Science.gov

Sample records for 1-oleoyl-2-stearoyl-sn-glycero-3-phosphatidylcholine ospc membranes

  1. Delineating the Requirement for the Borrelia burgdorferi Virulence Factor OspC in the Mammalian Host

    PubMed Central

    Stewart, Philip E.; Wang, Xiaohui; Bueschel, Dawn M.; Clifton, Dawn R.; Grimm, Dorothee; Tilly, Kit; Carroll, James A.; Weis, Janis J.; Rosa, Patricia A.

    2006-01-01

    We previously demonstrated that outer surface protein C (OspC) of Borrelia burgdorferi is essential for establishing mammalian infection. However, the role of OspC in mammalian infection is unknown. Here, we report experiments designed to distinguish between two models of OspC function in the mammalian host: (i) OspC fulfills an essential physiological role for growth and host adaptation or (ii) OspC provides a protective role for evasion of components of the innate immune response. We found that a B. burgdorferi ospC mutant, previously demonstrated to be noninfectious in both immunocompetent and SCID mice, could survive in the relatively immune-privileged environment of dialysis membrane chambers implanted within the peritoneum of a rat. The ospC mutant also adapts to the mammalian environment, as determined by the protein profiles of the chamber-cultivated spirochetes. Therefore, OspC does not appear to provide a physiological function for the survival of B. burgdorferi within the mammalian host. The second model, evasion of the innate immune system, was tested by assessing the infectivity of the ospC mutant in mice deficient for myeloid differentiation protein 88 (MyD88). Recent studies have shown that B. burgdorferi is prevented from reaching high cell numbers in the mammalian host by MyD88-dependent signaling pathways. The ospC mutant was incapable of infecting MyD88-deficient mice, suggesting that the role of OspC cannot be related solely to evasion of MyD88-mediated innate immunity. These results reiterate the importance of OspC in mammalian infection and eliminate simple models of function for this enigmatic protein. PMID:16714587

  2. Comprehensive Seroprofiling of Sixteen B. burgdorferi OspC: Implications for Lyme Disease Diagnostics Design

    PubMed Central

    Ivanova, Larisa; Christova, Iva; Neves, Vera; Aroso, Miguel; Meirelles, Luciana; Brisson, Dustin; Gomes-Solecki, Maria

    2009-01-01

    Early diagnosis of Lyme disease (LD) is critical to successful treatment. However, current serodiagnostic tests do not reliably detect antibodies during early infection. OspC induces a potent early immune response and is also one of the most diverse proteins in the Borrelia proteome. Yet, at least 70% of the amino acid sequence is conserved among all 21 known OspC types. We performed a series of comprehensive seroprofiling studies to select the OspC types that have the most cross-reactive immunodominant epitopes. We found that proteins belonging to seven OspC types detect antibodies from all three infected host species regardless of the OspC genotype of the infecting strain. Although no one OspC type identifies all seropositive human samples, combinations of as few as two OspC proteins identified all patients that had anti-OspC antibodies. PMID:19576856

  3. Evolution and Distribution of the ospC Gene, a Transferable Serotype Determinant of Borrelia burgdorferi

    PubMed Central

    Barbour, Alan G.; Travinsky, Bridgit

    2010-01-01

    Borrelia burgdorferi, an emerging bacterial pathogen, is maintained in nature by transmission from one vertebrate host to another by ticks. One of the few antigens against which mammals develop protective immunity is the highly polymorphic OspC protein, encoded by the ospC gene on the cp26 plasmid. Intragenic recombination among ospC genes is known, but the extent to which recombination extended beyond the ospC locus itself is undefined. We accessed and supplemented collections of DNA sequences of ospC and other loci from ticks in three U.S. regions (the Northeast, the Midwest, and northern California); a total of 839 ospC sequences were analyzed. Three overlapping but distinct populations of B. burgdorferi corresponded to the geographic regions. In addition, we sequenced 99 ospC flanking sequences from different lineages and compared the complete cp26 sequences of 11 strains as well as the cp26 bbb02 loci of 56 samples. Besides recombinations with traces limited to the ospC gene itself, there was evidence of lateral gene transfers that involved (i) part of the ospC gene and one of the two flanks or (ii) the entire ospC gene and different lengths of both flanks. Lateral gene transfers resulted in different linkages between the ospC gene and loci of the chromosome or other plasmids. By acquisition of the complete part or a large part of a novel ospC gene, an otherwise adapted strain would assume a new serotypic identity, thereby being comparatively fitter in an area with a high prevalence of immunity to existing OspC types. PMID:20877579

  4. Genetic diversity of ospC in a local population of Borrelia burgdorferi sensu stricto.

    PubMed Central

    Wang, I N; Dykhuizen, D E; Qiu, W; Dunn, J J; Bosler, E M; Luft, B J

    1999-01-01

    The outer surface protein, OspC, is highly variable in Borrelia burgdorferi sensu stricto, the agent of Lyme disease. We have shown that even within a single population OspC is highly variable. The variation of ospA and ospC in the 40 infected deer ticks collected from a single site on Shelter Island, New York, was determined using PCR-SSCP. There is very strong apparent linkage disequilibrium between ospA and ospC alleles, even though they are located on separate plasmids. Thirteen discernible SSCP mobility classes for ospC were identified and the DNA sequence for each was determined. These sequences, combined with 40 GenBank sequences, allow us to define 19 major ospC groups. Sequences within a major ospC group are, on average, <1% different from each other, while sequences between major ospC groups are, on average, approximately 20% different. The tick sample contains 11 major ospC groups, GenBank contains 16 groups, with 8 groups found in both samples. Thus, the ospC variation within a local population is almost as great as the variation of a similar-sized sample of the entire species. The Ewens-Watterson-Slatkin test of allele frequency showed significant deviation from the neutral expectation, indicating balancing selection for these major ospC groups. The variation represented by major ospC groups needs to be considered if the OspC protein is to be used as a serodiagnostic antigen or a vaccine. PMID:9872945

  5. Occurrence and transmission efficiencies of Borrelia burgdorferi ospC types in avian and mammalian wildlife

    PubMed Central

    Vuong, Holly B.; Canham, Charles D.; Fonseca, Dina M.; Brisson, Dustin; Morin, Peter J.; Smouse, Peter E.; Ostfeld, Richard S.

    2014-01-01

    Borrelia burgdorferi s.s., the bacterium that causes Lyme disease in North America, circulates among a suite of vertebrate hosts and their tick vector. The bacterium can be differentiated at the outer surface protein C (ospC) locus into 25 genotypes. Wildlife hosts can be infected with a suite of ospC types but knowledge on the transmission efficiencies of these naturally infected hosts to ticks is still lacking. To evaluate the occupancy and detection of ospC types in wildlife hosts, we adapted a likelihood-based species patch occupancy model to test for the occurrence probabilities (ψ – “occupancy”) and transmission efficiencies (ε – “detection”) of each ospC type. We detected differences in ospC occurrence and transmission efficiencies from the null models with HIS (human invasive strains) types A and K having the highest occurrence estimates, but both HIS and non-HIS types having high transmission efficiencies. We also examined ospC frequency patterns with respect to strains known to be invasive in humans across the host species and phylogenetic groups. We found that shrews and to a lesser extent, birds, were important host groups supporting relatively greater frequencies of HIS to non-HIS types. This novel method of simultaneously assessing occurrence and transmission of ospC types provides a powerful tool in assessing disease risk at the genotypic level in naturally infected wildlife hosts and offers the opportunity to examine disease risk at the community level. PMID:24382473

  6. Outer surface protein OspC is an antiphagocytic factor that protects Borrelia burgdorferi from phagocytosis by macrophages.

    PubMed

    Carrasco, Sebastian E; Troxell, Bryan; Yang, Youyun; Brandt, Stephanie L; Li, Hongxia; Sandusky, George E; Condon, Keith W; Serezani, C Henrique; Yang, X Frank

    2015-12-01

    Outer surface protein C (OspC) is one of the major lipoproteins expressed on the surface of Borrelia burgdorferi during tick feeding and the early phase of mammalian infection. OspC is required for B. burgdorferi to establish infection in both immunocompetent and SCID mice and has been proposed to facilitate evasion of innate immune defenses. However, the exact biological function of OspC remains elusive. In this study, we showed that the ospC-deficient spirochete could not establish infection in NOD-scid IL2rγ(null) mice that lack B cells, T cells, NK cells, and lytic complement. The ospC mutant also could not establish infection in anti-Ly6G-treated SCID and C3H/HeN mice (depletion of neutrophils). However, depletion of mononuclear phagocytes at the skin site of inoculation in SCID and C3H/HeN mice allowed the ospC mutant to establish infection in vivo. In phagocyte-depleted mice, the ospC mutant was able to colonize the joints and triggered neutrophilia during dissemination. Furthermore, we found that phagocytosis of green fluorescent protein (GFP)-expressing ospC mutant spirochetes by murine peritoneal macrophages and human THP-1 macrophage-like cells, but not in PMN-HL60, was significantly higher than parental wild-type B. burgdorferi strains, suggesting that OspC has an antiphagocytic property. In addition, overproduction of OspC in spirochetes also decreased the uptake of spirochetes by murine peritoneal macrophages. Together, our findings provide evidence that mononuclear phagocytes play a key role in clearance of the ospC mutant and that OspC promotes spirochetes' evasion of macrophages during early Lyme borreliosis. PMID:26438793

  7. Outer Surface Protein OspC Is an Antiphagocytic Factor That Protects Borrelia burgdorferi from Phagocytosis by Macrophages

    PubMed Central

    Carrasco, Sebastian E.; Troxell, Bryan; Yang, Youyun; Brandt, Stephanie L.; Li, Hongxia; Sandusky, George E.; Condon, Keith W.

    2015-01-01

    Outer surface protein C (OspC) is one of the major lipoproteins expressed on the surface of Borrelia burgdorferi during tick feeding and the early phase of mammalian infection. OspC is required for B. burgdorferi to establish infection in both immunocompetent and SCID mice and has been proposed to facilitate evasion of innate immune defenses. However, the exact biological function of OspC remains elusive. In this study, we showed that the ospC-deficient spirochete could not establish infection in NOD-scid IL2rγnull mice that lack B cells, T cells, NK cells, and lytic complement. The ospC mutant also could not establish infection in anti-Ly6G-treated SCID and C3H/HeN mice (depletion of neutrophils). However, depletion of mononuclear phagocytes at the skin site of inoculation in SCID and C3H/HeN mice allowed the ospC mutant to establish infection in vivo. In phagocyte-depleted mice, the ospC mutant was able to colonize the joints and triggered neutrophilia during dissemination. Furthermore, we found that phagocytosis of green fluorescent protein (GFP)-expressing ospC mutant spirochetes by murine peritoneal macrophages and human THP-1 macrophage-like cells, but not in PMN-HL60, was significantly higher than parental wild-type B. burgdorferi strains, suggesting that OspC has an antiphagocytic property. In addition, overproduction of OspC in spirochetes also decreased the uptake of spirochetes by murine peritoneal macrophages. Together, our findings provide evidence that mononuclear phagocytes play a key role in clearance of the ospC mutant and that OspC promotes spirochetes' evasion of macrophages during early Lyme borreliosis. PMID:26438793

  8. Oral Immunization with OspC Does Not Prevent Tick-Borne Borrelia burgdorferi Infection

    PubMed Central

    Melo, Rita; Richer, Luciana; Johnson, Daniel L.; Gomes-Solecki, Maria

    2016-01-01

    Oral vaccination strategies are of interest to prevent transmission of Lyme disease as they can be used to deliver vaccines to humans, pets, and to natural wildlife reservoir hosts of Borrelia burgdorferi. We developed a number of oral vaccines based in E. coli expressing recombinant OspC type K, OspB, BBK32 from B. burgdorferi, and Salp25, Salp15 from Ixodes scapularis. Of the five immunogenic candidates only OspC induced significant levels of antigen-specific IgG and IgA when administered to mice via the oral route. Antibodies to OspC did not prevent dissemination of B. burgdorferi as determined by the presence of spirochetes in ear, heart and bladder tissues four weeks after challenge. Next generation sequencing of genomic DNA from ticks identified multiple phyletic types of B. burgdorferi OspC (A, D, E, F, I, J, K, M, Q, T, X) in nymphs that engorged on vaccinated mice. PCR amplification of OspC types A and K from flat and engorged nymphal ticks, and from heart and bladder tissues collected after challenge confirmed sequencing analysis. Quantification of spirochete growth in a borreliacidal assay shows that both types of spirochetes (A and K) survived in the presence of OspC-K specific serum whereas the spirochetes were killed by OspA specific serum. We show that oral vaccination of C3H-HeN mice with OspC-K induced significant levels of antigen-specific IgG. However, these serologic antibodies did not protect mice from infection with B. burgdorferi expressing homologous or heterologous types of OspC after tick challenge. PMID:26990760

  9. Oral Immunization with OspC Does Not Prevent Tick-Borne Borrelia burgdorferi Infection.

    PubMed

    Melo, Rita; Richer, Luciana; Johnson, Daniel L; Gomes-Solecki, Maria

    2016-01-01

    Oral vaccination strategies are of interest to prevent transmission of Lyme disease as they can be used to deliver vaccines to humans, pets, and to natural wildlife reservoir hosts of Borrelia burgdorferi. We developed a number of oral vaccines based in E. coli expressing recombinant OspC type K, OspB, BBK32 from B. burgdorferi, and Salp25, Salp15 from Ixodes scapularis. Of the five immunogenic candidates only OspC induced significant levels of antigen-specific IgG and IgA when administered to mice via the oral route. Antibodies to OspC did not prevent dissemination of B. burgdorferi as determined by the presence of spirochetes in ear, heart and bladder tissues four weeks after challenge. Next generation sequencing of genomic DNA from ticks identified multiple phyletic types of B. burgdorferi OspC (A, D, E, F, I, J, K, M, Q, T, X) in nymphs that engorged on vaccinated mice. PCR amplification of OspC types A and K from flat and engorged nymphal ticks, and from heart and bladder tissues collected after challenge confirmed sequencing analysis. Quantification of spirochete growth in a borreliacidal assay shows that both types of spirochetes (A and K) survived in the presence of OspC-K specific serum whereas the spirochetes were killed by OspA specific serum. We show that oral vaccination of C3H-HeN mice with OspC-K induced significant levels of antigen-specific IgG. However, these serologic antibodies did not protect mice from infection with B. burgdorferi expressing homologous or heterologous types of OspC after tick challenge. PMID:26990760

  10. In Vivo Imaging Demonstrates That Borrelia burgdorferi ospC Is Uniquely Expressed Temporally and Spatially throughout Experimental Infection.

    PubMed

    Skare, Jonathan T; Shaw, Dana K; Trzeciakowski, Jerome P; Hyde, Jenny A

    2016-01-01

    Borrelia burgdorferi is a spirochetal bacterium transmitted by the Ixodes tick that causes Lyme disease in humans due to its ability to evade the host immune response and disseminate to multiple immunoprotective tissues. The pathogen undergoes dynamic genetic alterations important for adaptation from the tick vector to the mammalian host, but little is known regarding the changes at the transcriptional level within the distal tissues they colonize. In this study, B. burgdorferi infection and gene expression of the essential virulence determinant ospC was quantitatively monitored in a spatial and temporal manner utilizing reporter bioluminescent borrelial strains with in vivo and ex vivo imaging. Although expressed from a shuttle vector, the PospC-luc construct exhibited a similar expression pattern relative to native ospC. Bacterial burden in skin, inguinal lymph node, heart, bladder and tibiotarsal joint varied between tissues and fluctuated over the course of infection possibly in response to unique cues of each microenvironment. Expression of ospC, when normalized for changes in bacterial load, presented unique profiles in murine tissues at different time points. The inguinal lymph node was infected with a significant B. burgdorferi burden, but showed minimal ospC expression. B. burgdorferi infected skin and heart induced expression of ospC early during infection while the bladder and tibiotarsal joint continued to display PospC driven luminescence throughout the 21 day time course. Localized skin borrelial burden increased dramatically in the first 96 hours following inoculation, which was not paralleled with an increase in ospC expression, despite the requirement of ospC for dermal colonization. Quantitation of bioluminescence representing ospC expression in individual tissues was validated by qRT-PCR of the native ospC transcript. Taken together, the temporal regulation of ospC expression in distal tissues suggests a role for this virulence determinant beyond

  11. DNA-based identification and OspC serotyping in cultures of Borrelia burgdorferi s.l. isolated from ticks collected in the Moravia (Czech Republic).

    PubMed

    Norek, Adam; Janda, Lubomír; Žákovská, Alena

    2016-06-01

    Two different genetic loci, flaB and ospC, were employed to assign genospecies and OspC phylogenetic type to 18 strains isolated from ticks collected in Pisárky, a suburban park in the city of Brno, Czech Republic. The RFLP analysis revealed three different genospecies (B. afzelii, B. garinii, and B. valaisiana). Three samples from the collection contained more than one genospecies. In the other 15 strains, nucleotide sequences of flaB and ospC were determined. The following phylogenetic analysis assigned 12 isolates to genospecies B. garinii and three to B. afzelii. These isolates were further subdivided into seven distinct ospC groups. The most related OspC types were G2, G4, and G5 (B. garinii) and A3 and A8 (B. afzelii). PMID:27232140

  12. Detection of Borrelia burgdorferi Sensu Stricto ospC Alleles Associated with Human Lyme Borreliosis Worldwide in Non-Human-Biting Tick Ixodes affinis and Rodent Hosts in Southeastern United States

    PubMed Central

    Golovchenko, Maryna; Hönig, Václav; Mallátová, Nadja; Krbková, Lenka; Mikulášek, Peter; Fedorova, Natalia; Belfiore, Natalia M.; Grubhoffer, Libor; Lane, Robert S.; Oliver, James H.

    2013-01-01

    Comparative analysis of ospC genes from 127 Borrelia burgdorferi sensu stricto strains collected in European and North American regions where Lyme disease is endemic and where it is not endemic revealed a close relatedness of geographically distinct populations. ospC alleles A, B, and L were detected on both continents in vectors and hosts, including humans. Six ospC alleles, A, B, L, Q, R, and V, were prevalent in Europe; 4 of them were detected in samples of human origin. Ten ospC alleles, A, B, D, E3, F, G, H, H3, I3, and M, were identified in the far-western United States. Four ospC alleles, B, G, H, and L, were abundant in the southeastern United States. Here we present the first expanded analysis of ospC alleles of B. burgdorferi strains from the southeastern United States with respect to their relatedness to strains from other North American and European localities. We demonstrate that ospC genotypes commonly associated with human Lyme disease in European and North American regions where the disease is endemic were detected in B. burgdorferi strains isolated from the non-human-biting tick Ixodes affinis and rodent hosts in the southeastern United States. We discovered that some ospC alleles previously known only from Europe are widely distributed in the southeastern United States, a finding that confirms the hypothesis of transoceanic migration of Borrelia species. PMID:23263953

  13. Enhanced Adhesion and OspC Protein Synthesis of the Lyme Disease Spirochete Borrelia Burgdorferi Cultivated in a Host-Derived Tissue Co-Culture System

    PubMed Central

    Şen, Ece; Sigal, Leonard H.

    2013-01-01

    Background: The adhesion process of Borrelia burgdorferi to susceptible host cell has not yet been completely understood regarding the function of OspA, OspB and OspC proteins and a conflict exists in the infection process. Aims: The adhesion rates of pathogenic (low BSK medium passaged or susceptible rat joint tissue co-cultivated) or non-pathogenic Borrelia burgdorferi (high BSK medium passaged) isolate (FNJ) to human umbilical vein endothelial cells (HUVEC) cultured on coverslips and the synthesis of OspA and OspC proteins were investigated to analyze the infection process of this bacterium. Study Design: In-vitro study. Methods: Spirochetes were cultured in BSK medium or in a LEW/N rat tibiotarsal joint tissue feeder layer supported co-culture system using ESG co-culture medium and labelled with 3H-adenine for 48 hours. SDS-PAGE, Western Blotting, Immunogold A labeling as well as radiolabeling experiments were used to compare pathogenic or non pathogenic spirochetes during the adhesion process. Results: Tissue co-cultured B. burgdorferi adhered about ten times faster than BSK-grown spirochetes. Trypsin inhibited attachment to HUVEC and co-culture of trypsinized spirochetes with tissues reversed the inhibition. Also, the synthesis of OspC protein by spirochetes was increased in abundance after tissue co-cultures, as determined by SDS-PAGE and by electron microscopy analysis of protein A-immunogold staining by anti-OspC antibodies. OspA protein was synthesized in similar quantities in all Borrelia cultures analyzed by the same techniques. Conclusion: Low BSK passaged or tissue co-cultured pathogenic Lyme disease spirochetes adhere to HUVEC faster than non-pathogenic high BSK passaged forms of this bacterium. Spirochetes synthesized OspC protein during host tissue-associated growth. However, we did not observe a reduction of OspA synthesis during host tissue co-cultivation in vitro. PMID:25207103

  14. Functional Equivalence of OspA and OspB, but Not OspC, in Tick Colonization by Borrelia burgdorferi.

    PubMed

    Tilly, Kit; Bestor, Aaron; Rosa, Patricia A

    2016-05-01

    Borrelia burgdorferi, a Lyme disease agent, makes different major outer surface lipoproteins at different stages of its mouse-tick infectious cycle. Outer surface protein A (OspA) coats the spirochetes from the time they enter ticks until they are transmitted to a mammal. OspA is required for normal tick colonization and has been shown to bind a tick midgut protein, indicating that OspA may serve as a tick midgut adhesin. Tick colonization by spirochetes lacking OspA is increased when the infecting blood meal is derived from mice that do not produce antibody, indicating that OspA may protect the spirochetes from host antibody, which will not recognize tick-specific proteins such as OspA. To further study the importance of OspA during tick colonization, we constructed a form of B. burgdorferi in which the ospA open reading frame, on lp54, was replaced with the ospC gene or the ospB gene, encoding a mammal-specific or tick-specific lipoprotein, respectively. These fusions yielded a strain that produces OspC within a tick (from the fusion gene) and during early mammalian infection (from the normal ospC locus) and a strain that produces OspB in place of OspA within ticks. Here we show that the related, tick-specific protein OspB can fully substitute for OspA, whereas the unrelated, mammal-specific protein OspC cannot. These data were derived from three different methods of infecting ticks, and they confirm and extend previous studies indicating that OspA both protects spirochetes within ticks from mammalian antibody and serves an additional role during tick colonization. PMID:26953324

  15. Within-host competition between Borrelia afzelii ospC strains in wild hosts as revealed by massively parallel amplicon sequencing.

    PubMed

    Strandh, Maria; Råberg, Lars

    2015-08-19

    Infections frequently consist of more than one strain of a given pathogen. Experiments have shown that co-infecting strains often compete, so that the infection intensity of each strain in mixed infections is lower than in single strain infections. Such within-host competition can have important epidemiological and evolutionary consequences. However, the extent of competition has rarely been investigated in wild, naturally infected hosts, where there is noise in the form of varying inoculation doses, asynchronous infections and host heterogeneity, which can potentially alleviate or eliminate competition. Here, we investigated the extent of competition between Borrelia afzelii strains (as determined by ospC genotype) in three host species sampled in the wild. For this purpose, we developed a protocol for 454 amplicon sequencing of ospC, which allows both detection and quantification of each individual strain in an infection. Each host individual was infected with one to six ospC strains. The infection intensity of each strain was lower in mixed infections than in single ones, showing that there was competition. Rank-abundance plots revealed that there was typically one dominant strain, but that the evenness of the relative infection intensity of the different strains in an infection increased with the multiplicity of infection. We conclude that within-host competition can play an important role under natural conditions despite many potential sources of noise, and that quantification by next-generation amplicon sequencing offers new possibilities to dissect within-host interactions in naturally infected hosts. PMID:26150659

  16. Within-host competition between Borrelia afzelii ospC strains in wild hosts as revealed by massively parallel amplicon sequencing

    PubMed Central

    Strandh, Maria; Råberg, Lars

    2015-01-01

    Infections frequently consist of more than one strain of a given pathogen. Experiments have shown that co-infecting strains often compete, so that the infection intensity of each strain in mixed infections is lower than in single strain infections. Such within-host competition can have important epidemiological and evolutionary consequences. However, the extent of competition has rarely been investigated in wild, naturally infected hosts, where there is noise in the form of varying inoculation doses, asynchronous infections and host heterogeneity, which can potentially alleviate or eliminate competition. Here, we investigated the extent of competition between Borrelia afzelii strains (as determined by ospC genotype) in three host species sampled in the wild. For this purpose, we developed a protocol for 454 amplicon sequencing of ospC, which allows both detection and quantification of each individual strain in an infection. Each host individual was infected with one to six ospC strains. The infection intensity of each strain was lower in mixed infections than in single ones, showing that there was competition. Rank-abundance plots revealed that there was typically one dominant strain, but that the evenness of the relative infection intensity of the different strains in an infection increased with the multiplicity of infection. We conclude that within-host competition can play an important role under natural conditions despite many potential sources of noise, and that quantification by next-generation amplicon sequencing offers new possibilities to dissect within-host interactions in naturally infected hosts. PMID:26150659

  17. Changes in Bacterial Growth Rate Govern Expression of the Borrelia burgdorferi OspC and Erp Infection-Associated Surface Proteins

    PubMed Central

    Jutras, Brandon L.; Chenail, Alicia M.

    2013-01-01

    The Lyme disease spirochete controls production of its OspC and Erp outer surface proteins, repressing protein synthesis during colonization of vector ticks but increasing expression when those ticks feed on vertebrate hosts. Early studies found that the synthesis of OspC and Erps can be stimulated in culture by shifting the temperature from 23°C to 34°C, leading to a hypothesis that Borrelia burgdorferi senses environmental temperature to determine its location in the tick-mammal infectious cycle. However, borreliae cultured at 34°C divide several times faster than do those cultured at 23°C. We developed methods that disassociate bacterial growth rate and temperature, allowing a separate evaluation of each factor's impacts on B. burgdorferi gene and protein expression. Altogether, the data support a new paradigm that B. burgdorferi actually responds to changes in its own replication rate, not temperature per se, as the impetus to increase the expression of the OspC and Erp infection-associated proteins. PMID:23222718

  18. Lyme disease risk not amplified in a species-poor vertebrate community: similar Borrelia burgdorferi tick infection prevalence and OspC genotype frequencies

    PubMed Central

    States, S.L.; Brinkerhoff, R. J.; Carpi, G.; Steeves, T.K.; Folsom-O'Keefe, C.; DeVeaux, M.; Diuk-Wasser, M.A.

    2015-01-01

    The effect of biodiversity declines on human health are currently debated, but empirical assessments are lacking. Lyme disease provides a model system to assess relationships between biodiversity and human disease because the etiologic agent, Borrelia burgdorferi, is transmitted in the United States by the generalist black-legged tick (Ixodes scapularis) among a wide range of mammalian and avian hosts. The ‘dilution effect’ hypothesis predicts that species-poor host communities dominated by white-footed mice (Peromyscus leucopus) will pose the greatest human risk because P. leucopus infects the largest numbers of ticks, resulting in higher human exposure to infected I. scapularis ticks. P. leucopus-dominated communities are also expected to maintain a higher frequency of those B. burgdorferi outer surface protein C (ospC) genotypes that this host species more efficiently transmits (‘multiple niche polymorphism’ hypothesis). Because some of these genotypes are human invasive, an additive increase in human disease risk is expected in species-poor settings. We assessed these theoretical predictions by comparing I. scapularis nymphal infection prevalence, density of infected nymphs and B. burgdorferi genotype diversity at sites on Block Island, RI, where P. leucopus dominates the mammalian host community, to species-diverse sites in northeastern Connecticut. We found no support for the dilution effect hypothesis; B. burgdorferi nymphal infection prevalence was similar between island and mainland and the density of B. burgdorferi infected nymphs was higher on the mainland, contrary to what is predicted by the dilution effect hypothesis. Evidence for the multiple niche polymorphism hypothesis was mixed: there was lower ospC genotype diversity at island than mainland sites, but no overrepresentation of genotypes with higher fitness in P. leucopus or that are more invasive in humans. We conclude that other mechanisms explain similar nymphal infection prevalence in

  19. The Position of His-Tag in Recombinant OspC and Application of Various Adjuvants Affects the Intensity and Quality of Specific Antibody Response after Immunization of Experimental Mice

    PubMed Central

    Krupka, Michal; Masek, Josef; Barkocziova, Lucia; Turanek Knotigova, Pavlina; Kulich, Pavel; Plockova, Jana; Lukac, Robert; Bartheldyova, Eliska; Koudelka, Stepan; Chaloupkova, Radka; Sebela, Marek; Zyka, Daniel; Droz, Ladislav; Effenberg, Roman; Ledvina, Miroslav; Miller, Andrew D.; Turanek, Jaroslav; Raska, Milan

    2016-01-01

    Lyme disease, Borrelia burgdorferi-caused infection, if not recognized and appropriately treated by antibiotics, may lead to chronic complications, thus stressing the need for protective vaccine development. The immune protection is mediated by phagocytic cells and by Borrelia-specific complement-activating antibodies, associated with the Th1 immune response. Surface antigen OspC is involved in Borrelia spreading through the host body. Previously we reported that recombinant histidine tagged (His-tag) OspC (rOspC) could be attached onto liposome surfaces by metallochelation. Here we report that levels of OspC-specific antibodies vary substantially depending upon whether rOspC possesses an N' or C' terminal His-tag. This is the case in mice immunized: (a) with rOspC proteoliposomes containing adjuvants MPLA or non-pyrogenic MDP analogue MT06; (b) with free rOspC and Montanide PET GEL A; (c) with free rOspC and alum; or (d) with adjuvant-free rOspC. Stronger responses are noted with all N'-terminal His-tag rOspC formulations. OspC-specific Th1-type antibodies predominate post-immunization with rOspC proteoliposomes formulated with MPLA or MT06 adjuvants. Further analyses confirmed that the structural features of soluble N' and C' terminal His-tag rOspC and respective rOspC proteoliposomes are similar including their thermal stabilities at physiological temperatures. On the other hand, a change in the position of the rOspC His-tag from N' to C' terminal appears to affect substantially the immunogenicity of rOspC arguably due to steric hindrance of OspC epitopes by the C' terminal His-tag itself and not due to differences in overall conformations induced by changes in the His-tag position in rOspC variants. PMID:26848589

  20. The Position of His-Tag in Recombinant OspC and Application of Various Adjuvants Affects the Intensity and Quality of Specific Antibody Response after Immunization of Experimental Mice.

    PubMed

    Krupka, Michal; Masek, Josef; Barkocziova, Lucia; Turanek Knotigova, Pavlina; Kulich, Pavel; Plockova, Jana; Lukac, Robert; Bartheldyova, Eliska; Koudelka, Stepan; Chaloupkova, Radka; Sebela, Marek; Zyka, Daniel; Droz, Ladislav; Effenberg, Roman; Ledvina, Miroslav; Miller, Andrew D; Turanek, Jaroslav; Raska, Milan

    2016-01-01

    Lyme disease, Borrelia burgdorferi-caused infection, if not recognized and appropriately treated by antibiotics, may lead to chronic complications, thus stressing the need for protective vaccine development. The immune protection is mediated by phagocytic cells and by Borrelia-specific complement-activating antibodies, associated with the Th1 immune response. Surface antigen OspC is involved in Borrelia spreading through the host body. Previously we reported that recombinant histidine tagged (His-tag) OspC (rOspC) could be attached onto liposome surfaces by metallochelation. Here we report that levels of OspC-specific antibodies vary substantially depending upon whether rOspC possesses an N' or C' terminal His-tag. This is the case in mice immunized: (a) with rOspC proteoliposomes containing adjuvants MPLA or non-pyrogenic MDP analogue MT06; (b) with free rOspC and Montanide PET GEL A; (c) with free rOspC and alum; or (d) with adjuvant-free rOspC. Stronger responses are noted with all N'-terminal His-tag rOspC formulations. OspC-specific Th1-type antibodies predominate post-immunization with rOspC proteoliposomes formulated with MPLA or MT06 adjuvants. Further analyses confirmed that the structural features of soluble N' and C' terminal His-tag rOspC and respective rOspC proteoliposomes are similar including their thermal stabilities at physiological temperatures. On the other hand, a change in the position of the rOspC His-tag from N' to C' terminal appears to affect substantially the immunogenicity of rOspC arguably due to steric hindrance of OspC epitopes by the C' terminal His-tag itself and not due to differences in overall conformations induced by changes in the His-tag position in rOspC variants. PMID:26848589

  1. The Rare ospC Allele L of Borrelia burgdorferi Sensu Stricto, Commonly Found among Samples Collected in a Coastal Plain Area of the Southeastern United States, Is Associated with Ixodes affinis Ticks and Local Rodent Hosts Peromyscus gossypinus and Sigmodon hispidus

    PubMed Central

    Golovchenko, Maryna; Grubhoffer, Libor; Oliver, James H.

    2013-01-01

    The rare ospC allele L was detected in 30% of Borrelia burgdorferi sensu stricto strains cultured from a tick species, Ixodes affinis, and two rodent host species, Peromyscus gossypinus and Sigmodon hispidus, collected in a coastal plain area of Georgia and South Carolina, in the southeastern United States. PMID:23220965

  2. Membrane stabilizer

    DOEpatents

    Mingenbach, William A.

    1988-01-01

    A device is provided for stabilizing a flexible membrane secured within a frame, wherein a plurality of elongated arms are disposed radially from a central hub which penetrates the membrane, said arms imposing alternately against opposite sides of the membrane, thus warping and tensioning the membrane into a condition of improved stability. The membrane may be an opaque or translucent sheet or other material.

  3. Membrane stabilizer

    DOEpatents

    Mingenbach, W.A.

    1988-02-09

    A device is provided for stabilizing a flexible membrane secured within a frame, wherein a plurality of elongated arms are disposed radially from a central hub which penetrates the membrane, said arms imposing alternately against opposite sides of the membrane, thus warping and tensioning the membrane into a condition of improved stability. The membrane may be an opaque or translucent sheet or other material. 10 figs.

  4. Membrane tension and membrane fusion.

    PubMed

    Kozlov, Michael M; Chernomordik, Leonid V

    2015-08-01

    Diverse cell biological processes that involve shaping and remodeling of cell membranes are regulated by membrane lateral tension. Here we focus on the role of tension in driving membrane fusion. We discuss the physics of membrane tension, forces that can generate the tension in plasma membrane of a cell, and the hypothesis that tension powers expansion of membrane fusion pores in late stages of cell-to-cell and exocytotic fusion. We propose that fusion pore expansion can require unusually large membrane tensions or, alternatively, low line tensions of the pore resulting from accumulation in the pore rim of membrane-bending proteins. Increase of the inter-membrane distance facilitates the reaction. PMID:26282924

  5. Membrane tethering

    PubMed Central

    Chia, Pei Zhi Cheryl

    2014-01-01

    Membrane trafficking depends on transport vesicles and carriers docking and fusing with the target organelle for the delivery of cargo. Membrane tethers and small guanosine triphosphatases (GTPases) mediate the docking of transport vesicles/carriers to enhance the efficiency of the subsequent SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-mediated fusion event with the target membrane bilayer. Different classes of membrane tethers and their specific intracellular location throughout the endomembrane system are now well defined. Recent biochemical and structural studies have led to a deeper understanding of the mechanism by which membrane tethers mediate docking of membrane carriers as well as an appreciation of the role of tethers in coordinating the correct SNARE complex and in regulating the organization of membrane compartments. This review will summarize the properties and roles of membrane tethers of both secretory and endocytic systems. PMID:25343031

  6. Membrane Processes.

    PubMed

    Pellegrin, Marie-Laure; Sadler, Mary E; Greiner, Anthony D; Aguinaldo, Jorge; Min, Kyungnan; Zhang, Kai; Arabi, Sara; Burbano, Marie S; Kent, Fraser; Shoaf, Robert

    2015-10-01

    This review, for literature published in 2014, contains information related to membrane processes for municipal and industrial applications. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following topics: pretreatment, membrane bioreactor (MBR) configuration, design, nutrient removal, operation, industrial treatment, fixed film and anaerobic membrane systems, reuse, microconstituents removal, membrane technology advances, membrane fouling, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include: Biological Fixed-Film Systems, Activated Sludge and Other Aerobic Suspended Culture Processes, Anaerobic Processes, Water Reclamation and Reuse. The following sections might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants. PMID:26420079

  7. Membrane Processes.

    PubMed

    Pellegrin, Marie-Laure; Burbano, Marie S; Sadler, Mary E; Diamond, Jason; Baker, Simon; Greiner, Anthony D; Arabi, Sara; Wong, Joseph; Doody, Alexandra; Padhye, Lokesh P; Sears, Keith; Kistenmacher, Peter; Kent, Fraser; Tootchi, Leila; Aguinaldo, Jorge; Saddredini, Sara; Schilling, Bill; Min, Kyungnan; McCandless, Robert; Danker, Bryce; Gamage, Neranga P; Wang, Sunny; Aerts, Peter

    2016-10-01

    This review, for literature published in 2015, contains information related to membrane processes for municipal and industrial applications. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following topics: pretreatment, membrane bioreactor (MBR) configuration, design, nutrient removal, operation, industrial treatment, anaerobic membrane systems, reuse, microconstituents removal, membrane technology advances, membrane fouling, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include: Biological Fixed-Film Systems, Activated Sludge and Other Aerobic Suspended Culture Processes, Anaerobic Processes, Water Reclamation and Reuse. The following sections might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants. PMID:27620084

  8. Multicomponent membranes

    DOEpatents

    Kulprathipanja, Santi; Kulkarni, Sudhir S.; Funk, Edward W.

    1988-01-01

    A multicomponent membrane which may be used for separating various components which are present in a fluid feed mixture comprises a mixture of a plasticizer such as a glycol and an organic polymer cast upon a porous organic polymer support. The membrane may be prepared by casting an emulsion or a solution of the plasticizer and polymer on the porous support, evaporating the solvent and recovering the membrane after curing.

  9. Crystalline Membranes

    NASA Technical Reports Server (NTRS)

    Tsapatsis, Michael (Inventor); Lai, Zhiping (Inventor)

    2008-01-01

    In certain aspects, the invention features methods for forming crystalline membranes (e.g., a membrane of a framework material, such as a zeolite) by inducing secondary growth in a layer of oriented seed crystals. The rate of growth of the seed crystals in the plane of the substrate is controlled to be comparable to the rate of growth out of the plane. As a result, a crystalline membrane can form a substantially continuous layer including grains of uniform crystallographic orientation that extend through the depth of the layer.

  10. Biological membranes

    PubMed Central

    Watson, Helen

    2015-01-01

    Biological membranes allow life as we know it to exist. They form cells and enable separation between the inside and outside of an organism, controlling by means of their selective permeability which substances enter and leave. By allowing gradients of ions to be created across them, membranes also enable living organisms to generate energy. In addition, they control the flow of messages between cells by sending, receiving and processing information in the form of chemical and electrical signals. This essay summarizes the structure and function of membranes and the proteins within them, and describes their role in trafficking and transport, and their involvement in health and disease. Techniques for studying membranes are also discussed. PMID:26504250

  11. Membranous nephropathy

    MedlinePlus

    ... to reduce cholesterol and triglyceride levels (most often statins) may be recommended. A low-salt diet may ... of membranous nephropathy Your symptoms get worse or don't go away You develop new symptoms You have ...

  12. Membrane magic

    SciTech Connect

    Buecker, B.

    2005-09-01

    The Kansas Power and Light Co.'s La Cyne generating station has found success with membrane filtration water pretreatment technology. The article recounts the process followed in late 2004 to install a Pall Aria 4 microfilter in Unit 1 makeup water system at the plant to produce cleaner water for reverse osmosis feed. 2 figs., 2 photos.

  13. [Membranous nephropathy].

    PubMed

    Mercadal, Lucile

    2013-12-01

    Membranous nephropathy is characterized by immune complex deposits on the outer side of the glomerular basement membrane. Activation of complement and of oxidation lead to basement membrane lesions. The most frequent form is idiopathic. At 5 and 10 years, renal survival is around 90 and 65% respectively. A prognostic model based on proteinuria, level and duration, progression of renal failure in a few months can refine prognosis. The urinary excretion of C5b-9, β2 and α1 microglobuline and IgG are strong predictors of outcome. Symptomatic treatment is based on anticoagulation in case of nephrotic syndrome, angiotensin conversion enzyme inhibitors, angiotensin II receptor blockers and statins. Immunosuppressive therapy should be discussed for patients having a high risk of progression. Corticoids alone has no indication. Treatment should include a simultaneous association or more often alternating corticoids and alkylant agent for a minimum of 6 months. Adrenocorticoid stimulating hormone and steroids plus mycophenolate mofetil may be equally effective. Steroids plus alkylant decrease the risk of end stage renal failure. Cyclosporine and tacrolimus decrease proteinuria but are associated with a high risk of recurrence at time of withdrawal and are nephrotoxic. Rituximab evaluated on open studies needs further evaluations to define its use. PMID:24315535

  14. Lipid membranes for membrane proteins.

    PubMed

    Kukol, Andreas

    2015-01-01

    The molecular dynamics (MD) simulation of membrane proteins requires the setup of an accurate representation of lipid bilayers. This chapter describes the setup of a lipid bilayer system from scratch using generally available tools, starting with a definition of the lipid molecule POPE, generation of a lipid bilayer, energy minimization, MD simulation, and data analysis. The data analysis includes the calculation of area and volume per lipid, deuterium order parameters, self-diffusion constant, and the electron density profile. PMID:25330959

  15. Omniphobic Membrane for Robust Membrane Distillation

    SciTech Connect

    Lin, SH; Nejati, S; Boo, C; Hu, YX; Osuji, CO; Ehmelech, M

    2014-11-01

    In this work, we fabricate an omniphobic microporous membrane for membrane distillation (MD) by modifying a hydrophilic glass fiber membrane with silica nanoparticles followed by surface fluorination and polymer coating. The modified glass fiber membrane exhibits an anti-wetting property not only against water but also against low surface tension organic solvents that easily wet a hydrophobic polytetrafluoroethylene (PTFE) membrane that is commonly used in MD applications. By comparing the performance of the PTFE and omniphobic membranes in direct contact MD experiments in the presence of a surfactant (sodium dodecyl sulfate, SDS), we show that SDS wets the hydrophobic PTFE membrane but not the omniphobic membrane. Our results suggest that omniphobic membranes are critical for MD applications with feed waters containing surface active species, such as oil and gas produced water, to prevent membrane pore wetting.

  16. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Hodgdon, R. B.; Waite, W. A.

    1980-01-01

    The efforts on the synthesis of polymer anion redox membranes were mainly concentrated in two areas, membrane development and membrane fabrication. Membrane development covered the preparation and evaluation of experimental membranes systems with improved resistance stability and/or lower permeability. Membrane fabrication covered the laboratory scale production of prime candidate membranes in quantities of up to two hundred and sizes up to 18 inches x 18 inches (46 cm x 46 cm). These small (10 in x 11 in) and medium sized membranes were mainly for assembly into multicell units. Improvements in processing procedures and techniques for preparing such membrane sets lifted yields to over 90 percent.

  17. Selecting a Roof Membrane.

    ERIC Educational Resources Information Center

    Waldron, Larry W.

    1990-01-01

    Offers a brief synopsis of the unique characteristics of the following roof membranes: (1) built-up roofing; (2) elastoplastic membranes; (3) modified bitumen membranes; (4) liquid applied membranes; and (5) metal roofing. A chart compares the characteristics of the raw membranes only. (MLF)

  18. Magnetic Membrane System

    DOEpatents

    McElfresh, Michael W.; ; Lucas, Matthew S.

    2004-12-30

    The present invention provides a membrane with magnetic particles. In one embodiment the membrane is created by mixing particles in a non-magnetic base. The membrane may act as an actuator, a sensor, a pump, a valve, or other device. A magnet is operatively connected to the membrane. The magnet acts on and changes the shape of the membrane.

  19. Membrane Systems in Cyanobacteria

    SciTech Connect

    Liberton, Michelle L.; Pakrasi, Himadri B.

    2008-01-01

    Cyanobacteria are photosynthetic prokaryotes with highly differentiated membrane systems. In addition to a Gram-negative-type cell envelope with plasma membrane and outer membrane separated by a periplasmic space, cyanobacteria have an internal system of thylakoid membranes where the fully functional electron transfer chains of photosynthesis and respiration reside. The presence of different membrane systems lends these cells a unique complexity among bacteria. Cyanobacteria must be able to reorganize the membranes, synthesize new membrane lipids, and properly target proteins to the correct membrane system. The outer membrane, plasma membrane, and thylakoid membranes each have specialized roles in the cyanobacterial cell. Understanding the organization, functionality, protein composition and dynamics of the membrane systems remains a great challenge in cyanobacterial cell biology.

  20. Composite sensor membrane

    DOEpatents

    Majumdar, Arun; Satyanarayana, Srinath; Yue, Min

    2008-03-18

    A sensor may include a membrane to deflect in response to a change in surface stress, where a layer on the membrane is to couple one or more probe molecules with the membrane. The membrane may deflect when a target molecule reacts with one or more probe molecules.

  1. Sheet Membrane Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Zapata, Felipe; Dillion, Paul; Castillo, Juan; Vonau, Walter; Wilkes, Robert; Vogel, Matthew; Frodge, Curtis

    2013-01-01

    A document describes a sheet membrane spacesuit water membrane evaporator (SWME), which allows for the use of one common water tank that can supply cooling water to the astronaut and to the evaporator. Test data showed that heat rejection performance dropped only 6 percent after being subjected to highly contaminated water. It also exhibited robustness with respect to freezing and Martian atmospheric simulation testing. Water was allowed to freeze in the water channels during testing that simulated a water loop failure and vapor backpressure valve failure. Upon closing the backpressure valve and energizing the pump, the ice eventually thawed and water began to flow with no apparent damage to the sheet membrane. The membrane evaporator also serves to de-gas the water loop from entrained gases, thereby eliminating the need for special degassing equipment such as is needed by the current spacesuit system. As water flows through the three annular water channels, water evaporates with the vapor flowing across the hydrophobic, porous sheet membrane to the vacuum side of the membrane. The rate at which water evaporates, and therefore, the rate at which the flowing water is cooled, is a function of the difference between the water saturation pressure on the water side of the membrane, and the pressure on the vacuum side of the membrane. The primary theory is that the hydrophobic sheet membrane retains water, but permits vapor pass-through when the vapor side pressure is less than the water saturation pressure. This results in evaporative cooling of the remaining water.

  2. Methanotroph outer membrane preparation.

    PubMed

    Karlsen, Odd A; Berven, Frode S; Jensen, Harald B; Fjellbirkeland, Anne

    2011-01-01

    All presently known methanotrophs are gram-negative bacteria suggesting that they are surrounded by a two-layered membrane: an inner or cytoplasmic membrane and an outer membrane. In the methanotroph Methylococcus capsulatus (Bath), separation of the two membranes has allowed studies on protein and lipid composition of the outer membrane. Its outer membrane can be isolated from purified cell envelopes by selective solubilization of the inner membranes with the detergent Triton X-100. The proteins associated with the outer membrane can further be fractionated into integral and tightly associated proteins and peripheral loosely associated proteins. We present here protocols for this fractionation and show how the proteins associated with the outer leaflet of the outer membrane can be isolated and identified by whole-cell biotin surface labeling. PMID:21419921

  3. Membrane selectivity in pervaporation

    SciTech Connect

    Kujawski, W.

    1996-06-01

    A qualitative description is presented of pervaporation which discusses the initial preferential sorption into the membrane, diffusion of liquid, phase transition from liquid to vapor phase, followed by diffusion of vapors and fast desorption from the other side of the membrane. The overall separation of each pervaporation step was calculated in terms of separation factor {alpha}. The results show that in the case of hydrophilic membranes (i.e., dense polyamide-6 membrane and ion-exchange membrane PESS-1) and water-ethanol mixtures, the phase transition step decreases the overall separation. Also, diffusion through the membrane is unfavorable to water at a low concentration range.

  4. Ionene membrane battery separator

    NASA Technical Reports Server (NTRS)

    Moacanin, J.; Tom, H. Y.

    1969-01-01

    Ionic transport characteristics of ionenes, insoluble membranes from soluble polyelectrolyte compositions, are studied for possible application in a battery separator. Effectiveness of the thin film of separator membrane essentially determines battery lifetime.

  5. Composite zeolite membranes

    DOEpatents

    Nenoff, Tina M.; Thoma, Steven G.; Ashley, Carol S.; Reed, Scott T.

    2002-01-01

    A new class of composite zeolite membranes and synthesis techniques therefor has been invented. These membranes are essentially defect-free, and exhibit large levels of transmembrane flux and of chemical and isotopic selectivity.

  6. Hybrid adsorptive membrane reactor

    DOEpatents

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  7. Supertubes and Superconducting Membranes

    SciTech Connect

    Cordero, Ruben; Miguel-Pilar, Zelin

    2007-02-09

    We show the equivalence between configurations that arise from string theory of type IIA, called supertubes, and superconducting membranes at the bosonic level. We find equilibrium and oscillating configurations for a tubular membrane carrying a current along its axis.

  8. Premature rupture of membranes

    MedlinePlus

    ... When the water breaks early, it is called premature rupture of membranes (PROM). Most women will go ... th week of pregnancy, it is called preterm premature rupture of membranes (PPROM). The earlier your water ...

  9. Hybrid adsorptive membrane reactor

    NASA Technical Reports Server (NTRS)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  10. Supported inorganic membranes

    DOEpatents

    Sehgal, Rakesh; Brinker, Charles Jeffrey

    1998-01-01

    Supported inorganic membranes capable of molecular sieving, and methods for their production, are provided. The subject membranes exhibit high flux and high selectivity. The subject membranes are substantially defect free and less than about 100 nm thick. The pores of the subject membranes have an average critical pore radius of less than about 5 .ANG., and have a narrow pore size distribution. The subject membranes are prepared by coating a porous substrate with a polymeric sol, preferably under conditions of low relative pressure of the liquid constituents of the sol. The coated substrate is dried and calcined to produce the subject supported membrane. Also provided are methods of derivatizing the surface of supported inorganic membranes with metal alkoxides. The subject membranes find use in a variety of applications, such as the separation of constituents of gaseous streams, as catalysts and catalyst supports, and the like.

  11. Composite fuel cell membranes

    DOEpatents

    Plowman, Keith R.; Rehg, Timothy J.; Davis, Larry W.; Carl, William P.; Cisar, Alan J.; Eastland, Charles S.

    1997-01-01

    A bilayer or trilayer composite ion exchange membrane suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  12. Composite fuel cell membranes

    DOEpatents

    Plowman, K.R.; Rehg, T.J.; Davis, L.W.; Carl, W.P.; Cisar, A.J.; Eastland, C.S.

    1997-08-05

    A bilayer or trilayer composite ion exchange membrane is described suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  13. Meniscus membranes for separations

    DOEpatents

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2004-01-27

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  14. Meniscus Membranes For Separation

    DOEpatents

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2005-09-20

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  15. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1992-07-07

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  16. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1991-10-22

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  17. Polyphosphazene semipermeable membranes

    DOEpatents

    Allen, Charles A.; McCaffrey, Robert R.; Cummings, Daniel G.; Grey, Alan E.; Jessup, Janine S.; McAtee, Richard E.

    1988-01-01

    A semipermeable, inorganic membrane is disclosed; the membrane is prepared from a phosphazene polymer and, by the selective substitution of the constituent groups bound to the phosphorous in the polymer structure, the selective passage of fluid from a feedstream can be controlled. Resistance to high temperatures and harsh chemical environments is observed in the use of the phosphazene polymers as semipermeable membranes.

  18. Water vapor diffusion membranes

    NASA Technical Reports Server (NTRS)

    Holland, F. F., Jr.; Smith, J. K.

    1974-01-01

    The program is reported, which was designed to define the membrane technology of the vapor diffusion water recovery process and to test this technology using commercially available or experimental membranes. One membrane was selected, on the basis of the defined technology, and was subjected to a 30-day demonstration trial.

  19. Tracking Membrane Protein Association in Model Membranes

    PubMed Central

    Reffay, Myriam; Gambin, Yann; Benabdelhak, Houssain; Phan, Gilles; Taulier, Nicolas; Ducruix, Arnaud; Hodges, Robert S.; Urbach, Wladimir

    2009-01-01

    Membrane proteins are essential in the exchange processes of cells. In spite of great breakthrough in soluble proteins studies, membrane proteins structures, functions and interactions are still a challenge because of the difficulties related to their hydrophobic properties. Most of the experiments are performed with detergent-solubilized membrane proteins. However widely used micellar systems are far from the biological two-dimensions membrane. The development of new biomimetic membrane systems is fundamental to tackle this issue. We present an original approach that combines the Fluorescence Recovery After fringe Pattern Photobleaching technique and the use of a versatile sponge phase that makes it possible to extract crucial informations about interactions between membrane proteins embedded in the bilayers of a sponge phase. The clear advantage lies in the ability to adjust at will the spacing between two adjacent bilayers. When the membranes are far apart, the only possible interactions occur laterally between proteins embedded within the same bilayer, whereas when membranes get closer to each other, interactions between proteins embedded in facing membranes may occur as well. After validating our approach on the streptavidin-biotinylated peptide complex, we study the interactions between two membrane proteins, MexA and OprM, from a Pseudomonas aeruginosa efflux pump. The mode of interaction, the size of the protein complex and its potential stoichiometry are determined. In particular, we demonstrate that: MexA is effectively embedded in the bilayer; MexA and OprM do not interact laterally but can form a complex if they are embedded in opposite bilayers; the population of bound proteins is at its maximum for bilayers separated by a distance of about 200 Å, which is the periplasmic thickness of Pseudomonas aeruginosa. We also show that the MexA-OprM association is enhanced when the position and orientation of the protein is restricted by the bilayers. We

  20. Elastic membranes in confinement

    NASA Astrophysics Data System (ADS)

    Bostwick, Joshua; Miksis, Michael; Davis, Stephen

    2014-11-01

    An elastic membrane stretched between two walls takes a shape defined by its length and the volume of fluid it encloses. Many biological structures, such as cells, mitochondria and DNA, have finer internal structure in which a membrane (or elastic member) is geometrically ``confined'' by another object. We study the shape stability of elastic membranes in a ``confining'' box and introduce repulsive van der Waals forces to prevent the membrane from intersecting the wall. We aim to define the parameter space associated with mitochondria-like deformations. We compare the confined to `unconfined' solutions and show how the structure and stability of the membrane shapes changes with the system parameters.

  1. Separation membrane development

    SciTech Connect

    Lee, M.W.

    1998-08-01

    A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.

  2. Membrane Flotation Assay

    PubMed Central

    Vogt, Dorothee A; Ott, Melanie

    2016-01-01

    Many postitive-stranded RNA viruses, such as Hepatitis C virus (HCV), highjack cellular membranes, including the Golgi, ER, mitchondria, lipid droplets, and utilize them for replication of their RNA genome or assembly of new virions. By investigating how viral proteins associate with cellular membranes we will better understand the roles of cellular membranes in the viral life cycle. Our lab has focused specifically on the role of lipid droplets and lipid-rich membranes in the life cycle of HCV. To analyze the role of lipid-rich membranes in HCV RNA replication, we utilized a membrane flotation assay based on an 10–20–30% iodixanol density gradient developed by Yeaman et al. (2001). This gradient results in a linear increase in density over almost the entire length of the gradient, and membrane particles are separated in the gradient based on their buoyant characteristics. To preserve membranes in the lysate, cells are broken mechanically in a buffer lacking detergent. The cell lysate is loaded on the bottom of the gradient, overlaid with the gradient, and membranes float up as the iodixanol gradient self-generates. The lipid content of membranes and the concentration of associated proteins will determine the separation of different membranes within the gradient. After centrifugation, fractions can be sampled from the top of the gradient and analyzed using standard SDS-PAGE and western blot analysis for proteins of interest.

  3. Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Almlie, Jay C.

    2010-01-01

    A water membrane evaporator (WME) has been conceived and tested as an alternative to the contamination-sensitive and corrosion-prone evaporators currently used for dissipating heat from space vehicles. The WME consists mainly of the following components: An outer stainless-steel screen that provides structural support for the components mentioned next; Inside and in contact with the stainless-steel screen, a hydrophobic membrane that is permeable to water vapor; Inside and in contact with the hydrophobic membrane, a hydrophilic membrane that transports the liquid feedwater to the inner surface of the hydrophobic membrane; Inside and in contact with the hydrophilic membrane, an annular array of tubes through which flows the spacecraft coolant carrying the heat to be dissipated; and An inner exclusion tube that limits the volume of feedwater in the WME. In operation, a pressurized feedwater reservoir is connected to the volume between the exclusion tube and the coolant tubes. Feedwater fills the volume, saturates the hydrophilic membrane, and is retained by the hydrophobic membrane. The outside of the WME is exposed to space vacuum. Heat from the spacecraft coolant is conducted through the tube walls and the water-saturated hydrophilic membrane to the liquid/vapor interface at the hydrophobic membrane, causing water to evaporate to space. Makeup water flows into the hydrophilic membrane through gaps between the coolant tubes.

  4. Catalytic membranes beckon

    SciTech Connect

    Caruana, C.M.

    1994-11-01

    Chemical engineers here and abroad are finding that the marriage of catalysts and membranes holds promise for faster and more specific reactions, although commercialization of this technology is several years away. Catalytic membrane reactors (CMRs) combine a heterogeneous catalyst and a permselective membrane. Reactions performed by CMRs provide higher yields--sometimes as much as 50% higher--because of better reaction selectivity--as opposed to separation selectivity. CMRs also can work at very high temperatures, using ceramic materials that would not be possible with organic membranes. Although the use of CMRs is not widespread presently, the development of new membranes--particularly porous ceramic and zeolite membranes--will increase the potential to improve yields of many catalytic processes. The paper discusses ongoing studies, metal and advanced materials for membranes, the need for continued research, hydrogen recovery from coal-derived gases, catalytic oxidation of sulfides, CMRs for water purification, and oxidative coupling of methane.

  5. Polymers at membranes

    NASA Astrophysics Data System (ADS)

    Breidenich, Markus

    2000-11-01

    The surface of biological cells consists of a lipid membrane and a large amount of various proteins and polymers, which are embedded in the membrane or attached to it. We investigate how membranes are influenced by polymers, which are anchored to the membrane by one end. The entropic pressure exerted by the polymer induces a curvature, which bends the membrane away from the polymer. The resulting membrane shape profile is a cone in the vicinity of the anchor segment and a catenoid far away from it. The perturbative calculations are confirmed by Monte-Carlo simulations. An additional attractive interaction between polymer and membrane reduces the entropically induced curvature. In the limit of strong adsorption, the polymer is localized directly on the membrane surface and does not induce any pressure, i.e. the membrane curvature vanishes. If the polymer is not anchored directly on the membrane surface, but in a non-vanishing anchoring distance, the membrane bends towards the polymer for strong adsorption. In the last part of the thesis, we study membranes under the influence of non-anchored polymers in solution. In the limit of pure steric interactions between the membrane and free polymers, the membrane curves towards the polymers (in contrast to the case of anchored polymers). In the limit of strong adsorption the membrane bends away from the polymers. Die Oberfläche biologischer Zellen besteht aus einer Lipidmembran und einer Vielzahl von Proteinen und Polymeren, die in die Membran eingebaut sind. Die Beeinflussung der Membran durch Polymere, die mit einem Ende an der Membran verankert sind, wird im Rahmen dieser Arbeit anhand eines vereinfachten biomimetischen Systems studiert. Der entropische Druck, den das Polymer durch Stöße auf die Membran ausübt, führt dazu, dass sich die Membran vom Polymer weg krümmt. Die resultierende Membranform ist ein Kegel in der Nähe des Ankers und ein Katenoid in grossem Abstand vom Ankerpunkt. Monte Carlo-Simulationen best

  6. Membrane with supported internal passages

    NASA Technical Reports Server (NTRS)

    Gonzalez-Martin, Anuncia (Inventor); Salinas, Carlos E. (Inventor); Cisar, Alan J. (Inventor); Hitchens, G. Duncan (Inventor); Murphy, Oliver J. (Inventor)

    2000-01-01

    The invention provides an improved proton exchange membrane for use in electrochemical cells having internal passages parallel to the membrane surface comprising permanent tubes preferably placed at the ends of the fluid passages. The invention also provides an apparatus and process for making the membrane, membrane and electrode assemblies fabricated using the membrane, and the application of the membrane and electrode assemblies to a variety of devices, both electrochemical and otherwise. The passages in the membrane extend from one edge of the membrane to another and allow fluid flow through the membrane and give access directly to the membrane.

  7. Poxvirus Membrane Biogenesis

    PubMed Central

    2015-01-01

    Poxviruses differ from most DNA viruses by replicating entirely within the cytoplasm. The first discernible viral structures are crescents and spherical immature virions containing a single lipoprotein membrane bilayer with an external honeycomb lattice. Because this viral membrane displays no obvious continuity with a cellular organelle, a de novo origin was suggested. Nevertheless, transient connections between viral and cellular membranes could be difficult to resolve. Despite the absence of direct evidence, the intermediate compartment (ERGIC) between the endoplasmic reticulum (ER) and Golgi apparatus and the ER itself were considered possible sources of crescent membranes. A break-through in understanding poxvirus membrane biogenesis has come from recent studies of the abortive replication of several vaccinia virus null mutants. Novel images showing continuity between viral crescents and the ER and the accumulation of immature virions in the expanded ER lumen provide the first direct evidence for a cellular origin of this poxvirus membrane. PMID:25728299

  8. Poxvirus membrane biogenesis.

    PubMed

    Moss, Bernard

    2015-05-01

    Poxviruses differ from most DNA viruses by replicating entirely within the cytoplasm. The first discernible viral structures are crescents and spherical immature virions containing a single lipoprotein membrane bilayer with an external honeycomb lattice. Because this viral membrane displays no obvious continuity with a cellular organelle, a de novo origin was suggested. Nevertheless, transient connections between viral and cellular membranes could be difficult to resolve. Despite the absence of direct evidence, the intermediate compartment (ERGIC) between the endoplasmic reticulum (ER) and Golgi apparatus and the ER itself were considered possible sources of crescent membranes. A break-through in understanding poxvirus membrane biogenesis has come from recent studies of the abortive replication of several vaccinia virus null mutants. Novel images showing continuity between viral crescents and the ER and the accumulation of immature virions in the expanded ER lumen provide the first direct evidence for a cellular origin of this poxvirus membrane. PMID:25728299

  9. Substituted polyacetylene separation membrane

    DOEpatents

    Pinnau, Ingo; Morisato, Atsushi

    1998-01-13

    A separation membrane useful for gas separation, particularly separation of C.sub.2+ hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula: ##STR1## wherein R.sub.1 is chosen from the group consisting of C.sub.1 -C.sub.4 alkyl and phenyl, and wherein R.sub.2 is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) ›PMP!. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations.

  10. Substituted polyacetylene separation membrane

    DOEpatents

    Pinnau, I.; Morisato, Atsushi

    1998-01-13

    A separation membrane is described which is useful for gas separation, particularly separation of C{sub 2+} hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula shown in the accompanying diagram, wherein R{sub 1} is chosen from the group consisting of C{sub 1}-C{sub 4} alkyl and phenyl, and wherein R{sub 2} is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) [PMP]. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations. 4 figs.

  11. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Alexander, S.; Hodgdon, R. B.

    1977-01-01

    The objective of NAS 3-20108 was the development and evaluation of improved anion selective membranes useful as efficient separators in a redox power storage cell system being constructed. The program was divided into three parts, (a) optimization of the selected candidate membrane systems, (b) investigation of alternative membrane/polymer systems, and (c) characterization of candidate membranes. The major synthesis effort was aimed at improving and optimizing as far as possible each candidate system with respect to three critical membrane properties essential for good redox cell performance. Substantial improvements were made in 5 candidate membrane systems. The critical synthesis variables of cross-link density, monomer ratio, and solvent composition were examined over a wide range. In addition, eight alternative polymer systems were investigated, two of which attained candidate status. Three other alternatives showed potential but required further research and development. Each candidate system was optimized for selectivity.

  12. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Hodgdon, R. B.; Waite, W. A.; Alexander, S. S.

    1984-01-01

    Two polymer ion exchange membranes were synthesized to fulfill the needs of both electrical resistivity and anolyte/catholyte separation for utility load leveling utilizing the DOE/NASA mixed electrolyte REDOX battery. Both membranes were shown to meet mixed electrolyte utility load leveling criteria. Several modifications of an anion exchange membrane failed to meet utility load leveling REDOX battery criteria using the unmixed electrolyte REDOX cell.

  13. Anion permselective membrane

    NASA Astrophysics Data System (ADS)

    Hodgdon, R. B.; Waite, W. A.; Alexander, S. S.

    1984-07-01

    Two polymer ion exchange membranes were synthesized to fulfill the needs of both electrical resistivity and anolyte/catholyte separation for utility load leveling utilizing the DOE/NASA mixed electrolyte REDOX battery. Both membranes were shown to meet mixed electrolyte utility load leveling criteria. Several modifications of an anion exchange membrane failed to meet utility load leveling REDOX battery criteria using the unmixed electrolyte REDOX cell.

  14. Siloxane-grafted membranes

    DOEpatents

    Friesen, Dwayne T.; Obligin, Alan S.

    1989-01-01

    Composite cellulosic semipermeable membranes are disclosed which are the covalently bonded reaction product of an asymmetric cellulosic semipermeable membrane and a polysiloxane containing reactive functional groups. The two reactants chemically bond by ether, ester, amide or acrylate linkages to form a siloxane-grafted cellulosic membrane having superior selectivity and flux stability. Selectivity may be enhanced by wetting the surface with a swelling agent such as water.

  15. Polyarylether composition and membrane

    DOEpatents

    Hung, Joyce; Brunelle, Daniel Joseph; Harmon, Marianne Elisabeth; Moore, David Roger; Stone, Joshua James; Zhou, Hongyi; Suriano, Joseph Anthony

    2010-11-09

    A composition including a polyarylether copolymer is provided. The copolymer includes a polyarylether backbone; and a sulfonated oligomeric group bonded to the polyarylether suitable for use as a cation conducting membrane. Method of bonding a sulfonated oligomeric group to the polyarylether backbone to form a polyarylether copolymer. The membrane may be formed from the polyarylether copolymer composition. The chain length of the sulfonated oligomeric group may be controlled to affect or control the ion conductivity of the membrane.

  16. Siloxane-grafted membranes

    DOEpatents

    Friesen, D.T.; Obligin, A.S.

    1989-10-31

    Composite cellulosic semipermeable membranes are disclosed which are the covalently bonded reaction product of an asymmetric cellulosic semipermeable membrane and a polysiloxane containing reactive functional group. The two reactants chemically bond by ether, ester, amide or acrylate linkages to form a siloxane-grafted cellulosic membrane having superior selectivity and flux stability. Selectivity may be enhanced by wetting the surface with a swelling agent such as water.

  17. Proteins causing membrane fouling in membrane bioreactors.

    PubMed

    Miyoshi, Taro; Nagai, Yuhei; Aizawa, Tomoyasu; Kimura, Katsuki; Watanabe, Yoshimasa

    2015-01-01

    In this study, the details of proteins causing membrane fouling in membrane bioreactors (MBRs) treating real municipal wastewater were investigated. Two separate pilot-scale MBRs were continuously operated under significantly different operating conditions; one MBR was a submerged type whereas the other was a side-stream type. The submerged and side-stream MBRs were operated for 20 and 10 days, respectively. At the end of continuous operation, the foulants were extracted from the fouled membranes. The proteins contained in the extracted foulants were enriched by using the combination of crude concentration with an ultrafiltration membrane and trichloroacetic acid precipitation, and then separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). The N-terminal amino acid sequencing analysis of the proteins which formed intensive spots on the 2D-PAGE gels allowed us to partially identify one protein (OmpA family protein originated from genus Brevundimonas or Riemerella anatipestifer) from the foulant obtained from the submerged MBR, and two proteins (OprD and OprF originated from genus Pseudomonas) from that obtained from the side-stream MBR. Despite the significant difference in operating conditions of the two MBRs, all proteins identified in this study belong to β-barrel protein. These findings strongly suggest the importance of β-barrel proteins in developing membrane fouling in MBRs. PMID:26360742

  18. Biomolecular membrane protein crystallization

    NASA Astrophysics Data System (ADS)

    Reddy Bolla, Jani; Su, Chih-Chia; Yu, Edward W.

    2012-07-01

    Integral membrane proteins comprise approximately 30% of the sequenced genomes, and there is an immediate need for their high-resolution structural information. Currently, the most reliable approach to obtain these structures is X-ray crystallography. However, obtaining crystals of membrane proteins that diffract to high resolution appears to be quite challenging, and remains a major obstacle in structural determination. This brief review summarizes a variety of methodologies for use in crystallizing these membrane proteins. Hopefully, by introducing the available methods, techniques, and providing a general understanding of membrane proteins, a rational decision can be made about now to crystallize these complex materials.

  19. Plant cell membranes

    SciTech Connect

    Packer, L.; Douce, R.

    1987-01-01

    The contents of this book are: Cells, Protoplasts, Vacuoles and Liposomes; Tonoplasts; Nuclei, Endolplasmic Reticulum, and Plasma Membrane; Peroxisomes; Plastids; Teneral Physical and Biochemical Methods; and Mitochondira.

  20. Drugging Membrane Protein Interactions.

    PubMed

    Yin, Hang; Flynn, Aaron D

    2016-07-11

    The majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind cells to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally "undruggable" regions of membrane proteins, enabling modulation of protein-protein, protein-lipid, and protein-nucleic acid interactions. In this review, we survey the state of the art of high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets. PMID:26863923

  1. Membrane Tension Control

    NASA Technical Reports Server (NTRS)

    Su, Ji (Inventor); Harrison, Joycelyn S. (Inventor)

    2005-01-01

    An electrostrictive polymer actuator comprises an electrostrictive polymer with a tailorable Poisson's ratio. The electrostrictive polymer is electroded on its upper and lower surfaces and bonded to an upper material layer. The assembly is rolled tightly and capped at its ends. In a membrane structure having a membrane, a supporting frame and a plurality of threads connecting the membrane to the frame, an actuator can be integrated into one or more of the plurality of threads. The electrostrictive polymer actuator displaces along its longitudinal axis, thereby affecting movement of the membrane surface.

  2. Gas separation membranes

    DOEpatents

    Schell, William J.

    1979-01-01

    A dry, fabric supported, polymeric gas separation membrane, such as cellulose acetate, is prepared by casting a solution of the polymer onto a shrinkable fabric preferably formed of synthetic polymers such as polyester or polyamide filaments before washing, stretching or calendering (so called griege goods). The supported membrane is then subjected to gelling, annealing, and drying by solvent exchange. During the processing steps, both the fabric support and the membrane shrink a preselected, controlled amount which prevents curling, wrinkling or cracking of the membrane in flat form or when spirally wound into a gas separation element.

  3. Anion exchange membrane

    DOEpatents

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  4. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Hodgdon, R. B.; Waite, W. A.

    1982-01-01

    The synthesis and fabrication of polymeric anion permselective membranes for redox systems are discussed. Variations of the prime candidate anion membrane formulation to achieve better resistance and/or lower permeability were explored. Processing parameters were evaluated to lower cost and fabricate larger sizes. The processing techniques to produce more membranes per batch were successfully integrated with the fabrication of larger membranes. Membranes of about 107 cm x 51 cm were made in excellent yield. Several measurements were made on the larger sample membranes. Among the data developed were water transport and transference numbers for these prime candidate membranes at 20 C. Other work done on this system included characterization of a number of specimens of candidate membranes which had been returned after service lives of up to sixteen months. Work with new polymer constituents, with new N.P.'s, catalysts and backing fabrics is discussed. Some work was also done to evaluate other proportions of the ingredients of the prime candidate system. The adoption of a flow selectivity test at elevated temperature was explored.

  5. Membrane in cancer cells

    SciTech Connect

    Galeotti, T.; Cittadini, A.; Neri, G.; Scarpa, A.

    1988-01-01

    This book contains papers presented at a conference on membranes in cancer cells. Topics covered include Oncogenies, hormones, and free-radical processes in malignant transformation in vitro and Superoxide onion may trigger DNA strand breaks in human granulorytes by acting as a membrane target.

  6. Microporous alumina ceramic membranes

    DOEpatents

    Anderson, M.A.; Guangyao Sheng.

    1993-05-04

    Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.

  7. Microporous alumina ceramic membranes

    DOEpatents

    Anderson, Marc A.; Sheng, Guangyao

    1993-01-01

    Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.

  8. Polymide gas separation membranes

    DOEpatents

    Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz

    2004-09-14

    Soluble polyamic acid salt (PAAS) precursors comprised of tertiary and quaternary amines, ammonium cations, sulfonium cations, or phosphonium cations, are prepared and fabricated into membranes that are subsequently imidized and converted into rigid-rod polyimide articles, such as membranes with desirable gas separation properties. A method of enhancing solubility of PAAS polymers in alcohols is also disclosed.

  9. Membrane module assembly

    DOEpatents

    Kaschemekat, Jurgen

    1994-01-01

    A membrane module assembly adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation.

  10. Membrane module assembly

    DOEpatents

    Kaschemekat, J.

    1994-03-15

    A membrane module assembly is described which is adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation. 2 figures.

  11. Membrane Transport Phenomena (MTP)

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1996-01-01

    The development of the seal between the membrane and the Fluid Optical Cells (FOC) has been a high priority activity. This seal occurs at an interface in the instrument where three key functions must be realized: (1) physical membrane support, (2) fluid sealing, and (3) unobscured optical transmission.

  12. Permeable membrane experiment

    NASA Technical Reports Server (NTRS)

    Slavin, Thomas J.; Cao, Tuan Q.; Kliss, Mark H.

    1993-01-01

    The purpose of the Permeable Membrane Experiment is to gather flight data on three areas of membrane performance that are influenced by the presence of gravity. These areas are: (1) Liquid/gas phase separation, (2) gas bubble interference with diffusion through porous membranes and (3) wetting characteristics of hydrophilic membrane surfaces. These data are important in understaning the behavior of membrane/liquid/gas interfaces where surface tension forces predominate. The data will be compared with 1-g data already obtained and with predicted micrograviity behavior. The data will be used to develop designs for phase separation and plant nutrient delivery systems and will be available to the life support community for use in developing technologies which employ membranes. A conceptual design has been developed to conduct three membrane experiments, in sequence, aboard a single Complex Autonomous Payload (CAP) carrier to be carried in the Shuttle Orbiter payload bay. One experiment is conducted for each of the three membrane performance areas under study. These experiments are discussed in this paper.

  13. Viral Membrane Scission

    PubMed Central

    Rossman, Jeremy S.; Lamb, Robert A.

    2014-01-01

    Virus budding is a complex, multistep process in which viral proteins make specific alterations in membrane curvature. Many different viral proteins can deform the membrane and form a budding virion, but very few can mediate membrane scission to complete the budding process. As a result, enveloped viruses have developed numerous ways of facilitating membrane scission, including hijacking host cellular scission machinery and expressing their own scission proteins. These proteins mediate scission in very different ways, though the biophysical mechanics underlying their actions may be similar. In this review, we explore the mechanisms of membrane scission and the ways in which enveloped viruses use these systems to mediate the release of budding virions. PMID:24099087

  14. Ion-conducting membranes

    DOEpatents

    Masel, Richard L.; Chen, Qingmei; Liu, Zengcai; Kutz, Robert

    2016-06-21

    An ion conducting polymeric composition mixture comprises a copolymer of styrene and vinylbenzyl-R.sub.s. R.sub.s is selected from the group consisting of imidazoliums and pyridiniums. The composition contains 10%-90% by weight of vinylbenzyl-R.sub.s. The composition can further comprise a polyolefin comprising substituted polyolefins, a polymer comprising cyclic amine groups, a polymer comprising at least one of a phenylene group and a phenyl group, a polyamide, and/or the reaction product of a constituent having two carbon-carbon double bonds. The composition can be in the form of a membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  15. Anton permselective membrane

    NASA Technical Reports Server (NTRS)

    Alexander, S. S.; Hodgdon, R. B.; Waite, W. A.

    1979-01-01

    Experimental composite membranes were synthesized on a lab scale consisting of a thin layer of anion permselective resin supported by and bonded to a porous physically strong and conductive substrate film. These showed good selectivity and also substantially lower electrical resistivities than the homogenous candidate membranes optimized in the previous contract. A wide range of resin porosities were examined for three candidate membrane systems, CDIL, CP4L, and A3L to identify the formulation giving the best overall redox cell performance. Candidate anion membranes showed large increases in resistivity after a short time of immersion in concentrated FeCl/HCl solution. Largely on the basis of resistance stability the CDIL formulation was selected as prime candidate and about thirty-five membranes (one foot square) were produced for experimental static and dynamic evaluation.

  16. Elastic membranes in confinement.

    PubMed

    Bostwick, J B; Miksis, M J; Davis, S H

    2016-07-01

    An elastic membrane stretched between two walls takes a shape defined by its length and the volume of fluid it encloses. Many biological structures, such as cells, mitochondria and coiled DNA, have fine internal structure in which a membrane (or elastic member) is geometrically 'confined' by another object. Here, the two-dimensional shape of an elastic membrane in a 'confining' box is studied by introducing a repulsive confinement pressure that prevents the membrane from intersecting the wall. The stage is set by contrasting confined and unconfined solutions. Continuation methods are then used to compute response diagrams, from which we identify the particular membrane mechanics that generate mitochondria-like shapes. Large confinement pressures yield complex response diagrams with secondary bifurcations and multiple turning points where modal identities may change. Regions in parameter space where such behaviour occurs are then mapped. PMID:27440257

  17. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2002-04-01

    This report covers the following tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints; Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability; Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres; Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures; Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability; and Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  18. Membrane projection lithography

    DOEpatents

    Burckel, David Bruce; Davids, Paul S; Resnick, Paul J; Draper, Bruce L

    2015-03-17

    The various technologies presented herein relate to a three dimensional manufacturing technique for application with semiconductor technologies. A membrane layer can be formed over a cavity. An opening can be formed in the membrane such that the membrane can act as a mask layer to the underlying wall surfaces and bottom surface of the cavity. A beam to facilitate an operation comprising any of implantation, etching or deposition can be directed through the opening onto the underlying surface, with the opening acting as a mask to control the area of the underlying surfaces on which any of implantation occurs, material is removed, and/or material is deposited. The membrane can be removed, a new membrane placed over the cavity and a new opening formed to facilitate another implantation, etching, or deposition operation. By changing the direction of the beam different wall/bottom surfaces can be utilized to form a plurality of structures.

  19. Ordered ceramic membranes

    SciTech Connect

    Anderson, M.A.; Hill, C.G. Jr.; Zeltner, W.A.

    1991-10-01

    Ceramic membranes have been formed from colloidal sols coated on porous clay supports. These supported membranes have been characterized in terms of their permeabilities and permselectivities to various aqueous test solutions. The thermal stabilities and pore structures of these membranes have been characterized by preparing unsupported membranes of the correpsonding material and performing N{sub 2} adsorption-desorption and X-ray diffraction studies on these membranes. To date, membranes have been prepared from a variety of oxides, including TiO{sub 2}, SiO{sub 2}, ZrO{sub 2}, and Al{sub 2}O{sub 3}, as well as Zr-, Fe-, and Nb-doped TiO{sub 2}. In many of these membranes pore diameters are less than 2 nm, while in others the pore diameters are between 3 and 5 nm. Procedures for fabricating porous clay supports with reproducible permeabilities for pure water are also discussed. 30 refs., 59 figs., 22 tabs.

  20. Hollow fiber catalytic membranes

    SciTech Connect

    Ma, Yi Hua; Moser, W.; Shelekhin, A.; Pien, Shyhing

    1993-09-01

    The objective of the present research is to investigate the possibility of the enhancement of the H{sub 2}S thermal decomposition in the IGCC system by employing the hollow fiber catalytic membrane reactor. To accomplish the objective, the following major components in the analysis of the high temperature membrane reactor must be investigated: high-temperature stability of the porous glass membrane; catalytic properties of MoS{sub 2} and of the porous glass membrane; catalytic decomposition of H{sub 2}S in a packed bed reactor; catalytic decomposition of 100%, 8.6%, and 1.1% H{sub 2}S gas mixtures in the membrane reactor. The study has been shown that the conversion of the H{sub 2}S can be increased in the packed bed membrane reactor compared to the equilibrium conversion on the shell side. The development of a mathematical model for the proposed process is in progress. The model will enable optimization of the H{sub 2}S decomposition. These conditions include selectivity factors and pressure drop across the membrane.

  1. Supported double membranes

    PubMed Central

    Murray, David H.; Tamm, Lukas K.; Kiessling, Volker

    2009-01-01

    Planar model membranes, like supported lipid bilayers and surface-tethered vesicles, have been proven to be useful tools for the investigation of complex biological functions in a significantly less complex membrane environment. In this study, we introduce a supported double membrane system that should be useful for studies that target biological processes in the proximity of two lipid bilayers such as the periplasm of bacteria and mitochondria or the small cleft between pre-and postsynaptic neuronal membranes. Large unilamellar vesicles (LUV) were tethered to a preformed supported bilayer by a biotin-streptavidin tether. We show from single particle tracking (SPT) experiments that these vesicle are mobile above the plane of the supported membrane. At higher concentrations, the tethered vesicles fuse to form a second continuous bilayer on top of the supported bilayer. The distance between the two bilayers was determined by fluorescence interference contrast (FLIC) microscopy to be between 16 and 24 nm. The lateral diffusion of labeled lipids in the second bilayer was very similar to that in supported membranes. SPT experiments with reconstituted syntaxin-1A show that the mobility of transmembrane proteins was not improved when compared with solid supported membranes. PMID:19236921

  2. Electroporation of cell membranes.

    PubMed

    Tsong, T Y

    1991-08-01

    Electric pulses of intensity in kilovolts per centimeter and of duration in microseconds to milliseconds cause a temporary loss of the semipermeability of cell membranes, thus leading to ion leakage, escape of metabolites, and increased uptake by cells of drugs, molecular probes, and DNA. A generally accepted term describing this phenomenon is "electroporation." Other effects of a high-intensity electric field on cell membranes include membrane fusions, bleb formation, cell lysis... etc. Electroporation and its related phenomena reflect the basic bioelectrochemistry of cell membranes and are thus important for the study of membrane structure and function. These phenomena also occur in such events as electric injury, electrocution, and cardiac procedures involving electric shocks. Electroporation has found applications in: (a) introduction of plasmids or foreign DNA into living cells for gene transfections, (b) fusion of cells to prepare heterokaryons, hybridoma, hybrid embryos... etc., (c) insertion of proteins into cell membranes, (d) improving drug delivery and hence effectiveness in chemotherapy of cancerous cells, (e) constructing animal model by fusing human cells with animal tissues, (f) activation of membrane transporters and enzymes, and (g) alteration of genetic expression in living cells. A brief review of mechanistic studies of electroporation is given. PMID:1912274

  3. Electroporation of cell membranes.

    PubMed Central

    Tsong, T Y

    1991-01-01

    Electric pulses of intensity in kilovolts per centimeter and of duration in microseconds to milliseconds cause a temporary loss of the semipermeability of cell membranes, thus leading to ion leakage, escape of metabolites, and increased uptake by cells of drugs, molecular probes, and DNA. A generally accepted term describing this phenomenon is "electroporation." Other effects of a high-intensity electric field on cell membranes include membrane fusions, bleb formation, cell lysis... etc. Electroporation and its related phenomena reflect the basic bioelectrochemistry of cell membranes and are thus important for the study of membrane structure and function. These phenomena also occur in such events as electric injury, electrocution, and cardiac procedures involving electric shocks. Electroporation has found applications in: (a) introduction of plasmids or foreign DNA into living cells for gene transfections, (b) fusion of cells to prepare heterokaryons, hybridoma, hybrid embryos... etc., (c) insertion of proteins into cell membranes, (d) improving drug delivery and hence effectiveness in chemotherapy of cancerous cells, (e) constructing animal model by fusing human cells with animal tissues, (f) activation of membrane transporters and enzymes, and (g) alteration of genetic expression in living cells. A brief review of mechanistic studies of electroporation is given. PMID:1912274

  4. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  5. Nanoengineered membrane electrode assembly interface

    DOEpatents

    Song, Yujiang; Shelnutt, John A

    2013-08-06

    A membrane electrode structure suitable for use in a membrane electrode assembly (MEA) that comprises membrane-affixed metal nanoparticles whose formation is controlled by a photochemical process that controls deposition of the metal nanoparticles using a photocatalyst integrated with a polymer electrolyte membrane, such as an ionomer membrane. Impregnation of the polymer membrane with the photocatalyst prior to metal deposition greatly reduces the required amount of metal precursor in the deposition reaction solution by restricting metal reduction substantially to the formation of metal nanoparticles affixed on or near the surface of the polymer membrane with minimal formation of metallic particles not directly associated with the membrane.

  6. CENTRIFUGAL MEMBRANE FILTRATION

    SciTech Connect

    Daniel J. Stepan; Bradley G. Stevens; Melanie D. Hetland

    1999-10-01

    The overall project consists of several integrated research phases related to the applicability, continued development, demonstration, and commercialization of the SpinTek centrifugal membrane filtration process. Work performed during this reporting period consisted of Phase 2 evaluation of the SpinTek centrifugal membrane filtration technology and Phase 3, Technology Partnering. During Phase 1 testing conducted at the EERC using the SpinTek ST-IIL unit operating on a surrogate tank waste, a solids cake developed on the membrane surface. The solids cake was observed where linear membrane velocities were less than 17.5 ft/s and reduced the unobstructed membrane surface area up to 25%, reducing overall filtration performance. The primary goal of the Phase 2 research effort was to enhance filtration performance through the development and testing of alternative turbulence promoter designs. The turbulence promoters were designed to generate a shear force across the entire membrane surface sufficient to maintain a self-cleaning membrane capability and improve filtration efficiency and long-term performance. Specific Phase 2 research activities included the following: System modifications to accommodate an 11-in.-diameter, two-disk rotating membrane assembly; Development and fabrication of alternative turbulence promoter designs; Testing and evaluation of the existing and alternative turbulence promoters under selected operating conditions using a statistically designed test matrix; and Data reduction and analysis; The objective of Phase 3 research was to demonstrate the effectiveness of SpinTek's centrifugal membrane filtration as a pretreatment to remove suspended solids from a liquid waste upstream of 3M's WWL cartridge technology for the selective removal of technetium (Tc).

  7. Membrane photobiophysics and photochemistry

    NASA Astrophysics Data System (ADS)

    Ti Tien, H.

    Life, as we know it, depends on solar energy, in particular in the visible range of the solar spectrum. However, visible light alone is useless to the living organism unless a means is available for its capture, transformation, and utilization. Nature, through its long evolution, has perfected a process known as photosynthesis by which visible light is transduced into electrical/ chemical energy. However, the heart of Nature's energy transducer is the thylakoid membrane whose molecular organization was not known until early in the 1960s. Then it was established that the bilayer lipid membrane was central to the design of the thylakoid membrane. To explain the light-driven reactions from water oxidation to carbon dioxide reduction, the so-called Z-scheme was proposed. Concurrent with the establishment of Mitchell's Chemiosmotic Hypothesis for electron transfer and phosphorylation, the experimental bilayer lipid membrane (BLM) system was developed in 1960. But what are the fundamental biophysical mechanisms involved in the phototransduction via pigmented bilayer lipid membrane-based transducers? One of the main purposes of this review is to consider these questions. A second main purpose is to introduce to the reader the experimental aspects of lipid bilayers in the investigation of photoactive biomembranes. The areas covered in this review include a brief summary of the laws of photochemistry relevant to membrane photobiophysics and photobiology. The current exploitation of the BLM system in relation to the thylakoid membrane and to the visual receptor membrane will be considered in turn. The purple membrane of H. Halobium is then discussed. Consideration will also be given to dye-sensitized BLMs, semiconducting BLMs, and BLMs formed from liquid crystals. A common characteristic in the topics covered in this review is the desire to stimulate further studies in the use of the BLM system, not only for the fundamental understanding of biomembranes, but also towards

  8. Cyclic membrane separation process

    DOEpatents

    Bowser, John

    2004-04-13

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In one of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the other part, the membrane is inoperative while gas pressure rises in the ullage. Ambient air is charged to the membrane separation unit during the latter part of the cycle.

  9. Rotating bubble membrane radiator

    DOEpatents

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  10. Cholesterol dynamics in membranes.

    PubMed Central

    Yeagle, P L; Albert, A D; Boesze-Battaglia, K; Young, J; Frye, J

    1990-01-01

    Time-resolved fluorescence anisotropy of the sterol analogue, cholestatrienol, and 13C nuclear magnetic resonance (NMR) spin lattice relaxation time (T1c) measurements of [13C4] labeled cholesterol were exploited to determine the correlation times characterizing the major modes of motion of cholesterol in unsonicated phospholipid multilamellar liposomes. Two modes of motion were found to be important: (a) rotational diffusion and (b) time dependence of the orientation of the director for axial diffusion, or "wobble." From the time-resolved fluorescence anisotropy decays of cholestatrienol in egg phosphatidylcholine (PC) bilayers, a value for tau perpendicular, the correlation time for wobble, of 0.9 x 10(-9) s and a value for S perpendicular, the order parameter characterizing the same motion, of 0.45 s were calculated. Both tau perpendicular and S perpendicular were relatively insensitive to temperature and cholesterol content of the membranes. The T1c measurements of [13C4] labeled cholesterol did not provide a quantitative determination of tau parallel, the correlation time for axial diffusion. T1c from the lipid hydrocarbon chains suggested a value for tau perpendicular similar to that for cholesterol. Steady-state anisotropy measurements and time-resolved anisotropy measurements of cholestatrienol were used to probe sterol behavior in a variety of pure and mixed lipid multilamellar liposomes. Both the lipid headgroups and the lipid hydrocarbons chains contributed to the determination of the sterol environment in the membrane, as revealed by these fluorescence measurements. In particular, effects of the phosphatidylethanolamine (PE) headgroup and of multiple unsaturation in the lipid hydrocarbon chains were observed. However, while the steady-state anisotropy was sensitive to these factors, the time-resolved fluorescence analysis indicated that tau perpendicular was not strongly affected by the lipid composition of the membrane. S perpendicular may be increased

  11. Neural Membrane Signaling Platforms

    PubMed Central

    Wallace, Ron

    2010-01-01

    Throughout much of the history of biology, the cell membrane was functionally defined as a semi-permeable barrier separating aqueous compartments, and an anchoring site for proteins. Little attention was devoted to its possible regulatory role in intracellular molecular processes and neuron electrical signaling. This article reviews the history of membrane studies and the current state of the art. Emphasis is placed on natural and artificial membrane studies of electric field effects on molecular organization, especially as these may relate to impulse propagation in neurons. Implications of these studies for new designs in artificial intelligence are briefly examined. PMID:20640161

  12. Composite metal membrane

    DOEpatents

    Peachey, Nathaniel M.; Dye, Robert C.; Snow, Ronny C.; Birdsell, Stephan A.

    1998-01-01

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  13. Composite metal membrane

    DOEpatents

    Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

    1998-04-14

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  14. Cyclic membrane separation process

    DOEpatents

    Nemser, Stuart M.

    2005-05-03

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In the first part of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the second part, the membrane is inoperative while gas pressure rises in the ullage. In one aspect of this invention, a vacuum is drawn in the membrane separation unit thus reducing overall VOC emissions.

  15. PERSISTENT PUPILLARY MEMBRANE OR ACCESSORY IRIS MEMBRANE?.

    PubMed

    Gavriş, Monica; Horge, Ioan; Avram, Elena; Belicioiu, Roxana; Olteanu, Ioana Alexandra; Kedves, Hanga

    2015-01-01

    Frequently, in literature and curent practice, accessory iris membrane (AIM) and persistant pupillary membrane (PPM) are confused. Both AIM and PPM are congenital iris anomalies in which fine or thick iris strands arrise form the collarette and obscure the pupil. AIM, which is also called iris duplication, closely resembles the normal iris tissue in color and thickness and presents a virtual second pseudopupil aperture in the centre while PPM even in its extreme forms presents as a translucent or opaque membranous structure that extends across the pupil and has no pseudopupil. Mydriatiscs, laser treatment or surgery is used to clear the visual axis and optimize visual development. Surgical intervention is reserved for large, dense AIMs and PPMs. Our patient, a 29 year old male, has come with bilateral dense AIM, bilateral compound hyperopic astigmatism, BCVA OD = 0.6, BCVA OS = 0.4, IOP OU = 17 mmHg. To improve the visual acuity of the patient we decided to do a bilateral membranectomy, restoring in this way transparency of the visual axis. After surgery, the visual acuity improved to BCVA OD= 0.8, BCVA OS=0.8. PMID:26978889

  16. Novel Catalytic Membrane Reactors

    SciTech Connect

    2009-02-01

    This factsheet describes a research project that will focus on the development and application of nonporous high gas flux perfluoro membranes with high temperature rating and excellent chemical resistance.

  17. Hydrogen transport membranes

    DOEpatents

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  18. Protein mediated membrane adhesion

    NASA Astrophysics Data System (ADS)

    Carlson, Andreas; Mahadevan, L.

    2015-05-01

    Adhesion in the context of mechanical attachment, signaling, and movement in cellular dynamics is mediated by the kinetic interactions between membrane-embedded proteins in an aqueous environment. Here, we present a minimal theoretical framework for the dynamics of membrane adhesion that accounts for the kinetics of protein binding, the elastic deformation of the membrane, and the hydrodynamics of squeeze flow in the membrane gap. We analyze the resulting equations using scaling estimates to characterize the spatiotemporal features of the adhesive patterning and corroborate them using numerical simulations. In addition to characterizing aspects of cellular dynamics, our results might also be applicable to a range of phenomena in physical chemistry and materials science where flow, deformation, and kinetics are coupled to each other in slender geometries.

  19. Ultrasonic Membrane Processing

    NASA Astrophysics Data System (ADS)

    Kentish, Sandra; Ashokkumar, Muthupandian

    A membrane is a sermipermeable material that permits the passage of some molecules while retaining others. Ultrasound can enhance membrane operation through the asymmetric collapse of cavitating bubbles and through the turbulence associated with acoustic streaming. The added turbulence can lead to a looser, more porous fouling cake layer and may agglomerate fine particles, reducing pore blockage and cake compaction.These effects are dependent upon the ultrasonic intensity, the operating pressure, crossflow velocity and solids concentration.Membrane cleaning can also be enhanced by the use of ultrasound, but this application may not be economic when used in isolation. One of the greatest challenges facing the technology is the generation of a uniform acoustic field across the entire membrane surface in a full-scale module.

  20. Membrane separation technology

    SciTech Connect

    Stookey, D.J.; Patton, C.J.; Malcolm, G.L.

    1986-01-01

    Membrane separations of interest here are not to be confused with barrier separations of the type employed in the uranium enrichment plant at Oak Ridge, Tennessee. There isotopes of uranium hexafluoride were separated by the free-molecular or Knudsen flow of the gas mixture through the pores and orifices created within a porous nickel media which was sometimes referred to as a membrane. In barrier separation, an enrichment of gases of differing molecular weights is accomplished by the differing gaseous diffusion rates within the porous media. By contrast the membranes of interest here are thin, dense, continuous films, typically formed from polymers. The separation of species is accomplished by the dissolution of the gases in the polymer and their diffusion across the solid film thickness under a concentration gradient according to Fick's law. This process is commonly referred to as membrane permeation.

  1. Drugging Membrane Protein Interactions

    PubMed Central

    Yin, Hang; Flynn, Aaron D.

    2016-01-01

    The majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind the cell to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally “undruggable” regions of membrane proteins, enabling modulation of protein–protein, protein–lipid, and protein–nucleic acid interactions. In this review, we survey the state of the art in high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets. PMID:26863923

  2. Evaporative Cooling Membrane Device

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis (Inventor); Moskito, John (Inventor)

    1999-01-01

    An evaporative cooling membrane device is disclosed having a flat or pleated plate housing with an enclosed bottom and an exposed top that is covered with at least one sheet of hydrophobic porous material having a thin thickness so as to serve as a membrane. The hydrophobic porous material has pores with predetermined dimensions so as to resist any fluid in its liquid state from passing therethrough but to allow passage of the fluid in its vapor state, thereby, causing the evaporation of the fluid and the cooling of the remaining fluid. The fluid has a predetermined flow rate. The evaporative cooling membrane device has a channel which is sized in cooperation with the predetermined flow rate of the fluid so as to produce laminar flow therein. The evaporative cooling membrane device provides for the convenient control of the evaporation rates of the circulating fluid by adjusting the flow rates of the laminar flowing fluid.

  3. Structures of membrane proteins

    PubMed Central

    Vinothkumar, Kutti R.; Henderson, Richard

    2010-01-01

    In reviewing the structures of membrane proteins determined up to the end of 2009, we present in words and pictures the most informative examples from each family. We group the structures together according to their function and architecture to provide an overview of the major principles and variations on the most common themes. The first structures, determined 20 years ago, were those of naturally abundant proteins with limited conformational variability, and each membrane protein structure determined was a major landmark. With the advent of complete genome sequences and efficient expression systems, there has been an explosion in the rate of membrane protein structure determination, with many classes represented. New structures are published every month and more than 150 unique membrane protein structures have been determined. This review analyses the reasons for this success, discusses the challenges that still lie ahead, and presents a concise summary of the key achievements with illustrated examples selected from each class. PMID:20667175

  4. Fuel cell membrane humidification

    DOEpatents

    Wilson, Mahlon S.

    1999-01-01

    A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

  5. Supported membrane nanodevices.

    PubMed

    Anrather, Dorothea; Smetazko, Michaela; Saba, Miriam; Alguel, Yilmaz; Schalkhammer, Thomas

    2004-01-01

    Supported membrane nanodevices are based on natural or artificial ion channels embedded in a lipid membrane deposited on a chip wafer. Membrane conductance is modulated by biorecognitive events, with the use of intrinsic binding sites of the ion channel or via artificial sites fused to the channel protein. Artificial ion gates are constructed by coupling a specific ligand for the analyte near the channel entrance or a site important to triggering channel conformation. The binding event leads to the closure of the ion channel or induces a conformational change of the channel, reducing the ion flux. The signal transduced from the device is the decrease in the ion flux-induced electron current at a silver-silver chloride electrode at ultimate single-molecule sensitivity. Among the natural ion channels, gramicidin A, a transport antibiotic, was found to be most suitable, and thus was used by AMBRI, Australia, to set up prototypes of membrane biochips, using self-association of the dimer. Covalent dimerization-based devices, developed by the Vienna group, make use of the down-regulation of the permanently open membrane-spanning bisgramicidine ion channel. The reactive group at the C-terminus, a hydroxy group, allows precise coupling of the analyte-binding moiety in gramicidin as well as bisgramicidin. The device is set up with bilayer membranes deposited on apertures of a hydrophobic frame structure produced via microlithography, facing an aqueous or hydro-gel micro-environment on both sides, constructing black lipid membranes or patch-clamp devices "on chip." The setup of the device needs gel membrane supports that allow membrane formation and contribute to the stability of the bilayer by exposure of functional groups that promote electrostatic interaction and formation of hydrogen bridges and enable the introduction of covalent spacers and anchors. Photo-cross-linked polyvinylpyrrolidone and polyacrylamide, electropolymerized polydiaminobenzene and coated agarose, as

  6. Microprobes aluminosilicate ceramic membranes

    DOEpatents

    Anderson, Marc A.; Sheng, Guangyao

    1993-01-01

    Methods have been developed to make mixed alumina-silicate and aluminosilicate particulate microporous ceramic membranes. One method involves the making of separate alumina and silica sols which are then mixed. Another method involves the creation of a combined sol with aluminosilicate particles. The resulting combined alumina and silica membranes have high surface area, a very small pore size, and a very good temperature stability.

  7. [Candidiasis of mucous membranes].

    PubMed

    Khmel'nitskiĭ, O K

    2000-01-01

    The author presents a new concept of complex relationship between the organism and Candida. According to this concept there is transformation of Candida carriage into invasive candidiasis of the mucous membranes. The idea is formulated on mixed-mycocenosis as association of fungal, bacterial, protozoic and viral biota. For the first time the notion of intermediate preinvasive form of candidiasis is given and clinical, morphological criteria of differential diagnosis between candida carriage, preinvasive and invasive candidiasis of mucous membranes are presented. PMID:11198119

  8. Membrane separation of hydrocarbons

    DOEpatents

    Funk, Edward W.; Kulkarni, Sudhir S.; Chang, Y. Alice

    1986-01-01

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture over a polymeric membrane which comprises a polymer capable of maintaining its integrity in the presence of hydrocarbon compounds at temperature ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psi. The membranes which possess pore sizes ranging from about 10 to about 500 Angstroms are cast from a solvent solution and recovered.

  9. Membrane reference electrode

    DOEpatents

    Redey, L.; Bloom, I.D.

    1988-01-21

    A reference electrode utilizes a small thin, flat membrane of a highly conductive glass placed on a small diameter insulator tube having a reference material inside in contact with an internal voltage lead. When the sensor is placed in a non-aqueous ionic electrolytic solution, the concentration difference across the glass membrane generates a low voltage signal in precise relationship to the concentration of the species to be measured, with high spatial resolution. 2 figs.

  10. Battery utilizing ceramic membranes

    DOEpatents

    Yahnke, Mark S.; Shlomo, Golan; Anderson, Marc A.

    1994-01-01

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

  11. Exploring membrane respiratory chains.

    PubMed

    Marreiros, Bruno C; Calisto, Filipa; Castro, Paulo J; Duarte, Afonso M; Sena, Filipa V; Silva, Andreia F; Sousa, Filipe M; Teixeira, Miguel; Refojo, Patrícia N; Pereira, Manuela M

    2016-08-01

    Acquisition of energy is central to life. In addition to the synthesis of ATP, organisms need energy for the establishment and maintenance of a transmembrane difference in electrochemical potential, in order to import and export metabolites or to their motility. The membrane potential is established by a variety of membrane bound respiratory complexes. In this work we explored the diversity of membrane respiratory chains and the presence of the different enzyme complexes in the several phyla of life. We performed taxonomic profiles of the several membrane bound respiratory proteins and complexes evaluating the presence of their respective coding genes in all species deposited in KEGG database. We evaluated 26 quinone reductases, 5 quinol:electron carriers oxidoreductases and 18 terminal electron acceptor reductases. We further included in the analyses enzymes performing redox or decarboxylation driven ion translocation, ATP synthase and transhydrogenase and we also investigated the electron carriers that perform functional connection between the membrane complexes, quinones or soluble proteins. Our results bring a novel, broad and integrated perspective of membrane bound respiratory complexes and thus of the several energetic metabolisms of living systems. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:27044012

  12. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J.; Hryn, John N.; Elam, Jeffrey W.

    2009-12-01

    A nanoporous catalytic membrane which displays several unique features including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity.

  13. The Excitable Membrane

    PubMed Central

    Offner, Franklin F.

    1972-01-01

    The model of the excitable membrane assumes common channels for Na+ and K+; the two ion species interact within the pores through their electrostatic forces. The electric field varies across the membrane and with time, as a result of ionic redistribution. Ionic flow is primarily controlled by energy barriers at the two interfaces and by Ca++ adsorption at the external interface. When the membrane is polarized, the high electric field at the external interface acting on the membrane fixed charge keeps the effective channel diameter small, so that only dihydrated ions can cross the interface. The higher energy required to partially dehydrate Na+ accounts for its lower permeability when polarized. Depolarized, the channel entrance can expand, permitting quadrihydrated ions to pass; the large initial Na+ flow is the result of the large concentration ratio across the interface. The effect at the internal interface is symmetric; Na+ crosses with greater difficulty when the membrane is depolarized. Na+ inactivation occurs when the ion distribution within the membrane has assumed its new steady-state value. Calculations based on parameters consistent with physicochemical data agree generally with a wide range of experiments. The model does not obey the two fundamental Hodgkin-Huxley (HH) postulates (independence principle, ion flow proportional to thermodynamic potential). In several instances the model predicts experimental results which are not predicted by the HH equations. ImagesFIGURE 12 PMID:4655662

  14. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  15. Fractal reconstruction of rough membrane surface related with membrane fouling in a membrane bioreactor.

    PubMed

    Zhang, Meijia; Chen, Jianrong; Ma, Yuanjun; Shen, Liguo; He, Yiming; Lin, Hongjun

    2016-09-01

    In this paper, fractal reconstruction of rough membrane surface with a modified Weierstrass-Mandelbrot (WM) function was conducted. The topography of rough membrane surface was measured by an atomic force microscopy (AFM), and the results showed that the membrane surface was isotropous. Accordingly, the fractal dimension and roughness of membrane surface were calculated by the power spectrum method. The rough membrane surface was reconstructed on the MATLAB platform with the parameter values acquired from raw AFM data. The reconstructed membrane was much similar to the real membrane morphology measured by AFM. The parameters (including average roughness and root mean square (RMS) roughness) associated with membrane morphology for the model and real membrane were calculated, and a good match of roughness parameters between the reconstructed surface and real membrane was found, indicating the feasibility of the new developed method. The reconstructed membrane surface can be potentially used for interaction energy evaluation. PMID:27318159

  16. Composite membranes for fluid separations

    DOEpatents

    Blume, Ingo; Peinemann, Klaus-Viktor; Pinnau, Ingo; Wijmans, Johannes G.

    1991-01-01

    A method for designing and making composite membranes having a microporous support membrane coated with a permselective layer. The method involves calculating the minimum thickness of the permselective layer such that the selectivity of the composite membrane is close to the intrinsic selectivity of the permselective layer. The invention also provides high performance membranes with optimized properties.

  17. Composite membranes for fluid separations

    DOEpatents

    Blume, Ingo; Peinemann, Klaus-Viktor; Pinnau, Ingo; Wijmans, Johannes G.

    1992-01-01

    A method for designing and making composite membranes having a microporous support membrane coated with a permselective layer. The method involves calculating the minimum thickness of the permselective layer such that the selectivity of the composite membrane is close to the intrinsic selectivity of the perselective layer. The invention also provides high performance membranes with optimized properties.

  18. Composite membranes for fluid separations

    DOEpatents

    Blume, Ingo; Peinemann, Klaus-Viktor; Pinnau, Ingo; Wijmans, Johannes G.

    1990-01-01

    A method for designing and making composite membranes having a microporous support membrane coated with a permselective layer. The method involves calculating the minimum thickness of the permselective layer such that the selectivity of the composite membrane is close to the intrinsic selectivity of the permselective layer. The invention also provides high performance membranes with optimized properties.

  19. Handbook of industrial membrane technology

    SciTech Connect

    Porter, M.C.

    1989-01-01

    This book emphasizes the use of synthetic membranes for separations involving industrial or municipal process streams. In addition to the classic membrane processes-microfiltration, ultrafiltration, reverse osmosis, gas separation, and electrodialysis-chapters on enzyme membrane reactors, membrane fermentors and coupled transport membranes are included. The preparation of synthetic membranes and process design and optimization are also covered. Most of the membrane processes are pressure driven, the notable exception being electrodialysis, by which ions are separated under the influence of an electric field. In addition, coupled transport covers processes driven under the influence of a concentration gradient.

  20. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-11-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the current research, the electrical conductivity and Seebeck coefficient were measured as a function of temperature in air. Based on these measurements, the charge carrier concentration, net acceptor dopant concentration, activation energy of conduction and mobility were estimated. The studies on the fracture toughness of the LSFT and dual phase membranes at room temperature have been completed and reported previously. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affects the mechanical properties. To study the effect of temperature on the membranes when exposed to an inert environment, the membranes (LAFT and Dual phase) were heat treated at 1000 C in air and N{sub 2} atmosphere and hardness and fracture toughness of the membranes were studied after the treatment. The indentation method was used to find the fracture toughness and the effect of the heat treatment on the mechanical properties of the membranes. Further results on the investigation of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appears to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model will serve to study ''frozen'' profiles in patterned or composite membranes.

  1. Tectorial Membrane Stiffness Gradients

    PubMed Central

    Richter, Claus-Peter; Emadi, Gulam; Getnick, Geoffrey; Quesnel, Alicia; Dallos, Peter

    2007-01-01

    The mammalian inner ear processes sound with high sensitivity and fine resolution over a wide frequency range. The underlying mechanism for this remarkable ability is the “cochlear amplifier”, which operates by modifying cochlear micromechanics. However, it is largely unknown how the cochlea implements this modification. Although gradual improvements in experimental techniques have yielded ever-better descriptions of gross basilar membrane vibration, the internal workings of the organ of Corti and of the tectorial membrane have resisted exploration. Although measurements of cochlear function in mice with a gene mutation for α-tectorin indicate the tectorial membrane's key role in the mechanoelectrical transformation by the inner ear, direct experimental data on the tectorial membrane's physical properties are limited, and only a few direct measurements on tectorial micromechanics are available. Using the hemicochlea, we are able to show that a tectorial membrane stiffness gradient exists along the cochlea, similar to that of the basilar membrane. In artificial perilymph (but with low calcium), the transversal and radial driving point stiffnesses change at a rate of –4.0 dB/mm and −4.9 dB/mm, respectively, along the length of the cochlear spiral. In artificial endolymph, the stiffness gradient for the transversal component was –3.4 dB/mm. Combined with the changes in tectorial membrane dimensions from base to apex, the radial stiffness changes would be able to provide a second frequency-place map in the cochlea. Young's modulus, which was obtained from measurements performed in the transversal direction, decreased by −2.6 dB/mm from base to apex. PMID:17496047

  2. Membrane Bending by Protein Crowding

    NASA Astrophysics Data System (ADS)

    Stachowiak, Jeanne

    2014-03-01

    From endosomes and synaptic vesicles to the cristae of the mitochondria and the annulus of the nuclear pore, highly curved membranes are fundamental to the structure and physiology of living cells. The established view is that specific families of proteins are able to bend membranes by binding to them. For example, inherently curved proteins are thought to impose their structure on the membrane surface, while membrane-binding proteins with hydrophobic motifs are thought to insert into the membrane like wedges, driving curvature. However, computational models have recently revealed that these mechanisms would require specialized membrane-bending proteins to occupy nearly 100% of a curved membrane surface, an improbable physiological situation given the immense density and diversity of membrane-bound proteins, and the low expression levels of these specialized proteins within curved regions of the membrane. How then does curvature arise within the complex and crowded environment of cellular membranes? Our recent work using proteins involved in clathrin-mediated endocytosis, as well as engineered protein-lipid interactions, has suggested a new hypothesis - that lateral pressure generated by collisions between membrane-bound proteins can drive membrane bending. Specifically, by correlating membrane bending with quantitative optical measurements of protein density on synthetic membrane surfaces and simple physical models of collisions among membrane-bound proteins, we have demonstrated that protein-protein steric interactions can drive membrane curvature. These findings suggest that a simple imbalance in the concentration of membrane-bound proteins across a membrane surface can drive a membrane to bend, providing an efficient mechanism by which essentially any protein can contribute to shaping membranes.

  3. CENTRIFUGAL MEMBRANE FILTRATION

    SciTech Connect

    William A. Greene; Patricia A. Kirk; Richard Hayes; Joshua Riley

    2005-10-28

    SpinTek Membrane Systems, Inc., the developer of a centrifugal membrane filtration technology, has engineered and developed a system for use within the U.S. Department of Energy (DOE) Environmental Management (EM) Program. The technology uses supported microporous membranes rotating at high rpm, under pressure, to separate suspended and colloidal solids from liquid streams, yielding a solids-free permeate stream and a highly concentrated solids stream. This is a crosscutting technology that falls under the Efficient Separations and Processing Crosscutting Program, with potential application to tank wastes, contaminated groundwater, landfill leachate, and secondary liquid waste streams from other remediation processes, including decontamination and decommissioning systems. SpinTek II High Shear Rotary Membrane Filtration System is a unique compact crossflow membrane system that has large, demonstrable advantages in performance and cost compared to currently available systems: (1) High fluid shear prevents membrane fouling even with very high solids content; hazardous and radioactive components can be concentrated to the consistency of a pasty slurry without fouling. (2) Induced turbulence and shear across the membrane increases membrane flux by a factor of ten over existing systems and allows operation on fluids not otherwise treatable. (3) Innovative ceramic membrane and mechanical sealing technology eliminates compatibility problems with aggressive DOE waste streams. (4) System design allows rapid, simple disassembly for inspection or complete decontamination. (5) Produces colloidal- and suspended-solids-free filtrate without the addition of chemicals. The first phase of this project (PRDA maturity stage 5) completed the physical scale-up of the SpinTek unit and verified successful scale-up with surrogate materials. Given successful scale-up and DOE concurrence, the second phase of this project (PRDA maturity stage 6) will provide for the installation and

  4. Small scale membrane mechanics

    PubMed Central

    Rangamani, Padmini; Benjamini, Ayelet; Agrawal, Ashutosh; Smit, Berend; Oster, George

    2014-01-01

    Large scale changes to lipid bilayer shapes are well represented by the Helfrich model. However, there are membrane processes that take place at smaller length scales that this model cannot address. In this work, we present a one-dimensional continuum model that captures the mechanics of the lipid bilayer membrane at the length scale of the lipids themselves. The model is developed using the Cosserat theory of surfaces with lipid orientation, or ‘tilt’, as the fundamental degree of freedom. The Helfrich model can be recovered as a special case when the curvatures are small and the lipid tilt is everywhere zero. We use the tilt model to study local membrane deformations in response to a protein inclusion. Parameter estimates and boundary conditions are obtained from a coarse-grained molecular model using dissipative particle dynamics (DPD) to capture the same phenomenon. The continuum model is able to reproduce the membrane bending, stretch and lipid tilt as seen in the DPD model. The lipid tilt angle relaxes to the bulk tilt angle within 5–6 nm from the protein inclusion. Importantly, for large tilt gradients induced by the proteins, the tilt energy contribution is larger than the bending energy contribution. Thus, the continuum model of tilt accurately captures behaviors at length scales shorter than the membrane thickness. PMID:24081650

  5. Viral membrane fusion

    PubMed Central

    Harrison, Stephen C.

    2015-01-01

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. PMID:25866377

  6. Altering morphology of membranes

    SciTech Connect

    Narayan, R.S.

    1987-01-01

    The use of membranes in industrial gas processing and separation has been on the increase in the last eight years, especially since the successful introduction and commercialization of PRISM separators by Monsanto in 1979. Since that time, a number of gas separation applications have been successfully applied on an industrial scale. Separation of hydrogen from N/sub 2/ and hydrocarbons using membranes have become commonplace, and separation of carbon dioxide from hydrocarbons is gaining increasing acceptance. More recently, the separation of nitrogen from oxygen from air has been gaining considerable attention. The economic benefits of using membranes for on-site generation of N/sub 2/ containing less than 5% O/sub 2/ for inert blanketing such as, product storage, packaging, on board ships, airplanes and oil/gas production platforms, etc., are demonstrated to be significant.

  7. Permeability across lipid membranes.

    PubMed

    Shinoda, Wataru

    2016-10-01

    Molecular permeation through lipid membranes is a fundamental biological process that is important for small neutral molecules and drug molecules. Precise characterization of free energy surface and diffusion coefficients along the permeation pathway is required in order to predict molecular permeability and elucidate the molecular mechanisms of permeation. Several recent technical developments, including improved molecular models and efficient sampling schemes, are illustrated in this review. For larger penetrants, explicit consideration of multiple collective variables, including orientational, conformational degrees of freedom, are required to be considered in addition to the distance from the membrane center along the membrane normal. Although computationally demanding, this method can provide significant insights into the molecular mechanisms of permeation for molecules of medical and pharmaceutical importance. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:27085977

  8. Outer membrane protein purification.

    PubMed

    Arigita, C; Jiskoot, W; Graaf, M R; Kersten, G F

    2001-01-01

    The major outer membrane proteins (OMPs) from Neisseria meningitidis, which are expressed at high levels, are subdivided in five classes based on molecular weight (1,2) (see Table 1). Table 1 Major Meningococcal Outer-Membrane Proteins Outer-membrane proteins Name Molecular maass Function/characteristics Class 1 PorA 44-47 kDa Porin Class 2/3 PorB 37-42 kDa Porin Class 4 Rmp Reductionmodifiableprotein, unknown Class 5 Opa 26-30 kDa Adhesion,opacity protein Opc 25 kDa Invasion, opacity protein Iron-regulated proteins Mirp 37 kDa Iron acquisition (?);majoriron-regulatedprotein FrpB 70 kDa Ferric enterobactin receptor (also FetA) Adapted from ref. (1). PMID:21336748

  9. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2006-05-01

    In this quarter a systematic analysis on the decomposition behavior of the OTM membranes at air and nitrogen were initiated to understand the structural and stoichiometric changes associated with elevated temperatures. Evaluation of the flexural strengths using 4-point bend test was also started for the dual phase membranes. Initial results on the synthesis of dual phase composite materials have been obtained. The measurements have focused on the compatibility of mixed conductors with the pure ionic conductors yttria stabilized zirconia (YSZ) and gadolinium doped ceria (GDC). The initial results obtained for three different mixed conductors suggest that (GDC) is the better choice. A new membrane permeation system has been designed and tested and sintering studies of biphasic systems are in progress.

  10. Hybrid Filter Membrane

    NASA Technical Reports Server (NTRS)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of

  11. Functional membranes. Present and future

    NASA Technical Reports Server (NTRS)

    Kunitake, T.

    1982-01-01

    The present situation and the future development of the functional membrane are discussed. It is expected that functional membranes will play increasingly greater roles in the chemical industry of the coming decade. These membranes are formed from polymer films, liquid membranes or bilayer membranes. The two most important technologies based on the polymeric membrane are reverse osmosis and ion exchange. The liquid membrane is used for separation of ionic species; an extension of the solvent extraction process. By using appropriate ligands and ionophores, highly selective separations are realized. The active transport is made possible if the physical and chemical potentials are applied to the transport process. More advanced functional membranes may be designed on the basis of the synthetic bilayer membrane.

  12. Supported microporous ceramic membranes

    DOEpatents

    Webster, E.; Anderson, M.

    1993-12-14

    A method for the formation of microporous ceramic membranes onto a porous support includes placing a colloidal suspension of metal or metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane useful for ultrafiltration, reverse osmosis, or molecular sieving having mean pore sizes less than 100 Angstroms. 4 figures.

  13. Supported microporous ceramic membranes

    DOEpatents

    Webster, Elizabeth; Anderson, Marc

    1993-01-01

    A method for permformation of microporous ceramic membranes onto a porous support includes placing a colloidal suspension of metal or metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane useful for ultrafiltration, reverse osmosis, or molecular sieving having mean pore sizes less than 100 Angstroms.

  14. Battery utilizing ceramic membranes

    DOEpatents

    Yahnke, M.S.; Shlomo, G.; Anderson, M.A.

    1994-08-30

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range. 2 figs.

  15. The interactions of peripheral membrane proteins with biological membranes

    SciTech Connect

    Johs, Alexander; Whited, A. M.

    2015-01-01

    The interactions of peripheral proteins with membrane surfaces are critical to many biological processes, including signaling, recognition, membrane trafficking, cell division and cell structure. On a molecular level, peripheral membrane proteins can modulate lipid composition, membrane dynamics and protein-protein interactions. Biochemical and biophysical studies have shown that these interactions are in fact highly complex, dominated by several different types of interactions, and have an interdependent effect on both the protein and membrane. Here we examine three major mechanisms underlying the interactions between peripheral membrane proteins and membranes: electrostatic interactions, hydrophobic interactions, and fatty acid modification of proteins. While experimental approaches continue to provide critical insights into specific interaction mechanisms, emerging bioinformatics resources and tools contribute to a systems-level picture of protein-lipid interactions. Through these recent advances, we begin to understand the pivotal role of protein-lipid interactions underlying complex biological functions at membrane interfaces.

  16. Mitigated membrane fouling of anammox membrane bioreactor by microbiological immobilization.

    PubMed

    Zhang, Zuotao; Liu, Sitong; Miyoshi, Taro; Matsuyama, Hideto; Ni, Jinren

    2016-02-01

    In this study, membrane fouling behavior of anammox MBR with or without carriers made by magnetic porous carbon microspheres was investigated. The results show that Trans Membrane Pressure was an order of magnitude lower after 50days due to use of carriers, which did not directly contact with membrane surface. Scanning Electron Microscope analysis indicates that abundance of anammox bacteria formed biofilm on membrane surface. Fourier transform infrared spectroscopy combined with amino acids contents analysis for membrane surface deposition show that metabolite released by anammox bacteria contains more hydrophobic groups than hydrophilic, which was considered as important reason for its abundant existence on hydrophobic membrane surface. Microbiological immobilization not only reduces biological membrane fouling, but also mitigates organic fouling including organic matter containing COO, hydrophobic groups (CH3, CH2 and CH etc), as well as inorganic deposition. Our finding provides an effective method for mitigating MBR membrane fouling in anammox process. PMID:26687491

  17. The interactions of peripheral membrane proteins with biological membranes

    DOE PAGESBeta

    Johs, Alexander; Whited, A. M.

    2015-01-01

    The interactions of peripheral proteins with membrane surfaces are critical to many biological processes, including signaling, recognition, membrane trafficking, cell division and cell structure. On a molecular level, peripheral membrane proteins can modulate lipid composition, membrane dynamics and protein-protein interactions. Biochemical and biophysical studies have shown that these interactions are in fact highly complex, dominated by several different types of interactions, and have an interdependent effect on both the protein and membrane. Here we examine three major mechanisms underlying the interactions between peripheral membrane proteins and membranes: electrostatic interactions, hydrophobic interactions, and fatty acid modification of proteins. While experimental approachesmore » continue to provide critical insights into specific interaction mechanisms, emerging bioinformatics resources and tools contribute to a systems-level picture of protein-lipid interactions. Through these recent advances, we begin to understand the pivotal role of protein-lipid interactions underlying complex biological functions at membrane interfaces.« less

  18. Enzyme catalytic membrane based on a hybrid mesoporous membrane.

    PubMed

    Fu, Wensheng; Yamaguchi, Akira; Kaneda, Hideaki; Teramae, Norio

    2008-02-21

    Immobilization of glucose oxidase (GOD) within a hybrid mesoporous membrane with 12 nm pore diameter was successfully achieved, resulting in catalytically high efficiency during flow of a glucose solution across the membrane. PMID:18253526

  19. Effective rigidity of membranes

    NASA Astrophysics Data System (ADS)

    Peliti, L.

    1986-12-01

    The role of thermal fluctuations of shape (undulations) in reducing the effective rigidity of membranes is reviewed. The consequences of this effect on vesicle size distribution and on the structure of microemulsions, as well as on other physical phenomena, are sketched.

  20. Improved ion exchange membrane

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Yen, S. P. S.; Klein, E.

    1975-01-01

    Membrane, made from commercially-available hollow fibers, is used in reverse osmosis, or dialysis. Fiber has skin layers which pass only small molecules. Macromolecules cannot penetrate skin. Fibers can also be used to remove other undesirable anions, such as phosphate, sulfate, carbonate, and uranium in form of uranium-sulfate complex.

  1. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, the possibility of using a more complex interfacial engineering approach to the development of reliable and stable oxygen transport perovskite ceramic membranes/metal seals is discussed. Experiments are presented and ceramic/metal interactions are characterized. Crack growth and fracture toughness of the membrane in the reducing conditions are also discussed. Future work regarding this approach is proposed are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

  2. Electrodichroism of Purple Membrane

    PubMed Central

    Papp, E.; Fricsovszky, G.; Meszéna, G.

    1986-01-01

    The dichroism of purple membrane suspension was measured in dc and ac electric fields. From these measurements three parameters can be obtained: the permanent dipole moment, μ, the electrical polarizability, α, and the retinal angle, δ, (relative to the membrane normal). The functional dependence of the dichroism on the electric field is analyzed. There is a small decrease (∼2°) in retinal angle going from dark adapted to the light adapted form. No measurable difference in μ, α, and δ was found under the photocycle. The dichroism was measured in two different salt solutions (KCl and CaCl2) in the range 0-10 mM. The retinal angle increases from 64° to 68° with increasing ionic strength going through a minimum. This is attributed to the changing (decreasing) inner electric field in the membrane. The polarizability, α, consists of two parts. One component is related to the polarization of the purple membrane and the second component to the ionic cloud. The second component decreases with ion concentration approximately as κ-3 (κ is the Debye parameter) in agreement with a model calculation for the polarization of the ionic cloud. The origin of the slightly ionic strength dependent permanent dipole moment is not well understood. PMID:19431673

  3. Hydrogen-Selective Membrane

    DOEpatents

    Collins, John P.; Way, J. Douglas

    1995-09-19

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2.s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.

  4. Hydrogen-selective membrane

    DOEpatents

    Collins, J.P.; Way, J.D.

    1995-09-19

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2}s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  5. Hydrogen-selective membrane

    DOEpatents

    Collins, John P.; Way, J. Douglas

    1997-01-01

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2. s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.

  6. Hydrogen-selective membrane

    DOEpatents

    Collins, J.P.; Way, J.D.

    1997-07-29

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2} s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  7. Membrane Transfer Phenomena (MTP)

    NASA Technical Reports Server (NTRS)

    Mason, Larry

    1996-01-01

    Progress has been made in several areas of the definition, design, and development of the Membrane Transport Apparatus (MTA) instrument and associated sensors and systems. Progress is also reported in the development of software modules for instrument control, experimental image and data acquisition, and data analysis.

  8. Membrane humidity control investigation

    NASA Technical Reports Server (NTRS)

    Elam, J.; Ruder, J.; Strumpf, H.

    1974-01-01

    The basic performance data on a hollow fiber membrane unit that removes water from a breathing gas loop by diffusion is presented. Using available permeability data for cellulose acetate, a preliminary design was made of a dehumidifier unit that would meet the problem statement.

  9. Composite oxygen transport membrane

    SciTech Connect

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2014-08-05

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  10. Life, death and membrane bilayers.

    PubMed

    Hulbert, A J

    2003-07-01

    Membrane bilayers are essential elements of life, and the synthesis of the hydrocarbons that make up membrane bilayers may have preceded the appearance of life on Earth. Membrane-associated processes are significant components of metabolism, and the acyl composition of membrane bilayers is associated with metabolic activity in a predictable manner. This has resulted in the "membrane pacemaker" theory of metabolism, which proposes that the relative balance between monounsaturated and long-chain polyunsaturated acyl chains in membrane bilayers is a fundamental determinant of metabolic rate of a species. The omega-3 polyunsaturated docosahexaenoate is an especially important component of membranes in this regard. Whilst it is suggested that the physical properties of membrane polyunsaturates are important with respect to their influence on metabolic rate, it is their chemistry that is important in aging. Membrane acyl composition is related to maximum lifespan in mammals and birds, probably via their role in lipid peroxidation. Calorie restriction modifies acyl composition of membrane bilayers and is associated with decreased membrane lipid peroxidation and lifespan extension. The membrane pacemaker theory of metabolism has given birth to the membrane pacemaker hypothesis of aging, which will require further investigation. PMID:12796449

  11. Dialysis membranes for blood purification.

    PubMed

    Sakai, K

    2000-01-01

    All of the artificial membranes in industrial use, such as a reverse-osmosis membrane, dialysis membrane, ultrafiltration membrane, microfiltration membrane and gas separation membrane, also have therapeutic applications. The most commonly used artificial organ is the artificial kidney, a machine that performs treatment known as hemodialysis. This process cleanses the body of a patient with renal failure by dialysis and filtration, simple physicochemical processes. Hemodialysis membranes are used to remove accumulated uremic toxins, excess ions and water from the patient via the dialysate, and to supply (deficit) insufficient ions from the dialysate. Dialysis membranes used clinically in the treatment of patients with renal failure account for by far the largest volume of membranes used worldwide; more than 70 million square meters are used a year. Almost all dialyzers now in use are of the hollow-fiber type. A hollow-fiber dialyzer contains a bundle of approximately 10000 hollow fibers, each with an inner diameter of about 200 microm when wet. The membrane thickness is about 20-45 microm, and the length is 160-250 mm. The walls of the hollow fibers function as the dialysis membrane. Various materials, including cellulose-based materials and synthetic polymers, are used for dialysis membranes. This paper reviews blood purification, hemodialysis and dialysis membranes. PMID:10898241

  12. HYDROGEN SEPARATION MEMBRANES

    SciTech Connect

    Donald P. McCollor; John P. Kay

    1999-08-01

    A likely membrane for future testing of high-temperature hydrogen separation from a gasification product stream was targeted as an inorganic analog of a dense-metal membrane, where the hydrogen would dissolve into and diffuse through the membrane structure. An amorphous membrane such as zinc sulfide appeared to be promising. Previously, ZnS film coating tests had been performed using an electron-beam vacuum coating instrument, with zinc films successfully applied to glass substrates. The coatings appeared relatively stable in air and in a simple simulated gasification atmosphere at elevated temperature. Because the electron-beam coating instrument suffered irreparable breakdown, several alternative methods were tested in an effort to produce a nitrogen-impermeable, hydrogen-permeable membrane on porous sintered steel substrates. None of the preparation methods proved successful in sealing the porous substrate against nitrogen gas. To provide a nitrogen-impermeable ZnS material to test for hydrogen permeability, two ZnS infrared sample windows were purchased. These relatively thick ''membranes'' did not show measurable permeation of hydrogen, either due to lack of absorption or a negligible permeation rate due to their thickness. To determine if hydrogen was indeed adsorbed, thermogravimetric and differential thermal analyses tests were performed on samples of ZnS powder. A significant uptake of hydrogen gas occurred, corresponding to a maximum of 1 mole H{sub 2} per 1 mole ZnS at a temperature of 175 C. The hydrogen remained in the material at ambient temperature in a hydrogen atmosphere, but approximately 50% would be removed in argon. Reheating in a hydrogen atmosphere resulted in no additional hydrogen uptake. Differential scanning calorimetry indicated that the hydrogen uptake was probably due to the formation of a zinc-sulfur-hydrogen species resulting in the formation of hydrogen sulfide. The zinc sulfide was found to be unstable above approximately 200 C

  13. Selective permeability of PVA membranes. I - Radiation-crosslinked membranes

    NASA Technical Reports Server (NTRS)

    Katz, M. G.; Wydeven, T., Jr.

    1981-01-01

    The water and salt transport properties of ionizing radiation crosslinked poly(vinyl alcohol) (PVA) membranes were investigated. The studied membranes showed high permeabilities and low selectivities for both water and salt. The results were found to be in accord with a modified solution-diffusion model for transport across the membranes, in which pressure-dependent permeability coefficients are employed.

  14. Selective Permeability of PVA Membranes. I: Radiation-Crosslinked Membranes

    NASA Technical Reports Server (NTRS)

    Katz, Moshe G.; Wydeven, Theodore, Jr.

    1981-01-01

    The water and salt transport properties of ionizing radiation crosslinked poly(vinyl alcohol) (PVA) membranes were investigated. The studied membranes showed high permeabilities and low selectivities for both water and salt. The results were found to be in accord with a modified solution-diffusion model for transport across the membranes, in which pressure-dependent permeability coefficients are employed.

  15. Process of treating cellulosic membrane and alkaline with membrane separator

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    The improvement of water-soluble cellulose ether membranes for use as separators in concentrated alkaline battery cells is discussed. The process of contacting membranes with an aqueous alkali solution of concentration less than that of the alkali solution to be used in the battery but above that at which the membrane is soluble is described.

  16. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-12-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  17. Bioanalysis with Potentiometric Membrane Electrodes.

    ERIC Educational Resources Information Center

    Rechnitz, G. A.

    1982-01-01

    Discusses major themes and interrelationships common to bioselective potentiometric membrane electrodes including the nature of bioselective electrodes, applications, and future prospects. Includes tables on traditional ion-selective membrane electrodes, nontraditional electrodes, and typical biocatalytic potentiometric electrodes. (Author/JN)

  18. Ion Channels in Nerve Membranes

    ERIC Educational Resources Information Center

    Ehrenstein, Gerald

    1976-01-01

    Discusses research that indicates that nerve membranes, which play a key role in the conduction of impulses, are traversed by protein channels with ion pathways opened and closed by the membrane electric field. (Author/MLH)

  19. Membrane Cells for Brine Electrolysis.

    ERIC Educational Resources Information Center

    Tingle, M.

    1982-01-01

    Membrane cells were developed as alternatives to mercury and diaphragm cells for the electrolysis of brine. Compares the three types of cells, focusing on the advantages and disadvantages of membrane cells. (JN)

  20. Active membrane phased array radar

    NASA Technical Reports Server (NTRS)

    Moussessian, Alina; Del Castillo, Linda; Huang, John; Sadowy, Greg; Hoffman, James; Smith, Phil; Hatake, Toshiro; Derksen, Chuck; Lopez, Bernardo; Caro, Ed

    2005-01-01

    We have developed the first membrane-based active phased array in L-band (1.26GHz). The array uses membrane compatible Transmit/Receive (T/R) modules (membrane T/R) for each antenna element. We use phase shifters within each T/R module for electronic beam steering. We will discuss the T/R module design and integration with the membrane, We will also present transmit and receive beam-steering results for the array.

  1. Fuel cell with ionization membrane

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2007-01-01

    A fuel cell is disclosed comprising an ionization membrane having at least one area through which gas is passed, and which ionizes the gas passing therethrough, and a cathode for receiving the ions generated by the ionization membrane. The ionization membrane may include one or more openings in the membrane with electrodes that are located closer than a mean free path of molecules within the gas to be ionized. Methods of manufacture are also provided.

  2. Pretreatment and Membrane Hydrophilic Modification to Reduce Membrane Fouling

    PubMed Central

    Sun, Wen; Liu, Junxia; Chu, Huaqiang; Dong, Bingzhi

    2013-01-01

    The application of low pressure membranes (microfiltration/ultrafiltration) has undergone accelerated development for drinking water production. However, the major obstacle encountered in its popularization is membrane fouling caused by natural organic matter (NOM). This paper firstly summarizes the two factors causing the organic membrane fouling, including molecular weight (MW) and hydrophilicity/hydrophobicity of NOM, and then presents a brief introduction of the methods which can prevent membrane fouling such as pretreatment of the feed water (e.g., coagulation, adsorption, and pre-oxidation) and membrane hydrophilic modification (e.g., plasma modification, irradiation grafting modification, surface coating modification, blend modification, etc.). Perspectives of further research are also discussed. PMID:24956947

  3. Focus issue: signaling across membranes.

    PubMed

    Gough, Nancy R

    2005-12-01

    This week's issues of Science and Science's STKE focus on movement of molecules and information across cellular membranes. Science highlights the mechanisms by which proteins, ions, and DNA cross the membranes of eukaryotic and prokaryotic cells. STKE addresses how information is transmitted across cell membranes to allow cells to communicate with each other and to respond to signals in their environments. PMID:16333016

  4. Bioenergetics: Proton fronts on membranes

    NASA Astrophysics Data System (ADS)

    Agmon, Noam; Gutman, Menachem

    2011-11-01

    Proton migration on membranes is a crucial step in the bioenergetics of the cell. It has typically been regarded as slow successive proton transfers between ionizable moieties within the membrane, but recent measurements suggest fast lateral diffusion in the membrane's hydration layer.

  5. Membrane tension and peripheral protein density mediate membrane shape transitions

    PubMed Central

    Shi, Zheng; Baumgart, Tobias

    2015-01-01

    Endocytosis is a ubiquitous eukaryotic membrane budding, vesiculation, and internalization process fulfilling numerous roles including compensation of membrane area increase after bursts of exocytosis. The mechanism of the coupling between these two processes to enable homeostasis is not well understood. Recently, an ultrafast endocytosis (UFE) pathway was revealed with a speed significantly exceeding classical clathrin-mediated endocytosis (CME). Membrane tension reduction is a potential mechanism by which endocytosis can be rapidly activated at remote sites. Here we provide experimental evidence for a mechanism whereby membrane tension reduction initiates membrane budding and tubulation mediated by endocytic proteins such as endophilin A1. We find that shape instabilities occur at well-defined membrane tensions and surface densities of endophilin. From our data, we obtain a membrane shape stability diagram that shows remarkable consistency with a quantitative model. This model applies to all laterally diffusive curvature coupling proteins and therefore a wide range of endocytic proteins. PMID:25569184

  6. Membrane tension and peripheral protein density mediate membrane shape transitions.

    PubMed

    Shi, Zheng; Baumgart, Tobias

    2015-01-01

    Endocytosis is a ubiquitous eukaryotic membrane budding, vesiculation and internalization process fulfilling numerous roles including compensation of membrane area increase after bursts of exocytosis. The mechanism of the coupling between these two processes to enable homeostasis is not well understood. Recently, an ultrafast endocytosis (UFE) pathway was revealed with a speed significantly exceeding classical clathrin-mediated endocytosis (CME). Membrane tension reduction is a potential mechanism by which endocytosis can be rapidly activated at remote sites. Here, we provide experimental evidence for a mechanism whereby membrane tension reduction initiates membrane budding and tubulation mediated by endocytic proteins, such as endophilin A1. We find that shape instabilities occur at well-defined membrane tensions and surface densities of endophilin. From our data, we obtain a membrane shape stability diagram that shows remarkable consistency with a quantitative model. This model applies to all laterally diffusive curvature-coupling proteins and therefore a wide range of endocytic proteins. PMID:25569184

  7. Membrane tension and peripheral protein density mediate membrane shape transitions

    NASA Astrophysics Data System (ADS)

    Shi, Zheng; Baumgart, Tobias

    2015-01-01

    Endocytosis is a ubiquitous eukaryotic membrane budding, vesiculation and internalization process fulfilling numerous roles including compensation of membrane area increase after bursts of exocytosis. The mechanism of the coupling between these two processes to enable homeostasis is not well understood. Recently, an ultrafast endocytosis (UFE) pathway was revealed with a speed significantly exceeding classical clathrin-mediated endocytosis (CME). Membrane tension reduction is a potential mechanism by which endocytosis can be rapidly activated at remote sites. Here, we provide experimental evidence for a mechanism whereby membrane tension reduction initiates membrane budding and tubulation mediated by endocytic proteins, such as endophilin A1. We find that shape instabilities occur at well-defined membrane tensions and surface densities of endophilin. From our data, we obtain a membrane shape stability diagram that shows remarkable consistency with a quantitative model. This model applies to all laterally diffusive curvature-coupling proteins and therefore a wide range of endocytic proteins.

  8. Recycling of used perfluorosulfonic acid membranes

    DOEpatents

    Grot, Stephen; Grot, Walther

    2007-08-14

    A method for recovering and recycling catalyst coated fuel cell membranes includes dissolving the used membranes in water and solvent, heating the dissolved membranes under pressure and separating the components. Active membranes are produced from the recycled materials.

  9. NASA In-step: Permeable Membrane Experiment

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Viewgraphs on the Permeable Membrane Experiment are presented. An experiment overview is given. The Membrane Phase Separation Experiment, Membrane Diffusion Interference Experiment, and Membrane Wetting Experiment are described. Finally, summary and conclusions are discussed.

  10. Membrane bioreactors for water reclamation.

    PubMed

    Tao, G; Kekre, K; Wei, Z; Lee, T C; Viswanath, B; Seah, H

    2005-01-01

    Singapore has been using dual membrane technology (MF/UF RO) to produce high-grade water (NEWater) from secondary treated sewage. Membrane bioreactor (MBR) has very high potential and will lead to the further improvement of the productivity and quality of high-grade water. This study was focused on the technical feasibility of MBR system for water reclamation in Singapore, making a comparison between various membrane systems available and to get operational experience in terms of membrane cleaning and other issues. Three MBR plants were built at Bedok Water Reclamation Plant with a design flow of 300 m3/day each. They were commissioned in March 2003. Three different types of submerged membranes were tested. They are Membrane A, plate sheet membrane with pore size of 0.4 microm; Membrane B, hollow fibre membrane with pore size of 0.4 microm; and Membrane C, hollow fibre membrane with pore size of 0.035 microm. The permeate quality of all the three MBR Systems were found equivalent to or better than that of the conventional tertiary treatment by ultrafiltration. MBR permeate TOC was about 2 mg/l lower than UF permeate TOC. GC-MS, GC-ECD and HPLC scan results show that trace organic contaminants in MBR permeate and UF permeate were in the same range. MBR power consumption can be less than 1 kwh/m3. Gel layer or dynamic membrane generated on the submerged membrane surface played an important role for the lower MBR permeate TOC than the supernatant TOC in the membrane tank. Intensive chemical cleaning can temporarily remove this layer. During normal operation conditions, the formation of dynamic membrane may need one day to obtain the steady low TOC levels in MBR permeate. PMID:16004005

  11. The First Cell Membranes

    NASA Technical Reports Server (NTRS)

    Deamer, David; Dworkin, Jason P.; Sandford, Scott A.; Bernstein, Max P.; Allamandola, Louis J.

    2004-01-01

    Organic compounds are synthesized in the interstellar medium and can be delivered to planetary surfaces such as the early Earth, where they mix with endogenous organic mixtures. Some of these compounds are amphiphilic, having polar and non-polar groups on the same molecule. Amphiphilic compounds spontaneously self-assembly into more complex structures such as bimolecular layers, which in turn form closed membranous vesicles. The first forms of cellular life required self-assembled membranes that were likely to be available on the prebiotic Earth. Laboratory simulations show that such vesicles readily encapsulate functional macromolecules, including nucleic acids and polymerases. A goal of future investigations is to fabricate artificial cells as models of the origin of life.

  12. Membrane separation of hydrocarbons

    DOEpatents

    Chang, Y. Alice; Kulkarni, Sudhir S.; Funk, Edward W.

    1986-01-01

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture through a polymeric membrane. The membrane which is utilized to effect the separation comprises a polymer which is capable of maintaining its integrity in the presence of hydrocarbon compounds and which has been modified by being subjected to the action of a sulfonating agent. Sulfonating agents which may be employed will include fuming sulfuric acid, chlorosulfonic acid, sulfur trioxide, etc., the surface or bulk modified polymer will contain a degree of sulfonation ranging from about 15 to about 50%. The separation process is effected at temperatures ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psig.

  13. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Processing of perovskites of LSC, LSF and LSCF composition for evaluation of mechanical properties as a function of environment are begun. The studies are to be in parallel with LSFCO composition to characterize the segregation of cations and slow crack growth in environmental conditions. La{sub 1-x}Sr{sub x}FeO{sub 3-d} has also been characterized for paramagnetic ordering at room temperature and the evolution of magnetic moments as a function of temperature are investigated. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport.

  14. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. Thermogravimetric analysis (TGA) was carried out on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} to investigate oxygen deficiency ({delta}) of the sample. The TGA was performed in a controlled atmosphere using oxygen, argon, carbon monoxide and carbon dioxide with adjustable gas flow rates. In this experiment, the weight loss and gain of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} was directly measured by TGA. The weight change of the sample was evaluated at between 600 and 1250 C in air or 1000 C as a function of oxygen partial pressure. The oxygen deficiencies calculated from TGA data as a function of oxygen activity and temperature will be estimated and compared with that from neutron diffraction measurement in air. The LSFT and LSFT/CGO membranes were fabricated from the powder obtained from Praxair Specialty Ceramics. The sintered membranes were subjected to microstructure analysis and hardness analysis. The LSFT membrane is composed of fine grains with two kinds of grain morphology. The grain size distribution was characterized using image analysis. In LSFT/CGO membrane a lot of grain pullout was observed from the less dense, porous phase. The hardness of the LSFT and dual phase membranes were studied at various loads. The hardness values obtained from the cross section of the membranes were also compared to that of the values obtained from the surface. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. Measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} as a function of temperature an oxygen partial pressure are reported. Further analysis of the dilatometry data obtained previously is presented. A series of isotope transients

  15. Membrane Protein Prediction Methods

    PubMed Central

    Punta, Marco; Forrest, Lucy R.; Bigelow, Henry; Kernytsky, Andrew; Liu, Jinfeng; Rost, Burkhard

    2007-01-01

    We survey computational approaches that tackle membrane protein structure and function prediction. While describing the main ideas that have led to the development of the most relevant and novel methods, we also discuss pitfalls, provide practical hints and highlight the challenges that remain. The methods covered include: sequence alignment, motif search, functional residue identification, transmembrane segment and protein topology predictions, homology and ab initio modeling. Overall, predictions of functional and structural features of membrane proteins are improving, although progress is hampered by the limited amount of high-resolution experimental information available. While predictions of transmembrane segments and protein topology rank among the most accurate methods in computational biology, more attention and effort will be required in the future to ameliorate database search, homology and ab initio modeling. PMID:17367718

  16. HSPES membrane electrode assembly

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Yen, Shiao-Ping (Inventor)

    2000-01-01

    An improved fuel cell electrode, as well as fuel cells and membrane electrode assemblies that include such an electrode, in which the electrode includes a backing layer having a sintered layer thereon, and a non-sintered free-catalyst layer. The invention also features a method of forming the electrode by sintering a backing material with a catalyst material and then applying a free-catalyst layer.

  17. Bioselective Membrane Electrode Probes

    NASA Astrophysics Data System (ADS)

    Rechnitz, Garry A.

    1981-10-01

    The use of intact bacterial cells or tissue slices of plant and animal origin as immobilized biocatalysts has extended the possible range of potentiometric bioselective membrane electrodes beyond that of conventional enzyme electrodes. The use of such materials as biocatalysts offers advantages in situations where isolated enzymes are not available or where multistep reaction paths are required. The resulting bioselective electrodes also offer exceptional ease of preparation, time stability, and low cost.

  18. Membrane Transport Phenomena (MTP)

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1997-01-01

    The third semi-annual period of the MTP project has been involved with performing experiments using the Membrane Transport Apparatus (MTA), development of analysis techniques for the experiment results, analytical modeling of the osmotic transport phenomena, and completion of a DC-9 microgravity flight to test candidate fluid cell geometries. Preparations were also made for the MTP Science Concept Review (SCR), held on 13 June 1997 at Lockheed Martin Astronautics in Denver. These activities are detailed in the report.

  19. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-07-01

    This is the fourth quarterly report on a new study to develop a ceramic membrane/metal joint. The first experiments using the La-Sr-Fe-O ceramic are reported. Some of the analysis performed on the samples obtained are commented upon. A set of experiments to characterize the mechanical strength and thermal fatigue properties of the joints has been designed and begun. Finite element models of joints used to model residual stresses are described.

  20. Challenges in plasma membrane phosphoproteomics

    PubMed Central

    Orsburn, Benjamin C; Stockwin, Luke H; Newton, Dianne L

    2011-01-01

    The response to extracellular stimuli often alters the phosphorylation state of plasma membrane-associated proteins. In this regard, generation of a comprehensive membrane phosphoproteome can significantly enhance signal transduction and drug mechanism studies. However, analysis of this subproteome is regarded as technically challenging, given the low abundance and insolubility of integral membrane proteins, combined with difficulties in isolating, ionizing and fragmenting phosphopeptides. In this article, we highlight recent advances in membrane and phosphoprotein enrichment techniques resulting in improved identification of these elusive peptides. We also describe the use of alternative fragmentation techniques, and assess their current and future value to the field of membrane phosphoproteomics. PMID:21819303

  1. Water vapor diffusion membrane development

    NASA Technical Reports Server (NTRS)

    Tan, M. K.

    1976-01-01

    A total of 18 different membranes were procured, characterized, and tested in a modified bench-scale vapor diffusion water reclamation unit. Four membranes were selected for further studies involving membrane fouling. Emphasis was placed on the problem of flux decline due to membrane fouling. This is discussed in greater details under "Summary and Discussion on Membrane Fouling Studies" presented in pages 47-51. The system was also investigated for low temperature application on wash-water where the permeated water is not recovered but vented into space vacuum.

  2. Premature rupture of membranes.

    PubMed Central

    Poma, P. A.

    1996-01-01

    The management of patients with premature rupture of membranes has changed markedly in the past several years. The basis for this is a combination of a better understanding of newborn physiology, improved neonatal care, refinements in antibiotic therapy, and the widespread use of maternal and fetal monitoring. The best outcome for both mother and infant undoubtedly reflects data based on a combination of factors, among which are gestational age survival, evidence of fetal distress, presence or absence of labor and sepsis, and of course, the cervical condition as it is related to labor-readiness. An important recent advance is the recognition that an active observation management program is associated with less morbidity and mortality than the classic management course of delivery within 12 hours of membrane rupture. The fact that preterm premature rupture of membranes tends to recur in subsequent pregnancies offers an opportunity for prevention. Moreover, advances in perinatal and neonatal care will continue to improve the outcomes of these women and their children. PMID:8583489

  3. Novel Catalytic Membrane Reactors

    SciTech Connect

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  4. Viral membrane fusion

    SciTech Connect

    Harrison, Stephen C.

    2015-05-15

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism.

  5. Lipid exchange between membranes.

    PubMed Central

    Jähnig, F

    1984-01-01

    The exchange of lipid molecules between vesicle bilayers in water and a monolayer forming at the water surface was investigated theoretically within the framework of thermodynamics. The total number of exchanged molecules was found to depend on the bilayer curvature as expressed by the vesicle radius and on the boundary condition for exchange, i.e., whether during exchange the radius or the packing density of the vesicles remains constant. The boundary condition is determined by the rate of flip-flop within the bilayer relative to the rate of exchange between bi- and monolayer. If flip-flop is fast, exchange is independent of the vesicle radius; if flip-flop is slow, exchange increases with the vesicle radius. Available experimental results agree with the detailed form of this dependence. When the theory was extended to exchange between two bilayers of different curvature, the direction of exchange was also determined by the curvatures and the boundary conditions for exchange. Due to the dependence of the boundary conditions on flip-flop and, consequently, on membrane fluidity, exchange between membranes may partially be regulated by membrane fluidity. PMID:6518251

  6. Painted supported lipid membranes

    PubMed Central

    Florin, E.-L.; Gaub, H. E.

    1993-01-01

    We report herein measurements on a novel type of supported lipid films, which we call painted supported membranes (PSM). These membranes are formed in a self-assembly process on alkylated gold films from an organic solution. The formation process was investigated with surface plasmon resonance microscopy. The optical and electrical properties of the films were determined for various types of lipids and as a function of temperature by means of cyclic voltammetry and potential relaxation after charge injection. We could show that these films exhibit an extraordinarily high specific resistivity which, depending on the lipid, may be as high as 109 ohm/cm2. We could also show that due to this low conductivity, an electrical polarization across the PSM relaxes with characteristic time constants of up to 20 min. The electrical properties together with their high mechanical stability and accessibility to surface sensitive techniques make these films well suitable model membranes for optical and electrical investigations. Examples for such applications are given in the subsequent article by Seifert et al. ImagesFIGURE 3FIGURE 4 PMID:19431873

  7. Virus separation using membranes.

    PubMed

    Grein, Tanja A; Michalsky, Ronald; Czermak, Peter

    2014-01-01

    Industrial manufacturing of cell culture-derived viruses or virus-like particles for gene therapy or vaccine production are complex multistep processes. In addition to the bioreactor, such processes require a multitude of downstream unit operations for product separation, concentration, or purification. Similarly, before a biopharmaceutical product can enter the market, removal or inactivation of potential viral contamination has to be demonstrated. Given the complexity of biological solutions and the high standards on composition and purity of biopharmaceuticals, downstream processing is the bottleneck in many biotechnological production trains. Membrane-based filtration can be an economically attractive and efficient technology for virus separation. Viral clearance, for instance, of up to seven orders of magnitude has been reported for state of the art polymeric membranes under best conditions.This chapter summarizes the fundamentals of virus ultrafiltration, diafiltration, or purification with adsorptive membranes. In lieu of an impractical universally applicable protocol for virus filtration, application of these principles is demonstrated with two examples. The chapter provides detailed methods for production, concentration, purification, and removal of a rod-shaped baculovirus (Autographa californica M nucleopolyhedrovirus, about 40 × 300 nm in size, a potential vector for gene therapy, and an industrially important protein expression system) or a spherical parvovirus (minute virus of mice, 22-26 nm in size, a model virus for virus clearance validation studies). PMID:24297430

  8. Microtechnologies for membrane protein studies

    PubMed Central

    Suzuki, Hiroaki

    2008-01-01

    Despite the rapid and enormous progress in biotechnologies, the biochemical analysis of membrane proteins is still a difficult task. The presence of the large hydrophobic region buried in the lipid bilayer membrane (transmembrane domain) makes it difficult to analyze membrane proteins in standard assays developed for water-soluble proteins. To handle membrane proteins, the lipid bilayer membrane may be used as a platform to sustain their functionalities. Relatively slow progress in developing micro total analysis systems (μTAS) for membrane protein analysis directly reflects the difficulty of handling lipid membranes, which is a common problem in bulk measurement technologies. Nonetheless, researchers are continuing to develop efficient and sensitive analytical microsystems for the study of membrane proteins. Here, we review the latest developments, which enable detection of events caused by membrane proteins, such as ion channel current, membrane transport, and receptor/ligand interaction, by utilizing microfabricated structures. High-throughput and highly sensitive detection systems for membrane proteins are now becoming a realistic goal. Although most of these systems are still in the early stages of development, we believe this field will become one of the most important applications of μTAS for pharmaceutical and clinical screenings as well as for basic biochemical research. PMID:18335213

  9. Solid-state membrane module

    DOEpatents

    Gordon, John Howard; Taylor, Dale M.

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  10. Bleb Nucleation through Membrane Peeling

    NASA Astrophysics Data System (ADS)

    Alert, Ricard; Casademunt, Jaume

    2016-02-01

    We study the nucleation of blebs, i.e., protrusions arising from a local detachment of the membrane from the cortex of a cell. Based on a simple model of elastic linkers with force-dependent kinetics, we show that bleb nucleation is governed by membrane peeling. By this mechanism, the growth or shrinkage of a detached membrane patch is completely determined by the linker kinetics, regardless of the energetic cost of the detachment. We predict the critical nucleation radius for membrane peeling and the corresponding effective energy barrier. These may be typically smaller than those predicted by classical nucleation theory, implying a much faster nucleation. We also perform simulations of a continuum stochastic model of membrane-cortex adhesion to obtain the statistics of bleb nucleation times as a function of the stress on the membrane. The determinant role of membrane peeling changes our understanding of bleb nucleation and opens new directions in the study of blebs.

  11. CHARMM-GUI Membrane Builder toward realistic biological membrane simulations.

    PubMed

    Wu, Emilia L; Cheng, Xi; Jo, Sunhwan; Rui, Huan; Song, Kevin C; Dávila-Contreras, Eder M; Qi, Yifei; Lee, Jumin; Monje-Galvan, Viviana; Venable, Richard M; Klauda, Jeffery B; Im, Wonpil

    2014-10-15

    CHARMM-GUI Membrane Builder, http://www.charmm-gui.org/input/membrane, is a web-based user interface designed to interactively build all-atom protein/membrane or membrane-only systems for molecular dynamics simulations through an automated optimized process. In this work, we describe the new features and major improvements in Membrane Builder that allow users to robustly build realistic biological membrane systems, including (1) addition of new lipid types, such as phosphoinositides, cardiolipin (CL), sphingolipids, bacterial lipids, and ergosterol, yielding more than 180 lipid types, (2) enhanced building procedure for lipid packing around protein, (3) reliable algorithm to detect lipid tail penetration to ring structures and protein surface, (4) distance-based algorithm for faster initial ion displacement, (5) CHARMM inputs for P21 image transformation, and (6) NAMD equilibration and production inputs. The robustness of these new features is illustrated by building and simulating a membrane model of the polar and septal regions of E. coli membrane, which contains five lipid types: CL lipids with two types of acyl chains and phosphatidylethanolamine lipids with three types of acyl chains. It is our hope that CHARMM-GUI Membrane Builder becomes a useful tool for simulation studies to better understand the structure and dynamics of proteins and lipids in realistic biological membrane environments. PMID:25130509

  12. Disulfide-Mediated Oligomer Formation in Borrelia burgdorferi Outer Surface Protein C, a Critical Virulence Factor and Potential Lyme Disease Vaccine Candidate▿

    PubMed Central

    Earnhart, Christopher G.; Rhodes, DeLacy V. L.; Marconi, Richard T.

    2011-01-01

    Borrelia burgdorferi OspC is an outer membrane lipoprotein required for the establishment of infection in mammals. Due to its universal distribution among B. burgdorferi sensu lato strains and high antigenicity, it is being explored for the development of a next-generation Lyme disease vaccine. An understanding of the surface presentation of OspC will facilitate efforts to maximize its potential as a vaccine candidate. OspC forms homodimers at the cell surface, and it has been hypothesized that it may also form oligomeric arrays. Here, we employ site-directed mutagenesis to test the hypothesis that interdimeric disulfide bonds at cysteine 130 (C130) mediate oligomerization. B. burgdorferi B31 ospC was replaced with a C130A substitution mutant to yield strain B31::ospC(C130A). Recombinant protein was also generated. Disulfide-bond-dependent oligomer formation was demonstrated and determined to be dependent on C130. Oligomerization was not required for in vivo function, as B31::ospC(C130A) retained infectivity and disseminated normally. The total IgG response and the induced isotype pattern were similar between mice infected with untransformed B31 and those infected with the B31::ospC(C130A) strain. These data indicate that the immune response to OspC is not significantly altered by formation of OspC oligomers, a finding that has significant implications in Lyme disease vaccine design. PMID:21525304

  13. Membranes, methods of making membranes, and methods of separating gases using membranes

    DOEpatents

    Ho, W. S. Winston

    2012-10-02

    Membranes, methods of making membranes, and methods of separating gases using membranes are provided. The membranes can include at least one hydrophilic polymer, at least one cross-linking agent, at least one base, and at least one amino compound. The methods of separating gases using membranes can include contacting a gas stream containing at least one of CO.sub.2, H.sub.2S, and HCl with one side of a nonporous and at least one of CO.sub.2, H.sub.2S, and HCl selectively permeable membrane such that at least one of CO.sub.2, H.sub.2S, and HCl is selectively transported through the membrane.

  14. Influences of Membrane Mimetic Environments on Membrane Protein Structures

    PubMed Central

    Zhou, Huan-Xiang; Cross, Timothy A.

    2013-01-01

    The number of membrane protein structures in the Protein Data Bank is becoming significant and growing. Here, the transmembrane domain structures of the helical membrane proteins are evaluated to assess the influences of the membrane mimetic environments. Toward this goal, many of the biophysical properties of membranes are discussed and contrasted with those of the membrane mimetics commonly used for structure determination. Although the mimetic environments can perturb the protein structures to an extent that potentially gives rise to misinterpretation of functional mechanisms, there are also many structures that have a native-like appearance. From this assessment, an initial set of guidelines is proposed for distinguishing native-like from nonnative-like membrane protein structures. With experimental techniques for validation and computational methods for refinement and quality assessment and enhancement, there are good prospects for achieving native-like structures for these very important proteins. PMID:23451886

  15. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Choe, Yoong-Kee; Henson, Neil J.; Kim, Yu Seung

    2015-12-01

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.

  16. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    SciTech Connect

    Choe, Yoong-Kee; Henson, Neil J.; Kim, Yu Seung

    2015-12-31

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.

  17. Pervaporation from a dense membrane: roles of permeant-membrane interactions, Kelvin effect, and membrane swelling.

    PubMed

    Sharma, Ashutosh; Thampi, Sumesh P; Suggala, Satyanarayana V; Bhattacharya, Prashant K

    2004-05-25

    Dense polymeric membranes with extremely small pores in the form of free volume are used widely in the pervaporative separation of liquid mixtures. The membrane permeation of a component followed by its vaporization on the opposite face is governed by the solubility and downstream pressure. We measured the evaporative flux of pure methanol and 2-propanol using dense membranes with different free volumes and different affinities (wettabilities and solubilities) for the permeant. Interestingly, the evaporative flux for different membranes vanished substantially (10-75%) below the equilibrium vapor pressure in the bulk. The discrepancy was larger for a smaller pore size and for more wettable membranes (higher positive spreading coefficients). This observation, which cannot be explained by the existing (mostly solution-diffusion type) models ofpervaporation, suggests an important role for the membrane-permeant interactions in nanopores that can lower the equilibrium vapor pressure. The pore sizes, as estimated from the positron annihilation, ranged from 0.2 to 0.6 nm for the dry membranes. Solubilities of methanol in different composite membranes were estimated from the Flory-Huggins theory. The interaction parameter was obtained from the surface properties measured by the contact angle goniometry in conjunction with the acid-base theory of polar surface interactions. For the membranes examined, the increase in the "wet" pore volume due to membrane swelling correlates almost linearly with the solubility of methanol in these membranes. Indeed, the observations are found to be consistent with the lowering of the equilibrium vapor pressure on the basis of the Kelvin equation. Thus, a higher solubility or selectivity of a membrane also implies stronger permeant-membrane interactions and a greater retention of the permeant by the membrane, thus decreasing its evaporative flux. This observation has important implications for the interpretation of existing experiments and in

  18. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-08-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

  19. Proteins interacting with Membranes: Protein Sorting and Membrane Shaping

    NASA Astrophysics Data System (ADS)

    Callan-Jones, Andrew

    2015-03-01

    Membrane-bound transport in cells requires generating membrane curvature. In addition, transport is selective, in order to establish spatial gradients of membrane components in the cell. The mechanisms underlying cell membrane shaping by proteins and the influence of curvature on membrane composition are active areas of study in cell biophysics. In vitro approaches using Giant Unilamellar Vesicles (GUVs) are a useful tool to identify the physical mechanisms that drive sorting of membrane components and membrane shape change by proteins. I will present recent work on the curvature sensing and generation of IRSp53, a protein belonging to the BAR family, whose members, sharing a banana-shaped backbone, are involved in endocytosis. Pulling membrane tubes with 10-100 nm radii from GUVs containing encapsulated IRSp53 have, unexpectedly, revealed a non-monotonic dependence of the protein concentration on the tube as a function of curvature. Experiments also show that bound proteins alter the tube mechanics and that protein phase separation along the tube occurs at low tensions. I will present accompanying theoretical work that can explain these findings based on the competition between the protein's intrinsic curvature and the effective rigidity of a membrane-protein patch.

  20. Protein-Induced Membrane Curvature Alters Local Membrane Tension

    PubMed Central

    Rangamani, Padmini; Mandadap, Kranthi K.; Oster, George

    2014-01-01

    Adsorption of proteins onto membranes can alter the local membrane curvature. This phenomenon has been observed in biological processes such as endocytosis, tubulation, and vesiculation. However, it is not clear how the local surface properties of the membrane, such as membrane tension, change in response to protein adsorption. In this article, we show that the partial differential equations arising from classical elastic model of lipid membranes, which account for simultaneous changes in shape and membrane tension due to protein adsorption in a local region, cannot be solved for nonaxisymmetric geometries using straightforward numerical techniques; instead, a viscous-elastic formulation is necessary to fully describe the system. Therefore, we develop a viscous-elastic model for inhomogeneous membranes of the Helfrich type. Using the newly available viscous-elastic model, we find that the lipids flow to accommodate changes in membrane curvature during protein adsorption. We show that, at the end of protein adsorption process, the system sustains a residual local tension to balance the difference between the actual mean curvature and the imposed spontaneous curvature. We also show that this change in membrane tension can have a functional impact such as altered response to pulling forces in the presence of proteins. PMID:25099814

  1. Electrically Conductive Porous Membrane

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth Alan (Inventor)

    2014-01-01

    The present invention relates to an electrically conductive membrane that can be configured to be used in fuel cell systems to act as a hydrophilic water separator internal to the fuel cell, or as a water separator used with water vapor fed electrolysis cells, or as a water separator used with water vapor fed electrolysis cells, or as a capillary structure in a thin head pipe evaporator, or as a hydrophobic gas diffusion layer covering the fuel cell electrode surface in a fuel cell.

  2. Supported liquid membranes

    SciTech Connect

    Danesi, P.R.

    1984-01-01

    The possibility of utilizing thin layers of organic solutions of solvent extraction reagents, immobilized on microporous inert supports interposed between two aqueous solutions, for selectively removing metal ions from a mixture represents an attractive alternative to liquid-liquid extraction. A detailed knowledge of the liquid-liquid extraction equilibria and mass transfer kinetics is required to understand and to describe quantitatively the rate laws which control the permeation of metal species through Supported Liquid Membranes (SLM) and to exploit them for separation processes. This paper attempts to understand the mechanism of transport through SLM.

  3. [Juvenile idiopathic epiretinal membrane].

    PubMed

    Kontopoulou, K; Krause, S; Fili, S; Hayvazov, S; Schilling, H; Kohlhaas, M

    2016-07-01

    Idiopathic epiretinal membrane (iERM) is very rare in adolescent patients. The pathogenesis remains unclear although the role of hyalocytes is of major importance. The clinical features in young patients are different from those in older patients. We describe a case of iERM in a 15-year-old girl who presented with metamorphopsia of the right eye. This case report presents the basis for the decision for surgical treatment as well as the clinical features at follow-up examination 9 months after surgery. PMID:26458892

  4. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C. It was found that space group of R3c yielded a better refinement than a cubic structure of Pm3m. Oxygen occupancy was nearly 3 in the region from room temperature to 700 C, above which the occupancy decreased due to oxygen loss. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. The X-Ray data and fracture mechanisms points to non-equilibrium decomposition of the LSFCO OTM membrane. The non-equilibrium conditions could probably be due to the nature of the applied stress field (stressing rates) and leads to transition in crystal structures and increased kinetics of decomposition. The formations of a Brownmillerite or Sr2Fe2O5 type structures, which are orthorhombic are attributed to the ordering of oxygen vacancies. The cubic to orthorhombic transitions leads to 2.6% increase in strains and thus residual stresses generated could influence the fracture behavior of the OTM membrane. Continued investigations on the thermodynamic properties (stability and phase-separation behavior) and total conductivity of prototype membrane materials were carried out. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previously characterization, stoichiometry and conductivity measurements for samples of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were reported. In this report

  5. Molecularly Imprinted Membranes

    PubMed Central

    Trotta, Francesco; Biasizzo, Miriam; Caldera, Fabrizio

    2012-01-01

    Although the roots of molecularly imprinted polymers lie in the beginning of 1930s in the past century, they have had an exponential growth only 40–50 years later by the works of Wulff and especially by Mosbach. More recently, it was also proved that molecular imprinted membranes (i.e., polymer thin films) that show recognition properties at molecular level of the template molecule are used in their formation. Different procedures and potential application in separation processes and catalysis are reported. The influences of different parameters on the discrimination abilities are also discussed. PMID:24958291

  6. Gas separations using inorganic membranes

    SciTech Connect

    Egan, B.Z.; Singh, S.P.N.; Fain, D.E.; Roettger, G.E.; White, D.E.

    1992-04-01

    This report summarizes the results from a research and development program to develop, fabricate, and evaluate inorganic membranes for separating gases at high temperatures and pressures in hostile process environments encountered in fossil energy conversion processes such as coal gasification. The primary emphasis of the research was on the separation and recovery of hydrogen from synthesis gas. Major aspects of the program included assessment of the worldwide research and development activity related to gas separations using inorganic membranes, identification and selection of candidate membrane materials, fabrication and characterization of membranes using porous membrane technology developed at the Oak Ridge K-25 Site, and evaluation of the separations capability of the fabricated membranes in terms of permeabilities and fluxes of gases.

  7. When plasmonics meets membrane technology

    NASA Astrophysics Data System (ADS)

    Politano, A.; Cupolillo, A.; Di Profio, G.; Arafat, H. A.; Chiarello, G.; Curcio, E.

    2016-09-01

    In this review, we present the applications of thermoplasmonics in membrane processes. We discuss the influence of the heat capacity of the solvent, the amount of plasmonic nanoparticles in the membrane, the intensity of the light source and the transmembrane flow rate on the increase of permeability. Remarkably, thermoplasmonic effects do not involve any noticeable loss of membrane rejection. Herein, we consider application feasibilities, including application fields, requirements of feed, alternatives of light sources, promising thermoplasmonic nanoparticles and scaling up issues.

  8. When plasmonics meets membrane technology.

    PubMed

    Politano, A; Cupolillo, A; Di Profio, G; Arafat, H A; Chiarello, G; Curcio, E

    2016-09-14

    In this review, we present the applications of thermoplasmonics in membrane processes. We discuss the influence of the heat capacity of the solvent, the amount of plasmonic nanoparticles in the membrane, the intensity of the light source and the transmembrane flow rate on the increase of permeability. Remarkably, thermoplasmonic effects do not involve any noticeable loss of membrane rejection. Herein, we consider application feasibilities, including application fields, requirements of feed, alternatives of light sources, promising thermoplasmonic nanoparticles and scaling up issues. PMID:27414212

  9. Supported liquid membrane electrochemical separators

    SciTech Connect

    Pemsler, J. Paul; Dempsey, Michael D.

    1986-01-01

    Supported liquid membrane separators improve the flexibility, efficiency and service life of electrochemical cells for a variety of applications. In the field of electrochemical storage, an alkaline secondary battery with improved service life is described in which a supported liquid membrane is interposed between the positive and negative electrodes. The supported liquid membranes of this invention can be used in energy production and storage systems, electrosynthesis systems, and in systems for the electrowinning and electrorefining of metals.

  10. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped Ti-substituted perovskites, La{sub 0.7}Sr{sub 0.3}Mn{sub 1-x}Ti{sub x}O{sub 3}, with 0 {le} x {le} 0.20, were investigated by neutron diffraction, magnetization, electric resistivity, and magnetoresistance (MR) measurements. All samples show a rhombohedral structure (space group R3C) from 10 K to room temperature. At room temperature, the cell parameters a, c and the unit cell volume increase with increasing Ti content. However, at 10 K, the cell parameter a has a maximum value for x = 0.10, and decreases for x > 0.10, while the unit cell volume remains nearly constant for x > 0.10. The average (Mn,Ti)-O bond length increases up to x = 0.15, and the (Mn,Ti)-O-(Mn,Ti) bond angle decreases with increasing Ti content to its minimum value at x = 0.15 at room temperature. Below the Curie temperature TC, the resistance exhibits metallic behavior for the x {le} 0.05 samples. A metal (semiconductor) to insulator transition is observed for the x {ge} 0.10 samples. A peak in resistivity appears below TC for all samples, and shifts to a lower temperature as x increases. The substitution of Mn by Ti decreases the 2p-3d hybridization between O and Mn ions, reduces the bandwidth W, and increases the electron-phonon coupling. Therefore, the TC shifts to a lower temperature and the resistivity increases with increasing Ti content. A field-induced shift of the resistivity maximum occurs at x {le} 0.10 compounds. The maximum MR effect is about 70% for La{sub 0.7}Sr{sub 0.3}Mn{sub 0.8}Ti{sub 0.2}O{sub 3}. The separation of TC and the resistivity maximum temperature T{sub {rho},max} enhances the MR effect in these compounds due to the weak coupling between the magnetic ordering and the resistivity as compared with La{sub 0.7}Sr{sub 0.3}MnO{sub 3}. The bulk densities of the membranes were determined using the

  11. Catalytic Membrane Sensors

    SciTech Connect

    Boyle, T.J.; Brinker, C.J.; Gardner, T.J.; Hughes, R.C.; Sault, A.G.

    1998-12-01

    The proposed "catalytic membrane sensor" (CMS) was developed to generate a device which would selectively identify a specific reagent in a complex mixture of gases. This was to be accomplished by modifying an existing Hz sensor with a series of thin films. Through selectively sieving the desired component from a complex mixture and identifying it by decomposing it into Hz (and other by-products), a Hz sensor could then be used to detect the presence of the select component. The proposed "sandwich-type" modifications involved the deposition of a catalyst layered between two size selective sol-gel layers on a Pd/Ni resistive Hz sensor. The role of the catalyst was to convert organic materials to Hz and organic by-products. The role of the membraneo was to impart both chemical specificity by molecukir sieving of the analyte and converted product streams, as well as controlling access to the underlying Pd/Ni sensor. Ultimately, an array of these CMS elements encompassing different catalysts and membranes were to be developed which would enable improved selectivity and specificity from a compiex mixture of organic gases via pattern recognition methodologies. We have successfully generated a CMS device by a series of spin-coat deposited methods; however, it was determined that the high temperature required to activate the catalyst, destroys the sensor.

  12. Impact on floating membranes

    NASA Astrophysics Data System (ADS)

    Vandenberghe, Nicolas; Duchemin, Laurent

    2016-05-01

    When impacted by a rigid body, a thin elastic membrane with negligible bending rigidity floating on a liquid pool deforms. Two axisymmetric waves radiating from the impact point propagate. First, a longitudinal wave front, associated with in-plane deformation of the membrane and traveling at constant speed, separates an outward stress-free domain from a stretched domain. Then, in the stretched domain a dispersive transverse wave travels at a speed that depends on the local stretching rate. The dynamics is found to be self-similar in time. Using this property, we show that the wave dynamics is similar to the capillary waves that propagate at a liquid-gas interface but with a surface tension coefficient that depends on impact speed. During wave propagation, we observe the development of a buckling instability that gives rise to radial wrinkles. We address the dynamics of this fluid-body system, including the rapid deceleration of an impactor of finite mass, an issue that may have applications in the domain of absorption of impact energy.

  13. A Molecular Look at Membranes.

    PubMed

    Berkowitz, Max

    2016-01-01

    Due to the recent advances in computer hardware and software, we can now use molecular dynamics and Monte Carlo computer simulation techniques to study systems with large conformational spaces. It is demonstrated here that computer simulations allow us to get a glimpse at the structural and dynamical properties of membranes and also at the interaction of membranes with other molecules. Specifically two examples are considered: (1) structural properties of lipid rafts in model membranes and (2) interaction of model membranes with an antimicrobial peptide, melittin. PMID:26781828

  14. Functional microdomains in bacterial membranes.

    PubMed

    López, Daniel; Kolter, Roberto

    2010-09-01

    The membranes of eukaryotic cells harbor microdomains known as lipid rafts that contain a variety of signaling and transport proteins. Here we show that bacterial membranes contain microdomains functionally similar to those of eukaryotic cells. These membrane microdomains from diverse bacteria harbor homologs of Flotillin-1, a eukaryotic protein found exclusively in lipid rafts, along with proteins involved in signaling and transport. Inhibition of lipid raft formation through the action of zaragozic acid--a known inhibitor of squalene synthases--impaired biofilm formation and protein secretion but not cell viability. The orchestration of physiological processes in microdomains may be a more widespread feature of membranes than previously appreciated. PMID:20713508

  15. Functional microdomains in bacterial membranes

    PubMed Central

    López, Daniel; Kolter, Roberto

    2010-01-01

    The membranes of eukaryotic cells harbor microdomains known as lipid rafts that contain a variety of signaling and transport proteins. Here we show that bacterial membranes contain microdomains functionally similar to those of eukaryotic cells. These membrane microdomains from diverse bacteria harbor homologs of Flotillin-1, a eukaryotic protein found exclusively in lipid rafts, along with proteins involved in signaling and transport. Inhibition of lipid raft formation through the action of zaragozic acid—a known inhibitor of squalene synthases—impaired biofilm formation and protein secretion but not cell viability. The orchestration of physiological processes in microdomains may be a more widespread feature of membranes than previously appreciated. PMID:20713508

  16. Membrane modification strategies for cryopreservation.

    PubMed

    Purdy, Phillip H; Graham, James K

    2015-01-01

    Cell membranes can be modified using cyclodextrins loaded with lipids or unilamellar liposomes. Lipid choice can greatly influence the organization of the targeted membrane and result in a cell that is more capable of surviving cryopreservation due to altered membrane-phase transition properties or membrane reorganization that may alter the normal physiologic processes of the treated cell. The protocols described here explain the preparation of the cyclodextrins and liposomes, impact of the amount and type of lipids, and general principles for treating cells using either of these technologies. PMID:25428015

  17. Membrane Protein Assembly into Nanodiscs

    PubMed Central

    Bayburt, Timothy H.; Sligar, Stephen G.

    2016-01-01

    Nanodiscs are soluble nanoscale phospholipid bilayers which can self-assemble integral membrane proteins for biophysical, enzymatic or structural investigations. This means for rendering membrane proteins soluble at the single molecule level offers advantages over liposomes or detergent micelles in terms of size, stability, ability to add genetically modifiable features to the Nanodisc structure and ready access to both sides of the phospholipid bilayer domain. Thus the Nanodisc system provides a novel platform for understanding membrane protein function. We provide an overview of the Nanodisc approach and document through several examples many of the applications to the study of the structure and function of integral membrane proteins. PMID:19836392

  18. Electrostatics of Deformable Lipid Membranes

    PubMed Central

    Vorobyov, Igor; Bekker, Borislava; Allen, Toby W.

    2010-01-01

    Abstract It was recently demonstrated that significant local deformations of biological membranes take place due to the fields of charged peptides and ions, challenging the standard model of membrane electrostatics. The ability of ions to retain their immediate hydration environment, combined with the lack of sensitivity of permeability to ion type or even ion pairs, led us to question the extent to which hydration energetics and electrostatics control membrane ion permeation. Using the arginine analog methyl-guanidinium as a test case, we find that although hydrocarbon electronic polarizability causes dramatic changes in ion solvation free energy, as well as a significant change (∼0.4 V) in the membrane dipole potential, little change in membrane permeation energetics occurs. We attribute this to compensation of solvation terms from polar and polarizable nonpolar components within the membrane, and explain why the dipole potential is not fully sensed in terms of the locally deformed bilayer interface. Our descriptions provide a deeper understanding of the translocation process and allow predictions for poly-ions, ion pairs, charged lipids, and lipid flip-flop. We also report simulations of large hydrophobic-ion-like membrane defects and the ionophore valinomycin, which exhibit little membrane deformation, as well as hydrophilic defects and the ion channel gramicidin A, to provide parallels to membranes deformed by unassisted ion permeation. PMID:20550903

  19. Liquid membrane extraction of cadmium

    SciTech Connect

    Berends, A.M.; Breembroek, G.R.M.; Witkamp, G.J.; Rosmalen, G.M van

    1996-12-31

    Three Liquid Membrane extraction designs are compared by their experimental extraction performance of cadmium ions from an aqueous phase with tri-laurylamine dissolved in an aliphatic kerosene. The compared designs are Emulsion Liquid Membrane (ELM), Flat Sheet Supported Liquid Membrane (FSSLM) and Hollow Fiber Supported Liquid Membrane (HFSLM4) extraction units. The results demonstrated that ELM possesses the best extraction performance per volume of equipment, but that HFSLM is a good alternative because of its less complicated design and greater flexibility. 2 refs., 7 figs.

  20. Enzymatically active ultrathin pepsin membranes.

    PubMed

    Raaijmakers, Michiel J T; Schmidt, Thomas; Barth, Monika; Tutus, Murat; Benes, Nieck E; Wessling, Matthias

    2015-05-11

    Enzymatically active proteins enable efficient and specific cleavage reactions of peptide bonds. Covalent coupling of the enzymes permits immobilization, which in turn reduces autolysis-induced deactivation. Ultrathin pepsin membranes were prepared by facile interfacial polycondensation of pepsin and trimesoyl chloride. The pepsin membrane allows for simultaneous enzymatic conversion and selective removal of digestion products. The large water fluxes through the membrane expedite the transport of large molecules through the pepsin layers. The presented method enables the large-scale production of ultrathin, cross-linked, enzymatically active membranes. PMID:25779668

  1. Consider nanofiltration for membrane separations

    SciTech Connect

    Raman, L.P. ); Cheryna, M.; Rajagopalan, N. )

    1994-03-01

    The best known liquid-phase membrane processes are reverse osmosis (RO), ultrafiltration (UF), microfiltration (MF), dialysis, and electrodialysis (ED). However, over the past few years, a new membrane process called nanofiltration (NF) has emerged that promises to significantly widen the application of membranes in liquid-phase separations. This paper discusses the following: NF operating range, membrane properties, and the following applications: demineralizing water, cleaning up contaminated groundwater, ultrapure water, effluents containing heavy metals, offshore oil platforms, yeast production, pulp and paper mills, textile production, electroless copper plating, and cheese whey production.

  2. The Double Fixed Charge Membrane

    PubMed Central

    Coster, H. G. L.

    1973-01-01

    An analysis is made of the AC characteristics of a membrane consisting of two fixed charge regions of opposite sign, in contact. It is shown that the equivalent parallel capacitance and conductance of such a membrane undergo a strong dispersion at low frequencies. The dielectric dispersion is a result of polarization effects in the diffusion of coions in each of the two fixed charge lattices. This, at low frequencies, gives rise to a very large diffusion capacitance. The form of the dispersion characteristics is very similar to those observed for synthetic-fused anion-cation membranes and various cellular membranes. PMID:4702011

  3. Composite membrane with integral rim

    SciTech Connect

    Routkevitch, Dmitri; Polyakov, Oleg G

    2015-01-27

    Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

  4. Comparison and Analysis of Membrane Fouling between Flocculent Sludge Membrane Bioreactor and Granular Sludge Membrane Bioreactor

    PubMed Central

    Zhi-Qiang, Chen; Jun-Wen, Li; Yi-Hong, Zhang; Xuan, Wang; Bin, Zhang

    2012-01-01

    The goal of this study is to investigate the effect of inoculating granules on reducing membrane fouling. In order to evaluate the differences in performance between flocculent sludge and aerobic granular sludge in membrane reactors (MBRs), two reactors were run in parallel and various parameters related to membrane fouling were measured. The results indicated that specific resistance to the fouling layer was five times greater than that of mixed liquor sludge in the granular MBR. The floc sludge more easily formed a compact layer on the membrane surface, and increased membrane resistance. Specifically, the floc sludge had a higher moisture content, extracellular polymeric substances concentration, and negative surface charge. In contrast, aerobic granules could improve structural integrity and strength, which contributed to the preferable permeate performance. Therefore, inoculating aerobic granules in a MBR presents an effective method of reducing the membrane fouling associated with floc sludge the perspective of from the morphological characteristics of microbial aggregates. PMID:22859954

  5. Sensitivity of prestin-based membrane motor to membrane thickness.

    PubMed

    Fang, Jie; Izumi, Chisako; Iwasa, Kuni H

    2010-06-16

    Prestin is the membrane protein in outer hair cells that harnesses electrical energy by changing its membrane area in response to changes in the membrane potential. To examine the effect of membrane thickness on this protein, phosphatidylcholine (PC) with various acyl-chain lengths were incorporated into the plasma membrane by using gamma-cyclodextrin. Incorporation of short chain PCs increased the linear capacitance and positively shifted the voltage dependence of prestin, up to 120 mV, in cultured cells. PCs with long acyl chains had the opposite effects. Because the linear capacitance is inversely related to the membrane thickness, these voltage shifts are attributable to membrane thickness. The corresponding voltage shifts of electromotility were observed in outer hair cells. These results demonstrate that electromotility is extremely sensitive to the thickness of the plasma membrane, presumably involving hydrophobic mismatch. These observations indicate that the extended state of the motor molecule, which is associated with the elongation of outer hair cells, has a conformation with a shorter hydrophobic height in the lipid bilayer. PMID:20550895

  6. Oxygen Transport Membranes

    SciTech Connect

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  7. Label-Free Imaging of Membrane Potential Using Membrane Electromotility

    PubMed Central

    Oh, Seungeun; Fang-Yen, Christopher; Choi, Wonshik; Yaqoob, Zahid; Fu, Dan; Park, YongKeun; Dassari, Ramachandra R.; Feld, Michael S.

    2012-01-01

    Electrical activity may cause observable changes in a cell's structure in the absence of exogenous reporter molecules. In this work, we report a low-coherence interferometric microscopy technique that can detect an optical signal correlated with the membrane potential changes in individual mammalian cells without exogenous labels. By measuring milliradian-scale phase shifts in the transmitted light, we can detect changes in the cells' membrane potential. We find that the observed optical signals are due to membrane electromotility, which causes the cells to deform in response to the membrane potential changes. We demonstrate wide-field imaging of the propagation of electrical stimuli in gap-junction-coupled cell networks. Membrane electromotility-induced cell deformation may be useful as a reporter of electrical activity. PMID:22828327

  8. Polysulfone membranes. III. Performance evaluation of polyethersulfone-PVP membranes

    SciTech Connect

    Tam, C.M.; Matsuura, T.; Tweddle, T.A. ); Hazlett, J.D. )

    1993-12-01

    The performance of membranes produced from casting solutions consisting of polyethersulfone (PES), poly-(N-vinyl-pyrrolidone) (PVP), and N-methyl-2-pyrrolidinone (NMP) were systematically studied. Zero-shear casting solution viscosities for these polymer solutions were determined as a function of PES and PVP concentrations. Ultrafiltration membranes were then cast using the phase inversion technique and characterized by separation experiments using polyethylene glycols of various molecular weights as test solutes. A pore flow model was fitted to the resulting separation data to provide estimates of the average pore radius and membrane porosity. These parameters were used to compare laboratory results for this membrane casting solution system with performance data for commercially available polyethersulfone membranes. 15 refs., 4 figs., 1 tab.

  9. How Membrane-Active Peptides Get into Lipid Membranes.

    PubMed

    Sani, Marc-Antoine; Separovic, Frances

    2016-06-21

    The structure-function relationship for a family of antimicrobial peptides (AMPs) from the skin of Australian tree frogs is discussed and compared with that of peptide toxins from bee and Australian scorpion venoms. Although these membrane-active peptides induce a similar cellular fate by disrupting the lipid bilayer integrity, their lytic activity is achieved via different modes of action, which are investigated in relation to amino acid sequence, secondary structure, and membrane lipid composition. In order to better understand what structural features govern the interaction between peptides and lipid membranes, cell-penetrating peptides (CPPs), which translocate through the membrane without compromising its integrity, are also discussed. AMPs possess membrane lytic activities that are naturally designed to target the cellular membrane of pathogens or competitors. They are extremely diverse in amino acid composition and often show specificity against a particular strain of microbe. Since our antibiotic arsenal is declining precariously in the face of the rise in multiantibiotic resistance, AMPs increasingly are seen as a promising alternative. In an effort to understand their molecular mechanism, biophysical studies of a myriad of AMPs have been reported, yet no unifying mechanism has emerged, rendering difficult the rational design of drug leads. Similarly, a wide variety of cytotoxic peptides are found in venoms, the best known being melittin, yet again, predicting their activity based on a particular amino acid composition or secondary structure remains elusive. A common feature of these membrane-active peptides is their preference for the lipid environment. Indeed, they are mainly unstructured in solution and, in the presence of lipid membranes, quickly adsorb onto the surface, change their secondary structure, eventually insert into the hydrophobic core of the membrane bilayer, and finally disrupt the bilayer integrity. These steps define the molecular

  10. Protein Solvation in Membranes and at Water-Membrane Interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Chipot, Christophe; Wilson, Michael A.

    2002-01-01

    Different salvation properties of water and membranes mediate a host of biologically important processes, such as folding, insertion into a lipid bilayer, associations and functions of membrane proteins. These processes will be discussed in several examples involving synthetic and natural peptides. In particular, a mechanism by which a helical peptide becomes inserted into a model membrane will be described. Further, the molecular mechanism of recognition and association of protein helical segments in membranes will be discussed. These processes are crucial for proper functioning of a cell. A membrane-spanning domain of glycophorin A, which exists as a helical dimer, serves as the model system. For this system, the free energy of dissociation of the helices is being determined for both the wild type and a mutant, in which dimerization is disrupted.

  11. High temperature size selective membranes

    SciTech Connect

    Yates, S.F.; Swamikannu, A.X.

    1993-09-01

    The high temperature membrane, capable of operation above 550{degree}C, is designed to be a composite membrane composed of a thin layer of a size selective membrane supported by a microporous ceramic support. The kinetic diameters of H{sub 2} and CO{sub 2} are 2.96 {Angstrom} and 4.00 {Angstrom}. The thin layer will be made from CMS whose pore size will be controlled to be less than 4 {Angstrom}. The membrane will be truly size selective and be impermeable to carbon dioxide. The membrane will have higher selectivity than membranes which operate on Knudsen diffusion mechanism. The ceramic support will be fabricated from Allied Signal`s proprietary Blackglas{trademark} resin. The ceramic material, noted for its high thermal and oxidative resistance, has a coefficient of thermal expansion which matches closely that of CMS. The close match will insure mechanical integrity when the membrane is subjected to thermal cycles. The CMS layer will be produced by controlled pyrolysis of polymeric precursors. Pore size will be suitably modified by post-treatments to the carbon. The composite membrane will be tested for its permeation properties at 550{degree}C or higher. Thermal, mechanical and chemical stability of the membrane will be assessed. We have produced several samples of CMS from polymeric precursors. We have initiated work also on the preparation of microporous supports from Blackglas{trademark} resin. We have completed the design of the high temperature membrane pilot plant. The membrane cell was fabricated out of two kinds of stainless steel. The inner parts are made of SS 316 and the outer ring made of SS 420. The greater thermal expansion of the SS 316 will help obtain a leak free seal at the operating temperatures.

  12. Operation of staged membrane oxidation reactor systems

    DOEpatents

    Repasky, John Michael

    2012-10-16

    A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

  13. High Flux Metallic Membranes for Hydrogen Recovery and Membrane Reactors

    SciTech Connect

    Buxbaum, Robert

    2010-06-30

    We made and tested over 250 new alloys for use as lower cost, higher flux hydrogen extraction membrane materials. Most of these were intermetallic, or contained significant intermetallic content, particularly based on B2 alloy compositions with at least one refractory component; B2 intermetallics resemble BCC alloys, in structure, but the atoms have relatively fixed positions, with one atom at the corners of the cube, the other at the centers. The target materals we were looking for would contain little or no expensive elements, no strongly toxic or radioactive elements, would have high flux to hydrogen, while being fabricable, brazable, and relatively immune to hydrogen embrittlement and corrosion in operation. The best combination of properties of the membrane materials we developed was, in my opinion, a Pd-coated membrane consisting of V -9 atomic % Pd. This material was relatively cheap, had 5 times the flux of Pd under the same pressure differential, was reasonably easy to fabricate and braze, and not bad in terms of embrittlement. Based on all these factors we project, about 1/3 the cost of Pd, on an area basis for a membrane designed to last 20 years, or 1/15 the cost on a flux basis. Alternatives to this membrane replaced significant fractions of the Pd with Ni and or Co. The cost for these membranes was lower, but so was the flux. We produced successful brazed products from the membrane materials, and made them into flat sheets. We tested, unsuccessfully, several means of fabricating thematerials into tubes, and eventually built a membrane reactor using a new, flat-plate design: a disc and doughnut arrangement, a design that seems well- suited to clean hydrogen production from coal. The membranes and reactor were tested successfully at Western Research. A larger equipment company (Chart Industries) produced similar results using a different flat-plate reactor design. Cost projections of the membrane are shown to be attractive.

  14. Membrane duality revisited

    NASA Astrophysics Data System (ADS)

    Duff, M. J.; Lu, J. X.; Percacci, R.; Pope, C. N.; Samtleben, H.; Sezgin, E.

    2015-12-01

    Just as string T-duality originates from transforming field equations into Bianchi identities on the string worldsheet, so it has been suggested that M-theory U-dualities originate from transforming field equations into Bianchi identities on the membrane worldvolume. However, this encounters a problem unless the target space has dimension D = p + 1. We identify the problem to be the nonintegrability of the U-duality transformation assigned to the pull-back map. Just as a double geometry renders manifest the O (D , D) string T-duality, here we show in the case of the M2-brane in D = 3 that a generalized geometry renders manifest the SL (3) × SL (2) U-duality. In the case of M2-brane in D = 4, with and without extra target space coordinates, we show that only the GL (4 , R) ⋉R4 subgroup of the expected SL (5 , R) U-duality symmetry is realized.

  15. Descemet membrane detachment.

    PubMed

    Mackool, R J; Holtz, S J

    1977-03-01

    Four eyes of three patients had extensive postoperative Descemet membrane (DM) detachment. Blood was present just anterior to the DM in three of the four eyes and later converted to and persisted as pigment. Haziness of the cornea at the level of the DM could be seen with reattachment. Detachments of the DM are classified as planar when there is 1 mm or less separation of the DM from its overlying stroma in all areas. Nonplanar DM detachments exceed 1 mm of separation. Planar detachments have a much better prognosis than nonplanar detachments do, with or without descemetopexy. Repair of DM detachments, when necessary, should include air injection, with the lease possible instrumentation of the DM. PMID:843278

  16. Antenna sunshield membrane

    NASA Technical Reports Server (NTRS)

    Bogorad, Alexander (Inventor); Bowman, Jr., Charles K. (Inventor); Meder, Martin G. (Inventor); Dottore, Frank A. (Inventor)

    1994-01-01

    An RF-transparent sunshield membrane covers an antenna reflector such as a parabolic dish. The blanket includes a single dielectric sheet of polyimide film 1/2-mil thick. The surface of the film facing away from the reflector is coated with a transparent electrically conductive coating such as vapor-deposited indium-tin oxide. The surface of the film facing the reflector is reinforced by an adhesively attached polyester or glass mesh, which in turn is coated with a white paint. In a particular embodiment of the invention, polyurethane paint is used. In another embodiment of the invention, a layer of paint primer is applied to the mesh under a silicone paint, and the silicone paint is cured after application for several days at room temperature to enhance adhesion to the primer.

  17. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham

    2006-12-31

    Ti doping on La{sub 1-x}Sr{sub x}FeO{sub 3-{delta}} (LSF) tends to increase the oxygen equilibration kinetics of LSF in lower oxygen activity environment because of the high valence state of Ti. However, the addition of Ti decreases the total conductivity because the acceptor ([Sr{prime}{sub La}]) is compensated by the donor ([Ti{sub Fe}{sup {sm_bullet}}]) which decreases the carrier concentration. The properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 1-x}Ti{sub x}O{sub 3-{delta}} (LSFT, x = 0.45) have been experimentally and theoretically investigated to elucidate (1) the dependence of oxygen occupancy and electrochemical properties on temperature and oxygen activity by thermogravimetric analysis (TGA) and (2) the electrical conductivity and carrier concentration by Seebeck coefficient and electrical measurements. In the present study, dual phase (La{sub 0.2}Sr{sub 0.8}Fe{sub 0.6}Ti{sub 0.4}O{sub 3-{delta}}/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}) membranes have been evaluated for structural properties such as hardness, fracture toughness and flexural strength. The effect of high temperature and slightly reducing atmosphere on the structural properties of the membranes was studied. The flexural strength of the membrane decreases upon exposure to slightly reducing conditions at 1000 C. The as-received and post-fractured membranes were characterized using XRD, SEM and TG-DTA to understand the fracture mechanisms. Changes in structural properties of the composite were sought to be correlated with the physiochemical features of the two-phases. We have reviewed the electrical conductivity data and stoichiometry data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} some of which was reported previously. Electrical conductivity data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCrF) were obtained in the temperature range, 752 {approx} 1055 C and in the pO{sub 2} range, 10{sup -18} {approx} 0.5 atm. The slope of the plot of log {sigma} vs

  18. Membrane Transport Phenomena (MTP)

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1997-01-01

    The activities during the fourth semi-annual period of the MTP project have involved the completion of the Science Concept Review (SCR) presentation and peer review, continuation of analyses for the mass transfer coefficients measured from MTA experiment data, and development of the second generation (MTP-II) instrument. The SCR panel members were generated several recommendations for the MTP project recommendations are : Table 1 Summary of Primary SCR Panel Recommendations (1) Continue and refine development of mass transfer coefficient analyses (2) Refine and upgrade analytical modeling associated with the MTP experiment. (3) Increase resolution of measurements in proximity of the membrane interface. (4) Shift emphasis to measurement of coupled transport effects (i.e., development of MTP phase II experiment concept).

  19. Membrane controlled anaerobic digestion

    NASA Astrophysics Data System (ADS)

    Omstead, D. R.

    In response to general shortages of energy, examination of the anaerboic digestion process as a potential source of a combustible, methane-rich fuel has intensified in recent years. It has been suggested that orgaic intermediates (such as fatty acids), produced during digestion, might also be recovered for use as chemical feedstocks. This investigation has been concerned with combining ultrafiltration separation techniques with anaerobic digestion for the development of a process in which the total production of acetic acid (the most valuable intermediate in anaerobic digestion) and methane are optimized. Enrichment cultures, able to utilize glucose as a sole carbon source, were adapted from sewage digesting cultures using conventional techniques. An ultrafiltration system was constructed and coupled to an anaerobic digester culture vessel which contained the glucose enrichment. The membrane controlled anaerobic digester appears to show promise as a means of producing high rates of both methane gas and acetic acid.

  20. Matrix membranes and integrability

    SciTech Connect

    Zachos, C.; Fairlie, D.; Curtright, T.

    1997-06-01

    This is a pedagogical digest of results reported in Curtright, Fairlie, {ampersand} Zachos 1997, and an explicit implementation of Euler`s construction for the solution of the Poisson Bracket dual Nahm equation. But it does not cover 9 and 10-dimensional systems, and subsequent progress on them Fairlie 1997. Cubic interactions are considered in 3 and 7 space dimensions, respectively, for bosonic membranes in Poisson Bracket form. Their symmetries and vacuum configurations are explored. Their associated first order equations are transformed to Nahm`s equations, and are hence seen to be integrable, for the 3-dimensional case, by virtue of the explicit Lax pair provided. Most constructions introduced also apply to matrix commutator or Moyal Bracket analogs.

  1. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham

    2006-06-30

    A non-agglomerated and nanocrystalline-sized powder was successfully produced using ethylene glycol nitrate methods. The LSFT powder prepared using this method exhibits well dispersed and nano-sized particles about 100-200 nm. The density of LSFT sintered at 1300 C was about 90% of the theoretical density at which is 100 C less than that of the previous LSFT which was sintered at 1400 C. The sample sintered at 1400 C exhibited the evidence of a liquid phase at the grain boundaries and 2nd phase formation which probably caused low mechanical stability. The electrical conductivity and Seebeck coefficient were measured as a function of temperature. The LSFT-CGO specimens were cut from the as sintered bars and used for the evaluation of Mechanical Properties after polishing. The effect of strain rate on the flexural strength of the LSFT-CGO test specimens was studied. Three strain rates 6, 60 and 600 {micro}m/ min were chosen for this study. It is observed from the results that with increasing cross head speed the membrane takes higher loads to fail. A reduction in the strength of the membrane was observed at 1000 C in N{sub 2}. Two different routes were investigated to synthesis GDC using either formate or carbonate precursors. The precursor and CGO particle morphologies were examined by scanning electron microscopy. The thermal decomposition behaviors of Ce(Gd)(HCOO){sub 3} and Ce(Gd)(CO{sub 3})(OH) were determined by thermogravimetric analysis (TGA) at a rate of 3 C/min in air. The X-ray powder diffraction patterns of the precursor and CGO were collected and nitrogen adsorption isotherms were measured. Conductivity measurements were made by AC impedance spectroscopy on sintered disks in air using platinum electrodes.

  2. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana

    2003-08-07

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

  3. Pore dynamics in lipid membranes

    NASA Astrophysics Data System (ADS)

    Gozen, I.; Dommersnes, P.

    2014-09-01

    Transient circular pores can open in plasma membrane of cells due to mechanical stress, and failure to repair such pores lead to cell death. Similar pores in the form of defects also exist among smectic membranes, such as in myelin sheaths or mitochondrial membranes. The formation and growth of membrane defects are associated with diseases, for example multiple sclerosis. A deeper understanding of membrane pore dynamics can provide a more refined picture of membrane integrity-related disease development, and possibly also treatment options and strategies. Pore dynamics is also of great importance regarding healthcare applications such as drug delivery, gene or as recently been implied, cancer therapy. The dynamics of pores significantly differ in stacks which are confined in 2D compared to those in cells or vesicles. In this short review, we will summarize the dynamics of different types of pores that can be observed in biological membranes, which include circular transient, fusion and hemi-fusion pores. We will dedicate a section to floral and fractal pores which were discovered a few years ago and have highly peculiar characteristics. Finally, we will discuss the repair mechanisms of large area pores in conjunction with the current cell membrane repair hypotheses.

  4. VOLTAMMETRIC MEMBRANE CHLORINE DIOXIDE ELECTRODE

    EPA Science Inventory

    A voltammetric membrane electrode system has been modified and applied to the in situ measurement of chlorine dioxide. The electrode system consisted of a gold cathode, a silver/silver chloride reference electrode, and a gold counter electrode. Different membrane materials were t...

  5. Elastic deformations of bolalipid membranes.

    PubMed

    Galimzyanov, Timur R; Kuzmin, Peter I; Pohl, Peter; Akimov, Sergey A

    2016-02-17

    Archaeal membranes have unique mechanical properties that enable these organisms to survive under extremely aggressive environmental conditions. The so-called bolalipids contribute to this exceptional stability. They have two polar heads joined by two hydrocarbon chains. The two headgroups can face different sides of the membrane (O-shape conformation) or the same side (U-shape conformation). We have developed an elasticity theory for bolalipid membranes and show that the energetic contributions of (i) tilt deformations, (ii) area compression/stretching deformations, (iii) as well as those of Gaussian splay from the two membrane surfaces are additive, while splay deformations yield a cross-term. The presence of a small fraction of U-shaped molecules resulted in spontaneous membrane curvature. We estimated the tilt modulus to be approximately equal to that of membranes in eukaryotic cells. In contrast to conventional lipids, the bolalipid membrane possesses two splay moduli, one of which is estimated to be an order of magnitude larger than that of conventional lipids. The projected values of elastic moduli act to hamper pore formation and to decelerate membrane fusion and fission. PMID:26791255

  6. Structure Prediction of Membrane Proteins

    NASA Astrophysics Data System (ADS)

    Hu, Xiche

    Membrane proteins play a central role in many cellular and physiological processes. It is estimated that integral membrane proteins make up about 20-30% of the proteome (Krogh et al., 2001b; Stevens and Arkin, 2000; von Heijne, 1999). They are essential mediators of material and information transfer across cell membranes. Their functions include active and passive transport of molecules into and out of cells and organelles; transduction of energy among various forms (light, electrical, and chemical energy); as well as reception and transduction of chemical and electrical signals across membranes (Avdonin, 2005; Bockaert et al., 2002; Pahl, 1999; Rehling et al., 2004; Stack et al., 1995). Identifying these transmembrane (TM) proteins and deciphering their molecular mechanisms, then, is of great importance, particularly as applied to biomedicine. Membrane proteins are the targets of a large number of pharmacologically and toxicologically active substances, and are directly involved in their uptake, metabolism, and clearance (Bettler et al., 1998; Cohen, 2002; Heusser and Jardieu, 1997; Tibes et al., 2005; Xu et al., 2005). Despite the importance of membrane proteins, the knowledge of their high-resolution structures and mechanisms of action has lagged far behind in comparison to that of water-soluble proteins: less than 1% of all three-dimensional structures deposited in the Protein Data Bank are of membrane proteins. This unfortunate disparity stems from difficulties in overexpression and the crystallization of membrane proteins (Grisshammer and Tate, 1995; Michel, 1991).

  7. Membrane curvature at a glance.

    PubMed

    McMahon, Harvey T; Boucrot, Emmanuel

    2015-03-15

    Membrane curvature is an important parameter in defining the morphology of cells, organelles and local membrane subdomains. Transport intermediates have simpler shapes, being either spheres or tubules. The generation and maintenance of curvature is of central importance for maintaining trafficking and cellular functions. It is possible that local shapes in complex membranes could help to define local subregions. In this Cell Science at a Glance article and accompanying poster, we summarize how generating, sensing and maintaining high local membrane curvature is an active process that is mediated and controlled by specialized proteins using general mechanisms: (i) changes in lipid composition and asymmetry, (ii) partitioning of shaped transmembrane domains of integral membrane proteins or protein or domain crowding, (iii) reversible insertion of hydrophobic protein motifs, (iv) nanoscopic scaffolding by oligomerized hydrophilic protein domains and, finally, (v) macroscopic scaffolding by the cytoskeleton with forces generated by polymerization and by molecular motors. We also summarize some of the discoveries about the functions of membrane curvature, where in addition to providing cell or organelle shape, local curvature can affect processes like membrane scission and fusion as well as protein concentration and enzyme activation on membranes. PMID:25774051

  8. Lipid membranes on nanostructured silicon.

    SciTech Connect

    Slade, Andrea Lynn; Lopez, Gabriel P.; Ista, Linnea K.; O'Brien, Michael J.; Sasaki, Darryl Yoshio; Bisong, Paul; Zeineldin, Reema R.; Last, Julie A.; Brueck, Stephen R. J.

    2004-12-01

    A unique composite nanoscale architecture that combines the self-organization and molecular dynamics of lipid membranes with a corrugated nanotextured silicon wafer was prepared and characterized with fluorescence microscopy and scanning probe microscopy. The goal of this project was to understand how such structures can be assembled for supported membrane research and how the interfacial interactions between the solid substrate and the soft, self-assembled material create unique physical and mechanical behavior through the confinement of phases in the membrane. The nanometer scale structure of the silicon wafer was produced through interference lithography followed by anisotropic wet etching. For the present study, a line pattern with 100 nm line widths, 200 nm depth and a pitch of 360 nm pitch was fabricated. Lipid membranes were successfully adsorbed on the structured silicon surface via membrane fusion techniques. The surface topology of the bilayer-Si structure was imaged using in situ tapping mode atomic force microscopy (AFM). The membrane was observed to drape over the silicon structure producing an undulated topology with amplitude of 40 nm that matched the 360 nm pitch of the silicon structure. Fluorescence recovery after photobleaching (FRAP) experiments found that on the microscale those same structures exhibit anisotropic lipid mobility that was coincident with the silicon substructure. The results showed that while the lipid membrane maintains much of its self-assembled structure in the composite architecture, the silicon substructure indeed influences the dynamics of the molecular motion within the membrane.

  9. Membranes and Films from Polymers.

    ERIC Educational Resources Information Center

    Blumberg, Avrom A.

    1986-01-01

    Provides background information on polymeric films and membranes including production methods, special industrial and medical applications, laboratory preparation, and an experimental investigation of a porous cellulose acetate membrane. Presents a demonstration to distinguish between high- and low-density polyethylene. (JM)

  10. Bacteria/virus filter membrane

    NASA Technical Reports Server (NTRS)

    Lysaght, M. S.; Goodwin, F.; Roebelen, G.

    1977-01-01

    Hollow acrylate fiber membrane that filters bacterial and viral organisms can be used with closed-cycle life-support systems for underwater habitations or laboratories. Membrane also has applications in fields of medicine, gnotobiotics, pharmaceutical production, and industries and research facilities that require sterile water. Device eliminates need for strong chemicals or sterilizing agents, thereby reducing costs.

  11. Hydrogen Selective Exfoliated Zeolite Membranes

    SciTech Connect

    Tsapatsis, Michael; Daoutidis, Prodromos; Elyassi, Bahman; Lima, Fernando; Iyer, Aparna; Agrawal, Kumar; Sabnis, Sanket

    2015-04-06

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 °C and 600 °C) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants

  12. Olefin separation membrane and process

    DOEpatents

    Pinnau, I.; Toy, L.G.; Casillas, C.

    1997-09-23

    A membrane and process are disclosed for separating unsaturated hydrocarbons from fluid mixtures. The membrane and process differ from previously known membranes and processes, in that the feed and permeate streams can both be dry, the membrane need not be water or solvent swollen, and the membrane is characterized by a selectivity for an unsaturated hydrocarbon over a saturated hydrocarbon having the same number of carbon atoms of at least about 20, and a pressure-normalized flux of said unsaturated hydrocarbon of at least about 5{times}10{sup {minus}6}cm{sup 3}(STP)/cm{sup 2}{center_dot}s{center_dot}cmHg, said flux and selectivity being measured with a gas mixture containing said unsaturated and saturated hydrocarbons, and in a substantially dry environment. 4 figs.

  13. Olefin separation membrane and process

    DOEpatents

    Pinnau, Ingo; Toy, Lora G.; Casillas, Carlos

    1997-01-01

    A membrane and process for separating unsaturated hydrocarbons from fluid mixtures. The membrane and process differ from previously known membranes and processes, in that the feed and permeate streams can both be dry, the membrane need not be water or solvent swollen, and the membrane is characterized by a selectivity for an unsaturated hydrocarbon over a saturated hydrocarbon having the same number of carbon atoms of at least about 20, and a pressure-normalized flux of said unsaturated hydrocarbon of at least about 5.times.10.sup.-6 cm.sup.3 (STP)/cm.sup.2 .multidot.s.multidot.cmHg, said flux and selectivity being measured with a gas mixture containing said unsaturated and saturated hydrocarbons, and in a substantially dry environment.

  14. Staged membrane oxidation reactor system

    DOEpatents

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2014-05-20

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  15. Staged membrane oxidation reactor system

    DOEpatents

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2013-04-16

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  16. Staged membrane oxidation reactor system

    DOEpatents

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2012-09-11

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  17. Oligomerization of daptomycin on membranes.

    PubMed

    Muraih, Jawad K; Pearson, Andre; Silverman, Jared; Palmer, Michael

    2011-04-01

    Daptomycin is a lipopeptide antibiotic that kills Gram-positive bacteria by membrane depolarization. While it has long been assumed that the mode of action of daptomycin involves the formation of membrane-associated oligomers, this has so far not been experimentally demonstrated. We here use FRET between native daptomycin and an NBD-labeled daptomycin derivative to show that such oligomerization indeed occurs. The oligomers are observed in the presence of calcium ions on membrane vesicles isolated from Bacillus subtilis, as well as on model membranes containing the negatively charged phospholipid phosphatidylglycerol. In contrast, oligomerization does not occur on membranes containing phosphatidylcholine only, nor in solution at micromolar daptomycin concentrations. The requirements for oligomerization of daptomycin resemble those previously reported for antibacterial activity, suggesting that oligomerization is necessary for the activity. PMID:21223947

  18. Modeling of closed membrane shapes

    NASA Astrophysics Data System (ADS)

    Penič, S.; Mesarec, L.; Fošnarič, M.; Kralj Iglič, V.; Kralj, S.; Góźdź, W.; Iglič, A.

    2014-12-01

    Closed biological membranes were considered within the spontaneous curvature model. Ground state membrane shapes were compared with Monte Carlo simulations in the thermal equilibrium, where membranes are subject to thermal fluctuations. The results of the two approaches correspond well with each other. The oblate discocyte membrane shapes are obtained in the ground state but can become metastable when thermal fluctuations are taken into account. The nematic ordering in oblate and stomatocyte vesicle membranes was also studied. It was confirmed that the net topological charge on the surfaces with the topology of a sphere was 2. On the oblate vesicle four topological defects, each with charge 1/2, assembled in the region exhibiting the highest Gaussian curvature. On the stomatocyte vesicle with six topological defects, each with charge 1/2, and two topological antidefects, each with charge -1/2, the latter assembled in the region with a negative Gaussian curvature. The position of topological defects is strongly curvature dependent.

  19. Update on amniotic membrane transplantation

    PubMed Central

    Liu, Jingbo; Sheha, Hosam; Fu, Yao; Liang, Lingyi; Tseng, Scheffer CG

    2011-01-01

    Cryopreserved amniotic membrane modulates adult wound healing by promoting epithelialization while suppressing stromal inflammation, angiogenesis and scarring. Such clinical efficacies of amniotic membrane transplantation have been reported in several hundred publications for a wide spectrum of ophthalmic indications. The success of the aforementioned therapeutic actions prompts investigators to use amniotic membrane as a surrogate niche to achieve ex vivo expansion of ocular surface epithelial progenitor cells. Further investigation into the molecular mechanism whereby amniotic membrane exerts its actions will undoubtedly reveal additional applications in the burgeoning field of regenerative medicine. This article will focus on recent advances in amniotic membrane transplantation and expand to cover its clinical uses beyond the ocular surface. PMID:21436959

  20. Ceramic membrane development in NGK

    NASA Astrophysics Data System (ADS)

    Araki, Kiyoshi; Sakai, Hitoshi

    2011-05-01

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R&D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  1. Water vapor diffusion membranes, 2

    NASA Technical Reports Server (NTRS)

    Holland, F. F.; Klein, E.; Smith, J. K.; Eyer, C.

    1976-01-01

    Transport mechanisms were investigated for the three different types of water vapor diffusion membranes. Membranes representing porous wetting and porous nonwetting structures as well as dense diffusive membrane structures were investigated for water permeation rate as a function of: (1) temperature, (2) solids composition in solution, and (3) such hydrodynamic parameters as sweep gas flow rate, solution flow rate and cell geometry. These properties were measured using nitrogen sweep gas to collect the effluent. In addition, the chemical stability to chromic acid-stabilized urine was measured for several of each type of membrane. A technology based on the mechanism of vapor transport was developed, whereby the vapor diffusion rates and relative susceptibility of membranes to fouling and failure could be projected for long-term vapor recovery trials using natural chromic acid-stabilized urine.

  2. Membrane Based Thermal Control Development

    NASA Technical Reports Server (NTRS)

    Murdoch, Karen

    1997-01-01

    The investigation of the feasibility of using a membrane device as a water boiler for thermal control is reported. The membrane device permits water vapor to escape to the vacuum of space but prevents the loss of liquid water. The vaporization of the water provides cooling to the water loop. This type of cooling device would have application for various types of short duration cooling needs where expenditure of water is allowed and a low pressure source is available such as in space or on a planet's surface. A variety of membrane samples, both hydrophilic and hydrophobic, were purchased to test for this thermal control application. An initial screening test determined if the membrane could pose a sufficient barrier to maintain water against vacuum. Further testing compared the heat transfer performance of those membranes that passed the screening test.

  3. Centrifugal membrane filtration -- Task 9

    SciTech Connect

    1996-08-01

    The Energy and Environmental Research Center (EERC) has teamed with SpinTek Membrane Systems, Inc., the developer of a centrifugal membrane filtration technology, to demonstrate applications for the SpinTek technology within the US Department of Energy (DOE) Environmental management (EM) Program. The technology uses supported microporous membranes rotating at high rpm, under pressure, to separate suspended and colloidal solids from liquid streams, yielding a solids-free permeate stream and a highly concentrated solids stream. This is a crosscutting technology that falls under the Efficient Separations and Processing Crosscutting Program, with potential application to tank wastes, contaminated groundwater, landfill leachate, and secondary liquid waste streams from other remediation processes, including decontamination and decommissioning systems. Membrane-screening tests were performed with the SpinTek STC-X4 static test cell filtration unit, using five ceramic membranes with different pore size and composition. Based on permeate flux, a 0.25-{micro}m TiO{sub 2}/Al{sub 2}O{sub 3} membrane was selected for detailed performance evaluation using the SpinTek ST-IIL centrifugal membrane filtration unit with a surrogate tank waste solution. An extended test run of 100 hr performed on a surrogate tank waste solution showed some deterioration in filtration performance, based on flux, apparently due to the buildup of solids near the inner portion of the membrane where relative membrane velocities were low. Continued testing of the system will focus on modifications to the shear pattern across the entire membrane surface to affect improved long-term performance.

  4. Membrane species mobility under in-lipid-membrane forced convection.

    PubMed

    Hu, Shu-Kai; Huang, Ling-Ting; Chao, Ling

    2016-08-17

    Processing and managing cell membrane proteins for characterization while maintaining their intact structure is challenging. Hydrodynamic flow has been used to transport membrane species in supported lipid bilayers (SLBs) where the hydrophobic cores of the membrane species can be protected during processing. However, the forced convection mechanism of species embedded in lipid bilayers is still unclear. Developing a controlled SLB platform with a practical model to predict the membrane species mobility in the platform under in-lipid-membrane forced convection is imperative to ensure the practical applicability of SLBs in processing and managing membrane species with various geometrical properties. The mobility of membrane species is affected by the driving force from the aqueous environment in addition to the frictions from the lipid bilayer, in which both lipid leaflets may exhibit different speeds relative to that of the moving species. In this study, we developed a model, based on the applied driving force and the possible frictional resistances that the membrane species encounter, to predict how the mobility under in-lipid-membrane forced convection is influenced by the sizes of the species' hydrophilic portion in the aqueous environment and the hydrophobic portion embedded in the membrane. In addition, we used a microfluidic device for controlling the flow to arrange the lipid membrane and the tested membrane species in the desirable locations in order to obtain a SLB platform which can provide clear mobility responses of the species without disturbance from the species dispersion effect. The model predictions were consistent with the experimental observations, with the sliding friction coefficient between the upper leaflet and the hydrophilic portion of the species as the only regressed parameter. The result suggests that not only the lateral drag frictions from the lipid layers but also the sliding frictions between the species and the lipid layer planes

  5. Sweeping Gas Membrane Desalination Using Commercial Hydrophobic Hollow Fiber Membranes

    SciTech Connect

    EVANS, LINDSEY; MILLER, JAMES E.

    2002-01-01

    Water shortages affect 88 developing countries that are home to half of the world's population. In these places, 80-90% of all diseases and 30% of all deaths result from poor water quality. Furthermore, over the next 25 years, the number of people affected by severe water shortages is expected to increase fourfold. Low cost methods of purifying freshwater, and desalting seawater are required to contend with this destabilizing trend. Membrane distillation (MD) is an emerging technology for separations that are traditionally accomplished via conventional distillation or reverse osmosis. As applied to desalination, MD involves the transport of water vapor from a saline solution through the pores of a hydrophobic membrane. In sweeping gas MD, a flowing gas stream is used to flush the water vapor from the permeate side of the membrane, thereby maintaining the vapor pressure gradient necessary for mass transfer. Since liquid does not penetrate the hydrophobic membrane, dissolved ions are completely rejected by the membrane. MD has a number of potential advantages over conventional desalination including low temperature and pressure operation, reduced membrane strength requirements, compact size, and 100% rejection of non-volatiles. The present work evaluated the suitability of commercially available technology for sweeping gas membrane desalination. Evaluations were conducted with Celgard Liqui-Cel{reg_sign} Extra-Flow 2.5X8 membrane contactors with X-30 and X-40 hydrophobic hollow fiber membranes. Our results show that sweeping gas membrane desalination systems are capable of producing low total dissolved solids (TDS) water, typically 10 ppm or less, from seawater, using low grade heat. However, there are several barriers that currently prevent sweeping gas MD from being a viable desalination technology. The primary problem is that large air flows are required to achieve significant water yields, and the costs associated with transporting this air are prohibitive. To

  6. Artificial membranes for membrane protein purification, functionality and structure studies.

    PubMed

    Parmar, Mayuriben J; Lousa, Carine De Marcos; Muench, Stephen P; Goldman, Adrian; Postis, Vincent L G

    2016-06-15

    Membrane proteins represent one of the most important targets for pharmaceutical companies. Unfortunately, technical limitations have long been a major hindrance in our understanding of the function and structure of such proteins. Recent years have seen the refinement of classical approaches and the emergence of new technologies that have resulted in a significant step forward in the field of membrane protein research. This review summarizes some of the current techniques used for studying membrane proteins, with overall advantages and drawbacks for each method. PMID:27284055

  7. The membrane: transertion as an organizing principle in membrane heterogeneity

    PubMed Central

    Matsumoto, Kouji; Hara, Hiroshi; Fishov, Itzhak; Mileykovskaya, Eugenia; Norris, Vic

    2015-01-01

    The bacterial membrane exhibits a significantly heterogeneous distribution of lipids and proteins. This heterogeneity results mainly from lipid–lipid, protein–protein, and lipid–protein associations which are orchestrated by the coupled transcription, translation and insertion of nascent proteins into and through membrane (transertion). Transertion is central not only to the individual assembly and disassembly of large physically linked groups of macromolecules (alias hyperstructures) but also to the interactions between these hyperstructures. We review here these interactions in the context of the processes in Bacillus subtilis and Escherichia coli of nutrient sensing, membrane synthesis, cytoskeletal dynamics, DNA replication, chromosome segregation, and cell division. PMID:26124753

  8. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-10-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, Moessbauer spectroscopy was used to study the local environmentals of LSFT with various level of oxygen deficiency. Ionic valence state, magnetic interaction and influence of Ti on superexchange are discussed Stable crack growth studies on Dense OTM bars provided by Praxair were done at elevated temperature, pressure and elevated conditions. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. The initial measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Neutron diffraction measurements of the same composition are in agreement with both the stoichiometry and the kinetic behavior observed in coulometric titration measurements. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The COCO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  9. Membranes, mechanics, and intracellular transport

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    2012-10-01

    Cellular membranes are remarkable materials -- self-assembled, flexible, two-dimensional fluids. Understanding how proteins manipulate membrane curvature is crucial to understanding the transport of cargo in cells, yet the mechanical activities of trafficking proteins remain poorly understood. Using an optical-trap based assay involving dynamic deformation of biomimetic membranes, we have examined the behavior of Sar1, a key component of the COPII family of transport proteins. We find that Sar1 from yeast (S. cerevisiae) lowers membrane rigidity by up to 100% as a function of its concentration, thereby lowering the energetic cost of membrane deformation. Human Sar1 proteins can also lower the mechanical rigidity of the membranes to which they bind. However, unlike the yeast proteins, the rigidity is not a monotonically decreasing function of concentration but rather shows increased rigidity and decreased mobility at high concentrations that implies interactions between proteins. In addition to describing this study of membrane mechanics, I'll also discuss some topics relevant to a range of biophysical investigations, such as the insights provided by imaging methods and open questions in the dynamics of multicellular systems.

  10. Gas Separations using Ceramic Membranes

    SciTech Connect

    Paul KT Liu

    2005-01-13

    This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

  11. Membrane filtration of food suspensions.

    PubMed Central

    Sharpe, A N; Peterkin, P I; Dudas, I

    1979-01-01

    Factors affecting the membrane filtration of food suspensions were studied for 58 foods and 13 membrane filters. Lot number within a brand, pore size (0.45 or 0.8 micrometer), and time elapsed before filtration had little effect on filterability. Brand of membrane filter, flow direction, pressure differential, age (microbiological quality) of the food, duration of the blending process, temperature, and concentration of food in the suspension had significant and often predictable effects. Preparation of suspensions by Stomacher (relative to rotary blender) addition of surfactant (particularly at elevated temperature) and prior incubation with proteases sometimes had dramatic effects of filterability. In contrast to popular opinion, foods can be membrane filtered in quantities pertinent to the maximums used in conventional plating procedures. Removal of growth inhibitors and food debris is possible by using membrane filters. Lowering of the limits of detection of microorganisms by concentration on membrane filters can be considered feasible for many foods. The data are particularly relevant to the use of hydrophobic grid-membrane filters (which are capable of enumerating up to 9 X 10(4) organisms per filter) in instrumented methods of food microbiological analysis. Images PMID:760637

  12. Membrane Repair: Mechanisms and Pathophysiology.

    PubMed

    Cooper, Sandra T; McNeil, Paul L

    2015-10-01

    Eukaryotic cells have been confronted throughout their evolution with potentially lethal plasma membrane injuries, including those caused by osmotic stress, by infection from bacterial toxins and parasites, and by mechanical and ischemic stress. The wounded cell can survive if a rapid repair response is mounted that restores boundary integrity. Calcium has been identified as the key trigger to activate an effective membrane repair response that utilizes exocytosis and endocytosis to repair a membrane tear, or remove a membrane pore. We here review what is known about the cellular and molecular mechanisms of membrane repair, with particular emphasis on the relevance of repair as it relates to disease pathologies. Collective evidence reveals membrane repair employs primitive yet robust molecular machinery, such as vesicle fusion and contractile rings, processes evolutionarily honed for simplicity and success. Yet to be fully understood is whether core membrane repair machinery exists in all cells, or whether evolutionary adaptation has resulted in multiple compensatory repair pathways that specialize in different tissues and cells within our body. PMID:26336031

  13. Carbon Dioxide Transport through Membranes*

    PubMed Central

    Missner, Andreas; Kügler, Philipp; Saparov, Sapar M.; Sommer, Klaus; Mathai, John C.; Zeidel, Mark L.; Pohl, Peter

    2008-01-01

    Several membrane channels, like aquaporin-1 (AQP1) and the RhAG protein of the rhesus complex, were hypothesized to be of physiological relevance for CO2 transport. However, the underlying assumption that the lipid matrix imposes a significant barrier to CO2 diffusion was never confirmed experimentally. Here we have monitored transmembrane CO2 flux (JCO2) by imposing a CO2 concentration gradient across planar lipid bilayers and detecting the resulting small pH shift in the immediate membrane vicinity. An analytical model, which accounts for the presence of both carbonic anhydrase and buffer molecules, was fitted to the experimental pH profiles using inverse problems techniques. At pH 7.4, the model revealed that JCO2 was entirely rate-limited by near-membrane unstirred layers (USL), which act as diffusional barriers in series with the membrane. Membrane tightening by sphingomyelin and cholesterol did not alter JCO2 confirming that membrane resistance was comparatively small. In contrast, a pH-induced shift of the CO2 hydration-dehydration equilibrium resulted in a relative membrane contribution of about 15% to the total resistance (pH 9.6). Under these conditions, a membrane CO2 permeability (3.2 ± 1.6 cm/s) was estimated. It indicates that cellular CO2 uptake (pH 7.4) is always USL-limited, because the USL size always exceeds 1 μm. Consequently, facilitation of CO2 transport by AQP1, RhAG, or any other protein is highly unlikely. The conclusion was confirmed by the observation that CO2 permeability of epithelial cell monolayers was always the same whether AQP1 was overexpressed in both the apical and basolateral membranes or not. PMID:18617525

  14. Effect of membrane polymeric materials on relationship between surface pore size and membrane fouling in membrane bioreactors

    NASA Astrophysics Data System (ADS)

    Miyoshi, Taro; Yuasa, Kotaku; Ishigami, Toru; Rajabzadeh, Saeid; Kamio, Eiji; Ohmukai, Yoshikage; Saeki, Daisuke; Ni, Jinren; Matsuyama, Hideto

    2015-03-01

    We investigated the effect of different membrane polymeric materials on the relationship between membrane pore size and development of membrane fouling in a membrane bioreactor (MBR). Membranes with different pore sizes were prepared using three different polymeric materials, cellulose acetate butyrate (CAB), polyvinyl butyral (PVB), and polyvinylidene fluoride (PVDF), and the development of membrane fouling in each membrane was evaluated by batch filtration tests using a mixed liquor suspension obtained from a laboratory-scale MBR. The results revealed that the optimal membrane pore size to mitigate membrane fouling differed depending on membrane polymeric material. For PVDF membranes, the degree of membrane fouling decreased as membrane pore size increased. In contrast, CAB membranes with smaller pores had less fouling propensity than those with larger ones. Such difference can be attributed to the difference in major membrane foulants in each membrane; in PVDF, they were small colloids or dissolved organics in which proteins are abundant, and in CAB, microbial flocs. The results obtained in this study strongly suggested that optimum operating conditions of MBRs differ depending on the characteristics of the used membrane.

  15. Extracorporeal Membrane Oxygenation Circuitry

    PubMed Central

    Horton, Stephen B.; McMullan, D. Michael; Bartlett, Robert H

    2013-01-01

    The extracorporeal membrane oxygenation (ECMO) circuit is made of a number of components that have been customized to provide adequate tissue oxygen delivery in patients with severe cardiac and/or respiratory failure for a prolonged period of time (days to weeks). A standard ECMO circuit consists of a mechanical blood pump, gas exchange device, and a heat exchanger all connected together with circuit tubing. ECMO circuits can vary from simple to complex and may include a variety of blood flow and pressure monitors, continuous oxyhemoglobin saturation monitors, circuit access sites and a bridge connecting the venous access and arterial infusion limbs of the circuit. Significant technical advancements have been made in the equipment available for short and long term ECMO applications. Contemporary ECMO circuits have greater biocompatibility and allow for more prolonged cardiopulmonary support time, while minimizing the procedure-related complications of bleeding, thrombosis and other physiologic derangements that were so common with the early application of ECMO. Modern era ECMO circuitry and components are simpler, safer, more compact and can be used across a wide variety of patient sizes from neonates to adults. PMID:23735989

  16. Functional electrospun membranes

    NASA Astrophysics Data System (ADS)

    Ognibene, G.; Fragalà, M. E.; Cristaldi, D. A.; Blanco, I.; Cicala, G.

    2016-05-01

    In this study we combined electrospun PES nanofibers with ZnO nanostructures in order to obtain a hierarchical nanostructured hybrid material to be use for active water filtration membranes. It benefits of flexibility and high surface area of the polymeric nanofibers as well as of additional functionalities of ZnOnanostructures. First, randomly oriented nanofibers with diameters of 716nm ±365 nm were electrospun on a glass fibers substrate from a solution of PES and DMF-TOL(1:1). ZnO nanorods were grown onto the surface of electrospun PES fibers by a Chemical Bath Deposition (CBD) process. It was preceed by a seeding process necessary to form nucleation sites for the subsequent radially aligned growth of ZnO nanowires. The morfology of the fibers and the effect of the seeding time have been analysed by SEM. The amount of ZnO nanowires grown over electrospun nanofibers was determined as 45% by weight. The high purity and crystallinity of the asobtained products are confirmed by XRD since all reflection peaks can be indexed to hexagonal wurtzite ZnO.

  17. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; W.B. Yelon; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and initial studies on newer composition of Ti doped LSF. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. In addition, studies were also begun to obtain reliable estimates of fracture toughness and stable crack growth in specific environments. Newer composition of Ti doped LSF membranes were characterized by neutron diffraction analysis. Quench studies indicated an apparent correlation between the unit cell volume and oxygen occupancy. The studies however, indicated an anomaly of increasing Fe/Ti ratio with change in heat treatment. Ti doped LSF was also characterized for stoichiometry as a function of temp and pO{sub 2}. The non stoichiometry parameter {delta} was observed to increase almost linearly on lowering pO{sub 2} until a ideal stoichiometric composition of {delta} = 0.175 was approached.

  18. Hierarchy in inorganic membranes.

    PubMed

    Caro, Juergen

    2016-06-13

    Thin films of a few μm thickness for particle filtration and gas separation cannot be applied as self-supporting layers since they are mechanically insufficiently strong. Therefore, these top layers for particle filtration and gas separation are usually deposited on porous mechanically strong supports with a hierarchical pore structure. To reduce the pressure drop of a gas stream over the membrane and to ensure high fluxes in filtration and gas separation, the cross section of the support is usually asymmetric or graded with a small thickness of the layer with the smallest pore size called the top layer. Since the pressure drop over a capillary with radius r is ∼r(4), the layer with the smallest pore size should be as thin as possible. The disk-like planar supports are usually prepared by sequential tape casting which is an expensive technology. Tubular supports with a hierarchical cross section can be prepared in one step by hollow fiber spinning, double mantle spinning or centrifugal casting. PMID:26466665

  19. High-performance membrane chromatography.

    PubMed

    Belenkii, B G; Malt'sev, V G

    1995-02-01

    In gradient chromatography for proteins migrating along the chromatographic column, the critical distance X0 has been shown to exist at which the separation of zones is at a maximum and band spreading is at a minimum. With steep gradients and small elution velocity, the column length may be reduced to the level of membrane thickness--about one millimeter. The peculiarities of this novel separation method for proteins, high-performance membrane chromatography (HPMC), are discussed and stepwise elution is shown to be especially effective. HPMC combines the advantages of membrane technology and high-performance liquid chromatography, and avoids their drawbacks. PMID:7727132

  20. Sensing voltage across lipid membranes

    PubMed Central

    Swartz, Kenton J.

    2009-01-01

    The detection of electrical potentials across lipid bilayers by specialized membrane proteins is required for many fundamental cellular processes such as the generation and propagation of nerve impulses. These membrane proteins possess modular voltage-sensing domains, a notable example being the S1-S4 domains of voltage-activated ion channels. Ground-breaking structural studies on these domains explain how voltage sensors are designed and reveal important interactions with the surrounding lipid membrane. Although further structures are needed to fully understand the conformational changes that occur during voltage sensing, the available data help to frame several key concepts that are fundamental to the mechanism of voltage sensing. PMID:19092925

  1. Membrane clarification of tea extracts.

    PubMed

    Subramanian, R; Kumar, Chandini S; Sharma, Pankaj

    2014-01-01

    The ready-to-drink (RTD) tea beverages are becoming increasingly popular owing to the health benefits associated with tea polyphenols, but instability due to development of haze and formation of tea cream is a common problem encountered in the product. Membrane technology provides a scope to produce natural, additive-free RTD teas while overcoming the major disadvantages associated with the conventional decreaming methods. Approaches employing membranes for the clarification of extracts from black and green tea have been discussed together with their relative advantages and limitations. The article also outlines the concerns to be addressed in the future attempts employing membrane technology. PMID:24499147

  2. ENaC–Membrane Interactions

    PubMed Central

    Awayda, Mouhamed S.; Shao, Weijian; Guo, Fengli; Zeidel, Mark; Hill, Warren G.

    2004-01-01

    Recently, it was reported that the epithelial Na+ channel (ENaC) is regulated by temperature (Askwith, C.C., C.J. Benson, M.J. Welsh, and P.M. Snyder. 2001. Proc. Natl. Acad. Sci. USA. 98:6459–6463). As these changes of temperature affect membrane lipid order and lipid–protein interactions, we tested the hypothesis that ENaC activity can be modulated by membrane lipid interactions. Two approaches were used to modulate membrane anisotropy, a lipid order–dependent parameter. The nonpharmacological approach used temperature changes, while the pharmacological one used chlorpromazine (CPZ), an agent known to decrease membrane order, and Gd+3. Experiments used Xenopus oocytes expressing human ENaC. Methods of impedance analysis were used to determine whether the effects of changing lipid order indirectly altered ENaC conductance via changes of membrane area. These data were further corroborated with quantitative morphology on micrographs from oocytes membranes studied via electron microscopy. We report biphasic effects of cooling (stimulation followed by inhibition) on hENaC conductance. These effects were relatively slow (minutes) and were delayed from the actual bath temperature changes. Peak stimulation occurred at a calculated Tmax of 15.2. At temperatures below Tmax, ENaC conductance was inhibited with cooling. The effects of temperature on gNa were distinct from those observed on ion channels endogenous to Xenopus oocytes, where the membrane conductance decreased monoexponentially with temperature (t = 6.2°C). Similar effects were also observed in oocytes with reduced intra- and extracellular [Na+], thereby ruling out effects of self or feedback inhibition. Addition of CPZ or the mechanosensitive channel blocker, Gd+3, caused inhibition of ENaC. The effects of Gd+3 were also attributed to its ability to partition into the outer membrane leaflet and to decrease anisotropy. None of the effects of temperature, CPZ, or Gd+3 were accompanied by changes of

  3. Thermally tolerant multilayer metal membrane

    DOEpatents

    Dye, Robert C.; Snow, Ronny C.

    2001-01-01

    A composite metal membrane including a first metal layer of a Group IVB or Group VB metal sandwiched between two layers of a Group VIIIB metal selected from the group consisting of palladium, platinum, nickel, rhodium, iridium, cobalt, and alloys thereof, and a non-continuous layer of a metal chalcogenide upon one layer of the Group VIIIB metal is disclosed together with a process for the recovery of hydrogen from a gaseous mixture using such a composite membrane and a process for forming such a composite metal membrane.

  4. Towards Simulations of Outer Membrane Proteins in Lipopolysaccharide Membranes

    SciTech Connect

    Soares, Thereza A.; Straatsma, TP

    2007-12-26

    Biomolecular simulation derived properties of LPS membranes that impact the structural and internal dynamics of transmembrane proteins are shown to exhibit good agreement with available experimental data within the time scale simulated, chosen force field and simulation conditions. The molecular model used offers an accurate representation of the LPS layer, including the high asymmetry and low fluidity characteristics of outer membranes. This contribution describes the data intensive analysis of the large molecular time trajectories generated for these systems using massively parallel computing resources.

  5. Efficient preparation and analysis of membrane and membrane protein systems.

    PubMed

    Javanainen, Matti; Martinez-Seara, Hector

    2016-10-01

    Molecular dynamics (MD) simulations have become a highly important technique to consider lipid membrane systems, and quite often they provide considerable added value to laboratory experiments. Rapid development of both software and hardware has enabled the increase of time and size scales reachable by MD simulations to match those attainable by several accurate experimental techniques. However, until recently, the quality and maturity of software tools available for building membrane models for simulations as well as analyzing the results of these simulations have seriously lagged behind. Here, we discuss the recent developments of such tools from the end-users' point of view. In particular, we review the software that can be employed to build lipid bilayers and other related structures with or without embedded membrane proteins to be employed in MD simulations. Additionally, we provide a brief critical insight into force fields and MD packages commonly used for membrane and membrane protein simulations. Finally, we list analysis tools that can be used to study the properties of membrane and membrane protein systems. In all these points we comment on the respective compatibility of the covered tools. We also share our opinion on the current state of the available software. We briefly discuss the most commonly employed tools and platforms on which new software can be built. We conclude the review by providing a few ideas and guidelines on how the development of tools can be further boosted to catch up with the rapid pace at which the field of membrane simulation progresses. This includes improving the compatibility between software tools and promoting the openness of the codes on which these applications rely. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:26947184

  6. Applicability of dynamic membrane technology in anaerobic membrane bioreactors.

    PubMed

    Ersahin, Mustafa Evren; Ozgun, Hale; Tao, Yu; van Lier, Jules B

    2014-01-01

    This study investigated the applicability of dynamic membrane technology in anaerobic membrane bioreactors for the treatment of high strength wastewaters. A monofilament woven fabric was used as support material for dynamic membrane formation. An anaerobic dynamic membrane bioreactor (AnDMBR) was operated under a variety of operational conditions, including different sludge retention times (SRTs) of 20 and 40 days in order to determine the effect of SRT on both biological performance and dynamic membrane filtration characteristics. High COD removal efficiencies exceeding 99% were achieved during the operation at both SRTs. Higher filtration resistances were measured during the operation at SRT of 40 days in comparison to SRT of 20 days, applying a stable flux of 2.6 L/m(2) h. The higher filtration resistances coincided with lower extracellular polymeric substances concentration in the bulk sludge at SRT of 40 days, likely resulting in a decreased particle flocculation. Results showed that dynamic membrane technology achieved a stable and high quality permeate and AnDMBRs can be used as a reliable and satisfactory technology for treatment of high strength wastewaters. PMID:24156951

  7. Composite solid polymer electrolyte membranes

    SciTech Connect

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2006-05-30

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  8. Electronic polymers in lipid membranes

    PubMed Central

    Johansson, Patrik K.; Jullesson, David; Elfwing, Anders; Liin, Sara I.; Musumeci, Chiara; Zeglio, Erica; Elinder, Fredrik; Solin, Niclas; Inganäs, Olle

    2015-01-01

    Electrical interfaces between biological cells and man-made electrical devices exist in many forms, but it remains a challenge to bridge the different mechanical and chemical environments of electronic conductors (metals, semiconductors) and biosystems. Here we demonstrate soft electrical interfaces, by integrating the metallic polymer PEDOT-S into lipid membranes. By preparing complexes between alkyl-ammonium salts and PEDOT-S we were able to integrate PEDOT-S into both liposomes and in lipid bilayers on solid surfaces. This is a step towards efficient electronic conduction within lipid membranes. We also demonstrate that the PEDOT-S@alkyl-ammonium:lipid hybrid structures created in this work affect ion channels in the membrane of Xenopus oocytes, which shows the possibility to access and control cell membrane structures with conductive polyelectrolytes. PMID:26059023

  9. Proteomic analysis of thylakoid membranes.

    PubMed

    Yadavalli, Venkateswarlu; Nellaepalli, Sreedhar; Subramanyam, Rajagopal

    2011-01-01

    Chlamydomonas is a model organism to study photosynthesis. Thylakoid membranes comprise several proteins belonging to photosystems I and II. In this chapter, we show the accurate proteomic measurements in thylakoid membranes. The chlorophyll-containing membrane protein complexes were precipitated using chloroform/methanol solution. These complexes were separated using two-dimensional gel electrophoresis, and the resolved spots were exercised from the gel matrix and digested with trypsin. These peptide fragments were separated by MALDI-TOF, and the isotopic masses were blasted to a MASCOT server to obtain the protein sequence. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF). The method discussed here would be a useful method for the separation and identification of thylakoid membrane proteins. PMID:20960129

  10. USEPA/WSWRD MEMBRANE RESEARCH

    EPA Science Inventory

    The USEPA has been very active in membrane research. The following areas are currently being investigated: in-house fouling research, Information Collection Rule (ICR) treatment studies, inorganic scaling modeling, Environmental Technology Verification (ETV) program implementati...

  11. Composite solid polymer electrolyte membranes

    DOEpatents

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  12. Thermodynamic properties of purple membrane.

    PubMed Central

    Marque, J; Eisenstein, L; Gratton, E; Sturtevant, J M; Hardy, C J

    1984-01-01

    We measured the density, expansivity, specific heat at constant pressure, and sound velocity of suspensions of purple membrane from Halobacterium halobium and their constituent buffers. From these quantities we calculated the apparent values for the density, expansivity, adiabatic compressibility, isothermal compressibility, specific heat at constant pressure, and specific heat at constant volume for the purple membrane. These results are discussed with respect to previously reported measurements on globular proteins and lipids. Our data suggest a simple additive model in which the protein and lipid molecules expand and compress independently of each other. However, this simple model seems to fail to describe the specific heat data. Our compressibility data suggest that bacteriorhodopsin in native purple membrane binds less water than many globular proteins in neutral aqueous solution, a finding consistent with the lipid surround of bacteriorhodopsin in purple membrane. PMID:6498271

  13. Layered plasma polymer composite membranes

    DOEpatents

    Babcock, W.C.

    1994-10-11

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is [>=]2 and is the number of selective layers. 2 figs.

  14. Subaortic membrane mimicking hypertrophic cardiomyopathy.

    PubMed

    Anderson, Mark Joseph; Arruda-Olson, Adelaide; Gersh, Bernard; Geske, Jeffrey

    2015-01-01

    A 34-year-old man was referred for progressive angina and exertional dyspnoea refractory to medical therapy, with a presumptive diagnosis of hypertrophic cardiomyopathy (HCM). Transthoracic echocardiography (TTE) revealed asymmetric septal hypertrophy without systolic anterior motion of the mitral valve leaflet and with no dynamic left ventricular outflow tract (LVOT) obstruction. However, the LVOT velocity was elevated at rest as well as with provocation, without the characteristic late peaking obstruction seen in HCM. Focused TTE to evaluate for suspected fixed obstruction demonstrated a subaortic membrane 2.2 cm below the aortic valve. Coronary CT angiography confirmed the presence of the subaortic membrane and was negative for concomitant coronary artery disease. Surgical resection of the subaortic membrane and septal myectomy resulted in significant symptomatic relief and lower LVOT velocities on postoperative TTE. This case reminds the clinician to carefully evaluate for alternative causes of LVOT obstruction, especially subaortic membrane, as a cause of symptoms mimicking HCM. PMID:26538250

  15. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C in N{sub 2}. Space group of R3c was found to result in a better refinement and is used in this study. The difference for crystal structure, lattice parameters and local crystal chemistry for LSFT nearly unchanged when gas environment switched from air to N{sub 2}. Stable crack growth studies on Dense OTM bars provided by Praxair were done at room temperature in air. A bridge-compression fixture was fabricated to achieve stable pre-cracks from Vickers indents. Post fracture evaluation indicated stable crack growth from the indent and a regime of fast fracture. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. The thermal and chemical expansion of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were studied at 800 {le} T {le} 1000 C and at {approx} 1 x 10{sup -15} {le} pO{sub 2} {le} 0.21 atm. The thermal expansion coefficient of the sample was calculated from the dilatometric analysis in the temperature range between room temperature and 1200 C in air. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of

  16. Mechanosensitive membrane probes.

    PubMed

    Dal Molin, Marta; Verolet, Quentin; Soleimanpour, Saeideh; Matile, Stefan

    2015-04-13

    This article assembles pertinent insights behind the concept of planarizable push-pull probes. As a response to the planarization of their polarized ground state, a red shift of their excitation maximum is expected to report on either the disorder, the tension, or the potential of biomembranes. The combination of chromophore planarization and polarization contributes to various, usually more complex processes in nature. Examples include the color change of crabs or lobsters during cooking or the chemistry of vision, particularly color vision. The summary of lessons from nature is followed by an overview of mechanosensitive organic materials. Although often twisted and sometimes also polarized, their change of color under pressure usually originates from changes in their crystal packing. Intriguing exceptions include the planarization of several elegantly twisted phenylethynyl oligomers and polymers. Also mechanosensitive probes in plastics usually respond to stretching by disassembly. True ground-state planarization in response to molecular recognition is best exemplified with the binding of thoughtfully twisted cationic polythiophenes to single- and double-stranded oligonucleotides. Molecular rotors, en vogue as viscosity sensors in cells, operate by deplanarization of the first excited state. Pertinent recent examples are described, focusing on λ-ratiometry and intracellular targeting. Complementary to planarization of the ground state with twisted push-pull probes, molecular rotors report on environmental changes with quenching or shifts in emission rather than absorption. The labeling of mechanosensitive channels is discussed as a bioengineering approach to bypass the challenge to create molecular mechanosensitivity and use biological systems instead to sense membrane tension. With planarizable push-pull probes, this challenge is met not with twistome screening, but with "fluorescent flippers," a new concept to insert large and bright monomers into oligomeric

  17. Mobility in geometrically confined membranes.

    PubMed

    Domanov, Yegor A; Aimon, Sophie; Toombes, Gilman E S; Renner, Marianne; Quemeneur, François; Triller, Antoine; Turner, Matthew S; Bassereau, Patricia

    2011-08-01

    Lipid and protein lateral mobility is essential for biological function. Our theoretical understanding of this mobility can be traced to the seminal work of Saffman and Delbrück, who predicted a logarithmic dependence of the protein diffusion coefficient (i) on the inverse of the size of the protein and (ii) on the "membrane size" for membranes of finite size [Saffman P, Delbrück M (1975) Proc Natl Acad Sci USA 72:3111-3113]. Although the experimental proof of the first prediction is a matter of debate, the second has not previously been thought to be experimentally accessible. Here, we construct just such a geometrically confined membrane by forming lipid bilayer nanotubes of controlled radii connected to giant liposomes. We followed the diffusion of individual molecules in the tubular membrane using single particle tracking of quantum dots coupled to lipids or voltage-gated potassium channels KvAP, while changing the membrane tube radius from approximately 250 to 10 nm. We found that both lipid and protein diffusion was slower in tubular membranes with smaller radii. The protein diffusion coefficient decreased as much as 5-fold compared to diffusion on the effectively flat membrane of the giant liposomes. Both lipid and protein diffusion data are consistent with the predictions of a hydrodynamic theory that extends the work of Saffman and Delbrück to cylindrical geometries. This study therefore provides strong experimental support for the ubiquitous Saffman-Delbrück theory and elucidates the role of membrane geometry and size in regulating lateral diffusion. PMID:21768336

  18. Treatment of Idiopathic Membranous Nephropathy

    PubMed Central

    Austin, Howard A.

    2012-01-01

    Exciting progress recently has been made in our understanding of idiopathic membranous nephropathy, as well as treatment of this disease. Here, we review important advances regarding the pathogenesis of membranous nephropathy. We will also review the current approach to treatment and its limitations and will highlight new therapies that are currently being explored for this disease including Rituximab, mycophenolate mofetil, and adrenocorticotropic hormone, with an emphasis on results of the most recent clinical trials. PMID:22859855

  19. Membrane Bioreactor With Pressure Cycle

    NASA Technical Reports Server (NTRS)

    Efthymiou, George S.; Shuler, Michael L.

    1991-01-01

    Improved class of multilayer membrane bioreactors uses convention forced by differences in pressure to overcome some of diffusional limitations of prior bioreactors. In reactor of new class, flow of nutrient solution reduces adverse gradients of concentration, keeps cells supplied with fresh nutrient, and sweeps away products faster than diffusion alone. As result, overall yield and rate of reaction increased. Pressures in sweeping gas and nutrient alternated to force nutrient liquid into and out of biocatalyst layer through hyrophilic membrane.

  20. Solid-state membrane module

    SciTech Connect

    Hinklin, Thomas Ray; Lewinsohn, Charles Arthur

    2015-06-30

    A module for separating oxygen from an oxygen-containing gaseous mixture comprising planar solid-state membrane units, each membrane unit comprising planar dense mixed conducting oxides layers, planar channel-free porous support layers, and one or more planar intermediate support layers comprising at least one channeled porous support layer. The porosity of the planar channeled porous support layers is less than the porosity of the planar channel-free porous support layers.

  1. Gas separation membrane module assembly

    DOEpatents

    Wynn, Nicholas P; Fulton, Donald A.

    2009-03-31

    A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membranes, arranged within a housing. The housing contains a tube sheet that divides the space within the housing into two gas-tight spaces. A permeate collection system within the housing gathers permeate gas from the tubes for discharge from the housing.

  2. Lysosomes and the plasma membrane

    PubMed Central

    Andrews, Norma W.

    2002-01-01

    Studies of the cell invasion mechanism of the parasite Trypanosoma cruzi led to a series of novel findings, which revealed a previously unsuspected ability of conventional lysosomes to fuse with the plasma membrane. This regulated exocytic process, previously regarded mostly as a specialization of certain cell types, was recently shown to play an important role in the mechanism by which cells reseal their plasma membrane after injury. PMID:12147679

  3. Membranes in Lithium Ion Batteries

    PubMed Central

    Yang, Min; Hou, Junbo

    2012-01-01

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed. PMID:24958286

  4. Electrodeionization Using Microseparated Bipolar Membranes

    NASA Technical Reports Server (NTRS)

    Lyons, Donald; Jackson, George; Andrews, Craig C.; Tennakoon, Charles L, K.; Singh, Waheguru; Hitchens, G. Duncan; Jabs, Harry; Chepin, James F.; Archer, Shivaun; Gonzalez-Martinez, Anukia; Cisar, Alan J.

    2004-01-01

    An electrochemical technique for deionizing water, now under development, is intended to overcome a major limitation of prior electrically-based water-purification techniques. The limitation in question is caused by the desired decrease in the concentration of ions during purification: As the concentration of ions decreases, the electrical resistivity of the water increases, posing an electrical barrier to the removal of the remaining ions. In the present technique, this limitation is overcome by use of electrodes, a flowfield structure, and solid electrolytes configured to provide conductive paths for the removal of ions from the water to be deionized, even when the water has already been purified to a high degree. The technique involves the use of a bipolar membrane unit (BMU), which includes a cation-exchange membrane and an anion-exchange membrane separated by a nonconductive mesh that has been coated by an ionically conductive material (see figure). The mesh ensures the desired microseparation between the ion-exchange membranes: The interstices bounded by the inner surfaces of the membranes and the outer surfaces of the coated mesh constitute a flow-field structure that allows the water that one seeks to deionize (hereafter called "process water" for short) to flow through the BMU with a low pressure drop. The flow-field structure is such that the distance between any point in the flow field and an ionically conductive material is small; thus, the flow-field structure facilitates the diffusion of molecules and ions to and from the ion-exchange membranes. The BMU is placed between an anode and a cathode, but not in direct contact with these electrodes. Instead, the space between the anion-exchange membrane and the anode is denoted the anode compartment and is filled with an ionic solution. Similarly, the space between the cation-exchange membrane and the cathode is denoted the cathode compartment and is filled with a different ionic solution. The electrodes are

  5. Dolichol alters brain membrane functions

    SciTech Connect

    Sun, G.Y.; Sun, A.Y.; Schroeder, F.; Wood, G.; Strong, R.

    1986-03-05

    It has been well demonstrated that there is a direct correlation between increase in dolichol level in brain and aging. An abnormally high level of dolichol was found in brain tissue of patients with pathological aging disorders. The aim of this study is to examine the physiological significance of dolichol affecting membrane transport activity and phospholipid acyl group turnover. Dolichol added to synaptic plasma membranes resulted in a biphasic effect on (Na/sup +/, K/sup +/)-ATPase, i.e., an enhancement of activity at low concentrations (5 ..mu..g/125 mg protein) and an inhibition of activity at high concentrations (40-100 ..mu..g). To probe the membrane acyl group turnover, the incorporation of (/sup 14/C)-arachidonate into plasma membrane phospholipids was examined in the presence and absence of dolichol. Dolichol elicited an increase in the incorporation of label into phospholipids. However, the effects varied depending on whether BSA is present. In the absence of BSA, the increase in labeling of phosphatidylinositols is higher than that of phosphatidylcholines. These results suggest that dolichols, when inserted into membranes, may alter membrane functions.

  6. Monomeric Synucleins Generate Membrane Curvature*

    PubMed Central

    Westphal, Christopher H.; Chandra, Sreeganga S.

    2013-01-01

    Synucleins are a family of presynaptic membrane binding proteins. α-Synuclein, the principal member of this family, is mutated in familial Parkinson disease. To gain insight into the molecular functions of synucleins, we performed an unbiased proteomic screen and identified synaptic protein changes in αβγ-synuclein knock-out brains. We observed increases in the levels of select membrane curvature sensing/generating proteins. One of the most prominent changes was for the N-BAR protein endophilin A1. Here we demonstrate that the levels of synucleins and endophilin A1 are reciprocally regulated and that they are functionally related. We show that all synucleins can robustly generate membrane curvature similar to endophilins. However, only monomeric but not tetrameric α-synuclein can bend membranes. Further, A30P α-synuclein, a Parkinson disease mutant that disrupts protein folding, is also deficient in this activity. This suggests that synucleins generate membrane curvature through the asymmetric insertion of their N-terminal amphipathic helix. Based on our findings, we propose to include synucleins in the class of amphipathic helix-containing proteins that sense and generate membrane curvature. These results advance our understanding of the physiological function of synucleins. PMID:23184946

  7. Electrokinetic effects near a membrane

    NASA Astrophysics Data System (ADS)

    Lacoste, David

    2009-03-01

    We discuss the electrostatic and electrokinetic contribution to the elastic moduli of a cell or artificial membrane placed in an electrolyte and driven by a DC electric field. The field drives ion currents across the membrane, through specific channels, pumps or natural pores. In steady state, charges accumulate in the Debye layers close to the membrane, modifying the membrane elastic moduli. We first study a model of a membrane of zero thickness, later generalizing this treatment to allow for a finite thickness and finite dielectric constant. Our results clarify and extend the results presented in [D. Lacoste, M. Cosentino Lagomarsino, and J. F. Joanny, Europhys. Lett., 77, 18006 (2007)], by providing a physical explanation for a destabilizing term proportional to kps^3 in the fluctuation spectrum, which we relate to a nonlinear (E^2) electro-kinetic effect called induced-charge electro-osmosis (ICEO). Recent studies of ICEO have focused on electrodes and polarizable particles, where an applied bulk field is perturbed by capacitive charging of the double layer and drives flow along the field axis toward surface protrusions; we predict similar ICEO flows around driven membranes, due to curvature-induced tangential fields within a non-equilibrium double layer, which hydrodynamically enhance protrusions.

  8. CO2 Acquisition Membrane (CAM)

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.; Way, J. Douglas; Vlasse, Marcus

    2003-01-01

    The objective of CAM is to develop, test, and analyze thin film membrane materials for separation and purification of carbon dioxide (CO2) from mixtures of gases, such as those found in the Martian atmosphere. The membranes are targeted toward In Situ Resource Utilization (ISRU) applications that will operate in extraterrestrial environments and support future unmanned and human space missions. A primary application is the Sabatier Electrolysis process that uses Mars atmosphere CO2 as raw material for producing water, oxygen, and methane for rocket fuel and habitat support. Other applications include use as an inlet filter to collect and concentrate Mars atmospheric argon and nitrogen gases for habitat pressurization, and to remove CO2 from breathing gases in Closed Environment Life Support Systems (CELSS). CAM membrane materials include crystalline faujasite (FAU) zeolite and rubbery polymers such as silicone rubber (PDMS) that have been shown in the literature and via molecular simulation to favor adsorption and permeation of CO2 over nitrogen and argon. Pure gas permeation tests using commercial PDMS membranes have shown that both CO2 permeance and the separation factor relative to other gases increase as the temperature decreases, and low (Delta)P(Sub CO2) favors higher separation factors. The ideal CO2/N2 separation factor increases from 7.5 to 17.5 as temperature decreases from 22 C to -30 C. For gas mixtures containing CO2, N2, and Ar, plasticization decreased the separation factors from 4.5 to 6 over the same temperature range. We currently synthesize and test our own Na(+) FAU zeolite membranes using standard formulations and secondary growth methods on porous alumina. Preliminary tests with a Na(+) FAU membrane at 22 C show a He/SF6 ideal separation factor of 62, exceeding the Knudsen diffusion selectivity by an order of magnitude. This shows that the membrane is relatively free from large defects and associated non-selective (viscous flow) transport

  9. Nanomaterial-enabled membranes for water treatment

    NASA Astrophysics Data System (ADS)

    Rogensues, Adam Roy

    Incorporating engineered nanomaterials as components of synthetic membranes can improve their separation performance and endow membranes with additional functions. This work explores two approaches to the design of membranes modified with nanomaterials. In the first chapter, exfoliated graphite nanoplatelets (xGnP) decorated with gold nanoparticles were embedded in a polysulfone matrix to fabricate phase inversion nanocomposite membranes. The cast membranes were evaluated as flow-through membrane reactors in experiments on the catalytic reduction of 4-nitrophenol. The nanocomposite membranes were not as catalytically efficient as those fabricated by modifying anodized alumina membranes polyelectrolyte multilayers (PEMs) containing gold nanoparticles. However, because of the facility of membrane casting by phase inversion and new opportunities enabled by the demonstrated hierarchy-based approach to nanocomposite membrane design, such membrane may hold commercial promise. In the second part of the study, the practicability of PEM-based nanofiltration was evaluated under conditions of precipitative fouling (i.e. scaling) by calcium sulfate. Polyelectrolytes were deposited onto 50 kDa polyethersulfone membranes to create PEM-based nanofiltration membranes. The prepared membranes were compared with the commercial NF270 membrane in terms of flux and rejection performance, as well as the morphology of gypsum crystals formed on the membrane surface. None of the PEM coatings tested inhibited scale formation.

  10. The Molecules of the Cell Membrane.

    ERIC Educational Resources Information Center

    Bretscher, Mark S.

    1985-01-01

    Cell membrane molecules form a simple, two-dimensional liquid controlling what enters and leaves the cell. Discusses cell membrane molecular architecture, plasma membranes, epithelial cells, cycles of endocytosis and exocytosis, and other topics. Indicates that some cells internalize, then recycle, membrane area equivalent to their entire surface…

  11. Ninth International Workshop on Plant Membrane Biology

    SciTech Connect

    Not Available

    1993-12-31

    This report is a compilation of abstracts from papers which were discussed at a workshop on plant membrane biology. Topics include: plasma membrane ATP-ases; plant-environment interactions, membrane receptors; signal transduction; ion channel physiology; biophysics and molecular biology; vaculor H+ pumps; sugar carriers; membrane transport; and cellular structure and function.

  12. Multiscale Simulation of Protein Mediated Membrane Remodeling

    PubMed Central

    Ayton, Gary S.; Voth, Gregory A.

    2009-01-01

    Proteins interacting with membranes can result in substantial membrane deformations and curvatures. This effect is known in its broadest terms as membrane remodeling. This review article will survey current multiscale simulation methodologies that have been employed to examine protein-mediated membrane remodeling. PMID:19922811

  13. Hydrogen purifier module with membrane support

    DOEpatents

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

    2012-07-24

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

  14. The Leptospiral Outer Membrane

    PubMed Central

    Haake, David A; Zückert, Wolfram R

    2015-01-01

    The outer membrane (OM) is the front line of leptospiral interactions with their environment and the mammalian host. Unlike most invasive spirochetes, pathogenic leptospires must be able survive in both free-living and host-adapted states. As organisms move from one set of environmental conditions to another, the OM must cope with a series of conflicting challenges. For example, the OM must be porous enough to allow nutrient uptake, yet robust enough to defend the cell against noxious substances. In the host, the OM presents a surface decorated with adhesins and receptors for attaching to, and acquiring, desirable host molecules such as the complement regulator, Factor H. On the other hand, the OM must enable leptospires to evade detection by the host’s immune system on their way from sites of invasion through the bloodstream to the protected niche of the proximal tubule. The picture that is emerging of the leptospiral OM is that, while it shares many of the characteristics of the OMs of spirochetes and Gram-negative bacteria, it is also unique and different in ways that make it of general interest to microbiologists. For example, unlike most other pathogenic spirochetes, the leptospiral OM is rich in lipopolysaccharide (LPS). Leptospiral LPS is similar to that of Gram-negative bacteria but has a number of unique structural features that may explain why it is not recognized by the LPS-specific Toll-like receptor 4 of humans. As in other spirochetes, lipoproteins are major components of the leptospiral OM, though their roles are poorly understood. The functions of transmembrane OMPs in many cases are better understood thanks to homologies with their Gram-negative counterparts and the emergence of improved genetic techniques. This chapter will review recent discoveries involving the leptospiral OM and its role in leptospiral physiology and pathogenesis. Readers are referred to earlier, excellent summaries related to this subject (Adler and de la Peña Moctezuma

  15. Organic fluid permeation through fluoropolymer membranes

    SciTech Connect

    Nemser, Stuart M.; Kosaraju, Praveen; Bowser, John

    2015-07-14

    Separation of the components of liquid mixtures is achieved by contacting a liquid mixture with a nonporous membrane having a fluoropolymer selectively permeable layer and imposing a pressure gradient across the membrane from feed side to permeate side. Unusually high transmembrane flux is obtained when the membrane is subjected to one or more process conditions prior to separation. These include (a) leaving some residual amount of membrane casting solvent in the membrane, and (b) contacting the membrane with a component of the mixture to be separated for a duration effective to saturate the membrane with the component.

  16. Tensioning device for a stretched membrane collector

    DOEpatents

    Murphy, L.M.

    1984-01-01

    Disclosed is a solar concentrating collector comprising an elestic membrane member for concentrating sunlight, a frame for holding the membrane member in plane and in tension, and a tensioning means for varying the tension of the membrane member. The tensioning means is disposed at the frame and is adapted to releasably attach the membrane member thereto. The tensioning means is also adapted to uniformly and symmetrically subject the membrane member to stretching forces such that membrane stresses produced thereby are distributed uniformly over a thickness of the membrane member and reciprocal twisting moments are substantially prevented from acting about said frame.

  17. Tensioning device for a stretched membrane collector

    DOEpatents

    Murphy, Lawrence M.

    1984-01-01

    Disclosed is a solar concentrating collector comprising an elastic membrane member for concentrating sunlight, a frame for holding the membrane member in plane and in tension, and a tensioning means for varying the tension of the membrane member. The tensioning means is disposed at the frame and is adapted to releasably attach the membrane member thereto. The tensioning means is also adapted to uniformly and symmetrically subject the membrane member to stretching forces such that membrane stresses produced thereby are distributed uniformly over a thickness of the membrane member and reciprocal twisting moments are substantially prevented from acting about said frame.

  18. Glasslike Membrane Protein Diffusion in a Crowded Membrane.

    PubMed

    Munguira, Ignacio; Casuso, Ignacio; Takahashi, Hirohide; Rico, Felix; Miyagi, Atsushi; Chami, Mohamed; Scheuring, Simon

    2016-02-23

    Many functions of the plasma membrane depend critically on its structure and dynamics. Observation of anomalous diffusion in vivo and in vitro using fluorescence microscopy and single particle tracking has advanced our concept of the membrane from a homogeneous fluid bilayer with freely diffusing proteins to a highly organized crowded and clustered mosaic of lipids and proteins. Unfortunately, anomalous diffusion could not be related to local molecular details given the lack of direct and unlabeled molecular observation capabilities. Here, we use high-speed atomic force microscopy and a novel analysis methodology to analyze the pore forming protein lysenin in a highly crowded environment and document coexistence of several diffusion regimes within one membrane. We show the formation of local glassy phases, where proteins are trapped in neighbor-formed cages for time scales up to 10 s, which had not been previously experimentally reported for biological membranes. Furthermore, around solid-like patches and immobile molecules a slower glass phase is detected leading to protein trapping and creating a perimeter of decreased membrane diffusion. PMID:26859708

  19. Lateral organization of membranes and cell shapes.

    PubMed Central

    Markin, V S

    1981-01-01

    The relations among membrane structure, mechanical properties, and cell shape have been investigated. The fluid mosaic membrane models used contains several components that move freely in the membrane plane. These components interact with each other and determine properties of the membrane such as curvature and elasticity. A free energy equation is postulated for such a multicomponent membrane and the condition of free energy minimum is used to obtain differential equations relating the distribution of membrane components and the local membrane curvature. The force that moves membrane components along the membrane in a variable curvature field is calculated. A change in the intramembrane interactions can bring about phase separation or particle clustering. This, in turn, may strongly affect the local curvature. The numerical solution of the set of equations for the two dimensional case allows determination of the cell shape and the component distribution along the membrane. The model has been applied to describe certain erythrocytes shape transformations. PMID:7284547

  20. Characterization of organic membrane foulants in a forward osmosis membrane bioreactor treating anaerobic membrane bioreactor effluent.

    PubMed

    Ding, Yi; Tian, Yu; Li, Zhipeng; Liu, Feng; You, Hong

    2014-09-01

    In this study, two aerobic forward osmosis (FO) membrane bioreactors (MBR) were utilized to treat the effluent of mesophilic (35°C) and atmospheric (25°C) anaerobic MBRs, respectively. The results showed that the FO membrane process could significantly improve the removal efficiencies of N and P. Meanwhile, the flux decline of the FOMBR treating effluent of mesophilic AnMBR (M-FOMBR) was higher than that treating effluent of atmospheric AnMBR (P-FOMBR). The organic membrane foulants in the two FOMBRs were analyzed to understand the membrane fouling behavior in FO processes. It was found that the slightly increased accumulation of protein-like substances into external foulants did not cause faster flux decline in P-FOMBR than that in M-FOMBR. However, the quantity of organic matter tended to deposit or adsorb into FO membrane pores in P-FOMBR was less than that in M-FOMBR, which was accordance with the tendency of membrane fouling indicated by flux decline. PMID:24976492

  1. Geometry attained by pressurized membranes

    NASA Astrophysics Data System (ADS)

    Palisoc, Arthur; Veal, Gordon; Cassapakis, Constantine; Greschik, Gyula; Mikulas, Martin

    1998-08-01

    An intensive investigation has been carried out to study the surface profiles obtained as a result of the large deformations of pressurized membranes. The study shows that the inflated membrane shapes may have the requisite surface accuracy for use in future large space apertures. Both analytical and experimental work have been carried out. On the analytical side, the classical work of Hencky on flat circular membranes was extended to eliminate the limitations it imposed; namely a lateral non-follower pressure with no pre-stress. The result is a computer program for the solution of the pressurized circular membrane problem. The reliability of the computer program is demonstrated via verification against FAIM, a nonlinear finite element solver developed primarily for the analysis of inflated membrane shapes. The experimental work includes observations made by Veal on the (W-shaped) deviations between the membrane deflected shape and the predicted profile. More recent measurements have been made of the deformations of pressurized flat circular and parabolic membranes using photogrammetric techniques. The surface error quantification analyses include the effect of material properties, geometric properties, loading uncertainties, and boundary conditions. These effects are very easily handled by the special FEM code FAIM which had recently been enhanced to predict the on-orbit dynamics, RF, and solar concentration characteristics of inflatable parabolic antennas/reflectors such as the IAE that flew off the space shuttle Endeavour in May 1996. The results of measurements have been compared with analyses and their ramifications on precision-shape, large-aperture parabolic space reflectors are discussed. Results show that very large space apertures with surface slope error accuracies on the order to space reflectors are discussed. Results show that very large space apertures with surface slope error accuracies on the order of 1 milliradian or less are feasible. Surface

  2. Liquid membrane purification of biogas

    SciTech Connect

    Majumdar, S.; Guha, A.K.; Lee, Y.T.; Papadopoulos, T.; Khare, S. . Dept. of Chemistry and Chemical Engineering)

    1991-03-01

    Conventional gas purification technologies are highly energy intensive. They are not suitable for economic removal of CO{sub 2} from methane obtained in biogas due to the small scale of gas production. Membrane separation techniques on the other hand are ideally suited for low gas production rate applications due to their modular nature. Although liquid membranes possess a high species permeability and selectivity, they have not been used for industrial applications due to the problems of membrane stability, membrane flooding and poor operational flexibility, etc. A new hollow-fiber-contained liquid membrane (HFCLM) technique has been developed recently. This technique overcomes the shortcomings of the traditional immobilized liquid membrane technology. A new technique uses two sets of hydrophobic, microporous hollow fine fibers, packed tightly in a permeator shell. The inter-fiber space is filled with an aqueous liquid acting as the membrane. The feed gas mixture is separated by selective permeation of a species through the liquid from one fiber set to the other. The second fiber set carries a sweep stream, gas or liquid, or simply the permeated gas stream. The objectives (which were met) of the present investigation were as follows. To study the selective removal of CO{sub 2} from a model biogas mixture containing 40% CO{sub 2} (the rest being N{sub 2} or CH{sub 4}) using a HFCLM permeator under various operating modes that include sweep gas, sweep liquid, vacuum and conventional permeation; to develop a mathematical model for each mode of operation; to build a large-scale purification loop and large-scale permeators for model biogas separation and to show stable performance over a period of one month.

  3. Self-Deployable Membrane Structures

    NASA Technical Reports Server (NTRS)

    Sokolowski, Witold M.; Willis, Paul B.; Tan, Seng C.

    2010-01-01

    Currently existing approaches for deployment of large, ultra-lightweight gossamer structures in space rely typically upon electromechanical mechanisms and mechanically expandable or inflatable booms for deployment and to maintain them in a fully deployed, operational configuration. These support structures, with the associated deployment mechanisms, launch restraints, inflation systems, and controls, can comprise more than 90 percent of the total mass budget. In addition, they significantly increase the stowage volume, cost, and complexity. A CHEM (cold hibernated elastic memory) membrane structure without any deployable mechanism and support booms/structure is deployed by using shape memory and elastic recovery. The use of CHEM micro-foams reinforced with carbon nanotubes is considered for thin-membrane structure applications. In this advanced structural concept, the CHEM membrane structure is warmed up to allow packaging and stowing prior to launch, and then cooled to induce hibernation of the internal restoring forces. In space, the membrane remembers its original shape and size when warmed up. After the internal restoring forces deploy the structure, it is then cooled to achieve rigidization. For this type of structure, the solar radiation could be utilized as the heat energy used for deployment and space ambient temperature for rigidization. The overall simplicity of the CHEM self-deployable membrane is one of its greatest assets. In present approaches to space-deployable structures, the stow age and deployment are difficult and challenging, and introduce a significant risk, heavy mass, and high cost. Simple procedures provided by CHEM membrane greatly simplify the overall end-to-end process for designing, fabricating, deploying, and rigidizing large structures. The CHEM membrane avoids the complexities associated with other methods for deploying and rigidizing structures by eliminating deployable booms, deployment mechanisms, and inflation and control systems

  4. Live cell imaging of membrane / cytoskeleton interactions and membrane topology

    NASA Astrophysics Data System (ADS)

    Chierico, Luca; Joseph, Adrian S.; Lewis, Andrew L.; Battaglia, Giuseppe

    2014-09-01

    We elucidate the interaction between actin and specific membrane components, using real time live cell imaging, by delivering probes that enable access to components, that cannot be accessed genetically. We initially investigated the close interplay between Phosphatidylinositol 4,5-bisphosphate (PIP2) and the F-actin network. We show that, during the early stage of cell adhesion, PIP2 forms domains within the filopodia membrane. We studied these domains alongside cell spreading and observed that these very closely follow the actin tread-milling. We show that this mechanism is associated with an active transport of PIP2 rich organelles from the cell perinuclear area to the edge, along actin fibers. Finally, mapping other phospholipids and membrane components we observed that the PIP2 domains formation is correlated with sphingosine and cholesterol rafts.

  5. Membrane potential generated by ion adsorption.

    PubMed

    Tamagawa, Hirohisa; Morita, Sachi

    2014-01-01

    It has been widely acknowledged that the Goldman-Hodgkin-Katz (GHK) equation fully explains membrane potential behavior. The fundamental facet of the GHK equation lies in its consideration of permeability of membrane to ions, when the membrane serves as a separator for separating two electrolytic solutions. The GHK equation describes that: variation of membrane permeability to ion in accordance with ion species results in the variation of the membrane potential. However, nonzero potential was observed even across the impermeable membrane (or separator) separating two electrolytic solutions. It gave rise to a question concerning the validity of the GHK equation for explaining the membrane potential generation. In this work, an alternative theory was proposed. It is the adsorption theory. The adsorption theory attributes the membrane potential generation to the ion adsorption onto the membrane (or separator) surface not to the ion passage through the membrane (or separator). The computationally obtained potential behavior based on the adsorption theory was in good agreement with the experimentally observed potential whether the membrane (or separator) was permeable to ions or not. It was strongly speculated that the membrane potential origin could lie primarily in the ion adsorption on the membrane (or separator) rather than the membrane permeability to ions. It might be necessary to reconsider the origin of membrane potential which has been so far believed explicable by the GHK equation. PMID:24957176

  6. Membrane Potential Generated by Ion Adsorption

    PubMed Central

    Tamagawa, Hirohisa; Morita, Sachi

    2014-01-01

    It has been widely acknowledged that the Goldman-Hodgkin-Katz (GHK) equation fully explains membrane potential behavior. The fundamental facet of the GHK equation lies in its consideration of permeability of membrane to ions, when the membrane serves as a separator for separating two electrolytic solutions. The GHK equation describes that: variation of membrane permeability to ion in accordance with ion species results in the variation of the membrane potential. However, nonzero potential was observed even across the impermeable membrane (or separator) separating two electrolytic solutions. It gave rise to a question concerning the validity of the GHK equation for explaining the membrane potential generation. In this work, an alternative theory was proposed. It is the adsorption theory. The adsorption theory attributes the membrane potential generation to the ion adsorption onto the membrane (or separator) surface not to the ion passage through the membrane (or separator). The computationally obtained potential behavior based on the adsorption theory was in good agreement with the experimentally observed potential whether the membrane (or separator) was permeable to ions or not. It was strongly speculated that the membrane potential origin could lie primarily in the ion adsorption on the membrane (or separator) rather than the membrane permeability to ions. It might be necessary to reconsider the origin of membrane potential which has been so far believed explicable by the GHK equation. PMID:24957176

  7. Gas transmission through microporous membranes

    NASA Astrophysics Data System (ADS)

    Turel, Tacibaht

    2008-10-01

    An ideal protective clothing material should be a good barrier against harmful gases or vapor while allowing moisture vapor and air passage through the material. In the study and design of barrier materials, one of the critical issues is to balance these requirements, which may sometimes be mutually exclusive. Therefore it is critical to understand the macroscopic and microscopic structure of the attack mechanisms as well as the barrier materials and the transport phenomena in such systems. In this study, air and gas transmission through barrier systems consisting of porous membranes was investigated experimentally and a molecular-level probabilistic model was constructed to evaluate the effect of various parameters on the gas flow. The effect of membrane parameters such as porosity, pore size distribution, thickness as well as gas parameters such as molecule diameters were examined at single layer as well as multiple layers. To understand the gas behavior for harmful chemicals and to ensure safety during experimental studies, mimics of such gases were obtained which were comparable to the actual gases in shape, molecular weight and other chemical properties. Air, ammonia and several mimic gases of harmful chemical agents were studied. Beta-pinene was used as a mimic of sarin and prenol was used as a mimic of nitrogen mustard. Gas transmission experiments were conducted on polyester, nylon and polypropylene membranes each of which had different porosity and pore size distributions. Experiments were done at different pressure values and a comparison was made between permeability testing machines based on volumetric and manometric principles as to their ability to accommodate high permeability membranes. Physical and chemical adsorption of such gases on porous membranes was also investigated after the addition of active elements on the membrane surfaces which can interact with the gas molecules. An experimental setup was developed to measure concentration changes

  8. Current-Induced Membrane Discharge

    NASA Astrophysics Data System (ADS)

    Andersen, M. B.; van Soestbergen, M.; Mani, A.; Bruus, H.; Biesheuvel, P. M.; Bazant, M. Z.

    2012-09-01

    Possible mechanisms for overlimiting current (OLC) through aqueous ion-exchange membranes (exceeding diffusion limitation) have been debated for half a century. Flows consistent with electro-osmotic instability have recently been observed in microfluidic experiments, but the existing theory neglects chemical effects and remains to be quantitatively tested. Here, we show that charge regulation and water self-ionization can lead to OLC by “current-induced membrane discharge” (CIMD), even in the absence of fluid flow, in ion-exchange membranes much thicker than the local Debye screening length. Salt depletion leads to a large electric field resulting in a local pH shift within the membrane with the effect that the membrane discharges and loses its ion selectivity. Since salt co-ions, H+ ions, and OH- ions contribute to OLC, CIMD interferes with electrodialysis (salt counterion removal) but could be exploited for current-assisted ion exchange and pH control. CIMD also suppresses the extended space charge that leads to electro-osmotic instability, so it should be reconsidered in both models and experiments on OLC.

  9. Current-induced membrane discharge.

    PubMed

    Andersen, M B; van Soestbergen, M; Mani, A; Bruus, H; Biesheuvel, P M; Bazant, M Z

    2012-09-01

    Possible mechanisms for overlimiting current (OLC) through aqueous ion-exchange membranes (exceeding diffusion limitation) have been debated for half a century. Flows consistent with electro-osmotic instability have recently been observed in microfluidic experiments, but the existing theory neglects chemical effects and remains to be quantitatively tested. Here, we show that charge regulation and water self-ionization can lead to OLC by "current-induced membrane discharge" (CIMD), even in the absence of fluid flow, in ion-exchange membranes much thicker than the local Debye screening length. Salt depletion leads to a large electric field resulting in a local pH shift within the membrane with the effect that the membrane discharges and loses its ion selectivity. Since salt co-ions, H(+) ions, and OH(-) ions contribute to OLC, CIMD interferes with electrodialysis (salt counterion removal) but could be exploited for current-assisted ion exchange and pH control. CIMD also suppresses the extended space charge that leads to electro-osmotic instability, so it should be reconsidered in both models and experiments on OLC. PMID:23005334

  10. Membrane-triggered plant immunity

    PubMed Central

    Jung, Su-Jin; Lee, Hong Gil; Seo, Pil Joon

    2014-01-01

    Plants have evolved sophisticated defense mechanisms to resist pathogen invasion. Upon the pathogen recognition, the host plants activate a variety of signal transduction pathways, and one of representative defense responses is systemic acquired resistance (SAR) that provides strong immunity against secondary infections in systemic tissues. Accumulating evidence has demonstrated that modulation of membrane composition contributes to establishing SAR and disease resistance in Arabidopsis, but underlying molecular mechanisms remain to be elucidated. Here, we show that a membrane-bound transcription factor (MTF) is associated with plant responses to pathogen attack. The MTF is responsive to microbe-associated molecular pattern (MAMP)-triggered membrane rigidification at the levels of transcription and proteolytic processing. The processed nuclear transcription factor possibly regulates pathogen resistance by directly regulating PATHOGENESIS-RELATED (PR) genes. Taken together, our results suggest that pathogenic microorganisms trigger changes in physico-chemical properties of cellular membrane in plants, and the MTF conveys the membrane information to the nucleus to ensure prompt establishment of plant immunity. PMID:25763708

  11. Membrane pores induced by magainin.

    PubMed

    Ludtke, S J; He, K; Heller, W T; Harroun, T A; Yang, L; Huang, H W

    1996-10-29

    Magainin, found in the skin of Xenopus laevis, belongs to a broad class of antimicrobial peptides which kill bacteria by permeabilizing the cytoplasmic membrane but do not lyse eukaryotic cells. The 23-residue peptide has been shown to form an amphiphilic helix when associated with membranes. However, its molecular mechanism of action has been controversial. Oriented circular dichroism has detected helical magainin oriented perpendicular to the plane of the membrane at high peptide concentrations, but Raman, fluorescence, differential scanning calorimetry, and NMR all indicate that the peptide is associated with the head groups of the lipid bilayer. Here we show that neutron in-plane scattering detects pores formed by magainin 2 in membranes only when a substantial fraction of the peptide is oriented perpendicular to the membrane. The pores are almost twice as large as the alamethicin pores. On the basis of the in-plane scattering data, we propose a toroidal (or wormhole) model, which differs from the barrel-stave model of alamethicin in that the lipid bends back on itself like the inside of a torus. The bending requires a lateral expansion in the head group region of the bilayer. Magainin monomers play the role of fillers in the expansion region thereby stabilizing the pore. This molecular configuration is consistent with all published magainin data. PMID:8901513

  12. Molecular dynamics of membrane proteins.

    SciTech Connect

    Woolf, Thomas B.; Crozier, Paul Stewart; Stevens, Mark Jackson

    2004-10-01

    Understanding the dynamics of the membrane protein rhodopsin will have broad implications for other membrane proteins and cellular signaling processes. Rhodopsin (Rho) is a light activated G-protein coupled receptor (GPCR). When activated by ligands, GPCRs bind and activate G-proteins residing within the cell and begin a signaling cascade that results in the cell's response to external stimuli. More than 50% of all current drugs are targeted toward G-proteins. Rho is the prototypical member of the class A GPCR superfamily. Understanding the activation of Rho and its interaction with its Gprotein can therefore lead to a wider understanding of the mechanisms of GPCR activation and G-protein activation. Understanding the dark to light transition of Rho is fully analogous to the general ligand binding and activation problem for GPCRs. This transition is dependent on the lipid environment. The effect of lipids on membrane protein activity in general has had little attention, but evidence is beginning to show a significant role for lipids in membrane protein activity. Using the LAMMPS program and simulation methods benchmarked under the IBIG program, we perform a variety of allatom molecular dynamics simulations of membrane proteins.

  13. The Effect of Acute Microgravity on Mechanically-Induced Membrane Damage and Membrane-Membrane Fusion Events

    NASA Technical Reports Server (NTRS)

    Clarke, Mark, S. F.; Vanderburg, Charles R.; Feedback, Daniel L.

    2001-01-01

    Although it is unclear how a living cell senses gravitational forces there is no doubt that perturbation of the gravitational environment results in profound alterations in cellular function. In the present study, we have focused our attention on how acute microgravity exposure during parabolic flight affects the skeletal muscle cell plasma membrane (i.e. sarcolemma), with specific reference to a mechanically-reactive signaling mechanism known as mechanically-induced membrane disruption or "wounding". This response is characterized by both membrane rupture and membrane resealing events mediated by membrane-membrane fusion. We here present experimental evidence that acute microgravity exposure can inhibit membrane-membrane fusion events essential for the resealing of sarcolemmal wounds in individual human myoblasts. Additional evidence to support this contention comes from experimental studies that demonstrate acute microgravity exposure also inhibits secretagogue-stimulated intracellular vesicle fusion with the plasma membrane in HL-60 cells. Based on our own observations and those of other investigators in a variety of ground-based models of membrane wounding and membrane-membrane fusion, we suggest that the disruption in the membrane resealing process observed during acute microgravity is consistent with a microgravity-induced decrease in membrane order.

  14. The effect of acute microgravity on mechanically-induced membrane damage and membrane-membrane fusion events

    NASA Technical Reports Server (NTRS)

    Clarke, M. S.; Vanderburg, C. R.; Feeback, D. L.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Although it is unclear how a living cell senses gravitational forces there is no doubt that perturbation of the gravitational environment results in profound alterations in cellular function. In the present study, we have focused our attention on how acute microgravity exposure during parabolic flight affects the skeletal muscle cell plasma membrane (i.e. sarcolemma), with specific reference to a mechanically-reactive signaling mechanism known as mechanically-induced membrane disruption or "wounding". Both membrane rupture and membrane resealing events mediated by membrane-membrane fusion characterize this response. We here present experimental evidence that acute microgravity exposure can inhibit membrane-membrane fusion events essential for the resealing of sarcolemmal wounds in individual human myoblasts. Additional evidence to support this contention comes from experimental studies that demonstrate acute microgravity exposure also inhibits secretagogue-stimulated intracellular vesicle fusion with the plasma membrane in HL-60 cells. Based on our own observations and those of other investigators in a variety of ground-based models of membrane wounding and membrane-membrane fusion, we suggest that the disruption in the membrane resealing process observed during acute microgravity is consistent with a microgravity-induced decrease in membrane order.

  15. Equilibrium Potentials of Membrane Electrodes

    PubMed Central

    Wang, Jui H.; Copeland, Eva

    1973-01-01

    A simple thermodynamic theory of the equilibrium potentials of membrane electrodes is formulated and applied to the glass electrode for measurement of pH. The new formulation assumes the selective adsorption or binding of specific ions on the surface of the membrane which may or may not be permeable to the ion, and includes the conventional derivation based on reversible ion transport across membranes as a special case. To test the theory, a platinum wire was coated with a mixture of stearic acid and methyl-tri-n-octyl-ammonium stearate. When this coated electrode was immersed in aqueous phosphate solution, its potential was found to be a linear function of pH from pH 2 to 12 with a slope equal to the theoretical value of 59.0 mV per pH unit at 24°. PMID:4516194

  16. Nanoengineered membranes for controlled transport

    DOEpatents

    Doktycz, Mitchel J [Oak Ridge, TN; Simpson, Michael L [Knoxville, TN; McKnight, Timothy E [Greenback, TN; Melechko, Anatoli V [Oak Ridge, TN; Lowndes, Douglas H [Knoxville, TN; Guillorn, Michael A [Knoxville, TN; Merkulov, Vladimir I [Oak Ridge, TN

    2010-01-05

    A nanoengineered membrane for controlling material transport (e.g., molecular transport) is disclosed. The membrane includes a substrate, a cover definining a material transport channel between the substrate and the cover, and a plurality of fibers positioned in the channel and connected to an extending away from a surface of the substrate. The fibers are aligned perpendicular to the surface of the substrate, and have a width of 100 nanometers or less. The diffusion limits for material transport are controlled by the separation of the fibers. In one embodiment, chemical derivitization of carbon fibers may be undertaken to further affect the diffusion limits or affect selective permeability or facilitated transport. For example, a coating can be applied to at least a portion of the fibers. In another embodiment, individually addressable carbon nanofibers can be integrated with the membrane to provide an electrical driving force for material transport.

  17. Multilayered Magnetic Gelatin Membrane Scaffolds.

    PubMed

    Samal, Sangram K; Goranov, Vitaly; Dash, Mamoni; Russo, Alessandro; Shelyakova, Tatiana; Graziosi, Patrizio; Lungaro, Lisa; Riminucci, Alberto; Uhlarz, Marc; Bañobre-López, Manuel; Rivas, Jose; Herrmannsdörfer, Thomas; Rajadas, Jayakumar; De Smedt, Stefaan; Braeckmans, Kevin; Kaplan, David L; Dediu, V Alek

    2015-10-21

    A versatile approach for the design and fabrication of multilayer magnetic scaffolds with tunable magnetic gradients is described. Multilayer magnetic gelatin membrane scaffolds with intrinsic magnetic gradients were designed to encapsulate magnetized bioagents under an externally applied magnetic field for use in magnetic-field-assisted tissue engineering. The temperature of the individual membranes increased up to 43.7 °C under an applied oscillating magnetic field for 70 s by magnetic hyperthermia, enabling the possibility of inducing a thermal gradient inside the final 3D multilayer magnetic scaffolds. On the basis of finite element method simulations, magnetic gelatin membranes with different concentrations of magnetic nanoparticles were assembled into 3D multilayered scaffolds. A magnetic-gradient-controlled distribution of magnetically labeled stem cells was demonstrated in vitro. This magnetic biomaterial-magnetic cell strategy can be expanded to a number of different magnetic biomaterials for various tissue engineering applications. PMID:26451743

  18. High membrane permeability for melatonin.

    PubMed

    Yu, Haijie; Dickson, Eamonn J; Jung, Seung-Ryoung; Koh, Duk-Su; Hille, Bertil

    2016-01-01

    The pineal gland, an endocrine organ in the brain, synthesizes and secretes the circulating night hormone melatonin throughout the night. The literature states that this hormone is secreted by simple diffusion across the pinealocyte plasma membrane, but a direct quantitative measurement of membrane permeability has not been made. Experiments were designed to compare the cell membrane permeability to three indoleamines: melatonin and its precursors N-acetylserotonin (NAS) and serotonin (5-HT). The three experimental approaches were (1) to measure the concentration of effluxing indoleamines amperometrically in the bath while cells were being dialyzed internally by a patch pipette, (2) to measure the rise of intracellular indoleamine fluorescence as the compound was perfused in the bath, and (3) to measure the rate of quenching of intracellular fura-2 dye fluorescence as indoleamines were perfused in the bath. These measures showed that permeabilities of melatonin and NAS are high (both are uncharged molecules), whereas that for 5-HT (mostly charged) is much lower. Comparisons were made with predictions of solubility-diffusion theory and compounds of known permeability, and a diffusion model was made to simulate all of the measurements. In short, extracellular melatonin equilibrates with the cytoplasm in 3.5 s, has a membrane permeability of ∼1.7 µm/s, and could not be retained in secretory vesicles. Thus, it and NAS will be "secreted" from pineal cells by membrane diffusion. Circumstances are suggested when 5-HT and possibly catecholamines may also appear in the extracellular space passively by membrane diffusion. PMID:26712850

  19. High membrane permeability for melatonin

    PubMed Central

    Yu, Haijie; Dickson, Eamonn J.; Jung, Seung-Ryoung; Koh, Duk-Su

    2016-01-01

    The pineal gland, an endocrine organ in the brain, synthesizes and secretes the circulating night hormone melatonin throughout the night. The literature states that this hormone is secreted by simple diffusion across the pinealocyte plasma membrane, but a direct quantitative measurement of membrane permeability has not been made. Experiments were designed to compare the cell membrane permeability to three indoleamines: melatonin and its precursors N-acetylserotonin (NAS) and serotonin (5-HT). The three experimental approaches were (1) to measure the concentration of effluxing indoleamines amperometrically in the bath while cells were being dialyzed internally by a patch pipette, (2) to measure the rise of intracellular indoleamine fluorescence as the compound was perfused in the bath, and (3) to measure the rate of quenching of intracellular fura-2 dye fluorescence as indoleamines were perfused in the bath. These measures showed that permeabilities of melatonin and NAS are high (both are uncharged molecules), whereas that for 5-HT (mostly charged) is much lower. Comparisons were made with predictions of solubility-diffusion theory and compounds of known permeability, and a diffusion model was made to simulate all of the measurements. In short, extracellular melatonin equilibrates with the cytoplasm in 3.5 s, has a membrane permeability of ∼1.7 µm/s, and could not be retained in secretory vesicles. Thus, it and NAS will be “secreted” from pineal cells by membrane diffusion. Circumstances are suggested when 5-HT and possibly catecholamines may also appear in the extracellular space passively by membrane diffusion. PMID:26712850

  20. Membrane interaction of retroviral Gag proteins

    PubMed Central

    Dick, Robert A.; Vogt, Volker M.

    2014-01-01

    Assembly of an infectious retroviral particle relies on multimerization of the Gag polyprotein at the inner leaflet of the plasma membrane. The three domains of Gag common to all retroviruses – MA, CA, and NC – provide the signals for membrane binding, assembly, and viral RNA packaging, respectively. These signals do not function independently of one another. For example, Gag multimerization enhances membrane binding and is more efficient when NC is interacting with RNA. MA binding to the plasma membrane is governed by several principles, including electrostatics, recognition of specific lipid head groups, hydrophobic interactions, and membrane order. HIV-1 uses many of these principles while Rous sarcoma virus (RSV) appears to use fewer. This review describes the principles that govern Gag interactions with membranes, focusing on RSV and HIV-1 Gag. The review also defines lipid and membrane behavior, and discusses the complexities in determining how lipid and membrane behavior impact Gag membrane binding. PMID:24808894

  1. High Temperature Membrane & Advanced Cathode Catalyst Development

    SciTech Connect

    Protsailo, Lesia

    2006-04-20

    Current project consisted of three main phases and eighteen milestones. Short description of each phase is given below. Table 1 lists program milestones. Phase 1--High Temperature Membrane and Advanced Catalyst Development. New polymers and advanced cathode catalysts were synthesized. The membranes and the catalysts were characterized and compared against specifications that are based on DOE program requirements. The best-in-class membranes and catalysts were downselected for phase 2. Phase 2--Catalyst Coated Membrane (CCM) Fabrication and Testing. Laboratory scale catalyst coated membranes (CCMs) were fabricated and tested using the down-selected membranes and catalysts. The catalysts and high temperature membrane CCMs were tested and optimized. Phase 3--Multi-cell stack fabrication. Full-size CCMs with the down-selected and optimized high temperature membrane and catalyst were fabricated. The catalyst membrane assemblies were tested in full size cells and multi-cell stack.

  2. Synthetic Biomimetic Membranes and Their Sensor Applications

    PubMed Central

    Kim, Young-Rok; Jung, Sungho; Ryu, Hyunil; Yoo, Yeong-Eun; Kim, Sun Min; Jeon, Tae-Joon

    2012-01-01

    Synthetic biomimetic membranes provide biological environments to membrane proteins. By exploiting the central roles of biological membranes, it is possible to devise biosensors, drug delivery systems, and nanocontainers using a biomimetic membrane system integrated with functional proteins. Biomimetic membranes can be created with synthetic lipids or block copolymers. These amphiphilic lipids and polymers self-assemble in an aqueous solution either into planar membranes or into vesicles. Using various techniques developed to date, both planar membranes and vesicles can provide versatile and robust platforms for a number of applications. In particular, biomimetic membranes with modified lipids or functional proteins are promising platforms for biosensors. We review recent technologies used to create synthetic biomimetic membranes and their engineered sensors applications. PMID:23012557

  3. Micropattern formation in supported lipid membranes.

    PubMed

    Groves, Jay T; Boxer, Steven G

    2002-03-01

    Phospholipid vesicles exhibit a natural tendency to fuse and assemble into a continuous single bilayer membrane on silica and several other substrate materials. The resulting supported membrane maintains many of the physical and biological characteristics of free membranes, including lateral fluidity. Recent advances, building on the supported membrane configuration, have created a wealth of opportunities for the manipulation, control, and analysis of membranes and the reaction environments they provide. The work reviewed in this Account, which can be broadly characterized as the science and technology of membrane patterning, contains three basic components: lateral diffusion control (barriers), membrane deposition techniques (microarrays), and electric field-induced lateral reorganization. Collectively, these preparative and analytical patterned membrane techniques offer a broad experimental platform for the study and utilization of lipid membranes. PMID:11900518

  4. Dynamin, a membrane remodelling GTPase

    PubMed Central

    Ferguson, Shawn M.; De Camilli, Pietro

    2012-01-01

    Dynamin, the founding member of a family of dynamin-like GTPases (DLPs) implicated in membrane remodelling, has a critical role in endocytic membrane fission events. The use of complementary approaches, including live cell imaging, cell free-studies, X-ray crystallography and genetic studies in mice has greatly advanced our understanding of the mechanisms by which dynamin acts, its essential roles in cell physiology and the specific function of different dynamin isoforms. In addition, several connections between dynamin and human disease have also emerged that highlight specific contributions of this GTPase to the physiology of different tissues. PMID:22233676

  5. Mitochondrial fusion through membrane automata.

    PubMed

    Giannakis, Konstantinos; Andronikos, Theodore

    2015-01-01

    Studies have shown that malfunctions in mitochondrial processes can be blamed for diseases. However, the mechanism behind these operations is yet not sufficiently clear. In this work we present a novel approach to describe a biomolecular model for mitochondrial fusion using notions from the membrane computing. We use a case study defined in BioAmbient calculus and we show how to translate it in terms of a P automata variant. We combine brane calculi with (mem)brane automata to produce a new scheme capable of describing simple, realistic models. We propose the further use of similar methods and the test of other biomolecular models with the same behaviour. PMID:25417022

  6. The origin of membrane bioenergetics.

    PubMed

    Lane, Nick; Martin, William F

    2012-12-21

    Harnessing energy as ion gradients across membranes is as universal as the genetic code. We leverage new insights into anaerobe metabolism to propose geochemical origins that account for the ubiquity of chemiosmotic coupling, and Na(+)/H(+) transporters in particular. Natural proton gradients acting across thin FeS walls within alkaline hydrothermal vents could drive carbon assimilation, leading to the emergence of protocells within vent pores. Protocell membranes that were initially leaky would eventually become less permeable, forcing cells dependent on natural H(+) gradients to pump Na(+) ions. Our hypothesis accounts for the Na(+)/H(+) promiscuity of bioenergetic proteins, as well as the deep divergence between bacteria and archaea. PMID:23260134

  7. Continuous production of polymethylpentene membranes

    DOEpatents

    Epperson, B.J.; Burnett, L.J.; Helm, V.D.

    1983-11-15

    Gas separation membranes may be prepared in a continuous manner by passing a porous support which may, if so desired, be backed by a fabric through a solution of polymethylpentene dissolved in an organic solvent such as hexane. The support member is passed through the solution while one side thereof is in contact with a roller, thereby permitting only one side of the support member to be coated with the polymer. After continuously withdrawing the support member from the bath, the solvent is allowed to evaporate and the resulting membrane is recovered.

  8. Membrane Separation Of Nitrogen Tetroxide

    NASA Technical Reports Server (NTRS)

    Castro, R. C.; Kaschemekat, J.; Helm, V. D.; Shrock, P. H.; Wijmans, J. G.

    1993-01-01

    Pilot plant reduces N2O4 content to one-hundredth of inlet value. Permeable-membrane process removes nitrogen tetroxide from stream of nitrogen or helium gas. Operates in conjunction with scrubbing process removing N2O4 from He or N2 after He or N2 used as gas blanket in N2O4-storage tank. First stage of separator divided into two steps for efficiency. Permeate from second step of first stage and residue from second stage returned to inlet of first stage. Each module contains spiral-wound interleaved permeable membranes and spacer sheets.

  9. Sheet Membrane Spacesuit Water Membrane Evaporator Thermal Test

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Bue, Grant C.

    2009-01-01

    For future lunar extravehicular activities (EVA), one method under consideration for rejecting crew and electronics heat involves evaporating water through a hydrophobic, porous Teflon(Registered Trademark) membrane. A Spacesuit Water Membrane Evaporator (SWME) prototype using this membrane was successfully tested by Ungar and Thomas (2001) with predicted performance matching test data well. The above referenced work laid the foundation for the design of a compact sheet membrane SWME development unit for use in the Constellation System Spacesuit Element Portable Life Support System (Vogel and et. al., ICES 2008). Major design objectives included minimizing mass, volume, and manufacturing complexity while rejecting a minimum of 810 watts of heat from water flowing through the SWME at 91 kg/hr with an inlet temperature of 291K. The design meeting these objectives consisted of three concentric cylindrical water channels interlaced with four water vapor channels. Two units were manufactured for the purpose of investigating manufacturing techniques and performing thermal testing. The extensive thermal test measured SWME heat rejection as a function of water inlet temperatures, water flow-rates, water absolute pressures, water impurities, and water vapor back-pressures. This paper presents the test results and subsequent analysis, which includes a comparison of SWME heat rejection measurements to pretest predictions. In addition, test measurements were taken such that an analysis of the commercial-off-the-shelf vapor pressure control valve could be performed.

  10. Reconstitution of Membrane Proteins into Model Membranes: Seeking Better Ways to Retain Protein Activities

    PubMed Central

    Shen, Hsin-Hui; Lithgow, Trevor; Martin, Lisandra L.

    2013-01-01

    The function of any given biological membrane is determined largely by the specific set of integral membrane proteins embedded in it, and the peripheral membrane proteins attached to the membrane surface. The activity of these proteins, in turn, can be modulated by the phospholipid composition of the membrane. The reconstitution of membrane proteins into a model membrane allows investigation of individual features and activities of a given cell membrane component. However, the activity of membrane proteins is often difficult to sustain following reconstitution, since the composition of the model phospholipid bilayer differs from that of the native cell membrane. This review will discuss the reconstitution of membrane protein activities in four different types of model membrane—monolayers, supported lipid bilayers, liposomes and nanodiscs, comparing their advantages in membrane protein reconstitution. Variation in the surrounding model environments for these four different types of membrane layer can affect the three-dimensional structure of reconstituted proteins and may possibly lead to loss of the proteins activity. We also discuss examples where the same membrane proteins have been successfully reconstituted into two or more model membrane systems with comparison of the observed activity in each system. Understanding of the behavioral changes for proteins in model membrane systems after membrane reconstitution is often a prerequisite to protein research. It is essential to find better solutions for retaining membrane protein activities for measurement and characterization in vitro. PMID:23344058

  11. Graphene-based membranes: status and prospects.

    PubMed

    Yoon, Hee Wook; Cho, Young Hoon; Park, Ho Bum

    2016-02-13

    Recently, graphene-based membranes have been extensively studied, represented by two distinct research directions: (i) creating pores in graphene basal plane and (ii) engineering nanochannels in graphene layers. Most simulation results predict that porous graphene membranes can be much more selective and permeable than current existing membranes, also evidenced by some experimental results for gas separation and desalination. In addition, graphene oxide has been widely investigated in layered membranes with two-dimensional nanochannels, showing very intriguing separation properties. This review will cover state-of-the-art of graphene-based membranes, and also provide a material guideline on future research directions suitable for practical membrane applications. PMID:26712638

  12. Natural gas cleanup by means of membranes.

    PubMed

    Ohlrogge, Klaus; Brinkmann, Torsten

    2003-03-01

    This paper deals with the use of membranes for hydrocarbon dewpointing and dehydration of natural gas. Based on experience gained from membrane applications in separating organic vapors from off-gas and process streams, as well as the dehydration of compressed air, membranes have been developed and tested for use in high pressure applications. Membranes and membrane modules have been modified to withstand the high operating pressure. Calculation programs were developed to understand the separation performance and to provide the necessary information for optimizing membrane design. A real challenge was the introduction of the vacuum mode dehydration operation in order to achieve the highest possible dewpoint reduction with minimum methane loss. PMID:12783826

  13. Solvent-resistant microporous polymide membranes

    DOEpatents

    Miller, W.K.; McCray, S.B.; Friesen, D.T.

    1998-03-10

    An asymmetric microporous membrane with exceptional solvent resistance and highly desirable permeability is disclosed. The membrane is made by a solution-casting or solution-spinning process from a copolyamic acid comprising the condensation reaction product in a solvent of at least three reactants selected from certain diamines and dianhydrides and post-treated to imidize and in some cases cross-link the copolyamic acid. The membrane is useful as an uncoated membrane for ultrafiltration, microfiltration, and membrane contactor applications, or may be used as a support for a permselective coating to form a composite membrane useful in gas separations, reverse osmosis, nanofiltration, pervaporation, or vapor permeation.

  14. Solvent-resistant microporous polymide membranes

    DOEpatents

    Miller, Warren K.; McCray, Scott B.; Friesen, Dwayne T.

    1998-01-01

    An asymmetric microporous membrane with exceptional solvent resistance and highly desirable permeability is disclosed. The membrane is made by a solution-casting or solution-spinning process from a copolyamic acid comprising the condensation reaction product in a solvent of at least three reactants selected from certain diamines and dianhydrides and post-treated to imidize and in some cases cross-link the copolyamic acid. The membrane is useful as an uncoated membrane for ultrafiltration, microfiltration, and membrane contactor applications, or may be used as a support for a permselective coating to form a composite membrane useful in gas separations, reverse osmosis, nanofiltration, pervaporation, or vapor permeation.

  15. Silicon Nitride Membranes for Filtration and Separation

    SciTech Connect

    Galambos, Paul; Zavadil, Kevin; Shul, Randy; Willison, Christi Gober; Miller, Sam

    1999-07-19

    Semi-Permeable silicon nitride membranes have been developed using a Bosch etch process followed by a reactive ion etch (NE) process. These membranes were observed to allow air but not water to pass through them into surface micromachined, silicon nitride microfluidic channels. Membranes with this property have potential use in microfluidic systems as gas bubble traps and vents, filters to remove particles and gas partitioning membranes. Membrane permeation was measured as 1.6 x 10{sup {minus}8} mol/m{sup 2}Pa s of helium for inline membranes at the entrance and exit of the silicon nitride microfluidic channels.

  16. Membrane composition analysis by imaging mass spectrometry

    SciTech Connect

    Boxer, S G; Kraft, M L; Longo, M; Hutcheon, I D; Weber, P K

    2006-03-29

    Membranes on solid supports offer an ideal format for imaging. Secondary ion mass spectrometry (SIMS) can be used to obtain composition information on membrane-associated components. Using the NanoSIMS50, images of composition variations in membrane domains can be obtained with a lateral resolution better than 100 nm. By suitable calibration, these variations in composition can be translated into a quantitative analysis of the membrane composition. Progress towards imaging small phase-separated lipid domains, membrane-associated proteins and natural biological membranes will be described.

  17. Production of permeable cellulose triacetate membranes

    DOEpatents

    Johnson, B.M.

    1986-12-23

    A phase inversion process for the preparation of cellulose triacetate (CTA) and regenerated cellulose membranes is disclosed. Such membranes are useful as supports for liquid membranes in facilitated transport processes, as microfiltration membranes, as dialysis or ultrafiltration membranes, and for the preparation of ion-selective electrodes. The process comprises the steps of preparing a casting solution of CTA in a solvent comprising a mixture of cyclohexanone and methylene chloride, casting a film from the casting solution, and immersing the cast film in a methanol bath. The resulting CTA membrane may then be hydrolyzed to regenerated cellulose using conventional techniques.

  18. Production of permeable cellulose triacetate membranes

    DOEpatents

    Johnson, Bruce M.

    1986-01-01

    A phase inversion process for the preparation of cellulose triacetate (CTA) and regenerated cellulose membranes is disclosed. Such membranes are useful as supports for liquid membranes in facilitated transport processes, as microfiltration membranes, as dialysis or ultrafiltration membranes, and for the preparation of ion-selective electrodes. The process comprises the steps of preparing a casting solution of CTA in a solvent comprising a mixture of cyclohexanone and methylene chloride, casting a film from the casting solution, and immersing the cast film in a methanol bath. The resulting CTA membrane may then be hydrolyzed to regenerated cellulose using conventional techniques.

  19. Phosphorus removal using nanofiltration membranes.

    PubMed

    Leo, C P; Chai, W K; Mohammad, A W; Qi, Y; Hoedley, A F A; Chai, S P

    2011-01-01

    A high concentration of phosphorus in wastewater may lead to excessive algae growth and deoxygenation of the water. In this work, nanofiltration (NF) of phosphorus-rich solutions is studied in order to investigate its potential in removing and recycling phosphorus. Wastewater samples from a pulp and paper plant were first analyzed. Commercial membranes (DK5, MPF34, NF90, NF270, NF200) were characterized and tested in permeability and phosphorus removal experiments. NF90 membranes offer the highest rejection of phosphorus; a rejection of more than 70% phosphorus was achieved for a feed containing 2.5 g/L of phosphorus at a pH <2. Additionally, NF90, NF200 and NF270 membranes show higher permeability than DK5 and MPF34 membranes. The separation performance of NF90 is slightly affected by phosphorus concentration and pressure, which may be due to concentration polarization and fouling. By adjusting the pH to 2 or adding sulfuric acid, the separation performance of NF90 was improved in removing phosphorus. However, the presence of acetic acid significantly impairs the rejection of phosphorus. PMID:22053475

  20. The Plasma Membrane Calcium Pump

    NASA Technical Reports Server (NTRS)

    Rasmussen, H.

    1983-01-01

    Three aspect of cellular calcium metabolism in animal cells was discussed including the importance of the plasma membrane in calcium homeostasis, experiments dealing with the actual mechanism of the calcium pump, and the function of the pump in relationship to the mitochondria and to the function of calmodulin in the intact cell.

  1. A Model for Membrane Fusion

    NASA Astrophysics Data System (ADS)

    Ngatchou, Annita

    2010-01-01

    Pheochromocytoma is a tumor of the adrenal gland which originates from chromaffin cells and is characterized by the secretion of excessive amounts of neurotransmitter which lead to high blood pressure and palpitations. Pheochromocytoma contain membrane bound granules that store neurotransmitter. The release of these stored molecules into the extracellular space occurs by fusion of the granule membrane with the cell plasma membrane, a process called exocytosis. The molecular mechanism of this membrane fusion is not well understood. It is proposed that the so called SNARE proteins [1] are the pillar of vesicle fusion as their cleavage by clostridial toxin notably, Botulinum neurotoxin and Tetanus toxin abrogate the secretion of neurotransmitter [2]. Here, I describe how physical principles are applied to a biological cell to explore the role of the vesicle SNARE protein synaptobrevin-2 in easing granule fusion. The data presented here suggest a paradigm according to which the movement of the C-terminal of synaptobrevin-2 disrupts the lipid bilayer to form a fusion pore through which molecules can exit.

  2. A prize for membrane magic.

    PubMed

    Pfeffer, Suzanne R

    2013-12-01

    The 2013 Nobel Prize in Physiology or Medicine has been awarded to James Rothman, Randy Schekman, and Thomas Südhof "for their discoveries of machinery regulating vesicle traffic, a major transport system in our cells". I present a personal view of the membrane trafficking field, highlighting the contributions of these three Nobel laureates in a historical context. PMID:24315088

  3. Membrane transport of antineoplastic agents

    SciTech Connect

    Goldman, I.D. )

    1986-01-01

    This book contains 13 chapters. Some of the chapter titles are: Methods for Quantifying the Transport of Drugs Across Brain Barrier Systems; Liposomes as Drug Carriers in Cancer Chemotherapy; Genetic and Bioochemical Characterization of Multidrug Resistance; Membrane Transport of Anthracyclines; and The Cellular Pharmacology of Methotrexate.

  4. Intelligent Membranes: Dream or Reality?

    PubMed

    Gugliuzza, Annarosa

    2013-01-01

    Intelligent materials are claimed to overcome current drawbacks associated with the attainment of high standards of life, health, security and defense. Membrane-based sensors represent a category of smart systems capable of providing a large number of benefits to different markets of textiles, biomedicine, environment, chemistry, agriculture, architecture, transport and energy. Intelligent membranes can be characterized by superior sensitivity, broader dynamic range and highly sophisticated mechanisms of autorecovery. These prerogatives are regarded as the result of multi-compartment arrays, where complementary functions can be accommodated and well-integrated. Based on the mechanism of "sense to act", stimuli-responsive membranes adapt themselves to surrounding environments, producing desired effects such as smart regulation of transport, wetting, transcription, hydrodynamics, separation, and chemical or energy conversion. Hopefully, the design of new smart devices easier to manufacture and assemble can be realized through the integration of sensing membranes with wireless networks, looking at the ambitious challenge to establish long-distance communications. Thus, the transfer of signals to collecting systems could allow continuous and real-time monitoring of data, events and/or processes. PMID:26791465

  5. Membranous nephropathy in sibling cats.

    PubMed

    Nash, A S; Wright, N G

    1983-08-20

    Membranous nephropathy was diagnosed in two sibling cats from the same household. Both cases presented with the nephrotic syndrome but 33 months elapsed before the second cat became ill, by which time the first cat had been in full clinical remission for over a year. PMID:6623883

  6. Osmosis and the Marvelous Membrane.

    ERIC Educational Resources Information Center

    Cocanour, Barbara; Bruce, Alease S.

    1985-01-01

    Shows how the natural membrane of a decalcified chicken egg can demonstrate the principle of osmosis within a single class period. Various glucose and saline solutions used, periods of time, physiological effects experiments, and correction for differences in initial weights are noted. (DH)

  7. Assessment of ceramic membrane filters

    SciTech Connect

    Ahluwalia, R.K.; Geyer, H.K.; Im, K.H.

    1995-08-01

    The objectives of this project include the development of analytical models for evaluating the fluid mechanics of membrane coated, dead-end ceramic filters, and to determine the effects of thermal and thermo-chemical aging on the material properties of emerging ceramic hot gas filters. A honeycomb cordierite monolith with a thin ceramic coating and a rigid candle filter were evaluated.

  8. Membrane fusion during phage lysis.

    PubMed

    Rajaure, Manoj; Berry, Joel; Kongari, Rohit; Cahill, Jesse; Young, Ry

    2015-04-28

    In general, phages cause lysis of the bacterial host to effect release of the progeny virions. Until recently, it was thought that degradation of the peptidoglycan (PG) was necessary and sufficient for osmotic bursting of the cell. Recently, we have shown that in Gram-negative hosts, phage lysis also requires the disruption of the outer membrane (OM). This is accomplished by spanins, which are phage-encoded proteins that connect the cytoplasmic membrane (inner membrane, IM) and the OM. The mechanism by which the spanins destroy the OM is unknown. Here we show that the spanins of the paradigm coliphage lambda mediate efficient membrane fusion. This supports the notion that the last step of lysis is the fusion of the IM and OM. Moreover, data are provided indicating that spanin-mediated fusion is regulated by the meshwork of the PG, thus coupling fusion to murein degradation by the phage endolysin. Because endolysin function requires the formation of μm-scale holes by the phage holin, the lysis pathway is seen to require dramatic dynamics on the part of the OM and IM, as well as destruction of the PG. PMID:25870259

  9. Challenges in Commercializing Biomimetic Membranes.

    PubMed

    Perry, Mark; Madsen, Steen Ulrik; Jørgensen, Tine; Braekevelt, Sylvie; Lauritzen, Karsten; Hélix-Nielsen, Claus

    2015-01-01

    The discovery of selective water channel proteins-aquaporins-has prompted growing interest in using these proteins, as the building blocks for designing new types of membranes. However, as with any other new and potentially disruptive technology, barriers for successful market entry exist. One category includes customer-related barriers, which can be influenced to some extent. Another category includes market-technical-related barriers, which can be very difficult to overcome by an organization/company aiming at successfully introducing their innovation on the market-in particular if both the organization and the technology are at early stages. Often, one faces barriers from both these categories at the same time, which makes it necessary to gain insight of the particular market when introducing a new innovative product. In this review we present the basic concepts and discuss some of these barriers and challenges associated with introducing biomimetic aquaporin membranes. These include technical issues in membrane production and product testing. Then we discuss possible business models for introducing new technologies in general, followed by a presentation of beach-head market segments relevant for biomimetic aquaporin membranes. PMID:26556379

  10. Membrane fusion during phage lysis

    PubMed Central

    Berry, Joel; Kongari, Rohit; Cahill, Jesse; Young, Ry

    2015-01-01

    In general, phages cause lysis of the bacterial host to effect release of the progeny virions. Until recently, it was thought that degradation of the peptidoglycan (PG) was necessary and sufficient for osmotic bursting of the cell. Recently, we have shown that in Gram-negative hosts, phage lysis also requires the disruption of the outer membrane (OM). This is accomplished by spanins, which are phage-encoded proteins that connect the cytoplasmic membrane (inner membrane, IM) and the OM. The mechanism by which the spanins destroy the OM is unknown. Here we show that the spanins of the paradigm coliphage lambda mediate efficient membrane fusion. This supports the notion that the last step of lysis is the fusion of the IM and OM. Moreover, data are provided indicating that spanin-mediated fusion is regulated by the meshwork of the PG, thus coupling fusion to murein degradation by the phage endolysin. Because endolysin function requires the formation of μm-scale holes by the phage holin, the lysis pathway is seen to require dramatic dynamics on the part of the OM and IM, as well as destruction of the PG. PMID:25870259

  11. Challenges in Commercializing Biomimetic Membranes

    PubMed Central

    Perry, Mark; Madsen, Steen Ulrik; Jørgensen, Tine; Braekevelt, Sylvie; Lauritzen, Karsten; Hélix-Nielsen, Claus

    2015-01-01

    The discovery of selective water channel proteins—aquaporins—has prompted growing interest in using these proteins, as the building blocks for designing new types of membranes. However, as with any other new and potentially disruptive technology, barriers for successful market entry exist. One category includes customer-related barriers, which can be influenced to some extent. Another category includes market-technical-related barriers, which can be very difficult to overcome by an organization/company aiming at successfully introducing their innovation on the market—in particular if both the organization and the technology are at early stages. Often, one faces barriers from both these categories at the same time, which makes it necessary to gain insight of the particular market when introducing a new innovative product. In this review we present the basic concepts and discuss some of these barriers and challenges associated with introducing biomimetic aquaporin membranes. These include technical issues in membrane production and product testing. Then we discuss possible business models for introducing new technologies in general, followed by a presentation of beach-head market segments relevant for biomimetic aquaporin membranes. PMID:26556379

  12. Viscoelastic Membrane Tectonics on Europa

    NASA Astrophysics Data System (ADS)

    Beuthe, M.; Rivoldini, A.

    2014-12-01

    The surface of Europa is crisscrossed by tectonic features generally attributed to time-dependent tidal deformations. For a long time, the membrane theory of elastic shells (thin shell or flattening model) has been popular to predict tidal tectonic patterns because it provides simple analytical formulas for tidal stresses. More recently, the theory of viscoelastic-gravitational deformations (or thick shell model) was applied to tidal tectonics so as to include viscoelastic effects. This method, however, is not transparent to the user and relies on numerical algorithms that are not always publicly available or fully benchmarked. As an alternative, we propose here to extend membrane theory to viscoelastic shells with depth-dependent rheology. Viscoelasticity is taken into account by replacing elastic constants with effective viscoelastic parameters that are easily computed for a given rheology. The membrane approach thus leads to simple formulas for viscoelastic tidal stresses. Because of its formulation in terms of tidal Love numbers, the membrane approach has clear relationships with both thin and thick shell models. Benchmarking with the thick-shell software SatStress leads to the discovery of an error in that code that changes stress components by up to 40%. As an application, we show that different stress-free states account for the conflicting predictions of thin and thick shell models about the magnitude of tensile stresses due to nonsynchronous rotation.

  13. Preparation of gas selective membranes

    DOEpatents

    Kulprathipanja, S.; Kulkarni, S.S.; Funk, E.W.

    1988-06-14

    Gas separation membranes which possess improved characteristics as exemplified by selectivity and flux may be prepared by coating a porous organic polymer support with a solution or emulsion of a plasticizer and an organic polymer, said coating being effected at subatmospheric pressures in order to increase the penetration depth of the coating material.

  14. Preparation of gas selective membranes

    DOEpatents

    Kulprathipanja, Santi; Kulkarni, Sudhir S.; Funk, Edward W.

    1988-01-01

    Gas separation membranes which possess improved characteristics as exemplified by selectivity and flux may be prepared by coating a porous organic polymer support with a solution or emulsion of a plasticizer and an organic polymer, said coating being effected at subatmospheric pressures in order to increase the penetration depth of the coating material.

  15. Membrane evaporator/sublimator investigation

    NASA Technical Reports Server (NTRS)

    Elam, J.; Ruder, J.; Strumpf, H.

    1974-01-01

    Data are presented on a new evaporator/sublimator concept using a hollow fiber membrane unit with a high permeability to liquid water. The aim of the program was to obtain a more reliable, lightweight and simpler Extra Vehicular Life Support System (EVLSS) cooling concept than is currently being used.

  16. A Prize for Membrane Magic

    PubMed Central

    Pfeffer, Suzanne R.

    2016-01-01

    The 2013 Nobel Prize in Physiology or Medicine has been awarded to James Rothman, Randy Schekman, and Thomas Südhof “for their discoveries of machinery regulating vesicle traffic, a major transport system in our cells”. I present a personal view of the membrane trafficking field, highlighting the contributions of these three Nobel laureates in a historical context. PMID:24315088

  17. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    DOEpatents

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  18. Tuning anti-adhesion ability of membrane for a membrane bioreactor by thermodynamic analysis.

    PubMed

    Lei, Qian; Li, Fengquan; Shen, Liguo; Yang, Lining; Liao, Bao-Qiang; Lin, Hongjun

    2016-09-01

    Developing strategies that allow tuning anti-adhesion ability of membranes in membrane bioreactors (MBRs) is of primary interest in membrane fouling research. In this study, interaction energies between foulants and membrane in three different interaction scenarios were systematically assessed based on thermodynamic methods. It was found that, membrane surface electron donor tension (γ(-)) rather than surface hydrophilicity was a more reliable indicator to predict adsorptive fouling. The interaction energy would be continuously repulsive in the initial range of separation distance when membrane γ(-) is higher than a critical value, suggesting that designing membrane with γ(-) higher than a critical value would confer membrane with high anti-adhesion ability. It was also found that, zeta potential on the membrane surface exerted certain effects on adsorptive fouling. This study proposed a novel strategy regarding adjusting membrane γ(-) to tune anti-adhesion ability of membrane, and also offered a thermodynamic theoretical background to this strategy. PMID:27289061

  19. Effective interactions between fluid membranes

    NASA Astrophysics Data System (ADS)

    Lu, Bing-Sui; Podgornik, Rudolf

    2015-08-01

    A self-consistent theory is proposed for the general problem of interacting undulating fluid membranes subject to the constraint that they do not interpenetrate. We implement the steric constraint via an exact functional integral representation and, through the use of a saddle-point approximation, transform it into a novel effective steric potential. The steric potential is found to consist of two contributions: one generated by zero-mode fluctuations of the membranes and the other by thermal bending fluctuations. For membranes of cross-sectional area S , we find that the bending fluctuation part scales with the intermembrane separation d as d-2 for d ≪√{S } but crosses over to d-4 scaling for d ≫√{S } , whereas the zero-mode part of the steric potential always scales as d-2. For membranes interacting exclusively via the steric potential, we obtain closed-form expressions for the effective interaction potential and for the rms undulation amplitude σ , which becomes small at low temperatures T and/or large bending stiffnesses κ . Moreover, σ scales as d for d ≪√{S } but saturates at √{kBT S /κ } for d ≫√{S } . In addition, using variational Gaussian theory, we apply our self-consistent treatment to study intermembrane interactions subject to different types of potentials: (i) the Moreira-Netz potential for a pair of strongly charged membranes with an intervening solution of multivalent counterions, (ii) an attractive square well, (iii) the Morse potential, and (iv) a combination of hydration and van der Waals interactions.

  20. Effective interactions between fluid membranes.

    PubMed

    Lu, Bing-Sui; Podgornik, Rudolf

    2015-08-01

    A self-consistent theory is proposed for the general problem of interacting undulating fluid membranes subject to the constraint that they do not interpenetrate. We implement the steric constraint via an exact functional integral representation and, through the use of a saddle-point approximation, transform it into a novel effective steric potential. The steric potential is found to consist of two contributions: one generated by zero-mode fluctuations of the membranes and the other by thermal bending fluctuations. For membranes of cross-sectional area S, we find that the bending fluctuation part scales with the intermembrane separation d as d-2 for d≪√S but crosses over to d-4 scaling for d≫√S, whereas the zero-mode part of the steric potential always scales as d-2. For membranes interacting exclusively via the steric potential, we obtain closed-form expressions for the effective interaction potential and for the rms undulation amplitude σ, which becomes small at low temperatures T and/or large bending stiffnesses κ. Moreover, σ scales as d for d≪√S but saturates at √kBTS/κ for d≫√S. In addition, using variational Gaussian theory, we apply our self-consistent treatment to study intermembrane interactions subject to different types of potentials: (i) the Moreira-Netz potential for a pair of strongly charged membranes with an intervening solution of multivalent counterions, (ii) an attractive square well, (iii) the Morse potential, and (iv) a combination of hydration and van der Waals interactions. PMID:26382349

  1. Corrugated Membrane Fuel Cell Structures

    SciTech Connect

    Grot, Stephen

    2013-09-30

    One of the most challenging aspects of traditional PEM fuel cell stacks is the difficulty achieving the platinum catalyst utilization target of 0.2 gPt/kWe set forth by the DOE. Good catalyst utilization can be achieved with state-of-the-art catalyst coated membranes (CCM) when low catalyst loadings (<0.3 mg/cm2) are used at a low current. However, when low platinum loadings are used, the peak power density is lower than conventional loadings, requiring a larger total active area and a larger bipolar plate. This results in a lower overall stack power density not meeting the DOE target. By corrugating the fuel cell membrane electrode structure, Ion Power?s goal is to realize both the Pt utilization targets as well as the power density targets of the DOE. This will be achieved by demonstrating a fuel cell single cell (50 cm2) with a twofold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure. The corrugating structure must be able to demonstrate the target properties of < 10 mOhm-cm2 electrical resistance at > 20 psi compressive strength over the active area, in combination with offering at least 80% of power density that can be achieved by using the same MEA in a flat plate structure. Corrugated membrane fuel cell structures also have the potential to meet DOE power density targets by essentially packaging more membrane area into the same fuel cell volume as compared to conventional stack constructions.

  2. Tetrakis-amido high flux membranes

    DOEpatents

    McCray, Scott B.

    1989-01-01

    Composite RO membranes of a microporous polymeric support and a polyamide reaction product of a tetrakis-aminomethyl compound and a polyacylhalide are disclosed, said membranes exhibiting high flux and good chlorine resistance.

  3. Tetrakis-amido high flux membranes

    DOEpatents

    McCray, S.B.

    1989-10-24

    Composite RO membranes of a microporous polymeric support and a polyamide reaction product of a tetrakis-aminomethyl compound and a polyacylhalide are disclosed, said membranes exhibiting high flux and good chlorine resistance.

  4. Bilateral persistent pupillary membranes associated with cataract

    PubMed Central

    Ahmad, Syed Shoeb; Binson, Caroline; Lung, Chong Ka; Ghani, Shuaibah Abdul

    2011-01-01

    Summary Exuberant persistent pupillary membranes (PPM) are rare in adult eyes. We report the case of a 53-year-old man diagnosed with bilateral, profuse, persistent pupillary membranes and unilateral cataract. PMID:23362401

  5. Liquid membrane potential in nonisothermal systems.

    PubMed Central

    Scibona, G; Fabiani, C; Scuppa, B; Danesi, P R

    1976-01-01

    Electrical membrane potential equations for liquid ion exchange membranes, characterized by the presence of uncharged associated species and by exclusion of co-ions (no electrolyte uptake) have been derived. The irreversible thermodynamic theories already developed for solid membranes with fixed charged site density have been extended to include the different physicochemical aspects of the liquid membranes. To this purpose the dissipation function has been written with reference to the fluxes of all the species present in the membrane. It has been found that the mobile charged site, the counterions, and the uncharged associated species contribute to the electrical membrane potential through their phenomenological coefficients. The electrical membrane potential equations have been integrated in isothermal and nonisothermal conditions for monoionic and biionic systems. The theoretical predictions have been experimentally tested by studying the electrical potential of liquid membranes formed with solutions of tetraheptylammonium salts in omicron-dichlorobenzene. PMID:1276391

  6. Bacterial cellulose membrane as separation medium

    SciTech Connect

    Shibazaki, Hideki; Kuga, Shigenori; Onabe, Fumihiko; Usuda, Makoto . Faculty of Agriculture)

    1993-11-10

    A thin membrane of bacterial cellulose (BC) obtained from Acetobacter culture was tested for its performance as a dialysis membrane in aqueous systems. The BC membrane showed superior mechanical strength to that of a dialysis-grade regenerated cellulose membrane, allowing the use of a thinner membrane than the latter. As a result, the BC membrane gave higher permeation rates for poly(ethylene glycols) as probe solutes. The cutoff molecular weight of the original BC membrane, significantly greater than that of regenerated cellulose, could be modified by concentrated alkali treatments of the membrane. The nature of the change at the ultrastructural level caused by the alkali treatments was studied by X-ray diffraction and scanning electron microscopy.

  7. Cell Membrane Softening in Cancer Cells

    NASA Astrophysics Data System (ADS)

    Schmidt, Sebastian; Händel, Chris; Käs, Josef

    Biomechanical properties are useful characteristics and regulators of the cell's state. Current research connects mechanical properties of the cytoskeleton to many cellular processes but does not investigate the biomechanics of the plasma membrane. We evaluated thermal fluctuations of giant plasma membrane vesicles, directly derived from the plasma membranes of primary breast and cervical cells and observed a lowered rigidity in the plasma membrane of malignant cells compared to non-malignant cells. To investigate the specific role of membrane rigidity changes, we treated two cell lines with the Acetyl-CoA carboxylase inhibitor Soraphen A. It changed the lipidome of cells and drastically increased membrane stiffness by up regulating short chained membrane lipids. These altered cells had a decreased motility in Boyden chamber assays. Our results indicate that the thermal fluctuations of the membrane, which are much smaller than the fluctuations driven by the cytoskeleton, can be modulated by the cell and have an impact on adhesion and motility.

  8. Characterization of lipid domains in erythrocyte membranes.

    PubMed Central

    Rodgers, W; Glaser, M

    1991-01-01

    Fluorescence digital imaging microscopy was used to study the lateral distribution of the lipid components in erythrocyte membranes. Intact erythrocytes labeled with phospholipids containing a fluorophore attached to one fatty acid chain showed an uneven distribution of the phospholipids in the membrane thereby demonstrating the presence of membrane domains. The enrichment of the lipotropic compound chlor-promazine in domains in intact erythrocytes also suggested that the domains are lipid-enriched regions. Similar membrane domains were present in erythrocyte ghosts. The phospholipid enrichment was increased in the domains by inducing membrane protein aggregation. Double-labeling experiments were done to determine the relative distributions of different phospholipids in the membrane. Vesicles made from extracted lipids did not show the presence of domains consistent with the conclusion that membrane proteins were responsible for creating the domains. Overall, it was found that large domains exist in the red blood cell membrane with unequal enrichment of the different phospholipid species. Images PMID:1996337

  9. Fuel-Cell Structure Prevents Membrane Drying

    NASA Technical Reports Server (NTRS)

    Mcelroy, J.

    1986-01-01

    Embossed plates direct flows of reactants and coolant. Membrane-type fuel-cell battery has improved reactant flow and heat removal. Compact, lightweight battery produces high current and power without drying of membranes.

  10. PERVAPORATION USING ADSORBENT-FILLED MEMBRANES

    EPA Science Inventory

    Membranes containing selective fillers, such as zeolites and activated carbon, can improve the separation by pervaporation. Applications of adsorbent-filled membranes in pervaporation have been demonstrated by a number of studies. These applications include removal of organic co...

  11. Temperature polarization coefficients in membrane distillation

    SciTech Connect

    Martinez-Diez, L.; Vazquez-Gonzalez, M.I.; Florido-Diaz, F.J.

    1998-04-01

    Membrane distillation is a membrane process in which two liquid phases at different temperatures are separated by a microporous hydrophobic membrane. The membrane plays the role of a physical support for the vapor-liquid interface. The aim of this paper is to study pure water transport by membrane distillation through a PTFE flat membrane. The dependence of the phenomenon on average temperature and recirculation rate at the membrane sides is investigated. The influence of these operating conditions on water transport is discussed by taking into account mass and heat transfer within the membrane and the adjoining liquid phases. The concept of temperature polarization is introduced into the transport equations and shown to be important in the interpretation of the experimental results.

  12. Fluid transport by active elastic membranes

    NASA Astrophysics Data System (ADS)

    Evans, Arthur A.; Lauga, Eric

    2011-09-01

    A flexible membrane deforming its shape in time can self-propel in a viscous fluid. Alternatively, if the membrane is anchored, its deformation will lead to fluid transport. Past work in this area focused on situations where the deformation kinematics of the membrane were prescribed. Here we consider models where the deformation of the membrane is not prescribed, but instead the membrane is internally forced. Both the time-varying membrane shape and the resulting fluid motion result then from a balance between prescribed internal active stresses, internal passive resistance, and external viscous stresses. We introduce two specific models for such active internal forcing: one where a distribution of active bending moments is prescribed, and one where active inclusions exert normal stresses on the membrane by pumping fluid through it. In each case, we asymptotically calculate the membrane shape and the fluid transport velocities for small forcing amplitudes, and recover our results using scaling analysis.

  13. Self-Cleaning Tubular-Membrane Module

    NASA Technical Reports Server (NTRS)

    Sarbolouki, M. N.

    1983-01-01

    Tubular membranes made self-cleaning with aid of flow reversing valve. Sponge balls scrub membrane surfaces as they travel inside membrane tubes. A four-way flow-reversal valve automatically reverses flow in tubes at preset intervals so sponge balls reciprocate along tubes. Baskets at ends of tubes prevent sponges from escaping. Automatic cleaning feature added to existing membrane processing equipment with minimal modifications.

  14. How bio-filaments twist membranes.

    PubMed

    Fierling, Julien; Johner, Albert; Kulić, Igor M; Mohrbach, Hervé; Müller, Martin Michael

    2016-06-29

    We study the deformations of a fluid membrane imposed by adhering stiff bio-filaments due to the torques they apply. In the limit of small deformations, we derive a general expression for the energy and the deformation field of the membrane. This expression is specialised to different important cases including closed and helical bio-filaments. In particular, we analyse interface-mediated interactions and membrane wrapping when the filaments apply a local torque distribution on a tubular membrane. PMID:27291854

  15. Study of permeability characteristics of membranes

    NASA Technical Reports Server (NTRS)

    Spiegler, K. S.; Moore, R. J.; Leibovitz, J.; Messalem, R. M.

    1972-01-01

    A method is reported for evaluating transport experiments with membranes which is based on conservative fluxes, i.e. fluxes of quantities which do not vary across the membrane in the steady state. Conductance coefficients were calculated for the system: 0.05 N NaCl - C-103 cation-exchange membrane- 0.1 N NaCl. It is concluded that this method can be used to characterize any system of the type - solution-membrane-solution.

  16. Fuel cell ion-exchange membrane investigation

    NASA Technical Reports Server (NTRS)

    Toy, M. S.

    1972-01-01

    The present deficiencies in the fluorocarbon sulfonic acid membrane used as the solid polymer electrolyte in the H2/O2 fuel cell are studied. Considered are: Adhesives selection, elastomeric formulations, scavenger exploration, and membrane characterization. The significant data are interpreted and recommendations are given for both short and long range further investigations in two of the four major areas: membrane adhesives and membrane stabilization.

  17. Electro membrane extraction using sorbent filled porous membrane bag.

    PubMed

    Naing, Nyi Nyi; Li, Sam Fong Yau; Lee, Hian Kee

    2015-12-01

    Electro membrane extraction-solid-liquid phase microextraction (EME-SLPME) was developed for the first time to determine phenolic contaminants in water. The extraction system consisted of a solid/liquid interface that permitted a three-phase microextraction approach involving an aqueous sample (donor phase): an organic solvent-sorbent within a membrane bag, and an organic solvent (extractant phase), operated in a direct immersion sampling system. The sorbent, reduced graphene oxide/polyvinyl alcohol, synthesized using graphene oxide and polyvinyl alcohol by dispersing the graphene oxide in polyvinyl alcohol and chemically reducing it in aqueous solution. The prepared sorbent was dispersed in 1-octanol and the solution was immobilized by sonication in the membrane bag wall pores which was in contact with the aqueous donor solution and organic extractant solvent (1-octanol) in the main bag itself. The analytes were transported by application of an electrical potential difference of 100V across the sorbent/solvent phase from the aqueous sample into the organic extractant phase in the membrane bag. After extraction and derivatization, gas chromatography-mass spectrometry was used to determine the derivatized analytes. This proposed EME-LSPME procedure provided high extraction efficiency with relative recoveries up to 99.6%. A linearity range of between 0.05 and 100μgL(-1) with corresponding coefficients of determination (r(2)) of between 0.987 and 0.996 were obtained. The limits of detection were in the range of between 0.003 and 0.053μgL(-1). This proposed method was successfully applied to the extraction of phenolic contaminants from water sample. PMID:26530143

  18. Protected Membrane Roofs: A Sustainable Roofing Solution.

    ERIC Educational Resources Information Center

    Roodvoets, David L.

    2003-01-01

    Examines the benefits of protected membrane roofing (PMR) for school buildings. PMR uses an upside-down approach, where the insulation is placed on top of the waterproofing membrane to improve membrane effectiveness, reduce ultraviolet degradation, and improve insulation efficiency. The article explains what makes PMR sustainable, focusing on…

  19. Membrane has high urea-rejection properties

    NASA Technical Reports Server (NTRS)

    Johnson, C. C.; Wydeven, T.

    1977-01-01

    Membranes are synthesized from ethylene and nitrogen in RF plasma at low power, gas-flow rates, and pressure. Ethylene and nitrogen are used because flow rate and partial pressure of each gas can be independently controlled to produce optimum conditions for synthesizing membrane. Membrane is particularly useful in recycling and purifying water.

  20. Ion and Bio-Selective Membrane Electrodes.

    ERIC Educational Resources Information Center

    Rechnitz, Garry A.

    1983-01-01

    Discusses topics on membrane electrodes corresponding to approximately six hours of lecture time. These include glass, liquid, crystal, gas-sensing membrane electrodes as well as enzyme and other bioselective membrane electrodes. Instructional strategies and other topics which might be discussed are provided. (JN)

  1. Hydrophilic membrane-based humidity control.

    PubMed

    Scovazzo, P; Burgos, J; Hoehn, A; Todd, P

    1998-10-14

    A dehumidification system for low gravity plant growth experiments requires the generation of no free-liquid condensate and the recovery of water for reuse. In the systems discussed in this paper, the membrane is a barrier between the humid air phase and a liquid-coolant water phase. The coolant water temperature combined with a transmembrane pressure differential establishes a water flux from the humid air into the coolant water. Building on the work of others, we directly compared different hydrophilic membranes for humidity control. In a direct comparison of the hydrophilic membranes, hollow fiber cellulose ester membranes were superior to metal and ceramic membranes in the categories of condensation flux per surface area, ease of start-up, and stability. However, cellulose ester membranes were inferior to metal membranes in one significant category, durability. Dehumidification systems using mixed cellulose ester membranes failed after operational times of only hours to days. We propose that the ratio of fluid surface area to membrane material area (approximately = membrane porosity) controls the relative performances among membranes. In addition, we clarified design equations for operational parameters such as the transmembrane pressure differential. This technology has several potential benefits related to earth environmental issues including the minimization of airborne pathogen release and higher energy efficiency in air conditioning equipment. Utilizing these study results, we designed, constructed, and flew on the space shuttle missions a membrane-based dehumidification system for a plant growth chamber. PMID:11543067

  2. Membranes for Environmentally Friendly Energy Processes

    PubMed Central

    He, Xuezhong; Hägg, May-Britt

    2012-01-01

    Membrane separation systems require no or very little chemicals compared to standard unit operations. They are also easy to scale up, energy efficient, and already widely used in various gas and liquid separation processes. Different types of membranes such as common polymers, microporous organic polymers, fixed-site-carrier membranes, mixed matrix membranes, carbon membranes as well as inorganic membranes have been investigated for CO2 capture/removal and other energy processes in the last two decades. The aim of this work is to review the membrane systems applied in different energy processes, such as post-combustion, pre-combustion, oxyfuel combustion, natural gas sweetening, biogas upgrading, hydrogen production, volatile organic compounds (VOC) recovery and pressure retarded osmosis for power generation. Although different membranes could probably be used in a specific separation process, choosing a suitable membrane material will mainly depend on the membrane permeance and selectivity, process conditions (e.g., operating pressure, temperature) and the impurities in a gas stream (such as SO2, NOx, H2S, etc.). Moreover, process design and the challenges relevant to a membrane system are also being discussed to illustrate the membrane process feasibility for a specific application based on process simulation and economic cost estimation. PMID:24958426

  3. A Demonstration of Erythrocyte Membrane Asymmetry.

    ERIC Educational Resources Information Center

    Pederson, Philip; And Others

    1985-01-01

    A three-period experiment was developed to help students visualize asymmetric distribution of proteins within membranes. It includes: (1) isolating erythrocyte membranes; (2) differential labeling of intact erythrocytes and isolated erythrocyte membranes with an impermeable fluorescent dye; and (3) separating proteins by polyacrylamide gel…

  4. Characterization of Surface Modification of Polyethersulfone Membrane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface modification of polyethersulfone (PES) membrane surface using UV/ozone-treated grafting and interfacial polymerization on membrane surface was investigated in order to improve the resistance of membrane surface to protein adsorption. These methods of surface modification were compared in te...

  5. Changing rooster sperm membranes to facilitate cryopreservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cryopreservation damages rooster sperm membranes. Part of this damage is due to membrane transitioning from the fluid to the gel state as temperature is reduced. This damage may be prevented by increasing membrane fluidity at low temperatures by incorporating cholesterol or unsaturated lipids into t...

  6. Inorganic dual-layer microporous supported membranes

    DOEpatents

    Brinker, C. Jeffrey; Tsai, Chung-Yi; Lu, Yungfeng

    2003-03-25

    The present invention provides for a dual-layer inorganic microporous membrane capable of molecular sieving, and methods for production of the membranes. The inorganic microporous supported membrane includes a porous substrate which supports a first inorganic porous membrane having an average pore size of less than about 25 .ANG. and a second inorganic porous membrane coating the first inorganic membrane having an average pore size of less than about 6 .ANG.. The dual-layered membrane is produced by contacting the porous substrate with a surfactant-template polymeric sol, resulting in a surfactant sol coated membrane support. The surfactant sol coated membrane support is dried, producing a surfactant-templated polymer-coated substrate which is calcined to produce an intermediate layer surfactant-templated membrane. The intermediate layer surfactant-templated membrane is then contacted with a second polymeric sol producing a polymeric sol coated substrate which is dried producing an inorganic polymeric coated substrate. The inorganic polymeric coated substrate is then calcined producing an inorganic dual-layered microporous supported membrane in accordance with the present invention.

  7. Membranes for environmentally friendly energy processes.

    PubMed

    He, Xuezhong; Hägg, May-Britt

    2012-01-01

    Membrane separation systems require no or very little chemicals compared to standard unit operations. They are also easy to scale up, energy efficient, and already widely used in various gas and liquid separation processes. Different types of membranes such as common polymers, microporous organic polymers, fixed-site-carrier membranes, mixed matrix membranes, carbon membranes as well as inorganic membranes have been investigated for CO2 capture/removal and other energy processes in the last two decades. The aim of this work is to review the membrane systems applied in different energy processes, such as post-combustion, pre-combustion, oxyfuel combustion, natural gas sweetening, biogas upgrading, hydrogen production, volatile organic compounds (VOC) recovery and pressure retarded osmosis for power generation. Although different membranes could probably be used in a specific separation process, choosing a suitable membrane material will mainly depend on the membrane permeance and selectivity, process conditions (e.g., operating pressure, temperature) and the impurities in a gas stream (such as SO2, NOx, H2S, etc.). Moreover, process design and the challenges relevant to a membrane system are also being discussed to illustrate the membrane process feasibility for a specific application based on process simulation and economic cost estimation. PMID:24958426

  8. Mechanism of calcium mitigating membrane fouling in submerged membrane bioreactors.

    PubMed

    Zhang, Hanmin; Xia, Jie; Yang, Yang; Wang, Zixing; Yang, Fenglin

    2009-01-01

    Two parallel membrane bioreactors (MBRs) were operated under different calcium dosages (168.5, 27 mg/L) to gain a better understanding of the mechanism of retarding membrane fouling by adding calcium. The results showed that the particle size of sludge flocs increased and the particle size distribution tended to be narrow at the optimum dosage (168.5 mg/L). Calcium was effective in decreasing loosely bound extracellular polymeric substances (LB-EPS) in microbial flocs and soluble microbial products (SMP) in the supernatant at the dosage of 168.5 mg/L by strengthening the neutralization and bridging of EPS with flocs. Furthermore, the amount of CODs and CODc decreased in both the mixed liquor and the fouling cake layer on the membrane surface. In order to compare the filtration characteristics of cake layers from the MBRs with the two calcium dosages, the specific cake resistance and the compressibility coefficient were measured. The specific cake resistance from the MBR with optimum dosage (168.5 mg/L) was distinctly lower than that with low dosage (27 mg/L). The compressibility coefficient of the cake layers under two dosages were respectively attained as 0.65, 0.91. Scanning electron microscopy (SEM) and three-dimensional confocal scanning laser microscope analysis (CLSM) images were utilized to observe the gel layer directly. PMID:19862919

  9. Membrane raft association is a determinant of plasma membrane localization

    PubMed Central

    Diaz-Rohrer, Blanca B.; Levental, Kandice R.; Simons, Kai; Levental, Ilya

    2014-01-01

    The lipid raft hypothesis proposes lateral domains driven by preferential interactions between sterols, sphingolipids, and specific proteins as a central mechanism for the regulation of membrane structure and function; however, experimental limitations in defining raft composition and properties have prevented unequivocal demonstration of their functional relevance. Here, we establish a quantitative, functional relationship between raft association and subcellular protein sorting. By systematic mutation of the transmembrane and juxtamembrane domains of a model transmembrane protein, linker for activation of T-cells (LAT), we generated a panel of variants possessing a range of raft affinities. These mutations revealed palmitoylation, transmembrane domain length, and transmembrane sequence to be critical determinants of membrane raft association. Moreover, plasma membrane (PM) localization was strictly dependent on raft partitioning across the entire panel of unrelated mutants, suggesting that raft association is necessary and sufficient for PM sorting of LAT. Abrogation of raft partitioning led to mistargeting to late endosomes/lysosomes because of a failure to recycle from early endosomes. These findings identify structural determinants of raft association and validate lipid-driven domain formation as a mechanism for endosomal protein sorting. PMID:24912166

  10. Membrane Contact Sites: Complex Zones for Membrane Association and Lipid Exchange

    PubMed Central

    Quon, Evan; Beh, Christopher T.

    2015-01-01

    Lipid transport between membranes within cells involves vesicle and protein carriers, but as agents of nonvesicular lipid transfer, the role of membrane contact sites has received increasing attention. As zones for lipid metabolism and exchange, various membrane contact sites mediate direct associations between different organelles. In particular, membrane contact sites linking the plasma membrane (PM) and the endoplasmic reticulum (ER) represent important regulators of lipid and ion transfer. In yeast, cortical ER is stapled to the PM through membrane-tethering proteins, which establish a direct connection between the membranes. In this review, we consider passive and facilitated models for lipid transfer at PM–ER contact sites. Besides the tethering proteins, we examine the roles of an additional repertoire of lipid and protein regulators that prime and propagate PM–ER membrane association. We conclude that instead of being simple mediators of membrane association, regulatory components of membrane contact sites have complex and multilayered functions. PMID:26949334

  11. Energy efficiency in membrane bioreactors.

    PubMed

    Barillon, B; Martin Ruel, S; Langlais, C; Lazarova, V

    2013-01-01

    Energy consumption remains the key factor for the optimisation of the performance of membrane bioreactors (MBRs). This paper presents the results of the detailed energy audits of six full-scale MBRs operated by Suez Environnement in France, Spain and the USA based on on-site energy measurement and analysis of plant operation parameters and treatment performance. Specific energy consumption is compared for two different MBR configurations (flat sheet and hollow fibre membranes) and for plants with different design, loads and operation parameters. The aim of this project was to understand how the energy is consumed in MBR facilities and under which operating conditions, in order to finally provide guidelines and recommended practices for optimisation of MBR operation and design to reduce energy consumption and environmental impacts. PMID:23787304

  12. Abnormalities of the Erythrocyte Membrane

    PubMed Central

    Gallagher, Patrick G.

    2014-01-01

    Synopsis Primary abnormalities of the erythrocyte membrane, including the hereditary spherocytosis and hereditary elliptocytosis syndromes, are an important group of inherited hemolytic anemias. Classified by distinctive morphology on peripheral blood smear, these disorders are characterized by clinical, laboratory, and genetic heterogeneity. Among this group, hereditary spherocytosis patients are more likely to experience symptomatic anemia. Treatment of hereditary spherocytosis with splenectomy is curative in most patients. Once considered routine, growing recognition of the longterm risks of splenectomy, including cardiovascular disease, thrombotic disorders, and pulmonary hypertension, as well as the emergence of penicillin-resistant pneumococci, a concern for infection in overwhelming postsplenectomy infection, have led to re-evaluation of the role of splenectomy. Current management guidelines acknowledge these important considerations when entertaining splenectomy and recommend detailed discussion between health care providers, patient, and family. The hereditary elliptocytosis syndromes are the most common primary disorders of erythrocyte membrane proteins. However, most elliptocytosis patients are asymptomatic and do not require therapy. PMID:24237975

  13. Viscoelastic behavior of erythrocyte membrane.

    PubMed Central

    Tözeren, A; Skalak, R; Sung, K L; Chien, S

    1982-01-01

    A nonlinear viscoelastic relation is developed to describe the viscoelastic properties of erythrocyte membrane. This constitutive equation is used in the analysis of the time-dependent aspiration of an erythrocyte membrane into a micropipette. Equations governing this motion are reduced to a nonlinear integral equation of the Volterra type. A numerical procedure based on a finite difference scheme is used to solve the integral equation and to match the experimental data. The data, aspiration length vs. time, is used to determine the relaxation function at each time step. The inverse problem of obtaining the time dependence of the aspiration length from a given relaxation function is also solved. Analytical results obtained are applied to the experimental data of Chien et al. 1978. Biophys. J. 24:463-487. A relaxation function similar to that of a four-parameter solid with a shear-thinning viscous term is proposed. PMID:7104447

  14. Cell membranes: A subjective perspective.

    PubMed

    Simons, Kai

    2016-10-01

    Cell membranes have developed a tremendous complexity of lipids and proteins geared to perform the functions cells require. The lipids have for long remained in the background and are now regaining their role as important building blocks of cells. Their main function is to form the matrix of our cell membranes where they support a variety of functions essential for life. This 2-dimensional fluid matrix has evolved unexpected material properties that involve both lipid-lipid and lipid-protein interactions. This perspective is a short summary of the challenges that this field faces and discusses potential ways and means for coming to grips with the properties of this incredible fluid. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:26827711

  15. Oxygen dynamics in photosynthetic membranes.

    NASA Astrophysics Data System (ADS)

    Savikhin, Sergei; Kihara, Shigeharu

    2008-03-01

    Production of oxygen by oxygenic photosynthetic organisms is expected to raise oxygen concentration within their photosynthetic membranes above normal aerobic values. These raised levels of oxygen may affect function of many proteins within photosynthetic cells. However, experiments on proteins in vitro are usually performed in aerobic (or anaerobic) conditions since the oxygen content of a membrane is not known. Using theory of diffusion and measured oxygen production rates we estimated the excess levels of oxygen in functioning photosynthetic cells. We show that for an individual photosynthetic cell suspended in water oxygen level is essentially the same as that for a non-photosynthetic sell. These data suggest that oxygen protection mechanisms may have evolved after the development of oxygenic photosynthesis in primitive bacteria and was driven by the overall rise of oxygen concentration in the atmosphere. Substantially higher levels of oxygen are estimated to occur in closely packed colonies of photosynthetic bacteria and in green leafs.

  16. Spin physics and biological membranes

    NASA Astrophysics Data System (ADS)

    Kiselev, Yury

    2016-02-01

    Formula for calculating the concentration profile of ions in biological membranes has been obtained. It is assumed that ions are moving in a viscous medium under the action of the electric field and a concentration gradient. The problem is that ions are coated with shells consisting of water dipoles. These dipoles copy the form of the ions and in a strong electric field they can acquire the shape of an ellipsoid which changes the effective ion radius in the membrane. Calculation of the Na+1 and K+1 profiles leads to a conclusion that active and passive transport of ions is closely associated with the shape of the hydrated shells. The work was performed at the Veksler and Baldin Laboratory of High Energy Physics, JINR, Dubna.

  17. Membrane lipids of Mycoplasma fermentans.

    PubMed

    Salman, M; Deutsch, I; Tarshis, M; Naot, Y; Rottem, S

    1994-11-01

    Membranes of Mycoplasma fermentans, incognitus strain, were isolated by a combination of osmotic lysis and sonication. Analysis of membrane lipids revealed, in addition to free and esterified cholesterol, six major polar lipids dominated by a de novo synthesized compound (compound X), which accounts for 64% of the total lipid phosphorus. Compound X was labeled by palmitate, but not by oleate. Mass spectrometry and gas liquid chromatography analyses of compound X revealed two molecular species with molecular masses of 1048 and 1076 representing, a dipalmitoyl- and a stearoyl-palmitoyl-glycerodiphosphatidylcholine. Compound X has the ability to stimulate human monocytes to secret TNF alpha and to enhance the fusion of small unilamellar vesicles with MOLT-3 lymphocytes. PMID:7988908

  18. Targeting Acetylcholinesterase to Membrane Rafts

    PubMed Central

    Xie, Heidi Q.; Liang, Dong; Leung, K. Wing; Chen, Vicky P.; Zhu, Kevin Y.; Chan, Wallace K. B.; Choi, Roy C. Y.; Massoulié, Jean; Tsim, Karl W. K.

    2010-01-01

    In the mammalian brain, acetylcholinesterase (AChE) is anchored in cell membranes by a transmembrane protein PRiMA (proline-rich membrane anchor). We present evidence that at least part of the PRiMA-linked AChE is integrated in membrane microdomains called rafts. A significant proportion of PRiMA-linked AChE tetramers from rat brain was recovered in raft fractions; this proportion was markedly higher at low rather than at high concentrations of cold Triton X-100. The detergent-resistant fraction increased during brain development. In NG108-15 neuroblastoma cells transfected with cDNAs encoding AChET and PRiMA, PRiMA-linked G4 AChE was found in membrane rafts and showed the same sensitivity to cold Triton X-100 extraction as in the brain. The association of PRiMA-linked AChE with rafts was weaker than that of glycosylphosphatidylinositol-anchored G2 AChE or G4 QN-HC-linked AChE. It was found to depend on the presence of a cholesterol-binding motif, called CRAC (cholesterol recognition/interaction amino acid consensus), located at the junction of transmembrane and cytoplasmic domains of both PRiMA I and II isoforms. The cytoplasmic domain of PRiMA, which differs between PRiMA I and PRiMA II, appeared to play some role in stabilizing the raft localization of G4 AChE, because the Triton X-100-resistant fraction was smaller with the shorter PRiMA II isoform than that with the longer PRiMA I isoform. PMID:20147288

  19. Salt splitting using ceramic membranes

    SciTech Connect

    Kurath, D.E.

    1997-10-01

    Many radioactive aqueous wastes in the DOE complex have high concentrations of sodium that can negatively affect waste treatment and disposal operations. Sodium can decrease the durability of waste forms such as glass and is the primary contributor to large disposal volumes. Waste treatment processes such as cesium ion exchange, sludge washing, and calcination are made less efficient and more expensive because of the high sodium concentrations. Pacific Northwest National Laboratory (PNNL) and Ceramatec Inc. (Salt Lake City UT) are developing an electrochemical salt splitting process based on inorganic ceramic sodium (Na), super-ionic conductor (NaSICON) membranes that shows promise for mitigating the impact of sodium. In this process, the waste is added to the anode compartment, and an electrical potential is applied to the cell. This drives sodium ions through the membrane, but the membrane rejects most other cations (e.g., Sr{sup +2}, Cs{sup +}). The charge balance in the anode compartment is maintained by generating H{sup +} from the electrolysis of water. The charge balance in the cathode is maintained by generating OH{sup {minus}}, either from the electrolysis of water or from oxygen and water using an oxygen cathode. The normal gaseous products of the electrolysis of water are oxygen at the anode and hydrogen at the cathode. Potentially flammable gas mixtures can be prevented by providing adequate volumes of a sweep gas, using an alternative reductant or destruction of the hydrogen as it is generated. As H{sup +} is generated in the anode compartment, the pH drops. The process may be operated with either an alkaline (pH>12) or an acidic anolyte (pH <1). The benefits of salt splitting using ceramic membranes are (1) waste volume reduction and reduced chemical procurement costs by recycling of NaOH; and (2) direct reduction of sodium in process streams, which enhances subsequent operations such as cesium ion exchange, calcination, and vitrification.

  20. Process for restoring membrane permeation properties

    DOEpatents

    Pinnau, Ingo; Toy, Lora G.; Casillas, Carlos G.

    1997-05-20

    A process for restoring the selectivity of high-flee-volume, glassy polymer membranes for condensable components over less-condensable components or non-condensable components of a gas mixture. The process involves exposing the membrane to suitable sorbent vapor, such as propane or butane, thereby reopening the microvoids that make up the free volume. The selectivity of an aged membrane may be restored to 70-100% of its original value. The selectivity of a membrane which is known to age over time can also be maintained by keeping the membrane in a vapor environment when it is not in use.

  1. Silica nanoporous membranes and their applications

    NASA Astrophysics Data System (ADS)

    Khabibullin, Amir

    This thesis describes the development of novel silica and hybrid nanoporous membranes. Nanoporous membranes are widely used in various applications. This thesis focuses on their potential applications in the energy area, such as fuel cells and lithium batteries, and in separations and ultrafiltration. We use silica colloidal spheres and polymer-modified silica spheres to prepare the membranes in a time-, cost- and material-efficient manner. First, we prepared novel silica nanoporous membranes by pressing silica colloidal spheres followed by sintering. The pore size, the thickness, and the area of the membrane are precisely controlled by experiment parameters. The resulting membranes are mechanically and thermally durable, crack-free, and capable of size-selective transport. Next, to demonstrate the utility of the pressed membranes, described above, the proton-conductive pore-filled silica colloidal membranes were prepared and the fuel cells were constructed using these membranes. We modified these membranes by filling the membrane pores with surface-attached proton-conductive polymer brushes and prepared membrane-electrode assemblies to test fuel cell performance. We studied the proton conductivity and fuel cell performance as a function of the amount of sulfonic groups in the membrane. We also prepared and characterized reversible hybrid nanoporous membranes, self-assembled from solution containing polymer-modified silica colloidal spheres. Here we applied the new concept of noncovalent membranes, where the material is held together via noncovalent interactions of polymer brushes. This enables so-called reversible assembly of the membranes, in which membrane can be assembled in one solvent and dissolved in other. This approach provides advantages in recycling and reusing of the material. This work is one of the first of its kind and it opens a whole new area of research on reversible membranes made of polymer-modified nanoparticles. Finally, we applied our

  2. Current approaches to studying membrane organization

    PubMed Central

    van Zanten, Thomas S.; Mayor, Satyajit

    2015-01-01

    The local structure and composition of the outer membrane of an animal cell are important factors in the control of many membrane processes and mechanisms. These include signaling, sorting, and exo- and endocytic processes that are occurring all the time in a living cell. Paradoxically, not only are the local structure and composition of the membrane matters of much debate and discussion, the mechanisms that govern its genesis remain highly controversial. Here, we discuss a swathe of new technological advances that may be applied to understand the local structure and composition of the membrane of a living cell from the molecular scale to the scale of the whole membrane. PMID:26918150

  3. Membranes solve North Sea waterflood sulfate problems

    SciTech Connect

    Davis, R.; Lomax, I.; Plummer, M.

    1996-11-25

    To prevent barium sulfate scale from forming in the North Sea Brae field producing wells, Marathon Oil Co. UK Ltd. is successfully employing thin-film composite (nanofiltration) membranes for removing sulfate from injected seawater. In the early 1980s, FilmTec Corp., a Dow Chemical Co. subsidiary, first developed these composite membranes, which now are in their third generation. Marathon Oil Co. holds the patent for the specific nanofiltration membrane process for mitigating scale formation and deleterious reservoir effects. This first article in a three-part series describes membrane technology. The remaining articles detail specific membrane performance characteristics and field experiences in the Brae fields.

  4. Surface selective membranes for carbon dioxide separation

    SciTech Connect

    Luebke, D.R.; Pennline, H.W.; Myers, C.R.

    2005-09-01

    In this study, hybrid membranes have been developed for the selective separation of CO2 from mixtures containing H2. Beginning with commercially available Pall alumina membrane tubes with nominal pore diameter of 5 nm, hybrids were produced by silation with a variety of functionalities designed to facilitate the selective adsorption of CO2 onto the pore surface. The goal is to produce a membrane which can harness the power of surface diffusion to give the selectivity of polymer membranes with the permeance of inorganic membranes.

  5. The role of cholesterol in membrane fusion.

    PubMed

    Yang, Sung-Tae; Kreutzberger, Alex J B; Lee, Jinwoo; Kiessling, Volker; Tamm, Lukas K

    2016-09-01

    Cholesterol modulates the bilayer structure of biological membranes in multiple ways. It changes the fluidity, thickness, compressibility, water penetration and intrinsic curvature of lipid bilayers. In multi-component lipid mixtures, cholesterol induces phase separations, partitions selectively between different coexisting lipid phases, and causes integral membrane proteins to respond by changing conformation or redistribution in the membrane. But, which of these often overlapping properties are important for membrane fusion?-Here we review a range of recent experiments that elucidate the multiple roles that cholesterol plays in SNARE-mediated and viral envelope glycoprotein-mediated membrane fusion. PMID:27179407

  6. Process for restoring membrane permeation properties

    DOEpatents

    Pinnau, I.; Toy, L.G.; Casillas, C.G.

    1997-05-20

    A process is described for restoring the selectivity of high-free-volume, glassy polymer membranes for condensable components over less-condensable components or non-condensable components of a gas mixture. The process involves exposing the membrane to suitable sorbent vapor, such as propane or butane, thereby reopening the microvoids that make up the free volume. The selectivity of an aged membrane may be restored to 70--100% of its original value. The selectivity of a membrane which is known to age over time can also be maintained by keeping the membrane in a vapor environment when it is not in use. 8 figs.

  7. Free Volume in Membranes: Viscosity or Tension?

    PubMed Central

    Markin, V. S.; Sachs, F.

    2016-01-01

    Many papers have used fluorescent probe diffusion to infer membrane viscosity but the measurement is actually an assay of the free volume of the membrane. The free volume is also related to the membrane tension. Thus, changes in probe mobility refer equally well to changes in membrane tension. In complicated structures like cell membranes, it appears more intuitive to consider variations in free volume as referring to the effect of domains structures and interactions with the cytoskeleton than changes in viscosity since tension is a state variable and viscosity is not.

  8. Separation of metals by supported liquid membranes

    SciTech Connect

    Takigawa, D.Y.

    1990-12-31

    A supported liquid membrane system for the separation of a preselected chemical species within a feedstream, preferably an aqueous feedstream, includes a feed compartment containing a feed solution having at least one preselected chemical species therein, a stripping compartment containing a stripping solution therein, and a microporous polybenzimidazole membrane situated between the compartments, the microporous polybenzimidazole membrane containing an extractant mixture selective for the preselected chemical species within the membrane pores is disclosed along with a method of separating preselected chemical species from a feedstream with such a system, and a supported liquid membrane for use in such a system.

  9. In-membrane micro fuel cell

    DOEpatents

    Omosebi, Ayokunle; Besser, Ronald

    2016-09-06

    An in-membrane micro fuel cell comprises an electrically-insulating membrane that is permissive to the flow of cations, such as protons, and a pair of electrodes deposited on channels formed in the membrane. The channels are arranged as conduits for fluids, and define a membrane ridge between the channels. The electrodes are porous and include catalysts for promoting the liberation of a proton and an electron from a chemical species and/or or the recombination of a proton and an electron with a chemical specie. The fuel cell may be provided a biosensor, an electrochemical sensor, a microfluidic device, or other microscale devices fabricated in the fuel cell membrane.

  10. Microfabrication of hybrid fluid membrane for microengines

    NASA Astrophysics Data System (ADS)

    Chutani, R.; Formosa, F.; de Labachelerie, M.; Badel, A.; Lanzetta, F.

    2015-12-01

    This paper describes the microfabrication and dynamic characterization of thick membranes providing a technological solution for microengines. The studied membranes are called hybrid fluid-membrane (HFM) and consist of two thin membranes that encapsulate an incompressible fluid. This work details the microelectromechanical system (MEMS) scalable fabrication and characterization of HFMs. The membranes are composite structures based on Silicon spiral springs embedded in a polymer (RTV silicone). The anodic bonding of multiple stacks of Si/glass structures, the fluid filling and the sealing have been demonstrated. Various HFMs were successfully fabricated and their dynamic characterization demonstrates the agreement between experimental and theoretical results.

  11. Dense, layered membranes for hydrogen separation

    DOEpatents

    Roark, Shane E.; MacKay, Richard; Mundschau, Michael V.

    2006-02-21

    This invention provides hydrogen-permeable membranes for separation of hydrogen from hydrogen-containing gases. The membranes are multi-layer having a central hydrogen-permeable layer with one or more catalyst layers, barrier layers, and/or protective layers. The invention also relates to membrane reactors employing the hydrogen-permeable membranes of the invention and to methods for separation of hydrogen from a hydrogen-containing gas using the membranes and reactors. The reactors of this invention can be combined with additional reactor systems for direct use of the separated hydrogen.

  12. Membrane separation technology in the 1980s

    NASA Technical Reports Server (NTRS)

    Lonsdale, H. K.

    1982-01-01

    The current status of membrane technology is assessed and industrial processes in which membrane technology could effect energy savings or other advantages are identified. The extension of current trends is recommended; i.e., the development of ultrathin and highly permselective membranes, the use of specific carriers to enhance permselectivity and permit 'uphill' diffusion, and the improvement of separation efficiency. Membranes are predicted to be important in biotechnology and in the production of solar energy. Guidelines indicating where and how to look for opportunities where evolving membrane technology might fit are provided.

  13. Separation of metals by supported liquid membrane

    DOEpatents

    Takigawa, Doreen Y.

    1992-01-01

    A supported liquid membrane system for the separation of a preselected chemical species within a feedstream, preferably an aqueous feedstream, includes a feed compartment containing a feed solution having at least one preselected chemical species therein, a stripping compartment containing a stripping solution therein, and a microporous polybenzimidazole membrane situated between the compartments, the microporous polybenzimidazole membrane containing an extractant mixture selective for the preselected chemical species within the membrane pores is disclosed along with a method of separating preselected chemical species from a feedstream with such a system, and a supported liquid membrane for use in such a system.

  14. Untangling Membrane Rearrangement in the Nidovirales

    PubMed Central

    Angelini, Megan Mary; Neuman, Benjamin William

    2014-01-01

    All known positive sense single-stranded RNA viruses induce host cell membrane rearrangement for purposes of aiding viral genome replication and transcription. Members of the Nidovirales order are no exception, inducing intricate regions of double membrane vesicles and convoluted membranes crucial for the production of viral progeny. Although these structures have been well studied for some members of this order, much remains unclear regarding the biogenesis of these rearranged membranes. Here, we discuss what is known about these structures and their formation, compare some of the driving viral proteins behind this process across the nidovirus order, and examine possible routes of mechanism by which membrane rearrangement may occur. PMID:24410069

  15. Tissue engineering a fetal membrane.

    PubMed

    Mi, Shengli; David, Anna L; Chowdhury, Bipasha; Jones, Roanne Razalia; Hamley, Ian William; Squires, Adam M; Connon, Che John

    2012-02-01

    The aim of this study was to construct an artificial fetal membrane (FM) by combination of human amniotic epithelial stem cells (hAESCs) and a mechanically enhanced collagen scaffold containing encapsulated human amniotic stromal fibroblasts (hASFs). Such a tissue-engineered FM may have the potential to plug structural defects in the amniotic sac after antenatal interventions, or to prevent preterm premature rupture of the FM. The hAESCs and hASFs were isolated from human fetal amniotic membrane (AM). Magnetic cell sorting was used to enrich the hAESCs by positive ATP-binding cassette G2 selection. We investigated the use of a laminin/fibronectin (1:1)-coated compressed collagen gel as a novel scaffold to support the growth of hAESCs. A type I collagen gel was dehydrated to form a material mimicking the mechanical properties and ultra-structure of human AM. hAESCs successfully adhered to and formed a monolayer upon the biomimetic collagen scaffold. The resulting artificial membrane shared a high degree of similarity in cell morphology, protein expression profiles, and structure to normal fetal AM. This study provides the first line of evidence that a compacted collagen gel containing hASFs could adequately support hAESCs adhesion and differentiation to a degree that is comparable to the normal human fetal AM in terms of structure and maintenance of cell phenotype. PMID:21919796

  16. Water vapor diffusion membrane development

    NASA Technical Reports Server (NTRS)

    Tan, M. K.

    1977-01-01

    An application of the water vapor diffusion technique is examined whereby the permeated water vapor is vented to space vacuum to alleviate on-board waste storage and provide supplemental cooling. The work reported herein deals primarily with the vapor diffusion-heat rejection (VD-HR) as it applies to the Space Shuttle. A stack configuration was selected, designed and fabricated. An asymmetric cellulose acetate membrane, used in reverse osmosis application was selected and a special spacer was designed to enhance mixing and promote mass transfer. A skid-mount unit was assembled from components used in the bench unit although no attempt was made to render it flight-suitable. The operating conditions of the VD-HR were examined and defined and a 60-day continuous test was carried out. The membranes performed very well throughout the test; no membrane rupture and no unusual flux decay was observed. In addition, a tentative design for a flight-suitable VD-HR unit was made.

  17. Arsenic Removal by Liquid Membranes

    PubMed Central

    Marino, Tiziana; Figoli, Alberto

    2015-01-01

    Water contamination with harmful arsenic compounds represents one of the most serious calamities of the last two centuries. Natural occurrence of the toxic metal has been revealed recently for 21 countries worldwide; the risk of arsenic intoxication is particularly high in Bangladesh and India but recently also Europe is facing similar problem. Liquid membranes (LMs) look like a promising alternative to the existing removal processes, showing numerous advantages in terms of energy consumption, efficiency, selectivity, and operational costs. The development of different LM configurations has been a matter of investigation by several researching groups, especially for the removal of As(III) and As(V) from aqueous solutions. Most of these LM systems are based on the use of phosphine oxides as carriers, when the metal removal is from sulfuric acid media. Particularly promising for water treatment is the hollow fiber supported liquid membrane (HFSLM) configuration, which offers high selectivity, easy transport of the targeted metal ions, large surface area, and non-stop flow process. The choice of organic extractant(s) plays an essential role in the efficiency of the arsenic removal. Emulsion liquid membrane (ELM) systems have not been extensively investigated so far, although encouraging results have started to appear in the literature. For such LM configuration, the most relevant step toward efficiency is the choice of the surfactant type and its concentration. PMID:25826756

  18. Thylakoid membrane function in heterocysts.

    PubMed

    Magnuson, Ann; Cardona, Tanai

    2016-03-01

    Multicellular cyanobacteria form different cell types in response to environmental stimuli. Under nitrogen limiting conditions a fraction of the vegetative cells in the filament differentiate into heterocysts. Heterocysts are specialized in atmospheric nitrogen fixation and differentiation involves drastic morphological changes on the cellular level, such as reorganization of the thylakoid membranes and differential expression of thylakoid membrane proteins. Heterocysts uphold a microoxic environment to avoid inactivation of nitrogenase by developing an extra polysaccharide layer that limits air diffusion into the heterocyst and by upregulating heterocyst-specific respiratory enzymes. In this review article, we summarize what is known about the thylakoid membrane in heterocysts and compare its function with that of the vegetative cells. We emphasize the role of photosynthetic electron transport in providing the required amounts of ATP and reductants to the nitrogenase enzyme. In the light of recent high-throughput proteomic and transcriptomic data, as well as recently discovered electron transfer pathways in cyanobacteria, our aim is to broaden current views of the bioenergetics of heterocysts. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux. PMID:26545609

  19. Adenosine Receptors and Membrane Microdomains

    PubMed Central

    Lasley, Robert D.

    2010-01-01

    Adenosine receptors are a member of the large family of seven transmembrane spanning G protein coupled receptors (GPCR). The four adenosine receptor subtypes – A1, A2a, A2b, A3 – exert their effects via the activation of one or more heterotrimeric G proteins resulting in the modulation of intracellular signaling. Numerous studies over the past decade have documented the complexity of GPCR signaling at the level of protein-protein interactions as well as through signaling crosstalk. With respect to adenosine receptors the activation of one receptor subtype can have profound direct effects in one cell type, but little or no effect in other cells. There is significant evidence that the compartmentation of subcellular signaling plays a physiological role in the fidelity of GPCR signaling. This compartmentation is evident at the level of the plasma membrane in the form of membrane microdomains such as caveolae and lipid rafts. This review will summarize and critically assess our current understanding of the role of membrane microdomains in regulating adenosine receptor signaling. PMID:20888790

  20. Computational modeling of membrane proteins

    PubMed Central

    Leman, Julia Koehler; Ulmschneider, Martin B.; Gray, Jeffrey J.

    2014-01-01

    The determination of membrane protein (MP) structures has always trailed that of soluble proteins due to difficulties in their overexpression, reconstitution into membrane mimetics, and subsequent structure determination. The percentage of MP structures in the protein databank (PDB) has been at a constant 1-2% for the last decade. In contrast, over half of all drugs target MPs, only highlighting how little we understand about drug-specific effects in the human body. To reduce this gap, researchers have attempted to predict structural features of MPs even before the first structure was experimentally elucidated. In this review, we present current computational methods to predict MP structure, starting with secondary structure prediction, prediction of trans-membrane spans, and topology. Even though these methods generate reliable predictions, challenges such as predicting kinks or precise beginnings and ends of secondary structure elements are still waiting to be addressed. We describe recent developments in the prediction of 3D structures of both α-helical MPs as well as β-barrels using comparative modeling techniques, de novo methods, and molecular dynamics (MD) simulations. The increase of MP structures has (1) facilitated comparative modeling due to availability of more and better templates, and (2) improved the statistics for knowledge-based scoring functions. Moreover, de novo methods have benefitted from the use of correlated mutations as restraints. Finally, we outline current advances that will likely shape the field in the forthcoming decade. PMID:25355688

  1. The effect of bacterial cellulose membrane compared with collagen membrane on guided bone regeneration

    PubMed Central

    Lim, Youn-Mook; Jeong, Sung In; An, Sung-Jun; Kang, Seong-Soo

    2015-01-01

    PURPOSE This study was to evaluate the effects of bacterial cellulose (BC) membranes as a barrier membrane on guided bone regeneration (GBR) in comparison with those of the resorbable collagen membranes. MATERIALS AND METHODS BC membranes were fabricated using biomimetic technology. Surface properties were analyzed, Mechanical properties were measured, in vitro cell proliferation test were performed with NIH3T3 cells and in vivo study were performed with rat calvarial defect and histomorphometric analysis was done. The Mann-Whitney U test and the Wilcoxon signed rank test was used (α<.05). RESULTS BC membrane showed significantly higher mechanical properties such as wet tensile strength than collagen membrane and represented a three-dimensional multilayered structure cross-linked by nano-fibers with 60 % porosity. In vitro study, cell adhesion and proliferation were observed on BC membrane. However, morphology of the cells was found to be less differentiated, and the cell proliferation rate was lower than those of the cells on collagen membrane. In vivo study, the grafted BC membrane did not induce inflammatory response, and maintained adequate space for bone regeneration. An amount of new bone formation in defect region loaded with BC membrane was significantly similar to that of collagen membrane application. CONCLUSION BC membrane has potential to be used as a barrier membrane, and efficacy of the membrane on GBR is comparable to that of collagen membrane. PMID:26816579

  2. Mechano-capacitive properties of polarized membranes.

    PubMed

    Mosgaard, Lars D; Zecchi, Karis A; Heimburg, Thomas

    2015-10-28

    Biological membranes are capacitors that can be charged by applying a field across the membrane. The charges on the capacitor exert a force on the membrane that leads to electrostriction, i.e. a thinning of the membrane. Since the force is quadratic in voltage, negative and positive voltage have an identical influence on the physics of symmetric membranes. However, this is not the case for a membrane with an asymmetry leading to a permanent electric polarization. Positive and negative voltages of identical magnitude lead to different properties. Such an asymmetry can originate from a lipid composition that is different on the two monolayers of the membrane, or from membrane curvature. The latter effect is called 'flexoelectricity'. As a consequence of permanent polarization, the membrane capacitor is discharged at a voltage different from zero. This leads to interesting electrical phenomena such as outward or inward rectification of membrane permeability. Here, we introduce a generalized theoretical framework, that treats capacitance, polarization, flexoelectricity, piezoelectricity and thermoelectricity in the same language. We show applications to electrostriction, membrane permeability and piezoelectricity and thermoelectricity close to melting transitions, where such effects are especially pronounced. PMID:26324950

  3. S-layer stabilized lipid membranes (Review)

    PubMed Central

    Schuster, Bernhard; Pum, Dietmar; Sleytr, Uwe B.

    2010-01-01

    The present review focuses on a unique bio-molecular construction kit based on surface-layer (S-layer) proteins as building blocks and patterning elements, but also major classes of biological molecules such as lipids, membrane-active peptides and membrane proteins, and glycans for the design of functional supported lipid membranes. The biomimetic approach copying the supramolecular building principle of most archaeal cell envelopes merely composed of a plasma membrane and a closely associated S-layer lattice has resulted in robust and fluid lipid membranes. Most importantly, S-layer supported lipid membranes spanning an aperture or generated on solid and porous substrates constitute highly interesting model membranes for the reconstitution of responsive transmembrane proteins and membrane-active peptides. This is of particular challenge as one-third of all proteins are membrane proteins such as pore-forming proteins, ion channels, and receptors. S-layer supported lipid membranes are seen as one of the most innovative strategies in membrane protein-based nanobiotechnology with potential applications that range from pharmaceutical (high-throughput) drug screening over lipid chips to the detection of biological warfare agents. PMID:20408666

  4. Nonperturbative Renormalization Group Approach to Polymerized Membranes

    NASA Astrophysics Data System (ADS)

    Essafi, Karim; Kownacki, Jean-Philippe; Mouhanna, Dominique

    2014-03-01

    Membranes or membrane-like materials play an important role in many fields ranging from biology to physics. These systems form a very rich domain in statistical physics. The interplay between geometry and thermal fluctuations lead to exciting phases such flat, tubular and disordered flat phases. Roughly speaking, membranes can be divided into two group: fluid membranes in which the molecules are free to diffuse and thus no shear modulus. On the other hand, in polymerized membranes the connectivity is fixed which leads to elastic forces. This difference between fluid and polymerized membranes leads to a difference in their critical behaviour. For instance, fluid membranes are always crumpled, whereas polymerized membranes exhibit a phase transition between a crumpled phase and a flat phase. In this talk, I will focus only on polymerized phantom, i.e. non-self-avoiding, membranes. The critical behaviour of both isotropic and anisotropic polymerized membranes are studied using a nonperturbative renormalization group approach (NPRG). This allows for the investigation of the phase transitions and the low temperature flat phase in any internal dimension D and embedding d. Interestingly, graphene behaves just as a polymerized membrane in its flat phase.

  5. Advanced composite polymer electrolyte fuel cell membranes

    SciTech Connect

    Wilson, M.S.; Zawodzinski, T.A.; Gottesfeld, S.; Kolde, J.A.; Bahar, B.

    1995-09-01

    A new type of reinforced composite perfluorinated polymer electrolyte membrane, GORE-SELECT{trademark} (W.L. Gore & Assoc.), is characterized and tested for fuel cell applications. Very thin membranes (5-20 {mu}m thick) are available. The combination of reinforcement and thinness provides high membrane, conductances (80 S/cm{sup 2} for a 12 {mu}m thick membrane at 25{degrees}C) and improved water distribution in the operating fuel cell without sacrificing longevity or durability. In contrast to nonreinforced perfluorinated membranes, the x-y dimensions of the GORE-SELECT membranes are relatively unaffected by the hydration state. This feature may be important from the viewpoints of membrane/electrode interface stability and fuel cell manufacturability.

  6. Permeation of Water through Cation Exchange Membranes

    PubMed Central

    Lakshminarayanaiah, N.

    1967-01-01

    Water permeabilities as well as other membrane parameters, such as exchange capacity, water content, and specific conductance, have been measured for two cation exchange membranes in the H form. The conductance of membrane with low water content was less than that of the membrane with high water content. These data have been discussed in the light of an existing theory and found inadequate to explain the results in a quantitative way. Water permeability of the membranes subject to mechanical pressure was found to be higher than their isotopic water permeability, according to expectation. These data have been examined from the standpoint of thermodynamic and kinetic theories of water flow in membranes and used to estimate the average size of membrane pores. PMID:6048874

  7. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  8. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2007-02-20

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  9. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; Van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2012-02-14

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  10. Folded membrane dialyzer with mechanically sealed edges

    DOEpatents

    Markley, Finley W.

    1976-01-01

    A semipermeable membrane is folded in accordion fashion to form a stack of pleats and the edges are sealed so as to isolate the opposite surfaces of the membrane. The stack is contained within a case that provides ports for flow of blood in contact with one surface of the membrane through channels formed by the pleats and also provides ports for flow of a dialysate through channels formed by the pleats in contact with the other surface of the membrane. The serpentine side edges of the membrane are sealed by a solidified plastic material, whereas effective mechanical means are provided to seal the end edges of the folded membrane. The mechanical means include a clamping strip which biases case sealing flanges into a sealed relationship with end portions of the membrane near the end edges, which portions extend from the stack and between the sealing flanges.

  11. Photo-switchable membrane and method

    DOEpatents

    Marshall, Kenneth L; Glowacki, Eric

    2013-05-07

    Switchable gas permeation membranes in which a photo-switchable low-molecular-weight liquid crystalline (LC) material acts as the active element, and a method of making such membranes. Different LC eutectic mixtures were doped with mesogenic azo dyes and infused into track-etched porous membranes with regular cylindrical pores. Photo-induced isothermal phase changes in the imbibed mesogenic material afforded large, reversible changes in the permeability of the photo-switchable membrane to nitrogen. For example, membranes imbibed with a photo-switchable cyanobiphenyl LC material demonstrated low permeability in the nematic state, while the photo-generated isotropic state demonstrated a 16.times.-greater sorption coefficient. Both states obey a high linear sorption behavior in accordance with Henry's Law. In contrast, membranes imbibed with a photo-switchable phenyl benzoate LC material showed the opposite permeability behavior to the biphenyl-imbibed membrane, along with nonlinear sorption behavior.

  12. Membrane Domain Formation on Nanostructured Scaffolds

    NASA Astrophysics Data System (ADS)

    Collier, Charles; Liu, Fangjie; Srijanto, Bernadeta

    The spatial organization of lipids and proteins in biological membranes seems to have a functional role in the life of a cell. Separation of the lipids into distinct domains of greater order and anchoring to the cytoskeleton are two main mechanisms for organizing the membrane in cells. We propose a novel model membrane consisting of a lipid bilayer suspended over a nanostructured scaffold consisting of arrays of fabricated nanopillars. Unlike traditional model membranes, our model will have well-defined lateral structure and distributed substrate attachments that will emulate the connections of cellular membranes to the underlying cytoskeleton. Membranes will be characterized using neutron reflectometry, atomic force microscopy and fluorescence to verify a suspended, planar geometry with restricted diffusion at suspension points, and free diffusion in between. This architecture will allow the controlled study of lipid domain reorganization, viral infection and signal transduction that depend on the lateral structure of the membrane.

  13. Interaction of arginine oligomer with model membrane

    SciTech Connect

    Yi, Dandan . E-mail: yi_dandan@yahoo.com.cn; Guoming, Li; Gao, Li; Wei, Liang

    2007-08-10

    Short oligomers of arginine (R8) have been shown to cross readily a variety of biological barriers. A hypothesis was put forward that inverted micelles form in biological membranes in the presence of arginine oligomer peptides, facilitating their transfer through the membranes. In order to define the role of peptide-lipid interaction in this mechanism, we prepared liposomes as the model membrane to study the ability of R8 inducing calcein release from liposomes, the fusion of liposomes, R8 binding to liposomes and membrane disturbing activity of the bound R8. The results show that R8 binding to liposome membrane depends on lipid compositions, negative surface charge density and interior water phase pH values of liposomes. R8 has no activity to induce the leakage of calcein from liposomes or improve liposome fusion. R8 does not permeabilize through the membrane spontaneously. These peptides delivering drugs through membranes may depend on receptors and energy.

  14. Amniotic membrane covering for facial nerve repair☆

    PubMed Central

    Karaman, Murat; Tuncel, Arzu; Sheidaei, Shahrouz; Şenol, Mehmet Güney; Karabulut, Murat Hakan; Deveci, Ildem; Karaman, Nihan

    2013-01-01

    Amniotic membranes have been widely used in ophthalmology and skin injury repair because of their anti-inflammatory properties. In this study, we measured therapeutic efficacy and determined if amniotic membranes could be used for facial nerve repair. The facial nerves of eight rats were dissected and end-to-end anastomosis was performed. Amniotic membranes were covered on the anastomosis sites in four rats. Electromyography results showed that, at the end of the 3rd and 8th weeks after amniotic membrane covering, the latency values of the facial nerves covered by amniotic membranes were significantly shortened and the amplitude values were significantly increased. Compared with simple facial nerve anastomosis, after histopathological examination, facial nerve anastomosed with amniotic membrane showed better continuity, milder inflammatory reactions, and more satisfactory nerve conduction. These findings suggest that amniotic membrane covering has great potential in facial nerve repair. PMID:25206390

  15. Instabilities of wrinkled membranes with pressure loadings

    NASA Astrophysics Data System (ADS)

    Patil, Amit; Nordmark, Arne; Eriksson, Anders

    2016-09-01

    Wrinkling can affect the functionality of thin membranes subjected to various loadings or boundary conditions. The concept of relaxed strain energy was studied for isotropic, hyperelastic, axisymmetric membranes pressurized by gas or fluid. Non-intuitive instabilities were observed when axisymmetric wrinkled membranes were perturbed with angle dependent displacement fields. A linearized theory showed that static equilibrium states of pressurized membranes, modelled by a relaxed strain energy formulation, are unstable, when the wrinkled surface is subjected to pressure loadings. The theory is extended to the non-axisymmetric membranes and it is shown that these instabilities are local phenomena. Simulations for the pressurized cylindrical membranes with non-uniform thickness and hemispherical membranes support the claims in both theoretical and numerical contexts including finite element simulations.

  16. Membrane estradiol signaling in the brain

    PubMed Central

    Micevych, Paul; Dominguez, Reymundo

    2009-01-01

    While the physiology of membrane-initiated estradiol signaling in the nervous system has remained elusive, a great deal of progress has been made toward understanding the activation of cell signaling. Membrane-initiated estradiol signaling activates G proteins and their downstream cascades, but the identity of membrane receptors and the proximal signaling mechanism(s) have been more difficult to elucidate. Mounting evidence suggests that classical intracellular estrogen receptor-α (ERα) and ERβ are trafficked to the membrane to mediate estradiol cell signaling. Moreover, an interaction of membrane ERα and ERβ with metabotropic glutamate receptors has been identified that explains the pleomorphic actions of membrane-initiated estradiol signaling. This review focuses on the mechanism of actions initiated by membrane estradiol receptors and discusses the role of scaffold proteins and signaling cascades involved in the regulation of nociception, sexual receptivity and the synthesis of neuroprogesterone, an important component in the central nervous system signaling. PMID:19416735

  17. Dialysis membrane for separation on microchips

    DOEpatents

    Singh, Anup K.; Kirby, Brian J.; Shepodd, Timothy J.

    2010-07-13

    Laser-induced phase-separation polymerization of a porous acrylate polymer is used for in-situ fabrication of dialysis membranes inside glass microchannels. A shaped 355 nm laser beam is used to produce a porous polymer membrane with a thickness of about 15 .mu.m, which bonds to the glass microchannel and forms a semi-permeable membrane. Differential permeation through a membrane formed with pentaerythritol triacrylate was observed and quantified by comparing the response of the membrane to fluorescein and fluorescently tagging 200 nm latex microspheres. Differential permeation was observed and quantified by comparing the response to rhodamine 560 and lactalbumin protein in a membrane formed with SPE-methylene bisacrylamide. The porous membranes illustrate the capability for the present technique to integrate sample cleanup into chip-based analysis systems.

  18. Search for selective ion diffusion through membranes

    NASA Technical Reports Server (NTRS)

    May, C. E.; Philipp, W. H.

    1983-01-01

    The diffusion rates of several ions through some membranes developed as battery separators were measured. The ions investigated were Li(+), Rb(+), Cl(-), and So4. The members were crosslinked polyvinyl alcohol, crosslinked polyacrylic acid, a copolymer of the two, crosslinked calcium polyacrylate, cellulose, and several microporous polyphenylene oxide based films. No true specificity for diffusion of any of these ions was found for any of the membranes. But the calcium polyacrylate membrane was found to exhibit ion exchange with the diffusing ions giving rise to the leaching of the calcium ion and low reproducibility. These findings contrast earlier work where the calcium polyacrylate membrane did show specificity to the diffusion of the copper ion. In general, Fick's law appeared to be obeyed. Except for the microporous membranes, the coefficients for ion diffusion through the membranes were comparable with their values in water. For the microporous membranes, the values found for the coefficients were much less, due to the tortuosity of the micropores.

  19. Proton Exchange Membranes for Fuel Cells

    SciTech Connect

    Devanathan, Ramaswami

    2010-11-01

    Proton exchange membrane, also known as polymer electrolyte membrane, fuel cells (PEMFCs) offer the promise of efficient conversion of chemical energy of fuel, such as hydrogen or methanol, into electricity with minimal pollution. Their widespread use to power zero-emission automobiles as part of a hydrogen economy can contribute to enhanced energy security and reduction in greenhouse gas emissions. However, the commercial viability of PEMFC technology is hindered by high cost associated with the membrane electrode assembly (MEA) and poor membrane durability under prolonged operation at elevated temperature. Membranes for automotive fuel cell applications need to perform well over a period comparable to the life of an automotive engine and under heavy load cycling including start-stop cycling under sub-freezing conditions. The combination of elevated temperature, changes in humidity levels, physical stresses and harsh chemical environment contribute to membrane degradation. Perfluorinated sulfonic acid (PFSA)-based membranes, such as Nafion®, have been the mainstay of PEMFC technology. Their limitations, in terms of cost and poor conductivity at low hydration, have led to continuing research into membranes that have good proton conductivity at elevated temperatures above 120 °C and under low humidity conditions. Such membranes have the potential to avoid catalyst poisoning, simplify fuel cell design and reduce the cost of fuel cells. Hydrocarbon-based membranes are being developed as alternatives to PFSA membranes, but concerns about chemical and mechanical stability and durability remain. Novel anhydrous membranes based on polymer gels infused with protic ionic liquids have also been recently proposed, but considerable fundamental research is needed to understand proton transport in novel membranes and evaluate durability under fuel cell operating conditions. In order to advance this promising technology, it is essential to rationally design the next generation

  20. MemProtMD: Automated Insertion of Membrane Protein Structures into Explicit Lipid Membranes

    PubMed Central

    Stansfeld, Phillip J.; Goose, Joseph E.; Caffrey, Martin; Carpenter, Elisabeth P.; Parker, Joanne L.; Newstead, Simon; Sansom, Mark S.P.

    2015-01-01

    Summary There has been exponential growth in the number of membrane protein structures determined. Nevertheless, these structures are usually resolved in the absence of their lipid environment. Coarse-grained molecular dynamics (CGMD) simulations enable insertion of membrane proteins into explicit models of lipid bilayers. We have automated the CGMD methodology, enabling membrane protein structures to be identified upon their release into the PDB and embedded into a membrane. The simulations are analyzed for protein-lipid interactions, identifying lipid binding sites, and revealing local bilayer deformations plus molecular access pathways within the membrane. The coarse-grained models of membrane protein/bilayer complexes are transformed to atomistic resolution for further analysis and simulation. Using this automated simulation pipeline, we have analyzed a number of recently determined membrane protein structures to predict their locations within a membrane, their lipid/protein interactions, and the functional implications of an enhanced understanding of the local membrane environment of each protein. PMID:26073602

  1. Proton exchange membranes prepared by grafting of styrene/divinylbenzene into crosslinked PTFE membranes

    NASA Astrophysics Data System (ADS)

    Li, Jingye; Ichizuri, Shogo; Asano, Saneto; Mutou, Fumihiro; Ikeda, Shigetoshi; Iida, Minoru; Miura, Takaharu; Oshima, Akihiro; Tabata, Yoneho; Washio, Masakazu

    2005-07-01

    Thin PTFE membranes were prepared by coating the PTFE dispersion onto the aluminum films. Thus the thin crosslinked PTFE (RX-PTFE) membranes were obtained by means of electron beam irradiation above the melting temperature of PTFE under oxygen-free atmosphere. The RX-PTFE membranes were pre-irradiated and grafted by styrene with or without divinylbenzene (DVB) in liquid phase. The existence of DVB accelerated the initial grafting rate. The styrene grafted RX-PTFE membranes are white colored, on the other hand, the styrene/DVB grafted RX-PTFE membranes are colorless. The proton exchange membranes (PEMs) were obtained by sulfonating the grafted membranes using chlorosulfonic acid. The ion exchange capacity (IEC) values of the PEMs ranging from 1.5 to 2.8 meq/g were obtained. The PEMs made from the styrene/DVB grafted membranes showed higher chemical stability than those of the styrene grafted membranes under oxidative circumstance.

  2. Dynamic nuclear polarization methods in solids and solutions to explore membrane proteins and membrane systems.

    PubMed

    Cheng, Chi-Yuan; Han, Songi

    2013-01-01

    Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments. PMID:23331309

  3. Dynamics of Membrane Tethers Reveal Novel Aspects of Cytoskeleton-Membrane Interactions in Axons

    PubMed Central

    Datar, Anagha; Bornschlögl, Thomas; Bassereau, Patricia; Prost, Jacques; Pullarkat, Pramod A.

    2015-01-01

    Mechanical properties of cell membranes are known to be significantly influenced by the underlying cortical cytoskeleton. The technique of pulling membrane tethers from cells is one of the most effective ways of studying the membrane mechanics and the membrane-cortex interaction. In this article, we show that axon membranes make an interesting system to explore as they exhibit both free membrane-like behavior where the tether-membrane junction is movable on the surface of the axons (unlike many other cell membranes) as well as cell-like behavior where there are transient and spontaneous eruptions in the tether force that vanish when F-actin is depolymerized. We analyze the passive and spontaneous responses of axonal membrane tethers and propose theoretical models to explain the observed behavior. PMID:25650917

  4. Evaluation method of membrane performance in membrane distillation process for seawater desalination.

    PubMed

    Chung, Seungjoon; Seo, Chang Duck; Choi, Jae-Hoon; Chung, Jinwook

    2014-01-01

    Membrane distillation (MD) is an emerging desalination technology as an energy-saving alternative to conventional distillation and reverse osmosis method. The selection of appropriate membrane is a prerequisite for the design of an optimized MD process. We proposed a simple approximation method to evaluate the performance of membranes for MD process. Three hollow fibre-type commercial membranes with different thicknesses and pore sizes were tested. Experimental results showed that one membrane was advantageous due to the highest flux, whereas another membrane was due to the lowest feed temperature drop. Regression analyses and multi-stage calculations were used to account for the trade-offeffects of flux and feed temperature drop. The most desirable membrane was selected from tested membranes in terms of the mean flux in a multi-stage process. This method would be useful for the selection of the membranes without complicated simulation techniques. PMID:25145166

  5. Dynamic Nuclear Polarization Methods in Solids and Solutions to Explore Membrane Proteins and Membrane Systems

    NASA Astrophysics Data System (ADS)

    Cheng, Chi-Yuan; Han, Songi

    2013-04-01

    Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments.

  6. Binding contribution between synaptic vesicle membrane and plasma membrane proteins in neurons: an AFM study.

    PubMed

    Sritharan, K C; Quinn, A S; Taatjes, D J; Jena, B P

    1998-01-01

    The final step in the exocytotic process is the docking and fusion of membrane-bound secretory vesicles at the cell plasma membrane. This docking and fusion is brought about by several participating vesicle membrane, plasma membrane and soluble cytosolic proteins. A clear understanding of the interactions between these participating proteins giving rise to vesicle docking and fusion is essential. In this study, the binding force profiles between synaptic vesicle membrane and plasma membrane proteins have been examined for the first time using the atomic force microscope. Binding force contributions of a synaptic vesicle membrane protein VAMP1, and the plasma membrane proteins SNAP-25 and syntaxin, are also implicated from these studies. Our study suggests that these three proteins are the major, if not the only contributors to the interactive binding force that exist between the two membranes. PMID:10452835

  7. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation.

    PubMed

    An, Alicia Kyoungjin; Guo, Jiaxin; Jeong, Sanghyun; Lee, Eui-Jong; Tabatabai, S Assiyeh Alizadeh; Leiknes, TorOve

    2016-10-15

    This study investigated the applicability of membrane distillation (MD) to treat dyeing wastewater discharged by the textile industry. Four different dyes containing methylene blue (MB), crystal violet (CV), acid red 18 (AR18), and acid yellow 36 (AY36) were tested. Two types of hydrophobic membranes made of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) were used. The membranes were characterized by testing against each dye (foulant-foulant) and the membrane-dye (membrane-foulant) interfacial interactions and their mechanisms were identified. The MD membranes possessed negative charges, which facilitated the treatment of acid and azo dyes of the same charge and showed higher fluxes. In addition, PTFE membrane reduced the wettability with higher hydrophobicity of the membrane surface. The PTFE membrane evidenced especially its resistant to dye absorption, as its strong negative charge and chemical structure caused a flake-like (loose) dye-dye structure to form on the membrane surface rather than in the membrane pores. This also enabled the recovery of flux and membrane properties by water flushing (WF), thereby direct-contact MD with PTFE membrane treating 100 mg/L of dye mixtures showed stable flux and superior color removal during five days operation. Thus, MD shows a potential for stable long-term operation in conjunction with a simple membrane cleaning process, and its suitability in dyeing wastewater treatment. PMID:27486044

  8. Biochemical heterogeneity of skeletal-muscle microsomal membranes. Membrane origin, membrane specificity and fibre types

    PubMed Central

    Salviati, Giovanni; Volpe, Pompeo; Salvatori, Sergio; Betto, Romeo; Damiani, Ernesto; Margreth, Alfredo; Pasquali-Ronchetti, Ivonne

    1982-01-01

    1. Microsomes were isolated from rabbit fast-twitch and slow-twitch muscle and were separated into heavy and light fractions by centrifugation in a linear (0.3–2m) sucrose density gradient. The membrane origin of microsomal vesicles was investigated by studying biochemical markers of the sarcoplasmic-reticulum membranes and of surface and T-tubular membranes, as well as their freeze-fracture properties. 2. Polyacrylamide-gel electrophoresis showed differences in the Ca2+-dependent ATPase/calsequestrin ratio between heavy and light fractions, which were apparently consistent with their respective origin from cisternal and longitudinal sarcoplasmic reticulum, as well as unrelated differences, such as peptides specific to slow-muscle microsomes (mol.wts. 76000, 60000, 56000 and 45000). 3. Freeze-fracture electron microscopy of muscle microsomes demonstrated that vesicles truly derived from the sarcoplasmic reticulum, with an average density of 9nm particles on the concave face of about 3000/μm2 for both fast and slow muscle, were admixed with vesicles with particle densities below 1000/μm2. 4. As determined in the light fractions, the sarcoplasmic-reticulum vesicles accounted for 84% and 57% of the total number of microsomal vesicles, for fast and slow muscle respectively. These values agreed closely with the percentage values of Ca2+-dependent ATPase protein obtained by gel densitometry. 5. The T-tubular origin of vesicles with a smooth concave fracture face in slow-muscle microsomes is supported by their relative high content in total phospholipid and cholesterol, compared with the microsomes of fast muscle, and by other correlative data, such as the presence of (Na++K+)-dependent ATPase activity and of low amounts of Na+-dependent membrane phosphorylation. 6. Among intrinsic sarcoplasmic-reticulum membrane proteins, a proteolipid of mol.wt. 12000 is shown to be identical in the microsomes of both fast and slow muscle and the Ca2+-dependent ATPase to be

  9. Membrane applications in functional foods and nutraceuticals.

    PubMed

    Akin, Oğuz; Temelli, Feral; Köseoğlu, Sefa

    2012-01-01

    The functional foods and nutraceuticals market is growing at a rapid pace. Membrane processing offers several advantages over conventional methods for separation, fractionation, and recovery of those bioactive components. In this review, membrane applications of lipid-, carbohydrate-, and protein-based nutraceuticals and some minor bioactive components have been critically evaluated. Both non-porous and porous membranes were employed for lipid-based nutraceuticals separations. The use of non-porous membranes together with non-aqueous solvents brought about the impact of solution-diffusion theory on transport through membranes. Both organic and inorganic membranes gave encouraging results for the recovery of lipid components with single- and/or multi-stage membrane processing. Two-stage ultrafiltration (UF)-nanofiltration (NF) systems with polymeric membranes provided an efficient approach for the removal of high- and low-molecular weight (MW) unwanted components resulting in higher purity oligosaccharides in the NF retentate. The charged nature of protein-based nutraceutical components had a major effect on their separation. Operating at optimizal pH levels was critical for fractionation, especially for low MW peptide hydrolysates. Processing of minor components such as polyphenols, utilized all types of porous membranes from prefiltration to concentration stages. Coupling of membrane separation and supercritical fluid technologies would combine unique advantages of each process resulting in a novel separation technology offering great potential for the nutraceutical and functional food industry. PMID:22332598

  10. Mechanical mysteries of bio-membranes

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    2010-10-01

    The membranes that form the boundaries of every cell and every organelle inside every cell are remarkable materials -- flexible, two-dimensional, self-assembled fluids. Exploring the ways in which these physical characteristics guide the biological functions of membranes has yielded many fascinating insights in recent years. I'll describe two projects from my lab in the area of membrane biophysics. One relates to the trafficking of cargo in cells, which involves dramatic changes in membrane shape and topography. By tugging on membranes with optical tweezers to measure their mechanical rigidity, we've found that a key trafficking protein has the ability to lower membrane rigidity by up to 100% as a function of its concentration, thereby lowering the energetic cost of membrane deformation. The other relates to the fluidity of membranes. By carefully examining the Brownian motion of membrane-anchored nanoparticles, we have found that membranes are not simple ``Newtonian'' fluids, but rather are viscoelastic -- a two-dimensional analogue of the entertaining grade-school staple of corn-starch and water. I'll stress in my talk the fascinating issues that invite exploration at the intersection of physics and biology, and some of the challenges involved in exploring them.

  11. Nanocrack-regulated self-humidifying membranes.

    PubMed

    Park, Chi Hoon; Lee, So Young; Hwang, Doo Sung; Shin, Dong Won; Cho, Doo Hee; Lee, Kang Hyuck; Kim, Tae-Woo; Kim, Tae-Wuk; Lee, Mokwon; Kim, Deok-Soo; Doherty, Cara M; Thornton, Aaron W; Hill, Anita J; Guiver, Michael D; Lee, Young Moo

    2016-04-28

    The regulation of water content in polymeric membranes is important in a number of applications, such as reverse electrodialysis and proton-exchange fuel-cell membranes. External thermal and water management systems add both mass and size to systems, and so intrinsic mechanisms of retaining water and maintaining ionic transport in such membranes are particularly important for applications where small system size is important. For example, in proton-exchange membrane fuel cells, where water retention in the membrane is crucial for efficient transport of hydrated ions, by operating the cells at higher temperatures without external humidification, the membrane is self-humidified with water generated by electrochemical reactions. Here we report an alternative solution that does not rely on external regulation of water supply or high temperatures. Water content in hydrocarbon polymer membranes is regulated through nanometre-scale cracks ('nanocracks') in a hydrophobic surface coating. These cracks work as nanoscale valves to retard water desorption and to maintain ion conductivity in the membrane on dehumidification. Hydrocarbon fuel-cell membranes with surface nanocrack coatings operated at intermediate temperatures show improved electrochemical performance, and coated reverse-electrodialysis membranes show enhanced ionic selectivity with low bulk resistance. PMID:27121841

  12. Nanocrack-regulated self-humidifying membranes

    NASA Astrophysics Data System (ADS)

    Park, Chi Hoon; Lee, So Young; Hwang, Doo Sung; Shin, Dong Won; Cho, Doo Hee; Lee, Kang Hyuck; Kim, Tae-Woo; Kim, Tae-Wuk; Lee, Mokwon; Kim, Deok-Soo; Doherty, Cara M.; Thornton, Aaron W.; Hill, Anita J.; Guiver, Michael D.; Lee, Young Moo

    2016-04-01

    The regulation of water content in polymeric membranes is important in a number of applications, such as reverse electrodialysis and proton-exchange fuel-cell membranes. External thermal and water management systems add both mass and size to systems, and so intrinsic mechanisms of retaining water and maintaining ionic transport in such membranes are particularly important for applications where small system size is important. For example, in proton-exchange membrane fuel cells, where water retention in the membrane is crucial for efficient transport of hydrated ions, by operating the cells at higher temperatures without external humidification, the membrane is self-humidified with water generated by electrochemical reactions. Here we report an alternative solution that does not rely on external regulation of water supply or high temperatures. Water content in hydrocarbon polymer membranes is regulated through nanometre-scale cracks (‘nanocracks’) in a hydrophobic surface coating. These cracks work as nanoscale valves to retard water desorption and to maintain ion conductivity in the membrane on dehumidification. Hydrocarbon fuel-cell membranes with surface nanocrack coatings operated at intermediate temperatures show improved electrochemical performance, and coated reverse-electrodialysis membranes show enhanced ionic selectivity with low bulk resistance.

  13. Inorganic membranes and solid state sciences

    NASA Astrophysics Data System (ADS)

    Cot, Louis; Ayral, André; Durand, Jean; Guizard, Christian; Hovnanian, Nadine; Julbe, Anne; Larbot, André

    2000-05-01

    The latest developments in inorganic membranes are closely related to recent advances in solid state science. Sol-gel processing, plasma-enhanced chemical vapor deposition and hydrothermal synthesis are methods that can be used for inorganic membrane preparation. Innovative concepts from material science (templating effect, nanophase materials, growing of continuous zeolite layers, hybrid organic-inorganic materials) have been applied by our group to the preparation of inorganic membrane materials. Sol-gel-derived nanophase ceramic membranes are presented with current applications in nanofiltration and catalytic membrane reactors. Silica membranes with an ordered porosity, due to liquid crystal phase templating effect, are described with potential application in pervaporation. Defect-free and thermally stable zeolite membranes can be obtained through an original synthesis method, in which zeolite crystals are grown inside the pores of a support. Hybrid organic-inorganic materials with permselective properties for gas separation and facilitated transport of solutes in liquid media, have been successfully adapted to membrane applications. Potential membrane developments offered by CVD deposition techniques are also illustrated through several examples related to the preparation of purely inorganic and hybrid organic-inorganic membrane materials.

  14. Drug-induced erythrocyte membrane internalization

    PubMed Central

    Ben-Bassat, Isaac; Bensch, Klaus G.; Schrier, Stanley L.

    1972-01-01

    In vitro erythrocyte membrane internalization, resulting in the formation of membrane-lined vacuoles, can be quantified by a radioisotopic method. A complex of 37Co-labeled vitamin B12 and its plasma protein binders is first adsorbed to the cell surface, and after vacuoles are formed, the noninternalized label is removed by washing and trypsin treatment. The residual radioactivity represents trapped label and can be used to measure the extent of membrane internalization. Using this method, it was found that in addition to primaquine, a group of membrane-active drugs, specifically hydrocortisone, vinblastine, and chlorpromazine can induce membrane internalization in erythrocytes. This is a metabolic process dependent on drug concentration, temperature, and pH. Vacuole formation by all agents tested can be blocked by prior depletion of endogenous substrates or by poisoning the erythrocytes with sodium fluoride and sulfhydryl blocking agents. This phenomenon resembles in some respects the previously reported membrane internalization of energized erythrocyte ghosts. It is suggested that membrane internalization is dependent on an ATP-energized state and is influenced by the balance between the concentrations of magnesium and calcium in the membrane. This study provides a basis for proposing a unifying concept of the action of some membrane-active drugs, and for considering the role of erythrocyte membrane internalization in pathophysiologic events. Images PMID:4555785

  15. Measuring shape fluctuations in biological membranes

    NASA Astrophysics Data System (ADS)

    Monzel, C.; Sengupta, K.

    2016-06-01

    Shape fluctuations of lipid membranes have intrigued cell biologists and physicists alike. In the cellular context, their origin—thermal or active—and their physiological significance are open questions. These small incessant displacements, also called membrane undulations, have mostly been studied in model membranes and membranes of simple cells like erythrocytes. Thermal fluctuations of such membranes have been very well described both theoretically and experimentally; active fluctuations are a topic of current interest. Experimentally, membrane fluctuations are not easy to measure, the main challenge being to develop techniques which are capable of measuring very small displacements at very high speed, and preferably over a large area and long time. Scattering techniques have given access to fluctuations in membrane stacks and a variety of optical microscopy based techniques have been devised to study membrane fluctuations of unilamellar vesicles, erythrocytes and other cells. Among them are flicker spectroscopy, dynamic light scattering, diffraction phase microscopy and reflection interference contrast microscopy. Each of these techniques has its advantages and limitations. Here we review the basic principles of the major experimental techniques used to measure bending or shape fluctuations of biomembranes. We report seminal results obtained with each technique and highlight how these studies furthered our understanding of physical properties of membranes and their interactions. We also discuss suggested role of membrane fluctuations in different biological processes.

  16. Physical basis of some membrane shaping mechanisms.

    PubMed

    Simunovic, Mijo; Prévost, Coline; Callan-Jones, Andrew; Bassereau, Patricia

    2016-07-28

    In vesicular transport pathways, membrane proteins and lipids are internalized, externalized or transported within cells, not by bulk diffusion of single molecules, but embedded in the membrane of small vesicles or thin tubules. The formation of these 'transport carriers' follows sequential events: membrane bending, fission from the donor compartment, transport and eventually fusion with the acceptor membrane. A similar sequence is involved during the internalization of drug or gene carriers inside cells. These membrane-shaping events are generally mediated by proteins binding to membranes. The mechanisms behind these biological processes are actively studied both in the context of cell biology and biophysics. Bin/amphiphysin/Rvs (BAR) domain proteins are ideally suited for illustrating how simple soft matter principles can account for membrane deformation by proteins. We review here some experimental methods and corresponding theoretical models to measure how these proteins affect the mechanics and the shape of membranes. In more detail, we show how an experimental method employing optical tweezers to pull a tube from a giant vesicle may give important quantitative insights into the mechanism by which proteins sense and generate membrane curvature and the mechanism of membrane scission.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'. PMID:27298443

  17. Cardiolipin effects on membrane structure and dynamics.

    PubMed

    Unsay, Joseph D; Cosentino, Katia; Subburaj, Yamunadevi; García-Sáez, Ana J

    2013-12-23

    Cardiolipin (CL) is a lipid with unique properties solely found in membranes generating electrochemical potential. It contains four acyl chains and tends to form nonlamellar structures, which are believed to play a key role in membrane structure and function. Indeed, CL alterations have been linked to disorders such as Barth syndrome and Parkinson's disease. However, the molecular effects of CL on membrane organization remain poorly understood. Here, we investigated the structure and physical properties of CL-containing membranes using confocal microscopy, fluorescence correlation spectroscopy, and atomic force microscopy. We found that the fluidity of the lipid bilayer increased and its mechanical stability decreased with CL concentration, indicating that CL decreases the packing of the membrane. Although the presence of up to 20% CL gave rise to flat, stable bilayers, the inclusion of 5% CL promoted the formation of flowerlike domains that grew with time. Surprisingly, we often observed two membrane-piercing events in atomic force spectroscopy experiments with CL-containing membranes. Similar behavior was observed with a lipid mixture mimicking the mitochondrial outer membrane composition. This suggests that CL promotes the formation of membrane areas with apposed double bilayers or nonlamellar structures, similar to those proposed for mitochondrial contact sites. All together, we show that CL induces membrane alterations that support the role of CL in facilitating bilayer structure remodeling, deformation, and permeabilization. PMID:23962277

  18. Membrane potential and cancer progression

    PubMed Central

    Yang, Ming; Brackenbury, William J.

    2013-01-01

    Membrane potential (Vm), the voltage across the plasma membrane, arises because of the presence of different ion channels/transporters with specific ion selectivity and permeability. Vm is a key biophysical signal in non-excitable cells, modulating important cellular activities, such as proliferation and differentiation. Therefore, the multiplicities of various ion channels/transporters expressed on different cells are finely tuned in order to regulate the Vm. It is well-established that cancer cells possess distinct bioelectrical properties. Notably, electrophysiological analyses in many cancer cell types have revealed a depolarized Vm that favors cell proliferation. Ion channels/transporters control cell volume and migration, and emerging data also suggest that the level of Vm has functional roles in cancer cell migration. In addition, hyperpolarization is necessary for stem cell differentiation. For example, both osteogenesis and adipogenesis are hindered in human mesenchymal stem cells (hMSCs) under depolarizing conditions. Therefore, in the context of cancer, membrane depolarization might be important for the emergence and maintenance of cancer stem cells (CSCs), giving rise to sustained tumor growth. This review aims to provide a broad understanding of the Vm as a bioelectrical signal in cancer cells by examining several key types of ion channels that contribute to its regulation. The mechanisms by which Vm regulates cancer cell proliferation, migration, and differentiation will be discussed. In the long term, Vm might be a valuable clinical marker for tumor detection with prognostic value, and could even be artificially modified in order to inhibit tumor growth and metastasis. PMID:23882223

  19. Red blood cell membrane defects.

    PubMed

    Iolascon, Achille; Perrotta, Silverio; Stewart, Gordon W

    2003-03-01

    We present an overview of the currently known molecular basis of red cell membrane disorders. A detailed discussion of the structure of the red cell membrane and the pathophysiology and clinical aspects of its disorders is reported. Generally speaking, hereditary spherocytosis (HS) results from a loss of erythrocyte surface area. The mutations of most cases of HS are located in the following genes: ANK1, SPTB, SLC4A1, EPB42 and SPTA1, which encode for ankyrin, spectrin beta-chain, the anion exchanger 1 (band 3), protein 4.2 and spectrin alpha-chain, respectively. Hereditary elliptocytosis (HE) reflects a diminished elasticity of the skeleton. Its aggravated form, hereditary pyropoikilocytosis (HPP), implies that the skeleton undergoes further destabilization. The mutations responsible for HE and HPP, lie in the SPTA1 and SPTB gene, and in the EPB41 gene encoding protein 4.1. Allele alpha LELY is a common polymorphic allele, which plays the role of an aggravating factor when it occurs in trans of an elliptocytogenic allele of the SPTA1 gene. Southeast Asian ovalocytosis derives from a change in band 3. The genetic disorders of membrane permeability to monovalent cations required a positional cloning approach. In this respect, channelopathies represent a new frontier in the field. Dehydrated hereditary stomatocytosis (DHS) was shown to belong to a pleiotropic syndrome: DHS + fetal edema + pseudohyperkalemia, which maps 16q23-24. Splenectomy is strictly contraindicated in DHS and another disease of the same class, overhydrated hereditary stomatocytosis, because it increases the risk of thromboembolic accidents. PMID:14692233

  20. Membrane topology of hedgehog acyltransferase.

    PubMed

    Matevossian, Armine; Resh, Marilyn D

    2015-01-23

    Hedgehog acyltransferase (Hhat) is a multipass transmembrane enzyme that mediates the covalent attachment of the 16-carbon fatty acid palmitate to the N-terminal cysteine of Sonic Hedgehog (Shh). Palmitoylation of Shh by Hhat is critical for short and long range signaling. Knowledge of the topological organization of Hhat transmembrane helices would enhance our understanding of Hhat-mediated Shh palmitoylation. Bioinformatics analysis of transmembrane domains within human Hhat using 10 different algorithms resulted in highly consistent predictions in the C-terminal, but not in the N-terminal, region of Hhat. To empirically determine the topology of Hhat, we designed and exploited Hhat constructs containing either terminal or 12 different internal epitope tags. We used selective permeabilization coupled with immunofluorescence as well as a protease protection assay to demonstrate that Hhat contains 10 transmembrane domains and 2 re-entrant loops. The invariant His and highly conserved Asp residues within the membrane-bound O-acyltransferase (MBOAT) homology domain are segregated on opposite sides of the endoplasmic reticulum membrane. The localization of His-379 on the lumenal membrane surface is consistent with a role for this invariant residue in catalysis. Analysis of the activity and stability of the Hhat constructs revealed that the C-terminal MBOAT domain is especially sensitive to manipulation. Moreover, there was remarkable similarity in the overall topological organization of Hhat and ghrelin O-acyltransferase, another MBOAT family member. Knowledge of the topological organization of Hhat could serve as an important tool for further design of selective Hhat inhibitors. PMID:25488661