Science.gov

Sample records for 1-phosphate sn-glycerol 3-phosphate

  1. [Sn-glycerol-3-phosphate acyltransferases (GPATs) in plants].

    PubMed

    Liu, Cong; Xiao, Dan-Wang; Shi, Chun-Lin; Hu, Xue-Fang; Wu, Ke-Bin; Guan, Chun-Yun; Xiong, Xing-Hua

    2013-12-01

    Sn-glycerol-3-phosphate acyltransferase (GPAT) catalyzes the acylation at sn-1 position of glycerol-3-phosphate to produce lysophosphatidic acid (LPA) in an acyl-CoA or acyl-ACP-dependent manner, which is the initial and rate-determining step of TAG biosynthetic pathway. Some GPATs have sn-2 transfer activity. Part members of the GPAT gene family have been cloned from different plant species. Based on their subcellular localizations, GPATs can be classified into three types, plastid GPATs, mitochondria GPATs and endoplasmic reticulum GPATs. GPATs exhibit diverse biochemical properties and are involved in synthesis of several lipids such as TAG, suberin, and cutin which play important roles in the growth and development of plants. This review summarized the current understanding of the chromosomal locus and gene structure of GPAT genes and the subcellular localization, sn-2 regiospecificity, substrates specialty, and functions of GPATs in plants. PMID:24645344

  2. Structure and Evolution of the Archaeal Lipid Synthesis Enzyme sn-Glycerol-1-phosphate Dehydrogenase*

    PubMed Central

    Carbone, Vincenzo; Schofield, Linley R.; Zhang, Yanli; Sang, Carrie; Dey, Debjit; Hannus, Ingegerd M.; Martin, William F.; Sutherland-Smith, Andrew J.; Ronimus, Ron S.

    2015-01-01

    One of the most critical events in the origins of cellular life was the development of lipid membranes. Archaea use isoprenoid chains linked via ether bonds to sn-glycerol 1-phosphate (G1P), whereas bacteria and eukaryotes use fatty acids attached via ester bonds to enantiomeric sn-glycerol 3-phosphate. NAD(P)H-dependent G1P dehydrogenase (G1PDH) forms G1P and has been proposed to have played a crucial role in the speciation of the Archaea. We present here, to our knowledge, the first structures of archaeal G1PDH from the hyperthermophilic methanogen Methanocaldococcus jannaschii with bound substrate dihydroxyacetone phosphate, product G1P, NADPH, and Zn2+ cofactor. We also biochemically characterized the enzyme with respect to pH optimum, cation specificity, and kinetic parameters for dihydroxyacetone phosphate and NAD(P)H. The structures provide key evidence for the reaction mechanism in the stereospecific addition for the NAD(P)H-based pro-R hydrogen transfer and the coordination of the Zn2+ cofactor during catalysis. Structure-based phylogenetic analyses also provide insight into the origins of G1PDH. PMID:26175150

  3. Glycerolipid biosynthesis in Saccharomyces cerevisiae: sn-glycerol-3-phosphate and dihydroxyacetone phosphate acyltransferase activities.

    PubMed Central

    Schlossman, D M; Bell, R M

    1978-01-01

    Yeast acyl-coenzyme A:dihydroxyacetone-phosphate O-acyltransferase (DHAP acyltransferase; EC 2.3.1.42) was investigated to (i) determine whether its activity and that of acyl-coenzyme A:sn-glycerol-3-phosphate O-acyltransferase (glycerol-P acyltransferase; EC 2.3.1.15) represent dual catalytic functions of a single membranous enzyme, (ii) estimate the relative contributions of the glycerol-P and DHAP pathways for yeast glycerolipid synthesis, and (iii) evaluate the suitability of yeast for future genetic investigations of the eucaryotic glycerol-P and DHAP acyltransferase activities. The membranous DHAP acyltransferase activity showed an apparent Km of 0.79 mM for DHAP, with a Vmax of 5.3 nmol/min per mg, whereas the glycerol-P acyltransferase activity showed an apparent Km of 0.05 mM for glycerol-P, with a Vmax of 3.4 nmol/min per mg. Glycerol-P was a competitive inhibitor (Ki, 0.07 mM) of the DHAP acyltransferase activity, and DHAP was a competitive inhibitor (Ki, 0.91 mM) of the glycerol-P acyltransferase activity. The two acyltransferase activities exhibited marked similarities in their pH dependence, acyl-coenzyme A chain length preference and substrate concentration dependencies, thermolability, and patterns of inactivation by N-ethylmaleimide, trypsin, and detergents. Thus, the data strongly suggest that yeast glycerol-P and DHAP acyltransferase activities represent dual catalytic functions of a single membrane-bound enzyme. Furthermore, since no acyl-DHAP oxidoreductase activity could be detected in yeast membranes, the DHAP pathway for glycerolipid synthesis may not operate in yeast. PMID:25265

  4. Improved purification of sn-glycerol-3-phosphate dehydrogenase of Saccharomyces cerevisiae and its inhibition by ethanol

    SciTech Connect

    Merkel, J.R.; Chen, S.M.; Osinchak, J.; Trumbore, M.

    1986-05-01

    An improved purification procedure yielded a homogeneous preparation of sn-glycerol-3-phosphate dehydrogenase (GPD) from commercially available baker's yeast. The enzyme had an apparent molecular weight of 42,000 by SDS-polyacrylamide gel electrophoresis. This differs from the 31,000 reported earlier on the basis of its elution from a calibrated Sepharose 6B column. When denatured by guanidine (6M) and chromatographed on a Sephadex G-100 column with 6M guanidine in 0.1M phosphate buffer, pH 6.5, containing 0.1M ..beta..-mercaptoethanol, GPD eluted with the approximately 42,000 mw proteins. S. cerevisiae GPD is an NAD-dependent oxidoreductase. With NADH as the variable substrate the GPD-catalyzed reduction of dihydroxacetone phosphate (DHAP) had a K/sub M/ of 0.018 mM and was competitively inhibited by ethanol. With DHAP as the variable substrate and NADH constant GPD catalyzed the reduction with a K/sub M/ of 0.37 mM and was noncompetitively inhibited by ethanol. The calculated K/sub i/ for the non-competitive inhibition was 3.4M. K/sub i/ for the competitive inhibition of NADH by ethanol varied with increasing concentrations of ethanol indicating a more complex mechanism than a truly competitive one.

  5. Topology of 1-Acyl-sn-glycerol-3-phosphate Acyltransferases SLC1 and ALE1 and Related Membrane-bound O-Acyltransferases (MBOATs) of Saccharomyces cerevisiae*

    PubMed Central

    Pagac, Martin; de la Mora, Hector Vazquez; Duperrex, Cécile; Roubaty, Carole; Vionnet, Christine; Conzelmann, Andreas

    2011-01-01

    In yeast, phosphatidic acid, the biosynthetic precursor for all glycerophospholipids and triacylglycerols, is made de novo by the 1-acyl-sn-glycerol-3-phosphate acyltransferases Ale1p and Slc1p. Ale1p belongs to the membrane-bound O-acyltransferase (MBOAT) family, which contains many enzymes acylating lipids but also others that acylate secretory proteins residing in the lumen of the ER. A histidine present in a very short loop between two predicted transmembrane domains is the only residue that is conserved throughout the MBOAT gene family. The yeast MBOAT proteins of known function comprise Ale1p, the ergosterol acyltransferases Are1p and Are2p, and Gup1p, the last of which acylates lysophosphatidylinositol moieties of GPI anchors on ER lumenal GPI proteins. C-terminal topology reporters added to truncated versions of Gup1p yield a topology predicting a lumenal location of its uniquely conserved histidine 447 residue. The same approach shows that Ale1p and Are2p also have the uniquely conserved histidine residing in the ER lumen. Because these data raised the possibility that phosphatidic acid could be made in the lumen of the ER, we further investigated the topology of the second yeast 1-acyl-sn-glycerol-3-phosphate acyltransferase, Slc1p. The location of C-terminal topology reporters, microsomal assays probing the protease sensitivity of inserted tags, and the accessibility of natural or artificially inserted cysteines to membrane-impermeant alkylating agents all indicate that the most conserved motif containing the presumed active site histidine of Slc1p is oriented toward the ER lumen, whereas other conserved motifs are cytosolic. The implications of these findings are discussed. PMID:21849510

  6. Cloning and characterization of murine 1-acyl-sn-glycerol 3-phosphate acyltransferases and their regulation by PPARalpha in murine heart.

    PubMed

    Lu, Biao; Jiang, Yan J; Zhou, Yaling; Xu, Fred Y; Hatch, Grant M; Choy, Patrick C

    2005-01-15

    AGPAT (1-acyl-sn-glycerol 3-phosphate acyltransferase) exists in at least five isoforms in humans, termed as AGPAT1, AGPAT2, AGPAT3, AGPAT4 and AGPAT5. Although they catalyse the same biochemical reaction, their relative function, tissue expression and regulation are poorly understood. Linkage studies in humans have revealed that AGPAT2 contributes to glycerolipid synthesis and plays an important role in regulating lipid metabolism. We report the molecular cloning, tissue distribution, and enzyme characterization of mAGPATs (murine AGPATs) and regulation of cardiac mAGPATs by PPARalpha (peroxisome-proliferator-activated receptor alpha). mAGPATs demonstrated differential tissue expression profiles: mAGPAT1 and mAGPAT3 were ubiquitously expressed in most tissues, whereas mAGPAT2, mAGPAT4 and mAGPAT5 were expressed in a tissue-specific manner. mAGPAT2 expressed in in vitro transcription and translation reactions and in transfected COS-1 cells exhibited specificity for 1-acyl-sn-glycerol 3-phosphate. When amino acid sequences of five mAGPATs were compared, three highly conserved motifs were identified, including one novel motif/pattern KX2LX6GX12R. Cardiac mAGPAT activities were 25% lower (P<0.05) in PPARalpha null mice compared with wild-type. In addition, cardiac mAGPAT activities were 50% lower (P<0.05) in PPARalpha null mice fed clofibrate compared with clofibrate fed wild-type animals. This modulation of AGPAT activity was accompanied by significant enhancement/reduction of the mRNA levels of mAGPAT3/mAGPAT2 respectively. Finally, mRNA expression of cardiac mAGPAT3 appeared to be regulated by PPARalpha activation. We conclude that cardiac mAGPAT activity may be regulated by both the composition of mAGPAT isoforms and the levels of each isoform. PMID:15367102

  7. Three Homologous Genes Encoding sn-Glycerol-3-Phosphate Acyltransferase 4 Exhibit Different Expression Patterns and Functional Divergence in Brassica napus1[C][W][OA

    PubMed Central

    Chen, Xue; Truksa, Martin; Snyder, Crystal L.; El-Mezawy, Aliaa; Shah, Saleh; Weselake, Randall J.

    2011-01-01

    Brassica napus is an allotetraploid (AACC) formed from the fusion of two diploid progenitors, Brassica rapa (AA) and Brassica oleracea (CC). Polyploidy and genome-wide rearrangement during the evolution process have resulted in genes that are present as multiple homologs in the B. napus genome. In this study, three B. napus homologous genes encoding endoplasmic reticulum-bound sn-glycerol-3-phosphate acyltransferase 4 (GPAT4) were identified and characterized. Although the three GPAT4 homologs share a high sequence similarity, they exhibit different expression patterns and altered epigenetic features. Heterologous expression in yeast further revealed that the three BnGPAT4 homologs encoded functional GPAT enzymes but with different levels of polypeptide accumulation. Complementation of the Arabidopsis (Arabidopsis thaliana) gpat4 gpat8 double mutant line with individual BnGPAT4 homologs suggested their physiological roles in cuticle formation. Analysis of gpat4 RNA interference lines of B. napus revealed that the BnGPAT4 deficiency resulted in reduced cutin content and altered stomatal structures in leaves. Our results revealed that the BnGPAT4 homologs have evolved into functionally divergent forms and play important roles in cutin synthesis and stomatal development. PMID:21173024

  8. Cloning of a coconut endosperm cDNA encoding a 1-acyl-sn-glycerol-3-phosphate acyltransferase that accepts medium-chain-length substrates.

    PubMed Central

    Knutzon, D S; Lardizabal, K D; Nelsen, J S; Bleibaum, J L; Davies, H M; Metz, J G

    1995-01-01

    Immature coconut (Cocos nucifera) endosperm contains a 1-acyl-sn-glycerol-3-phosphate acyltransferase (LPAAT) activity that shows a preference for medium-chain-length fatty acyl-coenzyme A substrates (H.M. Davies, D.J. Hawkins, J.S. Nelsen [1995] Phytochemistry 39:989-996). Beginning with solubilized membrane preparations, we have used chromatographic separations to identify a polypeptide with an apparent molecular mass of 29 kD, whose presence in various column fractions correlates with the acyltransferase activity detected in those same fractions. Amino acid sequence data obtained from several peptides generated from this protein were used to isolate a full-length clone from a coconut endosperm cDNA library. Clone pCGN5503 contains a 1325-bp cDNA insert with an open reading frame encoding a 308-amino acid protein with a calculated molecular mass of 34.8 kD. Comparison of the deduced amino acid sequence of pCGN5503 to sequences in the data banks revealed significant homology to other putative LPAAT sequences. Expression of the coconut cDNA in Escherichia coli conferred upon those cells a novel LPAAT activity whose substrate activity profile matched that of the coconut enzyme. PMID:8552723

  9. Cloning, heterologous expression and biochemical characterization of plastidial sn-glycerol-3-phosphate acyltransferase from Helianthus annuus.

    PubMed

    Payá-Milans, Miriam; Venegas-Calerón, Mónica; Salas, Joaquín J; Garcés, Rafael; Martínez-Force, Enrique

    2015-03-01

    The acyl-[acyl carrier protein]:sn-1-glycerol-3-phosphate acyltransferase (GPAT; E.C. 2.3.1.15) catalyzes the first step of glycerolipid assembly within the stroma of the chloroplast. In the present study, the sunflower (Helianthus annuus, L.) stromal GPAT was cloned, sequenced and characterized. We identified a single ORF of 1344base pairs that encoded a GPAT sharing strong sequence homology with the plastidial GPAT from Arabidopsis thaliana (ATS1, At1g32200). Gene expression studies showed that the highest transcript levels occurred in green tissues in which chloroplasts are abundant. The corresponding mature protein was heterologously overexpressed in Escherichia coli for purification and biochemical characterization. In vitro assays using radiolabelled acyl-ACPs and glycerol-3-phosphate as substrates revealed a strong preference for oleic versus palmitic acid, and weak activity towards stearic acid. The positional fatty acid composition of relevant chloroplast phospholipids from sunflower leaves did not reflect the in vitro GPAT specificity, suggesting a more complex scenario with mixed substrates at different concentrations, competition with other acyl-ACP consuming enzymatic reactions, etc. In summary, this study has confirmed the affinity of this enzyme which would partly explain the resistance to cold temperatures observed in sunflower plants. PMID:25618244

  10. Antioxidant behavior of 1-feruloyl-sn-glycerol and 1,3-diferuloyl-sn-glycerol in phospholipid liposomes 1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    1-Feruloyl-sn-glycerol (FG) and 1,3-diferuloyl-sn-glycerol (DFG) are two natural plant compounds that may be useful in cosmeceutical, food, and skin care applications because of excellent antioxidant properties. FG and DFG enzymatically synthesized through esterification of glycerol and soybean oil...

  11. Technological approach of 1-O-alkyl-sn-glycerols separation from Berryteuthis magister squid liver oil.

    PubMed

    Ermolenko, Ekaterina; Latyshev, Nikolay; Sultanov, Ruslan; Kasyanov, Sergey

    2016-03-01

    Biological active compounds, 1-O-alkyl-sn-glycerols (AG), were isolated from liver oil of the squid Berryteuthis magister. The main components of the initial lipids were 1-O-alkyl-2,3-diacyl-sn-glycerols (38.50 %) and triacylglycerols (24.26 %). The first step of separation was the alkaline hydrolysis of oil to form a lipid mixture consisting of AG, free fatty acids and cholesterol. AG were separated by double recrystallization from acetone at -20 °C and 1 °C. A simple procedure is proposed for obtaining AG with a purity of 99.22 %, the main component of which is chimyl alcohol (94.39 %). Purity and structure of the obtained products were confirmed by GC and GC-MS technique. Isolated AG may be used in nutrition and cosmetics. PMID:27570298

  12. Metabolism of L-glyceraldehyde 3-phosphate in Escherichia coli

    SciTech Connect

    Kalyananda, M.K.G.S.

    1985-01-01

    E. coli is able to incorporate L-glyceraldehyde and L-glyceraldehyde 3-phosphate into phospholipids, L-(3-/sup 3/H)Glyceraldehyde was synthesized and the purity and the chemical identity of the product were checked by paper chromatography. L-(3-/sup 3/H)Glyceraldehyde 3-phosphate was synthesized from L-(3-/sup 3/H)glyceraldehyde in a reaction catalyzed by glycerokinase. E. coli extract contains a new enzyme activity which catalyzes an NADPH dependent reduction of L-glyceraldehyde 3-phosphate into sn-glycerol 3-phosphate. A procedure, specifically suitable for assaying the reductase activity in the crude extract, was developed. A more convenient spectrophotometric assay method was employed for the purified enzyme. At moderate concentrations sulfhydryl group inhibitors had no effect on the enzyme activity of L-GAP reductase. At 100..mu..M concentration Zn/sup +2/ inhibited the enzyme activity by about 30% while Mn/sup +2/ elevated the activity by about the same margin. Mg/sup +2/, Ca/sup +2/ and Fe/sup +2/ were without effect at this concentration. L-Glyceraldehyde 3-phosphate is known to be bactericidal at 1.25 ..mu..M concentration and the D-enantiomer is without effect. Furthermore, methylglyoxal is known to be bactericidal at or above 0.5 mM concentration. Strains of E. coli resistant to 1 mM methylglyoxal were isolated. The cell extract prepared from the mutant possessed increased capacity to transform methylglyoxal into D-lactate via a glutathione dependent reaction. These mutants were less sensitive to 2.5 mM DL-GAP suggesting that conversion of L-glyceraldehyde 3-phosphate into methylglyoxal may at least partly be responsible for the bactericidal activity of L-GAP.

  13. Metabolism of L-glyceraldehyde 3-phosphate in Escherichia coli

    SciTech Connect

    Kalyananda, M.K.G.S.; Engel, R.; Tropp, B.E.

    1987-06-01

    When either /sup 3/H-labeled L-glyceraldehyde or /sup 3/H-labeled L-glyceraldehyde 3-phosphate (GAP) was added to cultures of Escherichia coli, the phosphoglycerides were labeled. More than 81% of the label appeared in the backbone of the phosphoglycerides. Chromatographic analyses of the labeled phosphoglycerides revealed that the label was normally distributed into phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. These results suggest that L-glyceraldehyde is phosphorylated and the resultant L-GAP is converted into sn-glycerol 3-phosphate (G3P) before being incorporated into the bacterial phosphoglycerides. Cell-free bacterial extracts catalyzed an NADPH-dependent reduction of L-GAP to sn-G3P. The partially purified enzyme was specific for L-GAP and recognized neither D-GAP nor dihydroxyacetone phosphate as a substrate. NADH could not replace NADPH as a coenzyme. The L-GAP:NADPH oxidoreductase had an apparent K/sub m/ of 28 and 35 ..mu..M for L-GAP and NADPH, respectively. The enzyme was insensitive to sulfhydryl reagents and had a pH optimum of approximately 6.6. The phosphonic acid analog of GAP, 3-hydroxy-4-oxobutyl-1-phosphonate, was a substrate for the reductase, with an apparent K/sub m/ of 280 ..mu..M.

  14. 1,3-Diferuloyl-sn-glycerol from the biocatalytic transesterification of ethyl 4-hydroxy-3-methoxy cinnamic acid (ethyl ferulate) and soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    1,3-Diferuloyl-sn-glycerol is a natural plant component found ubiquitously throughout the plant kingdom, possessing ultraviolet adsorbing and antioxidant properties. Diferuloyl glycerol was synthesized and isolated as a byproduct in up to 5% yield from the pilot plant scale packed-bed, biocatalytic...

  15. Sphingosine 1-phosphate signalling.

    PubMed

    Mendelson, Karen; Evans, Todd; Hla, Timothy

    2014-01-01

    Sphingosine 1-phosphate (S1P) is a lipid mediator formed by the metabolism of sphingomyelin. In vertebrates, S1P is secreted into the extracellular environment and signals via G protein-coupled S1P receptors to regulate cell-cell and cell-matrix adhesion, and thereby influence cell migration, differentiation and survival. The expression and localization of S1P receptors is dynamically regulated and controls vascular development, vessel stability and immune cell trafficking. In addition, crucial events during embryogenesis, such as angiogenesis, cardiogenesis, limb development and neurogenesis, are regulated by S1P signalling. Here, and in the accompanying poster, we provide an overview of S1P signalling in development and in disease. PMID:24346695

  16. Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism

    SciTech Connect

    Yeh, Joanne I.; Chinte, Unmesh; Du, Shoucheng

    2008-04-02

    Sn-glycerol-3-phosphate dehydrogenase (GlpD) is an essential membrane enzyme, functioning at the central junction of respiration, glycolysis, and phospholipid biosynthesis. Its critical role is indicated by the multitiered regulatory mechanisms that stringently controls its expression and function. Once expressed, GlpD activity is regulated through lipid-enzyme interactions in Escherichia coli. Here, we report seven previously undescribed structures of the fully active E. coli GlpD, up to 1.75 {angstrom} resolution. In addition to elucidating the structure of the native enzyme, we have determined the structures of GlpD complexed with substrate analogues phosphoenolpyruvate, glyceric acid 2-phosphate, glyceraldehyde-3-phosphate, and product, dihydroxyacetone phosphate. These structural results reveal conformational states of the enzyme, delineating the residues involved in substrate binding and catalysis at the glycerol-3-phosphate site. Two probable mechanisms for catalyzing the dehydrogenation of glycerol-3-phosphate are envisioned, based on the conformational states of the complexes. To further correlate catalytic dehydrogenation to respiration, we have additionally determined the structures of GlpD bound with ubiquinone analogues menadione and 2-n-heptyl-4-hydroxyquinoline N-oxide, identifying a hydrophobic plateau that is likely the ubiquinone-binding site. These structures illuminate probable mechanisms of catalysis and suggest how GlpD shuttles electrons into the respiratory pathway. Glycerol metabolism has been implicated in insulin signaling and perturbations in glycerol uptake and catabolism are linked to obesity in humans. Homologs of GlpD are found in practically all organisms, from prokaryotes to humans, with >45% consensus protein sequences, signifying that these structural results on the prokaryotic enzyme may be readily applied to the eukaryotic GlpD enzymes.

  17. Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism

    PubMed Central

    Yeh, Joanne I.; Chinte, Unmesh; Du, Shoucheng

    2008-01-01

    Sn-glycerol-3-phosphate dehydrogenase (GlpD) is an essential membrane enzyme, functioning at the central junction of respiration, glycolysis, and phospholipid biosynthesis. Its critical role is indicated by the multitiered regulatory mechanisms that stringently controls its expression and function. Once expressed, GlpD activity is regulated through lipid-enzyme interactions in Escherichia coli. Here, we report seven previously undescribed structures of the fully active E. coli GlpD, up to 1.75 Å resolution. In addition to elucidating the structure of the native enzyme, we have determined the structures of GlpD complexed with substrate analogues phosphoenolpyruvate, glyceric acid 2-phosphate, glyceraldehyde-3-phosphate, and product, dihydroxyacetone phosphate. These structural results reveal conformational states of the enzyme, delineating the residues involved in substrate binding and catalysis at the glycerol-3-phosphate site. Two probable mechanisms for catalyzing the dehydrogenation of glycerol-3-phosphate are envisioned, based on the conformational states of the complexes. To further correlate catalytic dehydrogenation to respiration, we have additionally determined the structures of GlpD bound with ubiquinone analogues menadione and 2-n-heptyl-4-hydroxyquinoline N-oxide, identifying a hydrophobic plateau that is likely the ubiquinone-binding site. These structures illuminate probable mechanisms of catalysis and suggest how GlpD shuttles electrons into the respiratory pathway. Glycerol metabolism has been implicated in insulin signaling and perturbations in glycerol uptake and catabolism are linked to obesity in humans. Homologs of GlpD are found in practically all organisms, from prokaryotes to humans, with >45% consensus protein sequences, signifying that these structural results on the prokaryotic enzyme may be readily applied to the eukaryotic GlpD enzymes. PMID:18296637

  18. Thermotropic phase properties of 1,2-di-O-tetradecyl-3-O-(3-O-methyl- beta-D-glucopyranosyl)-sn-glycerol.

    PubMed Central

    Trouard, T P; Mannock, D A; Lindblom, G; Rilfors, L; Akiyama, M; McElhaney, R N

    1994-01-01

    The hydration properties and the phase structure of 1,2-di-O-tetradecyl-3-O(3-O-methyl-beta-D-glucopyranosyl)-sn-glycerol (3-O-Me-beta-D-GlcDAIG) in water have been studied via differential scanning calorimetry, 1H-NMR and 2H-NMR spectroscopy, and x-ray diffraction. Results indicate that this lipid forms a crystalline (Lc) phase up to temperatures of 60-70 degrees C, where a transition through a metastable reversed hexagonal (Hll) phase to a reversed micellar solution (L2) phase occurs. Experiments were carried out at water concentrations in a range from 0 to 35 wt%, which indicate that all phases are poorly hydrated, taking up < 5 mol water/mol lipid. The absence of a lamellar liquid crystalline (L alpha) phase and the low levels of hydration measured in the discernible phases suggest that the methylation of the saccharide moiety alters the hydrogen bonding properties of the headgroup in such a way that the 3-O-Me-beta-D-GlcDAIG headgroup cannot achieve the same level of hydration as the unmethylated form. Thus, in spite of the small increase in steric bulk resulting from methylation, there is an increase in the tendency of 3-O-Me-beta-D-GlcDAIG to form nonlamellar structures. A similar phase behavior has previously been observed for the Acholeplasma laidlawii A membrane lipid 1,2-diacyl-3-O-(6-O-acyl-alpha-D-glucopyranosyl)-sn-glycerol in water (Lindblom et al. 1993. J. Biol. Chem. 268:16198-16207). The phase behavior of the two lipids suggests that hydrophobic substitution of a hydroxyl group in the sugar ring of the glucopyranosylglycerols has a very strong effect on their physicochemical properties, i.e., headgroup hydration and the formation of different lipid aggregate structures. PMID:7811919

  19. Structure of glycerol-3-phosphate dehydrogenase (GPD1) from Saccharomyces cerevisiae at 2.45 Å resolution

    PubMed Central

    Alarcon, David Aparicio; Nandi, Munmun; Carpena, Xavi; Fita, Ignacio; Loewen, Peter C.

    2012-01-01

    The interconversion of glycerol 3-phosphate and dihydroxyacetone phosphate by glycerol-3-phosphate dehydrogenases provides a link between carbohydrate and lipid metabolism and provides Saccharomyces cerevisiae with protection against osmotic and anoxic stress. The first structure of a glycerol-3-phosphate dehydrogenase from S. cerevisiae, GPD1, is reported at 2.45 Å resolution. The asymmetric unit contains two monomers, each of which is organized with N- and C-terminal domains. The N-terminal domain contains a classic Rossmann fold with the (β-α-β-α-β)2 motif typical of many NAD+-dependent enzymes, while the C-terminal domain is mainly α-helical. Structural and phylogenetic comparisons reveal four main structure types among the five families of glycerol-3-phosphate and glycerol-1-phosphate dehydrogenases and reveal that the Clostridium acetobutylican protein with PDB code 3ce9 is a glycerol-1-­phosphate dehydrogenase. PMID:23143232

  20. Glycerol-3-phosphate acyltransferase 4 is essential for the normal development of reproductive organs and the embryo in Brassica napus

    PubMed Central

    Chen, Xue; Chen, Guanqun; Truksa, Martin; Snyder, Crystal L.; Shah, Saleh; Weselake, Randall J.

    2014-01-01

    The enzyme sn-glycerol-3-phosphate acyltransferase 4 (GPAT4) is involved in the biosynthesis of plant lipid poly-esters. The present study further characterizes the enzymatic activities of three endoplasmic reticulum-bound GPAT4 isoforms of Brassica napus and examines their roles in the development of reproductive organs and the embryo. All three BnGPAT4 isoforms exhibited sn-2 acyltransferase and phosphatase activities with dicarboxylic acid-CoA as acyl donor. When non-substituted acyl-CoA was used as acyl donor, the rate of acylation was considerably lower and phosphatase activity was not manifested. RNA interference (RNAi)-mediated down-regulation of all GPAT4 homologues in B. napus under the control of the napin promoter caused abnormal development of several reproductive organs and reduced seed set. Microscopic examination and reciprocal crosses revealed that both pollen grains and developing embryo sacs of the B. napus gpat4 lines were affected. The gpat4 mature embryos showed decreased cutin content and altered monomer composition. The defective embryo development further affected the oil body morphology, oil content, and fatty acid composition in gpat4 seeds. These results suggest that GPAT4 has a critical role in the development of reproductive organs and the seed of B. napus. PMID:24821955

  1. Glycerol-3-phosphate acyltransferase 4 is essential for the normal development of reproductive organs and the embryo in Brassica napus.

    PubMed

    Chen, Xue; Chen, Guanqun; Truksa, Martin; Snyder, Crystal L; Shah, Saleh; Weselake, Randall J

    2014-08-01

    The enzyme sn-glycerol-3-phosphate acyltransferase 4 (GPAT4) is involved in the biosynthesis of plant lipid poly-esters. The present study further characterizes the enzymatic activities of three endoplasmic reticulum-bound GPAT4 isoforms of Brassica napus and examines their roles in the development of reproductive organs and the embryo. All three BnGPAT4 isoforms exhibited sn-2 acyltransferase and phosphatase activities with dicarboxylic acid-CoA as acyl donor. When non-substituted acyl-CoA was used as acyl donor, the rate of acylation was considerably lower and phosphatase activity was not manifested. RNA interference (RNAi)-mediated down-regulation of all GPAT4 homologues in B. napus under the control of the napin promoter caused abnormal development of several reproductive organs and reduced seed set. Microscopic examination and reciprocal crosses revealed that both pollen grains and developing embryo sacs of the B. napus gpat4 lines were affected. The gpat4 mature embryos showed decreased cutin content and altered monomer composition. The defective embryo development further affected the oil body morphology, oil content, and fatty acid composition in gpat4 seeds. These results suggest that GPAT4 has a critical role in the development of reproductive organs and the seed of B. napus. PMID:24821955

  2. Purification and characterization of thiol-reagent-sensitive glycerol-3-phosphate acyltransferase from the membrane fraction of an oleaginous fungus.

    PubMed Central

    Mishra, S; Kamisaka, Y

    2001-01-01

    Glycerol-3-phosphate acyltransferase (GPAT), responsible for the first committed, rate-limiting, step of glycerolipid synthesis, was purified to homogeneity from the membrane fraction of an oleaginous fungus, Mortierella ramanniana var. angulispora. The enzyme was solubilized from the membrane fraction by pretreatment with 0.05% Triton X-100 and treatment of the resulting pellet with 0.3% Triton X-100. The enzyme was subsequently purified by column chromatography on heparin-Sepharose, Yellow 86 agarose, a second heparin-Sepharose column, Superdex-200 and hydroxylapatite Bio-Gel. Enzyme activity was finally enriched 1308-fold over that of the starting membrane fraction. SDS/PAGE of the purified fraction revealed a single band with a molecular mass of 45 kDa. Native PAGE showed a major band that corresponded to GPAT activity. Enzyme activity was inhibited by thiol reagents, suggesting that it originated from microsomes rather than mitochondria. Purified GPAT depended on exogenous oleoyl-CoA and sn-glycerol-3-phosphate, with the highest activity at approx. 50 and 250 microM, respectively, and preferred oleoyl-CoA 5.4-fold over palmitoyl-CoA as an acyl donor. Anionic phospholipids, such as phosphatidic acid and phosphatidylserine, were absolutely required for activity of the purified enzyme, and their ability to activate GPAT was influenced by the purity of the GPAT preparation. Bivalent cations, such as Mg(2+) and Ca(2+), inhibited purified GPAT activity, whereas 5 mM Mn(2+) elevated activity approx. 2-fold. These results provide new insights into the molecular characterization of microsomal GPAT, which has not been well characterized compared with mitochondrial and plastidic GPAT. PMID:11284717

  3. Mechanism of glyceraldehyde-3-phosphate transfer from aldolase to glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Kvassman, J; Pettersson, G; Ryde-Pettersson, U

    1988-03-01

    The catalytic interaction of glyceraldehyde-3-phosphate dehydrogenase with glyceraldehyde 3-phosphate has been examined by transient-state kinetic methods. The results confirm previous reports that the apparent Km for oxidative phosphorylation of glyceraldehyde 3-phosphate decreases at least 50-fold when the substrate is generated in a coupled reaction system through the action of aldolase on fructose 1,6-bisphosphate, but lend no support to the proposal that glyceraldehyde 3-phosphate is directly transferred between the two enzymes without prior release to the reaction medium. A theoretical analysis is presented which shows that the kinetic behaviour of the coupled two-enzyme system is compatible in all respects tested with a free-diffusion mechanism for the transfer of glyceraldehyde 3-phosphate from the producing enzyme to the consuming one. PMID:3350006

  4. Molecular analysis of a store-operated and 2-acetyl-sn-glycerol-sensitive non-selective cation channel. Heteromeric assembly of TRPC1-TRPC3.

    PubMed

    Liu, Xibao; Bandyopadhyay, Bidhan C; Singh, Brij B; Groschner, Klaus; Ambudkar, Indu S

    2005-06-01

    We have reported that internal Ca2+ store depletion in HSY cells stimulates a nonselective cation current which is distinct from I(CRAC) in RBL cells and TRPC1-dependent I(SOC) in HSG cells (Liu, X., Groschner, K., and Ambudkar, I. S. (2004) J. Membr. Biol. 200, 93-104). Here we have analyzed the molecular composition of this channel. Both thapsigargin (Tg) and 2-acetyl-sn-glycerol (OAG) stimulated similar non-selective cation currents and Ca2+ entry in HSY cells. The effects of Tg and OAG were not additive. HSY cells endogenously expressed TRPC1, TRPC3, and TRPC4 but not TRPC5 or TRPC6. Immunoprecipitation of TRPC1 pulled down TRPC3 but not TRPC4. Conversely, TRPC1 co-immunoprecipitated with TRPC3. Expression of antisense TRPC1 decreased (i) Tg- and OAG-stimulated currents and Ca2+ entry and (ii) the level of endogenous TRPC1 but not TRPC4. Antisense TRPC3 similarly reduced Ca2+ entry and endogenous TRPC3. Yeast two-hybrid analysis revealed an interaction between NTRPC1 and NTRPC3 (CTRPC1-CTRPC3, CTRPC3-CTRPC1, or CTRPC1-NTRPC3 did not interact), which was confirmed by glutathione S-transferase (GST) pull-down assays (GST-NTRPC3 pulled down TRPC1 and vice versa). Expression of NTRPC1 or NTRPC3 induced similar dominant suppression of Tg- and OAG-stimulated Ca2+ entry. NTRPC3 did not alter surface expression of TRPC1 or TRPC3 but disrupted TRPC1-TRPC3 association. In aggregate, our data demonstrate that TRPC1 and TRPC3 co-assemble, via N-terminal interactions, to form a heteromeric store-operated non-selective cation channel in HSY cells. Thus selective association between TRPCs generate distinct store-operated channels. Diversity of store-operated channels might be related to the physiology of the different cell types. PMID:15834157

  5. An ultraviolet spectrophotometric assay for the screening of sn-2-specific lipases using 1,3-O-dioleoyl-2-O-α-eleostearoyl-sn-glycerol as substrate

    PubMed Central

    Mendoza, Lilia D.; Rodriguez, Jorge A.; Leclaire, Julien; Buono, Gerard; Fotiadu, Frédéric; Carrière, Frédéric; Abousalham, Abdelkarim

    2012-01-01

    In the present study, we propose a continuous assay for the screening of sn-2 lipases by using triacylglycerols (TAGs) from Aleurites fordii seed (tung oil) and a synthetic TAG containing the α-eleostearic acid at the sn-2 position and the oleic acid (OA) at the sn-1 and sn-3 positions [1,3-O-dioleoyl-2-O-α-eleostearoyl-sn-glycerol (sn-OEO)]. Each TAG was coated into a microplate well, and the lipase activity was measured by optical density increase at 272 nm due to transition of α-eleostearic acid from the adsorbed to the soluble state. The sn-1,3-regioselective lipases human pancreatic lipase (HPL), LIP2 lipase from Yarrowia lipolytica (YLLIP2), and a known sn-2 lipase, Candida antarctica lipase A (CALA) were used to validate this method. TLC analysis of lipolysis products showed that the lipases tested were able to hydrolyze the sn-OEO and the tung oil TAGs, but only CALA hydrolyzed the sn-2 position. The ratio of initial velocities on sn-OEO and tung oil TAGs was used to estimate the sn-2 preference of lipases. CALA was the enzyme with the highest ratio (0.22 ± 0.015), whereas HPL and YLLIP2 showed much lower ratios (0.072 ± 0.026 and 0.038 ± 0.016, respectively). This continuous sn-2 lipase assay is compatible with a high sample throughput and thus can be applied to the screening of sn-2 lipases. PMID:22114038

  6. Berberine treatment attenuates the palmitate-mediated inhibition of glucose uptake and consumption through increased 1,2,3-triacyl-sn-glycerol synthesis and accumulation in H9c2 cardiomyocytes.

    PubMed

    Chang, Wenguang; Chen, Li; Hatch, Grant M

    2016-04-01

    Dysfunction of lipid metabolism and accumulation of 1,2-diacyl-sn-glycerol (DAG) may be a key factor in the development of insulin resistance in type 2 diabetes. Berberine (BBR) is an isoquinoline alkaloid extract that has shown promise as a hypoglycemic agent in the management of diabetes in animal and human studies. However, its mechanism of action is not well understood. To determine the effect of BBR on lipid synthesis and its relationship to insulin resistance in H9c2 cardiomyocytes, we measured neutral lipid and phospholipid synthesis and their relationship to glucose uptake. Compared with controls, BBR treatment stimulated 2-[1,2-(3)H(N)]deoxy-D-glucose uptake and consumption in palmitate-mediated insulin resistant H9c2 cells. The mechanism was though an increase in protein kinase B (AKT) activity and GLUT-4 glucose transporter expression. DAG accumulated in palmitate-mediated insulin resistant H9c2 cells and treatment with BBR reduced this DAG accumulation and increased accumulation of 1,2,3-triacyl-sn-glycerol (TAG) compared to controls. Treatment of palmitate-mediated insulin resistant H9c2 cells with BBR increased [1,3-(3)H]glycerol and [1-(14)C]glucose incorporation into TAG and reduced their incorporation into DAG compared to control. In addition, BBR treatment of these cells increased [1-(14)C]palmitic acid incorporation into TAG and decreased its incorporation into DAG compared to controls. BBR treatment did not alter phosphatidylcholine or phosphatidylethanolamine synthesis. The mechanism for the BBR-mediated decreased precursor incorporation into DAG and increased incorporation into TAG in palmitate-incubated cells was an increase in DAG acyltransferase-2 activity and its expression and a decrease in TAG hydrolysis. Thus, BBR treatment attenuates palmitate-induced reduction in glucose uptake and consumption, in part, through reduction in cellular DAG levels and accumulation of TAG in H9c2 cells. PMID:26774040

  7. Iodination of glyceraldehyde 3-phosphate dehydrogenase

    PubMed Central

    Thomas, Jean O.; Harris, J. Ieuan

    1970-01-01

    1. A high degree of homology in the positions of tyrosine residues in glyceraldehyde 3-phosphate dehydrogenase from lobster and pig muscle, and from yeast, prompted an examination of the reactivity of tyrosine residues in the enzyme. 2. Iodination of the enzyme from lobster muscle with low concentrations of potassium tri-[125I]-iodide led to the identification of tyrosine residues of differing reactivity. Tyrosine-46 appeared to be the most reactive in the native enzyme. 3. When the monocarboxymethylated enzyme was briefly treated with small amounts of iodine, iodination could be confined almost entirely to tyrosine-46 in the lobster enzyme; tyrosine-39 or tyrosine-42, or both, were also beginning to react. 4. These three tyrosine residues were also those that reacted most readily in the carboxymethylated pig and yeast enzymes. 5. The difficulties in attaining specific reaction of the native enzyme are considered. 6. The differences between our results and those of other workers are discussed. ImagesPLATE 1PLATE 2 PMID:5530750

  8. Structure of RNA 3'-phosphate cyclase bound to substrate RNA.

    PubMed

    Desai, Kevin K; Bingman, Craig A; Cheng, Chin L; Phillips, George N; Raines, Ronald T

    2014-10-01

    RNA 3'-phosphate cyclase (RtcA) catalyzes the ATP-dependent cyclization of a 3'-phosphate to form a 2',3'-cyclic phosphate at RNA termini. Cyclization proceeds through RtcA-AMP and RNA(3')pp(5')A covalent intermediates, which are analogous to intermediates formed during catalysis by the tRNA ligase RtcB. Here we present a crystal structure of Pyrococcus horikoshii RtcA in complex with a 3'-phosphate terminated RNA and adenosine in the AMP-binding pocket. Our data reveal that RtcA recognizes substrate RNA by ensuring that the terminal 3'-phosphate makes a large contribution to RNA binding. Furthermore, the RNA 3'-phosphate is poised for in-line attack on the P-N bond that links the phosphorous atom of AMP to N(ε) of His307. Thus, we provide the first insights into RNA 3'-phosphate termini recognition and the mechanism of 3'-phosphate activation by an Rtc enzyme. PMID:25161314

  9. Specificities of the Acyl-Acyl Carrier Protein (ACP) Thioesterase and Glycerol-3-Phosphate Acyltransferase for Octadecenoyl-ACP Isomers (Identification of a Petroselinoyl-ACP Thioesterase in Umbelliferae).

    PubMed Central

    Dormann, P.; Frentzen, M.; Ohlrogge, J. B.

    1994-01-01

    This study was designed to address the question: How specific for double bond position and conformation are plant enzymes that act on oleoyl-acyl carrier protein (ACP)? Octadecenoyl-ACPs with cis double bonds at positions [delta]6, [delta]7, [delta]8, [delta]9, [delta]10, [delta]11, or [delta]12 and elaidyl (18:1[delta]9trans)-ACP were synthesized and used to characterize the substrate specificity of the acyl-ACP thioesterase and acyl-ACP:sn-glycerol-3-phosphate acyltransferase. The two enzymes were found to be specific for the [delta]9 position of the double bond. The thioesterase was highly specific for the [delta]9 cis conformation, but the transferase was almost equally active with the cis and the trans isomer of 18:1[delta]9-ACP. In plants such as the Umbelliferae species coriander (Coriandrum sativum L.) that accumulate petroselinic acid (18:1[delta]6cis) in their seed triacylglycerols, a high petroselinoyl-ACP thioesterase activity was found in addition to the oleoyl-ACP thioesterase. The two activities could be separated by anion-exchange chromatography, indicating that the petroselinoyl-ACP thioesterase is represented by a distinct polypeptide. PMID:12232130

  10. Inhibitors of sphingosine-1-phosphate metabolism (sphingosine kinases and sphingosine-1-phosphate lyase).

    PubMed

    Sanllehí, Pol; Abad, José-Luis; Casas, Josefina; Delgado, Antonio

    2016-05-01

    Sphingolipids (SLs) are essential structural and signaling molecules of eukaryotic cells. Among them, sphingosine 1 phosphate (S1P) is a recognized promoter of cell survival, also involved, inter alia, in inflammation and tumorigenesis processes. The knowledge and modulation of the enzymes implicated in the biosynthesis and degradation of S1P are capital to control the intracellular levels of this lipid and, ultimately, to determine the cell fate. Starting with a general overview of the main metabolic pathways involved in SL metabolism, this review is mainly focused on the description of the most relevant findings concerning the development of modulators of S1P, namely inhibitors of the enzymes regulating S1P synthesis (sphingosine kinases) and degradation (sphingosine 1 phosphate phosphatase and lyase). In addition, a brief overview of the most significant agonists and antagonists at the S1P receptors is also addressed. PMID:26200919

  11. Sphingosine-1-phosphate metabolism: A structural perspective.

    PubMed

    Pulkoski-Gross, Michael J; Donaldson, Jane C; Obeid, Lina M

    2015-01-01

    Sphingolipids represent an important class of bioactive signaling lipids which have key roles in numerous cellular processes. Over the last few decades, the levels of bioactive sphingolipids and/or their metabolizing enzymes have been realized to be important factors involved in disease development and progression, most notably in cancer. Targeting sphingolipid-metabolizing enzymes in disease states has been the focus of many studies and has resulted in a number of pharmacological inhibitors, with some making it into the clinic as therapeutics. In order to better understand the regulation of sphingolipid-metabolizing enzymes as well as to develop much more potent and specific inhibitors, the field of sphingolipids has recently taken a turn toward structural biology. The last decade has seen the structural determination of a number of sphingolipid enzymes and effector proteins. In these terms, one of the most complete arms of the sphingolipid pathway is the sphingosine-1-phosphate (S1P) arm. The structures of proteins involved in the function and regulation of S1P are being used to investigate further the regulation of said proteins as well as in the design and development of inhibitors as potential therapeutics. PMID:25923252

  12. [Sphingosine-1-phosphate--molecular maestro].

    PubMed

    Salata, Daria; Budkowska, Marta; Dołegowska, Barbara

    2012-01-01

    Sphingosine-1-phosphate (S1P), which is a bioactive lipid from the family of sphingolipids is synthesized i.e. by platelates and stored in erythrocytes. The effects of this compound on the cells are connected with the presence of specific receptors on their surface (S1P1-S1P5). S1P acts upon, i.e, hematopoetic and nervous cells, having influencing their migration, adhesion, differentation and survival. This molecule plays mediator role in inflammatory responses, angiogenesis and wound healing. In contrast to spingosine and ceramid, S1P counteracts apoptosis. Recent studies have shown that S1P is a factor, which participates in the process of release stem cells from bone marrow to peripherial blood. Cell and tissue damaged, stress, physical exercise and some drugs have influence on the numbers of stem cells. The research on S1P as the main chemotactic factor for stem cells may have substantial impact on the development of regenerative medicine. PMID:23373414

  13. Hypoxia, therapeutic resistance, and sphingosine 1-phosphate.

    PubMed

    Cuvillier, Olivier; Ader, Isabelle; Bouquerel, Pierre; Brizuela, Leyre; Gstalder, Cécile; Malavaud, Bernard

    2013-01-01

    Hypoxia, defined as a poor oxygenation, has been long recognized as a hallmark of solid tumors and a negative prognostic factor for response to therapeutics and survival of patients. Cancer cells have evolved biochemical mechanisms that allow them to react and adapt to hypoxia. At the cellular level, this adaptation is under the control of two related transcription factors, HIF-1 and HIF-2 (hypoxia-inducible factor), that respond rapidly to decreased oxygen levels to activate the expression of a broad range of genes promoting neoangiogenesis, glycolysis, metastasis, increased tumor growth, and resistance to treatments. Recent studies have identified the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) signaling pathway-which elicits various cellular processes including cell proliferation, cell survival, or angiogenesis-as a new regulator of HIF-1 or HIF-2 activity. In this review, we will focus on how the inhibition/neutralization of the SphK1/S1P signaling could be exploited for cancer therapy. PMID:23290779

  14. Export and functions of sphingosine-1-phosphate

    PubMed Central

    Kim, Roger H.; Takabe, Kazuaki; Milstien, Sheldon; Spiegel, Sarah

    2009-01-01

    The sphingolipid metabolite, sphingosine-1-phosphate (S1P), has emerged as a critical player in a number of fundamental biological processes and is important in cancer, angiogenesis, wound healing, cardiovascular function, atherosclerosis, immunity and asthma, among others. Activation of sphingosine kinases, enzymes that catalyze the phosphorylation of sphingosine to S1P, by a variety of agonists, including growth factors, cytokines, hormones, and antigen, increases intracellular S1P. Many of the biological effects of S1P are mediated by its binding to five specific G protein-coupled receptors located on the cell surface in an autocrine and/or paracrine manner. Therefore, understanding the mechanism by which intracellularly generated S1P is released out of cells is both interesting and important. In this review, we will discuss how S1P is formed and released. We will focus particularly on the current knowledge of how the S1P gradient between tissues and blood is maintained, and the role of ABC transporters in S1P release. PMID:19268560

  15. Sphingosine-1-Phosphate Signaling in Endothelial Disorders.

    PubMed

    Sanchez, Teresa

    2016-06-01

    Numerous preclinical studies indicate that sustained endothelial activation significantly contributes to tissue edema, perpetuates the inflammatory response, and exacerbates tissue injury ultimately resulting in organ failure. However, no specific therapies aimed at restoring endothelial function are available as yet. Sphingosine-1-phosphate (S1P) is emerging as a potent modulator of endothelial function and endothelial responses to injury. Recent studies indicate that S1PR are attractive targets to treat not only disorders of the arterial endothelium but also microvascular dysfunction caused by ischemic or inflammatory injury. In this article, we will review the current knowledge of the role of S1P and its receptors in endothelial function in health and disease, and we will discuss the therapeutic potential of targeting S1PR not only for disorders of the arterial endothelium but also the microvasculature. The therapeutic targeting of S1PR in the endothelium could help to bridge the gap between biomedical research in vascular biology and clinical practice. PMID:27115142

  16. Implication of Ceramide, Ceramide 1-Phosphate and Sphingosine 1-Phosphate in Tumorigenesis

    PubMed Central

    Gangoiti, Patricia; Granado, Maria H.; Alonso, Alicia; Goñi, Félix M.; Gómez-Muñoz, Antonio

    2008-01-01

    In the last two decades there has been considerable progress in our understanding of the role of sphingolipids in controlling signal transduction processes, particularly in the mechanisms leading to regulation of cell growth and death. Ceramide is a well-characterized sphingolipid metabolite and second messenger that can be produced by cancer cells in response to a variety of stimuli, including therapeutic drugs, leading to cell cycle arrest and apoptosis. Although this is a promising aspect when thinking of treating cancer, it should be borne in mind that ceramide production may not always be a growth inhibitory or pro-apoptotic signal. In fact, ceramide can be readily converted to sphingosine 1-phosphate (S1P) by the concerted actions of ceramidases and sphingosine kinases, or to ceramide 1-phosphate (C1P) by the action of ceramide kinase. In general, S1P and C1P have opposing effects to ceramide, acting as pro-survival or mitogenic signals in most cell types. This review will address our current understanding of the many roles of ceramide, S1P and C1P in the regulation of cell growth and survival with special emphasis to the emerging role of these molecules and their metabolizing enzymes in controlling tumor progression and metastasis. PMID:21566746

  17. Synthesis of phosphonate and phostone analogues of ribose-1-phosphates

    PubMed Central

    Nasomjai, Pitak; Slawin, Alexandra M Z

    2009-01-01

    Summary The synthesis of phosphonate analogues of ribose-1-phosphate and 5-fluoro-5-deoxyribose-1-phosphate is described. Preparations of both the α- and β-phosphonate anomers are reported for the ribose and 5-fluoro-5-deoxyribose series and a synthesis of the corresponding cyclic phostones of each α-ribose is also reported. These compounds have been prepared as tools to probe the details of fluorometabolism in S. cattleya. PMID:19777136

  18. Distinct generation, pharmacology, and distribution of sphingosine 1-phosphate and dihydro-sphingosine 1-phosphate in human neural progenitor cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In-vivo and in-vitro studies suggest a crucial role for Sphingosine 1-phosphate (S1P) and its receptors in the development of the nervous system. Dihydrosphingosine 1-phosphate (dhS1P), a reduced form of S1P, is an active ligand at S1P receptors, but the pharmacology and physiology of dhS1P has not...

  19. Model of early self-replication based on covalent complementarity for a copolymer of glycerate-3-phosphate and glycerol-3-phosphate

    NASA Astrophysics Data System (ADS)

    Weber, Arthur L.

    1989-03-01

    Glyceraldehyde-3-phosphate acts as the substrate in a model of early self-replication of a phosphodiester copolymer of glycerate-3-phosphate and glycerol-3-phosphate. This model of self-replication is based on covalent complementarity in which information transfer is mediated by a single covalent bond, in contrast to multiple weak interactions that establish complementarity in nucleic acid replication. This replication model is connected to contemporary biochemistry through its use of glyceraldehyde-3-phosphate, a central metabolite of glycolysis and photosynthesis.

  20. Model of early self-replication based on covalent complementarity for a copolymer of glycerate-3-phosphate and glycerol-3-phosphate

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1989-01-01

    Glyceraldehyde-3-phosphate acts as the substrate in a model of early self-replication of a phosphodiester copolymer of glycerate-3-phosphate and glycerol-3-phosphate. This model of self-replication is based on covalent complementarity in which information transfer is mediated by a single covalent bond, in contrast to multiple weak interactions that establish complementarity in nucleic acid replication. This replication model is connected to contemporary biochemistry through its use of glyceraldehyde-3-phosphate, a central metabolite of glycolysis and photosynthesis.

  1. Probing myo-inositol 1-phosphate synthase with multisubstrate adducts

    PubMed Central

    Deranieh, Rania M.; Greenberg, Miriam L.; Le Calvez, Pierre-B.; Mooney, Maura C.; Migaud, Marie E.

    2015-01-01

    The synthesis of a series of carbohydrate-nucleotide hybrids, designed to be multisubstrate adducts mimicking myo-inositol 1-phosphate synthase first oxidative transition state, is reported. Their ability to inhibit the synthase has been assessed and results have been rationalised computationally to estimate their likely binding mode. PMID:23132282

  2. [Cooperative properties of D-glyceraldehyde-3-phosphate dehydrogenase].

    PubMed

    Nagradova, N K

    1977-03-01

    The structure of the active center of glyceraldehyde-3-phosphate dehydrogenase and the arrangement of subunits in the tetrameric molecule is delineated. The mechanism of cooperative effects in the oligomer is considered, and the involvement of various regions of the active center and of different-subunit contact area in the realization of the cooperative phenomena is discussed. A special attention is paid to the effect of NAD+ bound to one of the subunits of the tetramer on the structure of an adjacent subunit and to the problem of the participation of the coenzyme in the creation of anion-binding sites of the enzyme. The conditions of reversible dissociation of the tetrameric apoenzyme molecule into dimers are depicted, and the role of NAD+ in the organization of the quaternary structure of the dehydrogenase is discussed. The problem of catalytic activity of the dimeric form of the enzyme is argued. PMID:193581

  3. Phosphatidylinositol 4-phosphate and phosphatidylinositol 3-phosphate regulate phagolysosome biogenesis

    PubMed Central

    Jeschke, Andreas; Zehethofer, Nicole; Lindner, Buko; Krupp, Jessica; Schwudke, Dominik; Haneburger, Ina; Jovic, Marko; Backer, Jonathan M.; Balla, Tamas; Hilbi, Hubert; Haas, Albert

    2015-01-01

    Professional phagocytic cells ingest microbial intruders by engulfing them into phagosomes, which subsequently mature into microbicidal phagolysosomes. Phagosome maturation requires sequential fusion of the phagosome with early endosomes, late endosomes, and lysosomes. Although various phosphoinositides (PIPs) have been detected on phagosomes, it remained unclear which PIPs actually govern phagosome maturation. Here, we analyzed the involvement of PIPs in fusion of phagosomes with various endocytic compartments and identified phosphatidylinositol 4-phosphate [PI(4)P], phosphatidylinositol 3-phosphate [PI(3)P], and the lipid kinases that generate these PIPs, as mediators of phagosome–lysosome fusion. Phagosome–early endosome fusion required PI(3)P, yet did not depend on PI(4)P. Thus, PI(3)P regulates phagosome maturation at early and late stages, whereas PI(4)P is selectively required late in the pathway. PMID:25825728

  4. Synthesis of fluorinated agonist of sphingosine-1-phosphate receptor 1.

    PubMed

    Aliouane, Lucie; Chao, Sovy; Brizuela, Leyre; Pfund, Emmanuel; Cuvillier, Olivier; Jean, Ludovic; Renard, Pierre-Yves; Lequeux, Thierry

    2014-09-01

    The bioactive metabolite sphingosine-1-phosphate (S1P), a product of sphingosine kinases (SphKs), mediates diverse biological processes such as cell differentiation, proliferation, survival and angiogenesis. A fluorinated analogue of S1P receptor agonist has been synthesized by utilizing a ring opening reaction of oxacycles by a lithiated difluoromethylphosphonate anion as the key reaction. In vitro activity of this S1P analogue is also reported. PMID:25047939

  5. Properties of microtubule bundles induced by Glyceraldehyde-3-phosphate dehydrogenase

    NASA Astrophysics Data System (ADS)

    Somers, Marijke; Engelborghs, Yves

    1991-05-01

    The binding of Glyceraldehyde-3-phosphate dehydrogenase (GAPDH; E.C. 1.2.1.12) to microtubules causes the microtubules to assemble into large bundles. This bundling can be considered as a further step in the assembly of supramolecular structures. The rate of bundle formation, after addition of GAPDH to preformed microtubules, is not dependent on the GAPDH concentration and reflects bundling kinetics. Bundle disassembly can be studied by the addition of 1 mM adenosine 5'-(β, -imidotri-phosphate) (AMPPNP) to bundled microtubules, and is extremely fast. Bundling reduces the rate of association of tubulin dimers to microtubules, as well as the dissocation from the microtubles. Both rates are reduced to the same extent. This is in agreement with the fact that the critical concentration of tubulin is practically not influenced by the binding of the enzyme. Adding microtubule associated proteins (at I=0.1 M) does not appreciably influence the affinity for GAPDH, but reduces bundle formation possibly for sterical reasons.

  6. The reaction of ozone with glyceraldehyde-3-phosphate dehydrogenase

    SciTech Connect

    Knight, K.L.; Mudd, J.B.

    1984-02-15

    Inactivation of glyceraldehyde-3-phosphate dehydrogenase (GPDH) by ozone can be correlated with oxidation of the active-site -SH residue. Oxidation of peripheral -SH groups, and tryptophan, methionine, and histidine residues occurs concomitantly, but loss of activity depends solely on active-site oxidation. Inactivation is only slightly reversible by dithiothreitol. Kinetic studies show that inhibition of GPDH by ozone mimics noncompetitive inhibition and is characterized as irreversible enzyme inactivation. Analysis of products resulting from ozone oxidation of glutathione suggests that cysteic acid is the product of protein-SH oxidation. Despite oxidation of the active-site -SH, no significant decrease in the Racker band absorbance occurs. This is explained by the appearance of a new chromophore in this region of the absorbance spectrum. Increased absorbance at 322 nm following ozone treatment indicates that tryptophan is converted quantitatively to N-formylkynurenine. When the active-site -SH is reversibly blocked by tetrathionate, enzyme activity is completely recoverable following reaction of the derivatized enzyme with a 1.3X excess of ozone over enzyme monomer. Activity is fully recovered despite the oxidation of peripheral -SH, tryptophan, and histidine residues. Circular dichroism spectra of ozone-treated enzyme show that reaction of GPDH with up to a threefold excess of ozone over enzyme monomer results in no significant disruption of protein secondary structure. Spectra in the near-uv show distinct changes that reflect tryptophan oxidation.

  7. [Sphingosine 1-phosphate receptors: from biology to physiopathology].

    PubMed

    Cuvillier, Olivier

    2012-11-01

    Sphingosine 1-phosphate (S1P) mediates critical physiological responses by its binding to G protein-coupled receptor (GPCR) subtypes, known as S1P receptors. Five distinct mammalian S1P receptors, designated S1P1-5 have been identified, each with a different cellular pattern of expression which influences the responses to S1P. In this review, we briefly outline our understanding of the modes of action and the roles of S1P receptors in the regulation of physiological and pathological functions in the cardiovascular, immune and central nervous system. PMID:23171898

  8. Glycerol-3-Phosphate-Induced Catabolite Repression in Escherichia coli

    PubMed Central

    Eppler, Tanja; Postma, Pieter; Schütz, Alexandra; Völker, Uwe; Boos, Winfried

    2002-01-01

    The formation of glycerol-3-phosphate (G3P) in cells growing on TB causes catabolite repression, as shown by the reduction in malT expression. For this repression to occur, the general proteins of the phosphoenolpyruvate-dependent phosphotransferase system (PTS), in particular EIIAGlc, as well as the adenylate cyclase and the cyclic AMP-catabolite activator protein system, have to be present. We followed the level of EIIAGlc phosphorylation after the addition of glycerol or G3P. In contrast to glucose, which causes a dramatic shift to the dephosphorylated form, glycerol or G3P only slightly increased the amount of dephosphorylated EIIAGlc. Isopropyl-β-d-thiogalactopyranoside-induced overexpression of EIIAGlc did not prevent repression by G3P, excluding the possibility that G3P-mediated catabolite repression is due to the formation of unphosphorylated EIIAGlc. A mutant carrying a C-terminally truncated adenylate cyclase was no longer subject to G3P-mediated repression. We conclude that the stimulation of adenylate cyclase by phosphorylated EIIAGlc is controlled by G3P and other phosphorylated sugars such as d-glucose-6-phosphate and is the basis for catabolite repression by non-PTS compounds. Further metabolism of these compounds is not necessary for repression. Two-dimensional polyacrylamide gel electrophoresis was used to obtain an overview of proteins that are subject to catabolite repression by glycerol. Some of the prominently repressed proteins were identified by peptide mass fingerprinting. Among these were periplasmic binding proteins (glutamine and oligopeptide binding protein, for example), enzymes of the tricarboxylic acid cycle, aldehyde dehydrogenase, Dps (a stress-induced DNA binding protein), and d-tagatose-1,6-bisphosphate aldolase. PMID:12003946

  9. THE HEME BINDING PROPERTIES OF GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE

    PubMed Central

    Hannibal, Luciana; Collins, Daniel; Brassard, Julie; Chakravarti, Ritu; Vempati, Rajesh; Dorlet, Pierre; Santolini, Jérôme; Dawson, John H.; Stuehr, Dennis J.

    2012-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that also functions in transcriptional regulation, oxidative stress, vesicular trafficking, and apoptosis. Because GAPDH is required for cellular heme insertion into inducible nitric oxide synthase (Chakravarti et al, PNAS 2010, 107(42):18004-9), we extensively characterized the heme binding properties of GAPDH. Substoichiometric amounts of ferric heme bound to GAPDH (1 heme per GAPDH tetramer) to form a low-spin complex with UV-visible maxima at 362, 418 and 537 nm, and when reduced to ferrous gave maxima at 424, 527 and 559 nm. Ferric heme association and dissociation rate constants at 10 °C were kon =17,800 M−1s−1 and koff1 = 7.0 × 10−3 s−1; koff2 = 3.3 × 10−4 s−1 respectively, giving approximate affinities of 19–390 nM. Ferrous heme bound more poorly to GAPDH and dissociated with a koff = 4.2 × 10−3 s−1. Magnetic circular dichroism (MCD), resonance Raman (rR) and EPR spectroscopic data on the ferric, ferrous, and ferrous-CO complexes of GAPDH showed that the heme is bis-ligated with His as the proximal ligand. The distal ligand in ferric complex was not displaced by CN− or N3− but in ferrous complex was displaceable by CO at a rate of 1.75 s−1 (for [CO]>0.2 mM). Studies with heme analogs revealed selectivity toward the coordinating metal and porphyrin ring structure. GAPDH-heme was isolated from bacteria induced to express rabbit GAPDH in the presence of δ-amino levulinic acid. Our finding of heme binding to GAPDH expands the protein’s potential roles. The strength, selectivity, reversibility, and redox sensitivity of heme binding to GAPDH is consistent with it performing heme sensing or heme chaperone-like functions in cells. PMID:22957700

  10. Interactions among p22, glyceraldehyde-3-phosphate dehydrogenase and microtubules.

    PubMed

    Andrade, Josefa; Pearce, Sandy Timm; Zhao, Hu; Barroso, Margarida

    2004-12-01

    Previously, we have shown that p22, an EF-hand Ca2+-binding protein, interacts indirectly with microtubules in an N-myristoylation-dependent and Ca2+-independent manner. In the present study, we report that N-myristoylated p22 interacts with several microtubule-associated proteins within the 30-100 kDa range using overlay blots of microtubule pellets containing cytosolic proteins. One of those p22-binding partners, a 35-40 kDa microtubule-binding protein, has been identified by MS as GAPDH (glyceraldehyde-3-phosphate dehydrogenase). Several lines of evidence suggest a functional relationship between GAPDH and p22. First, endogenous p22 interacts with GAPDH by immunoprecipitation. Secondly, p22 and GAPDH align along microtubule tracks in analogous punctate structures in BHK cells. Thirdly, GAPDH facilitates the p22-dependent interactions between microtubules and microsomal membranes, by increasing the ability of p22 to bind microtubules but not membranes. We have also shown a direct interaction between N-myristoylated p22 and GAPDH in vitro with a K(D) of approximately 0.5 microM. The removal of either the N-myristoyl group or the last six C-terminal amino acids abolishes the binding of p22 to GAPDH and reduces the ability of p22 to associate with microtubules. In summary, we report that GAPDH is involved in the ability of p22 to facilitate microtubule-membrane interactions by affecting the p22-microtubule, but not the p22-membrane, association. PMID:15312048

  11. Membrane topology of murine glycerol-3-phosphate acyltransferase 2.

    PubMed

    Nakagawa, Tadahiko; Harada, Nagakatsu; Miyamoto, Aiko; Kawanishi, Yukiko; Yoshida, Masaki; Shono, Masayuki; Mawatari, Kazuaki; Takahashi, Akira; Sakaue, Hiroshi; Nakaya, Yutaka

    2012-02-17

    Glycerol-3-phosphate acyltransferase (GPAT) is a rate-limiting enzyme in mammalian triacylglycerol biosynthesis. GPAT is a target for the treatment of metabolic disorders associated with high lipid accumulation. Although the molecular basis for GPAT1 activation has been investigated extensively, the activation of other isoforms, such as GPAT2, is less well understood. Here the membrane topology of the GPAT2 protein was examined using an epitope-tag-based method. Exogenously expressed GPAT2 protein was present in the membrane fraction of transformed HEK293 cells even in the presence of Na(2)CO(3) (100 mM), indicating that GPAT2 is a membrane-bound protein. Trypsin treatment of the membrane fraction degraded the N-terminal (FLAG) and C-terminal (myc-epitope) protein tags of the GPAT2 protein. Bioinformatic analysis of the GPAT2 protein sequence indicated four hydrophobic sequences as potential membrane-spanning regions (TM1-TM4). Immunoblotting of the myc-epitope tag, which was inserted between each TM region of the GPAT2 protein, showed that the amino acid sequence between TM3 and TM4 was protected from trypsin digestion. These results suggest that the GPAT2 protein has two transmembrane segments and that the N-terminal and C-terminal regions of this protein face the cytoplasm. These results also suggest that the enzymatically active motifs I-III of the GPAT2 protein face the cytosol, while motif IV is within the membrane. It is expected that the use of this topological model of GPAT2 will be essential in efforts to elucidate the molecular mechanisms of GPAT2 activity in mammalian cells. PMID:22285183

  12. Distinct generation, pharmacology, and distribution of sphingosine 1-phosphate and dihydro-sphingosine 1-phosphate in human neural progenitor cells

    PubMed Central

    Callihan, Phillip; Zitomer, Nicholas C.; Stoeling, Michael V.; Kennedy, Perry C.; Lynch, Kevin R.; Riley, Ronald T.; Hooks, Shelley B.

    2013-01-01

    In vivo and in vitro studies suggest a crucial role for Sphingosine 1-phosphate (S1P) and its receptors in the development of the nervous system. Dihydrosphingosine 1-phosphate (dhS1P), a reduced form of S1P, is an agonist at S1P receptors, but the pharmacology and physiology of dhS1P has not been widely studied. The mycotoxin fumonisin B1 (FB1) is a potent inhibitor of ceramide synthases and causes selective accumulation of dihydrosphingosine and dhS1P. Recent studies suggest that maternal exposure to FB1 correlates with the development of neural tube defects (NTDs) in which the neural epithelial progenitor cell layers of the developing brain fail to fuse. We hypothesize that the altered balance of S1P and dhS1P in neural epithelial cells contributes to the developmental effects of FB1. The goal of this work was first to define the effect of FB1 exposure on levels of sphingosine and dh-sphingosine and their receptor active 1-phosphate metabolites in human embryonic stem cell-derived neural epithelial progenitor (hES-NEP) cells; and second, to define the relative activity of dhS1P and S1P in hES-NEP cells. We found that dhS1P is a more potent stimulator of inhibition of cAMP and Smad phosphorylation than is S1P in neural progenitors, and this difference in apparent potency may be due, in part, to more persistent presence of extracellular dhS1P applied to human neural progenitors rather than a higher activity at S1P receptors. This study establishes hES-NEP cells as a useful human in vitro model system to study the mechanism of FB1 toxicity and the molecular pharmacology of sphingolipid signaling. PMID:22016110

  13. A Sphingosine 1-phosphate receptor 2 selective allosteric agonist

    PubMed Central

    Satsu, Hideo; Schaeffer, Marie-Therese; Guerrero, Miguel; Saldana, Adrian; Eberhart, Christina; Hodder, Peter; Cayanan, Charmagne; Schürer, Stephan; Bhhatarai, Barun; Roberts, Ed; Rosen, Hugh; Brown, Steven J.

    2013-01-01

    Molecular probe tool compounds for the Sphingosine 1-phosphate receptor 2 (S1PR2) are important for investigating the multiple biological processes in which the S1PR2 receptor has been implicated. Amongst these are NF-κB-mediated tumor cell survival and fibroblast chemotaxis to fibronectin. Here we report our efforts to identify selective chemical probes for S1PR2 and their characterization. We employed high throughput screening to identify two compounds which activate the S1PR2 receptor. SAR optimization led to compounds with high nanomolar potency. These compounds, XAX-162 and CYM-5520, are highly selective and do not activate other S1P receptors. Binding of CYM-5520 is not competitive with the antagonist JTE-013. Mutation of receptor residues responsible for binding to the zwitterionic headgroup of sphingosine 1-phosphate (S1P) abolishes S1P activation of the receptor, but not activation by CYM-5520. Competitive binding experiments with radiolabeled S1P demonstrate that CYM-5520 is an allosteric agonist and does not displace the native ligand. Computational modeling suggests that CYM-5520 binds lower in the orthosteric binding pocket, and that co-binding with S1P is energetically well tolerated. In summary, we have identified an allosteric S1PR2 selective agonist compound. PMID:23849205

  14. Sphingosine-1-phosphate stimulates rat primary chondrocyte proliferation

    SciTech Connect

    Kim, Mi-Kyoung; Lee, Ha Young; Kwak, Jong-Young; Park, Joo-In; Yun, Jeanho; Bae, Yoe-Sik . E-mail: yoesik@donga.ac.kr

    2006-06-23

    Rat primary chondrocytes express the sphingosine-1-phosphate (S1P) receptor, S1P{sub 2}, S1P{sub 3}, S1P{sub 4}, but not S1P{sub 1}. When chondrocytes were stimulated with S1P or phytosphingosine-1-phosphate (PhS1P, an S1P{sub 1}- and S1P{sub 4}-selective agonist), phospholipase C-mediated cytosolic calcium increase was dramatically induced. S1P and PhS1P also stimulated two kinds of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK) and p38 kinase in chondrocytes. In terms of the two phospholipids-mediated functional modulation of chondrocytes, S1P and PhS1P stimulated cellular proliferation. The two phospholipids-induced chondrocyte proliferations were almost completely blocked by PD98059 but not by SB203580, suggesting that ERK but not p38 kinase is essentially required for the proliferation. Pertussis toxin almost completely inhibited the two phospholipids-induced cellular proliferation and ERK activation, indicating the crucial role of G{sub i} protein. This study demonstrates the physiological role of two important phospholipids (S1P and PhS1P) on the modulation of rat primary chondrocyte proliferation, and the crucial role played by ERK in the process.

  15. Facile enzymatic synthesis of sugar 1-phosphates as substrates for phosphorylases using anomeric kinases.

    PubMed

    Liu, Yuan; Nishimoto, Mamoru; Kitaoka, Motomitsu

    2015-01-12

    Three sugar 1-phosphates that are donor substrates for phosphorylases were produced at the gram scale from phosphoenolpyruvic acid and the corresponding sugars by the combined action of pyruvate kinase and the corresponding anomeric kinases in good yields. These sugar 1-phosphates were purified through two electrodialysis steps. α-D-Galactose 1-phosphate was finally isolated as crystals of dipotassium salts. α-D-Mannose 1-phosphate and 2-acetamido-2-deoxy-α-D-glucose 1-phosphate were isolated as crystals of bis(cyclohexylammonium) salts. PMID:25464074

  16. Hypoxia-inducible factors and sphingosine 1-phosphate signaling.

    PubMed

    Cuvillier, Olivier; Ader, Isabelle

    2011-11-01

    Hypoxia, defined as reduced tissue oxygen concentration, is a characteristic of solid tumors and is an indicator of unfavorable diagnosis in patients. At the cellular level, the adaptation to hypoxia is under the control of two related transcription factors, HIF-1α and HIF-2α (Hypoxia-Inducible Factor), which activate expression of genes promoting angiogenesis, metastasis, increased tumor growth and resistance to treatments. A role for HIF-1α and HIF-2α is also emerging in hematologic malignancies such as lymphoma and l eukemia. Recent studies have identified the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) signaling pathway - which elicits various cellular processes including cell proliferation, cell survival or angiogenesis - as a new regulator of HIF-1α or HIF-2α activity. This review will consider how targeting the SphK1/S1P signaling could represent an attractive strategy for therapeutic intervention in cancer. PMID:21707486

  17. A map of sphingosine 1-phosphate distribution in the spleen

    PubMed Central

    Ramos-Perez, Willy D.; Fang, Victoria; Escalante-Alcalde, Diana; Cammer, Michael; Schwab, Susan R.

    2015-01-01

    Despite the importance of signaling lipids, many questions remain about their function because we have few tools to chart lipid gradients in vivo. Here we describe a sphingosine 1-phosphate (S1P) reporter mouse, and use this mouse to define S1P distribution in the spleen. Surprisingly, the presence of blood does not predict the concentration of signaling-available S1P. Large areas of the red pulp are S1P-low, while S1P can be sensed by cells inside the white pulp near the marginal sinus. Lipid phosphate phosphatase 3 maintains low S1P concentrations in the spleen, and enables efficient marginal zone B cell shuttling. The exquisitely tight regulation of S1P availability may explain how a single lipid can simultaneously orchestrate many immune cell movements. PMID:26502404

  18. Sphingosine 1-phosphate signaling impacts lymphocyte migration, inflammation and infection.

    PubMed

    Tiper, Irina V; East, James E; Subrahmanyam, Priyanka B; Webb, Tonya J

    2016-08-01

    Sphingosine 1-phosphate (S1P) is a sphingosine containing lipid intermediate obtained from ceramide. S1P is known to be an important signaling molecule and plays multiple roles in the context of immunity. This lysophospholipid binds and activates G-protein-coupled receptors (GPCRs) known as S1P receptors 1-5 (S1P1-5). Once activated, these GPCRs mediate signaling that can lead to alterations in cell proliferation, survival or migration, and can also have other effects such as promoting angiogenesis. In this review, we will present evidence demonstrating a role for S1P in lymphocyte migration, inflammation and infection, as well as in cancer. The therapeutic potential of targeting S1P receptors, kinases and lyase will also be discussed. PMID:27354294

  19. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a)...

  20. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a)...

  1. Ceramide 1-phosphate stimulates glucose uptake in macrophages

    PubMed Central

    Ouro, Alberto; Arana, Lide; Gangoiti, Patricia; Rivera, Io-Guané; Ordoñez, Marta; Trueba, Miguel; Lankalapalli, Ravi S.; Bittman, Robert; Gomez-Muñoz, Antonio

    2014-01-01

    It is well established that ceramide 1-phosphate (C1P) is mitogenic and antiapoptotic, and that it is implicated in the regulation of macrophage migration. These activities require high energy levels to be available in cells. Macrophages obtain most of their energy from glucose. In this work, we demonstrate that C1P enhances glucose uptake in RAW264.7 macrophages. The major glucose transporter involved in this action was found to be GLUT 3, as determined by measuring its translocation from the cytosol to the plasma membrane. C1P-stimulated glucose uptake was blocked by selective inhibitors of phosphatidylinositol 3-kinase (PI3K) or Akt, also known as protein kinase B (PKB), and by specific siRNAs to silence the genes encoding for these kinases. C1P-stimulated glucose uptake was also inhibited by pertussis toxin (PTX) and by the siRNA that inhibited GLUT 3 expression. C1P increased the affinity of the glucose transporter for its substrate, and enhanced glucose metabolism to produce ATP. The latter action was also inhibited by PI3K- and Akt-selective inhibitors, PTX, or by specific siRNAs to inhibit GLUT 3 expression. PMID:23333242

  2. Ceramide and ceramide 1-phosphate in health and disease

    PubMed Central

    2010-01-01

    Sphingolipids are essential components of cell membranes, and many of them regulate vital cell functions. In particular, ceramide plays crucial roles in cell signaling processes. Two major actions of ceramides are the promotion of cell cycle arrest and the induction of apoptosis. Phosphorylation of ceramide produces ceramide 1-phosphate (C1P), which has opposite effects to ceramide. C1P is mitogenic and has prosurvival properties. In addition, C1P is an important mediator of inflammatory responses, an action that takes place through stimulation of cytosolic phospholipase A2, and the subsequent release of arachidonic acid and prostaglandin formation. All of the former actions are thought to be mediated by intracellularly generated C1P. However, the recent observation that C1P stimulates macrophage chemotaxis implicates specific plasma membrane receptors that are coupled to Gi proteins. Hence, it can be concluded that C1P has dual actions in cells, as it can act as an intracellular second messenger to promote cell survival, or as an extracellular receptor agonist to stimulate cell migration. PMID:20137073

  3. Sphingosine 1-Phosphate Receptor Modulators in Multiple Sclerosis

    PubMed Central

    Subei, Adnan M.

    2015-01-01

    Sphingosine 1-phosphate (S1P) receptor modulators possess a unique mechanism of action as disease modifying therapy for multiple sclerosis (MS). Subtype 1 S1P receptors are expressed on the surfaces of lymphocytes and are important in regulating egression from lymph nodes. The S1P receptor modulators indirectly antagonize the receptor’s function and sequester lymphocytes in lymph nodes. Fingolimod was the first S1P agent approved in the United States in 2010 for relapsing MS after two phase 3 trials (FREEDOMS and TRANSFORMS) demonstrated potent efficacy, and good safety and tolerability. Post-marketing experience as well as a third phase 3 trial (FREEDOMS II) also showed favorable results. More selective S1P receptor agents: ponesimod (ACT128800), siponimod (BAF312), ozanimod (RPC1063), ceralifimod (ONO-4641), GSK2018682, and MT-1303 are still in relatively early stages of development, but phase 1 and 2 trials showed promising efficacy and safety. However, these observations have yet to be reproduced in phase 3 clinical trials. PMID:26239599

  4. Regulation of Vascular Permeability by Sphingosine 1-Phosphate

    PubMed Central

    Wang, Lichun; Dudek, Steven M.

    2009-01-01

    A significant and sustained increase in vascular permeability is a hallmark of acute inflammatory diseases such as acute lung injury (ALI) and sepsis and is an essential component of tumor metastasis, angiogenesis, and atherosclerosis. Sphingosine 1-phosphate (S1P), an endogenous bioactive lipid produced in many cell types, regulates endothelial barrier function by activation of its G-protein coupled receptor SIP1. S1P enhances vascular barrier function through a series of profound events initiated by SIP1 ligation with subsequent downstream activation of the Rho family of small GTPases, cytoskeletal reorganization, adherens junction and tight junction assembly, and focal adhesion formation. Furthermore, recent studies have identified transactivation of SIP1 signaling by other barrier enhancing agents as a common mechanism for promoting endothelial barrier function. This review summarizes the state of our current knowledge about the mechanisms through which the S1P/SIP1 axis reduces vascular permeability, which remains an area of active investigation that will hopefully produce novel therapeutic agents in the near future. PMID:18973762

  5. Export of sphingosine-1-phosphate and cancer progression

    PubMed Central

    Takabe, Kazuaki; Spiegel, Sarah

    2014-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid mediator that promotes cell survival, proliferation, migration, angiogenesis, lymphangiogenesis, and immune response; all are critical processes of cancer progression. Although some important roles of intracellular S1P have recently been uncovered, the majority of its biological effects are known to be mediated via activation of five specific G protein-coupled receptors [S1P receptor (S1PR)1–S1PR5] located on the cell surface. Secretion of S1P produced inside cells by sphingosine kinases can then signal through these receptors in autocrine, paracrine, and/or endocrine manners, coined “inside-out” signaling of S1P. Numerous studies suggest that secreted S1P plays important roles in cancer progression; thus, understanding the mechanism by which S1P is exported out of cells, particularly cancer cells, is both interesting and important. Here we will review the current understanding of the transport of S1P out of cancer cells and its potential roles in the tumor microenvironment. PMID:24474820

  6. Sphingosine-1-phosphate synthesis and functions in mast cells

    PubMed Central

    Price, Megan M; Oskeritzian, Carole A; Milstien, Sheldon; Spiegel, Sarah

    2009-01-01

    Sphingolipids are not only major lipid components of all eukaryotic cell membranes, but they also comprise an important family of bioactive signaling molecules that regulate a diverse array of biological responses. The sphingolipid metabolite sphingosine-1-phosphate (S1P), is a key regulator of immune responses. Cellular levels of S1P are determined by the balance between its synthesis, involving two sphingosine kinases (SphK1 and SphK2), and its degradation, involving S1P lyase and S1P phosphatases. S1P mainly signals through its cell-surface receptors and may also have intracellular functions. S1P has important functions in mast cells – the major effectors of allergic responses. Antigen triggering of IgE receptors on mast cells activates both SphKs resulting in the production of S1P that is released and regulates and amplifies mast cell functions, including degranulation as well as cytokine and chemokine release. PMID:19802381

  7. Sphingosine Kinase and Sphingosine 1-Phosphate in Cardioprotection

    PubMed Central

    Karliner, Joel S.

    2010-01-01

    Activation of sphingosine kinase/sphingosine 1-phosphate– mediated signaling has emerged as a critical cardioprotective pathway in response to acute ischemia/reperfusion injury. Application of exogenous sphingosine 1-phosphate (S1P) in cultured cardiac myocytes subjected to hypoxia or treatment of isolated hearts either before ischemia or at the onset of reperfusion (pharmacologic preconditioning or postconditioning) exerts prosurvival effects. Synthetic congeners of S1P mimic these responses. Gene-targeted mice null for the sphingosine kinase 1 isoform whose hearts are subjected to ischemia/reperfusion injury exhibit increased infarct size and respond poorly either to ischemic preconditioning or to ischemic postconditioning. Measurements of cardiac sphingosine kinase activity and S1P parallel these observations. High-density lipoprotein is a major carrier of S1P, and studies of hearts in which selected S1P receptors have been deleted implicate the S1P cargo of high-density lipoprotein in cardioprotection. These observations have considerable relevance for future therapeutic approaches to acute and chronic myocardial injury. PMID:19247197

  8. Extracellular and Intracellular Actions of Sphingosine-1-Phosphate

    PubMed Central

    Strub, Graham M.; Maceyka, Michael; Hait, Nitai C.; Milstien, Sheldon; Spiegel, Sarah

    2009-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid mediator with crucial roles in a wide variety of cellular functions across a broad range of organisms. Though a simple molecule in structure, S1P functions are complex. The formation of S1P is catalyzed by one of two sphingosine kinases that have differential cellular distributions as well as both overlapping and opposing functions and which are activated by many different stimuli. S1P can act on a family of G protein-coupled receptors (S1PRs) that are also differentially expressed in different cell types, which influences the cellular responses to S1P. In addition to acting on receptors located on the plasma membrane, S1P can also function inside the cell, independently of S1PRs. It also appears that both the intracellular location and the isotype of sphingosine kinase involved are major determinants of inside-out signaling of S1P in response to many extracellular stimuli. This chapter is focused on the current literature on extracellular and intracellular actions of S1P PMID:20919652

  9. Sphingosine-1-phosphate in cell growth and cell death.

    PubMed

    Spiegel, S; Cuvillier, O; Edsall, L C; Kohama, T; Menzeleev, R; Olah, Z; Olivera, A; Pirianov, G; Thomas, D M; Tu, Z; Van Brocklyn, J R; Wang, F

    1998-06-19

    Recent evidence suggests that branching pathways of sphingolipid metabolism may mediate either apoptotic or mitogenic responses depending on the cell type and the nature of the stimulus. While ceramide has been shown to be an important regulatory component of apoptosis induced by tumor necrosis factor alpha and Fas ligand, sphingosine-1-phosphate (SPP), a further metabolite of ceramide, has been implicated as a second messenger in cellular proliferation and survival induced by platelet-derived growth factor, nerve growth factor, and serum. SPP protects cells from apoptosis resulting from elevations of ceramide. Inflammatory cytokines stimulate sphingomyelinase, but not ceramidase, leading to accumulation of ceramide, whereas growth signals also leading to accumulation of ceramide, whereas growth signals also stimulate ceramidase and sphingosine kinase leading to increased SPP levels. We propose that the dynamic balance between levels of sphingolipid metabolites, ceramide, and SPP, and consequent regulation of different family members of mitogen-activated protein kinases (JNK versus ERK), is an important factor that determines whether a cell survives or dies. PMID:9668339

  10. Antiapoptotic Agent Sphingosine-1-Phosphate Protects Vitrified Murine Ovarian Grafts

    PubMed Central

    Tsai, Yung-Chieh; Tzeng, Chii-Ruey; Wang, Chia-Woei; Hsu, Ming-I; Tan, Shun-Jen

    2014-01-01

    Significant follicle loss from frozen ovarian grafts is unavoidable. The authors evaluated the protective effects of the antiapoptotic agent sphingosine-1-phosphate (S1P) on vitrified ovarian grafts. Three-week-old sexually immature female FVB mice were divided into 4 groups, fresh, control without S1P, 0.5 mmol/L S1P, and 2 mmol/L S1P. The ovaries were pretreated with S1P for 1 hour and then cryopreserved by modified vitrification. The frozen–thawed ovaries were autotransplanted under the back muscles of mice for 10 days. Expression of apoptosis-related genes encoding caspase 3 and c-Myc was analyzed in the vitrified ovaries and 10 days after transplantation using real-time quantitative polymerase chain reaction. To quantify the ovarian reserve, anti-Müllerian hormone (AMH) levels and follicles were measured in the 10-day vitrified ovarian grafts. Caspase 3 and c-Myc messenger RNA did not differ significantly in the 4 groups after vitrification but was significantly upregulated in the control group after transplantation. The AMH levels and primordial follicle pool were significantly higher in the S1P-treated groups than in the control group but lower than that in the fresh group. The S1P protects vitrified ovarian grafts from ischemic reperfusion injury rather than from vitrification-associated process. PMID:23793475

  11. Divergent role of sphingosine 1-phosphate on insulin resistance.

    PubMed

    Fayyaz, Susann; Japtok, Lukasz; Kleuser, Burkhard

    2014-01-01

    Insulin resistance is a complex metabolic disorder in which insulin-sensitive tissues fail to respond to the physiological action of insulin. There is a strong correlation of insulin resistance and the development of type 2 diabetes both reaching epidemic proportions. Dysfunctional lipid metabolism is a hallmark of insulin resistance and a risk factor for several cardiovascular and metabolic disorders. Numerous studies in humans and rodents have shown that insulin resistance is associated with elevations of non-esterified fatty acids (NEFA) in the plasma. Moreover, bioactive lipid intermediates such as diacylglycerol (DAG) and ceramides appear to accumulate in response to NEFA, which may interact with insulin signaling. However, recent work has also indicated that sphingosine 1-phosphate (S1P), a breakdown product of ceramide, modulate insulin signaling in different cell types. In this review, we summarize the current state of knowledge about S1P and insulin signaling in insulin sensitive cells. A specific focus is put on the action of S1P on hepatocytes, pancreatic β-cells and skeletal muscle cells. In particular, modulation of S1P-signaling can be considered as a potential therapeutic target for the treatment of insulin resistance and type 2 diabetes. PMID:24977487

  12. Phosphatidic acid inhibits ceramide 1-phosphate-stimulated macrophage migration.

    PubMed

    Ouro, Alberto; Arana, Lide; Rivera, Io-Guané; Ordoñez, Marta; Gomez-Larrauri, Ana; Presa, Natalia; Simón, Jorge; Trueba, Miguel; Gangoiti, Patricia; Bittman, Robert; Gomez-Muñoz, Antonio

    2014-12-15

    Ceramide 1-phosphate (C1P) was recently demonstrated to potently induce cell migration. This action could only be observed when C1P was applied exogenously to cells in culture, and was inhibited by pertussis toxin. However, the mechanisms involved in this process are poorly understood. In this work, we found that phosphatidic acid (PA), which is structurally related to C1P, displaced radiolabeled C1P from its membrane-binding site and inhibited C1P-stimulated macrophage migration. This effect was independent of the saturated fatty acid chain length or the presence of a double bond in each of the fatty acyl chains of PA. Treatment of RAW264.7 macrophages with exogenous phospholipase D (PLD), an enzyme that produces PA from membrane phospholipids, also inhibited C1P-stimulated cell migration. Likewise, PA or exogenous PLD inhibited C1P-stimulated extracellularly regulated kinases (ERK) 1 and 2 phosphorylation, leading to inhibition of cell migration. However, PA did not inhibit C1P-stimulated Akt phosphorylation. It is concluded that PA is a physiological regulator of C1P-stimulated macrophage migration. These actions of PA may have important implications in the control of pathophysiological functions that are regulated by C1P, including inflammation and various cellular processes associated with cell migration such as organogenesis or tumor metastasis. PMID:25450673

  13. Implication of sphingosin-1-phosphate in cardiovascular regulation.

    PubMed

    Li, Ningjun; Zhang, Fan

    2016-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite generated by phosphorylation of sphingosine catalyzed by sphingosine kinase. S1P acts mainly through its high affinity G-protein-coupled receptors and participates in the regulation of multiple systems, including cardiovascular system. It has been shown that S1P signaling is involved in the regulation of cardiac chronotropy and inotropy and contributes to cardioprotection as well as cardiac remodeling; S1P signaling regulates vascular function, such as vascular tone and endothelial barrier, and possesses an anti-atherosclerotic effect; S1P signaling is also implicated in the regulation of blood pressure. Therefore, manipulation of S1P signaling may offer novel therapeutic approaches to cardiovascular diseases. As several S1P receptor modulators and sphingosine kinase inhibitors have been approved or under clinical trials for the treatment of other diseases, it may expedite the test and implementation of these S1P-based drugs in cardiovascular diseases. PMID:27100508

  14. Truth and consequences of sphingosine-1-phosphate lyase

    PubMed Central

    Aguilar, Ana; Saba, Julie D.

    2011-01-01

    Sphingosine phosphate lyase (SPL) is an intracellular enzyme responsible for the irreversible catabolism of the lipid signaling molecule sphingosine-1-phosphate (S1P). SPL catalyzes the cleavage of S1P resulting in the formation of hexadecenal and ethanolamine phosphate. S1P functions as a ligand for a family of ubiquitously expressed G protein-coupled receptors that mediate autocrine and paracrine signals controlling cell migration, proliferation and programmed cell death pathways. S1P has also been implicated in developmental and pathological angiogenesis, cancer, inflammation, allergy, diabetes, lymphocyte trafficking and morphogenesis of the heart, kidney and brain as well as their response to ischemic injury. As the final enzyme in the sphingolipid degradative pathway, SPL commands the only exit point for sphingolipid intermediates and their flow into phospholipid metabolism. So, in addition to regulating S1P levels, SPL is the gatekeeper of a critical node of lipid metabolic flow. The recent crystallization of a prokaryotic SPL has provided insight into the function and potential regulation and drug targeting of this enzyme. Considering the many physiological and pathological functions of S1P signaling, it seems likely that targeting SPL to modulate S1P signaling could be useful in a variety of clinical contexts. In this review we discuss the recent highlights related to SPL-mediated biology, the structure of the SPL protein, the function of its products, new insights regarding the usefulness of SPL targeting in treating human diseases and the consequences of permanent SPL disruption in mice. PMID:21946005

  15. Resveratrol stimulates sphingosine-1-phosphate signaling of cathelicidin production.

    PubMed

    Park, Kyungho; Elias, Peter M; Hupe, Melanie; Borkowski, Andrew W; Gallo, Richard L; Shin, Kyong-Oh; Lee, Yong-Moon; Holleran, Walter M; Uchida, Yoshikazu

    2013-08-01

    We recently discovered a regulatory mechanism that stimulates the production of the multifunctional antimicrobial peptide cathelicidin antimicrobial peptide (CAMP). In response to subtoxic levels of ER stress, increased sphingosine-1-phosphate (S1P) production activates an NFκBC/EBPα-dependent pathway that enhances CAMP production in cultured human keratinocytes. As the multifunctional stilbenoid compound resveratrol (RESV) increases ceramide (Cer) levels, a precursor of S1P, we hypothesized and assessed whether RESV could exploit the same pathway to regulate CAMP production. Accordingly, RESV significantly increased Cer and S1P levels in cultured keratinocytes, paralleled by increased CAMP mRNA/protein expression. Furthermore, topical RESV also increased murine CAMP mRNA/protein expression in mouse skin. Conversely, blockade of Cer-->sphingosine-->S1P metabolic conversion, with specific inhibitors of ceramidase or sphingosine kinase, attenuated the expected RESV-mediated increase in CAMP expression. The RESV-induced increase in CAMP expression required both NF-κB and C/EBPα transactivation. Moreover, conditioned media from keratinocytes treated with RESV significantly suppressed Staphylococcus aureus growth. Finally, topical RESV, if not coapplied with a specific inhibitor of sphingosine kinase, blocked S. aureus invasion into murine skin. These results demonstrate that the dietary stilbenoid RESV stimulates S1P signaling of CAMP production through an NF-κB-->C/EBPα-dependent mechanism, leading to enhanced antimicrobial defense against exogenous microbial pathogens. PMID:23856934

  16. Endogenous galactose formation in galactose-1-phosphate uridyltransferase deficiency.

    PubMed

    Schadewaldt, Peter; Kamalanathan, Loganathan; Hammen, Hans-Werner; Kotzka, Jorg; Wendel, Udo

    2014-12-01

    Patients with classical galactosaemia (galactose-1-phosphate uridyltransferase (GALT) deficiency) manifest clinical complications despite strict dietary galactose restriction. Therefore the significance of endogenous galactose production has been assessed. Previous in vivo studies primarily focused on patients homozygous for the most common genetic variant Q188R but little is known about other genetic variants. In the present study the endogenous galactose release in a group of non-Q188R homozygous galactosaemic patients (n = 17; 4-34 years) exhibiting comparably low residual GALT activity in red blood cells was investigated. Primed continuous infusion studies with D-[1-(13)C]galactose as substrate were conducted under post-absorptive conditions and in good metabolic control. The results demonstrate that all patients exhibiting residual GALT activity of <1.5% of control showed a comparable pathological pattern of increased endogenous galactose release irrespective of the underlying genetic variations. Possible implications of the findings towards a more differentiated dietary regimen in galactosaemia are discussed. PMID:25268296

  17. Resveratrol Stimulates Sphingosine-1-Phosphate Signaling of Cathelicidin Production

    PubMed Central

    Park, Kyungho; Elias, Peter M.; Hupe, Melanie; Borkowski, Andrew W.; Gallo, Richard L.; Shin, Kyong-Oh; Lee, Yong-Moon; Holleran, Walter M.; Uchida, Yoshikazu

    2013-01-01

    We recently discovered a regulatory mechanism that stimulates production of the multifunctional antimicrobial peptide, cathelicidin antimicrobial peptide (CAMP). In response to subtoxic levels of ER stress, increased sphingosine-1-phosphate (S1P) production activates an NFκB→C/EBPα dependent pathway that enhances CAMP production in cultured human keratinocytes. Since the multifunctional stilbenoid compound, resveratrol (RESV), increases ceramide (Cer) levels, a precursor of S1P, we hypothesized and assessed whether RESV could exploit the same pathway to regulate CAMP production. Accordingly, RESV significantly increased Cer and S1P levels in cultured keratinocytes, paralleled by increased CAMP mRNA/protein expression. Furthermore, topical RESV also increased murine CAMP mRNA/protein expression in mouse skin. Conversely, blockade of Cer→sphingosine→S1P metabolic conversion, with specific inhibitors of ceramidase or sphingosine kinase, attenuated the expected RESV-mediated increase in CAMP expression. The RESV-induced increase in CAMP expression required both NF-κB and C/EBPα transactivation. Moreover, conditioned media from keratinocyte treated with RESV significantly suppressed Staphylococcus aureus growth. Finally, topical RESV, if not coapplied with a specific inhibitor of sphingosine kinase, blocked Staphylococcus aureus invasion into murine skin. These results demonstrate that the dietary stilbenoid, RESV, stimulates S1P signaling of CAMP production through an NF-κB→C/EBPα-dependent mechanism, leading to enhanced antimicrobial defense against exogenous microbial pathogens. PMID:23856934

  18. Cytoplasmic sphingosine-1-phosphate pathway modulates neuronal autophagy

    PubMed Central

    Moruno Manchon, Jose Felix; Uzor, Ndidi-Ese; Dabaghian, Yuri; Furr-Stimming, Erin E.; Finkbeiner, Steven; Tsvetkov, Andrey S.

    2015-01-01

    Autophagy is an important homeostatic mechanism that eliminates long-lived proteins, protein aggregates and damaged organelles. Its dysregulation is involved in many neurodegenerative disorders. Autophagy is therefore a promising target for blunting neurodegeneration. We searched for novel autophagic pathways in primary neurons and identified the cytosolic sphingosine-1-phosphate (S1P) pathway as a regulator of neuronal autophagy. S1P, a bioactive lipid generated by sphingosine kinase 1 (SK1) in the cytoplasm, is implicated in cell survival. We found that SK1 enhances flux through autophagy and that S1P-metabolizing enzymes decrease this flux. When autophagy is stimulated, SK1 relocalizes to endosomes/autophagosomes in neurons. Expression of a dominant-negative form of SK1 inhibits autophagosome synthesis. In a neuron model of Huntington’s disease, pharmacologically inhibiting S1P-lyase protected neurons from mutant huntingtin-induced neurotoxicity. These results identify the S1P pathway as a novel regulator of neuronal autophagy and provide a new target for developing therapies for neurodegenerative disorders. PMID:26477494

  19. Sphingosine-1-phosphate transporters as targets for cancer therapy.

    PubMed

    Nagahashi, Masayuki; Takabe, Kazuaki; Terracina, Krista P; Soma, Daiki; Hirose, Yuki; Kobayashi, Takashi; Matsuda, Yasunobu; Wakai, Toshifumi

    2014-01-01

    Sphingosine-1-phosphate (S1P) is a pleiotropic lipid mediator that regulates cell survival, migration, the recruitment of immune cells, angiogenesis, and lymphangiogenesis, all of which are involved in cancer progression. S1P is generated inside cancer cells by sphingosine kinases then exported outside of the cell into the tumor microenvironment where it binds to any of five G protein coupled receptors and proceeds to regulate a variety of functions. We have recently reported on the mechanisms underlying the "inside-out" signaling of S1P, its export through the plasma membrane, and its interaction with cell surface receptors. Membrane lipids, including S1P, do not spontaneously exchange through lipid bilayers since the polar head groups do not readily go through the hydrophobic interior of the plasma membrane. Instead, specific transporter proteins exist on the membrane to exchange these lipids. This review summarizes what is known regarding S1P transport through the cell membrane via ATP-binding cassette transporters and the spinster 2 transporter and discusses the roles for these transporters in cancer and in the tumor microenvironment. Based on our research and the emerging understanding of the role of S1P signaling in cancer and in the tumor microenvironment, S1P transporters and S1P signaling hold promise as new therapeutic targets for cancer drug development. PMID:25133174

  20. Implication of sphingosin-1-phosphate in cardiovascular regulation

    PubMed Central

    Li, Ningjun; Zhang, Fan

    2016-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite generated by phosphorylation of sphingosine catalyzed by sphingosine kinase. S1P acts mainly through its high affinity G-protein-coupled receptors and participates in the regulation of multiple systems, including cardiovascular system. It has been shown that S1P signaling is involved in the regulation of cardiac chronotropy and inotropy and contributes to cardioprotection as well as cardiac remodeling; S1P signaling regulates vascular function, such as vascular tone and endothelial barrier, and possesses an anti-atherosclerotic effect; S1P signaling is also implicated in the regulation of blood pressure. Therefore, manipulation of S1P signaling may offer novel therapeutic approaches to cardiovascular diseases. As several S1P receptor modulators and sphingosine kinase inhibitors have been approved or under clinical trials for the treatment of other diseases, it may expedite the test and implementation of these S1P-based drugs in cardiovascular diseases. PMID:27100508

  1. Sphingosine 1-phosphate in blood: function, metabolism, and fate.

    PubMed

    Thuy, Andreas V; Reimann, Christina-Maria; Hemdan, Nasr Y A; Gräler, Markus H

    2014-01-01

    Sphingosine 1-phosphate (S1P) is a lipid metabolite and a ligand of five G protein-coupled cell surface receptors S1PR1 to S1PR5. These receptors are expressed on various cells and cell types of the immune, cardiovascular, respiratory, hepatic, reproductive, and neurologic systems, and S1P has an impact on many different pathophysiological conditions including autoimmune, cardiovascular, and neurodegenerative diseases, cancer, deafness, osteogenesis, and reproduction. While these diverse signalling properties of S1P have been extensively reviewed, the particular role of S1P in blood is still a matter of debate. Blood contains the highest S1P concentration of all body compartments, and several questions are still not sufficiently answered: Where does it come from and how is it metabolized? Why is the concentration of S1P in blood so high? Are minor changes of the high blood S1P concentrations physiologically relevant? Do blood cells and vascular endothelial cells that are constantly exposed to high blood S1P levels still respond to S1P via S1P receptors? Recent data reveal new insights into the functional role and the metabolic fate of blood-borne S1P. This review aims to summarize our current knowledge regarding the source, secretion, transportation, function, metabolism, and fate of S1P in blood. PMID:24977489

  2. Influence of calcium on ceramide-1-phosphate monolayers

    PubMed Central

    Brezesinski, Gerald; Hill, Alexandra; Gericke, Arne

    2016-01-01

    Summary Ceramide-1-phosphate (C1P) plays an important role in several biological processes, being identified as a key regulator of many protein functions. For instance, it acts as a mediator of inflammatory responses. The mediation of the inflammation process happens due to the interaction of C1P with the C2 domain of cPLA2α, an effector protein that needs the presence of submicromolar concentrations of calcium ions. The aim of this study was to determine the phase behaviour and structural properties of C1P in the presence and absence of millimolar quantities of calcium in a well-defined pH environment. For that purpose, we used monomolecular films of C1P at the soft air/liquid interface with calcium ions in the subphase. The pH was varied to change the protonation degree of the C1P head group. We used surface pressure versus molecular area isotherms coupled with other monolayer techniques as Brewster angle microscopy (BAM), infrared reflection–absorption spectroscopy (IRRAS) and grazing incidence X-ray diffraction (GIXD). The isotherms indicate that C1P monolayers are in a condensed state in the presence of calcium ions, regardless of the pH. At higher pH without calcium ions, the monolayer is in a liquid-expanded state due to repulsion between the negatively charged phosphate groups of the C1P molecules. When divalent calcium ions are added, they are able to bridge the highly charged phosphate groups, enhancing the regular arrangement of the head groups. Similar solidification of the monolayer structure can be seen in the presence of a 150 times larger concentration of monovalent sodium ions. Therefore, calcium ions have clearly a strong affinity for the phosphomonoester of C1P. PMID:26977381

  3. Sphingosine 1-phosphate lyase enzyme assay using a BODIPY-labeled substrate

    SciTech Connect

    Bandhuvula, Padmavathi; Li Zaiguo; Bittman, Robert; Saba, Julie D.

    2009-03-06

    Sphingosine 1-phosphate lyase (SPL) is responsible for the irreversible catabolism of sphingosine 1-phosphate, which signals through five membrane receptors to mediate cell stress responses, angiogenesis, and lymphocyte trafficking. The standard assay for SPL activity utilizes a radioactive dihydrosphingosine 1-phosphate substrate and is expensive and cumbersome. In this study, we describe an SPL assay that employs an {omega}-labeled BODIPY-sphingosine 1-phosphate substrate, allowing fluorescent product detection by HPLC and incorporating advantages of the BODIPY fluorophore. The major aldehyde product is confirmed by reaction with 2,4-dinitrophenylhydrazine. The SPL-catalyzed reaction is linear over a 30 min time period and yields a K{sub m} of 35 {mu}M for BODIPY-sphingosine 1-phosphate.

  4. Sphingosine-1-phosphate, FTY720, and sphingosine-1-phosphate receptors in the pathobiology of acute lung injury.

    PubMed

    Natarajan, Viswanathan; Dudek, Steven M; Jacobson, Jeffrey R; Moreno-Vinasco, Liliana; Huang, Long Shuang; Abassi, Taimur; Mathew, Biji; Zhao, Yutong; Wang, Lichun; Bittman, Robert; Weichselbaum, Ralph; Berdyshev, Evgeny; Garcia, Joe G N

    2013-07-01

    Acute lung injury (ALI) attributable to sepsis or mechanical ventilation and subacute lung injury because of ionizing radiation (RILI) share profound increases in vascular permeability as a key element and a common pathway driving increased morbidity and mortality. Unfortunately, despite advances in the understanding of lung pathophysiology, specific therapies do not yet exist for the treatment of ALI or RILI, or for the alleviation of unremitting pulmonary leakage, which serves as a defining feature of the illness. A critical need exists for new mechanistic insights that can lead to novel strategies, biomarkers, and therapies to reduce lung injury. Sphingosine 1-phosphate (S1P) is a naturally occurring bioactive sphingolipid that acts extracellularly via its G protein-coupled S1P1-5 as well as intracellularly on various targets. S1P-mediated cellular responses are regulated by the synthesis of S1P, catalyzed by sphingosine kinases 1 and 2, and by the degradation of S1P mediated by lipid phosphate phosphatases, S1P phosphatases, and S1P lyase. We and others have demonstrated that S1P is a potent angiogenic factor that enhances lung endothelial cell integrity and an inhibitor of vascular permeability and alveolar flooding in preclinical animal models of ALI. In addition to S1P, S1P analogues such as 2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol (FTY720), FTY720 phosphate, and FTY720 phosphonates offer therapeutic potential in murine models of lung injury. This translational review summarizes the roles of S1P, S1P analogues, S1P-metabolizing enzymes, and S1P receptors in the pathophysiology of lung injury, with particular emphasis on the development of potential novel biomarkers and S1P-based therapies for ALI and RILI. PMID:23449739

  5. Esterification of glycerol 3-phosphate in lactating guinea-pig mammary gland

    PubMed Central

    Kuhn, N. J.

    1967-01-01

    1. The presence of palmitoyl-CoA–l-glycerol 3-phosphate palmitoyltransferase (EC 2.3.1.15) has been demonstrated in a particulate fraction of mammary tissue from lactating guinea pigs. 2. Cell-free preparations also catalysed the activation of palmitate and oleate, and the conversion of enzymically formed phosphatidic acid into glycerides, in accord with the Kennedy pathway of glyceride formation. 3. The properties of the system that esterifies l-glycerol 3-phosphate were studied with respect to substrates and cofactors, and the reaction product was shown to be phosphatidic acid (1,2-diacyl glycerol 3-phosphate). 4. The extent to which newly formed phosphatidic acid was converted into glyceride in a cell-free system was dependent on the nature of the acyl donor, the concentration of subcellular particles, the time of incubation and the concentration of Mg2+. PMID:6070127

  6. Control of glycolysis by glyceraldehyde-3-phosphate dehydrogenase in Streptococcus cremoris and Streptococcus lactis.

    PubMed Central

    Poolman, B; Bosman, B; Kiers, J; Konings, W N

    1987-01-01

    The decreased response of the energy metabolism of lactose-starved Streptococcus cremoris upon readdition of lactose is caused by a decrease of the glycolytic activity (B. Poolman, E. J. Smid, and W. N. Konings, J. Bacteriol. 169:1460-1468, 1987). The decrease in glycolysis is accompanied by a decrease in the activities of glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate mutase. The steady-state levels of pathway intermediates upon refeeding with lactose after various periods of starvation indicate that the decreased glycolysis is primarily due to diminished glyceraldehyde-3-phosphate dehydrogenase activity. Furthermore, quantification of the control strength exerted by glyceraldehyde-3-phosphate dehydrogenase on the overall activity of the glycolytic pathway shows that this enzyme can be significantly rate limiting in nongrowing cells. PMID:2824452

  7. EXPRESSION OF THE SPERMATOGENIC CELL-SPECIFIC GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE (GAPDS) IN RAT TESTIS

    EPA Science Inventory

    The spermatogenic cell-specific variant of glyceraldehyde 3-phosphate dehydrogenase (GAPDS) has been cloned from a rat testis cDNA library and its pattern of expression determined. A 1417 nucleotide cDNA has been found to encode an enzyme with substantial homology to mouse GAPDS...

  8. Chemical and enzymatic methodologies for the synthesis of enantiomerically pure glyceraldehyde 3-phosphates.

    PubMed

    Gauss, Dominik; Schoenenberger, Bernhard; Wohlgemuth, Roland

    2014-05-01

    Glyceraldehyde 3-phosphates are important intermediates of many central metabolic pathways in a large number of living organisms. d-Glyceraldehyde 3-phosphate (d-GAP) is a key intermediate during glycolysis and can as well be found in a variety of other metabolic pathways. The opposite enantiomer, l-glyceraldehyde 3-phosphate (l-GAP), has been found in a few exciting new pathways. Here, improved syntheses of enantiomerically pure glyceraldehyde 3-phosphates are reported. While d-GAP was synthesized by periodate cleavage of d-fructose 6-phosphate, l-GAP was obtained by enzymatic phosphorylation of l-glyceraldehyde. (1)H- and (31)P NMR spectroscopy was applied in order to examine pH-dependent behavior of GAP over time and to identify potential degradation products. It was found that GAP is stable in acidic aqueous solution below pH 4. At pH 7, methylglyoxal is formed, whereas under alkaline conditions, the formation of lactic acid could be observed. PMID:24680504

  9. Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glycerol-3-phosphate (G3P) is an important metabolite that contributes to the growth and disease-related physiologies of prokaryotes, plants, animals and humans alike. Here we show that G3P serves as the inducer of an important form of broad-spectrum immunity in plants, termed systemic acquired resi...

  10. 1 L-myo-Inositol 1-Phosphate Synthase from Arabidopsis thaliana.

    PubMed Central

    Johnson, M. D.; Sussex, I. M.

    1995-01-01

    A recombinant phage containing an Arabidopsis thaliana cDNA sequence encoding a protein with 1L-myo-inositol 1-phosphate synthase (EC 5.5.1.4) activity has been isolated and used for transcriptional and translational studies. The identification of the recombinant phage relied on the observations that (a) the clone complements a mutation in the structural gene for 1L-myo-inositol 1-phosphate synthase in the yeast Saccharomyces cerevisiae, (b) the in vitro synthesized polypeptide enzymatically converts glucose 6-phosphate into inositol 1-phosphate, (c) in vitro transcription and translation of this cDNA sequence produces a polypeptide that is recognized by anti-yeast myo-inositol 1-phosphate synthase antiserum, and (d) inositol regulates the expression of the corresponding gene in Arabidopsis. PMID:12228386

  11. Expression, essentiality, and a microtiter plate assay for mycobacterial GlmU, the bifunctional glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase

    PubMed Central

    Zhang, Wenli; Jones, Victoria C.; Scherman, Michael S.; Mahapatra, Sebabrata; Crick, Dean; Bhamidi, Suresh; Xin, Yi; McNeil, Michael R.; Ma, Yufang

    2008-01-01

    UDP-N-acetyl-D-glucosamine (UDP-GlcNAc) is an essential precursor of peptidoglycan and the rhamnose-GlcNAc linker region of mycobacterial cell wall. In Mycobacterium tuberculosis H37Rv genome, Rv1018c shows strong homology to the GlmU protein involved in the formation of UDP-GlcNAc from other bacteria. GlmU is a bifunctional enzyme that catalyzes two sequential steps in UDP-GlcNAc biosynthesis. Glucosamine-1-phosphate acetyl transferase catalyzes the formation of N-acetylglucosamine-1-phosphate, and N-acetylglucosamine-1-phosphate uridylyltransferase catalyzes the formation of UDP-GlcNAc. Since inhibition of peptidoglycan synthesis often results in cell lysis, M. tuberculosis GlmU is a potential anti-tuberculosis drug target. In this study we cloned M. tuberculosis Rv1018c (glmU gene) and expressed soluble GlmU protein in E. coli BL21(DE3). Enzymatic assays showed that M. tuberculosis GlmU protein exhibits both glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridylyltransferase activities. We also investigated the effect on Mycobacterium smegmatis when the activity of GlmU is fully removed or reduced via a genetic approach. The results showed that activity of GlmU is required for growth of M. smegmatis as the bacteria did not grow in the absence of active GlmU enzyme. As the amount of functional GlmU enzyme was gradually reduced in a temperature shift experiment, the M. smegmatis cells became non-viable and their morphology changed from a normal rod shape to stubby-rounded morphology and in some cases they lysed. Finally a microtiter plate based assay for GlmU activity with an OD340 read out was developed. These studies therefore support the further development of M. tuberculosis GlmU enzyme as a target for new anti-tuberculosis drugs. PMID:18573680

  12. Purification and characterization of glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) from pea seeds.

    PubMed

    Gani, Zahid; Boradia, Vishant Mahendra; Raghu Ram, Janaki; Suryavanshi, Prashant Mohan; Patil, Pravinkumar; Kumar, Santosh; Singh, Ranvir; Raje, Manoj; Raje, Chaaya Iyengar

    2016-11-01

    Glyceraldehyde-3-phosphate dehydrogenase [GAPDH, NAD + oxidoreductase (phosphorylating) 1.2.1.12] catalyzes the conversion of glyceraldehyde-3-phosphate to 1,3-bisphosphoglycerate coupled with the reduction of NAD(+) to NADH. In addition to its role in glycolysis, this enzyme has numerous alternate functions, in both prokaryotes and eukaryotes. In plants, additional functions have been reported from multiple species including Pisum sativum. A recent study has identified that GAPDH may play an important role in seed ageing and programmed cell death. Despite this the existing purification protocols are almost 40 years old, and only partial characterization of the enzyme has been reported. In the current study, we report a modified method for purification of enzymatically active pea seed GAPDH along with the characterization of the enzyme. Using 2D gel electrophoresis our study also demonstrates that pea seeds contain four isoforms of NAD(+) dependent GAPDH. PMID:27389468

  13. Crystal structure of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase from the ESKAPE pathogen Acinetobacter baumannii.

    PubMed

    Sutton, Kristin A; Breen, Jennifer; Russo, Thomas A; Schultz, L Wayne; Umland, Timothy C

    2016-03-01

    The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the sixth step of the seven-step shikimate pathway. Chorismate, the product of the pathway, is a precursor for the biosynthesis of aromatic amino acids, siderophores and metabolites such as folate, ubiquinone and vitamin K. The shikimate pathway is present in bacteria, fungi, algae, plants and apicomplexan parasites, but is absent in humans. The EPSP synthase enzyme produces 5-enolpyruvylshikimate 3-phosphate and phosphate from phosphoenolpyruvate and shikimate 3-phosphate via a transferase reaction, and is the target of the herbicide glyphosate. The Acinetobacter baumannii gene encoding EPSP synthase, aroA, has previously been demonstrated to be essential during host infection for the growth and survival of this clinically important drug-resistant ESKAPE pathogen. Prephenate dehydrogenase is also encoded by the bifunctional A. baumannii aroA gene, but its activity is dependent upon EPSP synthase since it operates downstream of the shikimate pathway. As part of an effort to evaluate new antimicrobial targets, recombinant A. baumannii EPSP (AbEPSP) synthase, comprising residues Ala301-Gln756 of the aroA gene product, was overexpressed in Escherichia coli, purified and crystallized. The crystal structure, determined to 2.37 Å resolution, is described in the context of a potential antimicrobial target and in comparison to EPSP synthases that are resistant or sensitive to the herbicide glyphosate. PMID:26919521

  14. Glyceraldehyde-3-phosphate dehydrogenase-catalyzed chain oxidation of reduced nicotinamide adenine dinucleotide by perhydroxyl radicals

    SciTech Connect

    Chan, P.C.

    1980-02-10

    The chain oxidation of glyceraldehyde-3-phosphate dehydrogenase NADH by perhydroxyl radicals and propagated by molecular oxygen was studied by the xanthine-xanthine oxidase system, /sup 60/Co ..gamma..-ray, and pulse radiolysis. The chain length, amount of NADH oxidized per HO/sub 2/ generated, increases with increasing acidity of the medium and reaches a value of 73 at pH 5.0. The rate constant for the oxidation of the glyceraldehyde-3-phosphate dehydrogenase NADH complex by HO/sub 2/ was estimated to be 2 x 10/sup 7/ m/sup -1/s/sup -1/ at ambient temperatures (23-24/sup 0/C). Rate studies as a function of pH indicate that O/sub 2//sup -/ is unreactive toward the glyceraldehyde-3-phosphate dehydrogenase NADH complex. Other dehydrogenases (malate dehydrogenase, glutamate dehydrogenase, and isocitric dehydrogenase) studied showed no catalytic activity in the oxidation of NADH by HO/sub 2//O/sub 2//sup -/.

  15. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate.

    PubMed

    Cuvillier, O; Pirianov, G; Kleuser, B; Vanek, P G; Coso, O A; Gutkind, S; Spiegel, S

    1996-06-27

    Ceramide is an important regulatory participant of programmed cell death (apoptosis) induced by tumour-necrosis factor (TNF)-alpha and Fas ligand, members of the TNF superfamily. Conversely, sphingosine and sphingosine-1-phosphate, which are metabolites of ceramide, induce mitogenesis and have been implicated as second messengers in cellular proliferation induced by platelet-derived growth factor and serum. Here we report that sphingosine-1-phosphate prevents the appearance of the key features of apoptosis, namely intranucleosomal DNA fragmentation and morphological changes, which result from increased concentrations of ceramide. Furthermore, inhibition of ceramide-mediated apoptosis by activation of protein kinase C results from stimulation of sphingosine kinase and the concomitant increase in intracellular sphingosine-1-phosphate. Finally sphingosine-1-phosphate not only stimulates the extracellular signal-regulated kinase (ERK) pathway, it counteracts the ceramide-induced activation of stress-activated protein kinase (SAPK/JNK). Thus, the balance between the intracellular levels of ceramide and sphingosine-1-phosphate and their regulatory effects on different family members of mitogen-activated protein kinases determines the fate of the cell. PMID:8657285

  16. Sphingomyelinase D Activity in Model Membranes: Structural Effects of in situ Generation of Ceramide-1-Phosphate

    PubMed Central

    Stock, Roberto P.; Brewer, Jonathan; Wagner, Kerstin; Ramos-Cerrillo, Blanca; Duelund, Lars; Jernshøj, Kit Drescher; Olsen, Lars Folke; Bagatolli, Luis A.

    2012-01-01

    The toxicity of Loxosceles spider venom has been attributed to a rare enzyme, sphingomyelinase D, which transforms sphingomyelin to ceramide-1-phosphate. The bases of its inflammatory and dermonecrotic activity, however, remain unclear. In this work the effects of ceramide-1-phosphate on model membranes were studied both by in situ generation of this lipid using a recombinant sphingomyelinase D from the spider Loxosceles laeta and by pre-mixing it with sphingomyelin and cholesterol. The systems of choice were large unilamellar vesicles for bulk studies (enzyme kinetics, fluorescence spectroscopy and dynamic light scattering) and giant unilamellar vesicles for fluorescence microscopy examination using a variety of fluorescent probes. The influence of membrane lateral structure on the kinetics of enzyme activity and the consequences of enzyme activity on the structure of target membranes containing sphingomyelin were examined. The findings indicate that: 1) ceramide-1-phosphate (particularly lauroyl ceramide-1-phosphate) can be incorporated into sphingomyelin bilayers in a concentration-dependent manner and generates coexistence of liquid disordered/solid ordered domains, 2) the activity of sphingomyelinase D is clearly influenced by the supramolecular organization of its substrate in membranes and, 3) in situ ceramide-1-phosphate generation by enzymatic activity profoundly alters the lateral structure and morphology of the target membranes. PMID:22558302

  17. Regulation by sphingosine 1-phosphate of Bax and Bad activities during apoptosis in a MEK-dependent manner.

    PubMed

    Betito, Susan; Cuvillier, Olivier

    2006-02-24

    Herein we report that the prosurvival sphingolipid sphingosine 1-phosphate regulates the activities of both Bad and Bax during apoptosis of Jurkat cells. First, sphingosine 1-phosphate treatment results in Bad inactivation via the ERK/Rsk-1 pathway. Second, sphingosine 1-phosphate blocks the translocation of Bax to the mitochondria induced by Fas ligation. MEK inhibition by PD98059 or U0126 not only abrogates sphingosine 1-phosphate-induced Bad phosphorylation, but also its cytoprotective effect. Furthermore, inhibition of both mitochondrial cytochrome c efflux and Bax translocation to the mitochondria by sphingosine 1-phosphate could be overcome by PD98059 or U0126. Hence, the MEK/ERK pathway seems to be crucial for the survival effects initiated by sphingosine 1-phosphate. PMID:16414356

  18. Selectivity of 3-bromo-isoxazoline inhibitors between human and Plasmodium falciparum glyceraldehyde-3-phosphate dehydrogenases.

    PubMed

    Bruno, Stefano; Margiotta, Marilena; Pinto, Andrea; Cullia, Gregorio; Conti, Paola; De Micheli, Carlo; Mozzarelli, Andrea

    2016-06-15

    Compounds based on the 3-Br-isoxazoline scaffold fully inhibit glyceraldehyde 3-phosphate dehydrogenase from Plasmodium falciparum by selectively alkylating all four catalytic cysteines of the tetramer. Here, we show that, under the same experimental conditions that led to a fast and complete inhibition of the protozoan enzyme, the human ortholog was only 25% inhibited, with the alkylation of a single catalytic cysteine within the tetramer. The partial alkylation seems to produce a slow conformational rearrangement that severely limits the accessibility of the remaining active sites to bulky 3-Br-isoxazoline derivatives, but not to the substrate or smaller alkylating agents. PMID:27137361

  19. Expression, purification and kinetic characterization of His-tagged glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma cruzi.

    PubMed

    Cheleski, Juliana; Freitas, Renato F; Wiggers, Helton José; Rocha, Josmar R; de Araújo, Ana Paula Ulian; Montanari, Carlos A

    2011-04-01

    Trypanosomes are flagellated protozoa responsible for serious parasitic diseases that have been classified by the World Health Organization as tropical sicknesses of major importance. One important drug target receiving considerable attention is the enzyme glyceraldehyde-3-phosphate dehydrogenase from the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease (T. cruzi Glyceraldehyde-3-phosphate dehydrogenase (TcGAPDH); EC 1.2.1.12). TcGAPDH is a key enzyme in the glycolytic pathway of T. cruzi and catalyzes the oxidative phosphorylation of D-glyceraldehyde-3-phosphate (G3P) to 1,3-bisphosphoglycerate (1,3-BPG) coupled to the reduction of oxidized nicotinamide adenine dinucleotide, (NAD(+)) to NADH, the reduced form. Herein, we describe the cloning of the T. cruzi gene for TcGAPDH into the pET-28a(+) vector, its expression as a tagged protein in Escherichia coli, purification and kinetic characterization. The His(6)-tagged TcGAPDH was purified by affinity chromatography. Enzyme activity assays for the recombinant His(6)-TcGAPDH were carried out spectrophotometrically to determine the kinetic parameters. The apparent Michaelis-Menten constant (K(M)(app)) determined for D-glyceraldehyde-3-phosphate and NAD(+) were 352±21 and 272±25 μM, respectively, which were consistent with the values for the untagged enzyme reported in the literature. We have demonstrated by the use of Isothermal Titration Calorimetry (ITC) that this vector modification resulted in activity preserved for a higher period. We also report here the use of response surface methodology (RSM) to determine the region of optimal conditions for enzyme activity. A quadratic model was developed by RSM to describe the enzyme activity in terms of pH and temperature as independent variables. According to the RMS contour plots and variance analysis, the maximum enzyme activity was at 29.1°C and pH 8.6. Above 37°C, the enzyme activity starts to fall, which may be related to previous

  20. DEVELOPMENT OF A METHOD FOR QUANTITATING SPHINGOID BASE 1-PHOSPHATES IN BLOOD SPOTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red blood cells (RBC) accumulate, store and release sphingoid base 1-phosphates,important ligands for the extracellular receptors S1P1-5. The ability of RBC to accumulate these bioactive lipids is because, with the exception of sphingosine kinase, the enzymes responsible for metabolizing sphingosine...

  1. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Galactose-1-phosphate uridyl transferase test system. 862.1315 Section 862.1315 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES...

  2. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Galactose-1-phosphate uridyl transferase test system. 862.1315 Section 862.1315 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... hereditary disease galactosemia (disorder of galactose metabolism) in infants. (b) Classification. Class II....

  3. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Galactose-1-phosphate uridyl transferase test system. 862.1315 Section 862.1315 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... hereditary disease galactosemia (disorder of galactose metabolism) in infants. (b) Classification. Class II....

  4. Biochemical methods for quantifying sphingolipids: ceramide, sphingosine, sphingosine kinase-1 activity, and sphingosine-1-phosphate.

    PubMed

    Brizuela, Leyre; Cuvillier, Olivier

    2012-01-01

    Sphingolipids (ceramide, sphingosine, and sphingosine-1-phosphate) are bioactive lipids with important biological functions in proliferation, apoptosis, angiogenesis, and inflammation. Herein, we describe easy and rapid biochemical methods with the use of radiolabeled molecules ((3)H, (32)P) for their mass determination. Quantitation of sphingosine kinase-1 activity, the most studied isoform, is also included. PMID:22528435

  5. Mannitol-1-phosphate dehydrogenase of Escherichia coli. Chemical properties and binding of substrates.

    PubMed Central

    Chase, T

    1986-01-01

    Mannitol-1-phosphate dehydrogenase was purified to homogeneity, and some chemical and physical properties were examined. The isoelectric point is 4.19. Amino acid analysis and polyacrylamide-gel electrophoresis in presence of SDS indicate a subunit Mr of about 22,000, whereas gel filtration and electrophoresis of the native enzyme indicate an Mr of 45,000. Thus the enzyme is a dimer. Amino acid analysis showed cysteine, tyrosine, histidine and tryptophan to be present in low quantities, one, three, four and four residues per subunit respectively. The zinc content is not significant to activity. The enzyme is inactivated (greater than 99%) by reaction of 5,5'-dithiobis-(2-nitrobenzoate) with the single thiol group; the inactivation rate depends hyperbolically on reagent concentration, indicating non-covalent binding of the reagent before covalent modification. The pH-dependence indicated a pKa greater than 10.5 for the thiol group. Coenzymes (NAD+ and NADH) at saturating concentrations protect completely against reaction with 5,5'-dithiobis-(2-nitrobenzoate), and substrates (mannitol 1-phosphate, fructose 6-phosphate) protect strongly but not completely. These results suggest that the thiol group is near the catalytic site, and indicate that substrates as well as coenzymes bind to free enzyme. Dissociation constants were determined from these protective effects: 0.6 +/- 0.1 microM for NADH, 0.2 +/- 0.03 mM for NAD+, 9 +/- 3 microM for mannitol 1-phosphate, 0.06 +/- 0.03 mM for fructose 6-phosphate. The binding order for reaction thus may be random for mannitol 1-phosphate oxidation, though ordered for fructose 6-phosphate reduction. Coenzyme and substrate binding in the E X NADH-mannitol 1-phosphate complex is weaker than in the binary complexes, though in the E X NADH+-fructose 6-phosphate complex binding is stronger. PMID:3545182

  6. Oral streptococcal glyceraldehyde-3-phosphate dehydrogenase mediates interaction with Porphyromonas gingivalis fimbriae.

    PubMed

    Maeda, Kazuhiko; Nagata, Hideki; Nonaka, Aya; Kataoka, Kosuke; Tanaka, Muneo; Shizukuishi, Satoshi

    2004-11-01

    Interaction of Porphyromonas gingivalis with plaque-forming bacteria is necessary for its colonization in periodontal pockets. Participation of Streptococcus oralis glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and P. gingivalis fimbriae in this interaction has been reported. In this investigation, the contribution of various oral streptococcal GAPDHs to interaction with P. gingivalis fimbriae was examined. Streptococcal cell surface GAPDH activity was measured by incubation of a constant number of streptococci with glyceraldehyde-3-phosphate and analysis for the conversion of NAD+ to NADH based on the absorbance at 340 nm. Coaggregation activity was measured by a turbidimetric assay. Cell surface GAPDH activity was correlated with coaggregation activity (r = 0.854, P < 0.01) with Spearman's rank correlation coefficient. S. oralis ATCC 9811 and ATCC 10557, Streptococcus gordonii G9B, Streptococcus sanguinis ATCC 10556, and Streptococcus parasanguinis ATCC 15909 exhibited high cell surface GAPDH activity and coaggregation activity; consequently, their cell surface GAPDHs were extracted with mutanolysin and purified on a Cibacron Blue Sepharose column. Subsequently, their DNA sequences were elucidated. Purified GAPDHs bound P. gingivalis recombinant fimbrillin by Western blot assay, furthermore, their DNA sequences displayed a high degree of homology with one another. Moreover, S. oralis recombinant GAPDH inhibited coaggregation between P. gingivalis and the aforementioned five streptococcal strains in a dose-dependent manner. These results suggest that GAPDHs of various plaque-forming streptococci may be involved in their attachment to P. gingivalis fimbriae and that they may contribute to P. gingivalis colonization. PMID:15488735

  7. [Use of immobilization in the study of glyceraldehyde 3-phosphate dehydrogenase. Immobilized monomers].

    PubMed

    Muronets, V I; Ashmarina, L I; Asriiants, R A; Nagradova, N K

    1982-06-01

    Active immobilized monomers of glyceraldehyde 3-phosphate dehydrogenase were prepared by means of dissociation of the tetrameric enzyme molecule covalently bound to Sepharose via a single subunit. The conditions were elaborated to achieve the inactivation and solubilization of the non-covalently bound subunits leaving the monomer coupled to the matrix intact. This procedure differs from the previously developed method of matrix-bound oligomeric enzymes dissociation in a detail which was found to be essentially important. The widely used method includes complete denaturation of all subunits during treatment with urea followed by reactivation of the immobilized one, whereas only the non-covalently bound subunits suffer denaturation under the conditions developed in the present work. The immobilized monomers of glyceraldehyde 3-phosphate dehydrogenase exhibit Vmax and Km (for NAD and substrate) values similar to those found for the immobilized tetramer. Reassociation of the immobilized monomers with soluble enzyme subunits obtained in the presence of urea produces matrix-bound tetrameric species. Immobilized trimers ae formed upon incubation of matrix-bound monomers in a diluted apoenzyme solution. The immobilized monomeric, trimeric and tetrameric enzyme species were used to study the role of subunit interactions in cooperative phenomena exhibited by the dehydrogenase. PMID:7115810

  8. Human 1-Acylglycerol-3-phosphate O-Acyltransferase Isoforms 1 and 2

    PubMed Central

    Agarwal, Anil K.; Sukumaran, Suja; Cortés, Víctor A.; Tunison, Katie; Mizrachi, Dario; Sankella, Shireesha; Gerard, Robert D.; Horton, Jay D.; Garg, Abhimanyu

    2011-01-01

    Loss-of-function mutations in 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) 2 in humans and mice result in loss of both the white and brown adipose tissues from birth. AGPAT2 generates precursors for the synthesis of glycerophospholipids and triacylglycerols. Loss of adipose tissue, or lipodystrophy, results in hyperinsulinemia, diabetes mellitus, and severe hepatic steatosis. Here, we analyzed biochemical properties of human AGPAT2 and its close homolog, AGPAT1, and we studied their role in liver by transducing their expression via recombinant adenoviruses in Agpat2−/− mice. The in vitro substrate specificities of AGPAT1 and AGPAT2 are quite similar for lysophosphatidic acid and acyl-CoA. Protein homology modeling of both the AGPATs with glycerol-3-phosphate acyltransferase 1 (GPAT1) revealed that they have similar tertiary protein structure, which is consistent with their similar substrate specificities. When co-expressed, both isoforms co-localize to the endoplasmic reticulum. Despite such similarities, restoring AGPAT activity in liver by overexpression of either AGPAT1 or AGPAT2 in Agpat2−/− mice failed to ameliorate the hepatic steatosis. From these studies, we suggest that the role of AGPAT1 or AGPAT2 in liver lipogenesis is minimal and that accumulation of liver fat is primarily a consequence of insulin resistance and loss of adipose tissue in Agpat2−/− mice. PMID:21873652

  9. Expanding the molecular diversity and phenotypic spectrum of glycerol 3-phosphate dehydrogenase 1 deficiency.

    PubMed

    Dionisi-Vici, Carlo; Shteyer, Eyal; Niceta, Marcello; Rizzo, Cristiano; Pode-Shakked, Ben; Chillemi, Giovanni; Bruselles, Alessandro; Semeraro, Michela; Barel, Ortal; Eyal, Eran; Kol, Nitzan; Haberman, Yael; Lahad, Avishai; Diomedi-Camassei, Francesca; Marek-Yagel, Dina; Rechavi, Gideon; Tartaglia, Marco; Anikster, Yair

    2016-09-01

    Transient infantile hypertriglyceridemia (HTGT1; OMIM #614480) is a rare autosomal recessive disorder, which manifests in early infancy with transient hypertriglyceridemia, hepatomegaly, elevated liver enzymes, persistent fatty liver and hepatic fibrosis. This rare clinical entity is caused by inactivating mutations in the GPD1 gene, which encodes the cytosolic isoform of glycerol-3-phosphate dehydrogenase. Here we report on four patients from three unrelated families of diverse ethnic origins, who presented with hepatomegaly, liver steatosis, hypertriglyceridemia, with or without fasting ketotic hypoglycemia. Whole exome sequencing revealed the affected individuals to harbor deleterious biallelic mutations in the GPD1 gene, including the previously undescribed c.806G > A (p.Arg269Gln) and c.640T > C (p.Cys214Arg) mutations. The clinical features in three of our patients showed several differences compared to the original reports. One subject presented with recurrent episodes of fasting hypoglycemia along with hepatomegaly, hypetriglyceridemia, and elevated liver enzymes; the second showed a severe liver disease, with intrahepatic cholestasis associated with kidney involvement; finally, the third presented persistent hypertriglyceridemia at the age of 30 years. These findings expand the current knowledge of this rare disorder, both with regard to the phenotype and molecular basis. The enlarged phenotypic spectrum of glycerol-3-phosphate dehydrogenase 1 deficiency can mimic other inborn errors of metabolism with liver involvement and should alert clinicians to recognize this entity by considering GPD1 mutations in appropriate clinical settings. PMID:27368975

  10. Carbon-13 and deuterium isotope effects on the reaction catalyzed by glyceraldehyde-3-phosphate dehydrogenase

    SciTech Connect

    Canellas, P.F.; Cleland, W.W. )

    1991-09-10

    Carbon-13 and deuterium isotope effects have been measured on the reaction catalyzed by rabbit muscle glyceraldehyde-3-phosphate dehydrogenase in an effort to locate the rate-limiting steps. With D-glyceraldehyde 3-phosphate as substrate, hydride transfer is a major, but not the only, slow step prior to release of the first product, and the intrinsic primary deuterium and {sup 13}C isotope effects on this step are 5-5.5 and 1.034-1.040, and the sum of the commitments to catalysis is {approximately} 3. The {sup 13}C isotope effects on thiohemiacetal formation and thioester phosphorolysis are 1.005 or less. With D-glyceraldehyde as substrate, the isotope effects are similar, but the sum of commitments is {approximately} 1.5, so that hydride transfer is more, but still not solely, rate limiting for this slow substrate. The observed {sup 13}C and deuterium equilibrium isotope effects on the overall reaction from the hydrated aldehyde are 0.995 and 1.145, while the {sup 13}C equilibrium isotope effect for conversion of a thiohemiacetal to a thioester is 0.994, and that for conversion of a thioester to an acyl phosphate is 0.997. Somewhat uncertain values for the {sup 13}C equilibrium isotope effects on aldehyde dehydration and formation of a thiohemiacetal are 1.003 and 1.004.

  11. Cloning and characterization of glyceraldehyde-3-phosphate dehydrogenase encoding gene in Gracilaria/Gracilariopsis lemaneiformis

    NASA Astrophysics Data System (ADS)

    Ren, Xueying; Sui, Zhenghong; Zhang, Xuecheng

    2006-04-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays important roles in various cellular processes. A cytosolic GAPDH encoding gene ( gpd) of Gracilaria/Gracilariopsis lemaneiformis was cloned and characterized. Deduced amino acid sequence of the enzyme of G. lemaneiformis had high homology with those of seven red algae. The 5'-untranslated regions of the GAPDHs encoding genes of these red algae varied greatly. GAPDHs of these red algae shared the highly conserved glyceraldehyde 3-phosphate dehydrogenase active site ASCTTNCL. However, such active site of Cyanidium caldarium was different from those of the other six algae at the last two residues (CL to LF), thus the spatial structure of its GAPDH active center may be different from those of the other six. Phylogenetic analysis indicated that GAPDH of G. lemaneiformis might have undergone an evolution similar to those of Porphyra yezoensis, Chondrus crispus, and Gracilaria verrucosa. C. caldarium had a closer evolutionary relationship with Cyanidioschyzon merolae than with Cyanidium sp. Virtual Northern blot analysis revealed that gpd of G. lemaneiformis expressed constitutively, which suggested that it might be house-keeping and could be adapted as an inner control in gene expression analysis of G. lemaneiformis.

  12. Kinetic and Mechanistic Characterization of the Glyceraldehyde 3-Phosphate Dehydrogenase from Mycobacterium tuberculosis

    PubMed Central

    Wolfson-Stofko, Brett; Hadi, Timin; Blanchard, John S.

    2013-01-01

    Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a glycolytic protein responsible for the conversion of glyceraldehyde 3-phosphate (G3P), inorganic phosphate and nicotinamide adenine dinucleotide (NAD+) to 1,3-bisphosphoglycerate (1,3-BPG) and the reduced form of nicotinamide adenine dinucleotide (NADH). Here we report the characterization of GAPDH from Mycobacterium tuberculosis (Mtb). This enzyme exhibits a kinetic mechanism in which first NAD+, then G3P bind to the active site resulting in the formation of a covalently bound thiohemiacetal intermediate. After oxidation of the thiohemiacetal and subsequent nucleotide exchange (NADH off, NAD+ on), the binding of inorganic phosphate and phosphorolysis yields the product 1,3-BPG. Mutagenesis and iodoacetamide (IAM) inactivation studies reveal the conserved C158 to be responsible for nucleophilic catalysis and that the conserved H185 to act as a catalytic base. Primary, solvent and multiple kinetic isotope effects revealed that the first half-reaction is rate limiting and utilizes a step-wise mechanism for thiohemiacetal oxidation via a transient alkoxide to promote hydride transfer and thioester formation. PMID:24161676

  13. Escherichia coli N-Acetylglucosamine-1-Phosphate-Uridyltransferase/Glucosamine-1-Phosphate-Acetyltransferase (GlmU) Inhibitory Activity of Terreic Acid Isolated from Aspergillus terreus.

    PubMed

    Sharma, Rashmi; Lambu, Mallikharjuna Rao; Jamwal, Urmila; Rani, Chitra; Chib, Reena; Wazir, Priya; Mukherjee, Debaraj; Chaubey, Asha; Khan, Inshad Ali

    2016-04-01

    Secondary metabolite of Aspergillus terreus, terreic acid, is a reported potent antibacterial that was identified more than 60 years ago, but its cellular target(s) are still unknown. Here we screen its activity against the acetyltransferase domain of a bifunctional enzyme, Escherichia coli N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU). An absorbance-based assay was used to screen terreic acid against the acetyltransferase activity of E. coli GlmU. Terreic acid was found to inhibit the acetyltransferase domain of E. coli GlmU with an IC50 of 44.24 ± 1.85 µM. Mode of inhibition studies revealed that terreic acid was competitive with AcCoA and uncompetitive with GlcN-1-P. It also exhibited concentration-dependent killing of E. coli ATCC 25922 up to 4× minimum inhibitory concentration and inhibited the growth of biofilms generated by E. coli. Characterization of resistant mutants established mutation in the acetyltransferase domain of GlmU. Terreic acid was also found to be metabolically stable in the in vitro incubations with rat liver microsome in the presence of a NADPH regenerating system. The studies reported here suggest that terreic acid is a potent antimicrobial agent and support that E. coli GlmU acetyltransferase is a molecular target of terreic acid, resulting in its antibacterial activity. PMID:26762501

  14. An Expedient Synthesis of Fluorescent Labeled Ceramide-1-phosphate Analogues1

    PubMed Central

    Boldyrev, I. A.; Brown, R. E.; Molotkovsky, J. G.

    2016-01-01

    A synthesis for fluorescent analogs of ceramide-1-phosphate bearing 9-anthrylvinyl or 4,4-difluoro-3a,4a-diaza-s-indacene-8-yl (Me4-BODIPY) fluorophore at co-position of fatty acid residue was carried out. The key stage of the synthesis is hydrolysis of corresponding sphingomyelins catalyzed by phospholipase D from Streptomyces chromofuscus; the enzymatic yield has been raised to 50–70% by appliance of organic solvent in the incubation medium.

  15. Molecular cloning and characterization of the glyceraldehyde-3-phosphate dehydrogenase gene from Penicillium expansum PE-12.

    PubMed

    Zhang, T; Qi, Z; Yu, Q S; Tang, K X

    2013-01-01

    Penicillium expansum produces large amounts of lipase, which is widely used in laundry detergent and leather industry. We isolated the glyceraldehyde-3-phosphate dehydrogenase gene (PeGPD) from P. expansum PE-12 through reverse transcriptase PCR and 5'-3' rapid amplification of cDNA ends (RACE-PCR). The gene is 1266 bp long, including an ORF of 1014 bp, encoding a polypeptide chain of 337 amino acids. A phylogenetic tree based on GPD proteins showed that P. expansum is close to Aspergillus species, but comparatively distant from P. marneffei. Southern blot results revealed a single copy of PeGPD, and expression analysis gave evidence of high expression levels. PeGPD genes have potential for genetic engineering of P. expansum for industrial lipase production. PMID:23420404

  16. Pattern Recognition Techniques Applied to the Study of Leishmanial Glyceraldehyde-3-Phosphate Dehydrogenase Inhibition

    PubMed Central

    Lozano, Norka B. H.; Oliveira, Rafael F.; Weber, Karen C.; Honorio, Kathia M.; Guido, Rafael V. C.; Andricopulo, Adriano D.; de Sousa, Alexsandro G.; da Silva, Albérico B. F.

    2014-01-01

    Chemometric pattern recognition techniques were employed in order to obtain Structure-Activity Relationship (SAR) models relating the structures of a series of adenosine compounds to the affinity for glyceraldehyde 3-phosphate dehydrogenase of Leishmania mexicana (LmGAPDH). A training set of 49 compounds was used to build the models and the best ones were obtained with one geometrical and four electronic descriptors. Classification models were externally validated by predictions for a test set of 14 compounds not used in the model building process. Results of good quality were obtained, as verified by the correct classifications achieved. Moreover, the results are in good agreement with previous SAR studies on these molecules, to such an extent that we can suggest that these findings may help in further investigations on ligands of LmGAPDH capable of improving treatment of leishmaniasis. PMID:24566143

  17. Atomic-level characterization of transport cycle thermodynamics in the glycerol-3-phosphate:phosphate antiporter

    NASA Astrophysics Data System (ADS)

    Moradi, Mahmoud; Enkavi, Giray; Tajkhorshid, Emad

    2015-09-01

    Membrane transporters actively translocate their substrate by undergoing large-scale structural transitions between inward- (IF) and outward-facing (OF) states (`alternating-access' mechanism). Despite extensive structural studies, atomic-level mechanistic details of such structural transitions, and as importantly, their coupling to chemical events supplying the energy, remain amongst the most elusive aspects of the function of these proteins. Here we present a quantitative, atomic-level description of the functional thermodynamic cycle for the glycerol-3-phosphate:phosphate antiporter GlpT by using a novel approach in reconstructing the free energy landscape governing the IF<-->OF transition along a cyclic transition pathway involving both apo and substrate-bound states. Our results provide a fully atomic description of the complete transport process, offering a structural model for the alternating-access mechanism and substantiating the close coupling between global structural transitions and local chemical events.

  18. Daily variations in the glycerol-3-phosphate dehydrogenase isoforms expression in Triatoma infestans flight muscles.

    PubMed

    Stroppa, María M; Carriazo, Carlota S; Gerez de Burgos, Nelia M; Garcia, Beatríz A

    2014-08-01

    Triatoma infestans, the main vector of Chagas disease, is a blood-sucking insect. Flight dispersal of adults is the most important mechanism for reinfestation of houses after insecticide spraying. Flight muscles have two glycerol-3-phosphate dehydrogenase (GPDH) isoforms: GPDH-1 is involved in flight metabolism and GPDH-2 provides lipid precursors. In this study, we explored the profile of GPDH expression in females and males adult flight muscles under light/dark cycle, constant light, and constant dark conditions. Under constant dark conditions, GPDH-1 flight muscles of T. infestans showed a rhythmic pattern of transcription synchronous with a rhythmic profile of activity suggesting regulation by the endogenous circadian clock. Otherwise, the GPDH-2 expression analysis showed no regulation by the endogenous clock, but showed that an external factor, such as the dark/light period, was necessary for synchronization of GPDH-2 transcription and activity. PMID:24914000

  19. Mechanistic similarities in docking of the FYVE and PX domains to phosphatidylinositol 3-phosphate containing membranes

    PubMed Central

    Kutateladze, Tatiana G.

    2007-01-01

    Phosphatidylinositol 3-phosphate [PtdIns(3)P], a phospholipid produced by PI 3-kinases in early endosomes and multivesicular bodies, often serves as a marker of endosomal membranes. PtdIns(3)P recruits and activates effector proteins containing the FYVE or PX domain and therefore regulates a variety of biological processes including endo- and exocytosis, membrane trafficking, protein sorting, signal transduction and cytoskeletal rearrangement. Structures and PtdIns(3)P binding modes of several FYVE and PX domains have recently been characterized, unveiling the molecular basis underlying multiple cellular functions of these proteins. Here, structural and functional aspects and current mechanisms of the multivalent membrane anchoring by the FYVE and PX domains are reviewed and compared. PMID:17707914

  20. Atomic-level characterization of transport cycle thermodynamics in the glycerol-3-phosphate:phosphate antiporter

    PubMed Central

    Moradi, Mahmoud; Enkavi, Giray; Tajkhorshid, Emad

    2015-01-01

    Membrane transporters actively translocate their substrate by undergoing large-scale structural transitions between inward- (IF) and outward-facing (OF) states (‘alternating-access' mechanism). Despite extensive structural studies, atomic-level mechanistic details of such structural transitions, and as importantly, their coupling to chemical events supplying the energy, remain amongst the most elusive aspects of the function of these proteins. Here we present a quantitative, atomic-level description of the functional thermodynamic cycle for the glycerol-3-phosphate:phosphate antiporter GlpT by using a novel approach in reconstructing the free energy landscape governing the IF↔OF transition along a cyclic transition pathway involving both apo and substrate-bound states. Our results provide a fully atomic description of the complete transport process, offering a structural model for the alternating-access mechanism and substantiating the close coupling between global structural transitions and local chemical events. PMID:26417850

  1. Daily Variations in the Glycerol-3-Phosphate Dehydrogenase Isoforms Expression in Triatoma infestans Flight Muscles

    PubMed Central

    Stroppa, María M.; Carriazo, Carlota S.; Gerez de Burgos, Nelia M.; Garcia, Beatríz A.

    2014-01-01

    Triatoma infestans, the main vector of Chagas disease, is a blood-sucking insect. Flight dispersal of adults is the most important mechanism for reinfestation of houses after insecticide spraying. Flight muscles have two glycerol-3-phosphate dehydrogenase (GPDH) isoforms: GPDH-1 is involved in flight metabolism and GPDH-2 provides lipid precursors. In this study, we explored the profile of GPDH expression in females and males adult flight muscles under light/dark cycle, constant light, and constant dark conditions. Under constant dark conditions, GPDH-1 flight muscles of T. infestans showed a rhythmic pattern of transcription synchronous with a rhythmic profile of activity suggesting regulation by the endogenous circadian clock. Otherwise, the GPDH-2 expression analysis showed no regulation by the endogenous clock, but showed that an external factor, such as the dark/light period, was necessary for synchronization of GPDH-2 transcription and activity. PMID:24914000

  2. Molecular cloning and characterization of L-galactose-1-phosphate phosphatase from tobacco (Nicotiana tabacum).

    PubMed

    Sakamoto, Shingo; Fujikawa, Yukichi; Tanaka, Nobukazu; Esaka, Muneharu

    2012-01-01

    L-Galactose-1-phosphate phosphatase (GPPase) is an enzyme involved in ascorbate biosynthesis in higher plants. We isolated a cDNA encoding GPPase from tobacco, and named it NtGPPase. The putative amino acid sequence of NtGPPase contained inositol monophosphatase motifs and metal binding sites. Recombinant NtGPPase hydrolyzed not only L-galactose-1-phosphate, but also myo-inositol-1-phosphate. The optimum pH for the GPPase activity of NtGPPase was 7.5. Its enzyme activity required Mg2+, and was inhibited by Li+ and Ca2+. Its fluorescence, fused with green fluorescence protein in onion cells and protoplasts of tobacco BY-2 cells, was observed in both the cytosol and nucleus. The expression of NtGPPase mRNA and protein was clearly correlated with L-ascorbic acid (AsA) contents of BY-2 cells during culture. The AsA contents of NtGPPase over expression lines were higher than those of empty lines at 13 d after subculture. This suggests that NtGPPase contributes slightly to AsA biosynthesis. PMID:22790939

  3. A novel 5-enolpyruvylshikimate-3-phosphate synthase from Rahnella aquatilis with significantly reduced glyphosate sensitivity.

    PubMed

    Peng, Ri-He; Tian, Yong-Sheng; Xiong, Ai-Sheng; Zhao, Wei; Fu, Xiao-Yan; Han, Hong-Juan; Chen, Chen; Jin, Xiao-Fen; Yao, Quan-Hong

    2012-01-01

    The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19) is a key enzyme in the shikimate pathway for the production of aromatic amino acids and chorismate-derived secondary metabolites in plants, fungi, and microorganisms. It is also the target of the broad-spectrum herbicide glyphosate. Natural glyphosate resistance is generally thought to occur within microorganisms in a strong selective pressure condition. Rahnella aquatilis strain GR20, an antagonist against pathogenic agrobacterial strains of grape crown gall, was isolated from the rhizosphere of grape in glyphosate-contaminated vineyards. A novel gene encoding EPSPS was identified from the isolated bacterium by complementation of an Escherichia coli auxotrophic aroA mutant. The EPSPS, named AroA(R. aquatilis), was expressed and purified from E. coli, and key kinetic values were determined. The full-length enzyme exhibited higher tolerance to glyphosate than the E. coli EPSPS (AroA(E. coli)), while retaining high affinity for the substrate phosphoenolpyruvate. Transgenic plants of AroA(R. aquatilis) were also observed to be more resistant to glyphosate at a concentration of 5 mM than that of AroA(E. coli). To probe the sites contributing to increased tolerance to glyphosate, mutant R. aquatilis EPSPS enzymes were produced with the c-strand of subdomain 3 and the f-strand of subdomain 5 (Thr38Lys, Arg40Val, Arg222Gln, Ser224Val, Ile225Val, and Gln226Lys) substituted by the corresponding region of the E. coli EPSPS. The mutant enzyme exhibited greater sensitivity to glyphosate than the wild type R. aquatilis EPSPS with little change of affinity for its first substrate, shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP). The effect of the residues on subdomain 5 on glyphosate resistance was more obvious. PMID:22870190

  4. Characterization of Streptococcus pneumoniae 5-enolpyruvylshikimate 3-phosphate synthase and its activation by univalent cations.

    PubMed

    Du, W; Wallis, N G; Mazzulla, M J; Chalker, A F; Zhang, L; Liu, W S; Kallender, H; Payne, D J

    2000-01-01

    The aroA gene (Escherichia coli nomenclature) encoding 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase from the gram-positive pathogen Streptococcus pneumoniae has been identified, cloned and overexpressed in E. coli, and the enzyme purified to homogeneity. It was shown to catalyze a reversible conversion of shikimate 3-phosphate (S3P) and phosphoenolpyruvate (PEP) to EPSP and inorganic phosphate. Activation by univalent cations was observed in the forward reaction, with NH+4, Rb+ and K+ exerting the greatest effects. Km(PEP) was lowered by increasing [NH+4] and [K+], whereas Km(S3P) rose with increasing [K+], but fell with increasing [NH+4]. Increasing [NH+4] and [K+] resulted in an overall increase in kcat. Glyphosate (GLP) was found to be a competitive inhibitor with PEP, but the potency of inhibition was profoundly affected by [NH+4] and [K+]. For example, increasing [NH+4] and [K+] reduced Ki(GLP versus PEP) up to 600-fold. In the reverse reaction, the enzyme catalysis was less sensitive to univalent cations. Our analysis included univalent cation concentrations comparable with those found in bacterial cells. Therefore, the observed effects of these metal ions are more likely to reflect the physiological behavior of EPSP synthase and also add to our understanding of how to inhibit this enzyme in the host organism. As there is a much evidence to suggest that EPSP synthase is essential for bacterial survival, its discovery in the serious gram-positive pathogen S. pneumoniae and its inhibition by GLP indicate its potential as a broad-spectrum antibacterial target. PMID:10601870

  5. Characterization of a Novel Intestinal Glycerol-3-phosphate Acyltransferase Pathway and Its Role in Lipid Homeostasis.

    PubMed

    Khatun, Irani; Clark, Ronald W; Vera, Nicholas B; Kou, Kou; Erion, Derek M; Coskran, Timothy; Bobrowski, Walter F; Okerberg, Carlin; Goodwin, Bryan

    2016-02-01

    Dietary triglycerides (TG) are absorbed by the enterocytes of the small intestine after luminal hydrolysis into monacylglycerol and fatty acids. Before secretion on chylomicrons, these lipids are reesterified into TG, primarily through the monoacylglycerol pathway. However, targeted deletion of the primary murine monoacylglycerol acyltransferase does not quantitatively affect lipid absorption, suggesting the existence of alternative pathways. Therefore, we investigated the role of the glycerol 3-phosphate pathway in dietary lipid absorption. The expression of glycerol-3-phosphate acyltransferase (GPAT3) was examined throughout the small intestine. To evaluate the role for GPAT3 in lipid absorption, mice harboring a disrupted GPAT3 gene (Gpat3(-/-)) were subjected to an oral lipid challenge and fed a Western-type diet to characterize the role in lipid and cholesterol homeostasis. Additional mechanistic studies were performed in primary enterocytes. GPAT3 was abundantly expressed in the apical surface of enterocytes in the small intestine. After an oral lipid bolus, Gpat3(-/-) mice exhibited attenuated plasma TG excursion and accumulated lipid in the enterocytes. Electron microscopy studies revealed a lack of lipids in the lamina propria and intercellular space in Gpat3(-/-) mice. Gpat3(-/-) enterocytes displayed a compensatory increase in the synthesis of phospholipid and cholesteryl ester. When fed a Western-type diet, hepatic TG and cholesteryl ester accumulation was significantly higher in Gpat3(-/-) mice compared with the wild-type mice accompanied by elevated levels of alanine aminotransferase, a marker of liver injury. Dysregulation of bile acid metabolism was also evident in Gpat3-null mice. These studies identify GPAT3 as a novel enzyme involved in intestinal lipid metabolism. PMID:26644473

  6. Reduced sphingosine kinase-1 and enhanced sphingosine 1-phosphate lyase expression demonstrate deregulated sphingosine 1-phosphate signaling in Alzheimer’s disease

    PubMed Central

    2014-01-01

    Background The accumulation of beta amyloid (Aβ) peptides, a hallmark of Alzheimer’s disease (AD) is related to mechanisms leading to neurodegeneration. Among its pleiotropic cellular effects, Aβ accumulation has been associated with a deregulation of sphingolipid metabolism. Sphingosine 1-phosphate (S1P) derived from sphingosine is emerging as a critical lipid mediator regulating various biological activities including cell proliferation, survival, migration, inflammation, or angiogenesis. S1P tissue level is low and kept under control through equilibrium between its synthesis mostly governed by sphingosine kinase-1 (SphK1) and its degradation by sphingosine 1-phosphate lyase (SPL). We have previously reported that Aβ peptides were able to decrease the activity of SphK1 in cell culture models, an effect that could be blocked by the prosurvival IGF-1/IGF-1R signaling. Results Herein, we report for the first time the expression of both SphK1 and SPL by immunohistochemistry in frontal and entorhinal cortices from 56 human AD brains. Immunohistochemical analysis revealed a decreased expression of SphK1 and an increased expression of SPL both correlated to amyloid deposits in the entorhinal cortex. Otherwise, analysis of brain tissue extracts showed a decrease of SphK1 expression in AD brains whereas SPL expression was increased. The content of IGF-1R, an activator of SphK1, was found decreased in AD brains as well as S1P1, the major receptor for S1P. Conclusions Collectively, these results highlight the importance of S1P in AD suggesting the existence of a global deregulation of S1P signaling in this disease from its synthesis by SphK1 and degradation by SPL to its signaling by the S1P1 receptor. PMID:24468113

  7. Crystallization and preliminary X-ray analysis of the glycerol-3-phosphate 1-acyltransferase from squash (Cucurbita moschata).

    PubMed

    Turnbull, A P; Rafferty, J B; Sedelnikova, S E; Slabas, A R; Schierer, T P; Kroon, J T; Nishida, I; Murata, N; Simon, J W; Rice, D W

    2001-03-01

    Glycerol-3-phosphate 1-acyltransferase (E.C. 2.3.1.15; G3PAT) catalyses the incorporation of an acyl group from either acyl-acyl carrier proteins (acylACPs) or acylCoAs into the sn-1 position of glycerol 3-phosphate to yield 1-acylglycerol 3-phosphate. Crystals of squash G3PAT have been obtained by the hanging-drop method of vapour diffusion using PEG 4000 as the precipitant. These crystals are most likely to belong to space group P2(1)2(1)2(1), with approximate unit-cell parameters a = 61.1, b = 65.1, c = 103.3 A, alpha = beta = gamma = 90 degrees and a monomer in the asymmetric unit. X-ray diffraction data to 1.9 A resolution have been collected in-house using a MAR 345 imaging-plate system. PMID:11223529

  8. Modeling of glycerol-3-phosphate transporter suggests a potential 'tilt' mechanism involved in its function.

    PubMed

    Tsigelny, Igor F; Greenberg, Jerry; Kouznetsova, Valentina; Nigam, Sanjay K

    2008-10-01

    Many major facilitator superfamily (MFS) transporters have similar 12-transmembrane alpha-helical topologies with two six-helix halves connected by a long loop. In humans, these transporters participate in key physiological processes and are also, as in the case of members of the organic anion transporter (OAT) family, of pharmaceutical interest. Recently, crystal structures of two bacterial representatives of the MFS family--the glycerol-3-phosphate transporter (GlpT) and lac-permease (LacY)--have been solved and, because of assumptions regarding the high structural conservation of this family, there is hope that the results can be applied to mammalian transporters as well. Based on crystallography, it has been suggested that a major conformational "switching" mechanism accounts for ligand transport by MFS proteins. This conformational switch would then allow periodic changes in the overall transporter configuration, resulting in its cyclic opening to the periplasm or cytoplasm. Following this lead, we have modeled a possible "switch" mechanism in GlpT, using the concept of rotation of protein domains as in the DynDom program17 and membranephilic constraints predicted by the MAPAS program.(23) We found that the minima of energies of intersubunit interactions support two alternate positions consistent with their transport properties. Thus, for GlpT, a "tilt" of 9 degrees -10 degrees rotation had the most favorable energetics of electrostatic interaction between the two halves of the transporter; moreover, this confirmation was sufficient to suggest transport of the ligand across the membrane. We conducted steered molecular dynamics simulations of the GlpT-ligand system to explore how glycerol-3-phosphate would be handled by the "tilted" structure, and obtained results generally consistent with experimental mutagenesis data. While biochemical data remain most consistent with a single-site alternating access model, our results raise the possibility that, while the

  9. Dengue Virus NS1 Protein Modulates Cellular Energy Metabolism by Increasing Glyceraldehyde-3-Phosphate Dehydrogenase Activity

    PubMed Central

    Allonso, Diego; Andrade, Iamara S.; Conde, Jonas N.; Coelho, Diego R.; Rocha, Daniele C. P.; da Silva, Manuela L.; Ventura, Gustavo T.

    2015-01-01

    ABSTRACT Dengue is one of the main public health concerns worldwide. Recent estimates indicate that over 390 million people are infected annually with the dengue virus (DENV), resulting in thousands of deaths. Among the DENV nonstructural proteins, the NS1 protein is the only one whose function during replication is still unknown. NS1 is a 46- to 55-kDa glycoprotein commonly found as both a membrane-associated homodimer and a soluble hexameric barrel-shaped lipoprotein. Despite its role in the pathogenic process, NS1 is essential for proper RNA accumulation and virus production. In the present study, we identified that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with intracellular NS1. Molecular docking revealed that this interaction occurs through the hydrophobic protrusion of NS1 and the hydrophobic residues located at the opposite side of the catalytic site. Moreover, addition of purified recombinant NS1 enhanced the glycolytic activity of GAPDH in vitro. Interestingly, we observed that DENV infection promoted the relocalization of GAPDH to the perinuclear region, where NS1 is commonly found. Both DENV infection and expression of NS1 itself resulted in increased GAPDH activity. Our findings indicate that the NS1 protein acts to increase glycolytic flux and, consequently, energy production, which is consistent with the recent finding that DENV induces and requires glycolysis for proper replication. This is the first report to propose that NS1 is an important modulator of cellular energy metabolism. The data presented here provide new insights that may be useful for further drug design and the development of alternative antiviral therapies against DENV. IMPORTANCE Dengue represents a serious public health problem worldwide and is caused by infection with dengue virus (DENV). Estimates indicate that half of the global population is at risk of infection, with almost 400 million cases occurring per year. The NS1 glycoprotein is found in both the

  10. Sphingosine-1-Phosphate Lyase Deficient Cells as a Tool to Study Protein Lipid Interactions

    PubMed Central

    Gerl, Mathias J.; Bittl, Verena; Kirchner, Susanne; Sachsenheimer, Timo; Brunner, Hanna L.; Lüchtenborg, Christian; Özbalci, Cagakan; Wiedemann, Hannah; Wegehingel, Sabine; Nickel, Walter; Haberkant, Per; Schultz, Carsten; Krüger, Marcus; Brügger, Britta

    2016-01-01

    Cell membranes contain hundreds to thousands of individual lipid species that are of structural importance but also specifically interact with proteins. Due to their highly controlled synthesis and role in signaling events sphingolipids are an intensely studied class of lipids. In order to investigate their metabolism and to study proteins interacting with sphingolipids, metabolic labeling based on photoactivatable sphingoid bases is the most straightforward approach. In order to monitor protein-lipid-crosslink products, sphingosine derivatives containing a reporter moiety, such as a radiolabel or a clickable group, are used. In normal cells, degradation of sphingoid bases via action of the checkpoint enzyme sphingosine-1-phosphate lyase occurs at position C2-C3 of the sphingoid base and channels the resulting hexadecenal into the glycerolipid biosynthesis pathway. In case the functionalized sphingosine looses the reporter moiety during its degradation, specificity towards sphingolipid labeling is maintained. In case degradation of a sphingosine derivative does not remove either the photoactivatable or reporter group from the resulting hexadecenal, specificity towards sphingolipid labeling can be achieved by blocking sphingosine-1-phosphate lyase activity and thus preventing sphingosine derivatives to be channeled into the sphingolipid-to-glycerolipid metabolic pathway. Here we report an approach using clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated nuclease Cas9 to create a sphingosine-1-phosphate lyase (SGPL1) HeLa knockout cell line to disrupt the sphingolipid-to-glycerolipid metabolic pathway. We found that the lipid and protein compositions as well as sphingolipid metabolism of SGPL1 knock-out HeLa cells only show little adaptations, which validates these cells as model systems to study transient protein-sphingolipid interactions. PMID:27100999

  11. Ceramide and ceramide 1-phosphate are negative regulators of TNF-α production induced by lipopolysaccharide.

    PubMed

    Józefowski, Szczepan; Czerkies, Maciej; Łukasik, Anna; Bielawska, Alicja; Bielawski, Jacek; Kwiatkowska, Katarzyna; Sobota, Andrzej

    2010-12-01

    LPS is a constituent of cell walls of Gram-negative bacteria that, acting through the CD14/TLR4 receptor complex, causes strong proinflammatory activation of macrophages. In murine peritoneal macrophages and J774 cells, LPS at 1-2 ng/ml induced maximal TNF-α and MIP-2 release, and higher LPS concentrations were less effective, which suggested a negative control of LPS action. While studying the mechanism of this negative regulation, we found that in J774 cells, LPS activated both acid sphingomyelinase and neutral sphingomyelinase and moderately elevated ceramide, ceramide 1-phosphate, and sphingosine levels. Lowering of the acid sphingomyelinase and neutral sphingomyelinase activities using inhibitors or gene silencing upregulated TNF-α and MIP-2 production in J774 cells and macrophages. Accordingly, treatment of those cells with exogenous C8-ceramide diminished TNF-α and MIP-2 production after LPS stimulation. Exposure of J774 cells to bacterial sphingomyelinase or interference with ceramide hydrolysis using inhibitors of ceramidases also lowered the LPS-induced TNF-α production. The latter result indicates that ceramide rather than sphingosine suppresses TNF-α and MIP-2 production. Of these two cytokines, only TNF-α was negatively regulated by ceramide 1-phosphate as was indicated by upregulated TNF-α production after silencing of ceramide kinase gene expression. None of the above treatments diminished NO or RANTES production induced by LPS. Together the data indicate that ceramide negatively regulates production of TNF-α and MIP-2 in response to LPS with the former being sensitive to ceramide 1-phosphate as well. We hypothesize that the ceramide-mediated anti-inflammatory pathway may play a role in preventing endotoxic shock and in limiting inflammation. PMID:21041721

  12. The utilization of fructose by Escherichia coli. Properties of a mutant defective in fructose 1-phosphate kinase activity.

    PubMed

    Ferenci, T; Kornberg, H L

    1973-02-01

    1. The isolation and properties of a mutant of Escherichia coli devoid of fructose 1-phosphate kinase activity are described. 2. This mutant grew in media containing any one of a variety of substances, including hexoses, hexose 6-phosphates, sugar acids and glucogenic substrates, at rates not significantly different from those at which the parent organism grew on these substrates. However, only the parent grew on fructose or fructose 1-phosphate. 3. Fructose and fructose 1-phosphate inhibit the growth of the mutant, but not of its parent, on other carbon sources. 4. Even though not previously exposed to fructose, the mutant took up [(14)C]fructose rapidly but to only a small extent: [(14)C]fructose 1-phosphate was identified as the predominant labelled product. In contrast, the equally rapid but more extensive uptake of [(14)C]fructose by the parent organism required prior growth in the presence of fructose. PMID:4579702

  13. Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond

    PubMed Central

    Kunkel, Gregory T.; Maceyka, Michael; Milstien, Sheldon; Spiegel, Sarah

    2014-01-01

    The bioactive lipid sphingosine-1-phosphate (S1P) is involved in multiple cellular signalling systems and has a pivotal role in the control of immune cell trafficking. As such, S1P has been implicated in disorders such as cancer and inflammatory diseases. This Review discusses the ways in which S1P might be therapeutically targeted — for example, via the development of chemical inhibitors that target the generation, transport and degradation of S1P and via the development of specific S1P receptor agonists. We also highlight recent conflicting results observed in preclinical studies targeting S1P and discuss ongoing clinical trials in this field. PMID:23954895

  14. Chemical modulators of sphingosine-1-phosphate receptors as barrier-oriented therapeutic molecules

    PubMed Central

    Marsolais, David; Rosen, Hugh

    2015-01-01

    Biological barriers regulate the passage of cells, pathogens, fluids, nutrients, ions and signalling molecules between anatomical compartments during homeostasis and disease. Yet strategies that allow for reversible therapeutic modulation of these barriers are still in their infancy. The enhancement or protection of natural barriers is desirable in conditions such as acute respiratory distress syndrome or ischaemia–reperfusion injuries, whereas a temporary disruption could facilitate the penetration of drugs across such barriers. This Review discusses the role of sphingosine-1-phosphate receptors in the regulation and protection of biological barriers, and the potential of therapeutic strategies that target this receptor family. PMID:19300460

  15. Sphingosine-1-phosphate receptors: Biology and therapeutic potential in kidney disease

    PubMed Central

    Jo, S-K; Bajwa, A; Awad, AS; Lynch, KR; Okusa, MD

    2008-01-01

    The major sphingolipid metabolite, sphingosine-1-phosphate (S1P), has important biological functions. S1P is the ligand for a family of five G-protein-coupled receptors with distinct signaling pathways that regulate angiogenesis, vascular maturation, immunity, chemotaxis, and other important biological pathways. Recently, clinical trials have targeted S1P receptors (S1PRs) for autoimmune diseases and transplantation and have generated considerable interest in developing additional, more selective compounds. This review summarizes current knowledge on the biology of S1P and S1PRs that forms the basis for future drug development and the treatment of kidney disease. PMID:18322542

  16. Glycerol-3-Phosphate Levels Are Associated with Basal Resistance to the Hemibiotrophic Fungus Colletotrichum higginsianum in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glycerol-3-phosphate (G3P) is an important component of carbohydrate and lipid metabolic processes. In this article, we provide evidence that G3P levels in plants are associated with defense to a hemibiotrophic fungal pathogen Colletotrichum higginsianum. Inoculation of Arabidopsis (Arabidopsis thal...

  17. GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE-S, A SPERM-SPECIFIC GLYCOLYTIC ENZYME, IS REQUIRED FOR SPERM MOTILITY AND MALE FERTILITY

    EPA Science Inventory

    While glycolysis is highly conserved, it is remarkable that several novel isozymes in this central metabolic pathway are found in mammalian sperm. Glyceraldehyde 3-phosphate dehydrogenase-S (GAPDS) is the product of a mouse gene expressed only during spermatogenesis and, like it...

  18. Enhanced resistance in Theobroma cacao against oomycete and fungal pathogens by secretion of phosphatidylinositol-3-phosphate-binding proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The internalization of oomycete and fungal pathogen effectors into host plant cells has been reported to be blocked by proteins that bind to the effectors’ cell entry receptor, phosphatidylinositol-3-phosphate (PI3P). This finding suggested a novel strategy for disease control by engineering plants ...

  19. 40 CFR 174.523 - CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.523... requirement of a tolerance. Residues of the CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase enzyme in all plants are exempt from the requirement of a tolerance when used as...

  20. 40 CFR 174.523 - CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.523... requirement of a tolerance. Residues of the CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase enzyme in all plants are exempt from the requirement of a tolerance when used as...

  1. 40 CFR 174.523 - CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.523... requirement of a tolerance. Residues of the CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase enzyme in all plants are exempt from the requirement of a tolerance when used as...

  2. 40 CFR 174.523 - CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.523... requirement of a tolerance. Residues of the CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase enzyme in all plants are exempt from the requirement of a tolerance when used as...

  3. 40 CFR 174.523 - CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.523... requirement of a tolerance. Residues of the CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase enzyme in all plants are exempt from the requirement of a tolerance when used as...

  4. Glycolytic flux controls d-serine synthesis through glyceraldehyde-3-phosphate dehydrogenase in astrocytes

    PubMed Central

    Suzuki, Masataka; Sasabe, Jumpei; Miyoshi, Yurika; Kuwasako, Kanako; Muto, Yutaka; Hamase, Kenji; Matsuoka, Masaaki; Imanishi, Nobuaki; Aiso, Sadakazu

    2015-01-01

    d-Serine is an essential coagonist with glutamate for stimulation of N-methyl-d-aspartate (NMDA) glutamate receptors. Although astrocytic metabolic processes are known to regulate synaptic glutamate levels, mechanisms that control d-serine levels are not well defined. Here we show that d-serine production in astrocytes is modulated by the interaction between the d-serine synthetic enzyme serine racemase (SRR) and a glycolytic enzyme, glyceraldehyde 3-phosphate dehydrogenase (GAPDH). In primary cultured astrocytes, glycolysis activity was negatively correlated with d-serine level. We show that SRR interacts directly with GAPDH, and that activation of glycolysis augments this interaction. Biochemical assays using mutant forms of GAPDH with either reduced activity or reduced affinity to SRR revealed that GAPDH suppresses SRR activity by direct binding to GAPDH and through NADH, a product of GAPDH. NADH allosterically inhibits the activity of SRR by promoting the disassociation of ATP from SRR. Thus, astrocytic production of d-serine is modulated by glycolytic activity via interactions between GAPDH and SRR. We found that SRR is expressed in astrocytes in the subiculum of the human hippocampus, where neurons are known to be particularly vulnerable to loss of energy. Collectively, our findings suggest that astrocytic energy metabolism controls d-serine production, thereby influencing glutamatergic neurotransmission in the hippocampus. PMID:25870284

  5. Reciprocal Phosphorylation of Yeast Glycerol-3-Phosphate Dehydrogenases in Adaptation to Distinct Types of Stress

    PubMed Central

    Lee, Yong Jae; Jeschke, Grace R.; Roelants, Françoise M.; Thorner, Jeremy

    2012-01-01

    Eukaryotic cells have evolved mechanisms for ensuring growth and survival in the face of stress caused by a fluctuating environment. Saccharomyces cerevisiae has two homologous glycerol-3-phosphate dehydrogenases, Gpd1 and Gpd2, that are required to endure various stresses, including hyperosmotic shock and hypoxia. These enzymes are only partially redundant, and their unique functions were attributed previously to differential transcriptional regulation and localization. We find that Gpd1 and Gpd2 are negatively regulated through phosphorylation by distinct kinases under reciprocal conditions. Gpd2 is phosphorylated by the AMP-activated protein kinase Snf1 to curtail glycerol production when nutrients are limiting. Gpd1, in contrast, is a target of TORC2-dependent kinases Ypk1 and Ypk2. Inactivation of Ypk1 by hyperosmotic shock results in dephosphorylation and activation of Gpd1, accelerating recovery through increased glycerol production. Gpd1 dephosphorylation acts synergistically with its transcriptional upregulation, enabling long-term growth at high osmolarity. Phosphorylation of Gpd1 and Gpd2 by distinct kinases thereby enables rapid adaptation to specific stress conditions. Introduction of phosphorylation motifs targeted by distinct kinases provides a general mechanism for functional specialization of duplicated genes during evolution. PMID:22988299

  6. Phosphatidylinositol-3-phosphate is light-regulated and essential for survival in retinal rods.

    PubMed

    He, Feng; Agosto, Melina A; Anastassov, Ivan A; Tse, Dennis Y; Wu, Samuel M; Wensel, Theodore G

    2016-01-01

    Phosphoinositides play important roles in numerous intracellular membrane pathways. Little is known about the regulation or function of these lipids in rod photoreceptor cells, which have highly active membrane dynamics. Using new assays with femtomole sensitivity, we determined that whereas levels of phosphatidylinositol-3,4-bisphosphate and phosphatidylinositol-3,4,5-trisphosphate were below detection limits, phosphatidylinositol-3-phosphate (PI(3)P) levels in rod inner/outer segments increased more than 30-fold after light exposure. This increase was blocked in a rod-specific knockout of the PI-3 kinase Vps34, resulting in failure of endosomal and autophagy-related membranes to fuse with lysosomes, and accumulation of abnormal membrane structures. At early ages, rods displayed normal morphology, rhodopsin trafficking, and light responses, but underwent progressive neurodegeneration with eventual loss of both rods and cones by twelve weeks. The degeneration is considerably faster than in rod knockouts of autophagy genes, indicating defects in endosome recycling or other PI(3)P-dependent membrane trafficking pathways are also essential for rod survival. PMID:27245220

  7. Mitochondrial FAD-linked Glycerol-3-phosphate Dehydrogenase: A Target for Cancer Therapeutics

    PubMed Central

    Singh, Gurmit

    2014-01-01

    Imbalances in cellular redox state are frequently observed in cancer cells, and contribute significantly to cancer progression and apoptotic resistance. Hydrogen peroxide (H2O2) is one reactive oxygen species (ROS) that is produced in excess within cancer cells. In this study, we investigated the mitochondrial glycerol-3-phosphate-dependent (GPD2) ROS production in PC-3 cells and demonstrated the importance of excessive H2O2 production on their survival. By exploiting the abnormal H2O2 production of PC-3 cells, we initiated a high-throughput screening of the Canadian Compound Collection, composed of 29,586 small molecules, targeting the glycerophosphate-dependent H2O2 formation in PC-3 cells. Eighteen compounds were identified to have significant inhibitory activity. These compounds have not been previously characterized as inhibitors of the enzyme. Six of these compounds were further analyzed in PC-3 cells and dose response studies displayed an inhibitory and anti-oxidative potency that ranged from 1 µM to 30 µM. The results presented here demonstrate that inhibitors of mitochondrial GPD2 activity elicit anti-proliferative effects on cancer cells. PMID:24521925

  8. Chemical Synthesis and Molecular Recognition of Phosphatase-Resistant Analogues of Phosphatidylinositol-3-phosphate

    PubMed Central

    Xu, Yong; Lee, Stephanie A.; Kutateladze, Tatiana G.; Sbrissa, Diego; Shisheva, Assia; Prestwich, Glenn D.

    2008-01-01

    The remodeling of phosphatidylinositol polyphosphates in cellular membranes by phosphatases and kinases orchestrates the signaling by these lipids in space and time. In order to provide chemical tools to study of the changes in cell physiology mediated by these lipids, three new metabolically-stabilized (ms) analogues of phosphatidylinositol-3-phosphate (PtdIns(3)P were synthesized. We describe herein the total asymmetric synthesis of 3-methylphosphonate, 3-monofluoromethylphosphonate and 3-phosphorothioate analogues of PtdIns(3)P. From differentially protected D-myo-inositol key intermediates, a versatile phosphoramidite reagent was employed in the synthesis of PtdIns(3)P analogues with diacylglyceryl moieties containing dioleoyl, dipalmitoyl and dibutyryl chains. In addition, we introduce a new phosphorlyation reagent, monofluoromethylphosphonyl chloride, which has general applications for the preparation of “pKa-matched” monofluorophosphonates. These ms-PtdIns(3)P analogues exhibited reduced binding activities with 15N-labelled FYVE and PX domains, as significant 1H and 15N chemical shift changes in the FYVE domain were induced by titrating ms-PtdIns(3)Ps into membrane-mimetic dodecylphosphocholine (DPC) micelles. In addition, the PtdIns(3)P analogues with dioleyl and dipalmitoyl chains were substrates for the 5-kinase enzyme PIKfyve; the corresponding phosphorylated ms-PI(3,5)P2 products were detected by radio-TLC analysis. PMID:16417379

  9. U(VI) Sequestration in Hydroxyapatite Produced by Microbial Glycerol 3-Phosphate Metabolism▿ †

    PubMed Central

    Shelobolina, Evgenya S.; Konishi, Hiromi; Xu, Huifang; Roden, Eric E.

    2009-01-01

    Previous studies have demonstrated the potential for removal of U(VI) from solution via precipitation of U(VI)-bearing calcium-phosphate (Ca-P) minerals coupled to microbial hydrolysis of glycerol phosphate compounds. We evaluated this process in circumneutral-pH groundwater from Area 2 of the U.S. Department of Energy Field Research Center at Oak Ridge National Laboratory. Area 2 groundwater contains high concentrations of dissolved calcium (ca. 4 mM), and thus, release of phosphate during glycerol phosphate metabolism has the potential to create conditions favorable for U(VI) sequestration in Ca-P minerals. Microbial enumeration and isolation studies verified the presence of aerobic and nitrate-reducing glycerol 3-phosphate (G3P)-metabolizing microorganisms in Area 2 sediments. Coprecipitation of U(VI) with Ca-P minerals coupled to microbial G3P hydrolysis was demonstrated in artificial groundwater under aerobic and nitrate-reducing conditions. Transmission electron microscopy analysis and mineral-washing experiments demonstrated that U(VI) was incorporated into the structure of the insoluble Ca-P mineral hydroxyapatite [Ca5(PO4)3OH]. Our results support the idea that U(VI) can be effectively removed from solution in contaminated aquifers through stimulation of microbial organophosphate metabolism. PMID:19633115

  10. Glyceraldehyde 3-phosphate dehydrogenase-telomere association correlates with redox status in Trypanosoma cruzi.

    PubMed

    Pariona-Llanos, Ricardo; Pavani, Raphael Souza; Reis, Marcelo; Noël, Vincent; Silber, Ariel Mariano; Armelin, Hugo Aguirre; Cano, Maria Isabel Nogueira; Elias, Maria Carolina

    2015-01-01

    Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a classical metabolic enzyme involved in energy production and plays a role in additional nuclear functions, including transcriptional control, recognition of misincorporated nucleotides in DNA and maintenance of telomere structure. Here, we show that the recombinant protein T. cruzi GAPDH (rTcGAPDH) binds single-stranded telomeric DNA. We demonstrate that the binding of GAPDH to telomeric DNA correlates with the balance between oxidized and reduced forms of nicotinamide adenine dinucleotides (NAD+/NADH). We observed that GAPDH-telomere association and NAD+/NADH balance changed throughout the T. cruzi life cycle. For example, in replicative epimastigote forms of T. cruzi, which show similar intracellular concentrations of NAD+ and NADH, GAPDH binds to telomeric DNA in vivo and this binding activity is inhibited by exogenous NAD+. In contrast, in the T. cruzi non-proliferative trypomastigote forms, which show higher NAD+ concentration, GAPDH was absent from telomeres. In addition, NAD+ abolishes physical interaction between recombinant GAPDH and synthetic telomere oligonucleotide in a cell free system, mimicking exogenous NAD+ that reduces GAPDH-telomere interaction in vivo. We propose that the balance in the NAD+/NADH ratio during T. cruzi life cycle homeostatically regulates GAPDH telomere association, suggesting that in trypanosomes redox status locally modulates GAPDH association with telomeric DNA. PMID:25775131

  11. Cloning, characterization and application of a glyceraldehyde-3-phosphate dehydrogenase promoter from Aspergillus terreus.

    PubMed

    Huang, Xuenian; Lu, Xuefeng; Li, Jian-Jun

    2014-03-01

    It is important to develop native and highly efficient promoters for effective genetic engineering of filamentous fungi. Although Aspergillus terreus is an important industrial fungus for the production of itaconic acid and lovastatin, the available genetic toolbox for this microorganism is still rather limited. We have cloned the 5' upstream region of the glyceraldehyde-3-phosphate dehydrogenase gene (gpd; 2,150 bp from the start codon) from A. terreus CICC 40205 and subsequently confirmed its promoter function using sgfp (synthetic green fluorescent protein) as the reporter. The sequence of the promoter PgpdAt was further analysed by systematic deletion to obtain an effective and compact functional promoter. Two truncated versions of PgpdAt (1,081 and 630 bp) were also able to drive sgfp expression in A. terreus. The activities of these three PgpdAt promoters of varying different lengths were further confirmed by fluorescence, western blot and transcription. The shortest one (630 bp) was successfully applied as a driver of vgb expression in the genetic engineering of A. terreus. The function of expressed haemoglobin was demonstrated by the CO (carbon monoxide)-difference spectrum and enhanced oxygen uptake rate, glucose consumption and itaconic acid titer. Our study was successful in developing and validating an efficient and compact native promoter for genetic engineering of A. terreus. PMID:24306453

  12. Assisted folding of D-glyceraldehyde-3-phosphate dehydrogenase by trigger factor.

    PubMed Central

    Huang, G. C.; Li, Z. Y.; Zhou, J. M.; Fischer, G.

    2000-01-01

    The Escherichia coli trigger factor is a peptidyl-prolyl cis-trans isomerase that catalyzes proline-limited protein folding extremely well. Here, refolding of D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the presence of trigger factor was investigated. The regain of activity of GAPDH was markedly increased by trigger factor after either long- or short-term denaturation, and detectable aggregation of GAPDH intermediates was prevented. In both cases, time courses of refolding of GAPDH were decelerated by trigger factor. The reactivation yield of GAPDH showed a slow down-turn when molar ratios of trigger factor to GAPDH were above 5, due to tight binding between trigger factor and GAPDH intermediates. Such inactive bound GAPDH could be partially rescued from trigger factor by addition of reduced alphaLA as competitor, by further diluting the refolding mixture, or by disrupting hydrophobic interactions in the complexes. A model for trigger factor assisted refolding of GAPDH is proposed. We also suggest that assisted refolding of GAPDH is due mainly to the chaperone function of trigger factor. PMID:10892818

  13. ROS generation and multiple forms of mammalian mitochondrial glycerol-3-phosphate dehydrogenase.

    PubMed

    Mráček, Tomáš; Holzerová, Eliška; Drahota, Zdeněk; Kovářová, Nikola; Vrbacký, Marek; Ješina, Pavel; Houštěk, Josef

    2014-01-01

    Overproduction of reactive oxygen species (ROS) has been implicated in a range of pathologies. Mitochondrial flavin dehydrogenases glycerol-3-phosphate dehydrogenase (mGPDH) and succinate dehydrogenase (SDH) represent important ROS source, but the mechanism of electron leak is still poorly understood. To investigate the ROS production by the isolated dehydrogenases, we used brown adipose tissue mitochondria solubilized by digitonin as a model. Enzyme activity measurements and hydrogen peroxide production studies by Amplex Red fluorescence, and luminol luminescence in combination with oxygraphy revealed flavin as the most likely source of electron leak in SDH under in vivo conditions, while we propose coenzyme Q as the site of ROS production in the case of mGPDH. Distinct mechanism of ROS production by the two dehydrogenases is also apparent from induction of ROS generation by ferricyanide which is unique for mGPDH. Furthermore, using native electrophoretic systems, we demonstrated that mGPDH associates into homooligomers as well as high molecular weight supercomplexes, which represent native forms of mGPDH in the membrane. By this approach, we also directly demonstrated that isolated mGPDH itself as well as its supramolecular assemblies are all capable of ROS production. PMID:23999537

  14. Oxidatively Modified Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) and Alzheimer Disease: Many Pathways to Neurodegeneration

    PubMed Central

    Butterfield, D. Allan; Hardas, Sarita S.; Bader Lange, Miranda L.

    2009-01-01

    Recently, the oxidoreductase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), has become a subject of interest as more and more studies reveal a surfeit of diverse GAPDH functions, extending beyond traditional aerobic metabolism of glucose. As a result of multiple isoforms and cellular locales, GAPDH is able to come in contact with a variety of small molecules, proteins, membranes, etc. that play important roles in normal and pathologic cell function. Specifically, GAPDH has been shown to interact with neurodegenerative disease-associated proteins, including the β-amyloid precursor protein (AβPP). Studies from our laboratory have shown significant inhibition of GAPDH dehydrogenase activity in Alzheimer disease (AD) brain due to oxidative modification. Although, oxidative stress and damage is a common phenomenon in AD brain, it would seem that inhibition of glycolytic enzyme activity is merely one avenue in which AD pathology affects neuronal cell development and survival, as oxidative modification can also impart a toxic gain-of-function to many proteins, including GAPDH. In this review, we examine the many functions of GAPDH with respect to AD brain; in particular, GAPDH’s apparent role(s) in AD-related apoptotic cell death is emphasized. PMID:20164570

  15. Isolation of a functional, insulin regulatable glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene

    SciTech Connect

    Alexander-Bridges, M.; Ramaika, C.; Lomanto, M.; Florence, B.; Ercolani, L.

    1987-05-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme which is regulated by insulin in 3T3 adipocytes and liver. They have isolated a 10 Kb BAM fragment which contains the entire GAPDH coding sequence and 1 Kb of the 5' flanking region. This clone has been mapped and sequenced to show the presence of a TATAA box; ATG, TAA, ATAA sites; and introns. When transiently expressed in L cells, the gene encodes a full length mRNA and functional protein. Thus, they have isolated a functional gene and not a pseudogene. When the gene is expressed in insulin-sensitive cells, the human GAPDH mRNA level was increased 3-fold in H35 hepatoma cells similar to the fold effect seen for endogenous rat mRNA in the same experiment. A 600 bp fragment of the GAPDH gene 5' flanking sequence was subcloned into a vector containing the chloramphenicol acetyl transferase (CAT) gene and cotransfected with the neomycin-resistant gene in H35 hepatoma cells to select stable lines. RNA isolated from control- and insulin-treated transfected cells show an appropriately sized S1 nuclease-protected fragment indicating that both the control species and insulin-stimulated species are primed off the GAPDH protomer. These studies indicate that insulin regulates GAPDH gene expression through an interaction with specific DNA sequences in rat hepatoma cells.

  16. On the interaction between glyceraldehyde-3-phosphate dehydrogenase and airborne particles: Evidence for electrophilic species

    NASA Astrophysics Data System (ADS)

    Shinyashiki, Masaru; Rodriguez, Chester E.; Di Stefano, Emma W.; Sioutas, Constantinos; Delfino, Ralph J.; Kumagai, Yoshito; Froines, John R.; Cho, Arthur K.

    Many of the adverse health effects of airborne particulate matter (PM) have been attributed to the chemical properties of some of the large number of chemical species present in PM. Some PM component chemicals are capable of generating reactive oxygen species and eliciting a state of oxidative stress. In addition, however, PM can contain chemical species that elicit their effects through covalent bond formation with nucleophilic functions in the cell. In this manuscript, we report the presence of constituents with electrophilic properties in ambient and diesel exhaust particles, demonstrated by their ability to inhibit the thiol enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). GAPDH is irreversibly inactivated by electrophiles under anaerobic conditions by covalent bond formation. This inactivation can be blocked by the prior addition of a high concentration of dithiothreitol (DTT) as an alternate nucleophile. Addition of DTT after the reaction between the electrophile and GAPDH, however, does not reverse the inactivation. This property has been utilized to develop a procedure that provides a quantitative measure of electrophiles present in samples of ambient particles collected in the Los Angeles Basin and in diesel exhaust particles. The toxicity of electrophiles is the result of irreversible changes in biological molecules; recovery is dependent on resynthesis. If the resynthesis is slow, the irreversible effects can be cumulative and manifest themselves after chronic exposure to low levels of electrophiles.

  17. Glyceraldehyde-3-phosphate dehydrogenase gene from Zymomonas mobilis: cloning, sequencing, and identification of promoter region

    SciTech Connect

    Conway, T.; Sewell, G.W.; Ingram, L.O.

    1987-12-01

    The gene encoding glyceraldehyde-3-phosphate dehydrogenase was isolated from a library of Zymomonas mobilis DNA fragments by complementing a deficient strain of Escherichia coli. It contained tandem promoters which were recognized by E. coli but appeared to function less efficiently than the enteric lac promoter in E. coli. The open reading frame for this gene encoded 337 amino acids with an aggregate molecular weight of 36,099 (including the N-terminal methionine). The primary amino acid sequence for this gene had considerable functional homology and amino acid identity with other eukaryotic and bacterial genes. Based on this comparison, the gap gene from Z. mobilis appeared to be most closely related to that of the thermophilic bacteria and to the chloroplast isozymes. Comparison of this gene with other glycolytic enzymes from Z. mobilis revealed a conserved pattern of codon bias and several common features of gene structure. A tentative transcriptional consensus sequence is proposed for Z. mobilis based on comparison of the five known promoters for three glycolytic enzymes.

  18. Glyceraldehyde 3-Phosphate Dehydrogenase-Telomere Association Correlates with Redox Status in Trypanosoma cruzi

    PubMed Central

    Pariona-Llanos, Ricardo; Pavani, Raphael Souza; Reis, Marcelo; Noël, Vincent; Silber, Ariel Mariano; Armelin, Hugo Aguirre; Cano, Maria Isabel Nogueira; Elias, Maria Carolina

    2015-01-01

    Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a classical metabolic enzyme involved in energy production and plays a role in additional nuclear functions, including transcriptional control, recognition of misincorporated nucleotides in DNA and maintenance of telomere structure. Here, we show that the recombinant protein T. cruzi GAPDH (rTcGAPDH) binds single-stranded telomeric DNA. We demonstrate that the binding of GAPDH to telomeric DNA correlates with the balance between oxidized and reduced forms of nicotinamide adenine dinucleotides (NAD+/NADH). We observed that GAPDH-telomere association and NAD+/NADH balance changed throughout the T. cruzi life cycle. For example, in replicative epimastigote forms of T. cruzi, which show similar intracellular concentrations of NAD+ and NADH, GAPDH binds to telomeric DNA in vivo and this binding activity is inhibited by exogenous NAD+. In contrast, in the T. cruzi non-proliferative trypomastigote forms, which show higher NAD+ concentration, GAPDH was absent from telomeres. In addition, NAD+ abolishes physical interaction between recombinant GAPDH and synthetic telomere oligonucleotide in a cell free system, mimicking exogenous NAD+ that reduces GAPDH-telomere interaction in vivo. We propose that the balance in the NAD+/NADH ratio during T. cruzi life cycle homeostatically regulates GAPDH telomere association, suggesting that in trypanosomes redox status locally modulates GAPDH association with telomeric DNA. PMID:25775131

  19. Lactobacillus reuteri glyceraldehyde-3-phosphate dehydrogenase functions in adhesion to intestinal epithelial cells.

    PubMed

    Zhang, Wen-Ming; Wang, Hai-Feng; Gao, Kan; Wang, Cong; Liu, Li; Liu, Jian-Xin

    2015-05-01

    This study was aimed to identify key surface proteins mediating the adhesion of lactobacilli to intestinal epithelial cells. By using Caco-2 and IPEC-J2 cells labeled with sulfo-NHS-biotin in the western blotting, a protein band of an approximately 37 kDa was detected on the surface layer of Lactobacillus reuteri strains ZJ616, ZJ617, ZJ621, and ZJ623 and Lactobacillus rhamnosus GG. Mass spectrometry analysis using the adhesion-related protein from L. reuteri ZJ617 showed that it was 100% homologous to the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of L. reuteri JCM 1112 (GenBank: YP_001841377). The ability of L. reuteri ZJ617 to adhere to epithelial cells decreased significantly by treatment with LiCl or by blocking with an anti-GAPDH antibody, in comparison with the untreated strain (p < 0.05). Immunoelectron microscopic and immunofluorescence analyses confirmed that GAPDH is located on the surface layer of L. reuteri ZJ617. The results indicated that the GAPDH protein of L. reuteri ZJ617 acts as an adhesion component that plays an important role in binding to the intestinal epithelial cells. PMID:25867279

  20. Phosphatidylinositol-3-phosphate is light-regulated and essential for survival in retinal rods

    PubMed Central

    He, Feng; Agosto, Melina A.; Anastassov, Ivan A.; Tse, Dennis Y.; Wu, Samuel M.; Wensel, Theodore G.

    2016-01-01

    Phosphoinositides play important roles in numerous intracellular membrane pathways. Little is known about the regulation or function of these lipids in rod photoreceptor cells, which have highly active membrane dynamics. Using new assays with femtomole sensitivity, we determined that whereas levels of phosphatidylinositol-3,4-bisphosphate and phosphatidylinositol-3,4,5-trisphosphate were below detection limits, phosphatidylinositol-3-phosphate (PI(3)P) levels in rod inner/outer segments increased more than 30-fold after light exposure. This increase was blocked in a rod-specific knockout of the PI-3 kinase Vps34, resulting in failure of endosomal and autophagy-related membranes to fuse with lysosomes, and accumulation of abnormal membrane structures. At early ages, rods displayed normal morphology, rhodopsin trafficking, and light responses, but underwent progressive neurodegeneration with eventual loss of both rods and cones by twelve weeks. The degeneration is considerably faster than in rod knockouts of autophagy genes, indicating defects in endosome recycling or other PI(3)P-dependent membrane trafficking pathways are also essential for rod survival. PMID:27245220

  1. The Inositol-3-Phosphate Synthase Biosynthetic Enzyme Has Distinct Catalytic and Metabolic Roles

    PubMed Central

    Frej, Anna D.; Clark, Jonathan; Le Roy, Caroline I.; Lilla, Sergio; Thomason, Peter A.; Otto, Grant P.; Churchill, Grant; Insall, Robert H.; Claus, Sandrine P.; Hawkins, Phillip; Stephens, Len

    2016-01-01

    Inositol levels, maintained by the biosynthetic enzyme inositol-3-phosphate synthase (Ino1), are altered in a range of disorders, including bipolar disorder and Alzheimer's disease. To date, most inositol studies have focused on the molecular and cellular effects of inositol depletion without considering Ino1 levels. Here we employ a simple eukaryote, Dictyostelium discoideum, to demonstrate distinct effects of loss of Ino1 and inositol depletion. We show that loss of Ino1 results in an inositol auxotrophy that can be rescued only partially by exogenous inositol. Removal of inositol supplementation from the ino1− mutant resulted in a rapid 56% reduction in inositol levels, triggering the induction of autophagy, reduced cytokinesis, and substrate adhesion. Inositol depletion also caused a dramatic generalized decrease in phosphoinositide levels that was rescued by inositol supplementation. However, loss of Ino1 triggered broad metabolic changes consistent with the induction of a catabolic state that was not rescued by inositol supplementation. These data suggest a metabolic role for Ino1 that is independent of inositol biosynthesis. To characterize this role, an Ino1 binding partner containing SEL1L1 domains (Q54IX5) and having homology to mammalian macromolecular complex adaptor proteins was identified. Our findings therefore identify a new role for Ino1, independent of inositol biosynthesis, with broad effects on cell metabolism. PMID:26951199

  2. The Inositol-3-Phosphate Synthase Biosynthetic Enzyme Has Distinct Catalytic and Metabolic Roles.

    PubMed

    Frej, Anna D; Clark, Jonathan; Le Roy, Caroline I; Lilla, Sergio; Thomason, Peter A; Otto, Grant P; Churchill, Grant; Insall, Robert H; Claus, Sandrine P; Hawkins, Phillip; Stephens, Len; Williams, Robin S B

    2016-05-15

    Inositol levels, maintained by the biosynthetic enzyme inositol-3-phosphate synthase (Ino1), are altered in a range of disorders, including bipolar disorder and Alzheimer's disease. To date, most inositol studies have focused on the molecular and cellular effects of inositol depletion without considering Ino1 levels. Here we employ a simple eukaryote, Dictyostelium discoideum, to demonstrate distinct effects of loss of Ino1 and inositol depletion. We show that loss of Ino1 results in an inositol auxotrophy that can be rescued only partially by exogenous inositol. Removal of inositol supplementation from the ino1(-) mutant resulted in a rapid 56% reduction in inositol levels, triggering the induction of autophagy, reduced cytokinesis, and substrate adhesion. Inositol depletion also caused a dramatic generalized decrease in phosphoinositide levels that was rescued by inositol supplementation. However, loss of Ino1 triggered broad metabolic changes consistent with the induction of a catabolic state that was not rescued by inositol supplementation. These data suggest a metabolic role for Ino1 that is independent of inositol biosynthesis. To characterize this role, an Ino1 binding partner containing SEL1L1 domains (Q54IX5) and having homology to mammalian macromolecular complex adaptor proteins was identified. Our findings therefore identify a new role for Ino1, independent of inositol biosynthesis, with broad effects on cell metabolism. PMID:26951199

  3. Structural and functional properties of glycerol-3-phosphate dehydrogenase from a mammalian hibernator.

    PubMed

    de la Roche, Marc; Tessier, Shannon N; Storey, Kenneth B

    2012-02-01

    Glycerol-3-phosphate dehydrogenase (G3PDH; E.C.1.1.1.8) was purified from liver and skeletal muscle of black-tailed prairie dogs (Cynomys ludivicianus), a hibernating species. Native and subunit molecular masses of the dimeric enzyme were 77 and 40 kD, respectively, and both tissues contained a single isozyme with a pI of 6.4. Kinetic parameters of purified G3PDH from prairie dog liver and muscle were characterized at 22 and 5 °C and compared with rabbit muscle G3PDH. Substrate affinities for hibernator muscle G3PDH were stable (NAD) or increased significantly (K(m) G3P and DHAP decreased) at low temperature whereas K(m) NAD and DHAP of rabbit G3PDH increased. Prairie dog G3PDH showed greater conservation of K(m) G3P over a wide temperature range as well as greater thermal stability and resistance to chemical denaturation by guanidine hydrochloride than the rabbit enzyme. In addition, using the protein sequence of the hibernating thirteen-lined ground squirrel (Ictidomys tridecemlineatus) and bioinformatics tools, the deduced protein structure of G3PDH was compared between heterothermic and homeothermic mammals. Structural and functional characteristics of G3PDH from the hibernating species would support enzyme function over a wide range of core body temperatures over cycles of torpor and arousal. PMID:22180227

  4. Isolation and some properties of glycated D-glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle.

    PubMed Central

    He, R Q; Yang, M D; Zheng, X; Zhou, J X

    1995-01-01

    Glycated D-glyceraldehyde-3-phosphate dehydrogenases (GAPDH) from rabbit muscle and human erythrocytes have been investigated. The specific activity of the non-glycated GAPDH from rabbit muscle is approx. 180 units. (One unit is defined as the specific activity required to convert 1 microM of substrate/min per mg of enzyme.) The activity of the glycated enzyme, consisting of two sugars per tetramer, is lower than that of the non-glycated GAPDH. Non-enzymic transamination of the N-termini of glycated GAPDH (gGAPDH) indicates that they are not blocked by glycation. The rate of modification of thiols (Cys-149) with 5,5'-dithiobis-(2-nitrobenzoic acid) was greater for the glycated than the non-glycated enzymes. The rate of modification of amino groups of Lys residues of gGAPDH with o-phthalaldehyde was greater for the non-glycated enzyme. In 0.18 M guanidine-HC1 solution, the emission intensity at 410 nm of a fluorescent NAD+ derivative introduced into the active site decreased to 80%, whereas that of gGAPDH decreased to 50%. This suggests that the glycated sites are near the active site; glycation of the enzyme leads to a change of the microenvironment of Cys-149, alters the conformation of the active site and decreases the activity. Images Figure 1 PMID:7619048

  5. Modulation of glyceraldehyde-3-phosphate dehydrogenase activity by surface functionalized quantum dots.

    PubMed

    Ghosh, Srabanti; Ray, Manju; Das, Mahua Rani; Chakrabarti, Adrita; Khan, Ali Hossain; Sarma, D D; Acharya, Somobrata

    2014-03-21

    Enzymatic regulation is a fast and reliable diagnosis tool via identification and design of inhibitors for modulation of enzyme function. Previous reports on quantum dots (QDs)-enzyme interactions reveal a protein-surface recognition ability leading to promising applications in protein stabilization, protein delivery, bio-sensing and detection. However, the direct use of QDs to control enzyme inhibition has never been revealed to date. Here we show that a series of biocompatible surface-functionalized metal-chalcogenide QDs can be used as potent inhibitors for malignant cells through the modulation of enzyme activity, while normal cells remain unaffected. The in vitro activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an enzyme involved critically in the glycolysis of cancer cells, is inactivated selectively in a controlled way by the QDs at a significantly low concentration (nM). Cumulative kinetic studies delineate that the QDs undergo both reversible and irreversible inhibition mechanisms owing to the site-specific interactions, enabling control over the inhibition kinetics. These complementary loss-of-function probes may offer a novel route for rapid clinical diagnosis of malignant cells and biomedical applications. PMID:24496476

  6. Negative regulation of phosphatidylinositol 3-phosphate levels in early-to-late endosome conversion

    PubMed Central

    Liu, Kai; Jian, Youli; Sun, Xiaojuan; Yang, Chengkui; Gao, Zhiyang; Zhang, Zhili; Liu, Xuezhao; Li, Yang; Xu, Jing; Jing, Yudong; Mitani, Shohei; He, Sudan

    2016-01-01

    Phosphatidylinositol 3-phosphate (PtdIns3P) plays a central role in endosome fusion, recycling, sorting, and early-to-late endosome conversion, but the mechanisms that determine how the correct endosomal PtdIns3P level is achieved remain largely elusive. Here we identify two new factors, SORF-1 and SORF-2, as essential PtdIns3P regulators in Caenorhabditis elegans. Loss of sorf-1 or sorf-2 leads to greatly elevated endosomal PtdIns3P, which drives excessive fusion of early endosomes. sorf-1 and sorf-2 function coordinately with Rab switching genes to inhibit synthesis of PtdIns3P, allowing its turnover for endosome conversion. SORF-1 and SORF-2 act in a complex with BEC-1/Beclin1, and their loss causes elevated activity of the phosphatidylinositol 3-kinase (PI3K) complex. In mammalian cells, inactivation of WDR91 and WDR81, the homologs of SORF-1 and SORF-2, induces Beclin1-dependent enlargement of PtdIns3P-enriched endosomes and defective degradation of epidermal growth factor receptor. WDR91 and WDR81 interact with Beclin1 and inhibit PI3K complex activity. These findings reveal a conserved mechanism that controls appropriate PtdIns3P levels in early-to-late endosome conversion. PMID:26783301

  7. [Biological assay for galactose-1 phosphate measurement application in subjects with galactosemia].

    PubMed

    Braham, Imene; Charfeddine, Bassem; Ben Othmene, Leila; Neffati, Souhir; Mtar, Aida; Ben Abdallah, Jihene; Ali Smach, Med; Dridi, Hedi; Limem, Khalifa

    2012-01-01

    Congenital galactosemia is a hereditary, autosomal recessive and metabolic disease. It is linked to an enzyme deficiency, more commonly known by the deficiency of galactose-1- phosphate uridyltransferase (GALT), which is responsible for an accumulation of galactose-1- phosphate in the blood. Clinical symptoms appear early in infancy from the second week of life. They generally manifested by some disorders within liver, kidney, eye, gastrointestinal, neurological and also with cataracts. Currently, the clinical diagnosis remains difficult hence the importance of further investigations based on effective biological assessments to highlight the disease. The diagnosis of galactosemia is made by the laboratory test. The latter includes the determination of Gal-1-P which is done by a fluorometric method spot test. This study was conducted in order to assess the repeatability, reproducibility, accuracy, and effectiveness of the techniques used. We have found the CV for a repeatability (CV = 5 %), reproducibility (CV = 4 %) which confirms the accuracy of the method proceeded in this study. This method allows us to have a degree of inaccuracy less than 1%. According to the study of the effectiveness of "spot test", we found that our technique is specific (Sp = 93 %) and sensitive (Se = 83 %). PMID:22294140

  8. Prolonging Survival of Corneal Transplantation by Selective Sphingosine-1-Phosphate Receptor 1 Agonist

    PubMed Central

    Gao, Min; Liu, Yong; Xiao, Yang; Han, Gencheng; Jia, Liang; Wang, Liqiang; Lei, Tian; Huang, Yifei

    2014-01-01

    Corneal transplantation is the most used therapy for eye disorders. Although the cornea is somewhat an immune privileged organ, immune rejection is still the major problem that reduces the success rate. Therefore, effective chemical drugs that regulate immunoreactions are needed to improve the outcome of corneal transplantations. Here, a sphingosine-1-phosphate receptor 1 (S1P1) selective agonist was systematically evaluated in mouse allogeneic corneal transplantation and compared with the commonly used immunosuppressive agents. Compared with CsA and the non-selective sphingosine 1-phosphate (S1P) receptor agonist FTY720, the S1P1 selective agonist can prolong the survival corneal transplantation for more than 30 days with a low immune response. More importantly, the optimal dose of the S1P1 selective agonist was much less than non-selective S1P receptor agonist FTY720, which would reduce the dose-dependent toxicity in drug application. Then we analyzed the mechanisms of the selected S1P1 selective agonist on the immunosuppression. The results shown that the S1P1 selective agonist could regulate the distribution of the immune cells with less CD4+ T cells and enhanced Treg cells in the allograft, moreover the expression of anti-inflammatory cytokines TGF-β1 and IL-10 unregulated which can reduce the immunoreactions. These findings suggest that S1P1 selective agonist may be a more appropriate immunosuppressive compound to effectively prolong mouse allogeneic corneal grafts survival. PMID:25216235

  9. Endocytosis of Ligand-Activated Sphingosine 1-Phosphate Receptor 1 Mediated by the Clathrin-Pathway.

    PubMed

    Reeves, Patrick M; Kang, Yuan-Lin; Kirchhausen, Tom

    2016-01-01

    The sphingosine 1-phosphate receptor 1 (S1PR1) is one of five G protein-coupled receptors activated by the lipid sphingosine 1-phosphate (S1P). Stimulation of S1PR1 by binding S1P or the synthetic agonist FTY720P results in rapid desensitization, associated in part with depletion of receptor from the cell surface. We report here combining spinning disc confocal fluorescence microscopy and flow cytometry to show that rapid internalization of activated S1PR1 relies on a functional clathrin-mediated endocytic pathway. Uptake of activated S1PR1 was strongly inhibited in cells disrupted in their clathrin-mediated endocytosis by depleting clathrin or AP-2 or by treating cells with dynasore-OH. The uptake of activated S1P1R was strongly inhibited in cells lacking both β-arrestin 1 and β-arrestin 2, indicating that activated S1PR1 follows the canonical route of endocytosis for G-protein coupled receptor's (GPCR)'s. PMID:26481905

  10. Migration of germline progenitor cells is directed by sphingosine-1-phosphate signalling in a basal chordate.

    PubMed

    Kassmer, Susannah H; Rodriguez, Delany; Langenbacher, Adam D; Bui, Connor; De Tomaso, Anthony W

    2015-01-01

    The colonial ascidian Botryllus schlosseri continuously regenerates entire bodies in an asexual budding process. The germ line of the newly developing bodies is derived from migrating germ cell precursors, but the signals governing this homing process are unknown. Here we show that germ cell precursors can be prospectively isolated based on expression of aldehyde dehydrogenase and integrin alpha-6, and that these cells express germ cell markers such as vasa, pumilio and piwi, as well as sphingosine-1-phosphate receptor. In vitro, sphingosine-1-phosphate (S1P) stimulates migration of germ cells, which depends on integrin alpha-6 activity. In vivo, S1P signalling is essential for homing of germ cells to newly developing bodies. S1P is generated by sphingosine kinase in the developing germ cell niche and degraded by lipid phosphate phosphatase in somatic tissues. These results demonstrate a previously unknown role of the S1P signalling pathway in germ cell migration in the ascidian Botryllus schlosseri. PMID:26456232

  11. The roles of bile acids and sphingosine-1-phosphate signaling in the hepatobiliary diseases.

    PubMed

    Nagahashi, Masayuki; Yuza, Kizuki; Hirose, Yuki; Nakajima, Masato; Ramanathan, Rajesh; Hait, Nitai C; Hylemon, Phillip B; Zhou, Huiping; Takabe, Kazuaki; Wakai, Toshifumi

    2016-09-01

    Based on research carried out over the last decade, it has become increasingly evident that bile acids act not only as detergents, but also as important signaling molecules that exert various biological effects via activation of specific nuclear receptors and cell signaling pathways. Bile acids also regulate the expression of numerous genes encoding enzymes and proteins involved in the synthesis and metabolism of bile acids, glucose, fatty acids, and lipoproteins, as well as energy metabolism. Receptors activated by bile acids include, farnesoid X receptor α, pregnane X receptor, vitamin D receptor, and G protein-coupled receptors, TGR5, muscarinic receptor 2, and sphingosine-1-phosphate receptor (S1PR)2. The ligand of S1PR2, sphingosine-1-phosphate (S1P), is a bioactive lipid mediator that regulates various physiological and pathophysiological cellular processes. We have recently reported that conjugated bile acids, via S1PR2, activate and upregulate nuclear sphingosine kinase 2, increase nuclear S1P, and induce genes encoding enzymes and transporters involved in lipid and sterol metabolism in the liver. Here, we discuss the role of bile acids and S1P signaling in the regulation of hepatic lipid metabolism and in hepatobiliary diseases. PMID:27459945

  12. Migration of germline progenitor cells is directed by sphingosine-1-phosphate signalling in a basal chordate

    PubMed Central

    Kassmer, Susannah H.; Rodriguez, Delany; Langenbacher, Adam D.; Bui, Connor; De Tomaso, Anthony W.

    2015-01-01

    The colonial ascidian Botryllus schlosseri continuously regenerates entire bodies in an asexual budding process. The germ line of the newly developing bodies is derived from migrating germ cell precursors, but the signals governing this homing process are unknown. Here we show that germ cell precursors can be prospectively isolated based on expression of aldehyde dehydrogenase and integrin alpha-6, and that these cells express germ cell markers such as vasa, pumilio and piwi, as well as sphingosine-1-phosphate receptor. In vitro, sphingosine-1-phosphate (S1P) stimulates migration of germ cells, which depends on integrin alpha-6 activity. In vivo, S1P signalling is essential for homing of germ cells to newly developing bodies. S1P is generated by sphingosine kinase in the developing germ cell niche and degraded by lipid phosphate phosphatase in somatic tissues. These results demonstrate a previously unknown role of the S1P signalling pathway in germ cell migration in the ascidian Botryllus schlosseri. PMID:26456232

  13. Sphingosine-1-phosphate receptor 3 influences cell cycle progression in muscle satellite cells

    PubMed Central

    Fortier, Mathieu; Figeac, Nicolas; White, Robert B.; Knopp, Paul; Zammit, Peter S.

    2013-01-01

    Skeletal muscle retains a resident stem cell population called satellite cells, which are mitotically quiescent in mature muscle, but can be activated to produce myoblast progeny for muscle homeostasis, hypertrophy and repair. We have previously shown that satellite cell activation is partially controlled by the bioactive phospholipid, sphingosine-1-phosphate, and that S1P biosynthesis is required for muscle regeneration. Here we investigate the role of sphingosine-1-phosphate receptor 3 (S1PR3) in regulating murine satellite cell function. S1PR3 levels were high in quiescent myogenic cells before falling during entry into cell cycle. Retrovirally-mediated constitutive expression of S1PR3 led to suppressed cell cycle progression in satellite cells, but did not overtly affect the myogenic program. Conversely, satellite cells isolated from S1PR3-null mice exhibited enhanced proliferation ex-vivo. In vivo, acute cardiotoxin-induced muscle regeneration was enhanced in S1PR3-null mice, with bigger muscle fibres compared to control mice. Importantly, genetically deleting S1PR3 in the mdx mouse model of Duchenne muscular dystrophy produced a less severe muscle dystrophic phenotype, than when signalling though S1PR3 was operational. In conclusion, signalling though S1PR3 suppresses cell cycle progression to regulate function in muscle satellite cells. PMID:23911934

  14. Synthesis and Biological Evaluation of Sphingosine Kinase Substrates as Sphingosine-1-Phosphate Receptor Prodrugs

    PubMed Central

    Foss, Frank W.; Mathews, Thomas P.; Kharel, Yugesh; Kennedy, Perry C.; Snyder, Ashley H.; Davis, Michael D.; Lynch, Kevin R.; Macdonald, Timothy L.

    2009-01-01

    In the search for bioactive sphingosine 1-phosphate (S1P) receptor ligands, a series of 2-amino-2-heterocyclic-propanols were synthesized. These molecules were discovered to be substrates of human-sphingosine kinases 1 and 2 (SPHK1 and SPHK2). When phosphorylated, the resultant phosphates showed varied activities at the five sphingosine-1-phosphate (S1P) receptors (S1P1–5). Agonism at S1P1 was displayed in vivo by induction of lymphopenia. A stereochemical preference of the quaternary carbon was crucial for phosphorylation by the kinases and alters binding affinities at the S1P receptors. Oxazole and oxadiazole compounds are superior kinase substrates to FTY720, the prototypical prodrug immunomodulator, fingolimod (FTY720). The oxazole-derived structure was the most active for human SPHK2. Imidazole analogues were less active substrates for SPHKs, but more potent and selective agonists of the S1P1 receptor; additionally, the imidazole class of compounds rendered mice lymphopenic. PMID:19632123

  15. Diacylglycerol pyrophosphate binds and inhibits the glyceraldehyde-3-phosphate dehydrogenase in barley aleurone.

    PubMed

    Astorquiza, Paula Luján; Usorach, Javier; Racagni, Graciela; Villasuso, Ana Laura

    2016-04-01

    The aleurona cell is a model that allows the study of the antagonistic effect of gibberellic acid (GA) and abscisic acid (ABA). Previous results of our laboratory demonstrated the involvement of phospholipids during the response to ABA and GA. ABA modulates the levels of diacylglycerol, phosphatidic acid and diacylglycerol pyrophosphate (DAG, PA, DGPP) through the activities of phosphatidate phosphatases, phospholipase D, diacylglycerol kinase and phosphatidate kinase (PAP, PLD, DGK and PAK). PA and DGPP are key phospholipids in the response to ABA, since both are capable of modifying the hydrolitic activity of the aleurona. Nevertheless, little is known about the mechanism of action of these phospholipids during the ABA signal. DGPP is an anionic phospholipid with a pyrophosphate group attached to diacylglycerol. The ionization of the pyrophosphate group may be important to allow electrostatic interactions between DGPP and proteins. To understand how DGPP mediates cell functions in barley aleurone, we used a DGPP affinity membrane assay to isolate DGPP-binding proteins from Hordeum vulgare, followed by mass spectrometric sequencing. A cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) was identified for being bound to DGPP. To validate our method, the relatively abundant GAPDH was characterized with respect to its lipid-binding properties, by fat western blot. GAPDH antibody interacts with proteins that only bind to DGPP and PA. We also observed that ABA treatment increased GAPDH abundance and enzyme activity. The presence of phospholipids during GAPDH reaction modulated the GAPDH activity in ABA treated aleurone. These data suggest that DGPP binds to GAPDH and this DGPP and GAPDH interaction provides new evidences in the study of DGPP-mediated ABA responses in barley aleurone. PMID:26866974

  16. Identification of some ectomycorrhizal basidiomycetes by PCR amplification of their gpd (glyceraldehyde-3-phosphate dehydrogenase) genes.

    PubMed

    Kreuzinger, N; Podeu, R; Gruber, F; Göbl, F; Kubicek, C P

    1996-09-01

    Degenerated oligonucleotide primers designed to flank an approximately 1.2-kb fragment of the gene encoding glyceraldehyde-3-phosphate dehydrogenase (gpd) from ascomycetes and basidiomycetes were used to amplify the corresponding gpd fragments from several species of the ectomycorrhizal fungal taxa Boletus, Amanita, and Lactarius. Those from B. edulis, A. muscaria, and L. deterrimus were cloned and sequenced. The respective nucleotide sequences of these gene fragments showed a moderate degree of similarity (72 to 76%) in the protein-encoding regions and only a low degree of similarity in the introns (56 to 66%). Introns, where present, occurred at conserved positions, but the respective positions and numbers of introns in a given taxon varied. The amplified fragment from a given taxon could be distinguished from that of others by both restriction nuclease cleavage analysis and Southern hybridization. A procedure for labeling DNA probes with fluorescein-12-dUTP by PCR was developed. These probes were used in a nonradioactive hybridization assay, with which the gene could be detected in 2 ng of chromosomal DNA of L. deterrimus on slot blots. Taxon-specific amplification was achieved by the design of specific oligonucleotide primers. The application of the gpd gene for the identification of mycorrhizal fungi under field conditions was demonstrated, with Picea abies (spruce) mycorrhizal roots harvested from a northern alpine forest area as well as from a plant-breeding nursery. The interference by inhibitory substances, which sometimes occurred in the DNA extracted from the root-fungus mixture, could be overcome by using very diluted concentrations of template DNA for a first round of PCR amplification followed by a second round with nested oligonucleotide primers. We conclude that gpd can be used to detect ectomycorrhizal fungi during symbiotic interaction. PMID:8795234

  17. MOLECULAR MECHANISM OF GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE (GAPDH) INACTIVATION BY α,β-UNSATURATED CARBONYL DERIVATIVES

    PubMed Central

    Martyniuk, Christopher J.; Fang, Bin; Koomen, John M.; Gavin, Terrence; Zhang, Lihai; Barber, David S.; LoPachin, Richard M.

    2011-01-01

    α,β-Unsaturated carbonyls are an important class of chemicals involved in environmental toxicity and disease processes. Whereas adduction of cysteine residues on proteins is a well-documented reaction of these chemicals, such a generic effect cannot explain the molecular mechanism of cytotoxicity. Instead, more detailed information is needed regarding the possible specificity and kinetics of cysteine targeting and the quantitative relationship between adduct burden and protein dysfunction. To address these datagaps, purified human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was incubated with acrylamide (ACR), acrolein or methylvinyl ketone (MVK). Results show that these α,β-unsaturated carbonyl toxicants inhibited GAPDH activity in a concentration-and time-dependent manner. The rank order of enzyme inhibition (KI); i.e., ACR << MVK < acrolein, was related to the calculated electrophilic reactivity of each compound and to the corresponding kinetics of cysteine adduct formation. Tandem mass spectrometry revealed that adduct formation was selective at lower concentrations; i.e., ACR preferentially formed adducts with Cys152 (residues 146-162). At higher concentrations, ACR also formed adducts with Cys156 and Cys247 (residues 235-248). Adduct formation at Cys152 was correlated to enzyme inhibition, which is consistent with the regulatory role of this residue in enzyme function and its location within the GAPDH active site. Further analyses indicated that Cys152 was present in a pKa-lowering microenvironment (pKa = 6.03) and, at physiological pH, the corresponding sulfhydryl group exists in the highly reactive nucleophilic thiolate-state. These data suggest a general cytotoxic mechanism where electrophilic α,β-unsaturated carbonyls selectively form adducts with reactive nucleophilic cysteine residues specifically associated with the active sites of proteins. These specialized cysteine residues are toxicologically relevant molecular targets, since chemical

  18. Cloning and characterization of two novel chloroplastic glycerol-3-phosphate dehydrogenases from Dunaliella viridis.

    PubMed

    He, Yunxia; Meng, Xiangzong; Fan, Qianlan; Sun, Xiaoliang; Xu, Zhengkai; Song, Rentao

    2009-09-01

    Dunaliella, a unicellular green alga, has the unusual ability to survive dramatic osmotic stress by accumulating high concentrations of intracellular glycerol as a compatible solute. The chloroplastic glycerol-3-phosphate dehydrogenase (GPDH) has been considered to be the key enzyme that produces glycerol for osmoregulation in Dunaliella. In this study, we cloned the two most prominent GPDH cDNAs (DvGPDH1 and DvGPDH2) from Dunaliella viridis, which encode two polypeptides of 695 and 701 amino acids, respectively. Unlike higher plant GPDHs, both proteins contained extra phosphoserine phosphatase (SerB) domains at their N-termini in addition to C-terminal GPDH domains. Such bi-domain GPDHs represent a novel type of GPDH and are found exclusively in the chlorophyte lineage. Transient expression of EGFP fusion proteins in tobacco leaf cells demonstrated that both DvGPDH1 and DvGPDH2 are localized in the chloroplast. Overexpression of DvGPDH1 or DvGPDH2 could complement a yeast GPDH mutant (gpd1Delta), but not a yeast SerB mutant (ser2Delta). In vitro assays with purified DvGPDH1 and DvGPDH2 also showed apparent GPDH activity for both, but no SerB activity was detected. Surprisingly, unlike chloroplastic GPDHs from plants, DvGPDH1 and DvGPDH2 could utilize both NADH and NADPH as coenzymes and exhibited significantly higher GPDH activities when NADH was used as the coenzyme. Q-PCR analysis revealed that both genes exhibited transient transcriptional induction of gene expression upon hypersalinity shock, followed by a negative feedback of gene expression. These results shed light on the regulation of glycerol synthesis during salt stress in Dunaliella. PMID:19551475

  19. Glyceraldehyde-3-phosphate Dehydrogenase Aggregate Formation Participates in Oxidative Stress-induced Cell Death*

    PubMed Central

    Nakajima, Hidemitsu; Amano, Wataru; Kubo, Takeya; Fukuhara, Ayano; Ihara, Hideshi; Azuma, Yasu-Taka; Tajima, Hisao; Inui, Takashi; Sawa, Akira; Takeuchi, Tadayoshi

    2009-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)2 is a classic glycolytic enzyme that also mediates cell death by its nuclear translocation under oxidative stress. Meanwhile, we previously presented that oxidative stress induced disulfide-bonded GAPDH aggregation in vitro. Here, we propose that GAPDH aggregate formation might participate in oxidative stress-induced cell death both in vitro and in vivo. We show that human GAPDH amyloid-like aggregate formation depends on the active site cysteine-152 (Cys-152) in vitro. In SH-SY5Y neuroblastoma, treatment with dopamine decreases the cell viability concentration-dependently (IC50 = 202 μm). Low concentrations of dopamine (50–100 μm) mainly cause nuclear translocation of GAPDH, whereas the levels of GAPDH aggregates correlate with high concentrations of dopamine (200–300 μm)-induced cell death. Doxycycline-inducible overexpression of wild-type GAPDH in SH-SY5Y, but not the Cys-152-substituted mutant (C152A-GAPDH), accelerates cell death accompanying both endogenous and exogenous GAPDH aggregate formation in response to high concentrations of dopamine. Deprenyl, a blocker of GAPDH nuclear translocation, fails to inhibit the aggregation both in vitro and in cells but reduced cell death in SH-SY5Y treated with only a low concentration of dopamine (100 μm). These results suggest that GAPDH participates in oxidative stress-induced cell death via an alternative mechanism in which aggregation but not nuclear translocation of GAPDH plays a role. Moreover, we observe endogenous GAPDH aggregate formation in nigra-striatum dopaminergic neurons after methamphetamine treatment in mice. In transgenic mice overexpressing wild-type GAPDH, increased dopaminergic neuron loss and GAPDH aggregate formation are observed. These data suggest a critical role of GAPDH aggregates in oxidative stress-induced brain damage. PMID:19837666

  20. Glutathione conjugates recognize the Rossmann fold of glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Puder, M; Soberman, R J

    1997-04-18

    Leukotriene (LT) C4 and other glutathione conjugates are synthesized intracellularly and then move to the plasma membrane for export. The intracellular proteins that bind these molecules and the significance of these interactions are poorly understood. To identify the binding sites of membrane-associated proteins that recognize these molecules, we utilized photoaffinity probes to label the inner leaflet of erythrocytes. The predominant molecule labeled with S-(p-nitrobenzyl)glutathione-[125I]4-azidosalicylic acid (PNBG-[125I]ASA) or LTC4-[125I]4-azidosalicylic acid (LTC4-[125I]ASA) was 38 kDa. The protein was labeled with PNBG-[125I]ASA, electroblotted to polyvinylidene difluoride membranes, digested in situ with lysyl endopeptidase, and two radiolabeled peptides isolated by reverse phase-high performance liquid chromatography. These contained an identity of 7/11 with amino acids 119-129, and 11/11 with amino acids 67-77 of human liver glyceraldehyde-3-phosphate dehydrogenase (GAPDH), respectively. Photoaffinity labeling with PNBG-[125I]ASA was blocked completely by 100 microM ATP and greater than 50% with 100 microM NAD+. LTC4-[125I]ASA binding to the NAD+ site was confirmed by V8 protease digestion of purified GAPDH labeled with LTC4-[125I]ASA or PNBG-[125I]ASA, with both labels localized to the 6.8-kDa N-terminal fragment. Photoaffinity labeling of HL-60 cells with LTC4-125I-ASA identified GAPDH as the predominant cytoplasmic binding protein in these cells. These data indicate that GAPDH is a membrane-associated and cytoplasmic protein which binds glutathione conjugates including LTC4. PMID:9099752

  1. Disruption of NAD+ binding site in glyceraldehyde 3-phosphate dehydrogenase affects its intranuclear interactions

    PubMed Central

    Phadke, Manali; Krynetskaia, Natalia; Mishra, Anurag; Barrero, Carlos; Merali, Salim; Gothe, Scott A; Krynetskiy, Evgeny

    2015-01-01

    AIM: To characterize phosphorylation of human glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and mobility of GAPDH in cancer cells treated with chemotherapeutic agents. METHODS: We used proteomics analysis to detect and characterize phosphorylation sites within human GAPDH. Site-specific mutagenesis and alanine scanning was then performed to evaluate functional significance of phosphorylation sites in the GAPDH polypeptide chain. Enzymatic properties of mutated GAPDH variants were assessed using kinetic studies. Intranuclear dynamics parameters (diffusion coefficient and the immobile fraction) were estimated using fluorescence recovery after photobleaching (FRAP) experiments and confocal microscopy. Molecular modeling experiments were performed to estimate the effects of mutations on NAD+ cofactor binding. RESULTS: Using MALDI-TOF analysis, we identified novel phosphorylation sites within the NAD+ binding center of GAPDH at Y94, S98, and T99. Using polyclonal antibody specific to phospho-T99-containing peptide within GAPDH, we demonstrated accumulation of phospho-T99-GAPDH in the nuclear fractions of A549, HCT116, and SW48 cancer cells after cytotoxic stress. We performed site-mutagenesis, and estimated enzymatic properties, intranuclear distribution, and intranuclear mobility of GAPDH mutated variants. Site-mutagenesis at positions S98 and T99 in the NAD+ binding center reduced enzymatic activity of GAPDH due to decreased affinity to NAD+ (Km = 741 ± 257 μmol/L in T99I vs 57 ± 11.1 µmol/L in wild type GAPDH. Molecular modeling experiments revealed the effect of mutations on NAD+ binding with GAPDH. FRAP (fluorescence recovery after photo bleaching) analysis showed that mutations in NAD+ binding center of GAPDH abrogated its intranuclear interactions. CONCLUSION: Our results suggest an important functional role of phosphorylated amino acids in the NAD+ binding center in GAPDH interactions with its intranuclear partners. PMID:26629320

  2. Glyceraldehyde-3-phosphate Dehydrogenase Aggregates Accelerate Amyloid-β Amyloidogenesis in Alzheimer Disease.

    PubMed

    Itakura, Masanori; Nakajima, Hidemitsu; Kubo, Takeya; Semi, Yuko; Kume, Satoshi; Higashida, Shusaku; Kaneshige, Akihiro; Kuwamura, Mitsuru; Harada, Naoki; Kita, Akinori; Azuma, Yasu-Taka; Yamaji, Ryoichi; Inui, Takashi; Takeuchi, Tadayoshi

    2015-10-23

    Alzheimer disease (AD) is a progressive neurodegenerative disorder characterized by loss of neurons and formation of pathological extracellular deposits induced by amyloid-β peptide (Aβ). Numerous studies have established Aβ amyloidogenesis as a hallmark of AD pathogenesis, particularly with respect to mitochondrial dysfunction. We have previously shown that glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) forms amyloid-like aggregates upon exposure to oxidative stress and that these aggregates contribute to neuronal cell death. Here, we report that GAPDH aggregates accelerate Aβ amyloidogenesis and subsequent neuronal cell death both in vitro and in vivo. Co-incubation of Aβ40 with small amounts of GAPDH aggregates significantly enhanced Aβ40 amyloidogenesis, as assessed by in vitro thioflavin-T assays. Similarly, structural analyses using Congo red staining, circular dichroism, and atomic force microscopy revealed that GAPDH aggregates induced Aβ40 amyloidogenesis. In PC12 cells, GAPDH aggregates augmented Aβ40-induced cell death, concomitant with disruption of mitochondrial membrane potential. Furthermore, mice injected intracerebroventricularly with Aβ40 co-incubated with GAPDH aggregates exhibited Aβ40-induced pyramidal cell death and gliosis in the hippocampal CA3 region. These observations were accompanied by nuclear translocation of apoptosis-inducing factor and cytosolic release of cytochrome c from mitochondria. Finally, in the 3×Tg-AD mouse model of AD, GAPDH/Aβ co-aggregation and mitochondrial dysfunction were consistently detected in an age-dependent manner, and Aβ aggregate formation was attenuated by GAPDH siRNA treatment. Thus, this study suggests that GAPDH aggregates accelerate Aβ amyloidogenesis, subsequently leading to mitochondrial dysfunction and neuronal cell death in the pathogenesis of AD. PMID:26359500

  3. Glycerol-3-phosphate metabolism plays a role in stress response in the red alga Pyropia haitanensis.

    PubMed

    Lai, Xiao-Juan; Yang, Rui; Luo, Qi-Jun; Chen, Juan-Juan; Chen, Hai-Min; Yan, Xiao-Jun

    2015-04-01

    Glycerol-3-phosphate (G3P) has been suggested as a novel regulator of plant defense signaling, however, its role in algal resistance remains largely unknown. The glycerol kinase (also designated as NHO1) and NAD-dependent G3P dehydrogenase (GPDH) are two key enzymes involved in the G3P biosynthesis. In our study, we cloned the full-length cDNA of NHO1 (NHO1Ph ) and GPDH (GPDHP h ) from the red alga Pyropia haitanensis (denoted as NHO1Ph and GPDHP h ) and examined their expression level under flagellin peptide 22 (flg22) stimulation or heat stress. We also measured the level of G3P and floridoside (a downstream product of G3P in P. haitanensis) under flg22 stimulation or heat stress. Both NHO1Ph and GPDHP h shared high sequence identity and structural conservation with their orthologs from different species, especially from red algae. Phylogenetic analysis showed that NHO1s and GPDHs from red algae were closely related to those from animals. Under flg22 stimulation or heat stress, the expression levels of NHO1Ph and GPDHP h were up-regulated, G3P levels increased, and the contents of floridoside decreased. But the floridoside level increased in the recovery period after heat stress. Taken together, we found that G3P metabolism was associated with the flg22-induced defense response and heat stress response in P. haitanensis, indicating the general conservation of defense response in angiosperms and algae. Furthermore, floridoside might also participate in the stress resistance of P. haitanensis. PMID:26986527

  4. Cellular recovery of glyceraldehyde-3-phosphate dehydrogenase activity and thiol status after exposure to hydroperoxides

    SciTech Connect

    Brodie, A.E.; Reed, D.J. )

    1990-01-01

    The activity of the thiol-dependent enzyme glyceraldehyde-3-phosphate dehydrogenase (GPD), in vertebrate cells, was modulated by a change in the intracellular thiol:disulfide redox status. Human lung carcinoma cells (A549) were incubated with 1-120 mM H2O2, 1-120 mM t-butyl hydroperoxide, 1-6 mM ethacrynic acid, or 0.1-10 mM N-ethylmaleimide for 5 min. Loss of reduced protein thiols, as measured by binding of the thiol reagent iodoacetic acid to GPD, and loss of GPD enzymatic activity occurred in a dose-dependent manner. Incubation of the cells, following oxidative treatment, in saline for 30 min or with 20 mM dithiothreitol (DTT) partially reversed both changes in GPD. The enzymatic recovery of GPD activity was observed either without addition of thiols to the medium or by incubation of a sonicated cell mixture with 2 mM cysteine, cystine, cysteamine, or glutathione (GSH); GSSG had no effect. Treatment of cells with buthionine sulfoximine (BSO) to decrease cellular GSH by varying amounts caused a dose-related increase in sensitivity of GPD activity to inactivation by H2O2 and decreased cellular ability for subsequent recovery. GPD responded in a similar fashion with oxidative treatment of another lung carcinoma cell line (A427) as well as normal lung tissue from human and rat. These findings indicate that the cellular thiol redox status can be important in determining GPD enzymatic activity.

  5. Vaccine efficacy of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Edwardsiella ictaluri against E. tarda in tilapia.

    PubMed

    Trung Cao, Thanh; Tsai, Ming-An; Yang, Chung-Da; Wang, Pei-Chyi; Kuo, Tsun-Yung; Gabriel Chen, Hsu-Chung; Chen, Shih-Chu

    2014-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), derived from the outer-membrane protein (OMP) fraction, has been used as a potential candidate for vaccine development. The gene-encoding 37 kDa GAPDH outer membrane protein (OMP) from Edwardsiella ictaluri was amplified using polymerase chain reaction (PCR) and was cloned and expressed in Escherichia coli BL21 (DE3). Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Western blotting, and nucleotide and amino acid sequencing were used to analyze the expressed antigenic protein and gene encoding this protein. Comparative DNA and protein sequence analysis of GAPDH from E. ictaluri GAPDHs from several Gram-negative bacterial species within the Enterobacteriaceae family revealed that the GAPDHs within this group are highly conserved and share a sequence similarity of 75-100% with E. ictaluri GDPDH. Rabbit antiserum raised against the E. ictaluri recombinant GAPDH (rGAPDH) protein recognized purified GADPH, indicating that it has a strong immunogenicity. Tilapia fish were intraperitoneally immunized with formalin-killed E. ictaluri whole cells, and rGAPDH (30 μg fish(-1)) from E. ictaluri, both of which were emulsified in ISA 763A adjuvant. At 3 months after immunization, fish were challenged with the E. tarda strain to assess vaccine efficacy; the relative percent survival (RPS) values were found to exceed 71.4%. The specific mean antibody titer log2 level of groups vaccinated with rGAPDH at 3 months was significantly higher than that of non-vaccinated fish (control group). Therefore, this recombinant protein can be considered a multi-purpose candidate vaccine against several pathogenic bacteria. PMID:25742975

  6. Glyceraldehyde-3-Phosphate Dehydrogenase Interacts with Proapoptotic Kinase Mst1 to Promote Cardiomyocyte Apoptosis

    PubMed Central

    You, Bei; Huang, Shengdong; Qin, Qing; Yi, Bing; Yuan, Yang; Xu, Zhiyun; Sun, Jianxin

    2013-01-01

    Mammalian sterile 20-like kinase 1 (Mst1) is a critical component of the Hippo signaling pathway, which regulates a variety of biological processes ranging from cell contact inhibition, organ size control, apoptosis and tumor suppression in mammals. Mst1 plays essential roles in the heart disease since its activation causes cardiomyocyte apoptosis and dilated cardiomyopathy. However, the mechanism underlying Mst1 activation in the heart remains unknown. In a yeast two-hybrid screen of a human heart cDNA library with Mst1 as bait, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified as an Mst1-interacting protein. The interaction of GAPDH with Mst1 was confirmed by co-immunoprecipitation in both co-transfected HEK293 cells and mouse heart homogenates, in which GAPDH interacted with the kinase domain of Mst1, whereas the C-terminal catalytic domain of GAPDH mediated its interaction with Mst1. Moreover, interaction of Mst1 with GAPDH caused a robust phosphorylation of GAPDH and markedly increased the Mst1 activity in cells. Chelerythrine, a potent inducer of apoptosis, substantially increased the nuclear translocation and interaction of GAPDH and Mst1 in cardiomyocytes. Overexpression of GAPDH significantly augmented the Mst1 mediated apoptosis, whereas knockdown of GAPDH markedly attenuated the Mst1 activation and cardiomyocyte apoptosis in response to either chelerythrine or hypoxia/reoxygenation. These findings reveal a novel function of GAPDH in Mst1 activation and cardiomyocyte apoptosis and suggest that disruption of GAPDH interaction with Mst1 may prevent apoptosis related heart diseases such as heart failure and ischemic heart disease. PMID:23527007

  7. Glyphosate inhibition of 5-enolpyruvylshikimate 3-phosphate synthease from suspension-cultured cells of Nicotiana silvestris

    SciTech Connect

    Rubin, J.L.; Gaines, C.G.; Jensen, R.A.

    1984-07-01

    Treatment of isogenic suspension-cultured cells of Nicotiana silvestris Speg, et Comes with glyphosate (N-(phosphonomethyl)glycine) led to elevated levels of intracellular shikimate (364-fold increase by 1.0 millimolar glyphosate). In the presence of glyphosate, it is likely that most molecules of shikimate originate from the action of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase-Mn since this isozyme, in contrast to the DAHP synthase-Co isozyme, is insensitive to inhibition by glyphosate. 5-Enolpyruvylshikimate 3-phosphate (EPSP) synthase (EC 2.5.1.19) from N. silvestris was sensitive to micromolar concentrations of glyphosate and possessed a single inhibitor binding site. Rigorous kinetic studies of EPSP synthase required resolution from the multiple phosphatase activities present in crude extracts, a result achieved by ion-exchange column chromatography. Although EPSP synthase exhibited a broad pH profile (50% of maximal activity between pH 6.2 and 8.5), sensitivity to glyphosate increased dramatically with increasing pH within this range. In accordance with these data and the pK/sub a/ values of glyphosate, it is likely that the ionic form of glyphosate inhibiting EPSP synthase is COO/sup -/CH/sub 2/NH/sub 2//sup +/CH/sub 2/PO/sub 3//sup 2 -/, and that a completely ionized phosphono group is essential for inhibition. At pH 7.0, inhibition was competitive with respect to phosphoenolpyruvate (K/sub i/ = 1.25 micromolar) and uncompetitive with respect to shikimate-3-P (K/sub i/ = 18.3 micromolar). All data were consistent with a mechanism of inhibition in which glyphosate competes with PEP for binding to an (enzyme:shikimate-3-P) complex and ultimately forms the dead-end complex of (enzyme:shikimate-3-P:glyphosate). 36 references, 8 figures, 1 table.

  8. Ceramide 1-phosphate, a novel phospholipid in human leukemia (HL-60) cells. Synthesis via ceramide from sphingomyelin

    SciTech Connect

    Dressler, K.A.; Kolesnick, R.N. )

    1990-09-05

    Prior studies demonstrated that conversion of sphingomyelin to ceramide via sphingomyelinase action resulted in the generation of free sphingoid bases and inactivation of protein kinase C in human leukemia (HL-60) cells. The present studies define the novel phospholipid ceramide 1-phosphate in these cells and present evidence for formation of this compound by preferential utilization of ceramide derived from spingomyelin. A ceramide 1-phosphate standard, prepared enzymatically via diacylglycerol kinase, was utilized for localization. In cells labeled to equilibrium with 32Pi to label the head group of the molecule, the basal ceramide 1-phosphate level was 30 +/- 2 pmol/10(6) cells. Generation of ceramide via the use of exogenous sphingomyelinase resulted in time- and concentration-dependent formation of ceramide 1-phosphate. As little as 3.8 x 10(-5) units/ml was effective and a 3-fold increase was observed with a maximal concentration of 3.8 x 10(-2) units/ml; ED50 approximately 2 x 10(-4) units/ml. This effect was observed by 5 min and maximal at 30 min. Similarly, in cells labeled with (3H)serine to probe the sphingoid base backbone, the basal level of ceramide 1-phosphate was 39 +/- 5 pmol/10(6) and increased 2.5-fold with sphingomyelinase; ED 50 approximately 5 x 10(-5) units/ml. To determine the source of the phosphate moiety, studies were performed with cells short term labeled with 32Pi and resuspended in medium without radiolabel. Under these conditions, sphingomyelin was virtually unlabeled. Nevertheless, sphingomyelin (3.8 x 10(-2) units/ml) induced a 12-fold increase in radiolabel incorporation, suggesting ceramide 1-phosphate formation occurred via ceramide phosphorylation. This event appeared specific for ceramide derived from sphingomyelin since ceramide from glycosphingolipids was not converted to ceramide 1-phosphate.

  9. Expanding the Nucleotide and Sugar 1-Phosphate Promiscuity of Nucleotidyltransferase RmlA via Directed Evolution

    SciTech Connect

    Moretti, Rocco; Chang, Aram; Peltier-Pain, Pauline; Bingman, Craig A.; Phillips, Jr., George N.; Thorson, Jon S.

    2012-03-15

    Directed evolution is a valuable technique to improve enzyme activity in the absence of a priori structural knowledge, which can be typically enhanced via structure-guided strategies. In this study, a combination of both whole-gene error-prone polymerase chain reaction and site-saturation mutagenesis enabled the rapid identification of mutations that improved RmlA activity toward non-native substrates. These mutations have been shown to improve activities over 10-fold for several targeted substrates, including non-native pyrimidine- and purine-based NTPs as well as non-native d- and l-sugars (both a- and b-isomers). This study highlights the first broadly applicable high throughput sugar-1-phosphate nucleotidyltransferase screen and the first proof of concept for the directed evolution of this enzyme class toward the identification of uniquely permissive RmlA variants.

  10. Sphingosine-1-phosphate as a potential target for the treatment of myocardial infarction.

    PubMed

    Waeber, Christian; Walther, Thomas

    2014-01-01

    This review focuses on the role of sphingosine-1-phosphate (S1P) signaling in the heart, with particular emphasis on how it could be modulated therapeutically in the context of myocardial infarction (MI). After a brief general description of sphingolipid metabolism and signaling, this review will examine the relationship between S1P and the beneficial effects of high-density lipoprotein (HDL), and finally focus on the known actions of S1P on different mechanisms relevant to MI pathophysiology (cardiomyocyte protection, fibrosis, remodeling, arrhythmia, control of vascular tone and potential repair mechanisms). The potential of particular enzyme isoforms or receptor subtypes for the development of therapeutic agents for MI will also be explored.  PMID:24632793

  11. Sphingosine-1-phosphate lyase in development and disease: Sphingolipid metabolism takes flight

    PubMed Central

    Fyrst, Henrik

    2009-01-01

    Sphingosine-1-phosphate lyase (SPL) is a highly conserved enzyme that catalyses the final step of sphingolipid degradation, namely the irreversible cleavage of the carbon chain at position 2-3 of a long chain base phosphate (LCBP), thereby yielding a long-chain aldehyde and phosphoethanolamine. LCBPs are potent signaling molecules involved in cell proliferation, survival, migration, cell-cell interactions and cell stress responses. Therefore, tight regulation of LCBP signaling is required for proper cell function, and perturbations of this system can lead to alterations in biological processes including development, reproduction and physiology. SPL is a key enzyme in regulating the intracellular and circulating levels of LCBPs and is, therefore, gaining attention as a putative target for pharmacological intervention. This review provides an overview of our current understanding of SPL structure and function, mechanisms involved in SPL regulation and the role of SPL in development and disease. PMID:18558101

  12. ESR-ENDOR studies of x-irradiated glucose-1-phosphate dipotassium salt

    NASA Astrophysics Data System (ADS)

    Locher, Sarah E.; Box, Harold C.

    1980-01-01

    Single crystals of the dipotassium salt of gluocose-1-phosphate were grown out of water or deuterium oxide and x-irradiated at 4.2 °K. The products of irradiation were identified by means of ESR and ENDOR spectroscopy. In crystals grown out of water, three different alkoxy radicals were observed as oxidation products. In partially deuterated crystals only one of the aforementioned alkoxy radicals was produced. A hydroxyalkyl radical, RHĊOH was also produced by loss of hydrogen from the C6' position. Electrons trapped at intermolecular sites were identified. The distances between the electron and the protons of the polar hydroxy groups forming the trap were deduced from ENDOR measurements and found to be relatively large, namely 1.732 and 1.738 Å.

  13. Controlled release of sphingosine-1-phosphate agonist with gelatin hydrogels for macrophage recruitment.

    PubMed

    Murakami, Masahiro; Saito, Takashi; Tabata, Yasuhiko

    2014-11-01

    The objective of this study is to design a drug delivery system (DDS) for the in vivo promotion of macrophage recruitment. As the drug, a water-insoluble agonist of sphingosine-1-phosphate type 1 receptor (SEW2871) was selected. SEW2871 (SEW) was water-solubilized by micelle formation with gelatin grafted by L-lactic acid oligomer. SEW micelles were mixed with gelatin, followed by dehydrothermal crosslinking of gelatin to obtain gelatin hydrogels incorporating SEW micelles. SEW was released from the hydrogels incorporating SEW micelles in vitro and in vivo. The water-solubilized SEW showed in vitro macrophage migration activity. When implanted into the back subcutis or the skin wound defect of mice, the hydrogel incorporating SEW micelles promoted macrophage migration toward the tissue around the implanted site to a significantly great extent compared with SEW-free hydrogel and that mixed with SEW micelles. The hydrogel is a promising DDS to enhance macrophage recruitment in vivo. PMID:25038462

  14. A map of the distribution of sphingosine 1-phosphate in the spleen.

    PubMed

    Ramos-Perez, Willy D; Fang, Victoria; Escalante-Alcalde, Diana; Cammer, Michael; Schwab, Susan R

    2015-12-01

    Despite the importance of signaling lipids, many questions remain about their function because few tools are available for charting lipid gradients in vivo. Here we generated a sphingosine 1-phosphate (S1P) reporter mouse and used this mouse to define the distribution of S1P in the spleen. Unexpectedly, the presence of blood did not serve as a predictor of the concentration of signaling-available S1P. Large areas of the red pulp had low concentrations of S1P, while S1P was sensed by cells inside the white pulp near the marginal sinus. The lipid phosphate phosphatase LPP3 maintained low S1P concentrations in the spleen and enabled efficient shuttling of marginal zone B cells. The exquisitely tight regulation of S1P availability might explain how a single lipid can simultaneously orchestrate the movements of many cells of the immune system. PMID:26502404

  15. The outs and the ins of sphingosine-1-phosphate in immunity

    PubMed Central

    Spiegel, Sarah; Milstien, Sheldon

    2012-01-01

    The potent lipid mediator sphingosine-1-phosphate (S1P) is produced inside cells by two closely related kinases, sphingosine kinase 1 (SPHK1) and SPHK2, and has emerged as a crucial regulator of immunity. Many of the actions of S1P in innate and adaptive immunity are mediated by its binding to five G protein-coupled receptors, designated S1PR1–5, but recent findings have also identified important roles for S1P as a second messenger during inflammation. In this Review, we discuss recent advances in our understanding of the roles of S1P receptors and describe the newly identified intracellular targets of S1P that are crucial for immune responses. Finally, we discuss the therapeutic potential of new drugs that target S1P signalling and functions. PMID:21546914

  16. STAT3 and sphingosine-1-phosphate in inflammation-associated colorectal cancer

    PubMed Central

    Nguyen, Andrew V; Wu, Yuan-Yuan; Lin, Elaine Y

    2014-01-01

    Accumulated evidences have demonstrated that signal transducer and activator of transcription 3 (STAT3) is a critical link between inflammation and cancer. Multiple studies have indicated that persistent activation of STAT3 in epithelial/tumor cells in inflammation-associated colorectal cancer (CRC) is associated with sphingosine-1-phosphate (S1P) receptor signaling. In inflammatory response whereby interleukin (IL)-6 production is abundant, STAT3-mediated pathways were found to promote the activation of sphingosine kinases (SphK1 and SphK2) leading to the production of S1P. Reciprocally, S1P encourages the activation of STAT3 through a positive autocrine-loop signaling. The crosstalk between IL-6, STAT3 and sphingolipid regulated pathways may play an essential role in tumorigenesis and tumor progression in inflamed intestines. Therapeutics targeting both STAT3 and sphingolipid are therefore likely to contribute novel and more effective therapeutic strategies against inflammation-associated CRC. PMID:25132744

  17. Atheroprotective role of high-density lipoprotein (HDL)-associated sphingosine-1-phosphate (S1P).

    PubMed

    Potì, Francesco; Simoni, Manuela; Nofer, Jerzy-Roch

    2014-08-01

    Numerous epidemiological studies documented an inverse relationship between plasma high-density lipoprotein (HDL) cholesterol levels and the extent of atherosclerotic disease. However, clinical interventions targeting HDL cholesterol failed to show clinical benefits with respect to cardiovascular risk reduction, suggesting that HDL components distinct from cholesterol may account for anti-atherogenic effects attributed to this lipoprotein. Sphingosine-1-phosphate (S1P)-a lysosphingolipid exerting its biological activity via binding to specific G protein-coupled receptors and regulating a wide array of biological responses in a variety of different organs and tissues including the cardiovascular system-has been identified as an integral constituent of HDL particles. In the present review, we discuss current evidence from epidemiological studies, experimental approaches in vitro, and animal models of atherosclerosis, suggesting that S1P contributes to atheroprotective effects exerted by HDL particles. PMID:24891400

  18. The stereochemical configuration of lysobisphosphatidic acid from rat liver, rabbit lung and pig lung.

    PubMed

    Joutti, A; Brotherus, J; Renkonen, O; Laine, R; Fischer, W

    1976-11-19

    Lysobisphosphatidic acid known also as bis(monoacyl-glycerol)phosphate, was isolated from liver of rats treated with Triton WR1339, and from rabbit and pig lung. Alkaline hydrolysates of all these samples of lysobisphosphatidic acid were essentially similar and contained phosphorus, total glycerol, free glycerol, total glycerophosphates, beta-glycerophosphate, total alpha-glycerophosphates, sn-glycero-1-phosphate and sn-glycero-3-phosphate in a molar ratio of 1.0 : 2.0 : 1.0 : 1.0 :0.6 : 0.4 : 0.38 : 0.04. This proves that the backbone of the principal lysobisphosphatidic acid from all three sources has the structure of 1-sn-glycerophospho-1-sn-glycerol. PMID:990300

  19. Molecular and biochemical characterization of mannitol-1-phosphate dehydrogenase from the model brown alga Ectocarpus sp.

    PubMed

    Bonin, Patricia; Groisillier, Agnès; Raimbault, Alice; Guibert, Anaïs; Boyen, Catherine; Tonon, Thierry

    2015-09-01

    The sugar alcohol mannitol is important in the food, pharmaceutical, medical and chemical industries. It is one of the most commonly occurring polyols in nature, with the exception of Archaea and animals. It has a range of physiological roles, including as carbon storage, compatible solute, and osmolyte. Mannitol is present in large amounts in brown algae, where its synthesis involved two steps: a mannitol-1-phosphate dehydrogenase (M1PDH) catalyzes a reversible reaction between fructose-6-phosphate (F6P) and mannitol-1-phosphate (M1P) (EC 1.1.1.17), and a mannitol-1-phosphatase hydrolyzes M1P to mannitol (EC 3.1.3.22). Analysis of the model brown alga Ectocarpus sp. genome provided three candidate genes for M1PDH activities. We report here the sequence analysis of Ectocarpus M1PDHs (EsM1PDHs), and the biochemical characterization of the recombinant catalytic domain of EsM1PDH1 (EsM1PDH1cat). Ectocarpus M1PDHs are representatives of a new type of modular M1PDHs among the polyol-specific long-chain dehydrogenases/reductases (PSLDRs). The N-terminal domain of EsM1PDH1 was not necessary for enzymatic activity. Determination of kinetic parameters indicated that EsM1PDH1cat displayed higher catalytic efficiency for F6P reduction compared to M1P oxidation. Both activities were influenced by NaCl concentration and inhibited by the thioreactive compound pHMB. These observations were completed by measurement of endogenous M1PDH activity and of EsM1PDH gene expression during one diurnal cycle. No significant changes in enzyme activity were monitored between day and night, although transcription of two out of three genes was altered, suggesting different levels of regulation for this key metabolic pathway in brown algal physiology. PMID:26232554

  20. Advance in the Study of the Mechanisms Regulated by Sphingosine-1-Phosphate

    NASA Astrophysics Data System (ADS)

    Ye, Fei; Kong, Xiangqian; Luo, Cheng

    2010-09-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid messenger in the cells that regulate gene expression and NF-KB signal pathway through unknown mechanisms. Recently, Cheng Luo, associate professor of DDDC in Shanghai Institute of Materia Medica, whose project was funded by the National Natural Science Foundation of China, joined in a research team led by Professor Sarah Spiegel of Virginia Commonwealth University. The team continuously made significant breakthroughs in understanding the regulation mechanism of Sphingosine-1-Phosphate. In September 2009, in a paper published on SCIENCE magazine (Science 2009, 325: 1254-7), they firstly demonstrated that S1P is a physiologically important regulator of histone deacetylases (HDACs), HDACs are direct intracellular targets of S1P. Furthermore, they identified the mechanism that S1P regulates gene expression through regulating the activity of HDACs. In June 24th, 2010, in another paper to be published on NATURE magazine (Nature 2010, June 24th, advance online publication) which reports the regulation of NF-KB signaling pathway by S1P. They demonstrate that S1P is the missing cofactor for TRAF2 (tumour-necrosis factor receptor-associated factor 2) and indicate a new paradigm for the regulation of lysine-63-linked poly-ubiquitination. The study also highlight the key role of SphK1 and its product S1P in TNF-α signalling and the canonical NF-KB activation pathway, and then play crucial role in inflammatory, antiapoptotic and immune processes. The identification of new mechanisms by which S1P regulates gene expression and TNF and NF-KB signaling pathway will light up the road to develop novel inhibitors that might be useful for treatment of cancer and inflammatory diseases.

  1. Purification and characterisation of acyl-CoA: glycerol 3-phosphate acyltransferase from oil palm (Elaeis guineensis) tissues.

    PubMed

    Manaf, A M; Harwood, J L

    2000-01-01

    Glycerol 3-phosphate acyltransferase (GPAT, EC 2.3.15) catalyses the first step of the Kennedy pathway for acyl lipid formation. This enzyme was studied using high-speed particulate fractions from oil palm (Elaeis guineensis Jacq.) tissue cultures and mesocarp acetone powders. The fractions were incubated with [(14)C]glycerol 3-phosphate and incorporation of radioactivity into Kennedy pathway intermediates studied. Optimal conditions were broadly similar between the two preparations but those from fruit mesocarp clearly contained more active enzymes for the subsequent stages of the Kennedy pathway - as exemplified by the appreciable accumulation of radioactivity in triacylglycerol. Experiments with different acyl-CoA substrates showed that the GPAT in both high-speed particulate preparations had a significant preference for palmitate. Glycerol 3-phosphate acyltransferase was solubilised from both preparations with optimal solubilisation being achieved at 0.5% (w/v) CHAPS concentrations. Solubilised GPATs were purified further using DE52 ion-exchange chromatography and Sephadex G-100 molecular exclusion chromatography. Purifications of up to about 70-fold were achieved. The purified GPATs showed a strong preference for palmitoyl-CoA compared to other acyl-CoA donors, in keeping with the importance of palmitate in palm oil. PMID:10664139

  2. The Glycerol-3-Phosphate Acyltransferase TbGAT is Dispensable for Viability and the Synthesis of Glycerolipids in Trypanosoma brucei.

    PubMed

    Patel, Nipul; Pirani, Karim A; Zhu, Tongtong; Cheung-See-Kit, Melanie; Lee, Sungsu; Chen, Daniel G; Zufferey, Rachel

    2016-09-01

    Glycerolipids are the main constituents of biological membranes in Trypanosoma brucei, which causes sleeping sickness in humans. Importantly, they occur as a structural component of the glycosylphosphatidylinositol lipid anchor of the abundant cell surface glycoproteins procyclin in procyclic forms and variant surface glycoprotein in bloodstream form, that play crucial roles for the development of the parasite in the insect vector and the mammalian host, respectively. The present work reports the characterization of the glycerol-3-phosphate acyltransferase TbGAT that initiates the biosynthesis of ester glycerolipids. TbGAT restored glycerol-3-phosphate acyltransferase activity when expressed in a Leishmania major deletion strain lacking this activity and exhibited preference for medium length, unsaturated fatty acyl-CoAs. TbGAT localized to the endoplasmic reticulum membrane with its N-terminal domain facing the cytosol. Despite that a TbGAT null mutant in T. brucei procyclic forms lacked glycerol-3-phosphate acyltransferase activity, it remained viable and exhibited similar growth rate as the wild type. TbGAT was dispensable for the biosynthesis of phosphatidylcholine, phosphatidylinositol, phosphatidylserine, and GPI-anchored protein procyclin. However, the null mutant exhibited a slight decrease in phosphatidylethanolamine biosynthesis that was compensated with a modest increase in production of ether phosphatidylcholine. Our data suggest that an alternative initial acyltransferase takes over TbGAT's function in its absence. PMID:26909872

  3. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is inactivated by S-sulfuration in vitro.

    PubMed

    Jarosz, Artur P; Wei, Wanlei; Gauld, James W; Auld, Janeen; Özcan, Filiz; Aslan, Mutay; Mutus, Bulent

    2015-12-01

    Hydrogen sulfide (H2S) is produced enzymatically by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), as well as other enzymes in mammalian tissues. These discoveries have led to the crowning of H2S as yet another toxic gas that serves as a gasotransmitter like NO and CO. H2S is thought to exert its biological effects through its reaction with cysteine thiols in proteins, yielding sulfurated thiol (-SSH) derivatives. One of the first proteins shown to be modified by H2S was glyceraldehyde 3-phosphate dehydrogenase (GAPDH) [1] where the S-sulfuration of the active site cysteine (Cys 152) resulted in ~7-fold increase in the activity of the enzyme. In the present study we have attempted to reproduce this result with no success. GAPDH in its reduced, or hydrogen peroxide, or glutathione disulfide, or nitrosonium oxidized forms was reacted with sulfide or polysulfides. Sulfide had no effect on reduced GAPDH activity, while polysulfides inhibited GAPDH to ~42% of control. S-sulfuration of GAPDH occurred at Cys 247 after sulfide treatment, Cys 156 and Cys 247 after polysulfide treatment. No evidence of S-sulfuration at active site Cys 152 was discovered. Both sulfide and polysulfide was able to restore the activity of glutathione disulfide oxidized GAPDH, but not to control untreated levels. Treatment of glutathione disulfide oxidized GAPDH with polysulfide also produced S-sulfuration of Cys 156. Treatment of a C156S mutant of GAPDH with sulfide and polysulfide resulted in S-sulfuration of Cys 152, which also caused a decrease and not an increase in enzymatic activity. Computational chemistry shows S-sulfuration of Cys 156 may affect the position of catalytic Cys 152, raising its pKa by 0.5, which may affect the nucleophilicity of Cys 152. The current study raises significant questions about the reported ability of H2S to activate GAPDH by the sulfuration of its active site thiol, and indicates that polysulfide is a stronger protein S-sulfurating agent

  4. Sulfur mustard induced nuclear translocation of glyceraldehyde-3-phosphate-dehydrogenase (GAPDH).

    PubMed

    Steinritz, Dirk; Weber, Jana; Balszuweit, Frank; Thiermann, Horst; Schmidt, Annette

    2013-12-01

    Sulfur Mustard (SM) is a vesicant chemical warfare agent, which is acutely toxic to a variety of organ systems including skin, eyes, respiratory system and bone marrow. The underlying molecular pathomechanism was mainly attributed to the alkylating properties of SM. However, recent studies have revealed that cellular responses to SM exposure are of more complex nature and include increased protein expression and protein modifications that can be used as biomarkers. In order to confirm already known biomarkers, to detect potential new ones and to further elucidate the pathomechanism of SM, we conducted large-scale proteomic experiments based on a human keratinocyte cell line (HaCaT) exposed to SM. Surprisingly, our analysis identified glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) as one of the up-regulated proteins after exposure of HaCaT cells to SM. In this paper we demonstrate the sulfur mustard induced nuclear translocation of GAPDH in HaCaT cells by 2D gel-electrophoresis (2D GE), immunocytochemistry (ICC), Western Blot (WB) and a combination thereof. 2D GE in combination with MALDI-TOF MS/MS analysis identified GAPDH as an up-regulated protein after SM exposure. Immunocytochemistry revealed a distinct nuclear translocation of GAPDH after exposure to 300μM SM. This finding was confirmed by fractionated WB analysis. 2D GE and subsequent immunoblot staining of GAPDH demonstrated two different spot locations of GAPH (pI 7.0 and pI 8.5) that are related to cytosolic or nuclear GAPDH respectively. After exposure to 300μM SM a significant increase of nuclear GAPDH at pI 8.5 occurred. Nuclear GAPDH has been associated with apoptosis, detection of structural DNA alterations, DNA repair and regulation of genomic integrity and telomere structure. The results of our study add new aspects to the pathophysiology of sulfur mustard toxicity, yet further studies will be necessary to reveal the specific function of nuclear GAPDH in the pathomechanism of sulfur mustard

  5. Biosynthesis of archaeal membrane ether lipids

    PubMed Central

    Jain, Samta; Caforio, Antonella; Driessen, Arnold J. M.

    2014-01-01

    A vital function of the cell membrane in all living organism is to maintain the membrane permeability barrier and fluidity. The composition of the phospholipid bilayer is distinct in archaea when compared to bacteria and eukarya. In archaea, isoprenoid hydrocarbon side chains are linked via an ether bond to the sn-glycerol-1-phosphate backbone. In bacteria and eukarya on the other hand, fatty acid side chains are linked via an ester bond to the sn-glycerol-3-phosphate backbone. The polar head groups are globally shared in the three domains of life. The unique membrane lipids of archaea have been implicated not only in the survival and adaptation of the organisms to extreme environments but also to form the basis of the membrane composition of the last universal common ancestor (LUCA). In nature, a diverse range of archaeal lipids is found, the most common are the diether (or archaeol) and the tetraether (or caldarchaeol) lipids that form a monolayer. Variations in chain length, cyclization and other modifications lead to diversification of these lipids. The biosynthesis of these lipids is not yet well understood however progress in the last decade has led to a comprehensive understanding of the biosynthesis of archaeol. This review describes the current knowledge of the biosynthetic pathway of archaeal ether lipids; insights on the stability and robustness of archaeal lipid membranes; and evolutionary aspects of the lipid divide and the LUCA. It examines recent advances made in the field of pathway reconstruction in bacteria. PMID:25505460

  6. Essential Role of Class II Phosphatidylinositol-3-kinase-C2α in Sphingosine 1-Phosphate Receptor-1-mediated Signaling and Migration in Endothelial Cells*

    PubMed Central

    Biswas, Kuntal; Yoshioka, Kazuaki; Asanuma, Ken; Okamoto, Yasuo; Takuwa, Noriko; Sasaki, Takehiko; Takuwa, Yoh

    2013-01-01

    The phosphatidylinositol (PtdIns) 3-kinase (PI3K) family regulates diverse cellular processes, including cell proliferation, migration, and vesicular trafficking, through catalyzing 3′-phosphorylation of phosphoinositides. In contrast to class I PI3Ks, including p110α and p110β, functional roles of class II PI3Ks, comprising PI3K-C2α, PI3K-C2β, and PI3K-C2γ, are little understood. The lysophospholipid mediator sphingosine 1-phosphate (S1P) plays the important roles in regulating vascular functions, including vascular formation and barrier integrity, via the G-protein-coupled receptors S1P1–3. We studied the roles of PI3K-C2α in S1P-induced endothelial cell (EC) migration and tube formation. S1P stimulated cell migration and activation of Akt, ERK, and Rac1, the latter of which acts as a signaling molecule essential for cell migration and tube formation, via S1P1 in ECs. Knockdown of either PI3K-C2α or class I p110β markedly inhibited S1P-induced migration, lamellipodium formation, and tube formation, whereas that of p110α or Vps34 did not. Only p110β was necessary for S1P-iduced Akt activation, but both PI3K-C2α and p110β were required for Rac1 activation. FRET imaging showed that S1P induced Rac1 activation in both the plasma membrane and PtdIns 3-phosphate (PtdIns(3)P)-enriched endosomes. Knockdown of PI3K-C2α but not p110β markedly reduced PtdIns(3)P-enriched endosomes and suppressed endosomal Rac1 activation. Also, knockdown of PI3K-C2α but not p110β suppressed S1P-induced S1P1 internalization into PtdIns(3)P-enriched endosomes. Finally, pharmacological inhibition of endocytosis suppressed S1P-induced S1P1 internalization, Rac1 activation, migration, and tube formation. These observations indicate that PI3K-C2α plays the crucial role in S1P1 internalization into the intracellular vesicular compartment, Rac1 activation on endosomes, and thereby migration through regulating vesicular trafficking in ECs. PMID:23192342

  7. Tumor-suppressive sphingosine-1-phosphate receptor-2 counteracting tumor-promoting sphingosine-1-phosphate receptor-1 and sphingosine kinase 1 — Jekyll Hidden behind Hyde

    PubMed Central

    Takuwa, Noriko; Du, Wa; Kaneko, Erika; Okamoto, Yasuo; Yoshioka, Kazuaki; Takuwa, Yoh

    2011-01-01

    Sphingosine-1-phosphate (S1P) is a plasma lipid mediator with multiple roles in mammalian development, physiology and pathophysiology. It is constitutively produced mostly by erythrocytes by the action of sphingosine kinase 1 (SphK1), resulting in high (∼0.5 micromolar) steady-state plasma S1P content and steep S1P concentration gradient imposed between plasma/lymph/tissue interstitial fluid. S1P is also locally produced by activated platelets and tumor cells, in the latter case SphK1 is a downstream target of activated Ras mutant and hypoxia, and is frequently upregulated especially in advanced stages of tumors. Most if not all of the S1P actions in vertebrates are mediated through evolutionarily conserved G protein-coupled S1P receptor family. Ubiquitously expressed mammalian subtypes S1PR1, S1PR2 and S1PR3 mediate pleiotropic actions of S1P in diverse cell types, through coupling to distinctive repertoire of heterotrimeric G proteins. S1PR1 and S1PR3 mediate directed cell migration toward S1P through coupling to Gi and activating Rac, a Rho family small G protein essential for cell migration. Indeed, S1PR1 expressed in lymphocytes directs their egress from lymph nodes into lymph and recirculation, serving as the target for downregulation by the immunosuppressant FTY720 (fingolimod). S1PR1 in endothelial cells plays an essential role in vascular maturation in embryonic stage, and mediates angiogenic and vascular protective roles of S1P which include eNOS activation and maintenance of barrier integrity. It is likely that S1PR1 and SphK1 expressed in host endothelial cells and tumor cells act in concert in a paracrine loop to contribute to tumor angiogenesis, tumor invasion and progression. In sharp contrast, S1PR2 mediates S1P inhibition of Rac at the site downstream of G12/13-mediated Rho activation, thus identified as the first G protein-coupled receptor that negatively regulates Rac and cell migration. S1PR2 could also mediate inhibition of Akt and cell

  8. Quantification of Galactose-1-Phosphate Uridyltransferase Enzyme Activity by Liquid Chromatography–Tandem Mass Spectrometry

    PubMed Central

    Li, Yijun; Ptolemy, Adam S.; Harmonay, Lauren; Kellogg, Mark; Berry, Gerard T.

    2013-01-01

    Background The diagnosis of galactosemia usually involves the measurement of galactose-1-phosphate uridyltransferase (GALT) activity. Traditional radioactive and fluorescent GALT assays are nonspecific, laborious, and/or lack sufficient analytical sensitivity. We developed a liquid chromatography–tandem mass spectrometry (LC-MS/MS)–based assay for GALT enzyme activity measurement. Method Our assay used stable isotope-labeled α-galactose-1-phosphate ([13C6]-Gal-1-P) as an enzyme substrate. Sample cleanup and separation were achieved by reversed-phase ion-pair chromatography, and the enzymatic product, isotope-labeled uridine diphosphate galactose ([13C6]-UDPGal), was detected by MS/MS at mass transition (571 > 323) and quantified by use of [13C6]-Glu-1-P (265 > 79) as an internal standard. Results The method yielded a mean (SD) GALT enzyme activity of 23.8 (3.8) µmol · (gHgb)−1 · h−1 in erythrocyte extracts from 71 controls. The limit of quantification was 0.04 µmol · (g Hgb)−1 · h−1 (0.2% of normal control value). Intraassay imprecision was determined at 4 different levels (100%, 25%, 5%, and 0.2% of the normal control values), and the CVs were calculated to be 2.1%, 2.5%, 4.6%, and 9.7%, respectively (n = 3). Interassay imprecision CVs were 4.5%, 6.7%, 8.2%, and 13.2% (n = 5), respectively. The assay recoveries at the 4 levels were higher than 90%. The apparent Km of the 2 substrates, Gal-1-P and UDPGlc, were determined to be 0.38 mmol/L and 0.071 mmol/L, respectively. The assay in erythrocytes of 33 patients with classical galactosemia revealed no detectable activity. Conclusions This LC-MS/MS–based assay for GALT enzyme activity will be useful for the diagnosis and study of biochemically heterogeneous patients with galactosemia, especially those with uncommon genotypes and detectable but low residual activities. PMID:20348403

  9. Sphingosine-1-phosphate Phosphatase 2 Regulates Pancreatic Islet β-Cell Endoplasmic Reticulum Stress and Proliferation.

    PubMed

    Taguchi, Yoshimitsu; Allende, Maria L; Mizukami, Hiroki; Cook, Emily K; Gavrilova, Oksana; Tuymetova, Galina; Clarke, Benjamin A; Chen, Weiping; Olivera, Ana; Proia, Richard L

    2016-06-01

    Sphingosine-1-phosphate (S1P) is a sphingolipid metabolite that regulates basic cell functions through metabolic and signaling pathways. Intracellular metabolism of S1P is controlled, in part, by two homologous S1P phosphatases (SPPases), 1 and 2, which are encoded by the Sgpp1 and Sgpp2 genes, respectively. SPPase activity is needed for efficient recycling of sphingosine into the sphingolipid synthesis pathway. SPPase 1 is important for skin homeostasis, but little is known about the functional role of SPPase 2. To identify the functions of SPPase 2 in vivo, we studied mice with the Sgpp2 gene deleted. In contrast to Sgpp1(-/-) mice, Sgpp2(-/-) mice had normal skin and were viable into adulthood. Unexpectedly, WT mice expressed Sgpp2 mRNA at high levels in pancreatic islets when compared with other tissues. Sgpp2(-/-) mice had normal pancreatic islet size; however, they exhibited defective adaptive β-cell proliferation that was demonstrated after treatment with either a high-fat diet or the β-cell-specific toxin, streptozotocin. Importantly, β-cells from untreated Sgpp2(-/-) mice showed significantly increased expression of proteins characteristic of the endoplasmic reticulum stress response compared with β-cells from WT mice, indicating a basal islet defect. Our results show that Sgpp2 deletion causes β-cell endoplasmic reticulum stress, which is a known cause of β-cell dysfunction, and reveal a juncture in the sphingolipid recycling pathway that could impact the development of diabetes. PMID:27059959

  10. Sphingosine-1-phosphate promotes erythrocyte glycolysis and oxygen release for adaptation to high-altitude hypoxia.

    PubMed

    Sun, Kaiqi; Zhang, Yujin; D'Alessandro, Angelo; Nemkov, Travis; Song, Anren; Wu, Hongyu; Liu, Hong; Adebiyi, Morayo; Huang, Aji; Wen, Yuan E; Bogdanov, Mikhail V; Vila, Alejandro; O'Brien, John; Kellems, Rodney E; Dowhan, William; Subudhi, Andrew W; Jameson-Van Houten, Sonja; Julian, Colleen G; Lovering, Andrew T; Safo, Martin; Hansen, Kirk C; Roach, Robert C; Xia, Yang

    2016-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive signalling lipid highly enriched in mature erythrocytes, with unknown functions pertaining to erythrocyte physiology. Here by employing nonbiased high-throughput metabolomic profiling, we show that erythrocyte S1P levels rapidly increase in 21 healthy lowland volunteers at 5,260 m altitude on day 1 and continue increasing to 16 days with concurrently elevated erythrocyte sphingonisne kinase 1 (Sphk1) activity and haemoglobin (Hb) oxygen (O2) release capacity. Mouse genetic studies show that elevated erythrocyte Sphk1-induced S1P protects against tissue hypoxia by inducing O2 release. Mechanistically, we show that intracellular S1P promotes deoxygenated Hb anchoring to the membrane, enhances the release of membrane-bound glycolytic enzymes to the cytosol, induces glycolysis and thus the production of 2,3-bisphosphoglycerate (2,3-BPG), an erythrocyte-specific glycolytic intermediate, which facilitates O2 release. Altogether, we reveal S1P as an intracellular hypoxia-responsive biolipid promoting erythrocyte glycolysis, O2 delivery and thus new therapeutic opportunities to counteract tissue hypoxia. PMID:27417539

  11. Sphingosine 1-phosphate receptor regulation of N-cadherin mediates vascular stabilization

    PubMed Central

    Paik, Ji-Hye; Skoura, Athanasia; Chae, Sung-Suk; Cowan, Ann E.; Han, David K.; Proia, Richard L.; Hla, Timothy

    2004-01-01

    Vascular stabilization, a process by which nascent vessels are invested with mural cells, is important in angiogenesis. Here we describe the molecular basis of vascular stabilization regulated by sphingosine 1-phosphate (S1P), a platelet-derived lipid mediator. S1P1 receptor-dependent cell-surface trafficking and activation of the cell-cell adhesion molecule N-cadherin is essential for interactions between endothelial and mural cells. Endothelial cell S1P1/Gi/Rac pathway induces microtubule polymerization, resulting in trafficking of N-cadherin to polarized plasma membrane domains. S1P treatment modulated the phosphorylation of N-cadherin as well as p120-catenin and induced the formation of cadherin/catenin/actin complexes containing novel regulatory and trafficking factors. The net result of endothelial cell S1P1 receptor activation is the proper trafficking and strengthening of N-cadherin-dependent cell-cell adhesion with mural cells. Perturbation of N-cadherin expression with small interfering RNA profoundly attenuated vascular stabilization in vitro and in vivo. S1P-induced trafficking and activation of N-cadherin provides a novel mechanism for the stabilization of nascent blood vessels by mural cells and may be exploited to control angiogenesis and vascular diseases. PMID:15371328

  12. Sphingosine 1-Phosphate Receptor 2 Regulates the Migration, Proliferation, and Differentiation of Mesenchymal Stem Cells

    PubMed Central

    Price, S Tucker; Beckham, Thomas H; Cheng, Joseph C; Lu, Ping; Liu, Xiang; Norris, James S

    2016-01-01

    Mesenchymal stem cells (MSCs) are a multipotent cell population acquired most prominently from bone marrow with the capacity to differentiate into osteoblasts, chondrocytes, adipocytes, and others. MSCs demonstrate the capacity to home to sites of injury and contribute to tissue repair. Sphingosine 1-phosphate (S1P) is a biologically active sphingolipid impacting proliferation, apoptosis, inflammation, and angiogenesis with changes in S1P concentration providing significant implications for various disease conditions including cancer, diabetes, and cardiac disease. These functions are primarily mediated by interactions with 5 G-protein coupled S1P receptors (S1PR1-5). In this paper, we demonstrate that inhibition of S1PR2 results in increased MSC clonogenicity, migration, and proliferation; features dependent on Erk phosphorylation. Furthermore, decreased S1PR2 expression decreases the differentiation of MSCs into adipocytes and mature osteoblasts that may be the result of increased expression of MSC pluripotency factors including Nanog, Sox-9, and Oct-4. Inhibition of S1PR1 and S1PR3 in contrast does not impact MSC migration or Erk activation although increased proliferation is observed. In the study, we describe the essential role of S1PR2 in MSC differentiation pathways through modification of pluripotency factors. We propose a MAPK dependent mechanism through S1PR2 inhibition that promotes equally multipotent MSC proliferation.

  13. Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy.

    PubMed

    Proia, Richard L; Hla, Timothy

    2015-04-01

    Membrane sphingolipids are metabolized to sphingosine-1-phosphate (S1P), a bioactive lipid mediator that regulates many processes in vertebrate development, physiology, and pathology. Once exported out of cells by cell-specific transporters, chaperone-bound S1P is spatially compartmentalized in the circulatory system. Extracellular S1P interacts with five GPCRs that are widely expressed and transduce intracellular signals to regulate cellular behavior, such as migration, adhesion, survival, and proliferation. While many organ systems are affected, S1P signaling is essential for vascular development, neurogenesis, and lymphocyte trafficking. Recently, a pharmacological S1P receptor antagonist has won approval to control autoimmune neuroinflammation in multiple sclerosis. The availability of pharmacological tools as well as mouse genetic models has revealed several physiological actions of S1P and begun to shed light on its pathological roles. The unique mode of signaling of this lysophospholipid mediator is providing novel opportunities for therapeutic intervention, with possibilities to target not only GPCRs but also transporters, metabolic enzymes, and chaperones. PMID:25831442

  14. Hemovascular Progenitors in the Kidney Require Sphingosine-1-Phosphate Receptor 1 for Vascular Development.

    PubMed

    Hu, Yan; Li, Minghong; Göthert, Joachim R; Gomez, R Ariel; Sequeira-Lopez, Maria Luisa S

    2016-07-01

    The close relationship between endothelial and hematopoietic precursors during early development of the vascular system suggested the possibility of a common yet elusive precursor for both cell types. Whether similar or related progenitors for endothelial and hematopoietic cells are present during organogenesis is unclear. Using inducible transgenic mice that specifically label endothelial and hematopoietic precursors, we performed fate-tracing studies combined with colony-forming assays and crosstransplantation studies. We identified a progenitor, marked by the expression of helix-loop-helix transcription factor stem cell leukemia (SCL/Tal1). During organogenesis of the kidney, SCL/Tal1(+) progenitors gave rise to endothelium and blood precursors with multipotential colony-forming capacity. Furthermore, appropriate morphogenesis of the kidney vasculature, including glomerular capillary development, arterial mural cell coating, and lymphatic vessel development, required sphingosine 1-phosphate (S1P) signaling via the G protein-coupled S1P receptor 1 in these progenitors. Overall, these results show that SCL/Tal1(+) progenitors with hemogenic capacity originate and differentiate within the early embryonic kidney by hemovasculogenesis (the concomitant formation of blood and vessels) and underscore the importance of the S1P pathway in vascular development. PMID:26534925

  15. A novel role of sphingosine 1-phosphate receptor S1pr1 in mouse thrombopoiesis

    PubMed Central

    Zhang, Lin; Orban, Martin; Lorenz, Michael; Barocke, Verena; Braun, Daniel; Urtz, Nicole; Schulz, Christian; von Brühl, Marie-Luise; Tirniceriu, Anca; Gaertner, Florian; Proia, Richard L.; Graf, Thomas; Bolz, Steffen-Sebastian; Montanez, Eloi; Prinz, Marco; Müller, Alexandra; von Baumgarten, Louisa; Billich, Andreas; Sixt, Michael; Fässler, Reinhard; von Andrian, Ulrich H.; Junt, Tobias

    2012-01-01

    Millions of platelets are produced each hour by bone marrow (BM) megakaryocytes (MKs). MKs extend transendothelial proplatelet (PP) extensions into BM sinusoids and shed new platelets into the blood. The mechanisms that control platelet generation remain incompletely understood. Using conditional mutants and intravital multiphoton microscopy, we show here that the lipid mediator sphingosine 1-phosphate (S1P) serves as a critical directional cue guiding the elongation of megakaryocytic PP extensions from the interstitium into BM sinusoids and triggering the subsequent shedding of PPs into the blood. Correspondingly, mice lacking the S1P receptor S1pr1 develop severe thrombocytopenia caused by both formation of aberrant extravascular PPs and defective intravascular PP shedding. In contrast, activation of S1pr1 signaling leads to the prompt release of new platelets into the circulating blood. Collectively, our findings uncover a novel function of the S1P–S1pr1 axis as master regulator of efficient thrombopoiesis and might raise new therapeutic options for patients with thrombocytopenia. PMID:23148237

  16. The sphingosine 1-phosphate receptor agonist FTY720 is neuroprotective after cuprizone-induced CNS demyelination

    PubMed Central

    Slowik, A; Schmidt, T; Beyer, C; Amor, S; Clarner, T; Kipp, M

    2015-01-01

    BACKGROUND AND PURPOSE Modulation of the sphingosine 1-phosphate receptor is an approved treatment for relapsing multiple sclerosis because of its anti-inflammatory effect of retaining lymphocytes within the lymph nodes. Here, we evaluated the potential of an agonist at this receptor, FTY720 (fingolimod), to activate the promyelinating pathways within the brain to encourage remyelination and neuroprotection. EXPERIMENTAL APPROACH In this study, we used the cuprizone model in male C57BL/6 mice and tested the promyelinating and neuroprotective effects of FTY720 after acute and chronic toxin-induced experimental demyelination. We used histological, immunohistochemical and gene expression methods. KEY RESULTS The midline of the corpus callosum was severely demyelinated after acute and chronic cuprizone-induced demyelination. Robust endogenous remyelination was evident after acute, but impaired after chronic, demyelination. FTY720 treatment modestly accelerated myelin recovery after acute but not chronic cuprizone exposure. Markers of gliosis (astrocyte and microglia activation) were not affected by FTY720 treatment. Remarkably, the accumulation of amyloid precursor protein-positive spheroids in axons was less distinct in FTY720-treated animals, indicating that this compound alleviated ongoing axonal damage. CONCLUSIONS AND IMPLICATIONS We show that even during endogenous remyelination, axonal degeneration continued at a low level, accumulating over time. This continuous neurodegenerative process was ameliorated by FTY720 treatment. FTY720 preserved CNS integrity by direct interaction with brain resident cells, the actions of which are still to be defined. PMID:25220526

  17. Purine nucleoside phosphorylase from Schistosoma mansoni in complex with ribose-1-phosphate

    PubMed Central

    D’Muniz Pereira, Humberto; Oliva, Glaucius; Garratt, Richard Charles

    2011-01-01

    Schistosomes are blood flukes which cause schistosomiasis, a disease affecting approximately 200 million people worldwide. Along with several other important human parasites including trypanosomes and Plasmodium, schistosomes lack the de novo pathway for purine synthesis and depend exclusively on the salvage pathway for their purine requirements, making the latter an attractive target for drug development. Part of the pathway involves the conversion of inosine (or guanosine) into hypoxanthine (or guanine) together with ribose-1-phosphate (R1P) or vice versa. This inter-conversion is undertaken by the enzyme purine nucleoside phosphorylase (PNP) which has been used as the basis for the development of novel anti-malarials, conceptually validating this approach. It has been suggested that, during the reverse reaction, R1P binding to the enzyme would occur only as a consequence of conformational changes induced by hypoxanthine, thus making a binary PNP–R1P complex unlikely. Contradictory to this statement, a crystal structure of just such a binary complex involving the Schistosoma mansoni enzyme has been successfully obtained. The ligand shows an intricate hydrogen-bonding network in the phosphate and ribose binding sites and adds a further chapter to our knowledge which could be of value in the future development of selective inhibitors. PMID:21169694

  18. Roles of sphingosine-1-phosphate in cell growth, differentiation, and death.

    PubMed

    Spiegel, S; Cuvillier, O; Edsall, L; Kohama, T; Menzeleev, R; Olivera, A; Thomas, D; Tu, Z; Van Brocklyn, J; Wang, F

    1998-01-01

    Recent evidence suggests that branching pathways of sphingolipid metabolism may mediate either apoptotic or mitogenic responses depending on the cell type and the nature of the stimulus. While ceramide has been shown to be an important regulatory component of apoptosis induced by tumor necrosis factor alpha and the Fas ligand, sphingosine-1-phosphate (SPP), a further metabolite of ceramide, has been implicated as a second messenger in cellular proliferation and survival induced by platelet-derived growth factor, neuronal growth factor, and serum. SPP protects cells from apoptosis resulting from elevations of ceramide. Inflammatory cytokines stimulate sphingomyelinase, but not ceramidase, leading to accumulation of ceramide, whereas growth signals also stimulate ceramidase and sphingosine kinase leading to increased SPP levels. We propose that the dynamic balance between levels of sphingolipid metabolites, ceramide, and SPP and consequent regulation of different members of the mitogen-activated protein kinases (JNK versus ERK) family is an important factor that determines whether a cell survives or dies. PMID:9526097

  19. “Inside-Out” Signaling of Sphingosine-1-Phosphate: Therapeutic Targets

    PubMed Central

    TAKABE, KAZUAKI; PAUGH, STEVEN W.; MILSTIEN, SHELDON; SPIEGEL, SARAH

    2009-01-01

    Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid metabolite involved in many critical cellular processes including proliferation, survival, and migration, as well as angiogenesis and allergic responses. S1P levels inside cells are tightly regulated by the balance between its synthesis by sphingosine kinases and degradation. S1P is interconvertible with ceramide, which is a critical mediator of apoptosis. It has been postulated that the ratio between S1P and ceramide determines cell fate. Activation of sphingosine kinase by a variety of agonists increases intracellular S1P, which in turn can function intracellularly as a second messenger or be secreted out of the cell and act extracellularly by binding to and signaling through S1P receptors in autocrine and/or paracrine manners. Recent studies suggest that this “inside-out” signaling by S1P may play a role in many human diseases, including cancer, atherosclerosis, inflammation, and autoimmune disorders such as multiple sclerosis. In this review we summarize metabolism of S1P, mechanisms of sphingosine kinase activation, and S1P receptors and their downstream signaling pathways and examine relationships to multiple disease processes. In particular, we describe recent preclinical and clinical trials of therapies targeting S1P signaling, including 2-amino-2-propane-1,3-diol hydrochloride (FTY720, fingolimod), S1P receptor agonists, sphingosine kinase inhibitors, and anti-S1P monoclonal antibody. PMID:18552276

  20. Sphingosine-1-Phosphate Protects Intestinal Epithelial Cells from Apoptosis Through the Akt Signaling Pathway

    PubMed Central

    Greenspon, Jose; Li, Ruiyun; Xiao, Lan; Rao, Jaladanki N.; Marasa, Bernard S.; Strauch, Eric D.; Wang, Jian-Ying; Turner, Douglas J.

    2009-01-01

    Objective The regulation of apoptosis of intestinal mucosal cells is important in maintenance of normal intestinal physiology. Summary Sphingosine-1-phosphate (S1P) has been shown to play a critical role in cellular protection to otherwise lethal stimuli in several nonintestinal tissues. Methods The current study determines whether S1P protected normal intestinal epithelial cells (IECs) from apoptosis and whether Akt activation was the central pathway for this effect. Results S1P demonstrated significantly reduced levels of apoptosis induced by tumor necrosis factor-alpha (TNF-α)/cycloheximide (CHX). S1P induced increased levels of phosphorylated Akt and increased Akt activity, but did not affect total amounts of Akt. This activation of Akt was associated with decreased levels of both caspase-3 protein levels and of caspase-3 activity. Inactivation of Akt by treatment with the PI3K chemical inhibitor LY294002 or by overexpression of the dominant negative mutant of Akt (DNMAkt) prevented the protective effect of S1P on apoptosis. Additionally, silencing of the S1P-1 receptor by specific siRNA demonstrated a lesser decrease in apoptosis to S1P exposure. Conclusion These results indicate that S1P protects intestinal epithelial cells from apoptosis via an Akt-dependent pathway. PMID:18654850

  1. Extracellular Matrix Rigidity-dependent Sphingosine-1-phosphate Secretion Regulates Metastatic Cancer Cell Invasion and Adhesion.

    PubMed

    Ko, Panseon; Kim, Daehwan; You, Eunae; Jung, Jangho; Oh, Somi; Kim, Jaehyun; Lee, Kwang-Ho; Rhee, Sangmyung

    2016-01-01

    Dynamic interaction between cancer cells and the surrounding microenvironment is critical for cancer progression via changes in cellular behavior including alteration of secreted molecules. However, the molecular mechanisms underlying the influence exerted by the cancer microenvironment on secretion of molecules during cancer progression remain largely unknown. In this study, we report that secretion of spingsine-1-phosphate (S1P) and its regulator, SphK1 expression is dependent of the substrate rigidity, which is critical for the balance between cancer cell invasion and adhesion. Conditioned media (CM) of MDA-MB-231, an aggressive breast cancer cell obtained from soft substrate (~0.5 kPa) induced chemo-attractive invasion, while CM obtained from stiff substrate (~2.5 kPa) increased cell adhesion instead. We found that the expression of SphK1 is upregulated in the stiff substrate, resulting in an increase in S1P levels in the CM. We also found that upregulation of SphK1 expression in the stiff substrate is dominant in metastatic cancer cells but not in primary cancer cells. These results suggest that alterations in the mechanical environment of the ECM surrounding the tumor cells actively regulate cellular properties such as secretion, which in turn, may contribute to cancer progression. PMID:26877098

  2. The lipoprotein receptor LRP1 modulates sphingosine-1-phosphate signaling and is essential for vascular development

    PubMed Central

    Nakajima, Chikako; Haffner, Philipp; Goerke, Sebastian M.; Zurhove, Kai; Adelmann, Giselind; Frotscher, Michael; Herz, Joachim; Bock, Hans H.; May, Petra

    2014-01-01

    Low density lipoprotein receptor-related protein 1 (LRP1) is indispensable for embryonic development. Comparing different genetically engineered mouse models, we found that expression of Lrp1 is essential in the embryo proper. Loss of LRP1 leads to lethal vascular defects with lack of proper investment with mural cells of both large and small vessels. We further demonstrate that LRP1 modulates Gi-dependent sphingosine-1-phosphate (S1P) signaling and integrates S1P and PDGF-BB signaling pathways, which are both crucial for mural cell recruitment, via its intracellular domain. Loss of LRP1 leads to a lack of S1P-dependent inhibition of RAC1 and loss of constraint of PDGF-BB-induced cell migration. Our studies thus identify LRP1 as a novel player in angiogenesis and in the recruitment and maintenance of mural cells. Moreover, they reveal an unexpected link between lipoprotein receptor and sphingolipid signaling that, in addition to angiogenesis during embryonic development, is of potential importance for other targets of these pathways, such as tumor angiogenesis and inflammatory processes. PMID:25377550

  3. Effects of chemotherapy agents on Sphingosine-1-Phosphate receptors expression in MCF-7 mammary cancer cells.

    PubMed

    Ghosal, P; Sukocheva, O A; Wang, T; Mayne, G C; Watson, D I; Hussey, D J

    2016-07-01

    Sphingosine-1-phosphate (S1P) is a potent bioactive sphingolipid involved in the regulation of cell proliferation and cancer progression. Increased expression of S1P receptors has been detected in advanced breast tumours with poor prognosis suggesting that S1P receptors might control tumour response to chemotherapy. However, it remains unclear how the levels of S1P receptor expression are influenced by chemotherapy agents. Western immunoblotting, PCR analysis and fluorescent microscopy techniques were used in this study to analyze expression patterns of S1P receptors 2 and 3 (S1P2/S1P3) in MCF-7 breast adenocarcinoma cells treated by Tamoxifen (TAM) and/or Medroxyprogesterone acetate (MPA). We found that TAM/MPA induce downregulation of S1P3 receptors, but stimulate expression of S1P2. According to cell viability and caspase activity analyses, as expected, TAM activated apoptosis. We also detected TAM/MPA-induced autophagy marked by formation of macroautophagosomes and increased level of Beclin 1. Combined application of TAM and MPA resulted in synergistic apoptosis- and autophagy-stimulating effects. Assessed by fluorescent microscopy with autophagosome marker LAMP-2, changes in S1P receptor expression coincided with activation of autophagy, suggestively, directing breast cancer cells towards death. Further studies are warranted to explore the utility of manipulation of S1P2 and S1P3 receptor expression as a novel treatment approach. PMID:27261597

  4. Emerging role of sphingosine-1-phosphate signaling in head and neck squamous cell carcinoma

    PubMed Central

    Nema, Rajeev; Vishwakarma, Supriya; Agarwal, Rahul; Panday, Rajendra Kumar; Kumar, Ashok

    2016-01-01

    Head and neck squamous cell carcinoma (HNSCC) is the sixth most frequent cancer type, with an annual incidence of approximately half a million people worldwide. It has a high recurrence rate and an extremely low survival rate. This is due to limited availability of effective therapies to reduce the rate of recurrence, resulting in high morbidity and mortality of patients with advanced stages of the disease. HNSCC often develops resistance to chemotherapy and targeted drug therapy. Thus, to overcome the problem of drug resistance, there is a need to explore novel drug targets. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid involved in inflammation, tumor progression, and angiogenesis. S1P is synthesized intracellularly by two sphingosine kinases (SphKs). It can be exported to the extracellular space, where it can activate a family of G-protein-coupled receptors. Alternatively, S1P can act as an intracellular second messenger. SphK1 regulates tumor progression, invasion, metastasis, and chemoresistance in HNSCC. SphK1 expression is highly elevated in advanced stage HNSCC tumors and correlates with poor survival. In this article, we review current knowledge regarding the role of S1P receptors and enzymes of S1P metabolism in HNSCC carcinogenesis. Furthermore, we summarize the current perspectives on therapeutic approaches for targeting S1P pathway for treating HNSCC. PMID:27330306

  5. Spinster 2, a sphingosine-1-phosphate transporter, plays a critical role in inflammatory and autoimmune diseases.

    PubMed

    Donoviel, Michael S; Hait, Nitai C; Ramachandran, Subramaniam; Maceyka, Michael; Takabe, Kazuaki; Milstien, Sheldon; Oravecz, Tamas; Spiegel, Sarah

    2015-12-01

    Sphingosine 1-phosphate (S1P) is a pleiotropic bioactive sphingolipid metabolite that regulates numerous processes important for immune responses. S1P is made within cells and must be transported out of cells to exert its effects through activation of 5 specific cell surface GPCRs in an autocrine or paracrine fashion. Spinster 2 (Spns2) transports S1P out of cells, and its deletion in mice reduces circulating levels of S1P, alters immune cell trafficking, and induces lymphopenia. Here we examined the effects of Spns2 deletion on adaptive immune responses and in autoimmune disease models. Airway inflammation and hypersensitivity as well as delayed-type contact hypersensitivity were attenuated in Spns2(-/-) mice. Similarly, Spns2 deletion reduced dextran sodium sulfate- and oxazolone-induced colitis. Intriguingly, Spns2(-/-) mice were protected from the development of experimental autoimmune encephalopathy, a model of the autoimmune disease multiple sclerosis. Deletion of Spns2 also strongly alleviated disease development in collagen-induced arthritis. These results point to a broad role for Spns2-mediated S1P transport in the initiation and development of adaptive immune related disorders. PMID:26324848

  6. Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy

    PubMed Central

    Proia, Richard L.; Hla, Timothy

    2015-01-01

    Membrane sphingolipids are metabolized to sphingosine-1-phosphate (S1P), a bioactive lipid mediator that regulates many processes in vertebrate development, physiology, and pathology. Once exported out of cells by cell-specific transporters, chaperone-bound S1P is spatially compartmentalized in the circulatory system. Extracellular S1P interacts with five GPCRs that are widely expressed and transduce intracellular signals to regulate cellular behavior, such as migration, adhesion, survival, and proliferation. While many organ systems are affected, S1P signaling is essential for vascular development, neurogenesis, and lymphocyte trafficking. Recently, a pharmacological S1P receptor antagonist has won approval to control autoimmune neuroinflammation in multiple sclerosis. The availability of pharmacological tools as well as mouse genetic models has revealed several physiological actions of S1P and begun to shed light on its pathological roles. The unique mode of signaling of this lysophospholipid mediator is providing novel opportunities for therapeutic intervention, with possibilities to target not only GPCRs but also transporters, metabolic enzymes, and chaperones. PMID:25831442

  7. Platelet-derived sphingosine-1-phosphate and inflammation: from basic mechanisms to clinical implications.

    PubMed

    Vito, Clara Di; Hadi, Loubna Abdel; Navone, Stefania Elena; Marfia, Giovanni; Campanella, Rolando; Mancuso, Maria Elisa; Riboni, Laura

    2016-07-01

    Beyond key functions in hemostasis and thrombosis, platelets are recognized as key players of inflammation, an underlying feature of a variety of diseases. In this regard, platelets act as a circulating source of several pro- and anti-inflammatory molecules, which are secreted from their intracellular stores upon activation. Among them, mounting evidence highlights a crucial role of sphingosine-1-phosphate (S1P), a multifunctional sphingoid mediator. S1P-induced pleiotropic effects include those crucial in inflammatory processes, such as the maintenance of the endothelial barrier integrity, and leukocyte activation and recruitment at the injured site. This review outlines the peculiar features and molecular mechanisms that allow platelets for acting as a unique factory that produces and stores S1P in large quantities. A particular emphasis is placed on the autocrine and paracrine roles of S1P derived from the "inflamed" platelets, highlighting the role of its cross-talk with endothelial and blood cells involved in inflammation, and the mechanisms of its contribution to the development and progression of inflammatory diseases. Finally, potential clinical implications of platelet-derived S1P as diagnostic tool of inflammatory severity, and as therapeutic target in inflammation are discussed. PMID:26950429

  8. Rational nanoconjugation improves biocatalytic performance of enzymes: aldol addition catalyzed by immobilized rhamnulose-1-phosphate aldolase.

    PubMed

    Ardao, Inés; Comenge, Joan; Benaiges, M Dolors; Álvaro, Gregorio; Puntes, Víctor F

    2012-04-17

    Gold nanoparticles (AuNPs) are attractive materials for the immobilization of enzymes due to several advantages such as high enzyme loading, absence of internal diffusion limitations, and Brownian motion in solution, compared to the conventional immobilization onto porous macroscopic supports. The affinity of AuNPs to different groups present at the protein surface enables direct enzyme binding to the nanoparticle without the need of any coupling agent. Enzyme activity and stability appear to be improved when the biocatalyst is immobilized onto AuNPs. Rhamnulose-1-phosphate aldolase (RhuA) was selected as model enzyme for the immobilization onto AuNPs. The enzyme loading was characterized by four different techniques: surface plasmon resonance (SPR) shift and intensity, dynamic light scattering (DLS), and transmission electron microscopy (TEM). AuNPs-RhuA complexes were further applied as biocatalyst of the aldol addition reaction between dihydroxyacetone phosphate (DHAP) and (S)-Cbz-alaninal during two reaction cycles. In these conditions, an improved reaction yield and selectivity, together with a fourfold activity enhancement were observed, as compared to soluble RhuA. PMID:22428999

  9. Extracellular Matrix Rigidity-dependent Sphingosine-1-phosphate Secretion Regulates Metastatic Cancer Cell Invasion and Adhesion

    PubMed Central

    Ko, Panseon; Kim, Daehwan; You, Eunae; Jung, Jangho; Oh, Somi; Kim, Jaehyun; Lee, Kwang-Ho; Rhee, Sangmyung

    2016-01-01

    Dynamic interaction between cancer cells and the surrounding microenvironment is critical for cancer progression via changes in cellular behavior including alteration of secreted molecules. However, the molecular mechanisms underlying the influence exerted by the cancer microenvironment on secretion of molecules during cancer progression remain largely unknown. In this study, we report that secretion of spingsine-1-phosphate (S1P) and its regulator, SphK1 expression is dependent of the substrate rigidity, which is critical for the balance between cancer cell invasion and adhesion. Conditioned media (CM) of MDA-MB-231, an aggressive breast cancer cell obtained from soft substrate (~0.5 kPa) induced chemo-attractive invasion, while CM obtained from stiff substrate (~2.5 kPa) increased cell adhesion instead. We found that the expression of SphK1 is upregulated in the stiff substrate, resulting in an increase in S1P levels in the CM. We also found that upregulation of SphK1 expression in the stiff substrate is dominant in metastatic cancer cells but not in primary cancer cells. These results suggest that alterations in the mechanical environment of the ECM surrounding the tumor cells actively regulate cellular properties such as secretion, which in turn, may contribute to cancer progression. PMID:26877098

  10. Calcitonin controls bone formation by inhibiting the release of sphingosine 1-phosphate from osteoclasts

    PubMed Central

    Keller, Johannes; Catala-Lehnen, Philip; Huebner, Antje K.; Jeschke, Anke; Heckt, Timo; Lueth, Anja; Krause, Matthias; Koehne, Till; Albers, Joachim; Schulze, Jochen; Schilling, Sarah; Haberland, Michael; Denninger, Hannah; Neven, Mona; Hermans-Borgmeyer, Irm; Streichert, Thomas; Breer, Stefan; Barvencik, Florian; Levkau, Bodo; Rathkolb, Birgit; Wolf, Eckhard; Calzada-Wack, Julia; Neff, Frauke; Gailus-Durner, Valerie; Fuchs, Helmut; de Angelis, Martin Hrabě; Klutmann, Susanne; Tsourdi, Elena; Hofbauer, Lorenz C.; Kleuser, Burkhard; Chun, Jerold; Schinke, Thorsten; Amling, Michael

    2014-01-01

    The hormone calcitonin (CT) is primarily known for its pharmacologic action as an inhibitor of bone resorption, yet CT-deficient mice display increased bone formation. These findings raised the question about the underlying cellular and molecular mechanism of CT action. Here we show that either ubiquitous or osteoclast-specific inactivation of the murine CT receptor (CTR) causes increased bone formation. CT negatively regulates the osteoclast expression of Spns2 gene, which encodes a transporter for the signaling lipid sphingosine 1-phosphate (S1P). CTR-deficient mice show increased S1P levels, and their skeletal phenotype is normalized by deletion of the S1P receptor S1P3. Finally, pharmacologic treatment with the non-selective S1P receptor agonist FTY720 causes increased bone formation in wildtype, but not in S1P3-deficient mice. This study redefines the role of CT in skeletal biology, confirms that S1P acts as an osteoanabolic molecule in vivo, and provides evidence for a pharmacologically exploitable crosstalk between osteoclasts and osteoblasts. PMID:25333900

  11. Sphingosine-1-phosphate promotes erythrocyte glycolysis and oxygen release for adaptation to high-altitude hypoxia

    PubMed Central

    Sun, Kaiqi; Zhang, Yujin; D'Alessandro, Angelo; Nemkov, Travis; Song, Anren; Wu, Hongyu; Liu, Hong; Adebiyi, Morayo; Huang, Aji; Wen, Yuan E.; Bogdanov, Mikhail V.; Vila, Alejandro; O'Brien, John; Kellems, Rodney E.; Dowhan, William; Subudhi, Andrew W.; Jameson-Van Houten, Sonja; Julian, Colleen G.; Lovering, Andrew T.; Safo, Martin; Hansen, Kirk C.; Roach, Robert C.; Xia, Yang

    2016-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive signalling lipid highly enriched in mature erythrocytes, with unknown functions pertaining to erythrocyte physiology. Here by employing nonbiased high-throughput metabolomic profiling, we show that erythrocyte S1P levels rapidly increase in 21 healthy lowland volunteers at 5,260 m altitude on day 1 and continue increasing to 16 days with concurrently elevated erythrocyte sphingonisne kinase 1 (Sphk1) activity and haemoglobin (Hb) oxygen (O2) release capacity. Mouse genetic studies show that elevated erythrocyte Sphk1-induced S1P protects against tissue hypoxia by inducing O2 release. Mechanistically, we show that intracellular S1P promotes deoxygenated Hb anchoring to the membrane, enhances the release of membrane-bound glycolytic enzymes to the cytosol, induces glycolysis and thus the production of 2,3-bisphosphoglycerate (2,3-BPG), an erythrocyte-specific glycolytic intermediate, which facilitates O2 release. Altogether, we reveal S1P as an intracellular hypoxia-responsive biolipid promoting erythrocyte glycolysis, O2 delivery and thus new therapeutic opportunities to counteract tissue hypoxia. PMID:27417539

  12. Potential signaling pathway involved in sphingosine-1-phosphate-induced epithelial-mesenchymal transition in cancer

    PubMed Central

    ZENG, YE; YAO, XING-HONG; YAN, ZHI-PING; LIU, JING-XIA; LIU, XIAO-HENG

    2016-01-01

    The developmental process of epithelial-mesenchymal transition (EMT) occurs when epithelial cells acquire invasive mesenchymal cell characteristics, and the activation of this process has been indicated to be involved in tumor progression. EMT could be induced by growth factors, cytokines and matrix metalloproteinases (MMPs). sphingosine-1-phosphate (S1P) is a biologically-active lipid that plays an important role in cancer metastasis. S1P also contributes to the activation of EMT. However, the mechanism underlying S1P-induced EMT is unclear. Increased evidence has demonstrated that the cell surface glycocalyx is closed associated with S1P and plays an important role in tumor progression, suggesting that S1P-induced EMT could be Snail-MMP signaling-dependent. Thus, we hypothesize that an S1P-glycocalyx-Snail-MMP signaling axis mediates S1P-induced EMT. This is an essential step towards improved understanding of the underlying mechanism involved in S1P-regulted EMT, and the development of novel diagnostic and anticancer therapeutic strategies. PMID:27347154

  13. Tumor Necrosis Factor/Sphingosine-1-Phosphate Signaling Augments Resistance Artery Myogenic Tone in Diabetes.

    PubMed

    Sauvé, Meghan; Hui, Sonya K; Dinh, Danny D; Foltz, Warren D; Momen, Abdul; Nedospasov, Sergei A; Offermanns, Stefan; Husain, Mansoor; Kroetsch, Jeffrey T; Lidington, Darcy; Bolz, Steffen-Sebastian

    2016-07-01

    Diabetes strongly associates with microvascular complications that ultimately promote multiorgan failure. Altered myogenic responsiveness compromises tissue perfusion, aggravates hypertension, and sets the stage for later permanent structural changes to the microcirculation. We demonstrate that skeletal muscle resistance arteries isolated from patients with diabetes have augmented myogenic tone, despite reasonable blood glucose control. To understand the mechanisms, we titrated a standard diabetes mouse model (high-fat diet plus streptozotocin [HFD/STZ]) to induce a mild increase in blood glucose levels. HFD/STZ treatment induced a progressive myogenic tone augmentation in mesenteric and olfactory cerebral arteries; neither HFD nor STZ alone had an effect on blood glucose or resistance artery myogenic tone. Using gene deletion models that eliminate tumor necrosis factor (TNF) or sphingosine kinase 1, we demonstrate that vascular smooth muscle cell TNF drives the elevation of myogenic tone via enhanced sphingosine-1-phosphate (S1P) signaling. Therapeutically antagonizing TNF (etanercept) or S1P (JTE013) signaling corrects this defect. Our investigation concludes that vascular smooth muscle cell TNF augments resistance artery myogenic vasoconstriction in a diabetes model that induces a small elevation of blood glucose. Our data demonstrate that microvascular reactivity is an early disease marker and advocate establishing therapies that strategically target the microcirculation. PMID:27207546

  14. Sphingosine-1-phosphate Maintains Normal Vascular Permeability by Preserving Endothelial Surface Glycocalyx in Intact Microvessels

    PubMed Central

    Zhang, Lin; Zeng, Min; Fan, Jie; Tarbell, John, M.; Curry, Fitz-Roy E.; Fu, Bingmei M.

    2016-01-01

    Objective Sphingosine-1-phosphate (S1P) was found to protect the endothelial surface glycocalyx (ESG) by inhibiting matrix metalloproteinase (MMP) activity-dependent shedding of ESG in cultured endothelial cell studies. We aimed to further test that S1P contributes to the maintenance of normal vascular permeability by protecting the ESG in intact microvessels. Methods We quantified the ESG in post-capillary venules of rat mesentery and measured the vascular permeability to albumin in the presence and absence of 1 μM S1P. We also measured permeability to albumin in the presence of MMP inhibitors and compared the measured permeability with those predicted by a transport model for the inter-endothelial cleft. Results We found that in the absence of S1P, the fluorescence intensity of the FITC-anti-heparan sulfate labeled ESG was ~10% of that in the presence of S1P, while the measured permeability to albumin was ~6.5 fold that in the presence of S1P. Similar results were observed with MMP inhibition. The predictions by the mathematical model further confirmed that S1P maintains microvascular permeability by preserving ESG. Conclusions Our results show that S1P contributes to the maintenance of normal vascular permeability by protecting the ESG in intact microvessels, consistent with parallel observation in cultured endothelial monolayers. PMID:27015105

  15. Calcitonin controls bone formation by inhibiting the release of sphingosine 1-phosphate from osteoclasts.

    PubMed

    Keller, Johannes; Catala-Lehnen, Philip; Huebner, Antje K; Jeschke, Anke; Heckt, Timo; Lueth, Anja; Krause, Matthias; Koehne, Till; Albers, Joachim; Schulze, Jochen; Schilling, Sarah; Haberland, Michael; Denninger, Hannah; Neven, Mona; Hermans-Borgmeyer, Irm; Streichert, Thomas; Breer, Stefan; Barvencik, Florian; Levkau, Bodo; Rathkolb, Birgit; Wolf, Eckhard; Calzada-Wack, Julia; Neff, Frauke; Gailus-Durner, Valerie; Fuchs, Helmut; de Angelis, Martin Hrabĕ; Klutmann, Susanne; Tsourdi, Elena; Hofbauer, Lorenz C; Kleuser, Burkhard; Chun, Jerold; Schinke, Thorsten; Amling, Michael

    2014-01-01

    The hormone calcitonin (CT) is primarily known for its pharmacologic action as an inhibitor of bone resorption, yet CT-deficient mice display increased bone formation. These findings raised the question about the underlying cellular and molecular mechanism of CT action. Here we show that either ubiquitous or osteoclast-specific inactivation of the murine CT receptor (CTR) causes increased bone formation. CT negatively regulates the osteoclast expression of Spns2 gene, which encodes a transporter for the signalling lipid sphingosine 1-phosphate (S1P). CTR-deficient mice show increased S1P levels, and their skeletal phenotype is normalized by deletion of the S1P receptor S1P3. Finally, pharmacologic treatment with the nonselective S1P receptor agonist FTY720 causes increased bone formation in wild-type, but not in S1P3-deficient mice. This study redefines the role of CT in skeletal biology, confirms that S1P acts as an osteoanabolic molecule in vivo and provides evidence for a pharmacologically exploitable crosstalk between osteoclasts and osteoblasts. PMID:25333900

  16. Sphingosine-1-Phosphate Signaling Regulates Myogenic Responsiveness in Human Resistance Arteries

    PubMed Central

    Slack, Daniel L.; Burnstein, Marcus J.; Errett, Lee; Bonneau, Daniel; Latter, David; Rotstein, Ori D.; Bolz, Steffen-Sebastian; Lidington, Darcy; Voigtlaender-Bolz, Julia

    2015-01-01

    We recently identified sphingosine-1-phosphate (S1P) signaling and the cystic fibrosis transmembrane conductance regulator (CFTR) as prominent regulators of myogenic responsiveness in rodent resistance arteries. However, since rodent models frequently exhibit limitations with respect to human applicability, translation is necessary to validate the relevance of this signaling network for clinical application. We therefore investigated the significance of these regulatory elements in human mesenteric and skeletal muscle resistance arteries. Mesenteric and skeletal muscle resistance arteries were isolated from patient tissue specimens collected during colonic or cardiac bypass surgery. Pressure myography assessments confirmed endothelial integrity, as well as stable phenylephrine and myogenic responses. Both human mesenteric and skeletal muscle resistance arteries (i) express critical S1P signaling elements, (ii) constrict in response to S1P and (iii) lose myogenic responsiveness following S1P receptor antagonism (JTE013). However, while human mesenteric arteries express CFTR, human skeletal muscle resistance arteries do not express detectable levels of CFTR protein. Consequently, modulating CFTR activity enhances myogenic responsiveness only in human mesenteric resistance arteries. We conclude that human mesenteric and skeletal muscle resistance arteries are a reliable and consistent model for translational studies. We demonstrate that the core elements of an S1P-dependent signaling network translate to human mesenteric resistance arteries. Clear species and vascular bed variations are evident, reinforcing the critical need for further translational study. PMID:26367262

  17. Bile acids and sphingosine-1-phosphate receptor 2 in hepatic lipid metabolism.

    PubMed

    Kwong, Eric; Li, Yunzhou; Hylemon, Phillip B; Zhou, Huiping

    2015-03-01

    The liver is the central organ involved in lipid metabolism. Dyslipidemia and its related disorders, including non-alcoholic fatty liver disease (NAFLD), obesity and other metabolic diseases, are of increasing public health concern due to their increasing prevalence in the population. Besides their well-characterized functions in cholesterol homoeostasis and nutrient absorption, bile acids are also important metabolic regulators and function as signaling hormones by activating specific nuclear receptors, G-protein coupled receptors, and multiple signaling pathways. Recent studies identified a new signaling pathway by which conjugated bile acids (CBA) activate the extracellular regulated protein kinases (ERK1/2) and protein kinase B (AKT) signaling pathway via sphingosine-1-phosphate receptor 2 (S1PR2). CBA-induced activation of S1PR2 is a key regulator of sphingosine kinase 2 (SphK2) and hepatic gene expression. This review focuses on recent findings related to the role of bile acids/S1PR2-mediated signaling pathways in regulating hepatic lipid metabolism. PMID:26579441

  18. Expression of 1L-Myoinositol-1-Phosphate Synthase in Organelles1

    PubMed Central

    Lackey, Kimberly Helms; Pope, Patricia Marie; Johnson, Margaret Dean

    2003-01-01

    We have studied the expression of 1l-myoinositol-1-phosphate synthase (MIPS; EC 5.5.1.4) in developing organs of Phaseolus vulgaris to define genetic controls that spatially regulate inositol phosphate biosynthesis. MIPS, the pivotal biosynthetic enzyme in inositol metabolism, is the only enzyme known to catalyze the conversion of glucose 6-phosphate to inositol phosphate. It is found in unicellular and multicellular eukaryotes and has been isolated as a soluble enzyme from both. Thus, it is widely accepted that inositol phosphate biosynthesis is largely restricted to the cytosol. Here, we report findings that suggest the enzyme is also expressed in membrane-bound organelles. Microscopic and biochemical analyses detected MIPS expression in plasma membranes, plastids, mitochondria, endoplasmic reticula, nuclei, and cell walls of bean. To address mechanisms by which the enzyme could be targeted to or through membranes, MIPS genes were analyzed for sorting signals within primary structures and upstream open reading frames that we discovered through our sequence analyses. Comprehensive computer analyses revealed putative transit peptides that are predicted to target the enzyme to different cellular compartments. Reverse transcriptase PCR experiments suggest that these putative targeting peptides are expressed in bean roots and leaves. PMID:12913178

  19. Hepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphate

    PubMed Central

    Nojima, Hiroyuki; Freeman, Christopher M.; Schuster, Rebecca M.; Japtok, Lukasz; Kleuser, Burkhard; Edwards, Michael J.; Gulbins, Erich; Lentsch, Alex B.

    2016-01-01

    Background & Aims Exosomes are small membrane vesicles involved in intercellular communication. Hepatocytes are known to release exosomes, but little is known about their biological function. We sought to determine if exosomes derived from hepatocytes contribute to liver repair and regeneration after injury. Methods Exosomes derived from primary murine hepatocytes were isolated and characterized biochemically and biophysically. Using cultures of primary hepatocytes, we tested whether hepatocyte exosomes induced proliferation of hepatocytes in vitro. Using models of ischemia/reperfusion injury and partial hepatectomy, we evaluated whether hepatocyte exosomes promote hepatocyte proliferation and liver regeneration in vivo. Results Hepatocyte exosomes, but not exosomes from other liver cell types, induce dose-dependent hepatocyte proliferation in vitro and in vivo. Mechanistically, hepatocyte exosomes directly fuse with target hepatocytes and transfer neutral ceramidase and sphingosine kinase 2 (SK2) causing increased synthesis of sphingosine-1-phosphate (S1P) within target hepatocytes. Ablation of exosomal SK prevents the proliferative effect of exosomes. After ischemia/reperfusion injury, the number of circulating exosomes with proliferative effects increases. Conclusions Our data shows that hepatocyte-derived exosomes deliver the synthetic machinery to form S1P in target hepatocytes resulting in cell proliferation and liver regeneration after ischemia/reperfusion injury or partial hepatectomy. These findings represent a potentially novel new contributing mechanism of liver regeneration and have important implications for new therapeutic approaches to acute and chronic liver disease. PMID:26254847

  20. Sphingosine-1-phosphate inhibits the adipogenic differentiation of 3T3-L1 preadipocytes.

    PubMed

    Moon, Myung-Hee; Jeong, Jae-Kyo; Lee, You-Jin; Seol, Jae-Won; Park, Sang-Youel

    2014-10-01

    Sphingosine-1-phosphate (S1P) is a pluripotent lipid mediator that transmits signals through G-protein-coupled receptors to control diverse biological processes. The novel biological activity of S1P in the adipogenesis of 3T3-L1 preadipocytes was identified in the present study. S1P significantly decreased lipid accumulation in maturing preadipocytes in a dose‑dependent manner. In order to understand the anti‑adipogenic effects of S1P, preadipocytes were treated with S1P, and the change in the expression of several adipogenic transcription factors and enzymes was investigated using quantitative RT-PCR. S1P downregulated the transcriptional levels of the peroxisome proliferator-activated receptor γ, CCAAT/enhancer binding proteins and adiponectin, which are markers of adipogenic differentiation. The effects of S1P on the levels of mitogen‑activated protein kinase (MAPK) signals in preadipocytes were also investigated. The activation of JNK and p38 were downregulated by S1P treatment in human preadipocytes. In conclusion, the results of this study suggest that S1P alters fat mass by directly affecting adipogenesis. This is mediated by the downregulation of adipogenic transcription factors and by inactivation of the JNK and p38 MAPK pathways. Thus, selective targeting of the S1P receptors and sphingosine kinases may have clinical applications for the treatment of obesity. PMID:25050633

  1. Sphingosine-1-Phosphate Receptor-2 Antagonists: Therapeutic Potential and Potential Risks

    PubMed Central

    Blankenbach, Kira V.; Schwalm, Stephanie; Pfeilschifter, Josef; Meyer zu Heringdorf, Dagmar

    2016-01-01

    The sphingosine-1-phosphate (S1P) signaling system with its specific G-protein-coupled S1P receptors, the enzymes of S1P metabolism and the S1P transporters, offers a multitude of promising targets for drug development. Until today, drug development in this area has nearly exclusively focused on (functional) antagonists at the S1P1 receptor, which cause a unique phenotype of immunomodulation. Accordingly, the first-in class S1P1 receptor modulator, fingolimod, has been approved for the treatment of relapsing-remitting multiple sclerosis, and novel S1P1 receptor (functional) antagonists are being developed for autoimmune and inflammatory diseases such as psoriasis, inflammatory bowel disease, lupus erythematodes, or polymyositis. Besides the S1P1 receptor, also S1P2 and S1P3 are widely expressed and regulate many diverse functions throughout the body. The S1P2 receptor, in particular, often exerts cellular functions which are opposed to the functions of the S1P1 receptor. As a consequence, antagonists at the S1P2 receptor have the potential to be useful in a contrasting context and different areas of indication compared to S1P1 antagonists. The present review will focus on the therapeutic potential of S1P2 receptor antagonists and discuss their opportunities as well as their potential risks. Open questions and areas which require further investigations will be emphasized in particular. PMID:27445808

  2. Regulation of autotaxin expression and secretion by lysophosphatidate and sphingosine 1-phosphate.

    PubMed

    Benesch, Matthew G K; Zhao, Yuan Y; Curtis, Jonathan M; McMullen, Todd P W; Brindley, David N

    2015-06-01

    Autotaxin (ATX) is a secreted enzyme, which produces extracellular lysophosphatidate (LPA) from lysophosphatidylcholine (LPC). LPA activates six G protein-coupled receptors and this is essential for vasculogenesis during embryonic development. ATX is also involved in wound healing and inflammation, and in tumor growth, metastasis, and chemo-resistance. It is, therefore, important to understand how ATX is regulated. It was proposed that ATX activity is inhibited by its product LPA, or a related lipid called sphingosine 1-phosphate (S1P). We now show that this apparent inhibition is ineffective at the high concentrations of LPC that occur in vivo. Instead, feedback regulation by LPA and S1P is mediated by inhibition of ATX expression resulting from phosphatidylinositol-3-kinase activation. Inhibiting ATX activity in mice with ONO-8430506 severely decreased plasma LPA concentrations and increased ATX mRNA in adipose tissue, which is a major site of ATX production. Consequently, the amount of inhibitor-bound ATX protein in the plasma increased. We, therefore, demonstrate the concept that accumulation of LPA in the circulation decreases ATX production. However, this feedback regulation can be overcome by the inflammatory cytokines, TNF-α or interleukin 1β. This enables high LPA and ATX levels to coexist in inflammatory conditions. The results are discussed in terms of ATX regulation in wound healing and cancer. PMID:25896349

  3. Sphingosine-1-Phosphate Signaling in Immune Cells and Inflammation: Roles and Therapeutic Potential

    PubMed Central

    Aoki, Masayo; Aoki, Hiroaki; Ramanathan, Rajesh; Hait, Nitai C.; Takabe, Kazuaki

    2016-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite involved in many critical cell processes. It is produced by the phosphorylation of sphingosine by sphingosine kinases (SphKs) and exported out of cells via transporters such as spinster homolog 2 (Spns2). S1P regulates diverse physiological processes by binding to specific G protein-binding receptors, S1P receptors (S1PRs) 1–5, through a process coined as “inside-out signaling.” The S1P concentration gradient between various tissues promotes S1PR1-dependent migration of T cells from secondary lymphoid organs into the lymphatic and blood circulation. S1P suppresses T cell egress from and promotes retention in inflamed peripheral tissues. S1PR1 in T and B cells as well as Spns2 in endothelial cells contributes to lymphocyte trafficking. FTY720 (Fingolimod) is a functional antagonist of S1PRs that induces systemic lymphopenia by suppression of lymphocyte egress from lymphoid organs. In this review, we summarize previous findings and new discoveries about the importance of S1P and S1PR signaling in the recruitment of immune cells and lymphocyte retention in inflamed tissues. We also discuss the role of S1P-S1PR1 axis in inflammatory diseases and wound healing. PMID:26966342

  4. Sphingosine kinase 1/sphingosine 1-phosphate signalling pathway as a potential therapeutic target of pulmonary hypertension

    PubMed Central

    Xing, Xi-Qian; Li, Yan-Li; Zhang, Yu-Xuan; Xiao, Yi; Li, Zhi-Dong; Liu, Li-Qiong; Zhou, Yu-Shan; Zhang, Hong-Yan; Liu, Yan-Hong; Zhang, Li-Hui; Zhuang, Min; Chen, Yan-Ping; Ouyang, Sheng-Rong; Wu, Xu-Wei; Yang, Jiao

    2015-01-01

    Pulmonary hypertension is characterized by extensive vascular remodelling, leading to increased pulmonary vascular resistance and eventual death due to right heart failure. The pathogenesis of pulmonary hypertension involves vascular endothelial dysfunction and disordered vascular smooth muscle cell (VSMC) proliferation and migration, but the exact processes remain unknown. Sphingosine 1-phosphate (S1P) is a bioactive lysophospholipid involved in a wide spectrum of biological processes. S1P has been shown to regulate VSMC proliferation and migration and vascular tension via a family of five S1P G-protein-coupled receptors (S1P1-SIP5). S1P has been shown to have both a vasoconstrictive and vasodilating effect. The S1P receptors S1P1 and S1P3 promote, while S1P2 inhibits VSMC proliferation and migration in vitro in response to S1P. Moreover, it has been reported recently that sphingosine kinase 1 and S1P2 inhibitors might be useful therapeutic agents in the treatment of empirical pulmonary hypertension. The sphingosine kinase 1/S1P signalling pathways may play a role in the pathogenesis of pulmonary hypertension. Modulation of this pathway may offer novel therapeutic strategies. PMID:26550106

  5. Sphingosine kinase 1/sphingosine 1-phosphate signalling pathway as a potential therapeutic target of pulmonary hypertension.

    PubMed

    Xing, Xi-Qian; Li, Yan-Li; Zhang, Yu-Xuan; Xiao, Yi; Li, Zhi-Dong; Liu, Li-Qiong; Zhou, Yu-Shan; Zhang, Hong-Yan; Liu, Yan-Hong; Zhang, Li-Hui; Zhuang, Min; Chen, Yan-Ping; Ouyang, Sheng-Rong; Wu, Xu-Wei; Yang, Jiao

    2015-01-01

    Pulmonary hypertension is characterized by extensive vascular remodelling, leading to increased pulmonary vascular resistance and eventual death due to right heart failure. The pathogenesis of pulmonary hypertension involves vascular endothelial dysfunction and disordered vascular smooth muscle cell (VSMC) proliferation and migration, but the exact processes remain unknown. Sphingosine 1-phosphate (S1P) is a bioactive lysophospholipid involved in a wide spectrum of biological processes. S1P has been shown to regulate VSMC proliferation and migration and vascular tension via a family of five S1P G-protein-coupled receptors (S1P1-SIP5). S1P has been shown to have both a vasoconstrictive and vasodilating effect. The S1P receptors S1P1 and S1P3 promote, while S1P2 inhibits VSMC proliferation and migration in vitro in response to S1P. Moreover, it has been reported recently that sphingosine kinase 1 and S1P2 inhibitors might be useful therapeutic agents in the treatment of empirical pulmonary hypertension. The sphingosine kinase 1/S1P signalling pathways may play a role in the pathogenesis of pulmonary hypertension. Modulation of this pathway may offer novel therapeutic strategies. PMID:26550106

  6. Sphingosine-1-Phosphate and Its Receptors: A Mutual Link between Blood Coagulation and Inflammation

    PubMed Central

    Mahajan-Thakur, Shailaja; Böhm, Andreas; Jedlitschky, Gabriele; Schrör, Karsten; Rauch, Bernhard H.

    2015-01-01

    Sphingosine-1-phosphate (S1P) is a versatile lipid signaling molecule and key regulator in vascular inflammation. S1P is secreted by platelets, monocytes, and vascular endothelial and smooth muscle cells. It binds specifically to a family of G-protein-coupled receptors, S1P receptors 1 to 5, resulting in downstream signaling and numerous cellular effects. S1P modulates cell proliferation and migration, and mediates proinflammatory responses and apoptosis. In the vascular barrier, S1P regulates permeability and endothelial reactions and recruitment of monocytes and may modulate atherosclerosis. Only recently has S1P emerged as a critical mediator which directly links the coagulation factor system to vascular inflammation. The multifunctional proteases thrombin and FXa regulate local S1P availability and interact with S1P signaling at multiple levels in various vascular cell types. Differential expression patterns and intracellular signaling pathways of each receptor enable S1P to exert its widespread functions. Although a vast amount of information is available about the functions of S1P and its receptors in the regulation of physiological and pathophysiological conditions, S1P-mediated mechanisms in the vasculature remain to be elucidated. This review summarizes recent findings regarding the role of S1P and its receptors in vascular wall and blood cells, which link the coagulation system to inflammatory responses in the vasculature. PMID:26604433

  7. Sphingosine-1-phosphate receptor 1 agonist SEW2871 prolongs heterotopic heart allograft survival in mice.

    PubMed

    Ni, Qian; Yuan, Baohong; Liu, Tao; Lan, Fang; Luo, Xiaochun; Lu, Xiaoyan; Huang, Ping; Dai, Liangcheng; Jin, Xiaobao; Yin, Hui

    2015-05-01

    Sphingosine-1-phosphate (S1P) is a biologically active metabolite of plasma-membrane sphingolipids that is essential for immune cell trafficking. Recent studies have revealed immunomodulatory functions of S1P and its receptors (S1PR1-S1PR5) in many inflammatory conditions, such as asthma and autoimmunity. Here, we explore the efficacy of SEW2871, a selective S1PR1 agonist, in the prevention of acute allograft rejection in a murine cardiac transplantation model. Treatment of recipient mice with SEW2871 significantly prolongs cardiac allograft survival as compared to those recipients treated with control vehicle. The enhanced graft survival is associated with reduced circulating lymphocytes and allograft inflammatory cell infiltration. The cytokine analysis showed decreased allograft expression of TNF-α, IFN-γ and IL-2 in the SEW2871-treated mice. Moreover, administration of SEW2871 increases the percentage of CD4(+) T regulatory cells and FoxP3 expression in spleen of allograft recipients. Therefore, SEW2871 plays a critical role in regulation of lymphocyte trafficking and development, which directly contributes to prolongation of the allograft survival. PMID:25776899

  8. Substrate-dependent utilization of the glycerol 3-phosphate or malate/aspartate redox shuttles by Ehrlich ascites cells.

    PubMed Central

    Grivell, A R; Korpelainen, E I; Williams, C J; Berry, M N

    1995-01-01

    The rate of transfer of reducing equivalents from cytoplasm to mitochondria has been examined in Ehrlich ascites tumour cells incubated in the presence of lactate. The flux of reducing equivalents was determined from the rate of metabolism of reduced intermediates that are oxidized within the cytosol. The magnitude of the flux of reducing equivalents was dependent on both the concentration of added lactate and the presence of carbohydrate. The rate of flux was twice as great in the presence of glucose and four times as high when glucose and lactate were added together as when lactate was the only added substrate. Fructose was less effective than glucose in stimulating reducing equivalent flux. In the presence of glucose or fructose, there was a substantial accumulation of hexose phosphates, dihydroxyacetone phosphate and glycerol 3-phosphate. Rotenone, an inhibitor of NADH dehydrogenase, and amino-oxyacetate, which inhibits the malate/aspartate shuttle, were powerful suppressors of reducing equivalent flux from lactate as sole substrate, but were much less potent in the presence of carbohydrate. Antimycin substantially inhibited reducing equivalent flux from all combinations of added substrates, consistent with its ability to block oxidation of reducing equivalents transferred by both the malate/aspartate and glycerol 3-phosphate shuttles. The glycerol 3-phosphate shuttle represents around 80% of the maximum total observed activity but is active only while glycolytic intermediates are present to provide the necessary substrates of the shuttle. This Ehrlich ascites cell line has an essentially similar total reducing equivalent shuttle capacity to that of isolated hepatocytes. PMID:7654209

  9. Sphingosine 1-phosphate signaling pathway in inner ear biology. New therapeutic strategies for hearing loss?

    PubMed Central

    Romero-Guevara, Ricardo; Cencetti, Francesca; Donati, Chiara; Bruni, Paola

    2015-01-01

    Hearing loss is one of the most prevalent conditions around the world, in particular among people over 60 years old. Thus, an increase of this affection is predicted as result of the aging process in our population. In this context, it is important to further explore the function of molecular targets involved in the biology of inner ear sensory cells to better individuate new candidates for therapeutic application. One of the main causes of deafness resides into the premature death of hair cells and auditory neurons. In this regard, neurotrophins and growth factors such as insulin like growth factor are known to be beneficial by favoring the survival of these cells. An elevated number of published data in the last 20 years have individuated sphingolipids not only as structural components of biological membranes but also as critical regulators of key biological processes, including cell survival. Ceramide, formed by catabolism of sphingomyelin (SM) and other complex sphingolipids, is a strong inducer of apoptotic pathway, whereas sphingosine 1-phosphate (S1P), generated by cleavage of ceramide to sphingosine and phosphorylation catalyzed by two distinct sphingosine kinase (SK) enzymes, stimulates cell survival. Interestingly S1P, by acting as intracellular mediator or as ligand of a family of five distinct S1P receptors (S1P1–S1P5), is a very powerful bioactive sphingolipid, capable of triggering also other diverse cellular responses such as cell migration, proliferation and differentiation, and is critically involved in the development and homeostasis of several organs and tissues. Although new interesting data have become available, the information on S1P pathway and other sphingolipids in the biology of the inner ear is limited. Nonetheless, there are several lines of evidence implicating these signaling molecules during neurogenesis in other cell populations. In this review, we discuss the role of S1P during inner ear development, also as guidance for future

  10. Elevation of serum sphingosine-1-phosphate attenuates impaired cardiac function in experimental sepsis.

    PubMed

    Coldewey, Sina M; Benetti, Elisa; Collino, Massimo; Pfeilschifter, Josef; Sponholz, Christoph; Bauer, Michael; Huwiler, Andrea; Thiemermann, Christoph

    2016-01-01

    Serum levels of the lipid mediator sphingosine-1-phosphate (S1P) are reduced in septic patients and are inversely associated with disease severity. We show that serum S1P is reduced in human sepsis and in murine models of sepsis. We then investigated whether pharmacological or genetic approaches that alter serum S1P may attenuate cardiac dysfunction and whether S1P signaling might serve as a novel theragnostic tool in sepsis. Mice were challenged with lipopolysaccharide and peptidoglycan (LPS/PepG). LPS/PepG resulted in an impaired systolic contractility and reduced serum S1P. Administration of the immunomodulator FTY720 increased serum S1P, improved impaired systolic contractility and activated the phosphoinositide 3-kinase (PI3K)-pathway in the heart. Cardioprotective effects of FTY720 were abolished following administration of a S1P receptor 2 (S1P2) antagonist or a PI3K inhibitor. Sphingosine kinase-2 deficient mice had higher endogenous S1P levels and the LPS/PepG-induced impaired systolic contractility was attenuated in comparison with wild-type mice. Cardioprotective effects of FTY720 were confirmed in polymicrobial sepsis. We show here for the first time that the impaired left ventricular systolic contractility in experimental sepsis is attenuated by FTY720. Mechanistically, our results indicate that activation of S1P2 by increased serum S1P and the subsequent activation of the PI3K-Akt survival pathway significantly contributes to the observed cardioprotective effect of FTY720. PMID:27277195