Science.gov

Sample records for 1-d steady-state model

  1. Electron Density and Two-Channel Neutron Emission Measurements in Steady-State Spherical Inertial-Electrostatically Confined Plasmas, with Review of the 1-D Kinetic Model

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Hrbud, Ivana

    2004-01-01

    Electron density measurements have been made in steady-state plasmas in a spherical inertial electrostatic confinement (IEC) discharge using microwave interferometry. Plasma cores interior to two cathodes, having diameters of 15 and 23 cm, respectively, were probed over a transverse range of 10 cm with a spatial resolution of about 1.4 cm for buffer gas pressures from 0.2 to 6 Pa in argon and deuterium. The transverse profiles are generally flat, in some cases with eccentric symmetric minima, and give mean densities of from approx. = 0.4 to 7x 10(exp 10)/cu cm, the density generally increasing with the neutral gas pressure. Numerical solutions of the 1-D Poisson equation for EC plasmas are reviewed and energy distribution functions are identified which give flat transverse profiles. These functions are used with the plasma approximation to obtain solutions which also give densities consistent with the measurements, and a double potential well solution is obtained which has minima qualitatively similar to those observed. Explicit consideration is given to the compatibility of the solutions interior and exterior to the cathode, and to grid transparency. Deuterium fusion neutron emission rates were also measured and found to be isotropic, to within the measurement error, over two simultaneous directions. Anisotropy was observed in residual emissions during operation with non-fusing hydrogen-1. The deuterium rates are consistent with predictions from the model.

  2. Steady state HNG combustion modeling

    SciTech Connect

    Louwers, J.; Gadiot, G.M.H.J.L.; Brewster, M.Q.; Son, S.F.; Parr, T.; Hanson-Parr, D.

    1998-04-01

    Two simplified modeling approaches are used to model the combustion of Hydrazinium Nitroformate (HNF, N{sub 2}H{sub 5}-C(NO{sub 2}){sub 3}). The condensed phase is treated by high activation energy asymptotics. The gas phase is treated by two limit cases: the classical high activation energy, and the recently introduced low activation energy approach. This results in simplification of the gas phase energy equation, making an (approximate) analytical solution possible. The results of both models are compared with experimental results of HNF combustion. It is shown that the low activation energy approach yields better agreement with experimental observations (e.g. regression rate and temperature sensitivity), than the high activation energy approach.

  3. On the time to steady state: insights from numerical modeling

    NASA Astrophysics Data System (ADS)

    Goren, L.; Willett, S.; McCoy, S. W.; Perron, J.

    2013-12-01

    How fast do fluvial landscapes approach steady state after an application of tectonic or climatic perturbation? While theory and some numerical models predict that the celerity of the advective wave (knickpoint) controls the response time for perturbations, experiments and other landscape evolution models demonstrate that the time to steady state is much longer than the theoretically predicted response time. We posit that the longevity of transient features and the time to steady state are controlled by the stability of the topology and geometry of channel networks. Evolution of a channel network occurs by a combination of discrete capture events and continuous migration of water divides, processes, which are difficult to represent accurately in landscape evolution models. We therefore address the question of the time to steady state using the DAC landscape evolution model that solves accurately for the location of water divides, using a combination of analytical solution for hillslopes and low-order channels together with a numerical solution for higher order channels. DAC also includes an explicit capture criterion. We have tested fundamental predictions from DAC and show that modeled networks reproduce natural network characteristics such as the Hack's exponent and coefficient and the fractal dimension. We define two steady-state criteria: a topographic steady state, defined by global, pointwise steady elevation, and a topological steady state defined as the state in which no further reorganization of the drainage network takes place. Analyzing block uplift simulations, we find that the time to achieve either topographic or topological steady state exceeds by an order of magnitude the theoretical response time of the fluvial network. The longevity of the transient state is the result of the area feedback, by which, migration of a divide changes the local contributing area. This change propagates downstream as a slope adjustment, forcing further divide migrations

  4. Descriptive Linear modeling of steady-state visual evoked response

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Junker, A. M.; Kenner, K.

    1986-01-01

    A study is being conducted to explore use of the steady state visual-evoke electrocortical response as an indicator of cognitive task loading. Application of linear descriptive modeling to steady state Visual Evoked Response (VER) data is summarized. Two aspects of linear modeling are reviewed: (1) unwrapping the phase-shift portion of the frequency response, and (2) parsimonious characterization of task-loading effects in terms of changes in model parameters. Model-based phase unwrapping appears to be most reliable in applications, such as manual control, where theoretical models are available. Linear descriptive modeling of the VER has not yet been shown to provide consistent and readily interpretable results.

  5. Characterizing the Relationship between Steady State and Response Using Analytical Expressions for the Steady States of Mass Action Models

    PubMed Central

    Loriaux, Paul Michael; Tesler, Glenn; Hoffmann, Alexander

    2013-01-01

    The steady states of cells affect their response to perturbation. Indeed, diagnostic markers for predicting the response to therapeutic perturbation are often based on steady state measurements. In spite of this, no method exists to systematically characterize the relationship between steady state and response. Mathematical models are established tools for studying cellular responses, but characterizing their relationship to the steady state requires that it have a parametric, or analytical, expression. For some models, this expression can be derived by the King-Altman method. However, King-Altman requires that no substrate act as an enzyme, and is therefore not applicable to most models of signal transduction. For this reason we developed py-substitution, a simple but general method for deriving analytical expressions for the steady states of mass action models. Where the King-Altman method is applicable, we show that py-substitution yields an equivalent expression, and at comparable efficiency. We use py-substitution to study the relationship between steady state and sensitivity to the anti-cancer drug candidate, dulanermin (recombinant human TRAIL). First, we use py-substitution to derive an analytical expression for the steady state of a published model of TRAIL-induced apoptosis. Next, we show that the amount of TRAIL required for cell death is sensitive to the steady state concentrations of procaspase 8 and its negative regulator, Bar, but not the other procaspase molecules. This suggests that activation of caspase 8 is a critical point in the death decision process. Finally, we show that changes in the threshold at which TRAIL results in cell death is not always equivalent to changes in the time of death, as is commonly assumed. Our work demonstrates that an analytical expression is a powerful tool for identifying steady state determinants of the cellular response to perturbation. All code is available at http://signalingsystems.ucsd.edu/models-and-code/ or

  6. Steady-state CO/sub 2/ laser model

    SciTech Connect

    Scott, M.W.; Myers, G.D.

    1984-09-01

    A steady-state CO/sub 2/ lase model is reported which can be used to predict and evaluate the performance of cw slow-flow and no-flow CO/sub 2/ lasers. Traditional CO/sub 2/ laser models require the solution of several simultaneous differential equations and can be used to model pulsed and fast-flow lasers in addition to cw and slow-flow devices. The model reported here is computationally simpler, requiring only a routine to solve one equation in one unknown, but is only useful for lasers which operate in the steady state.

  7. Nonequilibrium Steady States of a Stochastic Model System.

    NASA Astrophysics Data System (ADS)

    Zhang, Qiwei

    We study the nonequilibrium steady state of a stochastic lattice gas model, originally proposed by Katz, Lebowitz and Spohn (Phys. Rev. B 28: 1655 (1983)). Firstly, we solve the model on some small lattices exactly in order to see the general dependence of the steady state upon different parameters of the model. Nextly, we derive some analytical results for infinite lattice systems by taking some suitable limits. We then present some renormalization group results for the continuum version of the model via field theoretical techniques, the supersymmetry of the critical dynamics in zero field is also explored. Finally, we report some very recent 3-D Monte Carlo simulation results, which have been obtained by applying Multi-Spin-Coding techniques on a CDC vector supercomputer - Cyber 205 at John von Neumann Center.

  8. Linear modeling of steady-state behavioral dynamics.

    PubMed Central

    Palya, William L; Walter, Donald; Kessel, Robert; Lucke, Robert

    2002-01-01

    The observed steady-state behavioral dynamics supported by unsignaled periods of reinforcement within repeating 2,000-s trials were modeled with a linear transfer function. These experiments employed improved schedule forms and analytical methods to improve the precision of the measured transfer function, compared to previous work. The refinements include both the use of multiple reinforcement periods that improve spectral coverage and averaging of independently determined transfer functions. A linear analysis was then used to predict behavior observed for three different test schedules. The fidelity of these predictions was determined. PMID:11831782

  9. Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism

    PubMed Central

    Fleming, R.M.T.; Thiele, I.; Provan, G.; Nasheuer, H.P.

    2010-01-01

    The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in E. coli and compare favourably with in silico prediction by flux balance analysis. PMID:20230840

  10. Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism.

    PubMed

    Fleming, R M T; Thiele, I; Provan, G; Nasheuer, H P

    2010-06-01

    The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in Escherichia coli and compare favourably with in silico prediction by flux balance analysis. PMID:20230840

  11. Steady state model of an industrial FCC unit

    SciTech Connect

    Lopez-Isunza, F.; Ancheyta-Juarez, J.

    1996-12-31

    A reactor model has been developed to simulate the steady-state of an industrial fluid catalytic cracking unit using a three-lump kinetic expression with parameters estimated from experiments in a microactivity test reactor. The model considers a transported bed reactor (riser) where gas-oil and catalyst are in contact to perform the endothermic cracking reactions, interacting with a two-phase moving bed regenerator with recirculation where the combustion of the coke deposited on the catalyst takes place. The model is used to find best operating conditions for maximizing gasoline yield in terms of gas-oil feed temperature (To) and recycled catalyst to gas-oil ratio (C/O). 12 refs., 4 figs.

  12. A mathematical model of pan evaporation under steady state conditions

    NASA Astrophysics Data System (ADS)

    Lim, Wee Ho; Roderick, Michael L.; Farquhar, Graham D.

    2016-09-01

    In the context of changing climate, global pan evaporation records have shown a spatially-averaged trend of ∼ -2 to ∼ -3 mm a-2 over the past 30-50 years. This global phenomenon has motivated the development of the "PenPan" model (Rotstayn et al., 2006). However, the original PenPan model has yet to receive an independent experimental evaluation. Hence, we constructed an instrumented US Class A pan at Canberra Airport (Australia) and monitored it over a three-year period (2007-2010) to uncover the physics of pan evaporation under non-steady state conditions. The experimental investigations of pan evaporation enabled theoretical formulation and parameterisation of the aerodynamic function considering the wind, properties of air and (with or without) the bird guard effect. The energy balance investigation allowed for detailed formulation of the short- and long-wave radiation associated with the albedos and the emissivities of the pan water surface and the pan wall. Here, we synthesise and generalise those earlier works to develop a new model called the "PenPan-V2" model for application under steady state conditions (i.e., uses a monthly time step). Two versions (PenPan-V2C and PenPan-V2S) are tested using pan evaporation data available across the Australian continent. Both versions outperformed the original PenPan model with better representation of both the evaporation rate and the underlying physics of a US Class A pan. The results show the improved solar geometry related calculations (e.g., albedo, area) for the pan system led to a clear improvement in representing the seasonal cycle of pan evaporation. For general applications, the PenPan-V2S is simpler and suited for applications including an evaluation of long-term trends in pan evaporation.

  13. Modelling of pulsed and steady-state DEMO scenarios

    NASA Astrophysics Data System (ADS)

    Giruzzi, G.; Artaud, J. F.; Baruzzo, M.; Bolzonella, T.; Fable, E.; Garzotti, L.; Ivanova-Stanik, I.; Kemp, R.; King, D. B.; Schneider, M.; Stankiewicz, R.; Stępniewski, W.; Vincenzi, P.; Ward, D.; Zagórski, R.

    2015-07-01

    Scenario modelling for the demonstration fusion reactor (DEMO) has been carried out using a variety of simulation codes. Two DEMO concepts have been analysed: a pulsed tokamak, characterized by rather conventional physics and technology assumptions (DEMO1) and a steady-state tokamak, with moderately advanced physics and technology assumptions (DEMO2). Sensitivity to impurity concentrations, radiation, and heat transport models has been investigated. For DEMO2, the impact of current driven non-inductively by neutral beams has been studied by full Monte Carlo simulations of the fast ion distribution. The results obtained are a part of a more extensive research and development (R&D) effort carried out in the EU in order to develop a viable option for a DEMO reactor, to be adopted after ITER for fusion energy research.

  14. Steady States in SIRS Epidemical Model of Mobile Individuals

    NASA Astrophysics Data System (ADS)

    Zhang, Duan-Ming; He, Min-Hua; Yu, Xiao-Ling; Pan, Gui-Jun; Sun, Hong-Zhang; Su, Xiang-Ying; Sun, Fan; Yin, Yan-Ping; Li, Rui; Liu, Dan

    2006-01-01

    We consider an epidemical model within socially interacting mobile individuals to study the behaviors of steady states of epidemic propagation in 2D networks. Using mean-field approximation and large scale simulations, we recover the usual epidemic behavior with critical thresholds δc and pc below which infectious disease dies out. For the population density δ far above δc, it is found that there is linear relationship between contact rate λ and the population density δ in the main. At the same time, the result obtained from mean-field approximation is compared with our numerical result, and it is found that these two results are similar by and large but not completely the same.

  15. Modeling biofiltration of VOC mixtures under steady-state conditions

    SciTech Connect

    Baltzis, B.C.; Wojdyla, S.M.; Zarook, S.M.

    1997-06-01

    Treatment of air streams contaminated with binary volatile organic compound (VOC) mixtures in classical biofilters under steady-state conditions of operation was described with a general mathematical model. The model accounts for potential kinetic interactions among the pollutants, effects of oxygen availability on biodegradation, and biomass diversification in the filter bed. While the effects of oxygen were always taken into account, two distinct cases were considered for the experimental model validation. The first involves kinetic interactions, but no biomass differentiation, used for describing data from biofiltration of benzene/toluene mixtures. The second case assumes that each pollutant is treated by a different type of biomass. Each biomass type is assumed to form separate patches of biofilm on the solid packing material, thus kinetic interference does not occur. This model was used for describing biofiltration of ethanol/butanol mixtures. Experiments were performed with classical biofilters packed with mixtures of peat moss and perlite (2:3, volume:volume). The model equations were solved through the use of computer codes based on the fourth-order Runge-Kutta technique for the gas-phase mass balances and the method of orthogonal collocation for the concentration profiles in the biofilms. Good agreement between model predictions and experimental data was found in almost all cases. Oxygen was found to be extremely important in the case of polar VOCs (ethanol/butanol).

  16. A steady state pressure drop model for screen channel liquid acquisition devices

    NASA Astrophysics Data System (ADS)

    Hartwig, J. W.; Darr, S. R.; McQuillen, J. B.; Rame, E.; Chato, D. J.

    2014-11-01

    This paper presents the derivation of a simplified one dimensional (1D) steady state pressure drop model for flow through a porous liquid acquisition device (LAD) inside a cryogenic propellant tank. Experimental data is also presented from cryogenic LAD tests in liquid hydrogen (LH2) and liquid oxygen (LOX) to compare against the simplified model and to validate the model at cryogenic temperatures. The purpose of the experiments was to identify the various pressure drop contributions in the analytical model which govern LAD channel behavior during dynamic, steady state outflow. LH2 pipe flow of LAD screen samples measured the second order flow-through-screen (FTS) pressure drop, horizontal LOX LAD outflow tests determined the relative magnitude of the third order frictional and dynamic losses within the channel, while LH2 inverted vertical outflow tests determined the magnitude of the first order hydrostatic pressure loss and validity of the full 1D model. When compared to room temperature predictions, the FTS pressure drop is shown to be temperature dependent, with a significant increase in flow resistance at LH2 temperatures. Model predictions of frictional and dynamic losses down the channel compare qualitatively with LOX LADs data. Meanwhile, the 1D model predicted breakdown points track the trends in the LH2 inverted outflow experimental results, with discrepancies being due to a non-uniform injection velocity across the LAD screen not accounted for in the model.

  17. Steady state model of electrochemical gas sensors with multiple reactions

    SciTech Connect

    Brailsford, A.D.; Yussouff, M.; Logothetis, E.M.

    1996-12-31

    A general first-principles model of the steady state response of metal oxide gas sensors was developed by the authors and applied to the case of both electrochemical and resistive type oxygen sensors. It can describe many features of the experimentally observed response of commercial electrochemical zirconia sensors exposed to non-equilibrium gas mixtures consisting of O{sub 2} and one or more reducing species (CO, H{sub 2} , etc). However, the calculated sensor emf as a function of R`= 2p{sub O2}/P{sub CO} (or 2p{sub O2}/P{sub H2}) always showed a sharp transition from high to low values at some R` value and had a small value for R` >> 1. These results do not agree with the broad transitions and relatively high emf values for large R`, as observed experimentally at low temperatures. This paper discusses an extension of the model which is able to describe all aspects of the observed response.

  18. A steady-state model of the lunar ejecta cloud

    NASA Astrophysics Data System (ADS)

    Christou, Apostolos

    2014-05-01

    Every airless body in the solar system is surrounded by a cloud of ejecta produced by the impact of interplanetary meteoroids on its surface [1]. Such ``dust exospheres'' have been observed around the Galilean satellites of Jupiter [2,3]. The prospect of long-term robotic and human operations on the Moon by the US and other countries has rekindled interest on the subject [4]. This interest has culminated with the - currently ongoing - investigation of the Moon's dust exosphere by the LADEE spacecraft [5]. Here a model is presented of a ballistic, collisionless, steady state population of ejecta launched vertically at randomly distributed times and velocities and moving under constant gravity. Assuming a uniform distribution of launch times I derive closed form solutions for the probability density functions (pdfs) of the height distribution of particles and the distribution of their speeds in a rest frame both at the surface and at altitude. The treatment is then extended to particle motion with respect to a moving platform such as an orbiting spacecraft. These expressions are compared with numerical simulations under lunar surface gravity where the underlying ejection speed distribution is (a) uniform (b) a power law. I discuss the predictions of the model, its limitations, and how it can be validated against near-surface and orbital measurements.[1] Gault, D. Shoemaker, E.M., Moore, H.J., 1963, NASA TN-D 1767. [2] Kruger, H., Krivov, A.V., Hamilton, D. P., Grun, E., 1999, Nature, 399, 558. [3] Kruger, H., Krivov, A.V., Sremcevic, M., Grun, E., 2003, Icarus, 164, 170. [4] Grun, E., Horanyi, M., Sternovsky, Z., 2011, Planetary and Space Science, 59, 1672. [5] Elphic, R.C., Hine, B., Delory, G.T., Salute, J.S., Noble, S., Colaprete, A., Horanyi, M., Mahaffy, P., and the LADEE Science Team, 2014, LPSC XLV, LPI Contr. 1777, 2677.

  19. Oxygen consumption dynamics in steady-state tumour models.

    PubMed

    Grimes, David Robert; Fletcher, Alexander G; Partridge, Mike

    2014-09-01

    Oxygen levels in cancerous tissue can have a significant effect on treatment response: hypoxic tissue is both more radioresistant and more chemoresistant than well-oxygenated tissue. While recent advances in medical imaging have facilitated real-time observation of macroscopic oxygenation, the underlying physics limits the resolution to the millimetre domain, whereas oxygen tension varies over a micrometre scale. If the distribution of oxygen in the tumour micro-environment can be accurately estimated, then the effect of potential dose escalation to these hypoxic regions could be better modelled, allowing more realistic simulation of biologically adaptive treatments. Reaction-diffusion models are commonly used for modelling oxygen dynamics, with a variety of functional forms assumed for the dependence of oxygen consumption rate (OCR) on cellular status and local oxygen availability. In this work, we examine reaction-diffusion models of oxygen consumption in spherically and cylindrically symmetric geometries. We consider two different descriptions of oxygen consumption: one in which the rate of consumption is constant and one in which it varies with oxygen tension in a hyperbolic manner. In each case, we derive analytic approximations to the steady-state oxygen distribution, which are shown to closely match the numerical solutions of the equations and accurately predict the extent to which oxygen can diffuse. The derived expressions relate the limit to which oxygen can diffuse into a tissue to the OCR of that tissue. We also demonstrate that differences between these functional forms are likely to be negligible within the range of literature estimates of the hyperbolic oxygen constant, suggesting that the constant consumption rate approximation suffices for modelling oxygen dynamics for most values of OCR. These approximations also allow the rapid identification of situations where hyperbolic consumption forms can result in significant differences from constant

  20. Bifurcation Analysis of 1D Steady States of the Bénard Problem in the Long Wavelength Limit

    NASA Astrophysics Data System (ADS)

    Zhou, Chengzhe; Troian, Sandra

    2015-11-01

    We investigate the character and stability of stationary states of the (1 + 1) D evolution equation ∂t h +h3hxxx +h2∂x γ x = 0 describing the motion of an interface h (x , t) separating a thin warm viscous film from a thin cool inviscid layer where γ = γ (h) represents the interfacial tension. The phase diagram corresponding to all positive periodic steady states (PPSS) is specified by two variables - the global extrema of the equilibrum shape and a generalized mechanical interface pressure. The analytic forms describing the PPSS shapes, the minimal period, the average height and the generalized free energy are all confirmed numerically. We find there is at most one non-trivial PPSS for specified period and volume. We also find no stable perturbed PPSS near the critical point for volume conserving perturbations of identical period. A weakly non-linear analysis about the critical point yields bifurcations of the pitchfork-type. For all non-trivial PPSS, we verify the unstable nature of the PPSS by transforming the non-normal operator (resulting from the spatially inhomogeneous PPSS) to normal form, which we then solve by finite element computations.

  1. Study of the (1 + 1) D Long Wavelength Steady States of the Bénard Problem For Ultrathin Films

    NASA Astrophysics Data System (ADS)

    Zhou, Chengzhe; Troian, Sandra

    We investigate the stationary states of the (1 + 1) D equation ht +h3hxxx +h2γx (h) x = 0 for thin films of thickness h (x , t) where x is the spatial variable and t is time. The variable γ (h) , denotes the surface tension along the gas/liquid interface of the slender bilayer confined between two substrates enforcing thermal conduction within the gap. Equilibrium solutions include flat films, droplets, trenches/ridges and positive periodic steady states (PPSS), the latter conveniently parameterized by a generalized interfacial pressure and the global extremum in shape. We derive perturbative solutions describing PPSS shapes near the stability threshold including their minimal period, average height and free energy. Weakly nonlinear analysis confirms that flat films always undergo a supercritical unstable pitch-fork bifurcation. Globally, our numerical simulations indicate at most one non-trivial PPSS per given period and volume. The free energy of droplet states is also always lower than the relevant corresponding PPSS, suggesting that initial flat films tend to redistribute mass into droplet-like configurations. By solving the linearized eigenvalue problem, we also confirm the unstable nature of PPSS solutions far from the stability threshold.

  2. The steady-state phase distribution of the motor switch complex model of Halobacterium salinarum.

    PubMed

    del Rosario, Ricardo C H; Diener, Francine; Diener, Marc; Oesterhelt, Dieter

    2009-12-01

    Steady-state analysis is performed on the kinetic model for the switch complex of the flagellar motor of Halobacterium salinarum (Nutsch et al.). The existence and uniqueness of a positive steady-state of the system is established and it is demonstrated why the steady-state is centered around the competent phase, a state of the motor in which it is able to respond to light stimuli. It is also demonstrated why the steady-state shifts to the refractory phase when the steady-state value of the response regulator CheYP increases. This work is one aspect of modeling in systems biology wherein the mathematical properties of a model are established. PMID:19857501

  3. A model for electrophoretic transport of charged particles through membrane before steady state

    NASA Astrophysics Data System (ADS)

    de Souza, Tatiana Miranda; Fragoso, Viviane Muniz da Silva; Cruz, Frederico Alan de Oliveira

    2015-12-01

    In this paper, we are presenting a model for electrophoretic motion of a charged particle through the membrane before it reaches the steady state, based on concepts of Physics. Some results from analysis of the model are discussed.

  4. Quasi steady-state aerodynamic model development for race vehicle simulations

    NASA Astrophysics Data System (ADS)

    Mohrfeld-Halterman, J. A.; Uddin, M.

    2016-01-01

    Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.

  5. Uncertainties in vertical groundwater fluxes from 1-D steady state heat transport analyses caused by heterogeneity, multidimensional flow, and climate change

    NASA Astrophysics Data System (ADS)

    Irvine, Dylan J.; Cartwright, Ian; Post, Vincent E. A.; Simmons, Craig T.; Banks, Eddie W.

    2016-02-01

    Steady state 1-D analytical solutions to estimate groundwater fluxes from temperature profiles are an attractive option because they are simple to apply, with no complex boundary or initial conditions. Steady state solutions have been applied to estimate both aquifer scale fluxes as well as to estimate groundwater discharge to streams. This study explores the sources of uncertainty in flux estimates from regional scale aquifers caused by sensor precision, aquifer heterogeneity, multidimensional flow and variations in surface temperature due to climate change. Synthetic temperature profiles were generated using 2-D groundwater flow and heat transport models with homogeneous and heterogeneous hydraulic and thermal properties. Temperature profiles were analyzed assuming temperature can be determined with a precision between 0.1°C and 0.001°C. Analysis of synthetic temperature profiles show that the Bredehoeft and Papadopulos (1965) method can provide good estimates of the mean vertical Darcy flux over the length of the temperature profile. Reliable flux estimates were obtained when the ratio of vertical to horizontal flux was as low as 0.1, and in heterogeneous media, providing that temperature at the upper boundary was constant in time. However, temporal increases in surface temperature led to over-estimation of fluxes. Overestimates increased with time since the onset of, and with the rate of surface warming. Overall, the Bredehoeft and Papadopulos (1965) method may be more robust for the conditions with constant temperature distributions than previously thought, but that transient methods that account for surface warming should be used to determine fluxes in shallow aquifers.

  6. Analytical models of steady-state plumes undergoing sequential first-order degradation.

    PubMed

    Burnell, Daniel K; Mercer, James W; Sims, Lawrence S

    2012-01-01

    An exact, closed-form analytical solution is derived for one-dimensional (1D), coupled, steady-state advection-dispersion equations with sequential first-order degradation of three dissolved species in groundwater. Dimensionless and mathematical analyses are used to examine the sensitivity of longitudinal dispersivity in the parent and daughter analytical solutions. The results indicate that the relative error decreases to less than 15% for the 1D advection-dominated and advection-dispersion analytical solutions of the parent and daughter when the Damköhler number of the parent decreases to less than 1 (slow degradation rate) and the Peclet number increases to greater than 6 (advection-dominated). To estimate first-order daughter product rate constants in advection-dominated zones, 1D, two-dimensional (2D), and three-dimensional (3D) steady-state analytical solutions with zero longitudinal dispersivity are also derived for three first-order sequentially degrading compounds. The closed form of these exact analytical solutions has the advantage of having (1) no numerical integration or evaluation of complex-valued error function arguments, (2) computational efficiency compared to problems with long times to reach steady state, and (3) minimal effort for incorporation into spreadsheets. These multispecies analytical solutions indicate that BIOCHLOR produces accurate results for 1D steady-state, applications with longitudinal dispersion. Although BIOCHLOR is inaccurate in multidimensional applications with longitudinal dispersion, these multidimensional multispecies analytical solutions indicate that BIOCHLOR produces accurate steady-state results when the longitudinal dispersion is zero. As an application, the 1D advection-dominated analytical solution is applied to estimate field-scale rate constants of 0.81, 0.74, and 0.69/year for trichloroethene, cis-1,2-dichloroethene, and vinyl chloride, respectively, at the Harris Palm Bay, FL, CERCLA site. PMID:21883193

  7. Determination of multiple steady states in a family of allosteric models for glycolysis

    NASA Astrophysics Data System (ADS)

    Li, Hsing-Ya

    1998-11-01

    To predict glycolytic oscillations, Goldbeter and Lefever [Biophys. J. 12, 1302 (1972)] proposed a complex allosteric model, consisting of 14 species and 32 reactions. Under the usual assumption of a quasisteady state for all the enzymatic forms, they simplified it to a two-variable model and ruled out the possibility of multiple steady states. In this work, the original network is determined to admit multiplicity of steady states by a zero eigenvalue analysis. It is shown that the existence of the multiplicity in the original network can be determined by a subnetwork with five species and eight reactions. The fourteen-species network can be treated as containing four such subnetworks. The analysis is extended to a general modified allosteric model, consisting of n active subunits. It can be shown that the general network has no steady-state multiplicity if all the four subnetworks follow the case of n=1; otherwise, multiple steady states can occur.

  8. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models

    PubMed Central

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization. PMID:27243005

  9. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models.

    PubMed

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization. PMID:27243005

  10. Non-equilibrium Steady States in Kac's Model Coupled to a Thermostat

    NASA Astrophysics Data System (ADS)

    Evans, Josephine

    2016-09-01

    This paper studies the existence, uniqueness and convergence to non-equilibrium steady states in Kac's model with an external coupling. We work in both Fourier distances and Wasserstein distances. Our methods work in the case where the external coupling is not a Maxwellian equilibrium. This provides an example of a non-equilibrium steady state. We also study the behaviour as the number of particles goes to infinity and show quantitative estimates on the convergence rate of the first marginal.

  11. Modeling Steady-State Groundwater Flow Using Microcomputer Spreadsheets.

    ERIC Educational Resources Information Center

    Ousey, John Russell, Jr.

    1986-01-01

    Describes how microcomputer spreadsheets are easily adapted for use in groundwater modeling. Presents spreadsheet set-ups and the results of five groundwater models. Suggests that this approach can provide a basis for demonstrations, laboratory exercises, and student projects. (ML)

  12. Finite element cochlear models and their steady state response

    NASA Astrophysics Data System (ADS)

    Kagawa, Y.; Yamabuchi, T.; Watanabe, N.; Mizoguchi, T.

    1987-12-01

    Numerical cochlear models are constructed by means of a finite element approach and their frequency and spatial responses are calculated. The cochlea is modelled as a coupled fluid-membrane system, for which both two- and three-dimensional models are considered. The fluid in the scala canals is assumed to be incompressible and the basilar membrane is assumed to be a locally reactive impedance wall or a lossy elastic membrane. With the three-dimensional models, the effects are examined of the spiral configuration of the cochlea, of the presence of the lamina and the ligament that narrows the coupling area between the two fluid canals (scala vestibuli and scala tympani), and of the extended reaction of the basilar membrane which cannot be included in case of the two-dimensional models. The conclusion is that these effects on the cochlear response and the inherent mechanism governing the cochlear behaviour are found to be rather secondary.

  13. Steady-state analysis of activated sludge processes with a settler model including sludge compression.

    PubMed

    Diehl, S; Zambrano, J; Carlsson, B

    2016-01-01

    A reduced model of a completely stirred-tank bioreactor coupled to a settling tank with recycle is analyzed in its steady states. In the reactor, the concentrations of one dominant particulate biomass and one soluble substrate component are modelled. While the biomass decay rate is assumed to be constant, growth kinetics can depend on both substrate and biomass concentrations, and optionally model substrate inhibition. Compressive and hindered settling phenomena are included using the Bürger-Diehl settler model, which consists of a partial differential equation. Steady-state solutions of this partial differential equation are obtained from an ordinary differential equation, making steady-state analysis of the entire plant difficult. A key result showing that the ordinary differential equation can be replaced with an approximate algebraic equation simplifies model analysis. This algebraic equation takes the location of the sludge-blanket during normal operation into account, allowing for the limiting flux capacity caused by compressive settling to easily be included in the steady-state mass balance equations for the entire plant system. This novel approach grants the possibility of more realistic solutions than other previously published reduced models, comprised of yet simpler settler assumptions. The steady-state concentrations, solids residence time, and the wastage flow ratio are functions of the recycle ratio. Solutions are shown for various growth kinetics; with different values of biomass decay rate, influent volumetric flow, and substrate concentration. PMID:26476681

  14. A model for steady-state HNF combustion

    SciTech Connect

    Louwers, J.; Gadiot, G.M.H.J.L.; Brewster, M.Q.; Son, S.F.

    1997-09-01

    A simple model for the combustion of solid monopropellants is presented. The condensed phase is treated by high activation energy asymptotics. The gas phase is treated by two limit cases: high activation energy, and low activation energy. This results in simplification of the gas phase energy equation, making an (approximate) analytical solution possible. The results of the model are compared with experimental results of Hydrazinium Nitroformate (HNF) combustion.

  15. Nonequilibrium Steady States in Models of Prebiotic Evolution

    NASA Astrophysics Data System (ADS)

    Halley, J. W.; Wynveen, A.

    2014-12-01

    We report computational results from a model for prebiotic evolution.The model is schematic, but contains a correct description of thebasic statistical problem associated with understanding how the initiation of life can occur given the strong entropic barriers (sometimesknown as 'Eigen's paradox' and appearing in experiments as the 'tar problem'). The model is similar to one of the modelsintroduced years ago by Kauffman and coworkers. The important innovationwhich we introduce is imposition of the requirement that, to qualifyas a lifelike dynamical chemical system, the system must not be inchemical equilibrium. That constraint turns out to have major qualitativeeffects on the conclusions. In particular, very sparse chemical networksturn out to be the most favorable ones for generating autocatalyticnonequilibrium states. This suggests qualitatively that deserts might bebetter than ponds for initiating life. Some details of the models andsimulations will be described, including recent results in which weintroduce spatial diffusion and a proxy for temperature into the description ofthe model chemistry. Results on growth rates, convergence and theoverall probability of generation of lifelike states as a function ofparameters of the chemical network model will be presented.

  16. Steady-state Analysis Model for Advanced Fuelcycle Schemes

    Energy Science and Technology Software Center (ESTSC)

    2006-05-12

    The model was developed as a part of the study, "Advanced Fuel Cycles and Waste Management", which was performed during 2003—2005 by an ad-hoc expert group under the Nuclear Development Committee in the OECD/NEA. The model was designed for an efficient conduct of nuclear fuel cycle scheme cost analyses. It is simple, transparent and offers users the capability to track down the cost analysis results. All the fuel cycle schemes considered in the model aremore » represented in a graphic format and all values related to a fuel cycle step are shown in the graphic interface, i.e., there are no hidden values embedded in the calculations. All data on the fuel cycle schemes considered in the study including mass flows, waste generation, cost data, and other data such as activities, decay heat and neutron sources of spent fuel and high—level waste along time are included in the model and can be displayed. The user can modify easily the values of mass flows and/or cost parameters and see the corresponding changes in the results. The model calculates: front—end fuel cycle mass flows such as requirements of enrichment and conversion services and natural uranium; mass of waste based on the waste generation parameters and the mass flow; and all costs. It performs Monte Carlo simulations with changing the values of all unit costs within their respective ranges (from lower to upper bounds).« less

  17. Steady-State Analysis Model for Advanced Fuel Cycle Schemes.

    Energy Science and Technology Software Center (ESTSC)

    2008-03-17

    Version 00 SMAFS was developed as a part of the study, "Advanced Fuel Cycles and Waste Management", which was performed during 2003-2005 by an ad-hoc expert group under the Nuclear Development Committee in the OECD/NEA. The model was designed for an efficient conduct of nuclear fuel cycle scheme cost analyses. It is simple, transparent and offers users the capability to track down cost analysis results. All the fuel cycle schemes considered in the model aremore » represented in a graphic format and all values related to a fuel cycle step are shown in the graphic interface, i.e., there are no hidden values embedded in the calculations. All data on the fuel cycle schemes considered in the study including mass flows, waste generation, cost data, and other data such as activities, decay heat and neutron sources of spent fuel and high-level waste along time are included in the model and can be displayed. The user can easily modify values of mass flows and/or cost parameters and see corresponding changes in the results. The model calculates: front-end fuel cycle mass flows such as requirements of enrichment and conversion services and natural uranium; mass of waste based on the waste generation parameters and the mass flow; and all costs.« less

  18. Steady-state solutions of a diffusive energy-balance climate model and their stability

    NASA Technical Reports Server (NTRS)

    Ghil, M.

    1975-01-01

    A diffusive energy-balance climate model, governed by a nonlinear parabolic partial differential equation, was studied. Three positive steady-state solutions of this equation are found; they correspond to three possible climates of our planet: an interglacial (nearly identical to the present climate), a glacial, and a completely ice-covered earth. Models similar to the main one are considered, and the number of their steady states was determined. All the models have albedo continuously varying with latitude and temperature, and entirely diffusive horizontal heat transfer. The stability under small perturbations of the main model's climates was investigated. A stability criterion is derived, and its application shows that the present climate and the deep freeze are stable, whereas the model's glacial is unstable. The dependence was examined of the number of steady states and of their stability on the average solar radiation.

  19. A statistical model of steady-state solvatochromism.

    PubMed

    Roliński, O; Balter, A

    1995-12-01

    This work provides a description of the solvatochromic effect in terms of a hard-sphere model taking into account the microscopic parameters of the solution. The average energies of the solute-solvent system were calculated for Franck-Condon and relaxed states assuming pairwise electrostatic interactions between polarizable, dipolar molecules contained in clusters made of 1-solute and 10-solvent molecules. This in turn allowed us to estimate the values of the solvatochromic shifts. The dependence of these shifts on temperature and electronic properties of molecules expressed in terms of their polarity and polarizability was investigated. PMID:24226908

  20. Modeled Seasonal Variations of Firn Density Induced by Steady State Surface Air Temperature Cycle

    NASA Technical Reports Server (NTRS)

    Jun, Li; Zwally, H. Jay; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Seasonal variations of firn density in ice-sheet firn layers have been attributed to variations in deposition processes or other processes within the upper firn. A recent high-resolution (mm scale) density profile, measured along a 181 m core from Antarctica, showed small-scale density variations with a clear seasonal cycle that apparently was not-related to seasonal variations in deposition or known near-surface processes (Gerland and others 1999). A recent model of surface elevation changes (Zwally and Li, submitted) produced a seasonal variation in firn densification, and explained the seasonal surface elevation changes observed by satellite radar altimeters. In this study, we apply our 1-D time-dependent numerical model of firn densification that includes a temperature-dependent formulation of firn densification based on laboratory measurements of grain growth. The model is driven by a steady-state seasonal surface temperature and a constant accumulation rate appropriate for the measured Antarctic ice core. The modeled seasonal variations in firn density show that the layers of snow deposited during spring to mid-summer with the highest temperature history compress to the highest density, and the layers deposited during later summer to autumn with the lowest temperature history compress to the lowest density. The initial amplitude of the seasonal difference of about 0.13 reduces to about 0.09 in five years and asymptotically to 0.92 at depth, which is consistent with the core measurements.

  1. Stochastic modeling analysis of sequential first-order degradation reactions and non-Fickian transport in steady state plumes

    NASA Astrophysics Data System (ADS)

    Burnell, Daniel K.; Mercer, James W.; Faust, Charles R.

    2014-02-01

    Stochastic analyses were performed to examine sequential first-order monomolecular reactions at the microscopic scale and both Fickian and non-Fickian plume reactive transport at the macroscopic scale. An analytical solution was derived for the chemical master equation (CME) for a closed system of irreversible first-order monomolecular reactions. Taking a Lagrangian reference frame of particles migrating from a source, analyses show that the relative concentration of each species in the deterministic analytical solution for 1-D steady state plug flow with first-order sequential degradation is mathematically equivalent to the mean of a multinomial distribution of plume particles moving at constant velocity with sequential transformations described by transition probabilities of a discrete state, continuous-time Markov chain. In order to examine the coupling of reaction and transport terms in subdiffusive-reactive transport equations, a closed-form multispecies analytical solution also was derived for steady state advection, dispersion, and sequential first-order reaction. Using a 1-D continuous-time random walk (CTRW) embedded in Markov chains, computationally efficient Monte Carlo simulations of particle movement were performed to more fully examine effects of subdiffusive-reactive transport with an application to steady state, sequentially degrading multispecies plumes at a site in Palm, Bay, FL. The simulation results indicated that non-Fickian steady state plumes can resemble Fickian plumes because linear reactions truncate the waiting time between particle jumps, which removes lower velocity particles from the broad spectrum of velocities in highly heterogeneous media. Results show that fitting of Fickian models to plume concentration data can lead to inaccurate estimates of rate constants because of the wide distribution of travel times in highly heterogeneous media.

  2. User's instructions for the 41-node thermoregulatory model (steady state version)

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1974-01-01

    A user's guide for the steady-state thermoregulatory model is presented. The model was modified to provide conversational interaction on a remote terminal, greater flexibility for parameter estimation, increased efficiency of convergence, greater choice of output variable and more realistic equations for respiratory and skin diffusion water losses.

  3. Theoretical models for cooperative steady-state ATPase activity of myosin subfragment-1 on regulated actin.

    PubMed Central

    Hill, T L; Eisenberg, E; Chalovich, J M

    1981-01-01

    Recent theoretical work on the cooperative equilibrium binding of myosin subfragment-1-ADP to regulated actin, as influenced by Ca2+, is extended here to the cooperative steady-state ATPase activity of myosin subfragment-1 on regulated actin. Exact solution of the general steady-state problem will require Monte Carlo calculations. Three interrelated special cases are discussed in some detail and sample computer (not Monte Carlo) solutions are given. The eventual objective is to apply these considerations to in vitro experimental data and to in vivo muscle models. PMID:6455170

  4. Dynamic modeling and sensitivity analysis of dAFM in the transient and steady state motions.

    PubMed

    Payam, Amir Farokh

    2016-10-01

    In this paper, based on the slow time varying function theory, dynamical equations for the amplitude and phase of the dynamic atomic force microscope are derived. Then, the sensitivity of the amplitude and phase to the dissipative and conservative parts of interaction force is investigated. The most advantage of this dynamical model is the ability to simulate and analysis the dynamics behavior of amplitude and phase of the AFM tip motion not only in the steady state but also in the transient regime. Using numerical analysis the transient and steady state behavior of amplitude and phase is studied and the sensitivity of amplitude and phase to the interaction force is analyzed. PMID:27448201

  5. Arbitrary Steady-State Solutions with the K-epsilon Model

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Pettersson Reif, B. A.; Gatski, Thomas B.

    2006-01-01

    Widely-used forms of the K-epsilon turbulence model are shown to yield arbitrary steady-state converged solutions that are highly dependent on numerical considerations such as initial conditions and solution procedure. These solutions contain pseudo-laminar regions of varying size. By applying a nullcline analysis to the equation set, it is possible to clearly demonstrate the reasons for the anomalous behavior. In summary, the degenerate solution acts as a stable fixed point under certain conditions, causing the numerical method to converge there. The analysis also suggests a methodology for preventing the anomalous behavior in steady-state computations.

  6. Einstein's steady-state theory: an abandoned model of the cosmos

    NASA Astrophysics Data System (ADS)

    O'Raifeartaigh, Cormac; McCann, Brendan; Nahm, Werner; Mitton, Simon

    2014-09-01

    We present a translation and analysis of an unpublished manuscript by Albert Einstein in which he attempted to construct a `steady-state' model of the universe. The manuscript, which appears to have been written in early 1931, demonstrates that Einstein once explored a cosmic model in which the mean density of matter in an expanding universe is maintained constant by the continuous formation of matter from empty space. This model is very different to previously known Einsteinian models of the cosmos (both static and dynamic) but anticipates the later steady-state cosmology of Hoyle, Bondi and Gold in some ways. We find that Einstein's steady-state model contains a fundamental flaw and suggest that it was abandoned for this reason. We also suggest that he declined to explore a more sophisticated version because he found such theories rather contrived. The manuscript is of historical interest because it reveals that Einstein debated between steady-state and evolving models of the cosmos decades before a similar debate took place in the cosmological community.

  7. On the validity of travel-time based nonlinear bioreactive transport models in steady-state flow.

    PubMed

    Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A

    2015-01-01

    Travel-time based models simplify the description of reactive transport by replacing the spatial coordinates with the groundwater travel time, posing a quasi one-dimensional (1-D) problem and potentially rendering the determination of multidimensional parameter fields unnecessary. While the approach is exact for strictly advective transport in steady-state flow if the reactive properties of the porous medium are uniform, its validity is unclear when local-scale mixing affects the reactive behavior. We compare a two-dimensional (2-D), spatially explicit, bioreactive, advective-dispersive transport model, considered as "virtual truth", with three 1-D travel-time based models which differ in the conceptualization of longitudinal dispersion: (i) neglecting dispersive mixing altogether, (ii) introducing a local-scale longitudinal dispersivity constant in time and space, and (iii) using an effective longitudinal dispersivity that increases linearly with distance. The reactive system considers biodegradation of dissolved organic carbon, which is introduced into a hydraulically heterogeneous domain together with oxygen and nitrate. Aerobic and denitrifying bacteria use the energy of the microbial transformations for growth. We analyze six scenarios differing in the variance of log-hydraulic conductivity and in the inflow boundary conditions (constant versus time-varying concentration). The concentrations of the 1-D models are mapped to the 2-D domain by means of the kinematic (for case i), and mean groundwater age (for cases ii & iii), respectively. The comparison between concentrations of the "virtual truth" and the 1-D approaches indicates extremely good agreement when using an effective, linearly increasing longitudinal dispersivity in the majority of the scenarios, while the other two 1-D approaches reproduce at least the concentration tendencies well. At late times, all 1-D models give valid approximations of two-dimensional transport. We conclude that the

  8. On the validity of travel-time based nonlinear bioreactive transport models in steady-state flow

    NASA Astrophysics Data System (ADS)

    Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A.

    2015-04-01

    Travel-time based models simplify the description of reactive transport by replacing the spatial coordinates with the groundwater travel time, posing a quasi one-dimensional (1-D) problem and potentially rendering the determination of multidimensional parameter fields unnecessary. While the approach is exact for strictly advective transport in steady-state flow if the reactive properties of the porous medium are uniform, its validity is unclear when local-scale mixing affects the reactive behavior. We compare a two-dimensional (2-D), spatially explicit, bioreactive, advective-dispersive transport model, considered as "virtual truth", with three 1-D travel-time based models which differ in the conceptualization of longitudinal dispersion: (i) neglecting dispersive mixing altogether, (ii) introducing a local-scale longitudinal dispersivity constant in time and space, and (iii) using an effective longitudinal dispersivity that increases linearly with distance. The reactive system considers biodegradation of dissolved organic carbon, which is introduced into a hydraulically heterogeneous domain together with oxygen and nitrate. Aerobic and denitrifying bacteria use the energy of the microbial transformations for growth. We analyze six scenarios differing in the variance of log-hydraulic conductivity and in the inflow boundary conditions (constant versus time-varying concentration). The concentrations of the 1-D models are mapped to the 2-D domain by means of the kinematic (for case i), and mean groundwater age (for cases ii & iii), respectively. The comparison between concentrations of the "virtual truth" and the 1-D approaches indicates extremely good agreement when using an effective, linearly increasing longitudinal dispersivity in the majority of the scenarios, while the other two 1-D approaches reproduce at least the concentration tendencies well. At late times, all 1-D models give valid approximations of two-dimensional transport. We conclude that the

  9. Integrated modelling of DEMO-FNS current ramp-up scenario and steady-state regime

    NASA Astrophysics Data System (ADS)

    Dnestrovskij, A. Yu.; Kuteev, B. V.; Bykov, A. S.; Ivanov, A. A.; Lukash, V. E.; Medvedev, S. Yu.; Sergeev, V. Yu.; Sychugov, D. Yu.; Khayrutdinov, R. R.

    2015-06-01

    An approach to the integrated modelling of plasma regimes in the projected neutron source DEMO-FNS based on different codes is developed. The consistency check of the steady-state regime is carried out, namely, the possibility of the plasma current ramp-up, acceptance of growth rates of MHD modes in the steady-state regime, heat loads to the wall and divertor plates and neutron yield value. The following codes are employed for the integrated modelling. ASTRA transport code for calculation of plasma parameters in the steady-state regime, NUBEAM Monte Carlo code for NBI incorporated into the ASTRA code, DINA free boundary equilibrium and evolution code, SPIDER free boundary equilibrium and equilibrium reconstruction code, KINX ideal MHD stability code, TOKSTAB rigid shift vertical stability code, edge and divertor plasma B2SOLPS5.2 code and Semi-analytic Hybrid Model (SHM) code for self-consistent description of the core, edge and divertor plasmas based on the experimental scaling laws. The consistent steady-state regime for the DEMO-FNS plasma and the plasma current ramp-up scenario are developed using the integrated modelling approach. Passive copper coils are suggested to reduce the plasma vertical instability growth rate to below ˜30 s-1.The outer divertor operation in the ‘high-recycling’ regime is numerically demonstrated with a maximal heat flux density of 7-9 MW m-2 that is technically acceptable.

  10. Current Pressure Transducer Application of Model-based Prognostics Using Steady State Conditions

    NASA Technical Reports Server (NTRS)

    Teubert, Christopher; Daigle, Matthew J.

    2014-01-01

    Prognostics is the process of predicting a system's future states, health degradation/wear, and remaining useful life (RUL). This information plays an important role in preventing failure, reducing downtime, scheduling maintenance, and improving system utility. Prognostics relies heavily on wear estimation. In some components, the sensors used to estimate wear may not be fast enough to capture brief transient states that are indicative of wear. For this reason it is beneficial to be capable of detecting and estimating the extent of component wear using steady-state measurements. This paper details a method for estimating component wear using steady-state measurements, describes how this is used to predict future states, and presents a case study of a current/pressure (I/P) Transducer. I/P Transducer nominal and off-nominal behaviors are characterized using a physics-based model, and validated against expected and observed component behavior. This model is used to map observed steady-state responses to corresponding fault parameter values in the form of a lookup table. This method was chosen because of its fast, efficient nature, and its ability to be applied to both linear and non-linear systems. Using measurements of the steady state output, and the lookup table, wear is estimated. A regression is used to estimate the wear propagation parameter and characterize the damage progression function, which are used to predict future states and the remaining useful life of the system.

  11. Analysis and Modelling of the Steady-State and Dynamic-State Discharge in SMES System

    NASA Astrophysics Data System (ADS)

    Chen, Xiao Yuan; Jin, Jian Xun

    The steady-state and dynamic-state discharge processes have been discussed to develop a superconducting magnetic energy storage (SMES) model in the paper. The SMES model allows the integrated analysis and optimization of the SMES devices, and their control systems, and can also serve as an independent storage module in the practical SMES application circuits, thus provide a method to link superconductivity technology to conventional power electronics in a SMES device.

  12. Wavelet Based Analytical Expressions to Steady State Biofilm Model Arising in Biochemical Engineering.

    PubMed

    Padma, S; Hariharan, G

    2016-06-01

    In this paper, we have developed an efficient wavelet based approximation method to biofilm model under steady state arising in enzyme kinetics. Chebyshev wavelet based approximation method is successfully introduced in solving nonlinear steady state biofilm reaction model. To the best of our knowledge, until now there is no rigorous wavelet based solution has been addressed for the proposed model. Analytical solutions for substrate concentration have been derived for all values of the parameters δ and SL. The power of the manageable method is confirmed. Some numerical examples are presented to demonstrate the validity and applicability of the wavelet method. Moreover the use of Chebyshev wavelets is found to be simple, efficient, flexible, convenient, small computation costs and computationally attractive. PMID:26661721

  13. Steady-state and dynamic models for particle engulfment during solidification

    NASA Astrophysics Data System (ADS)

    Tao, Yutao; Yeckel, Andrew; Derby, Jeffrey J.

    2016-06-01

    Steady-state and dynamic models are developed to study the physical mechanisms that determine the pushing or engulfment of a solid particle at a moving solid-liquid interface. The mathematical model formulation rigorously accounts for energy and momentum conservation, while faithfully representing the interfacial phenomena affecting solidification phase change and particle motion. A numerical solution approach is developed using the Galerkin finite element method and elliptic mesh generation in an arbitrary Lagrangian-Eulerian implementation, thus allowing for a rigorous representation of forces and dynamics previously inaccessible by approaches using analytical approximations. We demonstrate that this model accurately computes the solidification interface shape while simultaneously resolving thin fluid layers around the particle that arise from premelting during particle engulfment. We reinterpret the significance of premelting via the definition an unambiguous critical velocity for engulfment from steady-state analysis and bifurcation theory. We also explore the complicated transient behaviors that underlie the steady states of this system and posit the significance of dynamical behavior on engulfment events for many systems. We critically examine the onset of engulfment by comparing our computational predictions to those obtained using the analytical model of Rempel and Worster [29]. We assert that, while the accurate calculation of van der Waals repulsive forces remains an open issue, the computational model developed here provides a clear benefit over prior models for computing particle drag forces and other phenomena needed for the faithful simulation of particle engulfment.

  14. Comparison of experimental data to a model for bicycle steady-state turning

    NASA Astrophysics Data System (ADS)

    Cain, Stephen M.; Perkins, Noel C.

    2012-08-01

    The steady-state turning of a bicycle arises when the bicycle/rider system negotiates a constant radius turn with constant speed and roll angle. This paper explores steady-state turning by employing a bicycle instrumented to measure steering torque, steering angle, and bicycle speed, acceleration, and angular velocity. We report data obtained from 134 trials using two subjects executing steady turns defined by nine different radii, three speeds, and three rider lean conditions. A model for steady-state turning, based on the Whipple bicycle model, is used to interpret the experimental results. Overall, the model explains 95.6% of the variability in the estimated bicycle roll angle, 99.4% of the variability in the measured steering angle, and 6.5% of the variability in the measured steering torque. However, the model explains 56.6% of the variability in steering torque for the subset of trials without exaggerated rider lean relative to the bicycle frame. Thus, the model, which assumes a rigid and non-leaning rider, reasonably predicts bicycle roll and steering angles for all rider lean conditions and steering torque without exaggerated rider lean. The findings demonstrate that lateral shifting of the bicycle/rider centre of mass strongly influences the steering torque, suggesting that rider lean plays an important role in bicycle control during steady-state turning. By contrast, the required steering angle is largely insensitive to rider lean, suggesting that the steering angle serves as a superior cue for bicycle control relative to the steering torque.

  15. Revised Model of the Steady-state Solar Wind Halo Electron Velocity Distribution Function

    NASA Astrophysics Data System (ADS)

    Yoon, Peter H.; Kim, Sunjung; Choe, G. S.; moon, Y.-J.

    2016-08-01

    A recent study discussed the steady-state model for solar wind electrons during quiet time conditions. The electrons emanating from the Sun are treated in a composite three-population model—the low-energy Maxwellian core with an energy range of tens of eV, the intermediate ˜102–103 eV energy-range (“halo”) electrons, and the high ˜103–105 eV energy-range (“super-halo”) electrons. In the model, the intermediate energy halo electrons are assumed to be in resonance with transverse EM fluctuations in the whistler frequency range (˜102 Hz), while the high-energy super-halo electrons are presumed to be in steady-state wave–particle resonance with higher-frequency electrostatic fluctuations in the Langmuir frequency range (˜105 Hz). A comparison with STEREO and WIND spacecraft data was also made. However, ignoring the influence of Langmuir fluctuations on the halo population turns out to be an unjustifiable assumption. The present paper rectifies the previous approach by including both Langmuir and whistler fluctuations in the construction of the steady-state velocity distribution function for the halo population, and demonstrates that the role of whistler-range fluctuation is minimal unless the fluctuation intensity is arbitrarily raised. This implies that the Langmuir-range fluctuations, known as the quasi thermal noise, are important for both halo and super-halo electron velocity distribution.

  16. Revised Model of the Steady-state Solar Wind Halo Electron Velocity Distribution Function

    NASA Astrophysics Data System (ADS)

    Yoon, Peter H.; Kim, Sunjung; Choe, G. S.; moon, Y.-J.

    2016-08-01

    A recent study discussed the steady-state model for solar wind electrons during quiet time conditions. The electrons emanating from the Sun are treated in a composite three-population model—the low-energy Maxwellian core with an energy range of tens of eV, the intermediate ∼102–103 eV energy-range (“halo”) electrons, and the high ∼103–105 eV energy-range (“super-halo”) electrons. In the model, the intermediate energy halo electrons are assumed to be in resonance with transverse EM fluctuations in the whistler frequency range (∼102 Hz), while the high-energy super-halo electrons are presumed to be in steady-state wave–particle resonance with higher-frequency electrostatic fluctuations in the Langmuir frequency range (∼105 Hz). A comparison with STEREO and WIND spacecraft data was also made. However, ignoring the influence of Langmuir fluctuations on the halo population turns out to be an unjustifiable assumption. The present paper rectifies the previous approach by including both Langmuir and whistler fluctuations in the construction of the steady-state velocity distribution function for the halo population, and demonstrates that the role of whistler-range fluctuation is minimal unless the fluctuation intensity is arbitrarily raised. This implies that the Langmuir-range fluctuations, known as the quasi thermal noise, are important for both halo and super-halo electron velocity distribution.

  17. Quantitative, steady-state properties of Catania's computational model of the operant reserve.

    PubMed

    Berg, John P; McDowell, J J

    2011-05-01

    Catania (2005) found that a computational model of the operant reserve (Skinner, 1938) produced realistic behavior in initial, exploratory analyses. Although Catania's operant reserve computational model demonstrated potential to simulate varied behavioral phenomena, the model was not systematically tested. The current project replicated and extended the Catania model, clarified its capabilities through systematic testing, and determined the extent to which it produces behavior corresponding to matching theory. Significant departures from both classic and modern matching theory were found in behavior generated by the model across all conditions. The results suggest that a simple, dynamic operant model of the reflex reserve does not simulate realistic steady state behavior. PMID:21238552

  18. Estuarine ocean exchange in a North Pacific estuary: Comparison of steady state and dynamic models

    NASA Astrophysics Data System (ADS)

    Frick, Walter E.; Khangaonkar, Tarang; Sigleo, Anne C.; Yang, Zhaoqing

    2007-08-01

    Nutrient levels in coastal waters must be accurately assessed to determine the nutrient effects of increasing populations on coastal ecosystems. To accomplish this goal, in-field data with sufficient temporal resolution are required to define nutrient sources and sinks, and to ultimately calculate nutrient budgets. Models then are required for the interpretation and analysis of data sets. To quantify the coastal ocean nitrogen input to Yaquina Bay, Oregon, nitrate concentrations were measured by a moored sensor hourly for one month during summer upwelling some distance outside the estuary entrance jetties. The time series results then were interpreted using a steady state model (Visual Plumes' PDSW) and a hydrodynamic model, the Finite Volume Coastal Ocean Model (FVCOM). The physical scales of many stream and river plumes often lie between the scales for outfall mixing zone plume models, such as those found in EPA's Visual Plumes, and larger-sized grid scales for regional circulation models like FVCOM. A potential advantage of relatively simple, steady state plume models is that they use entrainment terms to close the plume equations, theory that has proven useful in simulating turbulent plume discharges from various sources, some approaching the dimensions of rivers. Important advantages of models like FVCOM are that they are dynamic and include the effects of the Earth's rotation. The results showed that the steady-state plume model simulates observed velocity and concentration data fairly well during periods of strong discharge velocity and weak ambient coastal currents. FVCOM was judged to give better estimates under all other ambient current conditions, although the data from the mooring cannot be used to prove this assertion as stronger currents would deflect the plume away from the mooring. Nevertheless, plume models may be useful in establishing boundary and initial conditions for hydrodynamic models.

  19. Catalytic honeycomb combustor - Steady-state model and comparison with experiment

    NASA Technical Reports Server (NTRS)

    Tien, J. S.

    1980-01-01

    A steady-state lean combustion model for monolithic catalytic combustors is given. The model, consisting of several semi-global chemical reaction steps in the gas-phase and on the surface, is capable of analyzing CO and THC emissions. In the model computation presented, the influence of operating and design parameters on the minimum combustor length is studied. Special attention is given to the effect of after-bed gas-phase reaction space. Comparison with experimental data indicates good agreement in the range of parameters covered.

  20. A Ubiquitiformal One-Dimensional Steady-State Conduction Model for a Cellular Material Rod

    NASA Astrophysics Data System (ADS)

    Li, Guan-Ying; Ou, Zhuo-Cheng; Xie, Ran; Duan, Zhuo-Ping; Huang, Feng-Lei

    2016-04-01

    A ubiquitiformal model for the one-dimensional steady-state heat transfer of a cellular material rod is developed in this paper, and the explicit analytical expressions for both the temperature distribution and the equivalent thermal conductivity are obtained. The calculated results for two kinds of dry soil are found to be in good agreement with previous experimental data. Moreover, it is demonstrated that the ubiquitiformal model is more reasonable for describing such a cellular material than the fractal one, and hence a ubiquitiformal rather than a fractal model should be considered in practical applications whenever the integral dimensional measure of a real physical object must be taken into account.

  1. Modeling of the blood rheology in steady-state shear flows

    SciTech Connect

    Apostolidis, Alex J.; Beris, Antony N.

    2014-05-15

    We undertake here a systematic study of the rheology of blood in steady-state shear flows. As blood is a complex fluid, the first question that we try to answer is whether, even in steady-state shear flows, we can model it as a rheologically simple fluid, i.e., we can describe its behavior through a constitutive model that involves only local kinematic quantities. Having answered that question positively, we then probe as to which non-Newtonian model best fits available shear stress vs shear-rate literature data. We show that under physiological conditions blood is typically viscoplastic, i.e., it exhibits a yield stress that acts as a minimum threshold for flow. We further show that the Casson model emerges naturally as the best approximation, at least for low and moderate shear-rates. We then develop systematically a parametric dependence of the rheological parameters entering the Casson model on key physiological quantities, such as the red blood cell volume fraction (hematocrit). For the yield stress, we base our description on its critical, percolation-originated nature. Thus, we first determine onset conditions, i.e., the critical threshold value that the hematocrit has to have in order for yield stress to appear. It is shown that this is a function of the concentration of a key red blood cell binding protein, fibrinogen. Then, we establish a parametric dependence as a function of the fibrinogen and the square of the difference of the hematocrit from its critical onset value. Similarly, we provide an expression for the Casson viscosity, in terms of the hematocrit and the temperature. A successful validation of the proposed formula is performed against additional experimental literature data. The proposed expression is anticipated to be useful not only for steady-state blood flow modeling but also as providing the starting point for transient shear, or more general flow modeling.

  2. Steady-state temperature distribution in living tissue modeled as cylindrical shells.

    NASA Technical Reports Server (NTRS)

    Shitzer, A.; Chato, J. C.

    1971-01-01

    Closed form, analytical solutions to the problem of steady-state heat transfer in living tissue modeled as cylindrical shells are presented and discussed. These solutions are particularly useful for the study of temperature distributions in the extremities. Metabolic heat generation, conduction, and heat transported by the blood perfusing the tissue are considered in the model. The results demonstrate the important role that the blood stream plays in the transfer of heat inside living tissue. Solutions are also presented for the limiting cases of diminishing blood flow that would occur during vasoconstriction or occlusion of blood by external means.

  3. Accurate Analytic Results for the Steady State Distribution of the Eigen Model

    NASA Astrophysics Data System (ADS)

    Huang, Guan-Rong; Saakian, David B.; Hu, Chin-Kun

    2016-04-01

    Eigen model of molecular evolution is popular in studying complex biological and biomedical systems. Using the Hamilton-Jacobi equation method, we have calculated analytic equations for the steady state distribution of the Eigen model with a relative accuracy of O(1/N), where N is the length of genome. Our results can be applied for the case of small genome length N, as well as the cases where the direct numerics can not give accurate result, e.g., the tail of distribution.

  4. Quasi-steady state reduction of molecular motor-based models of directed intermittent search.

    PubMed

    Newby, Jay M; Bressloff, Paul C

    2010-10-01

    We present a quasi-steady state reduction of a linear reaction-hyperbolic master equation describing the directed intermittent search for a hidden target by a motor-driven particle moving on a one-dimensional filament track. The particle is injected at one end of the track and randomly switches between stationary search phases and mobile nonsearch phases that are biased in the anterograde direction. There is a finite possibility that the particle fails to find the target due to an absorbing boundary at the other end of the track. Such a scenario is exemplified by the motor-driven transport of vesicular cargo to synaptic targets located on the axon or dendrites of a neuron. The reduced model is described by a scalar Fokker-Planck (FP) equation, which has an additional inhomogeneous decay term that takes into account absorption by the target. The FP equation is used to compute the probability of finding the hidden target (hitting probability) and the corresponding conditional mean first passage time (MFPT) in terms of the effective drift velocity V, diffusivity D, and target absorption rate λ of the random search. The quasi-steady state reduction determines V, D, and λ in terms of the various biophysical parameters of the underlying motor transport model. We first apply our analysis to a simple 3-state model and show that our quasi-steady state reduction yields results that are in excellent agreement with Monte Carlo simulations of the full system under physiologically reasonable conditions. We then consider a more complex multiple motor model of bidirectional transport, in which opposing motors compete in a "tug-of-war", and use this to explore how ATP concentration might regulate the delivery of cargo to synaptic targets. PMID:20169417

  5. Modeling of Steady-State Non-Inductive ITB Discharges with Application to DIII-D

    NASA Astrophysics Data System (ADS)

    St John, H. E.; Lao, L. L.; Murakami, M.; Kinsey, J. E.

    2001-10-01

    Establishment of near steady-state high-performance discharges with internal transport barriers in the electron and ion heat and the toroidal momentum channels is investigated using the GLF23 and Weiland confinement models. A combination of neutral beam and electron cyclotron heating and current drive is used to optimally shape the current profile for near non-inductive steady-state operation. The GLF23 and Weiland confinement models have had some success in modeling DIII-D discharges and consequently represents our best choice for DIII-D AT scenario development at this time. By starting the modeling with actual high-performance DIII-D discharges, we expect to obtain experimentally realized results. The stability of our simulations is monitored with the BALOO and GATO codes and rf heating and current drive is modelled with TORAY-GA. This computationally instensive modeling approach requires concurrent computing methods in order to be used routinely. We discuss our efforts to date in producing a parallel computational transport environment.

  6. Interaction-stabilized steady states in the driven O (N ) model

    NASA Astrophysics Data System (ADS)

    Chandran, Anushya; Sondhi, S. L.

    2016-05-01

    We study periodically driven bosonic scalar field theories in the infinite N limit. It is well known that the free theory can undergo parametric resonance under monochromatic modulation of the mass term and thereby absorb energy indefinitely. Interactions in the infinite N limit terminate this increase for any choice of the UV cutoff and driving frequency. The steady state has nontrivial correlations and is synchronized with the drive. The O (N ) model at infinite N provides the first example of a clean interacting quantum system that does not heat to infinite temperature at any drive frequency.

  7. On the steady-state solutions of a nonlinear photonic lattice model

    NASA Astrophysics Data System (ADS)

    Liu, Chungen; Ren, Qiang

    2015-03-01

    In this paper, we consider the steady-state solutions of the following equation related with nonlinear photonic lattice model Δ u = /P u 1 + |u|2 + |v|2 + λ u , Δ v = /Q v 1 + |u|2 + |v|2 + λ v , where u, v are real-value function defined on R/(τ1Z) × R/(τ2Z). The existence and non-existence of non-constant semi-trivial (with only one component zero) solutions are considered.

  8. On the steady-state solutions of a nonlinear photonic lattice model

    SciTech Connect

    Liu, Chungen E-mail: tjftp@mail.nankai.edu.cn; Ren, Qiang E-mail: tjftp@mail.nankai.edu.cn

    2015-03-15

    In this paper, we consider the steady-state solutions of the following equation related with nonlinear photonic lattice model Δu=(Pu)/(1+|u|{sup 2}+|v|{sup 2}) +λu, Δv=(Qv)/(1+|u|{sup 2}+|v|{sup 2}) +λv, where u, v are real-value function defined on R/(τ{sub 1}Z) × R/(τ{sub 2}Z). The existence and non-existence of non-constant semi-trivial (with only one component zero) solutions are considered.

  9. Comparison of aquifer characterization approaches through steady state groundwater model validation: A controlled laboratory sandbox study

    USGS Publications Warehouse

    Illman, W.A.; Zhu, J.; Craig, A.J.; Yin, D.

    2010-01-01

    Groundwater modeling has become a vital component to water supply and contaminant transport investigations. An important component of groundwater modeling under steady state conditions is selecting a representative hydraulic conductivity (K) estimate or set of estimates which defines the K field of the studied region. Currently, there are a number of characterization approaches to obtain K at various scales and in varying degrees of detail, but there is a paucity of information in terms of which characterization approach best predicts flow through aquifers or drawdowns caused by some drawdown inducing events. The main objective of this paper is to assess K estimates obtained by various approaches by predicting drawdowns from independent cross-hole pumping tests and total flow rates through a synthetic heterogeneous aquifer from flow-through tests. Specifically, we (1) characterize a synthetic heterogeneous aquifer built in the sandbox through various techniques (permeameter analyses of core samples, single-hole, cross-hole, and flow-through testing), (2) obtain mean K fields through traditional analysis of test data by treating the medium to be homogeneous, (3) obtain heterogeneous K fields through kriging and steady state hydraulic tomography, and (4) conduct forward simulations of 16 independent pumping tests and six flowthrough tests using these homogeneous and heterogeneous K fields and comparing them to actual data. Results show that the mean K and heterogeneous K fields estimated through kriging of small-scale K data (core and single-hole tests) yield biased predictions of drawdowns and flow rates in this synthetic heterogeneous aquifer. In contrast, the heterogeneous K distribution or ?K tomogram? estimated via steady state hydraulic tomography yields excellent predictions of drawdowns of pumping tests not used in the construction of the tomogram and very good estimates of total flow rates from the flowthrough tests. These results suggest that steady state

  10. A mathematical model of liver metabolism: from steady state to dynamic

    NASA Astrophysics Data System (ADS)

    Calvetti, D.; Kuceyeski, A.; Somersalo, E.

    2008-07-01

    The increase in Type 2 diabetes and other metabolic disorders has led to an intense focus on the areas of research related to metabolism. Because the liver is essential in regulating metabolite concentrations that maintain life, it is especially important to have good knowledge of the functions within this organ. In silico mathematical models that can adequately describe metabolite concentrations, flux and transport rates in the liver in vivo can be a useful predictive tool. Fully dynamic models, which contain expressions for Michaelis-Menten reaction kinetics can be utilized to investigate different metabolic states, for example exercise, fed or starved state. In this paper we describe a two compartment (blood and tissue) spatially lumped liver metabolism model. First, we use Bayesian Flux Balance Analysis (BFBA) to estimate the values of flux and transport rates at steady state, which agree closely with values from the literature. These values are then used to find a set of Michaelis-Menten parameters and initial concentrations which identify a dynamic model that can be used for exploring different metabolic states. In particular, we investigate the effect of doubling the concentration of lactate entering the system via the hepatic artery and portal vein. This change in lactate concentration forces the system to a new steady state, where glucose production is increased.

  11. Stratus: An interactive steady state mixed layer model for personal computers

    NASA Technical Reports Server (NTRS)

    Guinn, Thomas A.; Schubert, Wayne H.

    1990-01-01

    A steady-state, horizontally homogeneous, cloud-topped marine boundary layer model based primarily on the work of Lilly (1968) and Schubert et al., (1979) is presented. The conservative thermodynamic variables are equivalent potential temperature, theta(sub e), and total water mixing ratio, q + l. Some of the differences between this and Lilly's (1968) model are: radiation is allowed to penetrate into the boundary layer; cloud top values of longwave radiation, equivalent potential temperature, and water vapor mixing ratio are linear functions of height derived from climatological data at California coastal stations; and the closure assumption assumes a weighted average of Lilly's (1968) maximum and minimum entrainment theories. This model was programmed in FORTRAN and will run interactively on an IBM-compatible personal computer. The program allows the user to specify the geographical location, the wind speed, the sea-surface temperature, the large scale horizontal divergence, and the initial guess for cloud top height. Output includes the steady state values of cloud top and cloud base height, mixed layer equivalent potential temperature and total water mixing ratio, and the associated convective and radiative fluxes.

  12. Why a steady state void size distribution in irradiated UO2? A modeling approach

    NASA Astrophysics Data System (ADS)

    Maillard, S.; Martin, G.; Sabathier, C.

    2016-05-01

    In UO2 pellets irradiated in standard water reactor, Xe nano-bubbles nucleate, grow, coarsen and finally reach a quasi steady state size distribution: transmission electron microscope (TEM) observations typically report a concentration around 10-4 nm-3 and a radius around 0.5 nm. This phenomenon is often considered as a consequence of radiation enhanced diffusion, precipitation of gas atoms and ballistic mixing. However, in UO2 thin foils irradiated with energetic ions at room temperature, a nano-void population whose size distribution reaches a similar steady state can be observed, although quasi no foreign atoms are implanted nor significant cation vacancy diffusion expected in conditions. Atomistic simulations performed at low temperature only address the first stage of the process, supporting the assumption of void heterogeneous nucleation: 25 keV sub-cascades directly produce defect aggregates (loops and voids) even in the absence of gas atoms and thermal diffusion. In this work a semi-empirical stochastic model is proposed to enlarge the time scale covered by simulation up to damage levels where every point in the material undergoes the superposition of a large number of sub-cascade impacts. To account for the accumulation of these impacts, simple rules inferred from the atomistic simulation results are used. The model satisfactorily reproduces the TEM observations of nano-voids size and concentration, which paves the way for the introduction of a more realistic damage term in rate theory models.

  13. A population balance model for transient and steady-state foam flow in Boise sandstone

    SciTech Connect

    Kovscek, A.; Patzek, T.; Radke, C.

    1995-07-01

    An experimental and mechanistic-modeling study is reported for the transient flow of aqueous foam through 1.3-{mu}m{sup 2} (1.3-D) Boise sandstone at backpressures in excess of 5 MPa (700 psi) over a quality range from 0.80 to 0.99. Total superficial velocities range from as little as 0.42 to 2.20 m/day (1.4 ft/day to 7 ft/day). Sequential pressure taps and gamma-ray densitometry measure flow resistance and in-situ liquid saturations, respectively. We garner experimental pressure and saturation profiles in both the transient and steady states. Adoption of a mean-size foam-bubble conservation equation along with the traditional reservoir simulation equations allows mechanistic foam simulation. Since foam mobility depends heavily upon its texture, the bubble population balance is both useful and necessary as the role of foam texture must be incorporated into any model which seeks accurate prediction of flow properties. Our model employs capillary-pressure-dependent kinetic expressions for lamellae generation and coalescence and also a term for trapping of lamellae. Additionally, the effects of surfactant chemical transport are included. We find quantitative agreement between experimental and theoretical saturation and pressure profiles in both the transient and steady states.

  14. Steady-state model for estimating gas production from underground coal gasification

    SciTech Connect

    Greg Perkins; Veena Sahajwalla

    2008-11-15

    A pseudo-one-dimensional channel model has been developed to estimate gas production from underground coal gasification. The model incorporates a zero-dimensional steady-state cavity growth submodel and models mass transfer from the bulk gas to the coal wall using a correlation for natural convection. Simulations with the model reveal that the gas calorific value is sensitive to coal reactivity and the exposed reactive surface area per unit volume in the channel. A comparison of model results with several small-scale field trials conducted at Centralia in the U.S.A. show that the model can make good predictions of the gas production and composition under a range of different operating conditions, including operation with air and steam/oxygen mixtures. Further work is required to determine whether the model formulation is also suitable for simulating large-scale underground coal gasification field trials.

  15. Experiments and modeling of freshwater lenses in layered aquifers: Steady state interface geometry

    NASA Astrophysics Data System (ADS)

    Dose, Eduardo J.; Stoeckl, Leonard; Houben, Georg J.; Vacher, H. L.; Vassolo, Sara; Dietrich, Jörg; Himmelsbach, Thomas

    2014-02-01

    The interface geometry of freshwater lenses in layered aquifers was investigated by physical 2D laboratory experiments. The resulting steady-state geometries of the lenses were compared to existing analytical expressions from Dupuit-Ghyben-Herzberg (DGH) analysis of strip-island lenses for various cases of heterogeneity. Despite the vertical exaggeration of the physical models, which would seem to vitiate the assumption of vertical equipotentials, the fits with the DGH models were generally satisfactory. Observed deviations between the analytical and physical models can be attributed mainly to outflow zones along the shore line, which are not considered in the analytical models. As unconfined natural lenses have small outflow zones compared to their overall dimensions, and flow is mostly horizontal, the DGH analytical models should perform even better at full scale. Numerical models that do consider the outflow face generally gave a good fit to the physical models.

  16. Global bifurcation and stability of steady states for a reaction-diffusion-chemotaxis model with volume-filling effect

    NASA Astrophysics Data System (ADS)

    Ma, Manjun; Wang, Zhi-An

    2015-08-01

    This paper is devoted to studying a reaction-diffusion-chemotaxis model with a volume-filling effect in a bounded domain with Neumann boundary conditions. We first establish the global existence of classical solutions bounded uniformly in time. Then applying the asymptotic analysis and bifurcation theory, we obtain both the local and global structure of steady states bifurcating from the homogeneous steady states in one dimension by treating the chemotactic coefficient as a bifurcation parameter. Moveover we find the stability criterion of the bifurcating steady states and give a sufficient condition for the stability of steady states with small amplitude. The pattern formation of the model is numerically shown and the stability criterion is verified by our numerical simulations.

  17. Steady state, near-source models of the Parkfield, Imperial Valley, and Mexicali Valley Earthquakes

    NASA Astrophysics Data System (ADS)

    Mendez, A. J.; Luco, J. E.

    1990-01-01

    Some of the gross characteristics of the rupture processes for the 1966 Parkfield, 1979 Imperial Valley, and 1980 Mexicali Valley earthquakes are determined by waveform inversion of near-source data employing a steady state dislocation model in a layered half-space. The forward model involves a piecewise-linear rupture front moving with a constant horizontal rupture velocity on a fault of infinite length and finite width. The inferred shapes for the rupture front and for the distribution of slip as a function of depth are consistent with previous results obtained by use of more general models. The results obtained show that a strong velocity pulse observed in the nearsource region can be modeled as the passage of the rupture front phase and that the supershear propagation of the rupture front in the sedimentary layers of the medium provides a mechanism for the generation of the observed large amplitudes.

  18. One-dimensional steady-state stream water-quality model

    USGS Publications Warehouse

    Bauer, Daniel P.; Jennings, Marshall E.; Miller, Jeffrey E.

    1979-01-01

    A computer program, based on a one-dimensional mathematical model which predicts the stream water-quality response characteristics from waste source inputs, is described and documented. Variables predicted include dissolved oxygen, biochemical oxygen demand, nitrogen forms, total and fecal-coliform bacteria, orthophosphate-phosphorus, and various conservative substances. The model is based primarily on the Streeter-Phelps oxygen-sag equation. Special options of the program include the capability of handling nonpont source waste inputs and anoxic conditions. The model formulation is based on a steady-state assumption which requires constant flow rate of waste and stream discharges and associated parameters. To achieve a problem solution, each reach of a stream system is broken into a given number of subreaches, generally defined by locations of waste or tributary inflow points. All waste constituents are assumed to be completely mixed within any cross section. (Woodard-USGS)

  19. Development of a two-dimensional thermal model for the steady state thermoplastic pultrusion process

    NASA Astrophysics Data System (ADS)

    Ruan, Yimin; Liu, Joshua C.; Chesonis, D. C.; Carvell, Lee A.

    A two-dimensional steady state heat transfer model is developed in this report for the thermoplastic pultrusion process. In this model, the finite element method with a stream line diffusion approach is used. The stream line diffusion method will minimize the numerical oscillations when the pulling speed is high and the finite element mesh is coarse. The crystallization kinetics reported by Ozawa is employed to calculate the relative crystallinity and the heat released due to the crystallization process during cooling. It is assumed the taper angle of the consolidation die is small so that the pultrusion can be approximated as an orthotropic material. The volume fractions of void, matrix, and fiber are defined based on material densities and consolidation strains. Examples for pultrusion of APC-2 are studied using this finite element model.

  20. Analysis of nonlinear noisy integrate & fire neuron models: blow-up and steady states

    PubMed Central

    2011-01-01

    Nonlinear Noisy Leaky Integrate and Fire (NNLIF) models for neurons networks can be written as Fokker-Planck-Kolmogorov equations on the probability density of neurons, the main parameters in the model being the connectivity of the network and the noise. We analyse several aspects of the NNLIF model: the number of steady states, a priori estimates, blow-up issues and convergence toward equilibrium in the linear case. In particular, for excitatory networks, blow-up always occurs for initial data concentrated close to the firing potential. These results show how critical is the balance between noise and excitatory/inhibitory interactions to the connectivity parameter. AMS Subject Classification: 35K60, 82C31, 92B20. PMID:22657097

  1. Estimation of releases into rivers with the steady-state surface water model EXWAT using dichloromethane

    SciTech Connect

    Trapp, S.; Brueggemann, R.M.; Muenzer, B. )

    1990-02-01

    The surface water model EXWAT is applied to monitoring studies of hazardous substances to estimate site-specific emissions from measured concentrations. The model includes the main processes which govern the fate of chemicals in rivers, namely, advection, volatility, degradation processes, sedimentation, resuspension, and protonic equilibria. The steady-state solution of the linear mass balance equations leads to proportionality between input and concentration of a chemical, which is used to assess input rates from measured concentrations. Subsequently, the model can be used for pollution control and identification of unknown releases. With measured concentrations in the Rhine near Koblenz (95 km downstream from the mouth of the river Main) the load of dichloromethane from the tributary Main was estimated. The comparison with measured concentrations in the tributary mouth has a good agreement in this case.

  2. Simultaneous confidence intervals for a steady-state leaky aquifer groundwater flow model

    USGS Publications Warehouse

    Christensen, S.; Cooley, R.L.

    1996-01-01

    Using the optimization method of Vecchia & Cooley (1987), nonlinear Scheffe??-type confidence intervals were calculated tor the parameters and the simulated heads of a steady-state groundwater flow model covering 450 km2 of a leaky aquifer. The nonlinear confidence intervals are compared to corresponding linear intervals. As suggested by the significant nonlinearity of the regression model, linear confidence intervals are often not accurate. The commonly made assumption that widths of linear confidence intervals always underestimate the actual (nonlinear widths was not correct for the head intervals. Results show that nonlinear effects can cause the nonlinear intervals to be offset from, and either larger or smaller than, the linear approximations. Prior information on some transmissivities helps reduce and stabilize the confidence intervals, with the most notable effects occurring for the parameters on which there is prior information and for head values in parameter zones for which there is prior information on the parameters.

  3. Steady-State Models of X-ray Emission from Massive-Star Magnetospheres

    NASA Astrophysics Data System (ADS)

    Bard, Christopher; Townsend, Richard D.

    2016-01-01

    In the subset of OB stars with large-scale, organized magnetic fields, the stellar wind is forced to flow along magnetic field lines and is trapped within a magnetosphere corotating with its host star. As the wind turns on itself, shocks heat the plasma to millions of degrees and produce X-ray emission. Such magnetospheres are typically classified with the "wind magnetic confinement parameter", a simplified ratio between the magnetic energy density and the wind kinetic energy density. This parameter is often used to estimate magnetosphere properties, such as size, mass-loss rate, and spin-down time. Unfortunately, the strong magnetic fields in magnetospheres (polar strength: 100 G - 10 kG) and resulting Alfven velocities make magnetohydrodynamics simulations computationally difficult due to very small timesteps. To get around this issue, we approximate a massive-star magnetosphere as a series of one-dimensional flows along magnetic dipole field lines and develop a steady-state model from the resulting hydrodynamic equations. With this model, we derive scaling relations for the stellar mass-loss rate as a function of surface colatitude and find agreement with previous scaling results derived from simulations. These relations are further extended to include the effects of rigid-body rotation within the magnetosphere. Additionally, we develop an X-ray emission model from this steady-state analysis and compare it against both the "XADM" model for X-ray emission from massive star magnetospheres and observations of massive magnetic stars. Finally, we discuss improvements to the traditional wind magnetic confinement parameter to take into account the effect of a magnetic field on the wind kinetic energy density.

  4. The multispecies modeling of the premixed, laminar steady-state ozone flame

    NASA Technical Reports Server (NTRS)

    Heimerl, J. M.; Coffee, T. P.

    1980-01-01

    Species dependent kinetic, transport and thermodynamic coefficients were employed in a one dimensional model of the premixed, laminar, steady state ozone flame. Convenient expressions for these coefficients are reported. They are based on independent measurements, no arbitrary parameters are used. The governing equations are solved using a relaxation technique and the partial differential equation package, PDECOL. Species and temperature profiles and the burning velocities are found over the range of initial ozone mole fraction of 0.25 to 1.00. The computed burning velocities are no more than 30% greater than the measurements of Streng and Grosses. Comparison with the computed results of Warnatz shows agreement within + or - 12%, even though quite different expressions for some of the kinetic coefficients were used. These differences are most obvious in the atomic oxygen and temperature profiles at an initial ozone mole fraction of unity.

  5. Non-equilibrium steady states in two-temperature Ising models with Kawasaki dynamics

    NASA Astrophysics Data System (ADS)

    Borchers, Nick; Pleimling, Michel; Zia, R. K. P.

    2013-03-01

    From complex biological systems to a simple simmering pot, thermodynamic systems held out of equilibrium are exceedingly common in nature. Despite this, a general theory to describe these types of phenomena remains elusive. In this talk, we explore a simple modification of the venerable Ising model in hopes of shedding some light on these issues. In both one and two dimensions, systems attached to two distinct heat reservoirs exhibit many of the hallmarks of phase transition. When such systems settle into a non-equilibrium steady-state they exhibit numerous interesting phenomena, including an unexpected ``freezing by heating.'' There are striking and surprising similarities between the behavior of these systems in one and two dimensions, but also intriguing differences. These phenomena will be explored and possible approaches to understanding the behavior will be suggested. Supported by the US National Science Foundation through Grants DMR-0904999, DMR-1205309, and DMR-1244666

  6. Modelling the soil-atmosphere exchange of POPs: Long-term steady state and diurnal fluctuations

    NASA Astrophysics Data System (ADS)

    Bao, Z.; Beckingham, B.; Maier, U.; Haberer, C.; Grathwohl, P.

    2014-12-01

    Soil-atmosphere exchange is an important transport process influencing environmental fate and transport of many persistent organic pollutants (POPs). This study focuses on modelling the gaseous exchange of a semi-volatile polycyclic aromatic hydrocarbon (phenanthrene) between soil and the atmosphere using the multicomponent reactive transport code MIN3P. MIN3P is typically applied to simulate aqueous and vapor phase subsurface transport and reaction processes. We extended the code to also include an atmospheric boundary layer where eddy diffusion and photodegradation take place. The relevant processes and parameters affecting soil-atmosphere exchange were investigated in several scenarios and at various time scales. We found that phenanthrene is well-mixed in the atmospheric boundary layer under neutral or stable atmospheric conditions due to fast eddy diffusion. Uptake of airborne phenanthrene to soils is limited by the soil properties and initially depends on diffusion in soil gas and sorption to the solids. On the long term seepage water dominates transport into deeper soil layers; biodegradation finally leads to steady-state concentration profiles in the subsurface typically achieved after a few centuries. If concentrations in the atmosphere decrease, e.g. due to environmental legislation, then soils become sources for the POPs for the first two months and function as sinks again for the POPs until new steady state concentrations are reached (after decades to centuries). MIN3P was also used to simulate diurnal soil-atmosphere exchanges of airborne pollutants due to temperature changes and photodegradation, both which cause fluctuations in atmospheric concentrations and therefore affect mass transfer between soil and the atmosphere. The model can further be applied to estimate the environmental fate of other POPs between soil and the atmosphere under different environmental pollution and climate change scenarios.

  7. A Steady-State Mass Transfer Model of Removing CPAs from Cryopreserved Blood with Hollow Fiber Modules

    PubMed Central

    Ding, Weiping; Zhou, Xiaoming; Heimfeld, Shelly; Reems, Jo-Anna; Gao, Dayong

    2010-01-01

    Hollow fiber modules are commonly used to conveniently and efficiently remove cryoprotective agents (CPAs) from cryopreserved cell suspensions. In this paper, a steady-state model coupling mass transfers across cell and hollow fiber membranes is theoretically developed to evaluate the removal of CPAs from cryopreserved blood using hollow fiber modules. This steady-state model complements the unsteady-state model which was presented in our previous study. As the steady-state model, unlike the unsteady-state model, can be used to evaluate the effect of ultrafiltration flow rates on the clearance of CPAs. The steady-state model is validated by experimental results and then is compared with the unsteady-state model. Using the steady-state model, the effects of ultrafiltration flow rates, NaCl concentrations in dialysate, blood flow rates and dialysate flow rates on CPA concentration variation and cell volume response are investigated in detail. According to the simulative results, the osmotic damage of red blood cells (RBCs) can easily be reduced by increasing ultrafiltration flow rates, increasing NaCl concentrations in dialysate, increasing blood flow rates or decreasing dialysate flow rates. PMID:20524740

  8. Non-Inductive Current Drive Modeling Extending Advanced Tokamak Operation to Steady State

    SciTech Connect

    Casper, T.A.; Lodestro, L.L.; Pearlstein, L.D.; Porter, G.D.; Murakami, M.; Lao, L.L.; Lin-Lui, Y.R.; St. John, H.E.

    2000-06-06

    A critical issue for sustaining high performance, negative central shear (NCS) discharges is the ability to maintain current distributions that are maximum off axis. Sustaining such hollow current profiles in steady state requires the use of non-inductively driven current sources. On the DIII-D experiment, a combination of neutral beam current drive (NBCD) and bootstrap current have been used to create transient NCS discharges. The electron cyclotron heating (ECH) and current drive (ECCD) system is currently being upgraded from three gyrotrons to six to provide more than 3MW of absorbed power in long-pulse operation to help sustain the required off-axis current drive. This upgrade SuPporrs the long range goal of DIII-D to sustain high performance discharges with high values of normalized {beta}, {beta}{sub n} = {beta}/(I{sub p}/aB{sub T}), confinement enhancement factor, H, and neutron production rates while utilizing bootstrap current fraction, f{sub bs}, in excess of 50%. At these high performance levels, the likelihood of onset of MHD modes that spoil confinement indicates the need to control plasma profiles if we are to extend this operation to long pulse or steady state. To investigate the effectiveness of the EC system and to explore operating scenarios to sustain these discharges, we use time-dependent simulations of the equilibrium, transport and stability. We explore methods to directly alter the safety factor profile, q, through direct current drive or by localized electron heating to modify the bootstrap current profile. Time dependent simulations using both experimentally determined [1] and theory-based [2] energy transport models have been done. Here, we report on simulations exploring parametric dependencies of the heating, current drive, and profiles that affect our ability to sustain stable discharges.

  9. Evaluation of confidence intervals for a steady-state leaky aquifer model

    USGS Publications Warehouse

    Christensen, S.; Cooley, R.L.

    1999-01-01

    The fact that dependent variables of groundwater models are generally nonlinear functions of model parameters is shown to be a potentially significant factor in calculating accurate confidence intervals for both model parameters and functions of the parameters, such as the values of dependent variables calculated by the model. The Lagrangian method of Vecchia and Cooley [Vecchia, A.V. and Cooley, R.L., Water Resources Research, 1987, 23(7), 1237-1250] was used to calculate nonlinear Scheffe-type confidence intervals for the parameters and the simulated heads of a steady-state groundwater flow model covering 450 km2 of a leaky aquifer. The nonlinear confidence intervals are compared to corresponding linear intervals. As suggested by the significant nonlinearity of the regression model, linear confidence intervals are often not accurate. The commonly made assumption that widths of linear confidence intervals always underestimate the actual (nonlinear) widths was not correct. Results show that nonlinear effects can cause the nonlinear intervals to be asymmetric and either larger or smaller than the linear approximations. Prior information on transmissivities helps reduce the size of the confidence intervals, with the most notable effects occurring for the parameters on which there is prior information and for head values in parameter zones for which there is prior information on the parameters.The fact that dependent variables of groundwater models are generally nonlinear functions of model parameters is shown to be a potentially significant factor in calculating accurate confidence intervals for both model parameters and functions of the parameters, such as the values of dependent variables calculated by the model. The Lagrangian method of Vecchia and Cooley was used to calculate nonlinear Scheffe-type confidence intervals for the parameters and the simulated heads of a steady-state groundwater flow model covering 450 km2 of a leaky aquifer. The nonlinear confidence

  10. Performance of Steady-State Dispersion Models Under Low Wind-Speed Conditions

    NASA Astrophysics Data System (ADS)

    Qian, Wenjun; Venkatram, Akula

    2011-03-01

    We examine the performance of two steady-state models, a numerical solution of the advection-diffusion equation and the Gaussian plume-model-based AERMOD (the American Meteorological Society/Environmental Protection Agency Regulatory Model), to predict dispersion for surface releases under low wind-speed conditions. A comparison of model estimates with observations from two tracer studies, the Prairie Grass experiment and the Idaho Falls experiment indicates that about 50% of the concentration estimates are within a factor of two of the observations, but the scatter is large: the 95% confidence interval of the ratio of the observed to estimated concentrations is about 4. The model based on the numerical solution of the diffusion equation in combination with the model of Eckman (1994, Atmos Environ 28:265-272) for horizontal spread performs better than AERMOD in explaining the observations. Accounting for meandering of the wind reduces some of the overestimation of concentrations at low wind speeds. The results deteriorate when routine one-level observations are used to construct model inputs. An empirical modification to the similarity estimate of the surface friction velocity reduces the underestimation at low wind speeds.

  11. CO-oxidation model with superlattice ordering of adsorbed oxygen. I. Steady-state bifurcations

    NASA Astrophysics Data System (ADS)

    James, E. W.; Song, C.; Evans, J. W.

    1999-10-01

    We analyze a model for CO oxidation on surfaces which incorporates both rapid diffusion of adsorbed CO, and superlattice ordering of adsorbed immobile oxygen on a square lattice of adsorption sites. The superlattice ordering derives from an "eight-site adsorption rule," wherein diatomic oxygen adsorbs dissociatively on diagonally adjacent empty sites, provided that none of the six additional neighboring sites are occupied by oxygen. A "hybrid" formalism is applied to implement the model. Highly mobile adsorbed CO is assumed randomly distributed on sites not occupied by oxygen (which is justified if one neglects CO-CO and CO-O adspecies interactions), and is thus treated within a mean-field framework. In contrast, the distribution of immobile adsorbed oxygen is treated within a lattice-gas framework. Exact master equations are presented for the model, together with some exact relationships for the coverages and reaction rate. A precise description of steady-state bifurcation behavior is provided utilizing both conventional and "constant-coverage ensemble" Monte Carlo simulations. This behavior is compared with predictions of a suitable analytic pair approximation derived from the master equations. The model exhibits the expected bistability, i.e., coexistence of highly reactive and relatively inactive states, which disappears at a cusp bifurcation. In addition, we show that the oxygen superlattice ordering produces a symmetry-breaking transition, and associated coarsening phenomena, not present in conventional Ziff-Gulari-Barshad-type reaction models.

  12. Development of steady-state model for MSPT and detailed analyses of receiver

    NASA Astrophysics Data System (ADS)

    Yuasa, Minoru; Sonoda, Masanori; Hino, Koichi

    2016-05-01

    Molten salt parabolic trough system (MSPT) uses molten salt as heat transfer fluid (HTF) instead of synthetic oil. The demonstration plant of MSPT was constructed by Chiyoda Corporation and Archimede Solar Energy in Italy in 2013. Chiyoda Corporation developed a steady-state model for predicting the theoretical behavior of the demonstration plant. The model was designed to calculate the concentrated solar power and heat loss using ray tracing of incident solar light and finite element modeling of thermal energy transferred into the medium. This report describes the verification of the model using test data on the demonstration plant, detailed analyses on the relation between flow rate and temperature difference on the metal tube of receiver and the effect of defocus angle on concentrated power rate, for solar collector assembly (SCA) development. The model is accurate to an extent of 2.0% as systematic error and 4.2% as random error. The relationships between flow rate and temperature difference on metal tube and the effect of defocus angle on concentrated power rate are shown.

  13. Integrated modelling of steady-state scenarios and heating and current drive mixes for ITER

    SciTech Connect

    Murakami, Masanori; Park, Jin Myung

    2011-01-01

    Recent progress on ITER steady-state (SS) scenario modelling by the ITPA-IOS group is reviewed. Code-to-code benchmarks as the IOS group's common activities for the two SS scenarios (weak shear scenario and internal transport barrier scenario) are discussed in terms of transport, kinetic profiles, and heating and current drive (CD) sources using various transport codes. Weak magnetic shear scenarios integrate the plasma core and edge by combining a theory-based transport model (GLF23) with scaled experimental boundary profiles. The edge profiles (at normalized radius rho = 0.8-1.0) are adopted from an edge-localized mode-averaged analysis of a DIII-D ITER demonstration discharge. A fully noninductive SS scenario is achieved with fusion gain Q = 4.3, noninductive fraction f(NI) = 100%, bootstrap current fraction f(BS) = 63% and normalized beta beta(N) = 2.7 at plasma current I(p) = 8MA and toroidal field B(T) = 5.3 T using ITER day-1 heating and CD capability. Substantial uncertainties come from outside the radius of setting the boundary conditions (rho = 0.8). The present simulation assumed that beta(N)(rho) at the top of the pedestal (rho = 0.91) is about 25% above the peeling-ballooning threshold. ITER will have a challenge to achieve the boundary, considering different operating conditions (T(e)/T(i) approximate to 1 and density peaking). Overall, the experimentally scaled edge is an optimistic side of the prediction. A number of SS scenarios with different heating and CD mixes in a wide range of conditions were explored by exploiting the weak-shear steady-state solution procedure with the GLF23 transport model and the scaled experimental edge. The results are also presented in the operation space for DT neutron power versus stationary burn pulse duration with assumed poloidal flux availability at the beginning of stationary burn, indicating that the long pulse operation goal (3000s) at I(p) = 9 MA is possible. Source calculations in these simulations have been

  14. Physical model for non-steady-state dissolution of dental enamel.

    PubMed

    Patel, M V; Fox, J L; Higuchi, W I

    1987-09-01

    The purpose of this study was to provide a rigorous theoretical understanding of the dissolution behavior of dental enamel over the entire time-course of demineralization and to simulate by computer an erosion-type caries lesion according to the physical "hydroxyapatite model". The appropriate diffusion equations which account for simultaneous diffusion and equilibrium of all species in enamel pores, boundary layer, and bulk solution, and which also take into consideration surface reaction kinetics, were employed to allow for calculation of the micro-environmental solution concentration and changes in the mineral density as a function of time and distance within the enamel. This comprehensive physical model for non-steady-state enamel dissolution also explicitly takes into account changes in the diffusivity and the dissolution rate constant as a function of mineral density. Demineralization experiments were conducted in 0.1 mol/L sink acetate buffer (pH = 4.50, mu = 0.50), with ground bovine dental enamel blocks of known surface area mounted (with beeswax) in a rotating disk apparatus. Mineral density profiles were quantified by means of contact x-ray microradiography. The physical model was used to predict mineral density profiles for given demineralization treatments. The experimental profiles agreed quite well with the predicted profiles, when the effective diffusivity of the enamel was assumed to be a function of porosity and when changes in surface area of the crystallites were taken into consideration. PMID:3476613

  15. Auditory steady state responses in a schizophrenia rat model probed by excitatory/inhibitory receptor manipulation

    PubMed Central

    Vohs, Jenifer L.; Chambers, R. Andrew; O’Donnell, Brian F.; Krishnan, Giri P.; Morzorati, Sandra L.

    2012-01-01

    Alterations in neural synchrony and oscillations may contribute to the pathophysiology of schizophrenia and reflect aberrations in cortical glutamatergic and GABAergic neurotransmission. We tested the effects of a GABA agonist and a NMDA antagonist on auditory steady state responses (ASSRs) in awake rats with neonatal ventral hippocampal lesions (NVHLs) as a neurodevelopmental model of schizophrenia. NVHL vs. SHAM lesioned rats were injected with saline then either ketamine (NMDA antagonist) or muscimol (GABAA agonist). Time-frequency analyses examined alterations in phase locking (consistency) across trials and changes in total power (magnitude). ASSRs were compared at 5 stimulation frequencies (10, 20, 30, 40, and 50 Hz). In SHAM rats, phase locking and power generally increased with stimulation frequency. Both ketamine and muscimol also increased phase locking and power in SHAM rats, but mostly in the 20 to 40 Hz range. NVHL and ketamine altered the frequency dependence of phase locking, while only ketamine changed power frequency dependence. Muscimol affected power, but not phase locking, in the NVHL rats. NVHL and ketamine models of schizophrenia produce similar independent effects on ASSR, potentially representing similar forms of cortical network/glutamatergic dysfunction, albeit the effects of ketamine were more robust. Muscimol produced NVHL-dependent reductions in ASSR measures, suggesting that cortical networks in this model are intolerant to post-synaptic GABAergic stimulation. These findings suggest the utility of combining lesion, pharmacological, and ASSR approaches in understanding neural mechanisms underlying disturbed synchrony in schizophrenia. PMID:22504207

  16. Steady-state parameter sensitivity in stochastic modeling via trajectory reweighting

    NASA Astrophysics Data System (ADS)

    Warren, Patrick B.; Allen, Rosalind J.

    2012-03-01

    Parameter sensitivity analysis is a powerful tool in the building and analysis of biochemical network models. For stochastic simulations, parameter sensitivity analysis can be computationally expensive, requiring multiple simulations for perturbed values of the parameters. Here, we use trajectory reweighting to derive a method for computing sensitivity coefficients in stochastic simulations without explicitly perturbing the parameter values, avoiding the need for repeated simulations. The method allows the simultaneous computation of multiple sensitivity coefficients. Our approach recovers results originally obtained by application of the Girsanov measure transform in the general theory of stochastic processes [A. Plyasunov and A. P. Arkin, J. Comput. Phys. 221, 724 (2007), 10.1016/j.jcp.2006.06.047]. We build on these results to show how the method can be used to compute steady-state sensitivity coefficients from a single simulation run, and we present various efficiency improvements. For models of biochemical signaling networks, the method has a particularly simple implementation. We demonstrate its application to a signaling network showing stochastic focussing and to a bistable genetic switch, and present exact results for models with linear propensity functions.

  17. Steady-State Creep of Rock Salt: Improved Approaches for Lab Determination and Modelling

    NASA Astrophysics Data System (ADS)

    Günther, R.-M.; Salzer, K.; Popp, T.; Lüdeling, C.

    2015-11-01

    Actual problems in geotechnical design, e.g., of underground openings for radioactive waste repositories or high-pressure gas storages, require sophisticated constitutive models and consistent parameters for rock salt that facilitate reliable prognosis of stress-dependent deformation and associated damage. Predictions have to comprise the active mining phase with open excavations as well as the long-term development of the backfilled mine or repository. While convergence-induced damage occurs mostly in the vicinity of openings, the long-term behaviour of the backfilled system is dominated by the damage-free steady-state creep. However, because in experiments the time necessary to reach truly stationary creep rates can range from few days to years, depending mainly on temperature and stress, an innovative but simple creep testing approach is suggested to obtain more reliable results: A series of multi-step tests with loading and unloading cycles allows a more reliable estimate of stationary creep rate in a reasonable time. For modelling, we use the advanced strain-hardening approach of Günther-Salzer, which comprehensively describes all relevant deformation properties of rock salt such as creep and damage-induced rock failure within the scope of an unified creep ansatz. The capability of the combination of improved creep testing procedures and accompanied modelling is demonstrated by recalculating multi-step creep tests at different loading and temperature conditions. Thus reliable extrapolations relevant to in-situ creep rates (10^{-9} to 10^{-13} s^{-1}) become possible.

  18. Coupling earth system and integrated assessment models: the problem of steady state

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B.; Calvin, K.; Jones, A. D.; Mao, J.; Patel, P.; Shi, X.; Thomson, A.; Thornton, P.; Zhou, Y.

    2014-02-01

    Human activities are significantly altering biogeochemical cycles at the global scale, posing a significant problem for earth system models (ESMs), which may incorporate static land-use change inputs but do not actively simulate policy or economic forces. One option to address this problem is to couple an ESM with an economically oriented integrated assessment model. Here we have implemented and tested a coupling mechanism between the carbon cycles of an ESM (CESM, the Community Earth System Model) and an integrated assessment (GCAM) model, examining the best proxy variables to share between the models, and quantifying our ability to distinguish climate- and land-use-driven flux changes. The net primary production and heterotrophic respiration outputs of the Community Land Model (CLM), the land component of CESM, were found to be the most robust proxy variables by which to manipulate GCAM's assumptions of long-term ecosystem steady state carbon, with short-term forest production strongly correlated with long-term biomass changes in climate-change model runs. Carbon-cycle effects of anthropogenic land-use change are short-term and spatially limited relative to widely distributed climate effects, and as a result we were able to distinguish these effects successfully in the model coupling, passing only the latter to GCAM. By allowing climate effects from a full earth system model to dynamically modulate the economic and policy decisions of an integrated assessment model, this work provides a foundation for linking these models in a robust and flexible framework capable of examining two-way interactions between human and earth system processes.

  19. High fidelity quasi steady-state aerodynamic model effects on race vehicle performance predictions using multi-body simulation

    NASA Astrophysics Data System (ADS)

    Mohrfeld-Halterman, J. A.; Uddin, M.

    2016-07-01

    We described in this paper the development of a high fidelity vehicle aerodynamic model to fit wind tunnel test data over a wide range of vehicle orientations. We also present a comparison between the effects of this proposed model and a conventional quasi steady-state aerodynamic model on race vehicle simulation results. This is done by implementing both of these models independently in multi-body quasi steady-state simulations to determine the effects of the high fidelity aerodynamic model on race vehicle performance metrics. The quasi steady state vehicle simulation is developed with a multi-body NASCAR Truck vehicle model, and simulations are conducted for three different types of NASCAR race tracks, a short track, a one and a half mile intermediate track, and a higher speed, two mile intermediate race track. For each track simulation, the effects of the aerodynamic model on handling, maximum corner speed, and drive force metrics are analysed. The accuracy of the high-fidelity model is shown to reduce the aerodynamic model error relative to the conventional aerodynamic model, and the increased accuracy of the high fidelity aerodynamic model is found to have realisable effects on the performance metric predictions on the intermediate tracks resulting from the quasi steady-state simulation.

  20. Finite difference time domain modeling of steady state scattering from jet engines with moving turbine blades

    NASA Technical Reports Server (NTRS)

    Ryan, Deirdre A.; Langdon, H. Scott; Beggs, John H.; Steich, David J.; Luebbers, Raymond J.; Kunz, Karl S.

    1992-01-01

    The approach chosen to model steady state scattering from jet engines with moving turbine blades is based upon the Finite Difference Time Domain (FDTD) method. The FDTD method is a numerical electromagnetic program based upon the direct solution in the time domain of Maxwell's time dependent curl equations throughout a volume. One of the strengths of this method is the ability to model objects with complicated shape and/or material composition. General time domain functions may be used as source excitations. For example, a plane wave excitation may be specified as a pulse containing many frequencies and at any incidence angle to the scatterer. A best fit to the scatterer is accomplished using cubical cells in the standard cartesian implementation of the FDTD method. The material composition of the scatterer is determined by specifying its electrical properties at each cell on the scatterer. Thus, the FDTD method is a suitable choice for problems with complex geometries evaluated at multiple frequencies. It is assumed that the reader is familiar with the FDTD method.

  1. Study of ITER Steady-State High qmin Scenarios Using FASTRAN/IPS Integrated Transport Modeling

    NASA Astrophysics Data System (ADS)

    Diem, S. J.; Murakami, M.; Park, J. M.; Sontag, A. C.

    2015-11-01

    A high qmin (qmin > 2) operational scenario has been identified as a possible candidate to achieve ITER baseline goals. This scenario requires a broad current profile with high bootstrap fraction, which in turn requires a relatively large pedestal height. The goal of this study is to identify an operational space for ITER high-qmin steady-state scenarios via self-consistent integrated modeling using the IPS/FASTRAN framework with EPED providing the edge pedestal height. FASTRAN is an iterative numerical procedure that integrates a variety of models (transport, heating, CD, equilibrium and stability) and has been shown to reproduce most features of DIII-D high beta discharges with a stationary current profile. The FASTRAN solver has been implemented in the Integrated Plasma Simulator (IPS) framework. The sensitivity of this operating space to uncertainties in the transport and pedestal predictions will be studied. Work supported by the US Department of Energy under DE-AC05-00OR22725, DE-FC02-04ER54698, and DE-AC52-07NA27344.

  2. Modeling integrated photovoltaic–electrochemical devices using steady-state equivalent circuits

    PubMed Central

    Winkler, Mark T.; Cox, Casandra R.; Nocera, Daniel G.; Buonassisi, Tonio

    2013-01-01

    We describe a framework for efficiently coupling the power output of a series-connected string of single-band-gap solar cells to an electrochemical process that produces storable fuels. We identify the fundamental efficiency limitations that arise from using solar cells with a single band gap, an arrangement that describes the use of currently economic solar cell technologies such as Si or CdTe. Steady-state equivalent circuit analysis permits modeling of practical systems. For the water-splitting reaction, modeling defines parameters that enable a solar-to-fuels efficiency exceeding 18% using laboratory GaAs cells and 16% using all earth-abundant components, including commercial Si solar cells and Co- or Ni-based oxygen evolving catalysts. Circuit analysis also provides a predictive tool: given the performance of the separate photovoltaic and electrochemical systems, the behavior of the coupled photovoltaic–electrochemical system can be anticipated. This predictive utility is demonstrated in the case of water oxidation at the surface of a Si solar cell, using a Co–borate catalyst.

  3. A Dipole Model for Negative Steady-State Resistance in Excitable Membranes

    PubMed Central

    Hamel, Bernard B.; Zimmerman, Irwin

    1970-01-01

    A dipole model is presented for ion flow in excitable membranes. This model considers the membrane to be composed of two distinct regions: a polar region and a nonpolar region. Further, the construction of an electrodiffusive formalism which takes explicit account of the energy of partition required by an ion for passage from external fluid to nonpolar region is presented. In the polar region a cooperative effect is considered which produces a configurational transition of the polar group dependent only on membrane voltage. A resulting change in voltage drop across the polar group is brought about by this configurational transition. This gives rise to a negative steady-state resistance for the equimolar case, in reasonable agreement with observation. The theory, in addition, is in reasonable accord with nonequimolar ion flow, and provides an explanation for such effects as the following: the intercept of the voltage-current characteristic, the ion membrane concentrations inferred from electrodiffusion theories, and the effects of polyvalent cations PMID:5471696

  4. Are Quasi-Steady-State Approximated Models Suitable for Quantifying Intrinsic Noise Accurately?

    PubMed Central

    Sengupta, Dola; Kar, Sandip

    2015-01-01

    Large gene regulatory networks (GRN) are often modeled with quasi-steady-state approximation (QSSA) to reduce the huge computational time required for intrinsic noise quantification using Gillespie stochastic simulation algorithm (SSA). However, the question still remains whether the stochastic QSSA model measures the intrinsic noise as accurately as the SSA performed for a detailed mechanistic model or not? To address this issue, we have constructed mechanistic and QSSA models for few frequently observed GRNs exhibiting switching behavior and performed stochastic simulations with them. Our results strongly suggest that the performance of a stochastic QSSA model in comparison to SSA performed for a mechanistic model critically relies on the absolute values of the mRNA and protein half-lives involved in the corresponding GRN. The extent of accuracy level achieved by the stochastic QSSA model calculations will depend on the level of bursting frequency generated due to the absolute value of the half-life of either mRNA or protein or for both the species. For the GRNs considered, the stochastic QSSA quantifies the intrinsic noise at the protein level with greater accuracy and for larger combinations of half-life values of mRNA and protein, whereas in case of mRNA the satisfactory accuracy level can only be reached for limited combinations of absolute values of half-lives. Further, we have clearly demonstrated that the abundance levels of mRNA and protein hardly matter for such comparison between QSSA and mechanistic models. Based on our findings, we conclude that QSSA model can be a good choice for evaluating intrinsic noise for other GRNs as well, provided we make a rational choice based on experimental half-life values available in literature. PMID:26327626

  5. MC3: a steady-state model and constraint consistency checker for biochemical networks

    PubMed Central

    2013-01-01

    Background Stoichiometric models provide a structural framework for analyzing steady-state cellular behavior. Models are developed either through augmentations of existing models or more recently through automatic reconstruction tools. There is currently no standardized practice or method for validating the properties of a model before placing it in the public domain. Considerable effort is often required to understand a model’s inconsistencies before its reuse within new research efforts. Results We present a review of common issues in stoichiometric models typically uncovered during pathway analysis and constraint-based optimization, and we detail succinct and efficient ways to find them. We present MC3, Model and Constraint Consistency Checker, a computational tool that can be used for two purposes: (a) identifying potential connectivity and topological issues for a given stoichiometric matrix, S, and (b) flagging issues that arise during constraint-based optimization. The MC3 tool includes three distinct checking components. The first examines the results of computing the basis for the null space for Sv = 0; the second uses connectivity analysis; and the third utilizes Flux Variability Analysis. MC3 takes as input a stoichiometric matrix and flux constraints, and generates a report summarizing issues. Conclusions We report the results of applying MC3 to published models for several systems including Escherichia coli, an adipocyte cell, a Chinese Hamster Ovary cell, and Leishmania major. Several issues with no prior documentation are identified. MC3 provides a standalone MATLAB-based comprehensive tool for model validation, a task currently performed either ad hoc or implemented in part within other computational tools. PMID:24261865

  6. Modelling the non steady state downward flux of particles at the PAP site in 2009

    NASA Astrophysics Data System (ADS)

    Sanders, R.; Lampitt, R.; Riley, J.; Lemoigne, F.; Marsay, C.; Giering, S.; Martin, A.

    2012-04-01

    The biological carbon pump, mediated principally via the sinking of organic matter from the surface ocean, is a significant term in the global carbon cycle. It transfers annually 5-15 GT C yr-1 out of the photic zone, an amount comparable to the annual accumulation of CO2 in the atmosphere driven by anthropogenic processes, and mediates a storage of CO2 in the ocean interior without which atmospheric CO2 would be much larger than it is today. Yet most of the material exported from the photic zone does not penetrate the deep ocean, instead it is mineralised in the twilight zone with fluxes in the thin 100m thick layer under the photic zone being extremely rapidly attenuated. The shape of this attenuation varies in time and space yet appears to be a critical determinand over atmosphere - ocean CO2 partitioning. Attempts to predict this attenuation using independent measures of heterotrophic activity have often not yielded the observed pattern of attenuation implying substantial uncertainties in one or more of the terms that enter into the comparison. In this talk we will describe direct estimates of particle flux made using drifting neutrally buoyant traps at the PAP site in 2009. We show that although we can make substantial progress towards closing the mid water C budget we still have a significant excess of carbon consumption over supply. We believe that this is due to erroneous steady state assumptions, a hypothesis we explore via simple numerical models.

  7. Steady-state, lumped-parameter model for capacitor-run, single-phase induction motors

    SciTech Connect

    Umans, S.D.

    1996-01-01

    This paper documents a technique for deriving a steady-state, lumped-parameter model for capacitor-run, single-phase induction motors. The objective of this model is to predict motor performance parameters such as torque, loss distribution, and efficiency as a function of applied voltage and motor speed as well as the temperatures of the stator windings and of the rotor. The model includes representations of both the main and auxiliary windings (including arbitrary external impedances) and also the effects of core and rotational losses. The technique can be easily implemented and the resultant model can be used in a wide variety of analyses to investigate motor performance as a function of load, speed, and winding and rotor temperatures. The technique is based upon a coupled-circuit representation of the induction motor. A notable feature of the model is the technique used for representing core loss. In equivalent-circuit representations of transformers and induction motors, core loss is typically represented by a core-loss resistance in shunt with the magnetizing inductance. In order to maintain the coupled-circuit viewpoint adopted in this paper, this technique was modified slightly; core loss is represented by a set of core-loss resistances connected to the ``secondaries`` of a set of windings which perfectly couple to the air-gap flux of the motor. An example of the technique is presented based upon a 3.5 kW, single-phase, capacitor-run motor and the validity of the technique is demonstrated by comparing predicted and measured motor performance.

  8. CO-oxidation model with superlattice ordering of adsorbed oxygen. I. Steady-state bifurcations

    SciTech Connect

    James, E.W.; Song, C.; Evans, J.W.

    1999-10-01

    We analyze a model for CO oxidation on surfaces which incorporates both rapid diffusion of adsorbed CO, and superlattice ordering of adsorbed immobile oxygen on a square lattice of adsorption sites. The superlattice ordering derives from an {open_quotes}eight-site adsorption rule,{close_quotes} wherein diatomic oxygen adsorbs dissociatively on diagonally adjacent empty sites, provided that none of the six additional neighboring sites are occupied by oxygen. A {open_quotes}hybrid{close_quotes} formalism is applied to implement the model. Highly mobile adsorbed CO is assumed randomly distributed on sites not occupied by oxygen (which is justified if one neglects CO{endash}CO and CO{endash}O adspecies interactions), and is thus treated within a mean-field framework. In contrast, the distribution of immobile adsorbed oxygen is treated within a lattice{endash}gas framework. Exact master equations are presented for the model, together with some {ital exact} relationships for the coverages and reaction rate. A precise description of steady-state bifurcation behavior is provided utilizing both conventional and {open_quotes}constant-coverage ensemble{close_quotes} Monte Carlo simulations. This behavior is compared with predictions of a suitable analytic pair approximation derived from the master equations. The model exhibits the expected bistability, i.e., coexistence of highly reactive and relatively inactive states, which disappears at a cusp bifurcation. In addition, we show that the oxygen superlattice ordering produces a symmetry-breaking transition, and associated coarsening phenomena, not present in conventional Ziff{endash}Gulari{endash}Barshad-type reaction models. {copyright} {ital 1999 American Institute of Physics.}

  9. Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses

    SciTech Connect

    Wang, Gangsheng; Post, Wilfred M; Mayes, Melanie

    2013-01-01

    We developed a Microbial-ENzyme-mediated Decomposition (MEND) model, based on the Michaelis-Menten kinetics, that describes the dynamics of physically defined pools of soil organic matter (SOC). These include particulate, mineral-associated, dissolved organic matter (POC, MOC, and DOC, respectively), microbial biomass, and associated exoenzymes. The ranges and/or distributions of parameters were determined by both analytical steady-state and dynamic analyses with SOC data from the literature. We used an improved multi-objective parameter sensitivity analysis (MOPSA) to identify the most important parameters for the full model: maintenance of microbial biomass, turnover and synthesis of enzymes, and carbon use efficiency (CUE). The model predicted an increase of 2 C (baseline temperature =12 C) caused the pools of POC-Cellulose, MOC, and total SOC to increase with dynamic CUE and decrease with constant CUE, as indicated by the 50% confidence intervals. Regardless of dynamic or constant CUE, the pool sizes of POC, MOC, and total SOC varied from 8% to 8% under +2 C. The scenario analysis using a single parameter set indicates that higher temperature with dynamic CUE might result in greater net increases in both POC-Cellulose and MOC pools. Different dynamics of various SOC pools reflected the catalytic functions of specific enzymes targeting specific substrates and the interactions between microbes, enzymes, and SOC. With the feasible parameter values estimated in this study, models incorporating fundamental principles of microbial-enzyme dynamics can lead to simulation results qualitatively different from traditional models with fast/slow/passive pools.

  10. TRACE GAS EMISSIONS IN CHAMBERS: A NON-STEADY-STATE DIFFUSION MODEL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Non-steady-state (NSS) chambers are widely used to measure trace gas emissions from the Earth’s surface in the atmosphere. Unfortunately, traditional interpretations of time-dependent chamber concentrations often systematically underestimate predeployment exchange rates because they do not accuratel...

  11. Elimination of thermodynamically infeasible loops in steady-state metabolic models.

    PubMed

    Schellenberger, Jan; Lewis, Nathan E; Palsson, Bernhard Ø

    2011-02-01

    The constraint-based reconstruction and analysis (COBRA) framework has been widely used to study steady-state flux solutions in genome-scale metabolic networks. One shortcoming of current COBRA methods is the possible violation of the loop law in the computed steady-state flux solutions. The loop law is analogous to Kirchhoff's second law for electric circuits, and states that at steady state there can be no net flux around a closed network cycle. Although the consequences of the loop law have been known for years, it has been computationally difficult to work with. Therefore, the resulting loop-law constraints have been overlooked. Here, we present a general mixed integer programming approach called loopless COBRA (ll-COBRA), which can be used to eliminate all steady-state flux solutions that are incompatible with the loop law. We apply this approach to improve flux predictions on three common COBRA methods: flux balance analysis, flux variability analysis, and Monte Carlo sampling of the flux space. Moreover, we demonstrate that the imposition of loop-law constraints with ll-COBRA improves the consistency of simulation results with experimental data. This method provides an additional constraint for many COBRA methods, enabling the acquisition of more realistic simulation results. PMID:21281568

  12. Steady-state analytical models for performance assessment of landfill composite liners.

    PubMed

    Xie, Haijian; Jiang, Yuansheng; Zhang, Chunhua; Feng, Shijin; Qiu, Zhanhong

    2015-08-01

    One-dimensional mathematical models were developed for organic contaminant transport through landfill composite liners consisting of a geomembrane (GM) and a geosynthetic clay liner (GCL) or a GM and a compacted clay liner (CCL). The combined effect of leakage through GM defects, diffusion in GM and the underlying soil liners, and degradation in soil liners were considered. Steady state analytical solutions were provided for the proposed mathematical models, which consider the different combinations of advection, diffusion, and degradation. The analytical solutions of the time lag for contaminant transport in the composite liners were also derived. The performance of GM/GCL and GM/CCL was analyzed. For GM/GCL, the bottom flux can be reduced by a factor of 4 when the leachate head decreases from 10 to 0.3 m. The influence of degradation can be ignored for GM/GCL. For GM/CCL, when the leachate head decreases from 10 to 0.3 m, the bottom flux decreases by a factor of 2-4. Leachate head has greater influence on bottom flux in case of larger degradation rate (e.g., half-life = 1 year) compared to the case with lower degradation rate (e.g., half-life = 10 years). As contaminant half-life in soil liner decreases from 10 to 1 year, bottom flux decreases by approximately 2.7 magnitudes of orders. It is indicated that degradation may have greater influence on time lag of composite liner than leachate head. As leachate head increases from zero to 10 m, time lag for GM/CCL can be reduced by 5-6 years. Time lag for the same composite liner can be reduced by 10-11 years as contaminant half-life decreases from 10 to 1 year. Reducing leachate head acting on composite liners and increasing the degradation capacity of the soil liner would be the effective methods to improve the performance of the composite liners. The proposed analytical solutions are relatively simple and can be used for preliminary design and performance assessment of composite liners. PMID:25893615

  13. Steady-state volume of distribution of two-compartment models with simultaneous linear and saturated elimination.

    PubMed

    Wu, Xiaotian; Nekka, Fahima; Li, Jun

    2016-08-01

    The model-independent estimation of physiological steady-state volume of distribution ([Formula: see text]), often referred to non-compartmental analysis (NCA), is historically based on the linear compartment model structure with central elimination. However the NCA-based steady-state volume of distribution ([Formula: see text]) cannot be generalized to more complex models. In the current paper, two-compartment models with simultaneous first-order and Michaelis-Menten elimination are considered. In particular, two indistinguishable models [Formula: see text] and [Formula: see text], both having central Michaelis-Menten elimination, while first-order elimination exclusively either from central or peripheral compartment, are studied. The model-based expressions of the steady-state volumes of distribution [Formula: see text] and their relationships to NCA-based [Formula: see text] are derived. The impact of non-linearity and peripheral elimination is explicitly delineated in the formulas. Being concerned with model identifiability and indistinguishability issues, an interval estimate of [Formula: see text] is suggested. PMID:27405818

  14. Relative efficiency of four parameter-estimation methods in steady-state and transient ground-water flow models

    USGS Publications Warehouse

    Hill, M.C.

    1990-01-01

    Parameters in numerical ground-water flow models have been successfully estimated using nonlinear-optimization methods such as the modified Gauss-Newton (GN) method and conjugate-direction methods. This paper investigates the relative efficiency of GN and three conjugate-direction parameter-estimation methods on two-dimensional, steady-state and transient ground-water flow test cases. The steady-state test cases are included to compare the performance of the algorithm with published examples. The three conjugate-direction methods are the Fletcher-Reeves (FR) and quasi-Newton (QN) regression methods, and combination Fletcher-Reeves quasi-Newton (FR-QN). All three are combined with Newton's method of calculating step size. The numerical ground-water flow model is described by McDonald and Harbaugh.

  15. The steady state solutions of radiatively driven stellar winds for a non-Sobolev, pure absorption model

    NASA Technical Reports Server (NTRS)

    Poe, C. H.; Owocki, S. P.; Castor, J. I.

    1990-01-01

    The steady state solution topology for absorption line-driven flows is investigated for the condition that the Sobolev approximation is not used to compute the line force. The solution topology near the sonic point is of the nodal type with two positive slope solutions. The shallower of these slopes applies to reasonable lower boundary conditions and realistic ion thermal speed v(th) and to the Sobolev limit of zero of the usual Castor, Abbott, and Klein model. At finite v(th), this solution consists of a family of very similar solutions converging on the sonic point. It is concluded that a non-Sobolev, absorption line-driven flow with a realistic values of v(th) has no uniquely defined steady state. To the extent that a pure absorption model of the outflow of stellar winds is applicable, radiatively driven winds should be intrinsically variable.

  16. Steady State Dense Gas Dispersion

    Energy Science and Technology Software Center (ESTSC)

    1995-03-01

    SLAB-LLNL is a steady-state one-dimensional program which calculates the atmospheric dispersion of a heavier than air gas that is continuously released at ground level. The model is based on the steady-state crosswind-averaged conservation equations of species, mass, energy, and momentum. It uses the air entrainment concept to account for the turbulent mixing of the gas cloud with the surrounding atmosphere and similarity profiles to determine the crosswind dependence.

  17. Development of an annoyance model based upon elementary auditory sensations for steady-state aircraft interior noise containing tonal components

    NASA Technical Reports Server (NTRS)

    Angerer, James R.; Mccurdy, David A.; Erickson, Richard A.

    1991-01-01

    The purpose of this investigation was to develop a noise annoyance model, superior to those already in use, for evaluating passenger response to sounds containing tonal components which may be heard within current and future commercial aircraft. The sound spectra investigated ranged from those being experienced by passengers on board turbofan powered aircraft now in service to those cabin noise spectra passengers may experience within advanced propeller-driven aircraft of the future. A total of 240 sounds were tested in this experiment. Sixty-six of these 240 sounds were steady state, while the other 174 varied temporally due to tonal beating. Here, the entire experiment is described, but the analysis is limited to those responses elicited by the 66 steady-state sounds.

  18. The effect of coupled mass transport and internal reforming on modeling of solid oxide fuel cells part I: Channel-level model development and steady-state comparison

    NASA Astrophysics Data System (ADS)

    Albrecht, Kevin J.; Braun, Robert J.

    2016-02-01

    Dynamic modeling and analysis of solid oxide fuel cell systems can provide insight towards meeting transient response application requirements and enabling an expansion of the operating envelope of these high temperature systems. SOFC modeling for system studies are accomplished with channel-level interface charge transfer models, which implement dynamic conservation equations coupled with additional submodels to capture the porous media mass transport and electrochemistry of the cell. Many of these models may contain simplifications in order to decouple the mass transport, fuel reforming, and electrochemical processes enabling the use of a 1-D model. The reforming reactions distort concentration profiles of the species within the anode, where hydrogen concentration at the triple-phase boundary may be higher or lower than that of the channel altering the local Nernst potential and exchange current density. In part one of this paper series, the modeling equations for the 1-D and 'quasi' 2-D models are presented, and verified against button cell electrochemical and channel-level reforming data. Steady-state channel-level modeling results indicate a 'quasi' 2-D SOFC model predicts a more uniform temperature distribution where differences in the peak cell temperature and maximum temperature gradient are experienced. The differences are most prominent for counter-flow cell with high levels of internal reforming. The transient modeling comparison is discussed in part two of this paper series.

  19. Simulation of the Etna 2001 flank eruption with a steady-state numerical model of magma ascent

    NASA Astrophysics Data System (ADS)

    La Spina, Giuseppe; Burton, Mike; de'Michieli Vitturi, Mattia

    2015-04-01

    Volcanoes exhibit a wide range of eruption styles, from relatively slow effusive eruptions, generating lava flows and lava domes, to explosive eruptions, in which very large volumes of fragmented magma and volcanic gas are ejected high into the atmosphere. Magma ascent dynamics in a volcanic conduit play a key role in determining the eruptive style of a volcano. However, due to the lack of direct observations in the conduit itself, numerical models, constrained with observational data, provide invaluable tools for quantitative insights into the complex magma ascent processes. We have developed a 1D steady-state multiphase multicomponent gas-magma-solid mathematical model, consisting of a set of non-linear partial differential and constitutive equations. The governing equations used in this work are designed to model multiphase fluid with disequilibrium processes, represented through the formalism of thermodynamically compatible hyperbolic systems as a system of conservative partial differential equations with relaxation terms. This numerical model has been used to reproduce the 2001 flank eruption at mount Etna. During this eruption, seven fissures at different altitude were active, showing different eruptive styles: fire fountains, Strombolian activities and lava effusions. From a mineralogical point of view, two different lavas were erupted. The vent higher than 2600 m a.s.l. (hereafter Upper vents, UV) erupted plagioclase-rich magma with an high crystal content. On the other hand, the vents located at 2550 and 2100 m a.s.l. (hereafter Lower vents, LV) produced a plagioclase-poor magma with a lower crystal content than UV magmas. With our numerical model we have investigated both eruptive events at UV and LV. Using the estimation for volume flow rate and for crystal content we are able to constraint the conduit radius and the temperature of the magma chamber. Furthermore, our numerical results indicate that UV and LV magmas are originated from the same magma, but

  20. Non-steady state modelling of wheel-rail contact problem

    NASA Astrophysics Data System (ADS)

    Guiral, A.; Alonso, A.; Baeza, L.; Giménez, J. G.

    2013-01-01

    Among all the algorithms to solve the wheel-rail contact problem, Kalker's FastSim has become the most useful computation tool since it combines a low computational cost and enough precision for most of the typical railway dynamics problems. However, some types of dynamic problems require the use of a non-steady state analysis. Alonso and Giménez developed a non-stationary method based on FastSim, which provides both, sufficiently accurate results and a low computational cost. However, it presents some limitations; the method is developed for one time-dependent creepage and its accuracy for varying normal forces has not been checked. This article presents the required changes in order to deal with both problems and compares its results with those given by Kalker's Variational Method for rolling contact.

  1. Brain-Computer Interfaces for 1-D and 2-D Cursor Control: Designs Using Volitional Control of the EEG Spectrum or Steady-State Visual Evoked Potentials

    NASA Technical Reports Server (NTRS)

    Trejo, Leonard J.; Matthews, Bryan; Rosipal, Roman

    2005-01-01

    We have developed and tested two EEG-based brain-computer interfaces (BCI) for users to control a cursor on a computer display. Our system uses an adaptive algorithm, based on kernel partial least squares classification (KPLS), to associate patterns in multichannel EEG frequency spectra with cursor controls. Our first BCI, Target Practice, is a system for one-dimensional device control, in which participants use biofeedback to learn voluntary control of their EEG spectra. Target Practice uses a KF LS classifier to map power spectra of 30-electrode EEG signals to rightward or leftward position of a moving cursor on a computer display. Three subjects learned to control motion of a cursor on a video display in multiple blocks of 60 trials over periods of up to six weeks. The best subject s average skill in correct selection of the cursor direction grew from 58% to 88% after 13 training sessions. Target Practice also implements online control of two artifact sources: a) removal of ocular artifact by linear subtraction of wavelet-smoothed vertical and horizontal EOG signals, b) control of muscle artifact by inhibition of BCI training during periods of relatively high power in the 40-64 Hz band. The second BCI, Think Pointer, is a system for two-dimensional cursor control. Steady-state visual evoked potentials (SSVEP) are triggered by four flickering checkerboard stimuli located in narrow strips at each edge of the display. The user attends to one of the four beacons to initiate motion in the desired direction. The SSVEP signals are recorded from eight electrodes located over the occipital region. A KPLS classifier is individually calibrated to map multichannel frequency bands of the SSVEP signals to right-left or up-down motion of a cursor on a computer display. The display stops moving when the user attends to a central fixation point. As for Target Practice, Think Pointer also implements wavelet-based online removal of ocular artifact; however, in Think Pointer muscle

  2. A cellular automaton model of the steady-state free'' growth of a non-isothermal dendrite

    SciTech Connect

    Brown, S.G.R.; Williams, T.; Spittle, J.A. . Dept. of Materials Engineering)

    1994-08-01

    A 2D cellular automaton model has been developed to study the steady-state free'' growth of a non-isothermal dendrite. The model incorporates rules to account for heat diffusion, the influence of curvature on the equilibrium freezing temperature and latent heat evolution. The model predicts a V [proportional to] [Delta]T[sup b] growth rate-undercooling relationship for the various dendrite tip growth temperatures selected. The prediction of the values of b accords reasonably with analytical models and reported experimental observations.

  3. A computer model of lens structure and function predicts experimental changes to steady state properties and circulating currents

    PubMed Central

    2013-01-01

    Background In a previous study (Vaghefi et al. 2012) we described a 3D computer model that used finite element modeling to capture the structure and function of the ocular lens. This model accurately predicted the steady state properties of the lens including the circulating ionic and fluid fluxes that are believed to underpin the lens internal microcirculation system. In the absence of a blood supply, this system brings nutrients to the core of the lens and removes waste products faster than would be achieved by passive diffusion alone. Here we test the predictive properties of our model by investigating whether it can accurately mimic the experimentally measured changes to lens steady-state properties induced by either depolarising the lens potential or reducing Na+ pump rate. Methods To mimic experimental manipulations reported in the literature, the boundary conditions of the model were progressively altered and the model resolved for each new set of conditions. Depolarisation of lens potential was implemented by increasing the extracellular [K+], while inhibition of the Na+ pump was stimulated by utilising the inherent temperature sensitivity of the pump and changing the temperature at which the model was solved. Results Our model correctly predicted that increasing extracellular [K+] depolarizes the lens potential, reducing and then reversing the magnitude of net current densities around the lens. While lowering the temperature reduced Na+ pump activity and caused a reduction in circulating current, it had a minimal effect on the lens potential, a result consistent with published experimental data. Conclusion We have shown that our model is capable of accurately simulating the effects of two known experimental manipulations on lens steady-state properties. Our results suggest that the model will be a valuable predictive tool to support ongoing studies of lens structure and function. PMID:23988187

  4. Numerical models of steady-state and pulsating flows of self-ionizing gas in plasma accelerator channels

    NASA Astrophysics Data System (ADS)

    Brushlinskii, K. V.; Kozlov, A. N.; Konovalov, V. S.

    2015-08-01

    This paper continues the series of numerical investigations of self-ionizing gas flows in plasma accelerator channels with an azimuthal magnetic field. The mathematical model is based on the equations of dynamics of a three-component continuous medium consisting of atoms, ions, and electrons; the model is supplemented with the equation of ionization and recombination kinetics within the diffusion approximation with account for photoionization and photorecombination. It also takes into account heat exchange, which in this case is caused by radiative heat conductance. Upon a short history of the issue, the proposed model, numerical methods, and results for steady-state and pulsating flows are described.

  5. Using bioprocess stoichiometry to build a plant-wide mass balance based steady-state WWTP model.

    PubMed

    Ekama, G A

    2009-05-01

    Steady-state models are useful for design of wastewater treatment plants (WWTPs) because they allow reactor sizes and interconnecting flows to be simply determined from explicit equations in terms of unit operation performance criteria. Once the overall WWTP scheme is established and the main system defining parameters of the individual unit operations estimated, dynamic models can be applied to the connected unit operations to refine their design and evaluate their performance under dynamic flow and load conditions. To model anaerobic digestion (AD) within plant-wide WWTP models, not only COD and nitrogen (N) but also carbon (C) fluxes entering the AD need to be defined. Current plant-wide models, like benchmark simulation model No 2 (BSM2), impose a C flux at the AD influent. In this paper, the COD and N mass balance steady-state models of activated sludge (AS) organics degradation, nitrification and denitrification (ND) and anaerobic (AD) and aerobic (AerD) digestion of wastewater sludge are extended and linked with bioprocess transformation stoichiometry to form C, H, O, N, chemical oxygen demand (COD) and charge mass balance based models so that also C (and H and O) can be tracked through the whole WWTP. By assigning a stoichiometric composition (x, y, z and a in C(x)H(y)O(z)N(a)) to each of the five main influent wastewater organic fractions and ammonia, these, and the products generated from them via the biological processes, are tracked through the WWTP. The model is applied to two theoretical case study WWTPs treating the same raw wastewater (WW) to the same final sludge residual biodegradable COD. It is demonstrated that much useful information can be generated with the relatively simple steady-state models to aid WWTP layout design and track the different products exiting the WWTP via the solid, liquid and gas streams, such as aerobic versus anaerobic digestion of waste activated sludge, N loads in recycle streams, methane production for energy recovery

  6. Low steady-state stresses in the cold lithospheric mantle inferred from dislocation dynamics models of dislocation creep in olivine

    NASA Astrophysics Data System (ADS)

    Boioli, Francesca; Tommasi, Andrea; Cordier, Patrick; Demouchy, Sylvie; Mussi, Alexandre

    2015-12-01

    Transmission electron microscopy observations on olivine crystals deformed at moderate (≤1273 K) temperature evidenced dislocations interactions explaining the hardening observed in the experiments, but also recovery mechanisms by the absorption or emission of point defects. Thus we investigate the possibility that, at geological strain-rates, these recovery processes allow steady-state deformation by dislocation creep at low to moderate temperatures in the lithospheric mantle. We test this hypothesis using a 2.5-D dislocation dynamics (DD) model, which combines dislocation glide and recovery by climb. This model shows that diffusion-controlled recovery processes allow for steady-state deformation by dislocation creep in the lithospheric mantle at stresses <500 MPa. For stresses of 50-200 MPa, steady-state strain-rates of 10-15 s-1 may be attained at temperatures as low as 900 K. Fitting of the DD model produces a flow law, which represents a lower bound for the lithospheric mantle strength, since the models describe the deformation of an olivine single crystal in an easy slip orientation. Comparison of strain-rates and Moho temperatures inferred for different geodynamic environments and the predictions of this model-based flow law implies, nevertheless, that, except in incipient rifts, most of the observed deformation may be produced by stress levels ≤200 MPa, consistent with those inferred to be produced by convection. This convergence suggests that the present models, which explicitly calculate the time-dependent dislocation dynamics, may provide a correct first order estimate of the mechanical behaviour of the lithospheric mantle, which cannot be derived directly from any existing data.

  7. A new experimental model for force enhancement: steady-state and transient observations of the Drosophila jump muscle.

    PubMed

    Koppes, Ryan A; Swank, Douglas M; Corr, David T

    2015-10-15

    The increase in steady-state force after active lengthening in skeletal muscle, termed force enhancement (FE), has been observed for nearly one century. Although demonstrated experimentally at various structural levels, the underlying mechanism(s) remain unknown. We recently showed that the Drosophila jump muscle is an ideal model for investigating mechanisms behind muscle physiological properties, because its mechanical characteristics, tested thus far, duplicate those of fast mammalian skeletal muscles, and Drosophila has the advantage that it can be more easily genetically modified. To determine if Drosophila would be appropriate to investigate FE, we performed classic FE experiments on this muscle. Steady-state FE (FESS), following active lengthening, increased by 3, 7, and 12% of maximum isometric force, with increasing stretch amplitudes of 5, 10, and 20% of optimal fiber length (FLOPT), yet was similar for stretches across increasing stretch velocities of 4, 20, and 200% FLOPT/s. These FESS characteristics of the Drosophila jump muscle closely mimic those observed previously. Jump muscles also displayed typical transient FE characteristics. The transient force relaxation following active stretch was fit with a double exponential, yielding two phases of force relaxation: a fast initial relaxation of force, followed by a slower recovery toward steady state. Our analyses identified a negative correlation between the slow relaxation rate and FESS, indicating that there is likely an active component contributing to FE, in addition to a passive component. Herein, we have established the Drosophila jump muscle as a new and genetically powerful experimental model to investigate the underlying mechanism(s) of FE. PMID:26289752

  8. Near-source ground motion from a steady state dislocation model in a layered half-space

    NASA Astrophysics Data System (ADS)

    Mendez, A. J.; Luco, J. E.

    1988-10-01

    A method to calculate the response on the surface of a multilayered half-space for a fault of finite width and infinite length is presented. The model involves a piecewise-rectilinear and continuous rupture front propagating at a constant rupture velocity along the length of a fault of arbitrary dip angle. The motion produced by this steady state dislocation model corresponds to the passage of the rupture front phase, which is a predominant phase in the near-source region away from the ends of a finite fault. The model gives an efficient way to synthesize a ubiquitous, intermediate frequency, high-amplitude pulse observed in many near-source records. A series of validation tests, using both three- and two-dimensional kinematic fault models, and a limited set of parametric studies clarifying the mechanisms involved in the generation of high amplitudes, are presented. Finally, it is shown that the distribution of peak horizontal velocities in the near-source region calculated by use of a steady state model in a layered medium compare favorably with the regression results of Joyner and Boore (1981).

  9. Combined magnetic and kinetic control of advanced tokamak steady state scenarios based on semi-empirical modelling

    NASA Astrophysics Data System (ADS)

    Moreau, D.; Artaud, J. F.; Ferron, J. R.; Holcomb, C. T.; Humphreys, D. A.; Liu, F.; Luce, T. C.; Park, J. M.; Prater, R.; Turco, F.; Walker, M. L.

    2015-06-01

    This paper shows that semi-empirical data-driven models based on a two-time-scale approximation for the magnetic and kinetic control of advanced tokamak (AT) scenarios can be advantageously identified from simulated rather than real data, and used for control design. The method is applied to the combined control of the safety factor profile, q(x), and normalized pressure parameter, βN, using DIII-D parameters and actuators (on-axis co-current neutral beam injection (NBI) power, off-axis co-current NBI power, electron cyclotron current drive power, and ohmic coil). The approximate plasma response model was identified from simulated open-loop data obtained using a rapidly converging plasma transport code, METIS, which includes an MHD equilibrium and current diffusion solver, and combines plasma transport nonlinearity with 0D scaling laws and 1.5D ordinary differential equations. The paper discusses the results of closed-loop METIS simulations, using the near-optimal ARTAEMIS control algorithm (Moreau D et al 2013 Nucl. Fusion 53 063020) for steady state AT operation. With feedforward plus feedback control, the steady state target q-profile and βN are satisfactorily tracked with a time scale of about 10 s, despite large disturbances applied to the feedforward powers and plasma parameters. The robustness of the control algorithm with respect to disturbances of the H&CD actuators and of plasma parameters such as the H-factor, plasma density and effective charge, is also shown.

  10. Modelling non-steady-state isotope enrichment of leaf water in a gas-exchange cuvette environment.

    PubMed

    Song, Xin; Simonin, Kevin A; Loucos, Karen E; Barbour, Margaret M

    2015-12-01

    The combined use of a gas-exchange system and laser-based isotope measurement is a tool of growing interest in plant ecophysiological studies, owing to its relevance for assessing isotopic variability in leaf water and/or transpiration under non-steady-state (NSS) conditions. However, the current Farquhar & Cernusak (F&C) NSS leaf water model, originally developed for open-field scenarios, is unsuited for use in a gas-exchange cuvette environment where isotope composition of water vapour (δv ) is intrinsically linked to that of transpiration (δE ). Here, we modified the F&C model to make it directly compatible with the δv -δE dynamic characteristic of a typical cuvette setting. The resultant new model suggests a role of 'net-flux' (rather than 'gross-flux' as suggested by the original F&C model)-based leaf water turnover rate in controlling the time constant (τ) for the approach to steady sate. The validity of the new model was subsequently confirmed in a cuvette experiment involving cotton leaves, for which we demonstrated close agreement between τ values predicted from the model and those measured from NSS variations in isotope enrichment of transpiration. Hence, we recommend that our new model be incorporated into future isotope studies involving a cuvette condition where the transpiration flux directly influences δv . There is an increasing popularity among plant ecophysiologists to use a gas-exchange system coupled to laser-based isotope measurement for investigating non-steady state (NSS) isotopic variability in leaf water (and/or transpiration); however, the current Farquhar & Cernusak (F&C) NSS leaf water model is unsuited for use in a gas-exchange cuvette environment due to its implicit assumption of isotope composition of water vapor (δv ) being constant and independent of that of transpiration (δE ). In the present study, we modified the F&C model to make it compatible with the dynamic relationship between δv and δE as is typically associated

  11. Atomistic lattice-gas modeling of CO oxidation on Pd(100): temperature-programmed spectroscopy and steady-state behavior.

    PubMed

    Liu, Da-Jiang; Evans, J W

    2006-04-21

    We have developed an atomistic lattice-gas model for the catalytic oxidation of CO on single-crystal Pd(100) surfaces under ultrahigh vacuum conditions. This model necessarily incorporates an detailed description of adlayer ordering and adsorption-desorption kinetics both for CO on Pd(100), and for oxygen on Pd(100). Relevant energetic parameters are determined by comparing model predictions with experiment, together with some guidance from density functional theory calculations. The latter also facilitates description of the interaction and reaction of adsorbed CO and oxygen. Kinetic Monte Carlo simulations of this reaction model are performed to predict temperature-programmed reaction spectra, as well as steady-state bifurcation behavior. PMID:16674249

  12. A note regarding the mathematical treatment of a class of steady-state compartmental models of the circulation.

    PubMed

    White, Ronald J

    2016-09-01

    A class of steady-state compartmental models of the circulation is examined and it is shown that the mathematical problem for this model class involves a single nonlinear equation. In an important subclass and with certain assumptions regarding the form of the Starling-type cardiac function curves, the single equation is of the form Z = μ + λ log[(1 - Z)/Z] where μ and λ are mathematical parameters related to the physiological parameters of the system and Z is proportional to the cardiac output. This result holds regardless of the number and arrangement of compartments within the model itself or of the number of physiological parameters the model contains. An example of this class with 25 physiological parameters is presented to illustrate this approach. PMID:27587712

  13. Parameterization of biogeochemical sediment-water fluxes using in-situ measurements and a steady-state diagenetic model

    NASA Astrophysics Data System (ADS)

    Laurent, Arnaud; Fennel, Katja; Wilson, Robin; Lehrter, John; Devereux, Richard

    2014-05-01

    Sediment biogeochemical processes are important drivers of water column biogeochemistry in coastal areas. For example, sediment oxygen consumption can be an important driver of bottom water oxygen depletion in hypoxic systems, and sediment-water nutrient fluxes support primary productivity in the overlying water column. Yet, biogeochemical sediment-water fluxes are often parameterized crudely and only poorly constrained in coupled physical-biogeochemical models. Here, we present a method for parameterizing biogeochemical sediment-water fluxes realistically and efficiently, using in-situ measurements and a steady state diagenetic model. We apply this method to the Louisiana Shelf where high primary production induced by excess nutrient loads from the Mississippi-Atchafalaya River system promotes the development of hypoxic bottom waters in summer. The implementation of the parameterizations in a coupled circulation-biogeochemical model of the northern Gulf of Mexico results in realistic sediment-water fluxes that enable a sediment-water column feedback at low bottom oxygen concentrations.

  14. Estimability of recharge through groundwater model calibration: Insights from a field-scale steady-state example

    NASA Astrophysics Data System (ADS)

    Knowling, Matthew J.; Werner, Adrian D.

    2016-09-01

    The ability of groundwater models to inform recharge through calibration is hampered by the correlation between recharge and aquifer parameters such as hydraulic conductivity (K), and the insufficient information content of observation datasets. These factors collectively result in non-uniqueness of parameter estimates. Previous studies that jointly estimate spatially distributed recharge and hydraulic parameters are limited to synthetic test cases and/or do not evaluate the effect of non-uniqueness. The extent to which recharge can be informed by calibration is largely unknown for practical situations, in which complexities such as parameter heterogeneities are inherent. In this study, a systematic investigation of recharge, inferred through model calibration, is undertaken using a series of numerical experiments that include varying degrees of hydraulic parameter information. The analysis involves the use of a synthetic reality, based on a regional-scale, highly parameterised, steady-state groundwater model of Uley South Basin, South Australia. Parameter identifiability is assessed to evaluate the ability of parameters to be estimated uniquely. Results show that a reasonable inference of recharge (average recharge error <10%) requires a surprisingly large number of preferred value regularisation constraints (>100 K values across the 129 km2 study area). The introduction of pumping data into the calibration reduces error in both the average recharge and its spatial variability, whereas submarine groundwater discharge (as a calibration target) reduces average recharge error only. Nonetheless, the estimation of steady-state recharge through inverse modelling may be impractical for real-world settings, limited by the need for unrealistic amounts of hydraulic parameter and groundwater level data. This study provides a useful benchmark for evaluating the extent to which field-scale groundwater models can be used to inform recharge subject to practical data

  15. Development and Evaluation of a Performance Modeling Flight Test Approach Based on Quasi Steady-State Maneuvers

    NASA Technical Reports Server (NTRS)

    Yechout, T. R.; Braman, K. B.

    1984-01-01

    The development, implementation and flight test evaluation of a performance modeling technique which required a limited amount of quasisteady state flight test data to predict the overall one g performance characteristics of an aircraft. The concept definition phase of the program include development of: (1) the relationship for defining aerodynamic characteristics from quasi steady state maneuvers; (2) a simplified in flight thrust and airflow prediction technique; (3) a flight test maneuvering sequence which efficiently provided definition of baseline aerodynamic and engine characteristics including power effects on lift and drag; and (4) the algorithms necessary for cruise and flight trajectory predictions. Implementation of the concept include design of the overall flight test data flow, definition of instrumentation system and ground test requirements, development and verification of all applicable software and consolidation of the overall requirements in a flight test plan.

  16. MANE: A MULTIPHASE, AQUEOUS, NON-STEADY STATE EQUILIBRIUM MODEL FOR SIMULATING SOIL-WATER INTERACTIONS

    EPA Science Inventory

    A variety of chemical equilibrium models have been developed to help assess environmental chemistry problems, but few were specifically developed as research and teaching tools for use in conjunction with soil chemistry experiments. MANE model was developed to calculate equilibri...

  17. Steady-state numerical groundwater flow model of the Great Basin carbonate and alluvial aquifer system

    USGS Publications Warehouse

    Brooks, Lynette E.; Masbruch, Melissa D.; Sweetkind, Donald S.; Buto, Susan G.

    2014-01-01

    Examples of potential use of the model to investigate the groundwater system include (1) the effects of different recharge, (2) different interpretations of the extent or offset of long faults or fault zones, and (3) different conceptual models of the spatial variation of hydraulic properties. The model can also be used to examine the ultimate effects of groundwater withdrawals on a regional scale, to provide boundary conditions for local-scale models, and to guide data collection.

  18. Uncertainty quantification of fast sodium current steady-state inactivation for multi-scale models of cardiac electrophysiology

    PubMed Central

    Shotwell, Matthew S.; Gavaghan, David J.; Cordeiro, Jonathan M.; Gray, Richard A.

    2015-01-01

    Perhaps the most mature area of multi-scale systems biology is the modelling of the heart. Current models are grounded in over fifty years of research in the development of biophysically detailed models of the electrophysiology (EP) of cardiac cells, but one aspect which is inadequately addressed is the incorporation of uncertainty and physiological variability. Uncertainty quantification (UQ) is the identification and characterisation of the uncertainty in model parameters derived from experimental data, and the computation of the resultant uncertainty in model outputs. It is a necessary tool for establishing the credibility of computational models, and will likely be expected of EP models for future safety-critical clinical applications. The focus of this paper is formal UQ of one major sub-component of cardiac EP models, the steady-state inactivation of the fast sodium current, INa. To better capture average behaviour and quantify variability across cells, we have applied for the first time an ‘individual-based’ statistical methodology to assess voltage clamp data. Advantages of this approach over a more traditional ‘population-averaged’ approach are highlighted. The method was used to characterise variability amongst cells isolated from canine epi and endocardium, and this variability was then ‘propagated forward’ through a canine model to determine the resultant uncertainty in model predictions at different scales, such as of upstroke velocity and spiral wave dynamics. Statistically significant differences between epi and endocardial cells (greater half-inactivation and less steep slope of steady state inactivation curve for endo) was observed, and the forward propagation revealed a lack of robustness of the model to underlying variability, but also surprising robustness to variability at the tissue scale. Overall, the methodology can be used to: (i) better analyse voltage clamp data; (ii) characterise underlying population variability; (iii

  19. Uncertainty quantification of fast sodium current steady-state inactivation for multi-scale models of cardiac electrophysiology.

    PubMed

    Pathmanathan, Pras; Shotwell, Matthew S; Gavaghan, David J; Cordeiro, Jonathan M; Gray, Richard A

    2015-01-01

    Perhaps the most mature area of multi-scale systems biology is the modelling of the heart. Current models are grounded in over fifty years of research in the development of biophysically detailed models of the electrophysiology (EP) of cardiac cells, but one aspect which is inadequately addressed is the incorporation of uncertainty and physiological variability. Uncertainty quantification (UQ) is the identification and characterisation of the uncertainty in model parameters derived from experimental data, and the computation of the resultant uncertainty in model outputs. It is a necessary tool for establishing the credibility of computational models, and will likely be expected of EP models for future safety-critical clinical applications. The focus of this paper is formal UQ of one major sub-component of cardiac EP models, the steady-state inactivation of the fast sodium current, INa. To better capture average behaviour and quantify variability across cells, we have applied for the first time an 'individual-based' statistical methodology to assess voltage clamp data. Advantages of this approach over a more traditional 'population-averaged' approach are highlighted. The method was used to characterise variability amongst cells isolated from canine epi and endocardium, and this variability was then 'propagated forward' through a canine model to determine the resultant uncertainty in model predictions at different scales, such as of upstroke velocity and spiral wave dynamics. Statistically significant differences between epi and endocardial cells (greater half-inactivation and less steep slope of steady state inactivation curve for endo) was observed, and the forward propagation revealed a lack of robustness of the model to underlying variability, but also surprising robustness to variability at the tissue scale. Overall, the methodology can be used to: (i) better analyse voltage clamp data; (ii) characterise underlying population variability; (iii) investigate

  20. A Decision Model for Steady-State Choice in Concurrent Chains

    ERIC Educational Resources Information Center

    Christensen, Darren R.; Grace, Randolph C.

    2010-01-01

    Grace and McLean (2006) proposed a decision model for acquisition of choice in concurrent chains which assumes that after reinforcement in a terminal link, subjects make a discrimination whether the preceding reinforcer delay was short or long relative to a criterion. Their model was subsequently extended by Christensen and Grace (2008, 2009a,…

  1. Model development with defined biological mechanisms for xenobiotic treatment activated sludge at steady state.

    PubMed

    Chong, Nyuk-Min

    2015-06-01

    Activated sludge treatment of a xenobiotic organic compound, much different from treatment of biogenic organics, must be modeled with interactions involving a two-part biomass of degrader and nondegrader, which selectively or competitively grow on a two-part substrate of input xenobiotic and its biogenic metabolites. A xenobiotic treatment model was developed which incorporates kinetics of the growth of degrader and nondegrader, the line dividing metabolites into xenobiotic and biogenic, yields of degrader and nondegrader from utilization of their parts of substrates, and kinetics of degrader reversion to nondegrader due to instability of the degradative element degraders carry. Experimental activated sludge operated for treatment of a xenobiotic generated data for calibration of the model. With the input of influent xenobiotic concentration, mean cell and hydraulic residence times, and calibrated parameters, the model readily outputs concentrations of degrader, nondegrader, and effluent biogenic residue that closely match the results obtained from experiments. PMID:25561268

  2. Mathematical model for steady state, simple ampholyte isoelectric focusing: Development, computer simulation and implementation

    NASA Technical Reports Server (NTRS)

    Palusinski, O. A.; Allgyer, T. T.

    1979-01-01

    The elimination of Ampholine from the system by establishing the pH gradient with simple ampholytes is proposed. A mathematical model was exercised at the level of the two-component system by using values for mobilities, diffusion coefficients, and dissociation constants representative of glutamic acid and histidine. The constants assumed in the calculations are reported. The predictions of the model and computer simulation of isoelectric focusing experiments are in direct importance to obtain Ampholine-free, stable pH gradients.

  3. Modelling and steady state simulation of a switched reluctance motor drive

    SciTech Connect

    Ruckstadter, E.J.; Kee, R.J.

    1995-12-31

    The switched reluctance motor (SRM) has been a popular topic of research for the last 15 years. As a result of this development activity, the SRM has evolved into a practical alternative to other machines for a variety of applications. It is now becoming increasingly important to understand the SRM`s control characteristics and power requirements. To accomplish this a thorough description of the machine`s terminal characteristics is required. The SRM can be described as a system with two ports, the windings through which electrical power is transferred and the shaft through which mechanical power flows. These systems are coupled by a magnetic system, through which the energy conversion process occurs. The windings can be modelled as an inductor and much work has focused on the modelling of the SRM inductance. The difficulty with this approach is that the SRM magnetic structures must operate in deep saturation resulting in a nonlinear winding inductance. Many people have linearized this inductance using a variety of techniques but each results in unnecessarily complicated models for many applications. In this paper a relatively simple model for the SRM is developed. This type of model could be a cheap and effective tool for the development of SRM drive systems. This approach will become increasingly relevant as these drives become increasingly popular. In this paper the machine terminal characteristics in terms of flux linkage are described. It will be shown that flux linkage is a function of two variables resulting in a surface function. Additionally it will be shown that this surface function contains the terminal characteristics of the SRM. Finally measurements from actual hardware are made and used to develop a model using the techniques developed here. Results of model simulation are then compared with measured data.

  4. Steady-state and transient modeling of tracer and nutrient distributions in the global ocean

    SciTech Connect

    Stocker, T.F.; Broecker, W.S.

    1993-03-08

    The balance of stable and decaying tracers was incorporated into a latitude-depth ocean circulation model which resolves the major ocean basin and is coupled to an atmospheric energy balance model. The modern distribution of radiocarbon and the analysis of artificial color tracers enabled the census of the deep water masses. We show that good agreement with the observation can be achieved if the surface forcing is modified. The same process could also account for long-term, large-scale changes of the global thermohaline circulation. Uptake rates of carbon are investigated using an inorganic carbon cycle model and performing 2 [times] CO[sub 2]-experiments. We prescribe the industrial evolution of pCO[sub 2] in the atmosphere from 1792 to 1988 and calculate the total flux of carbon into the world ocean. Results are in good agreement with two recent 3-dimensional model simulation. First results using an organic carbon cycle in this model are presented. Changes in the hydrological cycle can stabilize the thermohaline circulation in the Atlantic and enable simulation of climate events resembling the Younger Dryas. By adding the balance of radiocarbon the evolution of its atmospheric concentration is studied during rapid changes of deep ocean ventilation. A resumption of ventilation creates a rapid decrease of atmospheric radiocarbon which is able to mask the natural decay.

  5. Steady-state and transient modeling of tracer and nutrient distributions in the global ocean

    SciTech Connect

    Stocker, T.F.; Broecker, W.S.

    1992-03-26

    The deep circulation model developed by Wright and Stocker has been used to represent the latitude-depth distributions of temperature, salinity, radiocarbon and color'' tracers in the Pacific, Atlantic and Indian Oceans. Restoring temperature and salinity to observed surface data the model shows a global thermohaline circulation where deep water is formed in the North Atlantic and in the Southern Ocean. A parameter study reveals that the high-latitude surface salinity determines the composition of deep water and its flow in the global ocean. Increasing Southern Ocean surface salinity by 0.4 ppt the circulation changes from a present-day mode where North Atlantic Deep Water is one where Antarctic Bottom Water is dominant. An inorganic carbon cycle with surface carbonate chemistry is included, and gas exchange is parameterized in terms of pCO{sub 2} differences. Pre- industrial conditions are achieved by adjusting the basin-mean alkalinity. A classical 2{times}CO{sub 2} experiment yields the intrinsic time scales for carbon uptake of the ocean; they agree with those obtained from simple box models or 3-dimensional ocean general circulation models. Using the estimated industrial anthropogenic input of CO{sub 2} into the atmosphere the model requires, consistent with other model studies, an additional carbon flux to match the observed increase of atmospheric pCO{sub 2}. We use more realistic surface boundary conditions which reduce sensitivity to freshwater discharges into the ocean. In a glacial-to-interglacial experiment rapid transitions of the deep circulation between two different states occur in conjunction with a severe reduction of the meridional heat flux and sea surface temperature during peak melting. After the melting the conveyor belt circulation restarts.

  6. Validation of the space shuttle main engine steady state performance model

    NASA Technical Reports Server (NTRS)

    Santi, L. Michael

    1990-01-01

    The primary objective was to present methods for validating predictions of Rocketdyne's most current version of the Space Shuttle Main Engine (SSME) Power Balance Model (PBM) with respect to physical relations governing flow systems. This required the development and implementation of postprocessors to check results of PBM computations for satisfaction of conservation relations. A cursory uncertainty analysis of PBM predictions with respect to mass and energy balances was performed. In addition, an effort to identify the empirical relations and physical assumptions within PBM which impact the ability of the model to attain rigorous balance was begun.

  7. Calibration and validation of a modified steady-state model of crop response to saline water irrigation under conditions of transient root zone salinity

    NASA Astrophysics Data System (ADS)

    Vinten, A. J. A.; Frenkel, H.; Shalhevet, J.; Elston, D. A.

    1991-01-01

    In many situations where annual crops are irrigated with saline water, root zone salinity does not reach a steady state. Use of a steady-state description of root zone salinity may then seriously overestimate the calculated leaching requirements of the crop. A steady-state semi-emphirical model of crop response to irrigation with saline water has been calibrated using data from a number of field experiments. Predictions of yield deficit resulting from irrigation with saline water have been made for each of these experiments, using both the original model and a modified version which allows for the non-steady-state salinity conditions occurring in the experiments. Comparison with experimental data shows a clear superiority of the modified version in most cases studied. Where the original model is superior or equally good, it is likely that steady-state conditions are being approached. Where root zone salinity data were available and applicable, the modified model predicted root zone salinity much better. Approaches for distinguishing errors in calibration from intrinsic errors in the model assumptions are discussed.

  8. Steady-state statistical mechanics of model and real earthquakes (Invited)

    NASA Astrophysics Data System (ADS)

    Main, I. G.; Naylor, M.

    2010-12-01

    We derive an analytical expression for entropy production in earthquake populations based on Dewar’s formulation, including flux (tectonic forcing) and source (earthquake population) terms, and apply it to the Olami-Feder-Christensen (OFC) numerical model for earthquake dynamics. Assuming the commonly-observed power-law rheology between driving stress and remote strain rate, we test the hypothesis that maximum entropy production (MEP) is a thermodynamic driver for self-organized ‘criticality’ (SOC) in the model. MEP occurs when the global elastic strain is near, but strictly sub-critical, with small relative fluctuations in macroscopic strain energy expressed by a low seismic efficiency, and broad-bandwidth power-law scaling of frequency and rupture area. These phenomena, all as observed in natural earthquake populations, are hallmarks of the broad conceptual definition of SOC, which to date has often in practice included self-organizing systems in a near but strictly sub-critical state. In contrast the precise critical point represents a state of minimum entropy production in the model. In the MEP state the strain field retains some memory of past events, expressed as coherent ‘domains’, implying a degree of predictability, albeit strongly limited in practice by the proximity to criticality, our inability to map the stress field at an equivalent resolution to the numerical model, and finite temporal sampling effects in real data.

  9. Modeling capsid kinetics assembly from the steady state distribution of multi-sizes aggregates

    NASA Astrophysics Data System (ADS)

    Hozé, Nathanaël; Holcman, David

    2014-01-01

    The kinetics of aggregation for particles of various sizes depends on their diffusive arrival and fusion at a specific nucleation site. We present here a mean-field approximation and a stochastic jump model for aggregates at equilibrium. This approach is an alternative to the classical Smoluchowski equations that do not have a close form and are not solvable in general. We analyze these mean-field equations and obtain the kinetics of a cluster formation. Our approach provides a simplified theoretical framework to study the kinetics of viral capsid formation, such as HIV from the self-assembly of the structural proteins Gag.

  10. Steady-state model of biota sediment accumulation factor for metals in two marine bivalves

    SciTech Connect

    Thomann, R.V.; Mahony, J.D.; Mueller, R.

    1995-11-01

    A model of the biota sediment accumulation factor (BSAF) is developed to relate the ratio of metal concentrations in two marine bivalves (Crassostrea virginica and Mytilus edulis) to sediment metal concentration. A generalized metal BSAF can be approximated by a simple relationship that is a function of sediment to water column partitioning, the bioconcentration factor (BCF), the depuration rate, the metal assimilation efficiency from food, the bivalve feeding rate, and the growth rate. Analyses of Mussel Watch data indicate that the medium BSAF across stations varies by about three orders of magnitude from Zn, Cd, and Cu at the highest levels of BSAF = 1 to 10, while Cr has the lowest BSAF at 0.01. Total Hg is about 1.0 and Ni and Pb are approximately 0.1. Calibration of the model indicates that the food route of metal accumulation is significant for all metals but specially for Zn, Cd, Cu, and Hg where virtually all of the observed BSAF is calculated to be due to ingestion of metal from food in the overlying water. These results indicate a potential significance of the metal-binding protein metallothionein, which results in relatively high binding of metal and resulting low depuration rates.

  11. Experimental constraints on pulsed and steady state models of the solar wind near the Sun

    SciTech Connect

    Feldman, W.C.; Habbal, S.R.; Hoogeveen, G.; Wang, Y.

    1997-12-01

    Ulysses observations of the high-latitude solar wind were combined with Spartan 201 observations of the corona to investigate the nature and extent of uncertainties in our knowledge of solar wind structure near the Sun. In addition to uncertainties stemming from the propagation of errors in density profiles inferred from coronagraph observations [see, e.g., {ital Lallement} {ital et al.}, 1986], an assessment of the consequences of choosing different analysis assumptions reveals very large, fundamental uncertainties in our knowledge of even the basics of coronal structure near the Sun. In the spirit of demonstrating the nature and extent of these uncertainties we develop just one of a generic class of explicitly time-dependent and filamentary models of the corona that is consistent with the Ulysses and Spartan 201 data. This model provides a natural explanation for the radial profiles of both the axial ratios and apparent radial speeds of density irregularities measured at radial distances less than 10R{sub S} using the interplanetary scintillation technique. {copyright} 1997 American Geophysical Union

  12. A steady state model of agricultural waste pyrolysis: A mini review.

    PubMed

    Trninić, M; Jovović, A; Stojiljković, D

    2016-09-01

    Agricultural waste is one of the main renewable energy resources available, especially in an agricultural country such as Serbia. Pyrolysis has already been considered as an attractive alternative for disposal of agricultural waste, since the technique can convert this special biomass resource into granular charcoal, non-condensable gases and pyrolysis oils, which could furnish profitable energy and chemical products owing to their high calorific value. In this regard, the development of thermochemical processes requires a good understanding of pyrolysis mechanisms. Experimental and some literature data on the pyrolysis characteristics of corn cob and several other agricultural residues under inert atmosphere were structured and analysed in order to obtain conversion behaviour patterns of agricultural residues during pyrolysis within the temperature range from 300 °C to 1000 °C. Based on experimental and literature data analysis, empirical relationships were derived, including relations between the temperature of the process and yields of charcoal, tar and gas (CO2, CO, H2 and CH4). An analytical semi-empirical model was then used as a tool to analyse the general trends of biomass pyrolysis. Although this semi-empirical model needs further refinement before application to all types of biomass, its prediction capability was in good agreement with results obtained by the literature review. The compact representation could be used in other applications, to conveniently extrapolate and interpolate these results to other temperatures and biomass types. PMID:27281226

  13. A steady-state model for aerobic biological treatment: Part 1

    SciTech Connect

    McHarg, W.H. )

    1993-12-01

    In the aerobic biological treatment of wastewater, microorganisms use oxygen to decompose organic contaminants. Carbon dioxide, water and biosolids -- or sludge -- are the primary products. After a predetermined time in the reactor or aeration basin, the sludge is either removed from the process or sent to a clarifier, where it settles. Some of this sludge is recycled back to the aeration basin to initiate further oxidation, and some is removed from the process. In many aerobic processes, the average retention time of the sludge in the aeration basin -- called the sludge age -- is the main design parameter. However, other parameters, such as the rate of oxygen transfer rates and the capacity of the clarifier can affect the quality of the effluent. A simple mathematical model can be used to calculate these parameters.

  14. Quantum quenches in the sinh-Gordon model: steady state and one-point correlation functions

    NASA Astrophysics Data System (ADS)

    Bertini, Bruno; Piroli, Lorenzo; Calabrese, Pasquale

    2016-06-01

    We consider quantum quenches to the sinh-Gordon integrable quantum field theory from a particular class of initial states. Our analysis includes the case of mass and interaction quenches starting from a non-interacting theory. By means of the recently developed quench action method, we fully characterize the stationary state reached at long times after the quench in terms of the corresponding rapidity distribution. We also provide exact results for the expectation values of arbitrary vertex operators in the post-quench stationary state by proposing a formula based on the analogy with the standard thermodynamic Bethe ansatz. Finally, we comment on the behavior of the post-quench stationary state under the mapping between the sinh-Gordon field theory and the one-dimensional Lieb-Liniger model.

  15. Development of a steady state creep behavior model of polycrystalline tungsten for bimodal space reactor application

    SciTech Connect

    Purohit, A.; Hanan, N.A.; Bhattacharyya, S.K.; Gruber, E.E.

    1995-02-01

    The fuel element for one of the many reactor concepts being currently evaluated for bimodal applications in space consists of spherical fuel particles clad with tungsten or alloys of tungsten. The fuel itself consists of stabilized UO{sub 2}. One of the life limiting phenomena for the fuel element is failure of the cladding because of creep deformation. This report summarizes the information available in literature regarding the creep deformation of tungsten and its alloys and proposes a relation to be used for calculating the creep strains for elevated temperatures in the low stress region ({sigma} {le} 20 MPa). Also, results of the application of this creep relation to one of the reactor design concepts (NEBA-3) are discussed. Based on the traditional definition of creep deformation, the temperatures of 1500 K to 2900 K for tungsten and its alloys are considered to be in the {open_quotes}high{close_quotes} temperature range. In this temperature range, the rate controlling mechanisms for creep deformation are believed to be non-conservative motion of screw dislocations and short circuit diffusional paths. Extensive theoretical work on creep and in particular for creep of tungsten and its alloys have been reported in the literature. These theoretical efforts have produced complex mathematical models that require detailed materials properties. These relations, however, are not presently suitable for the creep analysis because of lack of consistent material properties required for their use. Variations in material chemistry and thermomechanical pre-treatment of tungsten have significant effects on creep and the mechanical properties. Analysis of the theoretical models and limited data indicates that the following empirical relation originally proposed by M. Jacox of INEL and the Air Force Phillips Laboratory, for calculating creep deformation of tungsten cladding, can be used for the downselection of preliminary bimodal reactor design concepts.

  16. New steady-state models for water-limited cropping systems using saline irrigation waters: Analytical solutions and applications

    NASA Astrophysics Data System (ADS)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two new explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess clear advantages over available alternatives, including: (i) the new solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the new analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  17. Evaluation of performance of a BLSS model in long-term operation in dynamic and steady states

    NASA Astrophysics Data System (ADS)

    Gros, Jean-Bernard; Tikhomirov, Alex; Ushakova, Sofya; Velitchko, Vladimir; Tikhomirova, Natalia; Lasseur, Christophe

    Evaluation of performance of a BLSS model, including higher plants for food production and biodegradation of human waste, in long-term operation in dynamic and steady states was performed. The model system was conceived for supplying vegetarian food and oxygen to 0.07 human. The following data were obtained in steady-state operating conditions. Average rate of wheat, chufa, radish, lettuce and Salicornia edible biomass accumulation were 8.7, 5.5, 0.6, 0.6 and metricconverterProductID2.5 g2.5 g per day respectively. Thus, to mimic the vegetarian edible biomass consumption by a human it was necessary to withdraw 17.9 g/d from total mass ex-change. Simultaneously, human mineralized exometabolites (artificial mineralized urine, AMU) in the amount of approximately 7% of a daily norm were introduced into the nutrient solu-tion for irrigation of the plants cultivated on a neutral substrate (expanded clay aggregate). The estimated value of 5.8 g/d of wheat and Salicornia inedible biomass was introduced in the soil-like substrate (SLS) to fully meet the plants need in nitrogen. The rest of wheat and Salicornia inedible biomass, 5.7 g/d, was stored. Thus in all, 23.6g of vegetarian dry matter had been stored. Assuming edible biomass is eaten up by the human, the closure coefficient of the vegetarian biomass inclusion into matter recycling amounted to 88%. The analysis of the long-term model operation showed that the main factors limiting increase of recycling processes were the following: a) Partly unbalanced mineral composition of daily human waste with daily needs of plants culti-` vated in the system. Thus, when fully satisfied with respect to nitrogen, the plants experienced a lack of macro elements such as P, Mg and Ca by more than 50%; b) Partly unbalanced mineral composition of edible biomass of the plants cultivated in the SLS with that of inedible biomass of the plants cultivated by hydroponic method on neutral substrate introduced in the SLS; c) Accumulation of

  18. Steady-state water table height estimations with an improved pseudo-two-dimensional Dupuit-Forchheimer type model

    NASA Astrophysics Data System (ADS)

    Castro-Orgaz, O.; Giráldez, J. V.

    2012-05-01

    SummaryThe study of unconfined steady aquifer flow is usually based on either the numerical integration of the Laplace equation or on its analytical solution using the complex variable theory. A further approach that uses Adomian's method of decomposition yields simple analytical solutions in higher dimensions, does not require linearisation of the free-surface boundary condition and yields the elevation of the seepage face. A common approach is the introduction of simplified one-dimensional models that are often accurate enough for practical applications. However, the water table estimates derived by the so-called Dupuit-Forchheimer theory do not always fulfil the required accuracy. This work improves the Dupuit-Forcheimer hypotheses to obtain more precise results. For this purpose, the stream function of the groundwater flow net is formulated in natural, curvilinear coordinates. Next, an approximate one-dimensional model for the water table height is derived considering Darcy's law, retaining the curved features of the flow net. The proposed model is a higher order Dupuit-Forchheimer type approach, which was favourably compared with 2D results for Polubarinova-Kochina's rectangular dam problem and the drainage to symmetrically located ditches under steady-state conditions.

  19. Explicit expression for the steady-state translation rate in the infinite-dimensional homogeneous ribosome flow model.

    PubMed

    Zarai, Yoram; Margaliot, Michael; Tuller, Tamir

    2013-01-01

    Gene translation is a central stage in the intracellular process of protein synthesis. Gene translation proceeds in three major stages: initiation, elongation, and termination. During the elongation step, ribosomes (intracellular macromolecules) link amino acids together in the order specified by messenger RNA (mRNA) molecules. The homogeneous ribosome flow model (HRFM) is a mathematical model of translation-elongation under the assumption of constant elongation rate along the mRNA sequence. The HRFM includes $(n)$ first-order nonlinear ordinary differential equations, where $(n)$ represents the length of the mRNA sequence, and two positive parameters: ribosomal initiation rate and the (constant) elongation rate. Here, we analyze the HRFM when $(n)$ goes to infinity and derive a simple expression for the steady-state protein synthesis rate. We also derive bounds that show that the behavior of the HRFM for finite, and relatively small, values of $(n)$ is already in good agreement with the closed-form result in the infinite-dimensional case. For example, for $(n=15)$, the relative error is already less than 4 percent. Our results can, thus, be used in practice for analyzing the behavior of finite-dimensional HRFMs that model translation. To demonstrate this, we apply our approach to estimate the mean initiation rate in M. musculus, finding it to be around 0.17 codons per second. PMID:24384716

  20. Steady-state observations and theoretical modeling of critical heat flux phenomena on a downward facing hemispherical surface

    SciTech Connect

    Cheung, F.B.; Haddad, K.H.

    1996-03-01

    Steady-state boiling experiments were performed in the SBLB test facility to observe the two-phase boundary layer flow behavior on the outer surface of a heated hemispherical vessel near the critical heat flux (CHF) limit and to measure the spatial variation of the local CHF along the vessel outer surface. Based upon the flow observations, an advanced hydrodynamic CHF model was developed. The model considers the existence of a micro-layer underneath an elongated vapor slug on the downward facing curved heating surface. The micro-layer is treated as a thin liquid film with numerous micro-vapor jets penetrating through it. The micro-jets have the characteristic size dictated by Helmholtz instability. Local dryout is considered to occur when the supply of fresh liquid from the two phase boundary layer to the micro-layer is not sufficient to prevent depletion of the liquid film by boiling. A boundary layer analysis, treating the two-phase motion as a separated flow, is performed to determine the liquid supply rate and thus the local critical heat flux. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel.

  1. Characterization and modelling of the steady state and transients of modulated hollow cathode discharges of nitric oxide

    NASA Astrophysics Data System (ADS)

    Castillo, M.; Herrero, V. J.; Tanarro, I.

    2002-11-01

    This work describes a systematic experimental study and kinetic modelling of the steady state and the transients associated with the turn-on and turn-off of a NO hollow cathode discharge. The local charge density and mean electron energy have been determined with a double Langmuir probe. Time-resolved Fourier transform infrared spectroscopy and electron bombardment quadrupole mass spectrometry with ionization by electron impact have been used to measure the gas temperature and the concentrations of the stable molecules present in the discharge: the precursor, NO, the major products, N2, O2, and the minor species NO2 and N2O. Emission spectroscopy has been employed to study the time behaviour of the very reactive nitrogen and oxygen atoms. A model based on a reduced set of kinetic equations including electron dissociation, gas-phase reactions, and gas-surface processes gives a global account of the measured data. From the time-resolved results, electron impact dissociation rate constants for some of the involved species under the conditions of the experiment are estimated. This model is compared with that obtained in previous works on N2O plasmas.

  2. He, Xe and Ne isotopes in a steady-state mass transport model and implications about terrestrial volatiles

    NASA Technical Reports Server (NTRS)

    Wasserburg, G. J.; Porcelli, D.

    1994-01-01

    We present a model of the steady-state transport assuming three reservoirs: a lower mantle (P) with a relatively undepleted inventory of U, Th, Pu, I, He, Ne, Xe, Ar; an upper mantle that has been extensively outgassed (D); and the atmosphere. There is mass transport at a rate M(sub PD) by plumes from the lower mantle, a fraction of which is outgassed directly into the atmosphere, while the remainder feeds matter and associated nuclei into D. D is well outgassed at spreading centers and has material containing atmospheric gases added to it by subduction. In the case of He, there is no subduction component. The approach follows the treatment of Kellogg and Wasserburg. A summary of the pertinent equations and constraints was reported earlier. The U, Th and Pu in P are estimated for Earth models from refractory element abundances in meteorites. In this model the inventory of rare gases in D is governed by the simple mixing of components from P (both radiogenic and original) with distinctive atmospheric components. In addition, alpha decay and spontaneous fission of U, and (alpha, n) reaction on oxygen from energetic alpha particles produce radiogenic/nuclear daughter products in D. These include (4)He, (136)Xe and (21)Ne. (40)K in D generates excess radiogenic (40)Ar.

  3. The development, verification, and application of a steady-state thermal model for the pusher-type reheat furnace

    SciTech Connect

    Barr, P.V.

    1995-08-01

    This article outlines the development of a steady-state thermal model for the pusher-type steel reheating furnace. Problems commonly encountered with this furnace type are skidmark generation, scale formation, and high energy consumption. The objective of the work is to provide a means by which furnace users might assess the effectiveness of changes to current operating practices, proposed furnace modifications, or new furnace designs in controlling these difficulties. The operation of the model, which develops the thermal history of an individual slab or billet as it passes through the furnace, is presented, and each of the three modules that comprise the model is described. Initial verification of the model has been carried out using data obtained in a separate campaign of plant trials on several 32-m furnace reheating slabs, and model predictions for steel temperatures at six locations within the steel are shown to be in good agreement with the experimental results. The model is used to examine the influence of two skid designs and several placement strategies on skidmark severity and energy losses to the skid system. Although skidmark severity at the intermediate stages of heating is shown to be dependent on both the skid type and the location of any offsets, it is demonstrated that the skidmark present in the discharged steel is determined primarily by the skid type employed over the final section of the furnace. The results suggest that, in the absence of a hearth section, the use of a well-insulated, cold-rider skid system over the majority of the furnace length, followed by a single offset of all skids occurring at the transition to a short section of hot-rider skids near the furnace discharge, is sufficient to suppress the final skidmark to a level very close to the minimum achievable with that particular skid design.

  4. Modelling spatial distribution of soil steady state infiltration rate in an urban park (Vingis Parkas, Vilnius, Lithuania)

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Cerda, Artemi; Depellegrin, Daniel; Misiune, Ieva; Bogunovic, Igor; Menchov, Oleksandr

    2016-04-01

    larger urban park in Vilnius, Vinguis Parkas. The studied area is located near the Neris River and occupies an area of approximately 162 hectares. Inside the park a total of 95 randomly points were selected to measure soil steady infiltration, between April and September of 2016. At each sampling point, 4 infiltration measurements were carried out using a cylinder infiltrometer with 15 cm higher and a diameter of 7 cm (Cerda, 1996). Each experiment has the duration of 1 hour and the measurements of the infiltrated water were carried out 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 60 minutes (Cerda, 1996). The steady state infiltration value of each sampling point corresponds to the average value of the 4 measurements. In each point, the 4 measurements were separated by 5 meters to take in account the spatial variability (Neris et al., 2013). In total 380 infiltration tests were carried out (95x4). Previous to data modelling, data normality was assessed using the shapiro wilk-test and homogeneity of the variances, using Levene test, respectively. The original data was not normally distributed and, only respected the Gaussian distribution and heteroscedasticity after a logarithmic transformation. Data modelling was carried out using transformed data. The accuracy of steady-state soil infiltration spatial distribution was carried out testing several interpolation methods, as Inverse Distance to a Weight (IDW) with the power of 1,2,3,4 and 5, Local Polynomial methods, with the power of 1 and 2 Radial Basis Functions - Spline With Tension (SPT), Completely Regularized Spline (CRS), Multiquadratic (MTQ), Inverse Multiquadratic (IMTQ) and Thin Plate Spline (TPS) - and Geostatistical methods as, Ordinary Kriging (OK), Simple Kriging (SK) and Universal Kriging (UK) (Pereira et al., 2015). Methods performance was assessed calculating the Root Square Mean Error (RMSE) from the errors obtained from cross-validation. The results showed that on average steady state

  5. Implementation of steady state approximation for modelling of reaction kinetic of UV catalysed hydrogen peroxide oxidation of starch

    NASA Astrophysics Data System (ADS)

    Kumoro, Andri Cahyo; Retnowati, Diah Susetyo; Ratnawati, Budiyati, Catarina Sri

    2015-12-01

    With regard to its low viscosity, high stability, clarity, film forming and binding properties, oxidised starch has been widely used in various applications specifically in the food, paper, textile, laundry finishing and binding materials industries. A number of methods have been used to produce oxidised starch through reactions with various oxidizing agents, such as hydrogen peroxide, air oxygen, ozone, bromine, chromic acid, permanganate, nitrogen dioxide and hypochlorite. Unfortunately, most of previous works reported in the literatures were focused on the study of reaction mechanism and physicochemical properties characterization of the oxidised starches produced without investigation of the reaction kinetics of the oxidation process. This work aimed to develop a simple kinetic model for UV catalysed hydrogen peroxide oxidation of starch through implementation of steady state approximation for the radical reaction rates. The model was then verified using experimental data available in the literature. The model verification revealed that the proposed model shows its good agreement with the experimental data as indicated by an average absolute relative error of only 2.45%. The model also confirmed that carboxyl groups are oxidised further by hydroxyl radical. The carbonyl production rate was found to follow first order reaction with respect to carbonyl concentration. Similarly, carboxyl production rate also followed first order reaction with respect to carbonyl concentration. The apparent reaction rate constant for carbonyl formation and oxidation were 6.24 × 104 s-1 and 1.01 × 104 M-1.s-1, respectively. While apparent reaction rate constant for carboxyl oxidation was 4.86 × 104 M-1.s-1.

  6. Testing density-dependent groundwater models: Two-dimensional steady state unstable convection in infinite, finite and inclined porous layers

    USGS Publications Warehouse

    Weatherill, D.; Simmons, C.T.; Voss, C.I.; Robinson, N.I.

    2004-01-01

    This study proposes the use of several problems of unstable steady state convection with variable fluid density in a porous layer of infinite horizontal extent as two-dimensional (2-D) test cases for density-dependent groundwater flow and solute transport simulators. Unlike existing density-dependent model benchmarks, these problems have well-defined stability criteria that are determined analytically. These analytical stability indicators can be compared with numerical model results to test the ability of a code to accurately simulate buoyancy driven flow and diffusion. The basic analytical solution is for a horizontally infinite fluid-filled porous layer in which fluid density decreases with depth. The proposed test problems include unstable convection in an infinite horizontal box, in a finite horizontal box, and in an infinite inclined box. A dimensionless Rayleigh number incorporating properties of the fluid and the porous media determines the stability of the layer in each case. Testing the ability of numerical codes to match both the critical Rayleigh number at which convection occurs and the wavelength of convection cells is an addition to the benchmark problems currently in use. The proposed test problems are modelled in 2-D using the SUTRA [SUTRA-A model for saturated-unsaturated variable-density ground-water flow with solute or energy transport. US Geological Survey Water-Resources Investigations Report, 02-4231, 2002. 250 p] density-dependent groundwater flow and solute transport code. For the case of an infinite horizontal box, SUTRA results show a distinct change from stable to unstable behaviour around the theoretical critical Rayleigh number of 4??2 and the simulated wavelength of unstable convection agrees with that predicted by the analytical solution. The effects of finite layer aspect ratio and inclination on stability indicators are also tested and numerical results are in excellent agreement with theoretical stability criteria and with

  7. Two-dimensional, steady-state model of ground-water flow, Nevada Test Site and vicinity, Nevada-California

    USGS Publications Warehouse

    Waddell, R.K.

    1982-01-01

    A two-dimensional, steady-state model of ground-water flow beneath the Nevada Test Site and vicinity has been developed using inverse techniques. The area is underlain by clastic and carbonate rocks of Precambrian and Paleozoic age and by volcanic rocks and alluvium of Tertiary and Quaternary age that have been juxtaposed by normal and strike-slip faulting. Aquifers are composed of carbonate and volcanic rocks and alluvium. Characteristics of the flow system are determined by distribution of low-conductivity rocks (barriers); by recharge originating in the Spring Mountains, Pahranagat, Timpahute, and Sheep Ranges, and in Pahute Mesa; and by underflow beneath Pahute Mesa from Gold Flat and Kawich Valley. Discharge areas (Ash Meadows, Oasis Valley, Alkali Flat, and Furnace Creek Ranch) are upgradient from barriers. Sensitivities of simulated hydraulic heads and fluxes to variations in model parameters were calculated to guide field studies and to help estimate errors in predictions from transport modeling. Hydraulic heads and fluxes are very sensitive to variations in the greater magnitude recharge/discharge terms. Transmissivity at a location may not be the most important transmissivity for determining flux there. Transmissivities and geometries of large barriers that impede flow from Pahute Mesa have major effects on fluxes elsewhere; as their transmissivities are decreased, flux beneath western Jackass Flats and Yucca Mountains is increased as water is diverted around the barriers. Fortymile Canyon is underlain by highly transmissive rocks that cause potentiometric contours to vee upgradient; increasing their transmissivity increases flow through them, and decreases it beneath Yucca Mountain. (USGS)

  8. Steady-state creep of bent reinforced metal-composite plates with consideration of their reduced resistance to transverse shear. 1. Deformation model

    NASA Astrophysics Data System (ADS)

    Yankovskii, A. P.

    2014-05-01

    The problem of deformation of reinforced metal-composite plates is formulated in rectangular Cartesian coordinates using the second version of Timoshenko theory and taking into account the reduced transverse shear resistance of the plates under steady-state creep conditions. A similar model problem of axisymmetric bending of reinforced plates is considered in polar coordinates.

  9. Testing steady states carbon stocks of Yasso07 and ROMUL models against soil inventory data in Finland

    NASA Astrophysics Data System (ADS)

    Lehtonen, Aleksi; Linkosalo, Tapio; Heikkinen, Juha; Peltoniemi, Mikko; Sievänen, Risto; Mäkipää, Raisa; Tamminen, Pekka; Salemaa, Maija; Komarov, Alexander

    2015-04-01

    Soil carbon pool is a significant storage of carbon. Unfortunately, the significance of different drivers of this pool is still unknown. In order to predict future feedbacks of soils to climate change at global level, Earth system model (ESMs) are needed. These ESMs have been tested against soil carbon inventories in order to judge whether models can be used for future prediction. Unfortunately results have been poor, and e.g. Guenet et al. 2013 presents a test where soil carbon stocks by ORCHIDEE models are plotted at plot level against measurements without any correlation. Similarly, Todd-Brown et al. (2013) concludes that most ESMs are not able reproduce measured soil carbon stocks at grid level. Here we estimated litter input from trees and understorey vegetation to soil, based national forest inventory 9 data. Both, biomass estimates for trees and for understorey vegetation were smoothed with ordinary kriging methods and thereafter litter input was modeled by dominant tree species. Also regional litter input from natural mortality and harvesting residues were added to the input. Thereafter we applied Yasso07 (Tuomi et al. 2011) and ROMUL (Chertov et al. 2001) soil models to estimate steady-state carbon stocks for mineral soils of Finland on a 10*10 km2 grid. We run Yasso07 model with annual time step and using parameters based on Scandinavian data (Rantakari et al. 2012) and also with parameters based on global data set (Tuomi et al. 2011). ROMUL model was applied with and without soil water holding capacity information. Results were compared against Biosoil measurements of soil carbon stocks (n=521). We found out that the best match between model estimates and measurements by latitudinal bands (n=43) were by ROMUL model with soil water holding capacity, with RMSE of 9.9 Mg C. Second best match was with Yasso07 with Scandinavian parameters, with RMSE of 15.3 Mg C. Results of this study highlight two things, it is essential to run dynamic soil models with time

  10. New steady-state models for water-limited cropping systems using saline irrigation waters: Analytical solutions and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems mode...

  11. New steady-state models for water-limited cropping systems using saline irrigation waters: Analytical solutions and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems mod...

  12. A cross-bridge based model of force depression: Can a single modification address both transient and steady-state behaviors?

    PubMed

    Corr, David T; Herzog, Walter

    2016-03-21

    Force depression (FD), the reduction of isometric force following active shortening, is a phenomenon of skeletal muscle that has received significant attention in biomechanical and physiological literature, yet the mechanisms underlying FD remain unknown. Recent experiments identified a slower rate of force redevelopment with increasing amounts of steady-state FD, suggesting that FD may be caused, at least in part, by a decrease in cross-bridge binding rate (Corr and Herzog, 2005; Koppes et al., 2014). Herein, we develop a cross-bridge based model of FD in which the binding rate function, f, decreases with the mechanical work performed during shortening. This modification incorporates a direct relationship between steady-state FD and muscle mechanical work (Corr and Herzog, 2005; Herzog et al., 2000; Kosterina et al., 2008), and is consistent with a proposed mechanism attributing FD to stress-induced inhibition of cross-bridge attachments (Herzog, 1998; Maréchal and Plaghki, 1979). Thus, for an increase in mechanical work, the model should predict a slower force redevelopment (decreased attachment rate) to a more depressed steady-state force (fewer attached cross-bridges), and a reduction in contractile element stiffness (Ford et al., 1981). We hypothesized that since this modification affects the cross-bridge kinetics, a corresponding model would be able to account for both transient and steady-state FD behaviors. Comparisons to prior experiments (Corr and Herzog, 2005; Herzog et al., 2000; Kosterina et al., 2008) show that both steady-state and transient aspects of FD, as well as the relationship of FD with respect to speed and amplitude of shortening, are well captured by this model. Thus, this relatively simple cross-bridge based model of FD lends support to a mechanism involving the inhibition of cross-bridge binding, and indicates that cross-bridge kinetics may play a critical role in FD. PMID:26928777

  13. Modelling spatial distribution of soil steady state infiltration rate in an urban park (Vingis Parkas, Vilnius, Lithuania)

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Cerda, Artemi; Depellegrin, Daniel; Misiune, Ieva; Bogunovic, Igor; Menchov, Oleksandr

    2016-04-01

    larger urban park in Vilnius, Vinguis Parkas. The studied area is located near the Neris River and occupies an area of approximately 162 hectares. Inside the park a total of 95 randomly points were selected to measure soil steady infiltration, between April and September of 2016. At each sampling point, 4 infiltration measurements were carried out using a cylinder infiltrometer with 15 cm higher and a diameter of 7 cm (Cerda, 1996). Each experiment has the duration of 1 hour and the measurements of the infiltrated water were carried out 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 60 minutes (Cerda, 1996). The steady state infiltration value of each sampling point corresponds to the average value of the 4 measurements. In each point, the 4 measurements were separated by 5 meters to take in account the spatial variability (Neris et al., 2013). In total 380 infiltration tests were carried out (95x4). Previous to data modelling, data normality was assessed using the shapiro wilk-test and homogeneity of the variances, using Levene test, respectively. The original data was not normally distributed and, only respected the Gaussian distribution and heteroscedasticity after a logarithmic transformation. Data modelling was carried out using transformed data. The accuracy of steady-state soil infiltration spatial distribution was carried out testing several interpolation methods, as Inverse Distance to a Weight (IDW) with the power of 1,2,3,4 and 5, Local Polynomial methods, with the power of 1 and 2 Radial Basis Functions - Spline With Tension (SPT), Completely Regularized Spline (CRS), Multiquadratic (MTQ), Inverse Multiquadratic (IMTQ) and Thin Plate Spline (TPS) - and Geostatistical methods as, Ordinary Kriging (OK), Simple Kriging (SK) and Universal Kriging (UK) (Pereira et al., 2015). Methods performance was assessed calculating the Root Square Mean Error (RMSE) from the errors obtained from cross-validation. The results showed that on average steady state

  14. Steady-state simulations of the Greenland ice sheet using a three-dimensional full-Stokes model

    NASA Astrophysics Data System (ADS)

    Seddik, H.; Greve, R.; Zwinger, T.; Gagliardini, O.

    2009-12-01

    A three-dimensional, thermo-mechanically coupled model is applied to the Greenland ice sheet. The model implements the full-Stokes equations for the ice dynamics, and the system is solved with the finite-element method (FEM) using the open source multi-physics package Elmer (http://www.csc.fi/elmer/). The finite-element mesh for the computational domain has been created using the Greenland surface and bedrock DEM data with a spatial resolution of 10 km. The study is particularly aimed at better understanding the ice dynamics near the major Greenland ice streams. For this purpose, mesh refinement to obtain improved computed solutions on these areas has been introduced. The meshing procedure starts with the bedrock footprint where a mesh with triangle elements and a resolution of 5 km are employed at the vicinities of the North-East Greenland Ice Stream (NEGIS) and the Jakobshavn (JIS), Kangerdlugssuaq (KL) and Helheim (HH) ice streams. A size function is then applied so that the mesh resolution becomes coarser away of the ice streams up to a maximum horizontal element size of 20 km. The final three-dimensional mesh is obtained by extruding the 2D footprint with 10 vertical layers, so that the resulting mesh contains 118944 prism elements and 69170 nodes. The numerical solution of the Stokes and the heat transfer equations involves direct and iterative solvers depending on the simulation case, and both methods are coupled with stabilization procedures. The boundary conditions are such that the temperature at the surface is parameterized as a function of the latitude and the surface elevation, the geothermal heat flux at the bedrock is prescribed as spatially constant and the lateral sides are open boundaries. The simulations have been conducted in order to obtain steady-state results for the velocity and temperature fields for the entire ice sheet. The model computes the results with both bedrock sliding and melting used alternatively so that their effects on

  15. An Introduction to System-Level, Steady-State and Transient Modeling and Optimization of High-Power-Density Thermoelectric Generator Devices Made of Segmented Thermoelectric Elements

    NASA Astrophysics Data System (ADS)

    Crane, D. T.

    2011-05-01

    High-power-density, segmented, thermoelectric (TE) elements have been intimately integrated into heat exchangers, eliminating many of the loss mechanisms of conventional TE assemblies, including the ceramic electrical isolation layer. Numerical models comprising simultaneously solved, nonlinear, energy balance equations have been created to simulate these novel architectures. Both steady-state and transient models have been created in a MATLAB/Simulink environment. The models predict data from experiments in various configurations and applications over a broad range of temperature, flow, and current conditions for power produced, efficiency, and a variety of other important outputs. Using the validated models, devices and systems are optimized using advanced multiparameter optimization techniques. Devices optimized for particular steady-state operating conditions can then be dynamically simulated in a transient operating model. The transient model can simulate a variety of operating conditions including automotive and truck drive cycles.

  16. Modeling steady-state dynamics of macromolecules in exponential-stretching flow using multiscale molecular-dynamics-multiparticle-collision simulations.

    PubMed

    Ghatage, Dhairyasheel; Chatterji, Apratim

    2013-10-01

    We introduce a method to obtain steady-state uniaxial exponential-stretching flow of a fluid (akin to extensional flow) in the incompressible limit, which enables us to study the response of suspended macromolecules to the flow by computer simulations. The flow field in this flow is defined by v(x) = εx, where v(x) is the velocity of the fluid and ε is the stretch flow gradient. To eliminate the effect of confining boundaries, we produce the flow in a channel of uniform square cross section with periodic boundary conditions in directions perpendicular to the flow, but simultaneously maintain uniform density of fluid along the length of the tube. In experiments a perfect elongational flow is obtained only along the axis of symmetry in a four-roll geometry or a filament-stretching rheometer. We can reproduce flow conditions very similar to extensional flow near the axis of symmetry by exponential-stretching flow; we do this by adding the right amounts of fluid along the length of the flow in our simulations. The fluid particles added along the length of the tube are the same fluid particles which exit the channel due to the flow; thus mass conservation is maintained in our model by default. We also suggest a scheme for possible realization of exponential-stretching flow in experiments. To establish our method as a useful tool to study various soft matter systems in extensional flow, we embed (i) spherical colloids with excluded volume interactions (modeled by the Weeks-Chandler potential) as well as (ii) a bead-spring model of star polymers in the fluid to study their responses to the exponential-stretched flow and show that the responses of macromolecules in the two flows are very similar. We demonstrate that the variation of number density of the suspended colloids along the direction of flow is in tune with our expectations. We also conclude from our study of the deformation of star polymers with different numbers of arms f that the critical flow gradient ε

  17. Modeling steady-state dynamics of macromolecules in exponential-stretching flow using multiscale molecular-dynamics-multiparticle-collision simulations

    NASA Astrophysics Data System (ADS)

    Ghatage, Dhairyasheel; Chatterji, Apratim

    2013-10-01

    We introduce a method to obtain steady-state uniaxial exponential-stretching flow of a fluid (akin to extensional flow) in the incompressible limit, which enables us to study the response of suspended macromolecules to the flow by computer simulations. The flow field in this flow is defined by vx=ɛx, where vx is the velocity of the fluid and ɛ is the stretch flow gradient. To eliminate the effect of confining boundaries, we produce the flow in a channel of uniform square cross section with periodic boundary conditions in directions perpendicular to the flow, but simultaneously maintain uniform density of fluid along the length of the tube. In experiments a perfect elongational flow is obtained only along the axis of symmetry in a four-roll geometry or a filament-stretching rheometer. We can reproduce flow conditions very similar to extensional flow near the axis of symmetry by exponential-stretching flow; we do this by adding the right amounts of fluid along the length of the flow in our simulations. The fluid particles added along the length of the tube are the same fluid particles which exit the channel due to the flow; thus mass conservation is maintained in our model by default. We also suggest a scheme for possible realization of exponential-stretching flow in experiments. To establish our method as a useful tool to study various soft matter systems in extensional flow, we embed (i) spherical colloids with excluded volume interactions (modeled by the Weeks-Chandler potential) as well as (ii) a bead-spring model of star polymers in the fluid to study their responses to the exponential-stretched flow and show that the responses of macromolecules in the two flows are very similar. We demonstrate that the variation of number density of the suspended colloids along the direction of flow is in tune with our expectations. We also conclude from our study of the deformation of star polymers with different numbers of arms f that the critical flow gradient ɛc at which

  18. Inconsistencies in steady state thermodynamics

    NASA Astrophysics Data System (ADS)

    Dickman, Ronald; Motai, Ricardo

    2014-03-01

    We address the issue of extending thermodynamics to nonequilibrium steady states. Using driven stochastic lattice gases, we ask whether consistent definitions of an effective chemical potential μ, and an effective temperature Te, are possible. These quantities are determined via zero-flux conditions of particles and energy between the driven system and a reservoir. For the models considered here, the fluxes are given in terms of certain stationary average densities, eliminating the need to perturb the system by actually exchanging particles; μ and Te are thereby obtained via open-circuit measurements, using a virtual reservoir. In the lattice gas with nearest-neighbor exclusion, temperature is not relevant, and we find that the effective chemical potential, a function of density and drive strength, satisfies the zeroth law, and correctly predicts the densities of coexisting systems. In the Katz-Lebowitz-Spohn driven lattice gas, both μ and Te need to be defined. We show analytically that the zeroth law is violated, and determine the size of the violations numerically. Our results highlight a fundamental inconsistency in the extension of thermodynamics to nonequilibrium steady states. Research supported by CNPq, Brazil.

  19. Wavelet-Based Analytical Algorithm for Solving Steady-State Concentration in Immobilized Glucose Isomerase of Packed-Bed Reactor Model.

    PubMed

    Selvi, M Salai Mathi; Hariharan, G

    2016-08-01

    Wavelet method is a recently developed tool in applied mathematics. The mathematical model of the steady-state immobilized enzyme electrodes is discussed. This theoretical model is based on one-dimensional heat conduction equations containing a non-linear term related to Michaelis-Menten kinetics. An efficient Chebyshev wavelet-based technique is applied to solve the non-linear diffusion equation for the steady-state condition. A simple expression of the substrate concentration is obtained as a function of the Thiele modulus [Formula: see text] and [Formula: see text](kinetic parameter). The wavelet results are compared with the numerical and HPM solutions and found to be in good agreement. PMID:27161606

  20. Steady-state simulations of the Greenland ice sheet using a three-dimensional full-Stokes model

    NASA Astrophysics Data System (ADS)

    Seddik, Hakime; Greve, Ralf; Zwinger, Thomas; Gagliardini, Olivier

    2010-05-01

    A three-dimensional, thermo-mechanically coupled model is applied to the Greenland ice sheet. The model implements the full-Stokes equations for the ice dynamics, and the system is solved with the finite-element method (FEM) using the open source multi-physics package Elmer (http://www.csc.fi/elmer/). The finite-element mesh for the computational domain has been created using the Greenland surface and bedrock DEM data with a spatial resolution of 5 km (Bamber and others, 2001). The study is particularly aimed at better understanding the ice dynamics near the major Greenland ice streams. For this purpose, mesh refinement to obtain improved computed solutions on these areas has been introduced. The meshing procedure starts with the bedrock footprint where a mesh with triangle elements and a resolution of 1 km are employed at the vicinities of the North-East Greenland Ice Stream (NEGIS) and the Jakobshavn (JIS), Kangerdlugssuaq (KL) and Helheim (HH) ice streams. A size function is then applied so that the mesh resolution becomes coarser away of the ice streams up to a maximum horizontal element size of 20 km. The final three-dimensional mesh is obtained by extruding the 2D footprint with 10 vertical layers, so that the resulting mesh contains 230760 prism elements and 132740 nodes. The numerical solution of the Stokes and the heat transfer equations involves direct and iterative solvers depending on the simulation case, and both methods are coupled with stabilization procedures. The boundary conditions are such that the temperature at the surface is parameterized as a function of the latitude and the surface elevation, the geothermal heat flux at the bedrock is prescribed as spatially constant and the lateral sides are open boundaries. The simulations have been conducted in order to obtain steady-state results for the velocity and temperature fields for the entire ice sheet. The model computes the results with both bedrock sliding and melting used alternatively so

  1. Modeling the steady-state ISV (in situ vitrification) process: A 3-D finite element analysis of coupled thermal-electric fields

    SciTech Connect

    Langerman, M.A.

    1990-09-01

    Steady-state modeling considerations for simulating the in situ vitrification (ISV) process are documented based upon the finite element numerical approach. Recommendations regarding boundary condition specifications and mesh discretization are presented. The effects of several parameters on the ISV process response are calculated and the results discussed. The parameters investigated include: (1) electrode depth, (2) ambient temperature, (3) supplied current, (4) electrical conductivity, (5) electrode separation, and (6) soil/waste characterization. 13 refs., 29 figs., 1 tab.

  2. Borehole modelling: a comparison between a steady-state model and a novel dynamic model in a real ON/OFF GSHP operation

    NASA Astrophysics Data System (ADS)

    De Rosa, M.; Ruiz-Calvo, F.; Corberán, J. M.; Montagud, C.; Tagliafico, L. A.

    2014-11-01

    The correct design and optimization of complex energy systems requires the ability to reproduce the dynamic thermal behavior of each system component. In ground source heat pump (GSHP) systems, modelling the borehole heat exchangers (BHE) dynamic response is especially relevant in the development of control strategies for energy optimization purposes. Over the last years, several models have been developed but most of them are based on steady- state approaches, which makes them unsuitable for short-term simulation purposes. In fact, in order to accurately predict the evolution of the fluid temperatures due to the ON/OFF cycles of the heat pump, it is essential to correctly characterize the dynamic response of BHE for very short time periods. The aim of the present paper is to compare the performance of an analytical steady-state model, available in TRNSYS environment (Type 557), with a novel short-term dynamic model. The new dynamic model is based on the thermal-network approach coupled with a vertical discretization of the borehole which takes into account both the advection due to the fluid circulating along the U-tube, and the heat transfer in the borehole and in the ground. These two approaches were compared against experimental data collected from a real GSHP system installed at the Universitat Politecnica de Valencia. The analysis was performed comparing the outlet temperature profiles predicted by both models during daily standard ON/OFF operating conditions, both in heating and cooling mode, and the between both approaches were highlighted. Finally, the obtained results have been discussed focusing on the potential impact that the differences found in the prediction of the temperature evolution could have in design and optimization of GSHP systems.

  3. Steady-state kinetics of substrate hydrolysis by vacuolar H(+)-pyrophosphatase. A simple three-state model.

    PubMed

    Baykov, A A; Bakuleva, N P; Rea, P A

    1993-10-15

    The results of analyses of the steady-state kinetics of the vacuolar H(+)-translocating pyrophosphatase (V-PPase) of native tonoplast vesicles isolated from etiolated hypocotyls of Vigna radiata (mung bean) and purified enzyme from the same source under a wide range of Mg2+, pyrophosphate (PPi) and K+ concentrations are consistent with a minimal reaction scheme in which dimagnesium pyrophosphate is the active substrate species and catalysis is mediated by preformed enzyme-Mg2+ complex. When account is taken of the sensitivity of the V-PPase to ionic strength, additional kinetic interactions are not required to describe the behavior of the enzyme. N-Ethylmaleimide-protection assays show that the dissociation constant for Mg2+ binding in the absence of PPi is an order of magnitude smaller than that estimated from the steady-state kinetics of PPi hydrolysis. Two distinct Mg(2+)-binding sites are therefore invoked. Since the protective action of Mg2+ is independent of the nature of the monovalent cations and Mg2+ and K+ do not compete during substrate hydrolysis, divalent and monovalent cations are concluded to bind at separate sites. The pH dependencies of the kinetic parameters are consistent with the participation of groups of pKa 5.7 and 8.6 in substrate binding and groups of pKa 6.1 and 9.0 in the substrate-conversion step, indicating that at least four ionizable groups are essential for catalysis. These findings are discussed with respect to the reaction mechanism of the V-PPase and the potential regulatory significance of cytosolic free Mg2+ and K+ in vivo. PMID:8223618

  4. Evaluating litter decomposition and soil organic matter dynamics in earth system models: contrasting analysis of long-term litter decomposition and steady-state soil carbon

    NASA Astrophysics Data System (ADS)

    Bonan, G. B.; Wieder, W. R.

    2012-12-01

    Decomposition is a large term in the global carbon budget, but models of the earth system that simulate carbon cycle-climate feedbacks are largely untested with respect to litter decomposition. Here, we demonstrate a protocol to document model performance with respect to both long-term (10 year) litter decomposition and steady-state soil carbon stocks. First, we test the soil organic matter parameterization of the Community Land Model version 4 (CLM4), the terrestrial component of the Community Earth System Model, with data from the Long-term Intersite Decomposition Experiment Team (LIDET). The LIDET dataset is a 10-year study of litter decomposition at multiple sites across North America and Central America. We show results for 10-year litter decomposition simulations compared with LIDET for 9 litter types and 20 sites in tundra, grassland, and boreal, conifer, deciduous, and tropical forest biomes. We show additional simulations with DAYCENT, a version of the CENTURY model, to ask how well an established ecosystem model matches the observations. The results reveal large discrepancy between the laboratory microcosm studies used to parameterize the CLM4 litter decomposition and the LIDET field study. Simulated carbon loss is more rapid than the observations across all sites, despite using the LIDET-provided climatic decomposition index to constrain temperature and moisture effects on decomposition. Nitrogen immobilization is similarly biased high. Closer agreement with the observations requires much lower decomposition rates, obtained with the assumption that nitrogen severely limits decomposition. DAYCENT better replicates the observations, for both carbon mass remaining and nitrogen, without requirement for nitrogen limitation of decomposition. Second, we compare global observationally-based datasets of soil carbon with simulated steady-state soil carbon stocks for both models. The models simulations were forced with observationally-based estimates of annual

  5. Three-dimensional model simulation of steady-state ground-water flow in the Albuquerque-Belen Basin, New Mexico

    USGS Publications Warehouse

    Kernodle, J.M.; Scott, W.B.

    1986-01-01

    As part of the Southwest Alluvial Basins study, model was constructed to simulate the alluvial aquifer system underlying the Albuquerque-Belen Basin. The model was used to simulate the steady-state flow condition assumed to have existed prior to 1960. Until this time there apparently were no long-term groundwater level changes of a significant magnitude outside the immediate vicinity of Albuquerque. Therefore, the construction of a steady-state flow model of the aquifer system based on reported hydrologic data predating 1960 was justified. During construction of the steady-state model, simulated hydraulic conductivity values were adjusted, within acceptable physical limits, until a best fit between measured or reported and computed heads at 34 control wells was achieved. The modeled area was divided into six sub-areas, or zones, within each of which hydraulic conductivity was assumed to be uniform. The model consisted of six layers for each of which simulated transmissivity was proportional to the layer thickness. Adjustments to simulated hydraulic conductivity values in the different zones resulted in final values that ranged from a low of 0.25 ft/day in the west to 50 ft/day in the eastern part of the basin. The error of the simulation, defined as the absolute difference between the computed and the measured or reported water level at the corresponding point in the physical system being modeled, ranged from 0.6 ft to 36 ft, with an average of 14.6 ft for the 34 control wells. (Author 's abstract)

  6. Modeling steady-state experiments with a scanning electrochemical microscope involving several independent diffusing species using the boundary element method.

    PubMed

    Sklyar, Oleg; Träuble, Markus; Zhao, Chuan; Wittstock, Gunther

    2006-08-17

    The BEM algorithm developed earlier for steady-state experiments in the scanning electrochemical microscopy (SECM) feedback mode has been expanded to allow for the treatment of more than one independently diffusing species. This allows the treatment of substrate-generation/tip-collection SECM experiments. The simulations revealed the interrelation of sample layout, local kinetics, imaging conditions, and the quality of the obtained SECM images. Resolution in the SECM SG/TC images has been evaluated, and it depends on several factors. For most practical situations, the resolution is limited by the diffusion profiles of the sample. When a dissolved compound is converted at the sample (e.g., oxygen reduction or enzymatic reaction at the sample), the working distance should be significantly larger than in SECM feedback experiments (ca. 3 r(T) for RG = 5) in order to avoid diffusional shielding of the active regions on the sample by the UME body. The resolution ability also depends on the kinetics of the active regions. The best resolution can be expected if all the active regions cause the same flux. In one simulated example, which might mimic a possible scenario of a low-density protein array, considerable compromises in the resolving power, were noted when the flux from two neighboring spots differs by more than a factor of 2. PMID:16898739

  7. Steady-state computer model of the water-table aquifer in the Mullica River basin, the Pine Barrens, New Jersey

    USGS Publications Warehouse

    Harbaugh, A.W.; Tilley, C.L.

    1984-01-01

    A two-dimensional steady-state model of the water-table aquifer of the Mullica River basin was made to evaluate the flow system and data required to simulate it. The Mullica River basin covers 570 sq mi and is drained by numerous shallow streams. The water-table aquifer consists of sand and gravel intermixed with clay and silt. The computer model is based on a finite-difference method with stream-seepage equations coupled to the groundwater equation. The model was applied to the approximately steady-state conditions of March 1979. Initial estimates of streambed hydraulic conductance and aquifer hydraulic conductivity were adjusted until model water level matched measured water level within 5 ft for 41 of 42 wells. Also, model streamflow was within 20 percent of measured streamflow at 12 of 15 sites. The 5,000-ft grid spacing should be adequate for a future predictive model. The natural flow system is adequately simulated by a two-dimensional model. (USGS)

  8. Steady-state and transient models of groundwater flow and advective transport, Eastern Snake River Plain aquifer, Idaho National Laboratory and vicinity, Idaho

    USGS Publications Warehouse

    Ackerman, Daniel J.; Rousseau, Joseph P.; Rattray, Gordon W.; Fisher, Jason C.

    2010-01-01

    Three-dimensional steady-state and transient models of groundwater flow and advective transport in the eastern Snake River Plain aquifer were developed by the U.S. Geological Survey in cooperation with the U.S. Department of Energy. The steady-state and transient flow models cover an area of 1,940 square miles that includes most of the 890 square miles of the Idaho National Laboratory (INL). A 50-year history of waste disposal at the INL has resulted in measurable concentrations of waste contaminants in the eastern Snake River Plain aquifer. Model results can be used in numerical simulations to evaluate the movement of contaminants in the aquifer. Saturated flow in the eastern Snake River Plain aquifer was simulated using the MODFLOW-2000 groundwater flow model. Steady-state flow was simulated to represent conditions in 1980 with average streamflow infiltration from 1966-80 for the Big Lost River, the major variable inflow to the system. The transient flow model simulates groundwater flow between 1980 and 1995, a period that included a 5-year wet cycle (1982-86) followed by an 8-year dry cycle (1987-94). Specified flows into or out of the active model grid define the conditions on all boundaries except the southwest (outflow) boundary, which is simulated with head-dependent flow. In the transient flow model, streamflow infiltration was the major stress, and was variable in time and location. The models were calibrated by adjusting aquifer hydraulic properties to match simulated and observed heads or head differences using the parameter-estimation program incorporated in MODFLOW-2000. Various summary, regression, and inferential statistics, in addition to comparisons of model properties and simulated head to measured properties and head, were used to evaluate the model calibration. Model parameters estimated for the steady-state calibration included hydraulic conductivity for seven of nine hydrogeologic zones and a global value of vertical anisotropy. Parameters

  9. SILVA: EDF two-phase 1D annular model of a CFB boiler furnace

    SciTech Connect

    Montat, D.; Fauquet, P.; Lafanechere, L.; Bursi, J.M.

    1997-12-31

    Aiming to improve its knowledge of CFB boilers, EDF has initiated a R and D program including: laboratory work on mock-ups, numerical modelling and on-site tests in CFB power plants. One of the objectives of this program is the development of a comprehensive steady-state 1D model of the solid circulation loop, named SILVA, for plant operation and design evaluation purposes. This paper describes its mathematical and physical modelling. Promising validation of the model on cold mock-up and industrial CFB is presented.

  10. Venusian hydrology: Steady state reconsidered

    NASA Technical Reports Server (NTRS)

    Grinspoon, David H.

    1992-01-01

    In 1987, Grinspoon proposed that the data on hydrogen abundance, isotopic composition, and escape rate were consistent with the hypothesis that water on Venus might be in steady state rather than monotonic decline since the dawn of time. This conclusion was partially based on a derived water lifetime against nonthermal escape of approximately 10(exp 8) yr. De Bergh et al., preferring the earlier Pioneer Venus value of 200 ppm water to the significantly lower value detected by Bezard et al., found H2O lifetimes of greater than 10(exp 9) yr. Donahue and Hodges derived H2O lifetimes of 0.4-5 x 10 (exp 9) yr. Both these analyses used estimates of H escape flux between 0.4 x 10(exp 7) and 1 x 10(exp 7) cm(exp -2)s(exp -1) from Rodriguez et al. Yet in more recent Monte Carlo modeling, Hodges and Tinsley found an escape flux due to charge exchange with hot H(+) of 2.8 x 10(exp 7) cm(exp -2)s(exp -1). McElroy et al. estimated an escape flux of 8 x 10(exp 6) cm(exp -2)s(exp -1) from collisions with hot O produced by dissociative recombination of O2(+). Brace et al. estimated an escape flux of 5 x 10(exp 6) cm(exp -2)s(exp -1) from ion escape from the ionotail of Venus. The combined estimated escape flux from all these processes is approximately 4 x 10(exp 7) cm(exp -2)s(exp -1). The most sophisticated analysis to date of near-IR radiation from Venus' nightside reveals a water mixing ratio of approximately 30 ppm, suggesting a lifetime against escape for water of less than 10(exp 8) yr. Large uncertainties remain in these quantities, yet the data point toward a steady state. Further evaluation of these uncertainties, and new evolutionary modeling incorporating estimates of the outgassing rate from post-Magellan estimates of the volcanic resurfacing rate are presented.

  11. Steady state volcanism - Evidence from eruption histories of polygenetic volcanoes

    NASA Technical Reports Server (NTRS)

    Wadge, G.

    1982-01-01

    Cumulative volcano volume curves are presented as evidence for steady-state behavior at certain volcanoes and to develop a model of steady-state volcanism. A minimum criteria of five eruptions over a year was chosen to characterize a steady-state volcano. The subsequent model features a constant head of magmatic pressure from a reservoir supplied from depth, a sawtooth curve produced by the magma arrivals or discharge from the subvolcanic reservoir, large volume eruptions with long repose periods, and conditions of nonsupply of magma. The behavior of Mts. Etna, Nyamuragira, and Kilauea are described and show continuous levels of plasma output resulting in cumulative volume increases. Further discussion is made of steady-state andesitic and dacitic volcanism, long term patterns of the steady state, and magma storage, and the lack of a sufficient number of steady-state volcanoes in the world is taken as evidence that further data is required for a comprehensive model.

  12. Steady-state spheromak reactor studies. Revision

    SciTech Connect

    Krakowski, R.A.; Hagenson, R.L.

    1985-01-01

    After summarizing the essential elements of a gun-sustained spheromak, the potential for a steady-state is explored by means of a comprehensive physics/engineering/costing model. A range of cost-optimized reactor design point is presented, and the sensitivity of cost to key physics, engineering, and operational variables is reported.

  13. Thermodynamics of Stability of Nonequilibrium Steady States.

    ERIC Educational Resources Information Center

    Rastogi, R. P.; Shabd, Ram

    1983-01-01

    Presented is a concise and critical account of developments in nonequilibrium thermodynamics. The criterion for stability of nonequilibrium steady states is critically examined for consecutive and monomolecular triangular reactions, autocatalytic reactions, auto-inhibited reactions, and the Lotka-Volterra model. (JN)

  14. Controls/CFD Interdisciplinary Research Software Generates Low-Order Linear Models for Control Design From Steady-State CFD Results

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    1997-01-01

    The NASA Lewis Research Center is developing analytical methods and software tools to create a bridge between the controls and computational fluid dynamics (CFD) disciplines. Traditionally, control design engineers have used coarse nonlinear simulations to generate information for the design of new propulsion system controls. However, such traditional methods are not adequate for modeling the propulsion systems of complex, high-speed vehicles like the High Speed Civil Transport. To properly model the relevant flow physics of high-speed propulsion systems, one must use simulations based on CFD methods. Such CFD simulations have become useful tools for engineers that are designing propulsion system components. The analysis techniques and software being developed as part of this effort are an attempt to evolve CFD into a useful tool for control design as well. One major aspect of this research is the generation of linear models from steady-state CFD results. CFD simulations, often used during the design of high-speed inlets, yield high resolution operating point data. Under a NASA grant, the University of Akron has developed analytical techniques and software tools that use these data to generate linear models for control design. The resulting linear models have the same number of states as the original CFD simulation, so they are still very large and computationally cumbersome. Model reduction techniques have been successfully applied to reduce these large linear models by several orders of magnitude without significantly changing the dynamic response. The result is an accurate, easy to use, low-order linear model that takes less time to generate than those generated by traditional means. The development of methods for generating low-order linear models from steady-state CFD is most complete at the one-dimensional level, where software is available to generate models with different kinds of input and output variables. One-dimensional methods have been extended

  15. The Oak Ridge Heat Pump Models: I. A Steady-State Computer Design Model of Air-to-Air Heat Pumps

    SciTech Connect

    Fischer, S.K. Rice, C.K.

    1999-12-10

    The ORNL Heat Pump Design Model is a FORTRAN-IV computer program to predict the steady-state performance of conventional, vapor compression, electrically-driven, air-to-air heat pumps in both heating and cooling modes. This model is intended to serve as an analytical design tool for use by heat pump manufacturers, consulting engineers, research institutions, and universities in studies directed toward the improvement of heat pump performance. The Heat Pump Design Model allows the user to specify: system operating conditions, compressor characteristics, refrigerant flow control devices, fin-and-tube heat exchanger parameters, fan and indoor duct characteristics, and any of ten refrigerants. The model will compute: system capacity and COP (or EER), compressor and fan motor power consumptions, coil outlet air dry- and wet-bulb temperatures, air- and refrigerant-side pressure drops, a summary of the refrigerant-side states throughout the cycle, and overall compressor efficiencies and heat exchanger effectiveness. This report provides thorough documentation of how to use and/or modify the model. This is a revision of an earlier report containing miscellaneous corrections and information on availability and distribution of the model--including an interactive version.

  16. Staffing in a Steady State.

    ERIC Educational Resources Information Center

    Owens, J. A.

    1982-01-01

    Options for faculty utilization in a steady state are examined, with consideration for their economy or ability to increase turnover or flexibility: early retirement, part retirement, retraining, exchange with other institutions or industry, and fixed-term appointments or lecturer positions. (MSE)

  17. Modeling non-steady state radioisotope transport in the vadose zone--A case study using uranium isotopes at Pena Blanca, Mexico

    SciTech Connect

    Ku, T. L.; Luo, S.; Goldstein, S. J.; Murrell, M. T.; Chu, W. L.; Dobson, P. F.

    2009-06-01

    Current models using U- and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leads to a linear relationship between reciprocal U concentration and {sup 234}U/{sup 238}U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and {alpha}-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Pena Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced {sup 234}U/{sup 238}U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using {sup 234}U/{sup 238}U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model's potential applications using radium isotopes.

  18. Modeling non-steady state radioisotope transport in the vadose zone - A case study using uranium isotopes at Peña Blanca, Mexico

    NASA Astrophysics Data System (ADS)

    Ku, T. L.; Luo, S.; Goldstein, S. J.; Murrell, M. T.; Chu, W. L.; Dobson, P. F.

    2009-10-01

    Current models using U- and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leads to a linear relationship between reciprocal U concentration and 234U/ 238U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and α-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Peña Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced 234U/ 238U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using 234U/ 238U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model's potential applications using radium isotopes.

  19. True-to-mechanism model of steady-state two-phase flow in porous media, using decomposition into prototype flows

    NASA Astrophysics Data System (ADS)

    Valavanides, M. S.; Payatakes, A. C.

    A true-to-mechanism model is proposed, which considers steady-state two-phase flow in porous media (SS2 ϕPM) as a composition of two prototype flows, namely ganglion dynamics (GD) and connected-oil pathway flow (CPF). Coupling of the prototype flows is effected with the simple rule that the macroscopic pressure gradient is the same in both. For a given set of values of the flow system parameters, a domain of admissible flow combinations is obtained. The solution is determined by assuming that each point in this domain has equal probability of being `visited'. This leads to unique values for the flow arrangement variables (FAV), the rate of mechanical energy dissipation, and the relative permeabilities. The new model accounts for the non-linearity of the flow as well as for the effects of all the system parameters (notably those affecting interfaces), and its predictions are in very good agreement with existing data.

  20. Aircraft measurements, modelled stratospheric [NO2]/[NO] ratio and photochemical steady-state approach within the frame of ENVISAT satellite data validation

    NASA Astrophysics Data System (ADS)

    Kostadinov, Ivan; Bortoli, Daniele; Giovanelli, Giorgio; Heland, J.; Petritoli, Andrea; Ravegnani, Fabrizio; Schlager, H.; Ulanovsky, Aleksey; Yuzhkov, Vladimir

    2003-08-01

    The scientific payload aboard the stratospheric aircraft M55 Geophysica consists of both in-situ and remote sensing instruments deployed to validate the ENVISAT chemical payload - SCIAMACHY, MIPAS-E and GOMOS during dedicated field campaigns: July and October 2002, Forli (Italy) and February - March 2003, Kiruna (Sweden). Along with the precise measurements required for correct validation procedures, it is necessary to provide additional information related to certain relationships between the available geophysical parameters in order to allow us to better interpret retrieved results, both from the space and from the aircraft measurements. In this regard NO2/NO ratio is inferred/tested along the flight tracks and used to verify the existence of a steady state photochemical equilibrium, using the data obtained by GASCOD-A/4π, FOZAN and SIOUX instruments. The obtained experimental ratio is compared to that derived from model calculations. A short description of the instruments and flight conditions are described also.

  1. Assessment of Gravity Field and Steady State Ocean Circulation Explorer (GOCE) geoid model using GPS levelling over Sabah and Sarawak

    NASA Astrophysics Data System (ADS)

    Othman, A. H.; Omar, K. M.; Din, A. H. M.; Som, Z. A. M.; Yahaya, N. A. Z.; Pa'suya, M. F.

    2016-06-01

    The GOCE satellite mission has significantly contributed to various applications such as solid earth physics, oceanography and geodesy. Some substantial applications of geodesy are to improve the gravity field knowledge and the precise geoid modelling towards realising global height unification. This paper aims to evaluate GOCE geoid model based on the recent GOCE Global Geopotential Model (GGM), as well as EGM2008, using GPS levelling data over East Malaysia, i.e. Sabah and Sarawak. The satellite GGMs selected in this study are the GOCE GGM models which include GOCE04S, TIM_R5 and SPW_R4, and the EGM2008 model. To assess these models, the geoid heights from these GGMs are compared to the local geometric geoid height. The GGM geoid heights was derived using EGMLAB1 software and the geometric geoid height was computed by available GPS levelling information obtained from the Department Survey and Mapping Malaysia. Generally, the GOCE models performed better than EGM2008 over East Malaysia and the best fit GOCE model for this region is the TIM_R5 model. The TIM_R5 GOCE model demonstrated the lowest R.M.S. of ± 16.5 cm over Sarawak, comparatively. For further improvement, this model should be combined with the local gravity data for optimum geoid modelling over East Malaysia.

  2. Numerical modeling and experimental validation of steady-state hydrocarbon emissions from small utility four-stroke engines

    SciTech Connect

    Sun, X.; Assanis, D.; Brereton, G.

    1996-12-31

    A hydrocarbon emissions model was developed to study the hydrocarbon emissions mechanisms pertinent to small utility engines. The model considered unburned hydrocarbon emissions from oil film absorption and desorption, and crevice flows. The model was calibrated and validated using experimental data from three typical, small utility engines. These engines were four-stroke, forced-air cooled, carbureted, spark-ignition designs. A specially designed low inertia hydraulic dynamometer was used to test the engines under the SAE J1088 A Cycle at different loads, speeds, and air-fuel ratios. The exhaust emissions of the engines were analyzed using dilute sampling. Reasonably good agreement between model predictions and experimental results was obtained. Subsequently, parametric studies indicated that the model can correctly predict expected hydrocarbon emission trends at different engine operating conditions.

  3. Modifications to the steady-state 41-node thermoregulatory model including validation of the respiratory and diffusional water loss equations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    After the simplified version of the 41-Node Stolwijk Metabolic Man Model was implemented on the Sigma 3 and UNIVAC 1110 computers in batch mode, it became desirable to make certain revisions. First, the availability of time-sharing terminals makes it possible to provide the capability and flexibility of conversational interaction between user and model. Secondly, recent physiological studies show the need to revise certain parameter values contained in the model. Thirdly, it was desired to make quantitative and accurate predictions of evaporative water loss for humans in an orbiting space station. The result of the first phase of this effort are reported.

  4. Two-fluid magnetohydrodynamic model of plasma flows in a quasi-steady-state accelerator with a longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Kozlov, A. N.

    2009-05-01

    This paper reports the results of numerical studies of axisymmetric flows in a coaxial plasma accelerator in the presence of a longitudinal magnetic field. The calculations were performed using a two-dimensional two-fluid magnetohydrodynamic model taking into account the Hall effect and the conductivity tensor of the medium. The numerical experiments confirmed the main features of the plasmadynamic processes found previously using analytical and one-fluid models and made it possible to study plasma flows near the electrodes.

  5. The respiratory DC/macrophage network at steady-state and upon influenza infection in the swine biomedical model.

    PubMed

    Maisonnasse, P; Bouguyon, E; Piton, G; Ezquerra, A; Urien, C; Deloizy, C; Bourge, M; Leplat, J-J; Simon, G; Chevalier, C; Vincent-Naulleau, S; Crisci, E; Montoya, M; Schwartz-Cornil, I; Bertho, N

    2016-07-01

    Human and mouse respiratory tracts show anatomical and physiological differences, which will benefit from alternative experimental models for studying many respiratory diseases. Pig has been recognized as a valuable biomedical model, in particular for lung transplantation or pathologies such as cystic fibrosis and influenza infection. However, there is a lack of knowledge about the porcine respiratory immune system. Here we segregated and studied six populations of pig lung dendritic cells (DCs)/macrophages (Mθs) as follows: conventional DCs (cDC) 1 and cDC2, inflammatory monocyte-derived DCs (moDCs), monocyte-derived Mθs, and interstitial and alveolar Mθs. The three DC subsets present migratory and naive T-cell stimulation capacities. As observed in human and mice, porcine cDC1 and cDC2 were able to induce T-helper (Th)1 and Th2 responses, respectively. Interestingly, porcine moDCs increased in the lung upon influenza infection, as observed in the mouse model. Pig cDC2 shared some characteristics observed in human but not in mice, such as the expression of FCɛRIα and Langerin, and an intra-epithelial localization. This work, by unraveling the extended similarities of the porcine and human lung DC/Mθ networks, highlights the relevance of pig, both as an exploratory model of DC/Mθ functions and as a model for human inflammatory lung pathologies. PMID:26530136

  6. Numerical modeling of inelastic structures at loading of steady state rolling. Thermo-mechanical asphalt pavement computation

    NASA Astrophysics Data System (ADS)

    Wollny, Ines; Hartung, Felix; Kaliske, Michael

    2016-05-01

    In order to gain a deeper knowledge of the interactions in the coupled tire-pavement-system, e.g. for the future design of durable pavement structures, the paper presents recent results of research in the field of theoretical-numerical asphalt pavement modeling at material and structural level, whereby the focus is on a realistic and numerically efficient computation of pavements under rolling tire load by using the finite element method based on an Arbitrary Lagrangian Eulerian (ALE) formulation. Inelastic material descriptions are included into the ALE frame efficiently by a recently developed unsplit history update procedure. New is also the implementation of a viscoelastic cohesive zone model into the ALE pavement formulation to describe the interaction of the single pavement layers. The viscoelastic cohesive zone model is further extended to account for the normal pressure dependent shear behavior of the bonding layer. Another novelty is that thermo-mechanical effects are taken into account by a coupling of the mechanical ALE pavement computation to a transient thermal computation of the pavement cross-section to obtain the varying temperature distributions of the pavement due to climatic impact. Then, each ALE pavement simulation considers the temperature dependent asphalt material model that includes elastic, viscous and plastic behavior at finite strains and the temperature dependent viscoelastic cohesive zone formulation. The temperature dependent material parameters of the asphalt layers and the interfacial layers are fitted to experimental data. Results of coupled tire-pavement computations are presented to demonstrate potential fields of application.

  7. A framework for modeling non-steady-state concentrations of semivolatile organic compounds indoors ― II. Interactions with particulate matter

    EPA Science Inventory

    This paper describes a method for dynamic modeling of the interactions of semivolatile organic compounds (SVOCs) with airborne and settled particulate matter in the indoor environment. This method is fully compatible with the other components within the framework. Despite the unc...

  8. Mathematical comparison between volume of distribution (V) and volume of distribution at steady-state (Vss) utilizing model-independent approach.

    PubMed

    Sobol, Eyal; Bialer, Meir

    2004-03-01

    Pharmacokinetic textbooks state that the (apparent) volume of distribution based on drug concentration in plasma (V or Vbeta) is always greater than the volume of distribution (apparent) under steady state conditions (Vss), but do not provide a general model-independent mathematical proof. Wagner's mathematical comparison between Vbeta and Vss is based on microscopic rate constants of either specific models and is restricted solely to the two-compartment open body model. Nakashima and Benet utilizing a model-dependent approach showed a mathematical relationship between Vbeta and Vss for a multicompartment model, but again by using microscopic model constants. The limitation of these two above mentioned mathematical comparisons is the necessity of knowledge of the model's structure and its microscopic rate constants. The present article describes a new non-compartmental, model-independent, general mathematical proof for Vbeta to be always greater than Vss. This new method does not require any knowledge of microscopical rate constants and is based solely on an exponentially decreasing function, which is the common way to describe drug disposition following i.v. bolus. PMID:14872558

  9. Steady State Heat Deposits Modeling in the Nb3Sn Quadrupole Magnets for the Upgrade of the LHC Inner Triplet

    SciTech Connect

    Bocian, D.; Ambrosio, G.; Felice, H.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidze, G.; Dietderich, D.; Feher, S.; Ferracin, P.; Hafalia, R.; /Fermilab /Lawrence Berkeley Lab /Brookhaven

    2011-09-01

    In hadron colliders such as the LHC, the energy deposited in the superconductors by the particles lost from the beams or coming from the collision debris may provoke quenches detrimental to the accelerator operation. In previous papers, a Network Model has been used to study the thermodynamic behavior of magnet coils and to calculate the quench levels in the LHC magnets for expected beam loss profiles. This model was subsequently used for thermal analysis and design optimization of Nb{sub 3}Sn quadrupole magnets, which LARP (US LHC Accelerator Research Program) is developing for possible use in the LHC luminosity upgrade. For these new magnets, the heat transport efficiency from the coil to the helium bath needs to be determined and optimized. In this paper the study of helium cooling channels and the heat evacuation scheme are presented and discussed.

  10. A successive-steady-state approach to integrated surface-subsurface modelling for runoff generation on the field scale

    NASA Astrophysics Data System (ADS)

    Appels, W. M.; Bogaart, P. W.; van der Zee, S. E. A. T. M.

    2012-04-01

    In groundwater dominated lowland catchments the larger part of precipitation on drained agricultural fields recharges the groundwater or reaches surface waters through subsurface drains. However, shallow subsoil structure deterioration due to sealing or compaction, shallow groundwater tables and long and intense precipitation events facilitate ponding of water at the soil surface. During a rainfall event, the ponded area on the field expands and surface runoff reaches the field boundaries when one or more series of ponds form continuous flow paths to the channels and ditches surrounding the field. To understand catchment discharge characteristics it is important to quantify the relative contributions of different flow routes in a catchment. Also, as surface runoff is the main contributor of pesticides and one of the main contributors of phosphorus to surface-water bodies, it plays an important role with regard to the contamination, the eutrophication, and the implications for ecological functioning of aquatic ecosystems. In order to further quantify the relations between groundwater conditions, infiltration rates, and ponding and surface runoff, we developed a computer model that incorporates the saturated, unsaturated zones and a heterogeneous surface topography. The simplifications underlying the model are: The surface microtopography is static, therefore the configuration of ponds and their spill points to other ponds can be determined before the actual model simulation and stored in a database. The unsaturated zone is in hydrostatic equilibrium, therefore there is a unique relationship between the volume of water stored in a soil column and the elevation of the groundwater table. By using the total subsubsurface storage volume as state variable, problems usually associated with saturated-unsaturated zone interactions are bypassed, while still allowing for correct computation of both groundwater flow, and unsaturated zone effects on surface infiltration and thus

  11. PUMA - a new mathematical model for the rapid calculation of steady-state concentration profiles in mixer-settler extraction, partitioning, and stripping contactors using the Purex process

    SciTech Connect

    Geldard, J.F.

    1986-11-01

    The mathematical basis for a computer code PUMA (Plutonium-Uranium-Matrix-Algorithm) is described. The code simulates steady-state concentration profiles of solvent extraction contactors used in the Purex process, directly without first generating the transient behavior. The computational times are reduced, with no loss of accuracy, by about tenfold over those required by codes that generate the steady-state profiles via transient state conditions. Previously developed codes that simulate the steady-state conditions directly are not applicable to partitioning contactors, whereas PUMA is applicable to all contactors in the Purex process. Since most difficulties are encountered with partitioning contactors when simulating steady-state profiles via transient state conditions, it is with these contactors that the greatest saving in computer times is achieved.

  12. Differential heating and cooling rates in bigeye tuna (Thunnus obesus Lowe): a model of non-steady state heat exchange.

    PubMed

    Malte, Hans; Larsen, Christina; Musyl, Michael; Brill, Richard

    2007-08-01

    We analyzed water temperature, visceral cavity temperature and depth data from archival tags retrieved from bigeye tuna (Thunnus obesus) at liberty in the central Pacific for up to 57 days using a mathematical model of heat exchange. Our model took into account the transfer of heat between the portions of the myotomes comprising red muscle fibers adjacent to the spinal column and served by vascular counter current heat exchanges (henceforth referred to as ;red muscle') and the water, as well as between the red muscle and the temperature sensor of the archival tags in the visceral cavity. Our model successfully predicted the recorded visceral cavity temperatures during vertical excursions provided that the rate constants for heat transfer between the ambient water and the red muscle during cooling (k(low)) and those during heating (k(high)) were very dissimilar. Least-squares fitting of k(low) and k(high) for the entire period that the fish were at liberty yielded values generally in the ranges 0.02-0.04 min(-1) and 0.2-0.6 min(-1) (respectively), with an average ratio k(high)/k(low) of approximately 12. Our results confirmed those from previous studies showing that bigeye tuna have extensive physiological thermoregulatory abilities probably exerted through changes of blood flow patterns that controlled the efficiency of vascular countercurrent heat exchanges. There was a small but significant negative correlation between k(low) and size, whereas there was no correlation between k(high) and size. The maximum swimming speeds during vertical excursions (calculated from the pressure data) occurred midway during ascents and averaged approximately 2 FL s(-1) (where FL=fork length), although speeds as high approximately 4-7 FL s(-1) were also noted. PMID:17644676

  13. Investigations on the Interactions of 5-Fluorouracil with Herring Sperm DNA: Steady State/Time Resolved and Molecular Modeling Studies

    NASA Astrophysics Data System (ADS)

    Chinnathambi, Shanmugavel; Karthikeyan, Subramani; Velmurugan, Devadasan; Hanagata, Nobutaka; Aruna, Prakasarao; Ganesan, Singaravelu

    2015-04-01

    In the present study, the interaction of 5-Fluorouracil with herring sperm DNA is reported using spectroscopic and molecular modeling techniques. This binding study of 5-FU with hs-DNA is of paramount importance in understanding chemico-biological interactions for drug design, pharmacy and biochemistry without altering the original structure. The challenge of the study was to find the exact binding mode of the drug 5-Fluorouracil with hs-DNA. From the absorption studies, a hyperchromic effect was observed for the herring sperm DNA in the presence of 5-Fluorouracil and a binding constant of 6.153 × 103 M-1 for 5-Fluorouracil reveals the existence of weak interaction between the 5-Fluorouracil and herring sperm DNA. Ethidium bromide loaded herring sperm DNA showed a quenching in the fluorescence intensity after the addition of 5-Fluorouracil. The binding constants for 5-Fluorouracil stranded DNA and competitive bindings of 5-FU interacting with DNA-EB systems were examined by fluorescence spectra. The Stern-Volmer plots and fluorescence lifetime results confirm the static quenching nature of the drug-DNA complex. The binding constant Kb was 2.5 × 104 L mol-1 and the number of binding sites are 1.17. The 5-FU on DNA system was calculated using double logarithmic plot. From the Forster nonradiative energy transfer study it has been found that the distance of 5-FU from DNA was 4.24 nm. In addition to the spectroscopic results, the molecular modeling studies also revealed the major groove binding as well as the partial intercalation mode of binding between the 5-Fluorouracil and herring sperm DNA. The binding energy and major groove binding as -6.04 kcal mol-1 and -6.31 kcal mol-1 were calculated from the modeling studies. All the testimonies manifested that binding modes between 5-Fluorouracil and DNA were evidenced to be groove binding and in partial intercalative mode.

  14. Excitation dynamics in Phycoerythrin 545: modeling of steady-state spectra and transient absorption with modified Redfield theory.

    PubMed

    Novoderezhkin, Vladimir I; Doust, Alexander B; Curutchet, Carles; Scholes, Gregory D; van Grondelle, Rienk

    2010-07-21

    We model the spectra and excitation dynamics in the phycobiliprotein antenna complex PE545 isolated from the unicellular photosynthetic cryptophyte algae Rhodomonas CS24. The excitonic couplings between the eight bilins are calculated using the CIS/6-31G method. The site energies are extracted from a simultaneous fit of the absorption, circular dichroism, fluorescence, and excitation anisotropy spectra together with the transient absorption kinetics using the modified Redfield approach. Quantitative fit of the data enables us to assign the eight exciton components of the spectra and build up the energy transfer picture including pathways and timescales of energy relaxation, thus allowing a visualization of excitation dynamics within the complex. PMID:20643051

  15. Partial Rescue of Retinal Function and Sterol Steady-State in a Rat Model of Smith-Lemli-Opitz Syndrome

    PubMed Central

    FLIESLER, STEVEN J.; VAUGHAN, DANA K.; JENEWEIN, ERIN C.; RICHARDS, MICHAEL J.; NAGEL, BARBARA A.; PEACHEY, NEAL S.

    2007-01-01

    The Smith-Lemli-Opitz syndrome (SLOS) is the first-described in a growing family of hereditary defects in cholesterol biosynthesis, and presents with a spectrum of serious abnormalities, including multiple dysmorphologies, failure to thrive, cognitive and behavioral impairments, and retinopathy. Using a pharmacologically induced rat model of SLOS that exhibits key hallmarks of the disease, including progressive retinal degeneration and dysfunction, we show that a high-cholesterol diet can substantially correct abnormalities in retinal sterol composition, with concomitant improvement of visual function, particularly within the cone pathway. Although histologic degeneration still occurred, a high-cholesterol diet reduced the number of pyknotic photoreceptor nuclei, relative to animals on a cholesterol-free diet. These findings demonstrate that cholesterol readily crosses the blood-retina barrier (unlike the blood-brain barrier) and suggest that cholesterol supplementation may be efficacious in treating SLOS-associated retinopathy. PMID:17314682

  16. Gas evolution in eruptive conduits: Combining insights from high temperature and pressure decompression experiments with steady-state flow modeling

    USGS Publications Warehouse

    Mangan, M.; Mastin, L.; Sisson, T.

    2004-01-01

    In this paper we examine the consequences of bubble nucleation mechanism on eruptive degassing of rhyolite magma. We use the results of published high temperature and pressure decompression experiments as input to a modified version of CONFLOW, the numerical model of Mastin and Ghiorso [(2000) U.S.G.S. Open-File Rep. 00-209, 53 pp.] and Mastin [(2002) Geochem. Geophys. Geosyst. 3, 10.1029/2001GC000192] for steady, two-phase flow in vertical conduits. Synthesis of the available experimental data shows that heterogeneous nucleation is triggered at ??P 120-150 MPa, and leads to disequilibrium degassing at extreme H2O supersaturation. In this latter case, nucleation is an ongoing process controlled by changing supersaturation conditions. Exponential bubble size distributions are often produced with number densities of 106-109 bubbles/cm3. Our numerical analysis adopts an end-member approach that specifically compares equilibrium degassing with delayed, disequilibrium degassing characteristic of homogeneously-nucleating systems. The disequilibrium simulations show that delaying nucleation until ??P =150 MPa restricts degassing to within ???1500 m of the surface. Fragmentation occurs at similar porosity in both the disequilibrium and equilibrium modes (???80 vol%), but at the distinct depths of ???500 m and ???2300 m, respectively. The vesiculation delay leads to higher pressures at equivalent depths in the conduit, and the mass flux and exit pressure are each higher by a factor of ???2.0. Residual water contents in the melt reaching the vent are between 0.5 and 1.0 wt%, roughly twice that of the equilibrium model. ?? 2003 Elsevier B.V. All rights reserved.

  17. The steady-state assumption in oscillating and growing systems.

    PubMed

    Reimers, Alexandra-M; Reimers, Arne C

    2016-10-01

    The steady-state assumption, which states that the production and consumption of metabolites inside the cell are balanced, is one of the key aspects that makes an efficient analysis of genome-scale metabolic networks possible. It can be motivated from two different perspectives. In the time-scales perspective, we use the fact that metabolism is much faster than other cellular processes such as gene expression. Hence, the steady-state assumption is derived as a quasi-steady-state approximation of the metabolism that adapts to the changing cellular conditions. In this article we focus on the second perspective, stating that on the long run no metabolite can accumulate or deplete. In contrast to the first perspective it is not immediately clear how this perspective can be captured mathematically and what assumptions are required to obtain the steady-state condition. By presenting a mathematical framework based on the second perspective we demonstrate that the assumption of steady-state also applies to oscillating and growing systems without requiring quasi-steady-state at any time point. However, we also show that the average concentrations may not be compatible with the average fluxes. In summary, we establish a mathematical foundation for the steady-state assumption for long time periods that justifies its successful use in many applications. Furthermore, this mathematical foundation also pinpoints unintuitive effects in the integration of metabolite concentrations using nonlinear constraints into steady-state models for long time periods. PMID:27363728

  18. Controls on mixing-dependent denitrification in hyporheic zones induced by riverbed dunes: A steady state modeling study

    NASA Astrophysics Data System (ADS)

    Hester, Erich T.; Young, Katie I.; Widdowson, Mark A.

    2014-11-01

    The hyporheic zone is known to attenuate contaminants originating from surface water, yet the ability of the hyporheic zone to attenuate contaminants in upwelling groundwater plumes as they exit to surface water is less understood. We used MODFLOW and SEAM3D to simulate hyporheic flow cells induced by riverbed dunes and upwelling groundwater together with mixing-dependent denitrification of an upwelling nitrate (NO3-) plume. Our base case modeled labile dissolved organic carbon (DOC) and dissolved oxygen (DO) advecting from surface water, and DO and NO3- advecting from groundwater, typical of certain agricultural areas. We conducted sensitivity analyses that showed mixing-dependent denitrification in the hyporheic zone increased with increasing hydraulic conductivity (K), decreasing lower boundary flux, and increasing DOC in surface water or NO3- in groundwater. Surface water DOC, groundwater NO3-, and K were the most sensitive parameters affecting mixing-dependent denitrification. Nonmixing-dependent denitrification also occurred when there was surface water NO3-, and its magnitude was often greater than mixing-dependent denitrification. Nevertheless, mixing-dependent reactions provide functions that nonmixing-dependent reactions cannot, with potential for hyporheic zones to attenuate upwelling NO3- plumes, depending on geomorphic, hydraulic, and biogeochemical conditions. Stream and river restoration efforts may be able to increase mixing-dependent reactions by promoting natural processes that promote bedform creation and augment labile carbon sources.

  19. Modeling microflow and stirring around a microrotor in creeping flow using a quasi-steady-state analysis.

    PubMed

    Vuppu, Anil K; Garcia, Antonio A; Saha, Sanjoy K; Phelan, Patrick E; Hayes, Mark A; Calhoun, Ronald

    2004-06-01

    The microflow and stirring around paramagnetic particle microchains, referred to as microrotors, are modeled as a circular cylinder rotating about its radial axis at very low Reynolds number. Time scales for momentum transfer under these conditions are determined to be much smaller than those for boundary movement, hence a quasi-steady approximation can be used. The flow is derived at every instant from the case of a steady motion of a horizontally translating cylinder, with the rotation approximated to a series of differential incremental translations. A numerical simulation is used to determine the pathlines and material lines of virtual point fluid elements, which were analyzed to understand the behavior of the flow around the microrotor. The results indicate the flow to be unsteady, with chaotic advection observed in the system. The fluid motion is primarily two-dimensional, parallel to the rotational plane, with mixing limited to the immediate area around the rotating cylinder. Fluid layers, up to many cylinder diameters, in the axial direction experience the disturbance. Elliptic and star shaped pathlines, including periodic orbits, are observed depending on the fluid element's initial location. The trajectories and phase angles compare well with the experimental results, as well as with data from particle dynamics simulations. Material lines and streaklines display stretching and folding, which are indicative of the chaotic behavior and stirring characteristics of the system. The material lines have similar lengths for the same amount of rotation at different speeds, and the effect of rotational speeds appears to be primarily to change the time of mixing. The results are expected to help in the design of a particle microrotor based sensing technique. PMID:15159779

  20. Electron Density and Two-Channel Neutron Emission Measurements in Steady-State Spherical Inertial-Electrostatically Confined Plasmas, with Review of the One-Dimensional Kinetic Model

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Hrbud, Ivana

    2004-01-01

    Electron density measurements have been made in steady-state plasmas in a spherical inertial electrostatic confinement (IEC) discharge using microwave interferometry. Plasma cores interior to two cathodes, having diameters of 15 and 23 cm, respectively, were probed over a transverse range of 10 cm with a spatial resolution of about 1.4 cm for buffer gas pressures from 0.2 to 6 Pa in argon and deuterium. The transverse profiles are generally flat, in some cases with eccentric symmetric minima, and give mean densities of from approx. = 0.4 to 7 x 10(exp 10)/cu cm, the density generally increasing with the neutral gas pressure. Numerical solutions of the one-dimensional Poisson equation for IEC plasmas are reviewed and energy distribution functions are identified which give flat transverse profiles. These functions are used with the plasma approximation to obtain solutions which also give densities consistent with the measurements, and a double potential well solution is obtained which has minima qualitatively similar to those observed. Explicit consideration is given to the compatibility of the solutions interior and exterior to the cathode, and to grid transparency. Deuterium fusion neutron emission rates were also measured and found to be isotropic, to within the measurement error, over two simultaneous directions. Anisotropy was observed in residual emissions during operation with nonfusing hydrogen- 1. The deuterium rates are consistent with predictions from the model.

  1. A finite-element model for simulation of two-dimensional steady-state ground-water flow in confined aquifers

    USGS Publications Warehouse

    Kuniansky, E.L.

    1990-01-01

    A computer program based on the Galerkin finite-element method was developed to simulate two-dimensional steady-state ground-water flow in either isotropic or anisotropic confined aquifers. The program may also be used for unconfined aquifers of constant saturated thickness. Constant head, constant flux, and head-dependent flux boundary conditions can be specified in order to approximate a variety of natural conditions, such as a river or lake boundary, and pumping well. The computer program was developed for the preliminary simulation of ground-water flow in the Edwards-Trinity Regional aquifer system as part of the Regional Aquifer-Systems Analysis Program. Results of the program compare well to analytical solutions and simulations .from published finite-difference models. A concise discussion of the Galerkin method is presented along with a description of the program. Provided in the Supplemental Data section are a listing of the computer program, definitions of selected program variables, and several examples of data input and output used in verifying the accuracy of the program.

  2. A Mixing-Cell Model for Assessment of Contaminant Transport in the Unsaturated Zone Under Steady-State and Transient Flow Conditions

    SciTech Connect

    Arthur S. Rood

    2004-11-01

    A one-dimensional model for water flow and solute transport in the unsaturated zone under steady-state or transient flow conditions was developed from the principles of the mixing-cell model. The unsaturated zone is discretized into a series of independent mixing cells. Each cell may have unique hydrologic, lithologic, and sorptive properties. Ordinary differential equations (ODE) describe the material (water and solute) balance within each cell. Water flow equations are derived from the continuity equation assuming that unit-gradient conditions exist at all times in each cell. Pressure gradients are considered implicitly through model discretization. Unsaturated hydraulic conductivity and moisture contents are determined by the material-specific moisture characteristic curves. Solute transport processes included explicit treatment of advective processes, first-order chain decay, and linear sorption reactions. Dispersion is addressed through implicit and explicit dispersion. Implicit dispersion is an inherent feature of all mixing cell models and originates from the formulation of the problem in terms of mass balance around fully mixed volume elements. Expressions are provided that relate implicit dispersion to the physical dispersion of the system. The system of ODEs was solved using a forth-order Runge-Kutta algorithm coupled with adaptive step size control. Computer run times for transient flow and solute transport were typically several seconds on a 2-GHz Intel Pentium IV® desktop computer. The model was benchmarked against analytical solutions and finite-element approximations to the partial differential equations (PDE) describing unsaturated flow and transport. Differences between the maximum solute flux estimated by the mixing-cell model and the PDE models were typically less than 2%.

  3. Steady-state oxidation model by horseradish peroxidase for the estimation of the non-inactivation zone in the enzymatic removal of pentachlorophenol.

    PubMed

    Choi, Y J; Chae, H J; Kim, E Y

    1999-01-01

    A theoretical model for the rate of oxidation of pentachlorophenol (PCP) catalyzed by horseradish peroxidase (HRP), was investigated to account for the influence of hydrogen peroxide (H2O2) concentration on the catalytic activity. To evaluate the maximum allowable H2O2 concentration, a relatively simple steady-state model was developed based on the Ping-Pong Bi-Bi mechanism considering the effect of excess H2O2. Several sets of experimental data obtained from batch reactions using an equimolar concentration of H2O2 and PCP were used to estimate the kinetic parameters by a nonlinear regression method. The model profiles acquired using the estimated parameters were in good agreement with experimental data at different initial enzyme and substrate concentrations. The best-fitted parameters were used to predict the initial rate of the enzyme reaction. The model prediction was coincident with the experimental results of other studies, indicating that the proposed model could be used for the optimization of reaction conditions. The maximum allowable H2O2 concentration to prevent H2O2 inhibition was calculated from the proposed model equation: [H2O2](0,max) = (square root)KmH2O2Ki[PCP]0/KmPCP+[PCP]0. Using this equation, a curve depicting the non-inactivation zone for the two substrates (hydrogen peroxide and PCP) was plotted and it could be used for experimental design and optimal process operation. To minimize enzyme inactivation by H2O2, it was determined that the concentration of H2O2 should be lower than 2.78 mM, regardless of the stoichiometric ratio. PMID:16232630

  4. A Steady-state Picture of Solar Wind Acceleration and Charge State Composition Derived from a Global Wave-driven MHD Model

    NASA Astrophysics Data System (ADS)

    Oran, R.; Landi, E.; van der Holst, B.; Lepri, S. T.; Vásquez, A. M.; Nuevo, F. A.; Frazin, R.; Manchester, W.; Sokolov, I.; Gombosi, T. I.

    2015-06-01

    The higher charge states found in slow (<400 km s-1) solar wind streams compared to fast streams have supported the hypothesis that the slow wind originates in closed coronal loops and is released intermittently through reconnection. Here we examine whether a highly ionized slow wind can also form along steady and open magnetic field lines. We model the steady-state solar atmosphere using the Alfvén Wave Solar Model (AWSoM), a global MHD model driven by Alfvén waves, and apply an ionization code to calculate the charge state evolution along modeled open field lines. This constitutes the first charge state calculation covering all latitudes in a realistic magnetic field. The ratios {{O}+7}/{{O}+6} and {{C}+6}/{{C}+5} are compared to in situ Ulysses observations and are found to be higher in the slow wind, as observed; however, they are underpredicted in both wind types. The modeled ion fractions of S, Si, and Fe are used to calculate line-of-sight intensities, which are compared to Extreme-ultraviolet Imaging Spectrometer (EIS) observations above a coronal hole. The agreement is partial and suggests that all ionization rates are underpredicted. Assuming the presence of suprathermal electrons improved the agreement with both EIS and Ulysses observations; importantly, the trend of higher ionization in the slow wind was maintained. The results suggest that there can be a sub-class of slow wind that is steady and highly ionized. Further analysis shows that it originates from coronal hole boundaries (CHBs), where the modeled electron density and temperature are higher than inside the hole, leading to faster ionization. This property of CHBs is global and observationally supported by EUV tomography.

  5. Irreversible processes at nonequilibrium steady states

    PubMed Central

    Fox, Ronald Forrest

    1979-01-01

    It is shown that a Liapunov criterion exists for the stability of nonequilibrium steady states. This criterion is based upon the fluctuation-dissipation relation, as was first pointed out by Keizer. At steady states, the Liapunov function is constructed from the covariance matrix for the thermodynamic variables. Unlike the situation around equilibrium, at steady states the covariance matrix and the “excess entropy” matrix are not equivalent. The excess entropy, which serves as the Liapunov function around equilibrium, does not work in this capacity at steady states. Keizer's Liapunov function must be viewed as the first correct candidate for a proper Liapunov function for steady states. PMID:16592649

  6. An Operational Definition of the Steady State in Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Barnsley, E. A.

    1990-01-01

    The Briggs-Haldane assumption is used as the basis for the development of a kinetic model for enzyme catalysis. An alternative definition of the steady state and examples of realistic mechanisms are provided. (KR)

  7. Using the GENIE Earth System Model to investigate steady-state behavior of the CCD in the Greenhouse and Icehouse equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Pälike, H.

    2012-12-01

    We previously used data from IODP Expedition 320 and ODP Leg 199 sites to refine the dynamics of the carbonate compensation depth (CCD) in the equatorial Pacific during the Eocene and the Greenhouse-to-Icehouse transition, and were able to determine that the CCD fluctuated about 500m in depth, and that carbonate accumulation rates varied between near zero and ~1.5 g/cm2/kyr. "Carbonate accumulation events" lasted for a time period of around 1 Myr, with sharp transitions into and out of these cycles of enhanced carbonate accumulation. We now present new results investigating CCD behavior in an Earth System Model (GENIE) in steady-state conditions in response to variations in atmospheric CO2, coupled in turn to changes in the net deep-sea weathering supply of alkalinity, to variations in labile vs. refractory organic carbon supply to the sea-floor, to the rain-ratio hypothesis, and to changes in the Mg and Ca seawater composition. We also use a simpler box model (LOSCAR) to evaluate the non-steady-state behavior of the CCD in response to changes in shelf-basin partitioning, and simple changes in ocean circulation patterns. Our modelling reveals that increasing atmospheric CO2 with fixed weathering results in a shallower CCD. This is a consequence of non-linearities in the carbonate system and reflects a deepening of the lysocline at the expense of the CCD and contraction of the lysocline transition zone. When this is combined with the response of increased weathering by activating the full silicate weathering feedback, we find an unexpected result: when progressively increasing the rate of prescribed CO2 outgassing in a series of GENIE experiments, atmospheric CO2 and weathering flux happen to co-vary in such a way that they result in a largely invariant CCD depth. We also investigate the viability of a 'sediment labile organic matter' hypothesis to help explain the CCD fluctuations. We repeat the GENIE net-weathering supply analysis but now change the partitioning

  8. STEADY-STATE SOLUTIONS TO PBPK MODELS AND THEIR APPLICATIONS TO RISK ASSESSMENT I: ROUTE-TO-ROUTE EXTRAPOLATION OF VOLATILE CHEMICALS - AUTHORS' RESPONSE TO LETTER BY DR. KENNETH BOGEN

    EPA Science Inventory

    Dear Editor: We are disappointed that Dr. Bogen felt our paper(1) “adds little new” to previously published work utilizing steady state solutions to PBPK models. Moreover, it was not our intention to be either “dismissive” or “misleading” in our admittedly brief citation of the...

  9. Siple Dome: Is it in Steady State?

    NASA Astrophysics Data System (ADS)

    Pettit, E. C.; Waddington, E. D.; Nereson, N. A.; Zumberge, M. A.; Hamilton, G. S.

    2001-12-01

    Changes in the West Antarctic Ice Sheet since the end of the last ice age have implications for how we interpret its present behavior, in terms of both its stability and its record of climate history. Siple Dome, the ridge between Ice Streams C and D, is not presently thinning and is close to being in balance with present environmental conditions. We present three independent measurements of ice thickness change in the divide region of Siple Dome: a GPS surface horizontal strain network, fiber optic vertical strain measurements at depth, and precision GPS measurements of vertical motion of near-surface ice ("coffee-can" method). From the horizontal strain network, we calculate the divergence of the horizontal velocity. This divergence is equal to the gradient of vertical velocity at the surface and, with some assumptions about the distribution of strain rates with depth, we can calculate the vertical velocity at the surface. For steady state, the vertical velocity must be balanced by the local accumulation rate. The fiber optic instruments provide a profile of the relative vertical velocity with depth. We fit a theoretical vertical velocity pattern to these data and extrapolate to find the surface vertical velocity. Our third method (coffee-can) directly measures the vertical motion of a marker 20 meters deep using precision GPS and compares it with the local long-term rate of snow accumulation to calculate the net rate of ice sheet thickness change. All three methods reach the same conclusion: Siple Dome is currently very close to being in steady state. This result has two implications. First, ice dynamics models developed to interpret radar images or ice core data can assume steady state behavior, simplifying the models. Second, our result suggests that the central part of the Ross Embayment may have had a low-elevation profile during the late Holocene, even though other areas of the WAIS may have been thicker.

  10. The plankton food web of the Bizerte Lagoon (South-western Mediterranean): II. Carbon steady-state modelling using inverse analysis

    NASA Astrophysics Data System (ADS)

    Grami, Boutheïna; Niquil, Nathalie; Sakka Hlaili, Asma; Gosselin, Michel; Hamel, Dominique; Hadj Mabrouk, Hassine

    2008-08-01

    A steady-state model of the planktonic food web of the Bizerte Lagoon (Tunisia, South-western Mediterranean) was developed to characterize its structure and functioning through four stations: MA under urban discharge, MB impacted by industrial input, MJ located at proximity of shellfish farming and R in the central area of the lagoon. Carbon stocks of eight chosen compartments were determined and flows were assigned for each one from field data. Missing flow values were calculated by inverse analysis for each station. Network analysis was applied to the resulting food web models to characterize their properties. These analyses mainly showed similarity among stations concerning (1) a high primary production of phytoplankton which was dominated by >10 μm cells (i.e. diatoms); (2) important herbivory against detritivory in stations MA and MJ; (3) major role of detritivory in stations MB and R; (4) efficiency of microbial link in transferring carbon for higher trophic level; (5) efficiency of microzooplankton as a trophic link between detritus, dissolved organic carbon, autotrophs and mesozooplankton; (6) important recycling of carbon leading to conclude about an immature state of the ecosystem. Differences between the functioning of microbial food webs in the lagoon are mainly due to the location of stations. The proximity of station MB to inland and industrial discharges affected its productivity and made it the least productive station. Water circulation into the lagoon made pollutant concentrate into the south and the western sections which seemed to affect the planktonic food web, since the values of productivity reported for stations MB and R were lower than those calculated for the others stations.

  11. Transitions between strongly correlated and random steady-states for catalytic CO-oxidation on surfaces at high-pressure

    DOE PAGESBeta

    Liu, Da -Jiang; Evans, James W.

    2015-04-02

    We explore simple lattice-gas reaction models for CO-oxidation on 1D and 2D periodic arrays of surface adsorption sites. The models are motivated by studies of CO-oxidation on RuO2(110) at high-pressures. Although adspecies interactions are neglected, the effective absence of adspecies diffusion results in kinetically-induced spatial correlations. A transition occurs from a random mainly CO-populated steady-state at high CO-partial pressure pCO, to a strongly-correlated near-O-covered steady-state for low pCO as noted. In addition, we identify a second transition to a random near-O-covered steady-state at very low pCO.

  12. Transitions between strongly correlated and random steady-states for catalytic CO-oxidation on surfaces at high-pressure

    SciTech Connect

    Liu, Da -Jiang; Evans, James W.

    2015-04-02

    We explore simple lattice-gas reaction models for CO-oxidation on 1D and 2D periodic arrays of surface adsorption sites. The models are motivated by studies of CO-oxidation on RuO2(110) at high-pressures. Although adspecies interactions are neglected, the effective absence of adspecies diffusion results in kinetically-induced spatial correlations. A transition occurs from a random mainly CO-populated steady-state at high CO-partial pressure pCO, to a strongly-correlated near-O-covered steady-state for low pCO as noted. In addition, we identify a second transition to a random near-O-covered steady-state at very low pCO.

  13. Steady-state streaming potential coefficient measurements and modelling of sandstones as a function of pore fluid salinity and pH

    NASA Astrophysics Data System (ADS)

    Walker, Emilie; Glover, Paul W. J.

    2013-04-01

    The last twenty years has seen the steady increase in the quality and quantity of streaming potential coefficient and zeta potential determinations in the laboratory. More recently (Glover et al., 2012), a model has been developed that allows both the zeta potential and streaming potential coefficient of a porous rock to be calculated theoretically. We have carried out high quality streaming potential coupling coefficient measurements using a newly designed cell with both a steady-state methodology and a new pressure transient approach. We have shown the pressure transient approach to be particularly good in providing high quality streaming potential coefficient measurements as it allows thousands of measurements to be made at different pressures to which a good linear regression can be fitted. Nevertheless, the method is approximately five times as fast as the conventional measurement approaches. Measurements of streaming potential coefficient have been carried out on seven samples of Berea, Boise and Lochaline sandstones as a function of salinity (approximately 18 salinities between 10-5 M and 2 M) and pH (approximately 11 pHs between 8 and 2). The data have been inverted to obtain the zeta potential. The streaming potential coefficient becomes greater (more negative) for fluids with lower salinities and higher pHs, which is consistent with the corpus of existing measurements. Our measurements are also consistent with the high salinity streaming potential coefficient measurements made by Vinogradov et al. (2010). The streaming potential and zeta potential tend to zero as the pH approaches the point of zero net surface charge for quartz (approximately 3), which was 2.8±0.2 in our measurements. Both the streaming potential coefficient and the zeta potential have also been modelled using the theoretical approach of Glover et al. (2012). This modelling allows the microstructural, electro-chemical and fluid properties of the saturated rock to be taken into account in

  14. Steady-state propagation speed of rupture fronts along one-dimensional frictional interfaces

    NASA Astrophysics Data System (ADS)

    Amundsen, David Skâlid; Trømborg, Jørgen Kjoshagen; Thøgersen, Kjetil; Katzav, Eytan; Malthe-Sørenssen, Anders; Scheibert, Julien

    2015-09-01

    The rupture of dry frictional interfaces occurs through the propagation of fronts breaking the contacts at the interface. Recent experiments have shown that the velocities of these rupture fronts range from quasistatic velocities proportional to the external loading rate to velocities larger than the shear wave speed. The way system parameters influence front speed is still poorly understood. Here we study steady-state rupture propagation in a one-dimensional (1D) spring-block model of an extended frictional interface for various friction laws. With the classical Amontons-Coulomb friction law, we derive a closed-form expression for the steady-state rupture velocity as a function of the interfacial shear stress just prior to rupture. We then consider an additional shear stiffness of the interface and show that the softer the interface, the slower the rupture fronts. We provide an approximate closed form expression for this effect. We finally show that adding a bulk viscosity on the relative motion of blocks accelerates steady-state rupture fronts and we give an approximate expression for this effect. We demonstrate that the 1D results are qualitatively valid in 2D. Our results provide insights into the qualitative role of various key parameters of a frictional interface on its rupture dynamics. They will be useful to better understand the many systems in which spring-block models have proved adequate, from friction to granular matter and earthquake dynamics.

  15. Brady 1D seismic velocity model ambient noise prelim

    DOE Data Explorer

    Mellors, Robert J.

    2013-10-25

    Preliminary 1D seismic velocity model derived from ambient noise correlation. 28 Green's functions filtered between 4-10 Hz for Vp, Vs, and Qs were calculated. 1D model estimated for each path. The final model is a median of the individual models. Resolution is best for the top 1 km. Poorly constrained with increasing depth.

  16. Modelling of the steady state thermal behaviour of a permanent magnet direct current motor with commutator. 3D finite elements study

    NASA Astrophysics Data System (ADS)

    Bernard, R.; Glises, R.; Chamagne, D.; Cuchet, D.; Kauffmann, J. M.

    1999-08-01

    The aim of this work concerns the development and the validation of a thermal steady state model applied to a permanent magnet direct current motor with commutator. The rated power of the machine is 120 W. Design has been realized thanks to the thermal modulus of the computation software with the finite element method Flux3D. It is shown in this work how it is possible to use only the heat equation to simulate the thermal behaviour of the motor. It implies calculating of new fluid conductivities (considering also all thermal modes) by comparison of calculated and experimental temperatures. To realize these 3D modelizations, it is necessary to know and to locate all the losses of the motor which are considered as thermal sources. The experimental temperatures are given by 40 chromel-alumel thermocouples of 100 μm diameter located in the rotor and the stator of the machine. Numerical computations use Dirichlet boundary layer conditions given by an IR camera. Ce travail concerne le développement et la validation d'un modèle de simulation du comportement thermique tridimensionnel en régime permanent d'un moteur électrique de 120 watt à courant continu, à aimants permanents et à collecteur. Le logiciel est développé à partir du code de calculs par éléments finis Flux3D. L'équation de la chaleur modélise l'ensemble des transferts thermiques du moteur. Cela nécessite de recaler certains paramètres fluides par comparaison des températures simulées et expérimentales. Une séparation détaillée des différentes pertes est nécessaire pour obtenir une bonne précision finale. Un banc d'essais thermiques permet d'obtenir à l'aide de 40 thermocouples (chromel-alumel de 100 μm de diamètre) les températures au stator et au rotor. Une caméra thermographique infrarouge donne les conditions aux limites de Dirichlet nécessaires à la modélisation.

  17. Comment on "Steady State Solutions to PBPK Models and their Applications to Risk Assessment I: Route to Route Extrapolation of Volatile Chemicals," by Chiu and White in Risk Analysis, 26(3), 769-780

    SciTech Connect

    Bogen, K T

    2006-07-20

    Steady-state analyses of generic PBPK models for volatile organic chemical (VOC) exposure and risk assessment have been undertaken and applied for nearly two decades now. Chiu and White's paper on this subject adds little new to this earlier work. Their dismissive claim that ''Similar analyses have been done for specific chemicals and for inhalation'' is misleading, because some of this earlier work did indeed focus on ''generic'' PBPK models generally applicable to VOC exposure by multiple routes. In particular, the earliest of these previous studies developed steady-state solutions for generic PBPK models including respiratory and 1-compartment oral routes of exposure, and further specified how to add injection and dermal exposure routes. Chiu and White included a 2-compartment oral pathway and a lung compartment in an otherwise identical generic PBPK model, but did not consider other exposure pathways such as dermal uptake. Each of the earlier studies first presented a steady-state solution to a generic, multiroute PBPK model, and only then applied the generic solution to a problem or illustration involving a specific compound--i.e., the same approach used later by Chiu and White. For example, the earlier study included a simple, intuitive expression for low-dose metabolized fraction f*{sub m} of any applied multiroute dose, allowing route-to-route extrapolation regardless of compound in low-dose contexts that typically are of interest in environmental VOC risk assessment. Section 2.2 of Chiu and White's paper (''Generalization to Time-Varying Exposures'') concludes that, under conditions of virtually linear metabolism, PBPK system ''solutions to steady-state exposures are directly applicable to intermittent exposures''--i.e., under such conditions, all steady-state system solutions (or output states) become valid when each dynamic input is replaced by its corresponding time-weighted average value. This conclusion, a well known axiom of linear systems theory

  18. Steady State Tokamak Equilibria without Current Drive

    SciTech Connect

    Shaing, K.C.; Aydemir, A.Y.; Lin-Liu, Y.R.; Miller, R.L.

    1997-11-01

    Steady state tokamak equilibria without current drive are found. This is made possible by including the potato bootstrap current close to the magnetic axis. Tokamaks with this class of equilibria do not need seed current or current drive, and are intrinsically steady state. {copyright} {ital 1997} {ital The American Physical Society}

  19. Multiple steady states in coupled flow tank reactors

    NASA Astrophysics Data System (ADS)

    Hunt, Katharine L. C.; Kottalam, J.; Hatlee, Michael D.; Ross, John

    1992-05-01

    Coupling between continuous-flow, stirred tank reactors (CSTR's), each having multiple steady states, can produce new steady states with different concentrations of the chemical species in each of the coupled tanks. In this work, we identify a kinetic potential ψ that governs the deterministic time evolution of coupled tank reactors, when the reaction mechanism permits a single-variable description of the states of the individual tanks; examples include the iodate-arsenous acid reaction, a cubic model suggested by Noyes, and two quintic models. Stable steady states correspond to minima of ψ, and unstable steady states to maxima or saddle points; marginally stable states typically correspond to saddle-node points. We illustrate the variation in ψ due to changes in the rate constant for external material intake (k0) and for exchange between tanks (kx). For fixed k0 values, we analyze the changes in numbers and types of steady states as kx increases from zero. We show that steady states disappear by pairwise coalescence; we also show that new steady states may appear with increasing kx, when the reaction mechanism is sufficiently complex. For fixed initial conditions, the steady state ultimately reached in a mixing experiment may depend on the exchange rate constant as a function of time, kx(t) : Adiabatic mixing is obtained in the limit of slow changes in kx(t) and instantaneous mixing in the limit as kx(t)→∞ while t remains small. Analyses based on the potential ψ predict the outcome of mixing experiments for arbitrary kx(t). We show by explicit counterexamples that a prior theory developed by Noyes does not correctly predict the instability points or the transitions between steady states of coupled tanks, to be expected in mixing experiments. We further show that the outcome of such experiments is not connected to the relative stability of steady states in individual tank reactors. We find that coupling may effectively stabilize the tanks. We provide

  20. Partitioning a Steady State Sediment Budget to Represent Long tailed Distributions of Contaminant Residence Times: A Modeling Approach for Routing Tracers Through Alluvial Storage Reservoirs

    NASA Astrophysics Data System (ADS)

    Pizzuto, J. E.; Ackerman, T. R.

    2012-12-01

    the next FP reservoir with a lower inundation frequency (we modify the Malmon (2002) model to account for these fluxes). Deposition rates are the product of area and accumulation rates. Erosion rates are then determined that conserve the mass in each reservoir through time. The existing area and elevation range for each FP reservoir is assumed to remain in morphological steady state, which requires that the area eroded from a particular reservoir is replaced by an equal area transferring in, due to deposition, from a lower elevation reservoir. These functions are constrained by measurements of FP area and mass, the total exchange rate for the FP from the sediment budget, and conservation of mass within each FP sub-reservoir. Our revised model successfully fits Hg concentration histories in the FGCM, reproduces contemporary loading of mercury from bank erosion, and provides reasonable estimates of Hg concentration in the water column. Thus, alluvial sediment storage reservoirs should not be assumed to be well-mixed, and sediment budgets cannot be used to route contaminants through river valleys without accounting for the long-tailed distribution of residence times that may occur in these environments.

  1. Effects of vertical fins near the nose of the fuselage on the directional and damping-in-yaw stability derivatives of an airplane model under steady-state and oscillatory conditions

    NASA Technical Reports Server (NTRS)

    Queijo, M J; Wells, Evalyn G

    1956-01-01

    A wind-tunnel investigation has been made at low speed to determine the effects of vertical fins placed ahead of the vertical tail on the directional stability and damping-in-yaw characteristics of a swept-wing model under steady-state oscillatory conditions. Various sizes of fins were used above and below the fuselage center line. The vertical-tail size also was varied.

  2. Analytical determination of transition time between transient and steady state water infiltration

    NASA Astrophysics Data System (ADS)

    Lassabatere, Laurent; Angulo-Jaramillo, Rafael; di Prima, Simone; Bagarello, Vincenzo; Iovino, Massimo

    2016-04-01

    The hydraulic characterization of soil hydraulic properties is a prerequisite to the modelling of flow in the vadose zone. Since many years, numerous methods were developed to determine soil hydraulic properties. Many of these methods rely on water infiltration experiments and their analysis using analytical or numerical models. At the beginning, most models were developed for water infiltration at steady state. These models had the advantage to be easy to develop from a theoretical point of view. Yet, many drawbacks remain including the need to wait for a long time, leading to time-consuming experiments, the risk to infiltrate water in large volumes of soil, leading to a response affected by soil variability, and the uncertainty regarding the attainment of steady state (i.e. constant infiltration rate). More recently, infiltration models and mathematical developments addressed the case of consecutive transient and steady states. Yet, one main problem remain. In the field, the operator is never sure about the state of water infiltration data. This paper present analytical formulations for the estimation of a transition time. We consider the model developed by Haverkamp et al. (1994) linking 1D infiltration flux to cumulative infiltration and related approximated expansions. An analytical method based on scaling is proposed to define transition time values in terms of both scaled cumulative infiltration and times. Dimensional times are then calculated for a large variety of soils and initial conditions. These time database can be considered as a relevant tool for the guidance for operators who conduct water infiltration experiments and wants to know when to stop and also for modelers who want to know how to select the data to fit transient or steady state models. Haverkamp, R., Ross, P. J., Smetten, K. R. J., Parlange, J. Y. (1994), Three-dimensional analysis of infiltration from the disc infiltrometer: 2 Physically based infiltration equation. Water Resour. Res

  3. From Steady-State To Cyclic Metal Forming Processes

    NASA Astrophysics Data System (ADS)

    Montmitonnet, Pierre

    2007-05-01

    Continuous processes often exhibit a high proportion of steady state, and have been modeled with steady-state formulations for thirty years, resulting in very CPU-time efficient computations. On the other hand, incremental forming processes generally remain a challenge for FEM software, because of the local nature of deformation compared with the size of the part to be formed, and of the large number of deformation steps needed. Among them however, certain semi-continuous metal forming processes can be characterized as periodic, or cyclic. In this case, an efficient computational strategy can be derived from the ideas behind the steady-state models. This will be illustrated with the example of pilgering, a seamless tube cold rolling process.

  4. Is There More than One Steady State for Nox?

    NASA Technical Reports Server (NTRS)

    Bakas, G.

    1985-01-01

    The study of alternative steady states for nitrogen oxides is discussed: The production of these oxides and the reactions they undergo in the atmosphere are described. The computerized modelling of the atmosphere using a one dimensional time dependent photochemical model is attempted.

  5. Steady-state entanglement activation in optomechanical cavities

    NASA Astrophysics Data System (ADS)

    Farace, Alessandro; Ciccarello, Francesco; Fazio, Rosario; Giovannetti, Vittorio

    2014-02-01

    Quantum discord, and related indicators, are raising a relentless interest as a novel paradigm of nonclassical correlations beyond entanglement. Here, we discover a discord-activated mechanism yielding steady-state entanglement production in a realistic continuous-variable setup. This comprises two coupled optomechanical cavities, where the optical modes (OMs) communicate through a fiber. We first use a simplified model to highlight the creation of steady-state discord between the OMs. We show next that such discord improves the level of stationary optomechanical entanglement attainable in the system, making it more robust against temperature and thermal noise.

  6. GIS-BASED 1-D DIFFUSIVE WAVE OVERLAND FLOW MODEL

    SciTech Connect

    KALYANAPU, ALFRED; MCPHERSON, TIMOTHY N.; BURIAN, STEVEN J.

    2007-01-17

    This paper presents a GIS-based 1-d distributed overland flow model and summarizes an application to simulate a flood event. The model estimates infiltration using the Green-Ampt approach and routes excess rainfall using the 1-d diffusive wave approximation. The model was designed to use readily available topographic, soils, and land use/land cover data and rainfall predictions from a meteorological model. An assessment of model performance was performed for a small catchment and a large watershed, both in urban environments. Simulated runoff hydrographs were compared to observations for a selected set of validation events. Results confirmed the model provides reasonable predictions in a short period of time.

  7. Quasi 1D Modeling of Mixed Compression Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Woolwine, Kyle J.

    2012-01-01

    The AeroServoElasticity task under the NASA Supersonics Project is developing dynamic models of the propulsion system and the vehicle in order to conduct research for integrated vehicle dynamic performance. As part of this effort, a nonlinear quasi 1-dimensional model of the 2-dimensional bifurcated mixed compression supersonic inlet is being developed. The model utilizes computational fluid dynamics for both the supersonic and subsonic diffusers. The oblique shocks are modeled utilizing compressible flow equations. This model also implements variable geometry required to control the normal shock position. The model is flexible and can also be utilized to simulate other mixed compression supersonic inlet designs. The model was validated both in time and in the frequency domain against the legacy LArge Perturbation INlet code, which has been previously verified using test data. This legacy code written in FORTRAN is quite extensive and complex in terms of the amount of software and number of subroutines. Further, the legacy code is not suitable for closed loop feedback controls design, and the simulation environment is not amenable to systems integration. Therefore, a solution is to develop an innovative, more simplified, mixed compression inlet model with the same steady state and dynamic performance as the legacy code that also can be used for controls design. The new nonlinear dynamic model is implemented in MATLAB Simulink. This environment allows easier development of linear models for controls design for shock positioning. The new model is also well suited for integration with a propulsion system model to study inlet/propulsion system performance, and integration with an aero-servo-elastic system model to study integrated vehicle ride quality, vehicle stability, and efficiency.

  8. Morphodynamics: Rivers beyond steady state

    NASA Astrophysics Data System (ADS)

    Church, M.; Ferguson, R. I.

    2015-04-01

    The morphology of an alluvial river channel affects the movement of water and sediment along it, but in the longer run is shaped by those processes. This interplay has mostly been investigated empirically within the paradigm of Newtonian mechanics. In rivers, this has created an emphasis on equilibrium configurations with simple morphology and uniform steady flow. But transient adjustment, whether between equilibrium states or indefinitely, is to be expected in a world in which hydrology, sediment supply, and base level are not fixed. More fundamentally, water flows and all the phenomena that accompany them are inherently unsteady, and flows in natural channels are characteristically nonuniform. The morphodynamics of alluvial river channels is the striking consequence. In this paper, we develop the essential connection between the episodic nature of bed material transport and the production of river morphology, emphasizing the fundamental problems of sediment transport, the role of bar evolution in determining channel form, the role of riparian vegetation, and the wide range of time scales for change. As the key integrative exercise, we emphasize the importance of physics-based modeling of morphodynamics. We note consequences that can be of benefit to society if properly understood. These include the possibility to better be able to model how varying flows drive morphodynamic change, to understand the influence of the sediments themselves on morphodynamics, and to recognize the inherent necessity for rivers that transport bed material to deform laterally. We acknowledge pioneering contributions in WRR and elsewhere that have introduced some of these themes.

  9. Hydrogeology of well-field areas near Tampa, Florida; Phase 2, development and documentation of a quasi-three-dimensional finite-difference model for simulation of steady-state ground-water flow

    USGS Publications Warehouse

    Hutchinson, C.B.

    1984-01-01

    This report describes a quasi-three-dimensional finite-difference model for simulation of steady-state ground-water flow in the Floridan aquifer over a 932-square-mile area that contains 10 municipal well fields. The over-lying surficial aquifer contains a water table and is coupled to the Floridan aquifer by leakage term that represents flow through a confining layer separating the two aquifers. Under the steady-state condition, all storage terms are set to zero. Use of the head-controlled flux condition allows simulated head and flow changes to occur in the Floridan aquifer at the model boundaries. Procedures used to calibrate the model, test its sensitivity to input-parameter errors, and validate its accuracy for predictive purposes are described. Also included are attachments that describe setting up and running the model. Example model-interrogation runs show anticipated drawdowns under high, average, and low recharge conditions with 10 well fields pumping simultaneously at the maximum annual permitted rates totaling 186.9 million gallons per day. (USGS)

  10. Hydrogeology of well-field areas near Tampa, Florida; Phase I, development and documentation of a two-dimensional finite-difference model for simulation of steady-state ground-water flow

    USGS Publications Warehouse

    Hutchinson, C.B.; Johnson, Dale M.; Gerhart, James M.

    1981-01-01

    A two-dimensional finite-difference model was developed for simulation of steady-state ground-water flow in the Floridan aquifer throughout a 932-square-mile area, which contains nine municipal well fields. The overlying surficial aquifer contains a constant-head water table and is coupled to the Floridan aquifer by a leakage term that represents flow through a confining layer separating the two aquifers. Under the steady-state condition, all storage terms are set to zero. Utilization of the head-controlled flux condition allows head and flow to vary at the model-grid boundaries. Procedures are described to calibrate the model, test its sensitivity to input-parameter errors, and verify its accuracy for predictive purposes. Also included are attachments that describe setting up and running the model. An example model-interrogation run shows anticipated drawdowns that should result from pumping at the newly constructed Cross Bar Ranch and Morris Bridge well fields. (USGS)