1-D EQUILIBRIUM DISCRETE DIFFUSION MONTE CARLO
T. EVANS; ET AL
2000-08-01
We present a new hybrid Monte Carlo method for 1-D equilibrium diffusion problems in which the radiation field coexists with matter in local thermodynamic equilibrium. This method, the Equilibrium Discrete Diffusion Monte Carlo (EqDDMC) method, combines Monte Carlo particles with spatially discrete diffusion solutions. We verify the EqDDMC method with computational results from three slab problems. The EqDDMC method represents an incremental step toward applying this hybrid methodology to non-equilibrium diffusion, where it could be simultaneously coupled to Monte Carlo transport.
Additive discrete 1D linear canonical transform
NASA Astrophysics Data System (ADS)
Zhao, Liang; Healy, John J.; Guo, Chang-liang; Sheridan, John T.
2015-09-01
The continuous linear canonical transforms (LCT) can describe a wide variety of wave field propagations through paraxial (first order) optical systems. Digital algorithms to numerically calculate the LCT are therefore important in modelling scalar wave field propagations and are also of interest for many digital signal processing applications. The continuous LCT is additive, but discretization can remove this property. In this paper we discuss three special cases of the LCT for which constraints can be identified to ensure the DLCT is additive.
NASA Astrophysics Data System (ADS)
Peerenboom, Kim; Ten Thije Boonkkamp, Jan; van Dijk, Jan; Kroesen, Gerrit
2013-09-01
Solving balance equations is the essence of any fluid simulation of reactive, multicomponent plasmas. For plasmas in chemical non-equilibrium, balance equations are solved for all species of interest. When reactions are very fast with respect to transport time scales - and the plasma approaches chemical equilibrium - species abundances can be obtained from equilibrium relations. However, in many cases, balance equations still need to be solved for the elements, since the elemental composition can vary significantly in reactive multicomponent plasmas. Both in equilibrium and in non-equilibrium the species diffusive fluxes in these balance equations are governed by the Stefan-Maxwell equations. The use of Stefan-Maxwell diffusion leads to a coupled set of balance equations. Furthermore, this coupled set of equations is subject to charge and mass conservation constraints. Due to these complications the set of balance equations is often artificially decoupled to fit in the traditional finite volume discretization schemes and the constraints are explicitly applied. This approach can lead to very poor convergence behavior. We will present a new approach using a finite volume discretization scheme that takes into account the coupling and treats the constraints implicitly.
Asymptotic analysis of discrete schemes for non-equilibrium radiation diffusion
NASA Astrophysics Data System (ADS)
Cui, Xia; Yuan, Guang-wei; Shen, Zhi-jun
2016-05-01
Motivated by providing well-behaved fully discrete schemes in practice, this paper extends the asymptotic analysis on time integration methods for non-equilibrium radiation diffusion in [2] to space discretizations. Therein studies were carried out on a two-temperature model with Larsen's flux-limited diffusion operator, both the implicitly balanced (IB) and linearly implicit (LI) methods were shown asymptotic-preserving. In this paper, we focus on asymptotic analysis for space discrete schemes in dimensions one and two. First, in construction of the schemes, in contrast to traditional first-order approximations, asymmetric second-order accurate spatial approximations are devised for flux-limiters on boundary, and discrete schemes with second-order accuracy on global spatial domain are acquired consequently. Then by employing formal asymptotic analysis, the first-order asymptotic-preserving property for these schemes and furthermore for the fully discrete schemes is shown. Finally, with the help of manufactured solutions, numerical tests are performed, which demonstrate quantitatively the fully discrete schemes with IB time evolution indeed have the accuracy and asymptotic convergence as theory predicts, hence are well qualified for both non-equilibrium and equilibrium radiation diffusion.
Fluss, M.J.; Berko, S.; Chakraborty, B.; Hoffmann, K.R.; Lippel, P.; Siegel, R.W.
1985-03-12
One- and two-dimensional angular correlation of positron-electron annihilation radiation (1D and 2D-ACAR) data have been obtained between 293 and 903 K for single crystals of aluminum. The peak counting rates vs temperature, which were measured using the 1D-ACAR technique, provide a model independent value for the temperature dependence of the positron trapping probability. Using these results it is possible to strip out the Bloch state contribution from the observed 2D-ACAR surfaces and then compare the resulting defect ACAR surfaces to calculated 2D-ACAR surfaces for positrons annihilating from the Bloch, monovacancy, and divacancy-trapped states. The result of this comparison is that the presence of an increasing equilibrium divacancy population is consistent with the observed temperature dependence of ACAR data at high temperature in Al and that the present results when compared to earlier studies on Al indicate that the ratio of the trapping rates at divacancies and monovacancies is of order two.
NASA Astrophysics Data System (ADS)
Steinke, R. C.
2015-12-01
Discretizing 1-D vadose zone simulations in the moisture content domain, such as is done in the Talbot-Ogden method, provides some advantages over discretizing in depth, such as is done in Richards' Equation. These advantages include inherent mass conservation and lower computational cost. However, doing so presents a difficulty for integration with 2-D groundwater interflow simulations. The equations of motion of the bins of discrete moisture content take the depth of the water table as an input. They do not produce it as an output. Finding the correct water table depth so that the groundwater recharge from the 1-D vadose zone simulation mass balances with the lateral flows from the 2-D groundwater interflow simulation was a previously unsolved problem. In this paper we present a net-groundwater-recharge method to solve to this problem and compare it with the source-term method used with Richards' Equation.
NASA Astrophysics Data System (ADS)
Shi, Ruo-Bing; Pi, Min; Jiang, Shuang-Shuang; Wang, Yuan-Yuan; Jin, Chuan-Ming
2014-08-01
Four new metal-organic frameworks, [Zn(2-mBIM)2(SO3CF3)2·(H2O)4] (1), [Zn(BMIE)(1,4-BDC)]·(H2O)3 (2), [Cd(BIM)2(OH)(H2O)2(PF6)]·(H2O)4 (3), and [Cd(PA-BIM)2 (ClO4)2]·11.33H2O (4) (2-mBIM = bis(2-methylimidazol-1-yl)methane, BMIE = 1,2-bis[1-(2-methylimidazole)-diethoxy]ethane, BIM = bis(imidazol-1-yl)methane, and PA-BIM = 1,1-bis [(2-phenylazo)imidazol-1-yl]methane) have been prepared and structurally characterized. Complex 1 exhibits an infinite 1D cationic beaded-chain structure, which encapsulated discrete octameric water clusters that are comprised of a chair-like hexameric water cluster with two extra water molecules dangling on two diagonal vertices of the chair. Complex 2 forms a 1D infinite zigzag metal-organic chain structure with a 1D T4(0)A(4) water tape. Complexes 3 show a 2D grid-like sheet structure with the 1D water tape T4(0)A(0)2(0) motif. Complex 4 is a porous 3D MOF with tetrahedron-coordinated Cd(II) centers and trans-conformation PA-BIM ligands. These holes are occupied by a fascinating three-dimensional water clathrate network, which consists of cage-shaped structural tetradecameric water cluster (H2O)14 units and six independent bridged water molecules. The results suggest that the bisimidazolium ligands and anions play crucial roles in the formation of the different host structures and different guest water aggregations. Additionally, the thermal stabilities and photoluminescence spectra of the complexes have been discussed.
NASA Astrophysics Data System (ADS)
Maginot, Peter G.; Morel, Jim E.; Ragusa, Jean C.
2012-08-01
We present a new nonlinear spatial finite-element method for the linearized Boltzmann transport equation with Sn angular discretization in 1-D and 2-D Cartesian geometries. This method has two central characteristics. First, it is equivalent to the linear-discontinuous (LD) Galerkin method whenever that method yields a strictly non-negative solution. Second, it always satisfies both the zeroth and first spatial moment equations. Because it yields the LD solution when that solution is non-negative, one might interpret our method as a classical fix-up to the LD scheme. However, fix-up schemes for the LD equations derived in the past have given up solution of the first moment equations when the LD solution is negative in order to satisfy positivity in a simple manner. We present computational results comparing our method in 1-D to the strictly non-negative linear exponential-discontinuous method and to the LD method. We present computational results in 2-D comparing our method to a recently developed LD fix-up scheme and to the LD scheme. It is demonstrated that our method is a valuable alternative to existing methods.
NASA Astrophysics Data System (ADS)
Norman, Matthew R.
2015-02-01
New Hermite Weighted Essentially Non-Oscillatory (HWENO) interpolants are developed and investigated within the Multi-Moment Finite-Volume (MMFV) formulation using the ADER-DT time discretization. Whereas traditional WENO methods interpolate pointwise, function-based WENO methods explicitly form a non-oscillatory, high-order polynomial over the cell in question. This study chooses a function-based approach and details how fast convergence to optimal weights for smooth flow is ensured. Methods of sixth-, eighth-, and tenth-order accuracy are developed. These are compared against traditional single-moment WENO methods of fifth-, seventh-, ninth-, and eleventh-order accuracy to compare against more familiar methods from literature. The new HWENO methods improve upon existing HWENO methods (1) by giving a better resolution of unreinforced contact discontinuities and (2) by only needing a single HWENO polynomial to update both the cell mean value and cell mean derivative. Test cases to validate and assess these methods include 1-D linear transport, the 1-D inviscid Burger's equation, and the 1-D inviscid Euler equations. Smooth and non-smooth flows are used for evaluation. These HWENO methods performed better than comparable literature-standard WENO methods for all regimes of discontinuity and smoothness in all tests herein. They exhibit improved optimal accuracy due to the use of derivatives, and they collapse to solutions similar to typical WENO methods when limiting is required. The study concludes that the new HWENO methods are robust and effective when used in the ADER-DT MMFV framework. These results are intended to demonstrate capability rather than exhaust all possible implementations.
Hollingshead, Kyle B; Jain, Avni; Truskett, Thomas M
2013-10-28
We study whether fine discretization (i.e., terracing) of continuous pair interactions, when used in combination with first-order mean-spherical approximation theory, can lead to a simple and general analytical strategy for predicting the equilibrium structure and thermodynamics of complex fluids. Specifically, we implement a version of this approach to predict how screened electrostatic repulsions, solute-mediated depletion attractions, or ramp-shaped repulsions modify the radial distribution function and the potential energy of reference hard-sphere fluids, and we compare the predictions to exact results from molecular simulations. PMID:24181996
Systematic generation of nonlinear discretized dynamic equilibrium equations of spinning cantilevers
NASA Technical Reports Server (NTRS)
El-Essawi, M.; Utku, S.; Salama, M.
1982-01-01
General nonlinear discretized governing equations of motion of spinning elastic solids and structures are adjusted for the case of a spinning cantilever with initial geometric imperfections. Consideration is given to second degree nonlinearities in the strain-displacement and velocity-displacement relationships. Parameters of the discretization are developed to include the type and number of the coordinate functions used in the admissible trial solution in order to unify the discretization approaches associated with stationarity principles. The coordinate functions comprise both sets of continuous and piecewise continuous functions employed in the Rayleigh-Ritz and the finite element methods, respectively. Coefficient matrices are provided which contain the energy density expressions and which are adaptable to computer programming.
Non-equilibrium Green's functions study of discrete dopants variability on an ultra-scaled FinFET
Valin, R. Martinez, A.; Barker, J. R.
2015-04-28
In this paper, we study the effect of random discrete dopants on the performance of a 6.6 nm channel length silicon FinFET. The discrete dopants have been distributed randomly in the source/drain region of the device. Due to the small dimensions of the FinFET, a quantum transport formalism based on the non-equilibrium Green's functions has been deployed. The transfer characteristics for several devices that differ in location and number of dopants have been calculated. Our results demonstrate that discrete dopants modify the effective channel length and the height of the source/drain barrier, consequently changing the channel control of the charge. This effect becomes more significant at high drain bias. As a consequence, there is a strong effect on the variability of the on-current, off-current, sub-threshold slope, and threshold voltage. Finally, we have also calculated the mean and standard deviation of these parameters to quantify their variability. The obtained results show that the variability at high drain bias is 1.75 larger than at low drain bias. However, the variability of the on-current, off-current, and sub-threshold slope remains independent of the drain bias. In addition, we have found that a large source to drain current by tunnelling current occurs at low gate bias.
NASA Astrophysics Data System (ADS)
Mei, Hong-Xin; Zhang, Ting; Huang, Hua-Qi; Huang, Rong-Bin; Zheng, Lan-Sun
2016-03-01
Three mix-ligand Ag(I) coordination compounds, namely, {[Ag10(tpyz) 5(L1) 5(H2 O)2].(H2 O)4}n (1, tpyz = 2,3,4,5-tetramethylpyrazine, H2 L1 = phthalic acid), [Ag4(tpyz) 2(L2) 2(H2 O)].(H2 O)5}n (2, H2 L2 = isophthalic acid) {[Ag2(tpyz) 2(L3) (H2 O)4].(H2 O)8}n (3, H2 L3 = terephthalic acid), have been synthesized and characterized by elemental analysis, IR, PXRD and X-ray single-crystal diffraction. 1 exhibits a 2D layer which can be simplified as a (4,4) net. 2 is a 3D network which can be simplified as a (3,3)-connected 2-nodal net with a point symbol of {102.12}{102}. 3 consists of linear [Ag(tpyz) (H2 O)2]n chain. Of particular interest, discrete hexamer water clusters were observed in 1 and 2, while a 2D L10(6) water layer exists in 3. The results suggest that the benzene dicarboxylates play pivotal roles in the formation of the different host architectures as well as different water aggregations. Moreover, thermogravimetric analysis (TGA) and emissive behaviors of these compounds were investigated.
A multispeed Discrete Boltzmann Model for transcritical 2D shallow water flows
NASA Astrophysics Data System (ADS)
La Rocca, Michele; Montessori, Andrea; Prestininzi, Pietro; Succi, Sauro
2015-03-01
In this work a Discrete Boltzmann Model for the solution of transcritical 2D shallow water flows is presented and validated. In order to provide the model with transcritical capabilities, a particular multispeed velocity set has been employed for the discretization of the Boltzmann equation. It is shown that this particular set naturally yields a simple and closed procedure to determine higher order equilibrium distribution functions needed to simulate transcritical flow. The model is validated through several classical benchmarks and is proven to correctly and accurately simulate both 1D and 2D transitions between the two flow regimes.
Quadratic Finite Element Method for 1D Deterministic Transport
Tolar, Jr., D R; Ferguson, J M
2004-01-06
In the discrete ordinates, or SN, numerical solution of the transport equation, both the spatial ({und r}) and angular ({und {Omega}}) dependences on the angular flux {psi}{und r},{und {Omega}}are modeled discretely. While significant effort has been devoted toward improving the spatial discretization of the angular flux, we focus on improving the angular discretization of {psi}{und r},{und {Omega}}. Specifically, we employ a Petrov-Galerkin quadratic finite element approximation for the differencing of the angular variable ({mu}) in developing the one-dimensional (1D) spherical geometry S{sub N} equations. We develop an algorithm that shows faster convergence with angular resolution than conventional S{sub N} algorithms.
Discrete vortex representation of magnetohydrodynamics
Kinney, R.; Tajima, T.; Petviashvili, N.; McWilliams, J.C.
1993-02-01
We present an alternative approach to statistical analysis of an intermittent ideal MHD fluid in two dimensions, based on the hydrodynamical discrete vortex model applied to the Elsasser variables. The model contains negative temperature states which predict the formation of magnetic islands, but also includes a natural limit under which the equilibrium states revert to the familiar twin-vortex states predicted by hydrodynamical turbulence theories. Numerical dynamical calculations yield equilibrium spectra in agreement with the theoretical predictions.
Entropy-based artificial viscosity stabilization for non-equilibrium Grey Radiation-Hydrodynamics
Delchini, Marc O. Ragusa, Jean C. Morel, Jim
2015-09-01
The entropy viscosity method is extended to the non-equilibrium Grey Radiation-Hydrodynamic equations. The method employs a viscous regularization to stabilize the numerical solution. The artificial viscosity coefficient is modulated by the entropy production and peaks at shock locations. The added dissipative terms are consistent with the entropy minimum principle. A new functional form of the entropy residual, suitable for the Radiation-Hydrodynamic equations, is derived. We demonstrate that the viscous regularization preserves the equilibrium diffusion limit. The equations are discretized with a standard Continuous Galerkin Finite Element Method and a fully implicit temporal integrator within the MOOSE multiphysics framework. The method of manufactured solutions is employed to demonstrate second-order accuracy in both the equilibrium diffusion and streaming limits. Several typical 1-D radiation-hydrodynamic test cases with shocks (from Mach 1.05 to Mach 50) are presented to establish the ability of the technique to capture and resolve shocks.
NASA Astrophysics Data System (ADS)
Feldman, Michal; Tennenholtz, Moshe
We introduce partition equilibrium and study its existence in resource selection games (RSG). In partition equilibrium the agents are partitioned into coalitions, and only deviations by the prescribed coalitions are considered. This is in difference to the classical concept of strong equilibrium according to which any subset of the agents may deviate. In resource selection games, each agent selects a resource from a set of resources, and its payoff is an increasing (or non-decreasing) function of the number of agents selecting its resource. While it has been shown that strong equilibrium exists in resource selection games, these games do not possess super-strong equilibrium, in which a fruitful deviation benefits at least one deviator without hurting any other deviator, even in the case of two identical resources with increasing cost functions. Similarly, strong equilibrium does not exist for that restricted two identical resources setting when the game is played repeatedly. We prove that for any given partition there exists a super-strong equilibrium for resource selection games of identical resources with increasing cost functions; we also show similar existence results for a variety of other classes of resource selection games. For the case of repeated games we identify partitions that guarantee the existence of strong equilibrium. Together, our work introduces a natural concept, which turns out to lead to positive and applicable results in one of the basic domains studied in the literature.
Discreteness induced extinction
NASA Astrophysics Data System (ADS)
dos Santos, Renato Vieira; da Silva, Linaena Méricy
2015-11-01
Two simple models based on ecological problems are discussed from the point of view of non-equilibrium statistical mechanics. It is shown how discrepant may be the results of the models that include spatial distribution with discrete interactions when compared with the continuous analogous models. In the continuous case we have, under certain circumstances, the population explosion. When we take into account the finiteness of the population, we get the opposite result, extinction. We will analyze how these results depend on the dimension d of the space and describe the phenomenon of the "Discreteness Inducing Extinction" (DIE). The results are interpreted in the context of the "paradox of sex", an old problem of evolutionary biology.
Yoshikawa, S.
1981-08-01
A straight, helical plasma equilibrium equation is solved numerically for a plasma with a helical magnetic axis. As is expected, by a suitable choice of the plasma boundary, the vacuum configuration is made line ..integral.. dl/B stable. As the plasma pressure increases, the line ..integral.. dl/B criterion will improve (again as expected). There is apparently no limit on the plasma ..beta.. from the equilibrium consideration. Thus helical-axis stellarator ..beta.. will presumably be limited by MHD stability ..beta.., and not by equilibrium ..beta...
NASA Astrophysics Data System (ADS)
Vivaldi, Franco
2015-12-01
The concept of resonance has been instrumental to the study of Hamiltonian systems with divided phase space. One can also define such systems over discrete spaces, which have a finite or countable number of points, but in this new setting the notion of resonance must be re-considered from scratch. I review some recent developments in the area of arithmetic dynamics which outline some salient features of linear and nonlinear stable (elliptic) orbits over a discrete space, and also underline the difficulties that emerge in their analysis.
NASA Astrophysics Data System (ADS)
Vivaldi, Franco
The concept of resonance has been instrumental to the study of Hamiltonian systems with divided phase space. One can also define such systems over discrete spaces, which have a finite or countable number of points, but in this new setting the notion of resonance must be re-considered from scratch. I review some recent developments in the area of arithmetic dynamics which outline some salient features of linear and nonlinear stable (elliptic) orbits over a discrete space, and also underline the difficulties that emerge in their analysis.
Equilibrium and non-equilibrium properties of finite-volume crystallites
NASA Astrophysics Data System (ADS)
Degawa, Masashi
Finite volume effects on equilibrium and non-equilibrium properties of nano-crystallites are studied theoretically and compared to both experiment and simulation. When a system is isolated or its size is small compared to the correlation length, all equilibrium and close-to-equilibrium properties will depend on the system boundary condition. Specifically for solid nano-crystallites, their finite size introduces global curvature to the system, which alters its equilibrium properties compared to the thermodynamic limit. Also such global curvature leads to capillary-induced morphology changes of the surface. Interesting dynamics can arise when the crystallite is supported on a substrate, with crossovers of the dominant driving force from the capillary force and crystallite-substrate interactions. To address these questions, we introduce thermodynamic functions for the boundary conditions, which can be derived from microscopic models. For nano-crystallites, the boundary is the surface (including interfaces), the thermodynamic description is based on the steps that define the shape of the surface, and the underlying microscopic model includes kinks. The global curvature of the surface introduces metastable states with different shapes governed by a constant of integration of the extra boundary condition, which we call the shape parameter c. The discrete height of the steps introduces transition states in between the metastable states, and the lowest energy accessible structure (energy barrier less 10k BT) as a function of the volume has been determined. The dynamics of nano-crystallites as they relax from a non-equilibrium structure is described quantitatively in terms of the motion of steps in both capillary-induced and interface-boundary-induced regimes. The step-edge fluctuations of the top facet are also influenced by global curvature and volume conservation and the effect yields different dynamic scaling exponents from a pure 1D system. Theoretical results are
Second-order discretization in space and time for radiation hydrodynamics
Edwards, J. D.; Morel, J. E.; Lowrie, R. B.
2013-07-01
We present a method for solving the equations of radiation hydrodynamics that is second-order accurate in space and time. This method combines the MUSCL-Hancock method for solving the Euler equations with the TR/BDF2 scheme in time for solving the equations of radiative transfer. We use an LDFEM to discretize the radiative transfer equations in space, which, though uncommon for radiation diffusion calculations, is a standard for radiation transport applications. We address the challenges inherent to using different spatial discretizations for the hydrodynamics and radiation and demonstrate how these may be overcome. We define our method for a 1-D model of compressible fluid dynamics coupled with grey radiation diffusion. Using the method of manufactured solutions, we show that the method is second-order accurate in space and time for both the equilibrium diffusion and streaming limit. (authors)
1D Josephson quantum interference grids: diffraction patterns and dynamics
NASA Astrophysics Data System (ADS)
Lucci, M.; Badoni, D.; Corato, V.; Merlo, V.; Ottaviani, I.; Salina, G.; Cirillo, M.; Ustinov, A. V.; Winkler, D.
2016-02-01
We investigate the magnetic response of transmission lines with embedded Josephson junctions and thus generating a 1D underdamped array. The measured multi-junction interference patterns are compared with the theoretical predictions for Josephson supercurrent modulations when an external magnetic field couples both to the inter-junction loops and to the junctions themselves. The results provide a striking example of the analogy between Josephson phase modulation and 1D optical diffraction grid. The Fiske resonances in the current-voltage characteristics with voltage spacing {Φ0}≤ft(\\frac{{\\bar{c}}}{2L}\\right) , where L is the total physical length of the array, {Φ0} the magnetic flux quantum and \\bar{c} the speed of light in the transmission line, demonstrate that the discrete line supports stable dynamic patterns generated by the ac Josephson effect interacting with the cavity modes of the line.
2D/1D approximations to the 3D neutron transport equation. II: Numerical comparisons
Kelley, B. W.; Collins, B.; Larsen, E. W.
2013-07-01
In a companion paper [1], (i) several new '2D/1D equations' are introduced as accurate approximations to the 3D Boltzmann transport equation, (ii) the simplest of these approximate equations is systematically discretized, and (iii) a theoretically stable iteration scheme is developed to solve the discrete equations. In this paper, numerical results are presented that confirm the theoretical predictions made in [1]. (authors)
Structural stability of a 1D compressible viscoelastic fluid model
NASA Astrophysics Data System (ADS)
Huo, Xiaokai; Yong, Wen-An
2016-07-01
This paper is concerned with a compressible viscoelastic fluid model proposed by Öttinger. Although the model has a convex entropy, the Hessian matrix of the entropy does not symmetrize the system of first-order partial differential equations due to the non-conservative terms in the constitutive equation. We show that the corresponding 1D model is symmetrizable hyperbolic and dissipative and satisfies the Kawashima condition. Based on these, we prove the global existence of smooth solutions near equilibrium and justify the compatibility of the model with the Navier-Stokes equations.
Stability analysis of the Euler discretization for SIR epidemic model
Suryanto, Agus
2014-06-19
In this paper we consider a discrete SIR epidemic model obtained by the Euler method. For that discrete model, existence of disease free equilibrium and endemic equilibrium is established. Sufficient conditions on the local asymptotical stability of both disease free equilibrium and endemic equilibrium are also derived. It is found that the local asymptotical stability of the existing equilibrium is achieved only for a small time step size h. If h is further increased and passes the critical value, then both equilibriums will lose their stability. Our numerical simulations show that a complex dynamical behavior such as bifurcation or chaos phenomenon will appear for relatively large h. Both analytical and numerical results show that the discrete SIR model has a richer dynamical behavior than its continuous counterpart.
NASA Astrophysics Data System (ADS)
Izzo, Dario; Petazzi, Lorenzo
2006-08-01
We present a satellite path planning technique able to make identical spacecraft aquire a given configuration. The technique exploits a behaviour-based approach to achieve an autonomous and distributed control over the relative geometry making use of limited sensorial information. A desired velocity is defined for each satellite as a sum of different contributions coming from generic high level behaviours: forcing the final desired configuration the behaviours are further defined by an inverse dynamic calculation dubbed Equilibrium Shaping. We show how considering only three different kind of behaviours it is possible to acquire a number of interesting formations and we set down the theoretical framework to find the entire set. We find that allowing a limited amount of communication the technique may be used also to form complex lattice structures. Several control feedbacks able to track the desired velocities are introduced and discussed. Our results suggest that sliding mode control is particularly appropriate in connection with the developed technique.
NASA Technical Reports Server (NTRS)
1945-01-01
Vought F4U-1D Corsair: In February and March of 1945 this Corsair was examined in the NACA's 30 x 60 Full Scale Tunnel at Langley Field. The F4U-1D has rockets mounted on its wings for this test. After installation and during testing, the wings would be lowered to their flight position.
Discrete breathers in graphane: Effect of temperature
NASA Astrophysics Data System (ADS)
Baimova, J. A.; Murzaev, R. T.; Lobzenko, I. P.; Dmitriev, S. V.; Zhou, Kun
2016-05-01
The discrete breathers in graphane in thermodynamic equilibrium in the temperature range 50-600 K are studied by molecular dynamics simulation. A discrete breather is a hydrogen atom vibrating along the normal to a sheet of graphane at a high amplitude. As was found earlier, the lifetime of a discrete breather at zero temperature corresponds to several tens of thousands of vibrations. The effect of temperature on the decay time of discrete breathers and the probability of their detachment from a sheet of graphane are studied in this work. It is shown that closely spaced breathers can exchange energy with each other at zero temperature. The data obtained suggest that thermally activated discrete breathers can be involved in the dehydrogenation of graphane, which is important for hydrogen energetics.
ERIC Educational Resources Information Center
Ghezzi, Patrick M.
2007-01-01
The advantages of emphasizing discrete trials "teaching" over discrete trials "training" are presented first, followed by a discussion of discrete trials as a method of teaching that emerged historically--and as a matter of necessity for difficult learners such as those with autism--from discrete trials as a method for laboratory research. The…
Global stability for a class of discrete SIR epidemic models.
Enatsu, Yoichi; Nakata, Yukihiko; Muroya, Yoshiaki
2010-04-01
In this paper, we propose a class of discrete SIR epidemic models which are derived from SIR epidemic models with distributed delays by using a variation of the backward Euler method. Applying a Lyapunov functional technique, it is shown that the global dynamics of each discrete SIR epidemic model are fully determined by a single threshold parameter and the effect of discrete time delays are harmless for the global stability of the endemic equilibrium of the model. PMID:20462293
Thermodynamic equilibrium at heterogeneous pressure
NASA Astrophysics Data System (ADS)
Vrijmoed, Johannes C.; Podladchikov, Yuri Y.
2014-05-01
Recent advances in metamorphic petrology point out the importance of grain-scale pressure variations in high-temperature metamorphic rocks. Pressures derived from chemical zonation using unconventional geobarometry based on equal chemical potentials fit mechanically feasible pressure variations. Here a thermodynamic equilibrium method is presented that predicts chemical zoning as a result of pressure variations by Gibbs energy minimization. Equilibrium thermodynamic prediction of the chemical zoning in the case of pressure heterogeneity is done by constraint Gibbs minimization using linear programming techniques. Compositions of phases considered in the calculation are discretized into 'pseudo-compounds' spanning the entire compositional space. Gibbs energies of these discrete compounds are generated for a given range and resolution of pressures for example derived by barometry or from mechanical model predictions. Gibbs energy minimization is subsequently performed considering all compounds of different composition and pressure. In addition to constraining the system composition a certain proportion of the system is constraint at a specified pressure. Input pressure variations need to be discretized and each discrete pressure defines an additional constraint for the minimization. The proportion of the system at each different pressure is equally distributed over the number of input pressures. For example if two input pressures P1 and P2 are specified, two constraints are added: 50 percent of the system is constraint at P1 while the remaining 50 percent is constraint at P2. The method has been tested for a set of 10 input pressures obtained by Tajčmanová et al. (2014) using their unconventional geobarometry method in a plagioclase rim around kyanite. Each input pressure is added as constraint to the minimization (1/10 percent of the system for each discrete pressure). Constraining the system composition to the average composition of the plagioclase rim
2D/1D approximations to the 3D neutron transport equation. I: Theory
Kelley, B. W.; Larsen, E. W.
2013-07-01
A new class of '2D/1D' approximations is proposed for the 3D linear Boltzmann equation. These approximate equations preserve the exact transport physics in the radial directions x and y and diffusion physics in the axial direction z. Thus, the 2D/1D equations are more accurate approximations of the 3D Boltzmann equation than the conventional 3D diffusion equation. The 2D/1D equations can be systematically discretized, to yield accurate simulation methods for 3D reactor core problems. The resulting solutions will be more accurate than 3D diffusion solutions, and less expensive to generate than standard 3D transport solutions. In this paper, we (i) show that the simplest 2D/1D equation has certain desirable properties, (ii) systematically discretize this equation, and (iii) derive a stable iteration scheme for solving the discrete system of equations. In a companion paper [1], we give numerical results that confirm the theoretical predictions of accuracy and iterative stability. (authors)
1D ferrimagnetism in homometallic chains
NASA Astrophysics Data System (ADS)
Coronado, E.; Gómez-García, C. J.; Borrás-Almenar, J. J.
1990-05-01
The magnetic properties of the cobalt zigzag chain Co(bpy)(NCS)2 (bpy=2,2'-bipyridine) are discussed on the basis of an Ising-chain model that takes into account alternating Landé factors. It is emphasized, for the first time, that a homometallic chain containing only one type of site can give rise to a 1D ferrimagneticlike behavior.
DESIGN PACKAGE 1D SYSTEM SAFETY ANALYSIS
L.R. Eisler
1995-02-02
The purpose of this analysis is to systematically identify and evaluate hazards related to the Yucca Mountain Project Exploratory Studies Facility (ESF) Design Package 1D, Surface Facilities, (for a list of design items included in the package 1D system safety analysis see section 3). This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach was used since a radiological System Safety analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the Design Package 1D structures/systems/components in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the structure/system/component (S/S/C) design, (2) add safety devices and capabilities to the designs that reduce risk, (3) provide devices that detect and warn personnel of hazardous conditions, and (4) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions. The scope of this analysis is limited to the Design Package 1D structures/systems/components (S/S/Cs) during normal operations excluding hazards occurring during maintenance and ''off normal'' operations.
A discretization of Boltzmann's collision operator with provable convergence
NASA Astrophysics Data System (ADS)
Brechtken, Stefan
2014-12-01
The discretization of the right-hand side of the Boltzmann equation (aka the collision operator) on uniform grids generally suffers from some well known problems prohibiting the construction of deterministic high order discretizations which exactly sustain the basic properties of the collision operator. These problems mainly relate to problems arising from the discretization of spheres on uniform grids and the necessity that the discretization must possess some symmetry properties in order to provide the discrete versions of properties stemming from the continuous collision operator (number of collision invariants, avoidance of artificial collision invariants, type of equilibrium solutions, H-Theorem). We present a scheme to construct discretizations in 2 dimensions with arbitrarily high convergence orders on uniform grids, which are comparable to the approach by Rogier and Schneider [1] and the subsequent works by Michel and Schneider as well as Panferov and Heintz [2, 3] who used Farey sequences for the discretization. Moreover we take a closer look at this discretization in the framework of discrete velocity models to present results governing the correct collision invariants, lack of artificial collision invariants, the H-Theorem and the correct equilibrium solutions. Furthermore we classify lattice group models (LGpM) in the context of DVMs to transfer the high convergence order of these discretizations into the context of LGpMs and finally we take a short look at the numerical complexity.
Preece, D.S. Perkins, E.D.
1999-02-10
Techniques for modeling oil well sand production have been developed using the formulations for superquadric discrete elements and Darcy fluid flow. Discrete element models are generated using the new technique of particle cloning. Discrete element sources and sinks allow simulation of sand production from the initial state through the transition to an equilibrium state where particles are created and removed at the same rate.
A Glove for Tapping and Discrete 1D/2D Input
NASA Technical Reports Server (NTRS)
Miller, Sam A.; Smith, Andy; Bahram, Sina; SaintAmant, Robert
2012-01-01
This paper describes a glove with which users enter input by tapping fingertips with the thumb or by rubbing the thumb over the palmar surfaces of the middle and index fingers. The glove has been informally tested as the controller for two semi-autonomous robots in a a 3D simulation environment. A preliminary evaluation of the glove s performance is presented.
Stochastic approach to equilibrium and nonequilibrium thermodynamics.
Tomé, Tânia; de Oliveira, Mário J
2015-04-01
We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions. PMID:25974471
Stochastic approach to equilibrium and nonequilibrium thermodynamics
NASA Astrophysics Data System (ADS)
Tomé, Tânia; de Oliveira, Mário J.
2015-04-01
We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.
Preparation of 1D nanostructures using biomolecules
NASA Astrophysics Data System (ADS)
Pruneanu, Stela; Olenic, Liliana; Barbu Tudoran, Lucian; Kacso, Irina; Farha Al-Said, Said A.; Hassanien, Reda; Houlton, Andrew; Horrocks, Benjamin R.
2009-08-01
In this paper we have shown that one-dimensional (1D) particle arrays can be obtained using biomolecules, like DNA or amino-acids. Nano-arrays of silver and gold were prepared in a single-step synthesis, by exploiting the binding abilities of λ-DNA and L-Arginine. The morphology and optical properties of these nanostructures were investigated using AFM, TEM and UV-Vis absorption spectroscopy.
Coalescence phenomena in 1D silver nanostructures
NASA Astrophysics Data System (ADS)
Gutiérrez-Wing, C.; Pérez-Alvarez, M.; Mondragón-Galicia, G.; Arenas-Alatorre, J.; Gutiérrez-Wing, M. T.; Henk, M. C.; Negulescu, I. I.; Rusch, K. A.
2009-07-01
Different coalescence processes on 1D silver nanostructures synthesized by a PVP assisted reaction in ethylene glycol at 160 °C were studied experimentally and theoretically. Analysis by TEM and HRTEM shows different defects found on the body of these materials, suggesting that they were induced by previous coalescence processes in the synthesis stage. TEM observations showed that irradiation with the electron beam eliminates the boundaries formed near the edges of the structures, suggesting that this process can be carried out by the application of other means of energy (i.e. thermal). These results were also confirmed by theoretical calculations by Monte Carlo simulations using a Sutton-Chen potential. A theoretical study by molecular dynamics simulation of the different coalescence processes on 1D silver nanostructures is presented, showing a surface energy driven sequence followed to form the final coalesced structure. Calculations were made at 1000-1300 K, which is near the melting temperature of silver (1234 K). Based on these results, it is proposed that 1D nanostructures can grow through a secondary mechanism based on coalescence, without losing their dimensionality.
Centrosome Positioning in 1D Cell Migration
NASA Astrophysics Data System (ADS)
Adlerz, Katrina; Aranda-Espinoza, Helim
During cell migration, the positioning of the centrosome and nucleus define a cell's polarity. For a cell migrating on a two-dimensional substrate the centrosome is positioned in front of the nucleus. Under one-dimensional confinement, however, the centrosome is positioned behind the nucleus in 60% of cells. It is known that the centrosome is positioned by CDC42 and dynein for cells moving on a 2D substrate in a wound-healing assay. It is currently unknown, however, if this is also true for cells moving under 1D confinement, where the centrosome position is often reversed. Therefore, centrosome positioning was studied in cells migrating under 1D confinement, which mimics cells migrating through 3D matrices. 3 to 5 μm fibronectin lines were stamped onto a glass substrate and cells with fluorescently labeled nuclei and centrosomes migrated on the lines. Our results show that when a cell changes directions the centrosome position is maintained. That is, when the centrosome is between the nucleus and the cell's trailing edge and the cell changes direction, the centrosome will be translocated across the nucleus to the back of the cell again. A dynein inhibitor did have an influence on centrosome positioning in 1D migration and change of directions.
Principles of Discrete Time Mechanics
NASA Astrophysics Data System (ADS)
Jaroszkiewicz, George
2014-04-01
1. Introduction; 2. The physics of discreteness; 3. The road to calculus; 4. Temporal discretization; 5. Discrete time dynamics architecture; 6. Some models; 7. Classical cellular automata; 8. The action sum; 9. Worked examples; 10. Lee's approach to discrete time mechanics; 11. Elliptic billiards; 12. The construction of system functions; 13. The classical discrete time oscillator; 14. Type 2 temporal discretization; 15. Intermission; 16. Discrete time quantum mechanics; 17. The quantized discrete time oscillator; 18. Path integrals; 19. Quantum encoding; 20. Discrete time classical field equations; 21. The discrete time Schrodinger equation; 22. The discrete time Klein-Gordon equation; 23. The discrete time Dirac equation; 24. Discrete time Maxwell's equations; 25. The discrete time Skyrme model; 26. Discrete time quantum field theory; 27. Interacting discrete time scalar fields; 28. Space, time and gravitation; 29. Causality and observation; 30. Concluding remarks; Appendix A. Coherent states; Appendix B. The time-dependent oscillator; Appendix C. Quaternions; Appendix D. Quantum registers; References; Index.
On Discrete Lotka-Volterra Type Models
NASA Astrophysics Data System (ADS)
Mukhamedov, Farrukh; Saburov, Mansoor
The Lotka-Volterra (in short LV) model is a second order nonlinear differential equation frequently used to describe the dynamics of biological systems in which two groups of species, predators and their preys interact. One of the basic results of the LV model is that under suitable conditions the LV model can exhibit any asymptotical behavior such as equilibrium states, periodic cycles, and attractors. The discrete analogy of LV model has been considered by many researchers and has been called a quadratic LV model. In a discrete case, one of the unexpected results is that a quadratic LV model cannot exhibit a periodic cycle. In this paper we study nonlinear LV type models which include quadratic LV as a particular case. Unlike quadratic LV models, LV type models can exhibit any asymptotical behavior such as equilibrium states, periodic cycles, and attractors.
A 1-D morphodynamic model of postglacial valley incision
NASA Astrophysics Data System (ADS)
Tunnicliffe, Jon F.; Church, Michael
2015-11-01
Chilliwack River is typical of many Cordilleran valley river systems that have undergone dramatic Holocene degradation of valley fills that built up over the course of Pleistocene glaciation. Downstream controls on base level, mainly blockage of valleys by glaciers, led to aggradation of significant glaciofluvial and glaciolacustrine valley fills and fan deposits, subsequently incised by fluvial action. Models of such large-scale, long-term degradation present a number of important challenges since the evolution of model parameters, such as the rate of bedload transport and grain size characteristics, are governed by the nature of the deposit. Sediment sampling in the Chilliwack Valley reveals a complex sequence of very coarse to fine textural modes. We present a 1-D numerical morphodynamic model for the river-floodplain system tailored to conditions in the valley. The model is adapted to dynamically adjust channel width to optimize sediment transporting capacity and to integrate relict valley fill material as the channel incises through valley deposits. Sensitivity to model parameters is studied using four principal criteria: profile concavity, rate of downstream grain size fining, bed surface sand content, and the timescale to equilibrium. Model results indicate that rates of abrasion and coarsening of the grain size distributions exert the strongest controls on all of the interrelated model performance criteria. While there are a number of difficulties in satisfying all model criteria simultaneously, results indicate that 1-D models of valley bottom sedimentary systems can provide a suitable framework for integrating results from sediment budget studies and chronologies of sediment evacuation established from dating.
A 1-D dusty plasma photonic crystal
Mitu, M. L.; Ticoş, C. M.; Toader, D.; Banu, N.; Scurtu, A.
2013-09-21
It is demonstrated numerically that a 1-D plasma crystal made of micron size cylindrical dust particles can, in principle, work as a photonic crystal for terahertz waves. The dust rods are parallel to each other and arranged in a linear string forming a periodic structure of dielectric-plasma regions. The dispersion equation is found by solving the waves equation with the boundary conditions at the dust-plasma interface and taking into account the dielectric permittivity of the dust material and plasma. The wavelength of the electromagnetic waves is in the range of a few hundred microns, close to the interparticle separation distance. The band gaps of the 1-D plasma crystal are numerically found for different types of dust materials, separation distances between the dust rods and rod diameters. The distance between levitated dust rods forming a string in rf plasma is shown experimentally to vary over a relatively wide range, from 650 μm to about 1350 μm, depending on the rf power fed into the discharge.
1D-VAR Retrieval Using Superchannels
NASA Technical Reports Server (NTRS)
Liu, Xu; Zhou, Daniel; Larar, Allen; Smith, William L.; Schluessel, Peter; Mango, Stephen; SaintGermain, Karen
2008-01-01
Since modern ultra-spectral remote sensors have thousands of channels, it is difficult to include all of them in a 1D-var retrieval system. We will describe a physical inversion algorithm, which includes all available channels for the atmospheric temperature, moisture, cloud, and surface parameter retrievals. Both the forward model and the inversion algorithm compress the channel radiances into super channels. These super channels are obtained by projecting the radiance spectra onto a set of pre-calculated eigenvectors. The forward model provides both super channel properties and jacobian in EOF space directly. For ultra-spectral sensors such as Infrared Atmospheric Sounding Interferometer (IASI) and the NPOESS Airborne Sounder Testbed Interferometer (NAST), a compression ratio of more than 80 can be achieved, leading to a significant reduction in computations involved in an inversion process. Results will be shown applying the algorithm to real IASI and NAST data.
Morris, J; Johnson, S
2007-12-03
The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.
Synchronous Discrete Harmonic Oscillator
Antippa, Adel F.; Dubois, Daniel M.
2008-10-17
We introduce the synchronous discrete harmonic oscillator, and present an analytical, numerical and graphical study of its characteristics. The oscillator is synchronous when the time T for one revolution covering an angle of 2{pi} in phase space, is an integral multiple N of the discrete time step {delta}t. It is fully synchronous when N is even. It is pseudo-synchronous when T/{delta}t is rational. In the energy conserving hyperincursive representation, the phase space trajectories are perfectly stable at all time scales, and in both synchronous and pseudo-synchronous modes they cycle through a finite number of phase space points. Consequently, both the synchronous and the pseudo-synchronous hyperincursive modes of time-discretization provide a physically realistic and mathematically coherent, procedure for dynamic, background independent, discretization of spacetime. The procedure is applicable to any stable periodic dynamical system, and provokes an intrinsic correlation between space and time, whereby space-discretization is a direct consequence of background-independent time-discretization. Hence, synchronous discretization moves the formalism of classical mechanics towards that of special relativity. The frequency of the hyperincursive discrete harmonic oscillator is ''blue shifted'' relative to its continuum counterpart. The frequency shift has the precise value needed to make the speed of the system point in phase space independent of the discretizing time interval {delta}t. That is the speed of the system point is the same on the polygonal (in the discrete case) and the circular (in the continuum case) phase space trajectories.
Possible Dimensional Crossover to 1D of ^3He Fluid in Nanochannels Observed in Susceptibilities
NASA Astrophysics Data System (ADS)
Matsushita, Taku; Kurebayashi, Katsuya; Shibatsuji, Ryosuke; Hieda, Mitsunori; Wada, Nobuo
2016-05-01
Dimensional crossover to the one-dimensional (1D) state from higher dimensions has been studied for dilute ^3He fluid adsorbed in 2.4 nm ^4He-preplated nanochannels, by susceptibility measurements down to 70 mK using 4.29 MHz nuclear magnetic resonance. In nanochannels, since energy states of ^3He motion perpendicular to the channel axis are discrete, a genuine 1D ^3He fluid is expected when the Fermi energy is less than the first excitation Δ _{01} for azimuthal motion. The susceptibilities χ above 0.3 K show the Curie-law susceptibilities independent of the ^3He density, which are characteristic of nondegenerate fluid in higher dimensions. With decreasing the temperature, a significant reduction of χ T was observed from about 0.3 K for all ^3He densities. It is considered to be due to the dimensional crossover below Δ _{01}˜ 0.5 K to the 1D ^3He state in the semi-degenerate regime above the Fermi temperature. In the 1D state at lower temperatures, T-independent χ were observed for ^3He of 0.019 layers below 0.1 K. It suggests that the 1D ^3He fluid enters the quantum degenerate regime.
Discretizing singular point sources in hyperbolic wave propagation problems
NASA Astrophysics Data System (ADS)
Petersson, N. Anders; O'Reilly, Ossian; Sjögreen, Björn; Bydlon, Samuel
2016-09-01
We develop high order accurate source discretizations for hyperbolic wave propagation problems in first order formulation that are discretized by finite difference schemes. By studying the Fourier series expansions of the source discretization and the finite difference operator, we derive sufficient conditions for achieving design accuracy in the numerical solution. Only half of the conditions in Fourier space can be satisfied through moment conditions on the source discretization, and we develop smoothness conditions for satisfying the remaining accuracy conditions. The resulting source discretization has compact support in physical space, and is spread over as many grid points as the number of moment and smoothness conditions. In numerical experiments we demonstrate high order of accuracy in the numerical solution of the 1-D advection equation (both in the interior and near a boundary), the 3-D elastic wave equation, and the 3-D linearized Euler equations.
Carlsten, B.E.; Haynes, W.B.
1996-08-01
The authors theoretically and numerically investigate the operation and behavior of the discrete monotron oscillator, a novel high-power microwave source. The discrete monotron differs from conventional monotrons and transit time oscillators by shielding the electron beam from the monotron cavity`s RF fields except at two distinct locations. This makes the discrete monotron act more like a klystron than a distributed traveling wave device. As a result, the oscillator has higher efficiency and can operate with higher beam powers than other single cavity oscillators and has more stable operation without requiring a seed input signal than mildly relativistic, intense-beam klystron oscillators.
Variance Reduction for a Discrete Velocity Gas
NASA Astrophysics Data System (ADS)
Morris, A. B.; Varghese, P. L.; Goldstein, D. B.
2011-05-01
We extend a variance reduction technique developed by Baker and Hadjiconstantinou [1] to a discrete velocity gas. In our previous work, the collision integral was evaluated by importance sampling of collision partners [2]. Significant computational effort may be wasted by evaluating the collision integral in regions where the flow is in equilibrium. In the current approach, substantial computational savings are obtained by only solving for the deviations from equilibrium. In the near continuum regime, the deviations from equilibrium are small and low noise evaluation of the collision integral can be achieved with very coarse statistical sampling. Spatially homogenous relaxation of the Bobylev-Krook-Wu distribution [3,4], was used as a test case to verify that the method predicts the correct evolution of a highly non-equilibrium distribution to equilibrium. When variance reduction is not used, the noise causes the entropy to undershoot, but the method with variance reduction matches the analytic curve for the same number of collisions. We then extend the work to travelling shock waves and compare the accuracy and computational savings of the variance reduction method to DSMC over Mach numbers ranging from 1.2 to 10.
ERIC Educational Resources Information Center
Peters, James V.
2004-01-01
Using the methods of finite difference equations the discrete analogue of the parabolic and catenary cable are analysed. The fibonacci numbers and the golden ratio arise in the treatment of the catenary.
Discretizations of axisymmetric systems
NASA Astrophysics Data System (ADS)
Frauendiener, Jörg
2002-11-01
In this paper we discuss stability properties of various discretizations for axisymmetric systems including the so-called cartoon method which was proposed by Alcubierre et al. for the simulation of such systems on Cartesian grids. We show that within the context of the method of lines such discretizations tend to be unstable unless one takes care in the way individual singular terms are treated. Examples are given for the linear axisymmetric wave equation in flat space.
Getting Freshman in Equilibrium.
ERIC Educational Resources Information Center
Journal of Chemical Education, 1983
1983-01-01
Various aspects of chemical equilibrium were discussed in six papers presented at the Seventh Biennial Conference on Chemical Education (Stillwater, Oklahoma 1982). These include student problems in understanding hydrolysis, helping students discover/uncover topics, equilibrium demonstrations, instructional strategies, and flaws to kinetic…
A new general 1-D vadose zone flow solution method
NASA Astrophysics Data System (ADS)
Ogden, Fred L.; Lai, Wencong; Steinke, Robert C.; Zhu, Jianting; Talbot, Cary A.; Wilson, John L.
2015-06-01
We have developed an alternative to the one-dimensional partial differential equation (PDE) attributed to Richards (1931) that describes unsaturated porous media flow in homogeneous soil layers. Our solution is a set of three ordinary differential equations (ODEs) derived from unsaturated flux and mass conservation principles. We used a hodograph transformation, the Method of Lines, and a finite water-content discretization to produce ODEs that accurately simulate infiltration, falling slugs, and groundwater table dynamic effects on vadose zone fluxes. This formulation, which we refer to as "finite water-content", simulates sharp fronts and is guaranteed to conserve mass using a finite-volume solution. Our ODE solution method is explicitly integrable, does not require iterations and therefore has no convergence limits and is computationally efficient. The method accepts boundary fluxes including arbitrary precipitation, bare soil evaporation, and evapotranspiration. The method can simulate heterogeneous soils using layers. Results are presented in terms of fluxes and water content profiles. Comparing our method against analytical solutions, laboratory data, and the Hydrus-1D solver, we find that predictive performance of our finite water-content ODE method is comparable to or in some cases exceeds that of the solution of Richards' equation, with or without a shallow water table. The presented ODE method is transformative in that it offers accuracy comparable to the Richards (1931) PDE numerical solution, without the numerical complexity, in a form that is robust, continuous, and suitable for use in large watershed and land-atmosphere simulation models, including regional-scale models of coupled climate and hydrology.
1D-1D Coulomb drag in a 6 Million Mobility Bi-layer Heterostructure
NASA Astrophysics Data System (ADS)
Bilodeau, Simon; Laroche, Dominique; Xia, Jian-Sheng; Lilly, Mike; Reno, John; Pfeiffer, Loren; West, Ken; Gervais, Guillaume
We report Coulomb drag measurements in vertically-coupled quantum wires. The wires are fabricated in GaAs/AlGaAs bilayer heterostructures grown from two different MBE chambers: one at Sandia National Laboratories (1.2M mobility), and the other at Princeton University (6M mobility). The previously observed positive and negative drag signals are seen in both types of devices, demonstrating the robustness of the result. However, attempts to determine the temperature dependence of the drag signal in the 1D regime proved challenging in the higher mobility heterostructure (Princeton), in part because of difficulties in aligning the wires within the same transverse subband configuration. Nevertheless, this work, performed at the Microkelvin laboratory of the University of Florida, is an important proof-of-concept for future investigations of the temperature dependence of the 1D-1D drag signal down to a few mK. Such an experiment could confirm the Luttinger charge density wave interlocking predicted to occur in the wires. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL8500.
Understanding 1D Electrostatic Dust Levitation
NASA Astrophysics Data System (ADS)
Hartzell, C. M.; Scheeres, D. J.
2011-12-01
Electrostatically-dominated dust motion has been hypothesized since the Lunar Horizon Glow was observed by the Surveyor spacecraft. The hypothesized occurence of this phenomenon was naturally extended to asteroids due to their small gravities. Additionally, it has been suggested that the dust ponds observed on Eros by the NEAR mission may be created by electrostatically-dominated dust transport. Previous attempts to numerically model dust motion on the Moon and Eros have been stymied by poorly understood dust launching mechanisms. As a result, the initial velocity and charge of dust particles used in numerical simulations may or may not have any relevance to the actual conditions occurring in situ. It has been seen that properly tuned initial states (velocity and charge) result in dust particles levitating above the surface in both 1D and 2D simulations. Levitation is of interest to planetary scientists since it provides a way to quickly redistribute the surface dust particles over a body. However, there is currently no method to predict whether or not a certain initial state will result in levitation. We have developed a method to provide constraints on the initial states that result in levitation as a function of dust particle size and central body gravity. Additionally, our method can be applied to several models of the plasma sheath. Thus, we limit the guesswork involved in determining which initial conditions result in levitation. We provide a more detailed understanding of levitation phenomena couched in terms of the commonly recognized spring-mass system. This method of understanding dust motion removes the dependency on the launching mechanism, which remains fraught with controversy. Once a feasible dust launching mechanism is identified (be it micrometeoroid bombardment or electrostatic lofting), our method will allow the community to quickly ascertain if dust levitation will occur in situ or if it is simply a numerical artifact. In addition to
Some Extensions of Discrete Fixed Point Theorems and Their Applications to the Game Theory
NASA Astrophysics Data System (ADS)
Kawasaki, Hidefumi
2009-09-01
As is well-known in the game theory, fixed point theorems are useful to show the existence of Nash equilibrium. Since they are mathematical tools in continuous variables, it is expected that discrete fixed point theorems also useful to guarantee the existence of pure-strategy Nash equilibrium. In this talk, we review three types of discrete fixed point theorems, give some extensions, and apply them to non-cooperative games.
A discrete fractional random transform
NASA Astrophysics Data System (ADS)
Liu, Zhengjun; Zhao, Haifa; Liu, Shutian
2005-11-01
We propose a discrete fractional random transform based on a generalization of the discrete fractional Fourier transform with an intrinsic randomness. Such discrete fractional random transform inheres excellent mathematical properties of the fractional Fourier transform along with some fantastic features of its own. As a primary application, the discrete fractional random transform has been used for image encryption and decryption.
Chemical Principles Revisited: Chemical Equilibrium.
ERIC Educational Resources Information Center
Mickey, Charles D.
1980-01-01
Describes: (1) Law of Mass Action; (2) equilibrium constant and ideal behavior; (3) general form of the equilibrium constant; (4) forward and reverse reactions; (5) factors influencing equilibrium; (6) Le Chatelier's principle; (7) effects of temperature, changing concentration, and pressure on equilibrium; and (8) catalysts and equilibrium. (JN)
Discrete Newtonian cosmology: perturbations
NASA Astrophysics Data System (ADS)
Ellis, George F. R.; Gibbons, Gary W.
2015-03-01
In a previous paper (Gibbons and Ellis 2014 Discrete Newtonian cosmology Class. Quantum Grav. 31 025003), we showed how a finite system of discrete particles interacting with each other via Newtonian gravitational attraction would lead to precisely the same dynamical equations for homothetic motion as in the case of the pressure-free Friedmann-Lemaître-Robertson-Walker cosmological models of general relativity theory, provided the distribution of particles obeys the central configuration equation. In this paper we show that one can obtain perturbed such Newtonian solutions that give the same linearized structure growth equations as in the general relativity case. We also obtain the Dmitriev-Zel’dovich equations for subsystems in this discrete gravitational model, and show how it leads to the conclusion that voids have an apparent negative mass.
Computing Equilibrium Chemical Compositions
NASA Technical Reports Server (NTRS)
Mcbride, Bonnie J.; Gordon, Sanford
1995-01-01
Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.
Multigrid method for the equilibrium equations of elasticity using a compact scheme
NASA Technical Reports Server (NTRS)
Taasan, S.
1986-01-01
A compact difference scheme is derived for treating the equilibrium equations of elasticity. The scheme is inconsistent and unstable. A multigrid method which takes into account these properties is described. The solution of the discrete equations, up to the level of discretization errors, is obtained by this method in just two multigrid cycles.
NASA Astrophysics Data System (ADS)
Arzano, Michele; Kowalski-Glikman, Jerzy
2016-09-01
We construct discrete symmetry transformations for deformed relativistic kinematics based on group valued momenta. We focus on the specific example of κ-deformations of the Poincaré algebra with associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description of quantum states constructed from deformed kinematics and the observable charges associated with them. The results we present provide the first step towards the analysis of experimental bounds on the deformation parameter κ to be derived via precision measurements of discrete symmetries and CPT.
Discrete breathers in crystals
NASA Astrophysics Data System (ADS)
Dmitriev, S. V.; Korznikova, E. A.; Baimova, Yu A.; Velarde, M. G.
2016-05-01
It is well known that periodic discrete defect-containing systems, in addition to traveling waves, support vibrational defect-localized modes. It turned out that if a periodic discrete system is nonlinear, it can support spatially localized vibrational modes as exact solutions even in the absence of defects. Since the nodes of the system are all on equal footing, it is only through the special choice of initial conditions that a group of nodes can be found on which such a mode, called a discrete breather (DB), will be excited. The DB frequency must be outside the frequency range of the small-amplitude traveling waves. Not resonating with and expending no energy on the excitation of traveling waves, a DB can theoretically conserve its vibrational energy forever provided no thermal vibrations or other perturbations are present. Crystals are nonlinear discrete systems, and the discovery in them of DBs was only a matter of time. It is well known that periodic discrete defect-containing systems support both traveling waves and vibrational defect-localized modes. It turns out that if a periodic discrete system is nonlinear, it can support spatially localized vibrational modes as exact solutions even in the absence of defects. Because the nodes of the system are all on equal footing, only a special choice of the initial conditions allows selecting a group of nodes on which such a mode, called a discrete breather (DB), can be excited. The DB frequency must be outside the frequency range of small-amplitude traveling waves. Not resonating with and expending no energy on the excitation of traveling waves, a DB can theoretically preserve its vibrational energy forever if no thermal vibrations or other perturbations are present. Crystals are nonlinear discrete systems, and the discovery of DBs in them was only a matter of time. Experimental studies of DBs encounter major technical difficulties, leaving atomistic computer simulations as the primary investigation tool. Despite
Weinshank, R L; Zgombick, J M; Macchi, M J; Branchek, T A; Hartig, P R
1992-01-01
The serotonin 1D (5-HT1D) receptor is a pharmacologically defined binding site and functional receptor site. Observed variations in the properties of 5-HT1D receptors in different tissues have led to the speculation that multiple receptor proteins with slightly different properties may exist. We report here the cloning, deduced amino acid sequences, pharmacological properties, and second-messenger coupling of a pair of human 5-HT1D receptor genes, which we have designated 5-HT1D alpha and 5-HT1D beta due to their strong similarities in sequence, pharmacological properties, and second-messenger coupling. Both genes are free of introns in their coding regions, are expressed in the human cerebral cortex, and can couple to inhibition of adenylate cyclase activity. The pharmacological binding properties of these two human receptors are very similar, and match closely the pharmacological properties of human, bovine, and guinea pig 5-HT1D sites. Both receptors exhibit high-affinity binding of sumatriptan, a new anti-migraine medication, and thus are candidates for the pharmacological site of action of this drug. Images PMID:1565658
A grain scale non-equilibrium sediment transport model for unsteady flow
Technology Transfer Automated Retrieval System (TEKTRAN)
A one dimensional (1-D) finite-volume model was developed for simulating non-equilibrium sediment transport in unsteady flow. The governing equations are the 1-D St. Venant equations for sediment-laden flow and the Exner equation including both bed load and suspended-load transport. The Rouse profil...
Absence of equilibrium chiral magnetic effect
NASA Astrophysics Data System (ADS)
Zubkov, M. A.
2016-05-01
We analyze the (3 +1 )D equilibrium chiral magnetic effect (CME). We apply derivative expansion to the Wigner transform of the two-point Green function. This technique allows us to express the response of electric current to the external electromagnetic field strength through the momentum space topological invariant. We consider the wide class of the lattice regularizations of quantum field theory (that includes, in particular, the regularization with Wilson fermions) and also certain lattice models of solid state physics (including those of Dirac semimetals). It appears that in these models the mentioned topological invariant vanishes identically at nonzero chiral chemical potential. That means that the bulk equilibrium CME is absent in those systems.
Thermodynamic nature of vitrification in a 1D model of a structural glass former
NASA Astrophysics Data System (ADS)
Semenov, A. N.
2015-07-01
We propose a new spin-glass model with no positional quenched disorder which is regarded as a coarse-grained model of a structural glass-former. The model is analyzed in the 1D case when the number N of states of a primary cell is large. For N → ∞, the model exhibits a sharp freezing transition of the thermodynamic origin. It is shown both analytically and numerically that the glass transition is accompanied by a significant growth of a static length scale ξ pointing to the structural (equilibrium) nature of dynamical slowdown effects in supercooled liquids.
Thermodynamic nature of vitrification in a 1D model of a structural glass former.
Semenov, A N
2015-07-28
We propose a new spin-glass model with no positional quenched disorder which is regarded as a coarse-grained model of a structural glass-former. The model is analyzed in the 1D case when the number N of states of a primary cell is large. For N → ∞, the model exhibits a sharp freezing transition of the thermodynamic origin. It is shown both analytically and numerically that the glass transition is accompanied by a significant growth of a static length scale ξ pointing to the structural (equilibrium) nature of dynamical slowdown effects in supercooled liquids. PMID:26233148
Thermodynamic nature of vitrification in a 1D model of a structural glass former
Semenov, A. N.
2015-07-28
We propose a new spin-glass model with no positional quenched disorder which is regarded as a coarse-grained model of a structural glass-former. The model is analyzed in the 1D case when the number N of states of a primary cell is large. For N → ∞, the model exhibits a sharp freezing transition of the thermodynamic origin. It is shown both analytically and numerically that the glass transition is accompanied by a significant growth of a static length scale ξ pointing to the structural (equilibrium) nature of dynamical slowdown effects in supercooled liquids.
ERIC Educational Resources Information Center
Sharp, Karen Tobey
This paper cites information received from a number of sources, e.g., mathematics teachers in two-year colleges, publishers, and convention speakers, about the nature of discrete mathematics and about what topics a course in this subject should contain. Note is taken of the book edited by Ralston and Young which discusses the future of college…
NASA Astrophysics Data System (ADS)
Li, Angsheng; Zhang, Xiaohui; Pan, Yicheng; Peng, Pan
2014-12-01
It seems a universal phenomenon of networks that the attacks on a small number of nodes by an adversary player Alice may generate a global cascading failure of the networks. It has been shown (Li et al., 2013) that classic scale-free networks (Barabási and Albert, 1999, Barabási, 2009) are insecure against attacks of as small as O(logn) many nodes. This poses a natural and fundamental question: Can we introduce a second player Bob to prevent Alice from global cascading failure of the networks? We proposed a game in networks. We say that a network has an equilibrium game if the second player Bob has a strategy to balance the cascading influence of attacks by the adversary player Alice. It was shown that networks of the preferential attachment model (Barabási and Albert, 1999) fail to have equilibrium games, that random graphs of the Erdös-Rényi model (Erdös and Rényi, 1959, Erdös and Rényi, 1960) have, for which randomness is the mechanism, and that homophyly networks (Li et al., 2013) have equilibrium games, for which homophyly and preferential attachment are the underlying mechanisms. We found that some real networks have equilibrium games, but most real networks fail to have. We anticipate that our results lead to an interesting new direction of network theory, that is, equilibrium games in networks.
Systolic array for fast computation of discrete cosine transform
NASA Astrophysics Data System (ADS)
Liu, Jianguo; Li, H. F.; Chan, Francis H. Y.; Lam, F. K.
1998-09-01
Discrete cosine transform (DCT) is widely used in signal processing. This paper presents a novel approach to perform DCT. DCT is expressed in terms of discrete moments and a systolic array for computing DCT with only a few multiplications and without any cosine evaluations has been proposed. The execution time of the systolic array is only O(Nlog2N/log2log2N) in computing 1D DCT. The approach is also applicable to multiple dimensional DCT and DCT inverses.
von Neumann Stability Analysis of Numerical Solution Schemes for 1D and 2D Euler Equations
NASA Astrophysics Data System (ADS)
Konangi, Santosh; Palakurthi, Nikhil Kumar; Ghia, Urmila
2014-11-01
A von Neumann stability analysis is conducted for numerical schemes for the full system of coupled, density-based 1D and 2D Euler equations, closed by an isentropic equation of state. The governing equations are discretized on a staggered grid, which permits equivalence to finite-volume discretization. Presently, first-order accurate spatial and temporal finite-difference techniques are analyzed. The momentum convection term is treated as explicit, semi-implicit or implicit. Density upwind bias is included in the spatial operator of the continuity equation. By combining the discretization techniques, ten solution schemes are formulated. For each scheme, unstable and stable regimes are identified through the stability analysis, and the maximum allowable CFL number is predicted. The predictions are verified for selected schemes, using the Riemann problem at incompressible and compressible Mach numbers. Very good agreement is obtained between the analytically predicted and ``experimentally'' observed CFL values for all cases, thereby validating the analysis. The demonstrated analysis provides an accurate indication of stability conditions for the Euler equations, in contrast to the simplistic conditions arising from model equations, such as the wave equation.
Brady 1D seismic velocity model ambient noise prelim
Mellors, Robert J.
2013-10-25
Preliminary 1D seismic velocity model derived from ambient noise correlation. 28 Green's functions filtered between 4-10 Hz for Vp, Vs, and Qs were calculated. 1D model estimated for each path. The final model is a median of the individual models. Resolution is best for the top 1 km. Poorly constrained with increasing depth.
An Updated Equilibrium Machine
ERIC Educational Resources Information Center
Schultz, Emeric
2008-01-01
A device that can demonstrate equilibrium, kinetic, and thermodynamic concepts is described. The device consists of a leaf blower attached to a plastic container divided into two chambers by a barrier of variable size and form. Styrofoam balls can be exchanged across the barrier when the leaf blower is turned on and various air pressures are…
A paradigm for discrete physics
Noyes, H.P.; McGoveran, D.; Etter, T.; Manthey, M.J.; Gefwert, C.
1987-01-01
An example is outlined for constructing a discrete physics using as a starting point the insight from quantum physics that events are discrete, indivisible and non-local. Initial postulates are finiteness, discreteness, finite computability, absolute nonuniqueness (i.e., homogeneity in the absence of specific cause) and additivity.
A note on a Discrete Boltzmann Equation with multiple collisions
NASA Astrophysics Data System (ADS)
Oliveira, Filipe; Soares, Ana Jacinta
2008-05-01
We compute a non-trivial explicit solution for the one-dimensional plane 6-velocity discrete Boltzmann model with multiple collisions introduced in [E. Longo, R. Monaco, On the discrete kinetic theory with multiple collisions: Plane six-velocity and unsteady Couette flow, in: Muntz, et al. (Eds.), The Proceedings of Rarefied Gas Dynamics, in: AIAA Publ., vol. 118, 1989, pp. 118-130] which asymptotically connects two particular equilibrium states. We prove that such a solution exists provided that a suitable condition on the differential elastic cross sections holds.
A new EEG measure using the 1D cluster variation method
NASA Astrophysics Data System (ADS)
Maren, Alianna J.; Szu, Harold H.
2015-05-01
A new information measure, drawing on the 1-D Cluster Variation Method (CVM), describes local pattern distributions (nearest-neighbor and next-nearest neighbor) in a binary 1-D vector in terms of a single interaction enthalpy parameter h for the specific case where the fractions of elements in each of two states are the same (x1=x2=0.5). An example application of this method would be for EEG interpretation in Brain-Computer Interfaces (BCIs), especially in the frontier of invariant biometrics based on distinctive and invariant individual responses to stimuli containing an image of a person with whom there is a strong affiliative response (e.g., to a person's grandmother). This measure is obtained by mapping EEG observed configuration variables (z1, z2, z3 for next-nearest neighbor triplets) to h using the analytic function giving h in terms of these variables at equilibrium. This mapping results in a small phase space region of resulting h values, which characterizes local pattern distributions in the source data. The 1-D vector with equal fractions of units in each of the two states can be obtained using the method for transforming natural images into a binarized equi-probability ensemble (Saremi & Sejnowski, 2014; Stephens et al., 2013). An intrinsically 2-D data configuration can be mapped to 1-D using the 1-D Peano-Hilbert space-filling curve, which has demonstrated a 20 dB lower baseline using the method compared with other approaches (cf. SPIE ICA etc. by Hsu & Szu, 2014). This CVM-based method has multiple potential applications; one near-term one is optimizing classification of the EEG signals from a COTS 1-D BCI baseball hat. This can result in a convenient 3-D lab-tethered EEG, configured in a 1-D CVM equiprobable binary vector, and potentially useful for Smartphone wireless display. Longer-range applications include interpreting neural assembly activations via high-density implanted soft, cellular-scale electrodes.
Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko
2014-10-01
Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos
Phosphorylation and desensitization of alpha1d-adrenergic receptors.
García-Sáinz, J A; Vázquez-Cuevas, F G; Romero-Avila, M T
2001-01-01
In rat-1 fibroblasts stably expressing rat alpha(1d)-adrenoceptors, noradrenaline and PMA markedly decreased alpha(1d)-adrenoceptor function (noradrenaline-elicited increases in calcium in whole cells and [(35)S]guanosine 5'-[gamma-thio]triphosphate binding in membranes), suggesting homologous and heterologous desensitizations. Photoaffinity labelling, Western blotting and immunoprecipitation identified alpha(1d)-adrenoceptors as a broad band of 70-80 kDa. alpha(1d)-Adrenoceptors were phosphorylated in the basal state and noradrenaline and PMA increased it. The effect of noradrenaline was concentration-dependent (EC(50) 75 nM), rapid (maximum at 1 min) and transient. Phorbol ester-induced phosphorylation was concentration-dependent (EC(50) 25 nM), slightly slower (maximum at 5 min) and stable for at least 60 min. Inhibitors of protein kinase C decreased the effect of phorbol esters but not that of noradrenaline. Evidence of cross-talk of alpha(1d)-adrenoceptors with receptors endogenously expressed in rat-1 fibroblasts was given by the ability of endothelin, lysophosphatidic acid and bradykinin to induce alpha(1d)-adrenoceptor phosphorylation. In summary, it is shown for the first time here that alpha(1d)-adrenoceptors are phosphoproteins and that receptor phosphorylation is increased by the natural ligand, noradrenaline, by direct activation of protein kinase C and via cross-talk with other receptors endogenously expressed in rat-1 fibroblasts. Receptor phosphorylation has functional repercussions. PMID:11171057
NASA Astrophysics Data System (ADS)
Wuensche, Andrew
DDLab is interactive graphics software for creating, visualizing, and analyzing many aspects of Cellular Automata, Random Boolean Networks, and Discrete Dynamical Networks in general and studying their behavior, both from the time-series perspective — space-time patterns, and from the state-space perspective — attractor basins. DDLab is relevant to research, applications, and education in the fields of complexity, self-organization, emergent phenomena, chaos, collision-based computing, neural networks, content addressable memory, genetic regulatory networks, dynamical encryption, generative art and music, and the study of the abstract mathematical/physical/dynamical phenomena in their own right.
NASA Astrophysics Data System (ADS)
Kotulski, Zbigniew; Szczepaski, Janusz
In the paper we propose a new method of constructing cryptosystems utilising a nonpredictability property of discrete chaotic systems. We formulate the requirements for such systems to assure their safety. We also give examples of practical realisation of chaotic cryptosystems, using a generalisation of the method presented in [7]. The proposed algorithm of encryption and decryption is based on multiple iteration of a certain dynamical chaotic system. We assume that some part of the initial condition is a plain message. As the secret key we assume the system parameter(s) and additionally another part of the initial condition.
An Updated Equilibrium Machine
NASA Astrophysics Data System (ADS)
Schultz, Emeric
2008-08-01
A device that can demonstrate equilibrium, kinetic, and thermodynamic concepts is described. The device consists of a leaf blower attached to a plastic container divided into two chambers by a barrier of variable size and form. Styrofoam balls can be exchanged across the barrier when the leaf blower is turned on and various air pressures are applied. Equilibrium can be approached from different distributions of balls in the container under different conditions. The Le Châtelier principle can be demonstrated. Kinetic concepts can be demonstrated by changing the nature of the barrier, either changing the height or by having various sized holes in the barrier. Thermodynamic concepts can be demonstrated by taping over some or all of the openings and restricting air flow into container on either side of the barrier.
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1997-01-01
The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.
The equilibrium dayside magnetosphere
NASA Technical Reports Server (NTRS)
Zavriyev, Anton; Hasegawa, Akira
1989-01-01
A method is presented of computing the dayside global earth magnetic field which is in equilibrium with the plasma pressure, based on satellite observations at a local region of the magnetosphere. The method, which utilizes a perturbation around a dipole magnetic field, involves computation of the global plasma pressure profile based on the equatorial (anisotropic) pressure data, derivation of the current profile which satisfies the equilibrium condition, and computation of the magnetic field using the current profile and the boundary current produced by the solar wind. The method is applied for the Active Magnetospheric Particle Tracer Explorers data, and the result of the computation is found to compare reasonably well with the observed magnetic field profile near the geomagnetic equator.
NASA Astrophysics Data System (ADS)
Godrèche, C.
2011-03-01
Preface; 1. Shape and growth of crystals P. Nozières; 2. Instabilities of planar solidification fronts B. Caroli, C. Caroli and B. Roulet; 3. An introduction to the kinetics of first-order phase transition J. S. Langer; 4. Dendritic growth and related topics Y. Pomeau and M. Ben Amar; 5. Growth and aggregation far from equilibrium L. M. Sander; 6. Kinetic roughening of growing surfaces J. Krug and H. Spohn; Acknowledgements; References; Index.
Exoplanet Equilibrium Chemistry Calculations
NASA Astrophysics Data System (ADS)
Blumenthal, Sarah; Harrington, J.; Bowman, M.; Blecic, J.
2013-10-01
Recently, Agundez et al. (2012, A&A 548, A73) used a chemical kinetics code to study a model HD 209458b (equilibrium temperature of 1450 K, assuming full redistribution and 0 albedo). They found that thermochemistry dominates most of the dayside, but that significant compositional gradients may exist across the dayside. We calculate equilibrium-chemistry molecular abundances for several model exoplanets, using NASA's open-source Chemical Equilibrium Abundances code (McBride and Gordon 1996). We vary the degree of radiation redistribution to the dark side, ranging from total redistribution to instantaneous reradiation. Atomically, both the solar abundance multiple and the carbon fraction vary. Planet substellar temperatures range from just above 1200 K, where photochemistry should no longer be important, to those of hot planets (3000 K). We present synthetic abundance images for the key spectroscopic molecules CO, CH4, and H2O for several hot-Jupiter model planets. This work was supported by the NASA Planetary Atmospheres grant NNX12AI69G.
Equilibrium Electroconvective Instability
NASA Astrophysics Data System (ADS)
Rubinstein, I.; Zaltzman, B.
2015-03-01
Since its prediction 15 years ago, hydrodynamic instability in concentration polarization at a charge-selective interface has been attributed to nonequilibrium electro-osmosis related to the extended space charge which develops at the limiting current. This attribution had a double basis. On the one hand, it has been recognized that neither equilibrium electro-osmosis nor bulk electroconvection can yield instability for a perfectly charge-selective solid. On the other hand, it has been shown that nonequilibrium electro-osmosis can. The first theoretical studies in which electro-osmotic instability was predicted and analyzed employed the assumption of perfect charge selectivity for the sake of simplicity and so did the subsequent studies of various time-dependent and nonlinear features of electro-osmotic instability. In this Letter, we show that relaxing the assumption of perfect charge selectivity (tantamount to fixing the electrochemical potential of counterions in the solid) allows for the equilibrium electroconvective instability. In addition, we suggest a simple experimental test for determining the true, either equilibrium or nonequilibrium, origin of instability in concentration polarization.
Severe Hypertriglyceridemia in Glut1D on Ketogenic Diet.
Klepper, Joerg; Leiendecker, Baerbel; Heussinger, Nicole; Lausch, Ekkehart; Bosch, Friedrich
2016-04-01
High-fat ketogenic diets are the only treatment available for Glut1 deficiency (Glut1D). Here, we describe an 8-year-old girl with classical Glut1D responsive to a 3:1 ketogenic diet and ethosuximide. After 3 years on the diet a gradual increase of blood lipids was followed by rapid, severe asymptomatic hypertriglyceridemia (1,910 mg/dL). Serum lipid apheresis was required to determine liver, renal, and pancreatic function. A combination of medium chain triglyceride-oil and a reduction of the ketogenic diet to 1:1 ratio normalized triglyceride levels within days but triggered severe myoclonic seizures requiring comedication with sultiam. Severe hypertriglyceridemia in children with Glut1D on ketogenic diets may be underdiagnosed and harmful. In contrast to congenital hypertriglyceridemias, children with Glut1D may be treated effectively by dietary adjustments alone. PMID:26902182
1D Nanostructures: Controlled Fabrication and Energy Applications
Hu, Michael Z.
2013-01-01
Jian Wei, Xuchun Song, Chunli Yang, and Michael Z. Hu, 1D Nanostructures: Controlled Fabrication and Energy Applications, Journal of Nanomaterials, published special issue (http://www.hindawi.com/journals/jnm/si/197254/) (2013).
60. BOILER CHAMBER No. 1, D LOOP STEAM GENERATOR AND ...
60. BOILER CHAMBER No. 1, D LOOP STEAM GENERATOR AND MAIN COOLANT PUMP LOOKING NORTHEAST (LOCATION OOO) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA
Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko
2014-10-01
Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. PMID:25088042
NASA Astrophysics Data System (ADS)
Calogero, Francesco
2011-08-01
The original continuous-time ''goldfish'' dynamical system is characterized by two neat formulas, the first of which provides the N Newtonian equations of motion of this dynamical system, while the second provides the solution of the corresponding initial-value problem. Several other, more general, solvable dynamical systems ''of goldfish type'' have been identified over time, featuring, in the right-hand (''forces'') side of their Newtonian equations of motion, in addition to other contributions, a velocity-dependent term such as that appearing in the right-hand side of the first formula mentioned above. The solvable character of these models allows detailed analyses of their behavior, which in some cases is quite remarkable (for instance isochronous or asymptotically isochronous). In this paper we introduce and discuss various discrete-time dynamical systems, which are as well solvable, which also display interesting behaviors (including isochrony and asymptotic isochrony) and which reduce to dynamical systems of goldfish type in the limit when the discrete-time independent variable l=0,1,2,... becomes the standard continuous-time independent variable t, 0≤t<∞.
Modeling non-equilibrium phase transitions in isentropically compressed Bi
Kane, J; Smith, R
2005-09-19
We report here on modeling of non-equilibrium phase transitions in Bi samples isentropically compressed to 120 GPa by a ramped drive, which is produced using the Janus laser. In the experiments, the Bi samples are attached to windows of LiF or sapphire, and the velocity history of the sample-window interface is recorded with line VISAR. The 1D response of the targets is modeled using a multiphase Bi EOS, the Andrews-Hayes method for non-equilibrium transitions, and a Boettger-Wallace kinetics model. The pressure drive is deduced by back integration of VISAR data from shots performed with Al samples.
TBC1D24 genotype–phenotype correlation
Balestrini, Simona; Milh, Mathieu; Castiglioni, Claudia; Lüthy, Kevin; Finelli, Mattea J.; Verstreken, Patrik; Cardon, Aaron; Stražišar, Barbara Gnidovec; Holder, J. Lloyd; Lesca, Gaetan; Mancardi, Maria M.; Poulat, Anne L.; Repetto, Gabriela M.; Banka, Siddharth; Bilo, Leonilda; Birkeland, Laura E.; Bosch, Friedrich; Brockmann, Knut; Cross, J. Helen; Doummar, Diane; Félix, Temis M.; Giuliano, Fabienne; Hori, Mutsuki; Hüning, Irina; Kayserili, Hulia; Kini, Usha; Lees, Melissa M.; Meenakshi, Girish; Mewasingh, Leena; Pagnamenta, Alistair T.; Peluso, Silvio; Mey, Antje; Rice, Gregory M.; Rosenfeld, Jill A.; Taylor, Jenny C.; Troester, Matthew M.; Stanley, Christine M.; Ville, Dorothee; Walkiewicz, Magdalena; Falace, Antonio; Fassio, Anna; Lemke, Johannes R.; Biskup, Saskia; Tardif, Jessica; Ajeawung, Norbert F.; Tolun, Aslihan; Corbett, Mark; Gecz, Jozef; Afawi, Zaid; Howell, Katherine B.; Oliver, Karen L.; Berkovic, Samuel F.; Scheffer, Ingrid E.; de Falco, Fabrizio A.; Oliver, Peter L.; Striano, Pasquale; Zara, Federico
2016-01-01
Objective: To evaluate the phenotypic spectrum associated with mutations in TBC1D24. Methods: We acquired new clinical, EEG, and neuroimaging data of 11 previously unreported and 37 published patients. TBC1D24 mutations, identified through various sequencing methods, can be found online (http://lovd.nl/TBC1D24). Results: Forty-eight patients were included (28 men, 20 women, average age 21 years) from 30 independent families. Eighteen patients (38%) had myoclonic epilepsies. The other patients carried diagnoses of focal (25%), multifocal (2%), generalized (4%), and unclassified epilepsy (6%), and early-onset epileptic encephalopathy (25%). Most patients had drug-resistant epilepsy. We detail EEG, neuroimaging, developmental, and cognitive features, treatment responsiveness, and physical examination. In silico evaluation revealed 7 different highly conserved motifs, with the most common pathogenic mutation located in the first. Neuronal outgrowth assays showed that some TBC1D24 mutations, associated with the most severe TBC1D24-associated disorders, are not necessarily the most disruptive to this gene function. Conclusions: TBC1D24-related epilepsy syndromes show marked phenotypic pleiotropy, with multisystem involvement and severity spectrum ranging from isolated deafness (not studied here), benign myoclonic epilepsy restricted to childhood with complete seizure control and normal intellect, to early-onset epileptic encephalopathy with severe developmental delay and early death. There is no distinct correlation with mutation type or location yet, but patterns are emerging. Given the phenotypic breadth observed, TBC1D24 mutation screening is indicated in a wide variety of epilepsies. A TBC1D24 consortium was formed to develop further research on this gene and its associated phenotypes. PMID:27281533
Evolution of specialization under non-equilibrium population dynamics.
Nurmi, Tuomas; Parvinen, Kalle
2013-03-21
We analyze the evolution of specialization in resource utilization in a mechanistically underpinned discrete-time model using the adaptive dynamics approach. We assume two nutritionally equivalent resources that in the absence of consumers grow sigmoidally towards a resource-specific carrying capacity. The consumers use resources according to the law of mass-action with rates involving trade-off. The resulting discrete-time model for the consumer population has over-compensatory dynamics. We illuminate the way non-equilibrium population dynamics affect the evolutionary dynamics of the resource consumption rates, and show that evolution to the trimorphic coexistence of a generalist and two specialists is possible due to asynchronous non-equilibrium population dynamics of the specialists. In addition, various forms of cyclic evolutionary dynamics are possible. Furthermore, evolutionary suicide may occur even without Allee effects and demographic stochasticity. PMID:23306058
Equilibrium and stability code for a diffuse plasma
Betancourt, Octavio; Garabedian, Paul
1976-01-01
A computer code to investigate the equilibrium and stability of a diffuse plasma in three dimensions is described that generalizes earlier work on a sharp free boundary model. Toroidal equilibria of a plasma are determined by considering paths of steepest descent associated with a new version of the variational principle of magnetohydrodynamics that involves mapping a fixed coordinate domain onto the plasma. A discrete approximation of the potential energy is written down following the finite element method, and the resulting expression is minimized with respect to the values of the mapping at points of a rectangular grid. If a relative minimum of the discrete analogue of the energy is attained, the corresponding equilibrium is considered to be stable. PMID:16592310
Structural design using equilibrium programming
NASA Technical Reports Server (NTRS)
Scotti, Stephen J.
1992-01-01
Multiple nonlinear programming methods are combined in the method of equilibrium programming. Equilibrium programming theory has been appied to problems in operations research, and in the present study it is investigated as a framework to solve structural design problems. Several existing formal methods for structural optimization are shown to actually be equilibrium programming methods. Additionally, the equilibrium programming framework is utilized to develop a new structural design method. Selected computational results are presented to demonstrate the methods.
Cooperative microexcitations in 2+1D chain-bundle dusty plasma liquids
Io, C.-W.; Chan, C.-L.; Lin I
2010-05-15
Through direct visualization at the discrete level, the microexcitations in cold 2+1D dusty plasma liquids formed by negatively charged dusts suspended in low pressure gaseous discharges were experimentally investigated, in which the downward ion flow wake field induces strong vertical coupling and chain bundle structure. It is found that the horizontal structure and motion are similar to those of the two-dimensional liquid. Different types of basic cooperative chain excitations: straight vertical chains with small amplitude jittering, chain tilting-restraightening, bundle twisting-restraightening, and chain breaking-reconnection, are observed. The region with good (poor) horizontal structural order prefers the straight (tilted or broken) chains with little (large) titling and tilting rate.
Approach to non-equilibrium behaviour in quantum field theory
Kripfganz, J.; Perlt, H.
1989-05-01
We study the real-time evolution of quantum field theoretic systems in non-equilibrium situations. Results are presented for the example of scalar /lambda//phi//sup 4/ theory. The degrees of freedom are discretized by studying the system on a torus. Short-wavelength modes are integrated out to one-loop order. The long-wavelength modes considered to be the relevant degrees of freedom are treated by semiclassical phase-space methods. /copyright/ 1989 Academic Press, Inc.
Noyes, H.P. ); Starson, S. )
1991-03-01
Discrete physics, because it replaces time evolution generated by the energy operator with a global bit-string generator (program universe) and replaces fields'' with the relativistic Wheeler-Feynman action at a distance,'' allows the consistent formulation of the concept of signed gravitational charge for massive particles. The resulting prediction made by this version of the theory is that free anti-particles near the surface of the earth will fall'' up with the same acceleration that the corresponding particles fall down. So far as we can see, no current experimental information is in conflict with this prediction of our theory. The experiment crusis will be one of the anti-proton or anti-hydrogen experiments at CERN. Our prediction should be much easier to test than the small effects which those experiments are currently designed to detect or bound. 23 refs.
Discrete Sibson interpolation.
Park, Sung W; Linsen, Lars; Kreylos, Oliver; Owens, John D; Hamann, Bernd
2006-01-01
Natural-neighbor interpolation methods, such as Sibson's method, are well-known schemes for multivariate data fitting and reconstruction. Despite its many desirable properties, Sibson's method is computationally expensive and difficult to implement, especially when applied to higher-dimensional data. The main reason for both problems is the method's implementation based on a Voronoi diagram of all data points. We describe a discrete approach to evaluating Sibson's interpolant on a regular grid, based solely on finding nearest neighbors and rendering and blending d-dimensional spheres. Our approach does not require us to construct an explicit Voronoi diagram, is easily implemented using commodity three-dimensional graphics hardware, leads to a significant speed increase compared to traditional approaches, and generalizes easily to higher dimensions. For large scattered data sets, we achieve two-dimensional (2D) interpolation at interactive rates and 3D interpolation (3D) with computation times of a few seconds. PMID:16509383
Immigration and Prosecutorial Discretion
Apollonio, Dorie; Lochner, Todd; Heddens, Myriah
2015-01-01
Immigration has become an increasingly salient national issue in the US, and the Department of Justice recently increased federal efforts to prosecute immigration offenses. This shift, however, relies on the cooperation of US attorneys and their assistants. Traditionally federal prosecutors have enjoyed enormous discretion and have been responsive to local concerns. To consider how the centralized goal of immigration enforcement may have influenced federal prosecutors in regional offices, we review their prosecution of immigration offenses in California using over a decade's worth of data. Our findings suggest that although centralizing forces influence immigration prosecutions, individual US attorneys' offices retain distinct characteristics. Local factors influence federal prosecutors' behavior in different ways depending on the office. Contrary to expectations, unemployment rates did not affect prosecutors' willingness to pursue immigration offenses, nor did local popular opinion about illegal immigration. PMID:26146530
Discrete Pearson distributions
Bowman, K.O.; Shenton, L.R.; Kastenbaum, M.A.
1991-11-01
These distributions are generated by a first order recursive scheme which equates the ratio of successive probabilities to the ratio of two corresponding quadratics. The use of a linearized form of this model will produce equations in the unknowns matched by an appropriate set of moments (assumed to exist). Given the moments we may find valid solutions. These are two cases; (1) distributions defined on the non-negative integers (finite or infinite) and (2) distributions defined on negative integers as well. For (1), given the first four moments, it is possible to set this up as equations of finite or infinite degree in the probability of a zero occurrence, the sth component being a product of s ratios of linear forms in this probability in general. For (2) the equation for the zero probability is purely linear but may involve slowly converging series; here a particular case is the discrete normal. Regions of validity are being studied. 11 refs.
Discrete stability in stochastic programming
Lepp, R.
1994-12-31
In this lecture we study stability properties of stochastic programs with recourse where the probability measure is approximated by a sequence of weakly convergent discrete measures. Such discrete approximation approach gives us a possibility to analyze explicitly the behavior of the second stage correction function. The approach is based on modern functional analytical methods of an approximation of extremum problems in function spaces, especially on the notion of the discrete convergence of vectors to an essentially bounded measurable function.
Non-equilibrium DMFT - Polaritonics
NASA Astrophysics Data System (ADS)
Lubatsch, Andreas; Frank, Regine
Non-equilibrium physics recently really becomes important with the progress of ultrafast laser sciences. However in our understanding there is still a gap between equilibrium physics and the non-equilibrium, even though numerical methods have been advanced in recent years. We compare in this talk novel results at hand with equilibrium physics. The comparison will show that especially theoretical efforts are needed to explain many - so far - unresolved problems and to predict novel research on the basis of ab initio computing. We specifically discuss several non-equilibrium extensions of DMFT, numerical methods as well as semi-analytical solvers.
Maia, Alex S C; Nascimento, Sheila T; Nascimento, Carolina C N; Gebremedhin, Kifle G
2016-05-01
The effects of air temperature and relative humidity on thermal equilibrium of goats in a tropical region was evaluated. Nine non-pregnant Anglo Nubian nanny goats were used in the study. An indirect calorimeter was designed and developed to measure oxygen consumption, carbon dioxide production, methane production and water vapour pressure of the air exhaled from goats. Physiological parameters: rectal temperature, skin temperature, hair-coat temperature, expired air temperature and respiratory rate and volume as well as environmental parameters: air temperature, relative humidity and mean radiant temperature were measured. The results show that respiratory and volume rates and latent heat loss did not change significantly for air temperature between 22 and 26°C. In this temperature range, metabolic heat was lost mainly by convection and long-wave radiation. For temperature greater than 30°C, the goats maintained thermal equilibrium mainly by evaporative heat loss. At the higher air temperature, the respiratory and ventilation rates as well as body temperatures were significantly elevated. It can be concluded that for Anglo Nubian goats, the upper limit of air temperature for comfort is around 26°C when the goats are protected from direct solar radiation. PMID:27157333
Polar discontinuities and 1D interfaces in monolayered materials
NASA Astrophysics Data System (ADS)
Martinez-Gordillo, Rafael; Pruneda, Miguel
2015-12-01
Interfaces are the birthplace of a multitude of fascinating discoveries in fundamental science, and have enabled modern electronic devices, from transistors, to lasers, capacitors or solar cells. These interfaces between bulk materials are always bi-dimensional (2D) 'surfaces'. However the advent of graphene and other 2D crystals opened up a world of possibilities, as in this case the interfaces become one-dimensional (1D) lines. Although the properties of 1D nanoribbons have been extensively discussed in the last few years, 1D interfaces within infinite 2D systems had remained mostly unexplored until very recently. These include grain boundaries in polycrystalline samples, or interfaces in hybrid 2D sheets composed by segregated domains of different materials (as for example graphene/BN hybrids, or chemically different transition metal dichalcogenides). As for their 2D counterparts, some of these 1D interfaces exhibit polar characteristics, and can give rise to fascinating new physical properties. Here, recent experimental discoveries and theoretical predictions on the polar discontinuities that arise at these 1D interfaces will be reviewed, and the perspectives of this new research topic, discussed.
A New 2D-Transport, 1D-Diffusion Approximation of the Boltzmann Transport equation
Larsen, Edward
2013-06-17
The work performed in this project consisted of the derivation, implementation, and testing of a new, computationally advantageous approximation to the 3D Boltz- mann transport equation. The solution of the Boltzmann equation is the neutron flux in nuclear reactor cores and shields, but solving this equation is difficult and costly. The new “2D/1D” approximation takes advantage of a special geometric feature of typical 3D reactors to approximate the neutron transport physics in a specific (ax- ial) direction, but not in the other two (radial) directions. The resulting equation is much less expensive to solve computationally, and its solutions are expected to be sufficiently accurate for many practical problems. In this project we formulated the new equation, discretized it using standard methods, developed a stable itera- tion scheme for solving the equation, implemented the new numerical scheme in the MPACT code, and tested the method on several realistic problems. All the hoped- for features of this new approximation were seen. For large, difficult problems, the resulting 2D/1D solution is highly accurate, and is calculated about 100 times faster than a 3D discrete ordinates simulation.
Mahendran, V; Philip, John
2014-09-01
This paper reports results on the effect of interaction of Ag(+) on 1D droplet array spacing and the repulsive forces between stimuli-responsive nanoemulsion droplets, stabilized with an anionic surfactant--sodium dodecyl sulfate--and a diblock polymer--poly(vinyl alcohol)-vinyl acetate. The repulsive interaction is probed by measuring the in-situ equilibrium force-distance in the presence of Ag(+) using the magnetic chaining technique. At a constant static magnetic field, emulsion droplets form 1D array that diffract visible light. A large blue-shift in the diffracted light is observed in the presence of interacting Ag(+) because of the reduction in the interdroplet spacing within the 1D array. The in-situ equilibrium force-distance measurement results show that the onset of repulsions and magnitude of repulsive forces are strongly influenced by the presence of Ag(+) in ppb levels. This suggests that the Ag(+) ions screen the surface charges through the formation of both Stern and diffuse electric double layer and produces a dramatic blue-shift in surfactant-stabilized emulsion, whereas a dramatic conformational change in the adsorbed polymer layer causes a reduction in the 1D array spacing in the diblock polymer stabilized emulsion. The force-distance results are compared with the predictions of electrical double-layer and repulsive steric forces. The droplet array shows an excellent selectivity to Ag(+) due to the strong interaction of Ag(+) with the stabilizing moieties at the oil-water interface. The possible mechanisms of interaction of Ag(+) with surfactant and polymer are discussed. The dramatic decrease in the 1D array spacing in the presence of Ag(+) may find promising practical applications in the development of optical sensors for selective detection of cations with ultrahigh sensitivity. PMID:25105903
NOKIN1D: one-dimensional neutron kinetics based on a nodal collocation method
NASA Astrophysics Data System (ADS)
Verdú, G.; Ginestar, D.; Miró, R.; Jambrina, A.; Barrachina, T.; Soler, Amparo; Concejal, Alberto
2014-06-01
The TRAC-BF1 one-dimensional kinetic model is a formulation of the neutron diffusion equation in the two energy groups' approximation, based on the analytical nodal method (ANM). The advantage compared with a zero-dimensional kinetic model is that the axial power profile may vary with time due to thermal-hydraulic parameter changes and/or actions of the control systems but at has the disadvantages that in unusual situations it fails to converge. The nodal collocation method developed for the neutron diffusion equation and applied to the kinetics resolution of TRAC-BF1 thermal-hydraulics, is an adaptation of the traditional collocation methods for the discretization of partial differential equations, based on the development of the solution as a linear combination of analytical functions. It has chosen to use a nodal collocation method based on a development of Legendre polynomials of neutron fluxes in each cell. The qualification is carried out by the analysis of the turbine trip transient from the NEA benchmark in Peach Bottom NPP using both the original 1D kinetics implemented in TRAC-BF1 and the 1D nodal collocation method.
Nanodamage and Nanofailure of 1d Zno Nanomaterials and Nanodevices
NASA Astrophysics Data System (ADS)
Li, Peifeng; Yang, Ya; Huang, Yunhua; Zhang, Yue
2012-08-01
One-dimensional (1D) ZnO nanomaterials include nanowires, nanobelts, and nanorods etc. The extensive applied fields and excellent properties of 1D ZnO nanomaterials can meet the requests of the electronic and electromechanical devices for "smaller, faster and colder", and would be applied in new energy convention, environmental protection, information science and technology, biomedical, security and defense fields. While micro porous, etching pits nanodamage and brittle fracture, dissolving, functional failure nanofailure phenomena of 1D ZnO nanomaterials and nanodevices are observed in some practical working environments like illumination, currents or electric fields, external forces, and some chemical gases or solvents. The more important thing is to discuss the mechanism and reduce or prohibit their generation.
Resonant indirect exchange in 1D semiconductor nanostructures
NASA Astrophysics Data System (ADS)
Rozhansky, I. V.; Krainov, I. V.; Averkiev, N. S.; Lähderanta, E.
2015-06-01
We consider resonant indirect exchange interaction between magnetic centers in 1D nanostructures. The magnetic centers are assumed to be coupled to the 1D conducting channel by the quantum tunneling which can be of resonant character. The indirect exchange between the centers is mediated by the free carriers of the channel. The two cases of quadratic and linear energy dispersion of the 1D free carriers are considered. The former case is attributed to conventional semiconductor (InGaAs based to be concrete) nanowires or nanowhiskers, while the latter case is associated with carbon nanotubes with magnetic adatoms. We demonstrate that whenever the energy of a bound state at the magnetic center lies within the continuum energy spectra of the delocalized carriers in the channel the indirect exchange is strongly enhanced due to effective tunnel hybridization of the bound states with the continuum.
Probing 1D super-strongly correlated dipolar quantum gases
NASA Astrophysics Data System (ADS)
Citro, R.; de Palo, S.; Orignac, E.; Pedri, P.; Chiofalo, M.-L.
2009-04-01
One-dimensional (1D) dipolar quantum gases are characterized by a very special condition where super-strong correlations occur to significantly affect the static and dynamical low-energy behavior. This behavior is accurately described by the Luttinger Liquid theory with parameter K < 1. Dipolar Bose gases are routinely studied in laboratory with Chromium atoms. On the other hand, 1D realizations with molecular quantum gases can be at reach of current experimental expertises, allowing to explore such extreme quantum degenerate conditions which are the bottom line for designing technological devices. Aim of the present contribution is to focus on the possible probes expected to signal the reach of Luttinger-Liquid behavior in 1D dipolar gases.
PC-1D installation manual and user's guide
Basore, P.A.
1991-05-01
PC-1D is a software package for personal computers that uses finite-element analysis to solve the fully-coupled two-carrier semiconductor transport equations in one dimension. This program is particularly useful for analyzing the performance of optoelectronic devices such as solar cells, but can be applied to any bipolar device whose carrier flows are primarily one-dimensional. This User's Guide provides the information necessary to install PC-1D, define a problem for solution, solve the problem, and examine the results. Example problems are presented which illustrate these steps. The physical models and numerical methods utilized are presented in detail. This document supports version 3.1 of PC-1D, which incorporates faster numerical algorithms with better convergence properties than previous versions of the program. 51 refs., 17 figs., 5 tabs.
The GIRAFFE Archive: 1D and 3D Spectra
NASA Astrophysics Data System (ADS)
Royer, F.; Jégouzo, I.; Tajahmady, F.; Normand, J.; Chilingarian, I.
2013-10-01
The GIRAFFE Archive (http://giraffe-archive.obspm.fr) contains the reduced spectra observed with the intermediate and high resolution multi-fiber spectrograph installed at VLT/UT2 (ESO). In its multi-object configuration and the different integral field unit configurations, GIRAFFE produces 1D spectra and 3D spectra. We present here the status of the archive and the different functionalities to select and download both 1D and 3D data products, as well as the present content. The two collections are available in the VO: the 1D spectra (summed in the case of integral field observations) and the 3D field observations. These latter products can be explored using the VO Paris Euro3D Client (http://voplus.obspm.fr/ chil/Euro3D).
NASA Astrophysics Data System (ADS)
Suzuki, Toshinori
2014-06-01
The scattering distributions of state-selected methyl radicals are measured for the O(^1D_2) reaction with methane using a crossed molecular beam ion imaging method at collision energies of 0.9 - 6.8 kcal/mol. The results are compared with the reaction with deuterated methane to examine the isotope effects. The scattering distributions exhibit contributions from both the insertion and abstraction pathways respectively on the ground and excited-state potential energy surfaces. Insertion is the main pathway, and it provides a strongly forward-enhanced angular distribution of methyl radicals. Abstraction is a minor pathway, causing backward scattering of methyl radicals with a discrete speed distribution. From the collision energy dependence of the abstraction/insertion ratio, the barrier height for the abstraction pathway is estimated for O(^1D_2) with CH_4 and CD_4, respectively. The insertion pathway of the O(^1D_2) reaction with CH_4 has a narrower angular width in the forward scattering and a larger insertion/abstraction ratio than the reaction with CD_4, which indicate that the insertion reaction with CH_4 has a larger cross section and a shorter reaction time than the reaction with CD_4. Additionally, while the insertion reaction with CD_4 exhibits strong angular dependence of the CD_3 speed distribution, CH_3 exhibits considerably smaller dependence. The result suggests that, although intramolecular vibrational redistribution (IVR) within the lifetime of the methanol intermediate is restrictive in both isotopomers, relatively more extensive IVR occurs in CD_3OD than CH_3OH, presumably due to the higher vibrational state density.
GIS-BASED 1-D DIFFUSIVE WAVE OVERLAND FLOW MODEL
KALYANAPU, ALFRED; MCPHERSON, TIMOTHY N.; BURIAN, STEVEN J.
2007-01-17
This paper presents a GIS-based 1-d distributed overland flow model and summarizes an application to simulate a flood event. The model estimates infiltration using the Green-Ampt approach and routes excess rainfall using the 1-d diffusive wave approximation. The model was designed to use readily available topographic, soils, and land use/land cover data and rainfall predictions from a meteorological model. An assessment of model performance was performed for a small catchment and a large watershed, both in urban environments. Simulated runoff hydrographs were compared to observations for a selected set of validation events. Results confirmed the model provides reasonable predictions in a short period of time.
Discrete Mathematics and Curriculum Reform.
ERIC Educational Resources Information Center
Kenney, Margaret J.
1996-01-01
Defines discrete mathematics as the mathematics necessary to effect reasoned decision making in finite situations and explains how its use supports the current view of mathematics education. Discrete mathematics can be used by curriculum developers to improve the curriculum for students of all ages and abilities. (SLD)
Discrete Mathematics and Its Applications
ERIC Educational Resources Information Center
Oxley, Alan
2010-01-01
The article gives ideas that lecturers of undergraduate Discrete Mathematics courses can use in order to make the subject more interesting for students and encourage them to undertake further studies in the subject. It is possible to teach Discrete Mathematics with little or no reference to computing. However, students are more likely to be…
Statistical physics ""Beyond equilibrium
Ecke, Robert E
2009-01-01
The scientific challenges of the 21st century will increasingly involve competing interactions, geometric frustration, spatial and temporal intrinsic inhomogeneity, nanoscale structures, and interactions spanning many scales. We will focus on a broad class of emerging problems that will require new tools in non-equilibrium statistical physics and that will find application in new material functionality, in predicting complex spatial dynamics, and in understanding novel states of matter. Our work will encompass materials under extreme conditions involving elastic/plastic deformation, competing interactions, intrinsic inhomogeneity, frustration in condensed matter systems, scaling phenomena in disordered materials from glasses to granular matter, quantum chemistry applied to nano-scale materials, soft-matter materials, and spatio-temporal properties of both ordinary and complex fluids.
Huang, Z. )
1992-12-01
We examine an interesting scenario to solve the domain-wall problem recently suggested by Preskill, Trivedi, Wilczek, and Wise. The effective potential is calculated in the presence of the QCD axial anomaly. It is shown that some discrete symmetries such as {ital CP} and {ital Z}{sub 2} can be anomalous due to a so-called {ital K} term induced by instantons. We point out that the {ital Z}{sub 2} domain-wall problem in the two-doublet standard model can be resolved by two types of solutions: the {ital CP}-conserving one and the {ital CP}-breaking one. In the first case, there exist two {ital Z}{sub 2}-related local minima whose energy splitting is provided by the instanton effect. In the second case, there is only one unique vacuum so that the domain walls do not form at all. The consequences of this new source of {ital CP} violation are discussed and shown to be well within the experimental limits in weak interactions.
Discreteness inducing coexistence
NASA Astrophysics Data System (ADS)
dos Santos, Renato Vieira
2013-12-01
Consider two species that diffuse through space. Consider further that they differ only in initial densities and, possibly, in diffusion constants. Otherwise they are identical. What happens if they compete with each other in the same environment? What is the influence of the discrete nature of the interactions on the final destination? And what are the influence of diffusion and additive fluctuations corresponding to random migration and immigration of individuals? This paper aims to answer these questions for a particular competition model that incorporates intra and interspecific competition between the species. Based on mean field theory, the model has a stationary state dependent on the initial density conditions. We investigate how this initial density dependence is affected by the presence of demographic multiplicative noise and additive noise in space and time. There are three main conclusions: (1) Additive noise favors denser populations at the expense of the less dense, ratifying the competitive exclusion principle. (2) Demographic noise, on the other hand, favors less dense populations at the expense of the denser ones, inducing equal densities at the quasi-stationary state, violating the aforementioned principle. (3) The slower species always suffers the more deleterious effects of statistical fluctuations in a homogeneous medium.
Khan, M M; Varma, M P; Cleland, J; O'Kane, H O; Webb, S W; Mulholland, H C; Adgey, A A
1981-01-01
Data concerning 17 consecutive patients with discrete subaortic stenosis are recorded. Twelve patients underwent operative resection of the obstructing lesion. Of these all except one were symptomatic and all had electrocardiographic evidence of left ventricular hypertrophy or left ventricular hypertrophy with strain. They had a peak resting systolic left ventricular outflow tract gradient of greater than 50 mmHg as predicted from the combined cuff measurement of systolic blood pressure and the echocardiographically estimated left ventricular systolic pressure and/or as determined by cardiac catheterisation. The outflow tract gradient as predicted from M-mode echocardiography and peak systolic pressure showed close correlation with that measured at cardiac catheterisation or operation. During the postoperative follow-up from one month to 11 years, of 11 patients, one patient required a further operation for recurrence of the obstruction four years after the initial operation. All patients are now asymptomatic. Five patients have not had an operation. The left ventricular outflow tract gradient as assessed at the time of cardiac catheterisation was greater than 50 mmHg. One patient has been lost to follow-up. The remaining four have been followed from four to eight years and have remained asymptomatic and the electrocardiograms have remained unchanged. Careful follow-up of all patients is essential with continuing clinical assessment, electrocardiograms, M-mode and two-dimensional echocardiograms, and if necessary cardiac catheterisation. Prophylaxis against bacterial endocarditis is also essential. Images PMID:6457617
Quasi-1D physics in metal-organic frameworks: MIL-47(V) from first principles
Jaeken, Jan W; De Baerdemacker, Stijn; Lejaeghere, Kurt; Van Speybroeck, Veronique
2014-01-01
Summary The geometric and electronic structure of the MIL-47(V) metal-organic framework (MOF) is investigated by using ab initio density functional theory (DFT) calculations. Special focus is placed on the relation between the spin configuration and the properties of the MOF. The ground state is found to be antiferromagnetic, with an equilibrium volume of 1554.70 Å3. The transition pressure of the pressure-induced large-pore-to-narrow-pore phase transition is calculated to be 82 MPa and 124 MPa for systems with ferromagnetic and antiferromagnetic chains, respectively. For a mixed system, the transition pressure is found to be a weighted average of the ferromagnetic and antiferromagnetic transition pressures. Mapping DFT energies onto a simple-spin Hamiltonian shows both the intra- and inter-chain coupling to be antiferromagnetic, with the latter coupling constant being two orders of magnitude smaller than the former, suggesting the MIL-47(V) to present quasi-1D behavior. The electronic structure of the different spin configurations is investigated and it shows that the band gap position varies strongly with the spin configuration. The valence and conduction bands show a clear V d-character. In addition, these bands are flat in directions orthogonal to VO6 chains, while showing dispersion along the the direction of the VO6 chains, similar as for other quasi-1D materials. PMID:25383285
A 1D wavelet filtering for ultrasound images despeckling
NASA Astrophysics Data System (ADS)
Dahdouh, Sonia; Dubois, Mathieu; Frenoux, Emmanuelle; Osorio, Angel
2010-03-01
Ultrasound images appearance is characterized by speckle, shadows, signal dropout and low contrast which make them really difficult to process and leads to a very poor signal to noise ratio. Therefore, for main imaging applications, a denoising step is necessary to apply successfully medical imaging algorithms on such images. However, due to speckle statistics, denoising and enhancing edges on these images without inducing additional blurring is a real challenging problem on which usual filters often fail. To deal with such problems, a large number of papers are working on B-mode images considering that the noise is purely multiplicative. Making such an assertion could be misleading, because of internal pre-processing such as log compression which are done in the ultrasound device. To address those questions, we designed a novel filtering method based on 1D Radiofrequency signal. Indeed, since B-mode images are initially composed of 1D signals and since the log compression made by ultrasound devices modifies noise statistics, we decided to filter directly the 1D Radiofrequency signal envelope before log compression and image reconstitution, in order to conserve as much information as possible. A bi-orthogonal wavelet transform is applied to the log transform of each signal and an adaptive 1D split and merge like algorithm is used to denoise wavelet coefficients. Experiments were carried out on synthetic data sets simulated with Field II simulator and results show that our filter outperforms classical speckle filtering methods like Lee, non-linear means or SRAD filters.
Optical properties of LEDs with patterned 1D photonic crystal
NASA Astrophysics Data System (ADS)
Hronec, P.; Kuzma, A.; Å kriniarová, J.; Kováč, J.; Benčurová, A.; Haščík, Å.; Nemec, P.
2015-08-01
In this paper we focus on the application of the one-dimensional photonic crystal (1D PhC) structures on the top of Al0.295Ga0.705As/GaAs multi-quantum well light emitting diode (MQW LED). 1D PhC structures with periods of 600 nm, 700 nm, 800 nm, and 900 nm were fabricated by the E-Beam Direct Write (EBDW) Lithography. Effect of 1D PhC period on the light extraction enhancement was studied. 1D PhC LED radiation profiles were obtained from Near Surface Light Emission Images (NSLEI). Measurements showed the strongest light extraction enhancement using 800 nm period of PhC. Investigation of PhC LED radiation profiles showed strong light decoupling when light reaches PhC structure. Achieved LEE was from 22.6% for 600 nm PhC LED to 47.0% for 800 nm PhC LED. LED with PhC structure at its surface was simulated by FDTD simulation method under excitation of appropriate launch field.
NEW FEATURES OF HYDRUS-1D, VERSION 3.0
Technology Transfer Automated Retrieval System (TEKTRAN)
This paper briefly summarizes new features in version 3.0 of HYDRUS-1D, released in May 2005, as compared to version 2.1. The new features are a) new approaches to simulate preferential and nonequilibrium water flow and solute transport, b) a new hysteresis module that avoids the effects of pumpin...
Non-cooperative Brownian donkeys: A solvable 1D model
NASA Astrophysics Data System (ADS)
Jiménez de Cisneros, B.; Reimann, P.; Parrondo, J. M. R.
2003-12-01
A paradigmatic 1D model for Brownian motion in a spatially symmetric, periodic system is tackled analytically. Upon application of an external static force F the system's response is an average current which is positive for F < 0 and negative for F > 0 (absolute negative mobility). Under suitable conditions, the system approaches 100% efficiency when working against the external force F.
Symmetries in fluctuations far from equilibrium.
Hurtado, Pablo I; Pérez-Espigares, Carlos; del Pozo, Jesús J; Garrido, Pedro L
2011-05-10
Fluctuations arise universally in nature as a reflection of the discrete microscopic world at the macroscopic level. Despite their apparent noisy origin, fluctuations encode fundamental aspects of the physics of the system at hand, crucial to understand irreversibility and nonequilibrium behavior. To sustain a given fluctuation, a system traverses a precise optimal path in phase space. Here we show that by demanding invariance of optimal paths under symmetry transformations, new and general fluctuation relations valid arbitrarily far from equilibrium are unveiled. This opens an unexplored route toward a deeper understanding of nonequilibrium physics by bringing symmetry principles to the realm of fluctuations. We illustrate this concept studying symmetries of the current distribution out of equilibrium. In particular we derive an isometric fluctuation relation that links in a strikingly simple manner the probabilities of any pair of isometric current fluctuations. This relation, which results from the time-reversibility of the dynamics, includes as a particular instance the Gallavotti-Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by time-reversibility on the statistics of nonequilibrium fluctuations. The new symmetry implies remarkable hierarchies of equations for the current cumulants and the nonlinear response coefficients, going far beyond Onsager's reciprocity relations and Green-Kubo formulas. We confirm the validity of the new symmetry relation in extensive numerical simulations, and suggest that the idea of symmetry in fluctuations as invariance of optimal paths has far-reaching consequences in diverse fields. PMID:21493865
Symmetries in fluctuations far from equilibrium
Hurtado, Pablo I.; Pérez-Espigares, Carlos; del Pozo, Jesús J.; Garrido, Pedro L.
2011-01-01
Fluctuations arise universally in nature as a reflection of the discrete microscopic world at the macroscopic level. Despite their apparent noisy origin, fluctuations encode fundamental aspects of the physics of the system at hand, crucial to understand irreversibility and nonequilibrium behavior. To sustain a given fluctuation, a system traverses a precise optimal path in phase space. Here we show that by demanding invariance of optimal paths under symmetry transformations, new and general fluctuation relations valid arbitrarily far from equilibrium are unveiled. This opens an unexplored route toward a deeper understanding of nonequilibrium physics by bringing symmetry principles to the realm of fluctuations. We illustrate this concept studying symmetries of the current distribution out of equilibrium. In particular we derive an isometric fluctuation relation that links in a strikingly simple manner the probabilities of any pair of isometric current fluctuations. This relation, which results from the time-reversibility of the dynamics, includes as a particular instance the Gallavotti–Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by time-reversibility on the statistics of nonequilibrium fluctuations. The new symmetry implies remarkable hierarchies of equations for the current cumulants and the nonlinear response coefficients, going far beyond Onsager’s reciprocity relations and Green–Kubo formulas. We confirm the validity of the new symmetry relation in extensive numerical simulations, and suggest that the idea of symmetry in fluctuations as invariance of optimal paths has far-reaching consequences in diverse fields. PMID:21493865
Gyrokinetic Statistical Absolute Equilibrium and Turbulence
Jian-Zhou Zhu and Gregory W. Hammett
2011-01-10
A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.
1D design style implications for mask making and CEBL
NASA Astrophysics Data System (ADS)
Smayling, Michael C.
2013-09-01
At advanced nodes, CMOS logic is being designed in a highly regular design style because of the resolution limitations of optical lithography equipment. Logic and memory layouts using 1D Gridded Design Rules (GDR) have been demonstrated to nodes beyond 12nm.[1-4] Smaller nodes will require the same regular layout style but with multiple patterning for critical layers. One of the significant advantages of 1D GDR is the ease of splitting layouts into lines and cuts. A lines and cuts approach has been used to achieve good pattern fidelity and process margin to below 12nm.[4] Line scaling with excellent line-edge roughness (LER) has been demonstrated with self-aligned spacer processing.[5] This change in design style has important implications for mask making: • The complexity of the masks will be greatly reduced from what would be required for 2D designs with very complex OPC or inverse lithography corrections. • The number of masks will initially increase, as for conventional multiple patterning. But in the case of 1D design, there are future options for mask count reduction. • The line masks will remain simple, with little or no OPC, at pitches (1x) above 80nm. This provides an excellent opportunity for continual improvement of line CD and LER. The line pattern will be processed through a self-aligned pitch division sequence to divide pitch by 2 or by 4. • The cut masks can be done with "simple OPC" as demonstrated to beyond 12nm.[6] Multiple simple cut masks may be required at advanced nodes. "Coloring" has been demonstrated to below 12nm for two colors and to 8nm for three colors. • Cut/hole masks will eventually be replaced by e-beam direct write using complementary e-beam lithography (CEBL).[7-11] This transition is gated by the availability of multiple column e-beam systems with throughput adequate for high- volume manufacturing. A brief description of 1D and 2D design styles will be presented, followed by examples of 1D layouts. Mask complexity for 1
The Nash equilibrium: a perspective.
Holt, Charles A; Roth, Alvin E
2004-03-23
In 1950, John Nash contributed a remarkable one-page PNAS article that defined and characterized a notion of equilibrium for n- person games. This notion, now called the "Nash equilibrium," has been widely applied and adapted in economics and other behavioral sciences. Indeed, game theory, with the Nash equilibrium as its centerpiece, is becoming the most prominent unifying theory of social science. In this perspective, we summarize the historical context and subsequent impact of Nash's contribution. PMID:15024100
Grinding kinetics and equilibrium states
NASA Technical Reports Server (NTRS)
Opoczky, L.; Farnady, F.
1984-01-01
The temporary and permanent equilibrium occurring during the initial stage of cement grinding does not indicate the end of comminution, but rather an increased energy consumption during grinding. The constant dynamic equilibrium occurs after a long grinding period indicating the end of comminution for a given particle size. Grinding equilibrium curves can be constructed to show the stages of comminution and agglomeration for certain particle sizes.
Discrete spectrum for quantum graph with local disturbance of the periodicity
NASA Astrophysics Data System (ADS)
Popov, Igor Yu; Blinova, Irina V.; Popov, Anton I.
2015-12-01
The problem of discrete spectrum for quantum graph with local disturbance of the periodicity is described. The Hamiltonian is determined as 1D Schrödinger operator on each edge and some boundary conditions at each vertex. The spectral analysis of the quantum graph having the form of branching strips with hexagonal (honeycomb) structure is considered in more details.
Generalized computer-aided discrete time domain modeling and analysis of dc-dc converters
NASA Technical Reports Server (NTRS)
Lee, F. C.; Iwens, R. P.; Yu, Y.; Triner, J. E.
1977-01-01
A generalized discrete time domain modeling and analysis technique is presented for all types of switching regulators using any type of duty-cycle controller, and operating in both continuous and discontinuous inductor current. State space techniques are employed to derive an equivalent nonlinear discrete time model that describes the converter exactly. The system is linearized about its equilibrium state to obtain a linear discrete time model for small signal performance evaluations, such as stability, audiosusceptibility and transient response. The analysis makes extensive use of the digital computer as an analytical tool. It is universal, exact and easy to use.
Kaiglová, Jana; Langhammer, Jakub; Jiřinec, Petr; Janský, Bohumír; Chalupová, Dagmar
2015-03-01
This article used various hydrodynamic and sediment transport models to analyze the potential and the limits of different channel schematizations. The main aim was to select and evaluate the most suitable simulation method for fine-grained sediment remobilization assessment. Three types of channel schematization were selected to study the flow potential for remobilizing fine-grained sediment in artificially modified channels. Schematization with a 1D cross-sectional horizontal plan, a 1D+ approach, splitting the riverbed into different functional zones, and full 2D mesh, adopted in MIKE by the DHI modeling suite, was applied to the study. For the case study, a 55-km stretch of the Bílina River, in the Czech Republic, Central Europe, which has been heavily polluted by the chemical and coal mining industry since the mid-twentieth century, was selected. Long-term exposure to direct emissions of toxic pollutants including heavy metals and persistent organic pollutants (POPs) resulted in deposits of pollutants in fine-grained sediments in the riverbed. Simulations, based on three hydrodynamic model schematizations, proved that for events not exceeding the extent of the riverbed profile, the 1D schematization can provide comparable results to a 2D model. The 1D+ schematization can improve accuracy while keeping the benefits of high-speed simulation and low requirements of input DEM data, but the method's suitability is limited by the channel properties. PMID:25687259
Phillips, Rob
2016-01-01
It has been said that the cell is the test tube of the twenty-first century. If so, the theoretical tools needed to quantitatively and predictively describe what goes on in such test tubes lag sorely behind the stunning experimental advances in biology seen in the decades since the molecular biology revolution began. Perhaps surprisingly, one of the theoretical tools that has been used with great success on problems ranging from how cells communicate with their environment and each other to the nature of the organization of proteins and lipids within the cell membrane is statistical mechanics. A knee-jerk reaction to the use of statistical mechanics in the description of cellular processes is that living organisms are so far from equilibrium that one has no business even thinking about it. But such reactions are probably too hasty given that there are many regimes in which, because of a separation of timescales, for example, such an approach can be a useful first step. In this article, we explore the power of statistical mechanical thinking in the biological setting, with special emphasis on cell signaling and regulation. We show how such models are used to make predictions and describe some recent experiments designed to test them. We also consider the limits of such models based on the relative timescales of the processes of interest. PMID:27429713
NASA Astrophysics Data System (ADS)
Phillips, Rob
2015-03-01
It has been said that the cell is the test tube of the twenty-first century. If so, the theoretical tools needed to quantitatively and predictively describe what goes on in such test tubes lag sorely behind the stunning experimental advances in biology seen in the decades since the molecular biology revolution began. Perhaps surprisingly, one of the theoretical tools that has been used with great success on problems ranging from how cells communicate with their environment and each other to the nature of the organization of proteins and lipids within the cell membrane is statistical mechanics. A knee-jerk reaction to the use of statistical mechanics in the description of cellular processes is that living organisms are so far from equilibrium that one has no business even thinking about it. But such reactions are probably too hasty given that there are many regimes in which, because of a separation of timescales, for example, such an approach can be a useful first step. In this article, we explore the power of statistical mechanical thinking in the biological setting, with special emphasis on cell signaling and regulation. We show how such models are used to make predictions and describe some recent experiments designed to test them. We also consider the limits of such models based on the relative timescales of the processes of interest.
The discrete variational derivative method based on discrete differential forms
NASA Astrophysics Data System (ADS)
Yaguchi, Takaharu; Matsuo, Takayasu; Sugihara, Masaaki
2012-05-01
As is well known, for PDEs that enjoy a conservation or dissipation property, numerical schemes that inherit this property are often advantageous in that the schemes are fairly stable and give qualitatively better numerical solutions in practice. Lately, Furihata and Matsuo have developed the so-called “discrete variational derivative method” that automatically constructs energy preserving or dissipative finite difference schemes. Although this method was originally developed on uniform meshes, the use of non-uniform meshes is of importance for multi-dimensional problems. On the other hand, the theories of discrete differential forms have received much attention recently. These theories provide a discrete analogue of the vector calculus on general meshes. In this paper, we show that the discrete variational derivative method and the discrete differential forms by Bochev and Hyman can be combined. Applications to the Cahn-Hilliard equation and the Klein-Gordon equation on triangular meshes are provided as demonstrations. We also show that the schemes for these equations are H1-stable under some assumptions. In particular, one for the nonlinear Klein-Gordon equation is obtained by combination of the energy conservation property and the discrete Poincaré inequality, which are the temporal and spacial structures that are preserved by the above methods.
Microscopic derivation of discrete hydrodynamics.
Español, Pep; Anero, Jesús G; Zúñiga, Ignacio
2009-12-28
By using the standard theory of coarse graining based on Zwanzig's projection operator, we derive the dynamic equations for discrete hydrodynamic variables. These hydrodynamic variables are defined in terms of the Delaunay triangulation. The resulting microscopically derived equations can be understood, a posteriori, as a discretization on an arbitrary irregular grid of the Navier-Stokes equations. The microscopic derivation provides a set of discrete equations that exactly conserves mass, momentum, and energy and the dissipative part of the dynamics produces strict entropy increase. In addition, the microscopic derivation provides a practical implementation of thermal fluctuations in a way that the fluctuation-dissipation theorem is satisfied exactly. This paper points toward a close connection between coarse-graining procedures from microscopic dynamics and discretization schemes for partial differential equations. PMID:20059064
Exact discretization by Fourier transforms
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2016-08-01
A discretization of differential and integral operators of integer and non-integer orders is suggested. New type of differences, which are represented by infinite series, is proposed. A characteristic feature of the suggested differences is an implementation of the same algebraic properties that have the operator of differentiation (property of algebraic correspondence). Therefore the suggested differences are considered as an exact discretization of derivatives. These differences have a property of universality, which means that these operators do not depend on the form of differential equations and the parameters of these equations. The suggested differences operators allows us to have difference equations whose solutions are equal to the solutions of corresponding differential equations. The exact discretization of the derivatives of integer orders is given by the suggested differences of the same integer orders. Similarly, the exact discretization of the Riesz derivatives and integrals of integer and non-integer order is given by the proposed fractional differences of the same order.
Novel approach to data discretization
NASA Astrophysics Data System (ADS)
Borowik, Grzegorz; Kowalski, Karol; Jankowski, Cezary
2015-09-01
Discretization is an important preprocessing step in data mining. The data discretization method involves determining the ranges of values for numeric attributes, which ultimately represent discrete intervals for new attributes. The ranges for the proposed set of cuts are analyzed, in order to obtain a minimal set of ranges while retaining the possibility of classification. For this purpose, a special discernibility function can be constructed as a conjunction of alternative cuts set for each pair of different objects of different decisions- cuts discern these objects. However, the data mining methods based on discernibility matrix are insufficient for large databases. The purpose of this paper is the idea of implementation of a new data discretization algorithm that is based on statistics of attribute values and that avoids building the discernibility matrix explicitly. Evaluation of time complexity has shown that the proposed method is much more efficient than currently available solutions for large data sets.
Chaos in Periodic Discrete Systems
NASA Astrophysics Data System (ADS)
Shi, Yuming; Zhang, Lijuan; Yu, Panpan; Huang, Qiuling
This paper focuses on chaos in periodic discrete systems, whose state space may vary with time. Some close relationships between some chaotic dynamical behaviors of a periodic discrete system and its autonomous induced system are given. Based on these relationships, several criteria of chaos are established and some sufficient conditions for no chaos are given for periodic discrete systems. Further, it is shown that a finite-dimensional linear periodic discrete system is not chaotic in the sense of Li-Yorke or Wiggins. In particular, an interesting problem of whether nonchaotic rules may generate a chaotic system is studied, with some examples provided, one of which surprisingly shows that a composition of globally asymptotically stable maps can be chaotic. In addition, some properties of sign pattern matrices of non-negative square matrices are given for convenience of the study.
A Bayesian Algorithm for Reading 1D Barcodes
Tekin, Ender; Coughlan, James
2010-01-01
The 1D barcode is a ubiquitous labeling technology, with symbologies such as UPC used to label approximately 99% of all packaged goods in the US. It would be very convenient for consumers to be able to read these barcodes using portable cameras (e.g. mobile phones), but the limited quality and resolution of images taken by these cameras often make it difficult to read the barcodes accurately. We propose a Bayesian framework for reading 1D barcodes that models the shape and appearance of barcodes, allowing for geometric distortions and image noise, and exploiting the redundant information contained in the parity digit. An important feature of our framework is that it doesn’t require that every barcode edge be detected in the image. Experiments on a publicly available dataset of barcode images explore the range of images that are readable, and comparisons with two commercial readers demonstrate the superior performance of our algorithm. PMID:20428491
NASA Astrophysics Data System (ADS)
Lauer, J. Wesley; Viparelli, Enrica; Piégay, Hervé
2016-07-01
Bed material transported in geomorphically active gravel bed rivers often has a local source at nearby eroding banks and ends up sequestered in bars not far downstream. However, most 1-D numerical models for gravel transport assume that gravel originates from and deposits on the channel bed. In this paper, we present a 1-D framework for simulating morphodynamic evolution of bed elevation and size distribution in a gravel-bed river that actively exchanges sediment with its floodplain, which is represented as an off-channel sediment reservoir. The model is based on the idea that sediment enters the channel at eroding banks whose elevation depends on total floodplain sediment storage and on the average elevation of the floodplain relative to the channel bed. Lateral erosion of these banks occurs at a specified rate that can represent either net channel migration or channel widening. Transfer of material out of the channel depends on a typical bar thickness and a specified lateral exchange rate due either to net channel migration or narrowing. The model is implemented using an object oriented framework that allows users to explore relationships between bank supply, bed structure, and lateral change rates. It is applied to a ∼50-km reach of the Ain River, France, that experienced significant reduction in sediment supply due to dam construction during the 20th century. Results are strongly sensitive to lateral exchange rates, showing that in this reach, the supply of sand and gravel at eroding banks and the sequestration of gravel in point bars can have strong influence on overall reach-scale sediment budgets.
Rapid-Equilibrium Enzyme Kinetics
ERIC Educational Resources Information Center
Alberty, Robert A.
2008-01-01
Rapid-equilibrium rate equations for enzyme-catalyzed reactions are especially useful because if experimental data can be fit by these simpler rate equations, the Michaelis constants can be interpreted as equilibrium constants. However, for some reactions it is necessary to use the more complicated steady-state rate equations. Thermodynamics is…
Nonreciprocity of edge modes in 1D magnonic crystal
NASA Astrophysics Data System (ADS)
Lisenkov, I.; Kalyabin, D.; Osokin, S.; Klos, J. W.; Krawczyk, M.; Nikitov, S.
2015-03-01
Spin waves propagation in 1D magnonic crystals is investigated theoretically. Mathematical model based on plane wave expansion method is applied to different types of magnonic crystals, namely bi-component magnonic crystal with symmetric/asymmetric boundaries and ferromagnetic film with periodically corrugated top surface. It is shown that edge modes in magnonic crystals may exhibit nonreciprocal behaviour at much lower frequencies than in homogeneous films.
Waves in a 1D electrorheological dusty plasma lattice
NASA Astrophysics Data System (ADS)
Rosenberg, M.
2015-08-01
The behavior of waves in a one-dimensional (1D) dusty plasma lattice where the dust interacts via Yukawa and electric dipole interactions is discussed theoretically. This study is motivated by recent reports on electrorheological dusty plasmas (e.g. Ivlev et al. 2008 Phys. Rev. Lett. 100, 095003) where the dipole interaction arises due to an external uniaxial AC electric field that distorts the Debye sphere surrounding each grain. Application to possible dusty plasma experimental parameters is discussed.
Constructing 3D interaction maps from 1D epigenomes
Zhu, Yun; Chen, Zhao; Zhang, Kai; Wang, Mengchi; Medovoy, David; Whitaker, John W.; Ding, Bo; Li, Nan; Zheng, Lina; Wang, Wei
2016-01-01
The human genome is tightly packaged into chromatin whose functional output depends on both one-dimensional (1D) local chromatin states and three-dimensional (3D) genome organization. Currently, chromatin modifications and 3D genome organization are measured by distinct assays. An emerging question is whether it is possible to deduce 3D interactions by integrative analysis of 1D epigenomic data and associate 3D contacts to functionality of the interacting loci. Here we present EpiTensor, an algorithm to identify 3D spatial associations within topologically associating domains (TADs) from 1D maps of histone modifications, chromatin accessibility and RNA-seq. We demonstrate that active promoter–promoter, promoter–enhancer and enhancer–enhancer associations identified by EpiTensor are highly concordant with those detected by Hi-C, ChIA-PET and eQTL analyses at 200 bp resolution. Moreover, EpiTensor has identified a set of interaction hotspots, characterized by higher chromatin and transcriptional activity as well as enriched TF and ncRNA binding across diverse cell types, which may be critical for stabilizing the local 3D interactions. PMID:26960733
Enhancing Solar Cell Efficiencies through 1-D Nanostructures
2009-01-01
The current global energy problem can be attributed to insufficient fossil fuel supplies and excessive greenhouse gas emissions resulting from increasing fossil fuel consumption. The huge demand for clean energy potentially can be met by solar-to-electricity conversions. The large-scale use of solar energy is not occurring due to the high cost and inadequate efficiencies of existing solar cells. Nanostructured materials have offered new opportunities to design more efficient solar cells, particularly one-dimensional (1-D) nanomaterials for enhancing solar cell efficiencies. These 1-D nanostructures, including nanotubes, nanowires, and nanorods, offer significant opportunities to improve efficiencies of solar cells by facilitating photon absorption, electron transport, and electron collection; however, tremendous challenges must be conquered before the large-scale commercialization of such cells. This review specifically focuses on the use of 1-D nanostructures for enhancing solar cell efficiencies. Other nanostructured solar cells or solar cells based on bulk materials are not covered in this review. Major topics addressed include dye-sensitized solar cells, quantum-dot-sensitized solar cells, and p-n junction solar cells.
Examining Prebiotic Chemistry Using O(^1D) Insertion Reactions
NASA Astrophysics Data System (ADS)
Hays, Brian M.; Laas, Jacob C.; Weaver, Susanna L. Widicus
2013-06-01
Aminomethanol, methanediol, and methoxymethanol are all prebiotic molecules expected to form via photo-driven grain surface chemistry in the interstellar medium (ISM). These molecules are expected to be precursors for larger, biologically-relevant molecules in the ISM such as sugars and amino acids. These three molecules have not yet been detected in the ISM because of the lack of available rotational spectra. A high resolution (sub)millimeter spectrometer coupled to a molecular source is being used to study these molecules using O(^1D) insertion reactions. The O(^1D) chemistry is initiated using an excimer laser, and the products of the insertion reactions are adiabatically cooled using a supersonic expansion. Experimental parameters are being optimized by examination of methanol formed from O(^1D) insertion into methane. Theoretical studies of the structure and reaction energies for aminomethanol, methanediol, and methoxymethanol have been conducted to guide the laboratory studies once the methanol experiment has been optimized. The results of the calculations and initial experimental results will be presented.
Development of 1D Liner Compression Code for IDL
NASA Astrophysics Data System (ADS)
Shimazu, Akihisa; Slough, John; Pancotti, Anthony
2015-11-01
A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.
Investigation of Associations between NR1D1, RORA and RORB Genes and Bipolar Disorder
Lai, Yin-Chieh; Kao, Chung-Feng; Lu, Mong-Liang; Chen, Hsi-Chung; Chen, Po-Yu; Chen, Chien-Hsiun; Shen, Winston W.; Wu, Jer-Yuarn; Lu, Ru-Band; Kuo, Po-Hsiu
2015-01-01
Several genes that are involved in the regulation of circadian rhythms are implicated in the susceptibility to bipolar disorder (BD). The current study aimed to investigate the relationships between genetic variants in NR1D1 RORA, and RORB genes and BD in the Han Chinese population. We conducted a case-control genetic association study with two samples of BD patients and healthy controls. Sample I consisted of 280 BD patients and 200 controls. Sample II consisted of 448 BD patients and 1770 healthy controls. 27 single nucleotide polymorphisms in the NR1D1, RORA, and RORB genes were genotyped using GoldenGate VeraCode assays in sample I, and 492 markers in the three genes were genotyped using Affymetrix Genome-Wide CHB Array in sample II. Single marker and gene-based association analyses were performed using PLINK. A combined p-value for the joining effects of all markers within a gene was calculated using the rank truncated product method. Multifactor dimensionality reduction (MDR) method was also applied to test gene-gene interactions in sample I. All markers were in Hardy-Weinberg equilibrium (P>0.001). In sample I, the associations with BD were observed for rs4774388 in RORA (OR = 1.53, empirical p-value, P = 0.024), and rs1327836 in RORB (OR = 1.75, P = 0.003). In Sample II, there were 45 SNPs showed associations with BD, and the most significant marker in RORA was rs11639084 (OR = 0.69, P = 0.002), and in RORB was rs17611535 (OR = 3.15, P = 0.027). A combined p-value of 1.6×10−6, 0.7, and 1.0 was obtained for RORA, RORB and NR1D1, respectively, indicting a strong association for RORA with the risk of developing BD. A four way interaction was found among markers in NR1D1, RORA, and RORB with the testing accuracy 53.25% and a cross-validation consistency of 8 out of 10. In sample II, 45 markers had empirical p-values less than 0.05. The most significant markers in RORA and RORB genes were rs11639084 (OR = 0.69, P = 0.002), and rs17611535 (OR = 3.15, P = 0
Is Soret equilibrium a non-equilibrium effect?
NASA Astrophysics Data System (ADS)
Würger, Alois
2013-04-01
Recent thermophoretic experiments on colloidal suspensions revived an old debate, namely whether the Soret effect is properly described by thermostatics, or necessarily requires non-equilibrium thermodynamics. Based on colloidal transport theory and the entropy production of the related viscous flow, our analysis leads to the conclusion that the equilibrium approach may work for small ions, yet fails for colloidal particles and polymers. Regarding binary molecular mixtures, our results shed some doubt on the validity of thermostatic approaches that derive the Soret coefficient from equilibrium potentials.
Two routes to the one-dimensional discrete nonpolynomial Schrödinger equation
NASA Astrophysics Data System (ADS)
Gligorić, G.; Maluckov, A.; Salasnich, L.; Malomed, B. A.; Hadžievski, Lj.
2009-12-01
The Bose-Einstein condensate (BEC), confined in a combination of the cigar-shaped trap and axial optical lattice, is studied in the framework of two models described by two versions of the one-dimensional (1D) discrete nonpolynomial Schrödinger equation (NPSE). Both models are derived from the three-dimensional Gross-Pitaevskii equation (3D GPE). To produce "model 1" (which was derived in recent works), the 3D GPE is first reduced to the 1D continual NPSE, which is subsequently discretized. "Model 2," which was not considered before, is derived by first discretizing the 3D GPE, which is followed by the reduction in the dimension. The two models seem very different; in particular, model 1 is represented by a single discrete equation for the 1D wave function, while model 2 includes an additional equation for the transverse width. Nevertheless, numerical analyses show similar behaviors of fundamental unstaggered solitons in both systems, as concerns their existence region and stability limits. Both models admit the collapse of the localized modes, reproducing the fundamental property of the self-attractive BEC confined in tight traps. Thus, we conclude that the fundamental properties of discrete solitons predicted for the strongly trapped self-attracting BEC are reliable, as the two distinct models produce them in a nearly identical form. However, a difference between the models is found too, as strongly pinned (very narrow) discrete solitons, which were previously found in model 1, are not generated by model 2—in fact, in agreement with the continual 1D NPSE, which does not have such solutions either. In that respect, the newly derived model provides for a more accurate approximation for the trapped BEC.
Two routes to the one-dimensional discrete nonpolynomial Schroedinger equation
Gligoric, G.; Hadzievski, Lj.; Maluckov, A.; Salasnich, L.; Malomed, B. A.
2009-12-15
The Bose-Einstein condensate (BEC), confined in a combination of the cigar-shaped trap and axial optical lattice, is studied in the framework of two models described by two versions of the one-dimensional (1D) discrete nonpolynomial Schroedinger equation (NPSE). Both models are derived from the three-dimensional Gross-Pitaevskii equation (3D GPE). To produce 'model 1' (which was derived in recent works), the 3D GPE is first reduced to the 1D continual NPSE, which is subsequently discretized. 'Model 2,' which was not considered before, is derived by first discretizing the 3D GPE, which is followed by the reduction in the dimension. The two models seem very different; in particular, model 1 is represented by a single discrete equation for the 1D wave function, while model 2 includes an additional equation for the transverse width. Nevertheless, numerical analyses show similar behaviors of fundamental unstaggered solitons in both systems, as concerns their existence region and stability limits. Both models admit the collapse of the localized modes, reproducing the fundamental property of the self-attractive BEC confined in tight traps. Thus, we conclude that the fundamental properties of discrete solitons predicted for the strongly trapped self-attracting BEC are reliable, as the two distinct models produce them in a nearly identical form. However, a difference between the models is found too, as strongly pinned (very narrow) discrete solitons, which were previously found in model 1, are not generated by model 2--in fact, in agreement with the continual 1D NPSE, which does not have such solutions either. In that respect, the newly derived model provides for a more accurate approximation for the trapped BEC.
Studying non-equilibrium many-body dynamics using one-dimensional Bose gases
Langen, Tim; Gring, Michael; Kuhnert, Maximilian; Rauer, Bernhard; Geiger, Remi; Mazets, Igor; Smith, David Adu; Schmiedmayer, Jörg; Kitagawa, Takuya; Demler, Eugene
2014-12-04
Non-equilibrium dynamics of isolated quantum many-body systems play an important role in many areas of physics. However, a general answer to the question of how these systems relax is still lacking. We experimentally study the dynamics of ultracold one-dimensional (1D) Bose gases. This reveals the existence of a quasi-steady prethermalized state which differs significantly from the thermal equilibrium of the system. Our results demonstrate that the dynamics of non-equilibrium quantum many-body systems is a far richer process than has been assumed in the past.
Helical axis stellarator equilibrium model
Koniges, A.E.; Johnson, J.L.
1985-02-01
An asymptotic model is developed to study MHD equilibria in toroidal systems with a helical magnetic axis. Using a characteristic coordinate system based on the vacuum field lines, the equilibrium problem is reduced to a two-dimensional generalized partial differential equation of the Grad-Shafranov type. A stellarator-expansion free-boundary equilibrium code is modified to solve the helical-axis equations. The expansion model is used to predict the equilibrium properties of Asperators NP-3 and NP-4. Numerically determined flux surfaces, magnetic well, transform, and shear are presented. The equilibria show a toroidal Shafranov shift.
Understanding thermal equilibrium through activities
NASA Astrophysics Data System (ADS)
Pathare, Shirish; Huli, Saurabhee; Nachane, Madhura; Ladage, Savita; Pradhan, Hemachandra
2015-03-01
Thermal equilibrium is a basic concept in thermodynamics. In India, this concept is generally introduced at the first year of undergraduate education in physics and chemistry. In our earlier studies (Pathare and Pradhan 2011 Proc. episteme-4 Int. Conf. to Review Research on Science Technology and Mathematics Education pp 169-72) we found that students in India have a rather unsatisfactory understanding of thermal equilibrium. We have designed and developed a module of five activities, which are presented in succession to the students. These activities address the students’ alternative conceptions that underlie their lack of understanding of thermal equilibrium and aim at enhancing their understanding of the concept.
Finite strain discrete dislocation plasticity in a total Lagrangian setting
NASA Astrophysics Data System (ADS)
Irani, N.; Remmers, J. J. C.; Deshpande, V. S.
2015-10-01
We present two total Lagrangian formulations for finite strain discrete dislocation plasticity wherein the discrete dislocations are presumed to be adequately represented by singular linear elastic fields thereby extending the superposition method of Van der Giessen and Needleman (1995) to finite strains. The finite deformation effects accounted for are (i) finite lattice rotations and (ii) shape changes due to slip. The two formulations presented differ in the fact that in the "smeared-slip" formulation the discontinuous displacement field is smeared using finite element shape functions while in the "discrete-slip" formulation the weak form of the equilibrium statement is written to account for the slip displacement discontinuity. Both these total Lagrangian formulations use a hyper-elastic constitutive model for lattice elasticity. This overcomes the issues of using singular dislocation fields in a hypo-elastic constitutive relation as encountered in the updated Lagrangian formulation of Deshpande et al. (2003). Predictions of these formulations are presented for the relatively simple problems of tension and compression of single crystals oriented for single slip. These results show that unlike in small-strain discrete dislocation plasticity, finite strain effects result in a size dependent tension/compression asymmetry. Moreover, both formulations give nearly identical predictions and thus we expect that the "smeared-slip" formulation is likely to be preferred due to its relative computational efficiency and simplicity.
Discrete particle noise in a nonlinearly saturated plasma
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Lee, W. W.
2006-04-01
Understanding discrete particle noise in an equilibrium plasma has been an important topic since the early days of particle-in- cell (PIC) simulation [1]. In this paper, particle noise in a nonlinearly saturated system is investigated. We investigate the usefulness of the fluctuation-dissipation theorem (FDT) in a regime where drift instabilities are nonlinearly saturated. We obtain excellent agreement between the simulation results and our theoretical predictions of the noise properties. It is found that discrete particle noise always enhances the particle and thermal transport in the plasma, in agreement with the second law of thermodynamics. [1] C.K. Birdsall and A.B. Langdon, Plasma Physics via Computer Simulation, McGraw-Hill, New York (1985).
Non-linearity in Bayesian 1-D magnetotelluric inversion
NASA Astrophysics Data System (ADS)
Guo, Rongwen; Dosso, Stan E.; Liu, Jianxin; Dettmer, Jan; Tong, Xiaozhong
2011-05-01
This paper applies a Bayesian approach to examine non-linearity for the 1-D magnetotelluric (MT) inverse problem. In a Bayesian formulation the posterior probability density (PPD), which combines data and prior information, is interpreted in terms of parameter estimates and uncertainties, which requires optimizing and integrating the PPD. Much work on 1-D MT inversion has been based on (approximate) linearized solutions, but more recently fully non-linear (numerical) approaches have been applied. This paper directly compares results of linearized and non-linear uncertainty estimation for 1-D MT inversion; to do so, advanced methods for both approaches are applied. In the non-linear formulation used here, numerical optimization is carried out using an adaptive-hybrid algorithm. Numerical integration applies Metropolis-Hastings sampling, rotated to a principal-component parameter space for efficient sampling of correlated parameters, and employing non-unity sampling temperatures to ensure global sampling. Since appropriate model parametrizations are generally not known a priori, both under- and overparametrized approaches are considered. For underparametrization, the Bayesian information criterion is applied to determine the number of layers consistent with the resolving power of the data. For overparametrization, prior information is included which favours simple structure in a manner similar to regularized inversion. The data variance and/or trade-off parameter regulating data and prior information are treated in several ways, including applying fixed optimal estimates (an empirical Bayesian approach) or including them as hyperparameters in the sampling (hierarchical Bayesian). The latter approach has the benefit of accounting for the uncertainty in the hyperparameters in estimating model parameter uncertainties. Non-linear and linearized inversion results are compared for synthetic test cases and for the measured COPROD1 MT data by considering marginal probability
Extended-Range Ultrarefractive 1D Photonic Crystal Prisms
NASA Technical Reports Server (NTRS)
Ting, David Z.
2007-01-01
A proposal has been made to exploit the special wavelength-dispersive characteristics of devices of the type described in One-Dimensional Photonic Crystal Superprisms (NPO-30232) NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 10a. A photonic crystal is an optical component that has a periodic structure comprising two dielectric materials with high dielectric contrast (e.g., a semiconductor and air), with geometrical feature sizes comparable to or smaller than light wavelengths of interest. Experimental superprisms have been realized as photonic crystals having three-dimensional (3D) structures comprising regions of amorphous Si alternating with regions of SiO2, fabricated in a complex process that included sputtering. A photonic crystal of the type to be exploited according to the present proposal is said to be one-dimensional (1D) because its contrasting dielectric materials would be stacked in parallel planar layers; in other words, there would be spatial periodicity in one dimension only. The processes of designing and fabricating 1D photonic crystal superprisms would be simpler and, hence, would cost less than do those for 3D photonic crystal superprisms. As in 3D structures, 1D photonic crystals may be used in applications such as wavelength-division multiplexing. In the extended-range configuration, it is also suitable for spectrometry applications. As an engineered structure or artificially engineered material, a photonic crystal can exhibit optical properties not commonly found in natural substances. Prior research had revealed several classes of photonic crystal structures for which the propagation of electromagnetic radiation is forbidden in certain frequency ranges, denoted photonic bandgaps. It had also been found that in narrow frequency bands just outside the photonic bandgaps, the angular wavelength dispersion of electromagnetic waves propagating in photonic crystal superprisms is much stronger than is the angular wavelength dispersion obtained
Distributed Relaxation for Conservative Discretizations
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.
2001-01-01
A multigrid method is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work that is a small (less than 10) multiple of the operation count in one target-grid residual evaluation. The way to achieve this efficiency is the distributed relaxation approach. TME solvers employing distributed relaxation have already been demonstrated for nonconservative formulations of high-Reynolds-number viscous incompressible and subsonic compressible flow regimes. The purpose of this paper is to provide foundations for applications of distributed relaxation to conservative discretizations. A direct correspondence between the primitive variable interpolations for calculating fluxes in conservative finite-volume discretizations and stencils of the discretized derivatives in the nonconservative formulation has been established. Based on this correspondence, one can arrive at a conservative discretization which is very efficiently solved with a nonconservative relaxation scheme and this is demonstrated for conservative discretization of the quasi one-dimensional Euler equations. Formulations for both staggered and collocated grid arrangements are considered and extensions of the general procedure to multiple dimensions are discussed.
Coherent thermal conductance of 1-D photonic crystals
NASA Astrophysics Data System (ADS)
Tschikin, Maria; Ben-Abdallah, Philippe; Biehs, Svend-Age
2012-10-01
We present an exact calculation of coherent thermal conductance in 1-D multilayer photonic crystals using the S-matrix method. In particular, we study the thermal conductance in a bilayer structure of Si/vacuum or Al2O3/vacuum slabs by means of the exact radiative heat flux expression. Based on the results obtained for the Al2O3/vacuum structure we show by comparison with previous works that the material losses and (localized) surface modes supported by the inner layers play a fundamental role and cannot be omitted in the definition of thermal conductance. Our results could have significant implications in the conception of efficient thermal barriers.
Spatial coherence of polaritons in a 1D channel
Savenko, I. G.; Iorsh, I. V.; Kaliteevski, M. A.; Shelykh, I. A.
2013-01-15
We analyze time evolution of spatial coherence of a polariton ensemble in a quantum wire (1D channel) under constant uniform resonant pumping. Using the theoretical approach based on the Lindblad equation for a one-particle density matrix, which takes into account the polariton-phonon and excitonexciton interactions, we study the behavior of the first-order coherence function g{sup 1} for various pump intensities and temperatures in the range of 1-20 K. Bistability and hysteresis in the dependence of the first-order coherence function on the pump intensity is demonstrated.
Deconvolution/identification techniques for 1-D transient signals
Goodman, D.M.
1990-10-01
This paper discusses a variety of nonparametric deconvolution and identification techniques that we have developed for application to 1-D transient signal problems. These methods are time-domain techniques that use direct methods for matrix inversion. Therefore, they are not appropriate for large data'' problems. These techniques involve various regularization methods and permit the use of certain kinds of a priori information in estimating the unknown. These techniques have been implemented in a package using standard FORTRAN that should make the package readily transportable to most computers. This paper is also meant to be an instruction manual for the package. 25 refs., 17 figs., 1 tab.
Phthalocyanine based 1D nanowires for device applications
NASA Astrophysics Data System (ADS)
Saini, Rajan; Mahajan, Aman; Bedi, R. K.
2012-06-01
1D nanowires (NWs) of Cu (II) 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-Phthalocyanine (CuPc(OBu)8) molecule have been grown on different substrates by cost effective solution processing technique. The density of NWs is found to be strongly dependent on the concentration of solution. The possible formation mechanism of these structures is π-π interaction between phthalocyanine molecules. The improved conductivity of these NWs as compared to spin coated film indicates their potential for molecular device applications.
HODIF:High-Order Discretizations, Interpolations and
Kennedy, Christopher A.; Carpenter, Mark H.; Ray, Jaideen
2006-06-20
This software, a library, contains FORTRAN77 subroutines to calculate first and second derivatives up to 8th order, interpolations (1D and 2D) up to 10th order and filters up to 14th order. Only even orders are addressed and finite-difference stencils are implemented on a vertex-centered mesh. The primary aim of this library is to be used in block-structured adaptive mesh simulations where high order is desired. The interpolants in this library are essentially designed to do prolongations and restrictions between levels of rfinement - however, they assume that the refinement ratio is 2. The filters are provided to remove high wavenumber content from solutions in case Runge phenomenon occurs - a common occurrence in case of marginal resolution of the solution. Details of the derivation and use are to be found in "Using high-order methods on adaptively refined block-structured meshes - discretizations, interpolations and filters", by J. Ray, C.A. Kennedy, S. Lefantzi and H.N. Najm, Sandia Technical Report, SAND2005-7981. The software comes with a User's Guide and examples how to use it.
Discrete interferometer with individual trapped atoms
NASA Astrophysics Data System (ADS)
Steffen, Andreas; Alberti, Andrea; Alt, Wolfgang; Belmechri, Noomen; Hild, Sebastian; Karski, Michal; Widera, Artur; Meschede, Dieter; Quantum Technology Team
2011-05-01
Coherent control and delocalization of individual atoms is a pivotal challenge in quantum technologies. As a new step on this road, we present an individual atom interferometer that is capable of splitting a trapped Cs atom by up to 10 μm , allowing us to measure potential gradients on the microscale. The atom is confined in a 1D optical lattice, which is capable of performing discrete state-dependent shifts to split the atom by the desired number of sites. We establish a high degree of control, as the initial atom position, vibrational state and spin state can all be prepared with above 95% fidelity. To unravel decoherence effects and phase influences, we have explored several basic interferometer geometries, among other things demonstrating a positional spin echo to cancel background effects. As a test case, an inertial force has been applied and successfully measured using the atomic phase. This will offer us a new tool to investigate the interaction between two atoms in a controlled model system.
HODIF:High-Order Discretizations, Interpolations and
Energy Science and Technology Software Center (ESTSC)
2006-06-20
This software, a library, contains FORTRAN77 subroutines to calculate first and second derivatives up to 8th order, interpolations (1D and 2D) up to 10th order and filters up to 14th order. Only even orders are addressed and finite-difference stencils are implemented on a vertex-centered mesh. The primary aim of this library is to be used in block-structured adaptive mesh simulations where high order is desired. The interpolants in this library are essentially designed to domore » prolongations and restrictions between levels of rfinement - however, they assume that the refinement ratio is 2. The filters are provided to remove high wavenumber content from solutions in case Runge phenomenon occurs - a common occurrence in case of marginal resolution of the solution. Details of the derivation and use are to be found in "Using high-order methods on adaptively refined block-structured meshes - discretizations, interpolations and filters", by J. Ray, C.A. Kennedy, S. Lefantzi and H.N. Najm, Sandia Technical Report, SAND2005-7981. The software comes with a User's Guide and examples how to use it.« less
Cheraghi-Sohi, Sudeh; Calnan, Michael
2013-11-01
There has much debate about the extent to which professional discretion has been challenged by recent organisational changes such as through the new forms of governance associated with the introduction of the principles of the New Public Management (NPM) into health systems and other public sector services. What appears to be missing from these debates is a detailed analysis of the concept of professional discretion itself. This paper attempts to fill this gap by delineating the key concepts of professional discretion evident in the literature and exploring their significance in an empirical study of the influence of the 2004 new general medical services contract (nGMS) and the introduction of the Quality and Outcomes Framework (QOF), a prescriptive pay-for-performance system designed to standardise the quality of care provision in general medical practice in the United Kingdom. The study adopted a longitudinal design using semi-structured interviews with general practitioners (GPs, N = 62) working in the English National Health Service (NHS) between 2007 and 2009. A multi-dimensional conception of discretion was used to explore how GP discretion might have been influenced by contractual changes and in particular, QOF. The findings suggest that through a complex interplay of factors, a post-QOF reduction in GP discretion was identifiable, highlighting different potential sources of constraint such as in the social, organisational and economic dimensions of discretion. The evidence also suggested the emergence of a new form of organisational medical professionalism within general practice characterised by standardisation, bureaucracy and performance management. PMID:24034951
Equilibrium Constants You Can Smell.
ERIC Educational Resources Information Center
Anderson, Michael; Buckley, Amy
1996-01-01
Presents a simple experiment involving the sense of smell that students can accomplish during a lecture. Illustrates the important concepts of equilibrium along with the acid/base properties of various ions. (JRH)
Equilibrium ignition for ICF capsules
Lackner, K.S.; Colgate, S.A.; Johnson, N.L.; Kirkpatrick, R.C.; Menikoff, R.; Petschek, A.G.
1993-12-31
There are two fundamentally different approaches to igniting DT fuel in an ICF capsule which can be described as equilibrium and hot spot ignition. In both cases, a capsule which can be thought of as a pusher containing the DT fuel is imploded until the fuel reaches ignition conditions. In comparing high-gain ICF targets using cryogenic DT for a pusher with equilibrium ignition targets using high-Z pushers which contain the radiation. The authors point to the intrinsic advantages of the latter. Equilibrium or volume ignition sacrifices high gain for lower losses, lower ignition temperature, lower implosion velocity and lower sensitivity of the more robust capsule to small fluctuations and asymmetries in the drive system. The reduction in gain is about a factor of 2.5, which is small enough to make the more robust equilibrium ignition an attractive alternative.
Equilibrium and Orientation in Cephalopods.
ERIC Educational Resources Information Center
Budelmann, Bernd-Ulrich
1980-01-01
Describes the structure of the equilibrium receptor system in cephalopods, comparing it to the vertebrate counterpart--the vestibular system. Relates the evolution of this complex system to the competition of cephalopods with fishes. (CS)
NASA Astrophysics Data System (ADS)
Pazzona, Federico G.; Demontis, Pierfranco; Suffritti, Giuseppe B.
2013-12-01
The construction of a discrete stochastic system of interacting particles that evolves through a fully synchronous evolution rule while satisfying detailed balance is a highly demanding task. As a consequence, the presence of nontrivial interaction fields can make synchronicity and thermodynamic equilibrium look as two conflicting counterparts. We show that, with the proper prescriptions, the process of migration of particles in a lattice of mutually exclusive nodes can be simulated with a fully synchronous algorithm, which we call parallel Kawasaki dynamics (PKD), that incorporates site exclusion, local interactions, and detailed balance without the need of system partitioning schemes. We show that the underlying pseudo-Hamiltonian (which is derived from the PKD dynamics instead of being assumed a priori as usual in a sequential Monte Carlo scheme) is temperature dependent and causes the resulting equilibrium properties to differ substantially from the conventional hopping model when the system is near critical conditions.
Edge equilibrium code for tokamaks
Li, Xujing; Drozdov, Vladimir V.
2014-01-15
The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids.
A search for equilibrium states
NASA Technical Reports Server (NTRS)
Zeleznik, F. J.
1982-01-01
An efficient search algorithm is described for the location of equilibrium states in a search set of states which differ from one another only by the choice of pure phases. The algorithm has three important characteristics: (1) it ignores states which have little prospect for being an improved approximation to the true equilibrium state; (2) it avoids states which lead to singular iteration equations; (3) it furnishes a search history which can provide clues to alternative search paths.
Geometry of discrete quantum computing
NASA Astrophysics Data System (ADS)
Hanson, Andrew J.; Ortiz, Gerardo; Sabry, Amr; Tai, Yu-Tsung
2013-05-01
Conventional quantum computing entails a geometry based on the description of an n-qubit state using 2n infinite precision complex numbers denoting a vector in a Hilbert space. Such numbers are in general uncomputable using any real-world resources, and, if we have the idea of physical law as some kind of computational algorithm of the universe, we would be compelled to alter our descriptions of physics to be consistent with computable numbers. Our purpose here is to examine the geometric implications of using finite fields Fp and finite complexified fields \\mathbf {F}_{p^2} (based on primes p congruent to 3 (mod4)) as the basis for computations in a theory of discrete quantum computing, which would therefore become a computable theory. Because the states of a discrete n-qubit system are in principle enumerable, we are able to determine the proportions of entangled and unentangled states. In particular, we extend the Hopf fibration that defines the irreducible state space of conventional continuous n-qubit theories (which is the complex projective space \\mathbf {CP}^{2^{n}-1}) to an analogous discrete geometry in which the Hopf circle for any n is found to be a discrete set of p + 1 points. The tally of unit-length n-qubit states is given, and reduced via the generalized Hopf fibration to \\mathbf {DCP}^{2^{n}-1}, the discrete analogue of the complex projective space, which has p^{2^{n}-1} (p-1)\\,\\prod _{k=1}^{n-1} ( p^{2^{k}}+1) irreducible states. Using a measure of entanglement, the purity, we explore the entanglement features of discrete quantum states and find that the n-qubit states based on the complexified field \\mathbf {F}_{p^2} have pn(p - 1)n unentangled states (the product of the tally for a single qubit) with purity 1, and they have pn + 1(p - 1)(p + 1)n - 1 maximally entangled states with purity zero.
Validation of 3D/1D Analysis of ICRF Antennas
NASA Astrophysics Data System (ADS)
Milanesio, D.; Lancellotti, V.; Kyrytsya, V.; Maggiora, R.; Vecchi, G.; Parisot, A.; Wukitch, S. J.
2004-11-01
An innovative tool has been realized for the 3D/1D simulation of Ion Cyclotron Radio Frequency (ICRF), i.e. accounting for antennas in a realistic 3D geometry and with an accurate 1D plasma model. The approach to the problem is based on an integral-equation formulation for the self-consistent evaluation of the current distribution on the conductors. The environment has been subdivided in two coupled region: the plasma region and the vacuum region. The two problems are linked by means of electromagnetic current distribution on the aperture between the two regions. The plasma enters the formalism via a surface impedance matrix for this reason any plasma model can be used. The source term directly models the TEM mode of the coax feeding the antenna and the current in the coax is determined self-consistently, giving the input impedance/admittance of the antenna itself. The suite, called TOPICA, has been used in the design of various ICRF antennas and also for the performance prediction of the ALCATOR C-MOD D and E antenna. An extensive set of comparisons between measured and simulated antenna parameters during ALCATOR C-MOD operation will be presented.
Engineered atom-light interactions in 1D photonic crystals
NASA Astrophysics Data System (ADS)
Martin, Michael J.; Hung, Chen-Lung; Yu, Su-Peng; Goban, Akihisa; Muniz, Juan A.; Hood, Jonathan D.; Norte, Richard; McClung, Andrew C.; Meenehan, Sean M.; Cohen, Justin D.; Lee, Jae Hoon; Peng, Lucas; Painter, Oskar; Kimble, H. Jeff
2014-05-01
Nano- and microscale optical systems offer efficient and scalable quantum interfaces through enhanced atom-field coupling in both resonators and continuous waveguides. Beyond these conventional topologies, new opportunities emerge from the integration of ultracold atomic systems with nanoscale photonic crystals. One-dimensional photonic crystal waveguides can be engineered for both stable trapping configurations and strong atom-photon interactions, enabling novel cavity QED and quantum many-body systems, as well as distributed quantum networks. We present the experimental realization of such a nanophotonic quantum interface based on a nanoscale photonic crystal waveguide, demonstrating a fractional waveguide coupling of Γ1 D /Γ' of 0 . 32 +/- 0 . 08 , where Γ1 D (Γ') is the atomic emission rate into the guided (all other) mode(s). We also discuss progress towards intra-waveguide trapping of ultracold Cs. This work was supported by the IQIM, an NSF Physics Frontiers Center with support from the Moore Foundation, the DARPA ORCHID program, the AFOSR QuMPASS MURI, the DoD NSSEFF program, NSF, and the Kavli Nanoscience Institute (KNI) at Caltech.
Blood flow quantification using 1D CFD parameter identification
NASA Astrophysics Data System (ADS)
Brosig, Richard; Kowarschik, Markus; Maday, Peter; Katouzian, Amin; Demirci, Stefanie; Navab, Nassir
2014-03-01
Patient-specific measurements of cerebral blood flow provide valuable diagnostic information concerning cerebrovascular diseases rather than visually driven qualitative evaluation. In this paper, we present a quantitative method to estimate blood flow parameters with high temporal resolution from digital subtraction angiography (DSA) image sequences. Using a 3D DSA dataset and a 2D+t DSA sequence, the proposed algorithm employs a 1D Computational Fluid Dynamics (CFD) model for estimation of time-dependent flow values along a cerebral vessel, combined with an additional Advection Diffusion Equation (ADE) for contrast agent propagation. The CFD system, followed by the ADE, is solved with a finite volume approximation, which ensures the conservation of mass. Instead of defining a new imaging protocol to obtain relevant data, our cost function optimizes the bolus arrival time (BAT) of the contrast agent in 2D+t DSA sequences. The visual determination of BAT is common clinical practice and can be easily derived from and be compared to values, generated by a 1D-CFD simulation. Using this strategy, we ensure that our proposed method fits best to clinical practice and does not require any changes to the medical work flow. Synthetic experiments show that the recovered flow estimates match the ground truth values with less than 12% error in the mean flow rates.
Simulating continuous-time Hamiltonian dynamics by way of a discrete-time quantum walk
NASA Astrophysics Data System (ADS)
Schmitz, A. T.; Schwalm, W. A.
2016-03-01
Much effort has been made to connect the continuous-time and discrete-time quantum walks. We present a method for making that connection for a general graph Hamiltonian on a bigraph. Furthermore, such a scheme may be adapted for simulating discretized quantum models on a quantum computer. A coin operator is found for the discrete-time quantum walk which exhibits the same dynamics as the continuous-time evolution. Given the spectral decomposition of the graph Hamiltonian and certain restrictions, the discrete-time evolution is solved for explicitly and understood at or near important values of the parameters. Finally, this scheme is connected to past results for the 1D chain.
Equilibrium polymerization on the equivalent-neighbor lattice
NASA Technical Reports Server (NTRS)
Kaufman, Miron
1989-01-01
The equilibrium polymerization problem is solved exactly on the equivalent-neighbor lattice. The Flory-Huggins (Flory, 1986) entropy of mixing is exact for this lattice. The discrete version of the n-vector model is verified when n approaches 0 is equivalent to the equal reactivity polymerization process in the whole parameter space, including the polymerized phase. The polymerization processes for polymers satisfying the Schulz (1939) distribution exhibit nonuniversal critical behavior. A close analogy is found between the polymerization problem of index the Schulz r and the Bose-Einstein ideal gas in d = -2r dimensions, with the critical polymerization corresponding to the Bose-Einstein condensation.
Equilibrium and Disequilibrium Dynamics in Cobweb Models with Time Delays
NASA Astrophysics Data System (ADS)
Gori, Luca; Guerrini, Luca; Sodini, Mauro
2015-06-01
This paper aims to study price dynamics in two different continuous time cobweb models with delays close to [Hommes, 1994]. In both cases, the stationary equilibrium may be not representative of the long-term dynamics of the model, since it is possible to observe endogenous and persistent fluctuations (supercritical Hopf bifurcations) even if a deterministic context without external shocks is considered. In the model in which markets are in equilibrium every time, we show that the existence of time delays in the expectations formation mechanism may cause chaotic dynamics similar to those obtained in [Hommes, 1994] in a discrete time context. From a mathematical point of view, we apply the Poincaré-Lindstedt perturbation method to study the local dynamic properties of the models. In addition, several numerical experiments are used to investigate global properties of the systems.
Shape characteristics of equilibrium and non-equilibrium fractal clusters
NASA Astrophysics Data System (ADS)
Mansfield, Marc L.; Douglas, Jack F.
2013-07-01
It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other
Shape characteristics of equilibrium and non-equilibrium fractal clusters.
Mansfield, Marc L; Douglas, Jack F
2013-07-28
It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other
The optimization of high resolution topographic data for 1D hydrodynamic models
NASA Astrophysics Data System (ADS)
Ales, Ronovsky; Michal, Podhoranyi
2016-06-01
The main focus of our research presented in this paper is to optimize and use high resolution topographical data (HRTD) for hydrological modelling. Optimization of HRTD is done by generating adaptive mesh by measuring distance of coarse mesh and the surface of the dataset and adapting the mesh from the perspective of keeping the geometry as close to initial resolution as possible. Technique described in this paper enables computation of very accurate 1-D hydrodynamic models. In the paper, we use HEC-RAS software as a solver. For comparison, we have chosen the amount of generated cells/grid elements (in whole discretization domain and selected cross sections) with respect to preservation of the accuracy of the computational domain. Generation of the mesh for hydrodynamic modelling is strongly reliant on domain size and domain resolution. Topographical dataset used in this paper was created using LiDAR method and it captures 5.9km long section of a catchment of the river Olše. We studied crucial changes in topography for generated mesh. Assessment was done by commonly used statistical and visualization methods.
NASA Astrophysics Data System (ADS)
Klimeck, Gerhard
2001-03-01
The quantum mechanical functionality of commercially pursued heterostructure devices such as resonant tunneling diodes (RTDs), quantum well infrared photodetectors, and quantum well lasers are enabled by material variations on an atomic scale. The creation of these heterostructure devices is realized in a vast design space of material compositions, layer thicknesses and doping profiles. The full experimental exploration of this design space is unfeasible and a reliable design tool is needed. The Nanoelectronic Modeling tool (NEMO) is one of the first commercial grade attempts for such a modeling tool. NEMO was developed as a general-purpose quantum mechanics-based 1-D device design and analysis tool from 1993-97 by the Central Research Laboratory of Texas Instruments (later Raytheon Systems). NEMO enables(R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, J. Appl. Phys. 81), 7845 (1997). the fundamentally sound inclusion of the required(G. Klimeck et al.), in the 1997 55th Annual Device Research Conference Digest, (IEEE, NJ, 1997), p. 92^,(R. C. Bowen et al.), J. Appl. Phys 81, 3207 (1997). physics: bandstructure, scattering, and charge self-consistency based on the non-equilibrium Green function approach. A new class of devices which require full 3-D quantum mechanics based models is starting to emerge: quantum dots, or in general semiconductor based deca-nano devices. We are currently building a 3-D modeling tool based on NEMO to include the important physics to understand electronic stated in such superscaled structures. This presentation will overview various facets of the NEMO 1-D tool such electron transport physics in RTDs, numerical technology, software engineering and graphical user interface. The lessons learned from that work are now entering the NEMO 3-D development and first results using the NEMO 3-D prototype will be shown. More information about
Reduced discretization error in HZETRN
Slaba, Tony C.; Blattnig, Steve R.; Tweed, John
2013-02-01
The deterministic particle transport code HZETRN is an efficient analysis tool for studying the effects of space radiation on humans, electronics, and shielding materials. In a previous work, numerical methods in the code were reviewed, and new methods were developed that further improved efficiency and reduced overall discretization error. It was also shown that the remaining discretization error could be attributed to low energy light ions (A < 4) with residual ranges smaller than the physical step-size taken by the code. Accurately resolving the spectrum of low energy light particles is important in assessing risk associated with astronaut radiation exposure. In this work, modifications to the light particle transport formalism are presented that accurately resolve the spectrum of low energy light ion target fragments. The modified formalism is shown to significantly reduce overall discretization error and allows a physical approximation to be removed. For typical step-sizes and energy grids used in HZETRN, discretization errors for the revised light particle transport algorithms are shown to be less than 4% for aluminum and water shielding thicknesses as large as 100 g/cm{sup 2} exposed to both solar particle event and galactic cosmic ray environments.
Some discrete multiple orthogonal polynomials
NASA Astrophysics Data System (ADS)
Arvesú, J.; Coussement, J.; van Assche, W.
2003-04-01
In this paper, we extend the theory of discrete orthogonal polynomials (on a linear lattice) to polynomials satisfying orthogonality conditions with respect to r positive discrete measures. First we recall the known results of the classical orthogonal polynomials of Charlier, Meixner, Kravchuk and Hahn (T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978; R. Koekoek and R.F. Swarttouw, Reports of the Faculty of Technical Mathematics and Informatics No. 98-17, Delft, 1998; A.F. Nikiforov et al., Classical Orthogonal Polynomials of a Discrete Variable, Springer, Berlin, 1991). These polynomials have a lowering and raising operator, which give rise to a Rodrigues formula, a second order difference equation, and an explicit expression from which the coefficients of the three-term recurrence relation can be obtained. Then we consider r positive discrete measures and define two types of multiple orthogonal polynomials. The continuous case (Jacobi, Laguerre, Hermite, etc.) was studied by Van Assche and Coussement (J. Comput. Appl. Math. 127 (2001) 317-347) and Aptekarev et al. (Multiple orthogonal polynomials for classical weights, manuscript). The families of multiple orthogonal polynomials (of type II) that we will study have a raising operator and hence a Rodrigues formula. This will give us an explicit formula for the polynomials. Finally, there also exists a recurrence relation of order r+1 for these multiple orthogonal polynomials of type II. We compute the coefficients of the recurrence relation explicitly when r=2.
MX chains: 1-D analog of CuO planes
Gammel, J.T.; Batistic, I.; Bishop, A.R.; Loh, E.Y. Jr.; Marianer, S.
1989-01-01
We study a two-band Peierls-Hubbard model for halogen-bridged mixed-valence transition metal linear chain complexes (MX chains). We include electron-electron correlations (both Hubbard and PPP-like expressions) using several techniques including calculations in the zero-hopping limit, exact diagonalization of small systems, mean field approximation, and a Gutzwiller-like Ansatz for quantum phonons. The adiabatic optical absorption and phonon spectra for both photo-excited and doping induced defects (kinks, polarons, bipolarons, and excitons) are discussed. A long period phase which occurs even at commensurate filling for certain parameter values may be related to twinning. The effect of including the electron-phonon in addition to the electron-electron interaction on the polaron/bipolaron (pairing) competition is especially interesting when this class of compounds is viewed as a 1-D analog of high-temperature superconductors. 6 refs., 4 figs.
Electron Energy Levels in the 1D-2D Transition
NASA Astrophysics Data System (ADS)
Pepper, Michael; Sanjeev, Kumar; Thomas, Kalarikad; Creeth, Graham; English, David; Ritchie, David; Griffiths, Jonathan; Farrer, Ian; Jones, Geraint
Using GaAs-AlGaAs heterostructures we have investigated the behaviour of electron energy levels with relaxation of the potential confining a 2D electron gas into a 1D configuration. In the ballistic regime of transport, when the conductance shows quantized plateaux, different types of behaviour are found according to the spins of interacting levels, whether a magnetic field is applied and lifting of the momentum degeneracy with a source-drain voltage. We have observed both crossing and anti-crossing of levels and have investigated the manner in which they can be mutually converted. In the presence of a magnetic field levels can cross and lock together as the confinement is altered in a way which is characteristic of parallel channels. The overall behaviour is discussed in terms of electron interactions and the wavefunction flexibility allowed by the increasing two dimensionality of the electron distribution as the confinement is weakened. Work supported by UK EPSRC.
Directed enzymatic activation of 1-D DNA tiles.
Garg, Sudhanshu; Chandran, Harish; Gopalkrishnan, Nikhil; LaBean, Thomas H; Reif, John
2015-02-24
The tile assembly model is a Turing universal model of self-assembly where a set of square shaped tiles with programmable sticky sides undergo coordinated self-assembly to form arbitrary shapes, thereby computing arbitrary functions. Activatable tiles are a theoretical extension to the Tile assembly model that enhances its robustness by protecting the sticky sides of tiles until a tile is partially incorporated into a growing assembly. In this article, we experimentally demonstrate a simplified version of the Activatable tile assembly model. In particular, we demonstrate the simultaneous assembly of protected DNA tiles where a set of inert tiles are activated via a DNA polymerase to undergo linear assembly. We then demonstrate stepwise activated assembly where a set of inert tiles are activated sequentially one after another as a result of attachment to a growing 1-D assembly. We hope that these results will pave the way for more sophisticated demonstrations of activated assemblies. PMID:25625898
Magnetic behavior of some 1D Cu chains
NASA Astrophysics Data System (ADS)
Willett, Roger D.; Gomez-García, Carlos J.; Ghosh, Ashutosh
2004-05-01
The magnetic properties of three 1D copper(II) salts are reported. The compound Cu(14ane)Cu(N 3) 4 contains alternating site chains with weak FM coupling with J/k=0.635 K . Magnetization studies are reported on Cu(TIM)CuCl 4, an alternating site, alternating FM/AFM exchange system with J FM/k=29.7 K and J AFM/k=-8.66 K. (HPy) 2Cu 3Cl 8.2H 2O contains FM chains composed of alternating Cu 2Cl 62- dimers and CuCl 2(H 2O) 2 monomers, with intradimer coupling J 1/k=17.35 K and dimer-monomer coupling J 2/k=1.93 K .
Effective theory of black holes in the 1/D expansion
NASA Astrophysics Data System (ADS)
Emparan, Roberto; Shiromizu, Tetsuya; Suzuki, Ryotaku; Tanabe, Kentaro; Tanaka, Takahiro
2015-06-01
The gravitational field of a black hole is strongly localized near its horizon when the number of dimensions D is very large. In this limit, we can effectively replace the black hole with a surface in a background geometry (e.g. Minkowski or Anti-deSitter space). The Einstein equations determine the effective equations that this `black hole surface' (or membrane) must satisfy. We obtain them up to next-to-leading order in 1/ D for static black holes of the Einstein-(A)dS theory. To leading order, and also to next order in Minkowski backgrounds, the equations of the effective theory are the same as soap-film equations, possibly up to a redshift factor. In particular, the Schwarzschild black hole is recovered as a spherical soap bubble. Less trivially, we find solutions for `black droplets', i.e. black holes localized at the boundary of AdS, and for non-uniform black strings.
NASA Astrophysics Data System (ADS)
Fleury, Leesa M.; Moore, Guy D.
2016-05-01
If the axion exists and if the initial axion field value is uncorrelated at causally disconnected points, then it should be possible to predict the efficiency of cosmological axion production, relating the axionic dark matter density to the axion mass. The main obstacle to making this prediction is correctly treating the axion string cores. We develop a new algorithm for treating the axionic string cores correctly in 2+1 dimensions. When the axionic string cores are given their full physical string tension, axion production is about twice as efficient as in previous simulations. We argue that the string network in 2+1 dimensions should behave very differently than in 3+1 dimensions, so this result cannot be simply carried over to the physical case. We outline how to extend our method to 3+1D axion string dynamics.
Robust recognition of 1D barcodes using Hough transform
NASA Astrophysics Data System (ADS)
Dwinell, John; Bian, Peng; Bian, Long Xiang
2012-01-01
In this paper we present an algorithm for the recognition of 1D barcodes using the Hough transform, which is highly robust regarding the typical degraded image. The algorithm addresses various typical image distortions, such as inhomogeneous illumination, reflections, damaged barcode or blurriness etc. Other problems arise from recognizing low quality printing (low contrast or poor ink receptivity). Traditional approaches are unable to provide a fast solution for handling such complex and mixed noise factors. A multi-level method offers a better approach to best manage competing constraints of complex noise and fast decode. At the lowest level, images are processed in gray scale. At the middle level, the image is transformed into the Hough domain. At the top level, global results, including missing information, is processed within a global context including domain heuristics as well as OCR. The three levels work closely together by passing information up and down between levels.
Unstable equilibrium behaviour in collapsible tubes.
Bertram, C D
1986-01-01
Thick-walled silicone rubber tube connected to rigid pipes upstream and downstream was externally pressurised (pe) to cause collapse while aqueous fluid flowed through propelled by a constant upstream head. Three types of equilibrium were found: stable equilibria (steady flow) at high downstream flow resistance R2, self-excited oscillations at low R2, and 'unattainable' (by varying external pressure) or exponentially unstable equilibria at intermediate R2. The self-excited oscillations were highly non-linear and appeared in four, apparently discrete, frequency bands: 2.7 Hz, 3.8-5.0 Hz, 12-16 Hz and 60-63 Hz, suggesting that the possible oscillation modes may be harmonically related. Stable, intermediate 'two-in-every-three-beats' oscillation was also observed, with a repetition frequency in the 3.8-5.0 Hz band. As pe was increased, self-excited oscillations were eventually suppressed, leaving internal fluid pressure varying with no single dominant frequency as a result of turbulent jet dissipation at the downstream rigid pipe connection. Comparison of pressure-wave velocity calculated from the local pressure-area relation for the tube with fluid velocity indicated that supercritical velocities were attained in the course of the self-excited oscillations. PMID:2936743
Dynamical topological order parameters far from equilibrium
NASA Astrophysics Data System (ADS)
Budich, Jan Carl; Heyl, Markus
2016-02-01
We introduce a topological quantum number—coined dynamical topological order parameter (DTOP)—that is dynamically defined in the real-time evolution of a quantum many-body system and represented by a momentum space winding number of the Pancharatnam geometric phase. Our construction goes conceptually beyond the standard notion of topological invariants characterizing the wave function of a system, which are constants of motion under coherent time evolution. In particular, we show that the DTOP can change its integer value at discrete times where so called dynamical quantum phase transitions occur, thus serving as a dynamical analog of an order parameter. Interestingly, studying quantum quenches in one-dimensional two-banded Bogoliubov-de Gennes models, we find that the DTOP is capable of resolving if the topology of the system Hamiltonian has changed over the quench. Furthermore, we investigate the relation of the DTOP to the dynamics of the string order parameter that characterizes the topology of such systems in thermal equilibrium.
Discrete implementations of scale transform
NASA Astrophysics Data System (ADS)
Djurdjanovic, Dragan; Williams, William J.; Koh, Christopher K.
1999-11-01
Scale as a physical quantity is a recently developed concept. The scale transform can be viewed as a special case of the more general Mellin transform and its mathematical properties are very applicable in the analysis and interpretation of the signals subject to scale changes. A number of single-dimensional applications of scale concept have been made in speech analysis, processing of biological signals, machine vibration analysis and other areas. Recently, the scale transform was also applied in multi-dimensional signal processing and used for image filtering and denoising. Discrete implementation of the scale transform can be carried out using logarithmic sampling and the well-known fast Fourier transform. Nevertheless, in the case of the uniformly sampled signals, this implementation involves resampling. An algorithm not involving resampling of the uniformly sampled signals has been derived too. In this paper, a modification of the later algorithm for discrete implementation of the direct scale transform is presented. In addition, similar concept was used to improve a recently introduced discrete implementation of the inverse scale transform. Estimation of the absolute discretization errors showed that the modified algorithms have a desirable property of yielding a smaller region of possible error magnitudes. Experimental results are obtained using artificial signals as well as signals evoked from the temporomandibular joint. In addition, discrete implementations for the separable two-dimensional direct and inverse scale transforms are derived. Experiments with image restoration and scaling through two-dimensional scale domain using the novel implementation of the separable two-dimensional scale transform pair are presented.
Dynamical behavior of fractional-order Hastings-Powell food chain model and its discretization
NASA Astrophysics Data System (ADS)
Matouk, A. E.; Elsadany, A. A.; Ahmed, E.; Agiza, H. N.
2015-10-01
In this work, the dynamical behavior of fractional-order Hastings-Powell food chain model is investigated and a new discretization method of the fractional-order system is introduced. A sufficient condition for existence and uniqueness of the solution of the proposed system is obtained. Local stability of the equilibrium points of the fractional-order system is studied. Furthermore, the necessary and sufficient conditions of stability of the discretized system are also studied. It is shown that the system's fractional parameter has effect on the stability of the discretized system which shows rich variety of dynamical behaviors such as Hopf bifurcation, an attractor crisis and chaotic attractors. Numerical simulations show the tea-cup chaotic attractor of the fractional-order system and the richer dynamical behavior of the corresponding discretized system.
Photon-dressed quasiparticle states in 1D and 2D materials: a many-body Floquet approach
NASA Astrophysics Data System (ADS)
Manghi, Franca; Puviani, Matteo
We studiy the interplay between electron-electron interactions and non-equilibrium conditions associated to time-dependent external fields. Exploring phases of quantum matter away from equilibrium may give access to regimes inaccessible under equilibrium conditions. What makes this field particularly interesting is the possibility to engineer new phases of matter by an external tunable control. We have developed a scheme that allows to treat photo-induced phenomena in the presence of electron-electron many body interactions, where both the nonlinear effects of the external field and the electron-electron correlation are treated simultaneously and in a non-perturbative way. The Floquet approach is used to include the effects of the external time periodic field, and the Cluster Perturbation Theory to describe interacting electrons in a lattice. They are merged in a Floquet-Green function method that allows to calculate photon dressed quasiparticle excitation. For 1D systems we show that an unconventional Mott insulator-to-metal transition occurs for given characteristics of the applied field (intensity and frequency). The method has also been applied to the 2D honeycomb lattice (graphene), where in the presence of realistic values of electron-electron interaction, we show that linearly polarized light may give rise to non-dissipative edge states associated to a non-trivial topological behavior.
Dousset, S; Thevenot, M; Pot, V; Simunek, J; Andreux, F
2007-12-01
In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due
Application of HYDRUS 1D model for assessment of phenol-soil adsorption dynamics.
Pal, Supriya; Mukherjee, Somnath; Ghosh, Sudipta
2014-04-01
Laboratory-scale batch, vertical, and horizontal column experiments were conducted to investigate the attenuative capacity of a fine-grained clayey soil of local origin in the surrounding of a steel plant wastewater discharge site in West Bengal, India, for removal of phenol. Linear, Langmuir, and Freundlich isotherm plots from batch experimental data revealed that Freundlich isotherm model was reasonably fitted (R (2) = 0.94). The breakthrough column experiments were also carried out with different soil bed heights (5, 10, and 15 cm) under uniform flow to study the hydraulic movements of phenol by evaluating time concentration flow behavior using bromide as a tracer. The horizontal migration test was also conducted in the laboratory using adsorptive phenol and nonreactive bromide tracer to explore the movement of solute in a horizontal distance. The hydrodynamic dispersion coefficients (D) in the vertical and horizontal directions in the soil were estimated using nonlinear least-square parameter optimization method in CXTFIT model. In addition, the equilibrium convection dispersion model in HYDRUS 1D was also examined to simulate the fate and transport of phenol in vertical and horizontal directions using Freundlich isotherm constants and estimated hydrodynamic parameters as input in the model. The model efficacy and validation were examined through statistical parameters such as the coefficient of determination (R (2)), root mean square error and design of index (d). PMID:24407784
Tuning universality far from equilibrium
Karl, Markus; Nowak, Boris; Gasenzer, Thomas
2013-01-01
Possible universal dynamics of a many-body system far from thermal equilibrium are explored. A focus is set on meta-stable non-thermal states exhibiting critical properties such as self-similarity and independence of the details of how the respective state has been reached. It is proposed that universal dynamics far from equilibrium can be tuned to exhibit a dynamical transition where these critical properties change qualitatively. This is demonstrated for the case of a superfluid two-component Bose gas exhibiting different types of long-lived but non-thermal critical order. Scaling exponents controlled by the ratio of experimentally tuneable coupling parameters offer themselves as natural smoking guns. The results shed light on the wealth of universal phenomena expected to exist in the far-from-equilibrium realm. PMID:23928853
Stripwise discrete vortex method for VIV analysis of flexible risers
NASA Astrophysics Data System (ADS)
Sun, L.; Zong, Z.; Dong, J.; Dong, G. H.; Liu, C. F.
2012-11-01
This paper presents a stripwise discrete vortex method (SDVM) to study the vortex-induced vibration of flexible risers. The discrete vortex method is employed to calculate the vortex-induced vibration (VIV) of each strip, and the finite volume method and increment method are used to compute the 3-D dynamics of the flexible riser. To verify the discrete vortex method for a single cylindrical strip of the entire flexible riser, a cylinder with elastic supports exerted by a 2-D uniform flow with a high Reynolds number is investigated. The 1-D transverse motion, 2-D transverse motion and 2-D stream-wise motion, as well as their influences on the wake shapes, are considered. Comparisons are made between the transverse amplitudes for the single degree of freedom and two degrees of freedom elastic-mounted systems. The relations between the lift coefficients and response amplitudes of the different mass ratios and reduced velocities are further discussed. The characteristics of the motion responses of the cylinder for different mass ratios and degree of freedoms are also discussed. Finally, the present numerical model is employed to calculate a 3-D flexible riser exerted by the uniform current, and the analysis of the numerical results shows the characteristics of the vortex-induced vibration of a flexible riser.
General equilibrium of an ecosystem.
Tschirhart, J
2000-03-01
Ecosystems and economies are inextricably linked: ecosystem models and economic models are not linked. Consequently, using either type of model to design policies for preserving ecosystems or improving economic performance omits important information. Improved policies would follow from a model that links the systems and accounts for the mutual feedbacks by recognizing how key ecosystem variables influence key economic variables, and vice versa. Because general equilibrium economic models already are widely used for policy making, the approach used here is to develop a general equilibrium ecosystem model which captures salient biological functions and which can be integrated with extant economic models. In the ecosystem model, each organism is assumed to be a net energy maximizer that must exert energy to capture biomass from other organisms. The exerted energies are the "prices" that are paid to biomass, and each organism takes the prices as signals over which it has no control. The maximization problem yields the organism's demand for and supply of biomass to other organisms as functions of the prices. The demands and supplies for each biomass are aggregated over all organisms in each species which establishes biomass markets wherein biomass prices are determined. A short-run equilibrium is established when all organisms are maximizing and demand equals supply in every biomass market. If a species exhibits positive (negative) net energy in equilibrium, its population increases (decreases) and a new equilibrium follows. The demand and supply forces in the biomass markets drive each species toward zero stored energy and a long-run equilibrium. Population adjustments are not based on typical Lotka-Volterra differential equations in which one entire population adjusts to another entire population thereby masking organism behavior; instead, individual organism behavior is central to population adjustments. Numerical simulations use a marine food web in Alaska to
Adiabatic evolution of plasma equilibrium
Grad, H.; Hu, P. N.; Stevens, D. C.
1975-01-01
A new theory of plasma equilibrium is introduced in which adiabatic constraints are specified. This leads to a mathematically nonstandard structure, as compared to the usual equilibrium theory, in which prescription of pressure and current profiles leads to an elliptic partial differential equation. Topologically complex configurations require further generalization of the concept of adiabaticity to allow irreversible mixing of plasma and magnetic flux among islands. Matching conditions across a boundary layer at the separatrix are obtained from appropriate conservation laws. Applications are made to configurations with planned islands (as in Doublet) and accidental islands (as in Tokamaks). Two-dimensional, axially symmetric, helically symmetric, and closed line equilibria are included. PMID:16578729
Phase coexistence far from equilibrium
NASA Astrophysics Data System (ADS)
Dickman, Ronald
2016-04-01
Investigation of simple far-from-equilibrium systems exhibiting phase separation leads to the conclusion that phase coexistence is not well defined in this context. This is because the properties of the coexisting nonequilibrium systems depend on how they are placed in contact, as verified in the driven lattice gas with attractive interactions, and in the two-temperature lattice gas, under (a) weak global exchange between uniform systems, and (b) phase-separated (nonuniform) systems. Thus, far from equilibrium, the notions of universality of phase coexistence (i.e., independence of how systems exchange particles and/or energy), and of phases with intrinsic properties (independent of their environment) are lost.
Spectral and localization properties for the one-dimensional Bernoulli discrete Dirac operator
Oliveira, Cesar R. de; Prado, Roberto A.
2005-07-01
An one-dimensional (1D) Dirac tight-binding model is considered and it is shown that its nonrelativistic limit is the 1D discrete Schroedinger model. For random Bernoulli potentials taking two values (without correlations), for typical realizations and for all values of the mass, it is shown that its spectrum is pure point, whereas the zero mass case presents dynamical delocalization for specific values of the energy. The massive case presents dynamical localization (excluding some particular values of the energy). Finally, for general potentials the dynamical moments for distinct masses are compared, especially the massless and massive Bernoulli cases.
Discrete Element Modelling of Floating Debris
NASA Astrophysics Data System (ADS)
Mahaffey, Samantha; Liang, Qiuhua; Parkin, Geoff; Large, Andy; Rouainia, Mohamed
2016-04-01
Flash flooding is characterised by high velocity flows which impact vulnerable catchments with little warning time and as such, result in complex flow dynamics which are difficult to replicate through modelling. The impacts of flash flooding can be made yet more severe by the transport of both natural and anthropogenic debris, ranging from tree trunks to vehicles, wheelie bins and even storage containers, the effects of which have been clearly evident during recent UK flooding. This cargo of debris can have wide reaching effects and result in actual flood impacts which diverge from those predicted. A build-up of debris may lead to partial channel blockage and potential flow rerouting through urban centres. Build-up at bridges and river structures also leads to increased hydraulic loading which may result in damage and possible structural failure. Predicting the impacts of debris transport; however, is difficult as conventional hydrodynamic modelling schemes do not intrinsically include floating debris within their calculations. Subsequently a new tool has been developed using an emerging approach, which incorporates debris transport through the coupling of two existing modelling techniques. A 1D hydrodynamic modelling scheme has here been coupled with a 2D discrete element scheme to form a new modelling tool which predicts the motion and flow-interaction of floating debris. Hydraulic forces arising from flow around the object are applied to instigate its motion. Likewise, an equivalent opposing force is applied to fluid cells, enabling backwater effects to be simulated. Shock capturing capabilities make the tool applicable to predicting the complex flow dynamics associated with flash flooding. The modelling scheme has been applied to experimental case studies where cylindrical wooden dowels are transported by a dam-break wave. These case studies enable validation of the tool's shock capturing capabilities and the coupling technique applied between the two numerical
3D/1D Analysis of ICRF Antennas
NASA Astrophysics Data System (ADS)
Maggiora, Riccardo; Lancellotti, Vito; Vecchi, Giuseppe
2003-10-01
An innovative tool has been realized for the 3D/1D simulation of Ion Cyclotron Radio Frequency (ICRF), i.e. accounting for antennas in a realistic 3D geometry and with an accurate 1D plasma model. The approach to the problem is based on an integral-equation formulation for the self-consistent evaluation of the current distribution on the conductors. The environment has been subdivided in two coupled region: the plasma region and the vacuum region. The two problems are linked by means of a magnetic current (electric field) distribution on the aperture between the two regions. In the vacuum region all the calculations are executed in the spatial domain while in the plasma region an extraction in the spectral domain of some integrals is employed that permits to significantly reduce the integration support and to obtain a high numerical efficiency leading to the practical possibility of using a large number of sub-domain (rectangular or triangular) basis functions on each solid conductor of the system. The plasma enters the formalism of the plasma region via a surface impedance matrix; for this reason any plasma model can be used; at present the FELICE code has been adopted, that affords density and temperature profiles, and FLR effects. The source term directly models the TEM mode of the coax feeding the antenna and the current in the coax is determined self-consistently, giving the input impedance/admittance of the antenna itself. Calculation of field distributions (both magnetic and electric), useful for sheath considerations, is included. This tool has been implemented in a suite, called TOPICA, that is modular and applicable to ICRF antenna structures of arbitrary shape. This new simulation tool can assist during the detailed design phase and for this reason can be considered a "Virtual Prototyping Laboratory" (VPL). The TOPICA suite has been tested against assessed codes and against measurements and data of mock-ups and existing antennas. The VPL is being used in
Chemical Principles Revisited: Using the Equilibrium Concept.
ERIC Educational Resources Information Center
Mickey, Charles D., Ed.
1981-01-01
Discusses the concept of equilibrium in chemical systems, particularly in relation to predicting the position of equilibrium, predicting spontaneity of a reaction, quantitative applications of the equilibrium constant, heterogeneous equilibrium, determination of the solubility product constant, common-ion effect, and dissolution of precipitates.…
Signal Propagation in Proteins and Relation to Equilibrium Fluctuations
Chennubhotla, Chakra; Bahar, Ivet
2007-01-01
Elastic network (EN) models have been widely used in recent years for describing protein dynamics, based on the premise that the motions naturally accessible to native structures are relevant to biological function. We posit that equilibrium motions also determine communication mechanisms inherent to the network architecture. To this end, we explore the stochastics of a discrete-time, discrete-state Markov process of information transfer across the network of residues. We measure the communication abilities of residue pairs in terms of hit and commute times, i.e., the number of steps it takes on an average to send and receive signals. Functionally active residues are found to possess enhanced communication propensities, evidenced by their short hit times. Furthermore, secondary structural elements emerge as efficient mediators of communication. The present findings provide us with insights on the topological basis of communication in proteins and design principles for efficient signal transduction. While hit/commute times are information-theoretic concepts, a central contribution of this work is to rigorously show that they have physical origins directly relevant to the equilibrium fluctuations of residues predicted by EN models. PMID:17892319
Systoles in discrete dynamical systems
NASA Astrophysics Data System (ADS)
Fernandes, Sara; Grácio, Clara; Ramos, Carlos Correia
2013-01-01
The fruitful relationship between Geometry and Graph Theory has been explored by several authors benefiting also the Theory of discrete dynamical systems seen as Markov chains in graphs. In this work we will further explore the relation between these areas, giving a geometrical interpretation of notions from dynamical systems. In particular, we relate the topological entropy with the systole, here defined in the context of discrete dynamical systems. We show that for continuous interval maps the systole is trivial; however, for the class of interval maps with one discontinuity point the systole acquires relevance from the point of view of the dynamical behavior. Moreover, we define the geodesic length spectrum associated to a Markov interval map and we compute the referred spectrum in several examples.
Dark Energy from Discrete Spacetime
Trout, Aaron D.
2013-01-01
Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies. PMID:24312502
Dark energy from discrete spacetime.
Trout, Aaron D
2013-01-01
Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies. PMID:24312502
Class of discrete Gabor expansion
NASA Astrophysics Data System (ADS)
Li, Shidong; Healy, Dennis M., Jr.
1994-03-01
We present a new approach to studying a discrete Gabor expansion (DGE). We show that, in general, DGE is not the usual biorthogonal decomposition, but belongs to a larger and looser decomposition scheme which we call pseudo frame decomposition. It includes the DGE scheme proposed as a special case. The standard dual frame decomposition is also a special case. We derive algorithms using techniques for Gabor sequences to compute 'biorthogonal' sequences through proper matrix representation. Our algorithms involve solutions to a linear system to obtain the 'biorthogonal' windows. This approach provides a much broader mathematical view of the DGE, and therefore, establishes a wider mathematical foundation towards the theory of DGE. The general algorithm derived also provides a whole class of discrete Gabor expansions, among which 'good' ones can be generated. Simulation results are also provided.
A FORTRAN Program for Discrete Discriminant Analysis
ERIC Educational Resources Information Center
Boone, James O.; Brewer, James K.
1976-01-01
A Fortran program is presented for discriminant analysis of discrete variables. The program assumes discrete, nominal data with no distributional, variance-covariance assumptions. The program handles a maximum of fifty predictor variables and twelve outcome groups. (Author/JKS)
Efficient genetic algorithms using discretization scheduling.
McLay, Laura A; Goldberg, David E
2005-01-01
In many applications of genetic algorithms, there is a tradeoff between speed and accuracy in fitness evaluations when evaluations use numerical methods with varying discretization. In these types of applications, the cost and accuracy vary from discretization errors when implicit or explicit quadrature is used to estimate the function evaluations. This paper examines discretization scheduling, or how to vary the discretization within the genetic algorithm in order to use the least amount of computation time for a solution of a desired quality. The effectiveness of discretization scheduling can be determined by comparing its computation time to the computation time of a GA using a constant discretization. There are three ingredients for the discretization scheduling: population sizing, estimated time for each function evaluation and predicted convergence time analysis. Idealized one- and two-dimensional experiments and an inverse groundwater application illustrate the computational savings to be achieved from using discretization scheduling. PMID:16156928
Anomalies and Discrete Chiral Symmetries
Creutz, M.
2009-09-07
The quantum anomaly that breaks the U(1) axial symmetry of massless multi-flavored QCD leaves behind a discrete flavor-singlet chiral invariance. With massive quarks, this residual symmetry has a close connection with the strong CP-violating parameter theta. One result is that if the lightest quarks are degenerate, then a first order transition will occur when theta passes through pi. The resulting framework helps clarify when the rooting prescription for extrapolating in the number of flavors is valid.
Discrete-contact nanowire photovoltaics
NASA Astrophysics Data System (ADS)
Chitambar, Michelle J.; Wen, Wen; Maldonado, Stephen
2013-11-01
A series of finite-element simulations have been performed to assess the operational characteristics of a new semiconductor nanowire solar cell design operating under high-level injection conditions. Specifically, the steady-state current-voltage behavior of a cylindrical silicon (Si) nanowire with a series of discrete, ohmic-selective contacts under intense sunlight illumination was investigated. The scope of the analysis was limited to only the factors that impact the net internal quantum yield for solar to electricity conversion. No evaluations were performed with regards to optical light trapping in the modeled structures. Several aspects in a discrete-contact nanowire device that could impact operation were explored, including the size and density of ohmic-selective contacts, the size of the nanowire, the electronic quality and conductivity of the nanowire, the surface defect density of the nanowire, and the type of ohmic selectivity employed at each contact. The analysis showed that there were ranges of values for each parameter that supported good to excellent photoresponses, with certain combinations of experimentally attainable material properties yielding internal energy conversion efficiencies at the thermodynamic limit for a single junction cell. The merits of the discrete-contact nanowire cell were contrasted with "conventional" nanowire photovoltaic cells featuring a uniform conformal contact and also with planar point-contact solar cells. The unique capacity of the discrete-contact nanowire solar cell design to operate at useful energy conversion efficiencies with low quality semiconductor nanowires (i.e., possessing short charge-carrier lifetimes) with only light doping is discussed. This work thus defines the impetus for future experimental work aimed at developing this photovoltaic architecture.
Symmetric Discrete Orthonormal Stockwell Transform
NASA Astrophysics Data System (ADS)
Wang, Yanwei; Orchard, Jeff
2008-09-01
The Stockwell Transform (ST) is a time-frequency signal decomposition that is gaining in popularity, likely because of its direct relation with the Fourier Transform (FT). A discrete and non-redundant version of the ST, denoted the Discrete Orthonormal Stockwell Transform (DOST), has made the use of the ST more feasible. However, the matrix multiplication required by the DOST can still be a formidable computation, especially for high-dimensional data. Moreover, the symmetric property of the ST and FT is not present in the DOST. In this paper, we investigate a new Symmetric Discrete Orthonormal Stockwell Transform (SDOST) that still keeps the non-redundant multiresolution features of the DOST, while maintaining a symmetry property similar to that of the FT. First, we give a brief introduction for the ST and the DOST. Then we analyze the DOST coefficients and modify the transform to get a symmetric version. A small experiment shows that the SDOST has kept the abilities of the DOST and demonstrates the advantage of symmetry when applying the SDOST.
Interference in discrete Wigner functions
Cormick, Cecilia; Paz, Juan Pablo
2006-12-15
We analyze some features of the class of discrete Wigner functions that was recently introduced by Gibbons et al. [Phys. Rev. A 70, 062101 (2004)] to represent quantum states of systems with power-of-prime dimensional Hilbert spaces. We consider ''cat'' states obtained as coherent superpositions of states with positive Wigner function; for such states we show that the oscillations of the discrete Wigner function typically spread over the entire discrete phase space (including the regions where the two interfering states are localized). This is a generic property, which is in sharp contrast with the usual attributes of Wigner functions that make them useful candidates to display the existence of quantum coherence through oscillations. However, it is possible to find subsets of cat states with a natural phase-space representation, in which the oscillatory regions remain localized. We show that this can be done for interesting families of stabilizer states used in quantum error-correcting codes, and illustrate this by analyzing the phase-space representation of the five-qubit error-correcting code.
Spectral functions of 1D Peierls and Mott insulators
NASA Astrophysics Data System (ADS)
Voit, Johannes
1998-03-01
We construct the spectral function of the Luther-Emery model which describes one-dimensional Peierls and Mott insulators with a spin resp. charge gap, using symmetries and known limits and equivalences to other models. For the Peierls insulator, we find a true singularity with interaction dependent exponents on the gapped spin dispersion and a finite maximum depending on the magnitude of the spin gap, on a charge dispersion shifted by Δ_σ, as well as strong shadow bands with the same functional form as the main bands. For 1D Mott insulators, one or two singularities with universal inverse-square-root singularities are found depending on whether the charge velocity is larger or smaller than the spin velocity. The shadow band has a single singularity on the renormalized charge dispersion. These results could apply to the description of photoemission experiments in systems like K_0.3 Mo O_3, TTF-TCNQ, or Sr Cu O_2.
1D X-ray Beam Compressing Monochromators
Korytar, D.; Dobrocka, E.; Konopka, P.; Zaprazny, Z.; Ferrari, C.; Mikulik, P.; Vagovic, P.; Ac, V.; Erko, A.; Abrosimov, N.
2010-04-06
A total beam compression of 5 and 10 corresponding to the asymmetry angles of 9 deg. and 12 deg. is achieved with V-5 and V-10 monochromators, respectively, in standard single crystal pure germanium (220) X-ray beam compressing (V-shaped) monochromators for CuKalpha{sub 1} radiation. A higher 1D compression of X-ray beam is possible using larger angles of asymmetry, however it is achieved at the expense of the total intensity, which is decreased due to the refraction effect. To increase the monochromator intensity, several ways are considered both theoretically and experimentally. Linearly graded germanium rich Ge{sub x}Si{sub (1-x)} single crystal was used to prepare a V-21 single crystal monochromator with 15 deg. asymmetry angles (compression factor of 21). Its temperature gradient version is discussed for CuKalpha{sub 1} radiation. X-ray diffraction measurements on the graded GeSi monochromator showed more than 3-times higher intensity at the output compared with that of a pure Ge monochromator.
Dynamic decoupling in the presence of 1D random walk
NASA Astrophysics Data System (ADS)
Chakrabarti, Arnab; Chakraborty, Ipsita; Bhattacharyya, Rangeet
2016-05-01
In the recent past, many dynamic decoupling sequences have been proposed for the suppression of decoherence of spins connected to thermal baths of various natures. Dynamic decoupling schemes for suppressing decoherence due to Gaussian diffusion have also been developed. In this work, we study the relative performances of dynamic decoupling schemes in the presence of a non-stationary Gaussian noise such as a 1D random walk. Frequency domain analysis is not suitable to determine the performances of various dynamic decoupling schemes in suppressing decoherence due to such a process. Thus, in this work, we follow a time domain calculation to arrive at the following conclusions: in the presence of such a noise, we show that (i) the traditional Carr–Purcell–Meiboom–Gill (CPMG) sequence outperforms Uhrig’s dynamic decoupling scheme, (ii) CPMG remains the optimal sequence for suppression of decoherence due to random walk in the presence of an external field gradient. Later, the theoretical predictions are experimentally verified by using nuclear magnetic resonance spectroscopy on spin 1/2 particles diffusing in a liquid medium.
1-D Numerical Analysis of RBCC Engine Performance
NASA Technical Reports Server (NTRS)
Han, Samuel S.
1998-01-01
An RBCC engine combines air breathing and rocket engines into a single engine to increase the specific impulse over an entire flight trajectory. Considerable research pertaining to RBCC propulsion was performed during the 1960's and these engines were revisited recently as a candidate propulsion system for either a single-stage-to-orbit (SSTO) or two-stage-to-orbit (TSTO) launch vehicle. There are a variety of RBCC configurations that had been evaluated and new designs are currently under development. However, the basic configuration of all RBCC systems is built around the ejector scramjet engine originally developed for the hypersonic airplane. In this configuration, a rocket engine plays as an ejector in the air-augmented initial acceleration mode, as a fuel injector in scramjet mode and the rocket in all rocket mode for orbital insertion. Computational fluid dynamics (CFD) is a useful tool for the analysis of complex transport processes in various components in RBCC propulsion systems. The objective of the present research was to develop a transient 1-D numerical model that could be used to predict flow behavior throughout a generic RBCC engine following a flight path.
Graphs on uniform points in [0,1]d
NASA Astrophysics Data System (ADS)
Appel, Martin J. B.; Russo, Ralph P.; Yang, King J.
1995-06-01
Statistical problems in pattern or structure recognition for a random multidimensional point set may be addressed by variations on the random graph model of Erdos and Renyui. The imposition of graph structure with a variable edge criterion on a large random point set allows a search for signature quantities or behavior under the given distributional hypothesis. The work is motivated by the question of how to make statistical inferences from sensed mine field data. This article describes recent results obtained in the following special cases. On independent random points U1,...,Un distributed uniformly on [0,1]d, a random graph Gn(x) is constructed in which two distinct such points are joined by an edge if the l(infinity )-distance between them is at most some prescribed value 0
1-D Modeling of Massive Particle Injection (MPI) in Tokamaks
NASA Astrophysics Data System (ADS)
Wu, W.; Parks, P. B.; Izzo, V. A.
2008-11-01
A 1-D Fast Current Quench (FCQ) model is developed to study current evolution and runaway electron suppression under massive density increase. The model consists of coupled toroidal electric field and energy equations, and it is solved numerically for DIII-D and ITER operating conditions. Simulation results suggest that fast shutdown by D2 liquid jet/pellet injection is in principle achievable for the desired plasma cooling time (˜15 ms for DIII-D and ˜50 ms for ITER) under ˜150x or higher densification. The current density and pressure profile are practically unaltered during the initial phase of jet propagation when dilution cooling dominates. With subsequent radiation cooling, the densified discharge enters the strongly collisional regime where Pfirsch-Schluter thermal diffusion can inhibit current contraction on the magnetic axis. Often the 1/1 kink instability, addressed by Kadomtsev's magnetic reconnection model, can be prevented. Our results are compared with NIMROD simulations in which the plasma is suddenly densified by ˜100x and experiences instantaneous dilution cooling, allowing for use of actual (lower) Lundquist numbers.
Transport and discrete particle noise in gyrokinetic simulations
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Lee, W. W.
2006-10-01
We present results from our recent investigations regarding the effects of discrete particle noise on the long-time behavior and transport properties of gyrokinetic particle-in-cell simulations. It is found that the amplitude of nonlinearly saturated drift waves is unaffected by discreteness-induced noise in plasmas whose behavior is dominated by a single mode in the saturated state. We further show that the scaling of this noise amplitude with particle count is correctly predicted by the fluctuation-dissipation theorem, even though the drift waves have driven the plasma from thermal equilibrium. As well, we find that the long-term behavior of the saturated system is unaffected by discreteness-induced noise even when multiple modes are included. Additional work utilizing a code with both total-f and δf capabilities is also presented, as part of our efforts to better understand the long- time balance between entropy production, collisional dissipation, and particle/heat flux in gyrokinetic plasmas.
Understanding Thermal Equilibrium through Activities
ERIC Educational Resources Information Center
Pathare, Shirish; Huli, Saurabhee; Nachane, Madhura; Ladage, Savita; Pradhan, Hemachandra
2015-01-01
Thermal equilibrium is a basic concept in thermodynamics. In India, this concept is generally introduced at the first year of undergraduate education in physics and chemistry. In our earlier studies (Pathare and Pradhan 2011 "Proc. episteme-4 Int. Conf. to Review Research on Science Technology and Mathematics Education" pp 169-72) we…
DYNAMIC EQUILIBRIUM IN THERAPEUTIC SITUATIONS.
ERIC Educational Resources Information Center
CARROLL, EDWARD J.
THE CONCEPT OF DYNAMIC EQUILIBRIUM IS USED TO EXAMINE THE OCCURRENCE OF CHANGE IN A THERAPEUTIC INTERVIEW AND TO PROPOSE A THEORY OF THERAPY. BY ANALYZING THE WORKINGS OF THE PSYCHOSOCIAL SYSTEM THROUGH THE GENERAL SYSTEMS THEORY, IT IS POSSIBLE TO SEE HOW CHANGE OCCURS IN AN INDIVIDUAL FAMILY OR COMMUNITY. APPLIED TO A FAMILY INTERVIEW, THE MODEL…
An investigation of equilibrium concepts
NASA Technical Reports Server (NTRS)
Prozan, R. J.
1982-01-01
A different approach to modeling of the thermochemistry of rocket engine combustion phenomena is presented. The methodology described is based on the hypothesis of a new variational principle applicable to compressible fluid mechanics. This hypothesis is extended to treat the thermochemical behavior of a reacting (equilibrium) gas in an open system.
Magnetospheric equilibrium with anisotropic pressure
Cheng, C.Z.
1991-07-01
Self-consistent magnetospheric equilibrium with anisotropic pressure is obtained by employing an iterative metric method for solving the inverse equilibrium equation in an optimal flux coordinate system. A method of determining plasma parallel and perpendicular pressures from either analytic particle distribution or particle distribution measured along the satellite's path is presented. The numerical results of axisymmetric magnetospheric equilibrium including the effects of finite beta, pressure anisotropy, and boundary conditions are presented for a bi-Maxwellian particle distribution. For the isotropic pressure cases, the finite beta effect produces an outward expansion of the constant magnetic flux surfaces in relation to the dipole field lines, and along the magnetic field the toroidal ring current is maximum at the magnetic equator. The effect of pressure anisotropy is found to further expand the flux surfaces outward. Along the magnetic field lines the westward ring current can be peak away from the equator due to an eastward current contribution resulting from pressure anisotropy. As pressure anisotropy increases, the peak westward current can become more singular. The outer boundary flux surface has significant effect on the magnetospheric equilibrium. For the outer flux boundary resembling dayside compressed flux surface due to solar wind pressure, the deformation of the magnetic field can be quite different from that for the outer flux boundary resembling the tail-like surface. 23 refs., 17 figs.
Effective-range signatures in quasi-1D matter waves: sound velocity and solitons
NASA Astrophysics Data System (ADS)
Sgarlata, F.; Mazzarella, G.; Salasnich, L.
2015-06-01
We investigate ultracold and dilute bosonic atoms under strong transverse harmonic confinement using a 1D modified Gross-Pitaevskii equation (1D MGPE), which accounts for the energy dependence of the two-body scattering amplitude within an effective-range expansion. We study sound waves and solitons of the quasi-1D system, comparing the 1D MGPE results with the 1D GPE ones. We find that when the finite-size nature of the interaction is taken into account, the speed of sound and the density profiles of both dark and bright solitons show relevant quantitative changes with respect to predictions given by the standard 1D GPE.
Observability of discretized partial differential equations
NASA Technical Reports Server (NTRS)
Cohn, Stephen E.; Dee, Dick P.
1988-01-01
It is shown that complete observability of the discrete model used to assimilate data from a linear partial differential equation (PDE) system is necessary and sufficient for asymptotic stability of the data assimilation process. The observability theory for discrete systems is reviewed and applied to obtain simple observability tests for discretized constant-coefficient PDEs. Examples are used to show how numerical dispersion can result in discrete dynamics with multiple eigenvalues, thereby detracting from observability.
Loss of equilibrium and reconnection in tearing of two-dimensional equilibria
NASA Technical Reports Server (NTRS)
Finn, John M.; Guzdar, Parvez N.
1993-01-01
Two-dimensional tearinglike behavior is studied in reduced resistive magnetohydrodynamics (MHD) with flux conserving boundary conditions on a rectangular box. The tearinglike perturbations do not destroy the symmetries of the initial state, either discrete or continuous. In such cases, in which the perturbation does not break a symmetry of the equilibrium, linear instability is typically not directly observed. However, there can be a loss of equilibrium associated with the existence of a tearing unstable state. These ideas are illustrated with three examples: a very elongated tokamak, a tokamak with pinching coils to elongate its flux surfaces, and a model for the magnetotail or for solar arcades. The loss of equilibrium is demonstrated by means of a nonlinear energy functional. The importance of the fact that the dynamics shows a loss of equilibrium is that a large amount of free energy can be released, in the form of reconnection, and that there is a possibility of hysteresis.
Multidimensional discretization of conservation laws for unstructured polyhedral grids
Burton, D.E.
1994-08-22
To the extent possible, a discretized system should satisfy the same conservation laws as the physical system. The author considers the conservation properties of a staggered-grid Lagrange formulation of the hydrodynamics equations (SGH) which is an extension of a ID scheme due to von Neumann and Richtmyer (VNR). The term staggered refers to spatial centering in which position, velocity, and kinetic energy are centered at nodes, while density, pressure, and internal energy are at cell centers. Traditional SGH formulations consider mass, volume, and momentum conservation, but tend to ignore conservation of total energy, conservation of angular momentum, and requirements for thermodynamic reversibility. The author shows that, once the mass and momentum discretizations have been specified, discretization for other quantities are dictated by the conservation laws and cannot be independently defined. The spatial discretization method employs a finite volume procedure that replaces differential operators with surface integrals. The method is appropriate for multidimensional formulations (1D, 2D, 3D) on unstructured grids formed from polygonal (2D) or polyhedral (3D) cells. Conservation equations can then be expressed in conservation form in which conserved currents are exchanged between control volumes. In addition to the surface integrals, the conservation equations include source terms derived from physical sources or geometrical considerations. In Cartesian geometry, mass and momentum are conserved identically. Discussion of volume conservation will be temporarily deferred. The author shows that the momentum equation leads to a form-preserving definition for kinetic energy and to an exactly conservative evolution equation for internal energy. Similarly, the author derives a form-preserving definition and corresponding conservation equation for a zone-centered angular momentum.
Evidence against dopamine D1/D2 receptor heteromers
Frederick, Aliya L.; Yano, Hideaki; Trifilieff, Pierre; Vishwasrao, Harshad D.; Biezonski, Dominik; Mészáros, József; Sibley, David R.; Kellendonk, Christoph; Sonntag, Kai C.; Graham, Devon L.; Colbran, Roger J.; Stanwood, Gregg D.; Javitch, Jonathan A.
2014-01-01
Hetero-oligomers of G-protein-coupled receptors have become the subject of intense investigation because their purported potential to manifest signaling and pharmacological properties that differ from the component receptors makes them highly attractive for the development of more selective pharmacological treatments. In particular, dopamine D1 and D2 receptors have been proposed to form hetero-oligomers that couple to Gαq proteins, and SKF83959 has been proposed to act as a biased agonist that selectively engages these receptor complexes to activate Gαq and thus phospholipase C. D1/D2 heteromers have been proposed as relevant to the pathophysiology and treatment of depression and schizophrenia. We used in vitro bioluminescence resonance energy transfer (BRET), ex vivo analyses of receptor localization and proximity in brain slices, and behavioral assays in mice to characterize signaling from these putative dimers/oligomers. We were unable to detect Gαq or Gα11 protein coupling to homomers or heteromers of D1 or D2 receptors using a variety of biosensors. SKF83959-induced locomotor and grooming behaviors were eliminated in D1 receptor knockout mice, verifying a key role for D1-like receptor activation. In contrast, SKF83959-induced motor responses were intact in D2 receptor and Gαq knockout mice, as well as in knock-in mice expressing a mutant Ala286-CaMKIIα, that cannot autophosphorylate to become active. Moreover, we found that in the shell of the nucleus accumbens, even in neurons in which D1 and D2 receptor promoters are both active, the receptor proteins are segregated and do not form complexes. These data are not compatible with SKF83959 signaling through Gαq or through a D1–D2 heteromer and challenge the existence of such a signaling complex in the adult animals that we used for our studies. PMID:25560761