Science.gov

Sample records for 1-d cmut array

  1. A low power, area efficient fpga based beamforming technique for 1-D CMUT arrays.

    PubMed

    Joseph, Bastin; Joseph, Jose; Vanjari, Siva Rama Krishna

    2015-08-01

    A low power area efficient digital beamformer targeting low frequency (2MHz) 1-D linear Capacitive Micromachined Ultrasonic Transducer (CMUT) array is developed. While designing the beamforming logic, the symmetry of the CMUT array is well exploited to reduce the area and power consumption. The proposed method is verified in Matlab by clocking an Arbitrary Waveform Generator(AWG). The architecture is successfully implemented in Xilinx Spartan 3E FPGA kit to check its functionality. The beamforming logic is implemented for 8, 16, 32, and 64 element CMUTs targeting Application Specific Integrated Circuit (ASIC) platform at Vdd 1.62V for UMC 90nm technology. It is observed that the proposed architecture consumes significantly lesser power and area (1.2895 mW power and 47134.4 μm(2) area for a 64 element digital beamforming circuit) compared to the conventional square root based algorithm. PMID:26737263

  2. Fast time-domain modeling of fluid-coupled cMUT cells: from the single cell to the 1-D linear array element.

    PubMed

    Sénégond, Nicolas; Boulmé, Audren; Plag, Camille; Teston, Franck; Certon, Dominique

    2013-07-01

    We report a fast time-domain model of fluid-coupled cMUTs developed to predict the transient response-i.e., the impulse pressure response--of an element of a linear 1-D array. Mechanical equations of the cMUT diaphragm are solved with 2-D finite-difference schemes. The time-domain solving method is a fourth--order Runge-Kutta algorithm. The model takes into account the electrostatic nonlinearity and the contact with the bottom electrode when the membrane is collapsed. Mutual acoustic coupling between cells is introduced through the numerical implementation of analytical solutions of the impulse diffraction theory established in the case of acoustic sources with rectangular geometry. Processing times are very short: they vary from a few minutes for a single cell to a maximum of 30 min for one element of an array. After a description of the model, the impact of the nonlinearity and the pull-in/pull-out phenomena on the dynamic behavior of the cMUT diaphragm is discussed. Experimental results of mechanical displacements obtained by interferometric measurements and the acoustic pressure field are compared with simulations. Different excitation signals-high-frequency bandwidth pulses and toneburst excitations of varying central frequency-were chosen to compare theory with experimental results. PMID:25004518

  3. Volumetric Flow Measurement Using an Implantable CMUT Array.

    PubMed

    Mengli Wang; Jingkuang Chen

    2011-06-01

    This paper describes volumetric-flow velocity measurement using an implantable capacitive micromachined ultrasonic transducer (CMUT) array. The array is comprised of multiple-concentric CMUT rings for ultrasound transmission and an outmost annular CMUT array for ultrasound reception. Microelectromechanical-system (MEMS) fabrication technology allows reception CMUT on this flowmeter to be implemented with a different membrane thickness and gap height than that of transmission CMUTs, optimizing the performance of these two different kinds of devices. The silicon substrate of this 2-mm-diameter CMUT ring array was bulk micromachined to approximately 80 to 100 μm thick, minimizing tissue disruption. The blood-flow velocity was detected using pulse ultrasound Doppler by comparing the demodulated echo ultrasound with the incident ultrasound. The demodulated ultrasound signal was sampled by a pulse delayed in time domain from the transmitted burst, which corresponds to detecting the signal at a specific distance. The flow tube/vessel diameter was detected through the time-flight delay difference from near and far wall reflections, which was measured from the ultrasound pulse echo. The angle between the ultrasound beam and the flow was found by using the cross-correlation from consecutive ultrasound echoes. Artificial blood flowing through three different polymer tubes was experimented with, while keeping the same volumetric flow rate. The discrepancy in flow measurement results between this CMUT meter and a calibrated laser Doppler flowmeter is less than 5%. PMID:23851472

  4. A nonlinear lumped model for ultrasound systems using CMUT arrays.

    PubMed

    Satir, Sarp; Degertekin, F Levent

    2015-10-01

    We present a nonlinear lumped model that predicts the electrical input-output behavior of an ultrasonic system using CMUTs with arbitrary array/membrane/electrode geometry in different transmit-receive configurations and drive signals. The receive-only operation, where the electrical output signal of the CMUT array in response to incident pressure field is calculated, is included by modifying the boundary elementbased vibroacoustic formulation for a CMUT array in rigid baffle. Along with the accurate large signal transmit model, this formulation covers pitch-catch and pulse-echo operation when transmit and receive signals can be separated in time. In cases when this separation is not valid, such as CMUTs used in continuous wave transmit-receive mode, pulse-echo mode with a nearby hard or soft wall or in a bounded space such as in a microfluidic channel, an efficient formulation based on the method of images is used. Some of these particular applications and the overall modeling approach have been validated through comparison with finite element analysis on specific examples including CMUTs with multiple electrodes. To further demonstrate the capability of the model for imaging applications, the two-way response of a partial dual-ring intravascular ultrasound array is simulated using a parallel computing cluster, where the output currents of individual array elements are calculated for given input pulse and compared with experimental results. With its versatility, the presented model can be a useful tool for rapid iterative CMUT-based system design and simulation for a broad range of ultrasonic applications. PMID:26470049

  5. A photoacoustic imager with light illumination through an infrared-transparent silicon CMUT array.

    PubMed

    Chen, Jingkuang; Wang, Mengli; Cheng, Jui-Ching; Wang, Yu-Hsin; Li, Pai-Chi; Cheng, Xiaoyang

    2012-04-01

    A novel hardware design and preliminary experimental results for photoacoustic imaging are reported in this paper. This imaging system makes use of an infrared-transparent capacitive micromachined ultrasonic transducer (CMUT) chip for ultrasound reception and illuminates the image target through the CMUT array. The cascaded arrangement between the light source and transducer array allows for a more compact imager head and results in more uniform illumination. Taking advantage of the low optical absorption coefficient of silicon in the near infrared spectrum as well as the broad acoustic bandwidth that CMUTs provide, an infrared-transparent CMUT array has been developed for ultrasound reception. The center frequency of the polysilicon-membrane CMUT devices used in this photoacoustic system is 3.5 MHz, with a fractional bandwidth of 118% in reception mode. The silicon substrate of the CMUT array has been thinned to 100 μm and an antireflection dielectric layer is coated on the back side to improve the infrared-transmission rate. Initial results show that the transmission rate of a 1.06-μm Nd:Yag laser through this CMUT chip is 12%. This transmission rate can be improved if the thickness of silicon substrate and the thin-film dielectrics in the CMUT structure are properly tailored. Imaging of a metal wire phantom using this cascaded photoacoustic imager is demonstrated. PMID:22547287

  6. Equivalent circuit-based analysis of CMUT cell dynamics in arrays.

    PubMed

    Oguz, H K; Atalar, Abdullah; Köymen, Hayrettin

    2013-05-01

    Capacitive micromachined ultrasonic transducers (CMUTs) are usually composed of large arrays of closely packed cells. In this work, we use an equivalent circuit model to analyze CMUT arrays with multiple cells. We study the effects of mutual acoustic interactions through the immersion medium caused by the pressure field generated by each cell acting upon the others. To do this, all the cells in the array are coupled through a radiation impedance matrix at their acoustic terminals. An accurate approximation for the mutual radiation impedance is defined between two circular cells, which can be used in large arrays to reduce computational complexity. Hence, a performance analysis of CMUT arrays can be accurately done with a circuit simulator. By using the proposed model, one can very rapidly obtain the linear frequency and nonlinear transient responses of arrays with an arbitrary number of CMUT cells. We performed several finite element method (FEM) simulations for arrays with small numbers of cells and showed that the results are very similar to those obtained by the equivalent circuit model. PMID:23661137

  7. A 5 meter range non-planar CMUT array for Automotive Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Hernandez Aguirre, Jonathan

    A discretized hyperbolic paraboloid geometry capacitive micromachined ultrasonic transducer (CMUT) array has been designed and fabricated for automotive collision avoidance. The array is designed to operate at 40 kHz, beamwidth of 40° with a maximum sidelobe intensity of -10dB. An SOI based fabrication technology has been used for the 5x5 array with 5 sensing surfaces along each x and y axis and 7 elevation levels. An assembly and packaging technique has been developed to realize the non-planar geometry in a PGA-68 package. A highly accurate mathematical method has been presented for analytical characterization of capacitive micromachined ultrasonic transducers (CMUTs) built with square diaphragms. The method uses a new two-dimensional polynomial function to more accurately predict the deflection curve of a multilayer square diaphragm subject to both mechanical and electrostatic pressure and a new capacitance model that takes into account the contribution of the fringing field capacitances.

  8. Characterization of dual-electrode CMUTs: demonstration of improved receive performance and pulse echo operation with dynamic membrane shaping.

    PubMed

    Guldiken, Rasim O; Balantekin, Mujdat; Zahorian, Jaime; Degertekin, F Levent

    2008-10-01

    A 1-D dual-electrode CMUT array for intracardiac echocardiography (ICE) with a center frequency of 8 MHz has been designed, fabricated, and used to demonstrate the potential of dual-electrode CMUTs. Using a dual-electrode CMUT, 9 dB higher receive signal level is obtained over the 6 dB fractional bandwidth as compared with a conventional CMUT with an identical center electrode biased close to its collapse voltage. Because the same device shows a 7.4 dB increase in maximum pressure output, 16.4 dB overall improvement in transduction performance has been achieved as compared with conventional CMUT. A net peak output pressure of 1.6 MPa on the dual-electrode CMUT membrane with tone burst excitation at 12 MHz is also reported. The frequency response of the dual-electrode CMUT is similar to that of a conventional CMUT with the same membrane geometry with about 15% increase in the center frequency. Monostatic operation of dual-electrode CMUTs shows that the high performance of the transducer is applicable in typical pulse-echo imaging mode of operation. With dynamic shaping of the CMUT membrane to optimize the transmit-and-receive modes of operation separately during each pulse-echo cycle, dual-electrode CMUT is a highly competitive alternative to its piezoelectric counterparts. PMID:18986882

  9. Fabrication process for CMUT arrays with polysilicon electrodes, nanometre precision cavity gaps and through-silicon vias

    NASA Astrophysics Data System (ADS)

    Due-Hansen, J.; Midtbø, K.; Poppe, E.; Summanwar, A.; Jensen, G. U.; Breivik, L.; Wang, D. T.; Schjølberg-Henriksen, K.

    2012-07-01

    Capacitive micromachined ultrasound transducers (CMUTs) can be used to realize miniature ultrasound probes. Through-silicon vias (TSVs) allow for close integration of the CMUT and read-out electronics. A fabrication process enabling the realization of a CMUT array with TSVs is being developed. The integrated process requires the formation of highly doped polysilicon electrodes with low surface roughness. A process for polysilicon film deposition, doping, CMP, RIE and thermal annealing that resulted in a film with sheet resistance of 4.0 Ω/□ and a surface roughness of 1 nm rms has been developed. The surface roughness of the polysilicon film was found to increase with higher phosphorus concentrations. The surface roughness also increased when oxygen was present in the thermal annealing ambient. The RIE process for etching CMUT cavities in the doped polysilicon gave a mean etch depth of 59.2 ± 3.9 nm and a uniformity across the wafer ranging from 1.0 to 4.7%. The two presented processes are key processes that enable the fabrication of CMUT arrays suitable for applications in for instance intravascular cardiology and gastrointestinal imaging.

  10. Underwater Imaging Using a 1 × 16 CMUT Linear Array.

    PubMed

    Zhang, Rui; Zhang, Wendong; He, Changde; Zhang, Yongmei; Song, Jinlong; Xue, Chenyang

    2016-01-01

    A 1 × 16 capacitive micro-machined ultrasonic transducer linear array was designed, fabricated, and tested for underwater imaging in the low frequency range. The linear array was fabricated using Si-SOI bonding techniques. Underwater transmission performance was tested in a water tank, and the array has a resonant frequency of 700 kHz, with pressure amplitude 182 dB (μPa·m/V) at 1 m. The -3 dB main beam width of the designed dense linear array is approximately 5 degrees. Synthetic aperture focusing technique was applied to improve the resolution of reconstructed images, with promising results. Thus, the proposed array was shown to be suitable for underwater imaging applications. PMID:26938536

  11. Underwater Imaging Using a 1 × 16 CMUT Linear Array

    PubMed Central

    Zhang, Rui; Zhang, Wendong; He, Changde; Zhang, Yongmei; Song, Jinlong; Xue, Chenyang

    2016-01-01

    A 1 × 16 capacitive micro-machined ultrasonic transducer linear array was designed, fabricated, and tested for underwater imaging in the low frequency range. The linear array was fabricated using Si-SOI bonding techniques. Underwater transmission performance was tested in a water tank, and the array has a resonant frequency of 700 kHz, with pressure amplitude 182 dB (μPa·m/V) at 1 m. The −3 dB main beam width of the designed dense linear array is approximately 5 degrees. Synthetic aperture focusing technique was applied to improve the resolution of reconstructed images, with promising results. Thus, the proposed array was shown to be suitable for underwater imaging applications. PMID:26938536

  12. CMUT-based Volumetric Ultrasonic Imaging Array Design for Forward Looking ICE and IVUS Applications

    PubMed Central

    Zahorian, Jaime; Xu, Toby; Rashid, Muhammad W.; Satir, Sarp; Gurun, Gokce; Karaman, Mustafa; Hasler, Jennifer; Degertekin, F. Levent

    2014-01-01

    Designing a mechanically flexible catheter based volumetric ultrasonic imaging device for intravascular and intracardiac imaging is challenging due to small transducer area and limited number of cables. With a few parallel channels, synthetic phased array processing is necessary to acquire data from a large number of transducer elements. This increases the data collection time and hence reduces frame rate and causes artifacts due to tissue-transducer motion. Some of these drawbacks can be resolved by different array designs offered by CMUT-on-CMOS approach. We recently implemented a 2.1-mm diameter single chip 10 MHz dual ring CMUT-on-CMOS array for forward looking ICE with 64-transmit and 56-receive elements along with associated electronics. These volumetric arrays have the small element size required by high operating frequencies and achieve sub mm resolution, but the system would be susceptible to motion artifacts. To enable real time imaging with high SNR, we designed novel arrays consisting of multiple defocused annular rings for transmit aperture and a single ring receive array. The annular transmit rings are utilized to act as a high power element by focusing to a virtual ring shaped line behind the aperture. In this case, image reconstruction is performed by only receive beamforming, reducing total required firing steps from 896 to 14 with a trade-off in image resolution. The SNR of system is improved more than 5 dB for the same frequency and frame rate as compared to the dual ring array, which can be utilized to achieve the same resolution by increasing the operating frequency. PMID:23366605

  13. Optimization of multi-pulse sequences for nonlinear contrast agent imaging using a cMUT array

    NASA Astrophysics Data System (ADS)

    Novell, Anthony; Arena, Christopher B.; Kasoji, Sandeep; Dayton, Paul A.

    2015-04-01

    Capacitive micromachined ultrasonic transducer (cMUT) technology provides advantages such as wide frequency bandwidth, which can be exploited for contrast agent imaging. Nevertheless, the efficiency of traditional multi-pulse imaging schemes, such as pulse inversion (PI), remains limited because of the intrinsic nonlinear character of cMUTs. Recently, a new contrast imaging sequence, called bias voltage modulation sequence (BVM), has been specifically developed for cMUTs to suppress their unwanted nonlinear behavior. In this study, we propose to optimize contrast agent detection by combining the BVM sequence with PI and/or chirp reversal (CR). An aqueous dispersion of lipid encapsulated microbubbles was exposed to several combinations of multi-pulse imaging sequences. Approaches were evaluated in vitro using 9 inter-connected elements of a cMUT linear array (excitation frequency of 4 MHz peak negative pressure of 100 kPa). For sequences using chirp excitations, a specific compression filter was designed to compress and extract several nonlinear components from the received microbubble responses. A satisfactory cancellation of the nonlinear signal from the source is achieved when BVM is combined with PI and CR. In comparison with PI and CR imaging modes alone, using sequences incorporating BVM increases the contrast-to-tissue ratio by 10.0 dB and 4.6 dB, respectively. Furthermore, the combination of BVM with CR and PI results in a significant increase of the contrast-to-noise ratio (+29 dB). This enhancement is attributed to the use of chirps as excitation signals and the improved preservation of several nonlinear components contained within the contrast agent response.

  14. Optimization of Multi-Pulse Sequences For Nonlinear Contrast Agent Imaging Using a cMUT Array

    PubMed Central

    Novell, Anthony; Arena, Christopher B.; Kasoji, Sandeep; Dayton, Paul A.

    2015-01-01

    Capacitive micromachined ultrasonic transducer (cMUT) technology provides advantages such as wide frequency bandwidth, which can be exploited for contrast agent imaging. Nevertheless, the efficiency of traditional multi-pulse imaging schemes, such as pulse inversion (PI), remains limited because of the intrinsic nonlinear character of cMUTs. Recently, a new contrast imaging sequence, called bias voltage modulation sequence (BVM), had been specifically developed for cMUTs to suppress their unwanted nonlinear behavior. In this study, we propose to optimize contrast agent detection by combining the BVM sequence with PI and/or chirp reversal (CR). An aqueous dispersion of lipid encapsulated microbubbles was exposed to several combinations of multi-pulse imaging sequences. Approaches were evaluated in vitro using 9 inter-connected elements of a cMUT linear array (excitation frequency of 4 MHz; peak negative pressure of 100 kPa). For sequences using chirp excitations, a specific compression filter was designed to compress and extract several nonlinear components from the received microbubble responses. A satisfactory cancellation of the nonlinear signal from the source is achieved when BVM is combined with PI and CR. In comparison with PI and CR imaging modes alone, using sequences incorporating BVM increases the contrast-to-tissue ratio by 10.0 dB and 4.6 dB, respectively. Furthermore, the combination of BVM with CR and PI results in a significant increase of the contrast-to-noise ratio (+29 dB). This enhancement is attributed to the use of chirps as excitation signals and the improved preservation of several nonlinear components contained within the contrast agent response. PMID:25803232

  15. 3D vector flow using a row-column addressed CMUT array

    NASA Astrophysics Data System (ADS)

    Holbek, Simon; Christiansen, Thomas Lehrmann; Engholm, Mathias; Lei, Anders; Stuart, Mathias Bo; Beers, Christopher; Moesner, Lars Nordahl; Bagge, Jan Peter; Thomsen, Erik Vilain; Jensen, Jørgen Arendt

    2016-04-01

    This paper presents an in-house developed 2-D capacitive micromachined ultrasonic transducer (CMUT) applied for 3-D blood flow estimation. The probe breaks with conventional transducers in two ways; first, the ultrasonic pressure field is generated from thousands of small vibrating micromachined cells, and second, elements are accessed by row and/or column indices. The 62+62 2-D row-column addressed prototype CMUT probe was used for vector flow estimation by transmitting focused ultrasound into a flow-rig with a fully developed parabolic flow. The beam-to-flow angle was 90°. The received data was beamformed and processed offline. A transverse oscillation (TO) velocity estimator was used to estimate the 3-D vector flow along a line originating from the center of the transducer. The estimated velocities in the lateral and axial direction were close to zero as expected. In the transverse direction a characteristic parabolic velocity profile was estimated with a peak velocity of 0.48 m/s +/- 0.02 m/s in reference to the expected 0.54 m/s. The results presented are the first 3-D vector flow estimates obtained with a row-column CMUT probe, which demonstrates that the CMUT technology is feasible for 3-D flow estimation.

  16. Phase-rotation based receive-beamformer for miniaturized volumetric ultrasound imaging scanners using 2-D CMUT-on-ASIC arrays

    NASA Astrophysics Data System (ADS)

    Kim, Bae-Hyung; Lee, Seunghun; Song, Jongkeun; Kim, Youngil; Jeon, Taeho; Cho, Kyungil

    2013-03-01

    Up-to-date capacitive micromachined ultrasonic transducer (CMUT) technologies provide us unique opportunities to minimize the size and cost of ultrasound scanners by integrating front-end circuits into CMUT arrays. We describe a design prototype of a portable ultrasound scan-head probe using 2-D phased CMUT-on-ASIC arrays of 3-MHz 250 micrometer-pitch by fabricating and integrating front-end electronics with 2-D CMUT array elements. One of the objectives of our work is to design a receive beamformer architecture for the smart probe with compact size and comparable performance. In this work, a phase-rotation based receive beamformer using the sampling frequency of 4 times the center frequency and a hybrid beamforming to reduce the channel counts of the system-side are introduced. Parallel beamforming is considered for the purpose of saving power consumption of battery (by firing fewer times per image frame). This architecture has the advantage of directly obtaining I and Q components. By using the architecture, the interleaved I/Q data from the storage is acquired and I/Q demodulation for baseband processing is directly achieved without demodulators including sin and cosine lookup tables and mixers. Currently, we are extending the presented architecture to develop a true smart probe by including lower power devices and cooling systems, and bringing wireless data transmission into consideration.

  17. A Large Signal Model for CMUT Arrays with Arbitrary Membrane Geometries Operating in Non-Collapsed Mode

    PubMed Central

    Satir, Sarp; Zahorian, Jaime; Degertekin, F. Levent

    2014-01-01

    A large signal, transient model has been developed to predict the output characteristics of a CMUT array operated in the non-collapse mode. The model is based on separation of the nonlinear electrostatic voltage-to-force relation and the linear acoustic array response. For linear acoustic radiation and crosstalk effects, the boundary element method is used. The stiffness matrix in the vibroacoustics calculations is obtained using static finite element analysis of a single membrane which can have arbitrary geometry and boundary conditions. A lumped modeling approach is used to reduce the order of the system for modeling the transient nonlinear electrostatic actuation. To accurately capture the dynamics of the non-uniform electrostatic force distribution over the CMUT electrode during large deflections, the membrane electrode is divided into patches shaped to match higher order membrane modes, each introducing a variable to the system model. This reduced order nonlinear lumped model is solved in the time domain using Simulink. The model has two linear blocks to calculate the displacement profile of the electrode patches and the output pressure for a given force distribution over the array, respectively. The force to array displacement block uses the linear acoustic model, and the Rayleigh integral is evaluated to calculate the pressure at any field point. Using the model, the transient transmitted pressure can be simulated for different large signal drive signal configurations. The acoustic model is verified by comparison to harmonic FEA in vacuum and fluid for high and low aspect ratio membranes as well as mass-loaded membranes. The overall Simulink model is verified by comparison to transient 3D FEA and experimental results for different large drive signals; and an example for a phased array simulation is given. PMID:24158297

  18. A large-signal model for CMUT arrays with arbitrary membrane geometry operating in non-collapsed mode.

    PubMed

    Satir, Sarp; Zahorian, Jaime; Degertekin, F Levent

    2013-11-01

    A large-signal, transient model has been developed to predict the output characteristics of a CMUT array operated in the non-collapse mode. The model is based on separation of the nonlinear electrostatic voltage-to-force relation and the linear acoustic array response. For modeling of linear acoustic radiation and crosstalk effects, the boundary element method is used. The stiffness matrix in the vibroacoustics calculations is obtained using static finite element analysis of a single membrane which can have arbitrary geometry and boundary conditions. A lumped modeling approach is used to reduce the order of the system for modeling the transient nonlinear electrostatic actuation. To accurately capture the dynamics of the non-uniform electrostatic force distribution over the CMUT electrode during large deflections, the membrane electrode is divided into patches shaped to match higher order membrane modes, each introducing a variable to the system model. This reduced order nonlinear lumped model is solved in the time domain using commercial software. The model has two linear blocks to calculate the displacement profile of the electrode patches and the output pressure for a given force distribution over the array. The force-to-array-displacement block uses the linear acoustic model, and the Rayleigh integral is evaluated to calculate the pressure at any field point. Using the model, the time-domain transmitted pressure can be simulated for different large drive signal configurations. The acoustic model is verified by comparison to harmonic FEA in vacuum and fluid for high- and low-aspect-ratio membranes as well as mass-loaded membranes. The overall software model is verified by comparison to transient 3-D finite element analysis and experimental results for different large drive signals, and an example for a phased array simulation is given. PMID:24158297

  19. Fabrication of CMUT Cells with Gold Center Mass for Higher Output Pressure

    NASA Astrophysics Data System (ADS)

    Yoon, Hyo-Seon; Ho, Min-Chieh; Apte, Nikhil; Cristman, Paul; Vaithilingam, Srikant; Kupnik, Mario; Butts-Pauly, Kim; Khuri-Yakub, Butrus T.

    2011-09-01

    For decades, high intensity focused ultrasound (HIFU) transducers have been developed for minimally invasive and non-invasive therapies. Capacitive micromachined ultrasonic transducer (CMUT) technology is a promising candidate for HIFU therapy as it allows the fabrication of arbitrary array geometries and is inherently magnetic resonance (MR) compatible. In this study we investigate a way to improve the output pressure of a single CMUT cell by a modification to the basic CMUT cell structure: adding a gold mass over the center of the top CMUT plate. Using the direct wafer bonding fabrication process we realized linear 1D CMUT arrays. On top of the 0.86 μm thick silicon plate, a 200-nm thick aluminum layer and a 10-nm thick titanium adhesion layer were deposited. A lift-off technique was used to deposit a gold mass on top of the adhesion layer, at the center of each cell. The 1-μm thick gold layer was deposited in multiple steps with intervening cool-down periods to ensure low thermal-induced stress between the gold and the metalized CMUT plates. Electrical impedance measurements of the devices reveal improved performance due to the gold mass, and the average resonance frequency in air for the elements in the 1D array decreased from 7 MHz to 3.6 MHz with a standard deviation of 0.125 MHz and 0.157 MHz, respectively. A direct comparison of cells with and without the gold mass in terms of measured output pressure at the surface of a single cell demonstrated a 23% improvement. When biased with a DC voltage equal to 75% of the pull-in voltage, the device with the gold mass delivered 1.875 MPa peak-to-peak surface pressure at a frequency of 2.6 MHz (single cell measurement). The results indicate that adding a center-mass to regular CMUT cells improves device performance in terms of acoustic output pressure. In the future, we plan to investigate the acoustic crosstalk between cells and ways to mitigate it.

  20. Thermal-mechanical-noise-based CMUT characterization and sensing.

    PubMed

    Gurun, Gokce; Hochman, Michael; Hasler, Paul; Degertekin, F Levent

    2012-06-01

    When capacitive micromachined ultrasonic transducers (CMUTs) are monolithically integrated with custom-designed low-noise electronics, the output noise of the system can be dominated by the CMUT thermal-mechanical noise both in air and in immersion even for devices with low capacitance. Because the thermal-mechanical noise can be related to the electrical admittance of the CMUTs, this provides an effective means of device characterization. This approach yields a novel method to test the functionality and uniformity of CMUT arrays and the integrated electronics when a direct connection to CMUT array element terminals is not available. Because these measurements can be performed in air at the wafer level, the approach is suitable for batch manufacturing and testing. We demonstrate this method on the elements of an 800-μm-diameter CMUT-on-CMOS array designed for intravascular imaging in the 10 to 20 MHz range. Noise measurements in air show the expected resonance behavior and spring softening effects. Noise measurements in immersion for the same array provide useful information on both the acoustic cross talk and radiation properties of the CMUT array elements. The good agreement between a CMUT model based on finite difference and boundary element methods and the noise measurements validates the model and indicates that the output noise is indeed dominated by thermal-mechanical noise. The measurement method can be exploited to implement CMUT-based passive sensors to measure immersion medium properties, or other parameters affecting the electro-mechanics of the CMUT structure. PMID:22718877

  1. Grooved backing structure for CMUTs.

    PubMed

    Chapagain, Kamal Raj; Rønnekleiv, Arne

    2013-11-01

    Capacitive micromachined ultrasonic transducers (CMUTs) manufactured on silicon substrates need an acoustic backing to suppress substrate ringing when such transducers are in operation. The acoustic backing most often used for ultrasound transducers is a composite of epoxy and tungsten powder. To absorb the acoustic energy, the backing of a CMUT should have an acoustic impedance that matches that of the silicon substrate and it should be lossy. If the backing is thick enough, it will absorb the acoustic wave in the backing without reflecting it back to the transducer, and thus will not create any trailing echoes. However, if we intend to use the transducer in applications in which there is no room for a thick backing, for example in intravascular ultrasound (IVUS), a grooved backing structure might be used. The grooves at the bottom of the backing provide extra attenuation by scattering the waves in different directions so that a thinner backing is sufficient. The scattering removes power from the specular reflection from the back surface which otherwise degrades the image quality. It has been shown that this type of structure reduces the specular reflection for a range of frequencies. When CMUTs are used in practical applications, the propagation of waves from a fluid medium into the backing or vice versa is blocked to some degree by total reflection, except for a range of steering angles around broadside. This is due to the difference in acoustic velocities of silicon and the fluid medium. This blocking is accompanied by the generation of surface waves in the silicon substrate, which also may impact the imaging and therefore must be controlled. In this paper, we investigate the acoustic signal transmitted into the backing relative to the signal transmitted into the fluid medium when CMUT arrays on top of the silicon substrate are excited. Furthermore, the performance of the grooved backing structure is studied for the waves traveling in normal as well as in

  2. CMUT With Substrate-Embedded Springs For Non-Flexural Plate Movement.

    PubMed

    Nikoozadeh, Amin; Khuri-Yakub, Pierre T

    2010-01-01

    A conventional capacitive micromachined ultrasonic transducer (CMUT) is composed of many cells connected in parallel. Since the plate in each CMUT cell is anchored at its perimeter, the average displacement is several times smaller than the displacement of an equivalent ideal piston transducer. In addition, the post areas, where the plates are anchored to, are non-active and, thus, do not contribute to the transduction. We propose a CMUT structure that resembles an ideal capacitive piston transducer, where the movable top plate only undergoes translation rather than deflection. Our proposed CMUT structure is composed of a rigid plate connected to a substrate using relatively long and narrow posts, providing the spring constant for the movement of the plate. Rather than the flexure of the plate as in a conventional CMUT, this device operates based on the compression of the compliant posts. For a capacitive transducer, a thin electrostatic gap is provided under the top plate. We used finite element analysis (FEA) to design and verify the structure's functionality. The simulation results show a fractional bandwidth of over 100% in immersion for all the designs. They also confirm that the average displacement of the top plate is above 90% of its peak displacement. We fabricated the first prototype based on this idea, which only requires a simple 3-mask fabrication process. In addition to 128-element 1-D arrays, we fabricated a variety of 240 μm × 240 μm, single-element transducers with different post configurations. We successfully measured the electrical input impedance of the fabricated devices and confirmed their resonant behavior in air. Further, we measured the acoustic pressure using a calibrated hydrophone at a known distance. Using this measurement, we calculated a peak-to-peak pressure of 1.5 MPa at the face of the transducer. Our results show that it is possible to fabricate CMUTs that exhibit ideal piston-like plate movement. Because of the substrate

  3. High-power CMUTs: design and experimental verification.

    PubMed

    Yamaner, F Yalçin; Olçum, Selim; Oğuz, H Kağan; Bozkurt, Ayhan; Köymen, Hayrettin; Atalar, Abdullah

    2012-06-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have great potential to compete with piezoelectric transducers in high-power applications. As the output pressures increase, nonlinearity of CMUT must be reconsidered and optimization is required to reduce harmonic distortions. In this paper, we describe a design approach in which uncollapsed CMUT array elements are sized so as to operate at the maximum radiation impedance and have gap heights such that the generated electrostatic force can sustain a plate displacement with full swing at the given drive amplitude. The proposed design enables high output pressures and low harmonic distortions at the output. An equivalent circuit model of the array is used that accurately simulates the uncollapsed mode of operation. The model facilities the design of CMUT parameters for high-pressure output, without the intensive need for computationally involved FEM tools. The optimized design requires a relatively thick plate compared with a conventional CMUT plate. Thus, we used a silicon wafer as the CMUT plate. The fabrication process involves an anodic bonding process for bonding the silicon plate with the glass substrate. To eliminate the bias voltage, which may cause charging problems, the CMUT array is driven with large continuous wave signals at half of the resonant frequency. The fabricated arrays are tested in an oil tank by applying a 125-V peak 5-cycle burst sinusoidal signal at 1.44 MHz. The applied voltage is increased until the plate is about to touch the bottom electrode to get the maximum peak displacement. The observed pressure is about 1.8 MPa with -28 dBc second harmonic at the surface of the array. PMID:22718878

  4. From nonfinite to finite 1D arrays of origami tiles.

    PubMed

    Wu, Tsai Chin; Rahman, Masudur; Norton, Michael L

    2014-06-17

    average solution structures for blocks is more readily achieved using computer models than using direct imaging methods. The development of scalable 1D-origami arrays composed of uniquely addressable components is a logical, if not necessary, step in the evolution of higher order fully addressable structures. Our research into the fabrication of arrays has led us to generate a listing of several important areas of future endeavor. Of high importance is the re-enforcement of the mechanical properties of the building blocks and the organization of multiple arrays on a surface of technological importance. While addressing this short list of barriers to progress will prove challenging, coherent development along each of these lines of inquiry will accelerate the appearance of commercial scale molecular manufacturing. PMID:24803094

  5. Experimental evaluation of cMUT and PZT transducers in receive only mode for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Warshavski, O.; Meynier, C.; Sénégond, N.; Chatain, P.; Felix, N.; Nguyen-Dinh, A.

    2016-03-01

    In photoacoustic imaging, the angular reception performance of ultrasonic transducers is a critical parameter to be considered for system designers. The quantitative comparison between cMUT and PZT emphasizes the difference between the transducer requirements and specifications between conventional ultrasound and photoacoustic imaging. In this present work, we show significant benefits of cMUT based array transducers over conventional PZT arrays for the improvement of quality in photoacoustic imaging systems.

  6. Progress in Development of HIFU CMUTs for use under MR-guidance

    NASA Astrophysics Data System (ADS)

    Wong, Serena H.; Watkins, Ronald D.; Kupnik, Mario; Pauly, Kim Butts; Khuri-Yakub, B. T.

    2009-04-01

    High intensity focused ultrasound (HIFU) guided by magnetic resonance imaging (MRI) is a noninvasive treatment that potentially reduces patient morbidity, lowers costs, and increases treatment accessibility. Traditionally, piezoelectric transducers are used for HIFU, but capacitive micromachined ultrasonic transducers (CMUTs) have many advantages, including fabrication flexibility, low loss, and efficient transmission. We designed, fabricated, and tested HIFU CMUTs for use under MRI guidance and have demonstrated continuous wave (CW) focusing. In this paper, we demonstrate that CMUTs can be designed for therapeutic ultrasound. First, we demonstrate successful unfocused heating of a HIFU phantom to 18.6° C, which was successfully monitored under MR guidance. Second, we demonstrated a focused CMUT array whose beam profile matched with simulation. In the future, we will expand the array and system for upper abdominal cancer therapy.

  7. Feasibility of modulation-encoded TOBE CMUTS for real-time 3-D imaging.

    PubMed

    Chee, Ryan K W; Zemp, Roger J

    2015-04-01

    Modulation-encoded top orthogonal to bottom electrode (TOBE) capacitive micromachined ultrasound transducers (CMUTs) are proposed 2-D ultrasound transducer arrays that could allow 3-D images to be acquired in a single acquisition using only N channels for an N × N array. In the proposed modulation-encoding scheme, columns are not only biased, but also modulated with a different frequency for each column. The modulation frequencies are higher than the passband of the CMUT membranes and mix nonlinearly in CMUT cells with acoustic signals to produce acoustic signal sidebands around the modulation carriers in the frequency domain. Thus, signals from elements along a row may be read out simultaneously via frequency-domain multiplexing. We present the theory and feasibility data behind modulation-encoded TOBE CMUTs. We also present experiments showing necessary modifications to the current TOBE design that would allow for crosstalk-mitigated modulation-encoding. PMID:25881354

  8. Fabrication and characterization of hexagonally patterned quasi-1D ZnO nanowire arrays

    PubMed Central

    2014-01-01

    Quasi-one-dimensional (quasi-1D) ZnO nanowire arrays with hexagonal pattern have been successfully synthesized via the vapor transport process without any metal catalyst. By utilizing polystyrene microsphere self-assembled monolayer, sol–gel-derived ZnO thin films were used as the periodic nucleation sites for the growth of ZnO nanowires. High-quality quasi-1D ZnO nanowires were grown from nucleation sites, and the original hexagonal periodicity is well-preserved. According to the experimental results, the vapor transport solid condensation mechanism was proposed, in which the sol–gel-derived ZnO film acting as a seed layer for nucleation. This simple method provides a favorable way to form quasi-1D ZnO nanostructures applicable to diverse fields such as two-dimensional photonic crystal, nanolaser, sensor arrays, and other optoelectronic devices. PMID:24521308

  9. 1D Scaling with Ablation for K-Shell Radiation from Stainless Steel Wire Arrays

    SciTech Connect

    Giuliani, J. L.; Thornhill, J. W.; Dasgupta, A.; Davis, J.; Clark, R. W.; Jones, B.; Cuneo, M.; Coverdale, C. A.; Deeney, C.

    2009-01-21

    A 1D Lagrangian magnetohydrodynamic z-pinch simulation code is extended to include wire ablation. The plasma transport coefficients are calibrated to reproduce the K-shell yields measured on the Z generator for three stainless steel arrays of diameter 55 mm and masses ranging from 1.8 to 2.7 mg. The resulting 1D scaling model is applied to a larger SS array (65 mm and 2.5 mg) on the refurbished Z machine. Simulation results predict a maximum K-shell yield of 77 kJ for an 82 kV charging voltage. This maximum drops to 42 kJ at 75 kV charging. Neglecting the ablation precursor leads to a {approx}10% change in the calculated yield.

  10. A CMUT probe for medical ultrasonography: from microfabrication to system integration.

    PubMed

    Savoia, Alessandro Stuart; Calianov, Giosuè; Pappalardo, Massimo

    2012-06-01

    Medical ultrasonography is a powerful and cost-effective diagnostic technique. To date, high-end medical imaging systems are able to efficiently implement real-time image formation techniques that can dramatically improve the diagnostic capabilities of ultrasound. Highly performing and thermally efficient ultrasound probes are then required to successfully enable the most advanced techniques. In this context, ultrasound transducer technology is the current limiting factor. Capacitive micromachined ultrasonic transducers (CMUTs) are micro-electro-mechanical systems (MEMS)-based devices that have been widely recognized as a valuable alternative to piezoelectric transducer technology in a variety of medical imaging applications. Wideband operation, good thermal efficiency, and low fabrication cost, especially for those applications requiring high-volume production of small-area dice, are strength factors that may justify the adoption of this MEMS technology in the medical ultrasound imaging field. This paper presents the design, development, fabrication, and characterization of a 12-MHz ultrasound probe for medical imaging, based on a CMUT array. The CMUT array is microfabricated and packed using a novel fabrication concept specifically conceived for imaging transducer arrays. The performance of the developed probe is optimized by including analog front-end reception electronics. Characterization and imaging results are used to assess the performance of CMUTs with respect to conventional piezoelectric transducers. PMID:22711408

  11. Capacitive micromachined ultrasonic transducers (CMUTs) with isolation posts.

    PubMed

    Huang, Yongli; Zhuang, Xuefeng; Haeggstrom, Edward O; Ergun, A Sanli; Cheng, Ching-Hsiang; Khuri-Yakub, Butrus T

    2008-03-01

    In this paper, an improved design of a capacitive micromachined ultrasonic transducer (CMUT) is presented. The design improvement aims to address the reliability issues of a CMUT and to extend the device operation beyond the contact (collapse) voltage. The major design novelty is the isolation posts in the vacuum cavities of the CMUT cells instead of full-coverage insulation layers in conventional CMUTs. This eliminates the contact voltage drifting due to charging caused by the insulation layer, and enables repeatable CMUT operation in the post-contact regime. Ultrasonic tests of the CMUTs with isolation posts (PostCMUTs) in air (electrical input impedance and capacitance vs. bias voltage) and immersion (transmission and reception) indicate acoustic performance similar to that obtained from conventional CMUTs while no undesired side effects of this new design is observed. PMID:18207212

  12. Quantum simulation of 2D topological physics in a 1D array of optical cavities

    PubMed Central

    Luo, Xi-Wang; Zhou, Xingxiang; Li, Chuan-Feng; Xu, Jin-Shi; Guo, Guang-Can; Zhou, Zheng-Wei

    2015-01-01

    Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration. PMID:26145177

  13. Influence of Ag+ interaction on 1D droplet array spacing and the repulsive forces between stimuli-responsive nanoemulsion droplets.

    PubMed

    Mahendran, V; Philip, John

    2014-09-01

    This paper reports results on the effect of interaction of Ag(+) on 1D droplet array spacing and the repulsive forces between stimuli-responsive nanoemulsion droplets, stabilized with an anionic surfactant--sodium dodecyl sulfate--and a diblock polymer--poly(vinyl alcohol)-vinyl acetate. The repulsive interaction is probed by measuring the in-situ equilibrium force-distance in the presence of Ag(+) using the magnetic chaining technique. At a constant static magnetic field, emulsion droplets form 1D array that diffract visible light. A large blue-shift in the diffracted light is observed in the presence of interacting Ag(+) because of the reduction in the interdroplet spacing within the 1D array. The in-situ equilibrium force-distance measurement results show that the onset of repulsions and magnitude of repulsive forces are strongly influenced by the presence of Ag(+) in ppb levels. This suggests that the Ag(+) ions screen the surface charges through the formation of both Stern and diffuse electric double layer and produces a dramatic blue-shift in surfactant-stabilized emulsion, whereas a dramatic conformational change in the adsorbed polymer layer causes a reduction in the 1D array spacing in the diblock polymer stabilized emulsion. The force-distance results are compared with the predictions of electrical double-layer and repulsive steric forces. The droplet array shows an excellent selectivity to Ag(+) due to the strong interaction of Ag(+) with the stabilizing moieties at the oil-water interface. The possible mechanisms of interaction of Ag(+) with surfactant and polymer are discussed. The dramatic decrease in the 1D array spacing in the presence of Ag(+) may find promising practical applications in the development of optical sensors for selective detection of cations with ultrahigh sensitivity. PMID:25105903

  14. A comparison of 1D and 1.5D arrays for imaging volumetric flaws in small bore pipework

    NASA Astrophysics Data System (ADS)

    Barber, T. S.; Wilcox, P. D.; Nixon, A. D.

    2015-03-01

    1.5D arrays can be seen as a potentially ideal compromise between 1D arrays and 2D matrix arrays in terms of focusing capability, element density, weld coverage and data processing time. This paper presents an initial study of 1D and 1.5D arrays for high frequency (15MHz) imaging of volumetric flaws in small-bore (30-60mm outer diameter) thin-walled (3-8mm) pipework. A combination of 3D modelling and experimental work is used to determine Signal to Noise Ratio (SNR) improvement with a strong relationship between SNR and the longer dimension of element size observed. Similar behavior is demonstrated experimentally rendering a 1mm diameter Flat Bottom Hole (FBH) in Copper-Nickel alloy undetectable using a larger array element. A 3-5dB SNR increase is predicted when using a 1.5D array assuming a spherical reflector and a 2dB increase was observed on experimental trials with a FBH. It is argued that this improvement is likely to be a lower bound estimate due to the specular behavior of a FBH with future trials planned on welded samples with realistic flaws.

  15. Localized self-heating in large arrays of 1D nanostructures.

    PubMed

    Monereo, O; Illera, S; Varea, A; Schmidt, M; Sauerwald, T; Schütze, A; Cirera, A; Prades, J D

    2016-03-01

    One dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal efficiency was attributed to the small dimensions of the objects). Infrared thermography and Raman spectroscopy were used to map the temperature profiles of films based on random arrangements of carbon nanofibers during self-heating. Both the techniques demonstrate consistently that heating concentrates in small regions, the here-called "hot-spots". On correlating dynamic temperature mapping with electrical measurements, we also observed that these minute hot-spots rule the resistance values observed macroscopically. A physical model of a random network of 1D resistors helped us to explain this observation. The model shows that, for a given random arrangement of 1D nanowires, current spreading through the network ends up defining a set of spots that dominate both the electrical resistance and power dissipation. Such highly localized heating explains the high power savings observed in larger nanostructured systems. This understanding opens a path to design highly efficient self-heating systems, based on random or pseudo-random distributions of 1D nanostructures. PMID:26868599

  16. Localized self-heating in large arrays of 1D nanostructures

    NASA Astrophysics Data System (ADS)

    Monereo, O.; Illera, S.; Varea, A.; Schmidt, M.; Sauerwald, T.; Schütze, A.; Cirera, A.; Prades, J. D.

    2016-02-01

    One dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal efficiency was attributed to the small dimensions of the objects). Infrared thermography and Raman spectroscopy were used to map the temperature profiles of films based on random arrangements of carbon nanofibers during self-heating. Both the techniques demonstrate consistently that heating concentrates in small regions, the here-called ``hot-spots''. On correlating dynamic temperature mapping with electrical measurements, we also observed that these minute hot-spots rule the resistance values observed macroscopically. A physical model of a random network of 1D resistors helped us to explain this observation. The model shows that, for a given random arrangement of 1D nanowires, current spreading through the network ends up defining a set of spots that dominate both the electrical resistance and power dissipation. Such highly localized heating explains the high power savings observed in larger nanostructured systems. This understanding opens a path to design highly efficient self-heating systems, based on random or pseudo-random distributions of 1D nanostructures.One dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal

  17. Inclusion of Cu nano-cluster 1D arrays inside a C3-symmetric artificial oligopeptide via co-assembly

    NASA Astrophysics Data System (ADS)

    Gong, Ruiying; Li, Fei; Yang, Chunpeng; Wan, Xiaobo

    2015-12-01

    A peptide sequence N3-GVGV-OMe (G: glycine; V: valine) was attached to a benzene 1,3,5-tricarboxamide (BTA) derivative via ``click chemistry'' to afford a C3-symmetric artificial oligopeptide. The key feature of this oligopeptide is that the binding sites (triazole groups formed by click reaction) are located at the center, while the three oligopeptide arms with a strong tendency to assemble are located around it, which provides inner space to accommodate nanoparticles via self-assembly. The inclusion of Cu nanoclusters and the formation of one-dimensional (1D) arrays inside the nanofibers of the C3-symmetric artificial oligopeptide assembly were observed, which is quite different from the commonly observed nanoparticle growth on the surface of the pre-assembled oligopeptide nanofibers via the coordination sites located outside. Our finding provides an instructive concept for the design of other stable organic-inorganic hybrid 1D arrays with the inorganic nanoparticles inside.A peptide sequence N3-GVGV-OMe (G: glycine; V: valine) was attached to a benzene 1,3,5-tricarboxamide (BTA) derivative via ``click chemistry'' to afford a C3-symmetric artificial oligopeptide. The key feature of this oligopeptide is that the binding sites (triazole groups formed by click reaction) are located at the center, while the three oligopeptide arms with a strong tendency to assemble are located around it, which provides inner space to accommodate nanoparticles via self-assembly. The inclusion of Cu nanoclusters and the formation of one-dimensional (1D) arrays inside the nanofibers of the C3-symmetric artificial oligopeptide assembly were observed, which is quite different from the commonly observed nanoparticle growth on the surface of the pre-assembled oligopeptide nanofibers via the coordination sites located outside. Our finding provides an instructive concept for the design of other stable organic-inorganic hybrid 1D arrays with the inorganic nanoparticles inside. Electronic

  18. Comparison of 1D stagnation solutions to 3D wire-array Z pinch simulations in absence of radiation

    NASA Astrophysics Data System (ADS)

    Yu, Edmund; Velikovich, Alexander; Maron, Yitzhak

    2013-10-01

    In the idealized picture of a Z pinch, a cylindrically symmetric plasma shell implodes towards axis. In this 1D (radial) picture, the resulting stagnation is very efficient: all the kinetic energy of the shell converts to internal energy, as for instance in the Noh shock solution or the homogeneous stagnation flow. If we generalize the problem to 2D by deforming the shell from perfectly circular to oblate, the resulting stagnation will not be as efficient. As in the Hiemenz flow, in which a jet of fluid strikes a rigid flat boundary and squirts out to the sides, the more complicated flows allowed in 2D allow flow kinetic energy to redirect rather than stagnate. With this picture in mind, we might expect the stagnation of a wire-array Z pinch, which in actuality forms a highly distorted 3D imploding plasma, to dissipate its kinetic energy inefficiently due to the lack of symmetry, and be indescribable by means of the idealized 1D stagnation solutions. On the other hand, one might expect that if the imploding plasma is sufficiently messy, the non-uniformities might ``wash out,'' allowing a quasi-1D description of the averaged quantities of plasma. In this work we explore this idea, comparing predictions of 1D stagnation solutions with 3D simulation. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC0 4-94AL85000.

  19. Dimensional phase transition from an array of 1D Luttinger liquids to a 3D Bose-Einstein condensate.

    PubMed

    Vogler, Andreas; Labouvie, Ralf; Barontini, Giovanni; Eggert, Sebastian; Guarrera, Vera; Ott, Herwig

    2014-11-21

    We study the thermodynamic properties of a 2D array of coupled one-dimensional Bose gases. The system is realized with ultracold bosonic atoms loaded in the potential tubes of a two-dimensional optical lattice. For negligible coupling strength, each tube is an independent weakly interacting 1D Bose gas featuring Tomonaga Luttinger liquid behavior. By decreasing the lattice depth, we increase the coupling strength between the 1D gases and allow for the phase transition into a 3D condensate. We extract the phase diagram for such a system and compare our results with theoretical predictions. Because of the high effective mass across the periodic potential and the increased 1D interaction strength, the phase transition is shifted to large positive values of the chemical potential. Our results are prototypical to a variety of low-dimensional systems, where the coupling between the subsystems is realized in a higher spatial dimension such as coupled spin chains in magnetic insulators. PMID:25479499

  20. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials

    SciTech Connect

    Lani, Shane W. E-mail: karim.sabra@me.gatech.edu Sabra, Karim G.; Wasequr Rashid, M.; Hasler, Jennifer; Levent Degertekin, F.

    2014-02-03

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range.

  1. Thickness dependent self limiting 1-D tin oxide nanowire arrays by nanosecond pulsed laser irradiation

    SciTech Connect

    Shirato, N.; Strader, J.; Kumar, Amit; Vincent, A.; Zhang, P.; Karakoti, Ajay S.; Nachimuthu, Ponnusamy; Cho, H-J.; Seal, Sudipta; Kalyanaraman, R.

    2011-01-23

    Fast, sensitive and discriminating detection of hydrogen at room temperature is crucial for storage, transportation, and distribution of hydrogen as an energy source. One dimensional nanowires of SnO2 are potential candidates for improved H2 sensor performance. The single directional conducting continuous nanowires can decrease electrical noise, and their large active surface area could improve the response and recovery time of the sensor. In this work we discuss synthesis and characterization of nanowire arrays made using nanosecond ultraviolet wavelength (266 nm) laser interference processing of ultrathin SnO2 films on SiO2 substrates. The laser energy was chosen to be above the melting point of the films. The results show that the final nanowire formation is dominated by preferential evaporation as compared to thermocapillary flow. The nanowire height (and hence wire aspect ratio) increased with increasing initial film thickness ho and with increasing laser energy density Eo. Furthermore, a self-limiting effect was observed where-in the wire formation ceased at a specific final remaining thickness of SnO2 that was almost independent of ho for a given Eo. To understand these effects, finite element modeling of the nanoscale laser heating was performed. This showed that the temperature rise under laser heating was a strong non-monotonic function of film thickness. As a result, the preferential evaporation rate varies as wire formation occurs, eventually leading to a shut-off of evaporation at a characteristic thickness. This results in the stoppage of wire formation. This combination of nanosecond pulsed laser experiments and thermal modeling shows that several unique synthesis approaches can be utilized to control the nanowire characteristics.

  2. Transceiver Design for CMUT-Based Super-Resolution Ultrasound Imaging.

    PubMed

    Behnamfar, Parisa; Molavi, Reza; Mirabbasi, Shahriar

    2016-04-01

    A recently introduced structure for the capacitive micromachined ultrasonic transducers (CMUTs) has focused on the applications of the asymmetric mode of vibration and has shown promising results in construction of super-resolution ultrasound images. This paper presents the first implementation and experimental results of a transceiver circuit to interface such CMUT structures. The multiple input/multiple output receiver in this work supports both fundamental and asymmetric modes of operation and includes transimpedance amplifiers and low-power variable-gain stages. These circuit blocks are designed considering the trade-offs between gain, input impedance, noise, linearity and power consumption. The high-voltage transmitter can generate pulse voltages up to 60 V while occupying a considerably small area. The overall circuit is designed and laid out in a 0.35 μm CMOS process and a four-channel transceiver occupies 0.86 × 0.38 mm(2). The prototype chip is characterized in both electrical and mechanical domains. Measurement results show that each receiver channel has a nominal gain of 110 dBΩ with a 3 dB bandwidth of 9 MHz while consuming 1.02 mW from a 3.3 V supply. The receiver is also highly linear, with 1 dB compression point of minimum 1.05 V which is considerably higher than the previously reported designs. The transmitter consumes 98.1 mW from a 30 V supply while generating 1.38 MHz, 30 V pulses. The CMOS-CMUT system is tested in the transmit mode and shows full functionality in air medium. PMID:25974944

  3. Characterization of cMuts in rarefied gases.

    PubMed

    Davis, Lee A J; Hutchins, David A; Noble, Russell A

    2007-05-01

    The performance of capacitive micromachined ultrasonic transducers (cMUTs) was investigated at low pressures in various gases such as air, carbon dioxide, and helium. The aim was to replicate the pressure conditions likely to meet on the surface of other planets such as Mars, where ultrasonic wind velocity measurements might be possible. It is demonstrated that cMUTs are capable of operating at low pressures, and the response to pressures below terrestrial atmospheric values is observed experimentally and compared to theoretical predictions. The center frequency of operation and sensitivity are both observed to be affected by changing pressures. PMID:17523571

  4. Automatic optimal input command for linearization of cMUT output by a temporal target.

    PubMed

    Ménigot, Sébastien; Certon, Dominique; Gross, Dominique; Girault, Jean-Marc

    2014-10-01

    Capacitive micromachined ultrasonic transducers (cMUTs) are a promising alternative to the piezoelectric transducer. However, their native nonlinear behavior is a limitation for their use in medical ultrasound applications. Several methods based on the pre-compensation of a preselected input voltage have been proposed to cancel out the harmonic components generated. Unfortunately, these existing pre-compensation methods have two major flaws. The first is that the pre-compensation procedure is not generally automatic, and the second is that they can only reduce the second harmonic component. This can, therefore, limit their use for some imaging methods, which require a broader bandwidth, e.g., to receive the third harmonic component. In this study, we generalized the presetting methods to reduce all nonlinearities in the cMUT output. Our automatic pre-compensation method can work whatever the excitation waveform. The precompensation method is based on the nonlinear modeling of harmonic components from a Volterra decomposition in which the parameters are evaluated by using a Nelder-Mead algorithm. To validate the feasibility of this approach, the method was applied to an element of a linear array with several types of excitation often encountered in encoded ultrasound imaging. The results showed that the nonlinear components were reduced by up to 21.2 dB. PMID:25265182

  5. Packaging and modular assembly of large-area and fine-pitch 2-D ultrasonic transducer arrays.

    PubMed

    Lin, Der-Song; Wodnicki, Robert; Zhuang, Xuefeng; Woychik, Charles; Thomenius, Kai E; Fisher, Rayette A; Mills, David M; Byun, Albert J; Burdick, William; Khuri-Yakub, Pierre; Bonitz, Barry; Davies, Todd; Thomas, Glen; Otto, Bernd; Töpper, Michael; Fritzsch, Thomas; Ehrmann, Oswin

    2013-07-01

    A promising transducer architecture for largearea arrays employs 2-D capacitive micromachined ultrasound transducer (CMUT) devices with backside trench-frame pillar interconnects. Reconfigurable array (RA) application-specified integrated circuits (ASICs) can provide efficient interfacing between these high-element-count transducer arrays and standard ultrasound systems. Standard electronic assembly techniques such as flip-chip and ball grid array (BGA) attachment, along with organic laminate substrate carriers, can be leveraged to create large-area arrays composed of tiled modules of CMUT chips and interface ASICs. A large-scale, fully populated and integrated 2-D CMUT array with 32 by 192 elements was developed and demonstrates the feasibility of these techniques to yield future large-area arrays. This study demonstrates a flexible and reliable integration approach by successfully combining a simple under-bump metallization (UBM) process and a stacked CMUT/interposer/ASIC module architecture. The results show high shear strength of the UBM (26.5 g for 70-μm balls), high interconnect yield, and excellent CMUT resonance uniformity (s = 0.02 MHz). A multi-row linear array was constructed using the new CMUT/interposer/ASIC process using acoustically active trench-frame CMUT devices and mechanical/ nonfunctional Si backside ASICs. Imaging results with the completed probe assembly demonstrate a functioning device based on the modular assembly architecture. PMID:25004504

  6. Single-chip CMUT-on-CMOS front-end system for real-time volumetric IVUS and ICE imaging.

    PubMed

    Gurun, Gokce; Tekes, Coskun; Zahorian, Jaime; Xu, Toby; Satir, Sarp; Karaman, Mustafa; Hasler, Jennifer; Degertekin, F Levent

    2014-02-01

    Intravascular ultrasound (IVUS) and intracardiac echography (ICE) catheters with real-time volumetric ultrasound imaging capability can provide unique benefits to many interventional procedures used in the diagnosis and treatment of coronary and structural heart diseases. Integration of capacitive micromachined ultrasonic transducer (CMUT) arrays with front-end electronics in single-chip configuration allows for implementation of such catheter probes with reduced interconnect complexity, miniaturization, and high mechanical flexibility. We implemented a single-chip forward-looking (FL) ultrasound imaging system by fabricating a 1.4-mm-diameter dual-ring CMUT array using CMUT-on-CMOS technology on a front-end IC implemented in 0.35-μm CMOS process. The dual-ring array has 56 transmit elements and 48 receive elements on two separate concentric annular rings. The IC incorporates a 25-V pulser for each transmitter and a low-noise capacitive transimpedance amplifier (TIA) for each receiver, along with digital control and smart power management. The final shape of the silicon chip is a 1.5-mm-diameter donut with a 430-μm center hole for a guide wire. The overall front-end system requires only 13 external connections and provides 4 parallel RF outputs while consuming an average power of 20 mW. We measured RF A-scans from the integrated single- chip array which show full functionality at 20.1 MHz with 43% fractional bandwidth. We also tested and demonstrated the image quality of the system on a wire phantom and an ex vivo chicken heart sample. The measured axial and lateral point resolutions are 92 μm and 251 μm, respectively. We successfully acquired volumetric imaging data from the ex vivo chicken heart at 60 frames per second without any signal averaging. These demonstrative results indicate that single-chip CMUT-on-CMOS systems have the potential to produce realtime volumetric images with image quality and speed suitable for catheter-based clinical applications

  7. Spatially branched hierarchical ZnO nanorod-TiO2 nanotube array heterostructures for versatile photocatalytic and photoelectrocatalytic applications: towards intimate integration of 1D-1D hybrid nanostructures.

    PubMed

    Xiao, Fang-Xing; Hung, Sung-Fu; Tao, Hua Bing; Miao, Jianwei; Yang, Hong Bin; Liu, Bin

    2014-12-21

    Hierarchically ordered ZnO nanorods (NRs) decorated nanoporous-layer-covered TiO2 nanotube array (ZnO NRs/NP-TNTAs) nanocomposites have been prepared by an efficient, two-step anodization route combined with an electrochemical deposition strategy, by which monodispersed one-dimensional (1D) ZnO NRs were uniformly grown on the framework of NP-TNTAs. The crystal phases, morphologies, optical properties, photocatalytic as well as photoelectrocatalytic performances of the well-defined ZnO NRs/NP-TNTAs heterostructures were systematically explored to clarify the structure-property correlation. It was found that the ZnO NRs/NP-TNTAs heterostructure exhibits significantly enhanced photocatalytic and photoelectrocatalytic performances, along with favorable photostability toward degradation of organic pollutants under UV light irradiation, as compared to the single component counterparts. The remarkably enhanced photoactivity of ZnO NRs/NP-TNTAs heterostructure is ascribed to the intimate interfacial integration between ZnO NRs and NP-TNTAs substrate imparted by the unique spatially branched hierarchical structure, thereby contributing to the efficient transfer and separation of photogenerated electron-hole charge carriers. Moreover, the specific active species during the photocatalytic process was unambiguously determined and photocatalytic mechanism was tentatively presented. It is anticipated that our work could provide new insights for the construction of various hierarchical 1D-1D hybrid nanocomposites for extensive photocatalytic applications. PMID:25363649

  8. A simple route to vertical array of quasi-1D ZnO nanofilms on FTO surfaces: 1D-crystal growth of nanoseeds under ammonia-assisted hydrolysis process

    PubMed Central

    2011-01-01

    A simple method for the synthesis of ZnO nanofilms composed of vertical array of quasi-1D ZnO nanostructures (quasi-NRs) on the surface was demonstrated via a 1D crystal growth of the attached nanoseeds under a rapid hydrolysis process of zinc salts in the presence of ammonia at room temperature. In a typical procedure, by simply controlling the concentration of zinc acetate and ammonia in the reaction, a high density of vertically oriented nanorod-like morphology could be successfully obtained in a relatively short growth period (approximately 4 to 5 min) and at a room-temperature process. The average diameter and the length of the nanostructures are approximately 30 and 110 nm, respectively. The as-prepared quasi-NRs products were pure ZnO phase in nature without the presence of any zinc complexes as confirmed by the XRD characterisation. Room-temperature optical absorption spectroscopy exhibits the presence of two separate excitonic characters inferring that the as-prepared ZnO quasi-NRs are high-crystallinity properties in nature. The mechanism of growth for the ZnO quasi-NRs will be proposed. Due to their simplicity, the method should become a potential alternative for a rapid and cost-effective preparation of high-quality ZnO quasi-NRs nanofilms for use in photovoltaic or photocatalytics applications. PACS: 81.07.Bc; 81.16.-c; 81.07.Gf. PMID:22027275

  9. Magnetic field induced controllable self-assembly of maghemite nanocrystals: From 3D arrays to 1D nanochains

    NASA Astrophysics Data System (ADS)

    Tang, Yan; Chen, Qianwang; Chen, Rongsheng

    2015-08-01

    A hydrothermal process has been used to synthesize walnut-like maghemite superstructures which can be further self-assembled in a controllable manner into ordered three-dimensional (3D) architectures and one-dimensional (1D) nanochains in the presence of different external magnetic field. The assembly behavior of the maghemite nanoparticles isclosely related to the van der Waals interactions and external-field-induced magnetic dipole interactions. The magnetic properties of these nanostructures are also investigated.

  10. Silicon on-chip 1D photonic crystal nanobeam bandstop filters for the parallel multiplexing of ultra-compact integrated sensor array.

    PubMed

    Yang, Daquan; Wang, Chuan; Ji, Yuefeng

    2016-07-25

    We propose a novel multiplexed ultra-compact high-sensitivity one-dimensional (1D) photonic crystal (PC) nanobeam cavity sensor array on a monolithic silicon chip, referred to as Parallel Integrated 1D PC Nanobeam Cavity Sensor Array (PI-1DPC-NCSA). The performance of the device is investigated numerically with three-dimensional finite-difference time-domain (3D-FDTD) technique. The PI-1DPC-NCSA consists of multiple parallel-connected channels of integrated 1D PC nanobeam cavities/waveguides with gap separations. On each channel, by connecting two additional 1D PC nanobeam bandstop filters (1DPC-NBFs) to a 1D PC nanobeam cavity sensor (1DPC-NCS) in series, a transmission spectrum with a single targeted resonance is achieved for the purpose of multiplexed sensing applications. While the other spurious resonances are filtered out by the stop-band of 1DPC-NBF, multiple 1DPC-NCSs at different resonances can be connected in parallel without spectrum overlap. Furthermore, in order for all 1DPC-NCSs to be integrated into microarrays and to be interrogated simultaneously with a single input/output port, all channels are then connected in parallel by using a 1 × n taper-type equal power splitter and a n × 1 S-type power combiner in the input port and output port, respectively (n is the channel number). The concept model of PI-1DPC-NCSA is displayed with a 3-parallel-channel 1DPC-NCSs array containing series-connected 1DPC-NBFs. The bulk refractive index sensitivities as high as 112.6nm/RIU, 121.7nm/RIU, and 148.5nm/RIU are obtained (RIU = Refractive Index Unit). In particular, the footprint of the 3-parallel-channel PI-1DPC-NCSA is 4.5μm × 50μm (width × length), decreased by more than three orders of magnitude compared to 2D PC integrated sensor arrays. Thus, this is a promising platform for realizing ultra-compact lab-on-a-chip applications with high integration density and high parallel-multiplexing capabilities. PMID:27464080

  11. Design of a Collapse-Mode CMUT With an Embossed Membrane for Improving Output Pressure.

    PubMed

    Yu, Yuanyu; Pun, Sio Hang; Mak, Peng Un; Cheng, Ching-Hsiang; Wang, Jiujiang; Mak, Pui-In; Vai, Mang I

    2016-06-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have emerged as a competitive alternative to piezoelectric ultrasonic transducers, especially in medical ultrasound imaging and therapeutic ultrasound applications, which require high output pressure. However, as compared with piezoelectric ultrasonic transducers, the output pressure capability of CMUTs remains to be improved. In this paper, a novel structure is proposed by forming an embossed vibrating membrane on a CMUT cell operating in the collapse mode to increase the maximum output pressure. By using a beam model in undamped conditions and finite-element analysis simulations, the proposed embossed structure showed improvement on the maximum output pressure of the CMUT cell when the embossed pattern was placed on the estimated location of the peak deflection. As compared with a uniform membrane CMUT cell worked in the collapse mode, the proposed CMUT cell can yield the maximum output pressure by 51.1% and 88.1% enhancement with a single embossed pattern made of Si3N4 and nickel, respectively. The maximum output pressures were improved by 34.9% (a single Si3N4 embossed pattern) and 46.7% (a single nickel embossed pattern) with the uniform membrane when the center frequencies of both original and embossed CMUT designs were similar. PMID:27101605

  12. Parametric nonlinear lumped element model for circular CMUTs in collapsed mode.

    PubMed

    Aydoğdu, Elif; Ozgurluk, Alper; Atalar, Abdullah; Köymen, Hayrettin

    2014-01-01

    We present a parametric equivalent circuit model for a circular CMUT in collapsed mode. First, we calculate the collapsed membrane deflection, utilizing the exact electrical force distribution in the analytical formulation of membrane deflection. Then we develop a lumped element model of collapsed membrane operation. The radiation impedance for collapsed mode is also included in the model. The model is merged with the uncollapsed mode model to obtain a simulation tool that handles all CMUT behavior, in transmit or receive. Large- and small-signal operation of a single CMUT can be fully simulated for any excitation regime. The results are in good agreement with FEM simulations. PMID:24402904

  13. Using 1D theory to understand 3D stagnation of a wire-array Z pinch in the absence of radiation

    NASA Astrophysics Data System (ADS)

    Yu, Edmund

    2015-11-01

    Many high-energy-density systems implode towards the axis of symmetry, where it collides on itself, forming a hot plasma. However, experiments show these imploding plasmas develop three-dimensional (3D) structures. As a result, the plasma cannot completely dissipate its kinetic energy at stagnation, instead retaining significant 3D flow. A useful tool for understanding the effects of this residual flow is 3D simulation, but the amount and complexity of information can be daunting. To address this problem, we explore the connection between 3D simulation and one-dimensional (1D) theory. Such a connection, if it exists, is mutually beneficial: 1D theory can provide a clear picture of the underlying dynamics of 3D stagnation. On the other hand, deviations between theory and simulation suggest how 1D theory must be modified to account for 3D effects. In this work, we focus on a 3D, magnetohydrodynamic simulation of a compact wire-array Z pinch. To provide a simpler background against which to test our ideas, we artificially turn off radiation during the stagnation phase. Examination of the initial accumulation of mass on axis reveals oblique collision between jets, shock accretion, and vortex formation. Despite evidence for shock-dominated stagnation, a 1D shockless stagnation solution is more appropriate for describing the global dynamics, in that it reproduces the increase of on-axis density with time. However, the 1D solution must be modified to account for 3D effects: the flows suggest enhanced thermal transport as well as centrifugal force. Upon reaching peak compression, the stagnation transitions to a second phase, in which the high-pressure core on axis expands outward into the remaining imploding plasma. During this phase, a 1D shock solution describes the growth of the shock accretion region, as well as the decrease of on-axis density with time. However, the effect of 3D flows is still present: the on-axis temperature does not cool during expansion, which

  14. Air damping effect on the air-based CMUT operation

    NASA Astrophysics Data System (ADS)

    Cha, Bu-Sang; Kanashima, Takeshi; Lee, Seung-Mok; Okuyama, Masanori

    2015-08-01

    The vibration amplitude, damping ratio and viscous damping force in capacitive micromachinedultrasonic transducers (CMUTs) with a perforated membrane have been calculated theoretically and compared with the experimental data on its vibration behavior. The electrical bias of the DC and the AC voltages and the operation frequency conditions influence the damping effect because leads to variations in the gap height and the vibration velocity of the membrane. We propose a new estimation method to determine the damping ratio by the decay rate of the vibration amplitudes of the perforated membrane plate are measured using a laser vibrometer at each frequency, and the damping ratios were calculated from those results. The influences of the vibration frequency and the electrostatic force on the damping effect under the various operation conditions have been studied.

  15. CMUTs with High-K Atomic Layer Deposition Dielectric Material Insulation Layer

    PubMed Central

    Xu, Toby; Tekes, Coskun; Degertekin, F. Levent

    2014-01-01

    Use of high-κ dielectric, atomic layer deposition (ALD) materials as an insulation layer material for capacitive micromachined ultrasonic transducers (CMUTs) is investigated. The effect of insulation layer material and thickness on CMUT performance is evaluated using a simple parallel plate model. The model shows that both high dielectric constant and the electrical breakdown strength are important for the dielectric material, and significant performance improvement can be achieved, especially as the vacuum gap thickness is reduced. In particular, ALD hafnium oxide (HfO2) is evaluated and used as an improvement over plasma-enhanced chemical vapor deposition (PECVD) silicon nitride (SixNy) for CMUTs fabricated by a low-temperature, complementary metal oxide semiconductor transistor-compatible, sacrificial release method. Relevant properties of ALD HfO2 such as dielectric constant and breakdown strength are characterized to further guide CMUT design. Experiments are performed on parallel fabricated test CMUTs with 50-nm gap and 16.5-MHz center frequency to measure and compare pressure output and receive sensitivity for 200-nm PECVD SixNy and 100-nm HfO2 insulation layers. Results for this particular design show a 6-dB improvement in receiver output with the collapse voltage reduced by one-half; while in transmit mode, half the input voltage is needed to achieve the same maximum output pressure. PMID:25474786

  16. CMUTs with high-K atomic layer deposition dielectric material insulation layer.

    PubMed

    Xu, Toby; Tekes, Coskun; Degertekin, F

    2014-12-01

    Use of high-κ dielectric, atomic layer deposition (ALD) materials as an insulation layer material for capacitive micromachined ultrasonic transducers (CMUTs) is investigated. The effect of insulation layer material and thickness on CMUT performance is evaluated using a simple parallel plate model. The model shows that both high dielectric constant and the electrical breakdown strength are important for the dielectric material, and significant performance improvement can be achieved, especially as the vacuum gap thickness is reduced. In particular, ALD hafnium oxide (HfO2) is evaluated and used as an improvement over plasma-enhanced chemical vapor deposition (PECVD) silicon nitride (Six)Ny)) for CMUTs fabricated by a low-temperature, complementary metal oxide semiconductor transistor-compatible, sacrificial release method. Relevant properties of ALD HfO2) such as dielectric constant and breakdown strength are characterized to further guide CMUT design. Experiments are performed on parallel fabricated test CMUTs with 50-nm gap and 16.5-MHz center frequency to measure and compare pressure output and receive sensitivity for 200-nm PECVD Six)Ny) and 100-nm HfO2) insulation layers. Results for this particular design show a 6-dB improvement in receiver output with the collapse voltage reduced by one-half; while in transmit mode, half the input voltage is needed to achieve the same maximum output pressure. PMID:25474786

  17. Feasibility of MR-temperature mapping of ultrasonic heating from a CMUT.

    PubMed

    Wong, Serena H; Watkins, Ronald D; Kupnik, Mario; Pauly, Kim Butts; Khuri-Yakub, Butrus T

    2008-04-01

    In the last decade, high intensity focused ultrasound (HIFU) has gained popularity as a minimally invasive and noninvasive therapeutic tool for treatment of cancers, arrhythmias, and other medical conditions. HIFU therapy is often guided by magnetic resonance imaging (MRI), which provides anatomical images for therapeutic device placement, temperature maps for treatment guidance, and postoperative evaluation of the region of interest. While piezoelectric transducers are dominantly used for MR-guided HIFU, capacitive micromachined ultrasonic transducers (CMUTs) show competitive advantages, such as ease of fabrication, integration with electronics, improved efficiency, and reduction of self-heating. In this paper, we will show our first results of an unfocused CMUT transducer monitored by MR-temperature maps. This 2.51 mm by 2.32 mm, unfocused CMUT heated a HIFU phantom by 14 degrees C in 2.5 min. This temperature rise was successfully monitored by MR thermometry in a 3.0 T General Electric scanner. PMID:18467225

  18. Reverberation Reduction in Capacitive Micromachined Ultrasonic Transducers (CMUTs) by Front-face Reflectivity Minimization

    NASA Astrophysics Data System (ADS)

    Savoia, Alessandro Stuart; La Mura, Monica; Mauti, Barbara; Lamberti, Nicola; Caliano, Giosuè

    Front-face acoustic reflectivity of ultrasonic imaging transducers, due to acoustic impedance mismatch with the propagation medium, may cause reverberation phenomena during wideband pulse-echo operation. Front-face reflectivity may be reduced by promoting the transmission of the echoes, received from the medium, to the transducer backing, and by maximizing the mechanical-to-electrical energy conversion and dissipation by tuning the electrical load impedance connected to the transducer. In Capacitive Micromachined Ultrasonic Transducers (CMUTs), the energy transfer from the medium to the backing is very low due to the large impedance mismatch between the medium and the transducer substrate, typically made of silicon. Reverse Fabrication Process (RFP) makes it possible providing CMUTs with custom substrate materials, thus eliminating the original silicon microfabrication support. In this paper, we propose two methods for the front-face reflectivity reduction in RFP-CMUTs: the first one is based on the use of low-impedance, highly attenuating backing materials, and the second one is based on the maximization of the mechanoelectrical energy conversion and dissipation. We analyze the methods by finite element simulations and experimentally validate the obtained results by fabricating and characterizing single-element RFP-CMUTs provided with different backing materials and electrical loads.

  19. Capacitive Micromachined Ultrasonic Transducer Arrays for Integrated Diagnostic/Therapeutic Catheters

    NASA Astrophysics Data System (ADS)

    Wong, Serena H.; Wygant, Ira O.; Yeh, David T.; Zhuang, Xuefeng; Bayram, Baris; Kupnik, Mario; Oralkan, Omer; Ergun, A. Sanli; Yaralioglu, Goksen G.; Khuri-Yakub, Butrus T.

    2006-05-01

    In recent years, medical procedures have become increasingly non-invasive. These include endoscopic procedures and intracardiac interventions (e.g., pulmonary vein isolation for treatment of atrial fibrillation and plaque ablation for treatment of arteriosclerosis). However, current tools suffer from poor visualization and difficult coordination of multiple therapeutic and imaging devices. Dual-mode (imaging and therapeutic) ultrasound arrays provide a solution to these challenges. A dual-mode transducer can provide focused, noncontact ultrasound suitable for therapy and can be used to provide high quality real-time images for navigation and monitoring of the procedure. In the last decade, capacitive micromachined ultrasonic transducers (CMUTs), have become an attractive option for ultrasonic imaging systems due to their fabrication flexibility, improved bandwidth, and integration with electronics. The CMUT's potential in therapeutic applications has also been demonstrated by surface output pressures as high as 1MPa peak to peak and continuous wave (CW) operation. This paper reviews existing interventional CMUT arrays, demonstrates the feasibility of CMUTs for high intensity focused ultrasound (HIFU), and presents a design for the next-generation CMUTs for integrated imaging and HIFU endoscopic catheters.

  20. A volumetric CMUT-based ultrasound imaging system simulator with integrated reception and μ-beamforming electronics models.

    PubMed

    Matrone, Giulia; Savoia, Alessandro S; Terenzi, Marco; Caliano, Giosuè; Quaglia, Fabio; Magenes, Giovanni

    2014-05-01

    In modern ultrasound imaging devices, two-dimensional probes and electronic scanning allow volumetric imaging of anatomical structures. When dealing with the design of such complex 3-D ultrasound (US) systems, as the number of transducers and channels dramatically increases, new challenges concerning the integration of electronics and the implementation of smart micro-beamforming strategies arise. Hence, the possibility to predict the behavior of the whole system is mandatory. In this paper, we propose and describe an advanced simulation tool for ultrasound system modeling and simulation, which conjugates the US propagation and scattering, signal transduction, electronic signal conditioning, and beamforming in a single environment. In particular, we present the architecture and model of an existing 16-channel integrated receiver, which includes an amplification and micro-beamforming stage, and validate it by comparison with circuit simulations. The developed model is then used in conjunction with the transducer and US field models to perform a system simulation, aimed at estimating the performance of an example 3-D US imaging system that uses a capacitive micromachined ultrasonic transducer (CMUT) 2-D phased-array coupled to the modeled reception front-end. Results of point spread function (PSF) calculations, as well as synthetic imaging of a virtual phantom, show that this tool is actually able to model the complete US image reconstruction process, and that it could be used to quickly provide valuable system-level feedback for an optimized tuning of electronic design parameters. PMID:24803235

  1. Electrostatic and Small-Signal Analysis of CMUTs With Circular and Square Anisotropic Plates.

    PubMed

    Funding la Cour, Mette; Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt; Thomsen, Erik Vilain

    2015-08-01

    Traditionally, capacitive micromachined ultrasonic transducers (CMUTs) are modeled using the isotropic plate equation, and this leads to deviations between analytical calculations and finite element modeling (FEM). In this paper, the deflection is calculated for both circular and square plates using the full anisotropic plate equation. It is shown that the anisotropic calculations match excellently with FEM, whereas an isotropic approach causes up to 10% deviations in deflection. For circular plates, an exact solution can be found. For square plates using the Galerkin method, and utilizing the symmetry of the silicon crystal, a compact and accurate expression for the deflection can be obtained. The deviation from FEM in center deflection is <0.1%. The theory of multilayer plates is also applied to the CMUT. The deflection of a square plate was measured on fabricated CMUTs using a white light interferometer. Fitting the plate parameter for the anisotropic calculated deflection to the measurement, a deviation of 0.07% is seen. Electrostatic and small-signal dynamic analysis are performed using energy considerations including anisotropy. The stable position, effective spring constant, pullin distance, and pull-in voltage are found for both circular and square anisotropic plates, and the pressure dependence is included by comparison with the corresponding analysis for a parallel plate. Measurements on fabricated devices with both circular and square plates subjected to increasing bias voltage are performed, and it is observed that the models including anisotropic effects are within the uncertainty interval of the measurements. Finally, a lumped element small-signal model for both circular and square anisotropic plates is derived to describe the dynamics of the CMUT. PMID:26492637

  2. Progresses in cMUT device fabrication using low temperature processes

    NASA Astrophysics Data System (ADS)

    Bahette, E.; Michaud, J. F.; Certon, D.; Gross, D.; Alquier, D.

    2014-04-01

    In this paper, we present an original fabrication process of capacitive micromachined ultrasonic transducers (cMUTs) using a low temperature method for high frequency medical imaging applications. The process, which is limited to 400 °C, is based on surface micromachining. The material choices are adapted in order to respect the thermal specifications allowing monolithic integration. Thus, we have found alternative methods to replace the usual high temperature steps in cMUT elaboration. In this way, a nickel silicide layer, presenting good physical and electrical characteristics, is used as a bottom electrode. The membrane, silicon nitride, is deposited using a 200 °C PECVD process. Then, a metallic layer is chosen as a sacrificial layer, in order to achieve the cavity. For that, nickel has been chosen due to its low roughness and its high etching selectivity during the excavation. After their fabrication, the transducers have been tested to verify their functionality and, thus, to validate this low temperature process. Device physical properties have been determined by electrical and optical measurement in air. We evaluated resonance frequency, collapse voltage and electromechanical coupling coefficient in accordance with the simulation. Eventually, low charging effects and low initial deflections can predict good long-term use and ageing of the cMUTs.

  3. Deep Tissue Photoacoustic Imaging Using a Miniaturized 2-D Capacitive Micromachined Ultrasonic Transducer Array

    PubMed Central

    Kothapalli, Sri-Rajasekhar; Ma, Te-Jen; Vaithilingam, Srikant; Oralkan, Ömer

    2014-01-01

    In this paper, we demonstrate 3-D photoacoustic imaging (PAI) of light absorbing objects embedded as deep as 5 cm inside strong optically scattering phantoms using a miniaturized (4 mm × 4 mm × 500 µm), 2-D capacitive micromachined ultrasonic transducer (CMUT) array of 16 × 16 elements with a center frequency of 5.5 MHz. Two-dimensional tomographic images and 3-D volumetric images of the objects placed at different depths are presented. In addition, we studied the sensitivity of CMUT-based PAI to the concentration of indocyanine green dye at 5 cm depth inside the phantom. Under optimized experimental conditions, the objects at 5 cm depth can be imaged with SNR of about 35 dB and a spatial resolution of approximately 500 µm. Results demonstrate that CMUTs with integrated front-end amplifier circuits are an attractive choice for achieving relatively high depth sensitivity for PAI. PMID:22249594

  4. Intricate heterogeneous structures of the top 300 km of the Earth's inner core inferred from global array data: I. Regional 1D attenuation and velocity profiles

    NASA Astrophysics Data System (ADS)

    Iritani, R.; Takeuchi, N.; Kawakatsu, H.

    2014-05-01

    We apply a waveform inversion method based on simulated annealing to complex core phase data observed by globally deployed seismic arrays, and present regional variation of depth profiles of attenuation and velocity for the top half of the inner core. Whereas measured attenuation parameters exhibit consistent trends for data sampling the eastern hemisphere of the inner core, for the western hemisphere, there is a remarkable difference between data sampling the inner core beneath Africa (W1) and beneath north America (W2). Obtained attenuation profiles suggest that intricate heterogeneities appear to be confined in the top 300 km. The profile for the eastern hemisphere has a high attenuation zone in the top 150 km that gradually diminishes with depth. Conversely, for the western hemisphere, the profile for W1 shows constant low attenuation and that for W2 represents a gradual increase from the inner core boundary to a peak at around 200 km depth. Velocity profiles, obtained from differential traveltimes between PKP(DF) and PKP(CD, BC) phases, for the eastern and western hemispheres are respectively about 0.8% faster and 0.6% slower than the reference model at the top of the inner core, and the difference nearly disappears at about 200 km depth. Our result suggests the presence of intricate quasi-hemispherical structures in the top ˜200-300 km of the inner core.

  5. VFSARES-a very fast simulated annealing FORTRAN program for interpretation of 1-D DC resistivity sounding data from various electrode arrays

    NASA Astrophysics Data System (ADS)

    Sharma, Shashi Prakash

    2012-05-01

    Employing the very fast simulated annealing (VFSA) global optimization technique, a FORTRAN program is developed for the interpretation of one-dimensional direct current resistivity sounding data from various electrode arrays. The VFSA optimization depicts various good fitting solutions (models) after analyzing a large number of models within a predefined model space. Various models that yield reasonably well fitting responses with the observed response lie along a narrow elongated region of the model space. Therefore, instead of selecting the global model on the basis of the lowest misfit error, it is better to analyze histograms and probability density functions (PDFs) of such models for depicting the global model. In a multidimensional model space, the most appropriate region to select suitable models to compute the mean model is the one in which the PDF is larger in comparison to the other regions of the model space. Initially, accepted models with misfit errors less than the predefined threshold value are selected and lognormal PDFs for each model parameter are computed. Subsequently, mean model and uncertainties are computed using the models in which each model parameter has a PDF more than the defined threshold value (>68.2%). The mean model computed from such models is very close to the actual subsurface structure (global model). It is observed that the mean model computed using models with a PDF more than 95% for each model parameters yields the actual model. Moreover uncertainty computed using models with such a high PDF and lying in a small model space will be small and it will not be considered as the actual global uncertainty. Resistivity sounding (synthetic and field) data over different subsurface structures are optimized using the VFSA program developed in the present study. Optimization results reveal that the actual model always locates within the estimated uncertainty in the mean model. Since the approach requires much less computing time (a few

  6. TOPICAL REVIEW: Capacitive micromachined ultrasonic transducer arrays for minimally invasive medical ultrasound

    NASA Astrophysics Data System (ADS)

    Chen, Jingkuang

    2010-02-01

    This paper reviews the minimally invasive capacitive micromachined ultrasonic transducer (CMUT) arrays for medical diagnosis and therapy. While piezoelectric transducers dominate today's medical ultrasound market, the capacitive micromachined ultrasonic transducer has recently emerged as a promising alternative which delivers a comparable device performance to its piezoelectric counterparts, is compatible with front-end circuit integration, allows high-density imager integration and is relative easy in miniaturization. Utilizing MEMS technology, the substrate of CMUT arrays can be micromachined into miniature platforms with various geometrical shapes, which include needles, three-dimensional prisms, as well as other flexible-substrate configurations. These arrays are useful for reaching deep inside the tissue or an organ with a minimally invasive approach. Due to the close proximity of the transducers to the target organ/tissue, a higher resolution/accuracy of diagnostic information can be achieved. In addition to pulse-echo and photoacoustic imaging, high-power CMUT devices capable of delivering ultrasounds with a pressure greater than 1.0 MPa have been monolithically integrated with imager CMUTs for image-guided therapy (IGT). Such miniature devices would facilitate diagnostic and therapy interventions not possible with conventional piezoelectric transducers.

  7. Acoustic Doppler velocity measurement system using capacitive micromachined ultrasound transducer array technology.

    PubMed

    Shin, Minchul; Krause, Joshua S; DeBitetto, Paul; White, Robert D

    2013-08-01

    This paper describes the design, fabrication, modeling, and characterization of a small (1 cm(2) transducer chip) acoustic Doppler velocity measurement system using microelectromechanical systems capacitive micromachined ultrasound transducer (cMUT) array technology. The cMUT sensor has a 185 kHz resonant frequency to achieve a 13° beam width for a 1 cm aperture. A model for the cMUT and the acoustic system which includes electrical, mechanical, and acoustic components is provided. Furthermore, this paper shows characterization of the cMUT sensor with a variety of testing procedures including Laser Doppler Vibrometry (LDV), beampattern measurement, reflection testing, and velocity testing. LDV measurements demonstrate that the membrane displacement at the center point is 0.4 nm/V(2) at 185 kHz. The maximum range of the sensor is 60 cm (30 cm out and 30 cm back). A velocity sled was constructed and used to demonstrate measureable Doppler shifts at velocities from 0.2 to 1.0 m/s. The Doppler shifts agree well with the expected frequency shifts over this range. PMID:23927100

  8. Preparation of 1D nanostructures using biomolecules

    NASA Astrophysics Data System (ADS)

    Pruneanu, Stela; Olenic, Liliana; Barbu Tudoran, Lucian; Kacso, Irina; Farha Al-Said, Said A.; Hassanien, Reda; Houlton, Andrew; Horrocks, Benjamin R.

    2009-08-01

    In this paper we have shown that one-dimensional (1D) particle arrays can be obtained using biomolecules, like DNA or amino-acids. Nano-arrays of silver and gold were prepared in a single-step synthesis, by exploiting the binding abilities of λ-DNA and L-Arginine. The morphology and optical properties of these nanostructures were investigated using AFM, TEM and UV-Vis absorption spectroscopy.

  9. On the current drive capability of low dimensional semiconductors: 1D versus 2D

    DOE PAGESBeta

    Zhu, Y.; Appenzeller, J.

    2015-10-29

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Lastly, our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  10. 1D Josephson quantum interference grids: diffraction patterns and dynamics

    NASA Astrophysics Data System (ADS)

    Lucci, M.; Badoni, D.; Corato, V.; Merlo, V.; Ottaviani, I.; Salina, G.; Cirillo, M.; Ustinov, A. V.; Winkler, D.

    2016-02-01

    We investigate the magnetic response of transmission lines with embedded Josephson junctions and thus generating a 1D underdamped array. The measured multi-junction interference patterns are compared with the theoretical predictions for Josephson supercurrent modulations when an external magnetic field couples both to the inter-junction loops and to the junctions themselves. The results provide a striking example of the analogy between Josephson phase modulation and 1D optical diffraction grid. The Fiske resonances in the current-voltage characteristics with voltage spacing {Φ0}≤ft(\\frac{{\\bar{c}}}{2L}\\right) , where L is the total physical length of the array, {Φ0} the magnetic flux quantum and \\bar{c} the speed of light in the transmission line, demonstrate that the discrete line supports stable dynamic patterns generated by the ac Josephson effect interacting with the cavity modes of the line.

  11. Pacific Array

    NASA Astrophysics Data System (ADS)

    Kawakatsu, H.; Takeo, A.; Isse, T.; Nishida, K.; Shiobara, H.; Suetsugu, D.

    2014-12-01

    Based on our recent results on broadband ocean bottom seismometry, we propose a next generation large-scale array experiment in the ocean. Recent advances in ocean bottom broadband seismometry (e.g., Suetsugu & Shiobara, 2014, Annual Review EPS), together with advances in the seismic analysis methodology, have now enabled us to resolve the regional 1-D structure of the entire lithosphere/asthenosphere system, including seismic anisotropy (both radial and azimuthal), with deployments of ~10-15 broadband ocean bottom seismometers (BBOBSs) (namely "ocean-bottom broadband dispersion survey"; Takeo et al., 2013, JGR; Kawakatsu et al., 2013, AGU; Takeo, 2014, Ph.D. Thesis; Takeo et al., 2014, JpGU). Having ~15 BBOBSs as an array unit for 2-year deployment, and repeating such deployments in a leap-frog way (an array of arrays) for a decade or so would enable us to cover a large portion of the Pacific basin. Such efforts, not only by giving regional constraints on the 1-D structure, but also by sharing waveform data for global scale waveform tomography, would drastically increase our knowledge of how plate tectonics works on this planet, as well as how it worked for the past 150 million years. International collaborations might be sought.

  12. Vought F4U-1D Corsair

    NASA Technical Reports Server (NTRS)

    1945-01-01

    Vought F4U-1D Corsair: In February and March of 1945 this Corsair was examined in the NACA's 30 x 60 Full Scale Tunnel at Langley Field. The F4U-1D has rockets mounted on its wings for this test. After installation and during testing, the wings would be lowered to their flight position.

  13. Equivalent Circuit Models for Large Arrays of Curved and Flat Piezoelectric Micromachined Ultrasonic Transducers.

    PubMed

    Akhbari, Sina; Sammoura, Firas; Lin, Liwei

    2016-03-01

    Equivalent circuit models of large arrays of curved (spherical shape) and flat piezoelectric micromachined ultrasonic transducers (pMUTs) have been developed for complex pMUT arrays design and analysis. The exact solutions for circuit parameters in the electromechanical domain, such as mechanical admittance, input electrical impedance, and electromechanical transformer ratio, were analytically derived. By utilizing the array solution methods previously established for the thickness-mode piezoelectric devices and capacitive micromachined ultrasonic transducers (cMUTs), the single pMUT circuit model can be extended to models for array structures. The array model includes both the self- and mutual-acoustic radiation impedances of individual transducers in the acoustic medium. Volumetric displacement, induced piezoelectric current, and pressure field can be derived with respect to the input voltage matrix, material, and geometrical properties of each individual transducer and the array structure. As such, the analytical models presented here can be used as a guideline for analyses and design evaluations of large arrays of curved and flat pMUTs efficiently and can be further generalized to evaluate other pMUT architectures in the form of single devices or arrays. PMID:26863658

  14. Reconfigurable mosaic annular arrays.

    PubMed

    Thomenius, Kai E; Wodnicki, Robert; Cogan, Scott D; Fisher, Rayette A; Burdick, Bill; Smith, L Scott; Khuri-Yakub, Pierre; Lin, Der-Song; Zhuang, Xuefeng; Bonitz, Barry; Davies, Todd; Thomas, Glen; Woychik, Charles

    2014-07-01

    Mosaic annular arrays (MAA) based on reconfigurable array (RA) transducer electronics assemblies are presented as a potential solution for future highly integrated ultrasonic transducer subsystems. Advantages of MAAs include excellent beam quality and depth of field resulting from superior elevational focus compared with 1-D electronically scanned arrays, as well as potentially reduced cost, size, and power consumption resulting from the use of a limited number of beamforming channels for processing a large number of subelements. Specific design tradeoffs for these highly integrated arrays are discussed in terms of array specifications for center frequency, element pitch, and electronic switch-on resistance. Large-area RAs essentially function as RC delay lines. Efficient architectures which take into account RC delay effects are presented. Architectures for integration of the transducer and electronics layers of large-area array implementations are reviewed. PMID:24960699

  15. 1D ferrimagnetism in homometallic chains

    NASA Astrophysics Data System (ADS)

    Coronado, E.; Gómez-García, C. J.; Borrás-Almenar, J. J.

    1990-05-01

    The magnetic properties of the cobalt zigzag chain Co(bpy)(NCS)2 (bpy=2,2'-bipyridine) are discussed on the basis of an Ising-chain model that takes into account alternating Landé factors. It is emphasized, for the first time, that a homometallic chain containing only one type of site can give rise to a 1D ferrimagneticlike behavior.

  16. DESIGN PACKAGE 1D SYSTEM SAFETY ANALYSIS

    SciTech Connect

    L.R. Eisler

    1995-02-02

    The purpose of this analysis is to systematically identify and evaluate hazards related to the Yucca Mountain Project Exploratory Studies Facility (ESF) Design Package 1D, Surface Facilities, (for a list of design items included in the package 1D system safety analysis see section 3). This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach was used since a radiological System Safety analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the Design Package 1D structures/systems/components in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the structure/system/component (S/S/C) design, (2) add safety devices and capabilities to the designs that reduce risk, (3) provide devices that detect and warn personnel of hazardous conditions, and (4) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions. The scope of this analysis is limited to the Design Package 1D structures/systems/components (S/S/Cs) during normal operations excluding hazards occurring during maintenance and ''off normal'' operations.

  17. Epitaxial 1D electron transport layers for high-performance perovskite solar cells.

    PubMed

    Han, Gill Sang; Chung, Hyun Suk; Kim, Dong Hoe; Kim, Byeong Jo; Lee, Jin-Wook; Park, Nam-Gyu; Cho, In Sun; Lee, Jung-Kun; Lee, Sangwook; Jung, Hyun Suk

    2015-10-01

    We demonstrate high-performance perovskite solar cells with excellent electron transport properties using a one-dimensional (1D) electron transport layer (ETL). The 1D array-based ETL is comprised of 1D SnO2 nanowires (NWs) array grown on a F:SnO2 transparent conducting oxide substrate and rutile TiO2 nanoshells epitaxially grown on the surface of the 1D SnO2 NWs. The optimized devices show more than 95% internal quantum yield at 750 nm, and a power conversion efficiency (PCE) of 14.2%. The high quantum yield is attributed to dramatically enhanced electron transport in the epitaxial TiO2 layer, compared to that in conventional nanoparticle-based mesoporous TiO2 (mp-TiO2) layers. In addition, the open space in the 1D array-based ETL increases the prevalence of uniform TiO2/perovskite junctions, leading to reproducible device performance with a high fill factor. This work offers a method to achieve reproducible, high-efficiency perovskite solar cells with high-speed electron transport. PMID:26324759

  18. Pacific Array (Transportable Broadband Ocean Floor Array)

    NASA Astrophysics Data System (ADS)

    Kawakatsu, Hitoshi; Ekstrom, Goran; Evans, Rob; Forsyth, Don; Gaherty, Jim; Kennett, Brian; Montagner, Jean-Paul; Utada, Hisashi

    2016-04-01

    Based on recent developments on broadband ocean bottom seismometry, we propose a next generation large-scale array experiment in the ocean. Recent advances in ocean bottom broadband seismometry1, together with advances in the seismic analysis methodology, have enabled us to resolve the regional 1-D structure of the entire lithosphere/asthenosphere system, including seismic anisotropy (azimuthal, and hopefully radial), with deployments of ~15 broadband ocean bottom seismometers (BBOBSs). Having ~15 BBOBSs as an array unit for a 2-year deployment, and repeating such deployments in a leap-frog way or concurrently (an array of arrays) for a decade or so would enable us to cover a large portion of the Pacific basin. Such efforts, not only by giving regional constraints on the 1-D structure beneath Pacific ocean, but also by sharing waveform data for global scale waveform tomography, would drastically increase our knowledge of how plate tectonics works on this planet, as well as how it worked for the past 150 million years. International collaborations is essential: if three countries/institutions participate this endeavor together, Pacific Array may be accomplished within five-or-so years.

  19. Coalescence phenomena in 1D silver nanostructures

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Wing, C.; Pérez-Alvarez, M.; Mondragón-Galicia, G.; Arenas-Alatorre, J.; Gutiérrez-Wing, M. T.; Henk, M. C.; Negulescu, I. I.; Rusch, K. A.

    2009-07-01

    Different coalescence processes on 1D silver nanostructures synthesized by a PVP assisted reaction in ethylene glycol at 160 °C were studied experimentally and theoretically. Analysis by TEM and HRTEM shows different defects found on the body of these materials, suggesting that they were induced by previous coalescence processes in the synthesis stage. TEM observations showed that irradiation with the electron beam eliminates the boundaries formed near the edges of the structures, suggesting that this process can be carried out by the application of other means of energy (i.e. thermal). These results were also confirmed by theoretical calculations by Monte Carlo simulations using a Sutton-Chen potential. A theoretical study by molecular dynamics simulation of the different coalescence processes on 1D silver nanostructures is presented, showing a surface energy driven sequence followed to form the final coalesced structure. Calculations were made at 1000-1300 K, which is near the melting temperature of silver (1234 K). Based on these results, it is proposed that 1D nanostructures can grow through a secondary mechanism based on coalescence, without losing their dimensionality.

  20. Centrosome Positioning in 1D Cell Migration

    NASA Astrophysics Data System (ADS)

    Adlerz, Katrina; Aranda-Espinoza, Helim

    During cell migration, the positioning of the centrosome and nucleus define a cell's polarity. For a cell migrating on a two-dimensional substrate the centrosome is positioned in front of the nucleus. Under one-dimensional confinement, however, the centrosome is positioned behind the nucleus in 60% of cells. It is known that the centrosome is positioned by CDC42 and dynein for cells moving on a 2D substrate in a wound-healing assay. It is currently unknown, however, if this is also true for cells moving under 1D confinement, where the centrosome position is often reversed. Therefore, centrosome positioning was studied in cells migrating under 1D confinement, which mimics cells migrating through 3D matrices. 3 to 5 μm fibronectin lines were stamped onto a glass substrate and cells with fluorescently labeled nuclei and centrosomes migrated on the lines. Our results show that when a cell changes directions the centrosome position is maintained. That is, when the centrosome is between the nucleus and the cell's trailing edge and the cell changes direction, the centrosome will be translocated across the nucleus to the back of the cell again. A dynein inhibitor did have an influence on centrosome positioning in 1D migration and change of directions.

  1. 1-D EQUILIBRIUM DISCRETE DIFFUSION MONTE CARLO

    SciTech Connect

    T. EVANS; ET AL

    2000-08-01

    We present a new hybrid Monte Carlo method for 1-D equilibrium diffusion problems in which the radiation field coexists with matter in local thermodynamic equilibrium. This method, the Equilibrium Discrete Diffusion Monte Carlo (EqDDMC) method, combines Monte Carlo particles with spatially discrete diffusion solutions. We verify the EqDDMC method with computational results from three slab problems. The EqDDMC method represents an incremental step toward applying this hybrid methodology to non-equilibrium diffusion, where it could be simultaneously coupled to Monte Carlo transport.

  2. A 1-D dusty plasma photonic crystal

    SciTech Connect

    Mitu, M. L.; Ticoş, C. M.; Toader, D.; Banu, N.; Scurtu, A.

    2013-09-21

    It is demonstrated numerically that a 1-D plasma crystal made of micron size cylindrical dust particles can, in principle, work as a photonic crystal for terahertz waves. The dust rods are parallel to each other and arranged in a linear string forming a periodic structure of dielectric-plasma regions. The dispersion equation is found by solving the waves equation with the boundary conditions at the dust-plasma interface and taking into account the dielectric permittivity of the dust material and plasma. The wavelength of the electromagnetic waves is in the range of a few hundred microns, close to the interparticle separation distance. The band gaps of the 1-D plasma crystal are numerically found for different types of dust materials, separation distances between the dust rods and rod diameters. The distance between levitated dust rods forming a string in rf plasma is shown experimentally to vary over a relatively wide range, from 650 μm to about 1350 μm, depending on the rf power fed into the discharge.

  3. Diagnostics from a 1-D atmospheric column

    SciTech Connect

    Flatley, J.M.; Mace, G.

    1996-04-01

    Various diagnostics were computed from an array of radiosondes during an intensive field operation arranged by the Atmospheric Radiation Measurement Program. The network data was centered around the site at Lamont, Oklahoma. The apparent heat source and apparent moisture sink were computed and compared to the kinematic vertical velocity for both real data and the mesoscale analysis and prediction system. Three different case studies of various weathe regimes were examined.

  4. Integrated multicolor detector utilizing 1D photonic bandgap filter with wedge-shaped defect

    NASA Astrophysics Data System (ADS)

    Jaksic, Zoran S.; Petrovic, Radomir; Randjelovic, Danijela; Dankovic, Tatjana; Djuric, Zoran G.; Ehrfeld, Wolfgang; Schmidt, Andreas; Hecker, Karl H.

    1999-03-01

    We propose a single-chip multicolor photodetector for micrometers range based on a linear IR semiconductor detector array with an integrated 1D photonic bandgap (PBG) filter. A wedge- shaped defect slab is introduced into the filer instead of one of the layers. The bandgap of the photonic crystal coincides with the spectral sensitivity range of the photodetector array, while the built-in defect gives a transmission peak within the same range. The defect thickness varies along the array length and thus shifts the transmission peak wavelength. The optimized photonic bandgap filter including defect is designed using the transfer matrix method. The peak frequency is tuned by choosing the geometrical parameters of the wedge-shaped defect. In our experiments, thin alternating Si and SiO2 films are sputtered onto the array surface, thus forming a 1D PBG structure. The defect is fabricated by gradually changing the middle Si layer thickness over the width of the array. Its wedge-forming is performed by micromachining or, alternatively, by in-situ oblique deposition within the sputtering system and, possibly, subsequent chemomechanical polishing. The characteristics of the finished PBG structure are measured using an IR spectrophotometer. An increase of the number of PBG layers improves the confinement of transmission peaks and thus decreases the crosstalk between the array elements. Although our multicolor detector is designed for the (3-5) micrometers atmospheric window, it can be straightforward redesigned for any other optical range.

  5. ISS Solar Array Management

    NASA Technical Reports Server (NTRS)

    Williams, James P.; Martin, Keith D.; Thomas, Justin R.; Caro, Samuel

    2010-01-01

    The International Space Station (ISS) Solar Array Management (SAM) software toolset provides the capabilities necessary to operate a spacecraft with complex solar array constraints. It monitors spacecraft telemetry and provides interpretations of solar array constraint data in an intuitive manner. The toolset provides extensive situational awareness to ensure mission success by analyzing power generation needs, array motion constraints, and structural loading situations. The software suite consists of several components including samCS (constraint set selector), samShadyTimers (array shadowing timers), samWin (visualization GUI), samLock (array motion constraint computation), and samJet (attitude control system configuration selector). It provides high availability and uptime for extended and continuous mission support. It is able to support two-degrees-of-freedom (DOF) array positioning and supports up to ten simultaneous constraints with intuitive 1D and 2D decision support visualizations of constraint data. Display synchronization is enabled across a networked control center and multiple methods for constraint data interpolation are supported. Use of this software toolset increases flight safety, reduces mission support effort, optimizes solar array operation for achieving mission goals, and has run for weeks at a time without issues. The SAM toolset is currently used in ISS real-time mission operations.

  6. 1D-VAR Retrieval Using Superchannels

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel; Larar, Allen; Smith, William L.; Schluessel, Peter; Mango, Stephen; SaintGermain, Karen

    2008-01-01

    Since modern ultra-spectral remote sensors have thousands of channels, it is difficult to include all of them in a 1D-var retrieval system. We will describe a physical inversion algorithm, which includes all available channels for the atmospheric temperature, moisture, cloud, and surface parameter retrievals. Both the forward model and the inversion algorithm compress the channel radiances into super channels. These super channels are obtained by projecting the radiance spectra onto a set of pre-calculated eigenvectors. The forward model provides both super channel properties and jacobian in EOF space directly. For ultra-spectral sensors such as Infrared Atmospheric Sounding Interferometer (IASI) and the NPOESS Airborne Sounder Testbed Interferometer (NAST), a compression ratio of more than 80 can be achieved, leading to a significant reduction in computations involved in an inversion process. Results will be shown applying the algorithm to real IASI and NAST data.

  7. Epitaxial 1D electron transport layers for high-performance perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Han, Gill Sang; Chung, Hyun Suk; Kim, Dong Hoe; Kim, Byeong Jo; Lee, Jin-Wook; Park, Nam-Gyu; Cho, In Sun; Lee, Jung-Kun; Lee, Sangwook; Jung, Hyun Suk

    2015-09-01

    We demonstrate high-performance perovskite solar cells with excellent electron transport properties using a one-dimensional (1D) electron transport layer (ETL). The 1D array-based ETL is comprised of 1D SnO2 nanowires (NWs) array grown on a F:SnO2 transparent conducting oxide substrate and rutile TiO2 nanoshells epitaxially grown on the surface of the 1D SnO2 NWs. The optimized devices show more than 95% internal quantum yield at 750 nm, and a power conversion efficiency (PCE) of 14.2%. The high quantum yield is attributed to dramatically enhanced electron transport in the epitaxial TiO2 layer, compared to that in conventional nanoparticle-based mesoporous TiO2 (mp-TiO2) layers. In addition, the open space in the 1D array-based ETL increases the prevalence of uniform TiO2/perovskite junctions, leading to reproducible device performance with a high fill factor. This work offers a method to achieve reproducible, high-efficiency perovskite solar cells with high-speed electron transport.We demonstrate high-performance perovskite solar cells with excellent electron transport properties using a one-dimensional (1D) electron transport layer (ETL). The 1D array-based ETL is comprised of 1D SnO2 nanowires (NWs) array grown on a F:SnO2 transparent conducting oxide substrate and rutile TiO2 nanoshells epitaxially grown on the surface of the 1D SnO2 NWs. The optimized devices show more than 95% internal quantum yield at 750 nm, and a power conversion efficiency (PCE) of 14.2%. The high quantum yield is attributed to dramatically enhanced electron transport in the epitaxial TiO2 layer, compared to that in conventional nanoparticle-based mesoporous TiO2 (mp-TiO2) layers. In addition, the open space in the 1D array-based ETL increases the prevalence of uniform TiO2/perovskite junctions, leading to reproducible device performance with a high fill factor. This work offers a method to achieve reproducible, high-efficiency perovskite solar cells with high-speed electron transport

  8. Hyperbranched quasi-1D TiO2 nanostructure for hybrid organic-inorganic solar cells.

    PubMed

    Ghadirzadeh, Ali; Passoni, Luca; Grancini, Giulia; Terraneo, Giancarlo; Li Bassi, Andrea; Petrozza, Annamaria; Di Fonzo, Fabio

    2015-04-15

    The performance of hybrid solar cells is strongly affected by the device morphology. In this work, we demonstrate a poly(3-hexylthiophene-2,5-diyl)/TiO2 hybrid solar cell where the TiO2 photoanode comprises an array of tree-like hyperbranched quasi-1D nanostructures self-assembled from the gas phase. This advanced architecture enables us to increase the power conversion efficiency to over 1%, doubling the efficiency with respect to state of the art devices employing standard mesoporous titania photoanodes. This improvement is attributed to several peculiar features of this array of nanostructures: high interfacial area; increased optical density thanks to the enhanced light scattering; and enhanced crystallization of poly(3-hexylthiophene-2,5-diyl) inside the quasi-1D nanostructure. PMID:25822757

  9. From 1D to 3D: Tunable Sub-10 nm Gaps in Large Area Devices.

    PubMed

    Zhou, Ziwei; Zhao, Zhiyuan; Yu, Ye; Ai, Bin; Möhwald, Helmuth; Chiechi, Ryan C; Yang, Joel K W; Zhang, Gang

    2016-04-20

    Tunable sub-10 nm 1D nanogaps are fabricated based on nanoskiving. The electric field in different sized nanogaps is investigated theoretically and experimentally, yielding nonmonotonic dependence and an optimized gap-width (5 nm). 2D nanogap arrays are fabricated to pack denser gaps combining surface patterning techniques. Innovatively, 3D multistory nanogaps are built via a stacking procedure, processing higher integration, and much improved electric field. PMID:26890027

  10. 1D-1D Coulomb drag in a 6 Million Mobility Bi-layer Heterostructure

    NASA Astrophysics Data System (ADS)

    Bilodeau, Simon; Laroche, Dominique; Xia, Jian-Sheng; Lilly, Mike; Reno, John; Pfeiffer, Loren; West, Ken; Gervais, Guillaume

    We report Coulomb drag measurements in vertically-coupled quantum wires. The wires are fabricated in GaAs/AlGaAs bilayer heterostructures grown from two different MBE chambers: one at Sandia National Laboratories (1.2M mobility), and the other at Princeton University (6M mobility). The previously observed positive and negative drag signals are seen in both types of devices, demonstrating the robustness of the result. However, attempts to determine the temperature dependence of the drag signal in the 1D regime proved challenging in the higher mobility heterostructure (Princeton), in part because of difficulties in aligning the wires within the same transverse subband configuration. Nevertheless, this work, performed at the Microkelvin laboratory of the University of Florida, is an important proof-of-concept for future investigations of the temperature dependence of the 1D-1D drag signal down to a few mK. Such an experiment could confirm the Luttinger charge density wave interlocking predicted to occur in the wires. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL8500.

  11. Understanding 1D Electrostatic Dust Levitation

    NASA Astrophysics Data System (ADS)

    Hartzell, C. M.; Scheeres, D. J.

    2011-12-01

    Electrostatically-dominated dust motion has been hypothesized since the Lunar Horizon Glow was observed by the Surveyor spacecraft. The hypothesized occurence of this phenomenon was naturally extended to asteroids due to their small gravities. Additionally, it has been suggested that the dust ponds observed on Eros by the NEAR mission may be created by electrostatically-dominated dust transport. Previous attempts to numerically model dust motion on the Moon and Eros have been stymied by poorly understood dust launching mechanisms. As a result, the initial velocity and charge of dust particles used in numerical simulations may or may not have any relevance to the actual conditions occurring in situ. It has been seen that properly tuned initial states (velocity and charge) result in dust particles levitating above the surface in both 1D and 2D simulations. Levitation is of interest to planetary scientists since it provides a way to quickly redistribute the surface dust particles over a body. However, there is currently no method to predict whether or not a certain initial state will result in levitation. We have developed a method to provide constraints on the initial states that result in levitation as a function of dust particle size and central body gravity. Additionally, our method can be applied to several models of the plasma sheath. Thus, we limit the guesswork involved in determining which initial conditions result in levitation. We provide a more detailed understanding of levitation phenomena couched in terms of the commonly recognized spring-mass system. This method of understanding dust motion removes the dependency on the launching mechanism, which remains fraught with controversy. Once a feasible dust launching mechanism is identified (be it micrometeoroid bombardment or electrostatic lofting), our method will allow the community to quickly ascertain if dust levitation will occur in situ or if it is simply a numerical artifact. In addition to

  12. Magnetic arrays

    DOEpatents

    Trumper, D.L.; Kim, W.; Williams, M.E.

    1997-05-20

    Electromagnet arrays are disclosed which can provide selected field patterns in either two or three dimensions, and in particular, which can provide single-sided field patterns in two or three dimensions. These features are achieved by providing arrays which have current densities that vary in the windings both parallel to the array and in the direction of array thickness. 12 figs.

  13. Magnetic arrays

    SciTech Connect

    Trumper, David L.; Kim, Won-jong; Williams, Mark E.

    1997-05-20

    Electromagnet arrays which can provide selected field patterns in either two or three dimensions, and in particular, which can provide single-sided field patterns in two or three dimensions. These features are achieved by providing arrays which have current densities that vary in the windings both parallel to the array and in the direction of array thickness.

  14. Human serotonin 1D receptor is encoded by a subfamily of two distinct genes: 5-HT1D alpha and 5-HT1D beta.

    PubMed Central

    Weinshank, R L; Zgombick, J M; Macchi, M J; Branchek, T A; Hartig, P R

    1992-01-01

    The serotonin 1D (5-HT1D) receptor is a pharmacologically defined binding site and functional receptor site. Observed variations in the properties of 5-HT1D receptors in different tissues have led to the speculation that multiple receptor proteins with slightly different properties may exist. We report here the cloning, deduced amino acid sequences, pharmacological properties, and second-messenger coupling of a pair of human 5-HT1D receptor genes, which we have designated 5-HT1D alpha and 5-HT1D beta due to their strong similarities in sequence, pharmacological properties, and second-messenger coupling. Both genes are free of introns in their coding regions, are expressed in the human cerebral cortex, and can couple to inhibition of adenylate cyclase activity. The pharmacological binding properties of these two human receptors are very similar, and match closely the pharmacological properties of human, bovine, and guinea pig 5-HT1D sites. Both receptors exhibit high-affinity binding of sumatriptan, a new anti-migraine medication, and thus are candidates for the pharmacological site of action of this drug. Images PMID:1565658

  15. Offering an Array of Improvements

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Sensors Unlimited, Inc., with SBIR funding from NASA's Langley Research Center, Goddard Space Flight Center, Marshall Space Flight Center, and the Jet Propulsion Laboratory, developed a monolithic focal plane array for near-infrared imaging. The company developed one- (1- D) and two-dimensional (2-D) imaging arrays consisting of a highly reliable InGaAs p-I-n diode as a photodetector for monitoring a variety of applications, including single element device applications in receivers. The InGaAs 1-D and 2-D arrays have many applications. For example, they monitor the performance of dense wavelength division multiplexing (DWDM) systems- the process of packaging many channels into a single fiber-optic cable. Sensors Unlimited commercially offers its LXTM and LYTM Series InGaAs linear arrays for reliable DWDM performance monitoring. The LX and LY arrays enable instrument module designs with no moving parts, which provides for superior uniformity, and fast, linear outputs that remain stable over a wide temperature range. Innovative technologies derived from the monolithic focal plane array have enabled telecommunication companies to optimize existing bandwidth in their fiber-optic networks in order to support a high volume of network traffic. At the same time, the technologies obtained from the array have the potential for reducing costs, while increasing performance from Sensors Unlimited's current product lines.

  16. Kokkos Array

    Energy Science and Technology Software Center (ESTSC)

    2012-09-12

    The Kokkos Array library implements shared-memory array data structures and parallel task dispatch interfaces for data-parallel computational kernels that are performance-portable to multicore-CPU and manycore-accelerator (e.g., GPGPU) devices.

  17. Systolic arrays

    SciTech Connect

    Moore, W.R.; McCabe, A.P.H.; Vrquhart, R.B.

    1987-01-01

    Selected Contents of this book are: Efficient Systolic Arrays for the Solution of Toeplitz Systems, The Derivation and Utilization of Bit Level Systolic Array Architectures, an Efficient Systolic Array for Distance Computation Required in a Video-Codec Based Motion-Detection, On Realizations of Least-Squares Estimation and Kalman Filtering by Systolic Arrays, and Comparison of Systolic and SIMD Architectures for Computer Vision Computations.

  18. Nanocylinder arrays

    DOEpatents

    Tuominen, Mark; Schotter, Joerg; Thurn-Albrecht, Thomas; Russell, Thomas P.

    2007-03-13

    Pathways to rapid and reliable fabrication of nanocylinder arrays are provided. Simple methods are described for the production of well-ordered arrays of nanopores, nanowires, and other materials. This is accomplished by orienting copolymer films and removing a component from the film to produce nanopores, that in turn, can be filled with materials to produce the arrays. The resulting arrays can be used to produce nanoscale media, devices, and systems.

  19. Nanocylinder arrays

    DOEpatents

    Tuominen, Mark; Schotter, Joerg; Thurn-Albrecht, Thomas; Russell, Thomas P.

    2009-08-11

    Pathways to rapid and reliable fabrication of nanocylinder arrays are provided. Simple methods are described for the production of well-ordered arrays of nanopores, nanowires, and other materials. This is accomplished by orienting copolymer films and removing a component from the film to produce nanopores, that in turn, can be filled with materials to produce the arrays. The resulting arrays can be used to produce nanoscale media, devices, and systems.

  20. Brady 1D seismic velocity model ambient noise prelim

    DOE Data Explorer

    Mellors, Robert J.

    2013-10-25

    Preliminary 1D seismic velocity model derived from ambient noise correlation. 28 Green's functions filtered between 4-10 Hz for Vp, Vs, and Qs were calculated. 1D model estimated for each path. The final model is a median of the individual models. Resolution is best for the top 1 km. Poorly constrained with increasing depth.

  1. Significant enhancement of power conversion efficiency for dye sensitized solar cell using 1D/3D network nanostructures as photoanodes

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Wang, Baoyuan; Yu, Jichao; Hu, Yunxia; Xia, Chen; Zhang, Jun; Liu, Rong

    2015-03-01

    The single-crystalline TiO2 nanorod arrays with rutile phase have attracted much attention in the dye sensitized solar cells (DSSCs) applications because of their superior chemical stability, better electron transport properties, higher refractive index and low production cost. However, it suffers from a low surface area as compared with TiO2 nanoparticle films. In order to enlarge the surface area of TiO2 nanorod arrays, the 1D nanorods/3D nanotubes sample was synthesized using a facile two-step hydrothermal process involving hydrothermal growth 1D/3D nanorods and followed by post-etching treatment. In such bi-layer structure, the oriented TiO2 nanorods layer could provide direct pathway for fast electron transportation, and the 3D nanotubes layer offers a higher surface area for dye loading, therefore, the 1D nanorods/3D nanotubes photoanode exhibited faster electron transport and higher surface area than either 1D or 3D nanostructures alone, and an highest efficiency of 7.68% was achieved for the DSSCs based on 1D nanorods/3D nanotubes photoanode with further TiCl4 treatment.

  2. Significant enhancement of power conversion efficiency for dye sensitized solar cell using 1D/3D network nanostructures as photoanodes

    PubMed Central

    Wang, Hao; Wang, Baoyuan; Yu, Jichao; Hu, Yunxia; Xia, Chen; Zhang, Jun; Liu, Rong

    2015-01-01

    The single–crystalline TiO2 nanorod arrays with rutile phase have attracted much attention in the dye sensitized solar cells (DSSCs) applications because of their superior chemical stability, better electron transport properties, higher refractive index and low production cost. However, it suffers from a low surface area as compared with TiO2 nanoparticle films. In order to enlarge the surface area of TiO2 nanorod arrays, the 1D nanorods/3D nanotubes sample was synthesized using a facile two-step hydrothermal process involving hydrothermal growth 1D/3D nanorods and followed by post-etching treatment. In such bi-layer structure, the oriented TiO2 nanorods layer could provide direct pathway for fast electron transportation, and the 3D nanotubes layer offers a higher surface area for dye loading, therefore, the 1D nanorods/3D nanotubes photoanode exhibited faster electron transport and higher surface area than either 1D or 3D nanostructures alone, and an highest efficiency of 7.68% was achieved for the DSSCs based on 1D nanorods/3D nanotubes photoanode with further TiCl4 treatment. PMID:25800933

  3. Significant enhancement of power conversion efficiency for dye sensitized solar cell using 1D/3D network nanostructures as photoanodes.

    PubMed

    Wang, Hao; Wang, Baoyuan; Yu, Jichao; Hu, Yunxia; Xia, Chen; Zhang, Jun; Liu, Rong

    2015-01-01

    The single-crystalline TiO2 nanorod arrays with rutile phase have attracted much attention in the dye sensitized solar cells (DSSCs) applications because of their superior chemical stability, better electron transport properties, higher refractive index and low production cost. However, it suffers from a low surface area as compared with TiO2 nanoparticle films. In order to enlarge the surface area of TiO2 nanorod arrays, the 1D nanorods/3D nanotubes sample was synthesized using a facile two-step hydrothermal process involving hydrothermal growth 1D/3D nanorods and followed by post-etching treatment. In such bi-layer structure, the oriented TiO2 nanorods layer could provide direct pathway for fast electron transportation, and the 3D nanotubes layer offers a higher surface area for dye loading, therefore, the 1D nanorods/3D nanotubes photoanode exhibited faster electron transport and higher surface area than either 1D or 3D nanostructures alone, and an highest efficiency of 7.68% was achieved for the DSSCs based on 1D nanorods/3D nanotubes photoanode with further TiCl4 treatment. PMID:25800933

  4. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    SciTech Connect

    Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko

    2014-10-01

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos

  5. Phosphorylation and desensitization of alpha1d-adrenergic receptors.

    PubMed Central

    García-Sáinz, J A; Vázquez-Cuevas, F G; Romero-Avila, M T

    2001-01-01

    In rat-1 fibroblasts stably expressing rat alpha(1d)-adrenoceptors, noradrenaline and PMA markedly decreased alpha(1d)-adrenoceptor function (noradrenaline-elicited increases in calcium in whole cells and [(35)S]guanosine 5'-[gamma-thio]triphosphate binding in membranes), suggesting homologous and heterologous desensitizations. Photoaffinity labelling, Western blotting and immunoprecipitation identified alpha(1d)-adrenoceptors as a broad band of 70-80 kDa. alpha(1d)-Adrenoceptors were phosphorylated in the basal state and noradrenaline and PMA increased it. The effect of noradrenaline was concentration-dependent (EC(50) 75 nM), rapid (maximum at 1 min) and transient. Phorbol ester-induced phosphorylation was concentration-dependent (EC(50) 25 nM), slightly slower (maximum at 5 min) and stable for at least 60 min. Inhibitors of protein kinase C decreased the effect of phorbol esters but not that of noradrenaline. Evidence of cross-talk of alpha(1d)-adrenoceptors with receptors endogenously expressed in rat-1 fibroblasts was given by the ability of endothelin, lysophosphatidic acid and bradykinin to induce alpha(1d)-adrenoceptor phosphorylation. In summary, it is shown for the first time here that alpha(1d)-adrenoceptors are phosphoproteins and that receptor phosphorylation is increased by the natural ligand, noradrenaline, by direct activation of protein kinase C and via cross-talk with other receptors endogenously expressed in rat-1 fibroblasts. Receptor phosphorylation has functional repercussions. PMID:11171057

  6. Finite element analysis of underwater capacitor micromachined ultrasonic transducers.

    PubMed

    Roh, Yongrae; Khuri-Yakub, Butrus T

    2002-03-01

    A simple electro-mechanical equivalent circuit model is used to predict the behavior of capacitive micromachined ultrasonic transducers (cMUT). Most often, cMUTs are made in silicon and glass plates that are in the 0.5 mm to 1 mm range in thickness. The equivalent circuit model of the cMUT lacks important features such as coupling to the substrate and the ability to predict cross-talk between elements of an array of transducers. To overcome these deficiencies, a flnite element model of the cMUT is constructed using the commercial code ANSYS. Calculation results of the complex load impedance seen by single capacitor cells are presented, then followed by a calculation of the plane wave real load impedance seen by a parallel combination of many cells that are used to make a transducer. Cross-talk between 1-D array elements is found to be due to two main sources: coupling through a Stoneley wave propagating at the transducer-water interface and coupling through Lamb waves propagating in the substrate. To reduce the cross-talk level, the effect of structural variations of the substrate are investigated, which includes a change of its thickness and etched trenches or polymer walls between array elements. PMID:12322877

  7. Severe Hypertriglyceridemia in Glut1D on Ketogenic Diet.

    PubMed

    Klepper, Joerg; Leiendecker, Baerbel; Heussinger, Nicole; Lausch, Ekkehart; Bosch, Friedrich

    2016-04-01

    High-fat ketogenic diets are the only treatment available for Glut1 deficiency (Glut1D). Here, we describe an 8-year-old girl with classical Glut1D responsive to a 3:1 ketogenic diet and ethosuximide. After 3 years on the diet a gradual increase of blood lipids was followed by rapid, severe asymptomatic hypertriglyceridemia (1,910 mg/dL). Serum lipid apheresis was required to determine liver, renal, and pancreatic function. A combination of medium chain triglyceride-oil and a reduction of the ketogenic diet to 1:1 ratio normalized triglyceride levels within days but triggered severe myoclonic seizures requiring comedication with sultiam. Severe hypertriglyceridemia in children with Glut1D on ketogenic diets may be underdiagnosed and harmful. In contrast to congenital hypertriglyceridemias, children with Glut1D may be treated effectively by dietary adjustments alone. PMID:26902182

  8. 1D Nanostructures: Controlled Fabrication and Energy Applications

    SciTech Connect

    Hu, Michael Z.

    2013-01-01

    Jian Wei, Xuchun Song, Chunli Yang, and Michael Z. Hu, 1D Nanostructures: Controlled Fabrication and Energy Applications, Journal of Nanomaterials, published special issue (http://www.hindawi.com/journals/jnm/si/197254/) (2013).

  9. 60. BOILER CHAMBER No. 1, D LOOP STEAM GENERATOR AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. BOILER CHAMBER No. 1, D LOOP STEAM GENERATOR AND MAIN COOLANT PUMP LOOKING NORTHEAST (LOCATION OOO) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  10. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1).

    PubMed

    Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko

    2014-10-01

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. PMID:25088042

  11. TBC1D24 genotype–phenotype correlation

    PubMed Central

    Balestrini, Simona; Milh, Mathieu; Castiglioni, Claudia; Lüthy, Kevin; Finelli, Mattea J.; Verstreken, Patrik; Cardon, Aaron; Stražišar, Barbara Gnidovec; Holder, J. Lloyd; Lesca, Gaetan; Mancardi, Maria M.; Poulat, Anne L.; Repetto, Gabriela M.; Banka, Siddharth; Bilo, Leonilda; Birkeland, Laura E.; Bosch, Friedrich; Brockmann, Knut; Cross, J. Helen; Doummar, Diane; Félix, Temis M.; Giuliano, Fabienne; Hori, Mutsuki; Hüning, Irina; Kayserili, Hulia; Kini, Usha; Lees, Melissa M.; Meenakshi, Girish; Mewasingh, Leena; Pagnamenta, Alistair T.; Peluso, Silvio; Mey, Antje; Rice, Gregory M.; Rosenfeld, Jill A.; Taylor, Jenny C.; Troester, Matthew M.; Stanley, Christine M.; Ville, Dorothee; Walkiewicz, Magdalena; Falace, Antonio; Fassio, Anna; Lemke, Johannes R.; Biskup, Saskia; Tardif, Jessica; Ajeawung, Norbert F.; Tolun, Aslihan; Corbett, Mark; Gecz, Jozef; Afawi, Zaid; Howell, Katherine B.; Oliver, Karen L.; Berkovic, Samuel F.; Scheffer, Ingrid E.; de Falco, Fabrizio A.; Oliver, Peter L.; Striano, Pasquale; Zara, Federico

    2016-01-01

    Objective: To evaluate the phenotypic spectrum associated with mutations in TBC1D24. Methods: We acquired new clinical, EEG, and neuroimaging data of 11 previously unreported and 37 published patients. TBC1D24 mutations, identified through various sequencing methods, can be found online (http://lovd.nl/TBC1D24). Results: Forty-eight patients were included (28 men, 20 women, average age 21 years) from 30 independent families. Eighteen patients (38%) had myoclonic epilepsies. The other patients carried diagnoses of focal (25%), multifocal (2%), generalized (4%), and unclassified epilepsy (6%), and early-onset epileptic encephalopathy (25%). Most patients had drug-resistant epilepsy. We detail EEG, neuroimaging, developmental, and cognitive features, treatment responsiveness, and physical examination. In silico evaluation revealed 7 different highly conserved motifs, with the most common pathogenic mutation located in the first. Neuronal outgrowth assays showed that some TBC1D24 mutations, associated with the most severe TBC1D24-associated disorders, are not necessarily the most disruptive to this gene function. Conclusions: TBC1D24-related epilepsy syndromes show marked phenotypic pleiotropy, with multisystem involvement and severity spectrum ranging from isolated deafness (not studied here), benign myoclonic epilepsy restricted to childhood with complete seizure control and normal intellect, to early-onset epileptic encephalopathy with severe developmental delay and early death. There is no distinct correlation with mutation type or location yet, but patterns are emerging. Given the phenotypic breadth observed, TBC1D24 mutation screening is indicated in a wide variety of epilepsies. A TBC1D24 consortium was formed to develop further research on this gene and its associated phenotypes. PMID:27281533

  12. Measuring the Speed of Sound in a 1D Fermi Gas

    NASA Astrophysics Data System (ADS)

    Fry, Jacob; Revelle, Melissa; Hulet, Randall

    2016-05-01

    We report measurements of the speed of sound in a two-spin component, 1D gas of fermionic lithium. The 1D system is an array of one-dimensional tubes created by a 2D optical lattice. By increasing the lattice depth, the tunneling between tubes is sufficiently small to make each an independent 1D system. To measure the speed of sound, we create a density notch at the center of the atom cloud using a sheet of light tuned far from resonance. The dipole force felt by both spin states will be equivalent, so this notch can be thought of as a charge excitation. Once this beam is turned off, the notch propagates to the edge of the atomic cloud with a velocity that depends on the strength of interatomic interactions. We control interactions using a magnetically tuned Feshbach resonance, allowing us to measure the speed of sound over a wide range of interaction. This method may be used to extract the Luttinger parameter vs. interaction strength. Supported by an ARO MURI Grant, NSF, and The Welch Foundation.

  13. Constraint directed CAD tool for automatic latency-optimal implementation of 1-D and 2-D Fourier transforms

    NASA Astrophysics Data System (ADS)

    Nash, J. Gregory

    2002-07-01

    A specialized CAD tool is described that will take a user's high level code description of a non-uniform affinely indexed algorithm and automatically generate abstract latency-optimal systolic arrays. Emphasis has been placed on ease of use and the ability to either force conformation to specific design criteria or perform unconstrained explorations. How such design goals are achieved is illustrated in the context of LU decomposition and the matrix Lyapunov equation. The tool is then used to generate new 1-D and 2-D hardware efficient systolic arrays for the discreet Fourier transform that take advantage of the use of the radix-4 matrix decomposition.

  14. Polar discontinuities and 1D interfaces in monolayered materials

    NASA Astrophysics Data System (ADS)

    Martinez-Gordillo, Rafael; Pruneda, Miguel

    2015-12-01

    Interfaces are the birthplace of a multitude of fascinating discoveries in fundamental science, and have enabled modern electronic devices, from transistors, to lasers, capacitors or solar cells. These interfaces between bulk materials are always bi-dimensional (2D) 'surfaces'. However the advent of graphene and other 2D crystals opened up a world of possibilities, as in this case the interfaces become one-dimensional (1D) lines. Although the properties of 1D nanoribbons have been extensively discussed in the last few years, 1D interfaces within infinite 2D systems had remained mostly unexplored until very recently. These include grain boundaries in polycrystalline samples, or interfaces in hybrid 2D sheets composed by segregated domains of different materials (as for example graphene/BN hybrids, or chemically different transition metal dichalcogenides). As for their 2D counterparts, some of these 1D interfaces exhibit polar characteristics, and can give rise to fascinating new physical properties. Here, recent experimental discoveries and theoretical predictions on the polar discontinuities that arise at these 1D interfaces will be reviewed, and the perspectives of this new research topic, discussed.

  15. From 1D chain to 3D network: A theoretical study on TiO2 low dimensional structures

    NASA Astrophysics Data System (ADS)

    Guo, Ling-ju; Zeng, Zhi; He, Tao

    2015-06-01

    We have performed a systematic study on a series of low dimensional TiO2 nanostructures under density functional theory methods. The geometries, stabilities, growth mechanism, and electronic structures of 1D chain, 2D ring, 2D ring array, and 3D network of TiO2 nanostructures are analyzed. Based on the Ti2O4 building unit, a series of 1D TiO2 nano chains and rings can be built. Furthermore, 2D ring array and 3D network nanostructures can be constructed from 1D chains and rings. Among non-periodic TiO2 chain and ring structures, one series of ring structures is found to be more stable. The geometry model of the 2D ring arrays and 3D network structures in this work has provided a theoretical understanding on the structure information in experiments. Based on these semiconductive low dimensional structures, moreover, it can help to understand and design new hierarchical TiO2 nanostructure in the future.

  16. From 1D chain to 3D network: A theoretical study on TiO{sub 2} low dimensional structures

    SciTech Connect

    Guo, Ling-ju; He, Tao; Zeng, Zhi

    2015-06-14

    We have performed a systematic study on a series of low dimensional TiO{sub 2} nanostructures under density functional theory methods. The geometries, stabilities, growth mechanism, and electronic structures of 1D chain, 2D ring, 2D ring array, and 3D network of TiO{sub 2} nanostructures are analyzed. Based on the Ti{sub 2}O{sub 4} building unit, a series of 1D TiO{sub 2} nano chains and rings can be built. Furthermore, 2D ring array and 3D network nanostructures can be constructed from 1D chains and rings. Among non-periodic TiO{sub 2} chain and ring structures, one series of ring structures is found to be more stable. The geometry model of the 2D ring arrays and 3D network structures in this work has provided a theoretical understanding on the structure information in experiments. Based on these semiconductive low dimensional structures, moreover, it can help to understand and design new hierarchical TiO{sub 2} nanostructure in the future.

  17. Interagency arraying

    NASA Astrophysics Data System (ADS)

    Cox, Henry G.

    Activities performed to match ground aperture requirements for the Neptune encounter in August 1989 with the expected capabilities of the JPL Deep Space Network (DSN) are discussed. Ground aperture requirements, DSN capabilities, and the capabilities of other agencies are reviewed. The design and configurations of the receiver subsystem, combiner subsystem, monitor and control subsystem, recording subsystem, and supporting subsystems are described. The implementation of the Very Large Array-Goldstone Telemetry Array is discussed, and the differences involved with the Parkes-Canberra Telemetry Array implementation are highlighted. The operational concept is addressed.

  18. Nanodamage and Nanofailure of 1d Zno Nanomaterials and Nanodevices

    NASA Astrophysics Data System (ADS)

    Li, Peifeng; Yang, Ya; Huang, Yunhua; Zhang, Yue

    2012-08-01

    One-dimensional (1D) ZnO nanomaterials include nanowires, nanobelts, and nanorods etc. The extensive applied fields and excellent properties of 1D ZnO nanomaterials can meet the requests of the electronic and electromechanical devices for "smaller, faster and colder", and would be applied in new energy convention, environmental protection, information science and technology, biomedical, security and defense fields. While micro porous, etching pits nanodamage and brittle fracture, dissolving, functional failure nanofailure phenomena of 1D ZnO nanomaterials and nanodevices are observed in some practical working environments like illumination, currents or electric fields, external forces, and some chemical gases or solvents. The more important thing is to discuss the mechanism and reduce or prohibit their generation.

  19. Resonant indirect exchange in 1D semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Rozhansky, I. V.; Krainov, I. V.; Averkiev, N. S.; Lähderanta, E.

    2015-06-01

    We consider resonant indirect exchange interaction between magnetic centers in 1D nanostructures. The magnetic centers are assumed to be coupled to the 1D conducting channel by the quantum tunneling which can be of resonant character. The indirect exchange between the centers is mediated by the free carriers of the channel. The two cases of quadratic and linear energy dispersion of the 1D free carriers are considered. The former case is attributed to conventional semiconductor (InGaAs based to be concrete) nanowires or nanowhiskers, while the latter case is associated with carbon nanotubes with magnetic adatoms. We demonstrate that whenever the energy of a bound state at the magnetic center lies within the continuum energy spectra of the delocalized carriers in the channel the indirect exchange is strongly enhanced due to effective tunnel hybridization of the bound states with the continuum.

  20. Probing 1D super-strongly correlated dipolar quantum gases

    NASA Astrophysics Data System (ADS)

    Citro, R.; de Palo, S.; Orignac, E.; Pedri, P.; Chiofalo, M.-L.

    2009-04-01

    One-dimensional (1D) dipolar quantum gases are characterized by a very special condition where super-strong correlations occur to significantly affect the static and dynamical low-energy behavior. This behavior is accurately described by the Luttinger Liquid theory with parameter K < 1. Dipolar Bose gases are routinely studied in laboratory with Chromium atoms. On the other hand, 1D realizations with molecular quantum gases can be at reach of current experimental expertises, allowing to explore such extreme quantum degenerate conditions which are the bottom line for designing technological devices. Aim of the present contribution is to focus on the possible probes expected to signal the reach of Luttinger-Liquid behavior in 1D dipolar gases.

  1. PC-1D installation manual and user's guide

    SciTech Connect

    Basore, P.A.

    1991-05-01

    PC-1D is a software package for personal computers that uses finite-element analysis to solve the fully-coupled two-carrier semiconductor transport equations in one dimension. This program is particularly useful for analyzing the performance of optoelectronic devices such as solar cells, but can be applied to any bipolar device whose carrier flows are primarily one-dimensional. This User's Guide provides the information necessary to install PC-1D, define a problem for solution, solve the problem, and examine the results. Example problems are presented which illustrate these steps. The physical models and numerical methods utilized are presented in detail. This document supports version 3.1 of PC-1D, which incorporates faster numerical algorithms with better convergence properties than previous versions of the program. 51 refs., 17 figs., 5 tabs.

  2. The GIRAFFE Archive: 1D and 3D Spectra

    NASA Astrophysics Data System (ADS)

    Royer, F.; Jégouzo, I.; Tajahmady, F.; Normand, J.; Chilingarian, I.

    2013-10-01

    The GIRAFFE Archive (http://giraffe-archive.obspm.fr) contains the reduced spectra observed with the intermediate and high resolution multi-fiber spectrograph installed at VLT/UT2 (ESO). In its multi-object configuration and the different integral field unit configurations, GIRAFFE produces 1D spectra and 3D spectra. We present here the status of the archive and the different functionalities to select and download both 1D and 3D data products, as well as the present content. The two collections are available in the VO: the 1D spectra (summed in the case of integral field observations) and the 3D field observations. These latter products can be explored using the VO Paris Euro3D Client (http://voplus.obspm.fr/ chil/Euro3D).

  3. GIS-BASED 1-D DIFFUSIVE WAVE OVERLAND FLOW MODEL

    SciTech Connect

    KALYANAPU, ALFRED; MCPHERSON, TIMOTHY N.; BURIAN, STEVEN J.

    2007-01-17

    This paper presents a GIS-based 1-d distributed overland flow model and summarizes an application to simulate a flood event. The model estimates infiltration using the Green-Ampt approach and routes excess rainfall using the 1-d diffusive wave approximation. The model was designed to use readily available topographic, soils, and land use/land cover data and rainfall predictions from a meteorological model. An assessment of model performance was performed for a small catchment and a large watershed, both in urban environments. Simulated runoff hydrographs were compared to observations for a selected set of validation events. Results confirmed the model provides reasonable predictions in a short period of time.

  4. Enthalpy arrays

    NASA Astrophysics Data System (ADS)

    Torres, Francisco E.; Kuhn, Peter; de Bruyker, Dirk; Bell, Alan G.; Wolkin, Michal V.; Peeters, Eric; Williamson, James R.; Anderson, Gregory B.; Schmitz, Gregory P.; Recht, Michael I.; Schweizer, Sandra; Scott, Lincoln G.; Ho, Jackson H.; Elrod, Scott A.; Schultz, Peter G.; Lerner, Richard A.; Bruce, Richard H.

    2004-06-01

    We report the fabrication of enthalpy arrays and their use to detect molecular interactions, including protein-ligand binding, enzymatic turnover, and mitochondrial respiration. Enthalpy arrays provide a universal assay methodology with no need for specific assay development such as fluorescent labeling or immobilization of reagents, which can adversely affect the interaction. Microscale technology enables the fabrication of 96-detector enthalpy arrays on large substrates. The reduction in scale results in large decreases in both the sample quantity and the measurement time compared with conventional microcalorimetry. We demonstrate the utility of the enthalpy arrays by showing measurements for two protein-ligand binding interactions (RNase A + cytidine 2'-monophosphate and streptavidin + biotin), phosphorylation of glucose by hexokinase, and respiration of mitochondria in the presence of 2,4-dinitrophenol uncoupler.

  5. Array tomography: production of arrays.

    PubMed

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time consuming and require some practice to perfect. This protocol describes the sectioning of embedded tissues and the mounting of the serial arrays. The procedures require some familiarity with the techniques used for ultramicrotome sectioning for electron microscopy. PMID:21041397

  6. Array tomography: imaging stained arrays.

    PubMed

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time-consuming and require some practice to perfect. In this protocol, tissue arrays are imaged using conventional wide-field fluorescence microscopy. Images can be captured manually or, with the appropriate software and hardware, the process can be automated. PMID:21041399

  7. A 1D wavelet filtering for ultrasound images despeckling

    NASA Astrophysics Data System (ADS)

    Dahdouh, Sonia; Dubois, Mathieu; Frenoux, Emmanuelle; Osorio, Angel

    2010-03-01

    Ultrasound images appearance is characterized by speckle, shadows, signal dropout and low contrast which make them really difficult to process and leads to a very poor signal to noise ratio. Therefore, for main imaging applications, a denoising step is necessary to apply successfully medical imaging algorithms on such images. However, due to speckle statistics, denoising and enhancing edges on these images without inducing additional blurring is a real challenging problem on which usual filters often fail. To deal with such problems, a large number of papers are working on B-mode images considering that the noise is purely multiplicative. Making such an assertion could be misleading, because of internal pre-processing such as log compression which are done in the ultrasound device. To address those questions, we designed a novel filtering method based on 1D Radiofrequency signal. Indeed, since B-mode images are initially composed of 1D signals and since the log compression made by ultrasound devices modifies noise statistics, we decided to filter directly the 1D Radiofrequency signal envelope before log compression and image reconstitution, in order to conserve as much information as possible. A bi-orthogonal wavelet transform is applied to the log transform of each signal and an adaptive 1D split and merge like algorithm is used to denoise wavelet coefficients. Experiments were carried out on synthetic data sets simulated with Field II simulator and results show that our filter outperforms classical speckle filtering methods like Lee, non-linear means or SRAD filters.

  8. Optical properties of LEDs with patterned 1D photonic crystal

    NASA Astrophysics Data System (ADS)

    Hronec, P.; Kuzma, A.; Å kriniarová, J.; Kováč, J.; Benčurová, A.; Haščík, Å.; Nemec, P.

    2015-08-01

    In this paper we focus on the application of the one-dimensional photonic crystal (1D PhC) structures on the top of Al0.295Ga0.705As/GaAs multi-quantum well light emitting diode (MQW LED). 1D PhC structures with periods of 600 nm, 700 nm, 800 nm, and 900 nm were fabricated by the E-Beam Direct Write (EBDW) Lithography. Effect of 1D PhC period on the light extraction enhancement was studied. 1D PhC LED radiation profiles were obtained from Near Surface Light Emission Images (NSLEI). Measurements showed the strongest light extraction enhancement using 800 nm period of PhC. Investigation of PhC LED radiation profiles showed strong light decoupling when light reaches PhC structure. Achieved LEE was from 22.6% for 600 nm PhC LED to 47.0% for 800 nm PhC LED. LED with PhC structure at its surface was simulated by FDTD simulation method under excitation of appropriate launch field.

  9. NEW FEATURES OF HYDRUS-1D, VERSION 3.0

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper briefly summarizes new features in version 3.0 of HYDRUS-1D, released in May 2005, as compared to version 2.1. The new features are a) new approaches to simulate preferential and nonequilibrium water flow and solute transport, b) a new hysteresis module that avoids the effects of pumpin...

  10. Non-cooperative Brownian donkeys: A solvable 1D model

    NASA Astrophysics Data System (ADS)

    Jiménez de Cisneros, B.; Reimann, P.; Parrondo, J. M. R.

    2003-12-01

    A paradigmatic 1D model for Brownian motion in a spatially symmetric, periodic system is tackled analytically. Upon application of an external static force F the system's response is an average current which is positive for F < 0 and negative for F > 0 (absolute negative mobility). Under suitable conditions, the system approaches 100% efficiency when working against the external force F.

  11. 1D design style implications for mask making and CEBL

    NASA Astrophysics Data System (ADS)

    Smayling, Michael C.

    2013-09-01

    At advanced nodes, CMOS logic is being designed in a highly regular design style because of the resolution limitations of optical lithography equipment. Logic and memory layouts using 1D Gridded Design Rules (GDR) have been demonstrated to nodes beyond 12nm.[1-4] Smaller nodes will require the same regular layout style but with multiple patterning for critical layers. One of the significant advantages of 1D GDR is the ease of splitting layouts into lines and cuts. A lines and cuts approach has been used to achieve good pattern fidelity and process margin to below 12nm.[4] Line scaling with excellent line-edge roughness (LER) has been demonstrated with self-aligned spacer processing.[5] This change in design style has important implications for mask making: • The complexity of the masks will be greatly reduced from what would be required for 2D designs with very complex OPC or inverse lithography corrections. • The number of masks will initially increase, as for conventional multiple patterning. But in the case of 1D design, there are future options for mask count reduction. • The line masks will remain simple, with little or no OPC, at pitches (1x) above 80nm. This provides an excellent opportunity for continual improvement of line CD and LER. The line pattern will be processed through a self-aligned pitch division sequence to divide pitch by 2 or by 4. • The cut masks can be done with "simple OPC" as demonstrated to beyond 12nm.[6] Multiple simple cut masks may be required at advanced nodes. "Coloring" has been demonstrated to below 12nm for two colors and to 8nm for three colors. • Cut/hole masks will eventually be replaced by e-beam direct write using complementary e-beam lithography (CEBL).[7-11] This transition is gated by the availability of multiple column e-beam systems with throughput adequate for high- volume manufacturing. A brief description of 1D and 2D design styles will be presented, followed by examples of 1D layouts. Mask complexity for 1

  12. Microlens arrays

    NASA Astrophysics Data System (ADS)

    Hutley, Michael C.; Stevens, Richard F.; Daly, Daniel J.

    1992-04-01

    Microlenses have been with us for a long time as indeed the very word lens reminds us. Many early lenses,including those made by Hooke and Leeuwenhoek in the 17th century were small and resembled lentils. Many languages use the same word for both (French tilentillelt and German "Linse") and the connection is only obscure in English because we use the French word for the vegetable and the German for the optic. Many of the applications for arrays of inicrolenses are also well established. Lippmann's work on integral photography at the turn of the century required lens arrays and stimulated an interest that is very much alive today. At one stage, lens arrays played an important part in high speed photography and various schemes have been put forward to take advantage of the compact imaging properties of combinations of lens arrays. The fact that many of these ingenious schemes have not been developed to their full potential has to a large degree been due to the absence of lens arrays of a suitable quality and cost.

  13. Numerical simulations of heavily polluted fine-grained sediment remobilization using 1D, 1D+, and 2D channel schematization.

    PubMed

    Kaiglová, Jana; Langhammer, Jakub; Jiřinec, Petr; Janský, Bohumír; Chalupová, Dagmar

    2015-03-01

    This article used various hydrodynamic and sediment transport models to analyze the potential and the limits of different channel schematizations. The main aim was to select and evaluate the most suitable simulation method for fine-grained sediment remobilization assessment. Three types of channel schematization were selected to study the flow potential for remobilizing fine-grained sediment in artificially modified channels. Schematization with a 1D cross-sectional horizontal plan, a 1D+ approach, splitting the riverbed into different functional zones, and full 2D mesh, adopted in MIKE by the DHI modeling suite, was applied to the study. For the case study, a 55-km stretch of the Bílina River, in the Czech Republic, Central Europe, which has been heavily polluted by the chemical and coal mining industry since the mid-twentieth century, was selected. Long-term exposure to direct emissions of toxic pollutants including heavy metals and persistent organic pollutants (POPs) resulted in deposits of pollutants in fine-grained sediments in the riverbed. Simulations, based on three hydrodynamic model schematizations, proved that for events not exceeding the extent of the riverbed profile, the 1D schematization can provide comparable results to a 2D model. The 1D+ schematization can improve accuracy while keeping the benefits of high-speed simulation and low requirements of input DEM data, but the method's suitability is limited by the channel properties. PMID:25687259

  14. Efficient calculation of 1-D periodic Green's functions for leaky-wave applications.

    SciTech Connect

    Baccarelli, Paolo; Johnson, William Arthur; Paulotto, Simone; Jackson, David R.; Wilton, Donald R.; Galli, A.; Valero, G.; Celepcikay, F. T.

    2010-08-01

    In this paper an approach is described for the efficient computation of the mixed-potential scalar and dyadic Green's functions for a one-dimensional periodic (periodic along x direction) array of point sources embedded in a planar stratified structure. Suitable asymptotic extractions are performed on the slowly converging spectral series. The extracted terms are summed back through the Ewald method, modified and optimized to efficiently deal with all the different terms. The accelerated Green's functions allow for complex wavenumbers, and are thus suitable for application to leaky-wave antennas analysis. Suitable choices of the spectral integration paths are made in order to account for leakage effects and the proper/improper nature of the various space harmonics that form the 1-D periodic Green's function.

  15. A Bayesian Algorithm for Reading 1D Barcodes

    PubMed Central

    Tekin, Ender; Coughlan, James

    2010-01-01

    The 1D barcode is a ubiquitous labeling technology, with symbologies such as UPC used to label approximately 99% of all packaged goods in the US. It would be very convenient for consumers to be able to read these barcodes using portable cameras (e.g. mobile phones), but the limited quality and resolution of images taken by these cameras often make it difficult to read the barcodes accurately. We propose a Bayesian framework for reading 1D barcodes that models the shape and appearance of barcodes, allowing for geometric distortions and image noise, and exploiting the redundant information contained in the parity digit. An important feature of our framework is that it doesn’t require that every barcode edge be detected in the image. Experiments on a publicly available dataset of barcode images explore the range of images that are readable, and comparisons with two commercial readers demonstrate the superior performance of our algorithm. PMID:20428491

  16. Morphodynamics and sediment tracers in 1-D (MAST-1D): 1-D sediment transport that includes exchange with an off-channel sediment reservoir

    NASA Astrophysics Data System (ADS)

    Lauer, J. Wesley; Viparelli, Enrica; Piégay, Hervé

    2016-07-01

    Bed material transported in geomorphically active gravel bed rivers often has a local source at nearby eroding banks and ends up sequestered in bars not far downstream. However, most 1-D numerical models for gravel transport assume that gravel originates from and deposits on the channel bed. In this paper, we present a 1-D framework for simulating morphodynamic evolution of bed elevation and size distribution in a gravel-bed river that actively exchanges sediment with its floodplain, which is represented as an off-channel sediment reservoir. The model is based on the idea that sediment enters the channel at eroding banks whose elevation depends on total floodplain sediment storage and on the average elevation of the floodplain relative to the channel bed. Lateral erosion of these banks occurs at a specified rate that can represent either net channel migration or channel widening. Transfer of material out of the channel depends on a typical bar thickness and a specified lateral exchange rate due either to net channel migration or narrowing. The model is implemented using an object oriented framework that allows users to explore relationships between bank supply, bed structure, and lateral change rates. It is applied to a ∼50-km reach of the Ain River, France, that experienced significant reduction in sediment supply due to dam construction during the 20th century. Results are strongly sensitive to lateral exchange rates, showing that in this reach, the supply of sand and gravel at eroding banks and the sequestration of gravel in point bars can have strong influence on overall reach-scale sediment budgets.

  17. Dimensional phase transition from 1D behavior to a 3D Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Pelster, Axel; Morath, Denis; Straßel, Dominik; Eggert, Sebastian

    The emergence of new properties from low-dimensional building blocks is a universal theme in different areas in physics. The investigation of transitions between isolated and coupled low-dimensional systems promises to reveal new phenomena and exotic phases. Interacting 1D bosons, which are coupled in a two-dimensional array, are maybe the most fundamental example of a system which illustrates the concept of a dimensional phase transition. However, recent experiments using ultracold gases have shown a surprising discrepancy between theory and experiment and it is far from obvious if the power laws from the underlying 1D theory can predict the transition temperature and order parameter correctly for all interaction strengths. Using a combination of large-scale Quantum Monte-Carlo simulations and chain mean-field calculations, we show that the behavior of the ordering temperature as a function of inter-chain coupling strength does not follow a universal powerlaw, but also depends strongly on the filling

  18. Atomic layer deposition on phase-shift lithography generated photoresist patterns for 1D nanochannel fabrication.

    PubMed

    Güder, Firat; Yang, Yang; Krüger, Michael; Stevens, Gregory B; Zacharias, Margit

    2010-12-01

    A versatile, low-cost, and flexible approach is presented for the fabrication of millimeter-long, sub-100 nm wide 1D nanochannels with tunable wall properties (wall thickness and material) over wafer-scale areas on glass, alumina, and silicon surfaces. This approach includes three fabrication steps. First, sub-100 nm photoresist line patterns were generated by near-field contact phase-shift lithography (NFC-PSL) using an inexpensive homemade borosilicate mask (NFC-PSM). Second, various metal oxides were directly coated on the resist patterns with low-temperature atomic layer deposition (ALD). Finally, the remaining photoresist was removed via an acetone dip, and then planar nanochannel arrays were formed on the substrate. In contrast to all the previous fabrication routes, the sub-100 nm photoresist line patterns produced by NFC-PSL are directly employed as a sacrificial layer for the creation of nanochannels. Because both the NFC-PSL and the ALD deposition are highly reproducible processes, the strategy proposed here can be regarded as a general route for nanochannel fabrication in a simplified and reliable manner. In addition, the fabricated nanochannels were used as templates to synthesize various organic and inorganic 1D nanostructures on the substrate surface. PMID:21047101

  19. Nonreciprocity of edge modes in 1D magnonic crystal

    NASA Astrophysics Data System (ADS)

    Lisenkov, I.; Kalyabin, D.; Osokin, S.; Klos, J. W.; Krawczyk, M.; Nikitov, S.

    2015-03-01

    Spin waves propagation in 1D magnonic crystals is investigated theoretically. Mathematical model based on plane wave expansion method is applied to different types of magnonic crystals, namely bi-component magnonic crystal with symmetric/asymmetric boundaries and ferromagnetic film with periodically corrugated top surface. It is shown that edge modes in magnonic crystals may exhibit nonreciprocal behaviour at much lower frequencies than in homogeneous films.

  20. Waves in a 1D electrorheological dusty plasma lattice

    NASA Astrophysics Data System (ADS)

    Rosenberg, M.

    2015-08-01

    The behavior of waves in a one-dimensional (1D) dusty plasma lattice where the dust interacts via Yukawa and electric dipole interactions is discussed theoretically. This study is motivated by recent reports on electrorheological dusty plasmas (e.g. Ivlev et al. 2008 Phys. Rev. Lett. 100, 095003) where the dipole interaction arises due to an external uniaxial AC electric field that distorts the Debye sphere surrounding each grain. Application to possible dusty plasma experimental parameters is discussed.

  1. Constructing 3D interaction maps from 1D epigenomes

    PubMed Central

    Zhu, Yun; Chen, Zhao; Zhang, Kai; Wang, Mengchi; Medovoy, David; Whitaker, John W.; Ding, Bo; Li, Nan; Zheng, Lina; Wang, Wei

    2016-01-01

    The human genome is tightly packaged into chromatin whose functional output depends on both one-dimensional (1D) local chromatin states and three-dimensional (3D) genome organization. Currently, chromatin modifications and 3D genome organization are measured by distinct assays. An emerging question is whether it is possible to deduce 3D interactions by integrative analysis of 1D epigenomic data and associate 3D contacts to functionality of the interacting loci. Here we present EpiTensor, an algorithm to identify 3D spatial associations within topologically associating domains (TADs) from 1D maps of histone modifications, chromatin accessibility and RNA-seq. We demonstrate that active promoter–promoter, promoter–enhancer and enhancer–enhancer associations identified by EpiTensor are highly concordant with those detected by Hi-C, ChIA-PET and eQTL analyses at 200 bp resolution. Moreover, EpiTensor has identified a set of interaction hotspots, characterized by higher chromatin and transcriptional activity as well as enriched TF and ncRNA binding across diverse cell types, which may be critical for stabilizing the local 3D interactions. PMID:26960733

  2. Enhancing Solar Cell Efficiencies through 1-D Nanostructures

    PubMed Central

    2009-01-01

    The current global energy problem can be attributed to insufficient fossil fuel supplies and excessive greenhouse gas emissions resulting from increasing fossil fuel consumption. The huge demand for clean energy potentially can be met by solar-to-electricity conversions. The large-scale use of solar energy is not occurring due to the high cost and inadequate efficiencies of existing solar cells. Nanostructured materials have offered new opportunities to design more efficient solar cells, particularly one-dimensional (1-D) nanomaterials for enhancing solar cell efficiencies. These 1-D nanostructures, including nanotubes, nanowires, and nanorods, offer significant opportunities to improve efficiencies of solar cells by facilitating photon absorption, electron transport, and electron collection; however, tremendous challenges must be conquered before the large-scale commercialization of such cells. This review specifically focuses on the use of 1-D nanostructures for enhancing solar cell efficiencies. Other nanostructured solar cells or solar cells based on bulk materials are not covered in this review. Major topics addressed include dye-sensitized solar cells, quantum-dot-sensitized solar cells, and p-n junction solar cells.

  3. Examining Prebiotic Chemistry Using O(^1D) Insertion Reactions

    NASA Astrophysics Data System (ADS)

    Hays, Brian M.; Laas, Jacob C.; Weaver, Susanna L. Widicus

    2013-06-01

    Aminomethanol, methanediol, and methoxymethanol are all prebiotic molecules expected to form via photo-driven grain surface chemistry in the interstellar medium (ISM). These molecules are expected to be precursors for larger, biologically-relevant molecules in the ISM such as sugars and amino acids. These three molecules have not yet been detected in the ISM because of the lack of available rotational spectra. A high resolution (sub)millimeter spectrometer coupled to a molecular source is being used to study these molecules using O(^1D) insertion reactions. The O(^1D) chemistry is initiated using an excimer laser, and the products of the insertion reactions are adiabatically cooled using a supersonic expansion. Experimental parameters are being optimized by examination of methanol formed from O(^1D) insertion into methane. Theoretical studies of the structure and reaction energies for aminomethanol, methanediol, and methoxymethanol have been conducted to guide the laboratory studies once the methanol experiment has been optimized. The results of the calculations and initial experimental results will be presented.

  4. Development of 1D Liner Compression Code for IDL

    NASA Astrophysics Data System (ADS)

    Shimazu, Akihisa; Slough, John; Pancotti, Anthony

    2015-11-01

    A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.

  5. Global Arrays

    Energy Science and Technology Software Center (ESTSC)

    2006-02-23

    The Global Arrays (GA) toolkit provides an efficient and portable “shared-memory” programming interface for distributed-memory computers. Each process in a MIMD parallel program can asynchronously access logical blocks of physically distributed dense multi-dimensional arrays, without need for explicit cooperation by other processes. Unlike other shared-memory environments, the GA model exposes to the programmer the non-uniform memory access (NUMA) characteristics of the high performance computers and acknowledges that access to a remote portion of the sharedmore » data is slower than to the local portion. The locality information for the shared data is available, and a direct access to the local portions of shared data is provided. Global Arrays have been designed to complement rather than substitute for the message-passing programming model. The programmer is free to use both the shared-memory and message-passing paradigms in the same program, and to take advantage of existing message-passing software libraries. Global Arrays are compatible with the Message Passing Interface (MPI).« less

  6. Global Arrays

    SciTech Connect

    2006-02-23

    The Global Arrays (GA) toolkit provides an efficient and portable “shared-memory” programming interface for distributed-memory computers. Each process in a MIMD parallel program can asynchronously access logical blocks of physically distributed dense multi-dimensional arrays, without need for explicit cooperation by other processes. Unlike other shared-memory environments, the GA model exposes to the programmer the non-uniform memory access (NUMA) characteristics of the high performance computers and acknowledges that access to a remote portion of the shared data is slower than to the local portion. The locality information for the shared data is available, and a direct access to the local portions of shared data is provided. Global Arrays have been designed to complement rather than substitute for the message-passing programming model. The programmer is free to use both the shared-memory and message-passing paradigms in the same program, and to take advantage of existing message-passing software libraries. Global Arrays are compatible with the Message Passing Interface (MPI).

  7. Coupled Oscillations in a 1D Emulsion of Belousov-Zhabotinsky Droplets

    NASA Astrophysics Data System (ADS)

    Fraden, Seth; Delgado, Jorge; Li, Ning; Leda, Marcin; Gonzalez-Ochoa, Hector; Epstein, Irving

    2011-03-01

    We experimentally and computationally study the dynamics of interacting oscillating Belousov-Zhabotinsky (BZ) droplets of ~ 120 μ m diameter separated by perfluorinated oil and arranged in a one-dimensional array (1D). The coupling between BZ droplets is dominated by inhibition and is strongest at low concentrations of malonic acid (MA) and small droplet separations. A microfluidic chip is used for mixing the BZ reactants, forming monodisperse droplets by flow-focusing and directing them into a hydrophobized 100 μ m diameter capillary. For samples composed of many drops and in the absence of well defined initial conditions, the anti-phase attractor, in which adjacent droplets oscillate 180 r out of phase, is observed for strong coupling. When the coupling strength is reduced the initial transients in the phase difference between neighboring droplets persist until the BZ reactants are exhausted. In order to make quantitative comparison with theory, we use photosensitive Ru(bipy)3 2 + -catalyzed BZ droplets and set both boundary and initial conditions of arrays of small numbers of oscillating BZ droplets with a programmable illumination source. In these small collections of droplets, transient patterns decay rapidly and we observe several more complex attractors, including ones in which some adjacent droplets are in-phase. This work was supported by the National Science Foundation (CHE-0615507 and MRSEC DMR-0820492).

  8. Efficient 3D/1D self-consistent integral-equation analysis of ICRH antennae

    NASA Astrophysics Data System (ADS)

    Maggiora, R.; Vecchi, G.; Lancellotti, V.; Kyrytsya, V.

    2004-08-01

    This work presents a comprehensive account of the theory and implementation of a method for the self-consistent numerical analysis of plasma-facing ion-cyclotron resonance heating (ICRH) antenna arrays. The method is based on the integral-equation formulation of the boundary-value problem, solved via a weighted-residual scheme. The antenna geometry (including Faraday shield bars and a recess box) is fairly general and three-dimensional (3D), and the plasma is in the one-dimensional (1D) 'slab' approximation; finite-Larmor radius effects, as well as plasma density and temperature gradients, are considered. Feeding via the voltages in the access coaxial lines is self-consistently accounted throughout and the impedance or scattering matrix of the antenna array obtained therefrom. The problem is formulated in both the dual space (physical) and spectral (wavenumber) domains, which allows the extraction and simple handling of the terms that slow the convergence in the spectral domain usually employed. This paper includes validation tests of the developed code against measured data, both in vacuo and in the presence of plasma. An example of application to a complex geometry is also given.

  9. Investigation of Associations between NR1D1, RORA and RORB Genes and Bipolar Disorder

    PubMed Central

    Lai, Yin-Chieh; Kao, Chung-Feng; Lu, Mong-Liang; Chen, Hsi-Chung; Chen, Po-Yu; Chen, Chien-Hsiun; Shen, Winston W.; Wu, Jer-Yuarn; Lu, Ru-Band; Kuo, Po-Hsiu

    2015-01-01

    Several genes that are involved in the regulation of circadian rhythms are implicated in the susceptibility to bipolar disorder (BD). The current study aimed to investigate the relationships between genetic variants in NR1D1 RORA, and RORB genes and BD in the Han Chinese population. We conducted a case-control genetic association study with two samples of BD patients and healthy controls. Sample I consisted of 280 BD patients and 200 controls. Sample II consisted of 448 BD patients and 1770 healthy controls. 27 single nucleotide polymorphisms in the NR1D1, RORA, and RORB genes were genotyped using GoldenGate VeraCode assays in sample I, and 492 markers in the three genes were genotyped using Affymetrix Genome-Wide CHB Array in sample II. Single marker and gene-based association analyses were performed using PLINK. A combined p-value for the joining effects of all markers within a gene was calculated using the rank truncated product method. Multifactor dimensionality reduction (MDR) method was also applied to test gene-gene interactions in sample I. All markers were in Hardy-Weinberg equilibrium (P>0.001). In sample I, the associations with BD were observed for rs4774388 in RORA (OR = 1.53, empirical p-value, P = 0.024), and rs1327836 in RORB (OR = 1.75, P = 0.003). In Sample II, there were 45 SNPs showed associations with BD, and the most significant marker in RORA was rs11639084 (OR = 0.69, P = 0.002), and in RORB was rs17611535 (OR = 3.15, P = 0.027). A combined p-value of 1.6×10−6, 0.7, and 1.0 was obtained for RORA, RORB and NR1D1, respectively, indicting a strong association for RORA with the risk of developing BD. A four way interaction was found among markers in NR1D1, RORA, and RORB with the testing accuracy 53.25% and a cross-validation consistency of 8 out of 10. In sample II, 45 markers had empirical p-values less than 0.05. The most significant markers in RORA and RORB genes were rs11639084 (OR = 0.69, P = 0.002), and rs17611535 (OR = 3.15, P = 0

  10. Non-linearity in Bayesian 1-D magnetotelluric inversion

    NASA Astrophysics Data System (ADS)

    Guo, Rongwen; Dosso, Stan E.; Liu, Jianxin; Dettmer, Jan; Tong, Xiaozhong

    2011-05-01

    This paper applies a Bayesian approach to examine non-linearity for the 1-D magnetotelluric (MT) inverse problem. In a Bayesian formulation the posterior probability density (PPD), which combines data and prior information, is interpreted in terms of parameter estimates and uncertainties, which requires optimizing and integrating the PPD. Much work on 1-D MT inversion has been based on (approximate) linearized solutions, but more recently fully non-linear (numerical) approaches have been applied. This paper directly compares results of linearized and non-linear uncertainty estimation for 1-D MT inversion; to do so, advanced methods for both approaches are applied. In the non-linear formulation used here, numerical optimization is carried out using an adaptive-hybrid algorithm. Numerical integration applies Metropolis-Hastings sampling, rotated to a principal-component parameter space for efficient sampling of correlated parameters, and employing non-unity sampling temperatures to ensure global sampling. Since appropriate model parametrizations are generally not known a priori, both under- and overparametrized approaches are considered. For underparametrization, the Bayesian information criterion is applied to determine the number of layers consistent with the resolving power of the data. For overparametrization, prior information is included which favours simple structure in a manner similar to regularized inversion. The data variance and/or trade-off parameter regulating data and prior information are treated in several ways, including applying fixed optimal estimates (an empirical Bayesian approach) or including them as hyperparameters in the sampling (hierarchical Bayesian). The latter approach has the benefit of accounting for the uncertainty in the hyperparameters in estimating model parameter uncertainties. Non-linear and linearized inversion results are compared for synthetic test cases and for the measured COPROD1 MT data by considering marginal probability

  11. Extended-Range Ultrarefractive 1D Photonic Crystal Prisms

    NASA Technical Reports Server (NTRS)

    Ting, David Z.

    2007-01-01

    A proposal has been made to exploit the special wavelength-dispersive characteristics of devices of the type described in One-Dimensional Photonic Crystal Superprisms (NPO-30232) NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 10a. A photonic crystal is an optical component that has a periodic structure comprising two dielectric materials with high dielectric contrast (e.g., a semiconductor and air), with geometrical feature sizes comparable to or smaller than light wavelengths of interest. Experimental superprisms have been realized as photonic crystals having three-dimensional (3D) structures comprising regions of amorphous Si alternating with regions of SiO2, fabricated in a complex process that included sputtering. A photonic crystal of the type to be exploited according to the present proposal is said to be one-dimensional (1D) because its contrasting dielectric materials would be stacked in parallel planar layers; in other words, there would be spatial periodicity in one dimension only. The processes of designing and fabricating 1D photonic crystal superprisms would be simpler and, hence, would cost less than do those for 3D photonic crystal superprisms. As in 3D structures, 1D photonic crystals may be used in applications such as wavelength-division multiplexing. In the extended-range configuration, it is also suitable for spectrometry applications. As an engineered structure or artificially engineered material, a photonic crystal can exhibit optical properties not commonly found in natural substances. Prior research had revealed several classes of photonic crystal structures for which the propagation of electromagnetic radiation is forbidden in certain frequency ranges, denoted photonic bandgaps. It had also been found that in narrow frequency bands just outside the photonic bandgaps, the angular wavelength dispersion of electromagnetic waves propagating in photonic crystal superprisms is much stronger than is the angular wavelength dispersion obtained

  12. Coherent thermal conductance of 1-D photonic crystals

    NASA Astrophysics Data System (ADS)

    Tschikin, Maria; Ben-Abdallah, Philippe; Biehs, Svend-Age

    2012-10-01

    We present an exact calculation of coherent thermal conductance in 1-D multilayer photonic crystals using the S-matrix method. In particular, we study the thermal conductance in a bilayer structure of Si/vacuum or Al2O3/vacuum slabs by means of the exact radiative heat flux expression. Based on the results obtained for the Al2O3/vacuum structure we show by comparison with previous works that the material losses and (localized) surface modes supported by the inner layers play a fundamental role and cannot be omitted in the definition of thermal conductance. Our results could have significant implications in the conception of efficient thermal barriers.

  13. Structural stability of a 1D compressible viscoelastic fluid model

    NASA Astrophysics Data System (ADS)

    Huo, Xiaokai; Yong, Wen-An

    2016-07-01

    This paper is concerned with a compressible viscoelastic fluid model proposed by Öttinger. Although the model has a convex entropy, the Hessian matrix of the entropy does not symmetrize the system of first-order partial differential equations due to the non-conservative terms in the constitutive equation. We show that the corresponding 1D model is symmetrizable hyperbolic and dissipative and satisfies the Kawashima condition. Based on these, we prove the global existence of smooth solutions near equilibrium and justify the compatibility of the model with the Navier-Stokes equations.

  14. Spatial coherence of polaritons in a 1D channel

    SciTech Connect

    Savenko, I. G.; Iorsh, I. V.; Kaliteevski, M. A.; Shelykh, I. A.

    2013-01-15

    We analyze time evolution of spatial coherence of a polariton ensemble in a quantum wire (1D channel) under constant uniform resonant pumping. Using the theoretical approach based on the Lindblad equation for a one-particle density matrix, which takes into account the polariton-phonon and excitonexciton interactions, we study the behavior of the first-order coherence function g{sup 1} for various pump intensities and temperatures in the range of 1-20 K. Bistability and hysteresis in the dependence of the first-order coherence function on the pump intensity is demonstrated.

  15. Deconvolution/identification techniques for 1-D transient signals

    SciTech Connect

    Goodman, D.M.

    1990-10-01

    This paper discusses a variety of nonparametric deconvolution and identification techniques that we have developed for application to 1-D transient signal problems. These methods are time-domain techniques that use direct methods for matrix inversion. Therefore, they are not appropriate for large data'' problems. These techniques involve various regularization methods and permit the use of certain kinds of a priori information in estimating the unknown. These techniques have been implemented in a package using standard FORTRAN that should make the package readily transportable to most computers. This paper is also meant to be an instruction manual for the package. 25 refs., 17 figs., 1 tab.

  16. Phthalocyanine based 1D nanowires for device applications

    NASA Astrophysics Data System (ADS)

    Saini, Rajan; Mahajan, Aman; Bedi, R. K.

    2012-06-01

    1D nanowires (NWs) of Cu (II) 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-Phthalocyanine (CuPc(OBu)8) molecule have been grown on different substrates by cost effective solution processing technique. The density of NWs is found to be strongly dependent on the concentration of solution. The possible formation mechanism of these structures is π-π interaction between phthalocyanine molecules. The improved conductivity of these NWs as compared to spin coated film indicates their potential for molecular device applications.

  17. Validation of 3D/1D Analysis of ICRF Antennas

    NASA Astrophysics Data System (ADS)

    Milanesio, D.; Lancellotti, V.; Kyrytsya, V.; Maggiora, R.; Vecchi, G.; Parisot, A.; Wukitch, S. J.

    2004-11-01

    An innovative tool has been realized for the 3D/1D simulation of Ion Cyclotron Radio Frequency (ICRF), i.e. accounting for antennas in a realistic 3D geometry and with an accurate 1D plasma model. The approach to the problem is based on an integral-equation formulation for the self-consistent evaluation of the current distribution on the conductors. The environment has been subdivided in two coupled region: the plasma region and the vacuum region. The two problems are linked by means of electromagnetic current distribution on the aperture between the two regions. The plasma enters the formalism via a surface impedance matrix for this reason any plasma model can be used. The source term directly models the TEM mode of the coax feeding the antenna and the current in the coax is determined self-consistently, giving the input impedance/admittance of the antenna itself. The suite, called TOPICA, has been used in the design of various ICRF antennas and also for the performance prediction of the ALCATOR C-MOD D and E antenna. An extensive set of comparisons between measured and simulated antenna parameters during ALCATOR C-MOD operation will be presented.

  18. Engineered atom-light interactions in 1D photonic crystals

    NASA Astrophysics Data System (ADS)

    Martin, Michael J.; Hung, Chen-Lung; Yu, Su-Peng; Goban, Akihisa; Muniz, Juan A.; Hood, Jonathan D.; Norte, Richard; McClung, Andrew C.; Meenehan, Sean M.; Cohen, Justin D.; Lee, Jae Hoon; Peng, Lucas; Painter, Oskar; Kimble, H. Jeff

    2014-05-01

    Nano- and microscale optical systems offer efficient and scalable quantum interfaces through enhanced atom-field coupling in both resonators and continuous waveguides. Beyond these conventional topologies, new opportunities emerge from the integration of ultracold atomic systems with nanoscale photonic crystals. One-dimensional photonic crystal waveguides can be engineered for both stable trapping configurations and strong atom-photon interactions, enabling novel cavity QED and quantum many-body systems, as well as distributed quantum networks. We present the experimental realization of such a nanophotonic quantum interface based on a nanoscale photonic crystal waveguide, demonstrating a fractional waveguide coupling of Γ1 D /Γ' of 0 . 32 +/- 0 . 08 , where Γ1 D (Γ') is the atomic emission rate into the guided (all other) mode(s). We also discuss progress towards intra-waveguide trapping of ultracold Cs. This work was supported by the IQIM, an NSF Physics Frontiers Center with support from the Moore Foundation, the DARPA ORCHID program, the AFOSR QuMPASS MURI, the DoD NSSEFF program, NSF, and the Kavli Nanoscience Institute (KNI) at Caltech.

  19. Blood flow quantification using 1D CFD parameter identification

    NASA Astrophysics Data System (ADS)

    Brosig, Richard; Kowarschik, Markus; Maday, Peter; Katouzian, Amin; Demirci, Stefanie; Navab, Nassir

    2014-03-01

    Patient-specific measurements of cerebral blood flow provide valuable diagnostic information concerning cerebrovascular diseases rather than visually driven qualitative evaluation. In this paper, we present a quantitative method to estimate blood flow parameters with high temporal resolution from digital subtraction angiography (DSA) image sequences. Using a 3D DSA dataset and a 2D+t DSA sequence, the proposed algorithm employs a 1D Computational Fluid Dynamics (CFD) model for estimation of time-dependent flow values along a cerebral vessel, combined with an additional Advection Diffusion Equation (ADE) for contrast agent propagation. The CFD system, followed by the ADE, is solved with a finite volume approximation, which ensures the conservation of mass. Instead of defining a new imaging protocol to obtain relevant data, our cost function optimizes the bolus arrival time (BAT) of the contrast agent in 2D+t DSA sequences. The visual determination of BAT is common clinical practice and can be easily derived from and be compared to values, generated by a 1D-CFD simulation. Using this strategy, we ensure that our proposed method fits best to clinical practice and does not require any changes to the medical work flow. Synthetic experiments show that the recovered flow estimates match the ground truth values with less than 12% error in the mean flow rates.

  20. Design and analysis of an ultrasonic transducer micro-array for near-field imaging of age related macular degeneration

    NASA Astrophysics Data System (ADS)

    Clarke, Clyde C.

    Obtaining quantitative data about tissue has been a goal of ultrasonography since its inception, such data provides invaluable information for diagnosing disease. Traditional ultrasound imaging techniques (B-Mode, C-Mode and M-Mode) have been used to diagnose diseases from images of organs. However, images obtained via these techniques, in some cases, provide limited information about the pathology of the tissues being examined. This is because much of the information that is used for diagnosis depends upon qualitative cues emerging from the echoic profiles of bulk tissue properties. In order to obtain quantitative information about tissue properties, an understanding of the interaction of the ultrasound system proper and tissue is necessary. This requires the creation of detailed models of both the ultrasound imaging system and tissue. These models enable us to obtain quantitative information about tissue, by examining features of backscattered data, generated by the interaction of the ultrasonic imaging system with the tissue under examination. Imaging systems are typically designed with little consideration of the constraints of the imaging environment or the acoustic features of the tissue which include impedance, scatterer size, shape and density. We propose to take into account the physical properties of tissue in designing ultrasonic imaging arrays. We develop a framework for designing ultrasonic imaging systems (primarily the transducer and transducer array) with physical parameters that are tuned to detect specific features of tissue. The design methodology obtains the parameters of an NxN transducer array constrained to a size of e.g. 2mm x 2mm (the size required for medical imaging). The physical parameters of the transducer elements are also obtained for capacitive micromachined ultrasonic transducer (cMUT) technology. In addition to the overall size constraints (2 mm x 2 mm), several other constraints put limitation upon the possible system

  1. MX chains: 1-D analog of CuO planes

    SciTech Connect

    Gammel, J.T.; Batistic, I.; Bishop, A.R.; Loh, E.Y. Jr.; Marianer, S.

    1989-01-01

    We study a two-band Peierls-Hubbard model for halogen-bridged mixed-valence transition metal linear chain complexes (MX chains). We include electron-electron correlations (both Hubbard and PPP-like expressions) using several techniques including calculations in the zero-hopping limit, exact diagonalization of small systems, mean field approximation, and a Gutzwiller-like Ansatz for quantum phonons. The adiabatic optical absorption and phonon spectra for both photo-excited and doping induced defects (kinks, polarons, bipolarons, and excitons) are discussed. A long period phase which occurs even at commensurate filling for certain parameter values may be related to twinning. The effect of including the electron-phonon in addition to the electron-electron interaction on the polaron/bipolaron (pairing) competition is especially interesting when this class of compounds is viewed as a 1-D analog of high-temperature superconductors. 6 refs., 4 figs.

  2. Quadratic Finite Element Method for 1D Deterministic Transport

    SciTech Connect

    Tolar, Jr., D R; Ferguson, J M

    2004-01-06

    In the discrete ordinates, or SN, numerical solution of the transport equation, both the spatial ({und r}) and angular ({und {Omega}}) dependences on the angular flux {psi}{und r},{und {Omega}}are modeled discretely. While significant effort has been devoted toward improving the spatial discretization of the angular flux, we focus on improving the angular discretization of {psi}{und r},{und {Omega}}. Specifically, we employ a Petrov-Galerkin quadratic finite element approximation for the differencing of the angular variable ({mu}) in developing the one-dimensional (1D) spherical geometry S{sub N} equations. We develop an algorithm that shows faster convergence with angular resolution than conventional S{sub N} algorithms.

  3. Electron Energy Levels in the 1D-2D Transition

    NASA Astrophysics Data System (ADS)

    Pepper, Michael; Sanjeev, Kumar; Thomas, Kalarikad; Creeth, Graham; English, David; Ritchie, David; Griffiths, Jonathan; Farrer, Ian; Jones, Geraint

    Using GaAs-AlGaAs heterostructures we have investigated the behaviour of electron energy levels with relaxation of the potential confining a 2D electron gas into a 1D configuration. In the ballistic regime of transport, when the conductance shows quantized plateaux, different types of behaviour are found according to the spins of interacting levels, whether a magnetic field is applied and lifting of the momentum degeneracy with a source-drain voltage. We have observed both crossing and anti-crossing of levels and have investigated the manner in which they can be mutually converted. In the presence of a magnetic field levels can cross and lock together as the confinement is altered in a way which is characteristic of parallel channels. The overall behaviour is discussed in terms of electron interactions and the wavefunction flexibility allowed by the increasing two dimensionality of the electron distribution as the confinement is weakened. Work supported by UK EPSRC.

  4. Directed enzymatic activation of 1-D DNA tiles.

    PubMed

    Garg, Sudhanshu; Chandran, Harish; Gopalkrishnan, Nikhil; LaBean, Thomas H; Reif, John

    2015-02-24

    The tile assembly model is a Turing universal model of self-assembly where a set of square shaped tiles with programmable sticky sides undergo coordinated self-assembly to form arbitrary shapes, thereby computing arbitrary functions. Activatable tiles are a theoretical extension to the Tile assembly model that enhances its robustness by protecting the sticky sides of tiles until a tile is partially incorporated into a growing assembly. In this article, we experimentally demonstrate a simplified version of the Activatable tile assembly model. In particular, we demonstrate the simultaneous assembly of protected DNA tiles where a set of inert tiles are activated via a DNA polymerase to undergo linear assembly. We then demonstrate stepwise activated assembly where a set of inert tiles are activated sequentially one after another as a result of attachment to a growing 1-D assembly. We hope that these results will pave the way for more sophisticated demonstrations of activated assemblies. PMID:25625898

  5. Magnetic behavior of some 1D Cu chains

    NASA Astrophysics Data System (ADS)

    Willett, Roger D.; Gomez-García, Carlos J.; Ghosh, Ashutosh

    2004-05-01

    The magnetic properties of three 1D copper(II) salts are reported. The compound Cu(14ane)Cu(N 3) 4 contains alternating site chains with weak FM coupling with J/k=0.635 K . Magnetization studies are reported on Cu(TIM)CuCl 4, an alternating site, alternating FM/AFM exchange system with J FM/k=29.7 K and J AFM/k=-8.66 K. (HPy) 2Cu 3Cl 8.2H 2O contains FM chains composed of alternating Cu 2Cl 62- dimers and CuCl 2(H 2O) 2 monomers, with intradimer coupling J 1/k=17.35 K and dimer-monomer coupling J 2/k=1.93 K .

  6. Effective theory of black holes in the 1/D expansion

    NASA Astrophysics Data System (ADS)

    Emparan, Roberto; Shiromizu, Tetsuya; Suzuki, Ryotaku; Tanabe, Kentaro; Tanaka, Takahiro

    2015-06-01

    The gravitational field of a black hole is strongly localized near its horizon when the number of dimensions D is very large. In this limit, we can effectively replace the black hole with a surface in a background geometry (e.g. Minkowski or Anti-deSitter space). The Einstein equations determine the effective equations that this `black hole surface' (or membrane) must satisfy. We obtain them up to next-to-leading order in 1/ D for static black holes of the Einstein-(A)dS theory. To leading order, and also to next order in Minkowski backgrounds, the equations of the effective theory are the same as soap-film equations, possibly up to a redshift factor. In particular, the Schwarzschild black hole is recovered as a spherical soap bubble. Less trivially, we find solutions for `black droplets', i.e. black holes localized at the boundary of AdS, and for non-uniform black strings.

  7. Axion string dynamics I: 2+1D

    NASA Astrophysics Data System (ADS)

    Fleury, Leesa M.; Moore, Guy D.

    2016-05-01

    If the axion exists and if the initial axion field value is uncorrelated at causally disconnected points, then it should be possible to predict the efficiency of cosmological axion production, relating the axionic dark matter density to the axion mass. The main obstacle to making this prediction is correctly treating the axion string cores. We develop a new algorithm for treating the axionic string cores correctly in 2+1 dimensions. When the axionic string cores are given their full physical string tension, axion production is about twice as efficient as in previous simulations. We argue that the string network in 2+1 dimensions should behave very differently than in 3+1 dimensions, so this result cannot be simply carried over to the physical case. We outline how to extend our method to 3+1D axion string dynamics.

  8. Robust recognition of 1D barcodes using Hough transform

    NASA Astrophysics Data System (ADS)

    Dwinell, John; Bian, Peng; Bian, Long Xiang

    2012-01-01

    In this paper we present an algorithm for the recognition of 1D barcodes using the Hough transform, which is highly robust regarding the typical degraded image. The algorithm addresses various typical image distortions, such as inhomogeneous illumination, reflections, damaged barcode or blurriness etc. Other problems arise from recognizing low quality printing (low contrast or poor ink receptivity). Traditional approaches are unable to provide a fast solution for handling such complex and mixed noise factors. A multi-level method offers a better approach to best manage competing constraints of complex noise and fast decode. At the lowest level, images are processed in gray scale. At the middle level, the image is transformed into the Hough domain. At the top level, global results, including missing information, is processed within a global context including domain heuristics as well as OCR. The three levels work closely together by passing information up and down between levels.

  9. A 1-D morphodynamic model of postglacial valley incision

    NASA Astrophysics Data System (ADS)

    Tunnicliffe, Jon F.; Church, Michael

    2015-11-01

    Chilliwack River is typical of many Cordilleran valley river systems that have undergone dramatic Holocene degradation of valley fills that built up over the course of Pleistocene glaciation. Downstream controls on base level, mainly blockage of valleys by glaciers, led to aggradation of significant glaciofluvial and glaciolacustrine valley fills and fan deposits, subsequently incised by fluvial action. Models of such large-scale, long-term degradation present a number of important challenges since the evolution of model parameters, such as the rate of bedload transport and grain size characteristics, are governed by the nature of the deposit. Sediment sampling in the Chilliwack Valley reveals a complex sequence of very coarse to fine textural modes. We present a 1-D numerical morphodynamic model for the river-floodplain system tailored to conditions in the valley. The model is adapted to dynamically adjust channel width to optimize sediment transporting capacity and to integrate relict valley fill material as the channel incises through valley deposits. Sensitivity to model parameters is studied using four principal criteria: profile concavity, rate of downstream grain size fining, bed surface sand content, and the timescale to equilibrium. Model results indicate that rates of abrasion and coarsening of the grain size distributions exert the strongest controls on all of the interrelated model performance criteria. While there are a number of difficulties in satisfying all model criteria simultaneously, results indicate that 1-D models of valley bottom sedimentary systems can provide a suitable framework for integrating results from sediment budget studies and chronologies of sediment evacuation established from dating.

  10. Accurate Insertion Loss Measurements of the Juno Patch Array Antennas

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil; Chen, Jacqueline; Hodges, Richard; Demas, John

    2010-01-01

    This paper describes two independent methods for estimating the insertion loss of patch array antennas that were developed for the Juno Microwave Radiometer instrument. One method is based principally on pattern measurements while the other method is based solely on network analyzer measurements. The methods are accurate to within 0.1 dB for the measured antennas and show good agreement (to within 0.1dB) of separate radiometric measurements.

  11. Formation energies and equilibrium configurations of dislocation arrays with alternating Burgers vectors in layered heterostructures

    NASA Astrophysics Data System (ADS)

    Feng, Gang; Freund, L. B.

    2010-06-01

    Cubic layered heterostructures are indispensable features of many electronic devices; however, the lattice mismatch tends to induce defects, e.g. dislocations. Glissile 60° misfit dislocations (MDs) generally form in the early stage of strain relaxation. During annealing, each relaxing 60° dislocation compensated-pair (60DCP) (with canceling screw and interface-perpendicular edge components) may coalesce into a 90° (pure edge) dislocation, which is a possible mechanism for the reduction of threading dislocations (TDs) through annealing. In this paper, we calculate the formation energies of periodic one-dimensional (1D) and two-dimensional (2D) arrays on the basis of linear elasticity. Each 1D 60DCP array always has lower energy than its homogeneous counterpart. The situation of each 2D array (containing two mutually orthogonal 1D arrays) depends on the period difference δ between the two individual 1D arrays and the film thickness. If δ=0, each 2D 60DCP array has higher energy than its homogeneous counterpart, whereas the 2D 60DCP array is energetically more favorable for a larger δ and/or a thicker film. The analysis suggests a semiconductor-processing strategy to obtain 90° dislocation-dominant arrays and to reduce TDs. Furthermore, based on the criterion of zero energy change by inserting the last dislocation to complete an array, we calculate the equilibrium array period for various configurations, implying possible strain over-relaxation (>100%-relaxed condition) for a sufficiently thick film.

  12. Calculation of retroreflector array transfer functions

    NASA Technical Reports Server (NTRS)

    Arnold, D. A.

    1972-01-01

    Computer programs have been developed for calculating the transfer function of a retroreflector array. The transfer functions provide range corrections and effective reflecting areas for the retroreflector arrays carried by satellites now in orbit. This information can be used to estimate laser echo signal strengths and to correct laser range measurements in order to obtain the range to the center of mass of the satellite. The values are tabulated for various angles of incidence of the laser beam with respect to the symmetry axis of the satellite. Transfer functions have been computed for the following satellites: BE-B, BE-C, Geos 1, D1C, D1D, Geos 2, Peole, and Geos C.

  13. 3D/1D Analysis of ICRF Antennas

    NASA Astrophysics Data System (ADS)

    Maggiora, Riccardo; Lancellotti, Vito; Vecchi, Giuseppe

    2003-10-01

    An innovative tool has been realized for the 3D/1D simulation of Ion Cyclotron Radio Frequency (ICRF), i.e. accounting for antennas in a realistic 3D geometry and with an accurate 1D plasma model. The approach to the problem is based on an integral-equation formulation for the self-consistent evaluation of the current distribution on the conductors. The environment has been subdivided in two coupled region: the plasma region and the vacuum region. The two problems are linked by means of a magnetic current (electric field) distribution on the aperture between the two regions. In the vacuum region all the calculations are executed in the spatial domain while in the plasma region an extraction in the spectral domain of some integrals is employed that permits to significantly reduce the integration support and to obtain a high numerical efficiency leading to the practical possibility of using a large number of sub-domain (rectangular or triangular) basis functions on each solid conductor of the system. The plasma enters the formalism of the plasma region via a surface impedance matrix; for this reason any plasma model can be used; at present the FELICE code has been adopted, that affords density and temperature profiles, and FLR effects. The source term directly models the TEM mode of the coax feeding the antenna and the current in the coax is determined self-consistently, giving the input impedance/admittance of the antenna itself. Calculation of field distributions (both magnetic and electric), useful for sheath considerations, is included. This tool has been implemented in a suite, called TOPICA, that is modular and applicable to ICRF antenna structures of arbitrary shape. This new simulation tool can assist during the detailed design phase and for this reason can be considered a "Virtual Prototyping Laboratory" (VPL). The TOPICA suite has been tested against assessed codes and against measurements and data of mock-ups and existing antennas. The VPL is being used in

  14. Spectral functions of 1D Peierls and Mott insulators

    NASA Astrophysics Data System (ADS)

    Voit, Johannes

    1998-03-01

    We construct the spectral function of the Luther-Emery model which describes one-dimensional Peierls and Mott insulators with a spin resp. charge gap, using symmetries and known limits and equivalences to other models. For the Peierls insulator, we find a true singularity with interaction dependent exponents on the gapped spin dispersion and a finite maximum depending on the magnitude of the spin gap, on a charge dispersion shifted by Δ_σ, as well as strong shadow bands with the same functional form as the main bands. For 1D Mott insulators, one or two singularities with universal inverse-square-root singularities are found depending on whether the charge velocity is larger or smaller than the spin velocity. The shadow band has a single singularity on the renormalized charge dispersion. These results could apply to the description of photoemission experiments in systems like K_0.3 Mo O_3, TTF-TCNQ, or Sr Cu O_2.

  15. 1D X-ray Beam Compressing Monochromators

    SciTech Connect

    Korytar, D.; Dobrocka, E.; Konopka, P.; Zaprazny, Z.; Ferrari, C.; Mikulik, P.; Vagovic, P.; Ac, V.; Erko, A.; Abrosimov, N.

    2010-04-06

    A total beam compression of 5 and 10 corresponding to the asymmetry angles of 9 deg. and 12 deg. is achieved with V-5 and V-10 monochromators, respectively, in standard single crystal pure germanium (220) X-ray beam compressing (V-shaped) monochromators for CuKalpha{sub 1} radiation. A higher 1D compression of X-ray beam is possible using larger angles of asymmetry, however it is achieved at the expense of the total intensity, which is decreased due to the refraction effect. To increase the monochromator intensity, several ways are considered both theoretically and experimentally. Linearly graded germanium rich Ge{sub x}Si{sub (1-x)} single crystal was used to prepare a V-21 single crystal monochromator with 15 deg. asymmetry angles (compression factor of 21). Its temperature gradient version is discussed for CuKalpha{sub 1} radiation. X-ray diffraction measurements on the graded GeSi monochromator showed more than 3-times higher intensity at the output compared with that of a pure Ge monochromator.

  16. Dynamic decoupling in the presence of 1D random walk

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Arnab; Chakraborty, Ipsita; Bhattacharyya, Rangeet

    2016-05-01

    In the recent past, many dynamic decoupling sequences have been proposed for the suppression of decoherence of spins connected to thermal baths of various natures. Dynamic decoupling schemes for suppressing decoherence due to Gaussian diffusion have also been developed. In this work, we study the relative performances of dynamic decoupling schemes in the presence of a non-stationary Gaussian noise such as a 1D random walk. Frequency domain analysis is not suitable to determine the performances of various dynamic decoupling schemes in suppressing decoherence due to such a process. Thus, in this work, we follow a time domain calculation to arrive at the following conclusions: in the presence of such a noise, we show that (i) the traditional Carr–Purcell–Meiboom–Gill (CPMG) sequence outperforms Uhrig’s dynamic decoupling scheme, (ii) CPMG remains the optimal sequence for suppression of decoherence due to random walk in the presence of an external field gradient. Later, the theoretical predictions are experimentally verified by using nuclear magnetic resonance spectroscopy on spin 1/2 particles diffusing in a liquid medium.

  17. 1-D Numerical Analysis of RBCC Engine Performance

    NASA Technical Reports Server (NTRS)

    Han, Samuel S.

    1998-01-01

    An RBCC engine combines air breathing and rocket engines into a single engine to increase the specific impulse over an entire flight trajectory. Considerable research pertaining to RBCC propulsion was performed during the 1960's and these engines were revisited recently as a candidate propulsion system for either a single-stage-to-orbit (SSTO) or two-stage-to-orbit (TSTO) launch vehicle. There are a variety of RBCC configurations that had been evaluated and new designs are currently under development. However, the basic configuration of all RBCC systems is built around the ejector scramjet engine originally developed for the hypersonic airplane. In this configuration, a rocket engine plays as an ejector in the air-augmented initial acceleration mode, as a fuel injector in scramjet mode and the rocket in all rocket mode for orbital insertion. Computational fluid dynamics (CFD) is a useful tool for the analysis of complex transport processes in various components in RBCC propulsion systems. The objective of the present research was to develop a transient 1-D numerical model that could be used to predict flow behavior throughout a generic RBCC engine following a flight path.

  18. Graphs on uniform points in [0,1]d

    NASA Astrophysics Data System (ADS)

    Appel, Martin J. B.; Russo, Ralph P.; Yang, King J.

    1995-06-01

    Statistical problems in pattern or structure recognition for a random multidimensional point set may be addressed by variations on the random graph model of Erdos and Renyui. The imposition of graph structure with a variable edge criterion on a large random point set allows a search for signature quantities or behavior under the given distributional hypothesis. The work is motivated by the question of how to make statistical inferences from sensed mine field data. This article describes recent results obtained in the following special cases. On independent random points U1,...,Un distributed uniformly on [0,1]d, a random graph Gn(x) is constructed in which two distinct such points are joined by an edge if the l(infinity )-distance between them is at most some prescribed value 0 = 2.

  19. 1-D Modeling of Massive Particle Injection (MPI) in Tokamaks

    NASA Astrophysics Data System (ADS)

    Wu, W.; Parks, P. B.; Izzo, V. A.

    2008-11-01

    A 1-D Fast Current Quench (FCQ) model is developed to study current evolution and runaway electron suppression under massive density increase. The model consists of coupled toroidal electric field and energy equations, and it is solved numerically for DIII-D and ITER operating conditions. Simulation results suggest that fast shutdown by D2 liquid jet/pellet injection is in principle achievable for the desired plasma cooling time (˜15 ms for DIII-D and ˜50 ms for ITER) under ˜150x or higher densification. The current density and pressure profile are practically unaltered during the initial phase of jet propagation when dilution cooling dominates. With subsequent radiation cooling, the densified discharge enters the strongly collisional regime where Pfirsch-Schluter thermal diffusion can inhibit current contraction on the magnetic axis. Often the 1/1 kink instability, addressed by Kadomtsev's magnetic reconnection model, can be prevented. Our results are compared with NIMROD simulations in which the plasma is suddenly densified by ˜100x and experiences instantaneous dilution cooling, allowing for use of actual (lower) Lundquist numbers.

  20. Effective-range signatures in quasi-1D matter waves: sound velocity and solitons

    NASA Astrophysics Data System (ADS)

    Sgarlata, F.; Mazzarella, G.; Salasnich, L.

    2015-06-01

    We investigate ultracold and dilute bosonic atoms under strong transverse harmonic confinement using a 1D modified Gross-Pitaevskii equation (1D MGPE), which accounts for the energy dependence of the two-body scattering amplitude within an effective-range expansion. We study sound waves and solitons of the quasi-1D system, comparing the 1D MGPE results with the 1D GPE ones. We find that when the finite-size nature of the interaction is taken into account, the speed of sound and the density profiles of both dark and bright solitons show relevant quantitative changes with respect to predictions given by the standard 1D GPE.

  1. Evidence against dopamine D1/D2 receptor heteromers

    PubMed Central

    Frederick, Aliya L.; Yano, Hideaki; Trifilieff, Pierre; Vishwasrao, Harshad D.; Biezonski, Dominik; Mészáros, József; Sibley, David R.; Kellendonk, Christoph; Sonntag, Kai C.; Graham, Devon L.; Colbran, Roger J.; Stanwood, Gregg D.; Javitch, Jonathan A.

    2014-01-01

    Hetero-oligomers of G-protein-coupled receptors have become the subject of intense investigation because their purported potential to manifest signaling and pharmacological properties that differ from the component receptors makes them highly attractive for the development of more selective pharmacological treatments. In particular, dopamine D1 and D2 receptors have been proposed to form hetero-oligomers that couple to Gαq proteins, and SKF83959 has been proposed to act as a biased agonist that selectively engages these receptor complexes to activate Gαq and thus phospholipase C. D1/D2 heteromers have been proposed as relevant to the pathophysiology and treatment of depression and schizophrenia. We used in vitro bioluminescence resonance energy transfer (BRET), ex vivo analyses of receptor localization and proximity in brain slices, and behavioral assays in mice to characterize signaling from these putative dimers/oligomers. We were unable to detect Gαq or Gα11 protein coupling to homomers or heteromers of D1 or D2 receptors using a variety of biosensors. SKF83959-induced locomotor and grooming behaviors were eliminated in D1 receptor knockout mice, verifying a key role for D1-like receptor activation. In contrast, SKF83959-induced motor responses were intact in D2 receptor and Gαq knockout mice, as well as in knock-in mice expressing a mutant Ala286-CaMKIIα, that cannot autophosphorylate to become active. Moreover, we found that in the shell of the nucleus accumbens, even in neurons in which D1 and D2 receptor promoters are both active, the receptor proteins are segregated and do not form complexes. These data are not compatible with SKF83959 signaling through Gαq or through a D1–D2 heteromer and challenge the existence of such a signaling complex in the adult animals that we used for our studies. PMID:25560761

  2. Dynamical functions of a 1D correlated quantum liquid

    NASA Astrophysics Data System (ADS)

    Carmelo, J. M. P.; Bozi, D.; Penc, K.

    2008-10-01

    The dynamical correlation functions in one-dimensional electronic systems show power-law behaviour at low energies and momenta close to integer multiples of the charge and spin Fermi momenta. These systems are usually referred to as Tomonaga-Luttinger liquids. However, near well defined lines of the (k,ω) plane the power-law behaviour extends beyond the low-energy cases mentioned above, and also appears at higher energies, leading to singular features in the photoemission spectra and other dynamical correlation functions. The general spectral-function expressions derived in this paper were used in recent theoretical studies of the finite-energy singular features in photoemission of the organic compound tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) metallic phase. They are based on a so-called pseudofermion dynamical theory (PDT), which allows us to systematically enumerate and describe the excitations in the Hubbard model starting from the Bethe ansatz, as well as to calculate the charge and spin object phase shifts appearing as exponents of the power laws. In particular, we concentrate on the spin-density m\\rightarrow 0 limit and on effects in the vicinity of the singular border lines, as well as close to half filling. Our studies take into account spectral contributions from types of microscopic processes that do not occur for finite values of the spin density. In addition, the specific processes involved in the spectral features of TTF-TCNQ are studied. Our results are useful for the further understanding of the unusual spectral properties observed in low-dimensional organic metals and also provide expressions for the one- and two-atom spectral functions of a correlated quantum system of ultracold fermionic atoms in a 1D optical lattice with on-site two-atom repulsion.

  3. Synthesis and properties of a few 1-D cobaltous fumarates

    SciTech Connect

    Bora, Sanchay J.; Das, Birinchi K.

    2012-08-15

    Metal fumarates are often studied in the context of metal organic framework solids. Preparation, structure and properties of three cobalt(II) fumarates, viz. [Co(fum)(H{sub 2}O){sub 4}]{center_dot}H{sub 2}O 1, [Co(fum)(py){sub 2}(H{sub 2}O){sub 2}] 2, and [Co(fum)(4-CNpy){sub 2}(H{sub 2}O){sub 2}] 3 (fum=fumarate, py=pyridine, 4-CNpy=4-cyanopyridine) are described. All three are chain polymers involving bridging fumarato ligands between each pair of octahedral Co(II) centres, but while the first one is zigzag in structure, the latter two are linear. Indexed powder X-ray diffraction patterns, solid state electronic spectra and magnetic properties of the species are reported. Thermal decomposition behaviour of the compounds suggests that they may be suitable as precursors to make Co{sub 3}O{sub 4} via pyrolysis below 600 Degree-Sign C. - Graphical abstract: Structure and properties of three chain-polymeric cobalt(II) fumarates are described. Highlights: Black-Right-Pointing-Pointer Three fumarate bridged 1-D coordination polymers of cobalt(II) are reported. Black-Right-Pointing-Pointer While Co(II) fumarate pentahydrate is zigzag, the species having both pyridine and water as co-ligands are linear in structure. Black-Right-Pointing-Pointer Prominent lines in the powder X-ray diffraction patterns have been indexed. Black-Right-Pointing-Pointer Thermal decomposition of the species yields Co{sub 3}O{sub 4} as the final product.

  4. A new general 1-D vadose zone flow solution method

    NASA Astrophysics Data System (ADS)

    Ogden, Fred L.; Lai, Wencong; Steinke, Robert C.; Zhu, Jianting; Talbot, Cary A.; Wilson, John L.

    2015-06-01

    We have developed an alternative to the one-dimensional partial differential equation (PDE) attributed to Richards (1931) that describes unsaturated porous media flow in homogeneous soil layers. Our solution is a set of three ordinary differential equations (ODEs) derived from unsaturated flux and mass conservation principles. We used a hodograph transformation, the Method of Lines, and a finite water-content discretization to produce ODEs that accurately simulate infiltration, falling slugs, and groundwater table dynamic effects on vadose zone fluxes. This formulation, which we refer to as "finite water-content", simulates sharp fronts and is guaranteed to conserve mass using a finite-volume solution. Our ODE solution method is explicitly integrable, does not require iterations and therefore has no convergence limits and is computationally efficient. The method accepts boundary fluxes including arbitrary precipitation, bare soil evaporation, and evapotranspiration. The method can simulate heterogeneous soils using layers. Results are presented in terms of fluxes and water content profiles. Comparing our method against analytical solutions, laboratory data, and the Hydrus-1D solver, we find that predictive performance of our finite water-content ODE method is comparable to or in some cases exceeds that of the solution of Richards' equation, with or without a shallow water table. The presented ODE method is transformative in that it offers accuracy comparable to the Richards (1931) PDE numerical solution, without the numerical complexity, in a form that is robust, continuous, and suitable for use in large watershed and land-atmosphere simulation models, including regional-scale models of coupled climate and hydrology.

  5. Synthesis, characterization, and physical properties of 1D nanostructures

    NASA Astrophysics Data System (ADS)

    Marley, Peter Mchael

    The roster of materials exhibiting metal---insulator transitions with sharply discontinuous switching of electrical conductivity close to room temperature remains rather sparse despite the fundamental interest in the electronic instabilities manifested in such materials and the plethora of potential technological applications, ranging from frequency-agile metamaterials to electrochromic coatings and Mott field-effect transistors. Vanadium oxide bronzes with the general formula MxV2O 5, provide a wealth of compositions and frameworks where strong electron correlation can be systematically (albeit thus far only empirically) tuned. Charge fluctuations along the quasi-1D frameworks of MxV 2O5 bronzes have evinced much recent interest owing to the manifestation of colossal metal---insulator transitions and superconductivity. We start with a general review on the phase transitions, both electronic and structural, of vanadium oxide bronzes in Chapter 1. In Chapter 2, we demonstrate an unprecedented reversible transformation between double-layered (delta) and tunnel (beta) quasi-1D geometries for nanowires of a divalent vanadium bronze CaxV2O5 (x ˜0.23) upon annealing-induced dehydration and hydrothermally-induced hydration. Such a facile hydration/dehydration-induced interconversion between two prominent quasi-1D structures (accompanied by a change in charge ordering motifs) has not been observed in the bulk and is posited to result from the ease of propagation of crystallographic slip processes across the confined nanowire widths for the delta→beta conversion and the facile diffusion of water molecules within the tunnel geometries for the beta→delta reversion. We demonstrate in Chapter 3 unprecedented pronounced metal-insulator transitions induced by application of a voltage for nanowires of a vanadium oxide bronze with intercalated divalent cations, beta-PbxV 2O5 (x ˜0.33). The induction of the phase transition through application of an electric field at room

  6. Synthesis, characterization, and physical properties of 1D nanostructures

    NASA Astrophysics Data System (ADS)

    Marley, Peter Mchael

    The roster of materials exhibiting metal---insulator transitions with sharply discontinuous switching of electrical conductivity close to room temperature remains rather sparse despite the fundamental interest in the electronic instabilities manifested in such materials and the plethora of potential technological applications, ranging from frequency-agile metamaterials to electrochromic coatings and Mott field-effect transistors. Vanadium oxide bronzes with the general formula MxV2O 5, provide a wealth of compositions and frameworks where strong electron correlation can be systematically (albeit thus far only empirically) tuned. Charge fluctuations along the quasi-1D frameworks of MxV 2O5 bronzes have evinced much recent interest owing to the manifestation of colossal metal---insulator transitions and superconductivity. We start with a general review on the phase transitions, both electronic and structural, of vanadium oxide bronzes in Chapter 1. In Chapter 2, we demonstrate an unprecedented reversible transformation between double-layered (delta) and tunnel (beta) quasi-1D geometries for nanowires of a divalent vanadium bronze CaxV2O5 (x ˜0.23) upon annealing-induced dehydration and hydrothermally-induced hydration. Such a facile hydration/dehydration-induced interconversion between two prominent quasi-1D structures (accompanied by a change in charge ordering motifs) has not been observed in the bulk and is posited to result from the ease of propagation of crystallographic slip processes across the confined nanowire widths for the delta→beta conversion and the facile diffusion of water molecules within the tunnel geometries for the beta→delta reversion. We demonstrate in Chapter 3 unprecedented pronounced metal-insulator transitions induced by application of a voltage for nanowires of a vanadium oxide bronze with intercalated divalent cations, beta-PbxV 2O5 (x ˜0.33). The induction of the phase transition through application of an electric field at room

  7. SCCRO3 (DCUN1D3) Antagonizes the Neddylation and Oncogenic Activity of SCCRO (DCUN1D1)*

    PubMed Central

    Huang, Guochang; Stock, Cameron; Bommeljé, Claire C.; Weeda, Víola B.; Shah, Kushyup; Bains, Sarina; Buss, Elizabeth; Shaha, Manish; Rechler, Willi; Ramanathan, Suresh Y.; Singh, Bhuvanesh

    2014-01-01

    The activity of cullin-RING type ubiquitination E3 ligases is regulated by neddylation, a process analogous to ubiquitination that culminates in covalent attachment of the ubiquitin-like protein Nedd8 to cullins. As a component of the E3 for neddylation, SCCRO/DCUN1D1 plays a key regulatory role in neddylation and, consequently, cullin-RING ligase activity. The essential contribution of SCCRO to neddylation is to promote nuclear translocation of the cullin-ROC1 complex. The presence of a myristoyl sequence in SCCRO3, one of four SCCRO paralogues present in humans that localizes to the membrane, raises questions about its function in neddylation. We found that although SCCRO3 binds to CAND1, cullins, and ROC1, it does not efficiently bind to Ubc12, promote cullin neddylation, or conform to the reaction processivity paradigms, suggesting that SCCRO3 does not have E3 activity. Expression of SCCRO3 inhibits SCCRO-promoted neddylation by sequestering cullins to the membrane, thereby blocking its nuclear translocation. Moreover, SCCRO3 inhibits SCCRO transforming activity. The inhibitory effects of SCCRO3 on SCCRO-promoted neddylation and transformation require both an intact myristoyl sequence and PONY domain, confirming that membrane localization and binding to cullins are required for in vivo functions. Taken together, our findings suggest that SCCRO3 functions as a tumor suppressor by antagonizing the neddylation activity of SCCRO. PMID:25349211

  8. Coupled Array of Superconducting Nanowires

    NASA Astrophysics Data System (ADS)

    Ursache, Andrei

    2005-03-01

    We present experiments that investigate the collective behavior of arrays of superconducting lead nanowires with diameters smaller than the coherence length. The ultrathin (˜15nm) nanowires are grown by pulse electrodeposition into porous self-assembled P(S-b-MMA) diblock copolymer templates. The closely packed (˜24 nm spacing) 1-D superconducting nanowires stand vertically upon a thin normal (Au or Pt) film in a brush-like geometry. Thereby, they are coupled to each other by Andreev reflection at the S-N (Pb-Au) point contact interfaces. Magnetization measurements reveal that the ZFC/FC magnetic response of the coupled array system can be irreversible or reversible, depending on the orientation, perpendicular or parallel, of the applied magnetic field with respect to the coupling plane. As found by electric transport measurements, the coupled array system undergoes an in plane superconducting resistive transition at a temperature smaller than the Tc of an individual nanowire. Current-voltage characteristics throughout the transition region are also discussed. This work was supported by NSF grant DMI-0103024 and DMR-0213695.

  9. Fast Optimal Load Balancing Algorithms for 1D Partitioning

    SciTech Connect

    Pinar, Ali; Aykanat, Cevdet

    2002-12-09

    One-dimensional decomposition of nonuniform workload arrays for optimal load balancing is investigated. The problem has been studied in the literature as ''chains-on-chains partitioning'' problem. Despite extensive research efforts, heuristics are still used in parallel computing community with the ''hope'' of good decompositions and the ''myth'' of exact algorithms being hard to implement and not runtime efficient. The main objective of this paper is to show that using exact algorithms instead of heuristics yields significant load balance improvements with negligible increase in preprocessing time. We provide detailed pseudocodes of our algorithms so that our results can be easily reproduced. We start with a review of literature on chains-on-chains partitioning problem. We propose improvements on these algorithms as well as efficient implementation tips. We also introduce novel algorithms, which are asymptotically and runtime efficient. We experimented with data sets from two different applications: Sparse matrix computations and Direct volume rendering. Experiments showed that the proposed algorithms are 100 times faster than a single sparse-matrix vector multiplication for 64-way decompositions on average. Experiments also verify that load balance can be significantly improved by using exact algorithms instead of heuristics. These two findings show that exact algorithms with efficient implementations discussed in this paper can effectively replace heuristics.

  10. PPM1D exerts its oncogenic properties in human pancreatic cancer through multiple mechanisms.

    PubMed

    Wu, Bo; Guo, Bo-Min; Kang, Jie; Deng, Xian-Zhao; Fan, You-Ben; Zhang, Xiao-Ping; Ai, Kai-Xing

    2016-03-01

    Protein phosphatase, Mg(2+)/Mn(2+) dependent, 1D (PPM1D) is emerging as an oncogene by virtue of its negative control on several tumor suppressor pathways. However, the clinical significance of PPM1D in pancreatic cancer (PC) has not been defined. In this study, we determined PPM1D expression in human PC tissues and cell lines and their irrespective noncancerous controls. We subsequently investigated the functional role of PPM1D in the migration, invasion, and apoptosis of MIA PaCa-2 and PANC-1 PC cells in vitro and explored the signaling pathways involved. Furthermore, we examined the role of PPM1D in PC tumorigenesis in vivo. Our results showed that PPM1D is overexpressed in human PC tissues and cell lines and significantly correlated with tumor growth and metastasis. PPM1D promotes PC cell migration and invasion via potentiation of the Wnt/β-catenin pathway through downregulation of apoptosis-stimulating of p53 protein 2 (ASPP2). In contrast to PPM1D, our results showed that ASPP2 is downregulated in PC tissues. Additionally, PPM1D suppresses PC cell apoptosis via inhibition of the p38 MAPK/p53 pathway through both dephosphorylation of p38 MAPK and downregulation of ASPP2. Furthermore, PPM1D promotes PC tumor growth in vivo. Our results demonstrated that PPM1D is an oncogene in PC. PMID:26714478

  11. Preliminary abatement device evaluation: 1D-2D KGM cyclone design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclones are predominately used in controlling cotton gin particulate matter (PM) emissions. The most commonly used cyclone designs are the 2D-2D and 1D-3D; however other designs such as the 1D-2D KGM have or are currently being used. A 1D-2D cyclone has a barrel length equal to the barrel diamete...

  12. Calibration of Modulation Transfer Function of Surface Profilometers with 1D and 2D Binary Pseudo-random Array Standards

    SciTech Connect

    Yashchuk, Valeriy V.; McKinney, Wayne R.; Takacs, Peter Z.

    2008-05-19

    We suggest and describe the use of a binary pseudo-random grating as a standard test surface for calibration of the modulation transfer function of microscopes. Results from calibration of a MicromapTM-570 interferometric microscope are presented.

  13. Genetic variation in aldo-keto reductase 1D1 (AKR1D1) affects the expression and activity of multiple cytochrome P450s.

    PubMed

    Chaudhry, Amarjit S; Thirumaran, Ranjit K; Yasuda, Kazuto; Yang, Xia; Fan, Yiping; Strom, Stephen C; Schuetz, Erin G

    2013-08-01

    Human liver gene regulatory (Bayesian) network analysis was previously used to identify a cytochrome P450 (P450) gene subnetwork with Aldo-keto reductase 1D1 (AKR1D1) as a key regulatory driver of this subnetwork. This study assessed the biologic importance of AKR1D1 [a key enzyme in the synthesis of bile acids, ligand activators of farnesoid X receptor (FXR), pregnane X receptor (PXR), and constitutive androstane receptor (CAR), known transcriptional regulators of P450s] to hepatic P450 expression. Overexpression of AKR1D1 in primary human hepatocytes led to increased expression of CYP3A4, CYP2C8, CYP2C9, CYP2C19, and CYP2B6. Conversely, AKR1D1 knockdown decreased expression of these P450s. We resequenced AKR1D1 from 98 donor livers and identified a 3'-untranslated region (UTR) (rs1872930) single nucleotide polymorphism (SNP) significantly associated with higher AKR1D1 mRNA expression. AKR1D1 3'-UTR-luciferase reporter studies showed that the variant allele resulted in higher luciferase activity, suggesting that the SNP increases AKR1D1 mRNA stability and/or translation efficiency. Consistent with AKR1D1's putative role as a driver of the P450 subnetwork, the AKR1D1 3'-UTR SNP was significantly associated with increased hepatic mRNA expression of multiple P450s (CYP3A4, CYP2C8, CYP2C9, CYP2C19, and CYP2B6) and CYP3A4, CYP2C8, CYP2C19, and CYP2B6 activities. After adjusting for multiple testing, the association remained significant for AKR1D1, CYP2C9, and CYP2C8 mRNA expression and CYP2C8 activity. These results provide new insights into the variation in expression and activity of P450s that can account for interindividual differences in drug metabolism/efficacy and adverse drug events. In conclusion, we provide the first experimental evidence supporting a role for AKR1D1 as a key genetic regulator of the P450 network. PMID:23704699

  14. A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes.

    PubMed

    Moltke, Ida; Grarup, Niels; Jørgensen, Marit E; Bjerregaard, Peter; Treebak, Jonas T; Fumagalli, Matteo; Korneliussen, Thorfinn S; Andersen, Marianne A; Nielsen, Thomas S; Krarup, Nikolaj T; Gjesing, Anette P; Zierath, Juleen R; Linneberg, Allan; Wu, Xueli; Sun, Guangqing; Jin, Xin; Al-Aama, Jumana; Wang, Jun; Borch-Johnsen, Knut; Pedersen, Oluf; Nielsen, Rasmus; Albrechtsen, Anders; Hansen, Torben

    2014-08-14

    The Greenlandic population, a small and historically isolated founder population comprising about 57,000 inhabitants, has experienced a dramatic increase in type 2 diabetes (T2D) prevalence during the past 25 years. Motivated by this, we performed association mapping of T2D-related quantitative traits in up to 2,575 Greenlandic individuals without known diabetes. Using array-based genotyping and exome sequencing, we discovered a nonsense p.Arg684Ter variant (in which arginine is replaced by a termination codon) in the gene TBC1D4 with an allele frequency of 17%. Here we show that homozygous carriers of this variant have markedly higher concentrations of plasma glucose (β = 3.8 mmol l(-1), P = 2.5 × 10(-35)) and serum insulin (β = 165 pmol l(-1), P = 1.5 × 10(-20)) 2 hours after an oral glucose load compared with individuals with other genotypes (both non-carriers and heterozygous carriers). Furthermore, homozygous carriers have marginally lower concentrations of fasting plasma glucose (β = -0.18 mmol l(-1), P = 1.1 × 10(-6)) and fasting serum insulin (β = -8.3 pmol l(-1), P = 0.0014), and their T2D risk is markedly increased (odds ratio (OR) = 10.3, P = 1.6 × 10(-24)). Heterozygous carriers have a moderately higher plasma glucose concentration 2 hours after an oral glucose load than non-carriers (β = 0.43 mmol l(-1), P = 5.3 × 10(-5)). Analyses of skeletal muscle biopsies showed lower messenger RNA and protein levels of the long isoform of TBC1D4, and lower muscle protein levels of the glucose transporter GLUT4, with increasing number of p.Arg684Ter alleles. These findings are concomitant with a severely decreased insulin-stimulated glucose uptake in muscle, leading to postprandial hyperglycaemia, impaired glucose tolerance and T2D. The observed effect sizes are several times larger than any previous findings in large-scale genome-wide association studies of these traits and constitute further proof of the value of

  15. Grid Cell Responses in 1D Environments Assessed as Slices through a 2D Lattice.

    PubMed

    Yoon, KiJung; Lewallen, Sam; Kinkhabwala, Amina A; Tank, David W; Fiete, Ila R

    2016-03-01

    Grid cells, defined by their striking periodic spatial responses in open 2D arenas, appear to respond differently on 1D tracks: the multiple response fields are not periodically arranged, peak amplitudes vary across fields, and the mean spacing between fields is larger than in 2D environments. We ask whether such 1D responses are consistent with the system's 2D dynamics. Combining analytical and numerical methods, we show that the 1D responses of grid cells with stable 1D fields are consistent with a linear slice through a 2D triangular lattice. Further, the 1D responses of comodular cells are well described by parallel slices, and the offsets in the starting points of the 1D slices can predict the measured 2D relative spatial phase between the cells. From these results, we conclude that the 2D dynamics of these cells is preserved in 1D, suggesting a common computation during both types of navigation behavior. PMID:26898777

  16. EEF1D modulates proliferation and epithelial-mesenchymal transition in oral squamous cell carcinoma.

    PubMed

    Flores, Isadora L; Kawahara, Rebeca; Miguel, Márcia C C; Granato, Daniela C; Domingues, Romênia R; Macedo, Carolina C S; Carnielli, Carolina M; Yokoo, Sami; Rodrigues, Priscila C; Monteiro, Bárbara V B; Oliveira, Carine E; Salmon, Cristiane R; Nociti, Francisco H; Lopes, Márcio A; Santos-Silva, Alan; Winck, Flavia V; Coletta, Ricardo D; Paes Leme, Adriana F

    2016-05-01

    EEF1D (eukaryotic translation elongation factor 1δ) is a subunit of the elongation factor 1 complex of proteins that mediates the elongation process during protein synthesis via enzymatic delivery of aminoacyl-tRNAs to the ribosome. Although the functions of EEF1D in the translation process are recognized, EEF1D expression was found to be unbalanced in tumours. In the present study, we demonstrate the overexpression of EEF1D in OSCC (oral squamous cell carcinoma), and revealed that EEF1D and protein interaction partners promote the activation of cyclin D1 and vimentin proteins. EEF1D knockdown in OSCC reduced cell proliferation and induced EMT (epithelial-mesenchymal transition) phenotypes, including cell invasion. Taken together, these results define EEF1D as a critical inducer of OSCC proliferation and EMT. PMID:26823560

  17. The EAS-1000 array

    SciTech Connect

    Khristiansen, G.B.; Fomin, IU.A.; Chasnikov, I.IA.; Ivanenko, V.M.; Efimov, N.N. )

    1989-01-01

    The requirements for a newly constructed EAS array are summarized, and the EAS-1000 array now under construction is described. The array is depicted, and its accuracy in finding EAS parameters is shown. The expected statistics in observing EAS of different energies are presented for the most important scientific problems the array is supposed to solve.

  18. Integrated infrared array technology

    NASA Technical Reports Server (NTRS)

    Goebel, J. H.; Mccreight, C. R.

    1986-01-01

    An overview of integrated infrared (IR) array technology is presented. Although the array pixel formats are smaller, and the readout noise of IR arrays is larger, than the corresponding values achieved with optical charge-coupled-device silicon technology, substantial progress is being made in IR technology. Both existing IR arrays and those being developed are described. Examples of astronomical images are given which illustrate the potential of integrated IR arrays for scientific investigations.

  19. Solar array drive system

    NASA Technical Reports Server (NTRS)

    Berkopec, F. D.; Sturman, J. C.; Stanhouse, R. W.

    1976-01-01

    A solar array drive system consisting of a solar array drive mechanism and the corresponding solar array drive electronics is being developed. The principal feature of the solar array drive mechanism is its bidirectional capability which enables its use in mechanical redundancy. The solar array drive system is of a widely applicable design. This configuration will be tested to determine its acceptability for generic mission sets. Foremost of the testing to be performed is the testing for extended duration.

  20. Rayleigh Wave Dispersion and A 1d S-velocity Model of The Fennoscandian Mantle

    NASA Astrophysics Data System (ADS)

    Funke, S.; Friederich, W.; Sstwg, The

    We derive a Rayleigh wave dispersion curve from surface wave data recorded at the SVEKALAPKO tomographic array deployed in Southern Finland from September 1998 to March 1999. After a suite of processing steps, complex spectral amplitudes of the Rayleigh wave train are determined for each available seismogram. The process- ing includes low-pass filtering, instrument correction, deconvolution using a standard earth model to compress the Rayleigh wave train, computation of Gabor matrices (sonograms) to pick group travel times, and finally estimation of complex spectral amplitudes in a Gaussian time window of frequency-dependent width centered on the group travel time. Spectral amplitude values are only accepted if the signal-to-noise ratio in the considered frequency interval is above a pre-chosen threshold and if the picked group travel time does not deviate too strongly from that predicted by a stan- dard earth model. The final dataset contains spectral amplitude values at 34 selected periods from 52 earthquakes observed at on average 25 stations. For each selected frequency, we determine a phase velocity by fitting plane waves propagating across the array with this velocity to the complex spectral amplitudes of all earthquakes and stations. Errors are estimated with a bootstrap method. We obtain reliable phase velocities in the frequency band from 8 mHz to 50 mHz. Phase veloci- ties for lower frequencies exhibit large errors due to the lack of big earthquakes during the time of deployment. The phase velocities are substantially higher than predicted by standard earth model ak135 below 20 mHz and slightly lower above 25 mHz. We have inverted the dispersion curve for a 1D shear wave velocity model down to about 400 km depth and obtain a 50 km thick crust and a fast upper mantle with a sub- Moho velocity of 4.7 km/s. Our data do not require a low-velocity zone in the upper mantle. Indeed, the dispersion curve can be explained by a nearly straight velocity profile from

  1. A microstrip array feed for MSAT spacecraft reflector antenna

    NASA Technical Reports Server (NTRS)

    Huang, John

    1988-01-01

    An L-band circularly polarized microstrip array antenna with relatively wide bandwidth has been developed. The array has seven subarrays which form a single cluster as part of a large overlapping cluster reflector feed array. Each of the seven subarrays consists of four uniquely arranged linearly polarized microstrip elements. A 7.5 percent impedance (VSWR less than 1.5) as well as axial ratio (less than 1 dB) bandwidths have been achieved by employing a relatively thick honeycomb substrate with special impedance matching feed probes.

  2. High-Performance Supercapacitor Electrode Based on Cobalt Oxide-Manganese Dioxide-Nickel Oxide Ternary 1D Hybrid Nanotubes.

    PubMed

    Singh, Ashutosh K; Sarkar, Debasish; Karmakar, Keshab; Mandal, Kalyan; Khan, Gobinda Gopal

    2016-08-17

    We report a facile method to design Co3O4-MnO2-NiO ternary hybrid 1D nanotube arrays for their application as active material for high-performance supercapacitor electrodes. This as-prepared novel supercapacitor electrode can store charge as high as ∼2020 C/g (equivalent specific capacitance ∼2525 F/g) for a potential window of 0.8 V and has long cycle stability (nearly 80% specific capacitance retains after successive 5700 charge/discharge cycles), significantly high Coulombic efficiency, and fast response time (∼0.17s). The remarkable electrochemical performance of this unique electrode material is the outcome of its enormous reaction platform provided by its special nanostructure morphology and conglomeration of the electrochemical properties of three highly redox active materials in a single unit. PMID:27430868

  3. Constructing and Modifying Sequence Statistics for relevent Using informR in &#x1D5B1;

    PubMed Central

    Marcum, Christopher Steven; Butts, Carter T.

    2015-01-01

    The informR package greatly simplifies the analysis of complex event histories in &#x1D5B1; by providing user friendly tools to build sufficient statistics for the relevent package. Historically, building sufficient statistics to model event sequences (of the form a→b) using the egocentric generalization of Butts’ (2008) relational event framework for modeling social action has been cumbersome. The informR package simplifies the construction of the complex list of arrays needed by the rem() model fitting for a variety of cases involving egocentric event data, multiple event types, and/or support constraints. This paper introduces these tools using examples from real data extracted from the American Time Use Survey. PMID:26185488

  4. Endogenous N-terminal Domain Cleavage Modulates α1D-Adrenergic Receptor Pharmacodynamics.

    PubMed

    Kountz, Timothy S; Lee, Kyung-Soon; Aggarwal-Howarth, Stacey; Curran, Elizabeth; Park, Ji-Min; Harris, Dorathy-Ann; Stewart, Aaron; Hendrickson, Joseph; Camp, Nathan D; Wolf-Yadlin, Alejandro; Wang, Edith H; Scott, John D; Hague, Chris

    2016-08-26

    The α1D-adrenergic receptor (ADRA1D) is a key regulator of cardiovascular, prostate, and central nervous system functions. This clinically relevant G protein-coupled receptor has proven difficult to study, as it must form an obligate modular homodimer containing the PDZ proteins scribble and syntrophin or become retained in the endoplasmic reticulum as non-functional protein. We previously determined that targeted removal of the N-terminal (NT) 79 amino acids facilitates ADRA1D plasma membrane expression and agonist-stimulated functional responses. However, whether such an event occurs in physiological contexts was unknown. Herein, we report the ADRA1D is subjected to innate NT processing in cultured human cells. SNAP near-infrared imaging and tandem-affinity purification revealed the ADRA1D is expressed as both full-length and NT truncated forms in multiple human cell lines. Serial truncation mapping identified the cleavage site as Leu(90)/Val(91) in the 95-amino acid ADRA1D NT domain, suggesting human cells express a Δ1-91 ADRA1D species. Tandem-affinity purification MS/MS and co-immunoprecipitation analysis indicate NT processing of ADRA1D is not required to form scribble-syntrophin macromolecular complexes. Yet, label-free dynamic mass redistribution signaling assays demonstrate that Δ1-91 ADRA1D agonist responses were greater than WT ADRA1D. Mutagenesis of the cleavage site nullified the processing event, resulting in ADRA1D agonist responses less than the WT receptor. Thus, we propose that processing of the ADRA1D NT domain is a physiological mechanism employed by cells to generate a functional ADRA1D isoform with optimal pharmacodynamic properties. PMID:27382054

  5. Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants.

    PubMed Central

    Collins, N; Drake, J; Ayliffe, M; Sun, Q; Ellis, J; Hulbert, S; Pryor, T

    1999-01-01

    The Rp1-D gene for resistance to maize common rust (Puccinia sorghi) is a member of a complex locus (haplotype) composed of Rp1-D and approximately eight other gene homologs. The identity of Rp1-D was demonstrated by using two independent gene-tagging approaches with the transposons Mutator and Dissociation. PIC20, a disease resistance (R) gene analog probe previously mapped to the rp1 locus, detected insertion of Dissociation in an Rp1-D mutation and excision in three revertants. Independent libraries probed with the PIC20 or Mutator probes resulted in isolation of the same gene sequence. Rp1-D belongs to the nucleotide binding site, leucine-rich repeat class of R genes. However, unlike the rust resistance genes M and L6 from flax, the maize Rp1-D gene does not encode an N-terminal domain with similarity to the signal transduction domains of the Drosophila Toll protein and mammalian interleukin-1 receptor. Although the abundance of transcripts of genes from the rp1 complex changed with leaf age, there was no evidence of any change due to inoculation with avirulent or virulent rust biotypes. A set of 27 Rp1-D mutants displayed at least nine different deletions of Rp1-D gene family members that were consistent with unequal crossing-over events. One mutation (Rp1-D*-24) resulted in deletion of all but one gene family member. Other unique deletions were observed in the disease lesion mimic Rp1-D*-21 and the partially susceptible mutant Rp1-D*-5. Different rp1 specificities have distinct DNA fingerprints (haplotypes). Analysis of recombinants between rp1 specificities indicated that recombination had occurred within the rp1 gene complex. Similar analyses indicated that the rust R genes at the rp5 locus, 2 centimorgans distal to rp1, are not closely related to Rp1-D. PMID:10402435

  6. Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants.

    PubMed

    Collins, N; Drake, J; Ayliffe, M; Sun, Q; Ellis, J; Hulbert, S; Pryor, T

    1999-07-01

    The Rp1-D gene for resistance to maize common rust (Puccinia sorghi) is a member of a complex locus (haplotype) composed of Rp1-D and approximately eight other gene homologs. The identity of Rp1-D was demonstrated by using two independent gene-tagging approaches with the transposons Mutator and Dissociation. PIC20, a disease resistance (R) gene analog probe previously mapped to the rp1 locus, detected insertion of Dissociation in an Rp1-D mutation and excision in three revertants. Independent libraries probed with the PIC20 or Mutator probes resulted in isolation of the same gene sequence. Rp1-D belongs to the nucleotide binding site, leucine-rich repeat class of R genes. However, unlike the rust resistance genes M and L6 from flax, the maize Rp1-D gene does not encode an N-terminal domain with similarity to the signal transduction domains of the Drosophila Toll protein and mammalian interleukin-1 receptor. Although the abundance of transcripts of genes from the rp1 complex changed with leaf age, there was no evidence of any change due to inoculation with avirulent or virulent rust biotypes. A set of 27 Rp1-D mutants displayed at least nine different deletions of Rp1-D gene family members that were consistent with unequal crossing-over events. One mutation (Rp1-D*-24) resulted in deletion of all but one gene family member. Other unique deletions were observed in the disease lesion mimic Rp1-D*-21 and the partially susceptible mutant Rp1-D*-5. Different rp1 specificities have distinct DNA fingerprints (haplotypes). Analysis of recombinants between rp1 specificities indicated that recombination had occurred within the rp1 gene complex. Similar analyses indicated that the rust R genes at the rp5 locus, 2 centimorgans distal to rp1, are not closely related to Rp1-D. PMID:10402435

  7. Examination of 1D Solar Cell Model Limitations Using 3D SPICE Modeling: Preprint

    SciTech Connect

    McMahon, W. E.; Olson, J. M.; Geisz, J. F.; Friedman, D. J.

    2012-06-01

    To examine the limitations of one-dimensional (1D) solar cell modeling, 3D SPICE-based modeling is used to examine in detail the validity of the 1D assumptions as a function of sheet resistance for a model cell. The internal voltages and current densities produced by this modeling give additional insight into the differences between the 1D and 3D models.

  8. Wave modes of collective vortex gyration in dipolar-coupled-dot-array magnonic crystals

    PubMed Central

    Han, Dong-Soo; Vogel, Andreas; Jung, Hyunsung; Lee, Ki-Suk; Weigand, Markus; Stoll, Hermann; Schütz, Gisela; Fischer, Peter; Meier, Guido; Kim, Sang-Koog

    2013-01-01

    Lattice vibration modes are collective excitations in periodic arrays of atoms or molecules. These modes determine novel transport properties in solid crystals. Analogously, in periodical arrangements of magnetic vortex-state disks, collective vortex motions have been predicted. Here, we experimentally observe wave modes of collective vortex gyration in one-dimensional (1D) periodic arrays of magnetic disks using time-resolved scanning transmission x-ray microscopy. The observed modes are interpreted based on micromagnetic simulation and numerical calculation of coupled Thiele equations. Dispersion of the modes is found to be strongly affected by both vortex polarization and chirality ordering, as revealed by the explicit analytical form of 1D infinite arrays. A thorough understanding thereof is fundamental both for lattice vibrations and vortex dynamics, which we demonstrate for 1D magnonic crystals. Such magnetic disk arrays with vortex-state ordering, referred to as magnetic metastructure, offer potential implementation into information processing devices. PMID:23877284

  9. Wave modes of collective vortex gyration in dipolar-coupled-dot-array magnonic crystals.

    PubMed

    Han, Dong-Soo; Vogel, Andreas; Jung, Hyunsung; Lee, Ki-Suk; Weigand, Markus; Stoll, Hermann; Schütz, Gisela; Fischer, Peter; Meier, Guido; Kim, Sang-Koog

    2013-01-01

    Lattice vibration modes are collective excitations in periodic arrays of atoms or molecules. These modes determine novel transport properties in solid crystals. Analogously, in periodical arrangements of magnetic vortex-state disks, collective vortex motions have been predicted. Here, we experimentally observe wave modes of collective vortex gyration in one-dimensional (1D) periodic arrays of magnetic disks using time-resolved scanning transmission x-ray microscopy. The observed modes are interpreted based on micromagnetic simulation and numerical calculation of coupled Thiele equations. Dispersion of the modes is found to be strongly affected by both vortex polarization and chirality ordering, as revealed by the explicit analytical form of 1D infinite arrays. A thorough understanding thereof is fundamental both for lattice vibrations and vortex dynamics, which we demonstrate for 1D magnonic crystals. Such magnetic disk arrays with vortex-state ordering, referred to as magnetic metastructure, offer potential implementation into information processing devices. PMID:23877284

  10. Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide.

    PubMed

    Tong, Liping; Qi, Wei; Wang, Mengfan; Huang, Renliang; Su, Rongxin; He, Zhimin

    2016-07-01

    It is broadly observed that graphene oxide (GO) films appear transparent with a thickness of about several nanometers, whereas they appear dark brown or almost black with thickness of more than 1 μm. The basic color mechanism of GO film on a sub-micrometer scale, however, is not well understood. This study reports on GO pseudo-1D photonic crystals (p1D-PhCs) exhibiting tunable structural colors in the visible wavelength range owing to its 1D Bragg nanostructures. Striking structural colors of GO p1D-PhCs could be tuned by simply changing either the volume or concentration of the aqueous GO dispersion during vacuum filtration. Moreover, the quantitative relationship between thickness and reflection wavelength of GO p1D-PhCs has been revealed, thereby providing a theoretical basis to rationally design structural colors of GO p1D-PhCs. The spectral response of GO p1D-PhCs to humidity is also obtained clearly showing the wavelength shift of GO p1D-PhCs at differently relative humidity values and thus encouraging the integration of structural color printing and the humidity-responsive property of GO p1D-PhCs to develop a visible and fast-responsive anti-counterfeiting label. The results pave the way for a variety of potential applications of GO in optics, structural color printing, sensing, and anti-counterfeiting. PMID:27171200

  11. Comparative effects of nodularin and microcystin-LR in zebrafish: 1. Uptake by organic anion transporting polypeptide Oatp1d1 (Slco1d1).

    PubMed

    Faltermann, Susanne; Prétôt, René; Pernthaler, Jakob; Fent, Karl

    2016-02-01

    Microcystin-LR (MC-LR) and nodularin are hepatotoxins produced by several cyanobacterial species. Their toxicity is based on active cellular uptake and subsequent inhibition of protein phosphatases PP1/2A, leading to hyperphosphorylation and cell death. To date, uptake of MC-LR and nodularin in fish is poorly understood. Here, we investigated the role of the organic anion transporting polypeptide Oatp1d1 in zebrafish (drOatp1d1, Slco1d1) in cellular uptake in zebrafish. We stably transfected CHO and HEK293 cell lines expressing drOatp1d1. In both transfectants, uptake of MC-LR and nodularin was demonstrated by competitive inhibition of uptake with fluorescent substrate lucifer yellow. Direct uptake of MC-LR was demonstrated by immunostaining, and indirectly by the high cytotoxicity in stable transfectants. By means of a synthesized fluorescent labeled MC-LR derivative, direct uptake was further confirmed in HEK293 cells expressing drOatp1d1. Additionally, uptake and toxicity was investigated in the permanent zebrafish liver cell line ZFL. These cells had only a low relative abundance of drOatp1d1, drOatp2b1 and drOatp1f transcripts, which correlated with the lack of MC-LR induced cytotoxicity and transcriptional changes of genes indicative of endoplasmic reticulum stress, a known effect of this toxin. Our study demonstrates that drOatp1d1 functions as an uptake transporter for both MC-LR and nodularin in zebrafish. PMID:26769064

  12. Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model

    PubMed Central

    Nambiar, Jonathan; Clarke, Adam W; Shim, Doris; Mabon, David; Tian, Chen; Windloch, Karolina; Buhmann, Chris; Corazon, Beau; Lindgren, Matilda; Pollard, Matthew; Domagala, Teresa; Poulton, Lynn; Doyle, Anthony G

    2015-01-01

    CD1d is a receptor on antigen-presenting cells involved in triggering cell populations, particularly natural killer T (NKT) cells, to release high levels of cytokines. NKT cells are implicated in asthma pathology and blockade of the CD1d/NKT cell pathway may have therapeutic potential. We developed a potent anti-human CD1d antibody (NIB.2) that possesses high affinity for human and cynomolgus macaque CD1d (KD ∼100 pM) and strong neutralizing activity in human primary cell-based assays (IC50 typically <100 pM). By epitope mapping experiments, we showed that NIB.2 binds to CD1d in close proximity to the interface of CD1d and the Type 1 NKT cell receptor β-chain. Together with data showing that NIB.2 inhibited stimulation via CD1d loaded with different glycolipids, this supports a mechanism whereby NIB.2 inhibits NKT cell activation by inhibiting Type 1 NKT cell receptor β-chain interactions with CD1d, independent of the lipid antigen in the CD1d antigen-binding cleft. The strong in vitro potency of NIB.2 was reflected in vivo in an Ascaris suum cynomolgus macaque asthma model. Compared with vehicle control, NIB.2 treatment significantly reduced bronchoalveolar lavage (BAL) levels of Ascaris-induced cytokines IL-5, IL-8 and IL-1 receptor antagonist, and significantly reduced baseline levels of GM-CSF, IL-6, IL-15, IL-12/23p40, MIP-1α, MIP-1β, and VEGF. At a cellular population level NIB.2 also reduced numbers of BAL lymphocytes and macrophages, and blood eosinophils and basophils. We demonstrate that anti-CD1d antibody blockade of the CD1d/NKT pathway modulates inflammatory parameters in vivo in a primate inflammation model, with therapeutic potential for diseases where the local cytokine milieu is critical. PMID:25751125

  13. Electronic-to-vibrational energy transfer efficiency in the O/1 D/-N2 and O/1 D/-CO systems

    NASA Technical Reports Server (NTRS)

    Slanger, T. G.; Black, G.

    1974-01-01

    With the aid of a molecular resonance fluorescence technique, which utilizes optical pumping from the v = 1 level of the ground state of CO by A 1 Pi-X 1 Sigma radiation, a study is made of the efficiency of E-V transfer from O(1 D) to CO. O(1 D) is generated at a known rate by O2 photodissociation at 1470 A in an intermittent mode, and the small modulation of the fluorescent signal associated with CO (v = 1) above the normal thermal background is interpreted in terms of E-V transfer efficiency. The CO (v = 1) lifetime in this system is determined mainly by resonance trapping of the IR fundamental band, and is found to be up to ten times longer than the natural radiative lifetime. For CO, (40 plus or minus 8)% of the O(1 D) energy is converted into vibrational energy. By observing the effect of N2 on the CO (v = 1) fluorescent intensity and lifetime, it is possible to obtain the E-V transfer efficiency for the system O(1 D)-N2 relative to that for O(1 D)-CO. The results indicate that the efficiency for N2 is (83 plus or minus 10)% of that for CO.

  14. Mapping of the serotonin 5-HT{sub 1D{alpha}} autoreceptor gene (HTR1D) on chromosome 1 using a silent polymorphism in the coding region

    SciTech Connect

    Ozaki, N.; Lappalainen, J.; Linnoila, M.

    1995-04-24

    Serotonin (5-HT){sub ID} receptors are 5-HT release-regulating autoreceptors in the human brain. Abnormalities in brain 5-HT function have been hypothesized in the pathophysiology of various psychiatric disorders, including obsessive-compulsive disorder, autism, mood disorders, eating disorders, impulsive violent behavior, and alcoholism. Thus, mutations occurring in 5-HT autoreceptors may cause or increase the vulnerability to any of these conditions. 5-HT{sub 1D{alpha}} and 5-HT{sub 1D{Beta}} subtypes have been previously localized to chromosomes 1p36.3-p34.3 and 6q13, respectively, using rodent-human hybrids and in situ localization. In this communication, we report the detection of a 5-HT{sub 1D{alpha}} receptor gene polymorphism by single strand conformation polymorphism (SSCP) analysis of the coding sequence. The polymorphism was used for fine scale linkage mapping of 5-HT{sub 1D{alpha}} on chromosome 1. This polymorphism should also be useful for linkage studies in populations and in families. Our analysis also demonstrates that functionally significant coding sequence variants of the 5-HT{sub 1D{alpha}} are probably not abundant either among alcoholics or in the general population. 14 refs., 1 fig., 1 tab.

  15. Axiom turkey genotyping array

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Axiom®Turkey Genotyping Array interrogates 643,845 probesets on the array, covering 643,845 SNPs. The array development was led by Dr. Julie Long of the USDA-ARS Beltsville Agricultural Research Center under a public-private partnership with Hendrix Genetics, Aviagen, and Affymetrix. The Turk...

  16. Multiple Exciton Generation in Silicon QD arrays

    NASA Astrophysics Data System (ADS)

    Kryjevski, Andrei; Kilin, Dmitri

    2014-03-01

    We use Density Functional Theory (DFT) combined with the many body perturbation theory to calculate multiple exciton generation (MEG) in several semiconductor nanosystems. Hydrogen-passivated Si29H36 quantum dots (QDs) with crystalline and amorphous core structures, the quasi one dimensional (1-D) arrays constructed from these QDs, as well as crystalline and amorphous Si nanowires have been studied. Quantum efficiency, the average number of excitons created by a single photon, has been calculated in these nanoparticles to the leading order in the screened Coulomb interaction. Amorphous nanostructures are predicted to have more effective carrier multiplication.

  17. Thermophotovoltaic Array Optimization

    SciTech Connect

    SBurger; E Brown; K Rahner; L Danielson; J Openlander; J Vell; D Siganporia

    2004-07-29

    A systematic approach to thermophotovoltaic (TPV) array design and fabrication was used to optimize the performance of a 192-cell TPV array. The systematic approach began with cell selection criteria that ranked cells and then matched cell characteristics to maximize power output. Following cell selection, optimization continued with an array packaging design and fabrication techniques that introduced negligible electrical interconnect resistance and minimal parasitic losses while maintaining original cell electrical performance. This paper describes the cell selection and packaging aspects of array optimization as applied to fabrication of a 192-cell array.

  18. Tctex1d2 Is a Negative Regulator of GLUT4 Translocation and Glucose Uptake.

    PubMed

    Shimoda, Yoko; Okada, Shuichi; Yamada, Eijiro; Pessin, Jeffrey E; Yamada, Masanobu

    2015-10-01

    Tctex1d2 (Tctex1 domain containing 2) is an open reading frame that encodes for a functionally unknown protein that contains a Tctex1 domain found in dynein light chain family members. Examination of gene expression during adipogenesis demonstrated a marked increase in Tctex1d2 protein expression that was essentially undetectable in preadipocytes and markedly induced during 3T3-L1 adipocyte differentiation. Tctex1d2 overexpression significantly inhibited insulin-stimulated glucose transporter 4 (GLUT4) translocation and 2-deoxyglucose uptake. In contrast, Tctex1d2 knockdown significantly increased insulin-stimulated GLUT4 translocation and 2-deoxyglucose uptake. However, acute insulin stimulation (up to 30 min) in 3T3-L1 adipocytes with overexpression or knockdown of Tctex1d2 had no effect on Akt phosphorylation, a critical signal transduction target required for GLUT4 translocation. Although overexpression of Tctex1d2 had no significant effect on GLUT4 internalization, Tctex1d2 was found to associate with syntaxin 4 in an insulin-dependent manner and inhibit Doc2b binding to syntaxin 4. In addition, glucose-dependent insulinotropic polypeptide rescued the Tctex1d2 inhibition of insulin-stimulated GLUT4 translocation by suppressing the Tctex1d2-syntaxin 4 interaction and increasing Doc2b-Synatxin4 interactions. Taking these results together, we hypothesized that Tctex1d2 is a novel syntaxin 4 binding protein that functions as a negative regulator of GLUT4 plasma membrane translocation through inhibition of the Doc2b-syntaxin 4 interaction. PMID:26200093

  19. Fabricating capacitive micromachined ultrasonic transducers with a novel silicon-nitride-based wafer bonding process.

    PubMed

    Logan, Andrew; Yeow, John T W

    2009-05-01

    We report the fabrication and experimental testing of 1-D 23-element capacitive micromachined ultrasonic transducer (CMUT) arrays that have been fabricated using a novel wafer-bonding process whereby the membrane and the insulation layer are both silicon nitride. The membrane and cell cavities are deposited and patterned on separate wafers and fusion-bonded in a vacuum environment to create CMUT cells. A user-grown silicon-nitride membrane layer avoids the need for expensive silicon-on-insulator (SOI) wafers, reduces parasitic capacitance, and reduces dielectric charging. It allows more freedom in selecting the membrane thickness while also providing the benefits of wafer-bonding fabrication such as excellent fill factor, ease of vacuum sealing, and a simplified fabrication process when compared with the more standard sacrificial release process. The devices fabricated have a cell diameter of 22 microm, a membrane thickness of 400 nm, a gap depth of 150 nm, and an insulation thickness of 250 nm. The resonant frequency of the CMUT in air is 17 MHz and has an attenuation compensated center frequency of approximately 9 MHz in immersion with a -6 dB fractional bandwidth of 123%. This paper presents the fabrication process and some characterization results. PMID:19473926

  20. The FC-1D: The profitable alternative Flying Circus Commercial Aviation Group

    NASA Technical Reports Server (NTRS)

    Meza, Victor J.; Alvarez, Jaime; Harrington, Brook; Lujan, Michael A.; Mitlyng, David; Saroughian, Andy; Silva, Alex; Teale, Tim

    1994-01-01

    The FC-1D was designed as an advanced solution for a low cost commercial transport meeting or exceeding all of the 1993/1994 AIAA/Lockheed request for proposal requirements. The driving philosophy behind the design of the FC-1D was the reduction of airline direct operating costs. Every effort was made during the design process to have the customer in mind. The Flying Circus Commercial Aviation Group targeted reductions in drag, fuel consumption, manufacturing costs, and maintenance costs. Flying Circus emphasized cost reduction throughout the entire design program. Drag reduction was achieved by implementation of the aft nacelle wing configuration to reduce cruise drag and increase cruise speeds. To reduce induced drag, rather than increasing the wing span of the FC-1D, spiroids were included in the efficient wing design. Profile and friction drag are reduced by using riblets in place of paint around the fuselage and empennage of the FC-1D. Choosing a single aisle configuration enabled the Flying Circus to optimize the fuselage diameter. Thus, reducing fuselage drag while gaining high structural efficiency. To further reduce fuel consumption a weight reduction program was conducted through the use of composite materials. An additional quality of the FC-1D is its design for low cost manufacturing and assembly. As a result of this design attribute, the FC-1D will have fewer parts which reduces weight as well as maintenance and assembly costs. The FC-1D is affordable and effective, the apex of commercial transport design.

  1. Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells

    PubMed Central

    Fischer, Karsten; Scotet, Emmanuel; Niemeyer, Marcus; Koebernick, Heidrun; Zerrahn, Jens; Maillet, Sophie; Hurwitz, Robert; Kursar, Mischo; Bonneville, Marc; Kaufmann, Stefan H. E.; Schaible, Ulrich E.

    2004-01-01

    A group of T cells recognizes glycolipids presented by molecules of the CD1 family. The CD1d-restricted natural killer T cells (NKT cells) are primarily considered to be self-reactive. By employing CD1d-binding and T cell assays, the following structural parameters for presentation by CD1d were defined for a number of mycobacterial and mammalian lipids: two acyl chains facilitated binding, and a polar head group was essential for T cell recognition. Of the mycobacterial lipids tested, only a phosphatidylinositol mannoside (PIM) fulfilled the requirements for CD1d binding and NKT cell stimulation. This PIM activated human and murine NKT cells via CD1d, thereby triggering antigen-specific IFN-γ production and cell-mediated cytotoxicity, and PIM-loaded CD1d tetramers identified a subpopulation of murine and human NKT cells. This phospholipid, therefore, represents a mycobacterial antigen recognized by T cells in the context of CD1d. PMID:15243159

  2. Structure and Catalytic Mechanism of Human Steroid 5-Reductase (AKR1D1)

    SciTech Connect

    Costanzo, L.; Drury, J; Christianson, D; Penning, T

    2009-01-01

    Human steroid 5{beta}-reductase (aldo-keto reductase (AKR) 1D1) catalyzes reduction of {Delta}{sup 4}-ene double bonds in steroid hormones and bile acid precursors. We have reported the structures of an AKR1D1-NADP{sup +} binary complex, and AKR1D1-NADP{sup +}-cortisone, AKR1D1-NADP{sup +}-progesterone and AKR1D1-NADP{sup +}-testosterone ternary complexes at high resolutions. Recently, structures of AKR1D1-NADP{sup +}-5{beta}-dihydroprogesterone complexes showed that the product is bound unproductively. Two quite different mechanisms of steroid double bond reduction have since been proposed. However, site-directed mutagenesis supports only one mechanism. In this mechanism, the 4-pro-R hydride is transferred from the re-face of the nicotinamide ring to C5 of the steroid substrate. E120, a unique substitution in the AKR catalytic tetrad, permits a deeper penetration of the steroid substrate into the active site to promote optimal reactant positioning. It participates with Y58 to create a 'superacidic' oxyanion hole for polarization of the C3 ketone. A role for K87 in the proton relay proposed using the AKR1D1-NADP{sup +}-5{beta}-dihydroprogesterone structure is not supported.

  3. rasdaman Array Database: current status

    NASA Astrophysics Data System (ADS)

    Merticariu, George; Toader, Alexandru

    2015-04-01

    rasdaman (Raster Data Manager) is a Free Open Source Array Database Management System which provides functionality for storing and processing massive amounts of raster data in the form of multidimensional arrays. The user can access, process and delete the data using SQL. The key features of rasdaman are: flexibility (datasets of any dimensionality can be processed with the help of SQL queries), scalability (rasdaman's distributed architecture enables it to seamlessly run on cloud infrastructures while offering an increase in performance with the increase of computation resources), performance (real-time access, processing, mixing and filtering of arrays of any dimensionality) and reliability (legacy communication protocol replaced with a new one based on cutting edge technology - Google Protocol Buffers and ZeroMQ). Among the data with which the system works, we can count 1D time series, 2D remote sensing imagery, 3D image time series, 3D geophysical data, and 4D atmospheric and climate data. Most of these representations cannot be stored only in the form of raw arrays, as the location information of the contents is also important for having a correct geoposition on Earth. This is defined by ISO 19123 as coverage data. rasdaman provides coverage data support through the Petascope service. Extensions were added on top of rasdaman in order to provide support for the Geoscience community. The following OGC standards are currently supported: Web Map Service (WMS), Web Coverage Service (WCS), and Web Coverage Processing Service (WCPS). The Web Map Service is an extension which provides zoom and pan navigation over images provided by a map server. Starting with version 9.1, rasdaman supports WMS version 1.3. The Web Coverage Service provides capabilities for downloading multi-dimensional coverage data. Support is also provided for several extensions of this service: Subsetting Extension, Scaling Extension, and, starting with version 9.1, Transaction Extension, which

  4. Species Specific Differences of CD1d Oligomer Loading In Vitro

    PubMed Central

    Paletta, Daniel; Fichtner, Alina Suzann; Starick, Lisa; Porcelli, Steven A.; Savage, Paul B.; Herrmann, Thomas

    2015-01-01

    CD1d molecules are MHC class I-like molecules that present glycolipids to iNKT cells. The highly conserved interaction between CD1d:α-Galactosylceramide (αGC) complexes and the iNKT TCR not only defines this population of αβ T cells but can also be used for its direct identification. Therefore, CD1d oligomers are a widely used tool for iNKT cell related investigations. To this end, the lipid chains of the antigen have to be inserted into the hydrophobic pockets of the CD1d binding cleft, often with help of surfactants. In this study, we investigated the influence of different surfactants (Triton X-100, Tween 20, Tyloxapol) on in vitro loading of CD1d molecules derived from four different species (human, mouse, rat and cotton rat) with αGC and derivatives carrying modifications of the acyl-chain (DB01-1, PBS44) and a 6-acetamido-6-deoxy-addition at the galactosyl head group (PBS57). We also compared rat CD1d dimers with tetramers and staining of an iNKT TCR transductant was used as readout for loading efficacy. The results underlined the importance of CD1d loading efficacy for proper analysis of iNKT TCR binding and demonstrated the necessity to adjust loading conditions for each oligomer/glycolipid combination. The efficient usage of surfactants as a tool for CD1d loading was revealed to be species-specific and depending on the origin of the CD1d producing cells. Additional variation of surfactant-dependent loading efficacy between tested glycolipids was influenced by the acyl-chain length and the modification of the galactosyl head group with PBS57 showing the least dependence on surfactants and the lowest degree of species-dependent differences. PMID:26599805

  5. Superconducting Bolometer Array Architectures

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Shafer, Rick; Staguhn, Johannes; Wollack, Ed; Oegerle, William (Technical Monitor)

    2002-01-01

    The next generation of far-infrared and submillimeter instruments require large arrays of detectors containing thousands of elements. These arrays will necessarily be multiplexed, and superconducting bolometer arrays are the most promising present prospect for these detectors. We discuss our current research into superconducting bolometer array technologies, which has recently resulted in the first multiplexed detections of submillimeter light and the first multiplexed astronomical observations. Prototype arrays containing 512 pixels are in production using the Pop-Up Detector (PUD) architecture, which can be extended easily to 1000 pixel arrays. Planar arrays of close-packed bolometers are being developed for the GBT (Green Bank Telescope) and for future space missions. For certain applications, such as a slewed far-infrared sky survey, feedhorncoupling of a large sparsely-filled array of bolometers is desirable, and is being developed using photolithographic feedhorn arrays. Individual detectors have achieved a Noise Equivalent Power (NEP) of -10(exp 17) W/square root of Hz at 300mK, but several orders of magnitude improvement are required and can be reached with existing technology. The testing of such ultralow-background detectors will prove difficult, as this requires optical loading of below IfW. Antenna-coupled bolometer designs have advantages for large format array designs at low powers due to their mode selectivity.

  6. GaAs solar cell photoresponse modeling using PC-1D V2.1

    NASA Technical Reports Server (NTRS)

    Huber, D. A.; Olsen, L. C.; Dunham, G.; Addis, F. W.

    1991-01-01

    Photoresponse data of high efficiency GaAs solar cells were analyzed using PC-1D V2.1. The approach required to use PC-1D for photoresponse data analysis, and the physical insights gained from performing the analysis are discussed. In particular, the effect of Al(x)Ga(1-x)As heteroface quality was modeled. Photoresponse or spectral quantum efficiency is an important tool in characterizing material quality and predicting cell performance. The strength of the photoresponse measurement lies in the ability to precisely fit the experimental data with a physical model. PC-1D provides a flexible platform for calculations based on these physical models.

  7. TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport.

    PubMed

    Schmidts, Miriam; Hou, Yuqing; Cortés, Claudio R; Mans, Dorus A; Huber, Celine; Boldt, Karsten; Patel, Mitali; van Reeuwijk, Jeroen; Plaza, Jean-Marc; van Beersum, Sylvia E C; Yap, Zhi Min; Letteboer, Stef J F; Taylor, S Paige; Herridge, Warren; Johnson, Colin A; Scambler, Peter J; Ueffing, Marius; Kayserili, Hulya; Krakow, Deborah; King, Stephen M; Beales, Philip L; Al-Gazali, Lihadh; Wicking, Carol; Cormier-Daire, Valerie; Roepman, Ronald; Mitchison, Hannah M; Witman, George B

    2015-01-01

    The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. We thus define TCTEX1D2 as an integral component of the evolutionarily conserved retrograde IFT machinery. In complex with several IFT dynein light chains, it is required for correct vertebrate skeletal formation but may be functionally redundant under certain conditions. PMID:26044572

  8. Comet Halley O(1D) and H2O production rates

    NASA Technical Reports Server (NTRS)

    Magee-Sauer, K.; Scherb, F.; Roesler, F. L.; Harlander, J.

    1990-01-01

    Ground-based dual-etalon Fabry-Perot spectrometer observations have been made of Comet Halley's forbidden O I 6300 A emission. The 0.2 A resolution of the spectral scans was sufficient to resolve the O I forbidden line emissions from both nearby cometary NH2 and telluric emissions. On the basis of these measurements, the production rate Q of O(1D) was determined; it is then found, by taking into account the photodissociation of H2O and OH as sources of O(1D), that the ratio of H2O/O(1D) production rates is of the order of 6.

  9. TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport

    PubMed Central

    Schmidts, Miriam; Hou, Yuqing; Cortés, Claudio R.; Mans, Dorus A.; Huber, Celine; Boldt, Karsten; Patel, Mitali; van Reeuwijk, Jeroen; Plaza, Jean-Marc; van Beersum, Sylvia E. C.; Yap, Zhi Min; Letteboer, Stef J. F.; Taylor, S. Paige; Herridge, Warren; Johnson, Colin A.; Scambler, Peter J.; Ueffing, Marius; Kayserili, Hulya; Krakow, Deborah; King, Stephen M.; Beales, Philip L.; Al-Gazali, Lihadh; Wicking, Carol; Cormier-Daire, Valerie; Roepman, Ronald; Mitchison, Hannah M.; Witman, George B.; Al-Turki, Saeed; Anderson, Carl; Anney, Richard; Antony, Dinu; Asimit, Jennifer; Ayub, Mohammad; Barrett, Jeff; Barroso, Inês; Bentham, Jamie; Bhattacharya, Shoumo; Blackwood, Douglas; Bobrow, Martin; Bochukova, Elena; Bolton, Patrick; Boustred, Chris; Breen, Gerome; Brion, Marie-Jo; Brown, Andrew; Calissano, Mattia; Carss, Keren; Chatterjee, Krishna; Chen, Lu; Cirak, Sebhattin; Clapham, Peter; Clement, Gail; Coates, Guy; Collier, David; Cosgrove, Catherine; Cox, Tony; Craddock, Nick; Crooks, Lucy; Curran, Sarah; Daly, Allan; Danecek, Petr; Smith, George Davey; Day-Williams, Aaron; Day, Ian; Durbin, Richard; Edkins, Sarah; Ellis, Peter; Evans, David; Farooqi, I. Sadaf; Fatemifar, Ghazaleh; Fitzpatrick, David; Flicek, Paul; Floyd, Jamie; Foley, A. Reghan; Franklin, Chris; Futema, Marta; Gallagher, Louise; Gaunt, Tom; Geschwind, Daniel; Greenwood, Celia; Grozeva, Detelina; Guo, Xiaosen; Gurling, Hugh; Hart, Deborah; Hendricks, Audrey; Holmans, Peter; Huang, Jie; Humphries, Steve E.; Hurles, Matt; Hysi, Pirro; Jackson, David; Jamshidi, Yalda; Jewell, David; Chris, Joyce; Kaye, Jane; Keane, Thomas; Kemp, John; Kennedy, Karen; Kent, Alastair; Kolb-Kokocinski, Anja; Lachance, Genevieve; Langford, Cordelia; Lee, Irene; Li, Rui; Li, Yingrui; Ryan, Liu; Lönnqvist, Jouko; Lopes, Margarida; MacArthur, Daniel G.; Massimo, Mangino; Marchini, Jonathan; Maslen, John; McCarthy, Shane; McGuffin, Peter; McIntosh, Andrew; McKechanie, Andrew; McQuillin, Andrew; Memari, Yasin; Metrustry, Sarah; Min, Josine; Moayyeri, Alireza; Morris, James; Muddyman, Dawn; Muntoni, Francesco; Northstone, Kate; O'Donovan, Michael; O'Rahilly, Stephen; Onoufriadis, Alexandros; Oualkacha, Karim; Owen, Michael; Palotie, Aarno; Panoutsopoulou, Kalliope; Parker, Victoria; Parr, Jeremy; Paternoster, Lavinia; Paunio, Tiina; Payne, Felicity; Perry, John; Pietilainen, Olli; Plagnol, Vincent; Quail, Michael A.; Quaye, Lydia; Raymond, Lucy; Rehnström, Karola; Brent Richards, J.; Ring, Sue; Ritchie, Graham R S; Savage, David B.; Schoenmakers, Nadia; Semple, Robert K.; Serra, Eva; Shihab, Hashem; Shin, So-Youn; Skuse, David; Small, Kerrin; Smee, Carol; Soler, Artigas María; Soranzo, Nicole; Southam, Lorraine; Spector, Tim; St Pourcain, Beate; St. Clair, David; Stalker, Jim; Surdulescu, Gabriela; Suvisaari, Jaana; Tachmazidou, Ioanna; Tian, Jing; Timpson, Nic; Tobin, Martin; Valdes, Ana; van Kogelenberg, Margriet; Vijayarangakannan, Parthiban; Wain, Louise; Walter, Klaudia; Wang, Jun; Ward, Kirsten; Wheeler, Ellie; Whittall, Ros; Williams, Hywel; Williamson, Kathy; Wilson, Scott G.; Wong, Kim; Whyte, Tamieka; ChangJiang, Xu; Zeggini, Eleftheria; Zhang, Feng; Zheng, Hou-Feng

    2015-01-01

    The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. We thus define TCTEX1D2 as an integral component of the evolutionarily conserved retrograde IFT machinery. In complex with several IFT dynein light chains, it is required for correct vertebrate skeletal formation but may be functionally redundant under certain conditions. PMID:26044572

  10. Electronic Switch Arrays for Managing Microbattery Arrays

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad; Alahmad, Mahmoud; Sukumar, Vinesh; Zghoul, Fadi; Buck, Kevin; Hess, Herbert; Li, Harry; Cox, David

    2008-01-01

    Integrated circuits have been invented for managing the charging and discharging of such advanced miniature energy-storage devices as planar arrays of microscopic energy-storage elements [typically, microscopic electrochemical cells (microbatteries) or microcapacitors]. The architecture of these circuits enables implementation of the following energy-management options: dynamic configuration of the elements of an array into a series or parallel combination of banks (subarrarys), each array comprising a series of parallel combination of elements; direct addressing of individual banks for charging/or discharging; and, disconnection of defective elements and corresponding reconfiguration of the rest of the array to utilize the remaining functional elements to obtain the desited voltage and current performance. An integrated circuit according to the invention consists partly of a planar array of field-effect transistors that function as switches for routing electric power among the energy-storage elements, the power source, and the load. To connect the energy-storage elements to the power source for charging, a specific subset of switches is closed; to connect the energy-storage elements to the load for discharging, a different specific set of switches is closed. Also included in the integrated circuit is circuitry for monitoring and controlling charging and discharging. The control and monitoring circuitry, the switching transistors, and interconnecting metal lines are laid out on the integrated-circuit chip in a pattern that registers with the array of energy-storage elements. There is a design option to either (1) fabricate the energy-storage elements in the corresponding locations on, and as an integral part of, this integrated circuit; or (2) following a flip-chip approach, fabricate the array of energy-storage elements on a separate integrated-circuit chip and then align and bond the two chips together.

  11. Development of AN Efficient Conformable Array Structure

    NASA Astrophysics Data System (ADS)

    Mackersie, J. W.; Harvey, G.; Gachagan, A.

    2009-03-01

    The inspection of non-planar surfaces encountered in NDT poses difficulties that can only be satisfactorily addressed by a transducer whose active surface is comprised of an efficient conformable piezoelectric material. This paper describes a novel composite 2D array structure in which each element is a fine-scale array of piezoceramic fibres in a random arrangement. Device flexibility is imparted by the relatively soft flexible polymer phase which separates the elements. A comprehensive modelling programme, using the finite element package PZFlex, has produced the resulting structure which is termed a Composite Element Composite Array Transducer or CECAT. To facilitate the initial characterisation of the devices, the primary investigations have implemented the transducers as 1D arrays by the application of appropriate electrode patterns. However, the 2D physical arrangement gives the material excellent conformability over surfaces with two axes of curvature, e.g. an elbow or the root of a welded nozzle. Experimental measurements of electrical impedance and surface displacement are presented which demonstrate the high sensitivity of the devices. In addition, pulse-echo tests show comparable performance to a commercial rigid, 2 MHz transducer when operated into a steel test sample.

  12. Polarization Transitions in Quantum Ring Arrays

    NASA Astrophysics Data System (ADS)

    Roostaei, Bahman; Mullen, Kieran

    2004-03-01

    We calculate the zero temperature electrostatic properties of charged one and two dimensional arrays of rings, in the classical and quantum limits. Each ring is assumed to be an ideal ring of negligible width, with exactly one electron on the ring that interacts only with nearest neighbor rings. In the classical limit we find that if the electron is treated as a point particle, the 1D array of rings can be mapped to an Ising antiferromagnet, while the 2D array groundstate is a four-fold degenerate ``stripe" phase. In contrast, if we treat the electrical charge as a continuous fluid, the distribution will not spontaneously break symmetry, but will develop a charge distribution reflecting the symmetry of the array. In the quantum limit, the competition between the kinetic energy and Coulomb energy allows for a transition between unpolarized and polarized states as a function of the ring parameters. This allows for a new class of polarizable materials whose transitions are based on geometry, rather than a structural transition in a unit cell.

  13. Optical analogue of relativistic Dirac solitons in binary waveguide arrays

    SciTech Connect

    Tran, Truong X.; Longhi, Stefano; Biancalana, Fabio

    2014-01-15

    We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory. -- Highlights: •An optical analogue of Dirac solitons in nonlinear binary waveguide arrays is suggested. •Analytical solutions to pseudo-relativistic solitons are presented. •A correspondence of optical coupled-mode equations with the nonlinear relativistic Dirac equation is established.

  14. Fixed-rate compressed floating-point arrays

    Energy Science and Technology Software Center (ESTSC)

    2014-03-30

    ZFP is a library for lossy compression of single- and double-precision floating-point data. One of the unique features of ZFP is its support for fixed-rate compression, which enables random read and write access at the granularity of small blocks of values. Using a C++ interface, this allows declaring compressed arrays (1D, 2D, and 3D arrays are supported) that through operator overloading can be treated just like conventional, uncompressed arrays, but which allow the user tomore » specify the exact number of bits to allocate to the array. ZFP also has variable-rate fixed-precision and fixed-accuracy modes, which allow the user to specify a tolerance on the relative or absolute error.« less

  15. Designing linear systolic arrays

    SciTech Connect

    Kumar, V.K.P.; Tsai, Y.C. . Dept. of Electrical Engineering)

    1989-12-01

    The authors develop a simple mapping technique to design linear systolic arrays. The basic idea of the technique is to map the computations of a certain class of two-dimensional systolic arrays onto one-dimensional arrays. Using this technique, systolic algorithms are derived for problems such as matrix multiplication and transitive closure on linearly connected arrays of PEs with constant I/O bandwidth. Compared to known designs in the literature, the technique leads to modular systolic arrays with constant hardware in each PE, few control lines, lexicographic data input/output, and improved delay time. The unidirectional flow of control and data in this design assures implementation of the linear array in the known fault models of wafer scale integration.

  16. Carbon nanotube nanoelectrode arrays

    DOEpatents

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  17. Solar array automation limitations

    NASA Technical Reports Server (NTRS)

    Trumble, Terry M.

    1990-01-01

    Significant progress in the automation of the spacecraft electrical power systems has been made within the past few years. This is especially important with the development of the space station and the increasing demand on the electrical power systems for future satellites. The key element of the spacecraft power system, the solar arrays which supply the power, will have to grow to supply many tens of kilowatts of power within the next twenty years. This growth will be accompanied by the problems associated with large distributed power systems. The growth of the arrays, the on-array management problems and potential solutions to array degradation or failure are discussed. Multilowatt arrays for unmanned spacecraft with comments on the implications of array degradation for manned spacecraft are discussed.

  18. Ubiquitination and degradation of the hominoid-specific oncoprotein TBC1D3 is regulated by protein palmitoylation

    SciTech Connect

    Kong, Chen; Lange, Jeffrey J.; Samovski, Dmitri; Su, Xiong; Liu, Jialiu; Sundaresan, Sinju; Stahl, Philip D.

    2013-05-03

    Highlights: •Hominoid-specific oncogene TBC1D3 is targeted to plasma membrane by palmitoylation. •TBC1D3 is palmitoylated on two cysteine residues: 318 and 325. •TBC1D3 palmitoylation governs growth factors-induced TBC1D3 degradation. •Post-translational modifications may regulate oncogenic properties of TBC1D3. -- Abstract: Expression of the hominoid-specific oncoprotein TBC1D3 promotes enhanced cell growth and proliferation by increased activation of signal transduction through several growth factors. Recently we documented the role of CUL7 E3 ligase in growth factors-induced ubiquitination and degradation of TBC1D3. Here we expanded our study to discover additional molecular mechanisms that control TBC1D3 protein turnover. We report that TBC1D3 is palmitoylated on two cysteine residues: 318 and 325. The expression of double palmitoylation mutant TBC1D3:C318/325S resulted in protein mislocalization and enhanced growth factors-induced TBC1D3 degradation. Moreover, ubiquitination of TBC1D3 via CUL7 E3 ligase complex was increased by mutating the palmitoylation sites, suggesting that depalmitoylation of TBC1D3 makes the protein more available for ubiquitination and degradation. The results reported here provide novel insights into the molecular mechanisms that govern TBC1D3 protein degradation. Dysregulation of these mechanisms in vivo could potentially result in aberrant TBC1D3 expression and promote oncogenesis.

  19. Distributed array radar

    NASA Astrophysics Data System (ADS)

    Heimiller, R. C.; Belyea, J. E.; Tomlinson, P. G.

    1983-11-01

    Distributed array radar (DAR) is a concept for efficiently accomplishing surveillance and tracking using coherently internetted mini-radars. They form a long baseline, very thinned array and are capable of very accurate location of targets. This paper describes the DAR concept. Factors involving two-way effective gain patterns for deterministic and random DAR arrays are analyzed and discussed. An analysis of factors affecting signal-to-noise ratio is presented and key technical and performance issues are briefly summarized.

  20. Telescope Array Experiment

    NASA Astrophysics Data System (ADS)

    Kawai, H.; Yoshida, S.; Yoshii, H.; Tanaka, K.; Cohen, F.; Fukushima, M.; Hayashida, N.; Hiyama, K.; Ikeda, D.; Kido, E.; Kondo, Y.; Nonaka, T.; Ohnishi, M.; Ohoka, H.; Ozawa, S.; Sagawa, H.; Sakurai, N.; Shibata, T.; Shimodaira, H.; Takeda, M.; Taketa, A.; Takita, M.; Tokuno, H.; Torii, R.; Udo, S.; Yamakawa, Y.; Fujii, H.; Matsuda, T.; Tanaka, M.; Yamaoka, H.; Hibino, K.; Benno, T.; Doura, K.; Chikawa, M.; Nakamura, T.; Teshima, M.; Kadota, K.; Uchihori, Y.; Hayashi, K.; Hayashi, Y.; Kawakami, S.; Matsuyama, T.; Minamino, M.; Ogio, S.; Ohshima, A.; Okuda, T.; Shimizu, N.; Tanaka, H.; Bergman, D. R.; Hughes, G.; Stratton, S.; Thomson, G. B.; Endo, A.; Inoue, N.; Kawana, S.; Wada, Y.; Kasahara, K.; Azuma, R.; Iguchi, T.; Kakimoto, F.; Machida, S.; Misumi, K.; Murano, Y.; Tameda, Y.; Tsunesada, Y.; Chiba, J.; Miyata, K.; Abu-Zayyad, T.; Belz, J. W.; Cady, R.; Cao, Z.; Huentemeyer, P.; Jui, C. C. H.; Martens, K.; Matthews, J. N.; Mostofa, M.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Thomas, J. R.; Thomas, S. B.; Wiencke, L. R.; Doyle, T.; Taylor, M. J.; Wickwar, V. B.; Wilkerson, T. D.; Hashimoto, K.; Honda, K.; Ikuta, K.; Ishii, T.; Kanbe, T.; Tomida, T.

    2008-01-01

    The TA observatory is a hybrid detector system consisting of both a surface detector array as well as a set of fluorescence detectors. The observatory will measure the energy spectrum, anisotropy and composition of ultra-high energy cosmic rays. The surface detectors are being deployed and the array should be complete by the end of February, 2007. We will soon be collecting hybrid data at the Telecope Array.

  1. Microstrip monpulse dipole array

    NASA Astrophysics Data System (ADS)

    Miccioli, W.; Toth, J.; Sa, N.; Lewis, M.

    1985-01-01

    The development of a microstrip radiating aperture utilizing multiple microstrip dipole radiators fed by a resonant feed configuration is described. This array combines an efficient capacitively coupled radiator feeding mechanism with a planar power divider configuration to achieve an extremely thin, lightweight antenna aperture. Linear array dipole matching theory and radiator bandwidth improvement techniques are also described. A quadrant based microstrip monopulse antenna was constructed. Experimental data from this array, its subassemblies and individual components are presented and compared to analytical predictions.

  2. Quasi-one dimensional (Q1D) nanostructures: Synthesis, integration and device application

    NASA Astrophysics Data System (ADS)

    Chien, Chung-Jen

    Quasi-one-dimensional (Q1D) nanostructures such as nanotubes and nanowires have been widely regarded as the potential building blocks for nanoscale electronic, optoelectronic and sensing devices. In this work, the content can be divided into three categories: Nano-material synthesis and characterizations, alignment and integration, physical properties and application. The dissertation consists of seven chapters as following. Chapter 1 will give an introduction to low dimensional nano-materials. Chapter 2 explains the mechanism how Q1D nanostructure grows. Chapter 3 describes the methods how we horizontally and vertically align the Q1D nanostructure. Chapter 4 and 5 are the electrical and optical device characterization respectively. Chapter 6 demonstrates the integration of Q1D nanostructures and the device application. The last chapter will discuss the future work and conclusion of the thesis.

  3. Quantum and semi-classical transport in RTDs using NEMO 1-D

    NASA Technical Reports Server (NTRS)

    Klimeck, G.; Stout, P.; Bowen, R. C.

    2003-01-01

    NEMO 1-D has been developed primarily for the simulation of resonant tunneling diodes, and quantitative and predictive agreements with experimental high performance, high current density devices have been achieved in the past.

  4. Non-uniform black strings and the critical dimension in the 1/D expansion

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryotaku; Tanabe, Kentaro

    2015-10-01

    Non-uniform black strings (NUBS) are studied by the large D effective theory approach. By solving the near-horizon geometry in the 1 /D expansion, we obtain the effective equation for the deformed horizon up to the next-to-next-to-leading order (NNLO) in 1 /D. We also solve the far-zone geometry by the Newtonian approximation. Matching the near and far zones, the thermodynamic variables are computed in the 1 /D expansion. As the result, the large D analysis gives a critical dimension D * ≃ 13 .5 at which the translation-symmetry-breaking phase transition changes between first and second order. This value of D * agrees perfectly, within the precision of the 1 /D expansion, with the result previously obtained by E. Sorkin through the numerical resolution. We also compare our NNLO results for the thermodynamics of NUBS to earlier numerical calculations, and find good agreement within the expected precision.

  5. Modeling blood flow circulation in intracranial arterial networks: a comparative 3D/1D simulation study.

    PubMed

    Grinberg, L; Cheever, E; Anor, T; Madsen, J R; Karniadakis, G E

    2011-01-01

    We compare results from numerical simulations of pulsatile blood flow in two patient-specific intracranial arterial networks using one-dimensional (1D) and three-dimensional (3D) models. Specifically, we focus on the pressure and flowrate distribution at different segments of the network computed by the two models. Results obtained with 1D and 3D models with rigid walls show good agreement in massflow distribution at tens of arterial junctions and also in pressure drop along the arteries. The 3D simulations with the rigid walls predict higher amplitude of the flowrate and pressure temporal oscillations than the 1D simulations with compliant walls at various segments even for small time-variations in the arterial cross-sectional areas. Sensitivity of the flow and pressure with respect to variation in the elasticity parameters is investigated with the 1D model. PMID:20661645

  6. Pseudo 1-D Micro/Nanofluidic Device for Exact Electrokinetic Responses.

    PubMed

    Kim, Junsuk; Kim, Ho-Young; Lee, Hyomin; Kim, Sung Jae

    2016-06-28

    Conventionally, a 1-D micro/nanofluidic device, whose nanochannel bridged two microchannels, was widely chosen in the fundamental electrokinetic studies; however, the configuration had intrinsic limitations of the time-consuming and labor intensive tasks of filling and flushing the microchannel due to the high fluidic resistance of the nanochannel bridge. In this work, a pseudo 1-D micro/nanofluidic device incorporating air valves at each microchannel was proposed for mitigating these limitations. High Laplace pressure formed at liquid/air interface inside the microchannels played as a virtual valve only when the electrokinetic operations were conducted. The identical electrokinetic behaviors of the propagation of ion concentration polarization layer and current-voltage responses were obtained in comparison with the conventional 1-D micro/nanofluidic device by both experiments and numerical simulations. Therefore, the suggested pseudo 1-D micro/nanofluidic device owned not only experimental conveniences but also exact electrokinetic responses. PMID:27248856

  7. Electrically reconfigurable logic array

    NASA Technical Reports Server (NTRS)

    Agarwal, R. K.

    1982-01-01

    To compose the complicated systems using algorithmically specialized logic circuits or processors, one solution is to perform relational computations such as union, division and intersection directly on hardware. These relations can be pipelined efficiently on a network of processors having an array configuration. These processors can be designed and implemented with a few simple cells. In order to determine the state-of-the-art in Electrically Reconfigurable Logic Array (ERLA), a survey of the available programmable logic array (PLA) and the logic circuit elements used in such arrays was conducted. Based on this survey some recommendations are made for ERLA devices.

  8. Integrated avalanche photodiode arrays

    DOEpatents

    Harmon, Eric S.

    2015-07-07

    The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed.

  9. Optimization of a cyclic peptide inhibitor of Ser/Thr phosphatase PPM1D (Wip1).

    PubMed

    Hayashi, Ryo; Tanoue, Kan; Durell, Stewart R; Chatterjee, Deb K; Jenkins, Lisa M Miller; Appella, Daniel H; Appella, Ettore

    2011-05-31

    PPM1D (PP2Cδ or Wip1) was identified as a wild-type p53-induced Ser/Thr phosphatase that accumulates after DNA damage and classified into the PP2C family. It dephosphorylates and inactivates several proteins critical for cellular stress responses, including p38 MAPK, p53, and ATM. Furthermore, PPM1D is amplified and/or overexpressed in a number of human cancers. Thus, inhibition of its activity could constitute an important new strategy for therapeutic intervention to halt the progression of several different cancers. Previously, we reported the development of a cyclic thioether peptide with low micromolar inhibitory activity toward PPM1D. Here, we describe important improvements in the inhibitory activity of this class of cyclic peptides and also present a binding model based upon the results. We found that specific interaction of an aromatic ring at the X1 position and negative charge at the X5 and X6 positions significantly increased the inhibitory activity of the cyclic peptide, with the optimized molecule having a K(i) of 110 nM. To the best of our knowledge, this represents the highest inhibitory activity reported for an inhibitor of PPM1D. We further developed an inhibitor selective for PPM1D over PPM1A with a K(i) of 2.9 μM. Optimization of the cyclic peptide and mutagenesis experiments suggest that a highly basic loop unique to PPM1D is related to substrate specificity. We propose a new model for the catalytic site of PPM1D and inhibition by the cyclic peptides that will be useful both for the subsequent design of PPM1D inhibitors and for identification of new substrates. PMID:21528848

  10. Two-loop effective action of O(N) spin models in 1/D expansion

    NASA Astrophysics Data System (ADS)

    Matsui, T.; Kleinert, H.; Ami, S.

    1984-08-01

    We calculate the two-loop effective action of O(N) spin models on the lattice in a 1/D expansion to order 1/D2. The resulting free energy depends on β = 1/T and the order parameter Φ. It matches the high and low temperature regimes and is quite reliable close to the phase transition where it has a simple Landau expansion.