 1-butene via C-H bond activation of the acidic allylic C-H bonds by atomically chemisorbed oxygen, a reaction that has a precedent in the oxidation of cyclohexene on Ag(110). The oxygen-containing products are formed via oxygen atom addition to 1,3-butadiene; this addition resembles the epoxidation of norbornene and styrene on Ag(110) and the epoxidation of styrene and 3,3-dimethylbutene on Ag(111).

  18. Electrical conductivity and equation of state of liquid nitrogen, oxygen, benzene, and 1-butene shocked to 60 GPa

    SciTech Connect

    Hamilton, D.C.


    Measurements are reported for the electrical conductivity of liquid nitrogen (N/sub 2/), oxygen (O/sub 2/) and benzene (C/sub 6/H/sub 6/), and Hugoniot equation of state of liquid 1-butene (C/sub 4/H/sub 8/) under shock compressed conditions. The conductivity data span 7 x 10/sup -4/ to 7 x 10/sup 1/ ..cap omega../sup -1/cm/sup -1/ over a dynamic pressure range 18.1 to 61.5 GPa and are discussed in terms of amorphous semiconduction models which include such transport phenomena as hopping, percolation, pseudogaps, and metallization. Excellent agreement is found between the equation-of-state measurements, which span a dynamic pressure range 12.3 to 53.8 GPa, and Ree's calculated values which assume a 2-phase mixture consisting of molecular hydrogen and carbon in a dense diamond-like phase. There is a 2-1/2 fold increase in the thermal pressure contribution over a less dense, stoichiometrically equivalent liquid. 90 refs., 48 figs., 8 tabs.

  19. Evaluated kinetics of terminal and non-terminal addition of hydrogen atoms to 1-alkenes: a shock tube study of H + 1-butene.


    Manion, Jeffrey A; Awan, Iftikhar A


    Single-pulse shock tube methods have been used to thermally generate hydrogen atoms and investigate the kinetics of their addition reactions with 1-butene at temperatures of 880 to 1120 K and pressures of 145 to 245 kPa. Rate parameters for the unimolecular decomposition of 1-butene are also reported. Addition of H atoms to the ? bond of 1-butene results in displacement of either methyl or ethyl depending on whether addition occurs at the terminal or nonterminal position. Postshock monitoring of the initial alkene products has been used to determine the relative and absolute reaction rates. Absolute rate constants have been derived relative to the reference reaction of displacement of methyl from 1,3,5-trimethylbenzene (135TMB). With k(H + 135TMB ? m-xylene + CH3) = 6.7 × 10(13) exp(-3255/T) cm(3) mol(-1) s(-1), we find the following: k(H + 1-butene ? propene + CH3) = k10 = 3.93 × 10(13) exp(-1152 K/T) cm(3) mol(-1) s(-1), [880-1120 K; 145-245 kPa]; k(H + 1-butene ? ethene + C2H5) = k11 = 3.44 × 10(13) exp(-1971 K/T) cm(3) mol(-1) s(-1), [971-1120 K; 145-245 kPa]; k10/k11 = 10((0.058±0.059)) exp [(818 ± 141) K/T), 971-1120 K. Uncertainties (2?) in the absolute rate constants are about a factor of 1.5, while the relative rate constants should be accurate to within ±15%. The displacement rate constants are shown to be very close to the high pressure limiting rate constants for addition of H, and the present measurements are the first direct determination of the branching ratio for 1-olefins at high temperatures. At 1000 K, addition to the terminal site is favored over the nonterminal position by a factor of 2.59 ± 0.39, where the uncertainty is 2? and includes possible systematic errors. Combining the present results with evaluated data from the literature pertaining to temperatures of <440 K leads us to recommend the following: k?(H + 1-butene ? 2-butyl) = 1.05 × 10(9)T(1.40) exp(-366/T) cm(3) mol(-1) s(-1), [220-2000 K]; k?(H + 1-butene ? 1-butyl) = 9.02 × 10(8)T(1.40) exp(-1162/T) cm(3) mol(-1) s(-1) [220-2000 K]. Analogous rate constants for other unbranched 1-olefins should be very similar. Despite this, a factor of three discrepancy in the branching ratio for terminal and nonterminal addition is noted when comparing the present values with recommendations from a recent model of the important H + propene reaction. This difference is suggested to be well outside of the possible experimental errors of the present study or the expected differences with 1-butene. There thus appear to be inconsistencies in the current model for propene. In particular the addition branching ratio from that model should not be used as a reference value in extrapolations to other systems via rate rules or automated mechanism generation techniques. PMID:25517498

  20. Heterogeneous photocatalytic oxidation of 1-butene on SnO{sub 2} and TiO{sub 2} films

    SciTech Connect

    Cao, L.; Spiess, F.J.; Huang, A.; Suib, S.L. [Univ. of Connecticut, Storrs, CT (United States). Dept. of Chemistry] [Univ. of Connecticut, Storrs, CT (United States). Dept. of Chemistry; Obee, T.N.; Hay, S.O.; Freihaut, J.D. [United Technologies Research Center, East Hartford, CT (United States)] [United Technologies Research Center, East Hartford, CT (United States)


    Three types of films were prepared by a dip-coating process for the photocatalyzed decomposition of 1-butene in a gas-solid reaction. Under UV illumination ({lambda} > 300 nm, 352 nm peak intensity), ultrasmall SnO{sub 2} with a diameter of 5 nm exhibited initial photoactivity as high as 3 times that of P-25 TiO{sub 2} (30 nm) in the absence of water vapor whereas SnO{sub 2}-l (22 nm) did not show photoactivity. Quantum size effects were mainly responsible for the high photoactivity achieved by SnO{sub 2}. Inactivity of SnO{sub 2}-l film was due to the absence of active hydroxyl groups on the catalyst surface and low surface areas. By investigation of the effects of humidity, water has two different functions: maintaining constant oxidation rates at low water levels by replenishing hydroxyl groups and decreasing the photoactivity at high water levels by competitive adsorption with butene on active sites. Compared with TiO{sub 2}, SnO{sub 2} cannot withstand high humidity since it is very sensitive to water concentration. Hydroxyl groups on catalyst surfaces are the active centers for the reaction. The occurrence of obvious deactivation on SnO{sub 2} films was due to the depletion of hydroxyl groups and the accumulation of carbonate species on particle surfaces, i.e., M-OCOOR species in place of M-OH. The kinetic data correlate with a Langmuir-Hinshelwood single-site model. XRD, UV-vis spectroscopy, and FTIR techniques were employed to characterize the particle size, band gaps, and surface properties of the catalysts.

  1. Oxidation of 1-butene on the surface of YBa{sub 2}Cu{sub 3}O{sub 7-x}

    SciTech Connect

    Muradyan, A.A.; Manukyan, N.S.; Gazaryan, K.G.; Saakyan, E.F.; Garibyan, T.A. [Institute of Chemical Physics, Erevan (Armenia)


    Oxidation of 1-C{sub 4}H{sub 8} on YBa{sub 2}Cu{sub 3}O{sub 7-x} catalysts prepared by self-propagating high-temperature synthesis (SHS) (C{sub 1}) and by conventional furnace technology (C{sub 2}) was studied. The ESR experiments show that both C{sub 1} and C{sub 2} samples lose their superconducting properties as the reaction of 1-butene oxidation proceeds. However, sample C{sub 1} retains its catalytic activity in the conversion of butene to butadiene and promotes the deep oxidation reaction, whereas sample C{sub 2} is ineffective in these processes.

  2. Hydrogenation of alkadienes. 9. 1,3-butadiene hydrogenation catalyzed by rhenium and by sulfur-contaminated rhenium

    Microsoft Academic Search

    J. Grant; R. B. Moyers; P. B. Wells


    Hydrogenation of 1,3-butadiene on rhenium film, silica-supported rhenium, and rhenium on various aluminas in a static reactor yielded 54% 1-butene, 30% trans-2-butene, 13% cis-2-butene, and 3% butane. A zero yield of butane obtained with rhenium on a commercial alumina and with rhenium wire was shown to be due to sulfur contamination, which was transported from the support to the metal

  3. High selectivity production of propylene from 2-butene: non-degenerate pathways to convert symmetric olefins via olefin metathesis.


    Mazoyer, Etienne; Szeto, Kai C; Basset, Jean-Marie; Nicholas, Christopher P; Taoufik, Mostafa


    The first example of propylene production from 2-butene in promising yield is described by reacting trans-2-butene over tungsten hydrides precursor W-H/Al(2)O(3) at 150 °C and different pressures in a continuous flow reactor. The tungsten carbene-hydride active site operates as a "bi-functional catalyst" through the disfavoured 2-butene isomerisation on W-hydride and 2-butenes/1-butene cross-metathesis on W-carbene. PMID:22395285

  4. Metathesis of 1-Butene to Propene over Mo/Al2 O3 @SBA-15: Influence of Alumina Introduction Methods on Catalytic Performance.


    Zhang, Dazhou; Li, Xiujie; Liu, Shenglin; Zhu, Xiangxue; Chen, Fucun; Xu, Longya


    A series of Mo-based catalysts for 1-butene metathesis to propene were prepared by supporting Mo species on SBA-15 premodified with alumina. The effects of the method of introduction of the alumina guest to the host SBA-15 on the location of the Mo species and the corresponding metathesis activity were studied. As revealed by N2 adsorption isotherms and TEM results, well-dispersed alumina was formed on the pore walls of SBA-15 if the ammonia/water vapor induced hydrolysis (NIH) method was employed. The Mo species preferentially interacted with alumina instead of SBA-15, as evidenced by X-ray photoelectron spectroscopy, time-of-flight secondary-ion mass spectrometry, and IR spectroscopy of adsorbed pyridine. Furthermore, new Brønsted acid sites favorable for the dispersion of the Mo species and low-temperature metathesis activity were generated as a result of the effective synergy between the alumina and SBA-15. The Mo/Al2 O3 @SBA-15 catalyst prepared by the NIH method showed higher metathesis activity and stability under the conditions of 120?°C, 0.1?MPa, and 1.5?h(-1) than catalysts prepared by other methods. PMID:26011528

  5. Conformationally disordered crystals and their influence on material properties: The cases of isotactic polypropylene, isotactic poly(1-butene), and poly(L-lactic acid)

    NASA Astrophysics Data System (ADS)

    Cocca, Mariacristina; Androsch, René; Righetti, Maria Cristina; Malinconico, Mario; Di Lorenzo, Maria Laura


    This article provides a comprehensive review of the physical properties of the conformationally disordered (condis) structures of isotactic polypropylene (iPP), isotactic poly(1-butene) (iPB-1) and poly(L-lactic acid) (PLLA), in comparison with the respective more stable crystalline forms. The aim of this review is to define the influence of the condis modifications on the thermal and mechanical properties of these materials. The condis structures of the three polymers are metastable and spontaneously transform into the more stable crystalline structures upon annealing above a critical temperature. The transition from the mesophase to the more stable crystalline structure becomes possible when the chains have sufficient mobility to allow rearrangements of chain conformations. A rigid amorphous fraction develops during solidification of iPP, iPB-1 and PLLA. Crystallization of iPB-1 and PLLA into the more stable forms leads to a larger coupling of the amorphous and crystalline chain segments, compared to the conformationally disordered arrangements, which results in a higher fraction of rigid amorphous chain segments. The difference in chain packing, together with the varied mobility of the coupled amorphous chain portions, affects both the initial resistance to the tensile strain and the large strain properties. All the three stable crystalline forms have a higher Young's modulus compared to the condis mesophases, and can sustain lower deformation under mechanical stimuli.

  6. AlCl3-Promoted Facile E-to-Z Isomerization Route to (Z)-2-Methyl-1-buten-1,4-ylidene Synthons for Highly Efficient and Selective (Z)-Isoprenoid Synthesis

    PubMed Central

    Wang, Guangwei; Negishi, Ei-ichi


    Zr-catalyzed methylalumination of 3-butyn-1-ols followed by AlCl3-promoted stereoisomerization at 50 °C for 6 h provides 4-iodo-3-methyl-3-buten-1-ols 2b and 6 of ?98 Z configuration in 87 and 67% yields, respectively. (Z)-1,4-Diiodo-2-methyl-1-butene (1b) obtainable by iodination of 2b is a valuable synthon for efficient and selective syntheses of (Z)-alkene containing isoprenoids. PMID:24307863

  7. Photodissociation of 1-bromo-2-butene, 4-bromo-1-butene, and cyclopropylmethyl bromide at 234 nm studied using velocity map imaging.


    Lau, Kai-Chung; Liu, Yi; Butler, Laurie J


    We present photofragment imaging experiments to characterize potential photolytic precursors of three C4H7 radical isomers: 1-methylallyl, cyclopropylmethyl, and 3-buten-1-yl radicals. The experiments use 2+1 resonance enhanced multiphoton ionization (REMPI) with velocity map imaging to state-selectively detect the Br(2P(3/2)) and Br(2P(1/2)) atoms as a function of their recoil velocity imparted upon photodissociation of 1-bromo-2-butene, cyclopropylmethyl bromide, and 4-bromo-1-butene at 234 nm as well as the angular distributions of the photofragments. Energy and momentum conservation allows the internal energy distribution of the nascent momentum-matched radicals to be derived. The radicals are detected with single photon photoionization at 157 nm. In the case of the 1-methylallyl radical the photoionization cross section is expected to be independent of internal energy in the range of 7-30 kcal/mol. Thus, comparison of the product recoil kinetic energy distribution derived from the measurement of the 1-methylallyl velocity distribution, detecting the radicals with 157 nm photoionization, with a linear combination of the Br atom recoil kinetic energy distributions allows us to derive reliable REMPI line strength ratios for the detection of Br atoms and to test the assumption that the photoionization cross section does not strongly depend on the internal energy of the radical. This line strength ratio is then used to determine the branching to the Br(2P(3/2)) and Br(2P(1/2)) product channels for the other two photolytic systems and to determine the internal energy distribution of their momentum-matched radicals. (We also revisit earlier work on the photodissociation of cyclobutyl bromide which detected the Br atoms and momentum-matched cyclobutyl radicals.) This allows us to test whether the 157 nm photoionization of these radicals is insensitive to internal energy for the distribution of total internal (vibrational+rotational) energy produced. We find that 157 nm photoionization of cyclopropylmethyl radicals is relatively insensitive to internal energy, while 3-buten-1-yl radicals show a photoionization cross section that is markedly dependent on internal energy with the lowest internal energy radicals not efficiently detected by photoionization at 157 nm. We present electronic structure calculations of the radicals and their cations to understand the experimental results. PMID:17042595

  8. MoO sub 3 catalysts promoted by MnMoO sub 4. II. Effect of O sub 2 concentration and temperature in selective oxidation of 1-butene to maleic anhydride

    SciTech Connect

    Gill, R.C.; Ozkan, U.S. (Ohio State Univ., Columbus (USA))


    In a previous paper, the authors have reported the results of a study where they focused their attention on catalytic activity and selectivity of pure MoO{sub 3} and attempted to modify its catalytic behavior by bringing its surfaces into close contact with MnMoO{sub 4}. While their characterization experiments revealed the two-phase nature of the MnMoO{sub 4}/MoO{sub 3} catalyst, the activity studies showed a pronounced promoter effect in selective oxidation of both 1-butene and 1,3-butadiene to maleic anhydride, suggesting a possible synergy between the two phases. This note presents the results of their selective oxidation studies where the effect of temperature and oxygen partial pressure on catalytic behavior of the pure phases (MoO{sub 3} and MnMoO{sub 4}) as well as the two phase catalyst (MnMoO{sub 4}/MoO{sub 3}) has been investigated in conversion of 1-butene to maleic anhydride. All catalysts were characterized in detail using BET surface area measurement, x-ray diffraction, scanning electron microscopy, energy dispersive x-ray analysis, laser Raman spectroscopy and Raman microprobe techniques.

  9. Alumina-supported bimetallics of palladium alloyed with germanium, tin, lead, or antimony from organometallic precursors. II. Gas-phase hydrogenation of 2-methyl-1-buten-3-yne (valylene) and 2-methyl-1,3-butadiene (isoprene)

    SciTech Connect

    Aduriz, H.R.; Bodnariuk, P. (UNS-CONICET, Bahia Blanca (Argentina)); Coq, B.; Figueras, F. (CNRS ENSCM, Montpellier (France))


    A series of PdGe, PdSb, PdSn, and PdPb/{alpha}{minus}Al{sub 2}O{sub 3} catalysts, prepared by the controlled surface reaction (CSR) technique from organometallic precursors have been tested in the gas-phase hydrogenation of 2-methyl-1-buten-3-yne (valylene) and 2-methyl-1,3-butadiene (isoprene). On catalysts reduced at 573 K, the turnover frequencies for valylene (TON{sub v}) and isoprene (TON{sub 1}) hydrogenation were not modified by addition to the 0.09wt% Pd/{alpha}{minus}Al{sub 2}O{sub 3} base catalyst of Ge, Sb, Sn, or Pb, up to0.1 wt% (at 293 K: TON{sub v}= 20 s{sup {minus}1} and TON{sub 1} = 33 s{sup {minus}1}). Pd/{alpha}{minus}Al{sub 2}O{sub 3} reduced at 773 K was severely sintered (d{sub TEM} increased from 2.8nm to 12.4nm) and TON{sub v} and TON{sub 1} at 293 K increased to 190 and 283 s{sup {minus}1}, respectively, as a result of an apparent crystal size effect: the reactants adsorb more strongly on the smaller Pd particles. Upon alloying with Ge, Sb, Sn, or Pb and a subsequent reduction at 773 K, a modest decrease of both TON{sub v} (by a factor of 2) and TON{sub 1} (by a factor of 2{minus}5) was observed. At high conversion, both the selectivity to isoprene (S{sub I}) in valylene hydrogenation, and to olefins (S{sub 0}) in isoprene hydrogenation on Pd/{alpha}{minus}Al{sub 2}O{sub 3} were improved upon alloying with Sb, Sn, or Pb (Ge had no effect). In addition, the isomerization of 2-methyl-1-butene and 3-methyl-1-butene (double bond migration reaction) during isoprene hydrogenation was partially suppressed on PdSn and PdPb/{alpha}{minus}Al{sub 2}O{sub 3}. The improvement in selectivities was interpreted in terms of a change in the relative adsorption strength of the reactants and intermediate products over the new bimetallic sites.

  10. Binuclear metal carbonyl DAB complexes X. Activation of h2-C=N coordinated DAB ligands towards CC bond formation with alkynes. The X-ray structure of {2-phenyl-3-(tert-butylamino)-4-(tertbutyl-imino)-1-butene-1-yl}Ru2(CO)5. Application to the catalytic cyclotrimerization of alkynes

    Microsoft Academic Search

    G. van Koten; L. H. Staal; K. Vrieze; B. van Santen; C. H. Stam


    Ru,(CO),(DAB) (DAB = 1,4-diazabutadiene) complexes react with alkynes forming RU,(CO)~(AIB) complexes (AIB\\u000a= 3-amino-4-imino-1-buten-1-ylI)n. these products the DAB ligand and the alkyne are coupled via a C-C bond. The\\u000amolecular structure of these complexes has been determined by a single-crystal X-ray study. Cell data are a = 12.41 1\\u000a(2) A, b = 16.137 (3) A, c = 12.487 (2)

  11. Reactions of OH with Butene Isomers: Measurements of the Overall Rates and a Theoretical Study

    SciTech Connect

    Vasu, Subith; Huynh, Lam; Davidson, David F.; Hanson, Ronald K.; Golden, David


    Reactions of hydroxyl (OH) radicals with 1-butene (k{sub 1}), trans-2-butene (k{sub 2}), and cis-2-butene (k{sub 3}) were studied behind reflected shock waves over the temperature range 880?1341 K and at pressures near 2.2 atm. OH radicals were produced by shock-heating tert-butyl hydroperoxide, (CH{sub 3}){sub 3}?CO?OH, and monitored by narrow-line width ring dye laser absorption of the well-characterized R{sub 1}(5) line of the OH A?X (0, 0) band near 306.7 nm. OH time histories were modeled using a comprehensive C{sub 5} oxidation mechanism, and rate constants for the reaction of OH with butene isomers were extracted by matching modeled and measured OH concentration time histories. We present the first high-temperature measurement of OH + cis-2-butene and extend the temperature range of the only previous high-temperature study for both 1-butene and trans-2-butene. With the potential energy surface calculated using CCSD(T)/6-311++G(d,p)//QCISD/6-31G(d), the rate constants and branching fractions for the H-abstraction channels of the reaction of OH with 1-butene were calculated in the temperature range 300?1500 K. Corrections for variational and tunneling effects as well as hindered-rotation treatments were included. The calculations are in good agreement with current and previous experimental data and with a recent theoretical study.

  12. Processing-structure-property studies of: (I) submicron polymeric fibers produced by electrospinning and (II) films of linear low density polyethylenes as influenced by the short chain branch length in copolymers of ethylene/1-butene, ethylene/1-hexene and ethylene/1-octene synthesized by a single site metallocene catalyst

    NASA Astrophysics Data System (ADS)

    Gupta, Pankaj

    The overall theme of the research discussed in this dissertation has been to explore processing-structure-property relationships for submicron polymeric fibers produced by electrospinning (Part I) and to ascertain whether or not the length of the short chain branch has any effect on the physical properties of films of linear low-density polyethylenes (LLDPEs) (Part II). The research efforts discussed in Part I of this dissertation relate to some fundamental as well as more applied investigations involving electrospinning. These include investigating the effects of solution rheology on fiber formation and developing novel methodologies to fabricate polymeric mats comprising of high specific surface submicron fibers of more than one polymer, high chemical resistant substrates produced by in situ photo crosslinking during electrospinning, superparamagnetic flexible substrates by electrospinning a solution of an elastomeric polymer containing ferrite nanoparticles of Mn-Zn-Ni and substrates for filtration applications. Bicomponent electrospinning of poly(vinyl chloride)-polyurethane and poly(vinylidiene fluoride)-polyurethane was successfully performed. In addition, filtration properties of single and bicomponent electrospun mats of polyacrylonitrile and polystyrene were investigated. Results indicated lower aerosol penetration or higher filtration efficiencies of the filters based on submicron electrospun fibers in comparison to the conventional filter materials. In addition, Part II of this dissertation explores whether or not the length of the short chain branch affects the physical properties of blown and compression molded films of LLDPEs that were synthesized by a single site metallocene catalyst. Here, three resins based on copolymers of ethylene/1-butene, ethylene/1-hexene, and ethylene/1-octene were utilized that were very similar in terms of their molecular weight and distribution, melt rheology, density, crystallinity and short chain branching content and its distribution. Interestingly, at higher deformation rates (ca. 1m/s), the breaking, tear and impact strengths of films based on ethylene/1-hexene and ethylene/1-octene were found to be superior than those based on ethylene/1-butene. (Abstract shortened by UMI.)

  13. Mesophases in polyethylene, polypropylene, and poly(1-butene)

    SciTech Connect

    Androsch, Rene J; Di Lorenzo, Maria; Schick, Christoph; Wunderlich, Bernhard {nmn}


    This paper contains new views about the amorphous and partially ordered phases of the three polymers listed in the title. The discussion is based on information on structure, thermodynamic stability, and large-amplitude molecular motion. Polyethylene is the basic backbone of all alkene polymers, and the other two are the first members of the vinyl polymers which have stereospecifically placed alkyl side chains. Their multiphase structures consist of metastable crystals, mesophases, and surrounding rigid and mobile amorphous fractions. All these phases have sizes ranging from micrometer dimensions down to nanometers. Besides the phase structures, information about the molecular coupling between the phases must be considered. Depending on temperature, the polymer phases can vary from solid (rigid) to liquid (mobile). New knowledge is also gained by cross-comparison of the title polymers. The experimental information was gained from (a) various forms of slow, fast, and temperature-modulated thermal analysis to identify equilibrium and non-equilibrium states, (b) measurement of structure and morphology at various length scales, and (c) tracing of the large-amplitude molecular motion, the kinetics of order/disorder changes, and the liquid/solid transitions (glass transitions). It is shown that much more needs to be known about the various phases and their coupling to characterize a given polymer and to fine-tune its properties for a given application.

  14. Fourier transform infrared study of butene adsorption and reaction on a silica-supported nickel catalyst

    SciTech Connect

    Campione, T.J.; Ekerdt, J.G.


    The adsorption of 1-butene, trans-2-butene, cis-2-butene, and 1,1-d/sub 2/-1-butene on a well-characterized silica-supported nickel catalyst was studied using Fourier transform infrared spectroscopy. The resultant hydrocarbon surface species were subjected to vacuum and hydrogen. Reaction products were monitored at temperatures from 28 to 100/sup 0/C. The initial adsorption of each of the n-butenes resulted in similar infrared spectra. The main spectral features are proposed to be associated with two surface species: a weakly adsorbed 2,3-dimetallabutane and a strongly adsorbed 1,1,2- and/or 1,1,3-trimetallabutane. The surface orientations of the initially adsorbed metallabutanes are discussed along with the effect of the surface selection rule on the observed infrared bands. Heating the catalyst under vacuum resulted in the desorption of the 2,3-species to form butane and the further dehydrogenation of other metallabutanes. The addition of hydrogen to the initially adsorbed surface species resulted in the evolution of butane and the partial hydrogenation of the strongly adsorbed metallabutanes. The resultant structures were relatively stable in hydrogen at temperatures to 120/sup 0/C. Evidence was also found for the presence of allylic species during the linear isomerization of the n-butenes. It is proposed that allylic species may be precursors to the formation of the metallabutanes as well as possible intermediates in the isomerization reaction.

  15. Pressure-dependent OH yields in alkene + HO2 reactions: a theoretical study.


    Zádor, Judit; Klippenstein, Stephen J; Miller, James A


    The major bimolecular product of alkyl + O(2) reactions is alkene + hydroperoxyl radical (HO(2)), but in the reverse direction, the reactants are reformed to a very limited extent only. The most important products of the alkene + HO(2) reactions are alkylperoxy radical (ROO(•)), hydroxyl radical (OH) + cyclic ether, and the corresponding hydroperoxyalkyl ((•)QOOH) species. Moreover, abstraction of allylic hydrogens can compete with the addition, further complicating the possible outcome of this reaction type and its effect on low-temperature combustion chemistry. In this paper, six alkene + HO(2) reactions and the reaction between an unsaturated oxygenate and HO(2) are studied based on previously established potential energy surfaces. The studied unsaturated compounds are ethene, propene, 1-butene, trans-2-butene, isobutene, cyclohexene, and vinyl alcohol. Using multiwell master equations, temperature- (300-1200 K) and pressure-dependent rate coefficients and branching fractions are calculated for these reactions. The importance of this reaction type for the combustion of unsaturated compounds is also assessed, and we show that, to get reliable results, it is important to include the pressure-dependence of the rate coefficients in the calculations. PMID:21819062

  16. Laboratory spectroscopic analyses of electron irradiated alkanes and alkenes in solar system ices

    NASA Astrophysics Data System (ADS)

    Hand, K. P.; Carlson, R. W.


    We report results from laboratory experiments of 10 keV electron irradiation of thin ice films of water and short-chain hydrocarbons at ˜10-8 Torr and temperatures ranging from 70-100 K. Hydrocarbon mixtures include water with C3H8, C3H6, C4H10 (butane and isobutane), and C4H8, (1-butene and cis/trans-2-butene). The double bonds of the alkenes in our initial mixtures were rapidly destroyed or converted to single carbon bonds, covalent bonds with hydrogen, bonds with -OH (hydroxyl), bonds with oxygen (C-O), or double bonds with oxygen (carbonyl). Spectra resulting from irradiation of alkane and alkene ices are largely indistinguishable; the initial differences in film composition are destroyed and the resulting mixture includes long-chain, branched aliphatics, aldehydes, ketones, esters, and alcohols. Methane was observed as a product during radiolysis but CO was largely absent. We find that while some of the carbon is oxidized and lost to CO2 formation, some carbon is sequestered into highly refractory, long-chain aliphatic compounds that remain as a thin residue even after the ice film has been raised to standard temperature and pressure. We conclude that the high availability of hydrogen in our experiments leads to the formation of the formyl radical which then serves as the precursor for formaldehyde and polymerization of longer hydrocarbon chains.

  17. Investigation of the reaction of trimethylstannyl anionoids with 4-bromo-3,3-dimethyl-1-butene 

    E-print Network

    Sanchez, Robert Michael


    and also the effect of branching of primary, secondary and tertiary alkyl halides. Simple primary alkyl bromides and chlorides proceeded entirely through mechanisms not involving radicals or anions since no trapping of intermediates was observed...:30 mixture of trans to cis 4-alkylcyclohexylstannane. The mixture of products seemed to rule cut the simple four center mech- anism illustrated in Scheme III. A radical process seemed to be likely. San Filippo also isolated a mixture of products...

  18. Catalytic oxidation of 1-butene and butadiene. Study of MoOâ-TiOâ catalysts

    Microsoft Academic Search

    D. Vanhove; S. R. Op; A. Fernandez; M. Blanchard


    Oxide catalysts containing 0-90Vertical Bar3< molybdena and titanium oxide were prepared by impregnation of anatase (I-series), coprecipitation of hydroxides (C-series), and decomposition of the tartarc acid complexes of the two metals (A-series). The oxidation of butene and butadiene to maleic anhydride followed the Mars-Van Krevelen mechanism. The selectivities for maleic anhydride on the C and I-series catalysts were highest at

  19. Oxidation of propene and 1-butene by Methylococcus capsulatus and Methylosinus trichosporium

    Microsoft Academic Search

    V. Subramanian


    Summary Methane-grown cells ofMethylococcus capsulatus andMethylosinus trichosporium readily oxidized propene and various isomers of butene to their respective epoxides. When examined in a proton NMR spectrum using tris([3-trifluoromethylhydroxymethylene]-d-camphorato), europium III derivative as an optically active chemical shift reagent, the products propylene oxide and 1,2-epoxybutane were found to contain equal amounts of both isomers. Methane-grown cells of both bacteria had considerable

  20. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2010 CFR


    ... INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic...6-weight percent concentration of polymer units derived from ethylene...Solution Viscosity of Ethylene Polymers,” which is incorporated...American Society for Testing Materials, 100 Barr Harbor...

  1. Kinetics of hydrogen abstraction reactions of butene isomers by OH radical

    SciTech Connect

    Sun, Hongyan; Law, C. K.


    The rate coefficients of H-abstraction reactions of butene isomers by the OH radical were determined by both canonical variational transition-state theory and transition-state theory, with potential energy surfaces calculated at the CCSD(T)/6-311++G(d,p)//BH&HLYP/6-311G(d,p) level and CCSD(T)/6-311++G(d,p)//BH&HLYP/cc-pVTZ level and quantum mechanical tunneling effect corrected by either the small-curvature tunneling method or the Eckart method. While 1-butene contains allylic, vinylic, and alkyl hydrogens that can be abstracted to form different butene radicals, results reveal that s-allylic H-abstraction channels have low and broad energy barriers, and they are the most dominant channels which can occur via direct and indirect H-abstraction channels. For the indirect H-abstraction s-allylic channel, the reaction can proceed via forming two van der Waals prereactive complexes with energies that are 2.7?2.8 kcal mol?1 lower than that of the entrance channel at 0 K. Assuming that neither mixing nor crossover occurs between different reaction pathways, the overall rate coefficient was calculated by summing the rate coefficients of the s-allyic, methyl, and vinyl H-abstraction paths and found to agree well with the experimentally measured OH disappearance rate. Furthermore, the rate coefficients of p-allylic H abstraction of cis-2-butene, trans-2-butene, and isobutene by the OH radical were also determined at 300?1500 K, with results analyzed and compared with available experimental data.

  2. Sources of C?-C? alkenes, the most important ozone nonmethane hydrocarbon precursors in the Pearl River Delta region.


    Zhang, Yanli; Wang, Xinming; Zhang, Zhou; Lü, Sujun; Huang, Zhonghui; Li, Longfeng


    Surface ozone is becoming an increasing concern in China's megacities such as the urban centers located in the highly industrialized and densely populated Pearl River Delta (PRD) region, where previous studies suggested that ozone production is sensitive to VOC emissions with alkenes being important precursors. However, little was known about sources of alkenes. Here we present our monitoring of ambient volatile organic compounds at four representative urban, suburban and rural sites in the PRD region during November-December 2009, which experienced frequent ozone episodes. C2-C4 alkenes, whose total mixing ratios were 11-20% of non-methane hydrocarbons (NMHCs) quantified, accounted for 38-64% of ozone formation potentials (OFPs) and 30-50% of the total hydroxyl radical (OH) reactivity by NMHCs. Ethylene was the most abundant alkene, accounting for 8-15% in total mixing ratios of NMHCs and contributed 25-46% of OFPs. Correlations between C2-C4 alkenes and typical source tracers suggested that ethylene might be largely related to vehicle exhausts and industry activities, while propene and butenes were much more LPG-related. Positive Matrix Factorization (PMF) confirmed that vehicle exhaust and liquefied petroleum gas (LPG) were two major sources that altogether accounted for 52-62%, 58-77%, 73-83%, 68-79% and 73-84% for ethylene, propene, 1-butene, trans-2-butene and cis-2-butene, respectively. Vehicle exhausts alone contributed 32-49% ethylene and 35-41% propene. Industry activities contributed 13-23% ethylene and 7-20% propene. LPG instead contributed the most to butenes (38-65%) and substantially to propene (23-36%). Extensive tests confirmed high fractions of propene and butenes in LPG then used in Guangzhou and in LPG combustion plumes; therefore, limiting alkene contents in LPG would benefit regional ozone control. PMID:25260169

  3. Reactions of volatile organic compounds in the atmosphere: Ozone-alkene reactions

    NASA Astrophysics Data System (ADS)

    Fenske, Jill Denise


    Photochemical smog cannot form without sunlight, nitrogen oxides, and volatile organic compounds (VOC). This dissertation addresses several different aspects of VOC chemistry in the atmosphere. Aside from ambient levels of VOC outdoors, VOC are also present at moderate concentrations indoors. Many studies have measured indoor air concentrations of VOC, but only one considered the effects of human breath. The major VOC in the breath of healthy individuals are isoprene (12-580 ppb), acetone (1.2-1800 ppb), ethanol (13-1000 ppb), methanol (160-2000 ppb), and other alcohols. Human emissions of VOC are negligible on a regional (less than 4%) and global scale (less than 0.3%). However, in indoor air, under fairly crowded situations, human emissions of VOC may dominate other sources of VOC. An important class of VOC in the atmosphere is alkenes, due to their high reactivity. The ozone reaction with alkenes forms OH radicals, a powerful oxidizing agent in the troposphere. OH radical formation yields from the ozonolysis of several cycloalkenes were measured using small amounts of fast-reacting aromatics and aliphatic ethers to trace OH formation. The values are 0.62 +/- 0.15, 0.54 +/- 0.13, 0.36 +/- 0.08, and 0.91 +/- 0.20 for cyclopentene, cyclohexene, cycloheptene and 1-methylcyclohexene, respectively. Density functional theory calculations at the B3LYP/6-31 G(d,p) level are presented to aid in understanding the trends observed. The pressure dependence of OH radical yields may lend insight into the formation mechanism. We have made the first study of the pressure dependence of the OH radical yield for ethene, propene, 1-butene, trans-2-butene, and 2,3-dimethyl-2- butene over the range 20-760 Torr, and trans -3-hexene, and cyclopentene over the range 200-760 Torr. The OH yields from ozonolysis of ethene and propene were pressure dependent, while the other compounds had OH yields that were independent of pressure. Ozone-alkene reactions form vibrationally excited carbonyl oxide intermediates (of the form R1R2COO), some of which, once thermalized, are thought to react with SO2, H2O, NOx, aldehydes and alcohols. Several studies using relative rate techniques and ab initio calculations have resulted in estimates for the rate coefficients of reactions of the thermalized biradicals. The ranges of measured and estimated rate coefficients span two to six orders of magnitude, depending on the reaction partner. Using an atmospheric pressure flow reactor, we have made the first absolute rate coefficient determination for the decomposition of and reaction with acetaldehyde of thermalized CH3CHOO from trans-2-butene ozonolysis. The measurement results are: kdec = 76 s-1 and kald = 1.0 × 10-12 cm 3molec-1s-1.

  4. Photodissociation of 1-bromo-2-butene, 4-bromo-1-butene, and cyclopropylmethyl bromide at 234 nm studied using velocity

    E-print Network

    Butler, Laurie J.

    studied using velocity map imaging Kai-Chung Lau, Yi Liu, and Laurie J. Butlera James Franck Institute with velocity map imaging to state-selectively detect the Br 2 P3/2 and Br 2 P1/2 atoms as a function of their recoil velocity imparted upon photodissociation of 1-bromo-2-butene, cyclopropylmethyl bromide, and 4

  5. Synchrotron photoionization mass spectrometry measurements of product formation in low-temperature n-butane oxidation: toward a fundamental understanding of autoignition chemistry and n-C4H9 + O2/s-C4H9 + O2 reactions.


    Eskola, Arkke J; Welz, Oliver; Savee, John D; Osborn, David L; Taatjes, Craig A


    Product formation in the laser-initiated low-temperature (575-700 K) oxidation of n-butane was investigated by using tunable synchrotron photoionization time-of-flight mass spectrometry at low pressure (?4 Torr). Oxidation was triggered either by 351 nm photolysis of Cl2 and subsequent fast Cl + n-butane reaction or by 248 nm photolysis of 1-iodobutane or 2-iodobutane. Iodobutane photolysis allowed isomer-specific preparation of either n-C4H9 or s-C4H9 radicals. Experiments probed the time-resolved formation of products and identified isomeric species by their photoionization spectra. For stable primary products of butyl + O2 reactions (e.g., butene or oxygen heterocycles) bimodal time behavior is observed; the initial prompt formation, primarily due to chemical activation, is followed by a slower component arising from the dissociation of thermalized butylperoxy or hydroperoxybutyl radicals. In addition, time-resolved formation of C4-ketohydroperoxides (C4H8O3, m/z = 104) was observed in the n-C4H9 + O2 and Cl-initiated oxidation experiments but not in the s-C4H9 + O2 measurements, suggesting isomeric selectivity in the combined process of the "second" oxygen addition to hydroperoxybutyl radicals and subsequent internal H-abstraction/dissociation leading to ketohydroperoxide + OH. To further constrain product isomer identification, Cl-initiated oxidation experiments were also performed with partially deuterated n-butanes (CD3CH2CH2CD3 and CH3CD2CD2CH3). From these experiments, the relative yields of butene product isomers (cis-2-butene, trans-2-butene, and 1-butene) from C4H8 + HO2 reaction channels and oxygenated product isomers (2,3-dimethyloxirane, 2-methyloxetane, tetrahydrofuran, ethyloxirane, butanal, and butanone) associated with OH formation were determined. The current measurements show substantially different isomeric selectivity for oxygenated products than do recent jet-stirred reactor studies but are in reasonable agreement with measurements from butane addition to reacting H2/O2 mixtures at 753 K. PMID:24125058

  6. Effects of biomass burning on summertime nonmethane hydrocarbon concentrations in the Canadian wetlands

    NASA Astrophysics Data System (ADS)

    Blake, D. R.; Smith, T. W.; Chen, T.-Y.; Whipple, W. J.; Rowland, F. S.


    Approximately 900 whole air samples were collected and assayed for selected C2-C10 hydrocarbons and seven halocarbons during the 5-week Arctic Boundary Layer Expedition (ABLE) 3B conducted in eastern Canadian wetland areas. In more than half of the 46 vertical profiles flown, enhanced nonmethane hydrocarbon (NMHC) concentrations attributable to plumes from Canadian forest fires were observed. Urban plumes, also enhanced in many NMHCs, were separately identified by their high correlation with elevated levels of perchloroethene. Emission factors relative to ethane were determined for 21 hydrocarbons released from Canadian biomass burning. Using these data for ethane, ethyne, propane, n-butane, and carbon monoxide enhancements from the literature, global emissions of these four NMHCs were estimated. Because of its very short atmospheric lifetime and its below detection limit background mixing ratio, 1,3-butadiene is an excellent indicator of recent combustion. No statistically significant emissions of nitrous oxide, isoprene, or CFC 12 were observed in the biomass-burning plumes encountered during ABLE 3B. The presence of the short-lived biogenically emitted isoprene at altitudes as high as 3000 m implies that mixing within the planetary boundary layer (PBL) was rapid. Although background levels of the longer-lived NMHCs in this Canadian region increase during the fire season, isoprene still dominated local hydroxyl radical photochemistry within the PBL except in the immediate vicinity of active fires. The average biomass-burning emission ratios for hydrocarbons from an active fire sampled within minutes of combustion were, relative to ethane, ethene, 2.45; ethyne 0.57; propane, 0.25; propene, 0.73; propyne, 0.06; n-butane, 0.09; i;-butane, 0.01; 1-butene, 0.14; cis-2-butene, 0.02; trans-2-butene, 0.03; i-butylene, 0.07; 1,3-butadiene, 0.12; n-pentane, 0.05; i-pentane, 0.03; 1-pentene, 0.06; n-hexane, 0.05; 1-hexene, 0.07; benzene, 0.37; toluene, 0.16.

  7. Atmospheric measurements of selected nonmethane hydrocarbons and halocarbons from August 1, 1993 to July 31, 1994, in a suburban location: 'A year in Irvine'

    NASA Astrophysics Data System (ADS)

    Whipple, Wayne John


    During period from August 1, 1993 to July 31, 1994, flask samples were collected daily at noontime in Mason Park, Irvine, California, in an effort to better understand the composition and fate of selected halocarbons and nonmethane hydrocarbons, NMHCs, in the suburban atmosphere. The samples were pre-concentrated on a stainless steel loop packed with glass beads, then separated with split capillary column gas chromatography, and quantified by flame ionization and electron capture detectors. The quantified gases were trichlorofluoromethane (CFC-11), dichlorodifluoromethane (CFC-12), 1,1,2-trichloro-1,2,2-trifluoroethane (CFC- 113), trichloromethane (chloroform), 1,1,1- trichloroethane (methyl chloroform), tetrachloromethane (carbon tetrachloride), trichloroethene, and tetrachloroethene (perchloroethene), ethane, ethene, ethyne (acetylene), propane, propene, n-butane, methyl propane (isobutane), 1-butene, trans-2-butene, methyl propene (isobutene), 1,3-butadiene, n-pentane, 2-methyl butane (isopentane), cyclopentane, 2-methyl-1,3-butadiene (isoprene), n-hexane, benzene, and methyl benzene (toluene). Meteorology and emissions controlled the amount of air that the emitted gases were diluted into, and thereby their ambient concentrations. Concentrations of CCl4 and CFC-11 were very consistent throughout the year, showing these gases to have the smallest local emissions. Methyl chloroform and tetrachloroethene had the greatest halocarbon emissions. Even in the cleanest samples had enhanced NMHCs over reported measurements from remote Pacific Coastline areas. The distribution of NMHC species showed large light duty vehicle exhaust emissions. Linear correlations with NMHCs to ethyne using slopes and coefficients of determination showed high correlations of many NMHCs with ethyne. Local emission compositions compared with much of the 1987 South Coast Air Quality Study data. Correlation coefficients for NMHCs revealed at least two sources, fossil fuel combustion being the dominant source, and a weaker source of smaller chain alkanes. Two unique events occurred that greatly affected the measurements. The Laguna fires on October 27, 1993 and the Northridge Earthquake on January 16, 1994, had enhanced NMHC and halocarbon mixing ratios and both events coincided with stagnation episodes. The NMHC impact on ozone formation using the Carter Maximum Incremental Reactivity scale was studied and showed ethene and propene to have had the strongest effect on the formation of ozone within the LA Basin. The NMHC impact on ozone formation using the Carter Maximum Incremental Reactivity scale is calculated. The ethene and propene have the strongest effect on the formation of ozone within the LA Basin.

  8. A Study of Sulfur Dioxide in Photochemical Smog I. Effect of SO2 and Water Vapor Concentration in the 1Butene\\/NOx\\/SO2 System

    Microsoft Academic Search

    Wm. E. Wilson Jr; Arthur Levy


    There is an appreciable chemical interaction between SO2 and photochemical smog which depends on the concentration of SO2 and water vapor. The rate of decay of SO2 concentration is greatly increased in the presence of photochemical smog. With 0.75 ppm SO2, a light-scattering aerosol is produced in dry systems and systems at 22 and 55% relative humidity (RH). Aerosol is


    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  10. A Comparison Between Conventional and Ultrasound-Mediated Heterogeneous Catalysis: Hydrogenation of 3-buten-1-ol Aqueous Solutions

    SciTech Connect

    Disselkamp, Robert S.; Judd, Kayte M.; Hart, Todd R.; Peden, Charles HF; Posakony, Gerald J.; Bond, Leonard J.


    A power flow scheme applicable to probe-type ultrasound reactors is presented, that has been deduced from both experimental measurements employing an unjacketed vessel and theoretical predictions. Under typical conditions for water, 77% of the electrical power is converted into mechanical motion of the probe, that in turn is dissipated to both acoustic power (~12%) and cavitational heating (~88%). Approximately 92% of the mechanical power of the probe was converted into heat, with the remaining power presumably converted into audible acoustic and/or mechanical motion. Heterogeneous catalysis experiments have been performed at 298 K in an isothermal (i.e., jacketed) reaction vessel comparing chemistry in conventional (e.g., thermal) versus ultrasound-assisted systems. Both product state distribution and reaction rate measurements have been performed for the hydrogenation (using hydrogen gas) of aqueous 3-buten-1-ol solutions employing Pd-black powder. Products from the heterogeneous catalysis include isomerization to cis and trans 2-buten-1-ol, as well as hydrogenation to 1-butanol. Based on the observed differences in cis- to trans- 2-buten-1-ol ratios in conventional experiments, employing untreated and pre-reduced catalysts, it has been determined that a kinetic effect controls the observed product state distribution. In addition, differences in the ratio between cis- plus trans- 2-buten-1-ol to 1-butanol, comparing ultrasound-assisted to conventional catalysis, reveal a ~5-fold enhancement in isomerization relative to the more energetically favored hydrogenation due to application of ultrasound. Finally, the product formation rates for 1-butanol, as well as isomerization plus hydrogenation, revealed that conventional and ultrasound experiments showed both a non-linear dependence with applied ultrasound power and no differences between untreated and pre-reduced catalysts. The observed reaction rate enhancements were 1:36:183 for the conventional, 90 W ultrasound, and 190 W ultrasound experiments, respectively.

  11. Polybutenes

    ERIC Educational Resources Information Center

    Daniels, D. J.; And Others


    Discusses the use of aluminum chloride and other Friedel-Crafts type catalysts to polymerize 2-methylpropene and the application of such products in industry and agriculture. Includes a laboratory experiment on the polybutene preparation suitable for high school purposes. (CC)

  12. A Combined Experimental and Theoretical Study of the Reaction OH + 2-Butene in the 400-800 K Temperature Range.


    Antonov, Ivan O; Kwok, Justin; Zádor, Judit; Sheps, Leonid


    We report a combined experimental and theoretical study of the OH + cis-2-butene and OH + trans-2-butene reactions at combustion-relevant conditions: pressures of 1-20 bar and temperatures of 400-800 K. We probe the OH radical time histories by laser-induced fluorescence and analyze these experimental measurements with aid from time-dependent master-equation calculations. Importantly, our investigation covers a temperature range where experimental data on OH + alkene chemistry in general are lacking, and interpretation of such data is challenging due to the complexity of the competing reaction pathways. Guided by theory, we unravel this complex behavior and determine the temperature- and pressure-dependent rate coefficients for the three most important OH + 2-butene reaction channels at our conditions: H abstraction, OH addition to the double bond, and back-dissociation of the OH-butene adduct. PMID:25860092

  13. Metal-containing plasma-polymerized coatings for laser-fusion targets

    SciTech Connect

    Letts, S.A.; Jordan, C.W.


    Addition of metal to plastic layers in some direct drive laser fusion targets is needed to reduce electron induced fuel preheat. A plasma polymerization coating system was constructed to produce a metal seeded polymer by adding an organometallic gas to the usual trans-2-butene and hydrogen feedstocks. Since organometallic gases are highly reactive and toxic, safety is a major concern in the design of a coating system. Our coating apparatus was designed with three levels of containment to assure protection of the operator. The gas handling system has redundant valves and was designed to fail safe. Several sensor controlled interlocks assure safe operating conditions. Waste materials are collected on a specially designed cold trap. Waste disposal is accomplished by heating the traps and purging volatile products through a reactor vessel. The design, operating procedure, and safety interlocks of this novel coating system are described.

  14. [Effects of photochemical smog from a flow reactor on bacteria. I. Determination of the effects of photochemical smog on bacteria].


    Nover, H; Botzenhart, K


    To measure the damage to bacteria from photochemical smog Serratia marcescens, Staphylococcus epidermidis, Micrococcus luteus and spores of Bacillus cereus have been exposed to defined gas-mixtures. A smog-simulation-chamber has been used which allowed adjustment of reproducible and longterm constant smog formations due to the flow system. Two methods have been applied to examine the bactericidal effects of the photo-chemical smog: adsorption of bacteria to membrane filters and spraying on silk threads. Smog mixtures formed by olefines (propene 4200 ppb, isobutene 3000 ppb, trans-2-butene 1600 ppb) and nitrogene oxides (500-700 ppb) showed bactericidal effects at ozone levels of 500 ppb. The survival of exposed bacteria is influenced less by gasing with 500 ppb ozone than with the smog mixture. PMID:6422676

  15. Use of propane as a quench gas in argon-filled proportional counters and comparison with other quench gases

    NASA Technical Reports Server (NTRS)

    Agrawal, P. C.; Ramsey, B. D.


    An experimental investigation of propane and six other quench gases was carried out in argon-filled proportional counters. The objective of the study was to find the best gas mixture for optimizing the gas gain and the energy resolution as well as to understand the role of the ionization potential of quench gases in determining these parameters. It was found that the best gas gains and energy resolutions are obtained with propane, ethane, and isobutane in that order. The ionization potentials of these three lie below the argon metastable potentials and have the lowest value of resonance defect compared to the other quench gases. The better results obtained with these mixtures can be explained by an increased ionization yield resulting from the Penning effect. Propylene and trans-2-butene give inferior performance compared to the above three gases. Methane and carbon dioxide, the most commonly used quench gases in the argon-filled detectors, provide the worst results.

  16. Pressure and Temperature Dependence of the Reaction of Vinyl Radical with Alkenes III: Measured Rates and Predicted Product Distributions for Vinyl + Butene

    E-print Network

    Ismail, Huzeifa

    This work reports experimental and theoretical first-order rate constants for the reaction of vinyl radical with C4H8 alkenes: 1-butene, 2-butene, and iso-butene. The experiments are performed over a temperature range of ...

  17. Isolation and characterization of alkene-utilizing Xanthobacter spp

    Microsoft Academic Search

    C. G. Ginkel; J. A. M. Bont


    Yellow-pigmented bacteria showing typical characteristics of Xanthobacter spp. were isolated from enrichments with propene and 1-butene, using classical techniques. The generation time for growth on propene and 1-butene of these bacteria ranged from 5 to 7h. A NADH-dependent mono-oxygenase was identified in cell-free extract of Xanthobacter Py2. This mono-oxygenase was not influenced by potential inhibitors tested indicating that propene mono-oxygenase

  18. Experimental study of incremental hydrocarbon reactivity

    SciTech Connect

    Carter, W.P.; Atkinson, R.


    A series of environmental chamber experiments have been carried out to investigate the incremental reactivities of selected organics with respect to ozone formation in simulated photochemical smog systems. Varying amounts of a test organic were added to or subtracted from a standard four-hydrocarbon minisurrogate - NO/sub x/ - air mixture to determine, as a function of irradiation time, the resulting changes in the amount of ozone formed and NO consumed, relative to the amount of the organic added. The incremental reactivities of toluene, trans-2-butene, and propene decreased significantly with reaction time, with toluene ultimately becoming negatively reactive; n-butane, ethanol, and tert-butyl methyl ether were always positively reactive; and benzaldehyde was always negatively reactive. The results are reasonably consistent with computer model simulations and indicate that the effect of regulating emissions of an organic on ambient ozone will depend not only on the organics reaction rate but also on its reaction mechanism and the conditions under which it is emitted. 33 references, 8 figures, 3 tables.

  19. Pulmonary function in normal and elastase-treated hamsters exposed to a complex mixture of olefin-ozone-sulfur dioxide reaction products.


    Raub, J A; Miller, F J; Graham, J A; Gardner, D E; O'Neil, J J


    An elastase-induced emphysema model was utilized to determine if hamsters with preexisting lung disease were more susceptible to lung damage from air pollutant exposure. Male golden hamsters, divided into two treatment groups, were given a single intratracheal injection of either 6 units of porcine pancreatic elastase (EMP) or buffer (CNT). After a 4-week recovery period, equal numbers of each group were exposed 23 hr/day X 28 day to filtered air (AIR) or to the complex by-products from a dark phase reaction mixture of trans-2-butene, ozone, and sulfur dioxide (MIX). Lung function measurements on the elastase-treated groups showed changes consistent with mild emphysema. There were no significant differences in lung volumes or lung compliance between the AIR- and MIX-exposed animals. However, the nitrogen washout slope decreased (P less than 0.05), and the diffusing capacity for carbon monoxide increased (P less than 0.05) in both the CNT and EMP hamsters exposed to the MIX. The change in diffusing capacity was greater (P less than 0.05) in normal hamsters than in hamsters with emphysema, and it is hypothesized that animals with impaired lung function had a decreased ability to respond to a pulmonary insult from the mix. PMID:6554201

  20. The use of design-of-experiments methodology to optimize polymer capsule fabrication. 1998 summer research program for high school juniors at the University of Rochester`s Laboratory for Laser Energetics: Student research reports

    SciTech Connect

    Lai, L.


    Future inertial-fusion experiments on Omega will utilize {approximately} 1 mm-diameter cryogenic targets that have a {approximately} 100-{micro}m-thick, uniformly-frozen fuel layer on their interior. It is desired that they have a stress-free wall thickness < 1 {micro}m and an rms surface roughness < 20 nm. A design-of-experiments (DOE) approach was used to characterize a glow-discharge-polymerization coater built at LLE to fabricate smooth, stress-free capsules with submicron wall thicknesses. The DOE approach was selected because several parameters can be changed simultaneously in a manner which allows the minimum number of runs to be performed to obtain statistically-relevant data. Planar, silicon substrates were coated with {approximately} 3--5 {micro}m of polymer and profilometry was used to determine the coating rate, the film stress, and the surface roughness. The coating rate was found to depend on the trans-2-butene/hydrogen ratio, the total gas-flow rate, the total chamber pressure, and the RF power. In addition, a two-parameter interaction between the total pressure and the RF power also affects the coating rate. The film stress depends on the total chamber pressure and the total mass-flow rate. The surface roughness is independent of the parameters studied. Preliminary results indicate that capsules can be produced rapidly without affecting the smoothness of their outside surface and without residual stress in their walls.

  1. Enthalpy and entropy barriers explain the effects of topology on the kinetics of zeolite-catalyzed reactions.


    Van der Mynsbrugge, Jeroen; De Ridder, Jeroen; Hemelsoet, Karen; Waroquier, Michel; Van Speybroeck, Veronique


    The methylation of ethene, propene, and trans-2-butene on zeolites H-ZSM-58 (DDR), H-ZSM-22 (TON), and H-ZSM-5 (MFI) is studied to elucidate the particular influence of topology on the kinetics of zeolite-catalyzed reactions. H-ZSM-58 and H-ZSM-22 are found to display overall lower methylation rates compared to H-ZSM-5 and also different trends in methylation rates with increasing alkene size. These variations may be rationalized based on a decomposition of the free-energy barriers into enthalpic and entropic contributions, which reveals that the lower methylation rates on H-ZSM-58 and H-ZSM-22 have virtually opposite reasons. On H-ZSM-58, the lower methylation rates are caused by higher enthalpy barriers, owing to inefficient stabilization of the reaction intermediates in the large cage-like pores. On the other hand, on H-ZSM-22, the methylation rates mostly suffer from higher entropy barriers, because excessive entropy losses are incurred inside the narrow-channel structure. These results show that the kinetics of crucial elementary steps hinge on the balance between proper stabilization of the reaction intermediates inside the zeolite pores and the resulting entropy losses. These fundamental insights into their inner workings are indispensable for ultimately selecting or designing better zeolite catalysts. PMID:23897717

  2. An extended baseline examination of indoor VOCs in a city of low ambient pollution: Perth, Western Australia

    NASA Astrophysics Data System (ADS)

    Maisey, S. J.; Saunders, S. M.; West, N.; Franklin, P. J.


    This study of indoor air quality reports VOC concentrations in 386 suburban homes located in Perth Western Australia, a city of low ambient pollution and temperate climate. Details of indoor VOC concentrations, temperature, relative humidity, and information on house characteristics and occupant activities were collected during the sampling periods. The concentration of VOCs observed in typical homes was low and individual compounds rarely exceeded 5 ?g m-3. Median individual VOC concentrations ranged from 0.06 ?g m-3 for 1,1,1 trichloroethane and butyl ether to 26.6 ?g m-3 for cis/trans 2-butene. Recently renovated homes had higher concentrations of VOCs than non renovated homes, including ?VOCs (p = 0.026), ?BTEX (p = 0.03), ?xylene (p = 0.013), toluene (p = 0.05), cyclohexane (p = 0.039), and propyl benzene (p = 0.039). Statistical analyses showed house age and attached garages were not significant factors for any of the VOCs tested. The concentrations of indoor VOCs in Perth were lower than overseas observations and those reported in recent Australian studies, with inferences made to differences in the climate and the occupant behaviour. The results are a baseline profile of indoor VOCs over the period 2006-2011, in an Australian city of low population density and of generally low ambient pollution.

  3. Evaluation of Fluidized Beds for Mass Production of IFE Targets

    SciTech Connect

    Huang, H.; Vermillion, B.A.; Brown, L.C.; Besenbruch, G.E.; Goodin, D.T.; Stemke, R.W.; Stephens, R.B. [General Atomics (United States)


    Of the building blocks of an inertial fusion energy (IFE) plant, target fabrication remains a significant credibility issue. For this reason, an extensive parametric study has been conducted on mass production of glow discharge polymer (GDP) shells in a vertical fluidized bed. Trans-2-butene was used as a reactant gas with hydrogen as a diluting and etching agent. Coating rates in the range of 1 to 2 {mu}m/h were demonstrated on batches of 30 shells where National Ignition Facility-quality surfaces were obtained for 3- to 5-{mu}m-thick coatings. Thick coatings up to 325 {mu}m were also demonstrated that are visually transparent, without void and stress fracture. A phenomenological understanding of the GDP growth mechanisms to guide future experiments was further established. Specifically, gas-phase precipitation and high-impact collisions were identified as the main surface-roughening mechanisms. The former produces dense cauliflower-like surface patterns that can be eliminated by adjusting the gas flow rates and the flow ratio. The latter produces isolated domelike surface defects that can be reduced by introducing concerted motion between the shells. By converting from a vertical to a horizontal configuration, fully transparent coatings were obtained on 350 shells. Collisions in a fluidized bed have been identified as the limiting factor in meeting IFE specifications, and a related-rotary kiln technique is recommended for scale-up.

  4. Source profiles of volatile organic compounds (VOCs) measured in China: Part I

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Shao, Min; Fu, Linlin; Lu, Sihua; Zeng, Limin; Tang, Dagang

    The profiles of major volatile organic compound (VOC) sources in China, including vehicle exhaust, gasoline vapor, paint, asphalt, industrial and residential coal burning, biomass burning, and the petrochemical industry, were experimentally determined. Source samples were taken using a dilution chamber for mobile and stationary sources, biomass burning in an actual Chinese farmer's house, and ambient air in a petrochemical industrial area. The concentrations of 92 VOC species were quantified using canister sampling and a gas chromatography-flame ionization detection/mass spectrometry system, and VOC source profiles were developed for source apportionment of VOCs in the Pearl River Delta region. Based on the measurement of source profiles, possible tracers for various emission sources were identified; e.g., 2-methylpentane and 1,3-butadiene could be used as tracers for vehicle exhaust; the characteristic compounds of architectural coating were aromatics such as toluene and m, p-xylene; the light hydrocarbons, namely n-butane, trans-2-butene, and n-pentane, dominated the composition of gasoline vapor; and n-nonane, n-decane, and n-undecane were found to be typical of diesel vapor and asphalt application processes. As different emission sources are characterized by overlapping VOC species, the ratio of possible VOC tracers could be used to assess the contribution of various sources. The ratios between n-butane and isobutane, 1,3-butadiene and isoprene, and the ratios of aromatics (e.g., toluene to benzene and ethylbenzene to m, p-xylene) in the measured sources were compared.

  5. Sources of Volatile Organic Compounds (VOCs) in the UAE

    NASA Astrophysics Data System (ADS)

    Abbasi, Naveed; Majeed, Tariq; Iqbal, Mazhar; Riemer, Daniel; Apel, Eric; Lootah, Nadia

    The gas chromatography-flame ionization detection/mass spectrometry system has been used to identify major volatile organic compounds (VOCs) sources in the UAE (latitude 24.45N; longitude 54.22E). VOCs are emitted from an extensive number of sources in urban environments including fuel production, distribution, and consumption. Transport sources contribute a substantial portion of the VOC burden to the urban atmosphere in developed regions. UAE is located at the edge of the Persian Gulf and is highly affected by emissions from petrochemical industries in neighbouring Saudi Arabia, Qatar, and Iran. VOCs emerging from these industries can be transported to the UAE with jet streams. The analysis of the collected air samples at three locations in Sharjah, UAE during the autumn and winter seasons indicates the presence of more than 100 VOC species. The concentrations of these species vary in magnitudes but the most prominent are: acetylene, ethane, propane, butane, pentane, benzene, and toluene. The possible tracers for various emission sources have also been identified such as 2-methylpentane, 1, 3-butadiene and 2, 2-dimethlybutane for vehicle exhaust, the light hydrocarbons, namely n-butane, trans-2-butene, and n-pentane for gasoline vapor, and n-nonane, n-decane, and n-undecane for diesel vapor and asphalt application processes. As various emission sources are characterized by overlapping VOC species, the ratio of possible VOC tracers are used to quantify the contribution of different sources. Our aim in this paper is to explore and discuss possible impacts of transported emissions on the local VOC emission inventory from various sources for the UAE. This work is partially supported by Office of Development and Alumni Affairs at the American University of Sharjah, U.A.E.

  6. Role of rare earth cations in Y zeolite for hydrocarbon cracking.


    Sanchez-Castillo, Marco A; Madon, Rostam J; Dumesic, James A


    Reaction kinetics data were collected for isobutane conversion over a series of ultra stable Y (USY) zeolite catalysts with and without rare earth cations and subjected to various extents of dealumination by steaming. We conducted these reaction studies at low temperatures (523-573 K) using isobutane feed streams containing known levels of isobutylene (100-400 ppm) so that the kinetics were controlled by bimolecular hydride transfer and oligomerization/beta-scission processes with little or no participation of monomolecular initiation reactions. These experimental conditions led to stable catalyst performance with the main products of isobutane conversion being propane, n-butane, and isopentane, with smaller amounts of propylene, trans-2-butene, and cis-2-butene. The rates of formation of these products per Brønsted acid site (as counted by pyridine adsorption) depended exponentially on Brønsted acid site density, regardless of whether the catalyst contained rare earth cations. Kinetic modeling showed an exponential dependence of hydride transfer and oligomerization/ beta-scission reaction rates on Brønsted acid site density which translated into composite activation energies for these reactions having a linear relationship with site density. Based on results in the literature from theoretical calculations, we suggest that increasing Brønsted acid site density in zeolite Y leads to larger zeolite elasticity, increased stabilization of cationic transition states, and lower composite activation barriers for hydride transfer and beta-scission steps. The role of rare earth cations, therefore, is to ensure the retention of high Brønsted acid site density under hydrothermal conditions, such as in fluid catalytic cracking (FCC) regenerators, where steam would dealuminate the Y zeolite framework and reduce this site density. It is for this reason that hydride transfer reaction rates are high in the presence of rare earth cations and lead to higher yields of less olefinic gasoline during FCC. PMID:16851208

  7. Mono(cyclopentadienyl)titanium(II) Complexes with Hydride, Alkyl, and Tetrahydroborate Ligands: Synthesis, Crystal Structures, and

    E-print Network

    Girolami, Gregory S.

    -Natta catalysts have been known for more than 50 years and today account for more than 90% of the polyethylene formulations of homogeneous alkene polymerization catalysts such as metallocenes, which afford unprecedented produces half of the 1-butene used to make linear low- density polyethylene, currently is practiced in 20

  8. Cesium\\/nanoporous carbon, composite materials: Synthesis, characterization, and base catalysis

    Microsoft Academic Search

    Mark Gardner Stevens


    Materials produced from alkali metals and carbon have been of interest to researchers for many years. Graphite intercalation compounds of alkali metals have been extensively studied and shown to be active base catalysts in reactions such as side-chain alkylation, 1-butene isomerization, and amine synthesis. Unfortunately, these materials were found to be pyrophoric, had relatively low surface area, and exfoliated at

  9. Relation between adsorption and catalysis in the case of NiO and Co 3O 4

    NASA Astrophysics Data System (ADS)

    Arvaniti, I.; Netos, V.; Siokos, V.; Metaxa, E.; Kalantzopoulou, F. Roubani


    Reversed flow-inverse gas chromatography is a quick, precise and effective methodology to characterize physicochemical properties of adsorbents. This is extended to the experimental measurement of the adsorption energy distribution function as well as of the differential energy of adsorption due to lateral interactions of molecules adsorbed on two catalysts, namely Co 3O 4 and NiO. Thus, the nature and the strength of the adsorbate-adsorbent and adsorbate-adsorbate interactions are extracted in order to give detailed answers to the questions: (a) where are the molecules on the heterogeneous surface and (b) which is the nature of the surface chemical bonds? Thus, adsorption of 1-butene was found to take place immediately and irreversibly. It holds a deep relation between adsorption and catalysis of 1-butene over these catalysts. As a consequence, the adsorption of 1-butene in the presence of hydrogen leads to isobutane and/or n-butane, depending on the temperature. It can be seen from the adsorption/desorption kinetic constants that the adsorption of 1-butene on Co 3O 4 is one order higher than over NiO. This fact in connection with the bigger activation energy and the lower kinetic coefficients concerning hydrogenation reaction over NiO shows that Co 3O 4 is a better catalyst for this kind of catalysis.

  10. Determination of Tamoxifen and its Major Metabolites in Exposed Fish

    EPA Science Inventory

    Tamoxifen (TAM), (Z)-1-(p-dimethylaminoethoxyphenyl)-1, 2-diphenyl-1-butene, is a nonsteroidal agent that has been used in breast cancer treatment for decades. Its major metabolites are 4-hydroxytamoxifen (4-OHT), N-desmethyltamoxifen (DMT), and endoxifen. While TAM and metabolit...

  11. Studies of vanadium-phosphorus-oxygen selective oxidation catalysts by sup 31 P and sup 51 V NMR spin-echo and volume susceptibility measurements

    SciTech Connect

    Li, Juan.


    The purpose of this work is to characterize the vanadium-phosphorous oxide (V-P-O) catalysts for the selective oxidation of n-butane and 1-butene to maleic anhydride. The utility of solid state nuclear magnetic resonance as an analytical tool in this investigation lies in its sensitivity to the electronic environment surrounding the phosphorous and vanadium nuclei, and proximity of paramagnetic species. Spin-echo mapping NMR of {sup 31}p and {sup 51}v and volume magnetic susceptibility measurements were used as local microscopic probes of the presence of V{sup 5+}, V{sup 4+}, V{sup 3+} species in the model compounds: {beta}-VOPO{sub 4}, {beta}-VOPO{sub 4} treated with n-butane/1-butene, (VO){sub 2}P{sub 2}O{sub 7} treated with n-butane/1-butene; and industrial catalysts with P/V (phosphorus to vanadium) ratio of 0.9, 1.0 and 1.1, before and after treatment with n-butane and 1-butene. The NMR spectra provide a picture of how the oxidation states of vanadium are distributed in these catalysts. 73 refs., 32 figs., 8 tabs.

  12. Organic chemistry in the oceans of Titan

    Microsoft Academic Search

    F. Raulin


    On Titan, most of the organics present in the atmosphere must condense in the lower stratosphere and be solid near the surface, except methane, ethane, propane, propene and 1-butene which must be liquid and could form oceans containing large fractions of dissolved N2. Chemical evolution on Titan must have followed a way very different from the terrestrial one, involving physical

  13. The Origin of Regioselectivity in 2-butanol Dehydration on Solid Acid Catalysts

    SciTech Connect

    Kwak, Ja Hun; Rousseau, Roger J.; Mei, Donghai; Peden, Charles HF; Szanyi, Janos


    The origin in the variations of trans-/cis-2-butene product selectivity ratios in 2-butanol dehydration over solid acid catalysts were investigated using a combined experimental-theory approach. Reactivity measurements over ?-Al2O3, AlOx/SBA-15, and H-form zeolites with widely varying Si/Al ratios and pore structures showed over two orders of magnitude change in the trans-/cis-2-butene product ratio. Activation energy barriers calculated for the concerted C-O and ?-C-H bond breakings of adsorbed butoxy intermediates by dispersion-corrected DFT calculations correctly predicted the trans-/cis-2-butene product ratio observed on ?-Al2O3. The very low trans-2-butene selectivity on ?-Al2O3 can now be understood by the formation of a late transition state with high energy barrier caused by the strong van der Waals interaction between the ?-H atoms and the flat catalyst surface. Decreasing the dispersive attractive force between the adsorbed butoxide and the surface (e.g., by moving it further away from the support surface in AlOx/SBA-15) leads to almost equimolar formation of the trans- and cis-2-butene isomers. Trans-/cis-2-butene selectivity ratios much higher than that dictated by thermodynamic equilibrium can be achieved by introducing additional geometric constraints around the active catalytic site (e.g., varying the 3D environment around the active center in zeolites). We propose a model to explain the widely varying trans-/cis-2-butene selectivity in 2-butanol dehydration over solid acid catalysts that is consistent with the experimental results in this study. A key outcome of the study is the realization that van der Waals interactions between the reactant and the active catalyst surface must be included in the theoretic models in order to be able to accurately predict product selectivities. This information, in turn, significantly advances our ability to develop catalyst materials with designed active centers in order to achieve desired regioselectivities.

  14. Theoretical kinetics studies of two model reactions in biodiesel and diesel combustion

    NASA Astrophysics Data System (ADS)

    Sha, Yuan

    We use 1-methylallyl radical (CH3CH=CH-CH2· ? CH3C·H-CH=CH2·) as a model of allylic radicals generated during combustion of unsaturated diesel fuel molecules. The chemically activated isomerization of 1-methylallyl generated in the highly exothermic (˜35 kcal/mol) OH + trans-2-butene reaction was considered by using RRKM/Master Equation calculations from 0.01 to 100 atm and from 300 to 700 K. Density functional theory (DFT) with the M05-2X, M06-2X and B3LYP functionals are used for structures, energies, vibrational frequencies, anharmonic constants, and the torsional potentials of methyl rotations. The cis:trans ratio formed upon quenching the radicals were, as might be expected, dependent on the functional, but, were even more sensitive when an vibrations were treated as anharmonic. The fraction of cis- 1-methylallyl is significant, if not dominant at 300 -700 K and 0.01 -10 atm. Sensitivity studies were carried out to determine the dependence of the cis:trans ratio on the extent of chemical activation, treatment of the K-rotor as active or inactive, and the rate of collisional energy transfer. All these parameters significantly influence the cis:trans ratio. The 1,5 H-migration reaction of 3-hydroperoxy-1-propylperoxy radical (HOOCH2CH2CH2OO·) is a important as a model of a critical propagation step in diesel autoignition from alkanes or molecules with long alkyl tails. Its product may be the meta-stable alpha,gamma-dihydroperoxypropyl radical or, if unstable, OH + 3-hydroperoxypropanal. To study the possibly different tunneling effects of the two possible products, the quantum mechanical rate constants, including tunneling, are directly determined using semi-classical transition state theory (SCTST) at 200 K to 1700 K. Small-curvature tunneling (SCT) is to compute tunneling corrections to classical rate constants. The two reactions do not have obvious tunneling differences at above 700 K. Below 700 K, SCTST tunneling corrections are significantly higher than SCT corrections, for reasons which are poorly understood. The anharmonic, tunneling, and variational corrections to the TST rate constant are combined together as a total correction for transition state theory rate constants, resulting in rate constants ˜10 times larger at 500-1700 K than that by standard transition state theory with harmonic treatment of vibrations. The pressure-dependent rate constant are calculated using RRKM/Master Equation methods.

  15. The Effect of Cavitating Ultrasound on the Aqueous Phase Hydrogenation of Cis-2-buten-1-ol and Cis-2-penten-1-ol on Pd-black

    SciTech Connect

    Disselkamp, Robert S.; Denslow, Kayte M.; Hart, Todd R.; White, James F.; Peden, Charles HF.


    We have studied the effect of cavitating ultrasound on the heterogeneous aqueous hydrogenation of cis-2-buten-1-ol (C4 olefin) and cis-2-penten-1-ol (C5 olefin) on Pd-black to form the trans-olefins (trans-2-buten-1-ol and trans-2-penten-1-ol) and saturated alcohols (1-butanol and 1-pentanol, respectively). Silent (and magnetically stirred) experiments served as control experiments. As described in an earlier publication by our group, we have added an inert dopant, 1-propanol, in the reaction mixture to ensure the rapid onset of cavitation in the ultrasound-assisted reactions that can lead to altered selectivity compared to silent reaction systems [Disselkamp et al., J. Catal., 227 (2004) 552]. The motivation for this study is to examine whether cavitating ultrasound can reduce the [trans-olefin/saturated alcohol] molar ratio during the course of the reaction. This could have practical application in that it may offer an alternative processing methodology of synthesizing healthier edible seed oils by reducing trans-fat content. We have observed that cavitating ultrasound results in a [(trans-olefin/saturated alcohol)ultrasound/(trans-olefin/saturated alcohol)silent] ratio quantity less than 0.5 at the reaction mid-point for both the C4 and C5 olefin systems. This indicates that ultrasound reduces trans-olefin production compared to the silent control experiment. Furthermore, there is an added 30% reduction for the C5 versus C4 olefin compounds again at reaction mid-point. We attribute differences in the ratio quantity as a moment of inertia effect. In principle, the C4 versus C5 olefins has a {approx}52% increase in moment of inertia about C2=C3 double bond slowing isomerization. Since seed oils are C18 multiple cis olefins and have an moment of inertia even greater than our C5 olefin here, our study suggests that even a greater reduction in trans-olefin content may occur for partial hydrogenation of C18 seed oils.

  16. The effect of cavitating ultrasound on the aqueous phase hydrogenation of cis-2-buten-1-ol and cis-2-penten-1-ol on Pd-black

    SciTech Connect

    Disselkamp, Robert S.; Denslow, Kayte M.; Hart, Todd R.; White, James F.; Peden, Charles HF.


    We have studied the effect of cavitating ultrasound on the heterogeneous aqueous hydrogenation of cis-2-buten-1-ol (C4 olefin) and cis-2-penten-1-ol (C5 olefin) on Pd-black to form the trans-olefins (trans-2-buten-1-ol and trans-2-penten-1-ol) and saturated alcohols (1-butanol and 1-pentanol, respectively). Silent (and magnetically stirred) experiments served as control experiments. As described in an earlier publication by our group, we have added an inert dopant, 1-propanol, in the reaction mixture to ensure the rapid onset of cavitation in the ultrasound-assisted reactions that can lead to altered selectivity compared to silent reaction systems [R.S. Disselkamp, Ya-Huei Chin, C.H.F. Peden, J. Catal. 227 (2004) 552]. The motivation for this study is to examine whether cavitating ultrasound can reduce the [trans-olefin/saturated alcohol] molar ratio during the course of the reaction. This could have practical application in that it may offer an alternative processing methodology of synthesizing healthier edible seed oils by reducing trans-fat content.We have observed that cavitating ultrasound results in a [(trans-olefin/saturated alcohol)ultrasound/(trans-olefin/saturated alcohol)silent] ratio quantity less than 0.5 at the reaction mid-point for both the C4 and C5 olefin systems. This indicates that ultrasound reduces trans-olefin production compared to the silent control experiment. Furthermore, there is an added 30% reduction for the C5 versus C4 olefin compounds again at reaction mid-point. We attribute differences in the ratio quantity as a moment of inertia effect. In principle, the C4 versus C5 olefins has a {approx}52% increase in moment of inertia about C2 C3 double bond slowing isomerization. Since seed oils are C18 multiple cis-olefins and have a moment of inertia even greater than our C5 olefin here, our study suggests that even a greater reduction in trans-olefin content may occur for partial hydrogenation of C18 seed oils.

  17. Study on Sources of Volatile Organic Compounds (CMB) in Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Shao, M.; Lu, S.; Chang, C.; Wang, C. J.; Wang, B.


    The profiles of major Volatile organic compounds (VOCs) sources including vehicle exhaust, gasoline vapor, painting, asphalt, liquefied petroleum gas (LPG), biomass burning and petrochemical industry in Pearl River Delta were experimentally determined. Source samples were taken by using dilution chamber for mobile and stationary sources, laboratory simulation for biomass burning. The concentrations of 108 VOC species of sources were quantified by using canister with pre-concentration-GC/MS system, from which 52 PAMS hydrocarbons and one kind of chlorinated hydrocarbon were deployed to build the source profiles for source apportionment of VOCs. Based the measurement of source profiles, the possible tracers for various emission sources were identified, e.g 2-methylbutane and 1,3-butadiene were the tracers for motor vehicle exhaust, the characteristic compounds of architectural and furnishing coatings are aromatics such as toluene and m/p-xylene; the light hydrocarbons, namely n-butane, trans-2-butene and n-pentane, dominated the composition of gasoline vapor; and the nonane, decane and undecane are found to represent the asphalt emissions etc.. The CMB receptor model was applied to source apportionment of 58 hydrocarbons measured at seven sites during the PRD campaign, 2004. The 12 kinds of VOC sources include gasoline/diesel-powered vehicle exhaust, gasoline/diesel headspace vapor, vehicle evaporative emissions, liquid petroleum gas (LPG) leakage, painting vapors, asphalt emission from paved road, biomass burning, coal burning, chemical industry and petroleum refinery. Vehicle exhaust was the largest sources contributing over half of the ambient VOCs at the three urban sites (GuangZhou, FoShan and ZhongShan). LPG leakage played an important role with the percentage of 8- 16% in most sites in PRD. Contributions from solvents usage were highest at DongGuan, an industrial site. At XinKen, the solvents and coatings had the largest percentage of 31% probably due to the influence of its upwind area of DongGuan. The local biomass burning was also found to be a noticeable source at XK.

  18. [Pollution characteristics and health risk assessment of atmospheric VOCs in the downtown area of Guangzhou, China].


    Li, Lei; Li, Hong; Wang, Xue-Zhong; Zhang, Xin-Min; Wen, Chong


    The measurements of 31 kinds of VOCs in the ambient air of a site were carried out in the downtown of Guangzhou by online method from November 5, 2009 to November 9, 2009. The ambient level and composition characteristics, temporal variation characteristics, sources identification, and chemical reactivity of VOCs were studied, and the health risk of VOCs in the ambient air in the study area was assessed by using the international recognized health risk assessment method. Results showed that the mean and the range of the mass concentrations of 31 VOCs were 114.51 microg x m(-3) and 29.42-546.06 microg x m(-3), respectively. The mass concentrations of 31 VOCs, and those of alkanes, alkenes, and aromatics all showed a changing trend of higher in the morning and in the evening, and lower at noontime. Vehicular exhaust, gasoline and liquefied petroleum gas evaporates were the main sources of VOCs with the volatilization of paints and solvents being important emission sources. Toluene, trans-2-butene, m/p-xylene, i-butane, and 1,3,5-trimethylbenzene were the key reactive species among the 31 VOCs. Vehicular exhaust and gasoline evaporation were the main sources of VOCs leading to the formation of ozone. Health risk assessment showed that n-hexane, 1,3-butadiene, benzene, toluene, ethylbenzene, m/p-xylene and o-xylene had no appreciable risk of adverse non-cancer health effect on the exposed population, but 1, 3-butadiene and benzene had potential cancer risk. By comparing the corresponding data about health risk assessment of benzene compounds in some cities in China, it is concluded that benzene can impose relatively high cancer risk to the exposed populations in the ambient air of some cities in China. Therefore, strict countermeasures should be taken to further control the pollution of benzene in the ambient air of cities, and it is imperative to start the related studies and develop the atmospheric environmental health criteria and national ambient air quality standard for benzene in China. PMID:24640890

  19. Gas phase reaction of the NO 3 radical with organic compounds in the dark

    NASA Astrophysics Data System (ADS)

    Andersson, Yvonne; Ljungström, Evert

    The reactions of the NO 3 radical with four organic compounds, 1-butene, 1,3-butadiene, ethene and vinyl chloride were studied at 296 ± 1 K at atmospheric pressure with N 2 as the matrix gas. N 2O 5 was used as the NO 3 radical source. The reactants were monitored with an FTIR White optical system. The rate coeificients were determined to be (6.1 ± 2.9) 10 -17, (6.4 ± 0.3) × 10 -15, (4.4±0.8) × 10 -14 and (1.4 ± 0.9) × 10 -16 cm 3 molecule -1 s -1 for ethene, 1-butene, 1,3-butadiene and vinyl chloride, respectively. The i.r. spectra indicate the presence of nitrate compounds as intermediates and aldehydes as comparatively stable products.

  20. The Thermodynamic Conjugation Stabilization of 1,3-Butadiyne Is Zero

    ERIC Educational Resources Information Center

    Rogers, Donald W.; Zavitsas, Andreas A.; Matsunaga, Nikita


    Many textbooks point out that the thermodynamic stabilization enthalpy of 1 mol of 1,3-butadiene relative to 2 mol of 1-butene or to 1 mol of 1,4-pentadiene is slightly less than 4 kcal mol[superscript -1], owing to conjugation between the double bonds in the 1,3 configuration. It is reasonable to suppose that the analogous thermochemical…

  1. Volatile organic compound constituents from an integrated iron and steel facility

    Microsoft Academic Search

    Jiun-Horng Tsai; Kuo-Hsiung Lin; Chih-Yu Chen; Nina Lai; Sen-Yi Ma; Hung-Lung Chiang


    This study measured the volatile organic compound (VOC) constituents of four processes in an integrated iron and steel industry; cokemaking, sintering, hot forming, and cold forming. Toluene, 1,2,4-trimethylbenzene, isopentane, m,p-xylene, 1-butene, ethylbenzene, and benzene were the predominant VOC species in these processes. However, some of the chlorinated compounds were high (hundreds ppbv), i.e., trichloroethylene in all four processes, carbon tetrachloride

  2. Tensile True Stress - Strain Curves and Essential Work of Fracture Analysis of Polyethylene Blown Films 

    E-print Network

    Lee, Chin-Fu


    and varying amounts of ?-olefin comonomers, such as 1-butene, 1-hexene, and 1-octene, using Ziegler-Natta 2 (ZN) or metallocene (m) catalysts. The ?-olefin comonomer introduces short chain branches, such as ethyl, butyl and hexyl branches... of comonomers and are considered to be a mixture of fractions of polyethylene copolymers with a range of molecular weights and short chain branch content. With the single site metallocene catalysts, narrow molecular weight distribution LLDPEs...

  3. Heats of formation and steric hindrance in three hydrocarbon polymers 

    E-print Network

    Hayes, Claude William


    (ethylene), poly(propylene), and poly(1- butene) have been measured and heats of formation comparedtovalues predicted by bond energy schemes. Heats of polymerization have 27 been derived using previous heat of combustion data (by flame calorimetry) on monomers... of polymerization are calculated using the 12 entropies of polymerization of Dainton and Ivin. Heats and Gibbs energy of polymerization show that in unbranched a'-olefins both of the reaction-potential terms lower gradually and asymptotically to a constant...

  4. Proton Transfer Reaction Rate Coefficients Measured for H_3O^+ Reactions with Alkene Molecules

    Microsoft Academic Search

    G. Brooke IV; S. Popovic; L. Vuskovic


    We have measured at 300 K the gas phase proton transfer rate coefficient between the hydronium ion (H_3O^+) and the alkene molecules: ethene (C_2H_4), propene (C_3H_6), and 1-butene (C_4H_8). The measurements were performed using a flow tube apparatus employing an Asmussen-type microwave cavity discharge ion source.(J. Asmussen, R. Mallavarpu, J. R. Hamann, and H. C. Park, Proc. IEEE 62) 109

  5. Olefins from polyolefins and mixed plastics by pyrolysis

    Microsoft Academic Search

    W. Kaminsky; B. Schlesselmann; C. Simon


    Mixed plastics collected from households were separated into a poly(vinyl chloride) (PVC) poor light fraction (0.66 wt.% chlorine) and pyrolyzed in a fluidized bed reactor. The process was optimized to give high amounts of olefins. For comparison, high density polyethylene was used as feed material. The pyrolysis products contained about 36% ethene, 15% propene, 9% 1-butene and butadiene and an

  6. Production of epoxides from gaseous alkenes by resting-cell suspensions and immobilized cells of alkene-utilizing bacteria

    Microsoft Academic Search

    A. Q. H. Habets-Criitzen; L. E. S. Brink; C. G. van Ginkel; J. A. M. de Bont; J. Tramper


    Newly isolated and already available strains of alkene-utilizing bacteria were able to oxidize ethene, propene or 1-butene to the respective 1,2-epoxides. Resting-cell suspensions of organisms isolated on propene and butene, when grown on these substrates converted ethene quantitatively to epoxyethane. Some, but not all ethene-utilizing strains accumulated 1,2-epoxypropane or 1,2-epoxybutane when propene or butene was supplied, although not quantitatively because

  7. Synthesis and asymmetric reactivity of enantiomerically pure cyclopentadienylmetal complexes derived from the chiral pool

    SciTech Connect

    Halterman, R.L.; Vollhardt, K.P.C.


    Starting from pulegone, camphor, and tartrate, three chiral cyclopentadienes were prepared efficiently. Metalation with Co/sub 2/(CO)/sub 8/ and TiCl/sub 3/ resulted in new chiral and enantiomerically pure substituted cyclopentadienyldicarbonylcobalt and -titanocene complexes. The latter were used in the quantitative catalytic asymmetric hydrogenation of 2-phenyl-1-butene in up to 34% optical yield. The former allowed the first asymmetric (2 + 2 + 2) cycloadditions promoted by chiral cyclopentadienylcobalt complexes to be observed.

  8. Hydrogenation of 1,3-butadiene by cyclohexadiene (CHD) over CoS catalyst

    Microsoft Academic Search

    K. Tanaka; K. Miyahara


    A CoS catalyst tested was inactive for the hydrogenation of butadiene with hydrogen but active for butadiene hydrogenation with CHD at 240°C. The butene isomer distributions obtained with 1,3-CHD and 1,4-CHD were nearly identical. The CHD also underwent disproportionation into benzene and cyclohexene. A study of changes in conversion and selectivity when deuterium, 1-butene, butadiene, 1,4-CHD, or benzene were added

  9. Zeolite-Based Catalysts for Microwave-Induced Transformations of Hydrocarbons

    Microsoft Academic Search

    V. L. Zholobenkoand; E. R. House


    Ferrierite-based catalysts have been evaluated in 1-butene isomerization using a continuous flow reactor operating under microwave and conventional heating conditions. The key feature of this study is the application of a single-mode microwave cavity, which can considerably enhance the heating efficiency compared to traditional microwave ovens. Our results demonstrate that the transformations of low polarity organic compounds over siliceous zeolites

  10. Cell-free ethylene-forming systems lack stereochemical fidelity

    Microsoft Academic Search

    Michael A. Venis


    In-vitro systems for the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene have been reported using pea supernatants, carnation petal microsomes, olive leaf protein and, most recently, pea mitochondria. It has also been shown, in intact tissues of apple, mung bean and pea, that the system responsible for conversion of ACC to ethylene can produce 1-butene from isomers of 1-amino-2-ethylcyclopropane-1-carboxylic acid

  11. The effect of supported MoO(X) structures on the reaction pathways of propene formation in the metathesis of ethylene and 2-butene.


    Hahn, T; Kondratenko, E V; Linke, D


    The kind of surface MoOX structures on Al2O3-SiO2 was found to determine propene selectivity in the metathesis of ethylene and 2-butene. Compared to isolated tetrahedral MoOX species, their polymerized octahedral counterparts show significantly lower activity for isomerisation of 2- to 1-butene thus hindering non-selective metathesis of these butenes. In addition, they reveal higher ability to engage ethylene in propene formation. PMID:24819240

  12. Coke formation and its effects on shape selective adsorptive and catalytic properties of ferrierite/ZSM-35

    SciTech Connect

    Xu, W.Q.; Yin, Y.G.; Suib, S.L.


    Channels of ferrierite are blocked by carbonaceous deposits (coke) which are formed during butene treatments. The pore blocking inside ferrierite/alumina catalysts affects the yield and selectivity to isobutylene in these reactions. Pore size distribution experiments show that blocking of 10-member ring channels (4.2 x 5.4 {Angstrom}) and 8-member ring channels (3.5 x 4.8 {Angstrom}) of ferrierite by coke reduces the channel size smaller than that of dinitrogen (4.5 {Angstrom}). Thermal desorption data show that ammonia uptake for coked samples of different TOS (time on stream) is decreased from about 62% to 35% of that for the fresh sample. This suggests that channels in coked ferrierites are at least larger than the size of the ammonia molecule (2 {Angstrom}). Uptakes for more bulky molecules such as 1-butene and isobutylene are severely reduced by coke formation (<9% of 1-butene and isobutylene uptakes for the fresh sample). About 76.9% of the coke formed during 18 hr TOS is deposited inside the micropores (<10 {Angstrom}) of ferrierite/alumina. Such coke is aromatic in nature and its hydrogen to carbon ratio decreases with TOS. Three kinds of acid sites were successfully probed with ammonia, 1-butene, and isobutylene. These experiments suggest that adsorption of probe molecules on ferrierite is also a shape selective process.

  13. Replacing precious metals with carbide catalysts for hydrogenation reactions


    Ruijun, Hou; Chen, Jingguang G.; Chang, Kuan; Wang, Tiefeng


    Molybdenum carbide (Mo?C and Ni/Mo?C) catalysts were compared with Pd/SiO? for the hydrogenation of several diene molecules, 1,3- butadiene, 1,3- and 1,4-cyclohexadiene (CHD). Compared to Pd/SiO?, Mo?C showed similar hydrogenation rate for 1,3-butadiene and 1,3-CHD and even higher rate for 1,4-CHD, but with significant deactivation rate for 1,3-CHD hydrogenation. However, the hydrogenation activity of Mo?C could be completely regenerated by H? treatment at 723 K for the three molecules. The Ni modified Mo?C catalysts retained similar activity for 1,3-butadiene hydrogenation with significantly enhanced selectivity for 1-butene production. The 1-butene selectivity increased with increasing Ni loading below 15%. Among the Nimore »modified Mo?C catalysts, 8.6%Ni/Mo?C showed the highest selectivity to 1-butene, which was even higher selectivity than that over Pd/SiO?. Compared to Pd/SiO?, both Mo?C and Ni/Mo?C showed combined advantages in hydrogenation activity and catalyst cost reduction, demonstrating the potential to use less expensive carbide catalysts to replace precious metals for hydrogenation reactions.« less

  14. A study of the unreduced molybdena-alumina system

    SciTech Connect

    Pantoja, A.; Sarrin, J.; Gonzalez, L.; Noguera, O.; Perez Zurita, M.J.; Galavis, J.L.; Goldwasser, J. )


    The isomerization and metathesis of 1-butene was carried out over a series of molybdena-alumina catalysts (1.0-8.2 wt% Mo) prepared by the adsorption equilibrium method. Catalytic conversion measurements (including the effect of preadsorbed water), tracer experiments (1-butene-d[sub o]+1-butene-d[sub 8]), pyridine adsorption followed by IR spectroscopy, and ESR studies were used as tools for the characterization of the solids. The pyridine adsorption experiments showed an increase in the number of acid sites as well as in the acid strength with increasing metal loading. The catalytic measurements showed a related increase in the rate of isomerization as the %Mo is increased. The cis/trans ratios decreased with increasing molybdenum loading, suggesting an increase in the acid strength of the remaining alumina hydroxyl groups. The results suggest a Broensted acid mechanism for the isomerization reaction over catalysts with molybdenum loading [ge] 3.9% Mo. The 1.0% molybdena-alumina catalyst behaved totally different. The results suggest a [pi]-allylic mechanism operative on the unperturbed alumina surface. The rate of formation of ethylene and propylene (products of metathesis) increased dramatically with increasing molybdenum loading. The catalysts evacuated at 500[degrees]C were considerably more active for the metathesis transformations than after evacuation at 500[degrees]C and/or after contacting the catalyst with the olefin. No Mo(V) signal was observed for the 1.0% Mo catalyst. The results suggest that the more easily reducible the catalyst is, the easier it would be to effect olefin metathesis. 35 refs., 4 figs., 6 tabs.

  15. Synthesis of polyfunctional organochlorine compounds based on 1,1,1,2,3,3,4,4-octachlorobutane

    SciTech Connect

    Kaberdin, R.V.; Potkin, V.I.; Dubova, E.Yu.; Ol'dekop, Yu.A.


    2,3,3,4,4-Pentachlorobutyric acid was obtained with a preparative yield by the reaction of 1,1,1,2,3,3,4,4-octachlorobutane with oleum. The dehydroclorination of octachlorobutane with an equimolar amount of an aqueous solution of sodium hydroxide, catalyzed by triethylbenzylammonium chloride, takes place by the elimination of one molecule of hydrogen chloride from positions 1,2 and 2,3 with the formation of isomeric heptachlorobutenes. Hydrolysis of the latter with fuming nitric acid gave the difficulty obtainable 1,1,2,4,4-pentachloro-1-buten-3-one and Z-/alpha/,/beta/,/gamma/,/gamma/-tetrachlorocrotonic acid.

  16. Enantioselective polymerization of epoxides: a highly active and selective catalyst for the preparation of stereoregular polyethers and enantiopure epoxides.


    Hirahata, Wataru; Thomas, Renee M; Lobkovsky, Emil B; Coates, Geoffrey W


    A chiral, bimetallic cobalt catalyst was discovered that is highly active and enantioselective for epoxide polymerization. The enantiomerically pure catalyst system exhibits a stereoselectivity factor (s = k(fast)/k(slow)) of 370 for propylene oxide, allowing enantiomerically pure epoxide to be recovered in nearly the maximum theoretical yield. In addition, the racemic catalyst forms highly isotactic poly(propylene oxide) in quantitative yield. The catalyst is active and selective for other epoxides, such as 1-butene oxide, 1-hexene oxide, and styrene oxide. PMID:19067512

  17. Homo-polymerization of alpha-olefins and co-polymerization of higher alpha-olefins with ethylene in the presence of CpTiCl2(OC6H4X-p)/MAO catalysts (X = CH3, Cl).


    Skupinski, W; Nicinski, K; Jamanek, D; Wieczorek, Z


    Cyclopentadienyl-titanium complexes containing -OC6H4X ligands (X = Cl,CH3) activated with methylaluminoxane (MAO) were used in the homo-polymerization of ethylene, propylene, 1-butene, 1-pentene, 1-butene, and 1-hexene, and also in co-polymerization of ethylene with the alpha-olefins mentioned. The -X substituents exhibit different electron donor-acceptor properties, which is described by Hammett's factor (sigma). The chlorine atom is electron acceptor, while the methyl group is electron donor. These catalysts allow the preparation of polyethylene in a good yield. Propylene in the presence of the catalysts mentioned dimerizes and oligomerizes to trimers and tetramers at 25 degrees C under normal pressure. If the propylene pressure was increased to 7 atmospheres,CpTiCl2(OC6H4CH3)/MAO catalyst at 25 degrees gave mixtures with different contents of propylene dimers, trimers and tetramers. At 70 degrees C we obtained only propylene trimer. Using the catalysts with a -OC(6)H(4)Cl ligand we obtained atactic polymers with M(w) 182,000 g/mol (at 25 degrees C) and 100,000 g/mol (at 70 degrees C). The superior activity of the CpTiCl2(OC6H4Cl)/MAO catalyst used in polymerization of propylene prompted us to check its activity in polymerization of higher alpha-olefins (1-butene, 1-pentene, 1-hexene)and in co-polymerization of these olefins with ethylene. However, when homo-polymerization was carried out in the presence of this catalyst no polymers were obtained. Gas chromatography analysis revealed the presence of dimers. The activity of the CpTiCl2(OC6H4Cl)/MAO catalyst in the co-polymerization of ethylene with higher alpha-olefins is limited by the length of the co-monomer carbon chain. Hence, the highest catalyst activities were observed in co-polymerization of ethylene with propylene (here a lower pressure of the reagents and shorter reaction time were applied to obtain catalytic activity similar to that for other co-monomers). For other co-monomers the activity of the catalyst decreases as follows: propylene >1-butene > 1-pentene > 1-hexene. In the case of co-polymerization of ethylene with propylene, besides an increase in catalytic activity, an increase in the average molecular weight M(w) of the polymer was observed. Other co- monomers used in this study caused a decrease of molecular weight. A significant increase in molecular weight distribution (M(w)/M(n)) evidences a great variety of polymer chains formed during the reaction. PMID:18007336

  18. NMR and X-ray diffraction analysis of 3-thioamido-5-phosphono-1-cyclohexene derivatives: Conformational and stereochemical assignments

    NASA Astrophysics Data System (ADS)

    Monbaliu, Jean-Christophe; Tinant, Bernard; Marchand-Brynaert, Jacqueline


    Reaction of N-(dienyl)-4-( R)-phenyloxazolidin-2-thione ( 1) with 1-diethoxyphosphoryl-1-buten-3-one ( 2a), methyl 3-(diethoxyphosphoryl)acrylate ( 2b) and 3-(diethoxyphosphoryl)acrylonitrile ( 2c) furnished the [4 + 2] cycloadducts 3a, 3b and 3c, respectively, as single stereoisomers, confirming the efficiency of the oxazolidin-2-thione chiral auxiliary in the facial discrimination of Diels-Alder reactions. The absolute configuration of the 3,4,5-trisubstituted cyclohexene derivatives ( 3a- c) was established by X-ray diffraction analysis. NMR studies confirmed the relative stereochemistries and showed two possible conformers in solution.

  19. XAFS Study of the Photo-Active Site of Mo/MCM-41

    NASA Astrophysics Data System (ADS)

    Miyamoto, Daisuke; Ichikuni, Nobuyuki; Shimazu, Shogo


    An Mo/MCM-41 catalyst was prepared and used for study of propene and 1-butene photo-metathesis reactions. XAFS analysis revealed that hydrogen reduction leads to a decreased role for the Mo=O site. The Mo-O site plays an important role for the olefin photo-metathesis reaction on the H2 reduced Mo/MCM-41. From EXAFS analysis, the active site of photo-metathesis reaction is the Mo=O part for oxidized Mo/MCM-41, whereas it is the Mo-O site for reduced Mo/MCM-41.

  20. Synthesis of 1-Amino-3-[2-(1,7-dicarba-closo-dodecaboran(12)-1-yl)ethyl]cyclobutanecarboxylic Acid: A Potential BNCT Agent.


    Srivastava, Rajiv R.; Singhaus, Robert R.; Kabalka, George W.


    The synthesis of an unnatural amino acid, 1-amino-3-[2-(1,7-dicarba-closo-dodecaboran(12)-1-yl)ethyl]cyclobutanecarboxylic acid, was achieved. This new potential BNCT agent was prepared via the monoalkylation of m-carborane with 4-bromobutene to produce 4-m-carboranyl-1-butene, which was then subjected to a 2 + 2 cycloaddition using dichloroketene. The resultant boronated cyclobutanone was reductively dechlorinated prior to the formation of the corresponding hydantoin, which was hydrolized to the title compound in excellent yield. PMID:11671777

  1. Conversion of methanol to light olefins on SAPO-34: kinetic modeling and reactor design 

    E-print Network

    Al Wahabi, Saeed M. H.


    -pentene...................................62 Figure IV-8. Single event rate coefficients for elementary cracking steps. Curve (a): 2,2-diMe-4-hexyl R+ into 1-butene and 2-Me-2- propyl R+. Curve (b): 2,2,4-triMe-4-pentyl R+ into isobutylene and 2-Me-2....3 Total 100.0 100.0 Olefins Yields, wt% Ethylene 6.1 0.8 Propylene 21.0 4.9 Isobutylene 5.1 1.9 Total butylenes 14.3 8.1 II.3 Paraffins Dehydrogenation Propane dehydrogenation technology has gained importance in recent years due...

  2. Action spectroscopy for single-molecule reactions - Experiments and theory

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Motobayashi, K.; Frederiksen, T.; Ueba, H.; Kawai, M.


    We review several representative experimental results of action spectroscopy (AS) of single molecules on metal surfaces using a scanning tunneling microscope (STM) by M. Kawai's group over last decade. The experimental procedures to observe STM-AS are described. A brief description of a low-temperature STM and experimental setup are followed by key experimental techniques of how to determine an onset bias voltage of a reaction and how to measure a current change associated with reactions and finally how to observe AS for single molecule reactions. The experimental results are presented for vibrationally mediated chemical transformation of trans-2-butene to 1.3-butadiene molecule and rotational motion of a single cis-2-butene molecule among four equivalent orientations on Pd(1 1 0). The AS obtained from the motion clearly detects more vibrational modes than inelastic electron tunneling spectroscopy with an STM. AS is demonstrated as a useful and novel single molecule vibrational spectroscopy. The AS for a lateral hopping of water dimer on Pt(1 1 1) is presented as an example of novelty. Several distinct vibrational modes are detected as the thresholds in the AS. The assignment of the vibrational modes determined from the analysis of the AS is made from a view of the adsorption geometry of hydrogen-bond donor or acceptor molecules in water dimer. A generic theory of STM-AS, i.e., a reaction rate or yield as a function of bias voltage, is presented using a single adsorbate resonance model for single molecule reactions induced by the inelastic tunneling current. Formulas for the reaction rate R (V) and Y (V) , i.e., reaction yield per electron Y (V) = eR (V) / I are derived. It provides a versatile framework to analyze any vibrationally mediated reactions of single adsorbates on metal surfaces. Numerical examples are presented to demonstrate generic features of the vibrational generation rate and Y (V) at different levels of approximations and to show how the effective broadening of the vibrational density of states (as described by Gaussian or Lorentzian functions) manifest themselves in Y (V) near the threshold bias voltage corresponding to a vibrational excitation responsible for reactions. A prefactor of Y (V) is explicitly derived for various types of elementary processes. Our generic formula of Y (V) also underlines the need to observe Y (V) at both bias voltage polarities, which can provide additional insight into the adsorbate projected density of states near the Fermi level within a span of the vibrational energy. The theory is applied to analysis of some highlights of the experimental results: Xe transfer, hopping of a single CO molecule on Pd(1 1 0), a dissociation of a single dimethyl disulfide (CH3S)2 and a hopping of a dissociated product, i.e., single methyl thiolate CH3S on Cu(1 1 1). It underlines that an observation of Y (V) at both bias polarities permits us to certain insight into the molecular alignment with respect to the Fermi level.

  3. OH, HO2, partially speciated RO2 and OH reactivity measurements over a range of NOx during day and night (Invited)

    NASA Astrophysics Data System (ADS)

    Heard, D. E.; Whalley, L. K.; Gallaway, S.; Stone, D. J.; Ingham, T.; Walker, H.; Evans, M. J.


    Measurements will be reported for OH, HO2, partially speciated RO2 (distinguishing smaller alkane related RO2 from larger alkane/alkene/aromatic related RO2) and OH reactivity measurements taken during the ClearfLo campaigns in central London in the winter and summer of 2012. Comparison with calculations from a detailed box model utilising the Master Chemical Mechanism v3.2 tested our ability to reproduce radical levels, and enabled detailed radical budgets to be determined, highlighting for example the important role of the photolysis of nitrous acid and carbonyl species as radical sources. Speciation of RO2 enabled the break-down of ozone production from different classes of VOCs to be calculated directly, and clear differences in the contribution from different types of RO2 were seen during warmer and cooler periods. Comparison of the total calculated chemical O3 production with observations showed that most of the ozone production observed was generated locally. The missing OH reactivity was greatest during morning and evening rush hours, with good agreement at other times. Long-term seasonal measurements of OH and HO2 radicals in the tropical marine boundary layer at the Cape Verde Atmospheric Observatory were reported in a recent publication [1] and here comparisons will be reported with both box model calculations utilising the Master Chemical Mechanism and the three-dimensional global chemical transport model GEOS-Chem. Both approaches result in over-predictions of OH and HO2 suggesting an incomplete description of sinks. In the box model bromine/iodine chemistry increases OH by ~10%, whereas the global model incorporating bromine chemistry decreases OH by ~ 5%. In the global model the impact of O3 destruction from bromine chemistry (and hence reduction of OH) is greater than the increase in OH from changes in HOx partitioning, whereas in the box model O3 is constrained to measurements, and hence the impact of halogens on OH can only derive from HOx partitioning. Measurements of HO2 at night made during the RONOCO campaign onboard the BAe-146 research aircraft will be reported with HO2 significantly higher in summer than in winter and with the highest HO2 observed for altitudes < 1.0 km. A strong positive correlation between HO2 and NO3 was observed (average r=0.89, as high as r=0.97 on one flight) and attributed to the production of HO2 from reactions of NO3 with alkenes, particularly trans-2-butene and other isomers of butene. Nighttime production of HO2 was dominated by NO3 in summer and O3 in winter. If time permits, field and laboratory studies of heterogeneous processing of HO2 by clouds and aerosols will be discussed. [1] S. Vaughan et al., Atmos. Chem. Phys., 12, 2149-2172, 2012.

  4. Electron collisions with methyl-substituted ethylenes: Cross section measurements and calculations for 2-methyl-2-butene and 2,3-dimethyl-2-butene

    NASA Astrophysics Data System (ADS)

    Szmytkowski, Czes?aw; Stefanowska, Sylwia; Zawadzki, Mateusz; Ptasi?ska-Denga, El?bieta; Mo?ejko, Pawe?


    We report electron-scattering cross sections determined for 2-methyl-2-butene [(H3C)HC = C(CH3)2] and 2,3-dimethyl-2-butene [(H3C)2C = C(CH3)2] molecules. Absolute grand-total cross sections (TCSs) were measured for incident electron energies in the 0.5-300 eV range, using a linear electron-transmission technique. The experimental TCS energy dependences for the both targets appear to be very similar with respect to the shape. In each TCS curve, three features are discernible: the resonant-like structure located around 2.6-2.7 eV, the broad distinct enhancement peaking near 8.5 eV, and a weak hump in the vicinity of 24 eV. Theoretical integral elastic (ECS) and ionization (ICS) cross sections were computed up to 3 keV by means of the additivity rule (AR) approximation and the binary-encounter-Bethe method, respectively. Their sums, (ECS+ICS), are in a reasonable agreement with the respective measured TCSs. To examine the effect of methylation of hydrogen sides in the ethylene [H2C = CH2] molecule on the TCS, we compared the TCS energy curves for the sequence of methylated ethylenes: propene [H2C = CH(CH3)], 2-methylpropene [H2C = C(CH3)2], 2-methyl-2-butene [(H3C)HC = C(CH3)2], and 2,3-dimethyl-2-butene [(H3C)2C = C(CH3)2], measured in the same laboratory. Moreover, the isomeric effect is also discussed for the C5H10 and C6H12 compounds.

  5. A simplified chemistry module for atmospheric transport and dispersion models: Proof-of-concept using SCIPUFF

    NASA Astrophysics Data System (ADS)

    Burns, Douglas S.; Rottmann, Shawn D.; Plitz, Angela B. L.; Wiseman, Floyd L.; Moore, William; Chynwat, Veeradej


    An atmospheric chemistry module was developed to predict the fate of environmentally hazardous compounds discharged into the atmosphere. The computationally efficient model captures the diurnal variation within the environment and in the degradation rates of the released compounds, follows the formation of toxic degradation products, runs rapidly, and in principle can be integrated with any atmospheric transport and dispersion model. To accomplish this, a detailed atmospheric chemistry mechanism for a target toxic industrial compound (TIC) was reduced to a simple empirical effective degradation rate term (keff). Empirically derived decay functions for keff were developed as a function of important meteorological parameters such as solar flux, temperature, humidity, and cloud cover for various land uses and locations by statistically analyzing data generated from a detailed chemistry mechanism run over a wide range of (typical) atmospheric conditions. 1-Butene and two degradation products (propanal and nitrooxybutanone) were used as representative chemicals in the algorithm development for this proof-of-concept demonstration of the capability of the model. The quality of the developed model was evaluated via comparison with experimental chamber data and the results (decay rates) compared favorably for ethene, propene, and 1-butene (within a factor of two 75% or more of the time).

  6. Kinetics of the heterogeneously catalyzed formation of tert-amyl ethyl ether

    SciTech Connect

    Linnekoski, J.A.; Krause, A.O. [Helsinki Univ. of Technology, Espoo (Finland). Lab. of Industrial Chemistry] [Helsinki Univ. of Technology, Espoo (Finland). Lab. of Industrial Chemistry; Rihko, L.K. [Neste Oy, Porvoo (Finland). Technology Center] [Neste Oy, Porvoo (Finland). Technology Center


    In this work, the kinetics and equilibrium of the heterogeneously catalyzed liquid-phase formation of tert-amyl ethyl ether (TAEE) were studied. The catalyst used was a commercial sulfonic acid ion-exchange resin (Amberlyst 16W). The experiments were carried out in a continuous stirred-tank reactor, measuring stationary reaction rates. The measured reaction rates were fitted to three kinetic models; homogeneous, Eley-Rideal type, and Langmuir-Hinshelwood type. Of these, the Langmuir-Hinshelwood type model described the experimental results best. This model is based on single-site adsorption of every component, with the surface reaction being the rate-limiting step. The activation energies for the formation of tert-amyl ethyl ether from 2-methyl-1-butene were 90 and from 2-methyl-2-butene 108 kJ/mol. For the isomerization of 2-methyl-1-butene to 2-methyl-2-butene, an activation energy of 82 kJ/mol was obtained.

  7. The conversion of propene and ethene over AlPO sub 4 -11

    SciTech Connect

    Norval, G.W.; Crimi, C.; Phillips, M.J. (Univ. of Toronto, Ontario (Canada))


    Bhatia and Phillips have recently reported the conversion of 1-butene to C{sub 6}-C{sub 8} aromatics over the aluminophosphate molecular sieve AlPO{sub 4}-11 in the temperature range 673-873 K. A mechanism was proposed in which dehydrogenation of 1-butene was followed by dimerization of the resulting 1,3-butadiene; the dimer could either cyclize to an aromatic or crack to lighter products. The conversion to aromatics was much less than that observed over H-ZSM-5 and was attributed to the known weak acidity of AlPO{sub 4}-11. The absence of C{sub 9}{sup +} aromatics in the product supported the proposed mechanism; steric hindrance in the elliptical pores (0.67 {times} 0.44 nm) prevented butene trimers from forming. To further the understanding of olefin reactions over AlPO{sub 4}-11, the conversion of ethene and propene has been studied.

  8. Multicomponent, hydrogen-bonded cylindrical capsules.


    Ajami, Dariush; Rebek, Julius


    Self-assembled, hydrogen-bonded capsules emerge from synthetic resorcinarene-derived cavitands and soluble glycolurils when appropriate guest molecules are present. The assembly consists of 2 cavitands, 4 glycolurils and guest(s), and the arrangement of glycolurils leads to a chiral structure. The capsule features a space of approximately 620 A(3) and accommodates narrow guests such as n-alkanes from C(14) to C(19), or other molecules (e.g., capsaicin) and combinations of molecules of up to approximately 22 A in length (e.g., two p-methylstyrene molecules). Positions of encapsulated nuclei can be predicted from NMR chemical shifts, with intense shielding of deltaDelta = -5 ppm near the resorcinarene ends and mild deshielding of +0.5 to 1 ppm near the glycolurils at the capsule's center. Computational methods using nucleus independent chemical shifts (NICS) were used to map the induced magnetic shielding/deshielding for the inner space of the cavity. The asymmetric arrangement of the spacers creates a chiral steric and magnetic environment in the capsule and the geminal hydrogen atoms of encapsulated alkanes show diastereotopic proton signals. The two enantiomers interconvert (racemize) through an achiral intermediate involving a slight rotation of the spacers and lengthening of the cavity. Accordingly, longer, compressed alkanes accelerate the racemization by applying pressure from the inside on the capsule's ends. Guests that place hydrogen bond donors and acceptors near the glycolurils in the middle (e.g., p-isopropylbenzyl alcohol) also accelerate the racemization by facilitating the rotation of the glycolurils. Slow tumbling of guest on the NMR time scale inside the capsule leads to social isomerism of para-disubstituted benzenes such as p-methylstyrene. Flexible guests such as hexane tumble inside the cavity with an activation barrier of DeltaG(++) =16.2 kcal/mol. The middle of the extended capsule is narrow, but still accommodates phenyl groups such as those presented by p-quaterphenyl and alkylated biphenylcarbonitriles. The aromatic units in these guests report their positions by imparting magnetic anisotropy to the capsule components. Gases such as propane, butane, isobutane, propylene, 2-methylpropene, and 1,3-butadiene even xenon are coencapsulated with other guests and their motions inside are examined. PMID:19655769

  9. Fuel structure and pressure effects on the formation of soot particles in diffusion flames. Annual technical report, 15 January 1988-15 January 1989

    SciTech Connect

    Santoro, R.J.


    Studies emphasizing the effects of fuel molecular structure on soot formation processes in laminar-diffusion flames were investigated. Particular attention was given to the particle inception and surface growth processes for a series of fuels. Studies of butane, 1-butene, and 1,3 butadiene have revealed that fuel structure strongly affects the soot-particle-inception process. However, subsequent surface-growth processes are largely determined by the available surface area. Thus, the surface growth process is independent of the fuel molecular structure following the initial particle-inception stage. Studies of the particle-inception region indicate that increased soot formation is strongly correlated with visible-fluorescence measurements attributed to large polynuclear aromatic hydrocarbon species in the flame.

  10. Radiation-induced effects in polymers and related compounds. Final report

    SciTech Connect

    Silverman, J.


    The report is divided into two sections. The first section covers progress during the final contract period April 1, 1978-October 31, 1979; it covers work performed in conjunction with the objectives of the contract, some of which was recently completed. The second section is a general summary of the contract activities and accomplishments over the 19 year period covered by AEC-ERDA-DOE support. Studies completed or still in progress since April 1, 1979 are: ESR measurements on alkyl single crystals; work on polymer composites; studies on styrene-polyethylene grafts; experiments on the use of torque rheometry as a means of measuring the effects of ionizing radiation on polymers; investigations on the melting and crystallization behavior of irradiated polymers; and pulse radiolysis of poly(1-butene) and polyethylene.

  11. Flame temperature, fuel structure, and fuel concentration effects on soot formation in inverse diffusion flames

    SciTech Connect

    Sidebotham, G.W.; Glassman, I. (Dept. of Mechanical and Aerospace Engineering, Princeton Univ., Princeton, NJ (US))


    Insights into soot formation processes are gained from chemical sampling and thermocouple probing of co-flowing inverse diffusion flames (IDFs), with the oxidizer in the center. In this paper the transition from near-to slightly sooting flames and the effects of flame temperature, fuel concentration, and fuel structure (using methane, ethene, propene and 1-butene) are investigated. The aromatic content of IDFS scales with the fuel's sooting tendency, and suggests that the formation of the aromatic ring is a controlling step in soot formation. In addition to the relatively well-established reactions involving C4 and C2 species, benzene may form directly from two C3 species for fuels that readily produce C3 species during pyrolysis and/or oxidative pyrolysis. The total concentration of growth species increases almost linearly with fuel concentration, but depends more weakly on flame temperature than would be expected if pure pyrolysis governed the intermediate hydrocarbon behavior.

  12. Optimization of temperature-time sequences in reaction-regeneration cycles--Application to the isomerization of cis-butene

    SciTech Connect

    Gayubo, A.G.; Arandes, J.M.; Aguayo, A.T.; Olazar, M.; Bilbao, J. (Univ. del Pais Vasco, Bilbao (Spain). Dept. de Ingenieria Quimica)


    The isomerization of cis-butene on a silica-alumina catalyst, in successive and uninterrupted reaction-regeneration cycles, in an isothermal integral fixed-bed reactor, has been simulated and experimentally studied. In the program for simulation, the following kinetic equations were used: the main reaction, deactivation, and reactivation. The simultaneous optimization of reaction and regeneration steps, with the aim of maximizing the apparent production rate of 1-butene or trans-butene, has been studied. The reaction was operated following a temperature-time sequence. The regeneration consisted of the combination of a step of stripping treatment with an inert gas and of a step of coke combustion. The results of simulation have been experimentally proven in automated reaction-regeneration equipment, in which the optimum conditions of both steps have been used.

  13. Modeling alkene chemistry using condensed mechanisms for conditions relevant to southeast Texas, USA

    NASA Astrophysics Data System (ADS)

    Heo, Gookyoung; Kimura, Yosuke; McDonald-Buller, Elena; Carter, William P. L.; Yarwood, Greg; Allen, David T.


    Alkenes are important in photochemical smog formation in southeast Texas due to their high emissions, especially from industrial sources in and around Houston, and their high reactivities. Therefore, properly characterizing the chemistry of alkenes in condensed mechanisms used in regional photochemical models is important in understanding the formation of ozone and other photochemical air pollutants in Houston. The performance of three versions of the SAPRC condensed chemical mechanism family, for predicting ozone and radical formation, was compared. Simulations were compared to environmental chamber data and ambient data. The analyses showed that separately modeling individual alkenes reactions (especially propene for southeast Texas) has the potential to lead to more accurate simulations of alkene chemistry. Caution must be exercised in un-lumping, however. Testing with different formulations of the 1-butene + O 3 reaction demonstrated the complexity and interconnectedness in choices of stoichiometric parameters for un-lumped species and the extent to which lumped mechanisms are un-lumped.

  14. Synthesis of an un-supported, high-flow ZSM-22 zeolite membrane


    Thoma, Steven G. (Albuquerque, NM); Nenoff, Tina M. (Albuquerque, NM)


    Novel methods for synthesizing wholly un-supported, high-flow catalytic membranes consisting of 100% crystalline ZSM-22 crystals with no binder phase, having sufficient porosity to allow high Weight Hourly Space Velocities of feedstock to pass through without generating back pressure. The ZSM-22 membranes perform favorably to existing bulk ZSM-22 catalysts (e.g., via 1-butene conversion and selectivity). The method of membrane synthesis, based on Vapor Phase Transport, allows free-standing, binder-less membranes to be fabricated in varied geometries and sizes so that membranes can be tailor-made for particular geometries applications. The ZSM-22 precursor gel may be consolidated into a semi-cohesive body prior to vapor phase crystallization, for example, by uniaxial pressing. These crystalline membranes may be modified by ion exchange, pore ion exchange, framework exchange, synthesis modification techniques to incorporate other elements into the framework, such as K, H, Mg, Zn, V, Ga, and Pt.

  15. Structure and entanglements in short chain branched polyolefin melts

    NASA Astrophysics Data System (ADS)

    Moorthi, K.; Kamio, K.; Ramos, J.; Theodorou, D. N.


    Atomistic models of short chain branched (SCB) polyethylene melts containing up to 20-40 mol% of comonomer (1-butene, 1-hexene, 1-octene or 1-decene) have been equilibrated at 450 K using a connectivity altering Monte Carlo method, and analyzed for topological constraints using Z1 and CReTA codes. The calculated tube diameters, , of SCB melts are found to scale with the backbone weight fraction, ?, as ˜?-0.46, close to the scaling predicted by the binary contact model, ˜?-0.5 and in disagreement with the packing model prediction ˜?-1.27. Similar scaling relationships are observed experimentally for polymer solutions, and reproduced by the present methods.

  16. Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities


    Dumesic, James A [Verona, WI; Ruiz, Juan Carlos Serrano [Madison, WI; West, Ryan M [Madison, WI


    Described is a method to make liquid chemicals. The method includes deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to .gamma.-valerolactone, and converting the .gamma.-valerolactone to pentanoic acid. Alternatively, the .gamma.-valerolactone can be conveted to a mixture of n-butenes. The pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C.sub.9 and C.sub.18 olefins, which can be hydrogenated to yield a mixture of alkanes.

  17. [In-situ transient DRIFTS studies of the reaction pathway of n-butane selective oxidation over (VO)2P2O7 catalysts].


    Liang, Ri-zhong; Li, Ying-xia; Li, Cheng-yue; Chen, Biao-hua


    The reaction pathway of n-butane selective oxidation to maleic anhydride (MA) over vanadium phosphorous oxide (VO)2P2O7 catalysts was systematically probed using in situ transient Diffuse Reflectance Infrared Fourier-Transform Spectroscopy (DRIFTS) in high temperature/high pressure chamber. The unsaturated and saturated noncyclic carbonyl species were determined to be intermediates in n-butane selective oxidation to MA. Furan was detected on the surface of the (VO)2P2O7 catalysts in 1-butene, 1,3-butadiene selective oxidation. It was deduced that furan ring was cleaved to form unsaturated noncyclic carbonyl species before its conversion to MA. Based on these results and in comparison with the literature, a simplified scheme of the reaction network structure can be proposed for n-butane selective oxidation to maleic anhydride. PMID:15762463

  18. Shock tube study of the fuel structure effects on the chemical kinetic mechanisms responsible for soot formation, part 2

    NASA Technical Reports Server (NTRS)

    Frenklach, M.; Clary, D. W.; Ramachandra, M. K.


    Soot formation in oxidation of allene, 1,3-butadiene, vinylacetylene and chlorobenzene and in pyrolysis of ethylene, vinylacetylene, 1-butene, chlorobenzene, acetylen-hydrogen, benzene-acetylene, benzene-butadiene and chlorobenzene-acetylene argon-diluted mixtures was studied behind reflected shock waves. The results are rationalized within the framework of the conceptual models. It is shown that vinylacetylene is much less sooty than allene, which indicates that conjugation by itself is not a sufficient factor for determining the sooting tendency of a molecule. Structural reactivity in the context of the chemical kinetics is the dominant factor in soot formation. Detailed chemical kinetic modeling of soot formation in pyrolysis of acetylene is reported. The main mass growth was found to proceed through a single dominant route composed of conventional radical reactions. The practically irreversible formation reactions of the fused polycyclic aromatics and the overshoot by hydrogen atom over its equilibrium concentration are the g-driving kinetic forces for soot formation.

  19. Hydrogenation of carbon monoxide over ruthenium: detection of surface species by reactive scavenging

    SciTech Connect

    Baker, J.A.; Bell, A.T.


    Hydrocarbon species produced on the surface of a Ru/SiO/sub 2/ catalyst during CO hydrogenation have been detected by analysis of the products formed when these species react with cyclohexene, benzene, cyclopentene, or cis-2-butene, added in low concentration to the synthesis gas mixture. The presence of adsorbed methylene groups is strongly supported by the formation of norcarane and 1,2-dimethylcyclopropane from cyclohexene and cis-2-butene, respectively, and by the formation of ethylcyclopropane from 1-butene produced by the isomerization of cis-2-butene. Methyl and higher-molecular-weight alkyl groups are detected through the observation of alkyl derivatives of cyclohexene and benzene when cyclohexene or benzene is used as the scavenger. The addition of a scavenger to the synthesis gas is found to decrease the formation of higher-molecular-weight hydrocarbons produced by CO hydrogenation. This suggests that the species removed by the scavenger are intermediates in the process of hydrocarbon chain growth.

  20. Estrogenic activity of styrene oligomers after metabolic activation by rat liver microsomes.

    PubMed Central

    Kitamura, Shigeyuki; Ohmegi, Motoko; Sanoh, Seigo; Sugihara, Kazumi; Yoshihara, Shin'ichi; Fujimoto, Nariaki; Ohta, Shigeru


    In this study we examined estrogenic activity of styrene oligomers after metabolic activation by rat liver microsomes. Trans-1,2-diphenylcyclobutane (TCB), cis-1,2-diphenylcyclobutane (CCB), 1,3-diphenylpropane, 2,4-diphenyl-1-butene, 2,4,6-triphenyl-1-hexene, and 1-alpha-phenyl-4ss-(1 -phenylethyl)tetralin were negative in the yeast estrogen screening assay and estrogen reporter assay using estrogen-responsive human breast cancer cell line MCF-7. However, TCB exhibited estrogenic activity after incubation with liver microsomes of phenobarbital-treated rats in the presence of reduced nicotinamide adenine dinucleotide phosphate (NADPH). Minor activity was observed when liver microsomes of untreated or 3-methylcholanthrene-treated rats were used instead of those from phenobarbital-treated rats. CCB, 1,3-diphenylpropane, and 2,4-diphenyl-1-butene also exhibited estrogenic activity after metabolic activation by liver microsomes, but the activity was lower than that of TCB. 2,4,6-Triphenyl-1-hexene and 1-alpha-phenyl-4ss-(1 -phenylethyl)tetralin did not show estrogenic activity after such incubation. When TCB was incubated with liver microsomes of phenobarbital-treated rats in the presence of NADPH, three metabolites were detected by high-performance liquid chromatography (HPLC). One metabolite isolated by HPLC exhibited a significant estrogenic activity. The active metabolite was identified as trans-1-(4-hydroxyphenyl)-2-phenylcyclobutane by mass and nuclear magnetic resonance spectral analysis. These results suggest that the estrogenic activity of TCB was caused by the formation of the 4-hydroxylated metabolite. PMID:12611662

  1. Species and soot concentration measurements in a methane/air nonpremixed flame doped with C4 hydrocarbons

    SciTech Connect

    Mcenally, C.S.; Pfefferle, L.D. [Yale Univ., New Haven, CT (United States)] [Yale Univ., New Haven, CT (United States)


    The fuel in a co-flowing methane/air nonpremixed flame was doped with 7400 ppm of 1,3-butadiene, 1-butene, isobutene, and n-butane. Temperature, mole fractions of 24 stable C1 to C12 hydrocarbons, and soot volume fraction were measured along the centerline of the five resulting flames. The additives significantly increased the concentrations of aromatic species and of soot. The specific changes could be reasonably explained by conversion of the additives to aromatic ring precursors, but not by effects of the additives on temperature and H atom concentrations. Isobutene and 1-butene generated the highest concentrations of C4 products. However, several pathways readily interconvert C3 and C4 species, such that increases in both C3 and C4 species were observed for almost every additive. Recombination of propargyl radicals (C{sub 3}H{sub 3}) appears to be responsible for most aromatic ring formation on the centerline of these flames. Reactions of acetylene with n-C{sub 4}H{sub 5} and/or n-C{sub 4}H{sub 3} may also contribute in the 1.3-butadiene-doped flame. Benzene appears to be in partial equilibrium with acetylene in the upper half of the flames. The kinetic processes that establish this equilibrium are most likely ring fragmentation reactions in one direction and acetylene addition to n-C{sub 4}H{sub 3} in the other. The probable source of the n-C{sub 4}H{sub 3} is acetylene addition to C{sub 2}H, with the strong temperature-dependence of C{sub 2}H concentrations responsible for limiting this process to the upper half of the flames. Production of one-ring aromatic species is an important rate-limiting step to soot formation in these flames.

  2. First examples of homogeneous hydrogenolysis of thiophene to 1-butanethiolate and ethylthioketene ligands: Synthesis and reactivity of ([eta][sup 4]-C[sub 4]H[sub 5]S)ReH[sub 2](PPh[sub 3])[sub 2

    SciTech Connect

    Rosini, G.P.; Jones, W.D. )


    The reaction of ReH[sub 7](PPh[sub 3])[sub 2] with excess thiophene in the presence of the hydrogen acceptor 3,3-dimethyl-1-butene results in the formation of a new organometallic complex which has been identified as the thioallyl complex ([eta][sup 4]-C[sub 4]H[sub 5]S)ReH[sub 2](PPh[sub 3])[sub 2] (1). The thermolysis of a solution of 1 at 60[degrees]C with excess trimethylphosphine results in the formation of free tetrahydrothiophene and the new cyclometalated organometallic complex [ovr Re(PMe[sub 3])[sub 4](PPh[sub 2]C][sub 6]H[sub 4]) (2). Photolysis of a solution of 1 with excess trimethylphospine proceeds differently, yielding a mixture of four new organometallic complexes, all of which contain a C-S-cleaved 1-butene-1-thiolate ligand. Two of the complexes contain an S-bound ethenethiolate ligand and exist as cis and trans isomers of Re(SCH[double bond]CHEt)(PMe[sub 3])[sub 5] (3a,b), while the other two complexes contain an [eta][sup 3]-allyl-bound ethenethiolate ligand and exist as cis and trans isomers of Re([eta][sup 3]-SCH[double bond]CHEt)(PMe[sub 3])[sub 4] (4a,b). In both complexes the cis is the more thermodynamically stable isomer. The cis complex 3a is seen to isomerize to the trans 3b photochemically (cis:trans = 1.6:1), while thermally the trans isomerizes almost totally to the cis (cis:trans = 10:1 after several days). In the presence of a large excess of PMe[sub 3], only complexes 3a,b are seen, whereas removal of the free phosphine from solution gives only complexes 4a,b. 23 refs., 6 figs., 3 tabs.

  3. The decomposition of ethylene by pulsed CO2 laser radiation at pressures from 500 to 3000 torr and the use of the 2 C2H4?cyclobutane equilibrium as an internal thermometer

    NASA Astrophysics Data System (ADS)

    Giroux, L.; Back, M. H.; Back, R. A.


    The decomposition of ethylene by pulsed, unfocussed CO2-laser radiation has been studied at pressures from 500 to 3000 Torr, using the P(14) line of the 10.6?m band ( v=949.48cm-1) at incident fluences from about 0.1 to 1.0J/cm2. Major products in order of decreasing importance were 1,3-butadiene, acetylene, ethane, propane, 1-butene and methane. These are known products of the thermal free-radical chain decomposition, and it is concluded that the laser-induced decomposition under our conditions is a transient bulk thermal reaction occurring in a thin disc of heated gas close to the entrance window of the reaction vessel at temperatures ranging from about 1000 to 1500K. As in the thermal decomposition, cyclobutane was observed to be a minor product, which in a sequence of laser pulses approached a final constant concentration. The possibility that this corresponded to an equilibrium concentration at some “effective” reaction temperature was explored. Computer simulation was used to model the accumulation of cyclobutane in the system, both in a single pulse and in a sequence of pulses, and predictions of this model were compared with experiment. It was concluded that cyclobutane could be used in this way as an approximate internal thermometer, within certain limits. Mechanisms of formation of the free-radical chain products are discussed. It is concluded that the chains are initiated by the bimolecular disproportionation reaction, 2C2H4 ? C2H3+C2H5, and that secondary initiation by dissociation of the product, 1-butene, becomes increasingly important as the reaction proceeds, leading to autocatalysis. It is further concluded that the radical chain decomposition in this system is a transient process occurring in a brief time interval following the short laser pulse (FWHM=110ns), and is far from steady-state conditions.

  4. Rearrangement as a probe for radical formation: bromomethylcyclopropane on oxygen-covered Mo(1 1 0)

    NASA Astrophysics Data System (ADS)

    Levinson, J. A.; Kretzschmar, I.; Sheehy, M. A.; Deiner, L. J.; Friend, C. M.


    The reactions of bromomethylcyclopropane on oxygen-covered Mo(1 1 0) were studied in order to investigate the lifetimes of radical intermediates, which are important in heterogeneous oxidation catalysis. The methylcyclopropyl radical is known to rearrange on the nanosecond time scale, providing us with a means of probing for radical formation. Surprisingly, no rearrangement occurs subsequent to C-Br bond dissociation, which commences at ˜220 K. Instead, displacement of bromine by oxygen occurs to yield adsorbed methylcyclopropoxide, which is identified using infrared spectroscopy. The C-O bond of methylcyclopropoxide is cleaved at ˜400 K to yield a transient methylcyclopropyl radical. As shown previously, the methylcyclopropyl radical rearranges and the ring-opened butenyl species is trapped on the surface. Addition to oxygen yields 3-buten-1-oxy and addition to the metal affords the butenyl-Mo moiety. Infrared spectroscopy is used to identify these intermediates. The same linear species are formed from the reaction of 4-bromo-1-butene. The 3-buten-1-oxy species is also formed from reactions of 3-buten-1-ol on O-covered Mo(1 1 0). Upon further heating, the 3-buten-1-oxy reacts to form 1,3-butadiene, 1-butene, water, and dihydrogen between 450 and 600 K. Ethene is also evolved at ˜560 K. The primary mechanism for ethene evolution is elimination from metal-bound butenyl. Carbon monoxide is also formed above 900 K, due to reaction of surface carbon and oxygen. The implications of our results for studies where alkyl halides are used as models for radical reactions on surfaces are discussed.

  5. Structure-property evolution during polymer crystallization

    NASA Astrophysics Data System (ADS)

    Arora, Deepak

    The main theme of this research is to understand the structure-property evolution during crystallization of a semicrystalline thermoplastic polymer. A combination of techniques including rheology, small angle light scattering, differential scanning calorimetry and optical microscopy are applied to follow the mechanical and optical properties along with crystallinity and the morphology. Isothermal crystallization experiments on isotactic poly-1-butene at early stages of spherulite growth provide quantitative information about nucleation density, volume fraction of spherulites and their crystallinity, and the mechanism of connecting into a sample spanning structure. Optical microscopy near the fluid-to-solid transition suggests that the transition, as determined by time-resolved mechanical spectroscopy, is not caused by packing/jamming of spherulites but by the formation of a percolating network structure. The effect of strain, Weissenberg number (We ) and specific mechanical work (w) on rate of crystallization (nucleation followed by growth) and on growth of anisotropy was studied for shear-induced crystallization of isotactic poly-1-butene. The samples were sheared for a finite strain at the beginning of the experiment and then crystallized without further flow (Janeschitz-Kriegl protocol). Strain requirements to attain steady state/leveling off of the rate of crystallization were found to be much larger than the strain needed to achieve steady state of flow. The large strain and We>1 criteria were also observed for morphological transition from spherulitic growth to oriented growth. An apparatus for small angle light scattering (SALS) and light transmission measurements under shear was built and tested at the University of Massachusetts Amherst. As a new development, the polarization direction can be rotated by a liquid crystal polarization rotator (LCPR) with a short response time of 20 ms. The experiments were controlled and analyzed with a LabVIEW(TM) based code (LabVIEW(TM) 7.1) in real time. The SALS apparatus was custom built for ExxonMobil Research in Clinton NJ.

  6. Characterization of dispersed heteropoly Acid on mesoporous zeolite using solid-state 31P NMR spin-lattice relaxation.


    Zhu, Kake; Hu, Jianzhi; She, Xiaoyan; Liu, Jun; Nie, Zimin; Wang, Yong; Peden, Charles H F; Kwak, Ja Hun


    Dispersion and quantitative characterization of supported catalysts is a grand challenge in catalytic science. In this paper, heteropoly acid H(3)PW(12)O(40) (HPA) is dispersed on mesoporous zeolite silicalite-1 derived from hydrothermal synthesis using carbon black nanoparticle templates, and the catalytic activity is studied for 1-butene isomerization. The HPAs supported on conventional zeolite and on mesoporous zeolite exhibit very different activities and thus provide good model systems to investigate the structure dependence of the catalytic properties. The HPA on mesoporous silicalite-1 shows enhanced catalytic activity for 1-butene isomerization, while HPA on conventional silicalite-1 exhibits low activity. To elucidate the structural difference, supported HPA catalysts are characterized using a variety of techniques, including (31)P magic angle spinning nuclear magnetic resonance, and are shown to contain a range of species on both mesoporous and conventional zeolites. However, contrary to studies reported in the literature, conventional NMR techniques and chemical shifts alone do not provide sufficient information to distinguish the dispersed and aggregated surface species. The dispersed phase and the nondispersed phase can only be unambiguously and quantitatively characterized using spin-lattice relaxation NMR techniques. The HPA supported on mesoporous zeolite contains a fast relaxation component related to the dispersed catalyst, giving a much higher activity, while the HPA supported on conventional zeolite has essentially only the slow relaxation component with very low activity. The results obtained from this work demonstrate that the combination of spinning sideband fitting and spin-lattice relaxation techniques can provide detailed structural information on not only the Keggin structure for HPA but also the degree of dispersion on the support. PMID:19601683

  7. (Phenoxyimidazolyl-salicylaldimine)iron complexes: synthesis, properties and iron catalysed ethylene reactions.


    Yankey, Margaret; Obuah, Collins; Guzei, Ilia A; Osei-Twum, Emmanuel; Hearne, Giovanni; Darkwa, James


    The reaction of 2-{[2-(1H-imidazol-4-yl)-ethylimino]-methyl}-phenol (L1), 2,4-di-tert-butyl-6-{[2-(1H-imidazol-4-yl)-ethylimino]-methyl}-phenol (L2) or 4-tert-butyl-2-{[2-(1H-imidazol-4-yl)-ethylimino]-methyl}-phenol (L3) with iron(ii) precursors produced either iron(ii) or iron(iii) complexes, depending on the nature of the anions in the iron(ii) precursor and the ligand. When the anion is chloride and the ligand L1, the product is [(L1)2Fe][FeCl4] (1), but when the anion is triflate (OTf(-)) and the ligand is L2, the product is [(L2)2Fe][OTf]2 (2). With iron(ii) halides and tert-butyl groups on the phenoxy ligands L2 and L3, the iron(iii) complexes [(L2)FeX2] {where X = Cl (3), Br (4) and I = (5)} and [(L3)FeCl2] (6) were formed. Complexes 1-6 were characterised by a combination of elemental analyses, IR spectroscopy and mass spectrometry; and in selected cases (3 and 4) by single crystal X-ray crystallography. The crystal structures of 3 and 4 indicated that the iron(ii) precursors oxidised to iron(iii) in forming complexes 3-6; an observation that was corroborated by the magnetic properties and the (57)Fe Mössbauer spectra of 3 and 4. The iron(iii) complexes 3-6 were used as pre-catalysts for the oligomerisation and polymerisation of ethylene. Products of these ethylene reactions depended on the solvent used. In toluene ethylene oligomerised mainly to 1-butene and was followed by the 1-butene alkylating the solvent to form butyl-toluenes via a Friedel-Crafts alkylation reaction. In chlorobenzene, ethylene oligomerised mainly to a mixture of C4-C12 alkenes. Interestingly small amounts of butyl-chlorobenzenes and hexyl-chlorobenzenes were also formed via a Friedel-Crafts alkylation with butenes and hexenes from the oligomerisation of ethylene. PMID:25111396

  8. Distributions and source apportionment of ambient volatile organic compounds in Beijing city, China.


    Liu, Ying; Shao, Min; Zhang, Jing; Fu, Linlin; Lu, Sihua


    Ambient measurements of 108 volatile organic compounds (VOCs), including alkanes, alkenes, aromatics, and halogenated hydrocarbons, were conducted from 2002 to 2003 at six sites in Beijing city. The mean mass concentration of total VOCs was 132.6 +/- 52.2 microg/m3, with alkanes, aromatics, and alkenes accounting for 35%, 22%, and 17%, respectively. The concentrations of most VOC species showed a seasonal pattern, with higher values in November, mildly lower in March, and much lower in July. In winter and spring, apparent diurnal variations of reactive compounds such as 1,3-butadiene and isoprene were observed, whereas those were not distinct in summer. The propylene equivalent concentration was used to evaluate the contribution of individual VOCs in ozone formation. Reactive olefins from anthropogenic emissions dominated the reactions with OH at each season. In summer, isoprene became the largest contributor, followed by 1-butene and propene. The source profiles in Beijing, including vehicle exhaust, gasoline vapor, painting operations, and asphalt pavement, were investigated. Based on the measurement of source profiles and ambient concentrations of VOCs in Beijing, chemical mass balance receptor model was applied to estimate contributions of several potential VOCs sources in Beijing. The results indicated that vehicle exhaust contributed on average 57.7%, followed by painting operations, gasoline vapor, and liquefied petroleum gas (LPG) at 12.4%, 11.3%, and 5.8%, respectively. PMID:16194907

  9. The effect of rhenium, sulfur and alumina on the conversion of hydrocarbons over platinum single crystals: Surface science and catalytic studies

    SciTech Connect

    Kim, C.


    Conversion reactions of hydrocarbons over Pt-Re model catalyst surfaces modified by sulfur and alumina have been studied. A plasma deposition source has been developed to deposit Pt, Re, and Al on metal substrates variable coverage in ultrahigh vacuum without excessive heating. Conversion of n-hexane was performed over the Re-covered Pt and Pt-covered Re surfaces. The presence of the second metal increased hydrogenolysis activity of both Pt-Re surfaces. Addition of sulfur on the model Catalyst surfaces suppressed hydrogenolysis activity and increased the cyclization rate of n-hexane to methylcyclopentane over Pt-Re surfaces. Sulfiding also increased the dehydrogenation rate of cyclohexane to benzene Over Pt-Re surfaces. It has been proposed that the PtRe bimetallic catalysts show unique properties when combined with sulfur, and electronic interactions exist between platinum, rhenium and sulfur. Decomposition of hydrocarbons on the sulfur-covered Pt-Re surfaces supported that argument. For the conversion of 1-butene over the planar Pt/AlO{sub x}, the addition of Pt increased the selectivity of hydrogenation over isomerization.

  10. The effect of rhenium, sulfur and alumina on the conversion of hydrocarbons over platinum single crystals: Surface science and catalytic studies

    SciTech Connect

    Kim, C.


    Conversion reactions of hydrocarbons over Pt-Re model catalyst surfaces modified by sulfur and alumina have been studied. A plasma deposition source has been developed to deposit Pt, Re, and Al on metal substrates variable coverage in ultrahigh vacuum without excessive heating. Conversion of n-hexane was performed over the Re-covered Pt and Pt-covered Re surfaces. The presence of the second metal increased hydrogenolysis activity of both Pt-Re surfaces. Addition of sulfur on the model Catalyst surfaces suppressed hydrogenolysis activity and increased the cyclization rate of n-hexane to methylcyclopentane over Pt-Re surfaces. Sulfiding also increased the dehydrogenation rate of cyclohexane to benzene Over Pt-Re surfaces. It has been proposed that the PtRe bimetallic catalysts show unique properties when combined with sulfur, and electronic interactions exist between platinum, rhenium and sulfur. Decomposition of hydrocarbons on the sulfur-covered Pt-Re surfaces supported that argument. For the conversion of 1-butene over the planar Pt/AlO[sub x], the addition of Pt increased the selectivity of hydrogenation over isomerization.

  11. Coordinative unsaturation in chiral organolanthanides. Synthetic and asymmetric catalytic mechanistic study of organoyttrium and -lutetium complexes having pseudo-meso Me{sub 2}Si({eta}{sup 5}-RC{sub 5}H{sub 3}) ({eta}{sup 5}R{sup *}C{sub 5}H{sub 3}) ancillary ligation

    SciTech Connect

    Haar, C.M.; Stern, C.L.; Marks, T.J.


    As established by NMR, circular dichroism, and X-ray diffraction, organolanthanide complexes of the new chelating ligand Me{sub 2} Si(3-Me{sub 3}SiCp)[3-(-)-menthylCp]{sup 2-} (Cp = {eta}{sup 5}-C{sub 5}H{sub 3}) preferentially adopt a single planar chiral configuration of the asymmetric metal-ligand template. Chloro complexes (S,R)-Me{sub 2}Si(Me{sub 3}SiCp)[(-)-menthylCp] Ln({mu}-Cl){sub 2}Li(OEt{sub 2}){sub 2} (Ln = Y, Lu) were isolated diastereomerically pure by crystallization from diethyl ether. At least two additional epimers are detected in THF solution. These complexes are effective precatalysts for asymmetric hydrogenation of unfunctionalized olefins and for the reductive cyclization of 1,5-dienes. The highest enantioselectivities are obtained when the Lu complex is used for hydrogenation of 2-phenyl-1-butene (45% ee) and deuteration of styrene (10% ee) and 1-pentene (30% ee). 67 refs., 14 figs., 5 tabs.

  12. New analytical method for the determination of styrene oligomers formed from polystyrene decomposition and its application at the coastlines of the North-West Pacific ocean.


    Saido, Katsuhiko; Koizumi, Koshiro; Sato, Hideto; Ogawa, Naoto; Kwon, Bum Gun; Chung, Seon-Yong; Kusui, Takashi; Nishimura, Masahiko; Kodera, Yoichi


    The pollution caused by plastic debris is an environmental problem with increasing concern in the oceans. Among the plastic polymers, polystyrene (PS) is one of the most problematic plastics due to the direct public health risk associated with their dispersion, as well as the numerous adverse environmental impacts which arise both directly from the plastics and from their degradation products. Little is known about their potential distribution characteristics throughout the oceans. For the first time, we report here on the regional distribution of styrene monomer (SM), styrene dimers (SD; 2,4-diphenyl-1-butene, SD1; 1,3-diphenyl propane, SD2), and styrene trimer (2,4,6-triphenyl-1-hexene: ST1), as products of PS decomposition determined from samples of sand and seawater from the shorelines of the North-West Pacific ocean. In order to quantitatively determine SM, SD (=SD1+SD2), and ST1, a new analytical method was developed. The detection limit was 3.3 ?g L(-1), based on a signal-to-noise ratio of three, which was well-suited to quantify levels of SM, SD, and ST1 in samples. Surprisingly, the concentrations of SM, SD, and ST1 in sand samples from the shorelines were consistently greater than those in seawater samples from the same location. The results of this study suggest that SM, SD, and ST1 can be widely dispersed throughout the North-West Pacific oceans. PMID:24394362

  13. Rich methane laminar flames doped with light unsaturated hydrocarbons. Part II: 1,3butadiene

    E-print Network

    Gueniche, Hadj-Ali; Fournet, René; Battin-Leclerc, Frédérique


    In line with the study presented in the part I of this paper, the structure of a laminar rich premixed methane flame doped with 1,3-butadiene has been investigated. The flame contains 20.7% (molar) of methane, 31.4% of oxygen and 3.3% of 1,3-butadiene, corresponding to an equivalence ratio of 1.8, and a ratio C4H6 / CH4 of 16 %. The flame has been stabilized on a burner at a pressure of 6.7 kPa using argon as dilutant, with a gas velocity at the burner of 36 cm/s at 333 K. The temperature ranged from 600 K close to the burner up to 2150 K. Quantified species included usual methane C0-C2 combustion products and 1,3-butadiene, but also propyne, allene, propene, propane, 1,2-butadiene, butynes, vinylacetylene, diacetylene, 1,3-pentadiene, 2-methyl-1,3-butadiene (isoprene), 1-pentene, 3-methyl-1-butene, benzene and toluene. In order to model these new results, some improvements have been made to a mechanism previously developed in our laboratory for the reactions of C3-C4 unsaturated hydrocarbons. The main reacti...

  14. Hydrogen transfer on USY zeolites during gas oil cracking: Influence of the adsorption characteristics of the zeolite catalysts

    SciTech Connect

    Corma, A.; Faraldos, M.; Martinez, A.; Mifsud, A. (CSIC, Madrid (Spain))


    In this work, the hydrogen transfer activity of two series of HY zeolites dealuminated by steam and by SiCl{sub 4} (24.47-24.24 {angstrom} unit cell) has been measured from the butene/butane ratio in the products obtained during the cracking of a vacuum gas oil at 756 K. With the steam-dealuminated zeolites, a sharp decrease in the ratio of hydrogen transfer to cracking is observed when the number of Al atoms per unit cell falls below 10. On the other hand, in samples dealuminated by SiCl{sub 4}, this ratio changes very little with dealumination. These results cannot be explained assuming the need for adjacent acid sites for the hydrogen transfer. The authors have found, by adsorption measurements of n-butane and 1-butene, that the changes in the relative rates of bimolecular (hydrogen transfer) to monomolecular (cracking) reactions, observed with dealuminated HY zeolites, can be explained by the changes in the adsorption capacity and adsorption selectivity which occur on zeolites dealuminated at different levels by different dealumination procedures, and which are due to changes in the electric fields inside the pores.

  15. Volatile hydrocarbon emissions from vehicles and vertical ventilations in the Hsuehshan traffic tunnel, Taiwan.


    Lai, Chia-Hsiang; Peng, Yen-Ping


    The concentrations of 56 volatile organic hydrocarbons (VOCs) were measured simultaneously in the southbound bore, the northbound bore and the exhaust air shafts of the Hsuehshan tunnel near Yilan, Taiwan during 2007 and 2008. A total of 60 integrated air samples were collected using stainless steel canisters and analyzed using GC/FID and GC/MS. The highest temperature and lowest relative humidity were observed at the exit of the tunnel owing to the accumulation in the tunnel of waste heat that was exhausted from vehicles. The five most abundant species in all samples were ethylene, acetylene, isopentane, propylene, and toluene. The exit/entrance ratios of total non-methane hydrocarbon (NMHC) concentration were 7.8 and 4.8 for the southbound and northbound bores, respectively. Furthermore, the most abundant species of emission rate (ER) is toluene (21.93-42.89 mg s(-1)), followed by isopentane, ethylene, propylene and 1-butene, with ER ranging from 2.50 to 9.31 mg s(-1) for the three shafts. The ozone formation potential (OFP)/total NMHC ratios in three exhaust air shafts show that the reactivities of these emissions are similar to those of vehicle emissions. PMID:21822577

  16. Exploring Molecular Dimension and Trajectory of Polymer Chains Embedded in Single Crystals

    NASA Astrophysics Data System (ADS)

    Hong, Youlee; Miyoshi, Toshikazu


    Semicrystalline polymers are crystallized as folded chains in thin lamellae of ca. 5-20 nm from random coils in the melt and solution states.. Even though there are continuous efforts on understanding of crystallization mechanisms at molecular levels for understanding of crystallization mechanism of polymers at molecular levels, the fundamental questions - when, where, and how do semicrystalline polymers fold during crystallization?- have not been clarified due to experimental limitations. Recently, we developed a novel strategy to access chain trajectory of semi-crystalline polymers using 13C -13C double Quantum (DQ) NMR. In this work, we recently investigated determined molecular dimension as well as chain-trajectory of 13C CH3-labeled isotactic poly(1-butene) (iPB1) in form III chiral single crystals blended with nonlabeled iPB1 crystallized under low supercooling, using solid-state NMR. Comparisons of 13C -13C double quantum (DQ) NMR results at multiple sites with spin dynamics simulation revealed individual chains form the three dimensional nanoclusters via folding. This result supports proves two step process of i) cluster formation by chain-folding the prestage of crystallization. and ii) depositions of the cluster on the growth front of single crystal. National Science Foundation.

  17. Mechanisms of thiophene hydrodesulfurization on model molybdenum catalysts

    SciTech Connect

    Sullivan, D.L.; Ekerdt, J.G.


    Hydrodesulfurization (HDS) activities and selectivities were measured for thiophene, tetrahydrothiophene (THT), and 1-butanethiol on silica-supported molybdenum catalysts at a pressure of 1 atm and temperatures ranging from 530 to 795 K. The model catalysts, which were previously characterized, feature isolated molybdenum atoms in the +2, +4, and +6 oxidation states and molybdenum dimers with each molybdenum atom in the +4 oxidation state. Silica-supported MoS{sub 2} was used for reference. Activities for thiophene and THT HDS correlate with oxidation state. Mo(II) is most active among dispersed catalysts. 1-Butanethiol activities were much larger than thiophene or THT activities and were roughly equal on all dispersed catalysts. Apparent activation energies of 43.4 and 48.5 kJ/mol were determined for thiophene HDS on Mo(II) and MoS{sub 2}/SiO{sub 2}, respectively. Dihydrothiophene, THT and 1-butanethiol were formed in thiophene HDS over Mo(II) and MoS{sub 2}/SiO{sub 2}. The major products of thiophene and THT HDS were 1-butene, 2-butene, and n-butene. Butadiene, i-butane, i-butene, methane, ethane, ethene, propane, and propene were formed in small amounts. Butadiene is thought to be the initial product of thiophene and THT desulfurization and undergoes subsequent hydrogenation and isomerization to yield the observed products. A common mechanism for HDS of thiophene and THT with 2,5-DHT as an intermediate is discussed.

  18. Ruta montana L. leaf essential oil and extracts: characterization of bioactive compounds and suppression of crown gall disease.


    Hammami, Inés; Smaoui, Slim; Hsouna, Anis Ben; Hamdi, Naceur; Triki, Mohamed Ali


    The aims of this study were to assess the antimicrobial efficacy of the leaf essential oil and the leaf extracts of R. montana against Botrytis cinerea, Fusarium oxysporum, Verticillium dahliae, Aspergillus oryzae and Fusarium solani. The oil (1.000 µg/disk) and the extracts (1.500 µg/disk) revealed a remarkable antifungal effect against the tested plant pathogenic fungi with a radial growth inhibition percentage of 40.0-80.0 % and 5.0-58.0 %, respectively along with their respective MIC values ranging from 100 to 1100 µg/mL and 250 to 3000 µg/mL. The oil had a strong detrimental effect on spore germination of all the tested plant pathogens along with the concentration as well as time-dependent kinetic inhibition of Fusarium oxysporum. Also, the oil exhibited a potent in vivo antifungal effect against Botrytis cinerea on tomato plants. Experiments carried out in plant revealed that the essential oil was slightly effective in suppression of gall formation induced by Agrobacterium tumefaciens on bitter almond. The results of this study indicate that the oil and extracts of R. montana leaves could become natural alternatives to synthetic fungicides to control certain important plant microbial diseases. The GC-MS analysis determined that 28 compounds, which represented 89.03 % of total oil, were present in the oil containing mainly 1-butene, methylcyclopropane, 2-butene and caryophyllene oxide. PMID:26417353

  19. Supported f-element complexes: surface chemistry and catalysis. Final report, August 15, 1984-January 14, 1986

    SciTech Connect

    Marks, T.J.; Burwell, R.L. Jr.


    The goal of this project is to elucidate, via a coordinated chemical and spectroscopic investigation, the nature of species produced when organo-f-element complexes (and by inference, early transition metal complexes as well) are adsorbed on high surface area metal oxides. These species constitute some of the most active olefin hydrogenation catalysts yet discovered and are also highly active for ethylene polymerication. Catalytic hydrogenation studies have been expanded from initial Cp'/sub 2/MR/sub 2//propylene systems (Cp' = (CH/sub 3/)/sub 5/C/sub 5/, M = Th,U) to other olefins (for Cp'/sub 2/MR/sub 2/ catalysts, N/sub t/:propylene approx. =1-butene >> isobutylene), metal complexes (N/sub t/:Cp'MR/sub 3/ >> Cp'/sub 2/MR/sub 2/ > Me/sub 2/Si((CH/sub 3/)/sub 4/C/sub 5/)/sub 2/MR/sub 2/ >> Cp/sub 3/MR), and supports (for Cp/sub 2/MR/sub 2/ catalysts, N/sub t/:dehydroxylated Al/sub 2/O/sub 3/ > partially dehydroxylated Al/sub 2/O/sub 3/ >> dehydroxylated SiO/sub 2/). Mechanistic studies have included deuterium labelling, CO poisoning, and preliminary kinetic measurements.

  20. Measurement of proton transfer reaction rates in a microwave cavity discharge flowing afterglow

    NASA Astrophysics Data System (ADS)

    Brooke, George M., IV

    The reaction rate coefficients between the hydronium ion and the molecules ethene (C2H4), propene (C 3H6), 1-butene (C4H8) and hydrogen sulfide (H2S) were measured at 296 K. The measured reaction rates were compared to collision rates calculated using average dipole orientation (ADO) theory. Reaction efficiency depends primarily upon the proton affinity of the molecules. All the measurements were obtained using the newly developed microwave cavity discharge flowing afterglow (MCD-FA) apparatus. This device uses an Asmussen-type microwave cavity discharge ion source that is spatially separated from the flow tube, eliminating many of the problems inherent with the original FA devices. In addition to measuring reaction rate coefficients, the MCD-FA was shown to be an effective tool for measuring trace compounds in atmospheric air. This method has many advantages over current detection techniques since compounds can be detected in almost real time, large mass ranges can be scanned quickly, and repeated calibration is not required. Preliminary measurements were made of car exhaust and exhaled alveolar air. Car exhaust showed the presence of numerous hydrocarbons, such as butene, benzene and toluene while the exhaled alveolar air showed the presence of various volatile organic compounds such as methanol and acetone.

  1. Reaction of niobium and tantalum neutral clusters with low pressure, unsaturated hydrocarbons in a pickup cell: From dehydrogenation to Met-Car formation

    NASA Astrophysics Data System (ADS)

    He, S.-G.; Xie, Y.; Dong, F.; Bernstein, E. R.


    Neutral niobium and tantalum clusters (Nbn and Tan) are generated by laser ablation and supersonic expansion into a vacuum and are reacted in a pickup cell with various low pressure (˜1mTorr) unsaturated hydrocarbons (acetylene, ethylene, propylene, 1-butene, 1,3-butadiene, benzene, and toluene) under nearly single collision conditions. The bare metal clusters and their reaction products are ionized by a 193nm laser and detected by a time of flight mass spectrometer. Partially and fully dehydrogenated products are observed for small (n?m) and large (n?m) neutral metal clusters, respectively, with m ranging from 2 to 5 depending on the particular hydrocarbon. In addition to primary, single collision products, sequential addition products that are usually fully dehydrogenated are also observed. With toluene used as the reactant gas, carbon loss products are observed, among which Nb8C12 and Ta8C12 are particularly abundant, indicating that the Met-Car molecule M8C12 can be formed from the neutral metal cluster upon two collisions with toluene molecules. The dehydrogenation results for low pressure reactions are compared with those available from previous studies employing flow tube (high pressure) reactors. Low pressure and high pressure cluster ion reactions are also compared with the present neutral metal cluster reactions. Reactions of unsaturated hydrocarbons and metal surfaces are discussed in terms of the present neutral cluster results.

  2. Characteristics of volatile organic compounds from motorcycle exhaust emission during real-world driving

    NASA Astrophysics Data System (ADS)

    Tsai, Jiun-Horng; Huang, Pei-Hsiu; Chiang, Hung-Lung


    The number of motorcycles has increased significantly in Asia, Africa, Latin American and Europe in recent years due to their reasonable price, high mobility and low fuel consumption. However, motorcycles can emit significant amounts of air pollutants; therefore, the emission characteristics of motorcycles are an important consideration for the implementation of control measures for motorcycles in urban areas. Results of this study indicate that most volatile organic compound (VOC) emission factors were in the range of several decades mg/km during on-road driving. Toluene, isopentane, 1,2,4-trimethylbenzene, m,p-xylene, and o-xylene were the most abundant VOCs in motorcycle exhaust, with emission factors of hundreds mg/km. Motorcycle exhaust was 15.4 mg/km for 15 carbonyl species. Acetaldehyde, acetone, formaldehyde and benzaldehyde were the major carbonyl species, and their emission factors ranged from 1.4 to 3.5 mg/km 1,2,4-trimethylbenzene, m,p-xylene, 1-butene, toluene, o-xylene, 1,2,3-trimethylbenzene, propene, 1,3,5-trimethylbenzene, isoprene, m-diethylbenzene, and m-ethyltoluene were the main ozone formation potential (OFP) species, and their OFP was 200 mg-O3/km or higher.

  3. Synthesis of novel acid electrolytes for phosphoric acid fuel cells. Final report, May 1985-October 1988

    SciTech Connect

    Adcock, J.L.


    Construction of a 40-millimole-per-hour-scale aerosol direct-fluorination reactor was completed June 26, 1986. F-Methyl F-4-methoxybutanoate and F-4-methoxybutanoyl fluoride were synthesized by aerosol direct fluorination of methyl 4-methoxybutanoate. Basic hydrolysis of the perfluorinated derivatives produce sodium F-4-methoxybutanoate which was pyrolyzed to F-3-methoxy-1-propene. Purification and shipment of 33 grams of F-3-methoxy-1-propene followed. Syntheses by analogous methods allowed production and shipment of 5 grams of F-3-ethoxy-1-propene, 18 grams of F-3-(2-methoxy.ethoxy)-1-propene, and 37 grams of F-3,3-dimethyl-1-butene. Eighteen grams of F-2,2-dimethyl-1-chloropropane was produced directly and shipped. As suggested by other contractors, 5 grams of F-3-methoxy-1-iodopropane, and 5 grams of F-3-(2-methoxy.ethoxy)-1-iodopropane were produced by converting the respective precursor acid sodium salts produced for olefin synthesis to the silver salts and pyrolyzing them with iodine. Each of these compounds was prepared for the first time by the aerosol fluorination process during the course of the contract. These samples were provided to other GRI contractors for synthesis of perfluorinated sulfur(VI) and phosphorous(V) acids.

  4. On the performance of FAU and MFI zeolites for the adsorptive removal of a series of volatile organic compounds from air using molecular simulation.


    Calero, S; Gómez-Álvarez, P


    Volatile organic compound (VOC) emissions can cause serious risk to human health and the environment. In this work, we used Monte Carlo simulations to assess the performance of industrially important zeolites for the adsorption-based removal of a number of common air pollutants, particularly small saturated and unsaturated hydrocarbons: propane, butane, propene, and 1-butene. We focused on the cage-like FAU and channel-like MFI zeolites. The adsorption isotherms of the multicomponent N2/O2/Ar/VOC mixtures at real concentrations and room temperature reveal a considerable influence of the host topology and pore dimensions. While the adsorption of the VOCs from the mixture in FAU is almost negligible, it is remarkable in MFI. The adsorption selectivity of each VOC over the air compounds exhibits a maximum at about 10(6)-10(7) Pa, and then decreases to virtually zero due to entropic effects. This behaviour for selectivity is maintained regardless of the chain length and the presence of double bonds in the VOC, but the values are indeed affected. Also, we examined the selectivity at 10(7) Pa for a number of other widely used zeolites, with pore features ensuring the diffusion of the adsorbates. Apart from MFI, we also found the channel-like MEL and MTW zeolite candidates for the targeted air decontamination. PMID:26392021

  5. Ethers from ethanol. 2: Reaction equilibria of simultaneous tert-amyl ethyl ether synthesis and isoamylene isomerization

    SciTech Connect

    Kitchaiya, P.; Datta, R. [Univ. of Iowa, Iowa City, IA (United States). Dept. of Chemical and Biochemical Engineering


    The recent requirements for blending oxygenates with gasoline for pollution abatement and octane improvement have opened up huge markets for ethers, synthesized by catalytically reacting an isoolefin with an alcohol. Consequently, alternatives to isobutylene-derived methyl tert-butyl ether (MTBE) obtained from methanol and ethyl tert-butyl ether (ETBE) obtained from ethanol are being explored. This paper provides a thermodynamic analysis of the liquid phase etherification of ethanol with 2-methyl-1-butene (2M1B) and 2-methyl-2-butene (2M2B), the two reactive isoamylene isomers. Both these isomers produce tert-amyl ethyl ether (TAEE) but also undergo isomerization. Theoretical and experimental results are provided here for the simultaneous TAEE synthesis and isoamylene isomerization. Expressions for the three thermodynamic equilibrium constants as a function of temperature are developed. Gibbs free energy and the enthalpy of formation of TAEE are also obtained. The equilibrium constants` correlations are utilized to compute the effect of the feed mole ratio of the isoamylenes and the inert solvent to ethanol as well as the reaction temperature on the equilibrium conversions and selectivities. Conditions that maximize etherification conversion and selectivity are explored.

  6. Ruta montana L. leaf essential oil and extracts: characterization of bioactive compounds and suppression of crown gall disease

    PubMed Central

    Hammami, Inés; Smaoui, Slim; Hsouna, Anis Ben; Hamdi, Naceur; Triki, Mohamed Ali


    The aims of this study were to assess the antimicrobial efficacy of the leaf essential oil and the leaf extracts of R. montana against Botrytis cinerea, Fusarium oxysporum, Verticillium dahliae, Aspergillus oryzae and Fusarium solani. The oil (1.000 µg/disk) and the extracts (1.500 µg/disk) revealed a remarkable antifungal effect against the tested plant pathogenic fungi with a radial growth inhibition percentage of 40.0-80.0 % and 5.0-58.0 %, respectively along with their respective MIC values ranging from 100 to 1100 µg/mL and 250 to 3000 µg/mL. The oil had a strong detrimental effect on spore germination of all the tested plant pathogens along with the concentration as well as time-dependent kinetic inhibition of Fusarium oxysporum. Also, the oil exhibited a potent in vivo antifungal effect against Botrytis cinerea on tomato plants. Experiments carried out in plant revealed that the essential oil was slightly effective in suppression of gall formation induced by Agrobacterium tumefaciens on bitter almond. The results of this study indicate that the oil and extracts of R. montana leaves could become natural alternatives to synthetic fungicides to control certain important plant microbial diseases. The GC-MS analysis determined that 28 compounds, which represented 89.03 % of total oil, were present in the oil containing mainly 1-butene, methylcyclopropane, 2-butene and caryophyllene oxide.

  7. Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities


    Dumesic, James A. (Verona, WI); Ruiz, Juan Carlos Serrano (Madison, WI); West, Ryan M. (Madison, WI)


    Described is a method to make liquid chemicals, such as functional intermediates, solvents, and liquid fuels from biomass-derived cellulose. The method is cascading; the product stream from an upstream reaction can be used as the feedstock in the next downstream reaction. The method includes the steps of deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to .gamma.-valerolactone, and converting the .gamma.-valerolactone to pentanoic acid. Alternatively, the .gamma.-valerolactone can be converted to a mixture of n-butenes. The pentanoic acid so formed can be further reacted to yield a host of valuable products. For example, the pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C.sub.9 and C.sub.18 olefins, which can be hydrogenated to yield a mixture of alkanes. Alternatively, the nonene may be isomerized to yield a mixture of branched olefins, which can be hydrogenated to yield a mixture of branched alkanes. The mixture of n-butenes formed from .gamma.-valerolactone can also be subjected to isomerization and oligomerization to yield olefins in the gasoline, jet and Diesel fuel ranges.

  8. [Emission Characteristics of VOCs from Typical Restaurants in Beijing].


    Cui, Tong; Cheng, Jing-chen; He, Wan-qing; Ren, Pei-fang; Nie, Lei; Xu, Dong-yao; Pan, Tao


    Using the EPA method, emission of volatile organic compounds (VOCs) , sampled from barbecue, Chinese and Western fast-food, Sichuan cuisine and Zhejiang cuisine restaurants in Beijing was investigated. VOCs concentrations and components from different cuisines were studied. The results indicated that based on the calibrated baseline ventilation volume, the VOCs emission level from barbecue was the highest, reaching 12.22 mg · m(-3), while those from fast-food of either Chinese or Western, Sichuan cuisine and Zhejiang cuisine were about 4 mg · m(-3). The components of VOCs from barbecue were different from those in the other cuisines, which were mainly propylene, 1-butene, n-butane, etc. The non-barbecue cuisines consisted of high concentration of alcohols, and Western fast-food contained relatively high proportion of aldehydes and ketones organic compounds. According to emission concentration of baseline ventilation volume, barbecue released more pollutants than the non-barbecue cuisines at the same scale. So, barbecue should be supervised and controlled with the top priority. PMID:26314095

  9. Removal rates of CHF (Ã 1A? (0, 0, 0)) by alkenes

    NASA Astrophysics Data System (ADS)

    Ortiz de Zárate, A.; Castaño, F.; Fernandez, J. A.; Martinez, R.; Sánchez Rayo, M. N.; Hancock, G.


    Absolute removal rates of CHF (à 1A? (0, 0, 0)) by ethene (C 2H 4), propene (C 3H 6), 1-butene (1-C 4H 8), isobutene( i-C 4H 8), 1,3-butadiene (C 4H 6), difluoromethane (CH 2F 2), nitric oxide (NO) and argon (Ar) have been measured at room temperature. CHF in the à 1A? state was produced by infrared multiphoton dissociation of CH 2F 2 forming the CHF (X˜ 1A') state and further pumping to the à 1A? state by absorption of a visible dye laser pulse. Removal processes were found to be second order with the following rate constants in units of 10 -10 cm 3 molecule -1 s -1: k(C 2H 4) = 0.9 ± 0.2. k(C 3H 6) = 1.0 ± 0.2; k (1-1C 4H 8) = 1.1 ± 0.2; k( i-C 4H 8) = 1.1 ± 0.2; k(C 4H 6) = 1.0 ± 0.2; k(Ar) = 0.27 ± 0.02; k(NO) = 0.8 ± 0.1; k(CH 2F 2) = 1.3 ± 0.1. The Parmenter—Seaver correlation for collisional removal of à 1A? CHF is discussed.

  10. An extended hindered-rotor model with incorporation of Coriolis and vibrational-rotational coupling for calculating partition functions and derived quantities

    NASA Astrophysics Data System (ADS)

    Vansteenkiste, P.; Van Neck, D.; Van Speybroeck, V.; Waroquier, M.


    Large-amplitude motions, particularly internal rotations, are known to affect substantially thermodynamic functions and rate constants of reactions in which flexible molecules are involved. Up to now all methods for computing the partition functions of these motions rely on the Pitzer approximation of more than 50 years ago, in which the large-amplitude motion is treated in complete independence of the other (vibrational) degrees of freedom. In this paper an extended hindered-rotor model (EHR) is developed in which the vibrational modes, treated harmonically, are correctly separated from the large-amplitude motion and in which relaxation effects (the changes in the kinetic-energy matrix and potential curvature) are taken into account as one moves along the large-amplitude path. The model also relies on a specific coordinate system in which the Coriolis terms vanish at all times in the Hamiltonian. In this way an increased level of consistency between the various internal modes is achieved, as compared with the more usual hindered-rotor (HR) description. The method is illustrated by calculating the entropies and heat capacities on 1,3-butadiene and 1-butene (with, respectively, one and two internal rotors) and the rate constant for the addition reaction of a vinyl radical to ethene. We also discuss various variants of the one-dimensional hindered-rotor scheme existing in the literature and its relation with the EHR model. It is argued why in most cases the HR approach is already quite successful.

  11. Promoter effect of Pd in hydrogenation of 1,3-butadiene over Co-Pd catalysts

    SciTech Connect

    Sarkany, A.; Zsoldos, Z.; Stefler, G. [Inst. of Isotopes of the Hungarian Academy of Sciences, Budapest (Hungary)] [and others] [Inst. of Isotopes of the Hungarian Academy of Sciences, Budapest (Hungary); and others


    Addition of a second metal or metal oxide often improves the selectivity of a supported catalyst for the hydrogenation of 1,3-butadiene impurities in commercial n-butene streams. This research has explored the effect of adding Pd to cobalt supported on alumina. Catalysts containing 5 wt% Co and varying amounts (0.1 to 1.0 wt%) of Pd were prepared and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, chemisorption of CO and H{sub 2}, and temperature-programmed reduction after having been subjected to a variety of carefully controlled pretreatments. Activities and product selectivities were tested for hydrogenation of pure 1,3-butadiene and butadiene in a mixture with 1-butene at room temperature. The presence of Pd increased the reducibility of the Co, and separate aluminate, Co, and Pd-Co bimetallic surface phases were identified following various pretreatments. Increasing the Co/Pd ratio decreased the formation of n-butane at room temperature relative to the rate of butadiene conversion, although the improved selectivity was achieved at the expense of increased olefin isomerization and deactivation due to accumulation of carbonaceous residues on the surface. It was not possible to determine unequivocally whether the observed modifications were due to electronic effects or selective poisoning of the separate Co sites. 38 refs., 13 figs., 5 tabs.

  12. Structure sensitivity in oxide catalysis

    SciTech Connect

    Kung, H.H.


    In this paper it is shown that similar to metal catalysis, metal oxide catalysis can be dependent upon crystalline structure. Two types of structure sensitivity are demonstrated. In one, activity and sensitivity depend upon crystalline size. In the other, they depend on the crystal plane. Comparison of the activity and selectivity of ..cap alpha..-Fe/sub 2/O/sub 3/ with that of ..gamma..-Fe/sub 2/O/sub 3/ in the catalysis of the dehydrogenation of 1-butene to butadiene reveals that the latter is three times more active than the ..cap alpha..-form and that crystalline size and possibly surface structure determine catalytic activity. The ZnO catalysis of methanol conversion to methane, CO and CO/sub 2/ was studied using D/sub 3/COD and CH/sub 3/OD. Catalytic activity and selectivity is solely a function of surface structure. Of the four ZnO surfaces studied using a temperature-dependent programmed desorption technique (single crystal), (flat, non polar-10bar10, stepped-50bar51 and 40bar41, and the Zn polar surfaces-0001), the stepped 40bar41 surface (4 ZnO units/terrace) was the most active.

  13. Evaluation of the acid properties of porous zirconium-doped and undoped silica materials

    SciTech Connect

    Fuentes-Perujo, D.; Santamaria-Gonzalez, J.; Merida-Robles, J.; Rodriguez-Castellon, E.; Jimenez-Lopez, A.; Maireles-Torres, P. . E-mail:; Moreno-Tost, R.


    A series of porous silica and Zr-doped silica molecular sieves, belonging to the MCM-41 and MSU families, were prepared and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and N{sub 2} adsorption at 77 K. Their acid properties have been evaluated by NH{sub 3}-TPD, adsorption of pyridine and deuterated acetonitrile coupled to FT-IR spectroscopy and the catalytic tests of isopropanol decomposition and isomerization of 1-butene. The acidity of purely siliceous solids were, in all cases, very low, while the incorporation of Zr(IV) into the siliceous framework produced an enhancement of the acidity. The adsorption of basic probe molecules and the catalytic behaviour revealed that Zr-doped MSU-type silica was more acidic than the analogous Zr-MCM-41 solid, with a similar Zr content. This high acidity observed in the case of Zr-doped silica samples is due to the presence of surface zirconium atoms with a low coordination, mainly creating Lewis acid sites. - Graphical abstract: The adsorption of basic probe molecules and the catalytic behaviour have revealed that MSU-type materials are more acidic than the analogous MCM-41 solids, mainly after the incorporation of zirconium into the silica framework.

  14. [Aluminum coordination and active sites on aluminas, Y-zeolites and pillared layered silicates]. Progress report

    SciTech Connect

    Fripiat, J.J.


    This report is organized in four sections. In the first the authors will outline structural features which are common to all fine grained alumina, as well as to non-framework alumina in zeolites. This section will be followed by a study of the surface vs. bulk coordination of aluminum. The third section will deal with measurement of the number of acid sites and the scaling of their strength. The fourth and last section will describe three model reactions: the isomerization of 1-butene and of 2 cis-butene; the isomerization and disproportionation of oxtho-xylene; and the transformation of trichloroethane into vinyl chloride followed by the polymerization of the vinyl chloride. The relationship between chemical activity and selectivity and what is known of the local structure of the active catalytic sites will be underlined. Other kinds of zeolites besides Y zeolite have been studied. Instead of the aluminum pillared silicates they found it more interesting to study the substitution of silicon by aluminum in a layered structure containing a permanent porosity (aluminated sepiolite).

  15. Fluid loss agents for oil well cementing composition

    SciTech Connect

    Savoly, A.; Villa, J.L.; Garvey, C.M.; Resnick, A.L.


    This patent describes a method of cementing a conduit in a borehole penetrating an earthen formation by introducing a cementing composition into the space. The cementing composition comprises: water; hydraulic cement; a water dispersible fluid loss additive comprised of a terpolymer of (1) from about 10 to about 75 weight percent of an acid selected from the group consisting of 2-acrylamido-2 methylpropane sulfonic acid, sodium vinyl sulfonate and vinyl benzene sulfonate; (2) from about 10 to 76 weight percent of a nonionic monomer selected from the group consisting of acrylamide, N,N-dimethylacrylamide, N-vinyl pyrrolidone, N-vinyl acetamide and dimethylamino ethyl methacrylate; and (3) from about 1 to 60 weight percent of an unsaturated polybasic acid selected from the group consisting of itaconic acid, maleic acid, fumaric acid, citraconic acid, mesaconic acid, glutaconic acid, aconitic acid, dimethylmuconic acid and 1-butene 2,3,4-tricarboxylic acid, the polymer having an average molecular weight of between about 200,000 and about 1,000,000 being in its free acid or partially or completely neutralized form and being at least water dispersible.

  16. Ion-molecule reactions in unsaturated hydrocarbons - Allene, propyne, diacetylene, and vinylacetylene

    NASA Technical Reports Server (NTRS)

    Anicich, V. G.; Blake, G. A.; Huntress, W. T., Jr.; Kim, J. K.; Mcewan, M. J.


    Ion-molecule reactions in allene, propyne, diacetylene, and vinylacetylene (1-buten-3-yne) have been studied at near-thermal energies by the technique of ion cyclotron resonance mass spectrometry. Rate coefficients and branching ratios are reported for the reactions of C3Hn(+) (n = 1-4) with allene and propyne and for the reactions of C4Hn(+) (n = 0-5) with diacetylene and vinylacetylene. Branching ratios are also given for the reactions of C4Hn(+), C5Hn and C6Hn(+) with propyne and for reactions of C6Hn(+) with diacetylene and vinylacetylene. More than 90 percent of the reactive channels lead to product ions having a larger carbon skeleton than the reactant ion. Evidence for ions with the same m/e ratio having differing reactivities was obtained for C3Hn(+), C6H7(+), and C7H7(+). Ion reaction sequences in allene and propyne were followed at higher pressures (0.0001 torr) to investigate secondary, tertiary, and higher order processes.

  17. On the Radiolysis of Ethylene Ices by Energetic Electrons and Implications to the Extraterrestrial Hydrocarbon Chemistry

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Maity, Surajit; Abplanalp, Matt; Turner, Andrew; Kaiser, Ralf I.


    The chemical processing of ethylene ices (C2H4) by energetic electrons was investigated at 11 K to simulate the energy transfer processes and synthesis of new molecules induced by secondary electrons generated in the track of galactic cosmic ray particles. A combination of Fourier transform infrared spectrometry (solid state) and quadrupole mass spectrometry (gas phase) resulted in the identification of six hydrocarbon molecules: methane (CH4), the C2 species acetylene (C2H2), ethane (C2H6), the ethyl radical (C2H5), and—for the very first time in ethylene irradiation experiments—the C4 hydrocarbons 1-butene (C4H8) and n-butane (C4H10). By tracing the temporal evolution of the newly formed molecules spectroscopically online and in situ, we were also able to fit the kinetic profiles with a system of coupled differential equations, eventually providing mechanistic information, reaction pathways, and rate constants on the radiolysis of ethylene ices and the inherent formation of smaller (C1) and more complex (C2, C4) hydrocarbons involving carbon-hydrogen bond ruptures, atomic hydrogen addition processes, and radical-radical recombination pathways. We also discuss the implications of these results on the hydrocarbon chemistry on Titan's surface and on ice-coated, methane-bearing interstellar grains as present in cold molecular clouds such as TMC-1.

  18. Substrate range and enantioselectivity of epoxidation reactions mediated by the ethene-oxidising Mycobacterium strain NBB4.


    Cheung, Samantha; McCarl, Victoria; Holmes, Andrew J; Coleman, Nicholas V; Rutledge, Peter J


    Mycobacterium strain NBB4 is an ethene-oxidising micro-organism isolated from estuarine sediments. In pursuit of new systems for biocatalytic epoxidation, we report the capacity of strain NBB4 to convert a diverse range of alkene substrates to epoxides. A colorimetric assay based on 4-(4-nitrobenzyl)pyridine) has been developed to allow the rapid characterisation and quantification of biocatalytic epoxide synthesis. Using this assay, we have demonstrated that ethene-grown NBB4 cells epoxidise a wide range of alkenes, including terminal (propene, 1-butene, 1-hexene, 1-octene and 1-decene), cyclic (cyclopentene, cyclohexene), aromatic (styrene, indene) and functionalised substrates (allyl alcohol, dihydropyran and isoprene). Apparent specific activities have been determined and range from 2.5 to 12.0 nmol min(-1) per milligram of cell protein. The enantioselectivity of epoxidation by Mycobacterium strain NBB4 has been established using styrene as a test substrate; (R)-styrene oxide is produced in enantiomeric excesses greater than 95%. Thus, the ethene monooxygenase of Mycobacterium NBB4 has a broad substrate range and promising enantioselectivity, confirming its potential as a biocatalyst for alkene epoxidation. PMID:22410742

  19. Polar organic marker compounds in atmospheric aerosols during the LBA-SMOCC 2002 biomass burning experiment in Rondônia, Brazil: sources and source processes, time series, diel variations and size distributions

    NASA Astrophysics Data System (ADS)

    Claeys, M.; Kourtchev, I.; Pashynska, V.; Vas, G.; Vermeylen, R.; Wang, W.; Cafmeyer, J.; Chi, X.; Artaxo, P.; Andreae, M. O.; Maenhaut, W.


    Measurements of polar organic marker compounds were performed on aerosols that were collected at a pasture site in the Amazon basin (Rondônia, Brazil) using a High-Volume dichotomous sampler (HVDS) and a Micro-Orifice Uniform Deposit Impactor (MOUDI). The samplings were conducted within the framework of the LBA-SMOCC (Large-Scale Biosphere Atmosphere Experiment in Amazônia - Smoke Aerosols, Clouds, Rainfall, and Climate: Aerosols From Biomass Burning Perturb Global and Regional Climate) campaign, which took place from 9 September till 14 November 2002, spanning the late dry season (biomass burning), the transition period, and the onset of the wet season (clean conditions). In the present study a more detailed discussion is presented compared to previous reports on the behavior of selected polar marker compounds, including: (a) levoglucosan, a tracer for biomass burning, (b) malic acid, a tracer for the oxidation of semivolatile carboxylic acids, (c) tracers for secondary organic aerosol (SOA) from isoprene, i.e., the 2-methyltetrols (2-methylthreitol and 2-methylerythritol) and the C5-alkene triols [2-methyl-1,3,4-trihydroxy-1-butene (cis and trans) and 3-methyl-2,3,4-trihydroxy-1-butene], and (d) sugar alcohols (arabitol, mannitol, and erythritol), tracers for fungal spores. The results obtained for levoglucosan are covered first with the aim to address its contrasting behavior with that of malic acid, the isoprene SOA tracers, and the fungal spore tracers. The tracer data are discussed taking into account new insights that recently became available into their stability and/or aerosol formation processes. During all three periods, levoglucosan was the most dominant identified organic species in the PM2.5 size fraction of the HVDS samples. In the dry period levoglucosan reached concentrations of up to 7.5 ?g m-3 and exhibited diel variations with a nighttime prevalence. It was closely associated with the PM mass in the size-segregated samples and was mainly present in the fine mode, except during the wet period where it peaked in the coarse mode. Isoprene SOA tracers showed an average concentration of 250 ng m-3 during the dry period versus 157 ng m-3 during the transition period and 52 ng m-3 during the wet period. Malic acid and the 2-methyltetrols exhibited a different size distribution pattern: while the 2-methyltetrols were mainly associated with the fine mode during all periods, malic acid was prevalent in the fine mode only during the dry and transition periods, while it was dominant in the coarse mode during the wet period, consistent with different formation processes. The sum of arabitol, mannitol, and erythritol in the PM2.5 fraction of the HVDS samples during the dry, transition, and wet periods was, on average, 54 ng m-3, 34 ng m-3, and 27 ng m-3, respectively, and revealed minor day/night variation. The mass size distributions of arabitol and mannitol during all periods showed similar patterns and an association with the coarse mode, consistent with their primary origin. The results show that even under the heavy smoke conditions of the dry period a natural background with contributions from bioaerosols and isoprene SOA can be revealed. The enhancement in isoprene SOA in the dry season is mainly attributed to an increased acidity of the aerosols and a decreased wet deposition.

  20. Characteristics of volatile organic compounds (VOCs) emitted from a petroleum refinery in Beijing, China

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Cheng, Shuiyuan; Li, Guohao; Wang, Gang; Wang, Haiyan


    This study made a field VOCs (volatile organic compounds) measurement for a petroleum refinery in Beijing by determining 56 PAMS VOCs, which are demanded for photochemical assessment in US, and obtained the characteristics of VOCs emitted from the whole refinery and from its inner main devices. During the monitoring period, this refinery brought about an average increase of 61 ppbv in the ambient TVOCs (sum of the PAMS VOCs) at the refinery surrounding area, while the background of TVOCs there was only 10-30 ppbv. In chemical profile, the VOCs emitted from the whole refinery was characteristic by isobutane (8.7%), n-butane (7.9%), isopentane (6.3%), n-pentane (4.9%%), n-hexane (7.6%), C6 branched alkanes (6.0%), propene (12.7%), 1-butene (4.1%), benzene (7.8%), and toluene (5.9%). On the other hand, the measurement for the inner 5 devices, catalytic cracking units (CCU2 and CCU3), catalytic reforming unit (CRU), tank farm (TF), and wastewater treatment(WT), revealed the higher level of VOCs pollutions (about several hundred ppbv of TVOCs), and the individual differences in VOCs chemical profiles. Based on the measured speciated VOCs data at the surrounding downwind area, PMF receptor model was applied to identify the VOCs sources in the refinery. Then, coupling with the VOCs chemical profiles measured at the device areas, we concluded that CCU1/3 contributes to 25.9% of the TVOCs at the surrounding downwind area by volume, followed by CCU2 (24.7%), CRU (18.9%), TF (18.3%) and WT (12.0%), which was accordant with the research of US EPA (2008). Finally, ozone formation potentials of the 5 devices were also calculated by MIR technique, which showed that catalytic cracking units, accounting for about 55.6% to photochemical ozone formation, should be given the consideration of VOCs control firstly.

  1. An evaluation of the single turnover (STO) procedure as a method for the determination of the active site densities on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Baum, D.R.; High, K.G.; Szivos, L.S.; O'Leary, S.T. (Seton Hall Univ., South Orange, NJ (USA))


    The extent of 2-butene formation during the STO reactions over Pd and Rh indicates that the alkene isomerization is nonstoichiometric. With Pt the extent of isomerization is also influenced by flow rate and reactant pulse size but to a lesser extent. Thus, the STO reaction procedure cannot be used for the determination of isomerization site densities on any of these catalysts. This procedure has been used to determine the saturation site densities on the EuroPt-I Pt/SiO{sub 2} and some northwestern Pt/SiO{sub 2} catalysts. The STO reaction sequence has also been run over Pt, Pd, and Rh catalysts using each of the isomeric butenes as the reactant alkene. Over all three catalysts the same amounts of direct and two-step saturation were observed regardless of the starting alkene showing that these saturation sites are not sensitive to the geometry of the reactant olefin. With Rh a near equilibrium mixture of all three double bond isomers is formed from each of the three starting alkenes. With Pt the extent of isomerization is characteristically low regardless of the starting olefin, so the low isomerization observed during the STO reaction of 1-butene on Pt is not the result of the formation of a primary metalalkyl on a large number of isomerization sites. The STO determined reactive site densities have been correlated with transition electron microscopy (TEM) measured metal particle sizes and turnover frequency (TOF) data for a number of reactions. From these results the sites on which specific reactions take place have been determined as has the site TOF for each of the active sites involved.

  2. Rich methane premixed laminar flames doped by light unsaturated hydrocarbons. III. Cyclopentene

    SciTech Connect

    Gueniche, H.A.; Glaude, P.A.; Fournet, R.; Battin-Leclerc, F. [Departement de Chimie-Physique des Reactions, UMR 7630 CNRS-INPL, Nancy-University, 1 rue Grandville, BP 20451, 54001 Nancy Cedex (France)


    In line with the studies presented in Parts I (methane flame seeded with allene and propyne) and II (methane flame seeded with 1,3-butadiene) of this paper, the structure of a laminar rich premixed methane flame doped with cyclopentene has been investigated. The gases of this flame contain 15.3% (molar) of methane, 26.7% of oxygen, and 2.4% cyclopentene, corresponding to an overall equivalence ratio of 1.79 and a C{sub 5}H{sub 8}/CH{sub 4} ratio of 15.7%. The flame has been stabilized on a burner at a pressure of 6.7 kPa using argon as dilutant, with a gas velocity at the burner of 36 cm/s at 333 K. The measured temperature ranged from 627 K close to the burner up to 2027 K. Species quantified by gas chromatography included the usual methane C{sub 0}-C{sub 2} combustion products, but also propyne, allene, propene, propane, 1-butene, 1,3-butadiene, 1,2-butadiene, vinylacetylene, diacetylene, cyclopentadiene, 1,3-pentadiene, benzene, and toluene. A new mechanism for the oxidation of cyclopentene has been developed and added to the former model for the oxidation of small unsaturated hydrocarbons, benzene, and toluene described in Parts I and II. The whole mechanism involved 175 species in 1134 reactions. The main reaction pathways of consumption of cyclopentene and of formation of benzene and toluene are presented and discussed from flow rate analyses. (author)

  3. Rich premixed laminar methane flames doped by light unsaturated hydrocarbons. II. 1,3-Butadiene

    SciTech Connect

    Gueniche, H.A.; Glaude, P.A.; Fournet, R.; Battin-Leclerc, F. [Departement de Chimie-Physique des Reactions, UMR 7630 CNRS, INPL-ENSIC, 1 rue Grandville, BP 20451, 54001 Nancy Cedex (France)


    In line with the study presented in Part I of this paper, the structure of a rich premixed laminar methane flame doped with 1,3-butadiene has been investigated. The flame contains 20.7% (molar) of methane, 31.4% of oxygen, and 3.3% of 1,3-butadiene, corresponding to an equivalence ratio of 1.8, and a C{sub 4}H{sub 6}/CH{sub 4} ratio of 16%. The flame has been stabilized on a burner at a pressure of 6.7 kPa using argon as dilutant, with a gas velocity at the burner of 36 cm/s at 333 K. The temperature ranged from 600 K close to the burner up to 2150 K. Quantified species included the usual methane C{sub 0}-C{sub 2} combustion products and 1,3-butadiene, but also propyne, allene, propene, propane, 1,2-butadiene, butynes, vinylacetylene, diacetylene, 1,3-pentadiene, 2-methyl-1,3-butadiene (isoprene), 1-pentene, 3-methyl-1-butene, benzene, and toluene. To model these new results, some improvements have been made to a mechanism previously developed in our laboratory for the reactions of C{sub 3}-C{sub 4} unsaturated hydrocarbons. The main reaction pathways of consumption of 1,3-butadiene and of formation of C{sub 6} aromatic species have been derived from flow rate analyses. In this case, the C{sub 4} route to benzene formation plays an important role in comparison to the C{sub 3} pathway. (author)

  4. Characterization and Dynamics of Substituted Ruthenacyclobutanes Relevant to the Olefin Cross-Metathesis Reaction

    PubMed Central

    Blake, Garrett; VanderVelde, David G.; Grubbs, Robert H.


    The reaction of the phosphonium alkylidene [(H2IMes)RuCl2=CHP(Cy)3)]+ BF4– with propene, 1-butene, and 1-hexene at –45 °C affords various substituted, metathesis-active ruthenacycles. These metallacycles were found to equilibrate over extended reaction times in response to decreases in ethylene concentrations, which favored increased populations of ?-monosubstituted and ?,?’-disubstituted (both cis and trans) ruthenacycles. On an NMR timescale, rapid chemical exchange was found to preferentially occur between the ?-hydrogens of the cis and trans stereoisomers prior to olefin exchange. Exchange on an NMR timescale was also observed between the ?- and ?-methylene groups of the monosubstituted ruthenacycle (H2IMes)Cl2Ru(CHRCH2CH2) (R = CH3, CH2CH3, (CH2)3CH3). EXSY NMR experiments at –87 °C were used to determine the activation energies for both of these exchange processes. In addition, new methods have been developed for the direct preparation of metathesis-active ruthenacyclobutanes via the protonolysis of dichloro(1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)(benzylidene) bis(pyridine)ruthenium(II) and its 3-bromopyridine analog. Using either trifluoroacetic acid or silica-bound toluenesulfonic acid as the proton source, the ethylene-derived ruthenacyclobutane (H2IMes)Cl2Ru(CH2CH2CH2) was observed in up to 98% yield via NMR at –40 °C. On the basis of these studies, mechanisms accounting for the positional and stereochemical exchange within ruthenacyclobutanes are proposed, as well as the implications of these dynamics towards olefin metathesis catalyst and reaction design are described. PMID:21452876

  5. The adsorption of 1,3-butadiene on Pd/Ni multilayers: The interplay between spin polarization and chemisorption strength

    SciTech Connect

    Gomez, Guillermina; Belelli, Patricia G.; Cabeza, Gabriela F.; Castellani, Norberto J.


    The adsorption of 1,3-butadiene (BD) on the Pd/Ni(1 1 1) multilayers has been studied using the VASP method in the framework of the density functional theory (DFT). The adsorption on two different configurations of the Pd{sub n}/Ni{sub m}(1 1 1) systems were considered. The most stable adsorption sites are dependent on the substrate composition and on the inclusion or not of spin polarization. On Pd{sub 1}Ni{sub 3}(1 1 1) surface, di-{pi}-cis and 1,2,3,4-tetra-{sigma} adsorption structures are the most stable for non-spin polarized (NSP) and spin polarized (SP) levels of calculation, respectively. Conversely, on Pd{sub 3}Ni{sub 1}(1 1 1) surface, the 1,2,3,4-tetra-{sigma} adsorption structure is the most stable for both NSP and SP levels, respectively. The magnetization of the Pd atoms strongly modifies the adsorption energy of BD and its most stable adsorption mode. On the other hand, as a consequence of BD adsorption, the Pd magnetization decreases. The smaller adsorption energies of BD and 1-butene on the Pd{sub 1}Ni{sub 3}(1 1 1) surface than on Pd(1 1 1) can be associated to the strained Pd overlayer deposited on Ni(1 1 1). -- Graphical Abstract: The adsorption of 1,3-butadiene on Pd/Ni(1 1 1) multilayers was theoretically studied. The most stable adsorption site depends on the substrate composition and on the inclusion of spin polarization. Display Omitted

  6. Influence of relative humidity and ozone on the sampling of volatile organic compounds on carbotrap/carbosieve adsorbents.


    Palluau, Fabienne; Mirabel, Philippe; Millet, Maurice


    By using a dynamic dilution system, the atmospheric measurement of 11 selected toxics VOCs (ethylene, acetylene, propene, 1-butene, 1,3-butadiene, 1-pentene, 1-hexene, benzene, toluene, ethylbenzene, m+p-xylene) from the list WHO of 1996 and TO-14 method of US EPA by preconcentration by thermal desorption (TD), analysis by gas chromatography (GC), identification and quantification with a flame ionisation detector (FID) was developed and validated in term of metrology, especially the techniques of sampling of these VOCs with adsorbents cartridges "Air Toxics" when used with an "UMEG sampler" equipped in the inlet with a nafion membrane. In particular the influence of climatic conditions (temperature and relative humidity) and the influence of chemical factors like ozone, on the representativity of sampling were studied. Experiments made with various humidities showed that the addition of a nafion membrane in the inlet of the sampling system was required. Without this membrane, losses of compounds were observed for RH >50%. With this membrane, storage for 2 weeks in a refrigerator, as for canisters, did not induce a loss of compounds. No significative decrease of concentrations of the studied VOCs after 14 days storage, which are known to react with ozone, were observed with an ozone concentrations of 55 ppb. One explanation is that nafion membrane, placed in the inlet of the sampler, will neutralize ozone before entering the sampling tubes. This observation is in accordance with literature which states that the sampling of VOCs on Carbotrap cartridges without ozone scrubber induce a loss of compounds. PMID:16897502

  7. Synthesis, characterization, and thiophene desulfurization activity of unsupported {gamma}-Mo{sub 2}N macrocrystalline catalysts

    SciTech Connect

    Markel, E.J.; Burdick, S.E.; Leaphart, M.E. II; Roberts, K.L.


    Macrocrystals of {gamma}-Mo{sub 2}N were synthesized by temperature-programmed reaction of macrocrystalline MoO{sub 3} and NH{sub 3} or N{sub 2}/H{sub 2} mixtures. X-ray diffraction analyses indicate macrocrystalline Mo{sub 2}N is an aggregate of particles in crystallographic alignment with diameters ranging from 4.6 to 18 nm, depending on synthesis conditions. Scanning tunneling microscopy (STM) supports these observed diameters. Based on diffraction data and surface area measurements, it is concluded that the particles in each sample are found with a range of diameters, each flattened in the [200] direction with either an amorphous surface phase or polycrystalline interior. The highest crystal BET surface area achieved is 44 m{sup 2}/g. TGA was used to monitor the temperature-programmed reaction of MoO{sub 3} and N{sub 2}/H{sub 2} mixtures. The lowest reduction temperatures were observed in syntheses employing high H{sub 2} concentrations and slow temperature ramping rates. The rate of the Mo{sub 2}N macrocrystal synthesis reaction was observed to be slower than the equivalent powder reaction, which could possibly be attributed to the effects of solid-state diffusion. The specific thiophene hydrodesulfurization (HDS) activity (units of mol/s m{sup 2}) of the Mo{sub 2}N macrocrystalline catalyst at 673 K was found to be higher than the powder form by a factor of 2.5. Weight-specific HDS activities and reaction product fractions over Mo{sub 2}N macrocrystal and powder catalysts were roughly the same. An analysis of reaction products over a range of conversions indicates thiophene desulfurizes to form predominantly 1-butene with smaller amounts of other C{sub 4} hydrocarbons also present.

  8. High-temperature oxidation chemistry of n-butanol--experiments in low-pressure premixed flames and detailed kinetic modeling.


    Hansen, N; Harper, M R; Green, W H


    An automated reaction mechanism generator is used to develop a predictive, comprehensive reaction mechanism for the high-temperature oxidation chemistry of n-butanol. This new kinetic model is an advancement of an earlier model, which had been extensively tested against earlier experimental data (Harper et al., Combust. Flame, 2011, 158, 16-41). In this study, the model's predictive capabilities are improved by targeting isomer-resolved quantitative mole fraction profiles of flame species in low-pressure flames. To this end, a total of three burner-stabilized premixed flames are isomer-selectively analyzed by flame-sampling molecular-beam time-of-flight mass spectrometry using photoionization by tunable vacuum-ultraviolet synchrotron radiation. For most species, the newly developed chemical kinetic model is capable of accurately reproducing the experimental trends in these flames. The results clearly indicate that n-butanol is mainly consumed by H-atom abstraction with H, O, and OH, forming predominantly the ?-C(4)H(9)O radical (CH(3)CH(2)CH(2)?CHOH). Fission of C-C bonds in n-butanol is only predicted to be significant in a similar, but hotter flame studied by Oßwald et al. (Combust. Flame, 2011, 158, 2-15). The water-elimination reaction to 1-butene is found to be of no importance under the premixed conditions studied here. The initially formed isomeric C(4)H(9)O radicals are predicted to further oxidize by reacting with H and O(2) or to decompose to smaller fragments via ?-scission. Enols are detected experimentally, with their importance being overpredicted by the model. PMID:21993635

  9. Amylenes do not lead to bacterial mutagenicity in contrast to structurally related epoxides.


    Westphal, Götz A; Tüshaus, Carolin; Monsé, Christian; Rosenkranz, Nina; Brüning, Thomas; Bünger, Jürgen


    Amylenes are unsaturated hydrocarbons (C5H10), such as 1-pentene, 2-pentene, 2-methyl-but-1-en (3-methyl-1-butene), 2-methyl-but-2-en (isopentene), and 3-methyl-but-1-en. We investigated bacterial mutagenicity of 1-pentene, 2-pentene, and 3-methyl-but-1-en in the Ames test. 2-Pentene was investigated as racemate and as pure diastereomers. We included the methyltransferase deficient Salmonella Typhimurium strain YG7108 and the application of a gas-tight preincubation to reduce the risk of false negative results. 1,2-Epoxypentane which may arise from 1-pentene was used as positive control. None of the investigated amylenes showed mutagenic effects, whereas 1,2-epoxypentane was mutagenic exceeding 100 ? g per plate. An exceptional high reverse mutation in the negative control plates in the experiments with 1,2-epoxypentane was obviously caused by evaporation into the incubator which was shown by placing the control plates in a separate apparatus. No differences were seen upon use of YG7108 and its parent strain TA1535. In conclusion, 1,2-epoxypentane is most probably not a substrate of the deleted bacterial methyltransferases. The comparison of the bacterial mutagenicity of the investigated amylenes and 1,2-epoxipentane suggests that epoxidation of amylenes in the S9-mix does not proceed effectively or is counterbalanced by detoxifying reactions. The assessment of mutagenic effects of short chained aliphatic epoxides can be underestimated due to the evaporation of these compounds. PMID:24511538

  10. Cl atom initiated oxidation of 1-alkenes under atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Walavalkar, M.; Sharma, A.; Alwe, H. D.; Pushpa, K. K.; Dhanya, S.; Naik, P. D.; Bajaj, P. N.


    In view of the importance of the oxidation pathways of alkenes in the troposphere, and the significance of Cl atom as an oxidant in marine boundary layer (MBL) and polluted industrial atmosphere, the reactions of four 1-alkenes (C6-C9) with Cl atoms are investigated. The rate coefficients at 298 K are measured to be (4.0 ± 0.5), (4.4 ± 0.7), (5.5 ± 0.9) and (5.9 ± 1.7) × 10-10 cm3 molecule-1 s-1 for 1-hexene, 1-heptene, 1-octene and 1-nonene, respectively. The quoted errors include the experimental 2?, along with the error in the reference rate coefficients. From the systematic increase in the rate coefficients with the number of carbon atoms, an approximate value for the average rate coefficient for hydrogen abstraction per CH2 group in alkenes is estimated to be (4.9 ± 0.3) × 10-11 cm3 molecule-1 s-1. Based on these rate coefficients, the contribution of Cl atom reactions towards the degradation of these molecules is found to be comparable to that of OH radical reactions, under MBL conditions. The products identified in gas phase indicate that Cl atom addition occurs mainly at the terminal carbon, leading to the formation of 1-chloro-2-ketones and 1-chloro-2-ols. The major gas phase products from the alkenyl radicals (formed by H atom abstraction) are different positional isomers of long chain enols and enones. A preference for dissociation leading to an allyl radical, resulting in aldehydes, lower by three carbon atoms, is indicated. The observed relative yields suggest that in general, the increased contribution of the reactions of Cl atoms towards degradation of 1-alkenes in NOx free air does not result in an increase in the generation of small aldehydes (carbon number < 4), including chloroethanal, as compared to that in the reaction of 1-butene.

  11. Experimental and modeling study of the thermal decomposition of methyl decanoate

    PubMed Central

    Herbinet, Olivier; Glaude, Pierre-Alexandre; Warth, Valérie; Battin-Leclerc, Frédérique


    The experimental study of the thermal decomposition of methyl decanoate was performed in a jet-stirred reactor at temperatures ranging from 773 to 1123 K, at residence times between 1 and 4 s, at a pressure of 800 Torr (106.6 kPa) and at high dilution in helium (fuel inlet mole fraction of 0.0218). Species leaving the reactor were analyzed by gas chromatography. Main reaction products were hydrogen, carbon oxides, small hydrocarbons from C1 to C3, large 1-olefins from 1-butene to 1-nonene, and unsaturated esters with one double bond at the end of the alkyl chain from methyl-2-propenoate to methyl-8-nonenoate. At the highest temperatures, the formation of polyunsaturated species was observed: 1,3-butadiene, 1,3-cyclopentadiene, benzene, toluene, indene, and naphthalene. These results were compared with previous ones about the pyrolysis of n-dodecane, an n-alkane of similar size. The reactivity of both molecules was found to be very close. The alkane produces more olefins while the ester yields unsaturated oxygenated compounds. A detailed kinetic model for the thermal decomposition of methyl decanoate has been generated using the version of software EXGAS which was updated to take into account the specific chemistry involved in the oxidation of methyl esters. This model contains 324 species and 3231 reactions. It provided a very good prediction of the experimental data obtained in jet-stirred reactor. The formation of the major products was analyzed. The kinetic analysis showed that the retro-ene reactions of intermediate unsaturated methyl esters are of importance in low reactivity systems. PMID:23710078

  12. Use of ferric sulfate: acid media for the desulfurization of model compounds of coal. [Dibenzothiophene, diphenyl sulfide, di-n-butyl sulfide

    SciTech Connect

    Clary, L.R.; Vermeulen, T.; Lynn, S.


    The objective of this work has been to investigate the ability of ferric sulfate-acid leach systems to oxidize the sulfur in model compounds of coal. Ferric iron-acid leach systems have been shown to be quite effective at removal of inorganic sulfur in coal. In this study, the oxidative effect of ferric iron in acid-leach systems was studied using dibenzothiophene, diphenyl sulfide, and di-n-butyl sulfide as models of organic sulfur groups in coal. Nitrogen and oxygen, as well as various transition metal catalysts and oxidants, were utilized in this investigation. Dibenzothiophene was found to be quite refractory to oxidation, except in the case where metavanadate was added, where it appears that 40% oxidation to sulfone could have occurred per hour at 150/sup 0/C and mild oxygen pressure. Diphenyl sulfide was selectively oxidized to sulfoxide and sulfone in an iron and oxygen system. Approximately 15% conversion to sulfone occurred per hour under these conditions. Some of the di-n-butyl sulfide was cracked to 1-butene and 1-butanethiol under similar conditions. Zinc chloride and ferric iron were used at 200/sup 0/C in an attempt to desulfonate dibenzothiophene sulfone, diphenyl sulfone, and di-n-butyl sulfone. Di-n-butyl sulfone was completely desulfurized on one hour and fragmented to oxidized parafins, while dibenzothiophene sulfone and diphenyl sulfone were unaffected. These results suggest that an iron-acid leach process could only selectively oxidize aryl sulfides under mild conditions, representing only 20% of the organic sulfur in coal (8% of the total sulfur). Removal through desulfonation once selective sulfur oxidation had occurred was only demonstrated for alkyl sulfones, with severe oxidation of the fragmented paraffins also occurring in one hour.

  13. Polar organic marker compounds in atmospheric aerosols: Determination, time series, size distributions and sources

    NASA Astrophysics Data System (ADS)

    Kourtchev, Ivan

    Terrestrial vegetation releases substantial amounts of reactive volatile organic compounds (VOCs; e.g., isoprene, monoterpenes) into the atmosphere. The VOCs can be rapidly photooxidized under conditions of high solar radiation, yielding products that can participate in new particle formation and growth processes above forests. This thesis focuses on the characterization, identification and quantification of oxidation products of biogenic VOC (BVOCs) as well as other species (tracer compounds) that provide information on aerosol sources and source processes. Atmospheric aerosols from various forested sites (i.e., Hyytiala, southern Finland; Rondonia, Brazil; K-Puszta, Hungary and Julich, Germany) were analyzed with Gas Chromotography/Mass Spectrometry (GC/MS) using analytical procedure that targets polar organic compounds. The study demonstrated that isoprene (i.e., 2-methyerythritol, 2-methylthreitol, 2-methylglyceric acid and C5-alkene triols (2-methyl-1,3,4-trihydroxy-l-butene (cis and trans) and 3 methyl-2,3,4-trihydroxy-1-butene)) and monoterpene (pinic acid, norpinic acid, 3-hydroxyglutaric acid and 3-methyl-1,2,3-butanetricarboxylic acid) oxidation products were present in substantial concentrations in atmospheric aerosols suggesting that oxidation of BVOC from the vegetation is an important process in all studied sites. On the other hand, presence of levoglucosan, biomass burning marker, especially in Amazonian rain forest site at Rondonia, Brazil, pointed that all sites were affected by anthropogenic activities, namely biomass burning. Other identified compounds included plyols, arabitol, mannitol and erythritol, which are marker compounds for fungal spores and monosacharides, glucose and fructose, markers for plant polens. Temporal variations as well as mass size distributions of the detected species confirmed the possible formation mechanisms of marker compounds.


    SciTech Connect



    While several organic compounds were detected in the vapor samples used in the reenactment of the preparation of mounts from the extracts of nuclear grade high-efficiency particulate air filter fiberglass samples, the most significant species present in the samples were methylene chloride, phenol, phenol-d6, and 2-fluorophenol. These species were all known to be present in the extracts, but were expected to have evaporated during the preparation of the mounts, as the mounts appeared to be dry before any vapor was collected. These species were present at the following percentages of their respective occupational exposure limits: methylene chloride, 2%; phenol, 0.4%; and phenol-d6, 0.6%. However, there is no established limit for 2-fluorophenol. Several other compounds were detected at low levels for which, as in the case of 2-fluorophenol, there are no established permissible exposure limits. These compounds include 2-chlorophenol; N-nitroso-1-propanamine; 2-fluoro-1,1{prime}-biphenyl; 1,2-dihydroacenaphthylene; 2,5-cyclohexadiene-1,4-dione,2,6-bis(1,1-dimethylethyl); trimethyl oxirane; n-propylpropanamine; 2-(Propylamino)ethanol; 4-methoxy-1-butene; 6-methyl-5-hepten-2-one; and 3,4-dimethylpyridine. Some of these were among those added as surrogates or spike standards as part ofthe Advanced Technologies and Laboratories International, Inc. preparation ofthe extract of the HEPA filter media and are indicated as such in the data tables in Section 2, Results; other compounds found were not previously known to be present. The main inorganic species detected (sulfate, sodium, and sulfur) are also consistent with species added in the preparation of the methylene chloride extract of the high-efficiency particulate air sample.

  15. Laser absorption diagnostic for measuring acetylene concentrations in shock tubes

    NASA Astrophysics Data System (ADS)

    Stranic, Ivo; Hanson, Ronald K.


    A fixed-wavelength direct absorption laser diagnostic for high-temperature measurements of acetylene concentration was developed. The diagnostic, based on a tunable continuous wave distributed feedback diode laser, was optimized primarily for studying chemical kinetics behind reflected shock waves. The center wavelength (3335.55 cm-1) of the tunable diagnostic was typically set at the peak of the 3300 cm-1 absorption band of acetylene at high temperatures. The absorption spectrum of acetylene diluted in argon was characterized using scanned-wavelength direct absorption measurements from 1070 to 1720 K and 0.8 to 4.0 atm. Line fitting of the measured absorption spectra was not possible due to the large number of transitions overlapped by pressure broadening that contribute to the spectrum. Instead, empirical fits for the peak absorption coefficient and its corresponding wavelength as a function of temperature and pressure were generated. Furthermore, in order to allow for characterization of interference absorption in kinetic studies, empirical fits for the acetylene absorption coefficient in the region around the primary absorption feature were developed. Absorption coefficient measurements of propyne and 1-butyne, which may be the primary interference candidates, reveal that their absorption coefficients are constant in the wavelength range of interest, and are much smaller than those of acetylene. Therefore, the acetylene concentration in the presence of these interfering species can be inferred using two-color techniques. The utility of the acetylene diagnostic was demonstrated by measuring acetylene mole fraction time-histories during the pyrolysis of propene and 1-butene.

  16. The chemistry of tributyl phosphate at elevated temperatures in the Plutonium Finishing Plant Process Vessels

    SciTech Connect

    Barney, G.S.; Cooper, T.D.


    Potentially violent chemical reactions of the tributyl phosphate solvent used by the Plutonium Finishing Plant at the Hanford Site were investigated. There is a small probability that a significant quantity of this solvent could be accidental transferred to heated process vessels and react there with nitric acid or plutonium nitrate also present in the solvent extraction process. The results of laboratory studies of the reactions show that exothermic oxidation of tributyl phosphate by either nitric acid or actinide nitrates is slow at temperatures expected in the heated vessels. Less than four percent of the tributyl phosphate will be oxidized in these vented vessels at temperatures between 125{degrees}C and 250{degrees}C because the oxidant will be lost from the vessels by vaporization or decomposition before the tributyl phosphate can be extensively oxidized. The net amounts of heat generated by oxidation with concentrated nitric acid and with thorium nitrate (a stand-in for plutonium nitrate) were determined to be about -150 and -220 joules per gram of tributyl phosphate initially present, respectively. This is not enough heat to cause violent reactions in the vessels. Pyrolysis of the tributyl phosphate occurred in these mixtures at temperatures of 110{degrees}C to 270{degrees}C and produced mainly 1-butene gas, water, and pyrophosphoric acid. Butene gas generation is slow at expected process vessel temperatures, but the rate is faster at higher temperatures. At 252{degrees}C the rate of butene gas generated was 0.33 g butene/min/g of tributyl phosphate present. The measured heat absorbed by the pyrolysis reaction was 228 J/g of tributyl phosphate initially present (or 14.5 kcal/mole of tributyl phosphate). Release of flammable butene gas into process areas where it could ignite appears to be the most serious safety consideration for the Plutonium Finishing Plant.

  17. On the radiolysis of ethylene ices by energetic electrons and implications to the extraterrestrial hydrocarbon chemistry

    SciTech Connect

    Zhou, Li [Department of Chemistry, Nanchang University, Nanchang 330031 (China); Maity, Surajit; Abplanalp, Matt; Turner, Andrew; Kaiser, Ralf I., E-mail: [Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)


    The chemical processing of ethylene ices (C{sub 2}H{sub 4}) by energetic electrons was investigated at 11 K to simulate the energy transfer processes and synthesis of new molecules induced by secondary electrons generated in the track of galactic cosmic ray particles. A combination of Fourier transform infrared spectrometry (solid state) and quadrupole mass spectrometry (gas phase) resulted in the identification of six hydrocarbon molecules: methane (CH{sub 4}), the C2 species acetylene (C{sub 2}H{sub 2}), ethane (C{sub 2}H{sub 6}), the ethyl radical (C{sub 2}H{sub 5}), and—for the very first time in ethylene irradiation experiments—the C4 hydrocarbons 1-butene (C{sub 4}H{sub 8}) and n-butane (C{sub 4}H{sub 10}). By tracing the temporal evolution of the newly formed molecules spectroscopically online and in situ, we were also able to fit the kinetic profiles with a system of coupled differential equations, eventually providing mechanistic information, reaction pathways, and rate constants on the radiolysis of ethylene ices and the inherent formation of smaller (C1) and more complex (C2, C4) hydrocarbons involving carbon-hydrogen bond ruptures, atomic hydrogen addition processes, and radical-radical recombination pathways. We also discuss the implications of these results on the hydrocarbon chemistry on Titan's surface and on ice-coated, methane-bearing interstellar grains as present in cold molecular clouds such as TMC-1.

  18. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst. [Quarterly] report, April 1, 1990--June 30, 1990

    SciTech Connect

    Yates, I.C.; Satterfield, C.N.


    Experiments on cobalt-catalyzed reactions of light 1-alkenes added to synthesis gas were performed. Data have been collected at 220C, 0.45 to 1.48 MPa and a synthesis gas flow rate between 0.015 and 0.030 Nl/(gcat{center_dot}min) with H{sub 2}/CO of 1.45 to 2.25. Ethylene, propene, and butene were added to synthesis gas feed from 0.5 to 1.2 mole% of total feed. For each material balance in which 1-alkenes were added, a material balance was performed at similar process conditions without 1-alkenes added, as ``base case``. Material balances without added 1-alkenes were also repeated to verify of catalyst selectivity stability. 49 material balances were performed during a single run lasting over 2,500 hours-on-stream. The hydrocarbon data have been completely analyzed; data correlations are still being made. Since C{sub 3}/C{sub 1} ratios by ethene addition, C{sub 4}/C{sub 1} ratios by propene addition, and C{sub 5}/C{sub 1} ratios by 1-butene addition, it appears that 1-alkenes may incorporate into growing chains on the surface of the catalyst. Further evidence for incorporation can be seen by comparing selectivity to n-alcohol one carbon number higher than added 1-alkene. Yield of this n-alcohol increases when alkenes are present. Sensitivity of hydrocarbon distribution to process variables seems to be greater on Co than on Fe catalysts.

  19. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst

    SciTech Connect

    Yates, I.C.; Satterfield, C.N.


    Experiments on cobalt-catalyzed reactions of light 1-alkenes added to synthesis gas were performed. Data have been collected at 220C, 0.45 to 1.48 MPa and a synthesis gas flow rate between 0.015 and 0.030 Nl/(gcat[center dot]min) with H[sub 2]/CO of 1.45 to 2.25. Ethylene, propene, and butene were added to synthesis gas feed from 0.5 to 1.2 mole% of total feed. For each material balance in which 1-alkenes were added, a material balance was performed at similar process conditions without 1-alkenes added, as base case''. Material balances without added 1-alkenes were also repeated to verify of catalyst selectivity stability. 49 material balances were performed during a single run lasting over 2,500 hours-on-stream. The hydrocarbon data have been completely analyzed; data correlations are still being made. Since C[sub 3]/C[sub 1] ratios by ethene addition, C[sub 4]/C[sub 1] ratios by propene addition, and C[sub 5]/C[sub 1] ratios by 1-butene addition, it appears that 1-alkenes may incorporate into growing chains on the surface of the catalyst. Further evidence for incorporation can be seen by comparing selectivity to n-alcohol one carbon number higher than added 1-alkene. Yield of this n-alcohol increases when alkenes are present. Sensitivity of hydrocarbon distribution to process variables seems to be greater on Co than on Fe catalysts.

  20. Photochemically induced production of CH 3Br, CH 3I, C 2H 5I, ethene, and propene within surface snow at Summit, Greenland

    NASA Astrophysics Data System (ADS)

    Swanson, Aaron L.; Blake, Nicola J.; Dibb, Jack E.; Albert, Mary R.; Blake, Donald R.; Sherwood Rowland, F.

    Measurements at Summit, Greenland, performed from June-August 1999, showed significant enhancement in concentrations of several trace gases in the snowpack (firn) pore air relative to the atmosphere. We report here measurements of alkenes, halocarbons, and alkyl nitrates that are typically a factor of 2-10 higher in concentration within the firn air than in the ambient air 1-10 m above the snow. Profiles of concentration to a depth of 2 m into the firn show that maximum values of these trace gases occur between the surface and 60 cm depth. The alkenes show highest pore mixing ratios very close to the surface, with mixing ratios in the order ethene>propene>1-butene. Mixing ratios of the alkyl iodides and alkyl nitrates peak slightly deeper in the firn, with mixing ratios in order of methyl>ethyl>propyl. These variations are likely consistent with different near-surface photochemical production mechanisms. Diurnal mixing ratio variations within the firn correlate well with actinic flux for all these gases, with a temporal offset between the solar maximum and peak concentrations, lengthening with depth. Using a snow-filled chamber under constant flow conditions, we calculated production rates for the halocarbons and alkenes that ranged between 10 3-10 5 and 10 6 molecules cm -3 s -1, respectively. Taken together, these results suggest that photochemistry associated with the surface snowpack environment plays an important role in the oxidative capacity of the local atmospheric boundary layer, and influences post-depositional chemistry, which in turn may affect the interpretation of certain aspects of the ice core records collected previously at Summit.

  1. Characterizations of volatile organic compounds during high ozone episodes in Beijing, China.


    An, Jun-lin; Wang, Yue-si; Wu, Fang-kun; Zhu, Bin


    Air samples were collected in Beijing from June through August 2008, and concentrations of volatile organic compounds (VOCs) in those samples are here discussed. This sampling was performed to increase understanding of the distributions of their compositions, illustrate the overall characteristics of different classes of VOCs, assess the ages of air masses, and apportion sources of VOCs using principal compound analysis/absolute principal component scores (PCA/APCS). During the sampling periods, the relative abundance of the four classes of VOCs as determined by the concentration-based method was different from that determined by the reactivity approach. Alkanes were found to be most abundant (44.3-50.1%) by the concentration-based method, but aromatic compounds were most abundant (38.2-44.5%) by the reactivity approach. Aromatics and alkenes contributed most (73-84%) to the ozone formation potential. Toluene was the most abundant compound (11.8-12.7%) during every sampling period. When the maximum incremental reactivity approach was used, propene, toluene, m,p-xylene, 1-butene, and 1,2,4-trimethylbenzene were the five most abundant compounds during two sampling periods. X/B, T/B, and E/B ratios in this study were lower than those found in other cities, possibly due to the aging of the air mass at this site. Four components were extracted from application of PCA to the data. It was found that the contribution of vehicle exhaust to total VOCs accounted for 53% of VOCs, while emissions due to the solvent use contributed 33% of the total VOCs. Industrial sources contributed 3% and biogenic sources contributed 11%. The results showed that vehicle exhausts (i.e., unburned vehicle emissions + vehicle internal engine combustion) were dominant in VOC emissions during the experimental period. The solvent use made the second most significant contribution to ambient VOCs. PMID:21552987

  2. The carbon kinetic isotope effects of ozone-alkene reactions in the gas-phase and the impact of ozone reactions on the stable carbon isotope ratios of alkenes in the atmosphere

    NASA Astrophysics Data System (ADS)

    Iannone, R.; Anderson, R. S.; Rudolph, J.; Huang, L.; Ernst, D.


    The kinetic isotope effects (KIEs) for several ozone-alkene reactions in the gas phase were studied in a 30 L PTFE reaction chamber. The time dependence of the stable carbon isotope ratios and the concentrations were determined using a gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS) system. The following average KIE values were obtained: 18.9 +/- 2.8 (ethene), 9.5 +/- 2.5 (propene), 8.7 +/- 1 (1-butene), 8.1 +/- 0.4 (E-2-butene), 7.9 +/- 0.4 (1,3-butadiene), 6.7 +/- 0.9 (1-pentene), 7.3 +/- 0.2 (Z-2-pentene), 6.7 +/- 0.7 (cyclopentene), 6.1 +/- 1 (isoprene), 5.0 +/- 0.7 (1-hexene), 5.6 +/- 0.5 (cyclohexene), and 4.3 +/- 0.7 (1-heptene). These data are the first of their kind to be reported in the literature. The ozone-alkene KIE values show a systematic inverse dependence from alkene carbon number. Based on the observed KIEs, the contribution of ozone-alkene reactions to the isotopic fractionation of alkenes in the atmosphere can be estimated. On average this contribution is generally small compared to the impact of reaction with OH radicals. However, when OH-concentrations are very low, e.g. during nighttime and at high latitudes in winter, the contribution of the ozone reaction dominates and under these conditions the ozone-alkene reaction will have a clearly visible impact on the stable carbon isotope ratio of atmospheric alkenes.

  3. Hydrodesulfurization catalysis by Chevrel-phase compounds

    SciTech Connect

    McCarty, K.F.


    The catalytic activity of Chevrel-phase compounds (M/sub x/Mo/sub 6/S/sub 8/) for thiophene hydrodesulfurization at 400/sup 0/C has been found to be comparable to or greater than that of model industrial catalysts (unpromoted and cobalt-promoted MoS/sub 2/). The most active Chevrel phase catalysts were those containing the large ternary component cations Ho, Pb, Sn; the intermediate cation materials (M = Ag and In) were less active; the small cation materials (M = Cu, Fe, Ni, and Co) were the least active catalysts. The 1-butene hydrogenation activities of the Chevrel phase catalysts at 400/sup 0/C were much lower than MoS/sub 2/. X-ray powder diffraction and laser Raman spectroscopy analysis of the used catalysts revealed that the bulk structures were stable under reaction conditions. Using a deuterium-thiophene feed at 400/sup 0/C, the amount of deuterium incorporated into thiophene and into the desulfurization products (hydrogen sulfide, butadiene, and butenes) was determined as a function of reaction time. For All Chevrel phase and MoS/sub 2/ catalysts examined, H/sub 2/S was almost exclusively formed; only small amounts of HDS and D/sub 2/S were detected. At the same levels of thiophene conversion, unpromoted MoS/sub 2/ introduced up to 10 times more deuterium into the nondesulfurized thiophene than did the promoted catalysts. A mechanism of thiophene hydrodesulfurization is proposed: butadiene is the initial reaction product and the hydrogen of hydrogen sulfide originates from the hydrogen-exchange of thiophene.

  4. Cob(I)alamin for trapping butadiene epoxides in metabolism with rat S9 and for determining associated kinetic parameters.


    Motwani, Hitesh V; Fred, Charlotta; Haglund, Johanna; Golding, Bernard T; Törnqvist, Margareta


    The reduced state of vitamin B(12), cob(I)alamin, acts as a supernucleophile that reacts ca. 10(5) times faster than standard nucleophiles, for example, thiols. Methods have been developed for trapping electrophilically reactive compounds by exploiting this property of cob(I)alamin. 1,3-Butadiene (BD) has recently been classified as a group 1 human carcinogen by the International Agency for Research on Cancer (IARC). The carcinogenicity of BD is considered to be dependent on the activation or deactivation of the reactive metabolites of BD, that is, the epoxides (oxiranes) 1,2-epoxy-3-butene (EB), 1,2:3,4-diepoxybutane (DEB), and 1,2-epoxy-3,4-butanediol (EBdiol). Cytochrome P450 (P450) isozymes are involved in oxidation of BD to EB and further activation to DEB. EB and DEB are hydrolyzed by epoxide hydrolases (EH) to 3,4-dihydroxy-1-butene (BDdiol) and EBdiol, respectively. EBdiol can also be formed by oxidation of BDdiol. In the present study, cob(I)alamin was used for instant trapping of the BD epoxide metabolites generated in in vitro metabolism to study enzyme kinetics. The substrates EB, DEB, and BDdiol were incubated with rat S9 liver fraction, and apparent K(m) and apparent V(max), were determined. The ratio of conversion of EB to DEB (by P450) to the rate of deactivation of DEB by EH was 1.09. Formation of EBdiol from hydrolysis of DEB was ca. 10 times faster than that from oxidation of BDdiol. It was also found that the oxidation of EB to DEB was much faster than that of BDdiol to EBdiol. The study offers comparative enzyme kinetic data of different BD metabolic steps, which is useful for quantitative interspecies comparison. Furthermore, a new application of cob(I)alamin was demonstrated for the measurement of enzyme kinetics of compounds that form electophilically reactive metabolites. PMID:19764821

  5. Final report on EURAMET.QM-S6/1195: Bilateral comparison of liquefied hydrocarbon mixtures in constant pressure (piston) cylinders

    NASA Astrophysics Data System (ADS)

    Brown, Andrew S.; Downey, Michael L.; Milton, Martin J. T.; van der Veen, Adriaan M. H.; Zalewska, Ewelina T.; Li, Jianrong


    Traceable liquid hydrocarbon mixtures are required in order to underpin measurements of the composition and other physical properties of LPG (liquefied petroleum gas) and LNG (liquefied natural gas), thus meeting the needs of an increasingly large European industrial market. The development of traceable liquid hydrocarbon standards by National Measurement Institutes (NMIs) was still at a relatively early stage at the time this comparison was proposed in 2011. NPL and VSL, who were the only NMIs active in this area, had developed methods for the preparation and analysis of such standards in constant pressure (piston) cylinders, but neither laboratory had Calibration and Measurement Capabilities (CMCs) for these mixtures. This report presents the results of EURAMET 1195, the first comparison of liquid hydrocarbon mixtures between NMIs, which assessed the preparation and analytical capabilities of NPL and VSL for these mixtures. The comparison operated between August 2011 and January 2012. Each laboratory prepared a liquid hydrocarbon standard with nominally the same composition and these standards were exchanged for analysis. The results of the comparison show a good agreement between the laboratories' results and the comparison reference values for the six components with amount fractions greater than 1.0 cmol/mol (propane, propene, iso-butene, n-butane, iso-butane and 1-butene). Measurement of the three components with lower amount fractions (1,3-butadiene, iso-pentane and n-pentane) proved more challenging. In all but one case, the differences from the comparison reference values for these three components were greater than the expanded measurement uncertainty. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database The final report has been peer-reviewed and approved for publication by EURAMET, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  6. Alcohol Dehydrogenase- and Rat Liver Cytosol-Dependent Bioactivation of 1-Chloro-2-hydroxy-3-butene to 1-Chloro-3-buten-2-one, a Bifunctional Alkylating Agent

    PubMed Central

    Elfarra, Adnan A.; Zhang, Xin-Yu


    1,3-Butadiene (BD) is an air pollutant whose toxicity and carcinogenicity have been considered primarily mediated by its reactive metabolites, 3,4-epoxy-1-butene and 1,2,3,4-diepoxybutane formed in liver and extrahepatic tissues by cytochromes P450. A possible alternative metabolic pathway in bone marrow and immune cells is the conversion of BD to the chlorinated allylic alcohol 1-chloro-2-hydroxy-3-butene (CHB) by myeloperoxidase in the presence of hydrogen peroxide and chloride ion. In the present study, we investigated the in vitro bioactivation of CHB by alcohol dehydrogenases (ADH) under in vitro physiological conditions (pH 7.4, 37 °C). The results provide clear evidence for CHB being converted to 1-chloro-3-buten-2-one (CBO) by purified horse liver ADH and rat liver cytosol. CBO readily reacted with glutathione (GSH) under assay conditions to form three products: two CBO-mono-GSH conjugates [1-chloro-4-(S-glutathionyl)butan-2-one (3) and 1-(S-glutathionyl)-3-buten-2-one (4)], and one CBO-di-GSH conjugate [1,4-bis(S-glutathionyl)butan-2-one (5)]. CHB bioactivation and the ratios of the three GSH conjugates formed were dependent upon incubation time, GSH and CHB concentrations, and the presence of ADH or rat liver cytosol. The ADH enzymatic reaction followed Michaelis-Menten kinetics with a Km at 3.5 mM and a kcat at 0.033 s?1. After CBO was incubated with freshly isolated mouse erythrocytes, globin dimers were detected using SDS-PAGE and silver staining, providing evidence that CBO can act as a protein cross-linking agent. Collectively, the results provide clear evidence for CHB bioactivation by ADH and rat liver cytosol to yield CBO. The bifunctional alkylating ability of CBO suggests that it may play a role in BD toxicity and/or carcinogenicity. PMID:23110628

  7. Synthesis of Ti(IV) complexes of donor-functionalised phenoxy-imine tridentates and their evaluation in ethylene oligomerisation and polymerisation.


    Suttil, James A; Shaw, Miranda F; McGuinness, David S; Gardiner, Michael G; Evans, Stephen J


    A number of analogues of the Mitsui Chemicals ethylene trimerisation system (IV) have been explored, in which one of the donor atoms have been modified. Thus, a series of mono-anionic tridentate phenoxy-imine (3-(t-butyl)-2-(OH)-C6H4C=N(C(CH3)2CH2OMe) 1, 3-(adamantyl)-2-(OH)-C6H4C=N(2'-(2''-(SMe)C6H4)-C6H4) 2, 3-(t-butyl)-2-(OSiMe3)-C6H4C=N(C(CH3)2CH2OMe) 3) or phenoxy-amine (3,5-di(t-butyl)-2-(OH)-C6H4CH2-N(2'-(2''-(OMe)C6H4)-C6H4) 4) ligands have been prepared and reacted with TiCl4 or TiCl4(thf)2 to give the mono-ligand complexes 5-7. The solid state structures of compounds 4-6 have been determined. Complexes 5-7 have been tested for their potential as ethylene oligomerisation/polymerisation systems in conjunction with MAO activator and benchmarked against the Mitsui phenoxy-imine trimerisation system IV. While the phenoxy-amine complex 6 shows a propensity for polymer formation, the phenoxy-imine complexes 5 and 7 show somewhat increased formation of short chain LAOs. Complex 5 is selective for 1-butene in the oligomeric fraction, while 7 displays liquid phase selectivity to 1-hexene. As such 7, which is a sulfur substituted analogue of the Mitsui system IV, displays similar characteristics to the parent catalyst. However, its utility is limited by the lower activity and predominant formation of polyethylene. PMID:23403608

  8. Principles of centerband-only detection of exchange in solid-state nuclear magnetic resonance, and extension to four-time centerband-only detection of exchange

    NASA Astrophysics Data System (ADS)

    deAzevedo, Eduardo R.; Hu, W.-G.; Bonagamba, Tito J.; Schmidt-Rohr, Klaus


    Theoretical principles and experimental details of the centerband-only detection of exchange (CODEX) nuclear magnetic resonance (NMR) experiment for characterizing slow segmental dynamics in solids are described. The experiment, which is performed under magic-angle spinning, employs recoupling of the chemical-shift anisotropy before and after a long mixing time during which molecular reorientations may occur. By an analysis in terms of the difference tensor of the chemical shifts before and after the mixing time, the dependence on the reorientation angle is obtained analytically for uniaxial interactions, and a relation to two-dimensional exchange NMR patterns is established; the same theory can also be applied for analyzing stimulated-echo and pure-exchange NMR data. A favorable linear dependence is derived generally for small rotations, which makes the experiment suitable for detecting small-amplitude motions. Quantification is excellent because the peaks are narrow and intense, unlike the broad powder or sideband spectra that are characteristic of all previous NMR experiments for probing slow segmental rotations. We also introduce and demonstrate a four-time CODEX experiment that yields information previously obtained only in 3D (three-dimensional) and reduced 4D (four-dimensional) exchange NMR experiments, such as the number of orientational sites accessible to the mobile groups. Chemical-shift anisotropies required in the CODEX analysis of motional amplitudes can be estimated using a closely related chemical-shift recoupling experiment. The implementation of total suppression of sidebands before detection is also explained. The experiments are demonstrated on dimethylsulfone, isotactic polypropylene, and poly(methyl methacrylate), PMMA. In isotactic poly(1-butene), the signals of the amorphous and interfacial regions have been observed selectively by using pure-exchange CODEX near the glass transition. The four-time CODEX experiment confirms that in the ?-relaxation process of glassy PMMA, fewer than half of the sidegroups perform jumps between two orientations.

  9. Synthesis of X-Ray Sensitive Polymers and Their Applications as Resists

    NASA Astrophysics Data System (ADS)

    Davies, Jack Dean

    Aliphatic polycarbonates were synthesized by condensation of the bischloroformate of 2,2,4,4-tetramethyl-1,3-cyclobutanediol with cyclic aliphatic diols. Polycarbonates that lacked flexible methylene units in the backbone processed T _{rm g} > 139 ^circC. Copolycarbonates acted as resists when combined with cobalt(III)-am(m)ine tetraphenylborate complexes which act as photointiators, with tetraphenylborate serving as counter anion. The photoinitiator liberates either ammonia or ethylene diamine base upon UV exposure and the polycarbonate backbone is subject to nucleophilic attack at the carbonyl linkage by the base. Image tone was dependent on the base used. Amine complexes, Co(NH _3)_6^{3+} effected a positive tone due to ammonia induced main chain degradation at the carbonate linkage. Cobalt ethylenediamine complex, Co(en)_3^{3+} , en is ethylenediamine, effected a negative tone. The released ethylenediamine acted as a tetrafunctional crosslinking agent forming carbamate linkages. Resolution studies determined linewidths to 20 mum. The amine complex, under low intensity UV radiation, >0.35 mW/cm^2, and elevated temperatures, >40^circC, promoted vapor developed positive tone images in the resists layer. 1-Butene, 2-methyl-1-pentene, cyclohexene, and norbornene were copolymerized with sulfur dioxide. Thermal characterization revealed that these copolymers possess low T_{rm g}, i.e., <35^circC, and two degradation transitions between 110-200 ^circC. They undergo main chain degradation forming positive tone images when exposed to synchrotron radiation and base development. Sensitivities were determined to be <25 mJ/cm^2 for poly (2-methyl pentene-1 sulfone). This copolymer vapor develops upon exposure of ?m thick films to doses >800 mJ/cm ^2. Features to 0.4muM were obtained in this manner using a test mask. Novel polysulfones were prepared by the polymerization of SO_2 with conjugated dienes. Polymerizations were perfonned at -78^circ C in nitropropane as solvent using t-butyl hydroperoxide as initiator. The T_{rm g} of these polymers are >70 ^circC with similar degradation transitions seen for the poly (olefin sulfone) copolymers. These polymers are soluble in a common solvent, nitromethane. Poly(hexadiene -1,3 sulfone) acted as a positive tone resist when exposed to synchrotron radiation and developed in nitropropane. Sensivities <50 mJ/cm^2 were determined for this polymer, vapor development was not achieved. Resolution studies revealed line widths to 0.25 muM, the feature limits of the test mask used.

  10. Investigation of the adsorption and reactions of thiophene on sulfided Cu, Mo, and Rh catalysts

    SciTech Connect

    Mills, P.; Phillips, D.C.; Woodruff, B.P.; Main, R.; Bussell, M.E.


    The surface chemistry of thiophene (C{sub 4}H{sub 4}S) on sulfided Cu/Al{sub 2} O{sub 3}, Mo/Al{sub 2}O{sub 3}, and Rh/Al{sub 2}O{sub 3} catalysts has been investigated under well-defined conditions using infrared (IR) spectroscopy and temperature programmed desorption (TPD). The results of these experiments have been found to correlate nicely with CO chemisorption measurements of site densities and thiophene hydrodesulfurization (HDS) activities measured in a flow reactor system. In agreement with the literature, the catalysts were found to have dramatically different thiophene HDS activities increasing in the following order: sulfided Cu < sulfided Mo < sulfided Rh. The trend of HDS activities is mirrored in similar trends for the site densities and turnover frequencies for the sulfide catalysts. IR spectra of adsorbed thiophene on the sulfided Cu, Mo, and Rh catalysts at low temperatures show that the amount of thiophene adsorbed on cus metal sites of the sulfide catalysts correlates with the CO chemisorption estimates of site densities. Thiophene reactivity on the catalysts differs significantly, with reaction in thiophene/H{sub 2} mixtures observed on the sulfided Mo and Rh catalysts annealed at 300 and 500 K, respectively, and not at all on a sulfided Cu catalyst annealed up to 700 K. Strongly adsorbed species produced on the sulfided Cu, Mo, and Rh catalysts during the annealing sequence were subjected to TPD experiments that yielded C{sub 4} hydrocarbons and H{sub 2}S, with the predominant C{sub 4} product being butenes. IR and TPD measurements of 1,3-butadiene and 1-butene on sulfided Rh/Al{sub 2}O{sub 3} catalysts, both in the pure gas and in gas/H{sub 2} mixtures, provide evidence for the tentative assignment of strongly adsorbed species produced by cleavage of C-S bonds in thiophene to be a {sigma}-bonded allyl species with C{sub 4}H{sub 7} stoichiometry.

  11. Pathway and Surface Mechanism Studies of 1,3-butadiene Selective Oxidation Over Vanadium-Molybdenum-Oxygen Catalysts

    SciTech Connect

    William David Schroeder


    The partial oxidation of 1,3-butadiene has been investigated over VMoO catalysts synthesized by sol-gel techniques. Surface areas were 9-14 m{sup 2}/g, and compositions were within the solid solution regime, i.e. below 15.0 mol % MoO{sub 3}/(MoO{sub 3} + V{sub 2}O{sub 5}). Laser Raman Spectroscopy and XRD data indicated that solid solutions were formed, and pre- and post-reaction XPS data indicated that catalyst surfaces contained some V{sup +4} and were further reduced in 1,3-butadiene oxidation. A reaction pathway for 1,3-butadiene partial oxidation to maleic anhydride was shown to involve intermediates such as 3,4-epoxy-1-butene, crotonaldehyde, furan, and 2-butene-1,4-dial. The addition of water to the reaction stream substantially increased catalyst activity and improved selectivity to crotonaldehyde and furan at specific reaction temperatures. At higher water addition concentrations, furan selectivity increased from 12% to over 25%. The catalytic effects of water addition were related to competitive adsorption with various V{sub 2}O{sub 5}-based surface sites, including the vanadyl V=O, corner sharing V-O-V and edge sharing V-O oxygen. Higher levels of water addition were proposed to impose acidic character by dissociative adsorption. In addition, a novel combinatorial synthesis technique for VMoO was used to investigate the phase transitions of V{sub 2}O{sub 5}, solid solutions of Mo in V{sub 2}O{sub 5}, V{sub 9}Mo{sub 6}O{sub 40}, and other reduced VMoO compounds, characterized by laser Raman spectroscopy. The natural composition gradient imposed by the sputter deposition apparatus was used to create VMoO arrays containing 225 samples ranging from 7.0-42 mol% MoO{sub 3}/(V{sub 2}O{sub 5} + MoO{sub 3}), determined by EDS analysis.

  12. Pressure Effects on Product Channels of the Allyl Radical Reactions; C3H5+C3H5 and C3H5+CH3

    NASA Astrophysics Data System (ADS)

    Halpern, J. B.; N'Doumi, M.; Fahr, A.


    Relatively large hydrocarbon molecules (C4, C6 and larger) have been detected in several planetary environments. The mechanism for the formation of such large molecular species and detailed mechanism for their potential destruction are not well understood and are of considerable current interest. Previously we have studied the kinetics and product channels of small unsaturated hydrocarbon radical (C2 and C3s) reactions relevant to planetary atmospheric modeling. Reactions of C2 radicals (such as vinyl, H2CCH and ethynyl C2H) and C3 radicals (such as propargyl, HCCCH2) can affect the abundances of a large number of stable observable C3, C4, C5, C6 and larger molecules, including linear, aromatic and even poly aromatic molecules. Pressure-dependent product yields have been determined experimentally for the self- and cross-radical reactions performed at 298 K and at pressures between ~4 Torr (0.5 kPa) and 760 Torr (101 kPa). Final reaction products were quantitatively determined using a gas chromatograph with mass spectrometry/flame ionization detection (GC/MS/FID). In some cases complementary computational studies extended the pressure and temperature range of the experiments and provided valuable information on the complex reaction mechanisms. Theses studies provide a systematic framework so that important energetic and structural parameters for radical-radical reactions can be assessed. Here we report recent results for the allyl radical reactions H2CCCH3+ H2CCCH3 and H2CCCH3+CH3. For the allyl radical self-reaction, at high pressures the "head -to-head", combination channel forming 1,5-hexadiene is dominant with a combination/disproportionation = 1,5-hexadiene/propyne ratio of about 24 at 500 Torr (67 kPa, T=298K). At low pressures the ratio is substantially reduced to about 1.2 (at 0.3 kPa) and other major products are observed including allene, propene, 1-butene and propyne.

  13. ESIMS studies and calculations on alkali-metal adduct ions of ruthenium olefin metathesis catalysts and their catalytic activity in metathesis reactions.


    Wang, Hao-Yang; Yim, Wai-Leung; Klüner, Thorsten; Metzger, Jürgen O


    Electrospray ionization mass spectrometry (ESIMS) and subsequent tandem mass spectrometry (MS/MS) analyses were used to study some important metathesis reactions with the first-generation ruthenium catalyst 1, focusing on the ruthenium complex intermediates in the catalytic cycle. In situ cationization with alkali cations (Li(+), Na(+), K(+), and Cs(+)) using a microreactor coupled directly to the ESI ion source allowed mass spectrometric detection and characterization of the ruthenium species present in solution and particularly the catalytically active monophosphine-ruthenium intermediates present in equilibrium with the respective bisphosphine-ruthenium species in solution. Moreover, the intrinsic catalytic activity of the cationized monophosphine-ruthenium complex 1 aK(+) was directly demonstrated by gas-phase reactions with 1-butene or ethene to give the propylidene Ru species 3 aK(+) and the methylidene Ru species 4 aK(+), respectively. Ring-closing metathesis (RCM) reactions of 1,6-heptadiene (5), 1,7-octadiene (6) and 1,8-nonadiene (7) were studied in the presence of KCl and the ruthenium alkylidene intermediates 8, 9, and 10, respectively, were detected as cationized monophosphine and bisphosphine ruthenium complexes. Acyclic diene metathesis (ADMET) polymerization of 1,9-decadiene (14) and ring-opening metathesis polymerization (ROMP) of cyclooctene (18) were studied analogously, and the expected ruthenium alkylidene intermediates were directly intercepted from reaction solution and characterized unambiguously by their isotopic patterns and ESIMS/MS. ADMET polymerization was not observed for 1,5-hexadiene (22), but the formation of the intramolecularly stabilized monophosphine ruthenium complex 23 a was seen. The ratio of the signal intensities of the respective with potassium cationized monophosphine and bisphosphine alkylidene Ru species varied from [I(4a)]/[I(4)]=0.02 to [I(23a)]/[I(23)]=10.2 and proved to be a sensitive and quantitative probe for intramolecular pi-complex formation of the monophosphine-ruthenium species and of double bonds in the alkylidene chain. MS/MS spectra revealed the intrinsic metathesis catalytic activity of the potassium adduct ions of the ruthenium alkylidene intermediates 8 a, 9 a, 10 a, 15 a, and 19 a, but not 23 a by elimination of the respective cycloalkene in the second step of RCM. Computations were performed to provide information about the structures of the alkali metal adduct ions of catalyst 1 and the influence of the alkali metal ions on the energy profile in the catalytic cycle of the metathesis reaction. PMID:19760711

  14. Quantitation of DNA Adducts Induced by 1,3-Butadiene

    NASA Astrophysics Data System (ADS)

    Sangaraju, Dewakar; Villalta, Peter W.; Wickramaratne, Susith; Swenberg, James; Tretyakova, Natalia


    Human exposure to 1,3-butadiene (BD) present in automobile exhaust, cigarette smoke, and forest fires is of great concern because of its potent carcinogenicity. The adverse health effects of BD are mediated by its epoxide metabolites such as 3,4-epoxy-1-butene (EB), which covalently modify genomic DNA to form promutagenic nucleobase adducts. Because of their direct role in cancer, BD-DNA adducts can be used as mechanism-based biomarkers of BD exposure. In the present work, a mass spectrometry-based methodology was developed for accurate, sensitive, and precise quantification of EB-induced N-7-(1-hydroxy-3-buten-2-yl) guanine (EB-GII) DNA adducts in vivo. In our approach, EB-GII adducts are selectively released from DNA backbone by neutral thermal hydrolysis, followed by ultrafiltration, offline HPLC purification, and isotope dilution nanoLC/ESI+-HRMS3 analysis on an Orbitrap Velos mass spectrometer. Following method validation, EB-GII lesions were quantified in human fibrosarcoma (HT1080) cells treated with micromolar concentrations of EB and in liver tissues of rats exposed to sub-ppm concentrations of BD (0.5-1.5 ppm). EB-GII concentrations increased linearly from 1.15 ± 0.23 to 10.11 ± 0.45 adducts per 106 nucleotides in HT1080 cells treated with 0.5-10 ?M DEB. EB-GII concentrations in DNA of laboratory rats exposed to 0.5, 1.0, and 1.5 ppm BD were 0.17 ± 0.05, 0.33 ± 0.08, and 0.50 ± 0.04 adducts per 106 nucleotides, respectively. We also used the new method to determine the in vivo half-life of EB-GII adducts in rat liver DNA (2.20 ± 0.12 d) and to detect EB-GII in human blood DNA. To our knowledge, this is the first application of nanoLC/ESI+-HRMS3 Orbitrap methodology to quantitative analysis of DNA adducts in vivo.

  15. Electron-impact ionization of benzoic acid, nicotinic acid and their n-butyl esters

    NASA Astrophysics Data System (ADS)

    Opitz, Joachim


    Electron-impact ionization mass spectra, the decay of metastable ions, ionization and appearance energies and bond energies, as dissociation energies, are reported for the title compounds. An ionization energy of 9.47 eV was obtained for benzoic acid, 9.43 eV for benzoic acid n-butyl ester, 9.61 eV for nicotinic acid and 9.97 eV for nicotinic acid n-butyl ester. Molecular ions of both butyl esters show two common main fragmentation pathways: the first process is a McLafferty rearrangement, characterized by the transfer of one H-atom from the aliphatic ester chain, which leads to the ions of either the organic acid or 1-butene. From their appearance energies and known thermodynamic data, gas-phase formation enthalpies () of the parent n-butyl esters are calculated. Values of for benzoic acid n-butyl ester and for nicotinic acid n-butyl ester were obtained. The second process is characterized by the transfer of two H-atoms from the ester chain leading to a protonated form of the corresponding organic acids and C4H7 radicals. Good evidence is provided for the formation of methylallyl radicals. Appearance energies are used to calculate a proton affinity (PA) for benzoic acid. The obtained value of PA = (8.73 ± 0.3) eV, corresponding to a protonation of the carbonyl group, is in close corroboration with published data (PA = 8.51 eV). Activation energies for the intermediate H-transfers were found to be insignificant. This methodic gateway is applied to the system of nicotinic acid and its butyl ester. Adopting the formation of a methylallyl radical, the obtained proton affinity of nicotinic acid, PA = 8.58 eV, is very near to the published data of benzoic acid. An alternative fragmentation mechanism leading to a value of PA [approximate] 9.5 eV (typical for a protonation of the pyridine-nitrogen) is very unlikely. It is concluded that this transfer of two H-atoms from the ester chain is controlled by a charge switching between the carboxylic oxygen atoms which leads to a regiospecific protonation site, in this case to the protonated carbonyl group. This is conform with a B3LYP DFT calculation with a corresponding proton affinity of PA = 8.29 eV.

  16. Transferable Anisotropic United-Atom Force Field Based on the Mie Potential for Phase Equilibrium Calculations: n-Alkanes and n-Olefins.


    Hemmen, Andrea; Gross, Joachim


    A new transferable force field parametrization for n-alkanes and n-olefins is proposed in this work. A united-atom approach is taken, where hydrogen atoms are lumped with neighboring atoms to single interaction sites. A comprehensive study is conducted for alkanes, optimizing van der Waals force field parameters in 6 dimensions. A Mie n-6 potential is considered for the van der Waals interaction, where for n-alkanes we simultaneously optimize the energy parameters ?CH3 and ?CH2 as well as the size parameters ?CH3 and ?CH2 of the CH3(sp(3)) and CH2(sp(3)) groups. Further, the repulsive exponent n of the Mie n-6 potential is varied. Moreover, we investigate the bond length toward the terminal CH3 group as a degree of freedom. According to the AUA (anisotropic united-atom) force field, the bond length between the terminal CH3 group and the neighboring interaction site should be increased by ?l compared with the carbon-carbon distance in order to better account for the hydrogen atoms. The parameter ?l is considered as a degree of freedom. The intramolecular force field parametrization is taken from existing force fields. A single objective function for the optimization is defined as squared relative deviations in vapor pressure and in liquid density of propane, n-butane, n-hexane, and n-octane. A similar study is also done for olefins, where the objective function includes 1-butene, 1-hexene, 1-octene, cis-2-pentene, and trans-2-pentene. Molecular simulations are performed in the grand canonical ensemble with transition-matrix sampling where the phase equilibrium properties are obtained with the histogram reweighting technique. The 6-dimensional optimization of strongly correlated parameters is possible, because the analytic PC-SAFT equation of state is used to locally correlate simulation results. The procedure is iterative but leads to very efficient convergence. An implementation is proposed, where the converged result is not affected (disturbed) by the analytic equation of state. The resulting transferable anisotropic Mie-potential (TAMie) force field shows average relative deviations in vapor pressure of 1.1% and in liquid density of 0.9% for alkanes, and 2% and 1.5% for olefins, respectively, in a wide range of (reduced) temperature, Tr = 0.55-0.97. For substances that were not members of the objective function, the TAMie force field enables predictions of phase equilibrium properties with good accuracy. PMID:26274900

  17. The pyrolysis of 2-methylfuran: a quantum chemical, statistical rate theory and kinetic modelling study.


    Somers, Kieran P; Simmie, John M; Metcalfe, Wayne K; Curran, Henry J


    Due to the rapidly growing interest in the use of biomass derived furanic compounds as potential platform chemicals and fossil fuel replacements, there is a simultaneous need to understand the pyrolysis and combustion properties of such molecules. To this end, the potential energy surfaces for the pyrolysis relevant reactions of the biofuel candidate 2-methylfuran have been characterized using quantum chemical methods (CBS-QB3, CBS-APNO and G3). Canonical transition state theory is employed to determine the high-pressure limiting kinetics, k(T), of elementary reactions. Rice-Ramsperger-Kassel-Marcus theory with an energy grained master equation is used to compute pressure-dependent rate constants, k(T,p), and product branching fractions for the multiple-well, multiple-channel reaction pathways which typify the pyrolysis reactions of the title species. The unimolecular decomposition of 2-methylfuran is shown to proceed via hydrogen atom transfer reactions through singlet carbene intermediates which readily undergo ring opening to form collisionally stabilised acyclic C5H6O isomers before further decomposition to C1-C4 species. Rate constants for abstraction by the hydrogen atom and methyl radical are reported, with abstraction from the alkyl side chain calculated to dominate. The fate of the primary abstraction product, 2-furanylmethyl radical, is shown to be thermal decomposition to the n-butadienyl radical and carbon monoxide through a series of ring opening and hydrogen atom transfer reactions. The dominant bimolecular products of hydrogen atom addition reactions are found to be furan and methyl radical, 1-butene-1-yl radical and carbon monoxide and vinyl ketene and methyl radical. A kinetic mechanism is assembled with computer simulations in good agreement with shock tube speciation profiles taken from the literature. The kinetic mechanism developed herein can be used in future chemical kinetic modelling studies on the pyrolysis and oxidation of 2-methylfuran, or the larger molecular structures for which it is a known pyrolysis/combustion intermediate (e.g. cellulose, coals, 2,5-dimethylfuran). PMID:24496403

  18. Characterization of hydrocarbons, halocarbons and carbonyls in the atmosphere of Hong Kong.


    Guo, H; Lee, S C; Louie, P K K; Ho, K F


    Ambient air quality measurements of 156 species including 39 alkanes, 32 alkenes, 2 alkynes, 24 aromatic hydrocarbons, 43 halocarbons and 16 carbonyls, were carried out for 120 air samples collected at two sampling stations (CW and TW) in 2001 throughout Hong Kong. Spatial variations of volatile organic compounds (VOCs) in the atmosphere were investigated. Levels of most alkanes and alkenes at TW site were higher than that at the CW site, while the BTEX concentrations at the two sites were close. The BTEX ratios at CW and TW were 1.6:10.1:1.0:1.6 and 2.1:10.8:1.0:2.0, respectively. For major halogenated hydrocarbons, the mean concentrations of chloromethane, CFCs 12 and 22 did not show spatial variations at the two sites. However, site-specific differences were observed for trichloroethene and tetrachloroethene. Furthermore, there were no significant differences for carbonyls such as formaldehyde, acetaldehyde and acetone between the two sites. The levels of selected hydrocarbons in winter were 1-5 times that in summer. There were no common seasonal trends for carbonyls in Hong Kong. The ambient level of formaldehyde, the most abundant carbonyl, was higher in summer. However, levels of acetaldehyde, acetone and benzaldehyde in winter were 1.6-3.8 times that in summer. The levels of CFCs 11 and 12, and chloromethane in summer were higher than that in winter. Strong correlation of most hydrocarbons with propene and n-butane suggested that the primary contributors of hydrocarbons were vehicular emissions in Hong Kong. In addition, gasoline evaporation, use of solvents, leakage of liquefied petroleum gas (LPG), natural gas leakage and other industrial emissions, and even biogenic emissions affected the ambient levels of hydrocarbons. The sources of halocarbons were mainly materials used in industrial processes and as solvents. Correlation analysis suggested that photochemical reactions made significant contributions to the ambient levels of carbonyls in summer whereas in winter motor vehicle emissions would be the major sources of the carbonyls. The photochemical reactivity of selected VOCs was estimated in this study. The largest contributors to ozone formation were formaldehyde, toluene, propene, m,p-xylene, acetaldehyde, 1-butene/i-butene, isoprene and n-butane, suggesting that motor vehicles, gasoline evaporation, use of solvents, leakage of LPG, photochemical processes and biogenic emission are sources in the production of ozone. On the other hand, VOCs from vehicles and gasoline evaporation were predominant with respect to reactions with OH radical. PMID:15519381

  19. Plasma discharge in N2 + CH4 at low pressures: experimental results and applications to Titan.


    Thompson, W R; Henry, T J; Schwartz, J M; Khare, B N; Sagan, C


    We report the yields of gaseous hydrocarbons and nitriles produced in a continuous flow, low-dose, cold plasma discharge excited in a 10% CH4, 90% N2 atmosphere at 295 K and pressures p of 17 and 0.24 mbar, and use the results to compute expected abundances of minor constituents in Titan's atmosphere. These experiments are, by design, relevant to the atmospheric chemistry induced by cosmic rays in Titan's troposphere and (at the lower pressure) to chemistry initiated by Saturnian magnetospheric electrons and other charged particle sources which excite stratospheric aurorae. At p = 17 mbar, 59 gaseous species including 27 nitriles are detected in overall yield 4.0 (C + N) atoms incorporated into products per 100 eV (heV). At p = 0.24 mbar, 19 species are detected, including six nitriles and three other unidentified N-bearing compounds; the yield is 0.79 (C + N)/heV, a mild decrease with pressure. The types of molecules formed change more markedly, with high degrees of multiple bonding at 0.24 mbar prevailing over more H-saturated molecules at 17 mbar. The molecules and yields at 0.24 mbar bear a striking resemblance to the minor constituents found in Titan's atmosphere, all of which are abundant products in the laboratory experiment. Using the altitude-integrated flux of charged particle energy deposition at Titan, the laboratory yields at p = 0.24 mb, and a simple eddy mixing model, we compute absolute stratospheric column abundances and mole fractions. These are found to be in very good agreement with the Voyager IRIS observations. Except for the primarily photochemical products, C2H6 and C3H8, the match is much better than that obtained by photochemical-kinetic models, demonstrating that properly designed laboratory experiments are directly applicable to modeling radiation-chemical processes in planetary atmospheres. On the basis of this agreement we expect CH3-C triple bond N (ethanenitrile = acetonitrile) CH2=CH-CH=CH2 (1,3-butadiene), CH2=C=CH2 (1,2-propadiene = allene), and CH2=CH-C triple bond CH (1-buten-3-yne) to be present at mol fractions X > 10(-9), and CH2=CH-C triple bond N (propenenitrile), CH3-CH=CH2 (propene), and CH3-CH2-C triple bond N (propanenitrile) at X > 10(-10) in Titan's atmosphere. PMID:11538099

  20. Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: constraints from mineral buffered laboratory experiments

    NASA Astrophysics Data System (ADS)

    Seewald, Jeffrey S.


    Organic matter, water, and minerals coexist at elevated temperatures and pressures in sedimentary basins and participate in a wide range of geochemical processes that includes the generation of oil and natural gas. A series of laboratory experiments were conducted at 300 to 350°C and 350 bars to examine chemical interactions involving low molecular weight aqueous hydrocarbons with water and Fe-bearing minerals under hydrothermal conditions. Mineral buffers composed of hematite-magnetite-pyrite, hematite-magnetite, and pyrite-pyrrhotite-magnetite were added to each experiment to fix the redox state of the fluid and the activity of reduced sulfur species. During each experiment the chemical system was externally modified by addition of ethene, ethane, propene, 1-butene, or n-heptane, and variations in the abundance of aqueous organic species were monitored as a function of time and temperature. Results of the experiments indicate that decomposition of aqueous n-alkanes proceeds through a series of oxidation and hydration reactions that sequentially produce alkenes, alcohols, ketones, and organic acids as reaction intermediaries. Organic acids subsequently undergo decarboxylation and/or oxidation reactions to form carbon dioxide and shorter chain saturated hydrocarbons. This alteration assemblage is compositionally distinct from that produced by thermal cracking under anhydrous conditions, indicating that the presence of water and minerals provide alternative reaction pathways for the decomposition of hydrocarbons. The rate of hydrocarbon oxidation decreases substantially under reducing conditions and in the absence of catalytically active aqueous sulfur species. These results represent compelling evidence that the stability of aqueous hydrocarbons at elevated temperatures in natural environments is not a simple function of time and temperature alone. Under the appropriate geochemical conditions, stepwise oxidation represents a mechanism for the decomposition of low molecular weight hydrocarbons and the production of methane-rich ("dry") natural gas. Evaluation of aqueous reaction products generated during the experiments within a thermodynamic framework indicates that alkane-alkene, alkene-ketone, and alkene-alcohol reactions attained metastable thermodynamic equilibrium states. This equilibrium included water and iron-bearing minerals, demonstrating the direct involvement of inorganic species as reactants during organic transformations. The high reactivity of water and iron-bearing minerals suggests that they represent abundant sources of hydrogen and oxygen available for the formation of hydrocarbons and oxygenated alteration products. Thus, variations in elemental kerogen composition may not accurately reflect the timing and extent of hydrocarbon, carbon dioxide, and organic acid generation in sedimentary basins. This study demonstrates that the stabilities of aqueous hydrocarbons are strongly influenced by inorganic sediment composition at elevated temperatures. Incorporation of such interactions into geochemical models will greatly improve prediction of the occurrence of hydrocarbons in natural environments over geologic time.

  1. Coupling reactions of trifluoroethyl iodide on GaAs(100)

    NASA Astrophysics Data System (ADS)

    Singh, N. K.; Kemp, N. T.; Paris, N.; Balan, V.


    We report on the reactions of 2-iodo-1,1,1-trifluoroethane (CF3CH2I) on gallium-rich GaAs(100)-(4×1), studied using the techniques of temperature programmed desorption and x-ray photoelectron spectroscopy. The study is to provide evidence for the formation of a higher fluorinated alkene, 1,1,4,4,4-pentafluoro-1-butene (CF2=CHCH2CF3) and alkane, 1,1,1,4,4,4-hexafluorobutane (CF3CH2CH2CF3) from the coupling reactions of covalently bonded surface alkyl (CF3CH2•) moieties. CF3CH2I adsorbs nondissociatively at 150 K. Thermal dissociation of this weakly chemisorbed state occurs below room temperature to form adsorbed CF3CH2• and I• species. The surface CF3CH2• species undergoes ?-fluoride elimination to form gaseous CF2=CH2 and this represents the major pathway for the removal of CF3CH2• species from the surface. In competition with the ?-fluoride elimination process the adsorbed CF3CH2• species also undergoes, recombination with surface iodine atoms to form recombinative molecular CF3CH2I, olefin insertion reaction with CF2=CH2 to form gaseous CF2=CHCH2CF3, and last self-coupling reaction to form CF3CH2CH2CF3. The adsorbed surface iodine atoms, formed by the dissociation of the molecularly chemisorbed CF3CH2I, and fluorine atoms formed during the ?-fluoride elimination reaction, both form etch products (GaI, GaF, AsI, AsF, and As2) by their reactions with the surface layer Ga atoms, subsurface As atoms, and GaAs substrate. In this article we discuss the mechanisms by which these products form from the adsorbed CF3CH2• and I• species, and the role that the GaAs surface plays in the proposed reaction pathways. We compare the reactivity of the GaAs surface with transition metals in its ability to facilitate dehydrogenation and coupling reactions in adsorbed alkyl species. .

  2. Theoretical investigations of the thermochemistry, structures, and internal rotation of conjugated polyynes

    NASA Astrophysics Data System (ADS)

    Jarowski, Peter D.

    Chapter 1 discusses the thermochemistry of conjugated double and triple bonds. The conjugation stabilization energies of dienes and diynes are considerably larger than estimates based on heat of hydrogenation differences between 1,3-butadiyne and 1-butyne as well as between 1,3-butadiene and 1-butene. Such comparisons do not take into account the counterbalancing hyperconjugative stabilization of the partially hydrogenated products by their ethyl groups. When alkyl hyperconjugation is considered, the conjugation stabilization of diynes (? 9.3 kcal/mol) is found by two methods (involving isomerization of non-conjugated into conjugated isomers and heats of hydrogenation) to be larger than that of dienes (? 8.2 kcal/mol). In Chapter 2 the stabilization of substituted organic radicals, relative to methyl, are computed using bond separation energies and the block localized wavefunction method. These energies are typically evaluated from C-H bond dissociation energies (computed here by the CBS-RAD method). However, this method gives stabilization energies of an increasing number of mono-, di-, and tri-substituted vinyl and ethynyl substituents, which differ from the predictions of Perturbation Molecular Orbital (PMO) and Huckel Molecular Orbital (HMO) theory. The saturation (attenuation) effect for both series should be monotonic and small. Instead, the attenuation computed by the allylic series is larger than that predicted by HMO theory and the behavior of the propargylic series is erratic. These discrepancies arise from the use of bond dissociation energy data in the evaluations, which depend not only on the stabilization of the radicals, but also on the substantial substituent effects (e.g., hyperconjugation) on the energies of the reference hydrocarbons. New evaluation schemes are proposed that avoid such complications and thus estimate radical stabilization effects directly; the results agree with PMO and HMO theories. Substitution effects are analyzed using isodesmic equations with CBS-RAD data and also with the block localized wavefunction (BLW) method. The new estimates give essentially the same vinyl (22.3 kcal/mol) and ethynyl (21.9 kcal/mol) stabilization energies in the allyl and propargyl radicals, contrary to conventional evaluations. Likewise, the vinyl and ethynyl stabilizations in di-substituted and tri-substituted radicals are similar. These conclusions are corroborated with the block localized wavefunction (BLW) method, which is used to analyze resonance stabilization energies in the radical systems and hyperconjugative stabilization energies in the reference hydrocarbons. Chapter 3 presents the structures, heats of formation, and strain energies of diacetylene (buta-1,3-diynediyl) expanded molecules computed with ab initio and molecular mechanics calculations. Expanded cubane, prismane, tetrahedrane, and expanded monocyclics and bicyclics were optimized at the HF/6-31G(d) and B3LYP/6-31G(d) levels. The heats of formation of these systems were obtained from isodesmic equations at the HF/6-31G(d) level. Heats of formation were also calculated from Benson group equivalents. The strain energies of these expanded molecules were estimated by several independent methods. An adapted MM3* molecular mechanics force field, specifically parameterized to treat conjugated acetylene units, was employed for one measure of strain energy and as an additional method for structural analysis. Expanded dodecahedrane and icosahedrane were calculated by this method. Expanded molecules were considered structurally in the context of their potential material applications. Chapter 4 addresses the computation of the rotational barriers of substituted ethynlene and butatriene as well as their geometric and electronic structures. The barriers to internal rotation of methylated, ethynylated, and vinylated butatrienes and alkenes were calculated at the CASPT2/6-31G(d)//B3LYP/6-31G(d) level. Calculated butatriene rotational barriers are lower than analogous alkenes, but there is a larger variance in rotational barrier for alkenes than

  3. A Unique Equation to Estimate Flash Points of Selected Pure Liquids Application to the Correction of Probably Erroneous Flash Point Values

    NASA Astrophysics Data System (ADS)

    Catoire, Laurent; Naudet, Valérie


    A simple empirical equation is presented for the estimation of closed-cup flash points for pure organic liquids. Data needed for the estimation of a flash point (FP) are the normal boiling point (Teb), the standard enthalpy of vaporization at 298.15 K [?vapH°(298.15 K)] of the compound, and the number of carbon atoms (n) in the molecule. The bounds for this equation are: -100?FP(°C)?+200; 250?Teb(K)?650; 20??vap H°(298.15 K)/(kJ mol-1)?110; 1?n?21. Compared to other methods (empirical equations, structural group contribution methods, and neural network quantitative structure-property relationships), this simple equation is shown to predict accurately the flash points for a variety of compounds, whatever their chemical groups (monofunctional compounds and polyfunctional compounds) and whatever their structure (linear, branched, cyclic). The same equation is shown to be valid for hydrocarbons, organic nitrogen compounds, organic oxygen compounds, organic sulfur compounds, organic halogen compounds, and organic silicone compounds. It seems that the flash points of organic deuterium compounds, organic tin compounds, organic nickel compounds, organic phosphorus compounds, organic boron compounds, and organic germanium compounds can also be predicted accurately by this equation. A mean absolute deviation of about 3 °C, a standard deviation of about 2 °C, and a maximum absolute deviation of 10 °C are obtained when predictions are compared to experimental data for more than 600 compounds. For all these compounds, the absolute deviation is equal or lower than the reproductibility expected at a 95% confidence level for closed-cup flash point measurement. This estimation technique has its limitations concerning the polyhalogenated compounds for which the equation should be used with caution. The mean absolute deviation and maximum absolute deviation observed and the fact that the equation provides unbiaised predictions lead to the conclusion that several flash points have been reported erroneously, whatever the reason, in one or several reference compilations. In the following lists, the currently accepted flash points for bold compounds err, or probably err, on the hazardous side by at least 10 °C and for the nonbolded compounds, the currently accepted flash points err, or probably err, on the nonhazardous side by at least 10 °C: bicyclohexyl, sec-butylamine, tert-butylamine, 2-cyclohexen-1-one, ethanethiol, 1,3-cyclohexadiene, 1,4-pentadiene, methyl formate, acetonitrile, cinnamaldehyde, 1-pentanol, diethylene glycol, diethyl fumarate, diethyl phthalate, trimethylamine, dimethylamine, 1,6-hexanediol, propylamine, methanethiol, ethylamine, bromoethane, 1-bromopropane, tert-butylbenzene, 1-chloro-2-methylpropane, diacetone alcohol, diethanolamine, 2-ethylbutanal, and formic acid. For some other compounds, no other data than the currently accepted flash points are available. Therefore, it cannot be assessed that these flash point data are erroneous but it can be stated that they are probably erroneous. At least, they need experimental re-examination. They are probably erroneous by at least 15 °C: 1,3-cyclopentadiene, di-tert-butyl sulfide, dimethyl ether, dipropyl ether, 4-heptanone, bis(2-chloroethyl)ether, 1-decanol, 1-phenyl-1-butanone, furan, ethylcyclopentane, 1-heptanethiol, 2,5-hexanediol, 3-hexanone, hexanoic acid methyl ester, 4-methyl-1,3-pentadiene, propanoyl chloride, tetramethylsilane, thiacyclopentane, 1-chloro-2-methyl-1-propene, trans-1,3-pentadiene, 2,3-dimethylheptane, triethylenetetramine, methylal, N-ethylisopropylamine, 3-methyl-2-pentene, and 2,3-dimethyl-1-butene.

  4. Insights into functional-group-tolerant polymerization catalysis with phosphine-sulfonamide palladium(II) complexes.


    Jian, Zhongbao; Falivene, Laura; Wucher, Philipp; Roesle, Philipp; Caporaso, Lucia; Cavallo, Luigi; Göttker-Schnetmann, Inigo; Mecking, Stefan


    Two series of cationic palladium(II) methyl complexes {[(2-MeOC6 H4 )2 PC6 H4 SO2 NHC6 H3 (2,6-R(1) ,R(2) )]PdMe}2 [A]2 ((X) 1(+) -A: R(1) =R(2) =H: (H) 1(+) -A; R(1) =R(2) =CH(CH3 )2 : (DIPP) 1(+) -A; R(1) =H, R(2) =CF3 : (CF3) 1(+) -A; A=BF4 or SbF6 ) and neutral palladium(II) methyl complexes {[(2-MeOC6 H4 )2 PC6 H4 SO2 NC6 H3 (2,6-R(1) ,R(2) )]PdMe(L)} ((X) 1-acetone: L=acetone; (X) 1-dmso: L=dimethyl sulfoxide; (X) 1-pyr: L=pyridine) chelated by a phosphine-sulfonamide were synthesized and fully characterized. Stoichiometric insertion of methyl acrylate (MA) into all complexes revealed that a 2,1 regiochemistry dominates in the first insertion of MA. Subsequently, for the cationic complexes (X) 1(+) -A, ?-H elimination from the 2,1-insertion product (X) 2(+) -AMA-2,1 is overwhelmingly favored over a second MA insertion to yield two major products (X) 4(+) -AMA-1,2 and (X) 5(+) -AMA . By contrast, for the weakly coordinated neutral complexes (X) 1-acetone and (X) 1-dmso, a second MA insertion of the 2,1-insertion product (X) 2MA-2,1 is faster than ?-H elimination and gives (X) 3MA as major products. For the strongly coordinated neutral complexes (X) 1-pyr, no second MA insertion and no ?-H elimination (except for (DIPP) 2-pyrMA-2,1 ) were observed for the 2,1-insertion product (X) 2-pyrMA-2,1 . The cationic complexes (X) 1(+) -A exhibited high catalytic activities for ethylene dimerization, affording butenes (C4 ) with a high selectivity of up to 97.7?% (1-butene: 99.3?%). Differences in activities and selectivities suggest that the phosphine-sulfonamide ligands remain coordinated to the metal center in a bidentate fashion in the catalytically active species. By comparison, the neutral complexes (X) 1-acetone, (X) 1-dmso, and (X) 1-pyr showed very low activity towards ethylene to give traces of oligomers. DFT analyses taking into account the two possible coordination modes (O or N) of the sulfonamide ligand for the cationic system (CF3) 1(+) suggested that the experimentally observed high activity in ethylene dimerization is the result of a facile first ethylene insertion into the O-coordinated PdMe isomer and a subsequent favored ?-H elimination from the N-coordinated isomer formed by isomerization of the insertion product. Steric hindrance by the N-aryl substituent in the neutral systems (CF3) 1 and (H) 1 appears to contribute significantly to a higher barrier of insertion, which accounts for the experimentally observed low activity towards ethylene oligomerization. PMID:25487160

  5. Chromatography and mass spectrometry of prebiological and biological molecules

    NASA Astrophysics Data System (ADS)

    Navale, Vivek

    The detection and identification of prebiological and biological molecules are of importance for understanding chemical and biological processes occurring within the solar system. Molecular mass measurements, peptide mapping, and disulfide bond analysis of enzymes and recombinant proteins are important in the development of therapeutic drugs for human diseases. Separation of hydrocarbons (C1 to C6) and nitriles was achieved by 14%-cyanopropylphenyl-86%- dimethylpolysiloxane (CPPS-DMPS) stationary phase in a narrow bore metal capillary column. The calculation of modeling numbers enabled the differentiation of the C4 hydrocarbon isomers of 1-butene (cis and trans). The modeled retention time values for benzene, toluene, xylene, acetonitrile, propane, and propene nitriles were in good agreement with the measurements. The separation of C2 hydrocarbons (ethane and ethene) from predominantly N2 matrix was demonstrated for the first time on wall coated narrow bore low temperature glassy carbon column. Identification and accurate mass measurements of pepsin, an enzymatic protein with less number of basic amino acid residues were successfully demonstrated by matrix- assisted laser desorption ionization mass spectrometry (MALDI-MS). The molecular mass of pepsin was found to be 34,787 Da. Several decomposition products of pepsin, in m/z range of 3,500 to 4,700 were identified. Trypsin, an important endopeptidase enzyme had a mass of 46829.7 Da. Lower mass components with m/z 8047.5, 7776.6, 5722, 5446.2 and 5185 Da were also observed in trypsin spectrum. Both chemokine and growth factor recombinant proteins were mass analyzed as 8848.1 ± 3.5 and 16178.52 ± 4.1 Da, respectively. The accuracy of the measurements was in the range of 0.01 to 0.02%. Reduction and alkylation experiments on the chemokine showed the presence of six cysteines and three disulfide bonds. The two cysteines of the growth factor contained the free sulfhydryl groups and the accurate average mass of the growth factor protein was 16175.6 Da. MALDI analysis of trypsin digest of Myeloid progenitor inhibitory factor chemokine verified the disulfide bridging among cysteine residues. Several partially digested trypsin and V8 peptides were detected that verified significant portions of the primary structure of the chemokine. Mass difference amounting to the loss of a single amino acid, serine was also identified. The cyanogen bromide (CNBr) treated chemokine produced three peptides 7051, 6910.1 and 1492 Da. The analysis of Keratinocyte growth factor (KGF) peptide mixtures showed suppression effects during the MALDI ionization process. Several partially digested peptides with mass values 3214, 9980, 10325 and 10497 Da were identified. Direct MALDI-MS analysis of cyanogen bromide treated KGF molecule demonstrated the formation of peptides with mass 7567.3, 4992.6 and 3118.6 Da. The high sensitivity of MALDI-MS provided a rapid method for confirming the fidelity of gene expression in the host system. The present work showed that the combined methods of chromatography and mass spectrometry are efficient means for identification and characterization of prebiological and biological molecules.

  6. I. Synthesis, characterization, and base catalysis of novel zeolite supported super-basic materials II. Oxidative dehydrogenation of ethane over reduced heteropolyanion catalysts

    NASA Astrophysics Data System (ADS)

    Galownia, Jonathan M.

    This thesis is composed of two separate and unrelated projects. The first part of this thesis outlines an investigation into the synthesis and characterization of a novel zeolite supported super-base capable of carbon-carbon olefin addition to alkyl aromatics. A zeolite supported basic material capable of such reactions would benefit many fine chemical syntheses, as well as vastly improve the economics associated with production of the high performance thermoplastic polyester polyethylene naphthalate. The thermal decomposition of alkali---metal azides impregnated in zeolite X is investigated as a novel route to the synthesis of a zeolite supported super-base. Impregnation of the alkali---metal azide precursor is shown to result in azide species occluded within the pores of the zeolite support by using high speed, solid-state 23Na MAS and 2D MQMAS NMR, FTIR, and TGA characterization methods. Addition of alkali---metal azides to the zeolite results in redistribution of the extra-lattice cations in the zeolite framework. Thermal decomposition of impregnated azide species produces further cation redistribution, but no neutral metallic clusters are detected by high speed, solid-state 23Na MAS NMR following thermal activation of the materials. Instead, it is possible that inactive ionic clusters are formed. The thermally activated materials do not promote base catalysis for the isomerization of 1-butene, the ethylation of toluene and o-xylene, and the alkenylation of o-xylene with 1,3-butadiene to produce 5-ortho-tolyl-pent-2-ene (5-OTP). The lack of catalytic activity in the materials is attributed to failure of the materials to form neutral metallic clusters during thermal treatment, possibly due to preferential formation of NMR silent ionic clusters. The formation of neutral metallic clusters is found to be insensitive to synthesis technique and activation procedure. It is concluded that the impregnation of alkali---metal azides in zeolite X does not provide a reliable precursor for the formation of zeolite supported super-basic materials. The second part of this thesis describes the oxidative dehydrogenation of ethane over partially reduced heteropolyanions. Niobium and pyridine exchanged salts of phosphomolybdic (NbPMo12Pyr) and phosphovanadomolybdic (NbPMo11VPyr) acids are investigated as catalyst precursors to prepare materials for catalyzing the oxidative dehydrogenation of ethane to ethylene and acetic acid at atmospheric pressure. The effects of feed composition, steam flow, temperature, and precursor composition on catalytic activity and selectivity are presented for both ethane and ethylene oxidation. Production of ethylene and acetic acid from ethane using the catalytic materials exceeds that reported in the literature for Mo-V-Nb-Ox systems under atmospheric or elevated pressure. Production of acetic acid from ethylene is also greater than that observed for Mo-V-Nb-Ox systems. Addition of vanadium reduces catalytic activity and selectivity to both ethylene and acetic acid while niobium is essential for the formation of acetic acid from ethane. Other metals such as antimony, iron, and gallium do not provide the same beneficial effect as niobium. Molybdenum in close proximity to niobium is the active site for ethane activation while niobium is directly involved in the transformation of ethylene to acetic acid. A balance of niobium and protonated pyridine is required to produce an active catalyst. Water is found to aid in desorption of acetic acid, thereby limiting deep oxidation to carbon oxides. A reaction scheme is proposed for the production of acetic acid from ethane over the catalytic materials.

  7. Multinuclear group 4 catalysis: olefin polymerization pathways modified by strong metal-metal cooperative effects.


    McInnis, Jennifer P; Delferro, Massimiliano; Marks, Tobin J


    Polyolefins are produced today catalytically on a vast scale, and the manufactured polymers find use in everything from artificial limbs and food/medical packaging to automotive and electrical components and lubricants. Although polyolefin monomers are typically cheap (e.g., ethylene, propylene, ?-olefins), the resulting polymer properties can be dramatically tuned by the particular polymerization catalyst employed, and reflect a rich interplay of macromolecular chemistry, materials science, and physics. For example, linear low-density polyethylene (LLDPE), produced by copolymerization of ethylene with linear ?-olefin comonomers such as 1-butene, 1-hexene, or 1-octene, has small but significant levels of short alkyl branches (C2, C4, C6) along the polyethylene backbone, and is an important technology material due to outstanding rheological and mechanical properties. In 2013, the total world polyolefin production was approximately 211 million metric tons, of which about 11% was LLDPE. Historically, polyolefins were produced using ill-defined but highly active heterogeneous catalysts composed of supported groups 4 or 6 species (usually halides) activated by aluminum alkyls. In 1963, Karl Ziegler and Giulio Natta received the Nobel Prize for these discoveries. Beginning in the late 1980s, a new generation of group 4 molecule-based homogeneous olefin polymerization catalysts emerged from discoveries by Walter Kaminsky, a team led by James Stevens at The Dow Chemical Company, this Laboratory at Northwestern University, and a host of talented groups in Germany, Italy, Japan, the United Kingdom, and the United States. These new "single-site" catalysts and their activating cocatalysts were far better defined and more rationally tunable in terms of structure, mechanism, thermodynamics, and catalyst activity and selectivity than ever before possible. An explosion of research advances led to new catalysts, cocatalysts, deeper mechanistic understanding of both the homogeneous and heterogeneous systems, macromolecules with dramatically altered properties, and large-scale industrial processes. It is noteworthy that many metalloenzymes employ multiple active centers operating in close synergistic proximity to achieve high activity and selectivity. Such enzymes were the inspiration for the research discussed in this Account, focused on the properties of multimetallic olefin polymerization catalysts. Here we discuss how modifications in organic ligand architecture, metal···metal proximity, and cocatalyst can dramatically modify polyolefin molecular weight, branch structure, and selectively for olefinic comonomer enchainment. We first discuss bimetallic catalysts with identical group 4 metal centers and then heterobimetallic systems with either group 4 or groups 4 + 6 catalytic centers. We compare and contrast the polymerization properties of the bimetallic catalysts with their monometallic analogues, highlighting marked cooperative enchainment effects and unusual polymeric products possible via the proximate catalytic centers. Such multinuclear olefin polymerization catalysts exhibit the following distinctive features: (1) unprecedented levels of polyolefin branching; (2) enhanced enchainment selectivity for linear and encumbered ?-olefin comonomers; (3) enhanced polyolefin tacticity and molecular weight; (4) unusual 1,2-insertion regiochemistry for styrenic monomers; (5) modified chain transfer kinetics, such as M-polymer ?-hydride transfer to the metal or incoming monomer; (6) LLDPE synthesis with a single binuclear catalyst and ethylene. PMID:25075755