Science.gov

Sample records for 1-pentanol 2-pentanol 3-pentanol

  1. Gaseous 3-pentanol primes plant immunity against a bacterial speck pathogen, Pseudomonas syringae pv. tomato via salicylic acid and jasmonic acid-dependent signaling pathways in Arabidopsis

    PubMed Central

    Song, Geun C.; Choi, Hye K.; Ryu, Choong-Min

    2015-01-01

    3-Pentanol is an active organic compound produced by plants and is a component of emitted insect sex pheromones. A previous study reported that drench application of 3-pentanol elicited plant immunity against microbial pathogens and an insect pest in crop plants. Here, we evaluated whether 3-pentanol and the derivatives 1-pentanol and 2-pentanol induced plant systemic resistance using the in vitro I-plate system. Exposure of Arabidopsis seedlings to 10 ?M and 100 nM 3-pentanol evaporate elicited an immune response to Pseudomonas syringae pv. tomato DC3000. We performed quantitative real-time PCR to investigate the 3-pentanol-mediated Arabidopsis immune responses by determining Pathogenesis-Related (PR) gene expression levels associated with defense signaling through salicylic acid (SA), jasmonic acid (JA), and ethylene signaling pathways. The results show that exposure to 3-pentanol and subsequent pathogen challenge upregulated PDF1.2 and PR1 expression. Selected Arabidopsis mutants confirmed that the 3-pentanol-mediated immune response involved SA and JA signaling pathways and the NPR1 gene. Taken together, this study indicates that gaseous 3-pentanol triggers induced resistance in Arabidopsis by priming SA and JA signaling pathways. To our knowledge, this is the first report that a volatile compound of an insect sex pheromone triggers plant systemic resistance against a bacterial pathogen. PMID:26500665

  2. Calorimetric study on the state of water and 1-pentanol in the water/1-pentanol/AOT/n-heptane system

    SciTech Connect

    D'Aprano, A.; Lizzio, A.; Liveri, V.T.

    1988-04-07

    Molar enthalpies of solution of 1-pentanol in the AOT/n-heptane system as well as of water in 1-pentanol/n-heptane and in 1-pentanol/AOT/n-heptane systems have been measured at 25/sup 0/C. The results indicate that at infinite dilution, following a Poisson distribution, 1-pentanol molecules distribute between the AOT reversed micelles and the continuous organic phase, whereas at finite concentrations of 1-pentanol, reversed micelles and alcoholic aggregates coexist. It is also found that water added to 1-pentanol/AOT/n-heptane systems is incorporated in both AOT reversed micelles and alcoholic aggregates.

  3. Solubility of pyrene in binary alcohol + cyclohexanol and alcohol + 1-pentanol solvent mixtures at 299.2 K

    SciTech Connect

    McHale, M.E.R.; Horton, A.S.M.; Padilla, S.A.; Trufant, A.L.; De La Sancha, N.U.; Vela, E.; Acree, W.E. Jr.

    1996-11-01

    Experimental solubilities are reported for pyrene dissolved in five binary alcohol + cyclohexanol and seven binary alcohol + 1-pentanol solvent mixtures at 26 C. Alcohol cosolvents include 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol, and 2-pentanol. Results of these measurements are used to test two mathematical representations based upon the combined nearly ideal binary solvent (NIBS)/Redlich-Kister equation and modified Wilson model. For the 12 systems studied, both equations were found to provide an accurate mathematical representation of the experimental data, with an overall average absolute deviation between measured and calculated values being on the order of 0.5%.

  4. 3-pentanol: a new attractant present in volatile emissions from the ambrosia beetle, Megaplatypus mutatus.

    PubMed

    Gatti Liguori, Pablo; Zerba, Eduardo; Alzogaray, Raul A; Gonzalez Audino, Paola

    2008-11-01

    Megaplatypus mutatus (=Platypus mutatus) (Coleoptera: Platypodidae) is an ambrosia beetle that is native to South America. It attacks only standing live trees and causes severe stem breakage and death in commercial poplar (Populus) plantations. Previous work showed that male M. mutatus emits a sex pheromone composed mainly of (+)-sulcatol and sulcatone. We collected male volatile emissions during the hours of maximum emergence by using a specific polar microextraction phase; analyzed the extract by GC-MS; and tested the biological activity of selected compounds in the extract with a walking behavioral assay. Female M. mutatus emerged primarily between 7 and 11 h. In the chemical analyses of volatiles, a third compound, 3-pentanol, was identified in a small percentage of samples. Walking behavioral bioassays with video image analysis showed that at the doses tested, 3-pentanol elicited an attractive response from females. PMID:18850328

  5. [In-situ research on Raman spectroscopy of 1-pentanol under high pressure].

    PubMed

    Tian, Feng; Zheng, Hai-Fei

    2010-04-01

    Raman spectra in 800-3 000 cm(-1) of 1-pentanol were studied under high pressure and at ambient temperature (23 degrees C) using a cubic zirconia anvil cell. The Raman peaks become sharper at higher pressure so that each individual C-H stretching mode is difficult to be distinguished. The Raman frequencies of the C-H stretching modes shift to a higher position with increasing pressures ranging between 0.1 MPa and 1.75 GPa. And the pressure induced frequency shifts are described by P(MPa) = 69.652 65 x (deltanu(p)) (single, T = 23 degrees C) + 105.806 93 where 0 < (deltanu(p)) single (cm(-1) < or = 23 and P(MPa) =77.974 04 x (Anu(p))( 2 960, T = 23 degrees 95.390 5 where 0 < (deltanu(p))2 960 (cm(-1)) < or = 21 and P(MPa) =126.956 39 x (deltanu(p)) (2 863, T = 23 degrees) -110.648 09 where 0 < (deltanu(p)) 2 863(cm(-1)) < or = 13, respectively. The global slope is (thetanu(single)/thetaP)T (14+/- 1) cm(-)1 x GPa(-1), which can be used as a pressure sensor. Both the jumping of the frequencies and the figure under microscope indicate that the frozen pressure of the 1-pentanol at room temperature is 1.75 GPa. The molar volume change of the 1-pentanol is deltaVm = 1.84 x 10(-6) m3 x mol(-1) in the phase transformation from a liquid to a solid at 23 degrees C. PMID:20545138

  6. Enthalpies of formation for water + sodium dodecyl sulfate + 1-pentanol + triethanolamine mixtures

    NASA Astrophysics Data System (ADS)

    Batov, D. V.

    2015-05-01

    The enthalpies of mixing of water (H2O) + sodium dodecyl sulfate (NaDDS) + 1-pentanol (PeOH) + triethanolamine (TEA) mixtures with different compositions at 298.15 K are determined using the thermochemical cycle. The enthalpies of dissolution of NaDDS, H2O, PeOH, TEA, and H2O + TEA + PeOH + NaDDS mixtures in 2-propanol are measured by means of calorimetry. The formation of the studied mixtures from neat components is shown to be mainly an exothermic process. The influence of the nature of components and a mixture's composition on the enthalpies of mixing is discussed.

  7. Isothermal vapor-liquid equilibria for 2-methyl-2-butanol + 2-methyl-1-butanol + 1-pentanol

    SciTech Connect

    Aucejo, A.; Burguet, M.C.; Monton, J.B.; Munoz, R.; Sanchotello, M.; Vazquez, M.I. . Dept. de Ingenieria Quimica)

    1994-07-01

    Vapor-liquid equilibria (VLE) for 2-methyl-2-butanol + 2-methyl-1-butanol and 2-methyl-2-butanol + 2-methyl-1-butanol + 1-pentanol have been measured at 373.15 K. The binary VLE results have been correlated by different liquid-phase activity coefficient models. The binary interaction parameters obtained from Wilson, NRTL, and UNIQUAC models in this and a previously study are used to predict the VLE data for the ternary system. Vapor-liquid equilibrium (VLE) data are necessary for the design of distillation processes.

  8. Atmospheric chemistry of 3-pentanol: kinetics, mechanisms, and products of Cl atom and OH radical initiated oxidation in the presence and absence of NOX.

    PubMed

    Hurley, M D; Wallington, T J; Bjarrum, M; Javadi, M S; Nielsen, O J

    2008-09-01

    Smog chamber/FTIR techniques were used to study the atmospheric chemistry of 3-pentanol and determine rate constants of k(Cl+3-pentanol) = (2.03 +/- 0.23) x 10 (-10) and k(OH+3-pentanol) = (1.32 +/- 0.15) x 10 (-11) cm (3) molecule (-1) s (-1) in 700 Torr of N 2/O 2 diluent at 296 +/- 2 K. The primary products of the Cl atom initiated oxidation of 3-pentanol in the absence of NO were (with molar yields) 3-pentanone (26 +/- 2%), propionaldehyde (12 +/- 2%), acetaldehyde (13 +/- 2%) and formaldehyde (2 +/- 1%). The primary products of the Cl atom initiated oxidation of 3-pentanol in the presence of NO were (with molar yields) 3-pentanone (51 +/- 4%), propionaldehyde (39 +/- 2%), acetaldehyde (44 +/- 4%) and formaldehyde (4 +/- 1%). The primary products of the OH radical initiated oxidation of 3-pentanol in the presence of NO were (with molar yields) 3-pentanone (58 +/- 3%), propionaldehyde (28 +/- 2%), and acetaldehyde (37 +/- 2%). In all cases the product yields were independent of oxygen concentration over the partial pressure range 10-700 Torr. The reactions of Cl atoms and OH radicals with 3-pentanol proceed 26 +/- 2 and 58 +/- 3%, respectively, via attack on the 3-position to give an alpha-hydroxyalkyl radical, which reacts with O 2 to give 3-pentanone. The results are discussed with respect to the literature data and atmospheric chemistry of 3-pentanol. PMID:18693707

  9. The homogeneous nucleation of 1-pentanol in a laminar flow diffusion chamber: The effect of pressure and kind of carrier gas

    NASA Astrophysics Data System (ADS)

    Brus, D.; Hyvrinen, A.-P.; Wedekind, J.; Viisanen, Y.; Kulmala, M.; dmal, V.; Smolk, J.; Lihavainen, H.

    2008-04-01

    The influence of total pressure and kind of carrier gas on homogeneous nucleation rates of 1-pentanol was investigated using experimental method of laminar flow diffusion chamber in this study. Two different carrier gases (helium and argon) were used in the total pressure range from 50to400kPa. Nucleation temperatures ranged from 265to290K for 1-pentanol-helium and from 265to285K for 1-pentanol-argon. Nucleation rates varied between 101 and 106cm-3s-1 for 1-pentanol-helium and between 102 and 105cm-3s-1 for 1-pentanol-argon. Both positive and slight negative pressure effects were observed depending on temperature and carrier gas. The trend of pressure effect was found similar for both carrier gases. Error analysis on thermodynamic properties was conducted, and the lowering of surface tension due to adsorption of argon on nucleated droplets was estimated. A quantitative overview of pressure effect is provided.

  10. Gas-phase conformational distributions for the 2-alkylalcohols 2-pentanol and 2-hexanol from microwave spectroscopy

    NASA Astrophysics Data System (ADS)

    Tubergen, Michael J.; Conrad, Andrew R.; Chavez, Roberto E.; Hwang, Injung; Suenram, Richard D.; Pajski, Jason J.; Pate, Brooks H.

    2008-09-01

    Chirped-pulse and cavity Fourier-transform microwave spectrometers were used to record rotational spectra arising from four conformational structures of 2-pentanol and 14 conformations of 2-hexanol. Each conformer's rotational spectrum consists of 10-89 transitions, making the microwave spectra of the alkylalcohols very congested. Assignments of the spectra to conformational structures were made by comparison of the experimental moments of inertia and dipole-selection-rule intensities to predictions from ab initio (MP2/6-311++G ??) model structures. The all-anti configurations of 2-pentanol and 2-hexanol were calculated to have the lowest energies and gave rise to the strongest signals. Spectra were observed from conformers up to 4 kJ mol -1 above these minimum energy structures.

  11. Exploring the discrepancies between experiment, theory, and simulation for the homogeneous gas-to-liquid nucleation of 1-pentanol.

    PubMed

    Nellas, Ricky B; Keasler, Samuel J; Siepmann, J Ilja; Chen, Bin

    2010-04-28

    Using an efficient Monte Carlo approach known as Aggregation-Volume-bias Monte Carlo with self-adaptive Umbrella Sampling and Histogram Reweighting (AVUS-HR), we obtained the nucleation free energy profile of 1-pentanol at various temperatures from 220 to 360 K. From these profiles, differences between the free energy barrier heights obtained from our simulations and those predicted by the classical nucleation theory (CNT) were calculated. Our results strongly support that the logarithm of the nucleation rate ratio between simulation (or experiment) and CNT increases almost linearly with the inverse temperature. Among the various factors that contribute to the discrepancy between simulation and CNT nucleation rates, the nonzero surface free energy of the monomer included in the CNT makes the largest contribution. On the molecular level, the simulations indicate that a gas-phase cluster of 1-pentanol molecules is relatively compact and can contain multiple hydrogen bonded aggregates of various sizes and that this aggregate size distribution depends strongly on temperature and also on the overall size of the cluster system. PMID:20441298

  12. The homogeneous nucleation of 1-pentanol in a laminar flow diffusion chamber: the effect of pressure and kind of carrier gas.

    PubMed

    Brus, D; Hyvrinen, A-P; Wedekind, J; Viisanen, Y; Kulmala, M; Zdmal, V; Smolk, J; Lihavainen, H

    2008-04-01

    The influence of total pressure and kind of carrier gas on homogeneous nucleation rates of 1-pentanol was investigated using experimental method of laminar flow diffusion chamber in this study. Two different carrier gases (helium and argon) were used in the total pressure range from 50 to 400 kPa. Nucleation temperatures ranged from 265 to 290 K for 1-pentanol-helium and from 265 to 285 K for 1-pentanol-argon. Nucleation rates varied between 10(1) and 10(6) cm(-3) s(-1) for 1-pentanol-helium and between 10(2) and 10(5) cm(-3) s(-1) for 1-pentanol-argon. Both positive and slight negative pressure effects were observed depending on temperature and carrier gas. The trend of pressure effect was found similar for both carrier gases. Error analysis on thermodynamic properties was conducted, and the lowering of surface tension due to adsorption of argon on nucleated droplets was estimated. A quantitative overview of pressure effect is provided. PMID:18397069

  13. Isothermal vapor-liquid equilibria of 1-pentanol with 2-methyl-1-butanol, 2-methyl-2-butanol, and 3-methyl-2-butanol

    SciTech Connect

    Aucejo, A.; Burguet, M.C.; Monton, J.B.; Munoz, R.; Sanchotello, M.; Vazquez, M.I. . Dept. de Ingenieria Quimica)

    1994-07-01

    The separation of liquid mixtures through distillation is one of the most common operations in chemical industry, and the efficient design of distillation equipment requires a quantitative knowledge of vapor-liquid equilibria (VLE). Vapor-liquid equilibria were measured for binary systems of 1-pentanol + 2-methyl-1-butanol, + 2-methyl-2-butanol, and + 3-methyl-2-butanol at 373.15 K. The results are thermodynamically consistent according to the point-to-point consistency test, and deviation from ideal behavior is small in all cases.

  14. Microemulsion electrokinetic chromatography for the analysis of green tea catechins: effect of the cosurfactant on the separation selectivity.

    PubMed

    Pomponio, Romeo; Gotti, Roberto; Luppi, Barbara; Cavrini, Vanni

    2003-05-01

    Microemulsion electrokinetic chromatography (MEEKC) was applied to the separation of six catechins and caffeine, the major constituents of the green tea. The developed methods involved the use of sodium dodecyl sulfate (SDS) as surfactant, n-heptane as organic solvent and an alcohol as cosurfactant. The separations were performed under acidic conditions (pH 2.5 phosphate buffer, 50 mM) to ensure good stability of the catechins, with reversed polarity (anodic outlet). The effect of the alcohol nature on the MEEKC selectivity was evaluated; nine alcohols were used as cosurfactant: 1-butanol, tert-butanol, 1-pentanol, 2-pentanol, 3-pentanol, cyclopentanol, 1-hexanol, 2-hexanol, and cyclohexanol. The migration order of (+)-catechin (C), (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-gallocatechin (GC), (-)-epigallocatechin gallate (EGCG), (-)-epicatechin gallate (ECG), caffeine and theophylline was significantly affected by the alcohol used as cosurfactant. Using nine microemulsions, four different selectivities were achieved: A (cyclohexanol); B (2-pentanol, 3-pentanol, 1-hexanol, 2-hexanol); C (1-butanol, 1-pentanol, cyclopentanol); D (tert-butanol). MEEKC methods, based on 2-hexanol and cyclohexanol as cosurfactant were validated and successfully applied to the analysis of catechins and caffeine in commercial green tea products. PMID:12761797

  15. Solubility of lovastatin in a family of six alcohols: Ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, and 1-octanol.

    PubMed

    Nti-Gyabaah, J; Chmielowski, R; Chan, V; Chiew, Y C

    2008-07-01

    Accurate experimental determination of solubility of active pharmaceutical ingredients (APIs) in solvents and its correlation, for solubility prediction, is essential for rapid design and optimization of isolation, purification, and formulation processes in the pharmaceutical industry. An efficient material-conserving analytical method, with in-line reversed HPLC separation protocol, has been developed to measure equilibrium solubility of lovastatin in ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, and 1-octanol between 279 and 313K. Fusion enthalpy DeltaH(fus), melting point temperature, Tm, and the differential molar heat capacity, DeltaC(P), were determined by differential scanning calorimetry (DSC) to be 43,136J/mol, 445.5K, and 255J/(molK), respectively. In order to use the regular solution equation, simplified assumptions have been made concerning DeltaC(P), specifically, DeltaC(P)=0, or DeltaC(P)=DeltaS. In this study, we examined the extent to which these assumptions influence the magnitude of the ideal solubility of lovastatin, and determined that both assumptions underestimate the ideal solubility of lovastatin. The solubility data was used with the calculated ideal solubility to obtain activity coefficients, which were then fitted to the van't Hoff-like regular solution equation. Examination of the plots indicated that both assumptions give erroneous excess enthalpy of solution, H(infinity), and hence thermodynamically inconsistent activity coefficients. The order of increasing ideality, or solubility of lovastatin was butanol>1-propanol>1-pentanol>1-hexanol>1-octanol. PMID:18490118

  16. Dilution method study on the interfacial composition, thermodynamic properties and structural parameters of W/O microemulsions stabilized by 1-pentanol and surfactants in absence and presence of sodium chloride.

    PubMed

    Paul, Bidyut K; Nandy, Debdurlav

    2007-12-15

    The phase behaviors, interfacial composition, thermodynamic properties and structural characteristics of water-in-oil microemulsions under varied molar ratio of water to surfactant (omega) at 303 K and also by varying temperatures at a fixed omega(=40) by mixing with 1-pentanol and decane or dodecane in absence and presence of sodium chloride have been studied by the method of dilution. The surfactants used were cetyl pyridinium chloride (CPC), sodium dodecyl sulfate (SDS) and polyoxyethylene (23) lauryl ether (Brij-35). The compositions of 1-pentanol and the surfactant at the interfacial region, the distribution of 1-pentanol between the interfacial region and the continuous oil phase, and the effective packing parameter (P(eff)) at the threshold level of stability have been estimated. The thermodynamics of transfer of 1-pentanol from the continuous oil phase to the interface have been evaluated. The structural parameters viz. radii of the droplet (R(e)) and the waterpool (R(w)), effective thickness of the interfacial layer (d(I)), average aggregation numbers of surfactants (N (s)) and the cosurfactant (1-pentanol) (N (a)) and the number of droplets (N(d)) have also been estimated. The prospect of using these w/o microemulsions for the synthesis of nanoparticles with small size, have been discussed in the light of the radii of the droplet, and waterpool, the extent of variation of effective thickness of the droplet under varied molar ratio of water to surfactant and temperature. An attempt has been made to rationalize the results in a comprehensive manner. PMID:17904572

  17. Isobaric vapor-liquid equilibria of 1-butanol + N,N-dimethylformamide and 1-pentanol + N,N-dimethylformamide systems at 50.00 and 100.00 kPa

    SciTech Connect

    Marzal, P.; Gabaldon, C.; Seco, A.; Monton, J.B.

    1995-05-01

    The experimental determinations of vapor-liquid equilibria (VLE) are indispensable for the design of separation processes such as distillation columns, extractive distillation, and selection of solvents. Isobaric vapor-liquid equilibria were obtained for the 1-butanol + N,N-dimethylformamide and 1-pentanol + N,N-dimethylformamide systems at 50.00 and 100.00 kPa. The activity coefficients were found to be thermodynamically consistent. The data were correlated with five liquid phase activity coefficient models (Margules, Van Laar, Wilson, NRTL, and UNIQUAC). Experimental vapor pressures of N,N-dimethylformamide are also included.

  18. The critical behavior of the dielectric constant in the polar + polar binary liquid mixture nitromethane + 3-pentanol: an unusual sign of its critical amplitude in the one-phase region.

    PubMed

    Leys, Jan; Losada-Prez, Patricia; Troncoso, Jacobo; Glorieux, Christ; Thoen, Jan

    2011-07-14

    Dielectric constant measurements have been carried out in the one- and two-phase regions near the critical point of the polar + polar binary liquid mixture nitromethane + 3-pentanol. In the two-phase region, evidence for the |t|(2?) singularity in the coexistence-curve diameter has been detected, thus confirming the novel predictions of complete scaling theory for liquid-liquid criticality. In the one-phase region, an "unusual" negative sign for the amplitude of the |t|(1-?) singularity has been encountered for the first time in an upper critical solution temperature type of binary liquid mixture at atmospheric pressure. Mass density measurements have also been carried out to provide additional information related to such experimental finding, which entails an increase of the critical temperature T(c) under an electric field. PMID:21766958

  19. Homogeneous nucleation rate measurements in 1-pentanol vapor with helium as a buffer gas

    NASA Astrophysics Data System (ADS)

    dmal, Vladimr.; Smolk, Ji?

    The rate of homogeneous nucleation in supersaturated vapors of n-pentanol was studied experimentally using an upward static diffusion chamber. Helium was used as a buffer gas, holding the total pressure in the chamber at Pt=25 kPa. A recently improved photographic technique was used to determine the nucleation rate as a function of supersaturation at temperature T=260 K. This dependence was compared with predictions made by the classical theory of homogeneous nucleation. Furthermore, the influence of gaseous ions on nucleation rate was studied, and a minimum voltage across the chamber, necessary to avoid nucleation on ions, was determined. The effect of the wall heating power on nucleation was found to be negligible in the range studied.

  20. Chiral microemulsion electrokinetic chromatography: Effect of cosurfactant identity on enantioselectivity, methylene selectivity, resolution, and other chromatographic figures of merit.

    PubMed

    Kahle, Kimberly A; Foley, Joe P

    2006-11-01

    The effect of cosurfactant identity on microemulsion size, elution range, retention factor, enantioselectivity, methylene selectivity, efficiency, and resolution in chiral microemulsion formulations was examined. The chiral surfactant dodecoxycarbonylvaline was used in conjunction with the cosurfactants 1-butanol, 1-pentanol, 2-pentanol, 1-hexanol, 2-hexanol, cyclopentanol, and cyclohexanol. The millimolar concentration of cosurfactant was held constant regardless of identity. Ethyl acetate was incorporated as the microemulsion oil core and the buffer utilized was 50 mM phosphate at a pH of 7.0. In general, secondary alcohols improved enantioselectivities and primary alcohols had the opposite effect, with the exception of the 1-butanol. The trends observed varied slightly depending on analyte. Of the six chiral analytes tested, cyclopentanol provided the best enantioselectivity for three, 1-butanol for two compounds, and 2-pentanol for one analyte. The lowest enantioselectivities were achieved with 1-pentanol or 1-hexanol for all compounds. Methylene selectivity was found to decrease with reductions in alcohol chain length. Among equal carbon number alcohols, methylene selectivity was lower for secondary alcohols. Efficiency and resolution values varied with different cosurfactants and depended on analyte identity. PMID:17075937

  1. Composition and Process for Retarding the Premature Aging of PMR Monomer Solutions and PMR Prepegs

    NASA Technical Reports Server (NTRS)

    Alston, William B. (Inventor); Gahn, Gloria S. (Inventor)

    2000-01-01

    Polyimides are derived from solutions of at least one low-boiling organic solvent, e.g. isopropanol containing a mixture of polyimide-forming monomers. The monomeric solutions have an extended shelf life at ambient (room) temperatures as high as 80 C, and consist essentially of a mixture of monoalkyl ester-acids, alkyl diester-diacids and aromatic polyamines wherein the alkyl radicals of the esteracids are derived from lower molecular weight aliphatic secondary alcohols having 3 to 5 carbon atoms per molecule such as isopropanol, secondary butanol, 2-methyl-3-butanol, 2 pentanol or 3-pentanol. The solutions of the polyimide-forming monomers have a substantially improved shelf-life and are particularly useful in the aerospace and aeronautical industry for the preparation of polyimide reinforced fiber composites such as the polyimide cured carbon composites used in jet engines, missiles, and for other high temperature applications.

  2. Experimental neurotoxicity and urinary metabolites of the C5-C7 aliphatic hydrocarbons used as glue solvents in shoe manufacture.

    PubMed

    Frontali, N; Amantini, M C; Spagnolo, A; Guarcini, A M; Saltari, M C; Brugnone, F; Perbellini, L

    1981-12-01

    Rats were intermittently exposed (9 to 10 h/d, 5 to 6 d/week) to controlled concentrations of single analytical grad solvents in ambient air. After periods ranging from 7 to 30 weeks the animals were perfused with glutaraldehyde and samples of nerves were processed for light microscopy of sections and of teased fibers. Animals treated with n-hexane at 5000 ppm (14 weeks) or 2500 ppm (30 weeks) developed the typical giant axonal degeneration already described in rats treated continuously with 400 to 600 ppm of the same solvent for 7 weeks or more. No such alterations were found in rats subjected to the following intermittent respiratory treatments: n-hexane 500 ppm (30 weeks) or 1500 ppm (14 weeks), cyclohexane 1500 or 2500 (30 weeks), n-pentane 3000 ppm (30 weeks), n-heptane 1500 ppm (30 weeks), 2-methylpentane 1500 ppm (14 weeks), and 3-methylpentane 1500 ppm (14 weeks). The following metabolites were found in the urine of rats according to treatment (in parenthesis): 2-methyl-2-pentanol (2-methylpentane); 3-methyl-2-pentanol and 3-methyl-3-pentanol (3-methylpentane), 2-hexanol, 3-hexanol, gamma-valerolactone, 2,5-dimethylfuran, and 2,5-hexanedione (n-hexane). 2-Hexanol was found to be the main urinary metabolite of n-hexane, while 2,5-hexanedione was present only in a lesser proportion. This feature of rat metabolism suggests that in this species 2,5-hexanedione reaches an effective level at its site of action during intermittent respiratory treatment with n-hexane with difficulty and explains the high concentrations necessary to cause polyneuropathy in rats subjected to this treatment. PMID:6277548

  3. An investigation of bubble coalescence and post-rupture oscillation in non-ionic surfactant solutions using high-speed cinematography.

    PubMed

    Bournival, G; Ata, S; Karakashev, S I; Jameson, G J

    2014-01-15

    Most processes involving bubbling in a liquid require small bubbles to maximise mass/energy transfer. A common method to prevent bubbles from coalescing is by the addition of surfactants. In order to get an insight into the coalescence process, capillary bubbles were observed using a high speed cinematography. Experiments were performed in solutions of 1-pentanol, 4-methyl-2-pentanol, tri(propylene glycol) methyl ether, and poly(propylene glycol) for which information such as the coalescence time and the deformation of the resultant bubble upon coalescence was extracted. It is shown in this study that the coalescence time increases with surfactant concentration until the appearance of a plateau. The increase in coalescence time with surfactant concentration could not be attributed only to surface elasticity. The oscillation of the resultant bubble was characterised by the damping of the oscillation. The results suggested that a minimum elasticity is required to achieve an increased damping and considerable diffusion has a detrimental effect on the dynamic response of the bubble, thereby reducing the damping. PMID:24231084

  4. [Metabolism and toxicity of n-pentane and isopentane].

    PubMed

    Chiba, S; Oshida, S

    1991-04-01

    n-Pentane and isopentane have a wide range of use, for example, for cleaning precision machinery, extracting essence and oil, and as liquid fuel for now very popular disposable lighters. They are contained in liquefied petroleum gas and natural gas as trace constituents. In our present experiments, we studied the metabolism and toxicity of these n-pentane and isopentane metabolites. Male mice of ICR strain were exposed to about 5% n-pentane for one hour while the oxygen in the environmental air was maintained at about 20%. Then their blood and liver tissue were collected and analyzed by means of GC and GC-MS. The metabolites thus obtained were 2-pentanol, 3-pentanol and 2-pentanone. The same procedure was repeated with isopentane; 3-methyl-2-butanol, 2-methyl-2-butanol and 3-methyl-2-butanone were detected as the resultant metabolites. In the presence of the NADPH-generating system liver microsomes were made to react to the substrate of saturated n-pentane or isopentane aqueous solution at 37 degrees C for one hour. As a result, the same metabolites were produced as obtained in the exposure experiment. It was therefore suggested that n-pentane and isopentane were metabolized chiefly by liver microsomes. Male mice of ICR strain were fed with 80 mg/kg b.w. of phenobarbital for consecutive four days and exposed to n-pentane or isopentane for one hour. This resulted in an increase in the amount of 2-pentanol and 2-pentanone in the n-pentane inhalation and 2-methyl-2-butanol in the isopentane inhalation experiment. The toxicity of each metabolite was studied on cultured cells. The metabolites were individually mixed with HeLa S3 cell suspension, incubated for three days, and their concentration which inhibited the growth of cells by 50% (IGC 50) were compared. It was demonstrated as a result that the IGC 50 for any of the metabolites was lower than that for methanol, ethanol or acetone used as control. PMID:1920919

  5. Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant species

    NASA Astrophysics Data System (ADS)

    Knig, Georg; Brunda, Monika; Puxbaum, Hans; Hewitt, C. Nicholas; Duckham, S. Craig; Rudolph, Jochen

    Emission rates of more than 50 individual VOCs were determined for eight plant species and three different types of grass land typical for natural deciduous and agricultural vegetation in Austria. In addition to the emissions of isoprene and monoterpenes, 33 biogenic oxygenated volatile organic compounds (BOVOCs) were detected. Of these, 2-methyl-l-propanol, 1-butanal, 2-butanal, 1-pentanol, 3-pentanol, 1-hexanol, 6-methyl-5-hepten-2-one, butanal and ethylhexylacetate were observed for the first time as plant emissions. In terms of prevalence of one of the groups of emitted VOCs (isoprene, terpenes, BOVOCs) the grain plants wheat and rye, grape, oilseed rape and the decidous trees hombeam and birch could be classified as "BOVOC"-emitters. For the grass plots examined, BOVOCs and terpenes appear to be of equal importance. The emission rates of the total assigned organic plant emissions ranged from 0.01 ? g -1 h -1 for wheat to 0.8 ?g g -1 h -1 for oak (based on dry leaf weight). Intercomparison with available data from other studies show that our emission rates are rather at the lower end of reported ranges. The influence of the stage of growth was examined for rye, rape (comparing emissions of blossoming and nonblossoming plants) and for grape (with and without fruit). Emission rate differences for different stages of growth varied from nondetectable for blossoming and nonblossoming rye to a factor of six for the grape with fruits vs grape without fruits (emission rate based on dry leaf weight). The major decidous tree in Austria (beech) is a terpene emitter, with the contribution of BOVOCs below 5% of the total assigned emissions of 0.2 ?g g -1 h -1 for the investigations of 20C.

  6. Characteristics of chemical binding to alpha 2u-globulin in vitro--evaluating structure-activity relationships

    SciTech Connect

    Borghoff, S.J.; Miller, A.B.; Bowen, J.P.; Swenberg, J.A. )

    1991-02-01

    alpha 2u-Globulin (alpha 2u) has been shown to accumulate in the kidneys of male rats treated with 2,2,4-trimethylpentane (TMP). 2,4,4-Trimethyl-2-pentanol (TMP-2-OH), a metabolite of TMP, is found reversibly bound to alpha 2u isolated from the kidneys of these treated rats. The objectives of the following study were to characterize the ability of (3H)TMP-2-OH to bind to alpha 2u in vitro and to determine whether other compounds that cause this protein to accumulate have the same binding characteristics. Although compounds that have been shown to cause the accumulation of alpha 2u in male rat kidneys compete in vitro with (3H)TMP-2-OH for binding to alpha 2u, they do so to varying degrees. The binding affinity (Kd) of the (3H)TMP-2-OH-alpha 2u complex was calculated to be on the order of 10(-7) M. The inhibition constant values (Ki) determined for d-limonene, 1,4-dichlorobenzene, and 2,5-dichlorophenol were all in the range 10(-4) M, whereas the Ki values for isophorone, 2,4,4- or 2,2,4-trimethyl-1-pentanol, and d-limonene oxide were determined to be in the range 10(-6) and 10(-7) M, respectively. TMP and 2,4,4- and 2,2,4-trimethylpentanoic acid did not compete for binding. This suggests that other factors, besides binding, are involved in the accumulation of alpha 2u. In this study the ability of a chemical to bind to alpha 2u was used as a measure of biological activity to assess structure-activity relationships among the chemicals tested and known to cause the accumulation of alpha 2u. The results so far suggest that binding is dependent on both hydrophobic interactions and hydrogen bonding.

  7. Liquid chromatographic analysis of coal surface properties. Final report, September 1991--February 1995

    SciTech Connect

    Kwon, K.C.

    1996-03-01

    Experiments on equilibrium adsorption loadings of various probe compounds on 60-200 mesh Illinois {number_sign}6 coal (PSOC-1539), Adaville {number_sign}1 coal (PSOC-1544), Wyodak coal (PSOC-1545) and Pittsburgh {number_sign}8 coal (PSOC-1549) were performed. the probe compounds include m-cresol, p-cresol, o-cresol, phenol, n-octanol, n-heptanol, n-propanol, isopropanol n-butanol, s-butanol, 2-butanol, t-butanol, 2-naphthol, cyclohexanol, 2-methyl-1-pentanol (2M1P), 4-methyl-2-pentanol (4M2P), benzene and toluene. Equilibrium adsorption of various probe compounds on the coals were measured with the inverse liquid chromatography method. Experiments on flotation of various 60-200 mesh treated coals such as Illinois {number_sign}6 coal (PSOC-1539), Adaville {number_sign}1 coal (PSOC-1544), Wyodak coal (PSOC-1545) and Pittsburgh {number_sign}8 coal (PSOC-1549) were performed. The chosen coals were treated with steam, nitrogen and air at 1 atm and 125-225{degrees}C for 24 hours. The coals were treated with water as well as 20-1000 ppm aqueous alcohol solutions for 3-24 hours at 150-225{degrees}C. The coals also were treated with 20-ppm alcohol aqueous solutions for 1-24 hours at the 0.002-g/min mass flow rate of alcohol aqueous solutions and at 225{degrees}C. Flotation experiments were conducted with a 500-cm{sup 3} batch-type micro flotation apparatus, introducing nitrogen at the bottom of the apparatus. This final report was prepared with the experimental data obtained during the period of September 1991-March 1994.

  8. Influence of analyte overloading on retention in gas-liquid chromatography: a molecular simulation view.

    PubMed

    Wick, Collin D; Siepmann, J Ilja; Schures, Mark R

    2002-01-01

    In an attempt to elucidate the molecular basis for concentration (isotherm) effects on retention in gas-liquid chromatography, configurational-bias Monte Carlo simulations in the Gibbs ensemble were carried out to investigate changes in analyte partitioning caused by overloading a model chromatographic system with either an alkane or an alcohol. Squalane was used as the stationary-phase material, and the analytes included n-pentane, n-hexane, n-heptane, 1 -butanol, and 1-pentanol. Three systems were studied that differed in the mobile-phase composition: (i) a helium vapor, (ii) a n-hexane vapor, and (iii) a 1-pentanol-saturated helium vapor. While the amount of helium that partitions into the stationary phase is very small, both n-hexane and 1-pentanol partition strongly into and thereby swell the stationary phase. Although the swelling of the stationary phase leads to a reduction in the partition coefficients for the alkane solutes for both the n-hexane- and 1-pentanol-swollen stationary phases, the effects on the alcohol solutes differ markedly. Whereas saturation by n-hexane causes a decrease of the alcohol partition contants (to an extent similar to that for the alkane solutes), the saturation by 1-pentanol causes a dramatic increase of the alcohol partition coefficients; e.g., the Kovats index of 1-butanol increases by more than 150 Kovats units. The formation of hydrogen-bonded alcohol aggregates in the liquid phase is the microscopic origin for the dramatic effect of 1-pentanol saturation on the retention of alcohols. PMID:11795813

  9. Urinary excretion of the metabolites of n-hexane and its isomers during occupational exposure.

    PubMed Central

    Perbellini, L; Brugnone, F; Faggionato, G

    1981-01-01

    Environmental exposure to commercial hexane (n-hexane, 2-methylpentane, and 3-methylpentane) was tested in several work places in five shoe factories by taking three grap-air samples during the afternoon shift. Individual exposure ranges were 32-500 mg/m3 for n-hexane, 11-250 mg/m3 for 2-methylpentane, and 10-204 mg/m3 for 3-methylpentane. The metabolites of commercial hexane in the urine of 41 workers were measured at the end of the work shift. 2-Hexanol, 2,5-hexanedione, 2,5-dimethylfuran, and gamma-valerolactone were found as n-hexane metabolites and 2-methyl-2-pentanol and 3-methyl-2-pentanol as 2-methylpentane and 3-methylpentane metabolites. The presence of metabolites in the urine was correlated with occupational exposure to solvents. n-Hexane exposure was correlated more positively with 2-hexanol and 2,5-hexanedione than with 2,5-dimethylfuran and gamma-valerolactone. A good correlation was also found between total n-hexane metabolites and n-hexane exposure. 2-Methyl-2-pentanol and 3-methyl-2-pentanol were highly correlated with 2-methylpentane and 3-methylpentane exposure. The results suggest that the urinary excretion of hexane metabolites may be used for monitoring occupational exposure to n-hexane and its isomers. PMID:7470400

  10. Urinary excretion of the metabolites of n-hexane and its isomers during occupational exposure.

    PubMed

    Perbellini, L; Brugnone, F; Faggionato, G

    1981-02-01

    Environmental exposure to commercial hexane (n-hexane, 2-methylpentane, and 3-methylpentane) was tested in several work places in five shoe factories by taking three grap-air samples during the afternoon shift. Individual exposure ranges were 32-500 mg/m3 for n-hexane, 11-250 mg/m3 for 2-methylpentane, and 10-204 mg/m3 for 3-methylpentane. The metabolites of commercial hexane in the urine of 41 workers were measured at the end of the work shift. 2-Hexanol, 2,5-hexanedione, 2,5-dimethylfuran, and gamma-valerolactone were found as n-hexane metabolites and 2-methyl-2-pentanol and 3-methyl-2-pentanol as 2-methylpentane and 3-methylpentane metabolites. The presence of metabolites in the urine was correlated with occupational exposure to solvents. n-Hexane exposure was correlated more positively with 2-hexanol and 2,5-hexanedione than with 2,5-dimethylfuran and gamma-valerolactone. A good correlation was also found between total n-hexane metabolites and n-hexane exposure. 2-Methyl-2-pentanol and 3-methyl-2-pentanol were highly correlated with 2-methylpentane and 3-methylpentane exposure. The results suggest that the urinary excretion of hexane metabolites may be used for monitoring occupational exposure to n-hexane and its isomers. PMID:7470400

  11. New methodology for simultaneous volumetric and calorimetric measurements: Direct determination of {alpha}{sub p} and C{sub p} for liquids under pressure

    SciTech Connect

    Casas, L. M.

    2009-12-15

    A new batch cell has been developed to measure simultaneously both isobaric thermal expansion and isobaric heat capacity from calorimetric measurements. The isobaric thermal expansion is directly proportional to the linear displacement of an inner flexible below and the heat capacity is calculated from the calorimetric signal. The apparatus used was a commercial Setaram C-80 calorimeter and together with this type of vessels can be operated up to 20 MPa and in the temperature range of 303.15-523.15 K, In this work, calibration was carried out using 1-hexanol and subsequently both thermophysical properties were determined for 3-pentanol, 3-ethyl-3-pentanol, and 1-octanol at atmospheric pressure, 5 and 10 MPa, and from 303.15 to 423.15 K in temperature. Finally experimental values were compared with the literature in order to validate this new methodology, which allows a very accurate determination of isobaric thermal expansion and isobaric heat capacity.

  12. Measurement of the urinary metabolites of N-hexane, cyclohexane and their isomers by gas chromatography.

    PubMed

    Perbellini, L; Brugnone, F; Silvestri, R; Gaffuri, E

    1981-01-01

    A gas chromatographic method for analyzing the urinary metabolites of n-hexane (2-hexanol, 2,5-hexanedione, 2,5-dimethylfuran and gamma-valerolactone), of 2-methylpentane (2-methyl-2-pentanol), of 3-methylpentane (3-methyl-2-pentanol), and of cyclohexane (cyclohexanol) was developed. Processing of urine and the gas chromatographic conditions are described. The recovery rate of all hexane metabolites, except 2,5-dimethylfuran, ranged between 92 and 100%. The variation coefficient of metabolites determination was between 1.5 and 5%, apart from 2.5-dimethylfuran determination for which the variation coefficient was 15%. The detection limits ranged between 0.2 and 0.7 mg/l and between 0.05 and 0.1 mg/l when a packed or capillary column was used. Results obtained from a packed and capillary column are discussed. PMID:7216504

  13. Neurotoxic metabolites of "commercial hexane" in the urine of shoe factory workers.

    PubMed

    Perbellini, L; Brugnone, F; Gaffuri, E

    1981-12-01

    Urinary metabolites were tested in 41 shoe-factory workers exposed to a mixture of 10 solvents among which "commercial hexane" was the prevailing component. Cyclohexanol, 2-methyl-2-pentanol, 3-methyl-2-pentanol, and trichloroethanol were determined in connection with exposure to cyclohexane, 2-methylpentane, 3-methylpentane, and trichloroethylene, respectively. 2-Hexanol, 2,5-hexanedione, 2,5-dimethylfuran, and gamma-valerolactone were all determined in connection with n-hexane exposure only. 2,5-Hexanedione was the principal n-hexane metabolite found in the workers' urine. This finding of the experimentally proven neurotoxin 2,5-hexanedione in the urine of shoe-factory workers exposed to "commercial hexane" is consistent with the idea that this compound is responsible for the development of neuropathy in this group of individuals. PMID:6277549

  14. Enhancement of critical heat flux in subcooled flow boiling of water by use of a volatile additive

    SciTech Connect

    Pabisz, R.A. Jr.; Bergles, A.E.

    1996-12-31

    The present investigation considers the effect of a 1-pentanol additive in water on the critical heat flux (CHF) and pressure drop in forced subcooled boiling. A small quantity of 1-pentanol was added to distilled water with the objective of getting an approximate 2% by weight mixture, which had been found to give superior performance in previous studies of pool and flow boiling. Experiments were performed using stainless steel tubes with internal diameters of 4.4 and 6.1 mm. Tests were conducted with mass fluxes of 4,400 kg/m{sup 2}s, exit pressures of 9 bar, length-to-diameter ratios of 25, and exit subcoolings from 65 to 90 C. Test sections were heated directly by DC power, and critical heat flux data were inferred from test-section burnout. The alcohol concentration was periodically checked by draining off a sample and performing a Proton Nuclear Magnetic Resonance scan on the mixture. At high subcoolings, the mixture exhibited an increase in the critical heat flux over that of pure water. However at low subcoolings there is a decrease in the critical heat flux. The increases in critical heat flux noted with the 1-pentanol mixture in this experiment were not as large as would be expected from saturated pool boiling results published by Van Stralen (1959). Pressure drop data for both the mixture and the pure water also were recorded. The 1-pentanol mixture, in general, exhibited larger pressure drops for the same conditions. Subcooled flow boiling has a wide array of commercial cooling applications, including blades in gas turbines, high power laser optics, plasma-facing components in fusion reactors, supercomputers, etc.

  15. A rhodamine-deoxylactam based sensor for chromo-fluorogenic detection of nerve agent simulant.

    PubMed

    Wu, Zhisheng; Wu, Xuanjun; Yang, Yuhui; Wen, Ting-bin; Han, Shoufa

    2012-10-15

    N-(rhodamine B)-deoxylactam-5-amino-1-pentanol (dRB-APOH) was designed and prepared as the chromo-fluorogenic sensor for detection of a nerve agent simulant via analyte triggered tandem phosphorylation and opening of the intramolecular deoxylactam. The successful detection of diethyl chlorophosphate suggests the utility of rhodamine-deoxylactams as the chromo-fluorogenic signal reporting platform for design of sensors targeting reactive chemical species via various chemistries. PMID:22995618

  16. Mechanistic studies of the pathways leading to ethers via coupling of alcohols

    SciTech Connect

    Sun, Qun; Lietti, L.; Herman, R.G.; Klier, K.

    1995-12-31

    The reaction mechanisms for the solid acid-catalyzed dehydrative coupling of methanol and ethanol with isobutanol and 2-pentanol to form ethers were examined by using isotope labelling and chiral inversion experiments. When the reactions were carried out it 110{degrees}C and 1 MPa with {sup 18}O-ethanol and {sup 16}O-isobutanol over the Amberlyst-35 resin catalyst, 95% of the major product ethyl isobutyl ether (EIBE) contained {sup 16}O, while 96% of the minor product ethyl tertiarybutyl ether (ETBE) contained {sup 18}O. Similar results were obtained with methanol and isobutanol over Nafion-H and Amberlyst-35 catalysts, with methyl isobutyl ether (MIBE) and methyl tertiarybutyl ether (MTBE) as the products. These results indicate that EIBE (MIBE) was produced by a surface-catalyzed S{sub N}2 reaction, while the ETBE (MTBE) product arose via a carbenium intermediate. The analogous reaction carried out over Nafion-H and HZSM-5 catalysts with chiral 2-pentanol verified the surface-mediated S{sub N}2 reaction, wherein chiral inversion of the product ether was observed relative to the S- and R-2-pentanol reactants.

  17. Mechanistic studies of the pathways leading to ethers via coupling of alcohols

    SciTech Connect

    Sun, Qun; Lietti, L.; Herman, R.G.

    1995-12-01

    The reaction mechanisms for the solid acid-catalyzed dehydrative coupling of methanol and ethanol with isobutanol and 2-pentanol to form ethers were examined by using isotope labelling and chiral inversion experiments. When the reactions were carried out at 110{degrees}C and 1 MPa with Et{sup 18}OH and {sup 16}O-isobutanol over Amberlyst-35, 95% of the major product ethyl isobutyl ether (EIBE) contained {sup 16}O, while 96% of the minor product ethyl tertiarybutyl ether (ETBE) contained {sup 18}O. Similar results were obtained with methanol and isobutanol over Nafion-H and Amberlyst-35 catalysts, with MIBE and MTBE as the products. These results indicate that EIBE (MIBE) was produced by a surface-catalyzed S{sub N}2 reaction, while the ETBE (MTBE) product arose via a carbenium intermediate. The analogous reactions carried out over Nafion-H and H-ZSM-5 catalysts with chiral 2-pentanol verified the surface-mediated S{sub N}2 reaction, where in chiral inversion of the product ether was observed relative to the S- and R-2-pentanol reactants. In addition, a remarkable shape selectivity with chiral inversion was observed over the H-ZSM-5 zeolite to selectively form 2-ethoxypentane but not 3-ethoxypentane.

  18. Regioselective alkane hydroxylation with a mutant CYP153A6 enzyme

    DOEpatents

    Koch, Daniel J.; Arnold, Frances H.

    2013-01-29

    Cytochrome P450 CYP153A6 from Myobacterium sp. strain HXN1500 was engineered using in-vivo directed evolution to hydroxylate small-chain alkanes regioselectively. Mutant CYP153A6-BMO1 selectively hydroxylates butane and pentane at the terminal carbon to form 1-butanol and 1-pentanol, respectively, at rates greater than wild-type CYP153A6 enzymes. This biocatalyst is highly active for small-chain alkane substrates and the regioselectivity is retained in whole-cell biotransformations.

  19. Dynamic light scattering observation of droplet aggregation in a Winsor type W/O microemulsion system

    NASA Astrophysics Data System (ADS)

    Waaler, Dag; Strand, Knut Arne; Strmme, Gunvald; Sikkeland, Torbjrn

    1989-09-01

    We have performed scattered light intensity autocorrelation measurements on a Winsor type microemulsion system composed of brine, cyclohexane, SDS and a mixture of 1-butanol and 1-pentanol. At high cosurfactant concentration, where the microemulsion phase was considered to consist of individual, spherical water-in-oil droplets of relatively low droplet volume fraction, the autocorrelation functions were observed to be essentially single exponential, as expected. Above a certain droplet volume fraction, however, additional decay modes were observed to enter the correlation data. These modes were interpreted to be due to rotation and/or internal motion of droplet aggregates.

  20. Pentanol isomer synthesis in engineered microorganisms.

    PubMed

    Cann, Anthony F; Liao, James C

    2010-01-01

    Pentanol isomers such as 2-methyl-1-butanol and 3-methyl-1-butanol are a useful class of chemicals with a potential application as biofuels. They are found as natural by-products of microbial fermentations from amino acid substrates. However, the production titer and yield of the natural processes are too low to be considered for practical applications. Through metabolic engineering, microbial strains for the production of these isomers have been developed, as well as that for 1-pentanol and pentenol. Although the current production levels are still too low for immediate industrial applications, the approach holds significant promise for major breakthroughs in production efficiency. PMID:19859707

  1. The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols.

    PubMed

    Fujita, Katsuhide; Matsuyama, Akinobu; Kobayashi, Yoshinori; Iwahashi, Hitoshi

    2006-08-01

    A set of homozygous diploid deletion mutants of the yeast Saccharomyces cerevisiae was screened for the genes required for tolerance to aliphatic alcohols. The screen identified 137, 122 and 48 deletion mutants sensitive to ethanol, 1-propanol and 1-pentanol, respectively. A number of the genes required for ethanol tolerance were those also required for tolerance to other alcohols. Numerous mutants with defective genes encoding for vacuolar H+ -ATPase (V-ATPase) were cosensitive to these alcohols. A global screening approach of yeast deletion library mutants was useful in elucidating the mechanisms of alcohol tolerance based on different lipophilicities. PMID:16879425

  2. Nucleation rates in a new phenomenological model.

    PubMed

    Zandi, Roya; Reguera, David; Reiss, Howard

    2006-11-01

    In this paper we develop a new theory to evaluate the nucleation rate in the framework of the EMLD-DNT model. Beyond the model, our theory deals with cluster translation and exclusion, effects that have been virtually ignored in classical nucleation theory. We apply the model to the case of 1-pentanol, and compare the predictions with experimental results. We find an excellent agreement between the nucleation rate predicted by our theory and experimental data. The distinguishing feature of the model is its ability to predict successfully the rate of formation of the critical nucleus without the use of an intermolecular potential, employing only macroscopic thermodynamic properties. PMID:17078666

  3. Synergic effects in the extraction of paracetamol from aqueous NaCl solution by the binary mixtures of diethyl ether and low molecular weight primary alcohols

    NASA Astrophysics Data System (ADS)

    Nikolić, G. M.; Živković, J. V.; Atanasković, D. S.; Nikolić, M. G.

    2013-12-01

    Liquid-liquid extraction of paracetamol from aqueous NaCl solutions was performed with diethyl ether, 1-propanol, 1-butanol, isobutanol, 1-pentanol, and binary mixtures diethyl ether/1-propanol, diethyl ether/1-butanol, and diethyl ether/isobutanol. Among the pure solvents investigated in this study best extraction efficacy was obtained with 1-butanol. Synergic effects in the extraction with binary mixtures was investigated and compared with some other systems used for the extraction of poorly extractable compounds. Results obtained in this study may be of both fundamental and practical importance.

  4. Effect of release rate and enantiomeric composition on response to pheromones of Megaplatypus mutatus (Chapuis) in poplar plantations of Argentina and Italy.

    PubMed

    Funes, Hernn; Zerba, Eduardo; Gonzalez-Audino, Paola

    2013-10-01

    Megaplatypus mutatus (=Platypus sulcatus Chapuis) is an Ambrosia beetle native to South America, which was recently introduced in Italy and its presence there is causing severe damage to the local poplar plantations. The male M. mutatus pheromone is composed of (S)-(+)-6-methyl-5-hepten-2-ol [(+)-sulcatol], 6-methyl-5-hepten-2-one (sulcatone) and 3-pentanol. A series of field trials testing dose, blend and enantiomer composition performed in Argentina and Italy evaluated attraction and found that the optimal release rate of pheromone components as baits in cross vane baited traps (CIPEIN-CV) was 6, 6 and 30 mg day?1 of sulcatone, (+)-sulcatol and 3-pentanol, respectively. It was also determined that racemic sulcatol is as effective as the pure (+)-isomer for the purpose of beetle catch, due to the inert nature of the (?)-isomer allowing the usage of low cost racemic sulcatol instead of highly expensive (+)-sulcatol. The results of our work contribute to the development of pheromone-based local technologies with low environmental impact and low cost for control or monitoring of an important pest. PMID:23590828

  5. Metabolic fate of methyl n-butyl ketone, methyl isobutyl ketone and their metabolites in mice.

    PubMed

    Granvil, C P; Sharkawi, M; Plaa, G L

    1994-02-15

    The metabolic fate of methyl n-butyl ketone (MnBK) and its isomer methyl isobutyl ketone (MiBK) was studied in mice. The concentrations of both ketones and their metabolites in blood and brain were measured at different time intervals after their administration. The principal metabolites of MnBK were 2-hexanol (2-HOL) and 2,5-hexanedione (2,5-HD), while those of MiBK were 4-methyl-2-pentanol (4-MPOL) and 4-hydroxy-4 methyl-2-pentanone (HMP). The administration of 2-hexanol by itself led to the appearance of both MnBK and 2,5-hexanedione which, when administered by itself, did not lead to the appearance of either MnBK or 2-hexanol. The administration of 4-methyl-2-pentanol resulted in the appearance of MiBK and HMP. The administration of HMP did not result in the appearance of MiBK or 4-MPOL. These results indicate that the metabolic fate of MnBK and MiBK is similar to that reported in other species. PMID:8284793

  6. Chirality in anesthesia I: minimum alveolar concentration of secondary alcohol enantiomers.

    PubMed

    Won, Albert; Oh, Irene; Laster, Michael J; Popovich, John; Eger, Edmond I; Sonner, James M

    2006-07-01

    Most studies of chirality in inhaled anesthetic action have used the enantiomers of isoflurane. These enantiomers are expensive and scarce, which limits studies, such as the preliminary identification of molecular targets of anesthetic action, that can be performed with these isomers. We hypothesized that secondary alcohols (i.e., compounds having a -CH2-CHOH-CH3 group) that are experimental anesthetics would show enantioselectivity. To test this hypothesis, we determined the minimum alveolar anesthetic concentration (MAC) of the enantiomers of the homologous series of 2-alcohols from 2-butanol to 2-heptanol in rats. Because these alcohols are partially metabolized to 2-ketones during the course of study (i.e., having a -CH2-CO-CH3 group), we independently measured the MAC of the 2-ketones. Assuming additivity of MAC of the ketones with the alcohols, we corrected for the anesthetic effect of the ketones in rats to determine the MAC of the alcohols. We found that the 2-butanol and 2-pentanol isomers were enantioselective. S-(+)-2-butanol had a MAC that was 17% larger than for the R-(-)-enantiomer, whereas S-(+)-2-pentanol had a MAC that was 38% larger than the R-(-)- enantiomer. No stereoselectivity was observed for 2-hexanol and 2-heptanol. These findings may permit studies of chirality in anesthesia, particularly in in vitro systems where metabolism does not occur, using inexpensive volatile compounds. PMID:16790631

  7. Purification and properties of nitroalkane oxidase from Fusarium oxysporum.

    PubMed Central

    Kido, T; Hashizume, K; Soda, K

    1978-01-01

    A nitroalkane-oxidizing enzyme, which was inducibly formed by addition of nitroethane to the medium was purified to homogeneity from an extract of Fusarium oxysporum (IFO 5942) with an overall yield of about 20%. The enzyme catalyzed the oxidative denitrification of 1-nitropropane as follows: CH2(NO2)CH2CH3 + O2 + H2O leads to OHCCH2CH3 + HNO2 + H2O2. In addition to 1-nitropropane, 3-nitro-2-pentanol, 2-nitropropane, and nitrocyclohexane are good substrates; the enzyme is designated "nitroalkane oxidase" (EC class 1.7.3). The enzyme has a molecular weight of approximately 185,000 and consists of four subunits identical in molecular weight (47,000). Flavin adenine dinucleotide was required for the enzyme activity and could be replaced in part by riboflavin 5'-phosphate. The maximum reactivity was found at about pH 8.0. The enzyme was inhibited significantly by HgCl2, KCN, p-chloromercuribenzoate, and N-ethylmaleimide. The Michaelis constants are as follows: 1-nitropropane, 1.54 mM; 2-nitropropane, 7.40 mM; nitroethane, 1.00 mM; 3-nitro-2-pentanol, 3.08 mM; nitrocyclohexane, 0.90 mM; and flavin adenine dinucleotide, 1.33 micrometer. PMID:22538

  8. Catalytic conversion of alcohols: the impact of inductive effect for secondary alcohol dehydration

    SciTech Connect

    Dabbagh, H.A.; Davis, B.H.

    1988-04-01

    The use of linear free energy relationships (LFER) has become widespread in chemistry and correlations of product selectivity data for elimination reactions have resulted from application of LFER. A number of these correlations have involved heterogeneous catalysis. Dautzenberg and Knoezinger reported that the 1-alkene selectivity from the dehydration of 2-ols, with the general formula RCH/sub 2/CHOHCH/sub 3/, where R varied from methyl to tert-butyl, fit a LFER when correlated with Taft's inductive constant. Davis found that isomerization of the primary alkene products from 2-butanol and 2-pentanol could make a significant contribution in determining the slope of the LFER plot for an alumina catalyst. Davis contended that the inductive effect had little, if any, impact in determining the selectivity for terminal alkene. In view of the results with the alumina catalysts, it appeared desirable to extend the alcohol dehydration study to include other catalysts. Davis found that 2-octanol, because of its higher boiling point, provided a higher relative pressure and, as a consequence, a higher surface coverage than 2-butanol; thus, at low (less than ca. 20%) conversion 2-octanol effectively retarded secondary reactions of the primary butene and pentene products. Consequently, 2-butanol and 2-pentanol were converted in the presence of 2-octanol in these studies. Data are given for the following catalysts: aluminum oxide, thorium oxide, tungsten oxide, gallium oxide, indium oxide, and titanium oxide. 14 references.

  9. Heat transfer in pool boiling of binary and ternary non-azeotropic mixtures

    NASA Astrophysics Data System (ADS)

    Nahra, Ziad; Næss, Erling

    2009-05-01

    Heat transfer coefficients in nucleate pool boiling of binary and ternary non-azeotropic hydrocarbon mixtures were obtained experimentally using a vertical electrically heated cylindrical carbon steel surface at atmospheric pressure with several surface roughness. The fluids used were Methanol/1-Pentanol and Methanol/1-Pentanol/1,2-Propandiol at constant 1,2-Propandiol mole fraction of 30%. Heat fluxes were varied in the range 25-235 kW/m2. The cylindrical heater surface was polished to an average surface roughness of 0.2 μm, and sandblasted yielding surface roughness of 2.98 and 4.35 μm, respectively. The experimental results were compared to available prediction correlations, indicating that the correlations based on the boiling range are in better qualitative agreement than correlations based on the phase envelope. Increasing surface roughness resulted in an increase in the heat transfer coefficient, and the effect was observed to be dependent on the heat flux and fluid composition.

  10. Pressure effect on the nonradiative process of thioflavin-T.

    PubMed

    Amdursky, Nadav; Gepshtein, Rinat; Erez, Yuval; Koifman, Naum; Huppert, Dan

    2011-06-23

    Time-resolved emission techniques were employed to study the nonradiative process of thioflavin-T (ThT) in 1-propanol, 1-butanol, and 1-pentanol as a function of the hydrostatic pressure. Elevated hydrostatic pressure increases the alcohol viscosity, which in turn strongly influences the nonradiative rate of ThT. A diamond-anvil cell was used to increase the pressure up to 2.4 GPa. We found that the nonradiative rate constant, k(nr), decreases with pressure. We further found a remarkable linear correlation between a decrease in k(nr) (increase in the nonradiative lifetime, ?(nr)) and an increase in the solvent viscosity. The viscosity was varied by a factor of 1000 and k(nr) was measured at high pressures, at which the nonradiative rate constant of the molecules decreased from (7 ps)(-1) to (13 ns)(-1), (13 ps)(-1) to (17 ns)(-1) and (17 ps)(-1) to (15 ns)(-1) for 1-propanol, 1-butanol, and 1-pentanol, respectively. The viscosity-dependence of k(nr) is explained by the excited-state rotation rate of the two-ring systems, with respect to each other. PMID:21585210

  11. Enhancement of nitrate-induced bioremediation in marine sediments contaminated with petroleum hydrocarbons by using microemulsions.

    PubMed

    Zhang, Zhen; Zheng, Guanyu; Lo, Irene M C

    2015-06-01

    The effect of microemulsion on the biodegradation of total petroleum hydrocarbons (TPH) in nitrate-induced bioremediation of marine sediment was investigated in this study. It was shown that the microemulsion formed with non-ionic surfactant polyoxyethylene sorbitan monooleate (Tween 80), 1-pentanol, linseed oil, and either deionized water or seawater was stable when subjected to dilution by seawater. Desorption tests revealed that microemulsion was more effective than the Tween 80 solution or the solution containing Tween 80 and 1-pentanol to desorb TPH from marine sediment. In 3weeks of bioremediation treatment, the injection of microemulsion and NO3 (-) seems to have delayed the autotrophic denitrification between NO3 (-) and acid volatile sulfide (AVS) in sediment compared to the control with NO3 (-) injection alone. However, after 6weeks of treatment, the delaying effect of microemulsion on the autotrophic denitrification process was no longer observed. In the meantime, the four injections of microemulsion and NO3 (-) resulted in as high as 29.73% of TPH degradation efficiency, higher than that of two injections of microemulsion and NO3 (-) or that of four or two injections of NO3 (-) alone. These results suggest that microemulsion can be potentially applied to enhance TPH degradation in the nitrate-induced bioremediation of marine sediment. PMID:25529494

  12. 2,2,4-Trimethylpentane-induced nephrotoxicity. I. Metabolic disposition of TMP in male and female Fischer 344 rats

    SciTech Connect

    Charbonneau, M.; Lock, E.A.; Strasser, J.; Cox, M.G.; Turner, M.J.; Bus, J.S.

    1987-11-01

    2,2,4-Trimethylpentane (TMP), a component of unleaded gasoline, causes nephrotoxicity in male, but not in female, rats. In the present study, male and female Fischer 344 rats were treated with a single oral dose of (/sup 14/C)TMP (4.4 mmol/kg; 2 microCi/mmol). Radiolabeled material in kidney, liver, and plasma was determined at 4, 8, 12, 24, and 48 hr after dosing. Maximum concentration of TMP-derived radioactivity in kidney, liver, and plasma of male rats was found after 12 hr (1252, 1000, and 403 nmol eq/g, respectively), whereas those measured in females were found after 8 hr (577, 1163, and 317 nmol eq/g, respectively). A selective retention of the TMP-derived radiolabel in the kidneys of male rats was noted when peak tissue concentration was expressed as a percentage of administered dose. Kidney concentrations of TMP-derived radiolabel increased in a nonlinear, but dose-dependent, manner; the kidney to plasma ratio was greater at low doses than at higher doses. Increased retention of radiolabel material in the kidney was associated with a significant increase in renal concentration of the male-rat-specific protein, alpha 2u-globulin, 24 and 48 hr after TMP administration. Total radioactivity collected in urine 48 hr after TMP administration was similar in males and females (32 and 31% of dose). Identification and quantitation of the urinary metabolites of TMP showed that both male and female rats metabolize TMP via the same pathway and at a similar rate. Female rats, however, excreted more conjugates of 2,4,4-trimethyl-2-pentanol in urine than males. 2,4,4-Trimethyl-2-pentanol was the major metabolite present in the male rat kidney, but was absent in the female rat kidney. The renal retention of 2,4,4-trimethyl-2-pentanol appears to account for the delayed clearance observed in the disposition of (/sup 14/C)TMP-derived radiolabel.

  13. Resolution of enantiomeric amides on a cellulose tribenzoate chiral stationary phase. Mobile phase modifier effects on retention and stereo-selectivity.

    PubMed

    Wainer, I W; Alembik, M C; Smith, E

    1987-02-01

    The effect of the steric structure and concentration of the mobile phase modifier on the retention (kappa') and stereoselectivity (alpha) of a series of enantiomeric amides has been investigated. The amides were chromatographed on a commercially available cellulose tribenzoate chiral stationary phase (CSP) using mobile phases composed of hexane and two homologous series of alcohols: methanol, ethanol, 1-propanol and 2-propanol, 2-butanol, 2-pentanol, 2-hexanol. The results of the study indicate that the alcoholic mobile phase modifiers compete with the solutes for achiral and chiral binding sites and that the steric bulk around the hydroxyl moiety of the modifier plays a role in this competition. Increased steric bulk tends to result in increased kappa' and alpha. However, the results also suggest that the effect of the alcoholic mobile phase modifiers on stereoselectivity may also be due to binding to achiral sites near or at the chiral cavities of the CSP which alters the steric environment of these cavities. PMID:3558652

  14. Synergism between microwave irradiation and enzyme catalysis in transesterification of ethyl-3-phenylpropanoate with n-butanol.

    PubMed

    Yadav, Ganapati D; Pawar, Sandip V

    2012-04-01

    Lipase catalyzed transesterification was investigated to study the synergistic effect of microwave irradiation and enzyme catalysis. Transesterification of ethyl-3-phenylpropanoate with n-butanol was chosen as the model reaction using immobilized enzymes such as Novozyme 435, Lipozyme RMIM and Lipozyme TL IM with microwave irradiation. Novozyme 435 was the best catalyst. The effect of various parameters affecting the conversion and initial rates of transesterification were studied to establish kinetics and mechanism. There is synergism between enzyme catalysis and microwave irradiation. The analysis of initial rate data and progress curve data showed that the reaction obeys the Ping-Pong bi-bi mechanism with inhibition by n-butanol. The theoretical predictions and experimental data match very well. These studies were also extended to other alcohols such as 2-phenyl-1-propanol, n-octanol, benzyl alcohol, iso-amyl alcohol, 2-hexanol and 2-pentanol under otherwise similar conditions. PMID:22305539

  15. Tissue concentrations of methyl isobutyl ketone, methyl n-butyl ketone and their metabolites after oral or inhalation exposure.

    PubMed

    Duguay, A B; Plaa, G L

    1995-01-01

    Quantitative relationships between plasma, liver and lung methyl isobutyl ketone (MiBK) and methyl n-butyl ketone (MnBK) concentrations after oral or inhalation exposure were established. Their respective metabolites (4-methyl-2-pentanol, 4-hydroxy-methyl isobutyl ketone, 2-hexanol, and 2,5-hexanedione) were also quantified. Male Sprague-Dawley rats were exposed for 3 days to MiBK or MnBK vapors (4 h/day) or treated orally for 3 days with a MiBK- or MnBK-corn oil solution. Both ketones and their respective metabolites in plasma or tissue concentrations were determined by gas chromatography. MiBK and MnBK plasma and tissue concentrations increased in a dose-related manner with the administered dose irrespective of the route of administration. Metabolite concentrations, however, were influenced by the route of administration. PMID:7863537

  16. Oxidation of secondary alcohols to methyl ketones by yeasts.

    PubMed

    Patel, R N; Hou, C T; Laskin, A I; Derelanko, P; Felix, A

    1979-08-01

    Cell suspensions of yeasts, Candida utilis ATCC 26387, Hansenula polymorpha ATCC 26012, Pichia sp. NRRL-Y-11328, Torulopsis sp. strain A1, and Kloeckera sp. strain A2, grown on various C-1 compounds (methanol, methylamine, methylformate), ethanol, and propylamine catalyzed the oxidation of secondary alcohols to the corresponding methyl ketones. Thus, isopropanol, 2-butanol, 2-pentanol, and 2-hexanol were converted to acetone, 2-butanone, 2-pentanone, and 2-hexanone, respectively. Cell-free extracts derived from methanol-grown yeasts catalyzed an oxidized nicotinamide adenine dinucleotide-dependent oxidation of secondary alcohols to the corresponding methyl ketones, Primary alcohols were not oxidized. The effect of various environmental factors on the production of methyl ketones from secondary alcohols by methanol-grown Pichia sp. was investigated. PMID:42348

  17. Oxidation of secondary alcohols to methyl ketones by yeasts.

    PubMed Central

    Patel, R N; Hou, C T; Laskin, A I; Derelanko, P; Felix, A

    1979-01-01

    Cell suspensions of yeasts, Candida utilis ATCC 26387, Hansenula polymorpha ATCC 26012, Pichia sp. NRRL-Y-11328, Torulopsis sp. strain A1, and Kloeckera sp. strain A2, grown on various C-1 compounds (methanol, methylamine, methylformate), ethanol, and propylamine catalyzed the oxidation of secondary alcohols to the corresponding methyl ketones. Thus, isopropanol, 2-butanol, 2-pentanol, and 2-hexanol were converted to acetone, 2-butanone, 2-pentanone, and 2-hexanone, respectively. Cell-free extracts derived from methanol-grown yeasts catalyzed an oxidized nicotinamide adenine dinucleotide-dependent oxidation of secondary alcohols to the corresponding methyl ketones, Primary alcohols were not oxidized. The effect of various environmental factors on the production of methyl ketones from secondary alcohols by methanol-grown Pichia sp. was investigated. PMID:42348

  18. Investigation of the explosive hazard of mixtures containing hydrogen peroxide and different alcohols.

    PubMed

    Schreck, A; Knorr, A; Wehrstedt, K D; Wandrey, P A; Gmeinwieser, T; Steinbach, J

    2004-04-30

    The explosive properties of mixtures of aqueous hydrogen peroxide (H(2)O(2)) and different alcohols (R-OH) like 2-propanol (2-PropOH), 2-methyl-2-propanol (TBA), 2-methyl-2-butanol (TAA) and 2-methyl-2-pentanol (THA) were investigated. Among others, the potential hazard of such mixtures may be characterized by their ability to react by different mechanisms of an explosion in the condensed phase, e.g. the thermal explosion or the detonation. Accordingly, the mixtures were experimentally investigated either by heating them up under confinement in different autoclaves or by exposing them to a shock wave impact applying the steel tube test. The results are discussed and compared to literature data. PMID:15081159

  19. Correlation and prediction of thermodynamic properties of binary mixtures from perturbed chain statistical associating fluid theory

    NASA Astrophysics Data System (ADS)

    Almasi, Mohammad

    2014-11-01

    Densities and viscosities for binary mixtures of Diethanolamine (DEA) + 2 alkanol (2 propanol up to 2 pentanol) were measured over the entire composition range and temperature interval of 293.15-323.15 K. From the density and viscosity data, values of various properties such as isobaric thermal expansibility, excess isobaric thermal expansibility, partial molar volumes, excess molar volumes and viscosity deviations were calculated. The observed variations of these parameters, with alkanols chain length and temperature, are discussed in terms of the intermolecular interactions between the unlike molecules of the binary mixtures. The ability of the perturbed chain statistical associating fluid theory (PC-SAFT) to correlate accurately the volumetric behavior of the binary mixtures is demonstrated.

  20. Liquid chromatographic analysis of coal surface properties

    SciTech Connect

    Kwon, K.C.

    1992-12-15

    Experiments on equilibrium adsorption of various alcohols on 60--200 mesh Illinois No. 6 coal (DECS-2; Randolph county) were performed during the July--September period. The alcohols include ethanol, methanol, isobutanol, t-butanol, 1-heptanol, 1-octanol, 1-hexadecanol, 4-methyl-2-pentanol, and 2-methyl-l-pentanol. Amounts of equilibrium adsorption of alcohols (ALCO) on 60--200 mesh Illinois No. 6 coal are 1 - 230 [times] 10[sup [minus]6] mg-ALCO/g-coal, whereas equilibrium concentrations of alcohols are 3--40 ppM. Relations between equilibrium loadings of alcohols on the coal and equilibrium concentrations of alcohols in aqueous solutions are shown to be linear.

  1. Interplay of metalloligand and organic ligand to tune micropores within isostructural mixed-metal organic frameworks (M'MOFs) for their highly selective separation of chiral and achiral small molecules.

    PubMed

    Das, Madhab C; Guo, Qunsheng; He, Yabing; Kim, Jaheon; Zhao, Cong-Gui; Hong, Kunlun; Xiang, Shengchang; Zhang, Zhangjing; Thomas, K Mark; Krishna, Rajamani; Chen, Banglin

    2012-05-23

    Four porous isostructural mixed-metal-organic frameworks (M'MOFs) have been synthesized and structurally characterized. The pores within these M'MOFs are systematically tuned by the interplay of both the metalloligands and organic ligands which have enabled us not only to direct their highly selective separation of chiral alcohols 1-phenylethanol (PEA), 2-butanol (BUT), and 2-pentanol (2-PEN) with the highest ee up to 82.4% but also to lead highly selective separation of achiral C(2)H(2)/C(2)H(4) separation. The potential application of these M'MOFs for the fixed bed pressure swing adsorption (PSA) separation of C(2)H(2)/C(2)H(4) has been further examined and compared by the transient breakthrough simulations in which the purity requirement of 40 ppm in the outlet gas can be readily fulfilled by the fixed bed M'MOF-4a adsorber at ambient conditions. PMID:22545712

  2. Liquid chromatographic analysis of coal surface properties. Quarterly progress report, July--September 1992

    SciTech Connect

    Kwon, K.C.

    1992-12-15

    Experiments on equilibrium adsorption of various alcohols on 60--200 mesh Illinois No. 6 coal (DECS-2; Randolph county) were performed during the July--September period. The alcohols include ethanol, methanol, isobutanol, t-butanol, 1-heptanol, 1-octanol, 1-hexadecanol, 4-methyl-2-pentanol, and 2-methyl-l-pentanol. Amounts of equilibrium adsorption of alcohols (ALCO) on 60--200 mesh Illinois No. 6 coal are 1 - 230 {times} 10{sup {minus}6} mg-ALCO/g-coal, whereas equilibrium concentrations of alcohols are 3--40 ppM. Relations between equilibrium loadings of alcohols on the coal and equilibrium concentrations of alcohols in aqueous solutions are shown to be linear.

  3. Headspace analysis of engine oil by gas chromatography/mass spectrometry.

    PubMed

    Levermore, D M; Josowicz, M; Rees, W S; Janata, J

    2001-03-15

    This study establishes the rationale necessary for determining the time to change engine oil. This is based on identifying gaseous components in new and used automobile lubricants. Key compounds, so-called "signature", are separated and identified qualitatively by coupled gas chromatography/mass spectrometry. Volatile antioxidants at zero miles and fuel contaminants at low mileage are observed in the headspace of engine oil. Several oxidative degradation components have been positively identified in the used oil, which include the following: acetaldehyde, acetone, butanal, 2-propanol, acetic acid, 2-hexanol, benzoic acid, benzaldehyde, and 1-pentanol. This study strongly suggests that the status of lubricating oil can be determined by the analysis of the gas phase above the oil. Most importantly, it opens the possibility of performing conditional maintenance of the combustion engine based on information obtained from gas sensors. PMID:11305675

  4. Optical constants of alcohols in the infrared

    NASA Technical Reports Server (NTRS)

    Sethna, P. P.; Williams, D.

    1979-01-01

    The spectral reflectances at near-normal incidence for methanol, ethanol, 1-propanol, 1-butanol, and 1-pentanol are reported for the spectral range 6700-350 kaysers. The real and imaginary parts of the complex index of refraction of these liquids are obtained in the range 4000-400 kaysers by use of Kramers-Kronig phase-shift analysis. For all of the alcohols studied, the strength for the OH-stretch bands is directly proportional to the number of OH groups per unit volume; similar relations are established for CH- and CO-stretch bands. Absorption cross sections for stretch vibrations of the three groups are considered, and the role of characteristic group intensities in intensity spectroscopy is discussed.

  5. The distribution of the anion and zwitterion forms of methyl orange between the disperse microemulsion pseudophase and continuous water phase

    NASA Astrophysics Data System (ADS)

    Nikiforova, E. M.; Bryleva, E. Yu.; McHedlov-Petrosyan, N. O.

    2008-09-01

    A procedure is suggested for determining the distribution constants of methyl orange dye between water and direct microemulsion droplets (N-cetylpyridinium chloride + 1-pentanol + benzene in water) as the disperse phase, which allows one to circumvent difficulties associated with the formation of low-solubility salts and premicellar associates. Within the framework of the pseudophase model of equilibria, the distribution constants of the yellow monoanion and red zwitterion methyl orange forms between microscopic droplets and the continuous phase at an ionic strength of 0.2 mol/l (NaCl + HCl) were determined from the dependence of the apparent ionization constant of the indicator on the volume fraction of the disperse pseudophase. The constants on the molar concentration scale were P_{B^ - }^ ? = (253 0.08) 105 and P_{^ + HB^ - }^ ? = (1.7 0.4) 102.

  6. Quantum-chemical modeling of energy parameters and vibrational spectra of chain and cyclic clusters of monohydric alcohols

    NASA Astrophysics Data System (ADS)

    Golub, P.; Doroshenko, I.; Pogorelov, V.

    2014-05-01

    The specific peculiarities of alcohols such as heightened viscosity, boiling temperature and surface tension can be explained by the capability of their molecules to form relatively stable associates named clusters due to hydrogen bonding. In present work the stability of different chain-like and cyclic clusters of methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol and 1-hexanol was investigated by means of quantum-chemical simulation and particular by recently developed DFT exchange-correlation functional M06-2X. The relative stability of the cluster structure was evaluated by the total energy per molecule at low temperatures (where all alcohols exist in solid state) and by the changing of the free Gibbs energy upon cluster formation at the room temperature. For the verification of revealed results the conformity of calculated IR spectra of the most stable cluster structures with the experimental IR spectra at different temperatures was analyzed.

  7. Binary mutual diffusion coefficients of aqueous alcohols. Methanol to 1-heptanol

    SciTech Connect

    Hao, L.; Leaist, D.G.

    1996-03-01

    Mutual diffusion coefficients, measured by Taylor dispersion at 25 C, are reported for binary aqueous solutions of methanol, ethanol, isomeric propanols and butanols, 1-pentanol, 1-hexanol, and 1-heptanol. Limiting diffusion coefficients (D{sup 0}) for the 1-alkanols are found to decrease with alcohol molar volume V approximately as V{sup {minus}1/2}. Although values of D{sup 0} for aqueous 1-propanol and 2-propanol are nearly identical within experimental error, the limiting diffusion coefficients of the isomeric butanols differ by up to 10% and increase in the order D{sup 0}(2-methyl-2-propanol) < D{sup 0}(2-butanol) {approx} D{sup 0}(2-methyl-1-propanol) < D{sup 0}(1-butanol). The butanol results illustrate the difficulty of predicting accurate diffusion coefficients for aqueous solutions.

  8. Real-time feedback control using online attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy for continuous flow optimization and process knowledge.

    PubMed

    Skilton, Ryan A; Parrott, Andrew J; George, Michael W; Poliakoff, Martyn; Bourne, Richard A

    2013-10-01

    The use of automated continuous flow reactors is described, with real-time online Fourier transform infrared spectroscopy (FT-IR) analysis to enable rapid optimization of reaction yield using a self-optimizing feedback algorithm. This technique has been applied to the solvent-free methylation of 1-pentanol with dimethyl carbonate using a ?-alumina catalyst. Calibration of the FT-IR signal was performed using gas chromatography to enable quantification of yield over a wide variety of flow rates and temperatures. The use of FT-IR as a real-time analytical technique resulted in an order of magnitude reduction in the time and materials required compared to previous studies. This permitted a wide exploration of the parameter space to provide process understanding and validation of the optimization algorithms. PMID:24067568

  9. Conductivity of molten salts in the presence of oil and surfactant

    SciTech Connect

    Chang, Do Ren )

    1990-06-01

    The nonaqueous system of molten salts, sodium dodecyl sulfate (SDS), 1-pentanol, and decane is studied with electrical conductivity measurements in the molten salt rich emulsion phase. The molten salts are a nitrate mixture of ethylenediamine/ammonia/potassium in a ratio of 50/42.5/7.5 by weight. The addition of alcohol to a fixed ratio of salts/surfactant/oil initially causes the conductivity to decrease and then to increase; the solution also exhibits a change from turbid to clear to increasing turbidity. This may indicate a structural change from a globular droplet to a bicontinuous lamellar form. Other properties related to these measurements will be discussed in terms of microemulsion.

  10. Molar volume and adsorption isotherm dependence of capillary forces in nanoasperity contacts.

    PubMed

    Asay, David B; Kim, Seong H

    2007-11-20

    The magnitude of the capillary force at any given temperature and adsorbate partial pressure depends primarily on four factors: the surface tension of the adsorbate, its liquid molar volume, its isothermal behavior, and the contact geometry. At large contacting radii, the adsorbate surface tension and the contact geometry are dominating. This is the case of surface force apparatus measurements and atomic force microscopy (AFM) experiments with micrometer-size spheres. However, as the size of contacting asperities decreases to the nanoscale as in AFM experiments with sharp tips, the molar volume and isotherm of the adsorbate become very important to capillary formation as well as capillary adhesion. This effect is experimentally and theoretically explored with simple alcohol molecules (ethanol, 1-butanol, and 1-pentanol) which have comparable surface tensions but differing liquid molar volumes. Adsorption isotherms for these alcohols on silicon oxide are also reported. PMID:17949117

  11. Solvent optimization for niacinamide adsorption on organo-functionalized SBA-15 mesoporous silica

    NASA Astrophysics Data System (ADS)

    Moritz, Michał

    2013-10-01

    This work describes the application of organo-modified SBA-15 siliceous materials as the carrier for niacinamide. The surface functionalization of SBA-15 by a grafting strategy with triethoxyphenylsilane, triethoxy(4-methoxyphenyl)silane, triethoxymethylsilane and (3-mercaptopropyl)trimethoxysilane as modifying agents has been successfully achieved. The adsorption process was performed in acetonitrile, methanol, 2-propanol, 1-pentanol and ethyl acetate. The obtained results indicated a promote niacinamide adsorption on sulfopropyl-modified (119 mg/g) and non-modified (78 mg/g) SBA-15 from ethyl acetate. The pure and derivatized SBA-15 products have been characterized by elemental analysis, thermogravimetry, nitrogen adsorption and diffuse reflectance UV spectroscopy. After niacinamide adsorption the textural parameters of mesoporous carriers such as BET surface area, pore volume and microporosity were reduced. The mesoporous matrices loaded with niacinamide exhibited prolonged-release kinetics of this vitamin, especially from sulfopropyl-modified SBA-15 carrier.

  12. Structure of biodiesel based bicontinuous microemulsions for environmentally compatible decontamination: A small angle neutron scattering and freeze fracture electron microscopy study.

    PubMed

    Wellert, S; Karg, M; Imhof, H; Steppin, A; Altmann, H-J; Dolle, M; Richardt, A; Tiersch, B; Koetz, J; Lapp, A; Hellweg, T

    2008-09-01

    Most toxic industrial chemicals and chemical warfare agents are hydrophobic and can only be solubilized in organic solvents. However, most reagents employed for the degradation of these toxic compounds can only be dissolved in water. Hence, microemulsions are auspicious media for the decontamination of a variety of chemical warfare agents and pesticides. They allow for the solubilization of both the lipophilic toxics and the hydrophilic reagent. Alkyl oligoglucosides and plant derived solvents like rapeseed methyl ester enable the formulation of environmentally compatible bicontinuous microemulsions. In the present article the phase behavior of such a microemulsion is studied and the bicontinuous phase is identified. Small angle neutron scattering (SANS) and freeze fracture electron microscopy (FFEM) measurements are used to characterize the structure of the bicontinuous phase and allow for an estimation of the total internal interface. Moreover, also the influence of the co-surfactant (1-pentanol) on the structural parameters of the bicontinuous phase is studied with SANS. PMID:18571191

  13. Molecular interaction studies of acrylic esters with 1-alcohols.

    PubMed

    Sivagurunathan, P; Dharmalingam, K; Ramachandran, K

    2006-05-01

    Hydrogen bonding between 1-alcohols and acrylic esters in n-heptane has been studied by FTIR spectroscopic method. The formation constant of the 1:1 complexes has been calculated using Nash method. The values of formation constant and free energy change vary with alcohol and ester chain length, which suggests that the strengths of the intermolecular O-H...O=C bonds are shown to be dependent on the alkyl group of acrylic esters and the 1-alcohols and the results shows that the proton donating ability of 1-alcohols is in the order: 1-propanol<1-butanol<1-pentanol and the accepting ability of acrylic esters is in the order: methyl methacrylate

  14. Bioethanol production optimization: a thermodynamic analysis.

    PubMed

    Alvarez, Vctor H; Rivera, Elmer Ccopa; Costa, Aline C; Filho, Rubens Maciel; Wolf Maciel, Maria Regina; Aznar, Martn

    2008-03-01

    In this work, the phase equilibrium of binary mixtures for bioethanol production by continuous extractive process was studied. The process is composed of four interlinked units: fermentor, centrifuge, cell treatment unit, and flash vessel (ethanol-congener separation unit). A proposal for modeling the vapor-liquid equilibrium in binary mixtures found in the flash vessel has been considered. This approach uses the Predictive Soave-Redlich-Kwong equation of state, with original and modified molecular parameters. The congeners considered were acetic acid, acetaldehyde, furfural, methanol, and 1-pentanol. The results show that the introduction of new molecular parameters r and q in the UNIFAC model gives more accurate predictions for the concentration of the congener in the gas phase for binary and ternary systems. PMID:18418747

  15. Effect of five enological practices and of the general phenolic composition on fermentation-related aroma compounds in Mencia young red wines.

    PubMed

    An, Ana; Lpez, Jorge F; Hernando, Diego; Orriols, Ignacio; Revilla, Eugenio; Losada, Manuel M

    2014-04-01

    The effects of five technological procedures and of the contents of total anthocyanins and condensed tannins on 19 fermentation-related aroma compounds of young red Mencia wines were studied. Multifactor ANOVA revealed that levels of those volatiles changed significantly over the length of storage in bottles and, to a lesser extent, due to other technological factors considered; total anthocyanins and condensed tannins also changed significantly as a result of the five practices assayed. Five aroma compounds possessed an odour activity value >1 in all wines, and another four in some wines. Linear correlation among volatile compounds and general phenolic composition revealed that total anthocyanins were highly related to 14 different aroma compounds. Multifactor ANOVA, considering the content of total anthocyanins as a sixth random factor, revealed that this parameter affected significantly the contents of ethyl lactate, ethyl isovalerate, 1-pentanol and ethyl octanoate. Thus, the aroma of young red Mencia wines may be affected by levels of total anthocyanins. PMID:24262556

  16. Energy Transfer of CdSe/ZnS Nanocrystals Encapsulated with Rhodamine-Dye Functionalized Poly(acrylic acid)

    PubMed Central

    Somers, Rebecca C.; Snee, Preston T.; Bawendi, Moungi G.; Nocera, Daniel G.

    2014-01-01

    Energy transfer between a CdSe/ZnS nanocrystal (NC) donor and a rhodamine isothiocyanate (RITC) acceptor has been achieved via a functionalized poly(acrylic acid) (PAA) encapsulating layer over the surface of the NC. The modification of PAA with both N-octylamine (OA) and 5-amino-1-pentanol (AP), [PAA-OA-AP], allows for the simultaneous water-solubilization and functionalization of the NCs, underscoring the ease of synthesizing NC-acceptor conjugates with this strategy. Photophysical studies of the NC-RITC constructs showed that energy transfer is efficient, with kFRET approaching 108 s?1. The ease of the covalent conjugation of molecules to NCs with PAA-OA-AP coating, together with efficient energy transfer, makes the NCs encapsulated with PAA-OA-AP attractive candidates for sensing applications. PMID:24926175

  17. Characterisation of optically cleared paper by optical coherence tomography

    SciTech Connect

    Fabritius, T; Alarousu, E; Prykaeri, T; Hast, J; Myllylae, Risto

    2006-02-28

    Due to the highly light scattering nature of paper, the imaging depth of optical methods such as optical coherence tomography (OCT) is limited. In this work, we study the effect of refractive index matching on improving the imaging depth of OCT in paper. To this end, four different refractive index matching liquids (ethanol, 1-pentanol, glycerol and benzyl alcohol) with a refraction index between 1.359 and 1.538 were used in experiments. Low coherent light transmission was studied in commercial copy paper sheets, and the results indicate that benzyl alcohol offers the best improvement in imaging depth, while also being sufficiently stable for the intended purpose. Constructed cross-sectional images demonstrate visually that the imaging depth of OCT is considerably improved by optical clearing. Both surfaces of paper sheets can be detected along with information about the sheet's inner structure. (laser applications and other topics in quantum electronics)

  18. Monte Carlo simulation of optical clearing of paper in optical coherence tomography

    SciTech Connect

    Kirillin, M Yu; Priezzhev, A V; Hast, J; Myllylae, Risto

    2006-02-28

    Signals of an optical coherence tomograph from paper samples are calculated by the Monte Carlo method before and after the action of different immersion liquids such as ethanol, glycerol, benzyl alcohol, and 1-pentanol. It is shown within the framework of the model used that all these liquids reduce the contrast of the inhomogeneity image in upper layers of the samples, considerably improving, however, the visibility of lower layers, allowing the localisation of the rear boundary of a medium being probed, which is important for precision contactless measuring a paper sheet thickness, for example, during the manufacturing process. The results of calculations are in well agreement with experimental data. (laser applications and other topics in quantum electronics)

  19. Bioethanol Production Optimization: A Thermodynamic Analysis

    NASA Astrophysics Data System (ADS)

    lvarez, Vctor H.; Rivera, Elmer Ccopa; Costa, Aline C.; Filho, Rubens Maciel; Maciel, Maria Regina Wolf; Aznar, Martn

    In this work, the phase equilibrium of binary mixtures for bioethanol production by continuous extractive process was studied. The process is composed of four interlinked units: fermentor, centrifuge, cell treatment unit, and flash vessel (ethanol-congener separation unit). A proposal for modeling the vapor-liquid equilibrium in binary mixtures found in the flash vessel has been considered. This approach uses the Predictive Soave-Redlich-Kwong equation of state, with original and modified molecular parameters. The congeners considered were acetic acid, acetaldehyde, furfural, methanol, and 1-pentanol. The results show that the introduction of new molecular parameters r and q in the UNIFAC model gives more accurate predictions for the concentration of the congener in the gas phase for binary and ternary systems.

  20. Chirality in anesthesia II: stereoselective modulation of ion channel function by secondary alcohol enantiomers.

    PubMed

    Brosnan, Robert; Gong, Diane; Cotten, Joseph; Keshavaprasad, Bharat; Yost, C Spencer; Eger, Edmond I; Sonner, James M

    2006-07-01

    Chirality has been proposed as a means for distinguishing relevant from irrelevant molecular targets of action, but the sensitivity and specificity of this test is unknown for volatile anesthetics. We applied enantiomers of two chiral anesthetic alcohols (2-butanol and 2-pentanol) that are enantioselective for the minimum alveolar concentration (MAC) preventing movement in 50% of animals and one (2-hexanol) that was not to frog oocytes. Each oocyte expressed one of three anesthetic-sensitive ion channels: a Twik-related-spinal cord K+ (TRESK) channel, a gamma-amino butyric acid type A (GABA(A)) receptor and an N-methyl-d-aspartate (NMDA) receptor. Using voltage-clamp techniques, we found that 2-butanol was not enantioselective for any channel (e.g., 16 mM 2-butanol R(-) and S(-) enantiomers decreased current through an NMDA receptors by 44% +/- 3% [mean +/- se] and 37% +/- 4%, respectively); 2-pentanol was enantioselective for one channel (the GABA(A) receptor, the enantiomers increasing current by 277% +/- 20% and 141% +/- 30%); 2-hexanol was enantioselective for both GABA(A) and NMDA receptors (e.g., decreasing current through the NMDA receptor by 19% +/- 3% and 43% +/- 5%). We calculated the sensitivity and specificity of chirality as a test of anesthetic relevance under two scenarios: 1) all three channels were relevant mediators of MAC and 2) no channel was a mediator of MAC. These sensitivities and specificities were poor because there is no consistent correspondence between receptor and whole animal results. We recommend that enantioselectivity not be used as a test of relevance for inhaled anesthetic targets. PMID:16790632

  1. Urinary excretion of 2,5-hexanedione and peripheral polyneuropathies workers exposed to hexane.

    PubMed

    Governa, M; Calisti, R; Coppa, G; Tagliavento, G; Colombi, A; Troni, W

    1987-01-01

    Forty shoe factory workers who were exposed to hexane were investigated to see if there was a correlation between electroneuromyographic changes indicative of neuropathy and urinary excretion of 2,5-hexanedione. Urinary samples were analyzed for the presence of the metabolic products of n-hexane and its isomers. Electrodiagnostic examination was carried out following the urinary sampling. A rating scale was used to obtain a cumulative numeric index of electrodiagnostic findings. 2,5-Hexanedione and gamma-valerolactone were discovered in all cases, while 2-hexanol was found in 11 cases. 2,5-Hexanedione was the main metabolite in most cases (39 of 40). Only in 1 case was a low level of 2-methyl-2-pentanol detected; 3-methyl-2-pentanol was never detected. Metabolic products of cyclohexane were present in about one-fifth of the cases, while trichloroethanol, a metabolic product of trichoroethylene, was nearly always present, all at very low concentrations. Electromyographic abnormalities significant for early detection of toxic polyneuropathy were found in 14 cases. A statistically significant correlation of the electroneuromyographic scoring on the urinary concentrations of measured metabolites was observed only with 2,5-hexanedione and gamma-valerolactone, both derived from n-hexane. Since gamma-valerolactone is probably not a true metabolite of n-hexane, our results support the hypothesis that polyneuropathies in shoemakers are due to 2,5-hexanedione. For practical purposes the urinary concentration of 2,5-hexanedione can serve as a predictive measurement for early detection of neurotoxic lesions at preclinical states. PMID:3029393

  2. Aliphatic beta-nitro alcohols for non-enzymatic collagen cross-linking of scleral tissue.

    PubMed

    Paik, David C; Wen, Quan; Airiani, Suzanna; Braunstein, Richard E; Trokel, Stephen L

    2008-09-01

    The success of riboflavin photochemical cross-linking of the cornea in treating keratoconus and post-surgical keratectasia has prompted interest in cross-linking scleral tissue with a potential application to stabilize myopic progression. Applying an UVA light source to the sclera is difficult, particularly in the posterior region. An alternate pharmacologic approach to scleral cross-linking may be possible. The present study was undertaken in order to identify nitrite related compounds capable of inducing scleral tissue cross-linking and to gain information regarding the possible chemical mechanisms involved. 8x4 mm strips of porcine and human sclera were incubated in various concentrations of nitrite related agents (1-100mM) at 37 degrees C. pH 7.4 was used for all experiments except those involving NaNO(2). Following a 24-96 h incubation period, the samples were tested for cross-linking effects using thermal shrinkage temperature (T(s)) analysis. Several compounds were studied including NaNO(2), 2-nitroethanol, 2-nitro-1-propanol, 3-nitro-2-pentanol, 2-nitrophenol, 2-nitroethane, 2-aminoethanol, isopentyl nitrite, DPTA/NO, DETA/NO, and urea, a nitrous acid trap. The results indicate that short chain aliphatic beta-nitro alcohols (2-nitroethanol, 2-nitro-1-propanol, and 3-nitro-2-pentanol) are particularly effective cross-linking agents at pH 7.4, showing both time and concentration dependent effects. Furthermore, nitrosation does not appear to induce tissue cross-linking. In conclusion, aliphatic beta-nitro alcohols can cross-link scleral tissue at physiologic pH and temperature. Since beta-nitro alcohols are known to have reasonable toxicity profiles, these agents could find utility as pharmacologic cross-linking agents for scleral thinning disease. PMID:18616942

  3. Urinary excretion of 2,5-hexanedione and peripheral polyneuropathies in workers exposed to hexane

    SciTech Connect

    Governa, M.; Calisti, R.; Coppa, G.; Tagliavento, G.; Colombi, A.; Troni, W.

    1987-01-01

    Forty shoe factory workers who were exposed to hexane were investigated to see if there was a correlation between electroneuromyographic changes indicative of neuropathy and urinary excretion of 2,5-hexanedione. Urinary samples were analyzed for the presence of the metabolic products of n-hexane and its isomers. Electrodiagnostic examination was carried out following the urinary sampling. A rating scale was used to obtain a cumulative numeric index of electrodiagnostic findings. 2,5-Hexanedione and ..gamma..-valerolactone were discovered in all cases, while 2-hexanol was found in 11 cases. 2,5-Hexanedione was the main metabolite in most cases (39 of 40). Only in 1 case was a low level of 2-methyl-2-pentanol detected; 3-methyl-2-pentanol was never detected. Metabolic products of cyclohexane were present in about one-fifth of the cases, while trichloroethanol, a metabolic product of trichloroethylene, was nearly always present, all at very low concentrations. Electromyographic abnormalities significant for early detection of toxic polyneuropathy were found in 14 cases. A statistically significant correlation of the electroneuromyographic scoring on the urinary concentrations of measured metabolites was observed only with 2,5-hexanedione and ..gamma..-valerolactone, both derived from n-hexane. Since ..gamma..-valerolactone is probably not a true metabolite of n-hexane, the authors results support the hypothesis that polyneuropathies in shoemakers are due to 2,5-hexanedione. For practical purposes the urinary concentration of 2,5-hexanedione can serve as a predictive measurement for early detection of neurotoxic lesions at preclinical states.

  4. Enhanced solubilization and desorption of organochlorine pesticides (OCPs) from soil by oil-swollen micelles formed with a nonionic surfactant.

    PubMed

    Zheng, Guanyu; Selvam, Ammaiyappan; Wong, Jonathan W C

    2012-11-01

    The effect of oil-swollen micelles formed with nonionic surfactant polyoxyethylene sorbitan monooleate (Tween 80), cosurfactant 1-pentanol, and linseed oil on the solubilization and desorption of organochlorine pesticides (OCPs) including DDT and ?-HCH from both loam soil and clay soil were investigated. Results showed that the solubilizing capacities of oil-swollen micelles were dependent on the critical micelle concentration (CMC) of Tween 80. Once the concentrations of oil-swollen micelles exceeded the CMC of Tween 80, the oil-swollen micelles exhibited much higher solubilizing capacity than empty Tween 80 micelles for the two OCPs. Desorption tests revealed that oil-swollen micelles could successfully enhance desorption of OCPs from both loam soil and clay soil. However, compared with the efficiencies achieved by empty Tween 80 micelles, oil-swollen micelles exhibited their superiority to desorb OCPs only in loam soil-water system while was less effective in clay soil-water system. Distribution of Tween 80, 1-pentanol and linseed oil in soil-water system revealed that the difference in the sorption behavior of linseed oil onto the two soils is responsible for the different effects of oil-swollen micelles on the desorption of OCPs in loam soil and clay soil systems. Therefore, oil-swollen micelles formed with nonionic surfactant Tween 80 are better candidates over empty micelle counterparts to desorb OCPs from soil with relatively lower sorption capacity for oil fraction, which may consequently enhance the availability of OCPs in soil environment during remediation processes of contaminated soil. PMID:22998366

  5. Microbial Oxidation of Gaseous Hydrocarbons: Production of Secondary Alcohols from Corresponding n-Alkanes by Methane-Utilizing Bacteria.

    PubMed

    Patel, R N; Hou, C T; Laskin, A I; Felix, A; Derelanko, P

    1980-04-01

    Over 20 new strains of methane-utilizing bacteria were isolated from lake water and soil samples. Cell suspensions of these and of other known strains of methane-utilizing bacteria oxidized n-alkanes (propane, butane, pentane, hexane) to their corresponding secondary alcohols (2-propanol, 2-butanol, 2-pentanol, 2-hexanol). The product secondary alcohols accumulated extracellularly. The rate of production of secondary alcohols varied with the organism used for oxidation. The average rate of 2-propanol, 2-butanol, 2-pentanol, and 2-hexanol production was 1.5, 1.0, 0.15, and 0.08 mumol/h per 5.0 mg of protein in cell suspensions, respectively. Secondary alcohols were slowly oxidized further to the corresponding methylketones. Primary alcohols and aldehydes were also detected in low amounts (rate of production were 0.05 to 0.08 mumol/h per 5.0 mg of protein in cell suspensions) as products of n-alkane (propane and butane) oxidation. However, primary alcohols and aldehydes were rapidly metabolized further by cell suspensions. Methanol-grown cells of methane-utilizing bacteria did not oxidize n-alkanes to their corresponding secondary alcohols, indicating that the enzymatic system required for oxidation of n-alkanes was induced only during growth on methane. The optimal conditions for in vivo secondary alcohol formation from n-alkanes were investigated in Methylosinus sp. (CRL-15). The rate of 2-propanol and 2-butanol production was linear for the 40-min incubation period and increased directly with cell protein concentration up to 12 mg/ml. The optimal temperature and pH for the production of 2-propanol and 2-butanol were 40 degrees C and pH 7.0. Metalchelating agents inhibited the production of secondary alcohols. The activities for the hydroxylation of n-alkanes in various methylotrophic bacteria were localized in the cell-free particulate fractions precipitated by centrifugation between 10,000 and 40,000 x g. Both oxygen and reduced nicotinamide adenine dinucleotide were required for hydroxylation activity. The metal-chelating agents inhibited hydroxylation of n-alkanes by the particulate fraction, indicating the involvement of a metal-containing enzyme system in the oxidation of n-alkanes. The production of 2-propanol from the corresponding n-alkane by the particulate fraction was inhibited in the presence of methane, suggesting that the subterminal hydroxylation of n-alkanes may be catalyzed by methane monooxygenase. PMID:16345537

  6. Microbial Oxidation of Gaseous Hydrocarbons: Production of Secondary Alcohols from Corresponding n-Alkanes by Methane-Utilizing Bacteria

    PubMed Central

    Patel, Ramesh N.; Hou, C. T.; Laskin, A. I.; Felix, A.; Derelanko, P.

    1980-01-01

    Over 20 new strains of methane-utilizing bacteria were isolated from lake water and soil samples. Cell suspensions of these and of other known strains of methane-utilizing bacteria oxidized n-alkanes (propane, butane, pentane, hexane) to their corresponding secondary alcohols (2-propanol, 2-butanol, 2-pentanol, 2-hexanol). The product secondary alcohols accumulated extracellularly. The rate of production of secondary alcohols varied with the organism used for oxidation. The average rate of 2-propanol, 2-butanol, 2-pentanol, and 2-hexanol production was 1.5, 1.0, 0.15, and 0.08 ?mol/h per 5.0 mg of protein in cell suspensions, respectively. Secondary alcohols were slowly oxidized further to the corresponding methylketones. Primary alcohols and aldehydes were also detected in low amounts (rate of production were 0.05 to 0.08 ?mol/h per 5.0 mg of protein in cell suspensions) as products of n-alkane (propane and butane) oxidation. However, primary alcohols and aldehydes were rapidly metabolized further by cell suspensions. Methanol-grown cells of methane-utilizing bacteria did not oxidize n-alkanes to their corresponding secondary alcohols, indicating that the enzymatic system required for oxidation of n-alkanes was induced only during growth on methane. The optimal conditions for in vivo secondary alcohol formation from n-alkanes were investigated in Methylosinus sp. (CRL-15). The rate of 2-propanol and 2-butanol production was linear for the 40-min incubation period and increased directly with cell protein concentration up to 12 mg/ml. The optimal temperature and pH for the production of 2-propanol and 2-butanol were 40C and pH 7.0. Metalchelating agents inhibited the production of secondary alcohols. The activities for the hydroxylation of n-alkanes in various methylotrophic bacteria were localized in the cell-free particulate fractions precipitated by centrifugation between 10,000 and 40,000 g. Both oxygen and reduced nicotinamide adenine dinucleotide were required for hydroxylation activity. The metal-chelating agents inhibited hydroxylation of n-alkanes by the particulate fraction, indicating the involvement of a metal-containing enzyme system in the oxidation of n-alkanes. The production of 2-propanol from the corresponding n-alkane by the particulate fraction was inhibited in the presence of methane, suggesting that the subterminal hydroxylation of n-alkanes may be catalyzed by methane monooxygenase. PMID:16345537

  7. Kinetics and products of the reactions of hydroxyl radicals with selected volatile organic compounds, including oxygenated compounds

    NASA Astrophysics Data System (ADS)

    Bethel, Heidi Lynn

    Kinetics, products and reaction mechanisms of the OH radical-initiated reactions of selected volatile organic compounds (VOCs) and oxygenated compounds were examined. These compounds are important smog forming chemicals that are found in gasoline and many consumer products. Smog is created by the interaction of these VOCs with oxides of nitrogen in the presence of sunlight. The hydroxyl (OH) radical is a daytime species and a key initiator of the VOC reactions which lead to photochemical smog formation. Chapter II investigates the OH radical-initiated reactions of p-xylene, 1,2,3-, and 1,2,4-trimethylbenzene which are components of gasoline fuels, vehicle exhaust and ambient air in urban areas. Experiments were conducted at varying NO2 concentrations in indoor environmental chambers in order to determine the dependence of the product yields as a function of NO2 concentrations. From these experiments and previous literature yields, a majority of the products from these reactions under atmospheric conditions have now been elucidated. Chapter III examines the OH radical-initiated reaction of 3-hexene-2,5-dione which is formed from the reactions of p-xylene and 1,2,4-trimethylbenzene (Chapter II). Due to its polar nature, 3-hexene-2,5-dione and its reaction products are difficult to handle experimentally. Products identified from this reaction through the use of in situ atmospheric pressure ionization tandem mass spectrometry were CH3C(O)CH(OH)CHO and CH 3C(O)CH(OH)CH(ONO2)C(O)CH3. Chapters IV, V, and VI examine the OH radical-initiated reactions of 6 different alcohols, including diols. The products examined in Chapters IV and V are those from 2-methyl-2,4-pentanediol and 1,2-, 1,3-, and 2,3-butanediol, which are found in various solvents. Reaction rates were determined using a relative rate method. Hydroxyaldehyde and hydroxyketone products from these reactions were also quantified. Chapter VI examined the reaction rates and products formed from the OH radical-initiated reactions of 2-methyl-2-pentanol and 4-methyl-2-pentanol. These compounds were studied in order to investigate the formation of alkoxy radicals (RO) and their subsequent reactions through isomerization, decomposition or reaction with O2 . Experiments of the type detailed here allow the determination of kinetics and products of the atmospheric reactions of VOCs and provide input for mechanistic models of photochemical smog formation.

  8. Dislodgement effect of natural semiochemicals released by disturbed triatomines: a possible alternative monitoring tool.

    PubMed

    Minoli, Sebastin; Palottini, Florencia; Crespo, Jose Guillermo; Manrique, Gabriel

    2013-12-01

    The quick detection of domestic and peridomestic triatomines in their environments becomes difficult without the use of dislodgement substances that flush them out from their shelters. At present, tetramethrin 0.2% is being widely used in control programs. Although it is an efficient dislodging agent, its toxicity might affect the health of captured triatomines, of other insects and, to a lesser extent, of other animals, including humans. Here, we tested if semiochemicals released by disturbed adults of Triatoma infestans and/or Rhodnius prolixus can make larvae of the same species exit from their refuges. In a walking olfactometer we found that: 1) larvae of T. infestans were repelled by the odors released by disturbed adults of their own species and of R. prolixus, 2) larvae of R. prolixus did not change their behavior in the presence of odors released by adults of both species, and 3) activity levels were not modulated by these odors in any of both species. Besides, in pseudo-natural conditions we found an increased flushing-out activity of larvae of T. infestans when their shelters were sprayed with isobutyric acid or 3-pentanol, and of larvae of R. prolixus when sprayed with 3-methyl-1-butanol. We succeeded in this work to dislodge larvae of triatomines from artificial shelters using natural volatile compounds, allowing the capture of live bugs for further investigations (e.g., xenodiagnosis or genetic studies) and favoring ecological aspects (e.g., minimizing environmental insecticide-contamination and non-targeted mortality). PMID:24581366

  9. Two Volatile Organic Compounds Trigger Plant Self-Defense against a Bacterial Pathogen and a Sucking Insect in Cucumber under Open Field Conditions

    PubMed Central

    Song, Geun Cheol; Ryu, Choong-Min

    2013-01-01

    Systemic acquired resistance (SAR) is a plant self-defense mechanism against a broad-range of pathogens and insect pests. Among chemical SAR triggers, plant and bacterial volatiles are promising candidates for use in pest management, as these volatiles are highly effective, inexpensive, and can be employed at relatively low concentrations compared with agrochemicals. However, such volatiles have some drawbacks, including the high evaporation rate of these compounds after application in the open field, their negative effects on plant growth, and their inconsistent levels of effectiveness. Here, we demonstrate the effectiveness of volatile organic compound (VOC)-mediated induced resistance against both the bacterial angular leaf spot pathogen, Pseudononas syringae pv. lachrymans, and the sucking insect aphid, Myzus persicae, in the open field. Using the VOCs 3-pentanol and 2-butanone where fruit yields increased gave unexpectedly, a significant increase in the number of ladybird beetles, Coccinella septempunctata, a natural enemy of aphids. The defense-related gene CsLOX was induced by VOC treatment, indicating that triggering the oxylipin pathway in response to the emission of green leaf volatiles can recruit the natural enemy of aphids. These results demonstrate that VOCs may help prevent plant disease and insect damage by eliciting induced resistance, even in open fields. PMID:23698768

  10. Synthesis of Short-Chain Diols and Unsaturated Alcohols from Secondary Alcohol Substrates by the Rieske Nonheme Mononuclear Iron Oxygenase MdpJ

    PubMed Central

    Schäfer, Franziska; Schuster, Judith; Würz, Birgit; Härtig, Claus; Harms, Hauke; Müller, Roland H.

    2012-01-01

    The Rieske nonheme mononuclear iron oxygenase MdpJ of the fuel oxygenate-degrading bacterial strain Aquincola tertiaricarbonis L108 has been described to attack short-chain tertiary alcohols via hydroxylation and desaturation reactions. Here, we demonstrate that also short-chain secondary alcohols can be transformed by MdpJ. Wild-type cells of strain L108 converted 2-propanol and 2-butanol to 1,2-propanediol and 3-buten-2-ol, respectively, whereas an mdpJ knockout mutant did not show such activity. In addition, wild-type cells converted 3-methyl-2-butanol and 3-pentanol to the corresponding desaturation products 3-methyl-3-buten-2-ol and 1-penten-3-ol, respectively. The enzymatic hydroxylation of 2-propanol resulted in an enantiomeric excess of about 70% for the (R)-enantiomer, indicating that this reaction was favored. Likewise, desaturation of (R)-2-butanol to 3-buten-2-ol was about 2.3-fold faster than conversion of the (S)-enantiomer. The biotechnological potential of MdpJ for the synthesis of enantiopure short-chain alcohols and diols as building block chemicals is discussed. PMID:22752178

  11. OH clock determination by proton transfer reaction mass spectrometry at an environmental chamber

    NASA Astrophysics Data System (ADS)

    Barmet, P.; Dommen, J.; Decarlo, P. F.; Tritscher, T.; Praplan, A. P.; Platt, S. M.; Prvt, A. S. H.; Donahue, N. M.; Baltensperger, U.

    2011-12-01

    The hydroxyl free radical (OH) is the major oxidizing species in the lower atmosphere. Measuring the OH concentration is generally difficult and involves elaborate, expensive, custom-made experimental setups. Thus other more economical techniques, capable of determining OH concentrations at environmental chambers, would be valuable. This work is based on an indirect method of OH concentration measurement, by monitoring an appropriate OH tracer by proton transfer reaction mass spectrometry (PTR-MS). 3-pentanol, 3-pentanone and pinonaldehyde (PA) were used as OH tracers in ?-pinene (AP) secondary organic aerosol (SOA) aging studies. In addition we tested butanol-d9 as potential "universal" OH tracer and determined its reaction rate constant with OH: kbutanol-d9 = 3.4(0.88) 10-12 cm3molecule-1s-1. In order to make the chamber studies more comparable among each other as well as to atmospheric measurements we suggest the use of a chemical (time) dimension:~the OH clock, which corresponds to the integrated OH concentration over time.

  12. OH clock determination by proton transfer reaction mass spectrometry at an environmental chamber

    NASA Astrophysics Data System (ADS)

    Barmet, P.; Dommen, J.; DeCarlo, P. F.; Tritscher, T.; Praplan, A. P.; Platt, S. M.; Prvt, A. S. H.; Donahue, N. M.; Baltensperger, U.

    2012-03-01

    The hydroxyl free radical (OH) is the major oxidizing species in the lower atmosphere. Measuring the OH concentration is generally difficult and involves elaborate, expensive, custom-made experimental setups. Thus other more economical techniques, capable of determining OH concentrations at environmental chambers, would be valuable. This work is based on an indirect method of OH concentration measurement, by monitoring an appropriate OH tracer by proton transfer reaction mass spectrometry (PTR-MS). 3-pentanol, 3-pentanone and pinonaldehyde (PA) were used as OH tracers in ?-pinene (AP) secondary organic aerosol (SOA) aging studies. In addition we tested butanol-d9 as a potential "universal" OH tracer and determined its reaction rate constant with OH: kbutanol-d9 = 3.4(0.88) 10-12 cm3 molecule-1 s-1. In order to make the chamber studies more comparable among each other as well as to atmospheric measurements we suggest the use of a chemical (time) dimension: the OH clock, which corresponds to the integrated OH concentration over time.

  13. Aroma enhancement and enzymolysis regulation of grape wine using ?-glycosidase

    PubMed Central

    Zhu, Feng-Mei; Du, Bin; Li, Jun

    2014-01-01

    Adding ?-glycosidase into grape wine for enhancing aroma was investigated using gas chromatography-mass spectrometry (GC-MS) and Kramer sensory evaluation. Compared with the extract from control wines, the extract from enzyme-treated wines increased more aromatic compounds using steam distillation extraction (SDE) and GC-MS analyses. Theses aromatic compounds were as follows: 3-methyl-1-butanol formate, 3-pentanol, furfural, 3-methyl-butanoic acid, 2-methyl-butanoic acid, 3-hydroxy-butanoic acid ethyl ester, hexanoic acid, hexanoic acid ethyl ester, benzyl alcohol, octanoic acid, octanoic acid ethyl ester, dodecanoic acid, and ethyl ester. The enzymolysis regulation conditions, including enzymolysis temperature, enzymolysis time, and enzyme amount, were optimized through L9(34) orthogonal test. Kramer sensory evaluation was performed by an 11-man panel of judges. The optimum enzymolysis regulation conditions were found to be temperature of 45C, enzymolysis time of 90min, and enzyme amount of 58.32U/mL grape wine, respectively. The Kramer sensory evaluation supported that the enzyme-treated wines produced a stronger fragrance. PMID:24804072

  14. Aroma enhancement and enzymolysis regulation of grape wine using ?-glycosidase.

    PubMed

    Zhu, Feng-Mei; Du, Bin; Li, Jun

    2014-03-01

    Adding ?-glycosidase into grape wine for enhancing aroma was investigated using gas chromatography-mass spectrometry (GC-MS) and Kramer sensory evaluation. Compared with the extract from control wines, the extract from enzyme-treated wines increased more aromatic compounds using steam distillation extraction (SDE) and GC-MS analyses. Theses aromatic compounds were as follows: 3-methyl-1-butanol formate, 3-pentanol, furfural, 3-methyl-butanoic acid, 2-methyl-butanoic acid, 3-hydroxy-butanoic acid ethyl ester, hexanoic acid, hexanoic acid ethyl ester, benzyl alcohol, octanoic acid, octanoic acid ethyl ester, dodecanoic acid, and ethyl ester. The enzymolysis regulation conditions, including enzymolysis temperature, enzymolysis time, and enzyme amount, were optimized through L9(3(4)) orthogonal test. Kramer sensory evaluation was performed by an 11-man panel of judges. The optimum enzymolysis regulation conditions were found to be temperature of 45C, enzymolysis time of 90min, and enzyme amount of 58.32U/mL grape wine, respectively. The Kramer sensory evaluation supported that the enzyme-treated wines produced a stronger fragrance. PMID:24804072

  15. Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions.

    PubMed

    Song, Geun Cheol; Ryu, Choong-Min

    2013-01-01

    Systemic acquired resistance (SAR) is a plant self-defense mechanism against a broad-range of pathogens and insect pests. Among chemical SAR triggers, plant and bacterial volatiles are promising candidates for use in pest management, as these volatiles are highly effective, inexpensive, and can be employed at relatively low concentrations compared with agrochemicals. However, such volatiles have some drawbacks, including the high evaporation rate of these compounds after application in the open field, their negative effects on plant growth, and their inconsistent levels of effectiveness. Here, we demonstrate the effectiveness of volatile organic compound (VOC)-mediated induced resistance against both the bacterial angular leaf spot pathogen, Pseudononas syringae pv. lachrymans, and the sucking insect aphid, Myzus persicae, in the open field. Using the VOCs 3-pentanol and 2-butanone where fruit yields increased gave unexpectedly, a significant increase in the number of ladybird beetles, Coccinella septempunctata, a natural enemy of aphids. The defense-related gene CsLOX was induced by VOC treatment, indicating that triggering the oxylipin pathway in response to the emission of green leaf volatiles can recruit the natural enemy of aphids. These results demonstrate that VOCs may help prevent plant disease and insect damage by eliciting induced resistance, even in open fields. PMID:23698768

  16. Electrophysiological and Behavioral Responses of Male Fall Webworm Moths (Hyphantria cunea) to Herbivory-Induced Mulberry (Morus alba) Leaf Volatiles

    PubMed Central

    Tang, Rui; Zhang, Jin Ping; Zhang, Zhong Ning

    2012-01-01

    Volatile organic compounds (VOCs) were collected from damaged and intact mulberry leaves (Morus alba L., Moraceae) and from Hyphantria cunea larvae by headspace absorption with Super Q columns. We identified their constituents using gas chromatography-mass spectrometry, and evaluated the responses of male H. cunea antennae to the compounds using gas chromatography-flame ionization detection coupled with electroantennographic detection. Eleven VOC constituents were found to stimulate antennae of male H. cunea moths: ?-ocimene, hexanal, cis-3-hexenal, limonene, trans-2-hexenal, cyclohexanone, cis-2-penten-1-ol, 6-methyl-5-hepten-2-one, 4-hydroxy-4-methyl-2-pentanone, trans-3-hexen-1-ol, and 2,4-dimethyl-3-pentanol. Nine of these chemicals were released by intact, mechanically-damaged, and herbivore-damaged leaves, while cis-2-penten-1-ol was released only by intact and mechanically-damaged leaves and ?-ocimene was released only by herbivore-damaged leaves. Results from wind tunnel experiments conducted with volatile components indicated that male moths were significantly more attracted to herbivory-induced volatiles than the solvent control. Furthermore, male moths' attraction to a sex pheromone lure was increased by herbivory-induced compounds and ?-ocimene, but reduced by cis-2-penten-1-ol. A proof long-range field trapping experiment showed that the efficiency of sex pheromone lures in trapping male moths was increased by ?-ocimene and reduced by cis-2-penten-1-ol. PMID:23166622

  17. Microbial production of methyl ketones. Purification and properties of a secondary alcohol dehydrogenase from yeast.

    PubMed

    Patel, R N; Hou, C T; Laskin, A I; Derelanko, P; Felix, A

    1979-11-01

    Cell-free extracts derived from yeasts Candida utilis ATCC 26387, Hansenula polymorpha ATCC 26012, Pichia sp. NRRL-Y-11328 Torulopsis sp. strain A1 and Kloeckera sp. strain A2 catalyzed an NAD+-dependent oxidation of secondary alcohols (2-propanol, 2-butanol, 2-pentanol, 2-hexanol) to the corresponding methyl ketones (acetone, 2-butanone, 2-pentanone, 2-hexanone). We have purified a NAD+-specific secondary alcohol dehydrogenase from methanol-grown yeast, Pichia sp. The purified enzyme is homogenous as judged by polyacrylamide gel electrophoresis. The purified enzyme catalyzed the oxidation of secondary alcohols to the corresponding methyl ketones in the presence of NAD+ as an electron acceptor. Primary alcohols were not oxidized by the purified enzyme. The optimum pH for oxidation of secondary alcohols by the purified enzyme is 8.0. The molecular weight of the purified enzyme as determined by gel filtration is 98 000 and subunit size as determined by sodium dodecyl sulfate gel electrophoresis is 48 000. The activity of the purified secondary alcohol dehydrogenase was inhibited by sulfhydryl inhibitors and metal-binding agents. PMID:230031

  18. Deuterium-Labeling Study of the Hydrogenation of 2-Methylfuran and 2,5-Dimethylfuran over Carbon-Supported Noble Metal Catalysts.

    PubMed

    Kang, Jungshik; Vonderheide, Anne; Guliants, Vadim V

    2015-09-21

    2-Methylfuran and 2,5-dimethylfuran were deuterated over Pd and Pt catalysts at 90-220?C. Furan ring saturation over a Pd/C catalyst occurred at low reaction temperatures, which led to deuterated THFs, followed by progressive D exchange in the THF ring at higher temperatures. Finally, H/D exchange occurred in the methyl groups on the THF ring. Cleavage of the C-O bond also occurred over a Pd/C catalyst at elevated temperatures, which resulted in deuterated ketones, for which all H atoms were exchanged for D. Alcohols were produced over a Pt/C catalyst at low temperatures because they are more stable than the corresponding ketones. D replaced H on all carbon atoms of the furan ring and saturated the O and C atoms of the broken C-O bond in both deuterated 2-pentanol and 2-hexanol. At low temperatures (90-105?C), all H atoms in the deuterated alcohols were exchanged for D except for the last two hydrogen atoms on the methyl groups. PMID:26373360

  19. On the mechanism of the unexpected facile formation of meso-diacetate products in enzymatic acetylation of alkanediols.

    PubMed

    Edin, Michaela; Bckvall, Jan-E

    2003-03-21

    The mechanism of the unexpected facile formation of meso-diacetate previously observed in the enzymatic resolution of dl/meso mixtures of 2,4-pentanediol and 2,5-hexanediol with Candida antarctica lipase B has been elucidated. It was found that the formation of meso-diacetate proceeds via different mechanisms for the two diols. Enzyme-catalyzed acylation of AcO-d(3) labeled (R)-monoacetates of meso-2,4-pentanediol and meso-2,5-hexanediol and analysis of the meso-diacetates obtained show that the former reaction proceeds via intramolecular acyl migration while the latter occurs via direct S-acylation of the alcohol. For the (R)-monoacetate of (R,S)-2,4-pentanediol the intramolecular acyl migration was fast and therefore direct S-acylation by the external acyl donor is suppressed. For the hexanediol monoacetate the rate ratio (pseudo E value) between (5R,2R)- and (5R,2S)-5-acetoxy-2-hexanol was experimentally determined to be k(R,R)/k(R,S) = 25, which is about 10-20 times lower than the E value for 2-pentanol and 2-octanol. In a preliminary experiment it was demonstrated that facile acyl migration in the 1,3-diol derivative can be utilized to prepare syn-1,3-diacetoxynonane (>90% syn) in high enantioselectivity (>99% ee) via a chemoenzymatic dynamic kinetic asymmetric transformation of a meso/dl mixture of 1,3-nonanediol. PMID:12636384

  20. Interplay of Metalloligand and Organic Ligand to Tune Micropores within Isostructural Mixed-Metal Organic Frameworks (M MOFs) for Their Highly Selective Separation of Chiral and Achiral Small Molecules

    SciTech Connect

    Madhab, Das; He, Yabing; Kim, Jaheon; Guo, Qunsheng; Zhao, Cong-Gui; Hong, Kunlun; Xiang, Sheng-Chang; Zhang, Zhangjing; Thomas, K Mark; Krishna, Rajamani; Chen, Banglin

    2012-01-01

    Four porous isostructural mixed-metal-organic frameworks (M'MOFs) have been synthesized and structurally characterized. The pores within these M'MOFs are systematically tuned by the interplay of both the metalloligands and organic ligands which have enabled us not only to direct their highly selective separation of chiral alcohols 1-phenylethanol (PEA), 2-butanol (BUT), and 2-pentanol (2-PEN) with the highest ee up to 82.4% but also to lead highly selective separation of achiral C{sub 2}H{sub 2}/C{sub 2}H{sub 4} separation. The potential application of these M'MOFs for the fixed bed pressure swing adsorption (PSA) separation of C{sub 2}H{sub 2}/C{sub 2}H{sub 4} has been further examined and compared by the transient breakthrough simulations in which the purity requirement of 40 ppm in the outlet gas can be readily fulfilled by the fixed bed M'MOF-4a adsorber at ambient conditions.

  1. Studies on the interaction between ethanol and two industrial solvents (methyl isobutyl ketone) in mice

    SciTech Connect

    Granvil, C.P.; Sharkawi, M.; Plaa, G.L. )

    1991-03-11

    Methyl n-butyl ketone (MnBK) and methyl isobutyl ketone (MiBK) prolong the duration of ethanol-induced loss of righting reflex (EILRR) in mice. MnBK was almost twice as potent in this regard. To explain this difference, the metabolism of both ketones was studied in male CD-1 mice using GC. MiBK was converted to 4-methyl-2-pentanol (4MPOL) and 4-hydroxy methyl isobutyl ketone (HMP). MnBK metabolites were 2-hexanol (2HOL) and 2,5-hexanedione (2,5HD). The effects of both ketones and metabolites on EILRR and ethanol (E) elimination were studied in mice. The ketones and their metabolites were dissolved in corn oil and injected intraperitoneally 30 min before E 4g/kg for EILRR and 2g/kg for E elimination. In the following doses: MnBK, 5; MiBK, 5; 2HOL, 2.5; 4MPOL, 2.5; and HMP 2.5, significantly prolonged EILRR. Concentrations of E in blood and brain upon return of the righting reflex were similar in solvent-treated and control animals. The mean elimination rate of E was slower in groups given MnBK or 2HOL than in control animals. No change in E elimination was observed with MiBK, HMP, 4MPOL, or 2, 5HD.

  2. Characterization of the acidic and basic properties of [alpha]LiAlO[sub 2], [gamma]LiAlO[sub 2], and calcined [open quotes]HAlO[sub 2][close quotes] using isopropyl alcohol

    SciTech Connect

    Tomczak, D.C.; Allen, J.L.; Poeppelmeier, K.R. )

    1994-03-01

    Characterization of both the acidic and basic sites of [alpha]LiAlO[sub 2], [gamma]LiAlO[sub 2], and calcined [open quotes]HAlO[sub 2][close quotes] was carried out with the isopropyl alcohol probe reaction. All three materials catalyzed the formation of both propylene and acetone. The formation of propylene is indicative of acidic-basic pair sites, while the presence of acetone is indicative of basic sites. In addition to the formation of both propylene and acetone, base-catalyzed acetone aldol condensation products were formed on both [alpha]LiAlO[sub 2], and calcined [open quotes]HAlO[sub 2][close quotes]. Both materials produced a C6DIENE (2-methyl-1,3-pentadiene or 4-methyl-1,3-pentadiene) aldol condensation product, while [alpha]M2PONE (4-methyl-2-pentanone) and 4M2POL (4-methyl-2-pentanol). The reaction pathways that describe the formation of the various C6 products were used to infer the nature of the basic sites on the materials. Additional information obtained from TPD and FTIR of chemisorbed CO[sub 2] demonstrate that the basic sites on [alpha]LiAlO[sub 2] are similar in strength and number to MgO. 35 refs., 9 figs., 6 tabs.

  3. Characterisation of whiskeys using solid-phase microextraction with gas chromatography-mass spectrometry.

    PubMed

    Fitzgerald, G; James, K J; MacNamara, K; Stack, M A

    2000-10-27

    The application of solid-phase microextraction and gas chromatography-mass spectrometry to the detection of flavour volatiles present in Irish and Scottish whiskeys was investigated. A method was developed to characterise these volatiles which included the extraction, identification and quantification of 17 congeners which included fusel alcohols, acetates and esters. The method validation produced the optimum fibre [85 microm poly(acrylate)], extraction time (35 min), sample volume size (3 ml) and desorption time (5 min). The impact of salt on the absorption process was also studied. Characteristic profiles were determined for each whiskey and the flavour congeners were quantified using 4-methyl-2-pentanol as the internal standard. Calibration ranges were determined for each of the congeners with coefficients of linearity ranging from 0.993 (butan-1-ol) to 0.999 (ethyl laurate) and relative standard deviations ranging from 2.5% (2-methylbutan-1-ol) to 21% (furfural) at a concentration of 18.2 mg/l. Detection limits ranged from 0.1 mg/l (ethyl caprate) to 21 mg/l (butan-2-ol). PMID:11093670

  4. Characterizing Olfactory Perceptual Similarity Using Carbon Chain Discrimination in Fischer 344 Rats

    PubMed Central

    2014-01-01

    Performance on olfactory tests can be influenced by a number of stimulus characteristics including chemical structure, concentration, perceptual similarity, and previous experience with the test odorants. Few of these parameters have been extensively characterized in the Fischer 344 rat strain. To investigate how odor quality affects perception in this rat strain, we measured how graded perceptual similarity, created by varying carbon chain length across a series of homologous alcohol pairs, influenced odor discrimination using a liquid-motivated go/no-go task. We employed an automated, liquid-dilution olfactometer to train Fischer 344 rats (N = 8) on a 2-odor discrimination task. Six odorants (1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) were arranged to produce 15 novel odorant pairs differing between 1 and 5 carbon atoms; testing sessions included presentation of only 1 pseudorandomly assigned pair daily (200 trials). Results show that although rats can learn to discriminate between any 2 odorant pairs, performance declines systematically as the pairs become more structurally similar and, therefore, more perceptually confusing. As such, the easier discrimination pairs produced reliable ceiling effects across all rats, whereas performance for the difficult discrimination pairs was consistently worse, even after repeated testing. These data emphasize the importance of considering odorant stimulus dimensions in experimental designs employing olfactory stimuli. Moreover, establishing baseline olfactory performance in Fischer 344 rats may be particularly useful for predicting age-related cognitive decline in this model. PMID:24488965

  5. Olfactory discrimination of structurally similar alcohols by cockroaches.

    PubMed

    Sakura, M; Okada, R; Mizunami, M

    2002-11-01

    The capability of the cockroach Periplaneta americana to discriminate odors of structurally similar aliphatic alcohols was studied by using an operant conditioning paradigm. Cockroaches were trained to discriminate three odors: one odor associated with sucrose solution (reward) and two odors associated with NaCl solution (non-reward). After training, their odor preferences were tested by counting the number of visits to each odor source. We tested the capability of cockroaches to discriminate (1) three normal aliphatic alcohols with different numbers of carbon (1-pentanol, 1-hexanol and 1-octanol), (2) three C6 aliphatic alcohols (1-hexanol, 2-hexanol and trans-2-hexen-1-ol), (3) binary mixtures of two of these three alcohols and their components, and (4) 1-hexanol solution of three different concentrations (1, 10 and 100 micro g micro l(-1)). Cockroaches exhibited higher preferences for the odors associated with reward in these tests, and we therefore conclude that cockroaches can discriminate these odors. However, discrimination of 1-hexanol and trans-2-hexen-1-ol and their binary mixture was imperfect, in that some statistical tests suggested significant level of discrimination but other tests did not. In addition, the cockroaches learned to associate a 1-hexanol solution of the highest or lowest concentration with sucrose reward but failed to learn to associate 1-hexanol of an intermediate concentration with reward. PMID:12466954

  6. Effect of Fresh Garlic on Lipid Oxidation and Microbiological Changes of Pork Patties during Refrigerated Storage

    PubMed Central

    2014-01-01

    The effects of two levels (1.4 vs 2.8%) of fresh garlic on lipid oxidation and microbial growth in pork patties were evaluated. Hunter color (L, a, b), pH, thiobarbituric acid reactive substances (TBARS), oxidative volatile compounds, total bacteria and Enterobacteriaceae in the pork patties with or without fresh garlic were measured during storage at 4℃. Addition of fresh garlic decreased redness (a), while increased pH and yellowness (b) values of the fresh pork patties were observed, regardless of the levels added. The TBARS values of the pork patties were increased with the addition of fresh garlic (p<0.05). Similar results were observed in oxidative volatile compounds. A total of 13 volatile compounds were detected in the patties (5 sulfur-containing compounds, including allyl mercaptan, allyl methyl sulfide, diallyl sulfide, methyl-(E)-propenyl-disulfide, and diallyl disulfide, and the 8 other oxidative compounds, including 1-pentanol, hexanal, 1-hexanol, heptanal, (E)-2-heptenal, 1-octen-3-ol, (E)-2-octenal and nonanal). Fresh garlic accelerated development of oxidative products in the pork patties, especially hexanal and the total oxidative volatile compounds. However, the addition of 1.4 and 2.8% of fresh garlic inhibited the growth of total bacteria and Enterobacteriaceae, indicating low total bacterial counts and Enterobacteriaceae than the controls. PMID:26761498

  7. Density gradient theory combined with the PC-SAFT equation of state used for modeling the surface tension of associating systems

    NASA Astrophysics Data System (ADS)

    Vinš, Václav; Planková, Barbora; Hrubý, Jan; Celný, David

    2014-03-01

    The density gradient theory (GT) combined with a SAFT-type (Statistical Associating Fluid Theory) equation of state has been used for modeling the surface tension of associating fluids represented by a series of six alkanols ranging from methanol to 1-pentanol. The effect of nonzero dipole moment of the selected alkanols on the predicted surface tension was investigated in this study. Results of the GT + non-polar Perturbed Chain (PC) SAFT equation of state were compared to predictions of GT combined with the PC-polar-SAFT, i.e. PCP-SAFT, equation. Both GT + PC-SAFT and GT + PCP-SAFT give reasonable prediction of the surface tension for pure alkanols. Results of both models are comparable as no significant difference in the modeled saturation properties and in the predicted surface tension using GT was found. Consideration of dipolar molecules of selected alkanols using PCP-SAFT had only minor effect on the predicted properties compared to the non-polar PC-SAFT model.

  8. Volatile Compounds Originating from Mixed Microbial Cultures on Building Materials under Various Humidity Conditions

    PubMed Central

    Korpi, Anne; Pasanen, Anna-Liisa; Pasanen, Pertti

    1998-01-01

    We examined growth of mixed microbial cultures (13 fungal species and one actinomycete species) and production of volatile compounds (VOCs) in typical building materials in outside walls, separating walls, and bathroom floors at various relative humidities (RHs) of air. Air samples from incubation chambers were adsorbed on Tenax TA and dinitrophenylhydrazine cartridges and were analyzed by thermal desorption-gas chromatography and high-performance liquid chromatography, respectively. Metabolic activity was measured by determining CO2 production, and microbial concentrations were determined by a dilution plate method. At 80 to 82% RH, CO2 production did not indicate that microbial activity occurred, and only 10% of the spores germinated, while slight increases in the concentrations of some VOCs were detected. All of the parameters showed that microbial activity occurred at 90 to 99% RH. The microbiological analyses revealed weak microbial growth even under drying conditions (32 to 33% RH). The main VOCs produced on the building materials studied were 3-methyl-1-butanol, 1-pentanol, 1-hexanol, and 1-octen-3-ol. In some cases fungal growth decreased aldehyde emissions. We found that various VOCs accompany microbial activity but that no single VOC is a reliable indicator of biocontamination in building materials. PMID:9687450

  9. Volatile compounds originating from mixed microbial cultures on building materials under various humidity conditions.

    PubMed

    Korpi, A; Pasanen, A L; Pasanen, P

    1998-08-01

    We examined growth of mixed microbial cultures (13 fungal species and one actinomycete species) and production of volatile compounds (VOCs) in typical building materials in outside walls, separating walls, and bathroom floors at various relative humidities (RHs) of air. Air samples from incubation chambers were adsorbed on Tenax TA and dinitrophenylhydrazine cartridges and were analyzed by thermal desorption-gas chromatography and high-performance liquid chromatography, respectively. Metabolic activity was measured by determining CO2 production, and microbial concentrations were determined by a dilution plate method. At 80 to 82% RH, CO2 production did not indicate that microbial activity occurred, and only 10% of the spores germinated, while slight increases in the concentrations of some VOCs were detected. All of the parameters showed that microbial activity occurred at 90 to 99% RH. The microbiological analyses revealed weak microbial growth even under drying conditions (32 to 33% RH). The main VOCs produced on the building materials studied were 3-methyl-1-butanol, 1-pentanol, 1-hexanol, and 1-octen-3-ol. In some cases fungal growth decreased aldehyde emissions. We found that various VOCs accompany microbial activity but that no single VOC is a reliable indicator of biocontamination in building materials. PMID:9687450

  10. Determination of alcohol compounds using corona discharge ion mobility spectrometry.

    PubMed

    Han, Hai-yan; Huang, Guo-dong; Jin, Shun-ping; Zheng, Pei-chao; Xu, Guo-hua; Li, Jian-quan; Wang, Hong-mei; Chu, Yan-nan

    2007-01-01

    Ion mobility spectrometry (IMS) is a very fast, highly sensitive, and inexpensive technique, it permits efficient monitoring of volatile organic compounds like alcohols. In this article, positive ion mobility spectra for six alcohol organic compounds have been systematically studied for the first time using a high-resolution IMS apparatus equipped with a discharge ionization source. Utilizing protonated water cluster ions (H2O)n H+ as the reactant ions and clean air as the drift gas, alcohol organic compounds, ethanol, 1-propanol, 2-propanol, 1-butanol, 1-pentanol and 2-octanol, all exhibit product ion characteristic peaks in their respective ion mobility spectrometry, that is a result of proton transfer reactions between the alcohols and reaction ions (H2O)n H+. The mixture of these alcohols, including two isomers, has been detected, and the results showed that they could be distinguished effectively in the ion mobility spectrum. The reduced mobility values have been determined, which are in very well agreement with the traditional 63Ni-IMS experimental values. The exponential dilution method was used to calibrate the alcohol concentrations, and a detection limit available for the alcohols is in order of magnitude of a few ng/L. PMID:17969651

  11. Fractionation and identification of minor and aroma-active constituents in Kangra orthodox black tea.

    PubMed

    Joshi, Robin; Gulati, Ashu

    2015-01-15

    The aroma constituents of Kangra orthodox black tea were isolated by simultaneous distillation extraction (SDE), supercritical fluid extraction and beverage method. The aroma-active compounds were identified using gas chromatography-olfactometry-mass spectrometry. Geraniol, linalool, (Z/E)-linalool oxides, (E)-2-hexenal, phytol, ?-ionone, hotrienol, methylpyrazine and methyl salicylate were major volatile constituents in all the extracts. Minor volatile compounds in all the extracts were 2-ethyl-5-methylpyrazine, ethylpyrazine, 2-6,10,14-trimethyl-2-pentadecanone, acetylfuran, hexanoic acid, dihydroactinidiolide and (E/Z)-2,6-nonadienal. The concentrated SDE extract was fractionated into acidic, basic, water-soluble and neutral fractions. The neutral fraction was further chromatographed on a packed silica gel column eluted with pentane and diethyl ether to separate minor compounds. The aroma-active compounds identified using gas chromatography-olfactometry-mass spectrometry were 2-amylfuran, (E/Z)-2,6-nonadienal, 1-pentanol, epoxylinalool, (Z)-jasmone, 2-acetylpyrrole, farnesyl acetone, geranyl acetone, cadinol, cubenol and dihydroactinidiolide. AEDA studies showed 2-hexenal, 3-hexenol, ethylpyrazine, (Z/E)-linalool oxides, linalool, (E/Z)-2,6-nonadienal, geraniol, phenylethanol, ?-ionone, hotrienol and dihydroactinidiolide to be odour active components. PMID:25148991

  12. On the Investigation of Coarse-Grained Models for Water: Balancing Computational Efficiency and the Retention of Structural Properties

    PubMed Central

    Hadley, Kevin R.; McCabe, Clare

    2010-01-01

    Developing accurate models of water for use in computer simulations is important for the study of many chemical and biological systems, including lipid bilayer self-assembly. The large temporal and spatial scales needed to study such self-assembly have led to the development and application of coarse-grained models for the lipid-lipid, lipid-solvent and solvent-solvent interactions. Unfortunately, popular center-of-mass-based coarse-graining techniques are limited to modeling water with one-water per bead. In this work, we have utilized the K-means algorithm to determine the optimal clustering of waters to allow the mapping of multiple waters to single coarse-grained beads. Through the study of a simple mixture between water and an amphiphilic solute (1-pentanol), we find a 4-water bead model has the optimal balance between computational efficiency and accurate solvation and structural properties when compared to water models ranging from 1 to 9 waters per bead. The 4-water model was subsequently utilized in studies of the solvation of hexadecanoic acid and the structure, as measured via radial distribution functions, for the hydrophobic tails and the bulk water phase were found to agree well with experimental data and their atomistic targets. PMID:20230012

  13. Synthesis and chemical modifications of in-situ grown anatase TiO2 microspheres with isotropically exposed {0 0 1} facets for superhydrophobic and self-cleaning properties

    NASA Astrophysics Data System (ADS)

    Hu, Wanbiao; Yu, Yuanlie; Chen, Hua; Lau, Kenny; Craig, Vincent; Brink, Frank; Withers, Ray L.; Liu, Yun

    2015-12-01

    Excellent and robust hydrophobic materials generally benefit from specifically exposed surfaces i.e. always the low-energy surfaces, and well-defined micro/nano-structures that are achieved through advanced facilities and complicated process with a high cost. We hereof demonstrate that the superhydrophobicity and further self-cleaning properties are also attainable based on high-energy crystalline facets by an appropriate chemical modification. Specifically, anatase TiO2 microspheres were large-scale synthesized to exhibit isotropically exposed high-energy {0 0 1} facets through optimizing the HF/H2O2/H2O ratio during hydrothermal processes. The formation of the microspheres was uncovered to be an in-situ "growth-cum-assembly" grown mechanism. Such high-energy {0 0 1} facets facilitate the strong coupling between the resultant TiO2 microspheres and the modifier (2,2,3,3,4,4,5,5-octafluoro-1-pentanol) because the {0 0 1} facets offer abundant active sites for chemical bonding, showing great merits for superhydrophobicity (with water contact angle of 154 ± 2°, 6 μl droplets), and further stably surface self-cleaning i.e. easily removing surface contamination (e.g. Al2O3 powders). This integrated strategy represents a milestone in design and fabrication of delicate composites with high-energy surfaces for specific functions and properties.

  14. Removal of acrylic coatings from works of art by means of nanofluids: understanding the mechanism at the nanoscale

    NASA Astrophysics Data System (ADS)

    Baglioni, Michele; Rengstl, Doris; Berti, Debora; Bonini, Massimo; Giorgi, Rodorico; Baglioni, Piero

    2010-09-01

    Conservation of works of art often involves the inappropriate application of synthetic polymers. We have proposed the use of alternative methodologies for conservation and formulated innovative cleaning nanostructured systems to remove previously applied polymer films and grime from painted surfaces. In particular, a novel ``micellar system'' composed of water, SDS, 1-pentanol, ethyl acetate and propylene carbonate was recently formulated and successfully used to remove acrylic and vinyl/acrylic copolymers from Mesoamerican wall paintings in the archeological site of Cholula, Mexico. This contribution reports on the mechanism of the interaction process that takes place between the nanostructured fluid and the polymer coating at the nanoscale. The structural properties of the ``micellar solution'' and of the polymer film are investigated before, during and after the interaction process using several surface and solution techniques. Rather than a classical detergency mechanism, we demonstrate that micelles act as solvent containers and interact with the polymer film leading to its swelling and detachment from the surface and to its segregation in a liquid droplet, which phase-separates from the aqueous bulk. After the removal process the micelles become smaller in size and undergo a structural re-arrangement due to the depletion of the organic solvents. These findings can be framed in an interaction mechanism which describes the removal process, opening up new perspectives in the design and formulation of new cleaning systems specifically tailored for intervention on particular conservation issues.

  15. Primary and secondary metabolism of pentamidine by rats.

    PubMed Central

    Berger, B J; Naiman, N A; Hall, J E; Peggins, J; Brewer, T G; Tidwell, R R

    1992-01-01

    The antiprotozoal drug pentamidine [1,5-bis(4'-amidinophenoxy)pentane] has been previously shown to be metabolized by rat liver microsomes, and five of the seven putative primary metabolites have been identified. With the synthesis and identification of 5-(4'-amidinophenoxy)pentanoic acid and 5-(4'-amidinophenoxy)-1-pentanol as the remaining two metabolites, the primary metabolism of pentamidine in rats appears fully characterized. Use of [14C]pentamidine with rat liver microsomes confirms this conclusion, since no unidentified radioactive peaks were detected by high-performance liquid chromatography (HPLC). Isolated, perfused rat livers were used with [14C]pentamidine to identify secondary metabolites. Only two novel radioactive peaks were detected by HPLC analysis of perfused liver samples. The treatment of liver samples with sulfatase or beta-glucuronidase resulted in the reduction or elimination of these peaks and gave rise to peaks identified as para-hydroxybenzamidine and 5-(4'-amidinophenoxy)pentanoic acid. It was concluded from these results that only these two primary metabolites were conjugated with sulfate or glucuronic acid. After 4 h of incubation in the perfused liver system, approximately 15% of the recovered radiolabel was pentamidine. These results suggest that pentamidine metabolism can be rapid and extensive in rats. PMID:1416874

  16. Use of micellar liquid chromatography to analyze darunavir, ritonavir, emtricitabine, and tenofovir in plasma.

    PubMed

    Peris-Vicente, Juan; Villarreal-Traver, Mnica; Casas-Breva, Inmaculada; Carda-Broch, Samuel; Esteve-Romero, Josep

    2014-10-01

    Danuravir, ritonavir, emtricitabine, and tenofovir are together prescribed against AIDS as a highly active antiretroviral therapy regimen. Micellar liquid chromatography has been applied to determine these four antiretroviral drugs in plasma. The sample preparation is shortened to the dilution of the sample in a micellar solution, filtration, and injection. Clean-up steps are avoided, due to the solubilization of plasma matrix in micellar media. The drugs were analyzed in <20min using a mobile phase of 0.06M sodium dodecyl sulfate/2.5% 1-pentanol (pH 7) running under isocratic mode through a C18 column at 1mL/min at room temperature. Absorbance wavelength detection was set at 214nm. The method was successfully validated following the ICH Harmonized Tripartite Guideline in terms of selectivity, limit of detection (0.080-0.110 ?g/mL), limit of quantification (0.240-0.270?g/mL), linearity between 0.25 and 25?g/mL (r(2) > 0.995), accuracy (89.3-103.2%), precision (<8.2%) and robustness (<7.5%). Real plasma sample from patients taking this therapy were analyzed. This is the first paper showing the simultaneous detection of this four drugs. Therefore, the methodology was proven useful for the routine analysis of these samples in a hospital laboratory for clinical purposes. PMID:25103282

  17. Improvement of the Dimensional Stability of Powder Injection Molded Compacts by Adding Swelling Inhibitor into the Debinding Solvent

    NASA Astrophysics Data System (ADS)

    Fan, Yang-Liang; Hwang, Kuen-Shyang; Su, Shao-Chin

    2008-02-01

    Defects are frequently found in powder injection molded (PIM) compacts during solvent debinding due to the swelling of the binders. This problem can be alleviated by adjusting the composition of the debinding solvent. In this study, 10 vol pct swelling inhibitors were added into heptane, and the in-situ amounts of swelling and sagging of the specimen in the solvent were recorded using a noncontacting laser dilatometer. The results show that the addition of ethanol, 2-propanol, 1-butanol, and 1-pentanol reduced the amounts of swelling by 31, 21, 17, and 11 pct, respectively. This was because the small molecule alcohols, which do not dissolve paraffin wax (PW) or stearic acid (SA) in the binder system, could diffuse easily into the specimen and increased the portion of the swelling inhibitor inside. The amount of the extracted PW and SA also decreased, but only by 8.3, 6.1, 4.3, and 2.4 pct, respectively. The solubility parameters of 1-bromopropane (n-PB) and ethyl acetate (EA) are between those of heptane and alcohols, and they also yielded a slight reduction in the amounts of swelling by 6 and 11 pct, respectively. These results suggest that to reduce defects caused by binder swelling during solvent debinding, alcohols with high solubility parameters can be added into heptane without sacrificing significantly on the debinding rate.

  18. Nucleation of ethanol, propanol, butanol, and pentanol: a systematic experimental study along the homologous series.

    PubMed

    Manka, Alexandra A; Wedekind, Jan; Ghosh, David; Hhler, Kristina; Wlk, Judith; Strey, Reinhard

    2012-08-01

    We present homogeneous vapor-liquid nucleation rates of the 1-alcohols (C(n)H(2n+1)OH, n = 2-4) measured in the well-established two-valve nucleation pulse chamber as well as in a novel one-piston nucleation pulse chamber at temperatures between 235 and 265 K. The nucleation rates and critical cluster sizes show a very systematic behavior with respect to the hydrocarbon chain length of the alcohol, just as their thermo-physical parameters such as surface tension, vapor pressure, and density would suggest. For all alcohols, except ethanol, predictions of classical nucleation theory lie several orders of magnitude below the experimental results and show a strong temperature-dependence typically found in nucleation experiments. The more recent Reguera-Reiss theory [J. Phys. Chem. B 108(51), 19831 (2004)] achieves reasonably good predictions for 1-propanol, 1-butanol, and 1-pentanol, and independent of the temperature. Ethanol, however, clearly shows the influence of strong association between molecules even in the vapor phase. We also scaled all experimental results with classic nucleation theory to compare our data with other data from the literature. We find the same overall temperature trend for all measurement series together but inverted and inconsistent temperature trends for individual 1-propanol and 1-butanol measurements in other devices. Overall, our data establishe a comprehensive and reliable data set that forms an ideal basis for comparison with nucleation theory. PMID:22894357

  19. Alcohol action on a neuronal membrane receptor: evidence for a direct interaction with the receptor protein.

    PubMed Central

    Li, C; Peoples, R W; Weight, F F

    1994-01-01

    For almost a century, alcohols have been thought to produce their effects by actions on the membrane lipids of central nervous system neurons--the well known "lipid theory" of alcohol action. The rationale for this theory is the correlation of potency with oil/water or membrane/buffer partition coefficient. Although a number of recent studies have shown that alcohols can affect the function of certain neuronal neurotransmitter receptors, there is no evidence that the alcohols interact directly with these membrane proteins. In the present study, we report that inhibition of a neuronal neurotransmitter receptor, an ATP-gated ion channel, by a series of alcohols exhibits a distinct cutoff effect. For alcohols with a molecular volume of < or = 42.2 ml/mol, potency for inhibiting ATP-activated current was correlated with lipid solubility (order of potency: 1-propanol = trifluoroethanol > monochloroethanol > ethanol > methanol). However, despite increased lipid solubility, alcohols with a molecular volume of > or = 46.1 ml/mol (1-butanol, 1-pentanol, trichloroethanol, and dichloroethanol) were without effect on the ATP-activated current. The results suggest that alcohols inhibit the function of this neurotransmitter receptor by interacting with a small hydrophobic pocket on the receptor protein. PMID:8058780

  20. Heterologous expression of the alcohol dehydrogenase (adhI) gene from Geobacillus thermoglucosidasius strain M10EXG.

    PubMed

    Jeon, Young Jae; Fong, Jiunn C N; Riyanti, Eny I; Neilan, Brett A; Rogers, Peter L; Svenson, Charles J

    2008-06-01

    A thermostable alcohol dehydrogenase (ADH-I) isolated from the potential thermophilic ethanologen Geobacillus thermoglucosidasius strain M10EXG has been characterised. Inverse PCR showed that the gene (adhI) was localised with 3-hexulose-6-phosphate synthase (HPS) and 6-phospho-3 hexuloisomerase (PHI) on its genome. The deduced peptide sequence of the 1020-bp M10EXG adhI, which corresponds to 340 amino acids, shows 96% and 89% similarity to ADH-hT and ADH-T from Geobacillus stearothermophilus strains LLD-R and NCA 1503, respectively. Over-expression of M10EXG ADH-I in Escherichia coli DH5alpha (pNF303) was confirmed using an ADH activity assay and SDS-PAGE analysis. The specific ADH activity in the extract from this recombinant strain was 9.7(+/-0.3) U mg(-1) protein, compared to 0.1(+/-0.01) U mg(-1) protein in the control strain. The recombinant E. coli showed enzymatic activity towards ethanol, 1-butanol, 1-pentanol, 1-heptanol, 1-hexanol, 1-octanol and 2-propanol, but not methanol. In silico analysis, including phylogenetic reconstruction and protein modeling, confirmed that the thermostable enzyme from G. thermoglucosidasius is likely to belong to the NAD-Zn-dependent family of alcohol dehydrogenases. PMID:18436321

  1. Improved conversion efficiencies for n-fatty acid reduction to primary alcohols by the solventogenic acetogen "Clostridium ragsdalei".

    PubMed

    Isom, Catherine E; Nanny, Mark A; Tanner, Ralph S

    2015-01-01

    "Clostridium ragsdalei" is an acetogen that ferments synthesis gas (syngas, predominantly H2:CO2:CO) to ethanol, acetate, and cell mass. Previous research showed that C. ragsdalei could also convert propionic acid to 1-propanol and butyric acid to 1-butanol at conversion efficiencies of 72.3 and 21.0 percent, respectively. Our research showed that C. ragsdalei can also reduce pentanoic and hexanoic acid to the corresponding primary alcohols. This reduction occurred independently of growth in an optimized medium with headspace gas exchange (vented and gassed with CO) every 48 h. Under these conditions, conversion efficiencies increased to 97 and 100 % for propionic and butyric acid, respectively. The conversion efficiencies for pentanoic and hexanoic acid to 1-pentanol and 1-hexanol, respectively, were 82 and 62 %. C. ragsdalei also reduced acetone to 2-propanol at a conversion efficiency of 100 %. Further, we showed that C. ragsdalei uses an aldehyde oxidoreductase-like enzyme to reduce n-fatty acids to the aldehyde intermediates in a reaction that requires ferredoxin and exogenous CO. PMID:25410829

  2. On the investigation of coarse-grained models for water: balancing computational efficiency and the retention of structural properties.

    PubMed

    Hadley, Kevin R; McCabe, Clare

    2010-04-01

    Developing accurate models of water for use in computer simulations is important for the study of many chemical and biological systems, including lipid bilayer self-assembly. The large temporal and spatial scales needed to study such self-assembly have led to the development and application of coarse-grained models for the lipid-lipid, lipid-solvent, and solvent-solvent interactions. Unfortunately, popular center-of-mass-based coarse-graining techniques are limited to modeling water with one water per be ad. In this work, we have utilized the K-means algorithm to determine the optimal clustering of waters to allow the mapping of multiple waters to single coarse-grained beads. Through the study of a simple mixture between water and an amphiphilic solute (1-pentanol), we find a four-water bead model has the optimal balance between computational efficiency and accurate solvation and structural properties when compared to water models ranging from one to nine waters per bead. The four-water model was subsequently utilized in studies of the solvation of hexadecanoic acid and the structure, as measured via radial distribution functions, for the hydrophobic tails and the bulk water phase were found to agree well with experimental data and their atomistic target. PMID:20230012

  3. Packing properties of 1-alkanols and alkanes in a phospholipid membrane.

    PubMed

    Aagaard, Thomas H; Kristensen, Mette N; Westh, Peter

    2006-01-01

    We have used vibrating tube densitometry to investigate the packing properties of four alkanes and a homologous series of ten alcohols in fluid-phase membranes of dimyristoyl phosphatidylcholine (DMPC). It was found that the volume change of transferring these compounds from their pure states into the membrane, DeltaV(m)(pure-->mem), was positive for small (C4-C6) 1-alkanols while it was negative for larger alcohols and all alkanes. The magnitude of DeltaV(m)(pure-->mem) ranged from about +4 cm3/mol for alcohols with an alkyl chain about half the length of the fatty acids of DMPC, to -10 to -15 cm3/mol for the alkanes and long chain alcohols. On the basis of these observations, previously published information on the structure of the membrane-solute complexes and the free volume properties of (pure) phospholipid membranes, we suggest that two effects dominate the packing properties of hydrophobic solutes in DMPC. First, perturbation of the tightly packed interfacial zone around the ester bonds and first few methylene groups of DMPC brings about a positive contribution to DeltaV(m)(pure-->mem). This effect dominates the volume behavior for alcohols like 1-butanol, 1-pentanol and 1-hexanol. More hydrophobic solutes penetrate into the membrane core, which is loosely packed. In this region, they partially occupy interstitial (or free-) volume, which bring about a denser molecular packing and generate a negative contribution to DeltaV(m)(pure-->mem). PMID:16223560

  4. Micro-electromembrane extraction across free liquid membranes. Instrumentation and basic principles.

    PubMed

    Kub?, Pavel; Bo?ek, Petr

    2014-06-13

    A micro-electromembrane extraction (?-EME) technique using electrically induced transfer of charged analytes across free liquid membranes (FLMs) was presented. A disposable extraction unit was proposed and it was made of a short segment of transparent perfluoroalkoxy tubing, which was successively filled with three liquid plugs serving as acceptor solution, FLM and donor solution. These plugs formed a three-phase extraction system, which was precisely defined, that was stable and required ?L to sub-?L volumes of all respective solutions. Basic instrumental set-up and extraction principles of ?-EME were examined using an anionic and a cationic dye, 4,5-dihydroxy-3-(p-sulfophenylazo)-2,7-naphthalene disulfonic acid trisodium salt (SPADNS) and crystal violet, respectively. Transfers of the charged dyes from donor into acceptor solutions across FLMs consisting of 1-pentanol were visualized by a microscope camera and quantitative measurements were performed by UV-vis spectrophotometry. The effects of operational parameters of ?-EME system were comprehensively investigated and experimental measurements were accompanied with theoretical calculations. Extraction recoveries above 60% were achieved for 5min ?-EME of 1mM SPADNS at 100V with repeatability values below 5%. Selectivity of FLMs was additionally examined by capillary electrophoretic analyses of acceptor solutions and the potential of FLMs for ?-EME pretreatment of samples with artificial complex matrices was demonstrated. PMID:24792701

  5. Temperature and viscosity dependence of the nonradiative decay rates of auramine-O and thioflavin-T in glass-forming solvents.

    PubMed

    Erez, Yuval; Amdursky, Nadav; Gepshtein, Rinat; Huppert, Dan

    2012-12-13

    Both auramine-O (AuO) and thioflavin-T (ThT) behave as fluorescent molecular rotors, meaning that their (non)radiative properties are markedly affected by the intramolecular rotation of the molecule. In this article, steady-state and time-resolved fluorescence of AuO and ThT were measured in three alcohols, 1-propanol, 1-butanol, and 1-pentanol, over a wide range of temperatures (86-260 K). These solvents are glass-forming liquids, and their viscosity and dielectric relaxation time increase by more than 10 orders of magnitude as the temperature is lowered from room temperature to ~100 K. Accordingly, the fluorescence nonradiative rates constants of AuO and ThT in these solvents decrease by about 3 orders of magnitude at the latter temperature range. We found very good correspondence between the temperature dependence of the nonradiative rate constant, k(nr), of both molecules and the dielectric relaxation rate of the solvents. The k(nr) values of AuO are twice those of ThT along the whole temperature range. The temperature dependence of k(nr) is consistent with the nonradiative model suggested by Glasbeek and co-workers. PMID:23176313

  6. Sol-gel derived TiO[sub 2] microemulsion gels and coatings

    SciTech Connect

    Papoutsi, D.; Lianos, P.; Yianoulis, P.; Koutsoukos, P. )

    1994-06-01

    Microemulsion gels and coatings have been obtained by the sol-gel method using titanium(IV) isopropoxide. Three types of fine water dispersions have been used as the basis sol: reverse Triton X-100 micelles in cyclohexane; quaternary water-in-oil microemulsions containing cyclohexane, 1-pentanol, sodium dodecyl sulfate, and water; and dispersions of water in pentanol in the presence of sodium dodecyl sulfate. Titanium(IV) isopropoxide was dissolved in the continuous phase and hydrolyzed by the dispersed water. Gelation occurred in a few hours in the case of cyclohexane, as the solvent of the continuous phase, and in few days in the case of pentanol. The gelation processes and the obtained microenvironment were probed with fluorescent probes. Films of thickness of the order of a hundred nanometers can be obtained by dipping glass, plastic, or aluminum plates into the solutions at their early stage of gelation. The absorption spectra of the films were characteristic of TiO[sub 2] absorption. X-ray analysis of films heated to 400-500[degree]C revealed a rutile structure. 44 refs., 8 figs., 2 tabs.

  7. Anticancer Properties of Novel Rhenium Pentylcarbanato Compounds against MDA-MB-468(HTB-132) Triple Node Negative Human Breast Cancer Cell Lines

    PubMed Central

    Parson, Carl; Smith, Valerie; Krauss, Christopher; Banerjee, Hirendra N.; Reilly, Christopher; Krause, Jeanette A.; Wachira, James M.; Giri, Dipak; Winstead, Angela; Mandal, Santosh K.

    2014-01-01

    Aim To study the efficacy of novel rhenium compounds to treat triple node negative breast cancer. Place and Duration Six (6) novel rhenium pentycarbanato compounds (PC1-6) were synthesized and triple node negative breast cancer cell lines HTB-132 and Balb/c mouse kidney cell lines were treated with each of them for 48 hours. The results were analyzed by a common trypan blue cell death assay system and statistically analyzed. Place and Duration The compounds were synthesized, analyzed and evaluated at the Department of Chemistryof Morgan State University, Baltimore, Maryland and the Pharmaceutical Sciences Department of Elizabeth City State University campus of the University of North Carolina system. Methodology The novel rhenium compounds were synthesized from one-pot reactions of Re2(CO)10 with the corresponding ?-diimine ligands in 1-pentanol.The compounds were characterized spectroscopically. The cell lines were cultured by standard cell culture procedure and treated with each of the six compounds in DMSO for 48 hours with a negative control and a DMSO vehicular control along with a cisplatin positive control.The cytotoxicity was evaluated by standard trypan blue assay and the results were statistically analyzed. Results The trypan blueassay reveals that these compounds have significant cytotoxicity against MDA-MB-468 (HTB-132) triple node negative breast cancer cell lines and are less nephrotoxic than cisplatin. Conclusion The novel rhenium compounds PC 1-6 can potentially find applications in the treatment of highly malignant triple node negative breast cancer. PMID:25419517

  8. An endophyte of Picrorhiza kurroa Royle ex. Benth, producing menthol, phenylethyl alcohol and 3-hydroxypropionic acid, and other volatile organic compounds.

    PubMed

    Qadri, Masroor; Deshidi, Ramesh; Shah, Bhawal Ali; Bindu, Kushal; Vishwakarma, Ram A; Riyaz-Ul-Hassan, Syed

    2015-10-01

    An endophytic fungus, PR4 was found in nature associated with the rhizome of Picrorhiza kurroa, a high altitude medicinal plant of Kashmir Himalayas. The fungus was found to inhibit the growth of several phyto-pathogens by virtue of its volatile organic compounds (VOCs). Molecular phylogeny, based on its ITS1-5.8S-ITS2 ribosomal gene sequence, revealed the identity of the fungus as Phomopsis/Diaporthe sp. This endophyte was found to produce a unique array of VOCs, particularly, menthol, phenylethyl alcohol, (+)-isomenthol, β-phellandrene, β-bisabolene, limonene, 3-pentanone and 1-pentanol. The purification of compounds from the culture broth of PR4 led to the isolation of 3-hydroxypropionic acid (3-HPA) as a major metabolite. This is the first report of a fungal culture producing a combination of biologically and industrially important metabolites—menthol, phenylethyl alcohol, and 3-HPA. The investigation into the monoterpene biosynthetic pathway of PR4 led to the partial characterization of isopiperitenone reductase (ipr) gene, which seems to be significantly distinct from the plant homologue. The biosynthesis of plant-like-metabolites, such as menthol, is of significant academic and industrial significance. This study indicates that PR4 is a potential candidate for upscaling of menthol, phenylethyl alcohol, and 3-HPA, as well as for understanding the menthol/monoterpene biosynthetic pathway in fungi. PMID:26220851

  9. Selective detection of alkanolamine vapors by ion mobility spectrometry with ketone reagent gases.

    PubMed

    Gan, T H; Corino, G

    2000-02-15

    The ion mobility (IMS) spectra of the alkanolamines, monoethanolamine (MEA), 3-amino-1-propanol (PRA), 4-amino-1-butanol (BUA), and 5-amino-1-pentanol (PEA) with acetone and 4-heptanone reagent gases have been measured using a hand-held spectrometer. Monomer and dimer peak patterns were observed for all the alkanolamines with acetone reagent gas. Drift times of monomer and dimer ion clusters for each alkanolamine increased linearly in order of size of alkyl group. Ammonia, Freon 22, and F76 diesel vapors, having similar or coincident mobilities, caused severe interference. Replacement of acetone with 4-heptanone reagent gas resulted in good separation by the altering drift times of product ions. The limit of detection was 0.005 ppm having a linear range of 0.005-0.7 ppm, and signal saturation occurred above 0.88 ppm. Detection was reversible, with a response time of 4 min and a slower recovery time of > 60 min, at vapor levels of 0.7 ppm and ambient nozzle and drift-region temperatures. In contrast to acetone chemistry, single-peak patterns were observed for the alkanolamines with the 4-heptanone reagent. Further, drift times unexpectedly remained stagnant with increasing alkyl-group size. From atmospheric pressure chemical ionization (APcI) tandem mass spectral identifications and collision induced studies, dynamic changes in product-ion equilibria in the IMS drift region compensated by differences in collision cross sections were suggested as the governing causes of the unusual mobility effect. PMID:10701266

  10. Oil-in-water microemulsions enhance the biodegradation of DDT by Phanerochaete chrysosporium.

    PubMed

    Zheng, Guanyu; Selvam, Ammaiyappan; Wong, Jonathan W C

    2012-12-01

    A novel approach was developed using oil-in-water (O/W) microemulsions formed with non-ionic surfactant, cosurfactant (1-pentanol) and linseed oil, at the cosurfactant to surfactant ratio (C/S ratio, w/w) of 1:3 and oil to surfactant ratio (O/S ratio, w/w) of 1:10, to enhance the biodegradation of DDT by the white rot fungus Phanerochaete chrysosporium. Results showed that microemulsions formed with Tween 80 effectively enhanced the biodegradation of DDT by P. chrysosporium and the enhancement was about two times that of Tween 80 solution, while microemulsion formed with Triton X-100 exhibited negative effect. Further studies revealed that microemulsion formed with Tween 80 enhanced the biodegradation of DDT through transporting DDT from crystalline phase to mycelium as well as their positive effect on the growth of P. chrysosporium; of these, the former is likely the most important and pre-requisite for the biodegradation of DDT by P. chrysosporium. PMID:22520221

  11. Microemulsion-enhanced remediation of soils contaminated with organochlorine pesticides.

    PubMed

    Zhang, Yanlin; Wong, Jonathan W C; Zhao, Zhenyong; Selvam, Ammaiyappan

    2011-12-01

    Soil contaminated by organic pollutants, especially chlorinated aromatic compounds such as DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane), is an environmental concern because of the strong sorption of organochlorine pesticide onto the soil matrix and persistence in the environment. The remediation of organochlorine pesticide contaminated soils through microemulsion is an innovative technology to expedite this process. The remediation efficiency was evaluated by batch experiments through studying the desorption of DDT and hexachlorocyclohexane (y-HCH) and sorption of microemulsion composed of Triton X-100, 1-pentanol and linseed oil in the soil-surfactant-water suspension system. The reduction of desorption efficiency caused by the sorption loss of microemulsion components onto the soil could be corrected by the appropriate adjustment of C/S (Cosurfactant/Surfactant) and O/S (Oil/Surfactant) ratio. The C/S and O/S ratios of 1:2 and 3:20 were suitable to desorb DDT and gamma-HCH from the studied soils because of the lower sorption of Triton X-100 onto the soil. Inorganic salts added in microemulsion increased the pesticides desorption efficiency of pesticides and calcium chloride has a stronger ability to enhance the desorption of DDT than sodium chloride. From the remediation perspective, the balance of surfactant or cosurfactant sorbed to soil and desorption efficiency should be taken into consideration to enhance the remediation of soils contaminated by organochlorine pesticides. PMID:22439580

  12. Chemical communication in Chagas disease vectors. Source, identity, and potential function of volatiles released by the metasternal and Brindley's glands of Triatoma infestans adults.

    PubMed

    Manrique, Gabriel; Vitta, Ana C R; Ferreira, Raquel A; Zani, Carlos L; Unelius, C Rikard; Lazzari, Claudio R; Diotaiuti, Lileia; Lorenzo, Marcelo G

    2006-09-01

    Compounds from the metasternal and Brindley's glands of the blood-sucking bug, Triatoma infestans, were identified by solid phase microextraction (SPME) and gas chromatography-mass spectrometry. Volatile compounds released by adult bugs during copulation or after mechanical disturbance were also characterized. Six compounds were identified and found consistently in all samples from metasternal glands. The most abundant were 3-pentanone, 2-methylbutanol, 3-pentanol, and an unidentified compound. The metasternal gland blends did not differ qualitatively between sexes. Compounds found in Brindley's glands were short chain acids, alcohols, esters, and a ketone with no qualitative differences between sexes. Isobutyric acid was the main component of this blend, and two new confirmed compounds were described as products of these glands: 2-butanone and 2-methylbutyric acid. 3-Pentanone was collected from the headspace over 33% of the copulating pairs of T. infestans. Volatiles found in the headspace of disturbed T. infestans adults included short-chain fatty acids, alcohols, esters, and ketones, with no qualitative differences between sexes. Both types of glands apparently discharge their contents after disturbance. However, most of the volatiles released by bugs after disturbance came from Brindley's glands. The locomotor activity of fourth instars increased significantly after stimulation with the odors emitted by disturbed adults, as compared with larvae stimulated by the odor of undisturbed adults or by clean air. We also studied the directional behavioral response of fifth instars to the disturbance scent in a locomotion compensator. Larvae exposed to volatiles released by disturbed adults walked away from the direction of the odor. The results suggest that this blend or part of it functions as an alarm pheromone for T. infestans. We suggest that the metasternal glands of this species are involved both in the sexual and the alarm contexts, and that the Brindley's glands probably have both alarm and defensive roles. PMID:16902820

  13. Contribution of liver alcohol dehydrogenase to metabolism of alcohols in rats.

    PubMed

    Plapp, Bryce V; Leidal, Kevin G; Murch, Bruce P; Green, David W

    2015-06-01

    The kinetics of oxidation of various alcohols by purified rat liver alcohol dehydrogenase (ADH) were compared with the kinetics of elimination of the alcohols in rats in order to investigate the roles of ADH and other factors that contribute to the rates of metabolism of alcohols. Primary alcohols (ethanol, 1-propanol, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol) and diols (1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol) were eliminated in rats with zero-order kinetics at doses of 5-20 mmol/kg. Ethanol was eliminated most rapidly, at 7.9 mmol/kgh. Secondary alcohols (2-propanol-d7, 2-propanol, 2-butanol, 3-pentanol, cyclopentanol, cyclohexanol) were eliminated with first order kinetics at doses of 5-10 mmol/kg, and the corresponding ketones were formed and slowly eliminated with zero or first order kinetics. The rates of elimination of various alcohols were inhibited on average 73% (55% for 2-propanol to 90% for ethanol) by 1 mmol/kg of 4-methylpyrazole, a good inhibitor of ADH, indicating a major role for ADH in the metabolism of the alcohols. The Michaelis kinetic constants from in vitro studies (pH 7.3, 37 C) with isolated rat liver enzyme were used to calculate the expected relative rates of metabolism in rats. The rates of elimination generally increased with increased activity of ADH, but a maximum rate of 61 mmol/kg h was observed for the best substrates, suggesting that ADH activity is not solely rate-limiting. Because secondary alcohols only require one NAD(+) for the conversion to ketones whereas primary alcohols require two equivalents of NAD(+) for oxidation to the carboxylic acids, it appears that the rate of oxidation of NADH to NAD(+) is not a major limiting factor for metabolism of these alcohols, but the rate-limiting factors are yet to be identified. PMID:25641189

  14. Can volatile organic metabolites be used to simultaneously assess microbial and mite contamination level in cereal grains and coffee beans?

    PubMed

    Salvador, Angelo C; Baptista, Inês; Barros, António S; Gomes, Newton C M; Cunha, Angela; Almeida, Adelaide; Rocha, Silvia M

    2013-01-01

    A novel approach based on headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-ToFMS) was developed for the simultaneous screening of microbial and mite contamination level in cereals and coffee beans. The proposed approach emerges as a powerful tool for the rapid assessment of the microbial contamination level (ca. 70 min versus ca. 72 to 120 h for bacteria and fungi, respectively, using conventional plate counts), and mite contamination (ca. 70 min versus ca. 24 h). A full-factorial design was performed for optimization of the SPME experimental parameters. The methodology was applied to three types of rice (rough, brown, and white rice), oat, wheat, and green and roasted coffee beans. Simultaneously, microbiological analysis of the samples (total aerobic microorganisms, moulds, and yeasts) was performed by conventional plate counts. A set of 54 volatile markers was selected among all the compounds detected by GC×GC-ToFMS. Principal Component Analysis (PCA) was applied in order to establish a relationship between potential volatile markers and the level of microbial contamination. Methylbenzene, 3-octanone, 2-nonanone, 2-methyl-3-pentanol, 1-octen-3-ol, and 2-hexanone were associated to samples with higher microbial contamination level, especially in rough rice. Moreover, oat exhibited a high GC peak area of 2-hydroxy-6-methylbenzaldehyde, a sexual and alarm pheromone for adult mites, which in the other matrices appeared as a trace component. The number of mites detected in oat grains was correlated to the GC peak area of the pheromone. The HS-SPME/GC×GC-ToFMS methodology can be regarded as the basis for the development of a rapid and versatile method that can be applied in industry to the simultaneous assessment the level of microbiological contamination and for detection of mites in cereals grains and coffee beans. PMID:23613710

  15. Can Volatile Organic Metabolites Be Used to Simultaneously Assess Microbial and Mite Contamination Level in Cereal Grains and Coffee Beans?

    PubMed Central

    Salvador, Ângelo C.; Baptista, Inês; Barros, António S.; Gomes, Newton C. M.; Cunha, Ângela; Almeida, Adelaide; Rocha, Silvia M.

    2013-01-01

    A novel approach based on headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (GC×GC–ToFMS) was developed for the simultaneous screening of microbial and mite contamination level in cereals and coffee beans. The proposed approach emerges as a powerful tool for the rapid assessment of the microbial contamination level (ca. 70 min versus ca. 72 to 120 h for bacteria and fungi, respectively, using conventional plate counts), and mite contamination (ca. 70 min versus ca. 24 h). A full-factorial design was performed for optimization of the SPME experimental parameters. The methodology was applied to three types of rice (rough, brown, and white rice), oat, wheat, and green and roasted coffee beans. Simultaneously, microbiological analysis of the samples (total aerobic microorganisms, moulds, and yeasts) was performed by conventional plate counts. A set of 54 volatile markers was selected among all the compounds detected by GC×GC–ToFMS. Principal Component Analysis (PCA) was applied in order to establish a relationship between potential volatile markers and the level of microbial contamination. Methylbenzene, 3-octanone, 2-nonanone, 2-methyl-3-pentanol, 1-octen-3-ol, and 2-hexanone were associated to samples with higher microbial contamination level, especially in rough rice. Moreover, oat exhibited a high GC peak area of 2-hydroxy-6-methylbenzaldehyde, a sexual and alarm pheromone for adult mites, which in the other matrices appeared as a trace component. The number of mites detected in oat grains was correlated to the GC peak area of the pheromone. The HS-SPME/GC×GC–ToFMS methodology can be regarded as the basis for the development of a rapid and versatile method that can be applied in industry to the simultaneous assessment the level of microbiological contamination and for detection of mites in cereals grains and coffee beans. PMID:23613710

  16. Bacterial Degradation of tert-Amyl Alcohol Proceeds via Hemiterpene 2-Methyl-3-Buten-2-ol by Employing the Tertiary Alcohol Desaturase Function of the Rieske Nonheme Mononuclear Iron Oxygenase MdpJ

    PubMed Central

    Schuster, Judith; Schäfer, Franziska; Hübler, Nora; Brandt, Anne; Rosell, Mònica; Härtig, Claus; Harms, Hauke; Müller, Roland H.

    2012-01-01

    Tertiary alcohols, such as tert-butyl alcohol (TBA) and tert-amyl alcohol (TAA) and higher homologues, are only slowly degraded microbially. The conversion of TBA seems to proceed via hydroxylation to 2-methylpropan-1,2-diol, which is further oxidized to 2-hydroxyisobutyric acid. By analogy, a branched pathway is expected for the degradation of TAA, as this molecule possesses several potential hydroxylation sites. In Aquincola tertiaricarbonis L108 and Methylibium petroleiphilum PM1, a likely candidate catalyst for hydroxylations is the putative tertiary alcohol monooxygenase MdpJ. However, by comparing metabolite accumulations in wild-type strains of L108 and PM1 and in two mdpJ knockout mutants of strain L108, we could clearly show that MdpJ is not hydroxylating TAA to diols but functions as a desaturase, resulting in the formation of the hemiterpene 2-methyl-3-buten-2-ol. The latter is further processed via the hemiterpenes prenol, prenal, and 3-methylcrotonic acid. Likewise, 3-methyl-3-pentanol is degraded via 3-methyl-1-penten-3-ol. Wild-type strain L108 and mdpJ knockout mutants formed isoamylene and isoprene from TAA and 2-methyl-3-buten-2-ol, respectively. It is likely that this dehydratase activity is catalyzed by a not-yet-characterized enzyme postulated for the isomerization of 2-methyl-3-buten-2-ol and prenol. The vitamin requirements of strain L108 growing on TAA and the occurrence of 3-methylcrotonic acid as a metabolite indicate that TAA and hemiterpene degradation are linked with the catabolic route of the amino acid leucine, including an involvement of the biotin-dependent 3-methylcrotonyl coenzyme A (3-methylcrotonyl-CoA) carboxylase LiuBD. Evolutionary aspects of favored desaturase versus hydroxylation pathways for TAA conversion and the possible role of MdpJ in the degradation of higher tertiary alcohols are discussed. PMID:22194447

  17. Stimulation of tarsal receptors of the blowfly by aliphatic aldehydes and ketones.

    PubMed

    CHADWICK, L E; DETHIER, V G

    1949-03-20

    Rejection of eight aldehydes, eight ketones, five secondary alcohols, and 3-pentanol has been studied in the blowfly Phormia regina Meigen. The data agree with results previously reported for normal alcohols and several series of glycols in showing a logarithmic increase in stimulating effect with increasing chain length. The order of increasing effectiveness among the different species of compounds thus far investigated is the following: polyglycols, diols, secondary alcohols, iso-alcohols, normal alcohols, ketones, iso-aldehydes, normal aldehydes. Curves relating the logarithms of threshold concentration to the logarithms of chain length for diols, alcohols, aldehydes, and ketones show inflections in the 3 to 6 carbon range. Above and below the region of inflection the curves are nearly rectilinear. The slopes for the upper limbs (smaller molecules) are of the order of -2; for the lower limbs, about -10. Comparisons of the threshold data with numerical values for molecular weights, molecular areas and volumes, oil-water distribution coefficients, activity coefficients, standard free energies, vapor pressures, boiling points, melting points, dipole moments, dielectric constants, and degree of association are discussed briefly, and it is concluded that none of the comparisons serves to bring the data from the several series and from the two portions of each series into a single homogeneous system. A qualitative comparison with water solubilities shows fewer discrepancies. It is suggested that the existence of a combination of aqueous and lipoid phases at the receptor surface would fit best with what is presently known about the relationship between chemical structure and stimulating effect in contact chemoreception. In this hypothesis the smaller and more highly water-soluble compounds are envisaged as gaining access to the receptors partly through the aqueous phase, the larger molecules predominantly through the lipoid phase. PMID:18114559

  18. Surface studies of dry and solid lubricants under different environmental conditions

    NASA Astrophysics Data System (ADS)

    Dudder, Gregory James

    Advanced lubrication schemes depend on the presence of specific solids at or the continuous delivery of a gas to the sliding interface to manage friction and wear, and are known to have a strong environmental dependence. An in-vacuo pin-on-disc tribometer was designed to allow controlled environmental testing of the solid lubricants in order to determine the role of atmospheric components on their frictional behavior. Solid lubrication testing of highly oriented pyrolytic graphite, MoS2-Sb2O 3-Au, and MoS2-Sb2O3-C films was carried out under environments of 760 Torr air (50% relative humidity), 150 Torr oxygen, 8 Torr water, 610 Torr nitrogen, and 10-7 Torr vacuum. Dry lubrication testing of the native oxide of silicon (100) surfaces was carried out under environments of 760 Torr air (50% relative humidity), 1 Torr pentanol, and 10-7 Torr vacuum. Pin-on-disc tribometry revealed a strong dependence of friction and wear as a function of sliding environment. MoS2-Sb2O3-Au and MoS2-Sb 2O3-C films were strongly affected by the presence of water molecules. Friction and wear were observed to increase in the presence of partial pressures of water when compared to vacuum, oxygen, and nitrogen environmental testing. Spectroscopic analysis of the MoS2-Sb2O 3-Au and MoS2-Sb2O3-C films showed a general trend of MoS2 expression at the surface of low friction wear tracks. However, high friction could not be directly linked to the expression of a specific species within the wear track. X-ray photoelectron spectroscopy of the tracks created under ambient and water environments yielding high friction showed no clear relationship between the two conditions, even though their frictional behavior was similar. As revealed by atomic force microscopy measurements, the microstructure of the wear tracks of MoS2-Sb2O3-Au films produced under vacuum were predominantly low friction MoS2. The vacuum wear tracks of MoS2-Sb2O3-C films showed a mixed microstructure with both low friction MoS2, and moderate friction C. Ambient wear tracks for MoS2-Sb2O 3-Au films contained a minor, higher friction constituent, identified as Au, in the presence of the major constituent, MoS2. Ambient wear tracks for MoS2-Sb2O3-C films were more complex, expressing a majority of higher friction Sb2O3 and graphite constituents, with a reduced fraction of MoS2. These micro-tribometry measurements correlated well with those made by the pin-on-disc tribometer and X-ray photoelectron spectroscopy characterization. Dry or vapor-phase lubrication methods employing 1-pentanol were effective in reducing the friction of silicon (100) compared to sliding under ambient or vacuum environments. A continuous supply of 1-pentanol served to lubricate silicon surfaces through the formation of a tribochemical film which was composed primarily of (CH2)x species. However, the presence of a tribofilm was not responsible for the lowered friction coefficient, but it did enable the extreme wear protection previously reported for this lubrication technique.

  19. Separation of enantiomers in microemulsion electrokinetic chromatography using chiral alcohols as cosurfactants.

    PubMed

    Zheng, Zhi-Xia; Lin, Jin-Ming; Chan, Wing-Hong; Lee, Albert W M; Huie, Carmen W

    2004-10-01

    A novel chiral microemulsion, which involved the use of chiral alcohols as cosurfactants, was demonstrated for the enantiomeric separation of a number of pharmaceutical drugs in microemulsion electrokinetic chromatography (MEEKC). The chiral alcohols investigated were optically active 2-alkanols, with the alkyl chain length having carbon number ranging from 4 to 7. The data indicated that, except for R-(-)-2-butanol, the use of R-(-)-2-pentanol, R-(-)-2-hexanol or R-(-)-2-heptanol as the chiral cosurfactant resulted in the baseline or partial resolution of most of the test solutes, i.e., (+/-)-norephedrine, (+/-)-ephedrine, DL-nadolol, and DL-propranolol. In addition to the chain length of the chiral 2-alkanols, the effects of other experimental conditions, such as the concentration and chirality of the 2-alkanols, as well as the pH of the run buffer and the oil phase of the microemulsion, on the enantiomeric separation of the test solutes were also investigated. An interesting finding was that the water-immiscible organic solvent (oil core) within the microemulsion droplets appeared to play an important role in the chiral separation mechanism. Also, the importance of hydrogen bonding between the test solutes ((+/-)-ephedrine and related compounds) and the chiral microemulsion was demonstrated, as it was not possible to resolve a pair of enantiomers which lacked a beta-amino proton (i.e., (+/-)-N-methyl ephedrine) under optimized run buffer conditions (e.g., 5.0% R-(-)-2-hexanol, 0.8% n-octane, and 3.5% SDS in 90.7% borate buffer at pH 9.2). PMID:15472957

  20. Thermostable NAD-linked secondary alcohol dehydrogenase from propane-grown Pseudomonas fluorescens NRRL B-1244.

    PubMed Central

    Hou, C T; Patel, R N; Laskin, A I; Barist, I; Barnabe, N

    1983-01-01

    NAD-linked alcohol dehydrogenase activity was detected in cell-free crude extracts from various propane-grown bacteria. Two NAD-linked alcohol dehydrogenases, one which preferred primary alcohols (alcohol dehydrogenase I) and another which preferred secondary alcohols (alcohol dehydrogenase II), were found in propane-grown Pseudomonas fluorescens NRRL B-1244 and were separated from each other by DEAE-cellulose column chromatography. The properties of alcohol dehydrogenase I resembled those of well-known primary alcohol dehydrogenases. Alcohol dehydrogenase II was purified 46-fold; it was homogeneous as judged by acrylamide gel electrophoresis. The molecular weight of this secondary alcohol dehydrogenase is 144,500; it consisted of four subunits per molecule of enzyme protein. It oxidized secondary alcohols, notably, 2-propanol, 2-butanol, and 2-pentanol. Primary alcohols and diols were also oxidized, but at a lower rate. Alcohols with more than six carbon atoms were not oxidized. The pH and temperature optima for secondary alcohol dehydrogenase activity were 8 to 9 and 60 to 70 degrees C, respectively. The activation energy calculated from an Arrhenius plot was 8.2 kcal (ca. 34 kJ). The Km values at 25 degrees C, pH 7.0, were 8.2 X 10(-6) M for NAD and 8.5 X 10(-5) M for 2-propanol. The secondary alcohol dehydrogenase activity was inhibited by strong thiol reagents and strong metal-chelating agents such as 4-hydroxymercuribenzoate, 5,5'-dithiobis(2-nitrobenzoic acid), 5-nitro-8-hydroxyquinoline, and 1,10-phenanthroline. The enzyme oxidized the stereoisomers of 2-butanol at an equal rate. Alcohol dehydrogenase II had good thermal stability and the ability to catalyze reactions at high temperature (85 degrees C). It appears to have properties distinct from those of previously described primary and secondary alcohol dehydrogenases. Images PMID:6412630

  1. Anesthetic potencies of secondary alcohol enantiomers.

    PubMed

    Alifimoff, J K; Firestone, L L; Miller, K W

    1987-01-01

    The Meyer-Overton rule has been interpreted to mean that general anesthetics act at a nonpolar site, either in a lipid bilayer or a protein. Optical isomers, also called enantiomers, are pairs of compounds with the same molecular formula and functional groups, but which differ in the arrangement of the groups around an "asymmetric" carbon atom and in the direction they rotate plane-polarized light. By definition, enantiomers that are anesthetics can distinguish between stereoselective and nonselective sites of anesthetic action. We used such enantiomers to determine whether anesthetics are stereoselective in their actions on animals by measuring the potencies of a homologous series of secondary aliphatic alcohols from 2-butanol through 2-octanol in tadpoles, using reversible loss of righting reflex as the endpoint. None of the isomeric pairs exhibited significant differences in potency. Anesthetic potency increased logarithmically with the number of carbon atoms in the hydrocarbon chain of the alcohol. The ED50 +/- SE (mM) for the (+) and (-) forms of the alcohols, respectively, were as follows: 2-butanol 17 +/- 1.2, 17 +/- 1.1; 2-pentanol 4.7 +/- 0.28, 4.8 +/- 0.27; 2-hexanol 1.33 +/- 0.068, 1.42 +/- 0.079; 2-heptanol 0.32 +/- 0.011, 0.33 +/- 0.020; and 2-octanol 0.063 +/- 0.0042, 0.061 +/- 0.0032. These data demonstrate a lack of stereoselectivity in the interactions between the anesthetic secondary alcohols and their site of action in animals. PMID:3492157

  2. Comparative study of aromatic compounds in fruit wines from raspberry, strawberry, and mulberry in central Shaanxi area

    PubMed Central

    Feng, Yiming; Liu, Min; Ouyang, Yanan; Zhao, Xianfang; Ju, Yanlun; Fang, Yulin

    2015-01-01

    Background Although grape wines have firmly dominated the production and consumption markets of fruit wines, raspberry, strawberry, and mulberry have been utilized to make wines because of their joyful aroma and high contents of polyphenolic phytochemicals and essential fatty acids. However, little is known about aromatic compounds of the wines produced from these three fruits. Methods The aromatic composition of fruit wines produced from raspberry, strawberry, mulberry, and red grape was analyzed by GC-MS. Odor activity values (OAVs) and relative odor contributions (ROCs) were used to estimate the sensory contribution of the aromatic compounds to the overall flavor of the wines. Results In strawberry, raspberry, and mulberry wines, 27, 30, and 31 odorants were detected, respectively. Alcohols formed the most abundant group, followed by esters and acids. The grape wine contained a wider variety (16 types) of alcohols, and 4-methyl-2-pentanol and 2,3-butanediol were not present in the three fruit wines. The quantity of esters in raspberry (1.54%) and mulberry wines (2.08%) were higher than those of strawberry wine (0.78%), and mulberry wine contained more types of esters. There were no significant differences of acids between the three fruit wines and the control wine. In addition, 2-heptanone, 2-octanone, 2-nonanone, and 2-undecanone were unique to raspberry wine, and nonanal was present only in mulberry wine. The indistinguishable aroma of the three fruit wines was attributed to the dominance of fruity and floral odor components derived from ethyl esters of fatty acids and their contributions to the global aroma of the three fruit wines. Conclusion The present study demonstrated that there were significant differences in the volatile components of fruit wines made from raspberry, strawberry, and mulberry. The aroma compounds were more abundant in the raspberry and mulberry wines than in the strawberry wine, but the quality of strawberry wine was superior to raspberry and mulberry wines. PMID:26617387

  3. Phenolic and volatile compounds of extra virgin olive oil (Olea europaea L. Cv. Cornicabra) with regard to fruit ripening and irrigation management.

    PubMed

    Gmez-Rico, Aurora; Salvador, M Desamparados; La Greca, Marta; Fregapane, Giuseppe

    2006-09-20

    This study investigated the effect of both the degree of ripening of the olive fruit and irrigation management-rain-fed, two different regulated deficit irrigations (RDI), the method proposed by the Food and Agriculture Organization of the United Nations (known as FAO), and 125 FAO (125% FAO)-on the phenolic and volatile composition of Cornicabra virgin olive oils obtained during two crop seasons. Secoiridoid phenolic derivatives greatly decreased upon increase of both irrigation and ripening, for example, the 3,4-DHPEA-EDA content decreased from 770 to 450 mg/kg through fruit ripening under rain-fed conditions and from 676 to 388 mg/kg from rain-fed conditions to FAO irrigation treatment (at a ripeness index of approximately 4). Moreover, secoiridoid derivatives of hydroxytyrosol decreased more than those of tyrosol. The levels of major volatile components decreased in the course of ripening but were higher in irrigated olive oils: for example, the E-2-hexenal content ranged between 4.2 and 2.6 mg/kg (expressed as 4-methyl-2-pentanol) over fruit maturation under rain-fed conditions and between 8.0 and 3.5 mg/kg under FAO scheduling. It is important to note that where water was applied only from the beginning of August (RDI-2), when oil begins to accumulate in the fruit, the resulting virgin olive oil presented a phenol and volatile profile similar to those of the FAO and 125 FAO methods, but with a considerable reduction in the amount of water supplied to the olive orchard. PMID:16968073

  4. Exhalation pattern changes during fasting and low dose glucose treatment in rats.

    PubMed

    Fink, Tobias; Albrecht, Frederic W; Maurer, Felix; Kleber, Astrid; Hppe, Tobias; Schnauber, Kristina; Wolf, Beate; Baumbach, Jrg I; Volk, Thomas; Kreuer, Sascha

    2015-05-01

    The analysis of exhaled metabolites has become a promising field of research in recent decades. Several volatile organic compounds reflecting metabolic disturbance and nutrition status have even been reported. These are particularly important for long-term measurements, as needed in medical research for detection of disease progression and therapeutic efficacy. In this context, it has become urgent to investigate the effect of fasting and glucose treatment for breath analysis. In the present study, we used a model of ventilated rats that fasted for 12h prior to the experiment. Ten rats per group were randomly assigned for continuous intravenous infusion without glucose or an infusion including 25mg glucose per 100g per hour during an observation period of 12h. Exhaled gas was analysed using multicapillary column ion-mobility spectrometry. Analytes were identified by the BS-MCC/IMS database (version 1209; B & S Analytik, Dortmund, Germany). Glucose infusion led to a significant increase in blood glucose levels (p?1-pentanol, 1-propanol, and 2-heptanol. Our results indicate that for long-term measurement, fasting and the withholding of glucose could contribute to changes of volatile metabolites in exhaled air. PMID:25808025

  5. Volatiles in raw and cooked meat from lambs fed olive cake and linseed.

    PubMed

    Gravador, R S; Serra, A; Luciano, G; Pennisi, P; Vasta, V; Mele, M; Pauselli, M; Priolo, A

    2015-04-01

    This study was conducted to determine the effects of feeding olive cake and linseed to lambs on the volatile organic compounds (VOCs) in raw and cooked meat. Four groups of eight male Appenninica lambs each were fed: conventional cereal-based concentrates (diet C), concentrates containing 20% on a dry matter (DM) basis of rolled linseed (diet L), concentrates containing 35% DM of stoned olive cake (diet OC), or concentrates containing both rolled linseed (10% DM) and stoned olive cake (17% DM; diet OCL). The longissimus dorsi muscle of each lamb was sampled at slaughter and was subjected to VOC profiling through the use of SPME-GC-MS. In the raw meat, the concentration of 3-methylpentanoic acid was higher in treatment C as compared with treatments L, OC and OCL (P<0.01). Moreover the level of nonanoic acid was greater in treatments C and OC than in treatment L (P<0.05). With respect to alcohols, in raw meat the amount of 2-phenoxyethanol in treatment OCL was lower than in treatments C (P<0.01) and OC (P<0.05), while in cooked meat the amount of 1-pentanol was higher in treatment C than in treatment OC (P<0.05). Apart from these compounds, none of the lipid oxidation-derived volatiles was significantly affected by the dietary treatment. Therefore, the results suggest that the replacement of cereal concentrates with linseed and/or olive cake did not cause appreciable changes in the production of volatile organic compounds in lamb meat. PMID:25387868

  6. Effect of Selected Volatiles on Two Stored Pests: The Fungus Fusarium verticillioides and the Maize Weevil Sithophilus zeamais.

    PubMed

    Zunino, Mara P; Herrera, Jimena M; Pizzolitto, Romina P; Rubinstein, Hctor R; Zygadlo, Julio A; Dambolena, Jos S

    2015-09-01

    New agronomic practices and technology enabled Argentina a larger production of cereal grains, reaching a harvest yield of 26.5 million metric tons of maize, of which, about 40% was exported. However, much of the maize production is lost annually by the attack of fungi and insects (2.6 million tons). In this study, the antifungal effect of selected volatiles on Fusarium verticillioides, its mycotoxin production, and the repellent and insecticidal activities against the weevill Sithophilus zeamais, an insect vector of F. verticillioides, were evaluated. The compounds tested were (2E)-2-hexenal, (2E)-2-nonenal, (2E,6Z)-2,6-nonadienal, 1-pentanol, 1-hexanol, 1-butanol, 3-methyl-1-butanol, pentanal, 2-decanone, and 3-decanone, which occur in the blend of volatile compounds emitted by various cereal grains. The most active antifungals were the aldehydes (2E)-2-nonenal, (2E)-2-hexenal, and (2E,6Z)-2,6-nonadienal (minimum inhibitory concentration values of <0.03, 0.06, and 0.06 mM, respectively). The occurrence of fumonisin B1 also was prevented because these compounds completely inhibited fungal growth. The best insecticidal fumigant activities against the maize weevil were shown by 2-decanone and 3-decanone (lethal concentration ? 54.6 ?L/L (<0.28 mM)). Although, all tested compounds showed repellent activity against S. zeamais at a concentration of 4 ?L/L, (2E,6Z)-2,6-nonadienal was the most active repellent compound. These results demonstrate the potential of (2E,6Z)-2,6-nonadienal to be used as a natural alternative to synthetic pesticides on F. verticillioides and S. zeamais. PMID:26257042

  7. In Vitro Evaluation of Antimicrobial Efficacy of Extracts Obtained from Raw and Fermented Wild Macrofungus, Lenzites quercina

    PubMed Central

    Ogidi, Olusola Clement; Oyetayo, Victor Olusegun; Akinyele, Bamidele Juliet

    2015-01-01

    In recent time, there is a major concern about antibiotic resistance displayed by some pathogenic microorganisms and this had involved a continuous search for natural antimicrobial products. The phytochemistry as well as antimicrobial activity of extracts obtained from Lenzites quercina was investigated. The extracts and purified fractions were, respectively, tested against indicator organisms using agar well diffusion and disc diffusion methods. The quantity of phytochemicals found in the extracts of L. quercina ranged from 14.4 to 20.7 mg/g for alkaloids, 6.1 to 12.8 mg/g for steroids, 4.5 to 10.6 mg/g for saponins, 2.8 to 17.2 mg/g for terpenoids, and 0.41 to 17.1 mg/g for flavonoids. The gas chromatography mass spectrophotometry (GCMS) analysis of the extract reveals the presence of caprylic acid, stearic acid, tetradecanoic acid, methyl-11-octadecenoate, oleic acid, and 4-methyl-2-propyl-1-pentanol. Extracts of L. quercina and its purified fractions exhibited wider range of inhibition (4 mm to 26 mm) on Staphylococcus aureus (ATCC 29213), Pseudomonas aeruginosa (ATCC 27853), Escherichia coli (ATCC 35218), Methicillin Resistant Staphylococcus aureus (MRSA), Salmonella typhi, Bacillus cereus, Enterococcus faecalis, Candida albicans, and Aspergillus niger. The antimicrobial effects of L. quercina extracts indicate that this wild macrofungus contains significant amount of pharmacological agents, which could be extracted to curb the menace of antibiotic resistances by pathogenic organisms. PMID:26604928

  8. Isoform selectivity of adenylyl cyclase inhibitors: characterization of known and novel compounds.

    PubMed

    Brand, Cameron S; Hocker, Harrison J; Gorfe, Alemayehu A; Cavasotto, Claudio N; Dessauer, Carmen W

    2013-11-01

    Nine membrane-bound adenylyl cyclase (AC) isoforms catalyze the production of the second messenger cyclic AMP (cAMP) in response to various stimuli. Reduction of AC activity has well documented benefits, including benefits for heart disease and pain. These roles have inspired development of isoform-selective AC inhibitors, a lack of which currently limits exploration of functions and/or treatment of dysfunctions involving AC/cAMP signaling. However, inhibitors described as AC5- or AC1-selective have not been screened against the full panel of AC isoforms. We have measured pharmacological inhibitor profiles for all transmembrane AC isoforms. We found that 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ22,536), 2-amino-7-(furanyl)-7,8-dihydro-5(6H)-quinazolinone (NKY80), and adenine 9-?-d-arabinofuranoside (Ara-A), described as supposedly AC5-selective, do not discriminate between AC5 and AC6, whereas the putative AC1-selective inhibitor 5-[[2-(6-amino-9H-purin-9-yl)ethyl]amino]-1-pentanol (NB001) does not directly target AC1 to reduce cAMP levels. A structure-based virtual screen targeting the ATP binding site of AC was used to identify novel chemical structures that show some preference for AC1 or AC2. Mutation of the AC2 forskolin binding pocket does not interfere with inhibition by SQ22,536 or the novel AC2 inhibitor, suggesting binding to the catalytic site. Thus, we show that compounds lacking the adenine chemical signature and targeting the ATP binding site can potentially be used to develop AC isoform-specific inhibitors, and discuss the need to reinterpret literature using AC5/6-selective molecules SQ22,536, NKY80, and Ara-A. PMID:24006339

  9. Isoform Selectivity of Adenylyl Cyclase Inhibitors: Characterization of Known and Novel Compounds

    PubMed Central

    Brand, Cameron S.; Hocker, Harrison J.; Gorfe, Alemayehu A.; Cavasotto, Claudio N.

    2013-01-01

    Nine membrane-bound adenylyl cyclase (AC) isoforms catalyze the production of the second messenger cyclic AMP (cAMP) in response to various stimuli. Reduction of AC activity has well documented benefits, including benefits for heart disease and pain. These roles have inspired development of isoform-selective AC inhibitors, a lack of which currently limits exploration of functions and/or treatment of dysfunctions involving AC/cAMP signaling. However, inhibitors described as AC5- or AC1-selective have not been screened against the full panel of AC isoforms. We have measured pharmacological inhibitor profiles for all transmembrane AC isoforms. We found that 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ22,536), 2-amino-7-(furanyl)-7,8-dihydro-5(6H)-quinazolinone (NKY80), and adenine 9-?-d-arabinofuranoside (Ara-A), described as supposedly AC5-selective, do not discriminate between AC5 and AC6, whereas the putative AC1-selective inhibitor 5-?[[2-?(6-?amino-?9H-?purin-?9-?yl)?ethyl]?amino]?-?1-?pentanol (NB001) does not directly target AC1 to reduce cAMP levels. A structure-based virtual screen targeting the ATP binding site of AC was used to identify novel chemical structures that show some preference for AC1 or AC2. Mutation of the AC2 forskolin binding pocket does not interfere with inhibition by SQ22,536 or the novel AC2 inhibitor, suggesting binding to the catalytic site. Thus, we show that compounds lacking the adenine chemical signature and targeting the ATP binding site can potentially be used to develop AC isoformspecific inhibitors, and discuss the need to reinterpret literature using AC5/6-selective molecules SQ22,536, NKY80, and Ara-A. PMID:24006339

  10. Determination of volatile compounds in wine by gas chromatography-flame ionization detection: comparison between the U.S. Environmental Protection Agency 3sigma approach and Hubaux-Vos calculation of detection limits using ordinary and bivariate least squares.

    PubMed

    Caruso, Rosario; Scordino, Monica; Traulo, Pasqualino; Gagliano, Giacomo

    2012-01-01

    A capillary GC-flame ionization detection (FID) method to determine volatile compounds (ethyl acetate, 1,1-diethoxyethane, methyl alcohol, 1-propanol, 2-methyl-1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 1-butanol, and 2-butanol) in wine was investigated in terms of calculation of detection limits and calibration method. The main objectives were: (1) calculation of regression coefficient parameters by ordinary least-squares (OLS) and bivariate least-squares (BLS) regression models, taking into account errors in both axes; (2) estimation of linear dynamic range (LDR) according to International Conference on Harmonization recommendations; (3) performance evaluation of a method by using three different internal standards (ISs) such as acetonitrile, acetone, and 1-pentanol; (4) evaluation of LODs according to the U.S. Environmental Protection Agency (EPA) 3sigma approach and the Hubaux-Vos (H-V) method; (5) application of H-V theory to a gas chromatographic analytical method and to a food matrix; and (6) accuracy assessment of the method relative to methyl alcohol content through a Unione Italiana Vini (UIV) interlaboratory proficiency test. Calibration curves calculated via BLS and OLS show similar slopes, while intercepts are closer to zero in the first case, independent of the chosen IS. The studied ISs show a substantially equivalent behavior, even though the IS closer to the analyte retention time seems to be more appropriate in terms of LDR and LOD. Results indicate an underestimation of LODs using the EPA 3sigma approach instead of the more realistic H-V method, both with OLS and BLS regression models. Methanol contents compared with UIV average values indicate recovery between 90 and 110%. PMID:22649934

  11. Role of non-ionic surfactants and plant oils on the solubilization of organochlorine pesticides by oil-in-water microemulsions.

    PubMed

    Zheng, Guanyu; Zhao, Zhenyong; Wong, Jonathan W C

    2011-01-01

    Screening low-cost, high efficacy and environmentally safe surface active agents is critical for achieving successful surfactant-enhanced remediation (SER) of soil contaminated with hydrophobic organic compounds. This study reports the solubilization of organochlorine pesticides (DDT or gamma-HCH) in oil-in-water (Winsor I) microemulsions (microE) composed of non-ionic surfactant (Tween 80 or Triton X-100), plant oil (linseed oil or soybean oil), and the cosurfactant (1-pentanol). Results show that the cosurfactant to surfactant ratio (C/S ratio, w/w) is the major factor influencing the microemulsion formation, and C/S ratios of 1:3 and 1:6 are superior to 1:1 for microemulsion formation. 66.9-95.6% and 51.9-80.9% of DDT solubilization enhancements were achieved by microemulsions based respectively on Tween 80 or Triton X-100 as compared to their respective surfactant solution alone, indicating the higher solubilizing capacities of microemulsion systems. The solubilization of gamma-HCH also increased by 40.6-57.5% in microemulsion formed with Tween 80 and 43.0-65.8% in microemulsion formed with Triton X-100, compared with that in corresponding surfactant solutions only. Further studies revealed that both cosurfactant content and oil content could influence the solubilizing capacity of microemulsions system, and higher solubilizing capacity could be obtained when more cosurfactant or oil were emulsified in microemulsion system. Between the two, oil content is more influential than cosurfactant content. The present results affirm the effective role of microemulsions formed with Tween 80 and Triton X-100 in enhancing the solubilization of DDT and gamma-HCH which would facilitate remediation of soils contaminated with these compounds. PMID:21780695

  12. Kinetic limitations on tracer partitioning in ganglia dominated source zones.

    PubMed

    Ervin, Rhiannon E; Boroumand, Ali; Abriola, Linda M; Ramsburg, C Andrew

    2011-11-01

    Quantification of the relationship between dense nonaqueous phase liquid (DNAPL) source strength, source longevity and spatial distribution is increasingly recognized as important for effective remedial design. Partitioning tracers are one tool that may permit interrogation of DNAPL architecture. Tracer data are commonly analyzed under the assumption of linear, equilibrium partitioning, although the appropriateness of these assumptions has not been fully explored. Here we focus on elucidating the nonlinear and nonequilibrium partitioning behavior of three selected alcohol tracers - 1-pentanol, 1-hexanol and 2-octanol in a series of batch and column experiments. Liquid-liquid equilibria for systems comprising water, TCE and the selected alcohol illustrate the nonlinear distribution of alcohol between the aqueous and organic phases. Complete quantification of these equilibria facilitates delineation of the limits of applicability of the linear partitioning assumption, and assessment of potential inaccuracies associated with measurement of partition coefficients at a single concentration. Column experiments were conducted under conditions of non-equilibrium to evaluate the kinetics of the reversible absorption of the selected tracers in a sandy medium containing a uniform entrapped saturation of TCE-DNAPL. Experimental tracer breakthrough data were used, in conjunction with mathematical models and batch measurements, to evaluate alternative hypotheses for observed deviations from linear equilibrium partitioning behavior. Analyses suggest that, although all tracers accumulate at the TCE-DNAPL/aqueous interface, surface accumulation does not influence transport at concentrations typically employed for tracer tests. Moreover, results reveal that the kinetics of the reversible absorption process are well described using existing mass transfer correlations originally developed to model aqueous boundary layer resistance for pure-component NAPL dissolution. PMID:22115085

  13. Fluorescence probe study of oil-in-water microemulsions. 1. Effect of pentanol and dodecane or toluene on some properties of sodium dodecyl sulfate micelles

    SciTech Connect

    Lianos, P.; Lang, J.; Strazielle, C.; Zana, R.

    1982-03-18

    The analysis of the decay of the fluorescence of micelle-solubilized pyrene has been used to obtain for the first time the variation of the surfactant aggregation number n in micellar solutions of sodium dodecyl sulfate (SDS) upon addition of increasing amounts of 1-pentanol, and of oil (dodecane or toluene), thereby forming an oil-in-water (o/w) microemulsion. The polarity of the microenvironment of the micelle-solubilized pyrene, the intramicellar rate constant k/sub E/ for pyrene excimer formation, and the microviscosity eta sensed by dipyrenylpropane (DPyP) upon intramolecular excimer formation have been also investigated. The results indicate that the addition of pentanol to concentrated (> 0.2 M) SDS solutions results in an increase of n and a decrease of k/sub E/, eta, and microenvironment polarity. These effects have been associated with the transformation of the initially spherical SDS micelles into anisotropic (disk-shaped) large micelles upon dissolution of pentanol in the micelles. Upon addition of dodecane, eta goes through a minimum in the case of concentrated SDS + pentanol systems, but only shows a monotonous increase for less concentrated SDS + pentanol systems. For the former the variation of n has been attributed to a change of micelle shape from nonspherical to spherical, whereas for the latter the initially spherical micelles remain spherical upon dodecane solubilization. Similar variations of n are observed when dodecane is replaced by toluene in the case of dilute SDS + pentanol systems, whereas large differences are noted for concentrated SDS + pentanol systems. In the case where the results suggest the formation of oil-in-water microemulsion droplets, the calculations indicate that the oil core permeates part of the surfactant alkyl chains.

  14. The effects of electrolysis on operational solutions in electromembrane extraction: The role of acceptor solution.

    PubMed

    Kub?, Pavel; Bo?ek, Petr

    2015-06-12

    Fundamental operational principle and instrumental set-up of electromembrane extraction (EME) suggest that electrolysis may play an important role in this recently developed micro-extraction technique. In the present study, the effect of electrolysis in EME is described comprehensively for the first time and it is demonstrated that electrolysis considerably influences EME performance. Micro-electromembrane extraction (?-EME) across free liquid membrane formed by 1-pentanol was utilized for real-time monitoring of the electrolytically induced changes in composition of ?-EME solutions. These changes were visualized with a set of acid-base indicators. Changes in colours of their aqueous solutions revealed serious variations in their pH values, which occurred within seconds to minutes of the ?-EME process. Variations of up to eight pH units were observed for indicator solutions initially prepared in 1, 5 and 10mM hydrochloric acid. No or only negligible pH changes (less than 0.15 pH unit) were observed for indicator solutions prepared in 50 and 100mM acetic acid demonstrating that initial composition of the aqueous solutions was the crucial parameter. These results were also confirmed by theoretical calculations of maximum pH variations in the solutions, which were based on total electric charge transfers measured in the ?-EME systems, and by exact measurements of their pH values after ?-EMEs. Acceptor solutions that, in the current practice, consist predominantly of low concentrations of strong mineral acids or alkali hydroxides may thus not always ensure adequate EME performance, which was manifested by decrease in extraction recoveries of a basic drug papaverine. A suitable remedy to the observed effects is the application of acceptor solutions containing high concentrations of weak acids or bases. These solutions not only eliminate the decrease in recoveries but also serve well as matrices of extracted samples for subsequent analysis by capillary electrophoresis. PMID:25937132

  15. Development of a standard gas generating vial comprised of a silicon oil-polystyrene/divinylbenzene composite sorbent.

    PubMed

    Grandy, Jonathan J; Gómez-Ríos, German A; Pawliszyn, Janusz

    2015-09-01

    In this work, a highly reproducible standard gas generating vial is proposed. The vial is comprised of a silicon diffusion pump oil spiked with an appropriate calibration compound, such as modified McReynolds probes (benzene, 2-pentanone, pyridine, 1-nitropropane, 1-pentanol, and n-octane), and then mixed with polystyrene/divinylbenzene (PS/DVB) particles. The concentrations of these compounds in gaseous headspace were found to substantially decrease in comparison to previously developed hydrocarbon pump oil based vials; hence, the amount of standard loaded onto SPME fibers was at most, half that of the previous vial design. Depletion for all compounds after 208 successive extractions was shown to be less than 3.5%. Smaller quantities of standards being used resulted in a vial that depleted slower while remaining statistically repeatable over a wider number of runs. Indeed, it was found that depletion could be largely predicted by using a mass balance theoretical model. This behavior allowed a further increase in the number of loadings that could be performed repeatedly. At a 95% level of confidence, the ANOVA test demonstrated that the prepared vials were statistically identical, with no significant intra- or inter-batch differences. In addition, it was found that vials stored under different conditions (e.g. under light exposure, room temperature, and within a refrigerator) were stable over 10 weeks. Silicon based vials proved to be ideal for performing instrument quality control and loading of internal standards onto fibers, both of which are of great importance when performing on-site analysis using portable GC-MS instrumentation and high throughput determinations in laboratory. PMID:26243704

  16. Exhalation of volatile organic compounds during hemorrhagic shock and reperfusion in rats: an exploratory trial.

    PubMed

    Hüppe, Tobias; Lorenz, Dominik; Maurer, Felix; Albrecht, Frederic W; Schnauber, Kristina; Wolf, Beate; Sessler, Daniel I; Volk, Thomas; Fink, Tobias; Kreuer, Sascha

    2016-01-01

    Ischemia and reperfusion alter metabolism. Multi-capillary column ion-mobility spectrometry (MCC-IMS) can identify volatile organic compounds (VOCs) in exhaled gas. We therefore used MCC-IMS to evaluate exhaled gas in a rat model of hemorrhagic shock with reperfusion. Adult male Sprague-Dawley rats (n  =  10 in control group, n  =  15 in intervention group) were anaesthetized and ventilated via tracheostomy for 14 h or until death. Hemorrhagic shock was maintained for 90 min by removing blood from the femoral artery to a target of MAP 35  ±  5 mmHg, and then retransfusing the blood over 60 min in 15 rats; 10 control rats were evaluated without shock and reperfusion. Exhaled gas was analyzed with MCC-IMS, VOCs were identified using the BS-MCC/IMS analytes database (Version 1209). VOC intensities were analyzed at the end of shock, end of reperfusion, and after 9 h. All normotensive animals survived the observation period, whereas mean survival time was 11.2 h in shock and reperfusion animals. 16 VOCs differed significantly for at least one of the three analysis periods. Peak intensities of butanone, 2-ethyl-1-hexanol, nonanal, and an unknown compound were higher in shocked than normotensive rats, and another unknown compound increased over the time. 1-butanol increased only during reperfusion. Acetone, butanal, 1.2-butandiol, isoprene, 3-methylbutanal, 3-pentanone, 2-propanol, and two unknown compounds were lower and decreased during shock and reperfusion. 1-pentanol and 1-propanol were significant greater in the hypotensive animals during shock, were comparable during reperfusion, and then decreased after resuscitation. VOCs differ during hemorrhagic shock, reperfusion, and after reperfusion. MCC-IMS of exhaled breath deserves additional study as a non-invasive approach for monitoring changes in metabolism during ischemia and reperfusion. PMID:26971584

  17. Microfluidic processing of concentrated surfactant mixtures: online SAXS, microscopy and rheology.

    PubMed

    Martin, Hazel P; Brooks, Nicholas J; Seddon, John M; Luckham, Paul F; Terrill, Nick J; Kowalski, Adam J; Cabral, Joo T

    2016-02-14

    We investigate the effect of microfluidic flow on the microstructure and dynamics of a model surfactant mixture, combining synchrotron Small Angle X-ray Scattering (SAXS), microscopy and rheology. A system comprising a single-chain cationic surfactant, hexadecyl trimethyl ammonium chloride (C16TAC), a short-chain alcohol (1-pentanol) and water was selected for the study due to its flow responsiveness and industrial relevance. Model flow fields, including sequential contraction-expansion (extensional) and rotational flows, were investigated and the fluid response in terms of the lamellar d-spacing, orientation and birefringence was monitored in situ, as well as the recovery processes after cessation of flow. Extensional flows are found to result in considerable d-spacing increase (from approx 59 to 65 ). However, under continuous flow, swelling decreases with increasing flow velocity, eventually approaching the equilibrium values at velocities ?2 cm s(-1). Through individual constrictions we observe the alignment of lamellae along the flow velocity, accompanied by increasing birefringence, followed by an orientation flip whereby lamellae exit perpendicularly to the flow direction. The resulting microstructures are mapped quantitatively onto the flow field in 2D with 200 ?m spatial resolution. Rotational flows alone do not result in appreciable changes in lamellar spacing and flow type and magnitude evidently impact the fluid microstructure under flow, as well as upon relaxation. The findings are correlated with rheological properties measured ex situ to provide a mechanistic understanding of the effect of flow imposed by tubular processing units in the phase behavior and performance of a model surfactant system with ubiquitous applications in personal care and coating industries. PMID:26739043

  18. Production of Methyl Ketones from Secondary Alcohols by Cell Suspensions of C(2) to C(4)n-Alkane-Grown Bacteria.

    PubMed

    Hou, C T; Patel, R; Laskin, A I; Barnabe, N; Barist, I

    1983-07-01

    Nineteen new C(2) to C(4)n-alkane-grown cultures were isolated from lake water from Warinanco Park, Linden, N.J., and from lake and soil samples from Bayway Refinery, Linden, N.J. Fifteen known liquid alkane-utilizing cultures were also found to be able to grow on C(2) to C(4)n-alkanes. Cell suspensions of these C(2) to C(4)n-alkane-grown bacteria oxidized 2-alcohols (2-propanol, 2-butanol, 2-pentanol, and 2-hexanol) to their corresponding methyl ketones. The product methyl ketones accumulated extracellularly. Cells grown on 1-propanol or 2-propanol oxidized both primary and secondary alcohols. In addition, the activity for production of methyl ketones from secondary alcohols was found in cells grown on either alkanes, alcohols, or alkylamines, indicating that the enzyme(s) responsible for this reaction is constitutive. The optimum conditions for in vivo methyl ketone formation from secondary alcohols were compared among selected strains: Brevibacterium sp. strain CRL56, Nocardia paraffinica ATCC 21198, and Pseudomonas fluorescens NRRL B-1244. The rates for the oxidation of secondary alcohols were linear for the first 3 h of incubation. Among secondary alcohols, 2-propanol and 2-butanol were oxidized at the highest rate. A pH around 8.0 to 9.0 was found to be the optimum for acetone or 2-butanone formation from 2-alcohols. The temperature optimum for the production of acetone or 2-butanone from 2-propanol or 2-butanol was rather high at 60 degrees C, indicating that the enzyme involved in the reaction is relatively thermally stable. Metal-chelating agents inhibit the production of methyl ketones, suggesting the involvement of a metal(s) in the oxidation of secondary alcohols. Secondary alcohol dehydrogenase activity was found in the cell-free soluble fraction; this activity requires a cofactor, specifically NAD. Propane monooxygenase activity was also found in the cell-free soluble fraction. It is a nonspecific enzyme catalyzing both terminal and subterminal oxidation of n-alkanes. PMID:16346339

  19. Production of Methyl Ketones from Secondary Alcohols by Cell Suspensions of C2 to C4n-Alkane-Grown Bacteria

    PubMed Central

    Hou, Ching T.; Patel, Ramesh; Laskin, Allen I.; Barnabe, Nancy; Barist, Irene

    1983-01-01

    Nineteen new C2 to C4n-alkane-grown cultures were isolated from lake water from Warinanco Park, Linden, N.J., and from lake and soil samples from Bayway Refinery, Linden, N.J. Fifteen known liquid alkane-utilizing cultures were also found to be able to grow on C2 to C4n-alkanes. Cell suspensions of these C2 to C4n-alkane-grown bacteria oxidized 2-alcohols (2-propanol, 2-butanol, 2-pentanol, and 2-hexanol) to their corresponding methyl ketones. The product methyl ketones accumulated extracellularly. Cells grown on 1-propanol or 2-propanol oxidized both primary and secondary alcohols. In addition, the activity for production of methyl ketones from secondary alcohols was found in cells grown on either alkanes, alcohols, or alkylamines, indicating that the enzyme(s) responsible for this reaction is constitutive. The optimum conditions for in vivo methyl ketone formation from secondary alcohols were compared among selected strains: Brevibacterium sp. strain CRL56, Nocardia paraffinica ATCC 21198, and Pseudomonas fluorescens NRRL B-1244. The rates for the oxidation of secondary alcohols were linear for the first 3 h of incubation. Among secondary alcohols, 2-propanol and 2-butanol were oxidized at the highest rate. A pH around 8.0 to 9.0 was found to be the optimum for acetone or 2-butanone formation from 2-alcohols. The temperature optimum for the production of acetone or 2-butanone from 2-propanol or 2-butanol was rather high at 60C, indicating that the enzyme involved in the reaction is relatively thermally stable. Metal-chelating agents inhibit the production of methyl ketones, suggesting the involvement of a metal(s) in the oxidation of secondary alcohols. Secondary alcohol dehydrogenase activity was found in the cell-free soluble fraction; this activity requires a cofactor, specifically NAD. Propane monooxygenase activity was also found in the cell-free soluble fraction. It is a nonspecific enzyme catalyzing both terminal and subterminal oxidation of n-alkanes. PMID:16346339

  20. Pharmacodynamic and metabolic interactions between ethanol and two industrial solvents (methyl n-butyl ketone and methyl isobutyl ketone) and their principal metabolites in mice.

    PubMed

    Sharkawi, M; Granvil, C; Faci, A; Plaa, G L

    1994-01-01

    MnBK and MiBK prolong the duration of ketamine-, pentobarbital-, thiopental- and ethanol-induced loss of righting reflex (LRR) in mice. In equimolar doses, (5 mmol/kg i.p.), both isomers were equipotent with respect to the enhancement of ketamine-, pentobarbital-, and thiopental-induced LRR. However, MnBK was significantly more effective (twice as effective) than its isomer with respect to enhancing ethanol-induced LRR. An attempt to explain the difference in effectiveness between the two isomers was carried out. The effects of both ketones and their principal metabolites, (2-hexanol (2-HOL), 2,5-hexanedione (2,5-HD), 4-methyl-2-pentanol (4-MPOL) and 4-hydroxy 4-methyl-2-pentanone (HMP)) on ethanol-induced LRR and ethanol elimination were studied in mice. The ketones and their metabolites were dissolved in corn oil and injected intraperitoneally 30 min before 4 g/kg ethanol for LRR and 2 g/kg for ethanol elimination. Ethanol-induced LRR was significantly prolonged by the following dosages (mmol/kg), MnBK, 5; MiBK, 5; 2-HOL, 2.5; 4-MPOL, 2.5; and HMP, 2.5; 2,5-HD, 2.5, however exerted no effect. Concentrations of ethanol in blood or brain upon return of the righting reflex were similar in solvent-treated and control animals. The mean elimination rate of ethanol was slower in groups pretreated with MnBK or 2-HOL as compared to control animals. Ethanol elimination in animals pretreated with MiBK, HMP, 4-MPOL, or 2,5-HD was similar to that in control animals. These ketones are known to have some central depressant action on their own. This by itself could lead to prolongation of ethanol-induced LRR. However, MnBK, as well as one of its principal metabolites, (2-HOL), markedly reduced ethanol elimination. This could explain the observation that MnBK has a greater potentiating effect on ethanol-induced LRR that its isomer, MiBK, which does not affect ethanol elimination. PMID:7801321

  1. Purification and characterization of alcohol dehydrogenase reducing N-benzyl-3-pyrrolidinone from Geotrichum capitatum.

    PubMed

    Yamada-Onodera, Keiko; Fukui, Masato; Tani, Yoshiki

    2007-02-01

    (S)-N-Benzyl-3-pyrrolidinol is widely used in the synthesis of pharmaceuticals as a chiral building block. We produced 30 mM (S)-N-benzyl-3-pyrrolidinol (enantiometric excess > 99.9%) from the corresponding ketone N-benzyl-3-pyrrolidinone with more than 99.9% yield in 28 h of the resting-cell reaction of Geotrichum capitatum JCM 3908. NAD(+)-dependent alcohol dehydrogenase reducing N-benzyl-3-pyrrolidinone from G. capitatum JCM 3908 was purified to homogeneity by ammonium sulfate fractionation and a series of DEAE-Toyopearl, Butyl-Toyopearl, Superdex 200, and Hydroxyapatite column chromatographies. The results of SDS-PAGE and HPLC showed the enzyme to be a dimer with a molecular mass of 78 kDa. The purified enzyme produced (S)-N-benzyl-3-pyrrolidinol (e.e.>99.9%) from N-benzyl-3-pyrrolidinone. The enzyme reduced 2,3-butanedione, 2-hexanone, cyclohexanone, propionaldehyde, n-butylaldehyde, n-hexylaldehyde, n-octylaldehyde, n-valeraldehyde, and benzylacetone more effectively than it did N-benzyl-3-pyrrolidinone. No activity was detected towards N-benzyl-2-pyrrolidinone or 2-pyrrolidinone. The activity towards (R)-N-benzyl-3-pyrrolidinol was not detected under the assay conditions employed. The oxidizing activity of the enzyme was higher towards 2-propanol, 2-butanol, 2-pentanol, 2-hexanol, 3-hexanol, and 1-phenyl-2-propanol than towards (S)-N-benzyl-3-pyrrolidinol. The K(m) values for N-benzyl-3-pyrrolidinone reduction and (S)-N-benzyl-3-pyrrolidinol oxidation were 0.13 and 8.47 mM, respectively. To our knowledge, this is the first time that an N-benzyl-3-pyrrolidinol/N-benzyl-3-pyrrolidinone oxidoreductase was purified from a eukaryote; moreover, this is the first report of (S)-N-benzyl-3-pyrrolidinol dehydrogenase activity in microorganisms. This enzyme showed features different from those of known prokaryotic N-benzyl-3-pyrrolidinone reductases. This enzyme will be very useful for the production of chiral compounds. PMID:17368401

  2. An efficient and general route to reduced polypropionates via Zr-catalyzed asymmetric C—C bond formation

    PubMed Central

    Negishi, Ei-ichi; Tan, Ze; Liang, Bo; Novak, Tibor

    2004-01-01

    An efficient and general method for the synthesis of reduced polypropionates has been developed through the application of asymmetric carboalumination of alkenes catalyzed by dichlorobis(1-neomenthylindenyl)zirconium [(NMI)2ZrCl2]. In this investigation, attention has been focused on those reduced polypropionates that are α-monoheterofunctional and either ω-ethyl or ω-n-propyl. The reaction of 3-buten-1-ol with triethylaluminum (Et3Al) or tripropylaluminum (nPr3Al) in the presence of (NMI)2ZrCl2 and isobutylaluminoxane gave, after protonolysis, (R)-3-methyl-1-pentanol as well as (R)- and (S)-3-methyl-1-hexanols in 88–92% yield in 90–92% enantiomeric excess in one step. These 3-monomethyl-1-alkanols were then converted to two stereoisomers each of 2,4-dimethyl-1-hexanols and 2,4-dimethyl-1-heptanols via methylalumination catalyzed by (NMI)2ZrCl2 and methylaluminoxane followed by oxidation with O2. The four-step (or three-isolation-step) protocol provided syn-2,4-dimethyl-1-alkanols of ≥98% stereoisomeric purity in ≈50% overall yields, whereas (2S,4R)-2,4-dimethyl-1-hexanol of comparable purity was obtained in 40% overall yield. Commercial availability of (S)-2-methyl-1-butanol as a relatively inexpensive material suggested its use in the synthesis of (2S,4S)- and (2R,4S)-2,4-dimethyl-1-hexanols via a three-step protocol consisting of (i) iodination, (ii) zincation followed by Pd-catalyzed vinylation, and (iii) Zr-catalyzed methylalumination followed by oxidation with O2. This three-step protocol is iterative and applicable to the synthesis of reduced polypropionates containing three or more branching methyl groups, rendering this method for the synthesis of reduced polypropionates generally applicable. Its synthetic utility has been demonstrated by preparing the side chain of zaragozic acid A and the C11–C20 fragment of antibiotics TMC-151 A–F. PMID:15073327

  3. Milk volatile organic compounds and fatty acid profile in cows fed timothy as hay, pasture, or silage.

    PubMed

    Villeneuve, M-P; Lebeuf, Y; Gervais, R; Tremblay, G F; Vuillemard, J C; Fortin, J; Chouinard, P Y

    2013-01-01

    Nutrient composition and organoleptic properties of milk can be influenced by cow diets. The objective of this study was to evaluate the forage type effects on volatile organic compounds, fatty acid (FA) profile, and organoleptic properties of milk. Timothy grass was fed as hay, pasture, or silage during a period of 27 d to a group of 21 cows in a complete block design based on days in milk. Each cow also received 7.2 kg/d of a concentrate mix to meet their nutrient requirements. Forage dry matter intake averaged 13.9 kg/d and was not different among treatments. Milk yield was higher for cows fed pasture, intermediate for cows fed silage, and lowest for cows fed hay. However, milk fat content was higher for cows fed hay and silage, compared with cows fed pasture. As a result, fat-corrected milk and fat yield were not different among treatments. Increasing the supply of dietary cis-9,cis-12 18:2 (linoleic acid) and cis-9,cis-12,cis-15 18:3 (?-linolenic acid) when feeding pasture enhanced the concentration of these 2 essential FA in milk fat compared with feeding hay or silage. Moreover, the ratio of 16:0 (palmitic acid) to cis-9 18:1 (oleic acid), which is closely related to the melting properties of milk fat, was lower in milk from cows on pasture than in milk from cows fed hay or silage. Cows fed hay produced milk with higher levels of several free FA and ?-lactones, but less pentanal and 1-pentanol. More dimethyl sulfone and toluene were found in milk of cows on pasture. Cows fed silage produced milk with higher levels of acetone, 2-butanone, and ?-pinene. Results from a sensory evaluation showed that panelists could not detect a difference in flavor between milk from cows fed hay compared with silage. However, a significant number of assessors perceived a difference between milk from cows fed hay compared with milk from cows fed pasture. In a sensory ranking test, the percentage of assessors ranking for the intensity of total (raw milk, fresh milk, and farm milk), sweet (empyreumatic, vanilla, caramel, and sugar), and grassy (grass, leafy vegetable, and plant) flavors was higher for milk from cows fed pasture compared with hay and silage. Using timothy hay, pasture, or silage harvested at a similar stage of development, the current study shows that the taste of milk is affected by the forage type fed to cows. More research is, however, needed to establish a link between the sensory attributes of milk and the observed changes in volatile organic compounds and FA profile. PMID:24035021

  4. Thermodynamics of Organic Compound Alteration in Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Shock, E. L.

    2005-12-01

    Organic compounds enter hydrothermal systems through infiltrating surface waters, zones of microbial productivity in the subsurface, extracts of organic matter in surrounding host rocks, and abiotic synthesis. Owing to variations in pH, oxidation state, composition, temperature, and pressure throughout the changing pathways of fluid migration over the duration of the system, organic compounds from all of these sources are introduced to conditions where their relative stabilities and reactivities can be dramatically transformed. If those transformations were predictable, then the extent to which organic alteration reactions have occurred could be used to reveal flowpaths and histories of hydrothermal systems. Speciation and mass transfer calculations permit some insight into the underlying thermodynamic driving forces that result in organic compound alteration. As an example, the speciation of many geochemist's canonical organic matter: CH2O depends strongly on oxidation state, temperature, and total concentration of dissolved organic matter. Calculations show that at oxidation states buffered by iron-bearing mineral assemblages, organic acids dominate the speciation of CH2O throughout hydrothermal systems, with acetic acid (itself equivalent to 2 CH2O by bulk composition) and propanoic acid generally the most abundant compounds. However, at more reduced conditions, which may prevail in organic-rich iron-poor sediments, the drive is to form ketones and especially alcohols at the expense of organic acids. The distribution of organic carbon among the various members of these compound classes is strongly dependent on the total concentration of dissolved organic matter. As an example, at a bulk concentration equivalent to average dissolved organic matter in seawater (45?m), the dominant alcohols at 100C are small compounds like ethanol and 1-propanol. In contrast, at a higher bulk concentration of 500?m, there is a drive to shift large percentages of dissolved organic carbon into 1-pentanol and 1-hexanol. As the fugacity of H2 increases so does the complexity of the mixture of organic compounds that would result in the lowest energy state. However, the number of dominant compounds in the mixture decreases with increasing temperature for similar extents of reduction referenced to mineral buffered conditions.

  5. The effect of cavitating ultrasound on the aqueous phase hydrogenation of cis-2-buten-1-ol and cis-2-penten-1-ol on Pd-black

    SciTech Connect

    Disselkamp, Robert S.; Denslow, Kayte M.; Hart, Todd R.; White, James F.; Peden, Charles HF.

    2005-07-15

    We have studied the effect of cavitating ultrasound on the heterogeneous aqueous hydrogenation of cis-2-buten-1-ol (C4 olefin) and cis-2-penten-1-ol (C5 olefin) on Pd-black to form the trans-olefins (trans-2-buten-1-ol and trans-2-penten-1-ol) and saturated alcohols (1-butanol and 1-pentanol, respectively). Silent (and magnetically stirred) experiments served as control experiments. As described in an earlier publication by our group, we have added an inert dopant, 1-propanol, in the reaction mixture to ensure the rapid onset of cavitation in the ultrasound-assisted reactions that can lead to altered selectivity compared to silent reaction systems [R.S. Disselkamp, Ya-Huei Chin, C.H.F. Peden, J. Catal. 227 (2004) 552]. The motivation for this study is to examine whether cavitating ultrasound can reduce the [trans-olefin/saturated alcohol] molar ratio during the course of the reaction. This could have practical application in that it may offer an alternative processing methodology of synthesizing healthier edible seed oils by reducing trans-fat content.We have observed that cavitating ultrasound results in a [(trans-olefin/saturated alcohol)ultrasound/(trans-olefin/saturated alcohol)silent] ratio quantity less than 0.5 at the reaction mid-point for both the C4 and C5 olefin systems. This indicates that ultrasound reduces trans-olefin production compared to the silent control experiment. Furthermore, there is an added 30% reduction for the C5 versus C4 olefin compounds again at reaction mid-point. We attribute differences in the ratio quantity as a moment of inertia effect. In principle, the C4 versus C5 olefins has a {approx}52% increase in moment of inertia about C2 C3 double bond slowing isomerization. Since seed oils are C18 multiple cis-olefins and have a moment of inertia even greater than our C5 olefin here, our study suggests that even a greater reduction in trans-olefin content may occur for partial hydrogenation of C18 seed oils.

  6. The Effect of Cavitating Ultrasound on the Aqueous Phase Hydrogenation of Cis-2-buten-1-ol and Cis-2-penten-1-ol on Pd-black

    SciTech Connect

    Disselkamp, Robert S.; Denslow, Kayte M.; Hart, Todd R.; White, James F.; Peden, Charles HF.

    2005-07-15

    We have studied the effect of cavitating ultrasound on the heterogeneous aqueous hydrogenation of cis-2-buten-1-ol (C4 olefin) and cis-2-penten-1-ol (C5 olefin) on Pd-black to form the trans-olefins (trans-2-buten-1-ol and trans-2-penten-1-ol) and saturated alcohols (1-butanol and 1-pentanol, respectively). Silent (and magnetically stirred) experiments served as control experiments. As described in an earlier publication by our group, we have added an inert dopant, 1-propanol, in the reaction mixture to ensure the rapid onset of cavitation in the ultrasound-assisted reactions that can lead to altered selectivity compared to silent reaction systems [Disselkamp et al., J. Catal., 227 (2004) 552]. The motivation for this study is to examine whether cavitating ultrasound can reduce the [trans-olefin/saturated alcohol] molar ratio during the course of the reaction. This could have practical application in that it may offer an alternative processing methodology of synthesizing healthier edible seed oils by reducing trans-fat content. We have observed that cavitating ultrasound results in a [(trans-olefin/saturated alcohol)ultrasound/(trans-olefin/saturated alcohol)silent] ratio quantity less than 0.5 at the reaction mid-point for both the C4 and C5 olefin systems. This indicates that ultrasound reduces trans-olefin production compared to the silent control experiment. Furthermore, there is an added 30% reduction for the C5 versus C4 olefin compounds again at reaction mid-point. We attribute differences in the ratio quantity as a moment of inertia effect. In principle, the C4 versus C5 olefins has a {approx}52% increase in moment of inertia about C2=C3 double bond slowing isomerization. Since seed oils are C18 multiple cis olefins and have an moment of inertia even greater than our C5 olefin here, our study suggests that even a greater reduction in trans-olefin content may occur for partial hydrogenation of C18 seed oils.

  7. Correlation between hydrophobicity of short-chain aliphatic alcohols and their ability to alter plasma membrane integrity.

    PubMed

    McKarns, S C; Hansch, C; Caldwell, W S; Morgan, W T; Moore, S K; Doolittle, D J

    1997-03-01

    The quantitative relationship between chemical structure and biological activity has received considerable attention in the fields of pharmacology and drug development. More recently, quantitative structure-activity relationships (QSARs) have been used for predicting chemical toxicity. It has been proposed that alcohols may elicit their toxic effects through hydrophobic interactions with the cellular membrane. The objective of this study was to evaluate the role of hydrophobicity in the loss of membrane integrity following acute exposure to short-chain aliphatic alcohols in rat liver epithelial cells in vitro. The series of alcohols studied included methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 2-butanol, 2-methyl-1-propanol, and 2-methyl-2-propanol. The lactate dehydrogenase (LDH) assay was used to quantify membrane integrity. The logarithm of the octanol/water partition coefficient (log P) was used to quantify hydrophobicity. LDH50 values, representing alcohol concentrations yielding a 50% increase in LDH release relative to untreated controls (i.e., mild disruption of membrane integrity), and EC50 values, representing alcohol concentrations yielding 50% of the maximal release of LDH (i.e., moderate disruption of LDH release), were experimentally determined for each alcohol. The LDH50 and EC50 values were then used to derive the QSAR relationship. The aqueous alcohol concentrations yielding LDH50 or EC50 values ranged from 8.9 x 10(-4) m (LDH50 for octanol) to 3.5 m (EC50 for methanol), and the log P of the alcohols ranged from -0.77 (methanol) to 3.00 (octanol). From these data, we have derived two QSAR equations describing the role of hydrophobicity in the release of LDH from rat liver epithelial cells following a 1-hr alcohol exposure. The QSAR equation for LDH50 values, log (1/LDH50) = 0.896 log P + 0.117 (n = 11, SD = 0.131), was nearly identical to the QSAR equation for EC50 values, log (1/EC50) = 0.893 log P + 0.101 (n = 11, SD = 0.133], suggesting that similar structure-activity relationships exist at both mild and moderate levels of membrane disruption. Our data indicate that an increase in LDH release was positively and linearly correlated with the hydrophobicity (r = 0.993). These data may help predict the potential biological effects of other, as yet untested, aliphatic alcohols and aliphatic alcohol-like compounds (e.g., anesthetics) on the plasma membrane. PMID:9073468

  8. Experimental study of the effect of test-well arrangement for partitioning interwell tracer test on the estimation of NAPL saturation

    NASA Astrophysics Data System (ADS)

    Kim, B.; Kim, Y.; Yeo, I.; Yongcheol Kim, In Wook Yeo

    2011-12-01

    Partitioning interwell tracer test (PITT) is a method to quantify and qualify a contaminated site with NAPLs through a degree of retardation of partitioning tracers compared to a conservative one. Although PITT is known to be a more effective method to measure the saturation of spatially-distributed NAPL contaminant than the point investigation method, the saturation estimation from PITT is reported to be underestimated due to various factors including heterogeneity of the media, adsorption, source zone NAPL architecture, and long tailing in breakthrough curves of partitioning tracers. Analytical description of PITT assumes that the injection-pumping well pair is on the line of ambient groundwater flow direction, but the test-well pair could easily be off the line in the field site, which could be another erroneous factor in analyzing PITT data. The purpose of this work is to study the influence of the angle of the test-well pair to ambient groundwater flow direction based on the result from PITT. The experiments were conducted in a small-scale 3D sandbox with dimensions of 0.5 m 0.4 m 0.15 m (LWH) of stainless steel. The surface is covered and sealed with a plexiglass plate to make the physical model a confined aquifer. Eight full-screened wells of Teflon material were installed along the perimeter of a 50 mm circle with 45 degree intervals in the middle of the physical model. Both ends of the sand box are connected to constant head reservoirs. The physical model was wet-packed with sieved and washed sand. Trichloroethylene (TCE) and bromide were used as the contaminant and the conservative tracer, respectively. Hexanol, 2,4-dimethyl-3-pentanol and 6-methyl-2-heptanol were used as partitioning tracers. Before the injection of TCE, a PITT was conducted to measure adsorption coefficient of partitioning tracers to the sand material. TCE of 4.5 mL, dyed with Sudan IV, was injected into the inner part of the circle of the wells. PITTs using the test-well pair parallel and with angles of 45 and 90 degrees to ambient flow direction were performed. Another PITT was conducted at an increased pumping rate with the test-well pair at a 45 degree angle to examine the effect of pumping rate. From the experiments, it was found that as the angles of the test-well pair to ambient groundwater flow direction increased, the estimated NAPL saturation decreased. Although the increase in pumping rate in this experiment reduces the effect of the obliqueness of the test-well arrangement, the effect of rate-limited transfer of partitioning tracers due to the increased pumping rate on the PITT should be examined in the interpretation. The results of these experiments revealed that the arrangement of the test-well pair is another controlling factor in performing and interpreting PITT in the field, in addition to the factors such as heterogeneity, source zone architecture, and tailing. Key words: PITT, test-well arrangement, ambient groundwater flow direction, NAPL saturation Acknowledgements: This research was supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM) funded by the Ministry of Knowledge Economy of Korea. 11-3414

  9. Safety assessment of MIBK (methyl isobutyl ketone).

    PubMed

    Johnson, Wilbur

    2004-01-01

    MIBK (Methyl Isobutyl Ketone) is an aliphatic ketone that functions as both a denaturant and solvent in cosmetic products. Current use in cosmetic products is very limited, but MIBK is reported to be used in one nail correction pen (volume = 3 ml) at a concentration of 21%. The maximum percutaneous absorption rate in guinea pigs is 1.1 micromol/min/cm2 at 10 to 45 min. Metabolites include 4-hydroxy-4-methyl-2-pentanone (oxidation product) and 4-methyl-2-pentanol (4-MPOL) (reduction product). Values for the serum half-life and total clearance time of MIBK in animals were 66 min and 6 h, respectively. In clinical tests, most of the absorbed MIBK had been eliminated from the body 90 min post exposure. MIBK was not toxic via the oral or dermal route of exposure in acute, short-term, or subchronic animal studies, except that nephrotoxicity was observed in rats dosed with 1 g/kg in a short-term study. MIBK was an ocular and skin irritant in animal tests. Ocular irritation was noted in 12 volunteers exposed to 200 ppm MIBK for 15 min in a clinical test. A depression of the vestibulo-oculomotor reflex was seen with intravenous infusion of MIBK (in an emulsion) at 30 microM/kg/min in female rats. The no-observed-effect level in rats exposed orally to MIBK was 50 mg/kg. Both gross and microscopic evidence of lung damage were reported in acute inhalation toxicity studies in animals. Short-term and subchronic inhalation exposures (as low as 100 ppm) produced effects in the kidney and liver that were species and sex dependent. Dermal doses of 300 or 600 mg/kg for 4 months in rats produced reduced mitotic activity in hair follicles, increased thickness of horny and granular cell layers of the epidermis, a decrease in the number of reactive centers in follicles (spleen), an increase in the number of iron-containing pigments in the area of the red pulp (spleen), and a reduction in the lipid content of the cortical layer of the adrenal glands. Neuropathological changes in the most distal portions of the tibial and ulnar nerves were observed in young adult rats which inhaled 1500 ppm MIBK for up to 5 months. No adverse effects were seen in any other neurological end point by any route of exposure in other studies using rats or other animal species. Clinical tests demonstrated a threshold for MIBK-induced irritation of the lungs at 0.03 to 0.1 mg/L after 1 min of respiration. MIBK was not mutagenic in the Ames test or in a mitotic gene-conversion assay in bacteria. Mammalian mutagenicity test results were also negative in the following assays: mouse lymphoma, unscheduled DNA synthesis, micronucleus, cell transformation, and chromosome damage. MIBK did not induce any treatment-related increases in embryotoxicity or fetal malformations in pregnant Fischer 344 rats or CD-1 mice that inhaled MIBK at concentrations of 300, 1000, or 3000 ppm. There was evidence of treatment-related maternal toxicity only at the highest concentration tested. MIBK applied to the tail of rats daily at doses of 300 or 600 mg/kg for 4 months produced changes in the testes, including a reduction in the number of spermatocytes, spermatids, and spermatozoa. An ongoing carcinogenicity study of MIBK being conducted by the National Toxicology Program will be considered when the results are available. On the basis of the information that is currently available, MIBK is considered safe as used in nail polish removers and as an alcohol denaturant in cosmetic products. PMID:15162837

  10. A Unique Equation to Estimate Flash Points of Selected Pure Liquids Application to the Correction of Probably Erroneous Flash Point Values

    NASA Astrophysics Data System (ADS)

    Catoire, Laurent; Naudet, Valrie

    2004-12-01

    A simple empirical equation is presented for the estimation of closed-cup flash points for pure organic liquids. Data needed for the estimation of a flash point (FP) are the normal boiling point (Teb), the standard enthalpy of vaporization at 298.15 K [?vapH(298.15 K)] of the compound, and the number of carbon atoms (n) in the molecule. The bounds for this equation are: -100?FP(C)?+200; 250?Teb(K)?650; 20??vap H(298.15 K)/(kJ mol-1)?110; 1?n?21. Compared to other methods (empirical equations, structural group contribution methods, and neural network quantitative structure-property relationships), this simple equation is shown to predict accurately the flash points for a variety of compounds, whatever their chemical groups (monofunctional compounds and polyfunctional compounds) and whatever their structure (linear, branched, cyclic). The same equation is shown to be valid for hydrocarbons, organic nitrogen compounds, organic oxygen compounds, organic sulfur compounds, organic halogen compounds, and organic silicone compounds. It seems that the flash points of organic deuterium compounds, organic tin compounds, organic nickel compounds, organic phosphorus compounds, organic boron compounds, and organic germanium compounds can also be predicted accurately by this equation. A mean absolute deviation of about 3 C, a standard deviation of about 2 C, and a maximum absolute deviation of 10 C are obtained when predictions are compared to experimental data for more than 600 compounds. For all these compounds, the absolute deviation is equal or lower than the reproductibility expected at a 95% confidence level for closed-cup flash point measurement. This estimation technique has its limitations concerning the polyhalogenated compounds for which the equation should be used with caution. The mean absolute deviation and maximum absolute deviation observed and the fact that the equation provides unbiaised predictions lead to the conclusion that several flash points have been reported erroneously, whatever the reason, in one or several reference compilations. In the following lists, the currently accepted flash points for bold compounds err, or probably err, on the hazardous side by at least 10 C and for the nonbolded compounds, the currently accepted flash points err, or probably err, on the nonhazardous side by at least 10 C: bicyclohexyl, sec-butylamine, tert-butylamine, 2-cyclohexen-1-one, ethanethiol, 1,3-cyclohexadiene, 1,4-pentadiene, methyl formate, acetonitrile, cinnamaldehyde, 1-pentanol, diethylene glycol, diethyl fumarate, diethyl phthalate, trimethylamine, dimethylamine, 1,6-hexanediol, propylamine, methanethiol, ethylamine, bromoethane, 1-bromopropane, tert-butylbenzene, 1-chloro-2-methylpropane, diacetone alcohol, diethanolamine, 2-ethylbutanal, and formic acid. For some other compounds, no other data than the currently accepted flash points are available. Therefore, it cannot be assessed that these flash point data are erroneous but it can be stated that they are probably erroneous. At least, they need experimental re-examination. They are probably erroneous by at least 15 C: 1,3-cyclopentadiene, di-tert-butyl sulfide, dimethyl ether, dipropyl ether, 4-heptanone, bis(2-chloroethyl)ether, 1-decanol, 1-phenyl-1-butanone, furan, ethylcyclopentane, 1-heptanethiol, 2,5-hexanediol, 3-hexanone, hexanoic acid methyl ester, 4-methyl-1,3-pentadiene, propanoyl chloride, tetramethylsilane, thiacyclopentane, 1-chloro-2-methyl-1-propene, trans-1,3-pentadiene, 2,3-dimethylheptane, triethylenetetramine, methylal, N-ethylisopropylamine, 3-methyl-2-pentene, and 2,3-dimethyl-1-butene.

  11. Influence of Mass Transfer Kinetics on Interpretation of Push-Pull Partitioning Tracer Tests

    NASA Astrophysics Data System (ADS)

    Ervin, R. E.; Boroumand, A.; Abriola, L. M.; Ramsburg, C. A.

    2012-12-01

    There is now considerable interest in predicting plume response to various levels of treatment applied within a DNAPL source zone. An important component to the development of this predictive capability is the ability to characterize the distribution of DNAPL within the source zone. Metrics developed for description of source zone architecture are frequently based upon some combination of downgradient contaminant concentrations and in source testing. One option for in source testing is the use of partition tracers in either interwell or push-pull test configurations. Push-pull tracer tests are advantageous for obtaining more localized information that can be integrated with other observations to reduce the uncertainty related the links between the architecture of a source and its associated plume. Here we examined push-pull tracer tests in a series of aquifer cell experiments to evaluate the potential of this type of test to quantify metrics of the DNAPL distribution at the local-scale (i.e., 1 m flow path). Three DNAPL architectures were characterized by conducting push-pull tracer tests using a solution which comprised three partitioning tracers (1-pentanol, 1-hexanol, and 2-octanol) and one non-partitioning tracer (bromide). Each architecture was characterized using three flow regimes that employed combinations of fast (~30 cm/hr) and slow (~2 cm/hr) velocities. Production curves (i.e., tracer concentrations during the pull phase of the test) for the partitioning tracers were found to be asymmetric. This asymmetry severely degraded the ability of an analytical solution employing the local equilibrium assumption to predict the overall saturations. Saturation estimates from the analytical solution were found to be improved when the application of the model was restricted to later time data (Vext/Vinj >1). This observation suggests it is important to better understand the factors influencing the early time data. Experiments were also simulated using a numerical model containing a linear driving force expression to describe the tracer mass transfer. Mass transfer coefficients in all simulations were produced using available correlations for pool dissolution. Perfect knowledge of the DNAPL and permeability distributions, as well as relative permeability effects enabled the numerical model to better capture the asymmetry observed in the production curves. We then began to systematically simplify the numerical model to explore which assumptions associated with the analytical solution cause its poor performance. These assumptions include: uniform packing distribution, uniform DNAPL distribution, equilibrium partitioning, and no permeability reduction due to the presence of the DNAPL. Results suggest only limited degradation in model performance when the medium permeability and DNAPL saturation are assumed to be uniform, and relative permeability effects are neglected. In contrast, model performance was considerably poorer when mass transfer kinetics were neglected. These results highlight the importance of including mass transfer kinetics when characterizing local-scale DNAPL architecture.