Science.gov

Sample records for 1-d levitation system

  1. Understanding 1D Electrostatic Dust Levitation

    NASA Astrophysics Data System (ADS)

    Hartzell, C. M.; Scheeres, D. J.

    2011-12-01

    Electrostatically-dominated dust motion has been hypothesized since the Lunar Horizon Glow was observed by the Surveyor spacecraft. The hypothesized occurence of this phenomenon was naturally extended to asteroids due to their small gravities. Additionally, it has been suggested that the dust ponds observed on Eros by the NEAR mission may be created by electrostatically-dominated dust transport. Previous attempts to numerically model dust motion on the Moon and Eros have been stymied by poorly understood dust launching mechanisms. As a result, the initial velocity and charge of dust particles used in numerical simulations may or may not have any relevance to the actual conditions occurring in situ. It has been seen that properly tuned initial states (velocity and charge) result in dust particles levitating above the surface in both 1D and 2D simulations. Levitation is of interest to planetary scientists since it provides a way to quickly redistribute the surface dust particles over a body. However, there is currently no method to predict whether or not a certain initial state will result in levitation. We have developed a method to provide constraints on the initial states that result in levitation as a function of dust particle size and central body gravity. Additionally, our method can be applied to several models of the plasma sheath. Thus, we limit the guesswork involved in determining which initial conditions result in levitation. We provide a more detailed understanding of levitation phenomena couched in terms of the commonly recognized spring-mass system. This method of understanding dust motion removes the dependency on the launching mechanism, which remains fraught with controversy. Once a feasible dust launching mechanism is identified (be it micrometeoroid bombardment or electrostatic lofting), our method will allow the community to quickly ascertain if dust levitation will occur in situ or if it is simply a numerical artifact. In addition to

  2. Compact rf heating and levitation systems for the NASA modular electromagnetic levitator

    NASA Technical Reports Server (NTRS)

    Fox, R. J.

    1990-01-01

    The levitator demonstrates levitation of a 5 mm diam aluminum sphere at 1 G using a small, compact rf levitator operating from a small 12-V battery. This system is designed to levitate and melt niobium in space; however, the small battery unit limits the power for melting operations.

  3. Oscillation damping means for magnetically levitated systems

    DOEpatents

    Post, Richard F.

    2009-01-20

    The present invention presents a novel system and method of damping rolling, pitching, or yawing motions, or longitudinal oscillations superposed on their normal forward or backward velocity of a moving levitated system.

  4. Characteristics of an electromagnetic levitation system using a bulk superconductor

    SciTech Connect

    Senba, A.; Kitahara, H.; Ohsaki, H.; Masada, E.

    1996-09-01

    It is beneficial to apply a high-Tc bulk superconductor as a large flux source to an electromagnetic levitation system, which needs large amounts of levitation force. The authors made an attractive-type electromagnetic levitation system using a hybrid magnet that mainly consisted of bulk superconductor and control coils to confirm the principle of the levitation, and obtained characteristics of its system by both experiment and numerical analysis with magnetic circuit calculation. This is applicable to maglev transportation systems.

  5. Magnetic levitation self-regulating systems

    SciTech Connect

    Tozoni, O.

    1993-06-08

    A magnet levitation self-regulating system is described comprising monotypic magnetic devices combined together by rigid nonmagnetic couplers; said magnetic device comprising two cylindrical parts extended along a cylinder generatrix: a. an iron core having a symmetrical C-shaped cross section and an air gap between its core shoes; and b. a permanent magnet having a rectangular cross-section disposed in said air gap; wherein all the iron cores of said magnetic devices are fixed on a common foundation by a first plurality of rigid nonmagnetic couplers and formed a stator assembly; all the permanent magnets of said magnetic devices are connected together by a second plurality of rigid non-magnetic couplers and form a levitator assembly; said permanent magnets of said levitator generate an original magnetic field and magnetize the stator cores; said stator cores create a secondary magnetic field; both said original and secondary magnetic fields create a magnetic levitation force that provides a stable hovering of said levitator in a resulting magnetic field of said system.

  6. Electrostatic Liquid-Drop-Levitation System

    NASA Technical Reports Server (NTRS)

    Rhim, Won Kyu; Chung, San Kun; Hyson, Michael T.; Elleman, Daniel D.

    1988-01-01

    Electrostatic levitator has levitated drops of liquid up to 4 mm in diameter while maintaining spherical drop shapes. Stable levitation of spherical drops valuable in experiments involving super-cooling, solidification, and crystal growth.

  7. Knolle Magnetrans: A magnetically levitated train system

    NASA Technical Reports Server (NTRS)

    Knolle, Ernst G.

    1992-01-01

    The Knolle Magnetrans is a continuous transportation system featuring small cars traveling in rapid succession, levitated by permanent magnets in repulsion, and propelled by stationary linear induction motors. The vehicles' headway, speed, acceleration, and deceleration are designed into the system and mechanically enforced. Passengers board dynamically and controls consist of a simple on-off relay. This paper summarizes the system design goals, describes the system components and discusses related environmental issues.

  8. MSFC Electrostatic Levitator (ESL) Rapid Quench System

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Craven, Paul D.; Rogers, Jan R.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) Electrostatic Levitator (ESL) Laboratory is a unique facility for investigators studying high-temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified, all without the interference of a container or data-gathering instrument. The ESL main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy. Thereby allowing rapid quenching of undercooled liquid metals. Up to 8 quench vessels can be loaded into the quench wheel, which is indexed with LabVIEW control software. This allows up to 8 samples to be rapidly quenched before having to open the chamber. The system has been tested successfully on several zirconium samples. Future work will be done with other materials using different quench mediums. Microstructural analysis will also be done on successfully quench samples.

  9. Effective method to control the levitation force and levitation height in a superconducting maglev system

    NASA Astrophysics Data System (ADS)

    Yang, Peng-Tao; Yang, Wan-Min; Wang, Miao; Li, Jia-Wei; Guo, Yu-Xia

    2015-11-01

    The influence of the width of the middle magnet in the permanent magnet guideways (PMGs) on the levitation force and the levitation height of single-domain yttrium barium copper oxide (YBCO) bulks has been investigated at 77 K under the zero field cooled (ZFC) state. It is found that the largest levitation force can be obtained in the system with the width of the middle magnet of the PMG equal to the size of the YBCO bulk when the gap between the YBCO bulk and PMG is small. Both larger levitation force and higher levitation height can be obtained in the system with the width of the middle magnet of the PMG larger than the size of the YBCO bulk. The stiffness of the levitation force between the PMG and the YBCO bulk is higher in the system with a smaller width of the middle magnet in the PMG. These results provide an effective way to control the levitation force and the levitation height for the superconducting maglev design and applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51342001 and 50872079), the Key-grant Project of Chinese Ministry of Education (Grant No. 311033), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120202110003), the Innovation Team in Shaanxi Province, China (Grant No. 2014KTC-18), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. GK201101001 and GK201305014), and the Outstanding Doctoral Thesis Foundation Project of Shaanxi Normal University, China (Grant Nos. X2011YB08 and X2012YB05).

  10. Propulsion and stabilization system for magnetically levitated vehicles

    DOEpatents

    Coffey, Howard T.

    1993-06-29

    A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and stabilized by a system which includes propulsion windings mounted above and parallel to vehicle-borne suspension magnets. A linear synchronous motor is part of the vehicle guideway and is mounted above and parallel to superconducting magnets attached to the magnetically levitated vehicle.

  11. Levitation properties of maglev systems using soft ferromagnets

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Guang; Zhou, You-He

    2015-03-01

    Soft ferromagnets are widely used as flux-concentration materials in the design of guideways for superconducting magnetic levitation transport systems. In order to fully understand the influence of soft ferromagnets on the levitation performance, in this work we apply a numerical model based on the functional minimization method and the Bean’s critical state model to study the levitation properties of an infinitely long superconductor immersed in the magnetic field created by a guideway of different sets of infinitely long parallel permanent magnets with soft ferromagnets between them. The levitation force, guidance force, magnetic stiffness and magnetic pole density are calculated considering the coupling between the superconductor and soft ferromagnets. The results show that the levitation performance is closely associated with the permanent magnet configuration and with the location and dimension of the soft ferromagnets. Introducing the soft ferromagnet with a certain width in a few configurations always decreases the levitation force. However, for most configurations, the soft ferromagnets contribute to improve the levitation performance only when they have particular locations and dimensions in which the optimized location and thickness exist to increase the levitation force the most. Moreover, if the superconductor is laterally disturbed, the presence of soft ferromagnets can effectively improve the lateral stability for small lateral displacement and reduce the degradation of levitation force.

  12. Magnetic Levitation.

    ERIC Educational Resources Information Center

    Rossing, Thomas D.; Hull, John R.

    1991-01-01

    Discusses the principles of magnetic levitation presented in the physics classroom and applied to transportation systems. Topics discussed include three classroom demonstrations to illustrate magnetic levitation, the concept of eddy currents, lift and drag forces on a moving magnet, magnetic levitation vehicles, levitation with permanent magnets…

  13. Corridor guided transport system utilizing permanent magnet levitation

    SciTech Connect

    Geraghty, J.J.; Poland, A.P.; Lombardi, J.A.

    1995-07-01

    The invention relates to a corridor guided transport system including a guided goods conveyance container utilizing permanent magnet levitation. The transport system of the invention eliminates the need for the wheel and track arrangement presently required by known and utilized conventional train systems and also required by some conventional magnetic levitation transport systems and, as a result, is safer to operate and maintain than either of these known transportation systems.

  14. Control and dynamics of an anti-friction levitation system

    NASA Technical Reports Server (NTRS)

    Ih, C.-H. C.; Vivian, H.; Ahmed, A.; Wang, S. J.

    1992-01-01

    A novel anti-friction levitator concept has been devised and analytically evaluated to overcome support bearing friction and thereby minimize the structural damping of the Large Spacecraft Control Laboratory (LSCL) experiment structure at JPL. A dynamic model and controller design have been developed for the new levitation system. Simulation results show excellent system performance even when the system is subjected to significant measurement noise and hardware saturation effects.

  15. Coarse-fine residual gravity cancellation system with magnetic levitation

    NASA Technical Reports Server (NTRS)

    Salcudean, S. E.; Davis, H.; Chen, C. T.; Goertz, D. E.; Tryggvason, B. V.

    1992-01-01

    Aircraft flight along parabolic trajectories have been proposed and executed in order to achieve low cost, near free fall conditions of moderate duration. This paper describes a six degree of freedom experiment isolation system designed to cancel out residual accelerations due to mechanical vibrations and errors in aircraft trajectory. The isolation system consists of a fine motion magnetic levitator whose stator is transported by a conventional coarse motion stage. The levitator uses wide gap voice coil actuators and has the dual purpose of isolating the experiment platform from aircraft vibrations and actively cancelling residual accelerations through feedback control. The course motion stage tracks the levitated platform in order to keep the levitator's coils centered within their matching magnetic gaps. Aspects of system design, an analysis of the proposed control strategy and simulation results are presented. Feasibility experiments are also discussed.

  16. Eddy damping effect of additional conductors in superconducting levitation systems

    NASA Astrophysics Data System (ADS)

    Jiang, Zhao-Fei; Gou, Xiao-Fan

    2015-12-01

    Passive superconducting levitation systems consisting of a high temperature superconductor (HTSC) and a permanent magnet (PM) have demonstrated several fascinating applications such as the maglev system, flywheel energy storage. Generally, for the HTSC-PM levitation system, the HTSC with higher critical current density Jc can obtain larger magnetic force to make the PM levitate over the HTSC (or suspended below the HTSC), however, the process of the vibration of the levitated PM, provides very limited inherent damping (essentially hysteresis). To improve the dynamic stability of the levitated PM, eddy damping of additional conductors can be considered as the most simple and effective approach. In this article, for the HTSC-PM levitation system with an additional copper damper attached to the HTSC, we numerically and comprehensively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. Furthermore, we comparatively studied four different arrangements of the copper damper, on the comprehensive analyzed the damping effect, efficiency (defined by c/VCu, in which VCu is the volume of the damper) and Joule heating, and finally presented the most advisable arrangement.

  17. DESIGN PACKAGE 1D SYSTEM SAFETY ANALYSIS

    SciTech Connect

    L.R. Eisler

    1995-02-02

    The purpose of this analysis is to systematically identify and evaluate hazards related to the Yucca Mountain Project Exploratory Studies Facility (ESF) Design Package 1D, Surface Facilities, (for a list of design items included in the package 1D system safety analysis see section 3). This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach was used since a radiological System Safety analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the Design Package 1D structures/systems/components in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the structure/system/component (S/S/C) design, (2) add safety devices and capabilities to the designs that reduce risk, (3) provide devices that detect and warn personnel of hazardous conditions, and (4) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions. The scope of this analysis is limited to the Design Package 1D structures/systems/components (S/S/Cs) during normal operations excluding hazards occurring during maintenance and ''off normal'' operations.

  18. Magnetic Field Gradient Levitation System for Physics and Biophysics

    NASA Astrophysics Data System (ADS)

    Valles, James; Guevorkian, Karine

    2002-03-01

    We are developing a Magnetic Field Gradient Levitation (MFGL) apparatus as a ground based system for simulating a low or variable gravity environment for diamagnetic materials. The system consists of a superconducting solenoid with a room temperature bore that can generate a magnetic force strong enough to levitate or cancel the body force of gravity in common organic materials (e.g. water, proteins, polypropylene). We will describe the specifications and capabilities of the apparatus and our initial experimental studies of gravitational sensitivity in the biological systems, frog embryos and paramecium.

  19. Magnetic levitation system for moving objects

    DOEpatents

    Post, R.F.

    1998-03-03

    Repelling magnetic forces are produced by the interaction of a flux-concentrated magnetic field (produced by permanent magnets or electromagnets) with an inductively loaded closed electric circuit. When one such element moves with respect to the other, a current is induced in the circuit. This current then interacts back on the field to produce a repelling force. These repelling magnetic forces are applied to magnetically levitate a moving object such as a train car. The power required to levitate a train of such cars is drawn from the motional energy of the train itself, and typically represents only a percent or two of the several megawatts of power required to overcome aerodynamic drag at high speeds. 7 figs.

  20. Magnetic levitation system for moving objects

    DOEpatents

    Post, Richard F.

    1998-01-01

    Repelling magnetic forces are produced by the interaction of a flux-concentrated magnetic field (produced by permanent magnets or electromagnets) with an inductively loaded closed electric circuit. When one such element moves with respect to the other, a current is induced in the circuit. This current then interacts back on the field to produce a repelling force. These repelling magnetic forces are applied to magnetically levitate a moving object such as a train car. The power required to levitate a train of such cars is drawn from the motional energy of the train itself, and typically represents only a percent or two of the several megawatts of power required to overcome aerodynamic drag at high speeds.

  1. Damping in high-temperature superconducting levitation systems

    DOEpatents

    Hull, John R.

    2009-12-15

    Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.

  2. Analysis of the combined maglev levitation, propulsion, and guidance system

    SciTech Connect

    He, J.L.; Coffey, H.T.; Rote, D.M.

    1995-03-01

    An analysis of a Japanese maglev system that uses only one set of coils in the guideway for combined levitation, propulsion, and guidance functions is presented. This preliminary study, using the dynamic circuit approach, indicates that the system is very promising.

  3. Technical background for a demonstration magnetic levitation system

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.

    1987-01-01

    A preliminary technical assessment of the feasibility of a demonstration Magnetic Levitation system, required to support aerodynamic models with a specified clear air volume around them, is presented. Preliminary calculations of required sizes of electromagnets and power supplies are made, indicating that the system is practical. Other aspects, including model position sensing and controller design, are briefly addressed.

  4. NASA MSFC Electrostatic Levitator (ESL) Rapid Quench System

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Craven, Paul D.

    2014-01-01

    Electrostatic levitation, a form of containerless processing, is an important tool in materials research. Levitated specimens are free from contact with a container; therefore, heterogeneous nucleation on container walls is not possible. This allows studies of deeply undercooled melts. Furthermore, studies of high-temperature, highly reactive materials are also possible. Studies of the solidification and crystallization of undercooled melts is vital to the understanding of microstructure development, particularly the formation of alloys with unique properties by rapid solidification. The NASA Marshall Space Flight Center (MSFC) Electrostatic Levitator (ESL) lab has recently been upgraded to allow for rapid quenching of levitated materials. The ESL Rapid Quench System uses a small crucible-like vessel that can be partially filled with a low melting point material, such as a Gallium alloy, as a quench medium. An undercooled sample can be dropped into the vessel to rapidly quench the sample. A carousel with nine vessels sits below the bottom electrode assembly. This system allows up to nine rapid quenches before having to break vacuum and remove the vessels. This new Rapid Quench System will allow materials science studies of undercooled materials and new materials development. In this presentation, the system is described and initial results are presented.

  5. A new maglev system for magnetically levitated carrier system

    NASA Astrophysics Data System (ADS)

    Morishita, Mimpei; Azukizawa, Teruo; Kanda, Shuji; Tamura, Noburu; Yokoyama, Toyohiko

    1989-11-01

    A power-saving electromagnetic suspension system has been developed in which electromagnets with permanent magnets are used to suspend the vehicle. The electromagnets are controlled to maintain air gap length so that the attractive force by the permanent magnet always balances the total weight of the vehicle and its loads, based on modern control theory. This technology realizes a significantly power-saving electromagnetic suspension system in which the electromagnetic coil current required to keep a vehicle levitating was extremely small, ideally zero. The 8-kg weight test vehicle with 4-kg load could be levitated continuously over 8 h, without recharging the on-board 1300-mAh batteries. This technology realized a completely contact-free material transportation system when combined with a contact-free driving system using linear motors. The attractive force characteristics of a permanent magnet with control electromagnets and the newly developed electromagnet control system that can eliminate power collecting devices from the electromagnetic suspension system are described.

  6. Magnetic levitation/suspension system by high-temperature superconducting materials

    SciTech Connect

    Chen, I.; Hsu, J.; Jamn, G.; Lin, C.E.; Wu, M.K.

    1997-04-01

    Recently, with the advance of materials processing techniques, such as top-seeding and melt-texturing (TSMT) method, very large single-grained Y-Ba-Cu-O (YBCO) samples up to several centimeters in diameter can be produced. Each sample is capable of levitating over kilograms of weight. A HTS magnetic levitation (MagLev) transportation prototype has been constructed at National Cheng-Kung University (NCKU) to validate the concept of HTS-MagLev system based on Meissner effect. This HTS-MagLev is an inherent stable levitation system, unlike traditional MagLev system that requires sensors and feedback circuits to dynamically adjust its unstable levitation position. In this report, the results of various magnetic levitation parameters, such as different permanent magnet configurations, relative levitation stability, levitation force, etc., as well as magnetic field intensity and distribution will be discussed. {copyright} {ital 1997 American Institute of Physics.}

  7. Analysis of a high Tc superconducting levitation system with vibration isolation control

    SciTech Connect

    Nagaya, Kosuke

    1996-03-01

    This paper presents a method for controlling vibrations of a levitated high Tc superconducting body subjected to base disturbances. To have the control forces, an actuator consisting of a permanent magnet with an electromagnet was presented. The analytical solution for calculating levitation forces due to the permanent magnet and the control currents in the electromagnet was obtained. The levitation forces obtained coincide with the previously published results. The equation of motion of the levitated body subjected to base disturbances under the control was presented. Nonlinear vibrations of the body were first discussed; then the method of vibration isolation control using the direct disturbance cancellation combining the velocity feedback control was investigated. Numerical calculations were carried out for the levitation forces, with respect to the levitated body subjected to harmonic or pulse base excitations. It was clarified that the present method is valid for controlling nonlinear systems like the magnetic levitated superconducting body.

  8. Optical encoder feedback system for levitating rotor system

    NASA Astrophysics Data System (ADS)

    Khanna, Shrey; Ho, Joe N.; Irwen, Jonathan; Rakka, Gurjinder; Wang, Weichih

    2010-03-01

    This paper describes the design and fabrication of feedback control system for a three phase motor with a diamagnetically levitating rotor. The planar rotor described in this paper uses a triangular configuration of magnets that rotates due to nine electric coils evenly spaced around the rotor. An optical mechanical feedback system controls the frequency at which the rotor spins. The current input to the coil is controlled by a mechanical relay circuit which latches based on a DC pulse signal generated by a PID control algorithm. The mechanical relay circuit allows current to flow to each coils (the actuators of this system), which then produces a magnetic field strong enough to spin the rotor.

  9. Effect of the active damper coil system on the lateral displacement of the magnetically levitated bogie

    SciTech Connect

    Ohashi, S.; Ohsaki, H.; Masada, E.

    1999-09-01

    Numerical simulation of the superconducting magnetically levitated bogie (JR Maglev) has been studied. The active damper coil system is introduced. In this levitation system, the interaction between levitation and guidance is strong. This active damper coil system is designed for reducing the vertical vibration of the bogie. Using the numerical simulation, its effect on the lateral displacement of the bogie is assessed. The active damper coil system for the vertical vibration is shown to works as a passive damper for the lateral vibration.

  10. Improved optical feedback reference tracking for diamagnetically levitating motor system

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chih; Vu, Jefferey; Khanna, Shrey

    2011-04-01

    This paper describes the design and fabrication of an optical sensor to sense vertical displacement of a diamagnetically stabilized levitating rotor. The planar rotor described in this paper rotates due to nine electromagnetic coils evenly spaced around the rotor. A driving circuit allows current to flow through the coils one phase at a time. This produces a magnetic field strong enough to spin the rotor. However, instability due to a number of factors is prevalent in the present system. This instability is observed as vertical and horizontal displacement of the levitating rotor. The purpose of an additional optical sensor is to measure and record this vertical displacement and combine it with topsensing optical measurements in order to create a three-dimensional optical sensing mechanism around the rotor.

  11. Air jet levitation furnace system for observing glass microspheres during heating and melting

    NASA Technical Reports Server (NTRS)

    Ethridge, E. C.; Dunn, S. L.

    1982-01-01

    A collimated hole structure air jet levitation system has been developed which can be used to levitate hollow glass microspheres used in inertial confinement fusion studies. An ellipsoidal furnace has been added to the system to provide a heating source. A video camera and a 16 mm movie camera connected to a microsphere system provide real time observation as well as permanent documentation of the experiments. Microspheres have been levitated at temperatures over 1400 C for over 10 minutes at a time.

  12. New levitation scheme with AC superconducting magnet for EDS MAGLEV system

    SciTech Connect

    Kim, D.H.; Lee, J.K.; Hahn, S.Y.; Cha, G.

    1996-09-01

    This paper proposes a new magnetic levitation scheme which is able to generate levitation force for all speeds including a standstill. Auxiliary wheels which are needed in EDS MAGLEV vehicle can be eliminated. This scheme uses AC superconducting magnets to generate levitation force. In this paper, magnetic fields, forces and power dissipations generated by AC magnets moving above a conducting slab are calculated analytically. Results of calculation show characteristics of EDS system with AC magnet, such as levitation force and loss, are superior to those of EDS system with DC magnets for all speeds.

  13. Robust levitation control for maglev systems with guaranteed bounded airgap.

    PubMed

    Xu, Jinquan; Chen, Ye-Hwa; Guo, Hong

    2015-11-01

    The robust control design problem for the levitation control of a nonlinear uncertain maglev system is considered. The uncertainty is (possibly) fast time-varying. The system has magnitude limitation on the airgap between the suspended chassis and the guideway in order to prevent undesirable contact. Furthermore, the (global) matching condition is not satisfied. After a three-step state transformation, a robust control scheme for the maglev vehicle is proposed, which is able to guarantee the uniform boundedness and uniform ultimate boundedness of the system, regardless of the uncertainty. The magnitude limitation of the airgap is guaranteed, regardless of the uncertainty. PMID:26524957

  14. Development of magnetically levitated high speed transport system in Japan

    SciTech Connect

    Sawada, Kazuo

    1996-07-01

    In Japan, huge passenger traffic moves through the Tokyo-Osaka corridor and the demand is mounting on one more high speed line besides the Tokaido Shinkansen. A magnetically levitated vehicle (JR Maglev) using superconducting magnets has been developed for the Tokyo-Osaka superspeed express. JR Maglev has many advantages over conventional rail systems. This paper describes the necessity of one more high speed line in this corridor, the reason the author chose Maglev, the scheme of this system, history of the development and outline of the new Yamanashi test line project.

  15. Dynamic characteristics of magnetically-levitated vehicle systems.

    SciTech Connect

    Cai, Y.; Chen, S. S.; Energy Technology

    1997-11-01

    The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, while vehicle stability is an important safety related element. To design a guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore, the trade off between guideway smoothness and levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. This report, which reviews various aspects of the dynamic characteristics, experiments and analysis, and design guidelines for maglev systems, discusses vehicle stability, motion dependent magnetic force components, guideway characteristics, vehicle/ guideway interaction, ride quality, suspension control laws, aerodynamic loads and other excitations, and research needs.

  16. A review of dynamic characteristics of magnetically levitated vehicle systems

    SciTech Connect

    Cai, Y.; Chen, S.S.

    1995-11-01

    The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, while vehicle stability is an important safety-related element. To design a guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore, the trade-off between guideway smoothness and levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. This report, which reviews various aspects of the dynamic characteristics, experiments and analysis, and design guidelines for maglev systems, discusses vehicle stability, motion dependent magnetic force components, guideway characteristics, vehicle/ guideway interaction, ride quality, suspension control laws, aerodynamic loads and other excitations, and research needs.

  17. Damping and support in high-temperature superconducting levitation systems

    DOEpatents

    Hull, John R.; McIver, Carl R.; Mittleider, John A.

    2009-12-15

    Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.

  18. Output feedback control of a mechanical system using magnetic levitation.

    PubMed

    Beltran-Carbajal, F; Valderrabano-Gonzalez, A; Rosas-Caro, J C; Favela-Contreras, A

    2015-07-01

    This paper presents an application of a nonlinear magnetic levitation system to the problem of efficient active control of mass-spring-damper mechanical systems. An output feedback control scheme is proposed for reference position trajectory tracking tasks on the flexible mechanical system. The electromagnetically actuated system is shown to be a differentially flat nonlinear system. An extended state estimation approach is also proposed to obtain estimates of velocity, acceleration and disturbance signals. The differential flatness structural property of the system is then employed for the synthesis of the controller and the signal estimation approach presented in this work. Some experimental and simulation results are included to show the efficient performance of the control approach and the effective estimation of the unknown signals. PMID:25707718

  19. Expansion joint for guideway for magnetic levitation transportation system

    SciTech Connect

    Rossing, T.D.

    1991-12-31

    An expansion joint that allows a guideway of a magnetic levitation transportation system to expand and contract while minimizing transients occurring in the magnetic lift and drag forces acting on a magnetic levitation vehicle traveling over the joint includes an upper cut or recess extending downwardly from the upper surface of the guideway and a non-intersecting lower cut or recess that extends upwardly from the lower surface of the guideway. The sidewalls of the cuts can be parallel to each other and the vertical axis of the guideway; the depth of the lower cut can be greater than the depth of the upper cut; and the overall combined lengths of the cuts can be greater than the thickness of the guideway from the upper to lower surface so that the cuts will overlap, but be spaced apart from each other. The distance between the cuts can be determined on the basis of the force transients and the mechanical behavior of the guideway. A second pair of similarly configured upper and lower cuts may be disposed in the guideway; the expansion joint may consist of two upper cuts and one lower cut; or the cuts may have non-parallel, diverging sidewalls so that the cuts have a substantially dove-tail shape.

  20. Expansion joint for guideway for magnetic levitation transportation system

    DOEpatents

    Rossing, Thomas D.

    1993-01-01

    An expansion joint that allows a guideway of a magnetic levitation transportation system to expand and contract while minimizing transients occurring in the magnetic lift and drag forces acting on a magnetic levitation vehicle traveling over the joint includes an upper cut or recess extending downwardly from the upper surface of the guideway and a non-intersecting lower cut or recess that extends upwardly from the lower surface of the guideway. The sidewalls of the cuts can be parallel to each other and the vertical axis of the guideway; the depth of the lower cut can be greater than the depth of the upper cut; and the overall combined lengths of the cuts can be greater than the thickness of the guideway from the upper to lower surface so that the cuts will overlap, but be spaced apart from each other. The distance between the cuts can be determined on the basis of the force transients and the mechanical behavior of the guideway. A second pair of similarly configured upper and lower cuts may be disposed in the guideway; the expansion joint may consist of two upper cuts and one lower cut; or the cuts may have non-parallel, diverging sidewalls so that the cuts have a substantially dove-tail shape.

  1. Expansion joint for guideway for magnetic levitation transportation system

    DOEpatents

    Rossing, T.D.

    1993-02-09

    An expansion joint that allows a guideway of a magnetic levitation transportation system to expand and contract while minimizing transients occurring in the magnetic lift and drag forces acting on a magnetic levitation vehicle traveling over the joint includes an upper cut or recess extending downwardly from the upper surface of the guideway and a non-intersecting lower cut or recess that extends upwardly from the lower surface of the guideway. The side walls of the cuts can be parallel to each other and the vertical axis of the guideway; the depth of the lower cut can be greater than the depth of the upper cut; and the overall combined lengths of the cuts can be greater than the thickness of the guideway from the upper to lower surface so that the cuts will overlap, but be spaced apart from each other. The distance between the cuts can be determined on the basis of the force transients and the mechanical behavior of the guideway. A second pair of similarly configured upper and lower cuts may be disposed in the guideway; the expansion joint may consist of two upper cuts and one lower cut; or the cuts may have non-parallel, diverging side walls so that the cuts have a substantially dove-tail shape.

  2. Design, manufacture and performance evaluation of HTS electromagnets for the hybrid magnetic levitation system

    NASA Astrophysics Data System (ADS)

    Chu, S. Y.; Hwang, Y. J.; Choi, S.; Na, J. B.; Kim, Y. J.; Chang, K. S.; Bae, D. K.; Lee, C. Y.; Ko, T. K.

    2011-11-01

    A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN 2).

  3. System and Method for Obtaining Simultaneous Levitation and Rotation of a Ferromagnetic Object

    NASA Astrophysics Data System (ADS)

    Banerjee, Subrata; Sarkar, Mrinal Kanti; Ghosh, Arnab

    2016-06-01

    In this work a practical demonstration for simultaneous levitation and rotation for a ferromagnetic cylindrical object is presented. A hollow steel cylinder has been arranged to remain suspended stably under I-core electromagnet utilizing dc attraction type levitation principle and then arranged to rotate the levitated object around 1000 rpm speed based on eddy current based energy meter principle. Since the object is to be rotating during levitated condition the device will be frictionless, energy-efficient and robust. This technology may be applied to frictionless energy meter, wind turbine, machine tool applications, precision instruments and many other devices where easy energy-efficient stable rotation will be required. The cascade lead compensation control scheme has been applied for stabilization of unstable levitation system. The proposed device is successfully tested in the laboratory and experimental results have been produced.

  4. Propulsion and stabilization system for magnetically levitated vehicles

    SciTech Connect

    Coffey, H.T.

    1993-06-29

    A magnetic levitation and propulsion system for a vehicle adapted to travel over a roadbed is described comprising: a guide way affixed to a support structure where the support structure is coupled to the roadbed, a plurality of superconducting magnet devices producing magnetic fields and affixed to the vehicle where the superconducting magnet devices are oriented parallel to one surface of the guide way to generate a repulsive force between the guide way and the magnetic devices, and a plurality of propulsion windings affixed to the support structure, where the propulsion windings are located above and parallel to the superconducting magnet devices and are energized by a power source to generate a vehicle propulsion force to propel the vehicle along the roadbed support structure.

  5. An advanced arrangement of the combined propulsion, levitation and guidance system of superconducting Maglev

    SciTech Connect

    Fujie, Junji

    1999-09-01

    The PLG (combined Propulsion, Levitation and Guidance) method was proposed for a more favorable Maglev ground coil system, combining the functions of propulsion, levitation, and guidance of the vehicle into one coil. Research and development is currently being conducted on this method. In this paper, the characteristics of a newly-structured system for the PLG method is examined. The discussed characteristics include propulsion, levitation-guidance, vehicle dynamics in the cases of problems with the superconducting magnets, and the magnetic field on board the vehicle.

  6. Mechanical resonance characteristics of a high-{Tc} superconducting levitation system

    SciTech Connect

    Sugiura, Toshihiko; Fujimori, Hideki

    1996-05-01

    This research deals with dynamic response of a permanent magnet freely levitated above an excited high-{Tc} superconductor. Evaluation of dynamic characteristics is required in mechanical design of high-{Tc} superconducting levitation systems. Their dynamics is coupled with Type-II superconducting phenomena. By a numerical approach based on some macroscopic models they evaluate mechanical resonance characteristics of a superconducting levitation system. Numerical results show some nonlinear properties and effect of the flux flow in Type-II superconductor, which are observed in experiments or predicted by analyses.

  7. A Superconducting Levitation Transport Model System for Dynamical and Didactical Studies

    NASA Astrophysics Data System (ADS)

    Rosenzweig, St.; Reich, E.; Neu, V.; Berger, D.; Peukert, K.; Holzapfel, B.; Schultz, L.; Pospiech, G.

    Superconducting levitation transport systems might become very attractive in the near future due to various reasons. The realisation of contactless systems allows e.g. extended maintenance-free operation with high efficiency since such a system only needs energy for cooling and propulsion. We established a small superconducting levitation transport model system called "SupraTrans Min" consisting of permanent magnetic rails and a levitated vehicle including four YBCO-bulk samples in a cryostat. The rail system consists of an oval shaped loop (2.90 m x 1.44 m), which was build up from individual linear and curved track modules. Inside the vehicle position variations of the superconductors are possible. By means of velocity, acceleration and temperature measurements different dynamical aspects of our complex levitation system can be investigated. We also show the broad applicability of the experimental setup for didactical studies in physics.

  8. 13th International Conference on Magnetically Levitated Systems and Linear Drives

    SciTech Connect

    Not Available

    1993-09-01

    This report contains short papers on research being conducted throughout the world on magnetically levitated systems, mainly consisting of trains, and magnetic linear drives. These papers have been index separately elsewhere on the data base.

  9. Amplitude and frequency dependence of hysteresis loss in a magnet-superconductor levitation system

    SciTech Connect

    Yang, Z.J.; Hull, J.R.; Mulcahy, T.M.; Rossing, T.D.

    1995-08-01

    Using an electromagnetically controlled mechanical pendulum, we measured the energy loss for different amplitudes in a magnetic levitation system that contained high temperature superconductors (HTSs). Two procedures were followed to measure losses at 77 K for frequencies of 93.8 mHz to 80 Hz. In the first procedure, the distance between the permanent magnet and the HTS levitator was the same as that during (field) cooling. In the second procedure, the magnet was lowered (after cooling) closer to the HTS levitator before the measurements were performed. The experimental data show that these two procedures give essentially the same results at the same distance despite different cooling (and magnetization) histories for melt-textured YBaCuO levitators, and the frequency-independent energy loss is a power-law function of amplitude. We attribute the energy loss to magnetic hysteresis in the superconductor. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  10. Effect of reciprocating motions around working points on levitation force of superconductor-magnet system

    NASA Astrophysics Data System (ADS)

    Xu, Jimin; Zhang, Fei; Sun, Tao; Yuan, Xiaoyang; Zhang, Cuiping

    2016-09-01

    In order to simulate vibration around working points in practical operation of superconducting levitation system, magnet in a simple superconductor-magnet system are conducted reciprocating motions around static height in this study. Two YBCO cylindrical samples with different grain orientations are used to investigate the effect of reciprocating motions of magnet on superconducting magnetic force. The c-axis of sample S1 is perpendicular to the top surface while sample S2 is parallel to the top surface. The initial cooling processes for the superconductors include zero-field-cooled (ZFC) and filed-cooled (FC). Compared to the levitation force before reciprocating motions, the ZFC levitation force at static height becomes smaller after reciprocating while the FC force presents opposite phenomenon. It is found that levitation force at static height tends to be stable after several times of reciprocating under ZFC and FC conditions and its time-decay phenomenon is suppressed in some extent, which is meaningful for the practical application of superconducting levitation system. Based on vortex dynamic, some physical discussions are presented to the experimental results.

  11. Effect of size on levitation force in a magnet/superconductor system

    SciTech Connect

    Yang, Z.J.; Hull, J.R.

    1996-03-01

    We consider a model system consisting of an infinitely long magnetic dipole line placed symmetrically above an infinitely long superconducting strip. Using the Meissner effect of superconductors, we derive analytical expressions of the levitation forces acting on the dipole line. At lowest-order approximation, we discuss the possible application of our model system to estimate the upper limit of the levitation forces in some magnetic bearing systems. In one example, the model correctly calculated the vertical vibration frequency of an experimental superconducting bearing.

  12. Apparatus and method for reducing inductive coupling between levitation and drive coils within a magnetic propulsion system

    DOEpatents

    Post, Richard F.

    2001-01-01

    An apparatus and method is disclosed for reducing inductive coupling between levitation and drive coils within a magnetic levitation system. A pole array has a magnetic field. A levitation coil is positioned so that in response to motion of the magnetic field of the pole array a current is induced in the levitation coil. A first drive coil having a magnetic field coupled to drive the pole array also has a magnetic flux which induces a parasitic current in the levitation coil. A second drive coil having a magnetic field is positioned to attenuate the parasitic current in the levitation coil by canceling the magnetic flux of the first drive coil which induces the parasitic current. Steps in the method include generating a magnetic field with a pole array for levitating an object; inducing current in a levitation coil in response to motion of the magnetic field of the pole array; generating a magnetic field with a first drive coil for propelling the object; and generating a magnetic field with a second drive coil for attenuating effects of the magnetic field of the first drive coil on the current in the levitation coil.

  13. Preliminary characterization of a one-axis acoustic system. [acoustic levitation for space processing

    NASA Technical Reports Server (NTRS)

    Oran, W. A.; Reiss, D. A.; Berge, L. H.; Parker, H. W.

    1979-01-01

    The acoustic fields and levitation forces produced along the axis of a single-axis resonance system were measured. The system consisted of a St. Clair generator and a planar reflector. The levitation force was measured for bodies of various sizes and geometries (i.e., spheres, cylinders, and discs). The force was found to be roughly proportional to the volume of the body until the characteristic body radius reaches approximately 2/k (k = wave number). The acoustic pressures along the axis were modeled using Huygens principle and a method of imaging to approximate multiple reflections. The modeled pressures were found to be in reasonable agreement with those measured with a calibrated microphone.

  14. Automatic gas-levitation system for vacuum deposition of laser-fusion targets

    SciTech Connect

    Jordan, C.W.; Cameron, G.R.; Krenik, R.M.; Crane, J.K.

    1981-09-08

    An improved simple system has been developed to gas-levitate microspheres during vacuum-deposition processes. The automatic operation relies on two effects: a lateral stabilizing force provided by a centering-ring; and an automatically incremented gas metering system to offset weight increases during coating.

  15. Performance analysis of the combined EDS maglev propulsion, levitation, and guidance system

    SciTech Connect

    He, J.L.; Coffey, H.T.; Rote, D.M.

    1993-10-01

    An analysis of the Japanese maglev system which uses only one set of coils in the guideway for combined levitation, propulsion, and guidance functions is presented in this paper. This preliminary study, using the dynamic circuit approach, indicates that the system is very promising.

  16. Robust dynamic sliding-mode control using adaptive RENN for magnetic levitation system.

    PubMed

    Lin, Faa-Jeng; Chen, Syuan-Yi; Shyu, Kuo-Kai

    2009-06-01

    In this paper, a robust dynamic sliding mode control system (RDSMC) using a recurrent Elman neural network (RENN) is proposed to control the position of a levitated object of a magnetic levitation system considering the uncertainties. First, a dynamic model of the magnetic levitation system is derived. Then, a proportional-integral-derivative (PID)-type sliding-mode control system (SMC) is adopted for tracking of the reference trajectories. Moreover, a new PID-type dynamic sliding-mode control system (DSMC) is proposed to reduce the chattering phenomenon. However, due to the hardware being limited and the uncertainty bound being unknown of the switching function for the DSMC, an RDSMC is proposed to improve the control performance and further increase the robustness of the magnetic levitation system. In the RDSMC, an RENN estimator is used to estimate an unknown nonlinear function of lumped uncertainty online and replace the switching function in the hitting control of the DSMC directly. The adaptive learning algorithms that trained the parameters of the RENN online are derived using Lyapunov stability theorem. Furthermore, a robust compensator is proposed to confront the uncertainties including approximation error, optimal parameter vectors, and higher order terms in Taylor series. Finally, some experimental results of tracking the various periodic trajectories demonstrate the validity of the proposed RDSMC for practical applications. PMID:19423437

  17. Magnetic Levitation Force Measurement System at Any Low Temperatures From 20 K To 300 K

    NASA Astrophysics Data System (ADS)

    Celik, Sukru; Guner, S. Baris; Coskun, Elvan

    2015-03-01

    Most of the magnetic levitation force measurements in previous studies were performed at liquid nitrogen temperatures. For the levitation force of MgB2 and iron based superconducting samples, magnetic levitation force measurement system is needed. In this study, magnetic levitation force measurement system was designed. In this system, beside vertical force versus vertical motion, lateral and vertical force versus lateral motion measurements, the vertical force versus temperature at the fixed distance between permanent magnet PM - superconducting sample SS and the vertical force versus time measurements were performed at any temperatures from 20 K to 300 K. Thanks to these measurements, the temperature dependence, time dependence, and the distance (magnetic field) and temperature dependences of SS can be investigated. On the other hand, the magnetic stiffness MS measurements can be performed in this system. Using the measurement of MS at different temperature in the range, MS dependence on temperature can be investigated. These measurements at any temperatures in the range help to the superconductivity properties to be characterized. This work was supported by TUBTAK-the Scientific and technological research council of Turkey under project of MFAG - 110T622. This system was applied to the Turkish patent institute with the Application Number of 2013/13638 on 22/11/2013.

  18. Electromagnetically levitated vibration isolation system for the manufacturing process of silicon monocrystals

    NASA Technical Reports Server (NTRS)

    Kanemitsu, Yoichi; Watanabe, Katsuhide; Yano, Kenichi; Mizuno, Takayuki

    1994-01-01

    This paper introduces a study on an Electromagnetically Levitated Vibration Isolation System (ELVIS) for isolation control of large-scale vibration. This system features no mechanical contact between the isolation table and the installation floor, using a total of four electromagnetic actuators which generate magnetic levitation force in the vertical and horizontal directions. The configuration of the magnet for the vertical direction is designed to prevent any generation of restoring vibratory force in the horizontal direction. The isolation system is set so that vibration control effects due to small earthquakes can be regulated to below 5(gal) versus horizontal vibration levels of the installation floor of up t 25(gal), and those in the horizontal relative displacement of up to 30 (mm) between the floor and levitated isolation table. In particular, studies on the relative displacement between the installation floor and the levitated isolation table have been made for vibration control in the horizontal direction. In case of small-scale earthquakes (Taft wave scaled: max. 25 gal), the present system has been confirmed to achieve a vibration isolation to a level below 5 gal. The vibration transmission ratio of below 1/10 has been achieved versus continuous micro-vibration (approx. one gal) in the horizontal direction on the installation floor.

  19. A Multi-Transducer Near Field Acoustic Levitation System for Noncontact Transportation of Large-Sized Planar Objects

    NASA Astrophysics Data System (ADS)

    Amano, Takafumi; Koike, Yoshikazu; Nakamura, Kentaro; Ueha, Sadayuki; Hashimoto, Yoshiki

    2000-05-01

    A new noncontact transportation system, which consists of multiple ultrasonic transducers and operates based on near-field acoustic levitation, is proposed to transport a large-sized planar object such as a glass substrate for liquid crystal devices. Using the proposed systems consisting of two and three transducers, the suspension characteristics of the levitated objects are studied as functions of both size difference and angles between the vibration systems and the levitated object. As a result, the holding force is proved to increase as the angle increases and is maximum when the horizontal dimensions of the system and the object coincide.

  20. Optimization of a superconducting linear levitation system using a soft ferromagnet

    NASA Astrophysics Data System (ADS)

    Agramunt-Puig, Sebastia; Del-Valle, Nuria; Navau, Carles; Sanchez, Alvaro

    2013-04-01

    The use of guideways that combine permanent magnets and soft ferromagnetic materials is a common practice in magnetic levitation transport systems (maglevs) with bulk high-temperature superconductors. Theoretical tools to simulate in a realistic way both the behavior of all elements (permanent magnets, soft ferromagnet and superconductor) and their mutual effects are helpful to optimize the designs of real systems. Here we present a systematic study of the levitation of a maglev with translational symmetry consisting of a superconducting bar and a guideway with two identic permanent magnets and a soft ferromagnetic material between them. The system is simulated with a numerical model based on the energy minimization method that allows to analyze the mutual interaction of the superconductor, assumed to be in the critical state, and a soft ferromagnet with infinite susceptibility. Results indicate that introducing a soft ferromagnet within the permanent magnets not only increases the levitation force but also improves the stability. Besides, an estimation of the relative sizes and shapes of the soft ferromagnet, permanent magnets and the superconductor in order to obtain large levitation force with full stability is provided.

  1. Study on control method of running velocity for the permanent magnet-HTSC hybrid magnetically levitated conveyance system

    NASA Astrophysics Data System (ADS)

    Nishio, R.; Ikeda, M.; Sasaki, R.; Ohashi, S.

    2011-11-01

    We have developed the magnetically levitated carrying system. In this system, pinning force of high temperature bulk super conductor (HTSC) is used for the levitation and guidance. Four HTSCs are installed on the carrier. The magnetic rail is set on the ground, and flux from the magnetic rail is pinned by HTSCs. To increase levitation force, repulsive force of the permanent magnet is used. The hybrid levitation system is composed. The permanent magnet is installed under the load stage of the carrier. Repulsive force by the permanent magnet between the load stage on the carrier and the magnetic rail on the ground is used to support the load weight. Levitation and guidance one by pinning effect of the YBaCuO HTSC in the carrier is used to levitate the carrier body. The load stage is separated from the carrier flame and can move freely for vertical direction levitation. For the propulsion system, electromagnet is installed on the surface of the magnetic rail. In this paper, control method of running velocity of the carrier is studied. Propulsion force is given as follows; Air core copper coils are installed on the magnetic rail. Interaction between current of these coils and permanent magnets on the carrier generates propulsion force. Running velocity is controlled by current of the propulsion coils. It is also changed by position of the carrier and the load weight. From the results, stability of the propulsion system is given, and propulsion characteristics are improved.

  2. Safety of high speed magnetic levitation transportation systems. Preliminary safety review of the transrapid maglev system

    NASA Astrophysics Data System (ADS)

    Dorer, R. M.; Hathaway, W. T.

    1990-11-01

    The safety of various magnetically levitated trains under development for possible implementation in the United States is of direct concern to the Federal Railroad Administration. Safety issues are addressed related to a specific maglev technology. The Transrapid maglev system was under development by the German Government over the last 10 to 15 years and was evolved into the current system with the TR-07 vehicle. A technically based safety review was under way over the last year by the U.S. Department of Transportation. The initial results of the review are presented to identify and assess potential maglev safety issues.

  3. Optimization of guideway coil dimensions for a magnetic levitation system

    SciTech Connect

    Chen, Y.J.; Feng, J.

    1997-09-01

    A fast computer code that generates currents and forces for multiple magnetic levitation (MAGLEV) vehicle coils over a discrete guideway of arbitrary geometry has been developed, tested, and verified. A study of coil dimensions for overlapping loops, ladders, and discrete loops has been conducted to determine the optimal guideway design. A parameter known as figure of merit has been defined to assist in evaluating the level of merit for a particular track configuration. From this, it has been discovered that, for most cases, ladder tracks are a better configuration over both overlapping and discrete loops. On closer inspection, it was also discovered that an aspect ratio of unity for the dimensions of a ladder track yields the best overall results.

  4. Design framework of a teleoperating system for a magnetically levitated robot with force feedback

    NASA Astrophysics Data System (ADS)

    Tsuda, Naoaki; Kato, Norihiko; Nomura, Yoshihiko; Matsui, Hirokazu

    2002-02-01

    Precise works and manipulating micro objects are tough jobs for operators both mentally and physically. To execute these jobs smoothly without feeling wrongness, use of master-slave system is preferable because position and force are able to be scaled up and down as well under the system. In this study we develop a master-slave system where the size of a slave robot is very small and the slave robot is levitated by magnetic forces. In distinction from ordinary master- slave systems, the levitated robot does not get any other contact forces from outside. Thus we introduce a method using an impedance model for constructing the master-slave system. We confirmed the effectiveness of the positioning control algorithm through experiments.

  5. Acoustic levitation

    SciTech Connect

    2012-09-12

    Scientists at Argonne National Laboratory have discovered a way to use sound waves to levitate individual droplets of solutions containing different pharmaceuticals. While the connection between levitation and drug development may not be immediately apparent, a special relationship emerges at the molecular level. Read more: http://www.anl.gov/articles/no-magic-show-real-world-levitation-inspire-better-pharmaceuticals

  6. High temperature metal purification using a compact portable rf heating and levitation system on the wake shield

    NASA Technical Reports Server (NTRS)

    Hahs, C. A.

    1990-01-01

    The Wake Shield Facility (WSF) can provide an ideal vacuum environment for the purification of high temperature metals in space. The Modular Electromagnetic Levitator (MEL), will provide the opportunity to study undercooling of metals in space and allow to determine material properties in space. The battery powered rf levitation and heating system developed for the MEL demonstrated efficiency of 36 percent. This system is being considered to purify metals at temperatures below 3000 C.

  7. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOEpatents

    Rote, D.M.; He, Jianliang; Johnson, L.R.

    1992-01-01

    This report discusses a propulsion and stabilization system comprising a series of figure 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the figure 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

  8. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOEpatents

    Rote, Donald M.; He, Jianliang; Johnson, Larry R.

    1994-01-01

    A propulsion and stabilization system comprising a series of FIG. 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the FIG. 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

  9. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOEpatents

    Rote, D.M.; He, J.; Johnson, L.R.

    1994-01-04

    A propulsion and stabilization system are described comprising a series of coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance, and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension. 8 figures.

  10. Leidenfrost levitation: beyond droplets

    PubMed Central

    Hashmi, Ali; Xu, Yuhao; Coder, Benjamin; Osborne, Paul A.; Spafford, Jonathon; Michael, Grant E.; Yu, Gan; Xu, Jie

    2012-01-01

    Friction is a major inhibitor in almost every mechanical system. Enlightened by the Leidenfrost effect – a droplet can be levitated by its own vapor layer on a sufficiently hot surface – we demonstrate for the first time that a small cart can also be levitated by Leidenfrost vapor. The levitated cart can carry certain amount of load and move frictionlessly over the hot surface. The maximum load that the cart can carry is experimentally tested over a range of surface temperatures. We show that the levitated cart can be propelled not only by gravitational force over a slanted flat surface, but also self-propelled over a ratchet shaped horizontal surface. In the end, we experimentally tested water consumption rate for sustaining the levitated cart, and compared the results to theoretical calculations. If perfected, this frictionless Leidenfrost cart could be used in numerous engineering applications where relative motion exists between surfaces. PMID:23150770

  11. Time-delay control of a magnetic levitated linear positioning system

    NASA Technical Reports Server (NTRS)

    Tarn, J. H.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    In this paper, a high accuracy linear positioning system with a linear force actuator and magnetic levitation is proposed. By locating a permanently magnetized rod inside a current-carrying solenoid, the axial force is achieved by the boundary effect of magnet poles and utilized to power the linear motion, while the force for levitation is governed by Ampere's Law supplied with the same solenoid. With the levitation in a radial direction, there is hardly any friction between the rod and the solenoid. The high speed motion can hence be achieved. Besides, the axial force acting on the rod is a smooth function of rod position, so the system can provide nanometer resolution linear positioning to the molecule size. Since the force-position relation is highly nonlinear, and the mathematical model is derived according to some assumptions, such as the equivalent solenoid of the permanently magnetized rod, so there exists unknown dynamics in practical application. Thus 'robustness' is an important issue in controller design. Meanwhile the load effect reacts directly on the servo system without transmission elements, so the capability of 'disturbance rejection; is also required. With the above consideration, a time-delay control scheme is chosen and applied. By comparing the input-output relation and the mathematical model, the time-delay controller calculates an estimation of unmodeled dynamics and disturbances and then composes the desired compensation into the system. Effectiveness of the linear positioning system and control scheme are illustrated with simulation results.

  12. Electric generator using a triangular diamagnetic levitating rotor system.

    PubMed

    Ho, Joe Nhut; Wang, Wei-Chih

    2009-02-01

    This paper describes a feasibility study of creating a small low friction and low maintenance generator using a diamagnetically stabilized levitating rotor. The planar rotor described in this paper uses a triangular configuration of magnets that generates emf by passing over coils placed below the rotor. Equations were developed to predict the generated emf from coils with two different coil geometries. Additionally, this paper provides a method for estimating optimal coil size and position for the planar rotor presented for both segmental arc and circular coils to obtain maximum power output. Experiments demonstrated that the emf generated in the coils matches well with the predicted wave forms for each case, and the optimization theory gives good prediction to outcome of induced waveforms. For the segmental arc coil design, the induced emf was 1.7 mV at a radial frequency of 21.8 rad/s. For the circular coil design, the emf was 1.25 mV at a radial frequency of 28.1 rad/s. PMID:19256668

  13. Optimization of levitation and guidance forces in a superconducting Maglev system

    NASA Astrophysics Data System (ADS)

    Yildizer, Irfan; Cansiz, Ahmet; Ozturk, Kemal

    2016-09-01

    Optimization of the levitation for superconducting Maglev systems requires effective use of vertical and guidance forces during the operation. In this respect the levitation and guidance forces in terms of various permanent magnet array configurations are analyzed. The arrangements of permanent magnet arrays interacting with the superconductor are configured for the purpose of increasing the magnetic flux density. According to configurations, modeling the interaction forces between the permanent magnet and the superconductor are established in terms of the frozen image model. The model is complemented with the analytical calculations and provides a reasonable agreement with the experiments. The agreement of the analytical calculation associated with the frozen image model indicates a strong case to establish an optimization, in which provides preliminary analysis before constructing more complex Maglev system.

  14. Magnetic levitation systems for future aeronautics and space research and missions

    NASA Technical Reports Server (NTRS)

    Blankson, Isaiah M.; Mankins, John C.

    1996-01-01

    The objectives, advantages, and research needs for several applications of superconducting magnetic levitation to aerodynamics research, testing, and space-launch are discussed. Applications include very large-scale magnetic balance and suspension systems for high alpha testing, support interference-free testing of slender hypersonic propulsion/airframe integrated vehicles, and hypersonic maglev. Current practice and concepts are outlined as part of a unified effort in high magnetic fields R&D within NASA. Recent advances in the design and construction of the proposed ground-based Holloman test track (rocket sled) that uses magnetic levitation are presented. It is protected that ground speeds of up to Mach 8 to 11 at sea-level are possible with such a system. This capability may enable supersonic combustor tests as well as ramjet-to-scramjet transition simulation to be performed in clean air. Finally a novel space launch concept (Maglifter) which uses magnetic levitation and propulsion for a re-usable 'first stage' and rocket or air-breathing combined-cycle propulsion for its second stage is discussed in detail. Performance of this concept is compared with conventional advanced launch systems and a preliminary concept for a subscale system demonstration is presented.

  15. Dynamical analysis to the levitated systems of high temperature superconductors with hysteresis

    NASA Astrophysics Data System (ADS)

    Zhou, You-He; Zhao, Xian-Feng

    2006-08-01

    Dynamic behavior and penetration history of shielding currents distribution associated with the hysteresis of magnetic levitation force are investigated to the vertically mechanical oscillation of a permanent magnet (PM) which is magnetically levitated over a YBCO superconductor based on Bean’s critical-state model and Ampére circulation theorem. After the shielding current distribution is analytically derived out from the Maxwell’s equations of the electromagnetic system to each monotonic procedure of the hysteresis, the dynamic differential equation of the levitation is solved to the damped free vibration of the system using the adaptive Runge-Kutta approach of order 4. The obtained results display that the partially wiping-out phenomenon of shielding currents always happens in the interior of the superconductor such that the PM experiences a damped vibration. It is found that the damping generated from the hysteresis in the superconductor is time-changeable in the whole response, and that the frequency of vibration or magnetic stiffness increases with time during the first four periods of the response, as well as that the maximum penetration depth, δp, of the shielding currents at the end of each procedure of the hysteresis decays with time or turning number, Ntur, i.e., δp=e where α0 and α1 are the fitting coefficients.

  16. A new electromagnetic levitation system for rapid transit and high speed transportation

    SciTech Connect

    Wang, T.C.; Tzeng, Y.K. . Dept. of Electrical Engineering)

    1994-11-01

    A Maglev system using permanent and electromagnet is described. Such a system offers the advantages of high lift force to magnet weight ratio and nearly zero ohmic loss of its control winding. However, it is more difficult to control. Also, unlike the conventional electromagnetic levitation system, the control current is always maintained at zero value even with load variations. Analysis shows that the size and weight of this system are smaller by a factor of three compared to the conventional Maglev system. Basic design criteria and control strategy using variable structure control method are given, together with experimental results of a small model to verify its feasibility and good dynamic response.

  17. Design and implementation of a 2-DOF PID compensation for magnetic levitation systems.

    PubMed

    Ghosh, Arun; Rakesh Krishnan, T; Tejaswy, Pailla; Mandal, Abhisek; Pradhan, Jatin K; Ranasingh, Subhakant

    2014-07-01

    This paper employs a 2-DOF (degree of freedom) PID controller for compensating a physical magnetic levitation system. It is shown that because of having a feedforward gain in the proposed 2-DOF PID control, the transient performance of the compensated system can be changed in a desired manner unlike the conventional 1-DOF PID control. It is also shown that for a choice of PID parameters, although the theoretical loop robustness is the same for both the compensated systems, in real-time, 2-DOF PID control may provide superior robustness if a suitable choice of the feedforward parameter is made. The results are verified through simulations and experiments. PMID:24947430

  18. Electrostatic Levitator Electrode Layout

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Schematic of Electrostatic Levitator (ESL) electrodes and controls system. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  19. Design approaches and parameters for magnetically levitated transport systems. [Null flux suspension (Maglev)

    SciTech Connect

    Danby, G.T.; Powell, J.R.

    1988-01-01

    Mechanically levitated transport system approaches are assessed with regard to thrust power needs, track cost, suspension stability, and safety. The null flux suspension appears as the favored approach, having the least thrust power requirements, highest stability, and lowest amount of track material. Various null flux configurations are described together with their operating parameters. The Linear Synchronous Motor (LSM) propulsion system is also described for propelling the suspended vehicles. Cryogenics and superconductivity aspects are discussed and the effect of high T/sub c/ superconductors evaluated. 13 refs., 16 figs., 2 tabs.

  20. Investigation of the stability of AC repulsive force levitation systems for low-speed maglev.

    SciTech Connect

    He, J. L.; Wang, Z.; Rote, D. M.; Winkelman, S.; Energy Systems

    1992-09-01

    Discusses the stability of an AC induction levitation system, focusing on the analysis and optimum design of the secondary conductor. Several improved secondary conductor geometries are considered. A theoretical model with numerical results, as well as experimental observations and data are presented. Theoretical and experimental results indicate that only marginal stability can be achieved with a single-plate secondary conductor. Modifications of the single plate can enhance its stability at rest, but this design suffers from longitudinal instabilities when propelled. It is concluded that a double-plate secondary conductor is stable in all six degrees of freedom.

  1. Thermal properties of a cylindrical YBa2Cu3O x superconductor in a levitation system: triggered by nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Yi; Zhang, Xingyi; Zhou, You-He

    2016-07-01

    The vibration of a permanent magnet (PM) levitated upon a high temperature superconductor (HTS) shows anomalous motion under external disturbance. In this paper we construct a cantilevered beam experimental setup composed of a bulk PM and a thermally insulated cylindrical YBa2Cu3O x superconductor. When the levitation system is disturbed by vertical excitation, the thermal character of the superconductor surface could be measured directly. Our experiments on a clean and large single-domain superconductor show that a giant temperature spike appears once the levitated PM experiences period doubling oscillation. We develop a numerical simulation for the analysis of the nonlinear vibration of the levitated PM coupled with the nonlinear electromagnetic force between the PM and HTS, taking into account heat diffusion. Using this procedure, we explore the electromagnetic and thermal properties at the thermally insulated HTS surface when the levitated PM shows a period doubling vibration. We find a remarkable difference between the experimental results and simulation. In order to interpret this temperature difference, we suggest a type of flux motion triggered by the electromagnetic force when it is far larger than the pinning force of the superconductor. The quantitative approach is based on the analysis process of the partial flux jump as a result of the flux creep. Finally, the calculated result is shown to be very close to the experimental result.

  2. Multiple-state quantum Otto engine, 1D box system

    SciTech Connect

    Latifah, E.; Purwanto, A.

    2014-03-24

    Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.

  3. Development of ultrasonically levitated drops as microreactors for study of enzyme kinetics and potential as a universal portable analysis system

    NASA Astrophysics Data System (ADS)

    Scheeline, A.; Pierre, Z.; Field, C. R.; Ginsberg, M. D.

    2009-05-01

    Development of microfluidics has focused on carrying out chemical synthesis and analysis in ever-smaller volumes of solution. In most cases, flow systems are made of either quartz, glass, or an easily moldable polymer such as polydimethylsiloxane (Whitesides 2006). As the system shrinks, the ratio of surface area to volume increases. For studies of either free radical chemistry or protein chemistry, this is undesirable. Proteins stick to surfaces, biofilms grow on surfaces, and radicals annihilate on walls (Lewis et al. 2006). Thus, under those circumstances where small amounts of reactants must be employed, typical microfluidic systems are incompatible with the chemistry one wishes to study. We have developed an alternative approach. We use ultrasonically levitated microliter drops as well mixed microreactors. Depending on whether capillaries (to form the drop) and electrochemical sensors are in contact with the drop or whether there are no contacting solids, the ratio of solid surface area to volume is low or zero. The only interface seen by reactants is a liquid/air interface (or, more generally, liquid/gas, as any gas may be used to support the drop). While drop levitation has been reported since at least the 1940's, we are the second group to carry out enzyme reactions in levitated drops, (Weis; Nardozzi 2005) and have fabricated the lowest power levitator in the literature (Field; Scheeline 2007). The low consumption aspects of ordinary microfluidics combine with a contact-free determination cell (the levitated drop) that ensures against cross-contamination, minimizes the likelihood of biofilm formation, and is robust to changes in temperature and humidity (Lide 1992). We report kinetics measurements in levitated drops and explain how outgrowths of these accomplishments will lead to portable chemistry/biology laboratories well suited to detection of a wide range of chemical and biological agents in the asymmetric battlefield environment.

  4. Stability of magnetic tip/superconductor levitation systems

    NASA Astrophysics Data System (ADS)

    K. Alqadi, M.

    2015-11-01

    The vertical stability of a magnetic tip over a superconducting material is investigated by using the critical state and the frozen image models. The analytical expressions of the stiffness and the vibration frequency about the equilibrium position are derived in term of the geometrical parameters of the magnet/superconductor system. It is found that the stability of the system depends on the shape of the superconductor as well as its thickness.

  5. Differential force balances during levitation

    NASA Astrophysics Data System (ADS)

    Todd, Paul

    The simplest arithmetic of inertial, buoyant, magnetic and electrokinetic levitation is explored in the context of a model living system with “acceleration-sensitive structures” in which motion, if allowed, produces a biological effect. The simple model is a finite-sized object enclosed within another finite-sized object suspended in an outer fluid (liquid or vapor) medium. The inner object has density and electrical and magnetic properties quantitatively different from those of the outer object and the medium. In inertial levitation (“weightlessness”) inertial accelerations are balanced, and the forces due to them are canceled in accordance with Newton’s third law. In the presence of inertial acceleration (gravity, centrifugal) motionlessness depends on a balance between the levitating force and the inertial force. If the inner and outer objects differ in density one or the other will be subjected to an unbalanced force when one object is levitated by any other force (buoyant, magnetic, electrokinetic). The requirements for motionlessness of the internal object in the presence of a levitating force are equality of density in the case of buoyant levitation, equality of magnetic susceptibility in the case of magnetic levitation, and equality of zeta potential and dielectric constant in the case of electrokinetic levitation. Examples of internal “acceleration-sensitive structures” are cellular organelles and the organs of advanced plants and animals. For these structures fundamental physical data are important in the interpretation of the effects of forces used for levitation.

  6. A Shaftless Magnetically Levitated Multifunctional Spacecraft Flywheel Storage System

    NASA Technical Reports Server (NTRS)

    Stevens, Ken; Thornton, Richard; Clark, Tracy; Beaman, Bob G.; Dennehy, Neil; Day, John H. (Technical Monitor)

    2002-01-01

    Presently many types of spacecraft use a Spacecraft Attitude Control System (ACS) with momentum wheels for steering and electrochemical batteries to provide electrical power for the eclipse period of the spacecraft orbit. Future spacecraft will use Flywheels for combined use in ACS and Energy Storage. This can be done by using multiple wheels and varying the differential speed for ACS and varying the average speed for energy storage and recovery. Technology in these areas has improved since the 1990s so it is now feasible for flywheel systems to emerge from the laboratory for spacecraft use. This paper describes a new flywheel system that can be used for both ACS and energy storage. Some of the possible advantages of a flywheel system are: lower total mass and volume, higher efficiency, less thermal impact, improved satellite integration schedule and complexity, simplified satellite orbital operations, longer life with lower risk, less pointing jitter, and greater capability for high-rate slews. In short, they have the potential to enable new types of missions and provide lower cost. Two basic types of flywheel configurations are the Flywheel Energy Storage System (FESS) and the Integrated Power and Attitude Control System (IPACS).

  7. Design, implementation, and testing of a single axis levitation system for the suspension of a platform.

    PubMed

    Banerjee, Subrata; Prasad, Dinkar; Pal, Jayanta

    2007-04-01

    This paper describes the design and implementation of a single axis DC attraction type suspension system, where a platform (vehicle structure) of around 14 kg mass is made to remain suspended at the desired operating gap under a ferromagnetic guide-way. The prototype has four electromagnetic actuators of attraction type and four inductive gap sensors, all located at the corners of the platform. The four actuators are controlled independently through four identical controllers, and the stable levitation of the platform is achieved through the single input and single output (SISO) control of each air-gap. The emphasis of this work is on the design and development of the switched mode power amplifier cum controller unit for the four actuators. The proposed single switch-based power circuit simplifies the overall hardware, and it can be extended to any number of magnet-coils. A cascade lead compensation control scheme utilizing an inner current loop and outer position loop has been designed and implemented for the stabilization of such a highly unstable and strongly nonlinear system. The prototype has been successfully tested, and stable levitation was demonstrated with the desired operating gap. PMID:17350630

  8. Study of spin-polaron formation in 1D systems

    SciTech Connect

    Arredondo, Y.; Navarro, O.; Vallejo, E.

    2014-05-15

    We study numerically the formation of spin-polarons in low-dimensional systems. We consider a ferromagnetic Kondo lattice model with Hund coupling J{sub H} and localized spins interacting antiferromagnetically with coupling constant J. We investigate the ground state phase diagram as a function of the exchange couplings J{sub H} and J and as a function of the band filling, since it has been observed that doping either on the ferromagnetic or antiferromagnetic regime lead to formation of magnetic domains [1]. We explore the quasi-particle formation and phase separation using the density-matrix renormalization group method, which is a highly efficient method to investigate quasi-one-dimensional strongly correlated systems.

  9. Carbon-atom wires: 1-D systems with tunable properties.

    PubMed

    Casari, C S; Tommasini, M; Tykwinski, R R; Milani, A

    2016-02-28

    This review provides a discussion of the current state of research on linear carbon structures and related materials based on sp-hybridization of carbon atoms (polyynes and cumulenes). We show that such systems have widely tunable properties and thus represent an intriguing and mostly unexplored field for both fundamental and applied sciences. We discuss the rich interplay between the structural, vibrational, and electronic properties focusing on recent advances and the future perspectives of carbon-atom wires and novel hybrid sp-sp(2)-carbon architectures. PMID:26847474

  10. Particle simulation of bounded 1D plasma systems

    SciTech Connect

    Lawson, W.S.

    1989-02-01

    The physical and numerical problems of kinetic simulation of a bounded electrostatic plasma system in one planar dimension are examined, and solutions to them are presented. These problems include particle absorption, reflection and emission at boundaries, the solution of Poisson's equation under non-periodic boundary conditions, and the treatment of an external circuit connecting the boundaries. The methods which are described here are implemented in a code named PDW1, which is available from Professor C. K. Birdsall, Plasma Theory and Simulation Group, Cory Hall, University of California, Berkeley, CA 94720. copyright 1989 Academic Press, Inc.

  11. Partical Simulation of Bounded 1D Plasma Systems

    NASA Astrophysics Data System (ADS)

    Lawson, William S.

    1989-02-01

    The physical and numerical problems of kinetic simulation of a bounded electrostatic plasma system in one planar dimension are examined, and solutions to them are presented. These problems include particle absorption, reflection and emission at boundaries, the solution of Poisson's equation under non-periodic boundary conditions, and the treatment of an external circuit connecting the boundaries. The methods which are described here are immlemented in a code named PDW1, which is available from Professor C. K. Birdsall, Plasma Theory and Simulation Group, Cory Hall, University of California, Berkeley, CA 94720.

  12. Carbon-atom wires: 1-D systems with tunable properties

    NASA Astrophysics Data System (ADS)

    Casari, C. S.; Tommasini, M.; Tykwinski, R. R.; Milani, A.

    2016-02-01

    This review provides a discussion of the current state of research on linear carbon structures and related materials based on sp-hybridization of carbon atoms (polyynes and cumulenes). We show that such systems have widely tunable properties and thus represent an intriguing and mostly unexplored field for both fundamental and applied sciences. We discuss the rich interplay between the structural, vibrational, and electronic properties focusing on recent advances and the future perspectives of carbon-atom wires and novel hybrid sp-sp2-carbon architectures.

  13. Acoustic Translation of an Acoustically Levitated Sample

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Allen, J. L.

    1986-01-01

    Acoustic-levitation apparatus uses only one acoustic mode to move sample from one region of chamber to another. Sample heated and cooled quickly by translation between hot and cold regions of levitation chamber. Levitated sample is raised into furnace region by raising plunger. Frequency of sound produced by transducers adjusted by feedback system to maintain (102) resonant mode, which levitates sample midway between transducers and plunger regardless of plunger position.

  14. Electromagnet Weight Reduction in a Magnetic Levitation System for Contactless Delivery Applications

    PubMed Central

    Hong, Do-Kwan; Woo, Byung-Chul; Koo, Dae-Hyun; Lee, Ki-Chang

    2010-01-01

    This paper presents an optimum design of a lightweight vehicle levitation electromagnet, which also provides a passive guide force in a magnetic levitation system for contactless delivery applications. The split alignment of C-shaped electromagnets about C-shaped rails has a bad effect on the lateral deviation force, therefore, no-split positioning of electromagnets is better for lateral performance. This is verified by simulations and experiments. This paper presents a statistically optimized design with a high number of the design variables to reduce the weight of the electromagnet under the constraint of normal force using response surface methodology (RSM) and the kriging interpolation method. 2D and 3D magnetostatic analysis of the electromagnet are performed using ANSYS. The most effective design variables are extracted by a Pareto chart. The most desirable set is determined and the influence of each design variable on the objective function can be obtained. The generalized reduced gradient (GRG) algorithm is adopted in the kriging model. This paper’s procedure is validated by a comparison between experimental and calculation results, which shows that the predicted performance of the electromagnet designed by RSM is in good agreement with the simulation results. PMID:22163572

  15. Electromagnet weight reduction in a magnetic levitation system for contactless delivery applications.

    PubMed

    Hong, Do-Kwan; Woo, Byung-Chul; Koo, Dae-Hyun; Lee, Ki-Chang

    2010-01-01

    This paper presents an optimum design of a lightweight vehicle levitation electromagnet, which also provides a passive guide force in a magnetic levitation system for contactless delivery applications. The split alignment of C-shaped electromagnets about C-shaped rails has a bad effect on the lateral deviation force, therefore, no-split positioning of electromagnets is better for lateral performance. This is verified by simulations and experiments. This paper presents a statistically optimized design with a high number of the design variables to reduce the weight of the electromagnet under the constraint of normal force using response surface methodology (RSM) and the kriging interpolation method. 2D and 3D magnetostatic analysis of the electromagnet are performed using ANSYS. The most effective design variables are extracted by a Pareto chart. The most desirable set is determined and the influence of each design variable on the objective function can be obtained. The generalized reduced gradient (GRG) algorithm is adopted in the kriging model. This paper's procedure is validated by a comparison between experimental and calculation results, which shows that the predicted performance of the electromagnet designed by RSM is in good agreement with the simulation results. PMID:22163572

  16. Controlled sample orientation and rotation in an acoustic levitator

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Gaspar, Mark S. (Inventor); Trinh, Eugene H. (Inventor)

    1988-01-01

    A system is described for use with acoustic levitators, which can prevent rotation of a levitated object or control its orientation and/or rotation. The acoustic field is made nonsymmetrical about the axis of the levitator, to produce an orienting torque that resists sample rotation. In one system, a perturbating reflector is located on one side of the axis of the levitator, at a location near the levitated object. In another system, the main reflector surface towards which incoming acoustic waves are directed is nonsymmetrically curved about the axis of the levitator. The levitated object can be reoriented or rotated in a controlled manner by repositioning the reflector producing the nonsymmetry.

  17. Laboratory Scale Prototype of a Low-Speed Electrodynamic Levitation System Based on a Halbach Magnet Array

    ERIC Educational Resources Information Center

    Iniguez, J.; Raposo, V.

    2009-01-01

    In this paper we analyse the behaviour of a small-scale model of a magnetic levitation system based on the Inductrack concept. Drag and lift forces acting on our prototype, moving above a continuous copper track, are studied analytically following a simple low-speed approach. The experimental results are in good agreement with the theoretical…

  18. Study on figure-eight-shaped coil electrodynamic suspension magnetic levitation systems without cross-connection

    SciTech Connect

    Ribani, P.L.; Urbano, N.

    2000-01-01

    Two figure-eight-shaped coils for electrodynamic suspension (EDS) magnetic levitation (MAGLEV) systems without cross-connection are proposed and analyzed. The guideway coils are positioned under the MAGLEV vehicle; they are parallel to the horizontal plane. The interaction of a magnetic module on the vehicle, composed of three or four superconducting (SC) coils, with a guideway module, comprised of two figure-eight coils, is studied by means of the dynamic circuit theory. The currents in the SC coils are supposed to be constant in time while they move as a rigid body, with a constant velocity. Some results are presented and compared with those for a standard side-wall cross-connected system.

  19. Electrostatic Levitator (ESL)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Rulison of Space System LORAl working with the Electrostatic Levitation (ESL) prior to the donation. Space System/LORAL donated the electrostatic containerless processing system to NASA's Marshall Space Flight Center (MSFC). The official hand over took place in July 1998.

  20. Optical-response properties in levitated optomechanical systems beyond the low-excitation limit

    NASA Astrophysics Data System (ADS)

    Nie, Wenjie; Chen, Aixi; Lan, Yueheng

    2016-02-01

    We investigate the optical-response properties of a levitated optomechanical cavity coupled to a higher order excited atomic medium. The cavity field driven through the atom-field interaction is responsible for trapping a dielectric nanosphere, whose steady-state position is biased by the Coulomb force between the nanosphere and the cavity wall. We show that the phenomena of optomechanically induced transparency (OMIT) and amplification can be generated from the output probe field in the presence of an effective optomechanical coupling between the nanosphere and the cavity field. Further, the width of the transparency window increases with increasing strength of the effective optomechanical coupling, which is controlled easily by varying the Coulomb interaction and the radius of the nanosphere. In particular, when the higher order excitation of the atomic medium is included, a large driving of the atomic ensemble but a relatively small atom-field detuning can be applied to help observe the OMIT behavior in the hybrid system.

  1. Airborne chemistry: acoustic levitation in chemical analysis.

    PubMed

    Santesson, Sabina; Nilsson, Staffan

    2004-04-01

    This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals. PMID:14762640

  2. An illuminated growth system for the study of Arabidopsis thaliana during diamagnetic levitation by a superconducting magnet

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Ding, C.; Wang, J.; Shang, P.

    2015-01-01

    The effect of gravity on plant growth is an interesting topic in its own right, but it is also important because it impacts the possibility of long-term space travel. Plants may be grown in microgravity simulated by diamagnetic levitation within superconducting magnet, but this approach is limited by the size and other objective conditions of the superconducting magnet. Tremendous difficulties exist in evaluating the effects of simulated microgravity on plant seedling growth under lighting conditions. Therefore, we developed a lighting system and culturing system that can meet the demands of growing plant seedlings in a superconducting magnet. This system mainly consists of an illumination system, suitable containers and a method to cultivate Arabidopsis thaliana seedlings. In order to prove the suitability of this light-growing system, A. thaliana was cultured in a superconducting magnet for four days. The status of seedlings was recorded and total RNA was extracted for gene expression analysis. Our results showed that Arabidopsis seedlings could germinate and grow successfully in this light-growing system. In addition, it was observed that under diamagnetic levitation conditions, the seedling bended and gene expression of PGM and MOR1 decreased significantly compared to a control group. Nonetheless, there were no substantial differences between the diamagnetic levitation group and RPM group. Our results suggest that this light-growing system is expedient and beneficial for plants grown in a superconducting magnet. Our experiment also provides a way to utilize diamagnetic levitation in a superconducting magnet that simulates the conditions necessary to study plant physiology and biochemical responses in a microgravity environment.

  3. Electronic-to-vibrational energy transfer efficiency in the O/1 D/-N2 and O/1 D/-CO systems

    NASA Technical Reports Server (NTRS)

    Slanger, T. G.; Black, G.

    1974-01-01

    With the aid of a molecular resonance fluorescence technique, which utilizes optical pumping from the v = 1 level of the ground state of CO by A 1 Pi-X 1 Sigma radiation, a study is made of the efficiency of E-V transfer from O(1 D) to CO. O(1 D) is generated at a known rate by O2 photodissociation at 1470 A in an intermittent mode, and the small modulation of the fluorescent signal associated with CO (v = 1) above the normal thermal background is interpreted in terms of E-V transfer efficiency. The CO (v = 1) lifetime in this system is determined mainly by resonance trapping of the IR fundamental band, and is found to be up to ten times longer than the natural radiative lifetime. For CO, (40 plus or minus 8)% of the O(1 D) energy is converted into vibrational energy. By observing the effect of N2 on the CO (v = 1) fluorescent intensity and lifetime, it is possible to obtain the E-V transfer efficiency for the system O(1 D)-N2 relative to that for O(1 D)-CO. The results indicate that the efficiency for N2 is (83 plus or minus 10)% of that for CO.

  4. Magnetic levitation of single cells.

    PubMed

    Durmus, Naside Gozde; Tekin, H Cumhur; Guven, Sinan; Sridhar, Kaushik; Arslan Yildiz, Ahu; Calibasi, Gizem; Ghiran, Ionita; Davis, Ronald W; Steinmetz, Lars M; Demirci, Utkan

    2015-07-14

    Several cellular events cause permanent or transient changes in inherent magnetic and density properties of cells. Characterizing these changes in cell populations is crucial to understand cellular heterogeneity in cancer, immune response, infectious diseases, drug resistance, and evolution. Although magnetic levitation has previously been used for macroscale objects, its use in life sciences has been hindered by the inability to levitate microscale objects and by the toxicity of metal salts previously applied for levitation. Here, we use magnetic levitation principles for biological characterization and monitoring of cells and cellular events. We demonstrate that each cell type (i.e., cancer, blood, bacteria, and yeast) has a characteristic levitation profile, which we distinguish at an unprecedented resolution of 1 × 10(-4) g ⋅ mL(-1). We have identified unique differences in levitation and density blueprints between breast, esophageal, colorectal, and nonsmall cell lung cancer cell lines, as well as heterogeneity within these seemingly homogenous cell populations. Furthermore, we demonstrate that changes in cellular density and levitation profiles can be monitored in real time at single-cell resolution, allowing quantification of heterogeneous temporal responses of each cell to environmental stressors. These data establish density as a powerful biomarker for investigating living systems and their responses. Thereby, our method enables rapid, density-based imaging and profiling of single cells with intriguing applications, such as label-free identification and monitoring of heterogeneous biological changes under various physiological conditions, including antibiotic or cancer treatment in personalized medicine. PMID:26124131

  5. Magnetic levitation of single cells

    PubMed Central

    Durmus, Naside Gozde; Tekin, H. Cumhur; Guven, Sinan; Sridhar, Kaushik; Arslan Yildiz, Ahu; Calibasi, Gizem; Davis, Ronald W.; Steinmetz, Lars M.; Demirci, Utkan

    2015-01-01

    Several cellular events cause permanent or transient changes in inherent magnetic and density properties of cells. Characterizing these changes in cell populations is crucial to understand cellular heterogeneity in cancer, immune response, infectious diseases, drug resistance, and evolution. Although magnetic levitation has previously been used for macroscale objects, its use in life sciences has been hindered by the inability to levitate microscale objects and by the toxicity of metal salts previously applied for levitation. Here, we use magnetic levitation principles for biological characterization and monitoring of cells and cellular events. We demonstrate that each cell type (i.e., cancer, blood, bacteria, and yeast) has a characteristic levitation profile, which we distinguish at an unprecedented resolution of 1 × 10−4 g⋅mL−1. We have identified unique differences in levitation and density blueprints between breast, esophageal, colorectal, and nonsmall cell lung cancer cell lines, as well as heterogeneity within these seemingly homogenous cell populations. Furthermore, we demonstrate that changes in cellular density and levitation profiles can be monitored in real time at single-cell resolution, allowing quantification of heterogeneous temporal responses of each cell to environmental stressors. These data establish density as a powerful biomarker for investigating living systems and their responses. Thereby, our method enables rapid, density-based imaging and profiling of single cells with intriguing applications, such as label-free identification and monitoring of heterogeneous biological changes under various physiological conditions, including antibiotic or cancer treatment in personalized medicine. PMID:26124131

  6. Oscillation propagating in non-contact linear piezoelectric ultrasonic levitation transporting system---from solid state to fluid media.

    PubMed

    Li, Xianghua; Sun, Yuntao; Chen, Chao; Zhao, Chunsheng

    2010-04-01

    Non-contact ultrasonic motors (USM) show potential for future use, especially in the industrial fields because of its simple structure and quick response. It is therefore important to comprehensively understand their theoretical background so as to push this research forward. In this study, we shall fully explain and deduce the driving mechanism of a linear ultrasonic levitation transporting system. Oscillation equations from the initial exciting Langevin transducer and flexural traveling wave propagation on the linear guide were first established. Then the squeezing fluid movement between the linear guide and the levitating slider was analyzed. Next, after being excited by the progressing wave under corresponding boundary conditions, the related tangential velocity of the middle flow field was obtained. Finally, the validated experiment was set up to test slider velocity. PMID:20378457

  7. Acoustic levitation

    NASA Astrophysics Data System (ADS)

    Hansen, Uwe J.

    2005-09-01

    A speaker, driven by an amplified audio signal is used to set up a standing wave in a 3b-ft-long, 4-in.-diam transparent tube. Initially the tube is oriented horizontally, and Styrofoam packing peanuts accumulate near the pressure nodes. When the tube is turned to a position with the axis oriented vertically, the peanuts drop slightly, until the gravitational force on the peanuts is balanced by the force due to the sound pressure, at which point levitation is observed. Sound-pressure level measurements are used to map the air column normal mode pattern. Similarly, standing waves are established between an ultrasonic horn and a metal reflector and millimeter size Styrofoam balls are levitated.

  8. Development of the sonic pump levitator

    NASA Technical Reports Server (NTRS)

    Dunn, S. A.

    1985-01-01

    The process and mechanism involved in producing glass microballoons (GMBs) of acceptable quality for laser triggered inertial fusion through use of glass jet levitation and manipulation are considered. The gas jet levitation device, called sonic pumps, provides positioning by timely and appropriate application of gas mementum from one or more of six sonic pumps which are arranged orthogonally in opposed pairs about the levitation region and are activated by an electrooptical, computer controlled, feedback system. The levitation device was fabricated and its associated control systems were assembled into a package and tested in reduced gravity flight regime of the NASA KC-135 aircraft.

  9. Velocity damper for electromagnetically levitated materials

    SciTech Connect

    Fox, R.J.

    1992-12-31

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation.

  10. Velocity damper for electromagnetically levitated materials

    DOEpatents

    Fox, R.J.

    1994-06-07

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material is disclosed. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation. 1 fig.

  11. Velocity damper for electromagnetically levitated materials

    DOEpatents

    Fox, Richard J.

    1994-01-01

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation.

  12. Holographic memory system based on projection recording of computer-generated 1D Fourier holograms.

    PubMed

    Betin, A Yu; Bobrinev, V I; Donchenko, S S; Odinokov, S B; Evtikhiev, N N; Starikov, R S; Starikov, S N; Zlokazov, E Yu

    2014-10-01

    Utilization of computer generation of holographic structures significantly simplifies the optical scheme that is used to record the microholograms in a holographic memory record system. Also digital holographic synthesis allows to account the nonlinear errors of the record system to improve the microholograms quality. The multiplexed record of holograms is a widespread technique to increase the data record density. In this article we represent the holographic memory system based on digital synthesis of amplitude one-dimensional (1D) Fourier transform holograms and the multiplexed record of these holograms onto the holographic carrier using optical projection scheme. 1D Fourier transform holograms are very sensitive to orientation of the anamorphic optical element (cylindrical lens) that is required for encoded data object reconstruction. The multiplex record of several holograms with different orientation in an optical projection scheme allowed reconstruction of the data object from each hologram by rotating the cylindrical lens on the corresponding angle. Also, we discuss two optical schemes for the recorded holograms readout: a full-page readout system and line-by-line readout system. We consider the benefits of both systems and present the results of experimental modeling of 1D Fourier holograms nonmultiplex and multiplex record and reconstruction. PMID:25322249

  13. A portable Raman acoustic levitation spectroscopic system for the identification and environmental monitoring of algal cells.

    PubMed

    Wood, Bayden R; Heraud, Philip; Stojkovic, Slobodanka; Morrison, Danielle; Beardall, John; McNaughton, Don

    2005-08-01

    We report the coupling of a portable Raman spectrometer to an acoustic levitation device to enable environmental monitoring and the potential taxonomic identification of microalgae. Spectra of living cells were recorded at 785 nm using a fiber-optic probe coupled to a portable Raman spectrometer. The spectra exhibit an excellent signal-to-noise ratio and clearly show bands from chlorophyll a and beta-carotene. Spectra of levitated photobleached microalgae clearly show a reduction in chlorophyll a concentration relative to beta-carotene after 10 min of exposure to a quartz halogen lamp. Spectra recorded from levitated nitrogen-limited cells also show a significant reduction in bands associated with chlorophyll a, as compared to nitrogen-replete cells. To investigate the diagnostic capability of the technique, four species of microalgae were analyzed. Good quality spectra of all four species were obtained showing varying ratios of beta-carotene to chlorophyll. The combination of an acoustic levitation device and a portable Raman spectrometer shows potential as a taxonomic and environmental monitoring tool with direct application to field studies in remote environments. PMID:16053309

  14. Neutronic analysis of the 1D and 1E banks reflux detection system

    SciTech Connect

    Blanchard, A.

    1999-12-21

    Two H Canyon neutron monitoring systems for early detection of postulated abnormal reflux conditions in the Second Uranium Cycle 1E and 1D Mixer-Settle Banks have been designed and built. Monte Carlo neutron transport simulations using the general purpose, general geometry, n-particle MCNP code have been performed to model expected response of the monitoring systems to varying conditions.The confirmatory studies documented herein conclude that the 1E and 1D neutron monitoring systems are able to achieve adequate neutron count rates for various neutron source and detector configurations, thereby eliminating excessive integration count time. Neutron count rate sensitivity studies are also performed. Conversely, the transport studies concluded that the neutron count rates are statistically insensitive to nitric acid content in the aqueous region and to the transition region length. These studies conclude that the 1E and 1D neutron monitoring systems are able to predict the postulated reflux conditions for all examined perturbations in the neutron source and detector configurations. In the cases examined, the relative change in the neutron count rates due to postulated transitions from normal {sup 235}U concentration levels to reflux levels remain satisfactory detectable.

  15. Sound Waves Levitate Substrates

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Wang, T. G.

    1982-01-01

    System recently tested uses acoustic waves to levitate liquid drops, millimeter-sized glass microballoons, and other objects for coating by vapor deposition or capillary attraction. Cylindrical contactless coating/handling facility employs a cylindrical acoustic focusing radiator and a tapered reflector to generate a specially-shaped standing wave pattern. Article to be processed is captured by the acoustic force field under the reflector and moves as reflector is moved to different work stations.

  16. Microstates of the D1-D5-Kaluza-Klein monopole system

    SciTech Connect

    Bena, Iosif; Kraus, Per

    2005-07-15

    We find supergravity solutions corresponding to all U(1)xU(1) invariant chiral primaries of the D1-D5-KK system. These solutions are 1/8 BPS, carry angular momentum, and are asymptotically flat in the 3+1 dimensional sense. They can be thought of as representing the ground states of the four-dimensional black hole constructed from the D1-D5-KK-P system. Demanding the absence of unphysical singularities in our solutions determines all free parameters, and gives precise agreement with the quantum numbers expected from the CFT point of view. The physical mechanism behind the smoothness of the solutions is that the D1 branes and D5 branes expand into a KK-monopole supertube in the transverse space of the original KK monopole.

  17. Resonance Raman Spectroscopy of Extreme Nanowires and Other 1D Systems

    PubMed Central

    Smith, David C.; Spencer, Joseph H.; Sloan, Jeremy; McDonnell, Liam P.; Trewhitt, Harrison; Kashtiban, Reza J.; Faulques, Eric

    2016-01-01

    This paper briefly describes how nanowires with diameters corresponding to 1 to 5 atoms can be produced by melting a range of inorganic solids in the presence of carbon nanotubes. These nanowires are extreme in the sense that they are the limit of miniaturization of nanowires and their behavior is not always a simple extrapolation of the behavior of larger nanowires as their diameter decreases. The paper then describes the methods required to obtain Raman spectra from extreme nanowires and the fact that due to the van Hove singularities that 1D systems exhibit in their optical density of states, that determining the correct choice of photon excitation energy is critical. It describes the techniques required to determine the photon energy dependence of the resonances observed in Raman spectroscopy of 1D systems and in particular how to obtain measurements of Raman cross-sections with better than 8% noise and measure the variation in the resonance as a function of sample temperature. The paper describes the importance of ensuring that the Raman scattering is linearly proportional to the intensity of the laser excitation intensity. It also describes how to use the polarization dependence of the Raman scattering to separate Raman scattering of the encapsulated 1D systems from those of other extraneous components in any sample. PMID:27168195

  18. Resonance Raman Spectroscopy of Extreme Nanowires and Other 1D Systems.

    PubMed

    Smith, David C; Spencer, Joseph H; Sloan, Jeremy; McDonnell, Liam P; Trewhitt, Harrison; Kashtiban, Reza J; Faulques, Eric

    2016-01-01

    This paper briefly describes how nanowires with diameters corresponding to 1 to 5 atoms can be produced by melting a range of inorganic solids in the presence of carbon nanotubes. These nanowires are extreme in the sense that they are the limit of miniaturization of nanowires and their behavior is not always a simple extrapolation of the behavior of larger nanowires as their diameter decreases. The paper then describes the methods required to obtain Raman spectra from extreme nanowires and the fact that due to the van Hove singularities that 1D systems exhibit in their optical density of states, that determining the correct choice of photon excitation energy is critical. It describes the techniques required to determine the photon energy dependence of the resonances observed in Raman spectroscopy of 1D systems and in particular how to obtain measurements of Raman cross-sections with better than 8% noise and measure the variation in the resonance as a function of sample temperature. The paper describes the importance of ensuring that the Raman scattering is linearly proportional to the intensity of the laser excitation intensity. It also describes how to use the polarization dependence of the Raman scattering to separate Raman scattering of the encapsulated 1D systems from those of other extraneous components in any sample. PMID:27168195

  19. Improvement of the propulsion force for HTSC-permanent magnet hybrid magnetically levitated carrying system by using the pinned flux of HTSC

    NASA Astrophysics Data System (ADS)

    Ikeda, M.; Sasaki, R.; Ueno, T.; Ohashi, S.

    Magnetically levitated carrying system has been developed. In this system, pinning force of high temperature bulk superconductor (HTSC) is used for the levitation and guidance. The magnetic rail is set on the ground, and flux from the magnetic rail is pinned by HTSCs. To increase levitation force, repulsive force of the permanent magnet is used. For the propulsion system, electromagnets are installed on the surface of the magnetic rail. Improvement of the propulsion force is studied. In the previous system, only flux of the permanent magnet of the carrier is used for propulsion. To increase propulsion force, that of the HTSC of the carrier is also used. Using this excitation method, the propulsion force is improved even though total number of the excited coil is the same.

  20. High-temperature metal purification using a compact, portable rf heating and levitation system on the wake shield

    NASA Technical Reports Server (NTRS)

    Hahs, C. A.

    1990-01-01

    The potential use of a compact, battery-operated rf levitator and heating system to purify high-temperature melting materials in space is described. The wake shield now being fabricated for the Space Vacuum Epitaxy Center will provide an Ultra-high vacuum (10(exp -14) Torr hydrogen, 10(exp -14) Torr helium, 10(exp -30) Torr oxygen). The use of the wake shield to purify Nb, Ti, W, Ir, and other metals to a purity level not achievable on earth is described.

  1. Controlled levitation of a large magnet above superconductors

    SciTech Connect

    Takamori, T.; Boland, J.J.; Dove, D.B. )

    1990-07-01

    The levitation of a permanent magnet over a type-II superconductor may be modified and controlled by the addition of a variable magnetic field to the magnet-superconductor system. Using this scheme, levitation of a magnet of significantly larger mass was established by the direct interaction of the additonal field with the levitating magnet.

  2. Calculation of levitation forces in permanent magnet-superconductor systems using finite element analysis

    SciTech Connect

    Camacho, D.; Mora, J.; Fontcuberta, J.; Obradors, X.

    1997-08-01

    In this paper we present calculations of levitation forces between a cylindrical permanent magnet and a cylindrical superconductor using a commercial finite element program. Force limits for zero field cooled and field cooled processes have been obtained using the Meissner effect and the perfect pinning hypothesis, respectively. Comparison of the experimentally determined forces with respect to these limits provides a simple estimation of the sample quality. The hysteretical behavior of the forces has been reproduced assuming a critical state model for the superconductor. Results are compared with experimental data. Excellent agreement has been found for forces measured after zero field cooled process thus allowing us to estimate the critical current of the samples. As a further exploitation of the software capabilities we have investigated the effects of the superconducting sample geometry and the effects of different strategies of flux conditioning to optimize the levitation forces. {copyright} {ital 1997 American Institute of Physics.}

  3. Solidification Studies from the Electrostatic Levitation System at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rogers, Jan R.; Hyers, Robert W.; Robinson, Michael B.; Savage, Larry

    2000-01-01

    Electrostatic levitation (ESL) provides a means to study molten materials in a high-purity environment, free from contact with a container. Many phenomena important to materials science can be studied in the ESL. Solidification of metals, alloys and undercooled materials represent an important topic for research in the ESL. Recent studies of metals and alloys during solidification in the ESL are reported. Measurements include time, temperature and transformation of metallic glass-forming alloys, solidification velocities, and microstructure,

  4. Supersymmetric configurations in the rotating D1-D5 system andpp-waves

    NASA Astrophysics Data System (ADS)

    Maoz, Liat

    Two families of supersymmetric configurations are considered. One is the 1/4 supersymmetric D1--D5 system with angular momentum, and the other is a family of pp-waves of type IIB string theory with some supersymmetry. In the first part of the thesis some configurations of the D1--D5 system are examined which give conical singularities in AdS 3 as their near horizon limit. It is shown that they can be made non-singular by adding angular momentum to the brane system. The smooth asymptotically flat solutions constructed this way are used to obtain global AdS 3 as the near horizon geometry. Using the relation of the D1--D5 system to the oscillating string, a large family of supergravity solutions is constructed which describe BPS excitations on AdS3 x S 3 with angular momentum on S3. These solutions take into account the full back reaction on the metric, and can be viewed as Kaluza-Klein monopole "supertubes", which are completely non-singular geometries. The different chiral primaries of the dual CFT are identified with these different supergravity solutions. This part is adapted from the papers [1], [2]. In its second part, a general class of supersymmetric pp-wave solutions of type IIB string theory is constructed, such that the superstring worldsheet action in light cone gauge is that of an interacting massive field theory. It is shown that when the light cone Lagrangian has (2.2) supersymmetry, one can find backgrounds that lead to arbitrary superpotentials on the worldsheet. Both flat and curved transverse spaces are considered. In particular, the background giving rise to the N = 2 sine Gordon theory on the worldsheet is analyzed. Massive mirror symmetry relates it to the deformed CP1 model (or sausage model) which seems to elude a purely supergravity target space interpretation. These are results which appeared in the paper [3].

  5. 1D cadmium(II) thiocyanate systems: Synthesis and characterization of three new polymeric 1D cadmium(II) thiocyanato complexes

    NASA Astrophysics Data System (ADS)

    Saber, Mohamed R.; Abu-Youssef, Morsy A. M.; Goher, Mohamed A. S.; Sabra, Berry A.; Hafez, Afaf K.; Badr, Ahmed M.-A.; Mautner, Franz A.

    2012-01-01

    Three new cadmium(II) thiocyanato complexes, [{Cd(NCS) 2(val)}·H 2O] n1, [Cd(NCS) 2(3-ampy) 2] n2, and [Cd(NCS) 2(pyrazolinone)] n3, (val = D, L-valine, 3-ampy = 3-aminopyridine and pyrazolinone = 3-methyl-1-phenyl-2-pyrazolin-5-one) have been synthesized and structurally characterized. The X-ray structure analysis revealed di-μ-N,S thiocyanato bridges connecting cadmium centers in a 1D chain with the co-ligand blocking the remaining coordination sites. The structure of complex 1 features six coordinate Cd(II) centers, each cadmium is surrounded by two N atoms and two S atoms from two bridging N,S-thiocyanato groups giving rise to a zigzag 1D chain and two oxygen atoms of the alternating chelating μ-O,O'-valine that coordinates as zwitterionic terminal amino acid. The structure of complex 2 consists of octahedral Cd(II) centers, connected by di-μ-N,S-bridging NCS groups, thus forming a 1D chain system along the [1 0 1] direction. The amino-groups are forming one intra-chain N sbnd H⋯N hydrogen bond and one interchain N sbnd H⋯N hydrogen bond to N-atoms of adjacent chains. The structure of 3 reveals di-μ-N,S-NCS doubly bridged unusual penta-coordinated cadmium centers with the alternating monodentate pyrazolinone ligand blocking the fifth coordination site. IR spectra and thermal properties of complexes are reported.

  6. Exact spin dynamics of inhomogeneous 1-d systems at high temperature

    NASA Astrophysics Data System (ADS)

    Danieli, E. P.; Pastawski, H. M.; Levstein, P. R.

    2002-07-01

    The evaluation of spin excitation dynamics in finite 1-d systems of spins {1}/{2} with XY exchange interaction J acquired new interest because NMR experiments at high temperature ( kBT≫ J) confirmed the predicted spin wave behavior of mesoscopic echoes. In this work, we use the Jordan-Wigner transformation to obtain the exact dynamics of inhomogeneous chains and rings where the evolution is reduced to one-body dynamics. For higher dimensions, the spin excitations manifest many-body effects that can be interpreted as a simple dynamics of non-interacting fermions plus a decoherent process.

  7. Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System

    PubMed Central

    2011-01-01

    Background Zero-dimensional (lumped parameter) and one dimensional models, based on simplified representations of the components of the cardiovascular system, can contribute strongly to our understanding of circulatory physiology. Zero-D models provide a concise way to evaluate the haemodynamic interactions among the cardiovascular organs, whilst one-D (distributed parameter) models add the facility to represent efficiently the effects of pulse wave transmission in the arterial network at greatly reduced computational expense compared to higher dimensional computational fluid dynamics studies. There is extensive literature on both types of models. Method and Results The purpose of this review article is to summarise published 0D and 1D models of the cardiovascular system, to explore their limitations and range of application, and to provide an indication of the physiological phenomena that can be included in these representations. The review on 0D models collects together in one place a description of the range of models that have been used to describe the various characteristics of cardiovascular response, together with the factors that influence it. Such models generally feature the major components of the system, such as the heart, the heart valves and the vasculature. The models are categorised in terms of the features of the system that they are able to represent, their complexity and range of application: representations of effects including pressure-dependent vessel properties, interaction between the heart chambers, neuro-regulation and auto-regulation are explored. The examination on 1D models covers various methods for the assembly, discretisation and solution of the governing equations, in conjunction with a report of the definition and treatment of boundary conditions. Increasingly, 0D and 1D models are used in multi-scale models, in which their primary role is to provide boundary conditions for sophisticate, and often patient-specific, 2D and 3D models

  8. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    DOEpatents

    Coffey, H.T.

    1993-10-19

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle levitation. 3 figures.

  9. Adipose Tissue Engineering in Three-Dimensional Levitation Tissue Culture System Based on Magnetic Nanoparticles

    PubMed Central

    Daquinag, Alexes C.; Souza, Glauco R.

    2013-01-01

    White adipose tissue (WAT) is becoming widely used in regenerative medicine/cell therapy applications, and its physiological and pathological importance is increasingly appreciated. WAT is a complex organ composed of differentiated adipocytes, stromal mesenchymal progenitors known as adipose stromal cells (ASC), as well as endothelial vascular cells and infiltrating leukocytes. Two-dimensional (2D) culture that has been typically used for studying adipose cells does not adequately recapitulate WAT complexity. Improved methods for reconstruction of functional WAT ex vivo are instrumental for understanding of physiological interactions between the composing cell populations. Here, we used a three-dimensional (3D) levitation tissue culture system based on magnetic nanoparticle assembly to model WAT development and growth in organoids termed adipospheres. We show that 3T3-L1 preadipocytes remain viable in spheroids for a long period of time, while in 2D culture, they lose adherence and die after reaching confluence. Upon adipogenesis induction in 3T3-L1 adipospheres, cells efficiently formed large lipid droplets typical of white adipocytes in vivo, while only smaller lipid droplet formation is achievable in 2D. Adiposphere-based coculture of 3T3-L1 preadipocytes with murine endothelial bEND.3 cells led to a vascular-like network assembly concomitantly with lipogenesis in perivascular cells. Adipocyte-depleted stromal vascular fraction (SVF) of mouse WAT cultured in 3D underwent assembly into organoids with vascular-like structures containing luminal endothelial and perivascular stromal cell layers. Adipospheres made from primary WAT cells displayed robust proliferation and complex hierarchical organization reflected by a matricellular gradient incorporating ASC, endothelial cells, and leukocytes, while ASC quickly outgrew other cell types in adherent culture. Upon adipogenesis induction, adipospheres derived from the SVF displayed more efficient lipid droplet

  10. The Wonders of Levitation

    ERIC Educational Resources Information Center

    French, M. M. J.

    2010-01-01

    I discuss some interesting classroom demonstrations of diamagnetism and how this effect can produce levitation. The possibilities for hands-on demonstrations of diamagnetic and superconducting levitation are discussed. To conclude I discuss some practical uses for levitation in daily life. (Contains 6 figures.)

  11. Statistical investigation and thermal properties for a 1-D impact system with dissipation

    NASA Astrophysics Data System (ADS)

    Díaz I., Gabriel; Livorati, André L. P.; Leonel, Edson D.

    2016-05-01

    The behavior of the average velocity, its deviation and average squared velocity are characterized using three techniques for a 1-D dissipative impact system. The system - a particle, or an ensemble of non-interacting particles, moving in a constant gravitation field and colliding with a varying platform - is described by a nonlinear mapping. The average squared velocity allows to describe the temperature for an ensemble of particles as a function of the parameters using: (i) straightforward numerical simulations; (ii) analytically from the dynamical equations; (iii) using the probability distribution function. Comparing analytical and numerical results for the three techniques, one can check the robustness of the developed formalism, where we are able to estimate numerical values for the statistical variables, without doing extensive numerical simulations. Also, extension to other dynamical systems is immediate, including time dependent billiards.

  12. Isolation of crystallizing droplets by electrostatic levitation

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Chung, Sang K.

    1990-01-01

    The principles of electrostatic levitation where the positioning and stabilization of a sample are accomplished by applying appropriate electrostatic forces to a charged sample are outlined, and attention is focused on a feedback control algorithm, drop-launching method, and four-drop levitator. Drop levitation in 1-g is discussed, and crystal-growth experiments are presented. An experiment in which the protein concentration of a levitated drop is controlled by a feedback system is described. During levitation, the drop evaporation rate is controlled in a programmed way in order to acquire proper protein concentration levels for both nucleation and growth. The containerless approach of protein crystal growth when applied in the space environment is assessed.

  13. Dust levitation about Itokawa's equator

    NASA Astrophysics Data System (ADS)

    Hartzell, C.; Zimmerman, M.; Takahashi, Y.

    2014-07-01

    Introduction: Electrostatic dust motion has been hypothesized to occur on the asteroids, due to the observations of the Eros dust ponds [1] and the potential presence of such a phenomenon on the Moon [2]. There are two phases of electrostatic dust motion: lofting and the subsequent trajectories. The feasibility of electrostatic dust lofting can be assessed by comparing the strength of the electrostatic force to the gravity and cohesion which hold the grain on to the surface [3--5]. The motion of the dust grains after they detach from the surface can be described as either ballistic, escaping, or levitating. We are interested in dust levitation because it could potentially redistribute grains on the surface of an asteroid (for instance, producing the Eros dust ponds) and it could also be hazardous to spacecraft. Specifically, levitating dust could obscure the observations of surface-based spacecraft or possibly trigger obstacle avoidance routines during landing. Dust Levitation: Dust levitation is defined as the altitude oscillation of grains prior to their redeposition on the surface of an asteroid. Levitation occurs about equilibria where the electrostatic and gravity forces on the grain are equal and opposite. An equilibrium state is defined as a position and charge for a specific grain size. We have previously identified equilibria using a 1D plasma model and a simple gravity model for Itokawa [6]. In this simple model, the largest grain that was capable of stable levitation above Itokawa was 3 microns (in radius) [6]. Additionally, we have shown that levitating dust grains follow the variation in the equilibria for a rotating asteroid (i.e., the grain continues to oscillate about an equilibrium state that approaches the surface) [7]. Due to the nonspherical shape of Itokawa, both the gravity and plasma environments are much more complicated than the 1D approximations made in our previous work. Thus, in order to accurately assess the feasibility of dust

  14. Strong and Weak 2D Topological Superconductivity in Hidden Quasi-1D Systems

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Yao, Hong

    2014-03-01

    Partly motivated by the newly discovered family of bismuth-based superconductors including LaO1-xFxBiS2, we study possible 2D topological superconductivities (TSC) in hidden quasi-1D systems with spin-orbit couplings. By doing RPA calculations and renormalization group (RG) treatment, we theoretically find that in a large portion of the phase diagram with varying interaction strengths and spin-orbit coupling the ground states favors superconductivity with odd-parity pairing, which results in either chiral TSC or time reversal invariant weak-Z2 TSC. We shall discuss several ways to experimentally identify these strong and weak 2D topological superconductivity. Possible applications to the bismuth-based superconductors LaO1-xFxBiS2 will also be remarked.

  15. Improved Position Sensor for Feedback Control of Levitation

    NASA Technical Reports Server (NTRS)

    Hyers, Robert; Savage, Larry; Rogers, Jan

    2004-01-01

    An improved optoelectronic apparatus has been developed to provide the position feedback needed for controlling the levitation subsystem of a containerless-processing system. As explained, the advantage of this apparatus over prior optoelectronic apparatuses that have served this purpose stems from the use of an incandescent lamp, instead of a laser, to illuminate the levitated object. In containerless processing, a small object to be processed is levitated (e.g., by use of a microwave, low-frequency electromagnetic, electrostatic, or acoustic field) so that it is not in contact with the wall of the processing chamber or with any other solid object during processing. In the case of electrostatic or low-frequency electromagnetic levitation, real-time measurement of the displacement of the levitated object from its nominal levitation position along the vertical axis (and, in some cases, along one or two horizontal axes) is needed for feedback control of the levitating field.

  16. Modelling hydrology of a single bioretention system with HYDRUS-1D.

    PubMed

    Meng, Yingying; Wang, Huixiao; Chen, Jiangang; Zhang, Shuhan

    2014-01-01

    A study was carried out on the effectiveness of bioretention systems to abate stormwater using computer simulation. The hydrologic performance was simulated for two bioretention cells using HYDRUS-1D, and the simulation results were verified by field data of nearly four years. Using the validated model, the optimization of design parameters of rainfall return period, filter media depth and type, and surface area was discussed. And the annual hydrologic performance of bioretention systems was further analyzed under the optimized parameters. The study reveals that bioretention systems with underdrains and impervious boundaries do have some detention capability, while their total water retention capability is extremely limited. Better detention capability is noted for smaller rainfall events, deeper filter media, and design storms with a return period smaller than 2 years, and a cost-effective filter media depth is recommended in bioretention design. Better hydrologic effectiveness is achieved with a higher hydraulic conductivity and ratio of the bioretention surface area to the catchment area, and filter media whose conductivity is between the conductivity of loamy sand and sandy loam, and a surface area of 10% of the catchment area is recommended. In the long-term simulation, both infiltration volume and evapotranspiration are critical for the total rainfall treatment in bioretention systems. PMID:25133240

  17. Modelling Hydrology of a Single Bioretention System with HYDRUS-1D

    PubMed Central

    Meng, Yingying; Wang, Huixiao; Chen, Jiangang; Zhang, Shuhan

    2014-01-01

    A study was carried out on the effectiveness of bioretention systems to abate stormwater using computer simulation. The hydrologic performance was simulated for two bioretention cells using HYDRUS-1D, and the simulation results were verified by field data of nearly four years. Using the validated model, the optimization of design parameters of rainfall return period, filter media depth and type, and surface area was discussed. And the annual hydrologic performance of bioretention systems was further analyzed under the optimized parameters. The study reveals that bioretention systems with underdrains and impervious boundaries do have some detention capability, while their total water retention capability is extremely limited. Better detention capability is noted for smaller rainfall events, deeper filter media, and design storms with a return period smaller than 2 years, and a cost-effective filter media depth is recommended in bioretention design. Better hydrologic effectiveness is achieved with a higher hydraulic conductivity and ratio of the bioretention surface area to the catchment area, and filter media whose conductivity is between the conductivity of loamy sand and sandy loam, and a surface area of 10% of the catchment area is recommended. In the long-term simulation, both infiltration volume and evapotranspiration are critical for the total rainfall treatment in bioretention systems. PMID:25133240

  18. Flowfield characteristics of an aerodynamic acoustic levitator

    NASA Astrophysics Data System (ADS)

    Yarin, A. L.; Brenn, G.; Keller, J.; Pfaffenlehner, M.; Ryssel, E.; Tropea, C.

    1997-11-01

    A droplet held in a single-axis ultrasonic levitator will principally sustain a certain external blowing along the levitation axis, which introduces the possibility of investigating heat and/or mass transfer from the droplet under conditions which are not too remote from those in spray systems. The focus of the present work is on the influence of the acoustic field on the external flow. More specifically, an axisymmetric submerged gas jet in an axial standing acoustic wave is examined, both in the absence and presence of a liquid droplet. Flow visualization is first presented to illustrate the global flow effects and the operating windows of jet velocities and acoustic powers which are suitable for further study. An analytic and numeric solution, based on the parabolic boundary layer equations are then given for the case of no levitated droplet, providing quantitative estimates of the acoustic field/flow interaction. Detailed velocity measurements using a laser Doppler anemometer verify the analytic results and extend these to the case of a levitated droplet. Some unresolved discrepancy remains in predicting the maximum velocity attainable before the droplet is blown out of the levitator. Two methods are developed to estimate the sound pressure level in the levitator by comparing flowfield patterns with analytic results. These results and observations are used to estimate to what extent acoustic aerodynamic levitators can be used in the future for investigating transport properties of individual droplets.

  19. Mixing in colliding, ultrasonically levitated drops.

    PubMed

    Chainani, Edward T; Choi, Woo-Hyuck; Ngo, Khanh T; Scheeline, Alexander

    2014-02-18

    Lab-in-a-drop, using ultrasonic levitation, has been actively investigated for the last two decades. Benefits include lack of contact between solutions and an apparatus and a lack of sample cross-contamination. Understanding and controlling mixing in the levitated drop is necessary for using an acoustically levitated drop as a microreactor, particularly for studying kinetics. A pulsed electrostatic delivery system enables addition and mixing of a desired-volume droplet with the levitated drop. Measurement of mixing kinetics is obtained by high-speed video monitoring of a titration reaction. Drop heterogeneity is visualized as 370 nl of 0.25 M KOH (pH: 13.4) was added to 3.7 μL of 0.058 M HCl (pH: 1.24). Spontaneous mixing time is about 2 s. Following droplet impact, the mixed drop orbits the levitator axis at about 5 Hz during homogenization. The video's green channel (maximum response near 540 nm) shows the color change due to phenolphthalein absorption. While mixing is at least an order of magnitude faster in the levitated drop compared with three-dimensional diffusion, modulation of the acoustic waveform near the surface acoustic wave resonance frequency of the levitated drop does not substantially reduce mixing time. PMID:24460103

  20. A tiny gas-sensor system based on 1D photonic crystal

    NASA Astrophysics Data System (ADS)

    Bouzidi, A.; Bria, D.; Akjouj, A.; Pennec, Y.; Djafari-Rouhani, B.

    2015-12-01

    We present a gas monitoring system for detecting the gas concentration in ambient air. This sensor is based on a 1D photonic crystal formed by alternating layers of magnesium fluoride (MgF2) and silicon (Si) with an empty layer in the middle. The lamellar cavity (defect layer) will be filled with polluted air that has a refractive index close to that of pure air, varying between n 0  =  1.00 to n 0  =  1.01. The transmission spectrum of this sensor is calculated by the Green function approach. The numerical results show that the transmission peak, which appears in the gap, is caused by the infiltration of impure air into the empty middle layer. This transmission peak can be used for detection purposes in real-time environmental monitoring. The peak frequency is sensitive to the air-gas mixture, and a variation in the refractive index as small as Δn  =  10-5 can be detected. A sensitivity, Δλ/Δn, of 700 nm per refractive index unit (RIU) is achieved with this sensor.

  1. Rapid crystallization from acoustically levitated droplets.

    PubMed

    Cao, Hui-Ling; Yin, Da-Chuan; Guo, Yun-Zhu; Ma, Xiao-Liang; He, Jin; Guo, Wei-Hong; Xie, Xu-Zhuo; Zhou, Bo-Ru

    2012-04-01

    This paper reports on an ultrasonic levitation system developed for crystallization from solution in a containerless condition. The system has been proven to be able to levitate droplets stably and grow crystals rapidly and freely from a levitated droplet. Crystals of four samples, including NaCl, NH(4)Cl, lysozyme, and proteinase K, were obtained successfully utilizing the system. The studies showed that the crystals obtained from the acoustically levitated droplets all exhibited higher growth rates, larger sizes, better shapes, fewer crystals, as well as fewer twins and shards, compared with the control on a vessel wall. The results indicated that containerless ultrasonic levitation could play a key role in improving the crystallization of both inorganic salts and proteins. The ultrasonic levitation system could be used as a ground-based microgravity simulation platform, which could swiftly perform crystallization and screening of crystallization conditions for space crystallization and other ground-based containerless techniques. Moreover, the approach could also be conveniently applied to researching the dynamics and mechanism of crystallization. In addition, the device could be used for the preparation of high-purity materials, analysis of minute or poisonous samples, study of living cells, environmental monitoring, and so on. PMID:22501088

  2. Electrostatic Levitator (ESL) Facility

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Electrostatic Levitator (ESL) Facility established at Marshall Space Flight Center (MSFC) supports NASA's Microgravity Materials Science Research Program. NASA materials science investigations include ground-based, flight definition and flight projects. Flight definition projects, with demanding science concept review schedules, receive highest priority for scheduling experiment time in the Electrostatic Levitator (ESL) Facility.

  3. Photopolymerization Of Levitated Droplets

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan; Rhim, Won-Kyu; Hyson, Michael T.; Chang, Manchium

    1989-01-01

    Experimental containerless process combines two established techniques to make variety of polymeric microspheres. In single step, electrostatically-levitated monomer droplets polymerized by ultraviolet light. Faster than multiple-step emulsion polymerization process used to make microspheres. Droplets suspended in cylindrical quadrupole electrostatic levitator. Alternating electrostatic field produces dynamic potential along axis. Process enables tailoring of microspheres for medical, scientific, and industrial applications.

  4. Levitation properties of the YBa sub 2 Cu sub 3 O sub x and Tl-Ba-Ca-Cu-O superconducting systems

    SciTech Connect

    Weeks, D.E. )

    1989-12-25

    A torsion balance is used to measure the levitation force on a magnet as a function of height above bulk samples of the YBa{sub 2}Cu{sub 3}O{sub {ital x}} ({ital T}{sub {ital c}}{similar to}90 K) and Tl-Ba-Ca-Cu-O ({ital T}{sub {ital c}}{similar to}110--120 K) superconducting systems. Measurements of magnetic shielding and trapped magnetic fields are also made.

  5. The Inductrack concept: A new approach to magnetic levitation

    SciTech Connect

    Post, R.F.; Ryutov, D.

    1996-05-01

    This report describes theoretical and experimental investigations of a new approach to the problem of the magnetic levitation of a moving object. By contrast with previously studied levitation approaches, the Inductrack concept concept represents a simpler, potentially less expensive, and totally passive means of levitating a high-speed train. It may also be applicable to other areas where simpler magnetic levitation systems are needed, for example, high-speed test sleds for crash testing applications, or low-friction conveyer systems for industrial use.

  6. Magnetic levitation experiments in Sendai

    NASA Astrophysics Data System (ADS)

    Mogi, I.; Takahashi, K.; Awaji, S.; Watanabe, K.; Motokawa, M.

    2006-11-01

    A levitating apple in a hybrid magnet implies the presence of microgravity conditions under gradient magnetic fields. However, several unique behaviors were found, the orientation of levitating rice grains, the alignment of levitating bismuth particles, and the thermal convection in water under the levitation conditions. These are unlikely under the microgravity conditions in the space and are characteristic of the magnetic levitation. On the basis of the understanding of such behaviors, the magnetic levitation was applied to containerless materials processing, and such an attempt resulted in the development of a magnetic levitation furnace.

  7. Matrix method for acoustic levitation simulation.

    PubMed

    Andrade, Marco A B; Perez, Nicolas; Buiochi, Flavio; Adamowski, Julio C

    2011-08-01

    A matrix method is presented for simulating acoustic levitators. A typical acoustic levitator consists of an ultrasonic transducer and a reflector. The matrix method is used to determine the potential for acoustic radiation force that acts on a small sphere in the standing wave field produced by the levitator. The method is based on the Rayleigh integral and it takes into account the multiple reflections that occur between the transducer and the reflector. The potential for acoustic radiation force obtained by the matrix method is validated by comparing the matrix method results with those obtained by the finite element method when using an axisymmetric model of a single-axis acoustic levitator. After validation, the method is applied in the simulation of a noncontact manipulation system consisting of two 37.9-kHz Langevin-type transducers and a plane reflector. The manipulation system allows control of the horizontal position of a small levitated sphere from -6 mm to 6 mm, which is done by changing the phase difference between the two transducers. The horizontal position of the sphere predicted by the matrix method agrees with the horizontal positions measured experimentally with a charge-coupled device camera. The main advantage of the matrix method is that it allows simulation of non-symmetric acoustic levitators without requiring much computational effort. PMID:21859587

  8. 2013 Problem 5: Levitation

    NASA Astrophysics Data System (ADS)

    Ruan, Qiyuan; Zeng, Pei; Zhou, Huijun; Wang, Sihui

    2015-10-01

    In this work, we reproduce the phenomenon through a preliminary experiment. The main factors to optimize the system are identified as the mass of the ball, the flow velocity and distribution of the airstream. We propose a Gaussian velocity distribution model to describe the flow velocity field model quantitatively which is supported by COMSOL simulation and experimental data. Through force analysis, the supporting forces that balance the gravity of the ball are identified. Equation for the tilt angle has been found, from which the optimal tilt angle can be calculated and compared to experimental data. Our research also shows that levitation is more stable without rotation. So the method we used to adjust the mass of the ball by injecting water is also effective in preventing rotation and enhance stability. The theoretical result for the optimal tilt angle is consistent with experimental data.

  9. Magnetic Levitators With Superconductive Components

    NASA Technical Reports Server (NTRS)

    Dolgin, Benjamin P.

    1995-01-01

    Magnetic noncontact levitators that include superconductive components provide vibration-damping suspension for cryogenic instruments, according to proposal. Because superconductive components attached to levitated cryogenic instruments, no additional coolant liquid or refrigeration power needed. Also because vibration-damping components of levitators located outside cold chambers, in ambient environment, not necessary to waste coolant liquid or refrigeration power on dissipation of vibrational energy. At least three levitating magnets and three superconductors necessary for stable levitation.

  10. 3D positional control of magnetic levitation system using adaptive control: improvement of positioning control in horizontal plane

    NASA Astrophysics Data System (ADS)

    Nishino, Toshimasa; Fujitani, Yasuhiro; Kato, Norihiko; Tsuda, Naoaki; Nomura, Yoshihiko; Matsui, Hirokazu

    2012-01-01

    The objective of this paper is to establish a technique that levitates and conveys a hand, a kind of micro-robot, by applying magnetic forces: the hand is assumed to have a function of holding and detaching the objects. The equipment to be used in our experiments consists of four pole-pieces of electromagnets, and is expected to work as a 4DOF drive unit within some restricted range of 3D space: the three DOF are corresponding to 3D positional control and the remaining one DOF, rotational oscillation damping control. Having used the same equipment, Khamesee et al. had manipulated the impressed voltages on the four electric magnetics by a PID controller by the use of the feedback signal of the hand's 3D position, the controlled variable. However, in this system, there were some problems remaining: in the horizontal direction, when translating the hand out of restricted region, positional control performance was suddenly degraded. The authors propose a method to apply an adaptive control to the horizontal directional control. It is expected that the technique to be presented in this paper contributes not only to the improvement of the response characteristic but also to widening the applicable range in the horizontal directional control.

  11. Effect of the characteristics of a superconductor on the levitation properties of the magnet-superconductor system

    SciTech Connect

    Rudnev, I. A. Ermolaev, Yu. S.

    2007-07-15

    The results of the experimental and theoretical investigations of the magnetic levitation force appearing at the interaction of the multilayer superconducting block of the YBa{sub 2}Cu{sub 3}O{sub 7-x} melted textured ceramic and a permanent magnet are presented. The maximum repulsive force and maximum attractive force are determined as functions of the thickness of the superconducting block in the superconductor cooling regime in both zero and nonzero magnetic fields. The dependence of the levitation force on the geometric parameters and critical current of the superconductor is found.

  12. Simulation of unsteady state performance of a secondary air system by the 1D-3D-Structure coupled method

    NASA Astrophysics Data System (ADS)

    Wu, Hong; Li, Peng; Li, Yulong

    2016-02-01

    This paper describes the calculation method for unsteady state conditions in the secondary air systems in gas turbines. The 1D-3D-Structure coupled method was applied. A 1D code was used to model the standard components that have typical geometric characteristics. Their flow and heat transfer were described by empirical correlations based on experimental data or CFD calculations. A 3D code was used to model the non-standard components that cannot be described by typical geometric languages, while a finite element analysis was carried out to compute the structural deformation and heat conduction at certain important positions. These codes were coupled through their interfaces. Thus, the changes in heat transfer and structure and their interactions caused by exterior disturbances can be reflected. The results of the coupling method in an unsteady state showed an apparent deviation from the existing data, while the results in the steady state were highly consistent with the existing data. The difference in the results in the unsteady state was caused primarily by structural deformation that cannot be predicted by the 1D method. Thus, in order to obtain the unsteady state performance of a secondary air system more accurately and efficiently, the 1D-3D-Structure coupled method should be used.

  13. Studying Electrostatic Levitator Specimen

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Kevin Croat of Washington University in St. Louis, MO, examines samples processed in NASA/Marshall Space Flight Center's (MSFC)Electrostatic Levitator Facility. Croat is working with Prof. Kerneth Kelton in investigating undercooling of polytetrahedral phase-forming liquids.

  14. Levitation in physics.

    PubMed

    Brandt, E H

    1989-01-20

    Several physical effects allow free floatation of solid and even liquid matter. Materials may be levitated by a jet of gas, by intense sound waves, or by beams of laser light. In addition, conductors levitate in strong radio-frequency fields, charged particles in alternating electric fields, and magnets above superconductors or vice versa. Although levitation by means of ferromagnets is unstable, supper-conductors may be suspended both above and below a magnet as a result of flux pinning. Levitation is used for containerless processing and investigation of materials, for frictionless bearings and high-speed ground transportation, for spectroscopy of single atoms and microparticles, and for demonstrating superconductivity in the new oxide superconductors. PMID:17787252

  15. Quantum propagation and confinement in 1D systems using the transfer-matrix method

    NASA Astrophysics Data System (ADS)

    Pujol, Olivier; Carles, Robert; Pérez, José-Philippe

    2014-05-01

    The aim of this article is to provide some Matlab scripts to the teaching community in quantum physics. The scripts are based on the transfer-matrix formalism and offer a very efficient and versatile tool to solve problems of a physical object (electron, proton, neutron, etc) with one-dimensional (1D) stationary potential energy. Resonant tunnelling through a multiple-barrier or confinement in wells of various shapes is particularly analysed. The results are quantitatively discussed with semiconductor heterostructures, harmonic and anharmonic molecular vibrations, or neutrons in a gravity field. Scripts and other examples (hydrogen-like ions and transmission by a smooth variation of potential energy) are available freely at http://www-loa.univ-lille1.fr/˜pujol in three languages: English, French and Spanish.

  16. Characteristics on electodynamic suspension simulator with HTS levitation magnet

    NASA Astrophysics Data System (ADS)

    Lee, J.; Bae, D. K.; Sim, K.; Chung, Y. D.; Lee, Y.-S.

    2009-10-01

    High- Tc superconducting (HTSC) electrodynamic suspension (EDS) system basically consists of the HTSC levitation magnet and the ground conductor. The levitation force of EDS system is forms by the interaction between the moving magnetic field produced by the onboard levitation magnet and the induced magnetic field produced by eddy current in the ground conductor. This paper deals with the characteristics of the EDS simulators with high- Tc superconducting (HTS) levitation magnet. Two EDS simulator systems, rotating type EDS simulator and static type EDS simulator, were studied in this paper. The rotating type EDS simulator consists of a HTS levitation magnet and a 1.5 m diameter rotating ground conductor, a motor, the supporting structure and force measuring devices. In the static type EDS simulator, instead of moving magnetic field, AC current was applied to the fixed HTS levitation magnet to induce the eddy current. The static type EDS simulator consists of a HTS levitation magnet, a ground conductor, force measuring devices and supporting structure. The double-pancake type HTSC levitation magnet was designed, manufactured and tested in the EDS simulator.

  17. Optics for five-dimensional measurement for correction of vertical displacement error due to attitude of floating body in superconducting magnetic levitation system

    NASA Astrophysics Data System (ADS)

    Shiota, Fuyuhiko; Morokuma, Tadashi

    2006-09-01

    An improved optical system for five-dimensional measurement has been developed for the correction of vertical displacement error due to the attitude change of a superconducting floating body that shows five degrees of freedom besides a vertical displacement of 10mm. The available solid angle for the optical measurement is extremely limited because of the cryogenic laser interferometer sharing the optical window of a vacuum chamber in addition to the basic structure of the cryogenic vessel for liquid helium. The aim of the design was to develop a more practical as well as better optical system compared with the prototype system. Various artifices were built into this optical system and the result shows a satisfactory performance and easy operation overcoming the extremely severe spatial difficulty in the levitation system. Although the system described here is specifically designed for our magnetic levitation system, the concept and each artifice will be applicable to the optical measurement system for an object in a high-vacuum chamber and/or cryogenic vessel where the available solid angle for an optical path is extremely limited.

  18. Application of exergetic sustainable index to the quantum irreversible Diesel refrigerator cycles for 1D box system

    NASA Astrophysics Data System (ADS)

    Açıkkalp, Emin; Caner, Necmettin

    2015-04-01

    In this paper, an irreversible quantum Diesel refrigerator for a 1D-box system is described and analyzed. The exergetic sustainability index that is the rate of the exergy output from the system to the total exergetic losses including exergy destruction and exergy loss from the system is applied for the first time to an irreversible quantum engine. Other thermodynamic parameters including work input, cooling load, exergy destruction, COP and exergy efficiency are investigated according to the cycle temperatures and numerical results are presented.

  19. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    DOEpatents

    Coffey, Howard T.

    1993-01-01

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.

  20. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    SciTech Connect

    Coffey, H.T.

    1992-12-31

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.

  1. Stable And Oscillating Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.; Garrett, Steven L.

    1988-01-01

    Sample stability or instability determined by levitating frequency. Degree of oscillation of acoustically levitated object along axis of levitation chamber controlled by varying frequency of acoustic driver for axis above or below frequency of corresponding chamber resonance. Stabilization/oscillation technique applied in normal Earth gravity, or in absence of gravity to bring object quickly to rest at nominal levitation position or make object oscillate in desired range about that position.

  2. Disappearance of 2D Magnetic Character in Quasi-1D System CoNb2O6 under Magnetic Field

    NASA Astrophysics Data System (ADS)

    Mitsuda, Setsuo; Kobayashi, Satoru; Katagiri, Kouji; Yoshizawa, Hideki; Ishikawa, Masayasu; Miyatani, Kazuo; Kohn, Kay

    1995-07-01

    We report neutron scattering as well as ac susceptibility studies on the formation of magnetic ordering in a quasi-1D ferromagnetic chain system CoNb2O6 in magnetic fields up to 600 Oe. At T=1.5 K, a noncollinear ferrimagnetic (FR) phase with up-up-down spin arrangement along the b axis is field-induced in the magnetic field above ˜300 Oe. Interestingly, the pronounced 2D magnetic character previously found in the noncollinear antiferromagnetic phase disappears in the FR phase. This is direct evidence that the 2D magnetic character is due to the cancellation of interchain exchange fields at an apex site of a 2D isosceles-triangular lattice where quasi-1D ferromagnetic chains lie.

  3. Variable-Position Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. G.

    1983-01-01

    Method of acoustic levitation supports objects at positions other than acoustic nodes. Acoustic force is varied so it balances gravitational (or other) force, thereby maintaining object at any position within equilibrium range. Levitation method applicable to containerless processing. Such objects as table-tennis balls, hollow plastic spheres, and balsa-wood spheres levitated in laboratory by new method.

  4. High-Temperature Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Chung, Sang K.

    1994-01-01

    High-temperature electrostatic levitator provides independent control of levitation and heating of sample in vacuum. Does not cause electromagnetic stirring in molten sample (such stirring causes early nucleation in undercooling). Maintenance of levitating force entails control of electrostatic field and electrical charge on sample.

  5. Levitated Duct Fan (LDF) Aircraft Auxiliary Generator

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Emerson, Dawn C.; Gallo, Christopher A.; Thompson, William K.

    2011-01-01

    This generator concept includes a novel stator and rotor architecture made from composite material with blades attached to the outer rotating shell of a ducted fan drum rotor, a non-contact support system between the stator and rotor using magnetic fields to provide levitation, and an integrated electromagnetic generation system. The magnetic suspension between the rotor and the stator suspends and supports the rotor within the stator housing using permanent magnets attached to the outer circumference of the drum rotor and passive levitation coils in the stator shell. The magnets are arranged in a Halbach array configuration.

  6. Levitation Technology in International Space Station Research

    NASA Technical Reports Server (NTRS)

    Guinart-Ramirez, Y.; Cooley, V. M.; Love, J. E.

    2016-01-01

    The International Space Station (ISS) is a unique multidisciplinary orbiting laboratory for science and technology research, enabling discoveries that benefit life on Earth and exploration of the universe. ISS facilities for containerless sample processing in Materials Science experiments include levitation devices with specimen positioning control while reducing containment vessel contamination. For example, ESA's EML (ElectroMagnetic Levitator), is used for melting and solidification of conductive metals, alloys, or semiconductors in ultra-high vacuum, or in high-purity gaseous atmospheres. Sample heating and positioning are accomplished through electromagnetic fields generated by a coil system. EML applications cover investigation of solidification and microstructural formation, evaluation of thermophysical properties of highly reactive metals (whose properties can be very sensitive to contamination), and examination of undercooled liquid metals to understand metastable phase convection and influence convection on structural changes. MSL utilization includes development of novel light-weight, high-performance materials. Another facility, JAXA's ELF (Electrostatic Levitation Furnace), is used to perform high temperature melting while avoiding chemical reactions with crucibles by levitating a sample through Coulomb force. ELF is capable of measuring density, surface tension, and viscosity of samples at high temperatures. One of the initial ELF investigations, Interfacial Energy-1, is aimed at clarification of interfacial phenomena between molten steels and oxide melts with industrial applications in control processes for liquid mixing. In addition to these Materials Science facilities, other ISS investigations that involve levitation employ it for biological research. For example, NASA's "Magnetic 3D Culturing and Bioprinting" investigation uses magnetic levitation for three-dimensional culturing and positioning of magnetized cells to generate spheroid assemblies

  7. Final Report: Levitated Dipole Experiment

    SciTech Connect

    Kesner, Jay; Mauel, Michael

    2013-03-10

    -field transport. We find levitation causes the central plasma density to increase dramatically and to significantly improve the confinement of thermal plasma [Boxer, Nature-Physics, v8, p. 949, 2010]. Several diagnostic systems have been used to measure plasma fluctuations, and these appear to represent low-frequency convection that may lead to adiabatic heating and strongly peaked pressure profiles. These experiments are remarkable, and the motivate wide-ranging studies of plasma found in space and confined for fusion energy. In the following report, we describe: (i) observations of the centrally-peaked density profile that appears naturally as a consequence of a strong turbulent pinch, (ii) observations of overall density and pressure increases that suggest large improvements to the thermal electron confinement time result occur during levitation, and (iii) the remarkable properties of low-frequency plasma fluctuations that cause magnetized plasma to "self-organize" into well-confined, centrally-peaked profiles that are relative to fusion and to space.

  8. Gen Purpose 1-D Finite Element Network Fluid Flow Heat Transfer System Simulator

    Energy Science and Technology Software Center (ESTSC)

    1993-08-02

    SAFSIM (System Analysis Flow Simulator) is a FORTRAN computer program to simulate the integrated performance of systems involving fluid mechanics, heat transfer, and reactor dynamics. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a one-dimensional finite element fluid mechanicsmore » module with multiple flow network capability; (2) a one-dimensional finite element structure heat transfer module with multiple convection and radiation exchange capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems.« less

  9. National Geothermal Data System Hub Deployment Timeline (Appendix E-1-d)

    SciTech Connect

    Caudill, Christy

    2015-12-20

    Excel spreadsheet describing activity, spending, and development for the four data hubs (Arizona Geoloical Survey, Kentucky Geological Survey, Illinois Geological Survey, and Nevada Bureau of Mines and Geology) serving data for the National Geothermal Data System under the State Contributions to the National Geothermal Data System Project.

  10. Dimensionless Analysis and Mathematical Modeling of Electromagnetic Levitation (EML) of Metals

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Shi, Zhe; Li, Donghui; Yang, Yindong; Zhang, Guifang; McLean, Alexander; Chattopadhyay, Kinnor

    2016-02-01

    Electromagnetic levitation (EML), a contactless metal melting method, can be used to produce ultra-pure metals and alloys. In the EML process, the levitation force exerted on the droplet is of paramount importance and is affected by many parameters. In this paper, the relationship between levitation force and parameters affecting the levitation process were investigated by dimensionless analysis. The general formula developed by dimensionless analysis was tested and evaluated by numerical modeling. This technique can be employed to design levitation systems for a variety of materials.

  11. Development of the sonic pump levitation

    NASA Technical Reports Server (NTRS)

    Dunn, S. A.

    1984-01-01

    A prototype levitating/positioning device termed the Sonic Pump Levitator was designed, built and successfully tested in full gravity and in the reduced gravity of the parabolic flight regime of the KC-135. Positioning is achieved by timely and appropriate application of gas momentum from one or more of six sonic pumps. The sonic pumps, which are arranged orthogonally in opposed pairs about the levitation region, are activated by an electro-optical, computer controlled, feedback system. The sonic pump is a transducer which is capable of converting sound energy into a directed flow of gas. It consists of a loudspeaker whose face is sealed by a closure perforated by one or more orifices. The diaphragm of the loudspeaker is the only moving part of the sonic pump, no valves being needed. This very low inertia electromechanical device was developed to provide the short response time necessary to keep pace with the demands of computerized position keeping.

  12. The research of 1D / 3D coupling simulation on pump and pipe system

    NASA Astrophysics Data System (ADS)

    Wu, D. Z.; Liu, Q. L.; Wu, P.; Wang, L. Q.; Paulus, T.; Wang, B. G.; Oesterle, M.

    2012-11-01

    The research of performances of hydraulic mechanical depends on static complete characteristic curves, which have great difference compared with the actual work condition and have accidents potential. So we need a new way to compute the dynamic system, which is more reasonable. So the method to couple one dimensional simulation and three dimensional CFD analysis based on Flowmaster and Fluent is explored, and the dynamic characteristics and internal flow of the pumping system are analyzed. First, a pipe system model is created in Flowmaster and a pump model is created in Fluent; then VB code and scheme code are used to realize the automated operation for Flowmaster and Fluent; at last, the exchange of data between these two parts is realized by an interface program. In this paper, the interaction between pumps and pipe system are analyzed by coupling one-dimensional and three-dimensional simulations. This study would be helpful to identify the influences of the rapid adjustment process on stability of system and provide guides for design of pump system.

  13. Vlasov-Poisson in 1D for initially cold systems: post-collapse Lagrangian perturbation theory

    NASA Astrophysics Data System (ADS)

    Colombi, Stéphane

    2015-01-01

    We study analytically the collapse of an initially smooth, cold, self-gravitating collisionless system in one dimension. The system is described as a central 'S' shape in phase-space surrounded by a nearly stationary halo acting locally like a harmonic background on the S. To resolve the dynamics of the S under its self-gravity and under the influence of the halo, we introduce a novel approach using post-collapse Lagrangian perturbation theory. This approach allows us to follow the evolution of the system between successive crossing times and to describe in an iterative way the interplay between the central S and the halo. Our theoretical predictions are checked against measurements in entropy conserving numerical simulations based on the waterbag method. While our post-collapse Lagrangian approach does not allow us to compute rigorously the long-term behaviour of the system, i.e. after many crossing times, it explains the close to power-law behaviour of the projected density observed in numerical simulations. Pushing the model at late time suggests that the system could build at some point a very small flat core, but this is very speculative. This analysis shows that understanding the dynamics of initially cold systems requires a fine-grained approach for a correct description of their very central part. The analyses performed here can certainly be extended to spherical symmetry.

  14. Magnetic levitation for hard superconductors

    SciTech Connect

    Kordyuk, A.A.

    1998-01-01

    An approach for calculating the interaction between a hard superconductor and a permanent magnet in the field-cooled case is proposed. The exact solutions were obtained for the point magnetic dipole over a flat ideally hard superconductor. We have shown that such an approach is adaptable to a wide practical range of melt-textured high-temperature superconductors{close_quote} systems with magnetic levitation. In this case, the energy losses can be calculated from the alternating magnetic field distribution on the superconducting sample surface. {copyright} {ital 1998 American Institute of Physics.}

  15. Electron spin control of optically levitated nanodiamonds in vacuum

    NASA Astrophysics Data System (ADS)

    Hoang, Thai; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang

    2016-05-01

    Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this novel system, we also investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect.

  16. Multiparticle systems in κ -Poincaré inspired by (2 +1 )D gravity

    NASA Astrophysics Data System (ADS)

    Kowalski-Glikman, Jerzy; Rosati, Giacomo

    2015-04-01

    Inspired by a Chern-Simons description of 2 +1 -dimensional gravity coupled to point particles we propose a new Lagrangian of a multiparticle system living in κ -Minkowski/κ -Poincaré spacetime. We derive the dynamics of interacting particles with κ -momentum space, alternative to the one proposed in the "principle of relative locality" literature. The model that we obtain takes account of the nonlocal topological interactions between the particles, so that the effective multiparticle action is not a sum of their free actions. In this construction the locality of particle processes is naturally implemented, even for distant observers. In particular a particle process is characterized by a local deformed energy-momentum conservation law. The spacetime transformations are generated by total charges/generators for the composite particle system, and leave unaffected the locality of individual particle processes.

  17. A containerless levitation setup for liquid processing in a superconducting magnet.

    PubMed

    Lu, Hui-Meng; Yin, Da-Chuan; Li, Hai-Sheng; Geng, Li-Qiang; Zhang, Chen-Yan; Lu, Qin-Qin; Guo, Yun-Zhu; Guo, Wei-Hong; Shang, Peng; Wakayama, Nobuko I

    2008-09-01

    Containerless processing of materials is considered beneficial for obtaining high quality products due to the elimination of the detrimental effects coming from the contact with container walls. Many containerless processing methods are realized by levitation techniques. This paper describes a containerless levitation setup that utilized the magnetization force generated in a gradient magnetic field. It comprises a levitation unit, a temperature control unit, and a real-time observation unit. Known volume of liquid diamagnetic samples can be levitated in the levitation chamber, the temperature of which is controlled using the temperature control unit. The evolution of the levitated sample is observed in real time using the observation unit. With this setup, containerless processing of liquid such as crystal growth from solution can be realized in a well-controlled manner. Since the levitation is achieved using a superconducting magnet, experiments requiring long duration time such as protein crystallization and simulation of space environment for living system can be easily succeeded. PMID:19044425

  18. New way to produce dense double-antikaonic dibaryon system, 𝐾̄𝐾̄NN, through Λ(1405)-doorway sticking in p + p collisions

    PubMed Central

    YAMAZAKI, Toshimitsu; AKAISHI, Yoshinori; HASSANVAND, Maryam

    2011-01-01

    A recent successful observation of a dense and deeply bound 𝐾̄ nuclear system, K−pp, in the p + p → K+ + K−pp reaction in a DISTO experiment indicates that the double-𝐾̄ dibaryon, K−K−pp, which was predicted to be a dense nuclear system, can also be formed in p + p collisions. We find theoretically that the K−-K− repulsion plays no significant role in reducing the density and binding energy of K−K−pp and that, when two Λ(1405) resonances are produced simultaneously in a short-range p + p collision, they act as doorways to copious formation of K−K−pp, if and only if K−K−pp is a dense object, as predicted. PMID:21670568

  19. 1D momentum-conserving systems: the conundrum of anomalous versus normal heat transport

    NASA Astrophysics Data System (ADS)

    Li, Yunyun; Liu, Sha; Li, Nianbei; Hänggi, Peter; Li, Baowen

    2015-04-01

    Transport and the spread of heat in Hamiltonian one dimensional momentum conserving nonlinear systems is commonly thought to proceed anomalously. Notable exceptions, however, do exist of which the coupled rotator model is a prominent case. Therefore, the quest arises to identify the origin of manifest anomalous energy and momentum transport in those low dimensional systems. We develop the theory for both, the statistical densities for momentum- and energy-spread and particularly its momentum-/heat-diffusion behavior, as well as its corresponding momentum/heat transport features. We demonstrate that the second temporal derivative of the mean squared deviation of the momentum spread is proportional to the equilibrium correlation of the total momentum flux. Subtracting the part which corresponds to a ballistic momentum spread relates (via this integrated, subleading momentum flux correlation) to an effective viscosity, or equivalently, to the underlying momentum diffusivity. We next put forward the intriguing hypothesis: normal spread of this so adjusted excess momentum density causes normal energy spread and alike normal heat transport (Fourier Law). Its corollary being that an anomalous, superdiffusive broadening of this adjusted excess momentum density in turn implies an anomalous energy spread and correspondingly anomalous, superdiffusive heat transport. This hypothesis is successfully corroborated within extensive molecular dynamics simulations over large extended time scales. Our numerical validation of the hypothesis involves four distinct archetype classes of nonlinear pair-interaction potentials: (i) a globally bounded pair interaction (the noted coupled rotator model), (ii) unbounded interactions acting at large distances (the coupled rotator model amended with harmonic pair interactions), (iii) the case of a hard point gas with unbounded square-well interactions and (iv) a pair interaction potential being unbounded at short distances while displaying an

  20. Studying Electrostatic Levitator Specimen

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Prof. Kerneth Kelton of Washington University in St. Lous, MO, (L) and Dr. Michael Robinson of NASA's Marshall Space Flight Center (MSFC) examine a titanium-iron silicate (TiFeSiO)sample processed in MSFC's Electrostatic Levitator (ESL) Facility (background). Kelton is investigating undercooling of polytetrahedral phase-forming liquids.

  1. Levitation Kits Demonstrate Superconductivity.

    ERIC Educational Resources Information Center

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  2. Levitation of superconducting composites

    NASA Technical Reports Server (NTRS)

    Chiang, C. K.; Turchinskaya, M.; Swartzendruber, L. J.; Shull, R. D.; Bennett, L. H.

    1991-01-01

    The inverse levitation of a high temperature superconductor polymer composite consisting of powdered quench melt growth Ba2YCu3O(7-delta) and cyanoacrylate is reported. Magnetic hysteresis loop measurements for the composite are compared to those measured for the bulk material prior to powdering. Differences in the flux pining capability between the two material forms are small but significant.

  3. Depinning of flux lines and AC losses in magnet-superconductor levitation system

    SciTech Connect

    Terentiev, A. N.; Hull, J. R.; De Long, L. E.

    1999-11-29

    The AC loss characteristics of a magnet-superconductor system were studied with the magnet fixed to the free end of an oscillating cantilever located near a stationary melt-textured YBCO pellet. Below a threshold AC field amplitude {approx}2Oe, the dissipation of the oscillator is amplitude-independent, characteristic of a linear, non-hysteretic regime. Above threshold,dissipation increases with amplitude, reflecting the depinning and hysteretic motion of flux lines. The threshold AC field is an order of magnitude higher than that measured for the same YBCO material via AC susceptometry in a uniform DC magnetic field, A partial lock-in of flux lines between YBCO ab planes is proposed as the mechanism for the substantial increase of the depinning threshold.

  4. Magnetically levitated space elevator to low-earth orbit.

    SciTech Connect

    Hull, J. R.; Mulcahy, T. M.

    2001-07-02

    The properties of currently available NbTi superconductor and carbon-fiber structural materials enable the possibility of constructing a magnetically levitated space elevator from the earth's surface up to an altitude of {approx} 200 km. The magnetic part of the elevator consists of a long loop of current-carrying NbTi, composed of one length that is attached to the earth's surface in an east-west direction and a levitated-arch portion. The critical current density of NbTi is sufficiently high that these conductors will stably levitate in the earth's magnetic field. The magnetic self-field from the loop increases the levitational force and for some geometries assists levitational stability. The 200-km maximum height of the levitated arch is limited by the allowable stresses of the structural material. The loop is cryogenically cooled with helium, and the system utilizes intermediate pumping and cooling stations along both the ground and the levitated portion of the loop, similar to other large terrestrial cryogenic systems. Mechanically suspended from the basic loop is an elevator structure, upon which mass can be moved between the earth's surface and the top of the loop by a linear electric motor or other mechanical or electrical means. At the top of the loop, vehicles may be accelerated to orbital velocity or higher by rocket motors, electromagnetic propulsion, or hybrid methods.

  5. The Inductrack Approach to Magnetic Levitation

    SciTech Connect

    Post, R.F.; Ryutov, D.D.

    2000-04-19

    Concepts developed during research on passive magnetic bearing systems at the Lawrence Livermore National Laboratory gave rise to a new approach to magnetic levitation, the Inductrack. A passive induced-current system employing permanent magnets on the moving vehicle, the Inductrack maximizes levitation forces by a combination of two elements. First, the permanent magnets on the vehicle are arranged in a ''Halbach array,'' a magnet configuration that optimally produces a periodic magnetic field below the array, while canceling the field above the array. Second, the track is made up of close-packed shorted electrical circuits. These circuits couple optimally to the magnetic field of the Halbach array. As a result, levitating forces of order 40 metric tonnes per square meter of Halbach array can be generated, using NdFeB magnets whose weight is a few percent of the levitated weight. Being an induced-current system, the levitation requires motion of the vehicle above a low transition speed. For maglev applications this speed is a few kilometers per hour, walking speed. At rest or in the station auxiliary wheels are needed. The Inductrack is thus fail-safe, that is, drive system failure would only result in the vehicle slowing down and finally settling on its auxiliary wheels. On the basis of theoretical analyses a small model vehicle and a 20-meter-long track was built and tested at speeds of order 12 meters per second. A second model, designed to achieve 10-g acceleration levels and much higher speeds, is under construction under NASA sponsorship, en route to the design of maglev-based launchers for rockets. Some of the presently perceived practical problems of implementing full-scale maglev systems based on the Inductrack concept will be discussed.

  6. Experimental study of streaming flows associated with ultrasonic levitators

    NASA Astrophysics Data System (ADS)

    Trinh, E. H.; Robey, J. L.

    1994-11-01

    Steady-state acoustic streaming flow patterns have been observed during the operation of a variety of resonant single-axis ultrasonic levitators in a gaseous environment and in the 20-37 kHz frequency range. Light sheet illumination and scattering from smoke particles have revealed primary streaming flows which display different characteristics at low and high sound pressure levels. Secondary macroscopic streaming cells around levitated samples are superimposed on the primary streaming flow pattern generated by the standing wave. These recorded flows are quite reproducible, and are qualitatively the same for a variety of levitator physical geometries. An onset of flow instability can also be recorded in nonisothermal systems, such as levitated spot-heated samples when the resonance conditions are not exactly satisfied. A preliminary qualitative interpretation of these experimental results is presented in terms of the superposition of three discrete sets of circulation cells operating on different spatial scales. These relevant length scales are the acoustic wavelength, the levitated sample size, and finally the acoustic boundary layer thickness. This approach fails, however, to explain the streaming flow-field morphology around liquid drops levitated on Earth. Observation of the interaction between the flows cells and the levitated samples also suggests the existence of a steady-state torque induced by the streaming flows.

  7. A levitation instrument for containerless study of molten materials

    NASA Astrophysics Data System (ADS)

    Nordine, Paul C.; Merkley, Dennis; Sickel, Jeffrey; Finkelman, Steve; Telle, Rainer; Kaiser, Arno; Prieler, Robert

    2012-12-01

    A new aero-acoustic levitation instrument (AAL) has been installed at the Institute for Mineral Engineering at RWTH University in Aachen, Germany. The AAL employs acoustically stabilized gas jet levitation with laser-beam heating and melting to create a contact-free containerless environment for high temperature materials research. Contamination-free study of liquids is possible at temperatures in excess of 3000 °C and of undercooled liquids at temperatures far below the melting point. Digital control technology advances the art of containerless experiments to obtain long-term levitation stability, allowing new experiments in extreme temperature materials research and to study operation of the levitation instrument itself. Experiments with liquid Al2O3 at temperatures more than 3200 °C, 1200 °C above the melting point, and with liquid Y3Al5O12 far below the melting point are reported. Fast pyrometry and video recording instruments yield crystallization rates in undercooled liquid Al2O3 as a function of temperature. Levitation of dense liquid HfO2 at temperatures above 2900 °C is demonstrated. Capabilities are described for resonant frequency matching in the three-axis acoustic positioning system, acoustic control of sample spin, and position control of standing wave nodes to stabilize levitation under changing experimental conditions. Further development and application of the levitation technology is discussed based on the results of experiments and modeling of instrument operations.

  8. A levitation instrument for containerless study of molten materials.

    PubMed

    Nordine, Paul C; Merkley, Dennis; Sickel, Jeffrey; Finkelman, Steve; Telle, Rainer; Kaiser, Arno; Prieler, Robert

    2012-12-01

    A new aero-acoustic levitation instrument (AAL) has been installed at the Institute for Mineral Engineering at RWTH University in Aachen, Germany. The AAL employs acoustically stabilized gas jet levitation with laser-beam heating and melting to create a contact-free containerless environment for high temperature materials research. Contamination-free study of liquids is possible at temperatures in excess of 3000 °C and of undercooled liquids at temperatures far below the melting point. Digital control technology advances the art of containerless experiments to obtain long-term levitation stability, allowing new experiments in extreme temperature materials research and to study operation of the levitation instrument itself. Experiments with liquid Al(2)O(3) at temperatures more than 3200 °C, 1200 °C above the melting point, and with liquid Y(3)Al(5)O(12) far below the melting point are reported. Fast pyrometry and video recording instruments yield crystallization rates in undercooled liquid Al(2)O(3) as a function of temperature. Levitation of dense liquid HfO(2) at temperatures above 2900 °C is demonstrated. Capabilities are described for resonant frequency matching in the three-axis acoustic positioning system, acoustic control of sample spin, and position control of standing wave nodes to stabilize levitation under changing experimental conditions. Further development and application of the levitation technology is discussed based on the results of experiments and modeling of instrument operations. PMID:23278026

  9. Simplified Rotation In Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Gaspar, M. S.; Trinh, E. H.

    1989-01-01

    New technique based on old discovery used to control orientation of object levitated acoustically in axisymmetric chamber. Method does not require expensive equipment like additional acoustic drivers of precisely adjustable amplitude, phase, and frequency. Reflecting object acts as second source of sound. If reflecting object large enough, close enough to levitated object, or focuses reflected sound sufficiently, Rayleigh torque exerted on levitated object by reflected sound controls orientation of object.

  10. Single mode levitation and translation

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Allen, James L. (Inventor)

    1988-01-01

    A single frequency resonance mode is applied by a transducer to acoustically levitate an object within a chamber. This process allows smooth movement of the object and suppression of unwanted levitation modes that would urge the object to a different levitation position. A plunger forms one end of the chamber, and the frequency changes as the plunger moves. Acoustic energy is applied to opposite sides of the chamber, with the acoustic energy on opposite sides being substantially 180 degrees out of phase.

  11. Electron spin control of optically levitated nanodiamonds in vacuum.

    PubMed

    Hoang, Thai M; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang

    2016-01-01

    Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics. PMID:27432560

  12. Electron spin control of optically levitated nanodiamonds in vacuum

    PubMed Central

    Hoang, Thai M.; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang

    2016-01-01

    Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin–optomechanical system for studying macroscopic quantum mechanics. PMID:27432560

  13. Magnetically levitated superconducting bearing

    SciTech Connect

    Weinberger, B.R.; Lynds, L. Jr.

    1993-10-26

    A magnetically levitated superconducting bearing includes a magnet mounted on a shaft that is rotatable around an axis of rotation and a Type II superconductor supported on a stator in proximity to the magnet. The superconductor is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet to produce an attractive force that levitates the magnet and supports a load on the shaft. The interaction between the superconductor and magnet also produces surface screening currents that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature. The bearing could also be constructed so the magnet is supported on the stator and the superconductor is mounted on the shaft. The bearing can be operated by cooling the superconductor to its superconducting state in the presence of a magnetic field. 6 figures.

  14. Dust Levitation and Transport Near Surfaces

    NASA Astrophysics Data System (ADS)

    Sickafoose, A. A.; Colwell, J. E.; Horanyi, M.; Robertson, S.

    2002-12-01

    There are many examples of active dust transport near surfaces in the solar system: dust grains suspended above the lunar surface, spokes observed in Saturn's rings, and recent images of infilled craters from the NEAR spacecraft at Eros. Electrostatic dust levitation and transport have also been theorized to occur on Mercury, asteroids, and comets. Dusty regoliths are produced by the interplanetary micrometeoroid flux on nearly all airless bodies in the solar system. Therefore, understanding dust charging, levitation, and dynamics above surfaces is important for interpreting remote sensing data and analyzing the evolution of most planetary surfaces. Objects in a plasma, such as planetary bodies in the solar wind, charge to a floating potential determined by the balance between charging currents in the local plasma environment. The primary charging currents are due to collection of electrons and ions from the plasma, photoemission, and secondary electron emission. When photoemission is the dominant charging process, a photoelectron sheath forms near the surface of the object. Positively charged particles released from the surface can levitate above the surface at a height where the gravitational force is balanced by the electric force. In cases where secondary electron emission and photoemission are weak, objects will become negatively charged due to electron collection and will be surrounded by a plasma sheath. Negatively charged dust grains from these surfaces can levitate in the electric field created by the plasma sheath. Dust levitation and transport near surfaces in the solar system is thought to be primarily due to the interaction between charged dust particles and a photoelectron or plasma sheath on the surface. We report the results of experiments on the levitation and transport of dust particles in an argon plasma sheath above a flat, conducting surface. Levitation experiments are performed using monodisperse polystyrene DVB microbeads. Transport

  15. Global analytical ab initio ground-state potential energy surface for the C((1)D)+H2 reactive system.

    PubMed

    Zhang, Chunfang; Fu, Mingkai; Shen, Zhitao; Ma, Haitao; Bian, Wensheng

    2014-06-21

    A new global ab initio potential energy surface (called ZMB-a) for the 1(1)A' state of the C((1)D)+H2 reactive system has been constructed. This is based upon ab initio calculations using the internally contracted multireference configuration interaction approach with the aug-cc-pVQZ basis set, performed at about 6300 symmetry unique geometries. Accurate analytical fits are generated using many-body expansions with the permutationally invariant polynomials, except that the fit of the deep well region is taken from our previous fit. The ZMB-a surface is unique in the accurate description of the regions around conical intersections (CIs) and of van der Waals (vdW) interactions. The CIs between the 1(1)A' and 2(1)A' states cause two kinds of barriers on the ZMB-a surface: one is in the linear H-CH dissociation direction with a barrier height of 9.07 kcal/mol, which is much higher than those on the surfaces reported before; the other is in the C((1)D) collinearly attacking H2 direction with a barrier height of 12.39 kcal/mol. The ZMB-a surface basically reproduces our ab initio calculations in the vdW interaction regions, and supports a linear C-HH vdW complex in the entrance channel, and two vdW complexes in the exit channel, at linear CH-H and HC-H geometries, respectively. PMID:24952535

  16. Dimensionless Analysis and Numerical Modeling of Rebalancing Phenomena During Levitation

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Shi, Zhe; Li, Donghui; McLean, Alexander; Chattopadhyay, Kinnor

    2016-06-01

    Electromagnetic levitation (EML) has proved to be a powerful tool for research activities in areas pertaining to materials physics and engineering. The customized EML setups in various fields, ranging from solidification to nanomaterial manufacturing, require the designing of stable levitation systems. Since the elevated droplet is opaque, the most effective way to research on EML is mathematical modeling. In the present study, a 3D model was built to investigate the rebalancing phenomenon causing instabilities during droplet melting. A mathematical model modified based on Hooke's law (spring) was proposed to describe the levitation system. This was combined with dimensionless analysis to investigate the generation of levitation forces as it will significantly affect the behavior of the spring model.

  17. Magnetic levitation of a flexible steel plate with a vibration suppressing magnet

    SciTech Connect

    Hayashiya, H.; Araki, N.; Paddison, J.E.; Ohsaki, H.; Masada, E.

    1996-09-01

    In the steel making process, the application of a magnetic levitation to the steel plate conveyance is expected. The advantages brought by introducing contactless support of a steel plate are improved quality of products, reduced maintenance cost of installations, increased productivity, and quieter operation. Here, a magnetic levitation system that has a vibration suppressing electromagnet which use only the velocity of the levitated object for the control has been studied. The proposed system has advantages of the stale levitation of a flexible steel plate which moves with time under the fixed electromagnets. The simulation of levitated plate`s response using finite element method and the magnetic levitation experiments using such a vibration suppressing magnet were carried out. The results show the vibration suppressing magnet is able to control the low frequency natural vibration effectively, and a notch filter is able to avoid the excitation of the high frequency natural vibration.

  18. Electromagnetic Levitation of a Disc

    ERIC Educational Resources Information Center

    Valle, R.; Neves, F.; de Andrade, R., Jr.; Stephan, R. M.

    2012-01-01

    This paper presents a teaching experiment that explores the levitation of a disc of ferromagnetic material in the presence of the magnetic field produced by a single electromagnet. In comparison to the classical experiment of the levitation of a sphere, the main advantage of the proposed laboratory bench is that the uniform magnetic field…

  19. Aerodynamic levitator for large-sized glassy material production.

    PubMed

    Yoda, Shinichi; Cho, Won-Seung; Imai, Ryoji

    2015-09-01

    Containerless aerodynamic levitation processing is a unique technology for the fabrication of bulk non-crystalline materials. Using conventional aerodynamic levitation, a high reflective index (RI) material (BaTi2O5 and LaO3/2-TiO2-ZrO2 system) was developed with a RI greater than approximately 2.2, which is similar to that of diamond. However, the glass size was small, approximately 3 mm in diameter. Therefore, it is essential to produce large sized materials for future optical materials applications, such as camera lenses. In this study, a new aerodynamic levitator was designed to produce non-crystalline materials with diameters larger than 6 mm. The concept of this new levitator was to set up a reduced pressure at the top of the molten samples without generating turbulent flow. A numerical simulation was also performed to verify the concept. PMID:26429456

  20. Experience on a cryogenic linear mechanism based on superconducting levitation

    NASA Astrophysics Data System (ADS)

    Serrano-Tellez, Javier; Romera-Juarez, Fernando; González-de-María, David; Lamensans, Mikel; Argelaguet-Vilaseca, Heribert; Pérez-Díaz, José-Luis; Sánchez-Casarrubios, Juan; Díez-Jiménez, Efrén.; Valiente-Blanco, Ignacio

    2012-09-01

    The instrumentation of many space missions requires operation in cryogenic temperatures. In all the cases, the use of mechanisms in this environment is a matter of concern, especially when long lifetime is required. With the aim of removing lifetime concerns and to benefit from the cryogenic environment, a cryogenic contactless linear mechanism has been developed. It is based on the levitation of a permanent magnet over superconductor disks. The mechanism has been designed, built, and tested to assess the performances of such technology. The levitation system solves the mechanical contact problems due to cold-welding effects, material degradation by fatigue, wearing, backlash, lubrication...etc, at cryogenic temperatures. In fact, the lower is the temperature the better the superconductor levitation systems work. The mechanism provides a wide stroke (18mm) and high resolution motion (1μm), where position is controlled by changing the magnetic field of its environment using electric-magnets. During the motion, the moving part of the mechanism levitates supported by the magnetic interaction with the high temperature type II superconductors after reaching the superconductor state down to 90K. This paper describes the results of the complete levitation system development, including extensive cryogenic testing to measure optically the motion range, resolution, run-outs and rotations in order to characterize the levitation mechanism and to verify its performance in a cryogenic environment.

  1. Design and initial 1D radiography tests of the FANTOM mobile fast-neutron radiography and tomography system

    NASA Astrophysics Data System (ADS)

    Andersson, P.; Valldor-Blücher, J.; Andersson Sundén, E.; Sjöstrand, H.; Jacobsson-Svärd, S.

    2014-08-01

    The FANTOM system is a tabletop sized fast-neutron radiography and tomography system newly developed at the Applied Nuclear Physics Division of Uppsala University. The main purpose of the system is to provide time-averaged steam-and-water distribution measurement capability inside the metallic structures of two-phase test loops for light water reactor thermal-hydraulic studies using a portable fusion neutron generator. The FANTOM system provides a set of 1D neutron transmission data, which may be inserted into tomographic reconstruction algorithms to achieve a 2D mapping of the steam-and-water distribution. In this paper, the selected design of FANTOM is described and motivated. The detector concept is based on plastic scintillator elements, separated for spatial resolution. Analysis of pulse heights on an event-to-event basis is used for energy discrimination. Although the concept allows for close stacking of a large number of detector elements, this demonstrator is equipped with only three elements in the detector and one additional element for monitoring the yield from the neutron generator. The first measured projections on test objects of known configurations are presented. These were collected using a Sodern Genie 16 neutron generator with an isotropic yield of about 1E8 neutrons per second, and allowed for characterization of the instrument's capabilities. At an energy threshold of 10 MeV, the detector offered a count rate of about 500 cps per detector element. The performance in terms of spatial resolution was validated by fitting a Gaussian Line Spread Function to the experimental data, a procedure that revealed a spatial unsharpness in good agreement with the predicted FWHM of 0.5 mm.

  2. Characterization of Acousto-Electric Cluster and Array Levitation and its Application to Evaporation

    NASA Technical Reports Server (NTRS)

    Robert E. Apfel; Zheng, Yibing

    2000-01-01

    An acousto-electric levitator has been developed to study the behavior of liquid drop and solid particle clusters and arrays. Unlike an ordinary acoustic levitator that uses only a standing acoustic wave to levitate a single drop or particle, this device uses an extra electric static field and the acoustic field simultaneously to generate and levitate charged drops in two-dimensional arrays in air without any contact to a solid surface. This cluster and array generation (CAG) instrument enables us to steadily position drops and arrays to study the behavior of multiple drop and particle systems such as spray and aerosol systems relevant to the energy, environmental, and material sciences.

  3. Vibration converter with magnetic levitation

    NASA Astrophysics Data System (ADS)

    Gladilin, A. V.; Pirogov, V. A.; Golyamina, I. P.; Kulaev, U. V.; Kurbatov, P. A.; Kurbatova, E. P.

    2015-05-01

    The paper presents a mathematical model, the results of computational and theoretical research, and the feasibility of creating a vibration converter with full magnetic levitation in the suspension of a high-temperature superconductor (HTSC). The axial and radial stability of the active part of the converter is provided by the interaction of the magnetic field of ring-shaped permanent magnets and a hollow cylinder made of the ceramic HTSC material. The force is created by a system of current-carrying coils whose magnetic field is polarized by permanent magnets and interacts with induced currents in the superconducting cylinder. The case of transition to the superconducting state of HTSC material in the field of the permanent magnets (FC mode) is considered. The data confirm the outlook for the proposed technical solutions.

  4. Densitometry By Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene H.

    1989-01-01

    "Static" and "dynamic" methods developed for measuring mass density of acoustically levitated solid particle or liquid drop. "Static" method, unknown density of sample found by comparison with another sample of known density. "Dynamic" method practiced with or without gravitational field. Advantages over conventional density-measuring techniques: sample does not have to make contact with container or other solid surface, size and shape of samples do not affect measurement significantly, sound field does not have to be know in detail, and sample can be smaller than microliter. Detailed knowledge of acoustic field not necessary.

  5. Magnetic Levitation Experiments with the Electrodynamic Wheel

    NASA Astrophysics Data System (ADS)

    Cordrey, Vincent; Gutarra-Leon, Angel; Gaul, Nathan; Majewski, Walerian

    Our experiments explored inductive magnetic levitation using circular Halbach arrays with the strong variable magnetic field on the outer rim of the ring. Such a system is usually called an Electrodynamic Wheel (EDW). Rotating this wheel around a horizontal axis above a flat conducting surface should induce eddy currents in said surface through the variable magnetic flux. The eddy currents produce, in turn, their own magnetic fields which interact with the magnets of the EDW. We constructed two Electrodynamic Wheels with different diameters and demonstrated that the magnetic interactions produce both lift and drag forces on the EDW which can be used for levitation and propulsion of the EDW. The focus of our experiments is the direct measurement of lift and drag forces to compare with theoretical models using wheels of two different radii. Supported by Grants from the Virginia Academy of Science, Society of Physics Students, Virginia Community College System, and the NVCC Educational Foundation.

  6. The effects of magnetization process on levitation characteristics of a superconducting bulk magnet

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Gong, Y. M.; Li, Y. H.; Liang, G.; Yang, X. S.; Cheng, C. H.; Zhao, Y.

    2015-09-01

    In this paper, a bulk YBCO superconductor was magnetized in a chosen magnetic field generated from a superconducting magnet (SM) after field cooling process. The effects of magnetization process with different magnetization intensities on levitation forces and relaxation characteristics were investigated. From the results, it can be confirmed that the superconducting bulk magnet (SBM) magnetized with proper magnetization intensity was beneficial to improve the levitation characteristics of the magnetic levitation system. Nevertheless, when the magnetization intensity exceeded 0.85T, the levitation forces and the relaxation characteristics of the SBM attained saturation.

  7. Leidenfrost levitated liquid tori

    NASA Astrophysics Data System (ADS)

    Perrard, Stéphane; Labousse, Matthieu; Fort, Emmanuel; Bush, John; Couder, Yves; Limat, Laurent

    2012-11-01

    A drop of water deposited on a surface hotter than 150°C can levitate without any contact with a solid container. Indeed the evaporation of the fluid generates a thin vapour film, which supports the drop's weight by lubrication forces (Leidenfrost effect). This effect was until now limited to droplets. We propose here an original substrate geometry, a circular brass through, that allows us to maintain in levitation any quantity of fluid. It could be a good tool to study wave propagation without solid boundary condition and thus very low friction. We report here one possible application, and our most striking observation : when the substrate temperature is high enough, convective motion appears in the liquid torus and its inner side becomes polygonal. This periodic deformation of large amplitude propagates along the azimuthal direction. The geometry, the flow and the shape appear very similar to the polygonal destabilization of an hydraulic jump. We propose here an experimental and theorical characterization of these rotating polygons having from three to twelve sides. Moreover, we have found a model describing the shape for any number of sides. It appears closely related to the Korteweg de Vries equation describing the propagation of solitonic waves in shallow water.

  8. Levitated micro-accelerometer.

    SciTech Connect

    Warne, Larry Kevin; Schmidt, Carrie Frances; Peterson, Kenneth Allen; Kravitz, Stanley H.; Renn, Rosemarie A.; Peter, Frank J.; Kinney, Ragon D.; Gilkey, Jeffrey C.

    2004-06-01

    The objective is a significant advancement in the state-of-the-art of accelerometer design for tactical grade (or better) applications. The design goals are <1 milli-G bias stability across environments and $200 cost. This quantum leap in performance improvement and cost reduction can only be achieved by a radical new approach, not incremental improvements to existing concepts. This novel levitated closed-loop accelerometer is implemented as a hybrid micromachine. The hybrid approach frees the designer from the limitations of any given monolithic process and dramatically expands the available design space. The design can be tailored to the dynamic range, resolution, bandwidth, and environmental requirements of the application while still preserving all of the benefits of monolithic MEMS fabrication - extreme precision, small size, low cost, and low power. An accelerometer was designed and prototype hardware was built, driving the successful development and refinement of several 'never been done before' fabrication processes. Many of these process developments are commercially valuable and are key enablers for the realization of a wide variety of useful micro-devices. While controlled levitation of a proof mass has yet to be realized, the overall design concept remains sound. This was clearly demonstrated by the stable and reliable closed-loop control of a proof mass at the test structure level. Furthermore, the hybrid MEMS implementation is the most promising approach for achieving the ambitious cost and performance targets. It is strongly recommended that Sandia remain committed to the original goal.

  9. Aerodynamic levitation : an approach to microgravity.

    SciTech Connect

    Glorieux, B.; Saboungi, M.-L.; Millot, F.; Enderby, J.; Rifflet, J.-C.

    2000-12-05

    Measurements of the thermophysical and structural properties of liquid materials at high temperature have undergone considerable development in the past few years. Following improvements in electromagnetic levitation, aerodynamic levitation associated with laser heating has shown promise for assessing properties of different molten materials (metals, oxides, and semiconductors), preserving sample purity over a wide range of temperatures and under different gas environments. The density, surface tension and viscosity are measured with a high-speed video camera and an image analysis system. Results on nickel and alumina show that small droplets can be considered in the first approximation to be under microgravity conditions. Using a non-invasive contactless technique recently developed to measure electrical conductivity, results have been extended to variety of materials ranging from liquid metals and liquid semiconductors to ionically conducting materials. The advantage of this technique is the feasibility of monitoring changes in transport occurring during phase transitions and in deeply undercooled states.

  10. Cavity cooling a single charged levitated nanosphere.

    PubMed

    Millen, J; Fonseca, P Z G; Mavrogordatos, T; Monteiro, T S; Barker, P F

    2015-03-27

    Optomechanical cavity cooling of levitated objects offers the possibility for laboratory investigation of the macroscopic quantum behavior of systems that are largely decoupled from their environment. However, experimental progress has been hindered by particle loss mechanisms, which have prevented levitation and cavity cooling in a vacuum. We overcome this problem with a new type of hybrid electro-optical trap formed from a Paul trap within a single-mode optical cavity. We demonstrate a factor of 100 cavity cooling of 400 nm diameter silica spheres trapped in vacuum. This paves the way for ground-state cooling in a smaller, higher finesse cavity, as we show that a novel feature of the hybrid trap is that the optomechanical cooling becomes actively driven by the Paul trap, even for singly charged nanospheres. PMID:25860743

  11. Levitation forces in bearingless permanent magnet motors

    SciTech Connect

    Amrhein, W.; Silber, S.; Nenninger, K.

    1999-09-01

    Bearingless motors combine brushless AC-motors with active magnetic bearings by the integration of two separate winding systems (torque and radial levitation force windings with different pole pairs) in one housing. This paper gives an insight into the influences of the motor design on the levitation force and torque generation. It is shown that especially for machines with small air gaps it can be very important to choose the right design parameters. Increasing the permanent magnet height in order to increase the motor torque can result in a remarkable reduction of radial forces. The interrelationships are discussed on the basis of Maxwell and Lorentz forces acting upon the stator surface. The investigations are presented for a bearingless low cost motor, suited for pump, fan or blower applications. The presented motor needs only four coils for operation.

  12. Safety of high speed magnetic levitation transportation systems. Comparison of US and foreign safety requirements for application to US maglev systems. Final report, April 1991-August 1993

    SciTech Connect

    Bing, A.J.; Parker, J.D.; Pristach, G.S.; Behara, C.; Gabriel, D.

    1993-09-01

    The use of magnetically levitated (maglev) vehicles for high-speed guided ground transportation has been proposed for passenger operations in the United States. As a result, a need exists for the assessment for the safety implications of this new form of technology to ensure passenger safety. This report contains the results of a detailed review of safety requirements to evaluate their suitability to maglev operations in the U.S. environment.

  13. Microwave Dielectrophoretic Levitation In Microgravity

    NASA Technical Reports Server (NTRS)

    Watkins, John L.; Jackson, Henry W.; Barmatz, Martin B.

    1993-01-01

    Two reports propose use of dielectrophoresis in microwave resonant cavities to levitate samples of materials for containerless processing in microgravity in vacuum or in any suitable atmosphere. Also describe experiments undertaken to verify feasibility of proposal.

  14. The Existence of Weak &#x1D49F;-Pullback Exponential Attractor for Nonautonomous Dynamical System

    PubMed Central

    Li, Yongjun; Wei, Xiaona; Zhang, Yanhong

    2016-01-01

    First, for a process {U(t, τ)∣t ≥ τ}, we introduce a new concept, called the weak &#x1D49F;-pullback exponential attractor, which is a family of sets {ℳ(t)∣t ≤ T}, for any T ∈ ℝ, satisfying the following: (i) ℳ(t) is compact, (ii) ℳ(t) is positively invariant, that is, U(t, τ)ℳ(τ) ⊂ ℳ(t), and (iii) there exist k, l > 0 such that dist(U(t, τ)B(τ), ℳ(t)) ≤ ke −(t−τ); that is, ℳ(t) pullback exponential attracts B(τ). Then we give a method to obtain the existence of weak &#x1D49F;-pullback exponential attractors for a process. As an application, we obtain the existence of weak &#x1D49F;-pullback exponential attractor for reaction diffusion equation in H 0 1 with exponential growth of the external force. PMID:27119090

  15. Vertical Magnetic Levitation Force Measurement on Single Crystal YBaCuO Bulk at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Celik, Sukru; Guner, Sait Baris; Ozturk, Kemal; Ozturk, Ozgur

    Magnetic levitation force measurements of HTS samples are performed with the use of liquid nitrogen. It is both convenient and cheap. However, the temperature of the sample cannot be changed (77 K) and there is problem of frost. So, it is necessary to build another type of system to measure the levitation force high Tc superconductor at different temperatures. In this study, we fabricated YBaCuO superconducting by top-seeding-melting-growth (TSMG) technique and measured vertical forces of them at FC (Field Cooling) and ZFC (Zero Field Cooling) regimes by using our new designed magnetic levitation force measurement system. It was used to investigate the three-dimensional levitation force and lateral force in the levitation system consisting of a cylindrical magnet and a permanent cylindrical superconductor at different temperatures (37, 47, 57, 67 and 77 K).

  16. Magnetic levitation technology and transportation strategies

    SciTech Connect

    Not Available

    1990-01-01

    This book contains the following topics: Benefits of magnetically levitated high speed transportation for the United States. Monorail MagLev, HSST magnetic levitation trains, past, present and future, a national vision for MagLev transit in America.

  17. Magnetic levitation transport of mining products. Report of investigations/1995

    SciTech Connect

    Geraghty, J.J.; Wright, W.E.; Lombardi, J.A.

    1995-07-01

    U.S. Bureau of Mines researchers have developed innovative magnetic levitation (mag-lev) technology that allows for noncontact, frictionless conveyance of materials within a dedicated transit corridor. A transport system incorporating this technology could improve the safety and reduce the cost of underground mining and materials handling. The mag-lev transport technology uses two types of permanent magnets. An array of neodymium-iron-boron magnets is contained in the base of each levitated materials container, and an array of ceramic-5 magnets lines the bottom of the transit corridor. The orientation of the magnets is such that the two arrays repel each other. An electronic position control system, located on the levitated materials containers, overcomes the inherent lateral instability of the repelling magnet arrays.

  18. Coil optimization for electromagnetic levitation using a genetic like algorithm

    NASA Astrophysics Data System (ADS)

    Royer, Z. L.; Tackes, C.; LeSar, R.; Napolitano, R. E.

    2013-06-01

    The technique of electromagnetic levitation (EML) provides a means for thermally processing an electrically conductive specimen in a containerless manner. For the investigation of metallic liquids and related melting or freezing transformations, the elimination of substrate-induced nucleation affords access to much higher undercooling than otherwise attainable. With heating and levitation both arising from the currents induced by the coil, the performance of any EML system depends on controlling the balance between lifting forces and heating effects, as influenced by the levitation coil geometry. In this work, a genetic algorithm is developed and utilized to optimize the design of electromagnetic levitation coils. The optimization is targeted specifically to reduce the steady-state temperature of the stably levitated metallic specimen. Reductions in temperature of nominally 70 K relative to that obtained with the initial design are achieved through coil optimization, and the results are compared with experiments for aluminum. Additionally, the optimization method is shown to be robust, generating a small range of converged results from a variety of initial starting conditions. While our optimization criterion was set to achieve the lowest possible sample temperature, the method is general and can be used to optimize for other criteria as well.

  19. Experimental determination of the dynamics of an acoustically levitated sphere

    SciTech Connect

    Pérez, Nicolás; Andrade, Marco A. B.; Canetti, Rafael; Adamowski, Julio C.

    2014-11-14

    Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.

  20. Nanomagnetic Levitation 3-D Cultures of Breast and Colorectal Cancers

    PubMed Central

    Bumpers, Harvey L.; Janagama, Dasharatham G.; Manne, Upender; Basson, Marc D.; Katkoori, Venkat

    2014-01-01

    Background Innovative technologies for drug discovery and development, cancer models, stem cell research, tissue engineering, and drug testing in various cell-based platforms require an application similar to the in vivo system. Materials and Methods We developed for the first time nanomagnetically levitated three dimensional (3-D) cultures of breast cancer (BC) and colorectal cancer (CRC) cells using carbon encapsulated cobalt magnetic nanoparticles. BC and CRC xenografts grown in severe combined immunodeficient (SCID) mice were evaluated for N-cadherin and Epidermal growth factor receptor (EGFR) expressions. These phenotypes were compared with 2-D cultures and 3-D cultures grown in a gel matrix. Results The BC and CRC cells grown by magnetic levitation formed microtissues. The levitated cultures had high viability and were maintained in culture for long periods of time. It has been observed that N-cadherin and EGFR activities were highly expressed in the levitated 3-D tumor spheres and xenografts of CRC and BC cells. Conclusions Nanomagnetically levitated 3-D cultures tend to form stable microtissues of BC and CRC and may be more feasible for a range of applications in drug discovery or regenerative medicine. PMID:25617973

  1. Experimental determination of the dynamics of an acoustically levitated sphere

    NASA Astrophysics Data System (ADS)

    Pérez, Nicolás; Andrade, Marco A. B.; Canetti, Rafael; Adamowski, Julio C.

    2014-11-01

    Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.

  2. Controlling charge on levitating drops.

    PubMed

    Hilger, Ryan T; Westphall, Michael S; Smith, Lloyd M

    2007-08-01

    Levitation technologies are used in containerless processing of materials, as microscale manipulators and reactors, and in the study of single drops and particles. Presented here is a method for controlling the amount and polarity of charge on a levitating drop. The method uses single-axis acoustic levitation to trap and levitate a single, initially neutral drop with a diameter between 400 microm and 2 mm. This drop is then charged in a controllable manner using discrete packets of charge in the form of charged drops produced by a piezoelectric drop-on-demand dispenser equipped with a charging electrode. The magnitude of the charge on the dispensed drops can be adjusted by varying the voltage applied to the charging electrode. The polarity of the charge on the added drops can be changed allowing removal of charge from the trapped drop (by neutralization) and polarity reversal. The maximum amount of added charge is limited by repulsion of like charges between the drops in the trap. This charging scheme can aid in micromanipulation and the study of charged drops and particles using levitation. PMID:17580951

  3. Modeling and experimental study on near-field acoustic levitation by flexural mode.

    PubMed

    Liu, Pinkuan; Li, Jin; Ding, Han; Cao, Wenwu

    2009-12-01

    Near-field acoustic levitation (NFAL) has been used in noncontact handling and transportation of small objects to avoid contamination. We have performed a theoretical analysis based on nonuniform vibrating surface to quantify the levitation force produced by the air film and also conducted experimental tests to verify our model. Modal analysis was performed using ANSYS on the flexural plate radiator to obtain its natural frequency of desired mode, which is used to design the measurement system. Then, the levitation force was calculated as a function of levitation distance based on squeeze gas film theory using measured amplitude and phase distributions on the vibrator surface. Compared with previous fluid-structural analyses using a uniform piston motion, our model based on the nonuniform radiating surface of the vibrator is more realistic and fits better with experimentally measured levitation force. PMID:20040404

  4. Spontaneous and nonphotochemical laser-induced nucleation in levitated supersaturated microdroplets

    NASA Astrophysics Data System (ADS)

    Fang, Ke

    Research of nucleation in levitated supersaturated microdroplets was conducted in this dissertation. An unconventional crystallization system, levitated microdroplets, was utilized in this research. The microdroplet was levitated by an electrodynamic balance (EDB) constructed inside a vacuum chamber. EDB has the advantage of creating a containerless environment for the crystallization system. Spontaneous nucleation in levitated microdroplets was investigated. Spontaneous nucleation of aqueous microdroplets was caused by reducing the ambient relative humidity (RH) surrounding the solution droplets. Different polymorphs of glutaric acid and malonic acid are nucleated in levitated microdroplets when injected into a chamber maintained at different initial RH values. Effect of surfactant as additive is also investigated. A site-dependent evaporation-driven crystallization theory is established to explain the spontaneous nucleation phenomena in levitated aqueous microdroplets. Levitated microdroplets containing a solute and an organic solvent were also investigated. The crystallization behavior of glutaric acid methanol solutions and ethanol solutions was observed. ROY, a deca-polymorphic compound, was also studied from its DMSO solution microdroplets. Non-photochemical laser induced nucleation (NPLIN) was observed in levitated microdroplets of supersaturated potassium chloride (KCl) aqueous solution. A focused green (532 nm) pulsed laser with 1 ns pulse width was used to induce nucleation. Nucleation of levitated KCl microdroplet with high supersaturation was observed upon laser irradiation. A laser-induced charge loss phenomenon was also observed. A hypothesis of laser-induced electrostriction and corona discharge is discussed. Analysis with classical nucleation theory suggests that the NPLIN results in levitated microdroplets are consistent with previously published data on bulk samples.

  5. On the value of including x-component data in 1D modeling of electromagnetic data from helicopterborne time domain systems in horizontally layered environments

    NASA Astrophysics Data System (ADS)

    Kirkegaard, Casper; Foged, Nikolaj; Auken, Esben; Christiansen, Anders Vest; Sørensen, Kurt

    2012-09-01

    Helicopter borne time domain EM systems historically measure only the Z-component of the secondary field, whereas fixed wing systems often measure all field components. For the latter systems the X-component is often used to map discrete conductors, whereas it finds little use in the mapping of layered settings. Measuring the horizontal X-component with an offset loop helicopter system probes the earth with a complementary sensitivity function that is very different from that of the Z-component, and could potentially be used for improving resolution of layered structures in one dimensional modeling. This area is largely unexplored in terms of quantitative results in the literature, since measuring and inverting X-component data from a helicopter system is not straightforward: The signal strength is low, the noise level is high, the signal is very sensitive to the instrument pitch and the sensitivity function also has a complex lateral behavior. The basis of our study is a state of the art inversion scheme, using a local 1D forward model description, in combination with experiences gathered from extending the SkyTEM system to measure the X component. By means of a 1D sensitivity analysis we motivate that in principle resolution of layered structures can be improved by including an X-component signal in a 1D inversion, given the prerequisite that a low-pass filter of suitably low cut-off frequency can be employed. In presenting our practical experiences with modifying the SkyTEM system we discuss why this prerequisite unfortunately can be very difficult to fulfill in practice. Having discussed instrumental limitations we show what can be obtained in practice using actual field data. Here, we demonstrate how the issue of high sensitivity towards instrument pitch can be overcome by including the pitch angle as an inversion parameter and how joint inversion of the Z- and X-components produces virtually the same model result as for the Z-component alone. We conclude that

  6. Containerless processing using electromagnetic levitation

    NASA Technical Reports Server (NTRS)

    Gokhale, A. B.; Abbaschian, R.

    1990-01-01

    The theory and practice of containerless processing via electromagnetic (EM) levitation is reviewed briefly. The use of EM levitation for the processing of alloys is described with particular emphasis on the bulk melt supercooling phenomenon in a containerless environment. The various effects associated with rapid solidification via bulk melt supercooling are discussed with examples of Nb-Si alloys. It is suggested that a detailed analysis of such effects can be utilized to select the potentially most promising alloys for future space-based processing.

  7. Optical sample-position sensing for electrostatic levitation

    NASA Technical Reports Server (NTRS)

    Sridharan, G.; Chung, S.; Elleman, D.; Whim, W. K.

    1989-01-01

    A comparative study is conducted for optical position-sensing techniques applicable to micro-G conditions sample-levitation systems. CCD sensors are compared with one- and two-dimensional position detectors used in electrostatic particle levitation. In principle, the CCD camera method can be improved from current resolution levels of 200 microns through the incorporation of a higher-pixel device and more complex digital signal processor interface. Nevertheless, the one-dimensional position detectors exhibited superior, better-than-one-micron resolution.

  8. Effect of permanent-magnet irregularities in levitation force measurements.

    SciTech Connect

    Hull, J. R.

    1999-10-14

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a nonnegligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analog of Earnshaw's theorem, in which at the field-cooling position the vertical stiffness is equal to the sum of the horizontal stiffnesses, independent of angular distribution of magnetic moments within the PM.

  9. On the efficiency of 1D atom localisation via EIT in a degenerate two-level atomic system

    NASA Astrophysics Data System (ADS)

    Dimitrijević, Jelena; Arsenović, Dušan; Jelenković, Branislav M.

    2016-04-01

    We analyse one-dimensional (1D) subwavelength atom localisation in a cold atomic medium under the action of two optical fields, the standing-wave and travelling probe fields, in the presence of a magnetic field. Optical Bloch equations are solved numerically for the hyperfine atomic transition {{F}g}=2\\to {{F}e}=1 of the 87Rb D1 line. All Zeeman sublevels are included in the calculations. This atomic scheme allows electromagnetically induced transparency (EIT) if the applied magnetic field is zero or small. The results for the position-dependent probe absorption are presented for two configurations, depending on the orientation of the magnetic field with respect to the optical fields’ polarisations. The efficiency of the atom localisation is analysed for a large range of field intensities and applied magnetic fields. The observed behaviour of the probe absorption is analysed through the effects of EIT induced by two fields of various strengths and its dependence on the applied magnetic fields.

  10. Cu_2(1,4-diazacycloheptane)_2Cl_4: a Quasi-1D S=1/2 Spin Liquid System

    NASA Astrophysics Data System (ADS)

    Hammar, P. R.; Broholm, C.; Reich, D. H.; Trouw, F.

    1996-03-01

    The material Cu_2(1,4-diazacycloheptane)_2Cl4 consists of well-separated double chains of Cu atoms, whose structure suggests the possibility of significant antiferromagnetic next-nearest-neighbor interactions(B. Chiari, et al., Inorg. Chem 29), 1172 (1990).. We report on measurements of magnetic susceptibility, \\chi(H,T), heat capacity, C_p(T), and neutron scattering that show that this material has a singlet ground state and a gap to spin-carrying excitations. \\chi(H=0,T) shows a broad peak at T_Peak = 8K indicative of 1D antiferromagnetic correlations. Below the peak, \\chi drops dramatically towards zero. For T << T_Peak, \\chi(H)≈ 0 below a critical field HC = 6.6T and rises sharply above HC to a plateau at 8T. Below T_Peak, C_p(T) ∝ T-3/2exp(-Δ/T) with an activation energy Δ = 10K. Inelastic neutron scattering on powders shows a gap of 0.8 meV and a magnetic bandwidth of 0.6 meV. Comparison of these data to predictions for S=1/2 spin ladders and next-near-neighbor chains will be discussed. Supported by NSF grants DMR93-02065 and DMR94-53362, DOE BES-Materials Science contract W-31-109-ENG-38 with IPNS-ANL, and by the David and Lucile Packard Foundation

  11. A 1-D dusty plasma photonic crystal

    SciTech Connect

    Mitu, M. L.; Ticoş, C. M.; Toader, D.; Banu, N.; Scurtu, A.

    2013-09-21

    It is demonstrated numerically that a 1-D plasma crystal made of micron size cylindrical dust particles can, in principle, work as a photonic crystal for terahertz waves. The dust rods are parallel to each other and arranged in a linear string forming a periodic structure of dielectric-plasma regions. The dispersion equation is found by solving the waves equation with the boundary conditions at the dust-plasma interface and taking into account the dielectric permittivity of the dust material and plasma. The wavelength of the electromagnetic waves is in the range of a few hundred microns, close to the interparticle separation distance. The band gaps of the 1-D plasma crystal are numerically found for different types of dust materials, separation distances between the dust rods and rod diameters. The distance between levitated dust rods forming a string in rf plasma is shown experimentally to vary over a relatively wide range, from 650 μm to about 1350 μm, depending on the rf power fed into the discharge.

  12. Design and implementation of an efficient acoustically levitated drop reactor for in stillo measurements.

    PubMed

    Field, Christopher R; Scheeline, Alexander

    2007-12-01

    We present the details necessary for building an efficient acoustic drop levitator with reduced electrical power consumption and greater drop stability compared to previous designs. The system is optimized so that the levitated drop may be used as a chemical reactor. By introducing a temperature, pressure, and relative humidity sensor for feedback control of a linear actuator for adjusting resonator length, we have built a completely automated system capable of continuous levitation for extended periods of time. The result is a system capable of portable operation and interfacing with a variety of detection instrumentation for in stillo (in drop) measurements. PMID:18163744

  13. Longevity of duct tape in residential air distribution systems: 1-D, 2-D, and 3-D joints

    SciTech Connect

    Abushakra, Bass

    2002-05-30

    The aging tests conducted so far showed that duct tape tends to degrade in its performance as the joint it is applied to requires a geometrical description of a higher number of space dimensions (1-D, 2-D, 3-D). One-dimensional joints are the easiest to seal with duct tape, and thus the least to experience failure. Two-dimensional joints, such as the flexible duct core-to-collar joints tested in this study, are less likely to fail than three-dimensional collar-to-plenum joints, as the shrinkage could have a positive effect in tightening the joint. Three-dimensional joints are the toughest to seal and the most likely to experience failure. The 2-D flexible duct core-to-collar joints passed the six-month period of the aging test in terms of leakage, but with the exception of the foil-butyl tape, showed degradation in terms hardening, brittleness, partial peeling, shrinkage, wrinkling, delamination of the tape layers, flaking, cracking, bubbling, oozing and discoloration. The baking test results showed that the failure in the duct tape joints could be attributed to the type of combination of the duct tape and the material it is applied to, as the duct tape behaves differently with different substrates. Overall, the foil-butyl tape (Tape 4) had the best results, while the film tape (Tape 3) showed the most deterioration. The conventional duct tapes tested (Tape 1 and Tape 2) were between these two extremes, with Tape 2 performing better than Tape 1. Lastly, we found that plastic straps became discolored and brittle during the tests, and a couple of straps broke completely. Therefore, we recommend that clamping the duct-taped flexible core-to-collar joints should be done with metallic adjustable straps.

  14. Large gap magnetic suspension system

    NASA Technical Reports Server (NTRS)

    Abdelsalam, Moustafa K.; Eyssa, Y. M.

    1991-01-01

    The design of a large gap magnetic suspension system is discussed. Some of the topics covered include: the system configuration, permanent magnet material, levitation magnet system, superconducting magnets, resistive magnets, superconducting levitation coils, resistive levitation coils, levitation magnet system, and the nitrogen cooled magnet system.

  15. Diamagnetically stabilized levitation control of an intraluminal magnetic capsule.

    PubMed

    Lam, Michael; Mintchev, Martin

    2009-08-01

    Controlled navigation promotes full utilization of capsule endoscopy for reliable real-time diagnosis in the gastrointestinal (GI) tract, but intermittent natural peristalsis can disturb the navigational control, destabilize the capsule and take it out of levitation. The focus of the present work was to develop an economical and effective real-time magnetic capsule-guiding system that can operate in the presence of naturally existing peristalsis while retaining navigational control. A real-size magnetic navigation system that can handle peristaltic forces of up to 1.5 N was designed utilizing the computer-aided design (CAD) system Maxwell 3D (Ansoft, Pittsburg, PA) and was verified using a small-size physical experimental setup. The proposed system contains a pair of 50 cm diameter, 10,000-turn copper electromagnets with a 10 cm x 10 cm ferrous core driven by currents of up to 300 A and can successfully maintain position control over the levitating capsule during peristalsis. The addition of bismuth diamagnetic casing for stabilizing the levitating capsule was also studied. A modeled magnetic field around the diamagnetically cased permanent magnet was shown to be redistributed aligning its interaction with the external electromagnets, thus stabilizing the levitating capsule. In summary, a custom-designed diamagnetically facilitated capsule navigation system can successfully steer an intraluminal magnet-carrying capsule. PMID:19550023

  16. Magnetic levitation of condensed hydrogen

    NASA Technical Reports Server (NTRS)

    Paine, C. G.; Seidel, G. M.

    1991-01-01

    Liquid and solid molecular hydrogen has been levitated using a pair of small superconducting solenoids. The hydrogen samples, up to 3 mm in dimension, were trapped in a magnetic potential having either a discrete minimum or a minimum in the form of a ring 1 cm in diameter. The hydrogen could be moved about in the magnetic trap by applying an electric field.

  17. Digital Controller For Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Tarver, D. Kent

    1989-01-01

    Acoustic driver digitally controls sound fields along three axes. Allows computerized acoustic levitation and manipulation of small objects for such purposes as containerless processing and nuclear-fusion power experiments. Also used for controlling motion of vibration-testing tables in three dimensions.

  18. Microwave Levitation Of Small Objects

    NASA Technical Reports Server (NTRS)

    Watkins, John L.; Jackson, Henry W.

    1991-01-01

    Microwave radiation in resonant cavities used to levitate small objects, according to proposal. Feedback control and atmosphere not needed. Technique conceived for use in experiments on processing of materials in low gravitation of outer space, also used in normal Earth gravitation, albeit under some limitations.

  19. Levitation of liquid sodium droplets

    SciTech Connect

    Roy, S.S.; Cramb, A.W.; Hoburg, J.F.; Lally, B.

    1995-12-01

    Droplets of liquid sodium ranging from 1.2 to 2.1 g, immersed in mineral oil, were levitated in an electromagnetic field. The experimental setup was designed and constructed to levitate small metal droplets at audio frequencies. The levitated droplet was found to be very stable inside the inductor, and the equilibrium shape attained by the droplet in the electromagnetic field was measured during the experiment. A surface coupled mathematical model was used to calculate the self-consistent equilibrium droplet shape of liquid sodium under the influence of an electromagnetic field. The predicted shapes of the metal droplet and the position of the droplet inside the inductor compare well with the experimental data. The idea of casting metals and alloys without any physical contact has generated a lot of interest in the metals industry, especially in the production of metals/alloys that are highly reactive and have a very high melting point. Containerless casting can be achieved by levitating or pushing the liquid metal from the surface of the container.

  20. Vibrational Properties of High- Superconductors Levitated Above a Bipolar Permanent Magnetic Guideway

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Wang, Jiasu

    2014-05-01

    A bipolar permanent magnetic guideway (PMG) has a unique magnetic field distribution profile which may introduce a better levitation performance and stability to the high- superconducting (HTS) maglev system. The dynamic vibration properties of multiple YBCO bulks arranged into different arrays positioned above a bipolar PMG and free to levitate were investigated. The acceleration and resonance frequencies were experimentally measured, and the stiffness and damping coefficients were evaluated for dynamic stability. Results indicate that the levitation stiffness is closely related to the field-cooling-height and sample positioning. The damping ratio was found to be low and nonlinear for the Halbach bipolar HTS-PMG system.

  1. Magnetic levitation and stiffness in melt-textured Y-Ba-Cu-O

    SciTech Connect

    Hull, J.R.; Mulcahy, T.M. ); Salama, K.; Selvamanickam, V. ); Weinberger, B.R.; Lynds, L. )

    1992-09-01

    Magnetic levitation and stiffness have been measured in several systems composed of a permanent magnet elastically suspended above a stationary melt-textured sample of Y-Ba-Cu-O. The levitation force and vertical stiffness have been calculated on the basis of magnetization measurements of the same system, and the calculated results showed excellent agreement with the experimental measurements. Based on the force and magnetization measurements, it is predicted that the same Y-Ba-Cu-O material configured in a geometry suitable for magnetic bearings could produce a levitation pressure of 100--400 kPa at 20 K.

  2. On the horizontal wobbling of an object levitated by near-field acoustic levitation.

    PubMed

    Kim, Cheol-Ho; Ih, Jeong-Guon

    2007-11-01

    A circular planar object can be levitated with several hundreds of microns by ultrasonic near-field acoustic levitation (NFAL). However, when both the sound source and the levitated object are circularly shaped and the center of the levitated object does not coincide with the source center, instability problem often occurs. When this happens, it becomes difficult to pick up or transport the object for the next process. In this study, when the center of the levitated object was offset from the source center, the moving direction of the levitated object was predicted by using the time averaged potential around the levitated object. The wobbling frequency of the levitated object was calculated by analyzing the nonlinear wobbling motion of the object. It was shown that the predicted wobbling frequencies agreed with measured ones well. Finally, a safe zone was suggested to avoid the unstable movement of an object. PMID:17590402

  3. Controlling a class of chaotic quantum system under disturbances and noisy measurements: Application to 1D Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Aguilar-López, Ricardo; López-Pérez, Pablo A.; Lara-Cisneros, Gerardo; Femat, Ricardo

    2016-09-01

    In this paper, a robust nonlinear feedback control scheme with adaptive gain is proposed to control the chaotic behavior in a Bose-Einstein condensate (BEC). The control goal concerns the track or regulation purposes. The BEC system is represented as stochastic ordinary differential equations with measured output perturbed by Gaussian noise, which represents the nature of the quantum systems. The convergence of the BEC control law is analyzed under the frame of the Lyapunov stability theory. Numerical experiments show an adequate performance of the proposed methodology under the required conditions. The results are applicable when the shape of the condensate is sufficiently simple.

  4. Diamagnetically Levitating Three Phase Motor with Optical Feedback Control

    NASA Astrophysics Data System (ADS)

    Khanna, Shrey; Nhut Ho, Joe; Irwen, Jonathan; Chih Wang, Wei

    2010-11-01

    This article describes a feasibility study of creating a low friction, low maintenance power delivering motor using a diamagnetically stabilized levitating rotor. The planar rotor described in this article uses a triangular configuration of magnets that rotates due to nine electric coils evenly spaced around the rotor. The principle behind levitation of the rotor and the dynamic forces on it are described in detail. An optical encoder feedback system is designed and fabricated that controls the frequency of the levitating rotor. The current input to the coils is given through a driving circuit that amplifies a DC pulse signal generated by a control algorithm designed in LabVIEW. The driving circuit allows current to flow through one phase at a time, which produces a magnetic field strong enough to spin the rotor. Experiments suggest that the optical encoder feedback control system can do reference tracking on the levitating rotor. The designed control algorithm can drive the rotor to specified reference frequencies up to 1.3 Hz using the optical encoder measurements.

  5. The Electrostatic Levitation Facility at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rogers, Jan R.; Hyers, Robert W.; Savage, Larry; Robinson, Michael B.; Rathz, Thomas J.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Containerless processing is an important area of research in materials science. Electrostatic levitation (ESL) represents an emerging technology which permits containerless processing in a vacuum environment. NASA's Marshall Space Flight Center (MSFC) established a levitation facility to provide a critical resource to the microgravity materials science research community to continue and enhance ground-based research in the support of the development of flight experiments during the transition to Space Station. During ESL processing, charged specimens are levitated in the electrostatic field produced by the system's electrodes. Three sets of positioning electrodes represent the heart of the MSFC system. Two dual-axis position sensitive detectors provide input for the PID control-loop computer. Sample position is maintained by adjusting the control voltages for the power supplies of the positioning electrodes. A UV source refreshes the charge on specimens during processing via the photoelectric effect. Lasers permit sample heating independent of positioning. The processing chamber typically operates under vacuum condition approximately = 10(exp -7) Torr. Electrostatic levitation provides a materials science research tool for investigations of refractory solids and melts. Topics of investigation include thermophysical properties, phase equilibria, metastable phase formation, undercooling and nucleation, time-temperature-transformation diagrams and other aspects of materials processing. Current capabilities and recent results of processing studies for metals, alloys and oxides will be reviewed.

  6. Magnetic levitation using high temperature superconducting pancake coils as composite bulk cylinders

    NASA Astrophysics Data System (ADS)

    Patel, A.; Hopkins, S. C.; Baskys, A.; Kalitka, V.; Molodyk, A.; Glowacki, B. A.

    2015-11-01

    Stacks of superconducting tape can be used as composite bulk superconductors for both trapped field magnets and for magnetic levitation. Little previous work has been done on quantifying the levitation force behavior between stacks of tape and permanent magnets. This paper reports the axial levitation force properties of superconducting tape wound into pancake coils to act as a composite bulk cylinder, showing that similar stable forces to those expected from a uniform bulk cylinder are possible. Force creep was also measured and simulated for the system. The geometry tested is a possible candidate for a rotary superconducting bearing. Detailed finite element modeling in COMSOL Multiphysics was also performed including a full critical state model for induced currents, with temperature and field dependent properties and 3D levitation force models. This work represents one of the most complete levitation force modeling frameworks yet reported using the H-formulation and helps explain why the coil-like stacks of tape are able to sustain levitation forces. The flexibility of geometry and consistency of superconducting properties offered by stacks of tapes, make them attractive for superconducting levitation applications.

  7. Acoustic wave levitation: Handling of components

    NASA Astrophysics Data System (ADS)

    Vandaele, Vincent; Delchambre, Alain; Lambert, Pierre

    2011-06-01

    Apart from contact micromanipulation, there exists a large variety of levitation techniques among which standing wave levitation will be proposed as a way to handle (sub)millimetric components. This paper will compare analytical formulas to calculate the order of magnitude of the levitation force. It will then describe digital simulation and experimental levitation setup. Stable levitation of various components (cardboard, steel washer, ball, ceramic capacity, water droplet) was shown along 5 degrees of freedom: The only degree of freedom that could not be mastered was the rotation about the symmetry axis of the acoustic field. More importantly, the present work will show the modification of the orientation of the radial force component in the presence of an object disturbing the acoustic field. This property can be used as a new feeding strategy as it means that levitating components are spontaneously pushed toward grippers in an acoustic plane standing wave.

  8. Rapid Quench in an Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.; Matson, Michael M.

    2016-01-01

    The Electrostatic Levitation (ESL) Laboratory at the NASA Marshall Space Flight Center (MSFC) is a unique facility for investigators studying high-temperature materials. The ESL laboratory’s main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy, as a quench medium. Thereby allowing rapid quenching of undercooled liquid metals. Up to eight quench vessels can be loaded into a wheel inside the chamber that is indexed with control software. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, iron-chromium-nickel, titanium-zirconium-nickel alloys, and a silicon-cobalt alloy. This new rapid quench system will allow materials science studies of undercooled materials and new materials development. The system is described and some initial results are presented.

  9. Rapid Quench in an Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.; Matson, Douglas M.

    2016-01-01

    The Electrostatic Levitation (ESL) Laboratory at the NASA Marshall Space Flight Center (MSFC) is a unique facility for investigators studying high-temperature materials. The ESL laboratory's main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy, as a quench medium. Thereby allowing rapid quenching of undercooled liquid metals. Up to eight quench vessels can be loaded into a wheel inside the chamber that is indexed with control software. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, titanium-zirconium-nickel alloys, and a silicon-cobalt alloy. This new rapid quench system will allow materials science studies of undercooled materials and new materials development. In this presentation, the system is described and some initial results are presented.

  10. An investigation of equilibration in small quantum systems: the example of a particle in a 1D random potential

    NASA Astrophysics Data System (ADS)

    Luck, J. M.

    2016-03-01

    We investigate the equilibration of a small isolated quantum system by means of its matrix of asymptotic transition probabilities in a preferential basis. The trace of this matrix is shown to measure the degree of equilibration of the system launched from a typical state, from the standpoint of the chosen basis. This approach is substantiated by an in-depth study of the example of a tight-binding particle in one dimension. In the regime of free ballistic propagation, the above trace saturates to a finite limit, testifying good equilibration. In the presence of a random potential, the trace grows linearly with the system size, testifying poor equilibration in the insulating regime induced by Anderson localization. In the weak-disorder situation of most interest, a universal finite-size scaling law describes the crossover between the ballistic and localized regimes. The associated crossover exponent 2/3 is dictated by the anomalous band-edge scaling characterizing the most localized energy eigenstates.