Science.gov

Sample records for 1-propanol

  1. 40 CFR 721.525 - 1-propanol, 3-propoxy-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.525 1-propanol, 3-propoxy-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-propanol, 3-propoxy- (PMN P-00-0827; CAS No....

  2. 40 CFR 721.525 - 1-propanol, 3-propoxy-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.525 1-propanol, 3-propoxy-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-propanol, 3-propoxy- (PMN P-00-0827; CAS No....

  3. Dehydratase mediated 1-propanol production in metabolically engineered Escherichia coli

    PubMed Central

    2011-01-01

    Background With the increasing consumption of fossil fuels, the question of meeting the global energy demand is of great importance in the near future. As an effective solution, production of higher alcohols from renewable sources by microorganisms has been proposed to address both energy crisis and environmental concerns. Higher alcohols contain more than two carbon atoms and have better physiochemical properties than ethanol as fuel substitutes. Results We designed a novel 1-propanol metabolic pathway by expanding the well-known 1,2-propanediol pathway with two more enzymatic steps catalyzed by a 1,2-propanediol dehydratase and an alcohol dehydrogenase. In order to engineer the pathway into E. coli, we evaluated the activities of eight different methylglyoxal synthases which play crucial roles in shunting carbon flux from glycolysis towards 1-propanol biosynthesis, as well as two secondary alcohol dehydrogenases of different origins that reduce both methylglyoxal and hydroxyacetone. It is evident from our results that the most active enzymes are the methylglyoxal synthase from Bacillus subtilis and the secondary alcohol dehydrogenase from Klebsiella pneumoniae, encoded by mgsA and budC respectively. With the expression of these two genes and the E. coli ydjG encoding methylglyoxal reductase, we achieved the production of 1,2-propanediol at 0.8 g/L in shake flask experiments. We then characterized the catalytic efficiency of three different diol dehydratases on 1,2-propanediol and identified the optimal one as the 1,2-propanediol dehydratase from Klebsiella oxytoca, encoded by the operon ppdABC. Co-expressing this enzyme with the above 1,2-propanediol pathway in wild type E. coli resulted in the production of 1-propanol at a titer of 0.25 g/L. Conclusions We have successfully established a new pathway for 1-propanol production by shunting the carbon flux from glycolysis. To our knowledge, it is the first time that this pathway has been utilized to produce 1

  4. Excess molar enthalpies of ternary mixtures for propanone or benzene + aniline + 2-methyl-1-propanol and of binary mixtures for propanone or aniline + 2-methyl-1-propanol at 298.15 K

    SciTech Connect

    Nagata, Isamu; Tamura, Kazuhiro; Miyai, Koichi

    1996-11-01

    Experimental excess molar enthalpies for the ternary mixtures 2-methyl-1-propanol + aniline + propanone and 2-methyl-1-propanol + aniline + benzene and their constituent binary mixtures 2-methyl-1-propanol + aniline and 2-methyl-1-propanol + propanone at the temperature 298.15 K, measured by using an isothermal dilution calorimeter, are reported. The results have been analyzed using a polynomial equation and the UNIQUAC-associated solution model with binary and ternary parameters.

  5. Manipulating the sleeping beauty mutase operon for the production of 1-propanol in engineered Escherichia coli

    PubMed Central

    2013-01-01

    Background While most resources in biofuels were directed towards implementing bioethanol programs, 1-propanol has recently received attention as a promising alternative biofuel. Nevertheless, no microorganism has been identified as a natural 1-propanol producer. In this study, we manipulated a novel metabolic pathway for the synthesis of 1-propanol in the genetically tractable bacterium Escherichia coli. Results E. coli strains capable of producing heterologous 1-propanol were engineered by extending the dissimilation of succinate via propionyl-CoA. This was accomplished by expressing a selection of key genes, i.e. (1) three native genes in the sleeping beauty mutase (Sbm) operon, i.e. sbm-ygfD-ygfG from E. coli, (2) the genes encoding bifunctional aldehyde/alcohol dehydrogenases (ADHs) from several microbial sources, and (3) the sucCD gene encoding succinyl-CoA synthetase from E. coli. Using the developed whole-cell biocatalyst under anaerobic conditions, production titers up to 150 mg/L of 1-propanol were obtained. In addition, several genetic and chemical effects on the production of 1-propanol were investigated, indicating that certain host-gene deletions could abolish 1-propanol production as well as that the expression of a putative protein kinase (encoded by ygfD/argK) was crucial for 1-propanol biosynthesis. Conclusions The study has provided a novel route for 1-propanol production in E. coli, which is subjected to further improvement by identifying limiting conversion steps, shifting major carbon flux to the productive pathway, and optimizing gene expression and culture conditions. PMID:24074355

  6. Solvation in highly nonideal solutions: A study of aqueous 1-propanol using the coumarin 153 probe

    NASA Astrophysics Data System (ADS)

    Shirota, Hideaki; Castner, Edward W.

    2000-02-01

    We have investigated the anomalous behavior of aqueous 1-propanol binary solutions using a typical fluorescence probe molecule, coumarin 153. We present data on the fluorescence lifetimes, fluorescence anisotropies, and solvent reorganization dynamics, as well as the steady-state absorption and emission spectra of coumarin 153 in the binary solutions. The rotational diffusion and solvation time constants depend strongly on the content of 1-propanol, especially at low 1-propanol mole fractions. Spectroscopic results presented here are consistent with prior light scattering [G. H. Großmann and K. H. Ebert, Ber. Bunsenges. Phys. Chem. 85, 1026 (1981)], small angle x-ray scattering [H. Hayashi, K. Nishikawa, and T. Iijima, J. Phys. Chem. 94, 8334 (1990)], and dielectric relaxation [S. Mashimo, T. Umehara, and H. Redlin, J. Chem. Phys. 95, 6257 (1991)] data. The anomalous dynamics features likely arise from the effect of the preferential solvation due to the 1-propanol clustering.

  7. Dehydration pathways of 1-propanol on HZSM-5 in the presence and absence of water

    SciTech Connect

    Zhi, Yuchun; Shi, Hui; Mu, Linyu; Liu, Yue; Mei, Donghai; Camaioni, Donald M.; Lercher, Johannes A.

    2015-12-23

    The Brønsted acid-catalyzed gas-phase dehydration of 1-propanol (0.075-4 kPa) was studied on zeolite H-MFI (Si/Al = 26, containing minimal amounts of extraframework Al moieties) in the absence and presence of co-fed water (0-2.5 kPa) at 413-443 K. It is shown that propene can be formed from monomeric and dimeric adsorbed 1-propanol. The stronger adsorption of 1-propanol relative to water indicates that the reduced dehydration rates in the presence of water are not a consequence of the competitive adsorption between 1-propanol and water. Instead, the deleterious effect is related to the different extents of stabilization of adsorbed intermediates and the relevant elimination/substitution transition states by water. Water stabilizes the adsorbed 1-propanol monomer significantly more than the elimination transition state, leading to a higher activation barrier and a greater entropy gain for the rate-limiting step, which eventually leads to propene. In a similar manner, an excess of 1-propanol stabilizes the adsorbed state of 1-propanol more than the elimination transition state. In comparison with the monomer-mediated pathway, adsorbed dimer and the relevant transition states for propene and ether formation are similarly, while less effectively, stabilized by intrazeolite water molecules. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, and was performed in part using the Molecular Sciences Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located and the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE.

  8. Fermentative production of 1-propanol from sugars using wild-type and recombinant Shimwellia blattae.

    PubMed

    Urano, Nobuyuki; Fujii, Misaki; Kaino, Hiroshi; Matsubara, Mitsuru; Kataoka, Michihiko

    2015-02-01

    Shimwellia blattae is an enteric bacterium and produces endogenous enzymes that convert 1,2-propanediol (1,2-PD) to 1-propanol, which is expected to be used as a fuel substitute and a precursor of polypropylene. Therefore, if S. blattae could be induced to generate its own 1,2-PD from sugars, it might be possible to produce 1-propanol from sugars with this microorganism. Here, two 1,2-PD production pathways were constructed in S. blattae, resulting in two methods for 1-propanol production with the bacterium. One method employed the L-rhamnose utilization pathway, in which L-rhamnose is split into dihydroxyacetone phosphate and 1,2-PD. When wild-type S. blattae was cultured with L-rhamnose, an accumulation of 1,2-PD was observed. The other method for producing 1,2-PD was to introduce an engineered 1,2-PD production pathway from glucose into S. blattae. In both cases, the produced 1,2-PD was then converted to 1-propanol by 1,2-PD converting enzymes, whose production was induced by the addition of glycerol. PMID:25547843

  9. Optimization of lipase-catalyzed enantioselective production of 1-phenyl 1-propanol using response surface methodology.

    PubMed

    Soyer, Asli; Bayraktar, Emine; Mehmetoglu, Ulku

    2010-01-01

    Optically active 1-phenyl 1-propanol is used as a chiral building block and synthetic intermediate in the pharmaceutical industries. In this study, the enantioselective production of 1-phenyl 1-propanol was investigated systematically using response surface methodology (RSM). Before RSM was applied, the effects of the enzyme source, the type of acyl donor, and the type of solvent on the kinetic resolution of 1-phenyl 1-propanol were studied. The best results were obtained with Candida antartica lipase (commercially available as Novozym 435), vinyl laurate as the acyl donor, and isooctane as the solvent. In the RSM, substrate concentration, molar ratio of acyl donor to the substrate, amount of enzyme, temperature, and stirring rate were chosen as independent variables. The predicted optimum conditions for a higher enantiomeric excess (ee) were as follows: substrate concentration, 233 mM; molar ratio of acyl donor to substrate, 1.5; enzyme amount, 116 mg; temperature, 47 °C; and stirring rate, 161 rpm. A verification experiment conducted at these optimized conditions for maximum ee yielded 91% for 3 hr, which is higher than the predicted value of 83%. The effect of microwave on the ee was also investigated and ee reached 87% at only 5 min. PMID:21108142

  10. Metabolic engineering of Escherichia coli for the production of 1-propanol.

    PubMed

    Choi, Yong Jun; Park, Jin Hwan; Kim, Tae Yong; Lee, Sang Yup

    2012-09-01

    An engineered Escherichia coli strain that produces 1-propanol under aerobic condition was developed based on an L-threonine-overproducing E. coli strain. First, a feedback resistant ilvA gene encoding threonine dehydratase was introduced and the competing metabolic pathway genes were deleted. Further engineering was performed by overexpressing the cimA gene encoding citramalate synthase and the ackA gene encoding acetate kinase A/propionate kinase II, introducing a modified adhE gene encoding an aerobically functional AdhE, and by deleting the rpoS gene encoding the stationary phase sigma factor. Fed-batch culture of the final engineered strain harboring pBRthrABC-tac-cimA-tac-ackA and pTacDA-tac-adhE(mut) allowed production of 10.8 g L(-1) of 1-propanol with the yield and productivity of 0.107 g g(-1) and 0.144 g L(-1) h(-1), respectively, from 100 g L(-1) of glucose, and 10.3 g L(-1) of 1-propanol with the yield and productivity of 0.259 g g(-1) and 0.083 g L(-1) h(-1), respectively, from 40 g L(-1) glycerol. PMID:22871504

  11. Liquid 1-propanol studied by neutron scattering, near-infrared, and dielectric spectroscopy

    SciTech Connect

    Sillrén, P.; Matic, A.; Karlsson, M.; Koza, M.; Maccarini, M.; Fouquet, P.; Götz, M.; Bauer, Th.; Gulich, R.; Lunkenheimer, P.; Loidl, A.; Mattsson, J.; Gainaru, C.; Vynokur, E.; Schildmann, S.; Bauer, S.; Böhmer, R.

    2014-03-28

    Liquid monohydroxy alcohols exhibit unusual dynamics related to their hydrogen bonding induced structures. The connection between structure and dynamics is studied for liquid 1-propanol using quasi-elastic neutron scattering, combining time-of-flight and neutron spin-echo techniques, with a focus on the dynamics at length scales corresponding to the main peak and the pre-peak of the structure factor. At the main peak, the structural relaxation times are probed. These correspond well to mechanical relaxation times calculated from literature data. At the pre-peak, corresponding to length scales related to H-bonded structures, the relaxation times are almost an order of magnitude longer. According to previous work [C. Gainaru, R. Meier, S. Schildmann, C. Lederle, W. Hiller, E. Rössler, and R. Böhmer, Phys. Rev. Lett. 105, 258303 (2010)] this time scale difference is connected to the average size of H-bonded clusters. The relation between the relaxation times from neutron scattering and those determined from dielectric spectroscopy is discussed on the basis of broad-band permittivity data of 1-propanol. Moreover, in 1-propanol the dielectric relaxation strength as well as the near-infrared absorbance reveal anomalous behavior below ambient temperature. A corresponding feature could not be found in the polyalcohols propylene glycol and glycerol.

  12. Liquid 1-propanol studied by neutron scattering, near-infrared, and dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Sillrén, P.; Matic, A.; Karlsson, M.; Koza, M.; Maccarini, M.; Fouquet, P.; Götz, M.; Bauer, Th.; Gulich, R.; Lunkenheimer, P.; Loidl, A.; Mattsson, J.; Gainaru, C.; Vynokur, E.; Schildmann, S.; Bauer, S.; Böhmer, R.

    2014-03-01

    Liquid monohydroxy alcohols exhibit unusual dynamics related to their hydrogen bonding induced structures. The connection between structure and dynamics is studied for liquid 1-propanol using quasi-elastic neutron scattering, combining time-of-flight and neutron spin-echo techniques, with a focus on the dynamics at length scales corresponding to the main peak and the pre-peak of the structure factor. At the main peak, the structural relaxation times are probed. These correspond well to mechanical relaxation times calculated from literature data. At the pre-peak, corresponding to length scales related to H-bonded structures, the relaxation times are almost an order of magnitude longer. According to previous work [C. Gainaru, R. Meier, S. Schildmann, C. Lederle, W. Hiller, E. Rössler, and R. Böhmer, Phys. Rev. Lett. 105, 258303 (2010)] this time scale difference is connected to the average size of H-bonded clusters. The relation between the relaxation times from neutron scattering and those determined from dielectric spectroscopy is discussed on the basis of broad-band permittivity data of 1-propanol. Moreover, in 1-propanol the dielectric relaxation strength as well as the near-infrared absorbance reveal anomalous behavior below ambient temperature. A corresponding feature could not be found in the polyalcohols propylene glycol and glycerol.

  13. Dissociative ionization of the 1-propanol dimer in a supersonic expansion under tunable synchrotron VUV radiation.

    PubMed

    Tao, Yanmin; Hu, Yongjun; Xiao, Weizhan; Guan, Jiwen; Liu, Fuyi; Shan, Xiaobin; Sheng, Liusi

    2016-05-11

    Photoionization and dissociation of the 1-propanol dimer and subsequent fragmentations have been investigated by synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry and theoretical calculations. Besides the protonated monomer cation (C3H7OH)·H(+) (m/z = 61) and Cα-Cβ bond cleavage fragment CH2O·(C3H7OH)H(+) (m/z = 91), the measured mass spectrum at an incident photon energy of 13 eV suggests a new dissociation channel resulting in the formation of the (C3H7OH)·H(+)·(C2H5OH) (m/z = 107) fragment. The appearance energies of the fragments (C3H7OH)·H(+), CH2O·(C3H7OH)H(+) and (C3H7OH)·H(+)·(C2H5OH) are measured at 10.05 ± 0.05 eV, 9.48 ± 0.05 eV, and 12.8 ± 0.1 eV, respectively, by scanning photoionization efficiency (PIE) spectra. The 1-propanol ion fragments as a function of VUV photon energy were interpreted with the aid of theoretical calculations. In addition to O-H and Cα-Cβ bond cleavage, a new dissociation channel related to Cβ-Cγ bond cleavage opens. In this channel, molecular rearrangement (proton transfer and hydrogen transfer after surmounting an energy barrier) gives rise to the generated complex, which then dissociates to produce the mixed propanol/ethanol proton bound cation (C3H7OH)·H(+)·(C2H5OH). This new dissociation channel has not been reported in previous studies of ethanol and acetic acid dimers. The photoionization and dissociation processes of the 1-propanol dimer are described in the photon energy range of 9-15 eV. PMID:27141555

  14. Fluid Phase Topology of Benzene + Cyclohexane + 1-Propanol at 101.3 kPa

    NASA Astrophysics Data System (ADS)

    Andrade, R. S.; Iglesias, M.

    2015-07-01

    Isobaric vapor-liquid equilibria for the benzene + cyclohexane + 1-propanol ternary mixture were experimentally investigated at atmospheric pressure. Data were tested and considered thermodynamically consistent by means of the McDermott and Ellis method. The experimental results showed that this ternary mixture is completely miscible and exhibits three binary minimum homogeneous azeotropes and a ternary minimum azeotrope at the studied conditions. Satisfactory results were obtained for correlation of equilibrium compositions with the UNIQUAC equation and also for prediction with the UNIFAC method. In both cases, low root-mean-square deviations of the vapor mole fraction and temperature were calculated. The capability of 1-propanol as a modified distillation agent at atmospheric conditions is discussed in terms of thermodynamic topological analysis. However, because of the complex topology of the ternary mixture, it leads to a distillation scheme with two columns specifying ternary azeotrope recycling and difficult operation. Thus, this compound is not recommended as a separation agent for the binary benzene + cyclohexane azeotrope.

  15. Homogeneous nucleation rate measurements of 1-propanol in helium: the effect of carrier gas pressure.

    PubMed

    Brus, David; Zdímal, Vladimír; Stratmann, Frank

    2006-04-28

    Kinetics of homogeneous nucleation in supersaturated vapor of 1-propanol was studied using an upward thermal diffusion cloud chamber. Helium was used as a noncondensable carrier gas and the influence of its pressure on observed nucleation rates was investigated. The isothermal nucleation rates were determined by a photographic method that is independent on any nucleation theory. In this method, the trajectories of growing droplets are recorded using a charge coupled device camera and the distribution of local nucleation rates is determined by image analysis. The nucleation rate measurements of 1-propanol were carried out at four isotherms 260, 270, 280, and 290 K. In addition, the pressure dependence was investigated on the isotherms 290 K (50, 120, and 180 kPa) and 280 K (50 and 120 kPa). The isotherm 270 K was measured at 25 kPa and the isotherm 260 K at 20 kPa. The experiments confirm the earlier observations from several thermal diffusion chamber investigations that the homogeneous nucleation rate of 1-propanol tends to increase with decreasing total pressure in the chamber. In order to reduce the possibility that the observed phenomenon is an experimental artifact, connected with the generally used one-dimensional description of transfer processes in the chamber, a recently developed two-dimensional model of coupled heat, mass, and momentum transfer inside the chamber was used and results of both models were compared. It can be concluded that the implementation of the two-dimensional model does not explain the observed effect. Furthermore the obtained results were compared both to the predictions of the classical theory and to the results of other investigators using different experimental devices. Plotting the experimental data on the so-called Hale plot shows that our data seem to be consistent both internally and also with the data of others. Using the nucleation theorem the critical cluster sizes were obtained from the slopes of the individual isotherms

  16. Ab initio Study on Ionization Energies of 3-Amino-1-propanol

    NASA Astrophysics Data System (ADS)

    Wang, Ke-dong; Jia, Ying-bin; Lai, Zhen-jiang; Liu, Yu-fang

    2011-06-01

    Fourteen conformers of 3-amino-1-propanol as the minima on the potential energy surface are examined at the MP2/6-311++G** level. Their relative energies calculated at B3LYP, MP3 and MP4 levels of theory indicated that two most stable conformers display the intramolecular OH···N hydrogen bonds. The vertical ionization energies of these conformers calculated with ab initio electron propagator theory in the P3/aug-cc-pVTZ approximation are in agreement with experimental data from photoelectron spectroscopy. Natural bond orbital analyses were used to explain the differences of IEs of the highest occupied molecular ortibal of conformers. Combined with statistical mechanics principles, conformational distributions at various temperatures are obtained and the temperature dependence of photoelectron spectra is interpreted.

  17. Gas-phase pyrolysis mechanisms of 3-anilino-1-propanol: Density functional theory study

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Tang, Ming-Sheng; Wei, Dong-Hui; Zhao, Chu-Feng; Zhang, Wen-Jing; Wang, Hong-Ming

    The gas-phase pyrolytic decomposition mechanisms of 3-anilino-1-propanol with the products of aniline, ethylene, and formaldehyde or N-methyl aniline and aldehyde were studied by density functional theory. The geometries of the reactant, transition states, and intermediates were optimized at the B3LYP/6-31G (d, p) level. Vibration analysis was carried out to confirm the transition state structures, and the intrinsic reaction coordinate method was performed to search the minimum energy path. Four possible reaction channels are shown, including two concerted reactions of direct pyrolytic decomposition and two indirect channels in which the reactant first becomes a ring-like intermediate, followed by concerted pyrogenation. One of the concerted reactions in the direct pyrolytic decomposition has the lowest activation barrier among all the four channels, and so, it occurs more often than others. The results appear to be consistent with the experimental outcomes.

  18. Synergy as design principle for metabolic engineering of 1-propanol production in Escherichia coli.

    PubMed

    Shen, Claire R; Liao, James C

    2013-05-01

    Synthesis of a desired product can often be achieved via more than one metabolic pathway. Whether naturally evolved or synthetically engineered, these pathways often exhibit specific properties that are suitable for production under distinct conditions and host organisms. Synergy between pathways arises when the underlying pathway characteristics, such as reducing equivalent demand, ATP requirement, intermediate utilization, and cofactor preferences, are complementary to each other. Utilization of such pathways in combination leads to an increased metabolite productivity and/or yield compared to using each pathway alone. This work illustrates the principle of synergy between two different pathways for 1-propanol production in Escherichia coli. A model-guided design based on maximum theoretical yield calculations identified synergy of the native threonine pathway and the heterologous citramalate pathway in terms of production yield across all flux ratios between the two pathways. Characterization of the individual pathways by host gene deletions demonstrates their distinct metabolic characteristics: the necessity of TCA cycle for threonine pathway and the independence of TCA cycle for the citramalate pathway. The two pathways are also complementary in driving force demands. Production experiments verified the synergistic effects predicted by the yield model, in which the platform with dual pathway for 2-ketobutyrate synthesis achieved higher yield (0.15g/g of glucose) and productivity (0.12g/L/h) of 1-propanol than individual ones alone: the threonine pathway (0.09g/g; 0.04g/L/h) or the citramalate pathway (0.11g/g; 0.04g/L/h). Thus, incorporation of synergy into the design principle of metabolic engineering may improve the production yield and rate of the desired compound. PMID:23376654

  19. Intermolecular interactions in mixtures of ethyl formate with methanol, ethanol, and 1-propanol on density, viscosity, and ultrasonic data

    NASA Astrophysics Data System (ADS)

    Elangovan, S.; Mullainathan, S.

    2014-12-01

    Density (ρ), viscosity (η), and ultrasonic velocity ( U) have been measured for binary mixtures of ethyl formate with methanol, ethanol, and 1-propanol at 303 K. From the experimental data, adiabatic compressibility (β), acoustic impedance ( Z), viscous relaxation time (τ), free length ( L f), free volume ( V f), internal pressure (πi), and Gibbs free energy (Δ G) have been deduced. It is shown that strength of intermolecular interactions between ethyl formate with selected 1-alcohols were in the order of methanol < ethanol < 1-propanol.

  20. Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli.

    PubMed

    Atsumi, Shota; Liao, James C

    2008-12-01

    Biofuels synthesized from renewable resources are of increasing interest because of global energy and environmental problems. We have previously demonstrated production of higher alcohols from Escherichia coli using a 2-keto acid-based pathway. Here, we took advantage of the growth phenotype associated with 2-keto acid deficiency to construct a hyperproducer of 1-propanol and 1-butanol by evolving citramalate synthase (CimA) from Methanococcus jannaschii. This new pathway, which directly converts pyruvate to 2-ketobutyrate, bypasses threonine biosynthesis and represents the shortest keto acid-mediated pathway for producing 1-propanol and 1-butanol from glucose. Directed evolution of CimA enhanced the specific activity over a wide temperature range (30 to 70 degrees C). The best CimA variant was found to be insensitive to feedback inhibition by isoleucine in addition to the improved activity. This CimA variant enabled 9- and 22-fold higher production levels of 1-propanol and 1-butanol, respectively, compared to the strain expressing the wild-type CimA. This work demonstrates (i) the first production of 1-propanol and 1-butanol using the citramalate pathway and (ii) the benefit of the 2-keto acid pathway that enables a growth-based evolutionary strategy to improve the production of non-growth-related products. PMID:18952866

  1. Statistical thermodynamics of 1-butanol, 2-methyl-1-propanol, and butanal.

    PubMed

    Seal, Prasenjit; Papajak, Ewa; Yu, Tao; Truhlar, Donald G

    2012-01-21

    The purpose of the present investigation is to calculate partition functions and thermodynamic quantities, viz., entropy, enthalpy, heat capacity, and Gibbs free energies, for 1-butanol, 2-methyl-1-propanol, and butanal in the vapor phase. We employed the multi-structural (MS) anharmonicity method and electronic structure calculations including both explicitly correlated coupled cluster theory and density functional theory. The calculations are performed using all structures for each molecule and employing both the local harmonic approximation (MS-LH) and the inclusion of torsional anharmonicity (MS-T). The results obtained from the MS-T calculations are in excellent agreement with experimental data taken from the Thermodynamics Research Center data series and the CRC Handbook of Chemistry and Physics, where available. They are also compared with Benson's empirical group additivity values, where available; in most cases, the present results are more accurate than the group additivity values. In other cases, where experimental data (but not group additivity values) are available, we also obtain good agreement with experiment. This validates the accuracy of the electronic structure calculations when combined with the MS-T method for estimating the thermodynamic properties of systems with multiple torsions, and it increases our confidence in the predictions made with this method for molecules and temperatures where experimental or empirical data are not available. PMID:22280759

  2. Conductance of electrolytes in 1-propanol solutions from -40 to 25 degrees C

    SciTech Connect

    Barthel, J.; Hilbinger, H.; Schmeer, G.; Wachter, R.

    1986-07-01

    Conductance data for solutions of LiCl, NaBr, Nal, Kl, KSCN, Rbl, Et/sub 4/NI, Pr/sub 4/NI, Bu/sub 4/NI, Bu/sub 4/NClO/sub 4/, n-Am/sub 4/NI, n-Hept/sub 4/NI, Me/sub 2/Bu/sub 2/NI, MeBu/sub 3/NI, EtBu/sub 3/NI, i-Am/sub 3/BuNI, and i-Am/sub 3/BuNBPh/sub 4/ in 1-propanol at -40, -30, -20, -10, 0, 10, and 25 degrees C are communicated and discussed. Evaluation of the data is performed on the basis of a conductance equation that includes a term in c /SUP 3/2/ . Single ion conductances at 25 and 10 degrees C are determined with the help of transference numbers t/sub 0//sup +/ (KSCN/PrOH); the data are compared to data estimated by other methods. Ion-pair association constants and their temperature dependence are discussed in terms of contact and solvent separated ion pairs, and the role of non-coulombic forces is shown with the help of an appropriate splitting of the Gibbs energy of ion-pair formation.

  3. Ab initio calculations of cooperativity effects on clusters of methanol, ethanol, 1-propanol, and methanethiol

    SciTech Connect

    Sum, A.K.; Sandler, S.I.

    2000-02-17

    The results of ab initio calculations for cyclic clusters of methanol, ethanol, 1-propanol, and methanethiol are presented. Dimer, trimer, and tetramer clusters of all four compounds are studied, as are pentamer and hexamer clusters of methanol. From optimized clusters at HG/6--31G**, total energies and binding energies were calculated with both the HF and MP2 theories using the aug-cc-pVDZ basis set. Accurate binding energies were also calculated for the dimer and trimer of methanol using symmetry-adapted perturbation theory with the same basis set. Intermolecular and intramolecular distances, charge distribution of binding sites, binding energies, and equilibrium constants were computed to determine the hydrogen bond cooperativity effect for each species. The cooperativity effect, exclusive to hydrogen bonding systems, results form specific forces among the molecules, in particular charge-transfer processes and the greater importance of interactions between molecules not directly hydrogen bonded because of the longer range of the interactions. The ratios of equilibrium constants for forming multimer hydrogen bonds to that for dimer hydrogen bond formation increase rapidly with the cluster size, in contrast to the constant value commonly used in thermodynamic models for hydrogen bonding liquids.

  4. Production of the aroma chemicals 3-(methylthio)-1-propanol and 3-(methylthio)-propylacetate with yeasts.

    PubMed

    Etschmann, M M W; Kötter, P; Hauf, J; Bluemke, W; Entian, K-D; Schrader, J

    2008-09-01

    Yeasts can convert amino acids to flavor alcohols following the Ehrlich pathway, a reaction sequence comprising transamination, decarboxylation, and reduction. The alcohols can be further derivatized to the acetate esters by alcohol acetyl transferase. Using L: -methionine as sole nitrogen source and at high concentration, 3-(methylthio)-1-propanol (methionol) and 3-(methylthio)-propylacetate (3-MTPA) were produced with Saccharomyces cerevisiae. Methionol and 3-MTPA acted growth inhibiting at concentrations of >5 and >2 g L(-1), respectively. With the wild type strain S. cerevisiae CEN.PK113-7D, 3.5 g L(-1) methionol and trace amounts of 3-MTPA were achieved in a bioreactor. Overexpression of the alcohol acetyl transferase gene ATF1 under the control of a TDH3 (glyceraldehyde-3-phosphate dehydrogenase) promoter together with an optimization of the glucose feeding regime led to product concentrations of 2.2 g L(-1) 3-MTPA plus 2.5 g L(-1) methionol. These are the highest concentrations reported up to now for the biocatalytic synthesis of these flavor compounds which are applied in the production of savory aroma compositions such as meat, potato, and cheese flavorings. PMID:18597084

  5. 1-phenyl-2-decanoylamino-3-morpholino-1-propanol chemosensitizes neuroblastoma cells for taxol and vincristine.

    PubMed

    Sietsma, H; Veldman, R J; Kolk, D; Ausema, B; Nijhof, W; Kamps, W; Vellenga, E; Kok, J W

    2000-03-01

    In this study, we show that an inhibitor of glycosphin-golipid biosynthesis, D,L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), increases the chemosensitivity of neuroblastoma tumor cells for Taxol and vincristine. At noneffective low doses of Taxol or vincristine, the addition of a noneffective dose of PDMP resulted in 70% cytotoxicity, indicating synergy. Such an effect was not observed for etoposide (VP16). PDMP caused an early (6 h) increase in ceramide (Cer) levels, but the excess Cer was metabolically removed in the long-term (96 h). However, upon incubation with PDMP in combination with Taxol, but not with etoposide, Cer levels remained elevated at 96 h. These results suggest that neuroblastoma cells are normally able to metabolically remove excess Cer, but lose this capacity upon exposure to microtubule modulating anticancer agents (Taxol or vincristine). In addition, PDMP treatment resulted in a decreased efflux of [14C]Taxol and [3H]vincristine from neuroblastoma cells, similar to treatment with PSC833 or MK571, suggesting an effect of PDMP on the transporter proteins P-glycoprotein and/or multidrug resistance protein. PDMP did not further reduce [14C]Taxol or [3H]vincristine efflux in PSC833-treated cells, although it did further diminish cell survival under these conditions. We conclude that a combined administration of nontoxic concentrations of PDMP and either Taxol or vincristine results in highly sensitized neuroblastoma cells. This appears to involve a sustained elevation of Cer levels, possibly in concert with increased drug accumulation. PMID:10741719

  6. Solubility of nitrous oxide in aqueous blends of N-methyldiethanolamine and 2-amino-2-methyl-1-propanol

    SciTech Connect

    Davis, R.A.; Pogainis, B.J.

    1995-11-01

    Aqueous solutions of alkanolamines have applications in acid gas treatment for the removal of acid gases such as carbon dioxide and hydrogen sulfide. The solubility of nitrous oxide in aqueous blends of N-methyldiethanolamine and 2-amino-2-methyl-1 propanol was measured over the temperature range 10--60 C. The total composition of the alkanolamines in water ranged from 30 to 50 mass %. The experimental results were interpreted in terms of Henry`s constants.

  7. Biochemical, genetic, and metabolic engineering strategies to enhance coproduction of 1-propanol and ethanol in engineered Escherichia coli.

    PubMed

    Srirangan, Kajan; Liu, Xuejia; Westbrook, Adam; Akawi, Lamees; Pyne, Michael E; Moo-Young, Murray; Chou, C Perry

    2014-11-01

    We recently reported the heterologous production of 1-propanol in Escherichia coli via extended dissimilation of succinate under anaerobic conditions through expression of the endogenous sleeping beauty mutase (Sbm) operon. In the present work, we demonstrate high-level coproduction of 1-propanol and ethanol by developing novel engineered E. coli strains with effective cultivation strategies. Various biochemical, genetic, metabolic, and physiological factors affecting relative levels of acidogenesis and solventogenesis during anaerobic fermentation were investigated. In particular, CPC-PrOH3, a plasmid-free propanogenic E. coli strain derived by activating the Sbm operon on the genome, showed high levels of solventogenesis accounting for up to 85 % of dissimilated carbon. Anaerobic fed-batch cultivation of CPC-PrOH3 with glycerol as the major carbon source produced high titers of nearly 7 g/L 1-propanol and 31 g/L ethanol, implying its potential industrial applicability. The activated Sbm pathway served as an ancillary channel for consuming reducing equivalents upon anaerobic dissimilation of glycerol, resulting in an enhanced glycerol dissimilation and a major metabolic shift from acidogenesis to solventogenesis. PMID:25301579

  8. Vibrational spectra and assignments of 3-phenylprop-2-en-1-ol (cinnamyl alcohol) and 3-phenyl-1-propanol

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Förner, Wolfgang

    2011-09-01

    The complex conformational behavior of 3-phenylprop-2-en-1-ol (cinnamyl alcohol) and its saturated analogue 3-phenyl-1-propanol were investigated at the DFT-B3LYP/6-311G **, MP2 and MP4(SDQ) levels of theory. The unsaturated 3-phenylprop-2-en-1-ol was predicted to exist in Cg and Gg1 conformational mixture as a result of competitive conjugation and hyperconjugation interactions in the molecule. The saturated 3-phenyl-1-propanol was predicted to exist predominantly in a Ggg structure as a result of predominant steric hindrances in the alcohol. Only the one predominant form was identified in the infrared and Raman spectra of both alcohols. The excellent agreement between the calculated wavenumbers and the observed ones in the infrared and Raman spectra supports the conclusion that each of the two alcohols is present in one predominant form in the condensed phases. The vibrational frequencies of 3-phenylprop-2-en-1-ol and 3-phenyl-1-propanol in their lowest energy forms were computed at the B3LYP level and tentative vibrational assignments were provided on the basis of combined calculated and experimental data.

  9. A study of the conformational stability and the vibrational spectra of 2,3-dichloro-1-propanol

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Ali, Shaikh A.

    2010-02-01

    The conformational stability and the three rotor internal rotations in 2,3-dichloro-1-propanol were investigated at DFT-B3LYP/6-311 + G**, MP2/6-311 + G** and MP4(SDQ) levels of theory. From the calculated potential energy surface, ten distinct minima were located all of which were predicted to have real frequencies at the B3LYP level of theory. The calculated lowest energy minima in the potential curves of the molecule were predicted to correspond to the Ggg and Gtg1 structures. The observed broad and very intense infrared band centered at about 3370 cm -1 supports the existence of the strong intermolecular H-bonding in 2,3-dichloro-1-propanol. The equilibrium constants for the conformational interconversion in the molecule were estimated from the calculated Gibb's energies at the B3LYP/6-311 + G** level of calculation and found to correspond to an equilibrium mixture of about 49% Ggg, 27 % Gtg1, 5% Ggt and 5% Tgg conformations at 298.15 K.

  10. Densities and viscosities of solutions of monoethanolamine + N-Methyldiethanolamine + water and monoethanolamine + 2-amino-2-methyl-1-propanol + water

    SciTech Connect

    Li, M.H.; Lie, Y.C. . Dept. of Chemical Engineering)

    1994-07-01

    The densities and viscosities of aqueous mixtures of monoethanolamine (MEA) with N-methyldiethanolamine (MDEA) and MEA with 2-amino-2-methyl-1-propanol (AMP) have been studied at temperatures from 30 to 80 C. For density measurements, four MEA + MDEA (a total of 20 mass %) + H[sub 2]O mixtures and eight MEA + AMP (20 and 30 mass %) + H[sub 2]O mixtures were studied. For viscosity measurements, ten MEA + MDEA + H[sub 2]O mixtures and eight MEA + AMP + H[sub 2]O mixtures were measured. A Redlich-Kister equation of the excess volume was applied to represent the density of the liquid mixtures. The equation of Grunberg and Nissan of liquid viscosity was used to correlate the viscosity data. Both density and viscosity calculations show satisfactory results.

  11. Prebiotic polymerization: Oxidative polymerization of 2, 3-dimercapto-1-propanol on the surface of iron(III) hydroxide oxide

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1995-01-01

    The oxidation of 2, 3-dimercapto-1-propanol by ferric ions on the surface of iron(III) hydroxide oxide (Fe(OH)O) yielded polydisulfide oligomers. This polymerization occurred readily at low dithiol concentration under mild aqueous conditions. Polydisulfide polymers up to the 15-mer were synthesized from 1 mM dithiol in 5 ml water reacted with iron(III) hydroxide oxide (20 mg, 160 micromole Fe) for 3 days under anaerobic conditions at 40 C and pH 4. About 91% of the dithiol was converted to short soluble oligomers and 9% to insoluble larger oligomers that were isolated with the Fe(OH)O phase. Reactions carried out at the same ratio of dithiol to Fe(OH)O but at higher dithiol concentrations gave higher yields of the larger insoluble oligomers. The relationship of these results to prebiotic polymer synthesis is discussed.

  12. Prebiotic Polymerization: Oxidative Polymerization of 2,3 Dimercapto-1- Propanol on the Surface of Iron(III) Hydroxide Oxide

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1995-01-01

    The oxidation of 2,3-dimercapto-1-propanol by ferric ions on the surface of iron(III) hydroxide oxide (Fe(OH)O) yielded polydisulfide oligomers. This polymerization occurred readily at low dithiol concentration under mild aqueous conditions. Polydisulfide polymers up to the 15-mer were synthesized from 1 mM dithiol in 5 ml water reacted with iron(III) hydroxide oxide (20 mg, 160 micromole Fe) for 3 days under anaerobic conditions at 40 C and pH 4. About 91% of the dithiol was converted to short soluble oligomers and 9% to insoluble larger oligomers that were isolated with the FE(OH)O phase. Reactions carried out at the same ratio of dithiol to FE(OH)O but at higher dithiol concentrations gave higher yields of the larger insoluble oligomers. The relationship of these results to prebiotic polymer synthesis is discussed.

  13. Molecular probe dynamics and free volume in organic glass-formers and their relationships to structural relaxation: 1-propanol

    NASA Astrophysics Data System (ADS)

    Bartoš, J.; Švajdlenková, H.; Šauša, O.; Lukešová, M.; Ehlers, D.; Michl, M.; Lunkenheimer, P.; Loidl, A.

    2016-01-01

    A joint study of the rotational dynamics and free volume in amorphous 1-propanol (1-PrOH) as a prototypical monohydroxy alcohol by electron spin resonance (ESR) or positron annihilation lifetime spectroscopy (PALS), respectively, is reported. The dynamic parameters of the molecular spin probe 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and the annihilation ones of the atomic ortho-positronium (o-Ps) probe as a function of temperature are compared. A number of coincidences between various effects in the ESR and PALS responses at the corresponding characteristic ESR and PALS temperatures were found suggesting a common origin of the underlying dynamic processes that were identified using viscosity (VISC) in terms of the two-order parameter (TOP) model and broadband dielectric spectroscopy (BDS) data.

  14. NBO, conformational, NLO, HOMO-LUMO, NMR and electronic spectral study on 1-phenyl-1-propanol by quantum computational methods.

    PubMed

    Xavier, S; Periandy, S; Ramalingam, S

    2015-02-25

    In this study, FT-IR, FT-Raman, NMR and UV spectra of 1-phenyl-1-propanol, an intermediate of anti-depressant drug fluoxetine, has been investigated. The theoretical vibrational frequencies and optimized geometric parameters have been calculated by using HF and density functional theory with the hybrid methods B3LYP, B3PW91 and 6-311+G(d,p)/6-311++G(d,p) basis sets. The theoretical vibrational frequencies have been found in good agreement with the corresponding experimental data. (1)H and (13)C NMR spectra were recorded and chemical shifts of the molecule were compared to TMS by using the Gauge-Independent Atomic Orbital (GIAO) method. A study on the electronic and optical properties, absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies are performed using HF and DFT methods. The thermodynamic properties (heat capacity, entropy and enthalpy) at different temperatures are also calculated. NBO analysis is carried out to picture the charge transfer between the localized bonds and lone pairs. The local reactivity of the molecule has been studied using the Fukui function. NLO properties related to polarizability and hyperpolarizability are also discussed. PMID:25228039

  15. Novel Dehalogenase Mechanism for 2,3-Dichloro-1-Propanol Utilization in Pseudomonas putida Strain MC4

    PubMed Central

    Arif, Muhammad Irfan; Samin, Ghufrana; van Leeuwen, Jan G. E.; Oppentocht, Jantien

    2012-01-01

    A Pseudomonas putida strain (MC4) that can utilize 2,3-dichloro-1-propanol (DCP) and several aliphatic haloacids and haloalcohols as sole carbon and energy source for growth was isolated from contaminated soil. Degradation of DCP was found to start with oxidation and concomitant dehalogenation catalyzed by a 72-kDa monomeric protein (DppA) that was isolated from cell lysate. The dppA gene was cloned from a cosmid library and appeared to encode a protein equipped with a signal peptide and that possessed high similarity to quinohemoprotein alcohol dehydrogenases (ADHs), particularly ADH IIB and ADH IIG from Pseudomonas putida HK. This novel dehalogenating dehydrogenase has a broad substrate range, encompassing a number of nonhalogenated alcohols and haloalcohols. With DCP, DppA exhibited a kcat of 17 s−1. 1H nuclear magnetic resonance experiments indicated that DCP oxidation by DppA in the presence of 2,6-dichlorophenolindophenol (DCPIP) and potassium ferricyanide [K3Fe(CN)6] yielded 2-chloroacrolein, which was oxidized to 2-chloroacrylic acid. PMID:22752160

  16. NBO, conformational, NLO, HOMO-LUMO, NMR and electronic spectral study on 1-phenyl-1-propanol by quantum computational methods

    NASA Astrophysics Data System (ADS)

    Xavier, S.; Periandy, S.; Ramalingam, S.

    2015-02-01

    In this study, FT-IR, FT-Raman, NMR and UV spectra of 1-phenyl-1-propanol, an intermediate of anti-depressant drug fluoxetine, has been investigated. The theoretical vibrational frequencies and optimized geometric parameters have been calculated by using HF and density functional theory with the hybrid methods B3LYP, B3PW91 and 6-311+G(d,p)/6-311++G(d,p) basis sets. The theoretical vibrational frequencies have been found in good agreement with the corresponding experimental data. 1H and 13C NMR spectra were recorded and chemical shifts of the molecule were compared to TMS by using the Gauge-Independent Atomic Orbital (GIAO) method. A study on the electronic and optical properties, absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies are performed using HF and DFT methods. The thermodynamic properties (heat capacity, entropy and enthalpy) at different temperatures are also calculated. NBO analysis is carried out to picture the charge transfer between the localized bonds and lone pairs. The local reactivity of the molecule has been studied using the Fukui function. NLO properties related to polarizability and hyperpolarizability are also discussed.

  17. Analysis of vibrational spectra of 3-halo-1-propanols CH 2XCH 2CH 2OH (X is Cl and Br)

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Förner, Wolfgang

    2008-12-01

    The conformational stability and the three rotor internal rotations in 3-chloro- and 3-bromo-1-propanols were investigated by DFT-B3LYP/6-311 + G** and ab initio MP2/6-311 + G**, MP3/6-311 + G** and MP4(SDTQ)//MP3/6-311 + G** levels of theory. On the calculated potential energy surface twelve distinct minima were located all of which were not predicted to have imaginary frequencies at the B3LYP level of theory. The calculated lowest energy minimum in the potential curves of both molecules was predicted to correspond to the Gauche- gauche- trans ( Ggt) conformer in excellent agreement with earlier microwave and electron diffraction results. The equilibrium constants for the conformational interconversion of the two 3-halo-1-propanols were calculated at the B3LYP/6-311 + G** level of calculation and found to correspond to an equilibrium mixture of about 32% Ggt, 18% Ggg1, 13% Tgt, 8% Tgg and 8% Gtt conformations for 3-chloro-1-propanol and 34% Ggt, 15% Tgt, 13% Ggg1, 9% Tgg and 7% Gtt conformations for 3-bromo-1-propanol at 298.15 K. The nature of the high energy conformations was verified by carrying out solvent experiments using formamide ( ɛ = 109.5) and MP3 and MP4//MP3 calculations. The vibrational frequencies of each molecule in its three most stable forms were computed at the B3LYP level and complete vibrational assignments were made based on normal coordinate calculations and comparison with experimental data of the molecules.

  18. The enthalpies and entropies of pefloxacin dissolution in methanol, ethanol, 1-Propanol, 2-Propanol, acetone, and chloroform at 293.15-323.15 K

    NASA Astrophysics Data System (ADS)

    Zhang, C.-L.; Cui, S.-J.; Wang, Y.

    2012-12-01

    The solubilities of pefloxacin in methanol, ethanol, 1-propanol, 2-propanol, acetone, and chloroform have been determined from 293.15 to 323.15 K by a static equilibrium method. The experimental data were correlated with the modified Apelblat equation. The positive Δsol H and Δsol S for each system revealed that pefloxacin dissolution in each solvent is an entropy-driven process.

  19. Vapor-liquid equilibrium measurements at 101. 32 kPa for binary mixtures of methyl acetate + ethanol or 1-propanol

    SciTech Connect

    Ortega, J.: Susial, P.; de Alfonso, C. )

    1990-07-01

    This paper reports on isobaric vapor-liquid equilibrium data at 101.32 {plus minus} 0.02 kPa for methyl acetate (1) + ethane (2) or + 1-propanol (2). The results are compared with those predicted by the UNIFAC and ASOG methods. The methyl acetate (1) + ethanol (2) system forms an azeotrope at 329.8 K and a molar concentration of x{sub 1} = 0.958. Both methods predict the vapor-phase compositions equally well, with overall mean errors of less than 5%.

  20. Excess parameters for binary mixtures of ethyl benzoate with 1-propanol, 1-butanol and 1-pentanol at T=303, 308, 313, 318, and 323 K

    NASA Astrophysics Data System (ADS)

    Sreehari Sastry, S.; Babu, Shaik; Vishwam, T.; Parvateesam, K.; Sie Tiong, Ha.

    2013-07-01

    Various thermo-acoustic parameters, such as excess isentropic compressibility (KsE), excess molar volume (VE), excess free length (LfE), excess Gibb's free energy (ΔG*E), and excess Enthalpy (HE), have been calculated from the experimentally determined data of density, viscosity and speed of sound for the binary mixtures of ethyl benzoate+1-propanol, or +1-butanol, or +1-pentanol over the entire range of composition at different temperatures (303, 308, 313, 318 and 323 K). The excess functions have been fitted to the Redlich-Kister type polynomial equation. The deviations for excess thermo-acoustic parameters have been explained on the basis of the intermolecular interactions present in these binary mixtures.

  1. Stability constants and molar absorptivities for complexes of copper(II) with N-methyldiethanolamine, 1,4-bis(2-hydroxypropyl)-2-methylpiperazine, and 2-amino-2-methyl-1-propanol.

    PubMed

    Siefker, J R; Aroc, R V

    1986-09-01

    The stability constants and molar absorptivities of complexes of Cu(2+) with N-methyldiethanolamine, 1,4-bis(2-hydroxypropyl)-2-methylpiperazine, and 2-amino-2-methyl-1-propanol have been determined from spectrophotometric data for very dilute aqueous solutions. PMID:18964197

  2. Toxicology, occurrence and risk characterisation of the chloropropanols in food: 2-monochloro-1,3-propanediol, 1,3-dichloro-2-propanol and 2,3-dichloro-1-propanol.

    PubMed

    Andres, Susanne; Appel, Klaus E; Lampen, Alfonso

    2013-08-01

    Great attention has been paid to chloropropanols like 3-monochloro-1,2-propanediol and the related substance glycidol due to their presence in food and concerns about their toxic potential as carcinogens. The other chloropropanols 2-monochloro-1,3-propanediol, 1,3-dichloro-2-propanol and 2,3-dichloro-1-propanol have been found in certain foods, but occurrence data are generally limited for these compounds. 1,3-dichloro-2-propanol has the most toxicological relevance showing clear carcinogenic effects in rats possibly via a genotoxic mechanism. The dietary exposure to 1,3-dichloro-2-propanol is quite low. Calculated "Margins of Exposure" values are above 10,000. It is concluded that the 1,3-dichloro-2-propanol exposure is of low concern for human health. The toxicology of 2,3-dichloro-1-propanol has not been adequately investigated. Its toxicological potential regarding hepatotoxic effects seems to be lower than that of 1,3-dichloro-2-propanol. Limited data show that 2,3-dichloro-1-propanol occurs only in trace amounts in food, indicating that exposure to 2,3-dichloro-1-propanol seems to be also of low concern for human health. The dietary 2-monochloro-1,3-propanediol burden appears to be lower than that of 3-monochloro-1,2-propanediol. An adequate risk assessment for 2-monochloro-1,3-propanediol cannot be performed due to limited data on the toxicology and occurrence in food. This article reviews the relevant information about the toxicology, occurrence and dietary exposure to the chloropropanols 2-monochloro-1,3-propanediol, 1,3-dichloro-2-propanol and 2,3-dichloro-1-propanol. PMID:23712097

  3. Evidence of the weakness of the OH⋯F hydrogen bond from a conformational study of 3-fluoro-1-propanol by microwave spectroscopy

    NASA Astrophysics Data System (ADS)

    Caminati, Walther

    1982-03-01

    The rotational spectra of the OH and OD isotopic species have been observed for three rotamers of 3-fluoro-1-propanol. One of them (HBC form) displays an internal hydrogen bond with a distorted chair conformation of the six-membered ring. The other two rotamers have the oxygen atom gauche with respect to the C 2C 3 bond, the hydroxyl hydrogen trans with respect to the C 1C 2 bond and the fluorine atom gauche (GGT form) and trans (TGT form), respectively, with respect to the C 2C 1 bond. The energies of the vibrational ground states of the HBC and TGT forms are ˜0.4 and 1.0 kcal/mole higher than that of the GGT form, respectively (from relative intensity measurements). The hydrogen bond is therefore rather weak in this compound. With compounds capable of forming OH⋯O or OH⋯N bonds, the conformation appropriate for hydrogen bonding is normally the most stable form. Several excited states have been analyzed for the TGT and GGT rotamers in order to have additional data with respect to the potential function for the internal rotation about the C 3C 2 bond.

  4. D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol alters cellular cholesterol homeostasis by modulating the endosome lipid domains.

    PubMed

    Makino, Asami; Ishii, Kumiko; Murate, Motohide; Hayakawa, Tomohiro; Suzuki, Yusuke; Suzuki, Minoru; Ito, Kazuki; Fujisawa, Tetsuro; Matsuo, Hirotami; Ishitsuka, Reiko; Kobayashi, Toshihide

    2006-04-11

    D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP) is a frequently used inhibitor of glycosphingolipid biosynthesis. However, some interesting characteristics of D-PDMP cannot be explained by the inhibition of glycolipid synthesis alone. In the present study, we showed that d-PDMP inhibits the activation of lysosomal acid lipase by late endosome/lysosome specific lipid, bis(monoacylglycero)phosphate (also called as lysobisphosphatidic acid), through alteration of membrane structure of the lipid. When added to cultured fibroblasts, D-PDMP inhibits the degradation of low-density lipoprotein (LDL) and thus accumulates both cholesterol ester and free cholesterol in late endosomes/lysosomes. This accumulation results in the inhibition of LDL-derived cholesterol esterification and the decrease of cell surface cholesterol. We showed that D-PDMP alters cellular cholesterol homeostasis in a glycosphingolipid-independent manner using L-PDMP, a stereoisomer of D-PDMP, which does not inhibit glycosphingolipid synthesis, and mutant melanoma cell which is defective in glycolipid synthesis. Altering cholesterol homeostasis by D-PDMP explains the unique characteristics of sensitizing multidrug resistant cells by this drug. PMID:16584188

  5. Thermal chemistry of 2-halo-1-propanols on Ni(1 1 1) and Cu(1 1 1) surfaces: A UBI-QEP energetic modeling

    NASA Astrophysics Data System (ADS)

    Mirzanejad, Amir

    2015-12-01

    The effect of β-halogen substitutions on the thermal chemistry of 1-propanol over Ni(1 1 1) and Cu(1 1 1) single-crystal surfaces was investigated using the method of unity bond index-quadratic exponential potential (UBI-QEP). This method was employed to investigate the energetics of the catalytic conversion routes of the ad-molecule mainly at the zero-coverage limit by calculating activation barriers and enthalpy changes for surface reactions. The alcohol molecule can be oxidized partially and totally over the Ni surface, however, the molecule is rather inactive on Cu. The β-halogen substitution makes extensive conversion of the alcohol possible on the Cu surface and changes conversion pathways on the Ni surface. It was found that halogen substitution as well as hydrogen bonding can affect the reactivity and conversion routes of the molecules on Ni and Cu surfaces. On account of energetic criteria, the predicted routes for decompositions and the TPD patterns for the surface species are in accord with the available experimental observations.

  6. Monte Carlo simulation and SAFT modeling study of the solvation thermodynamics of dimethylformamide, dimethylsulfoxide, ethanol and 1-propanol in the ionic liquid trimethylbutylammonium bis(trifluoromethylsulfonyl)imide.

    PubMed

    Vahid, A; Maginn, E J

    2015-03-21

    Understanding fundamental solvation phenomena and mixture thermodynamic properties for organic molecules in ionic liquids is essential to the development of ionic liquids in many application areas. In the present work, molecular simulations were used to compute a wide range of properties for the pure ionic liquid trimethylbutylammonium bis(trifluoromethylsulfonyl)imide as well as mixtures of this ionic liquid with ethanol, 1-propanol, dimethylformamide, and dimethylsulfoxide. A new force field for the ionic liquid was developed and validated by computing ionic liquid surface tension and density as a function of temperature. Force fields for ethanol and propanol were taken from the literature, while new force fields were developed for dimethylformamide and dimethylsulfoxide. These force fields were shown to yield vapor-liquid coexistence curves, vapor pressure curves and critical points in excellent agreement with experimental data. Absorption isotherms, enthalpies of mixing and mixture volumes were then computed and shown to agree well with available literature. The simulations help rationalize the observed trends in solubility and enthalpy of mixing in terms of the relative strength of hydrogen bonding between the solutes and the ionic liquid. It was found that the entropy of absorption plays a very important role in the solvation process. The PCIP-SAFT equation of state was able to fit the experimental data (or simulation results when experiments were unavailable) very accurately with only small adjustable binary interaction parameters. PMID:25704844

  7. A comparative study of the mass and heat transfer dynamics of evaporating ethanol/water, methanol/water, and 1-propanol/water aerosol droplets.

    PubMed

    Hopkins, Rebecca J; Reid, Jonathan P

    2006-02-23

    The mass and heat transfer dynamics of evaporating multicomponent alcohol/water droplets have been probed experimentally by examining changes in the near surface droplet composition and average droplet temperature using cavity-enhanced Raman scattering (CERS) and laser-induced fluorescence (LIF). The CERS technique provides a sensitive measure of the concentration of the volatile alcohol component in the outer shell of the droplet, due to the exponential relationship between CERS intensity and species concentration. Such volatile droplets, which are probed on a millisecond time scale, evaporate nonisothermally, resulting in both temperature and concentration gradients, as confirmed by comparisons between experimental measurements and quasi-steady state model calculations. An excellent agreement between the experimental evaporation trends and quasi-steady state model predictions is observed. An unexpectedly slow evaporation rate is observed for the evaporation of 1-propanol from a multicomponent droplet when compared to the model; possible explanations for this observation are discussed. In addition, the propagation depth of the CERS signal, and, therefore, the region of the droplet from which compositional measurements are made, can be estimated. Such measurements, when considered in conjunction with quasi-steady state theory, can allow droplet temperature gradients to be measured and vapor pressures and activity coefficients of components within the droplet to be determined. PMID:16494335

  8. Solubility and diffusivity of N{sub 2}O and CO{sub 2} in (diethanolamine + N-methyldiethanolamine + water) and in (diethanolamine + 2-amino-2-methyl-1-propanol + water)

    SciTech Connect

    Li, M.H.; Lee, W.C.

    1996-05-01

    Acid gases such as CO{sub 2} and H{sub 2}S are frequently removed from natural gas, synthetic natural gas, and other process gas streams by means of absorption into aqueous alkanol-amine solutions. The solubility and diffusivity of N{sub 2}O in (diethanolamine + N-methyldiethanolamine + water) and in (diethanolamine + 2-amino-2-methyl-1-propanol + water) were measured at (30, 35, and 40)C and at atmospheric pressure. Five (diethanolamine + N-methyldiethanolamine + water) and four (diethanolamine + 2-amino-2-methyl-1-propanol + water) systems were studied. The total amine mass percent in all cases was 30. A solubility apparatus was used to measure the solubility of N{sub 2}O in amine solutions. The diffusivity was measured by a wetted wall column absorber. The N{sub 2}O analogy was used to estimate the solubility and diffusivity of CO{sub 2} in (diethanolamine + N-methyldiethanolamine + water) and in (diethanolamine + 2-amino-2-methyl-1-propanol + water).

  9. Surface tension of binary mixtures of water + N-methyldiethanolamine and ternary mixtures of this amine and water with monoethanolamine, diethanolamine, and 2-amino-2-methyl-1-propanol from 25 to 50 C

    SciTech Connect

    Alvarez, E.; Rendo, R.; Sanjurjo, B.; Sanchez-Vilas, M.; Navaza, J.M.

    1998-11-01

    The surface tension of aqueous solutions of N-methyldiethanolamine and diethanolamine + N-methyldiethanolamine, monoethanolamine + N-methyldiethanolamine and 2-amino-2-methyl-1-propanol + N-methyldiethanolamine was measured at temperatures from 25 C to 50 C. For binary mixtures the concentration range was 0--50 mass % N-methyldiethanolamine, and for the tertiary mixtures the concentration range for each amine was 0--50 mass %. The experimental values were correlated with temperature and mole fraction. The maximum deviation in both cases was always less than 0.5%.

  10. Solubility of carbon dioxide in aqueous solutions of 2-amino-2-methyl-1-propanol and N-methyldiethanolamine and their mixtures in the temperature range of 313 to 353 K and pressures up to 2.7 MPa

    SciTech Connect

    Silkenbaeumer, D.; Lichtenthaler, R.N.; Rumpf, B.

    1998-08-01

    The solubility of carbon dioxide in aqueous solutions containing 2-amino-2-methyl-1-propanol (AMP) was measured in the temperature range from 313 to 353 K at total pressures up to 2.7 MPa using an analytical method. A model taking into account chemical reactions in the liquid phase as well as physical interactions is used to correlate the new data. To test the predictive capability of the model, the solubility of carbon dioxide in an aqueous solution containing AMP and N-methyldiethanolamine (MDEA) was measured at 313 K. Experimental results are reported and compared to literature data and calculations.

  11. Mineralization and defluoridation of 2,2,3,3-tetrafluoro -1-propanol (TFP) by UV oxidation in a novel three-phase fluidized bed reactor (3P-FBR).

    PubMed

    Shih, Yu-Jen; Tsai, Meng-Tso; Huang, Yao-Hui

    2013-05-01

    2,2,3,3-Tetrafluoro-1-propanol (TFP, C3H4F4O, M.W. = 132.06) is extensively used as the solvent in CD-R and DVD-R fabrication. Since it has a fluorinated alky-chain configuration and is non-biodegradable, its treatment by conventional oxidation methods is typically very inefficient. In this work, novel three-phase fluidized bed reactor (3P-FBR, 7.5 cm in diameter, 50 cm high) that combines photo oxidation (UV/H2O2, one of AOPs (Advanced Oxidation Process) and adsorption (BT5 iron oxide as adsorbent) processes is designed for mineralizing and defluorinizing TFP wastewater. The experimental results reveal that TFP can be efficiently mineralized, and the BT5 that is circulated by aeration in the 3P-FBR system can remove the released fluoride ions in the reaction period. Irradiation with 254 nm UV and a 10 mM H2O2 dose yield a TOC removal of TFP (1.39 mM, equivalent to an initial TOC of 50 ppm) of over 99.95% in 2 h, and 99% of fluoride was removed by BT5 with an adsorption capacity of 24.1 mg-F g(-1). PMID:23453590

  12. Spectroscopic investigations of new binuclear transition metal complexes of Schiff bases derived from 4,6-diacetylresorcinol and 3-amino-1-propanol or 1,3-diamino-propane

    NASA Astrophysics Data System (ADS)

    Emara, Adel A. A.; Saleh, Akila A.; Adly, Omima M. I.

    2007-11-01

    The bifunctional carbonyl compound; 4,6-diacetylresorcinol (DAR) serves as precursor for the formation of different Schiff base ligands, which are either di- or tetra-basic with two symmetrical sets of either O 2N or N 2O tridentate chelating sites. The condensation of 4,6-diacetylresorcinol with 3-amino-1-propanol (3-AP) or 1,3-diaminopropane (DAP), yields the corresponding hexadentate Schiff base ligands, abbreviated as H 4L a and H 2L b, respectively. The structures of these ligands were elucidated by elemental analyses, IR, mass, 1H NMR and electronic spectra. Reaction of the Schiff base ligands with copper(II), nickel(II), cobalt(II), zinc(II), cadmium(II), iron(III), chromium(III), vanadyl(IV) and uranyl(VI) ions in 1:2 molar ratio afforded the corresponding transition metal complexes. A variety of binuclear complexes for the metal complexes were obtained with the ligands in its di- or tetra-deprotonated forms. The structures of the newly prepared complexes were identified by elemental analyses, infrared, electronic, mass, 1H NMR and ESR spectra as well as magnetic susceptibility measurements and thermal gravimetric analysis (TGA). The bonding sites are the azomethine and amino nitrogen atoms, and phenolic and alcoholic oxygen atoms. The metal complexes exhibit different geometrical arrangements such as square planar, tetrahedral, square pyramid and octahedral arrangement.

  13. Regeneration of 2-amino-2-methyl-1-propanol used for carbon dioxide absorption.

    PubMed

    Zhang, Pei; Shi, Yao; Wei, Jianwen; Zhao, Wei; Ye, Qing

    2008-01-01

    To improve the efficiency of the carbon dioxide cycling process and to reduce the regeneration energy consumption, a sterically hindered amine of 2-amino-2-methyl-1-propranol (AMP) was investigated to determine its regeneration behavior as a CO2 absorbent. The CO2 absorption and amine regeneration characteristics were experimentally examined under various operating conditions. The regeneration efficiency increased from 86.2% to 98.3% during the temperature range of 358 to 403 K. The most suitable regeneration temperature for AMP was 383 K, in this experiment condition, and the regeneration efficiency of absorption/regenerationruns descended from 98.3% to 94.0%. A number of heat-stable salts (HSS) could cause a reduction in CO2 absorption capacity and regeneration efficiency. The results indicated that aqueous AMP was easier to regenerate with less loss of absorption capacity than other amines, such as, monoethanolamine (MEA), diethanolamine (DEA), diethylenetriamine (DETA), and N-methyldiethanolamine (MDEA). PMID:18572520

  14. Laser-Based Measurement of Refractive Index Changes: Kinetics of 2,3-Epoxy-1-propanol Hydrolysis.

    ERIC Educational Resources Information Center

    Spencer, Bert; Zare, Richard N.

    1988-01-01

    Describes an experiment in which a simple laser-based apparatus is used for measuring the change in refractive index during the acid-catalyzed hydrolysis of glycidol into glycerine. Gives a schematic of the experimental setup and discusses the kinetic analysis. (MVL)

  15. Hydrogen bond analysis in alcohol (1-Propanol, 2-Propanol and Glycerol)-DMF mixtures based on dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Jia, Guo-Zhu; Jie, Qian; Feng, Wang

    2015-11-01

    Dielectric properties of Propanol-DMF, and Glycerol-DMF mixtures at full concentrations have been obtained by the dielectric relaxation spectroscopy method at frequency from 20 MHz to 20 GHz at room temperature. The mixture behavior is described by the Davidson-Cole model using four parameters that relate to molecular structure. The hydrogen bond (HB) numbers and binding energies between two pairs (solute-solute and solute-solvent pairs) are estimated by Luzar model, also the type of dipolar ordering which depends on the extent of DMF is obtained. The combination of the excess inverse permittivity and the Luzar model gives a satisfactory explanation and valuable insights into the underlying of the relaxation acts. The binding energy of solute-solute (E11) and solute-solvent (E12) both decrease with the increased number of hydroxyl in mixture system.

  16. PIV Measurement of Transient 3-D (Liquid and Gas Phases) Flow Structures Created by a Spreading Flame over 1-Propanol

    NASA Technical Reports Server (NTRS)

    Hassan, M. I.; Kuwana, K.; Saito, K.

    2001-01-01

    In the past, we measured three-D flow structure in the liquid and gas phases that were created by a spreading flame over liquid fuels. In that effort, we employed several different techniques including our original laser sheet particle tracking (LSPT) technique, which is capable of measuring transient 2-D flow structures. Recently we obtained a state-of-the-art integrated particle image velocimetry (IPIV), whose function is similar to LSPT, but it has an integrated data recording and processing system. To evaluate the accuracy of our IPIV system, we conducted a series of flame spread tests using the same experimental apparatus that we used in our previous flame spread studies and obtained a series of 2-D flow profiles corresponding to our previous LSPT measurements. We confirmed that both LSPT and IPIV techniques produced similar data, but IPIV data contains more detailed flow structures than LSPT data. Here we present some of newly obtained IPIV flow structure data, and discuss the role of gravity in the flame-induced flow structures. Note that the application of IPIV to our flame spread problems is not straightforward, and it required several preliminary tests for its accuracy including this IPIV comparison to LSPT.

  17. In vitro comparison of nitroethane, 2-nitro-1-propanol, lauric acid, Lauricidin(R), and the Hawaiian marine algae, Chaetoceros, activity against anaerobically grown Staphylococcus aureus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gastrointestinal tract of bovines often contains bacteria that contribute to disorders of the rumen and may also contain foodborne or opportunistic human pathogens as well as causative agents of mastitis in cows. Thus, there is a need to develop broad-spectrum therapies that are effective while...

  18. Comparison of nitroethane, 2-nitro-1-propanol, lauric acid, Lauricidin and the Hawaiian marine algae, Chaetoceros, for potential broad-spectrum control of anaerobically grown lactic acid bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gastrointestinal tract of bovines often contains bacteria that contribute to disorders of the rumen and may also contain foodborne or opportunistic human pathogens as well as bacteria capable of causing mastitis in cows. Thus, there is a need to develop broad-spectrum therapies that are effecti...

  19. Thermodynamic and acoustical properties of mixtures p-anisaldehyde—alkanols (C1-C4)—2-methyl-1-propanol at 303.15 K

    NASA Astrophysics Data System (ADS)

    Saini, Balwinder; Kumar, Ashwani; Rani, Ruby; Bamezai, Rajinder K.

    2016-07-01

    The density, viscosity and speed of sound of pure p-anisaldehyde and some alkanols, for example, methanol, ethanol, propan-1-ol, propan-2-ol, butan-1-ol, butan-2-ol, 2-methylpropan-1-ol, and the binary mixtures of p-anisaldehyde with these alkanols were measured over the entire composition range at 303.15 K. From the experimental data, various thermodynamic parameters such as excess molar volume ( V E), excess Gibbs free energy of activation (Δ G*E), and deviation parameters like viscosity (Δη), speed of sound (Δ u), isentropic compressibility (Δκs), are calculated. The excess as well as deviation parameters are fitted to Redlich—Kister equation. Additionally, the viscosity data for the systems has been used to correlate the application of empirical relation given by Grunberg and Nissan, Katti and Chaudhari, and Hind et al. The results are discussed in terms of specific interactions present in the mixtures.

  20. In vitro comparison of nitroethane, 2-nitro-1-propanol, lauric acid, Lauricidin(R), and the Hawaiian marine algae, Chaetoceros, activity against anaerobically grown Staphylococcus aureus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mastitis is a common illness of dairy cattle and is very costly, economically, to the dairy farmer. Thus, there is a need to develop broad-spectrum therapies that are effective while not leading to unacceptably long antibiotic withdrawal times. The effects of the CH4-inhibitors nitroethane (2 mg/m...

  1. Solubility and diffusivity of N{sub 2}O and CO{sub 2} in (monoethanolamine + N-methyldiethanolamine + water) and in (monoethanolamine + 2-amino-2-methyl-1-propanol + water)

    SciTech Connect

    Li, M.H.; Lai, M.D.

    1995-03-01

    Solutions of amines are frequently used in gas-treating processes to remove acid gases, such as CO{sub 2} and H{sub 2}S, from gas streams in the natural gas and synthetic ammonia industries and petroleum chemical plants. The solubility and diffusivity of N{sub 2}O in (monoethanolamine + N-methyldiethanolamine + water) and in (monoethanolamine + 2-amino-2-methyl-l-propanol + water) were measured at 30, 35, and 40 C and at atmospheric pressure. Six (monoethanolamine + N-methyldiethanolamine + water) and five (monoethanolamine + 2-amino-2-methyl-l-propanol + water) systems were studied. The total amine mass percent in all cases was 30. The solubilities were measured by a solubility apparatus similar to that of Haimour and Sandall (1984). A wetted wall column absorber was used to obtain the diffusivity of N{sub 2}O in amines. The N{sub 2}O solubilities in amine solutions have been correlated on the basis of the excess Henry constant correlation of Wang et al. (1992). The N{sub 2}O analogy was used to estimate the solubility and diffusivity of CO{sub 2} in (monoethanolamine + N-methyldiethanolamine + water) and in (monoethanolamine + 2-amino-2-methyl-l-propanol + water).

  2. Removal of pooled dense, nonaqueous phase liquid from saturated porous media using upward gradient alcohol floods

    NASA Astrophysics Data System (ADS)

    Lunn, Stuart R. D.; Kueper, Bernard H.

    Laboratory experiments employing 90% by volume alcohol solutions are used to compare the abilities of ethanol and 1-propanol to remove pooled tetrachloroethene (PCE) from saturated porous media using low upward hydraulic gradients. Equilibrium ternary phase diagrams measured for the systems water/PCE/ethanol and water/PCE/1-propanol indicate that for alcohol concentrations below the miscibility envelope, 1-propanol will partition predominantly into the dense, nonaqueous phase liquid (DNAPL) phase while ethanol remains in the aqueous phase. Interfacial tension and phase density measurements show that while both systems demonstrate a reduction in interfacial tension with increasing alcohol content, the density difference between the aqueous and DNAPL phases is only reduced for the 1-propanol system. Two-dimensional experiments in saturated porous media using alcohol floods ranging in size from 0.125 pore volumes (PV) to 1.0 PV recovered between 5.7% and 98.7% of the PCE mass. The removal mechanisms for the ethanol floods included enhanced dissolution followed by miscible displacement, while the 1-propanol floods removed PCE by DNAPL swelling and interfacial tension reduction leading to immiscible displacement followed by miscible displacement. Recovery results and effluent composition histories indicate that hydrodynamic instabilities and dispersion cause significant alcohol slug deterioration and confirm the necessity of using an appropriate size alcohol slug of sufficient concentration for efficient PCE mass recovery.

  3. Effect of temperature on the dynamics of benzophenone anion solvation in alcohol

    SciTech Connect

    Zhang, X.; Jonah, C.D.

    1996-04-25

    The solvation of the benzophenone anion in 1-propanol, 2-propanol, and 1-butanol has been measured over the temperature range -10 to -50{degree}C. The initial spectra of the benzophenone anion were very similar in all three alcohols. The final spectrum of the benzophenone anion in 2-propanol is less blue-shifted (17nm) than the spectrum of the anion in 1-propanol and 1-butanol. The activation energies for solvation are 22 kJ/mol for 1-propanol and 1-butanol and 16 kJ/mol for 2-propanol, which are similar to the energy for hydrogen bond breakage in the pure solvents. This suggests that the solvent H-bond breakage plays an important role in anion solvation. 37 refs., 12 figs., 1 tab.

  4. Alcohol Dehydration on Monooxo W=O and Dioxo O=W=O Species

    SciTech Connect

    Li, Zhenjun; Smid, Bretislav; Kim, Yu Kwon; Matolin, Vladimir; Kay, Bruce D.; Rousseau, Roger J.; Dohnalek, Zdenek

    2012-08-16

    The dehydration of 1-propanol on nanoporous WO3 films prepared via ballistic deposition at ~20 K has been investigated using temperature programmed desorption, infrared reflection absorption spectroscopy and density functional theory. The as deposited films are extremely efficient in 1-propanol dehydration to propene. This activity is correlated with the presence of dioxo O=W=O groups while monooxo W=O species are shown to be inactive. Annealing of the film induces densification that results in the loss of catalytic activity due to annihilation O=W=O species.

  5. Regioselective alkane hydroxylation with a mutant AlkB enzyme

    DOEpatents

    Koch, Daniel J.; Arnold, Frances H.

    2012-11-13

    AlkB from Pseudomonas putida was engineered using in-vivo directed evolution to hydroxylate small chain alkanes. Mutant AlkB-BMO1 hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. Mutant AlkB-BMO2 similarly hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. These biocatalysts are highly active for small chain alkane substrates and their regioselectivity is retained in whole-cell biotransformations.

  6. Synergic effects in the extraction of paracetamol from aqueous NaCl solution by the binary mixtures of diethyl ether and low molecular weight primary alcohols

    NASA Astrophysics Data System (ADS)

    Nikolić, G. M.; Živković, J. V.; Atanasković, D. S.; Nikolić, M. G.

    2013-12-01

    Liquid-liquid extraction of paracetamol from aqueous NaCl solutions was performed with diethyl ether, 1-propanol, 1-butanol, isobutanol, 1-pentanol, and binary mixtures diethyl ether/1-propanol, diethyl ether/1-butanol, and diethyl ether/isobutanol. Among the pure solvents investigated in this study best extraction efficacy was obtained with 1-butanol. Synergic effects in the extraction with binary mixtures was investigated and compared with some other systems used for the extraction of poorly extractable compounds. Results obtained in this study may be of both fundamental and practical importance.

  7. HYPOTHERMIC EFFECTS OF A HOMOLOGOUS SERIES OF SHORT-CHAIN ALCOHOLS IN RATS

    EPA Science Inventory

    The purpose of this study was to assess the toxicity of various short-chain alcohols using the thermoregulatory system of the rat as an endpoint. ale Fischer rats developed significant hypothermia following acute administration (i.p.) of methanol, ethanol, 1-propanol, 2-propanol,...

  8. High-sensitivity titration microcalorimeter

    NASA Astrophysics Data System (ADS)

    Velikov, A. A.; Grigoryev, S. V.; Chuikin, A. V.

    2015-02-01

    A differential titration microcalorimeter for studying intermolecular interactions in solutions has been designed. To increase the speed of the instrument, the dynamic correction method has been used. It has been shown that electrical calibration of the microcalorimeter is consistent with its chemical calibration. The use of the instrument for measuring the integral heats of dilution of 1-propanol has been demonstrated.

  9. AGONISTIC SENSORY EFFECTS OF AIRBORNE CHEMICALS IN MIXTURES: ODOR, NASAL PUNGENCY, AND EYE IRRITATION

    EPA Science Inventory

    Threshold responses of odor, nasal pungency (irritation), and eye irritation were measured for single chemicals (1-propanol, 1-hexanol, ethyl acetate, heptyl acetate, 2-pentanone, 2-heptanone, toluene, ethyl benzene, and propyl benzene) and mixtures of them (two three-component m...

  10. Using Nuclear Magnetic Resonance Spectroscopy for Measuring Ternary Phase Diagrams

    ERIC Educational Resources Information Center

    Woodworth, Jennifer K.; Terrance, Jacob C.; Hoffmann, Markus M.

    2006-01-01

    A laboratory experiment is presented for the upper-level undergraduate physical chemistry curriculum in which the ternary phase diagram of water, 1-propanol and n-heptane is measured using proton nuclear magnetic resonance (NMR) spectroscopy. The experiment builds upon basic concepts of NMR spectral analysis, typically taught in the undergraduate…

  11. Catalyst Activity Comparison of Alcohols over Zeolites

    SciTech Connect

    Ramasamy, Karthikeyan K.; Wang, Yong

    2013-01-01

    Alcohol transformation to transportation fuel range hydrocarbon on HZSM-5 (SiO2 / Al2O3 = 30) catalyst was studied at 360oC and 300psig. Product distributions and catalyst life were compared using methanol, ethanol, 1-propanol or 1-butanol as a feed. The catalyst life for 1-propanol and 1-butanol was more than double compared to that for methanol and ethanol. For all the alcohols studied, the product distributions (classified to paraffin, olefin, napthene, aromatic and naphthalene compounds) varied with time on stream (TOS). At 24 hours TOS, liquid product from 1-propanol and 1-butanol transformation primarily contains higher olefin compounds. The alcohol transformation process to higher hydrocarbon involves a complex set of reaction pathways such as dehydration, oligomerization, dehydrocyclization, and hydrogenation. Compared to ethylene generated from methanol and ethanol, oligomerization of propylene and butylene has a lower activation energy and can readily take place on weaker acidic sites. On the other hand, dehydrocyclization of propylene and butylene to form the cyclic compounds requires the sits with stronger acid strength. Combination of the above mentioned reasons are the primary reasons for olefin rich product generated in the later stage of the time on stream and for the extended catalyst life time for 1 propanol and 1 butanol compared to methanol and ethanol conversion over HZSM-5.

  12. HPLC Preparation of the Chiral Forms of 6-Methoxy-Gossypol and 6,6'-Dimethoxy-Gossypol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A concentrated mixture of gossypol, 6-methoxy-gossypol and 6,6'-dimethoxy-gossypol was extracted with acetone from the root bark of St. Vincent Sea Island cotton. This extract was derivatized with R-(-)-2-amino-1-propanol to form diastereomeric gossypol Schiff’s bases. Analytical-scale reverse-pha...

  13. Ruminal fermentation of anti-methanogenic nitrate- and nitro-containing forages in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate, 3-nitro-1-propionic acid (NPA), and 3-nitro-1-propanol (NPOH) can accumulate in forages and be poisonous to animals if fed at high enough amounts. These chemicals are also recognized as potent anti-methanogenic compounds, but plants naturally containing these chemicals have been studied li...

  14. Synthesis of both enantiomers of 12-methyl-13-tridecanolide and 14-methyl-15-pentadecanolide (muscolide).

    PubMed

    Noda, Yoshihiro; Mamiya, Natsuki; Kashin, Hitoshi

    2013-07-01

    Both enantiomers of 12-methyl-13-tridecanolide{(R)-(+)-1, (S)-(-)-1} and 14-methyl-15-pentadecanolide (muscolide) {(R)-(+)-2, (S)-(-)-2} were synthesized from either (S)-(+)- or (R)-(-)-3-bromo-2-methyl-1-propanol 8 as a chiral building block. PMID:23980425

  15. Mass balance evaluation of alcohol emission from cattle feed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Silage on dairy farms has been recognized as an important source of volatile organic compounds (VOCs) to the atmosphere, and therefore a contributor to tropospheric ozone. Considering reactivity and likely emission rates, ethanol, 1-propanol, and acetaldehyde probably make the largest contribution t...

  16. Aversive Olfactory Learning and Associative Long-Term Memory in "Caenorhabditis elegans"

    ERIC Educational Resources Information Center

    Amano, Hisayuki; Maruyama, Ichiro N.

    2011-01-01

    The nematode "Caenorhabditis elegans" ("C. elegans") adult hermaphrodite has 302 invariant neurons and is suited for cellular and molecular studies on complex behaviors including learning and memory. Here, we have developed protocols for classical conditioning of worms with 1-propanol, as a conditioned stimulus (CS), and hydrochloride (HCl) (pH…

  17. Electrocatalytic oxidation of alcohols by a carbon-supported Rh porphyrin.

    PubMed

    Yamazaki, Shin-ichi; Yao, Masaru; Fujiwara, Naoko; Siroma, Zyun; Yasuda, Kazuaki; Ioroi, Tsutomu

    2012-05-01

    A Rh porphyrin on carbon black was shown to catalyze the electro-oxidation of several aliphatic alcohols (ethanol, 1-propanol, and 2-propanol) and benzyl alcohols. The overpotentials for alcohol oxidation were very low. The reaction mechanism and substrate specificity are discussed. PMID:22450541

  18. Effects of select nitrocompounds on in vitro ruminal fermentation during conditions of limiting or excess added reductant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ruminal methane (CH4) production results in losses of up to 12% of gross energy intake and contributes nearly 20% of the United States’ annual emission of this greenhouse gas. We report the effects of 2-nitro-1-propanol (NPOH), 3-nitro-1-propionic acid (NPA), nitroethane (NE) and 2-nitroethanol (NE...

  19. Synthesis and characterization of DI-[3-(trimethylsilyl)-1-propylene] alkylenediphosphonic acids.

    SciTech Connect

    Griffith-Dzielawa, J. A.; Barrans, R. E., Jr.; McAlister, D. R.; Dietz, M. L.; Herlinger, A. W.; Chemistry; Loyola Univ. of Chicago

    2000-01-01

    A homologous series of alkylenediphosphonic acids was successfully esterified with 3-(trimethylsilyl)-1-propanol to the symmetrically-substituted diesters. The procedure, which has general applicability for incorporating silicon heteroatoms into diphosphonic acids, utilizes the esterification reagent dicyclohexyl-carbodiimide (DCC) to activate the acid. The aggregation properties of the di-[3-(trimethylsilyl)-1-propylene] alkylenediphosphonic acids were measured in toluene and 1-decanol.

  20. BAL increases the arsenic-74 content of rabbit brain

    SciTech Connect

    Hoover, T.D.; Aposhian, H.V.

    1983-08-01

    The /sup 74/As content of the brain of rabbits was doubled following administration of BAL (2,3-dimercapto-1-propanol). DMPS (2,3-dimercapto-1-propanesulfonic acid, sodium salt), however, decreased the rabbit brain arsenic concentration. The use of BAL as the drug of choice for treatment of arsenic intoxication should be viewed with caution and re-examined.

  1. Surfactant-free alternative fuel: Phase behavior and diffusion properties.

    PubMed

    Kayali, Ibrahim; Jyothi, Chemboli K; Qamhieh, Khawla; Olsson, Ulf

    2016-02-01

    Phase behavior of the three components, 1-propanol, water and oil is studied at 10, 25, and 40°C. Biodiesel, limonene and diesel are used as oil phases. NMR self-diffusion measurements are performed to investigate the microstructure of the one-phase regions. Tie lines in the two-phase regions are determined both by proton NMR analysis and compared with theoretical calculations. NMR self-diffusion results for the different components in these systems do not show any sign of confinement or obstructions, demonstrating these mixtures to be structureless solutions. A good agreement between the experimental and calculated phase behavior is obtained. The determined tie lines in the two-phase regions show higher affinity of 1-propanol to water than to oil. PMID:26520824

  2. Synthetic ceramide analogues increase amyloid-β 42 production by modulating γ-secretase activity.

    PubMed

    Takasugi, Nobumasa; Sasaki, Tomoki; Shinohara, Mitsuru; Iwatsubo, Takeshi; Tomita, Taisuke

    2015-02-01

    γ-Secretase cleaves amyloid β-precursor protein (APP) to generate amyloid-β peptide (Aβ), which is a causative molecule of Alzheimer disease (AD). The C-terminal length of Aβ, which is determined by γ-secretase activity, determines the aggregation and deposition profiles of Aβ, thereby affecting the onset of AD. In this study, we found that the synthetic ceramide analogues dl-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) and (1S,2R-d-erythro-2-N-myristoylamino)-1-phenyl-1-propanol (DMAPP) modulated γ-secretase-mediated cleavage to increase Aβ42 production. Unexpectedly, PDMP and DMAPP upregulated Aβ42 production independent of alteration of ceramide metabolism. Our results propose that synthetic ceramide analogues function as novel γ-secretase modulators that increase Aβ42, and this finding might lead to the understanding of the effect of the lipid environment on γ-secretase activity. PMID:25545059

  3. Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) surfaces

    NASA Astrophysics Data System (ADS)

    Xiong, Ke; Yu, Weiting; Chen, Jingguang G.

    2014-12-01

    The selective deoxygenation of aldehydes and alcohols without cleaving the Csbnd C bond is crucial for upgrading bio-oil and other biomass-derived molecules to useful fuels and chemicals. In this work, propanal, 1-propanol, furfural and furfuryl alcohol were selected as probe molecules to study the deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) prepared over a Mo(1 1 0) surface. The reaction pathways were investigated using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The deoxygenation of propanal and 1-propanol went through a similar intermediate (propoxide or η2(C,O)-propanal) to produce propene. The deoxygenation of furfural and furfuryl alcohol produced a surface intermediate similar to adsorbed 2-methylfuran. The comparison of these results revealed the promising deoxygenation performance of Mo2C, as well as the effect of the furan ring on the selective deoxygenation of the Cdbnd O and Csbnd OH bonds.

  4. Effect of alcohol-water exchange and surface scanning on nanobubbles and the attraction between hydrophobic surfaces.

    PubMed

    Hampton, Marc A; Donose, Bogdan C; Nguyen, Anh V

    2008-09-01

    Atomic force microscopy (AFM) was used to examine how different alcohols affect the hydrophobic attraction between a hydrophobic silica colloidal probe and a hydrophobic silica wafer. The experiments were performed in water and in water after rinsing alcohol (methanol, ethanol, or 1-propanol) throughout the AFM system. In all three cases the range of the attractive force increased after alcohol-water exchange, with 1-propanol showing the largest increase in range followed by ethanol and methanol. Additionally, experiments were performed before and after scanning the flat substrate with the colloidal probe. The range of the attractive force substantially increased with increasing scanning area. The attraction was explained by nanobubble bridging with a capillary force model with constant bridge volume proposed. The bridge volume (constant during each of the force curve measurements), contact angle and rupture distance were also determined for different scan sizes. The correlation between the rupture distance and bridge volume agreed with the available prediction. PMID:18547582

  5. Synthesis of 1,3,3-trinitroazetidine

    DOEpatents

    Hiskey, M.A.; Coburn, M.D.

    1994-08-09

    A process of preparing 1,3,3-trinitroazetidine includes forming a 5-hydroxymethyl-5-nitro-1-alkyltetrahydro-1,3-oxazine, e.g., reacting a 1,3,5-trialkyl hexahydrotriazine and tris(hydroxymethyl)nitromethane, ring opening said 5-hydroxymethyl-5-nitro-1-alkyltetrahydro-1,3-oxazine to form a 3-alkylamino-2-hydroxymethyl-2-nitro-1-propanol salt, ring closing said 3-alkylamino-2-hydroxymethyl-2-nitro-1-propanol salt to form a 3-hydroxymethyl-3-nitro-1-alkylazetidine salt, nitrating said 3-hydroxymethyl-3-nitro-1-alkylazetidine salt to form a 1-alkyl-3,3-dinitroazetidine, and converting said 1-alkyl-3,3-dinitroazetidine into 1,3,3-trinitroazetidine is disclosed. 1 fig.

  6. Synthesis of 1,3,3-trinitroazetidine

    DOEpatents

    Hiskey, Michael A.; Coburn, Michael D.

    1994-01-01

    A process of preparing 1,3,3-trinitroazetidine including forming a 5-hydroxymethyl-5-nitro-1-alkyltetrahydro-1,3-oxazine, e.g., reacting a 1,3,5-trialkyl hexahydrotriazine and tris(hydroxymethyl)nitromethane, ring opening said 5-hydroxymethyl-5-nitro-1-alkyltetrahydro-1,3-oxazine to form a 3-alkylamino-2-hydroxymethyl-2-nitro-1-propanol salt, ring closing said 3-alkylamino-2-hydroxymethyl-2-nitro-1-propanol salt to form a 3-hydroxymethyl-3-nitro-1-alkylazetidine salt, nitrating said 3-hydroxymethyl-3-nitro-1-alkylazetidine salt to form a 1-alkyl-3,3-dinitroazetidine, and converting said 1-alkyl-3,3-dinitroazetidine into 1,3,3-trinitroazetidine is disclosed.

  7. The Extraction of Caffeine from Tea: An Old Undergraduate Experiment Revisited

    NASA Astrophysics Data System (ADS)

    Murray, Scott D.; Hansen, Peter J.

    1995-09-01

    The extraction of caffeine from tea leaves is a common organic chemistry experiment. A water/1-propanol/sodium chloride ternary system was found to be a suitable replacement for the more traditional water/organochlorine solvent systems. Approximately 80% of the caffeine in the tea leaves can be recovered as crude caffeine. The ternary system employs chemicals which are not only less expensive, but also less toxic.

  8. High octane ethers from synthesis gas-derived alcohols. Technical progress report, October--December 1991

    SciTech Connect

    Klier, K.; Herman, R.G.; Johansson, M.; Feeley, O.C.

    1992-01-01

    The objective of the proposed research is to synthesize high octane ethers, primarily methyl isobutyl ether (MIBE) and methyl tertiary butyl ether (MTBE), directly from H{sub 2}/CO/CO{sub 2} coal-derived synthesis gas via alcohol mixtures that are rich in methanol and 2-methyl-1-propanol (isobutanol). The overall scheme involves gasification of coal, purification and shifting of the synthesis gas, higher alcohol synthesis, and direct synthesis of ethers.

  9. High octane ethers from synthesis gas-derived alcohols

    SciTech Connect

    Klier, K.; Herman, R.G.; Johansson, M.; Feeley, O.C.

    1992-01-01

    The objective of the proposed research is to synthesize high octane ethers, primarily methyl isobutyl ether (MIBE) and methyl tertiary butyl ether (MTBE), directly from H{sub 2}/CO/CO{sub 2} coal-derived synthesis gas via alcohol mixtures that are rich in methanol and 2-methyl-1-propanol (isobutanol). The overall scheme involves gasification of coal, purification and shifting of the synthesis gas, higher alcohol synthesis, and direct synthesis of ethers.

  10. 40 CFR Table 2a to Subpart E of... - Reactivity Factors

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Ethylene Glycol 107-21-1 3.36 2-Methyl-2,4-Pentanediol 107-41-5 1.04 Isohexane Isomers 107-83-5 1.80 Methyl...-0 0.51 C8 Disubstituted Benzenes (xylenes, mixed isomers) 1330-20-7 7.48 Ethylene Glycol 2... (Dipentene or Orange Terpene) 5989-27-5 3.99 Dipropylene Glycol Methyl Ether Isomer (2- -1-Propanol)...

  11. 40 CFR Table 2a to Subpart E of... - Reactivity Factors

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Ethylene Glycol 107-21-1 3.36 2-Methyl-2,4-Pentanediol 107-41-5 1.04 Isohexane Isomers 107-83-5 1.80 Methyl...-0 0.51 C8 Disubstituted Benzenes (xylenes, mixed isomers) 1330-20-7 7.48 Ethylene Glycol 2... (Dipentene or Orange Terpene) 5989-27-5 3.99 Dipropylene Glycol Methyl Ether Isomer (2- -1-Propanol)...

  12. "Wet" Versus "Dry" Folding of Polyproline

    NASA Astrophysics Data System (ADS)

    Shi, Liuqing; Holliday, Alison E.; Bohrer, Brian C.; Kim, Doyong; Servage, Kelly A.; Russell, David H.; Clemmer, David E.

    2016-06-01

    When the all- cis polyproline-I helix (PPI, favored in 1-propanol) of polyproline-13 is introduced into water, it folds into the all- trans polyproline-II (PPII) helix through at least six intermediates [Shi, L., Holliday, A.E., Shi, H., Zhu, F., Ewing, M.A., Russell, D.H., Clemmer, D.E.: Characterizing intermediates along the transition from PPI to PPII using ion mobility-mass spectrometry. J. Am. Chem. Soc. 136, 12702-12711 (2014)]. Here, we show that the solvent-free intermediates refold into the all- cis PPI helix with high (>90%) efficiency. Moreover, in the absence of solvent, each intermediate appears to utilize the same small set of pathways observed for the solution-phase PPII → PPI transition upon immersion of PPIIaq in 1-propanol. That folding in solution (under conditions where water is displaced by propanol) and folding in vacuo (where energy required for folding is provided by collisional activation) occur along the same pathway is remarkable. Implicit in this statement is that 1-propanol mimics a "dry" environment, similar to the gas phase. We note that intermediates with structures that are similar to PPIIaq can form PPII under the most gentle activation conditions—indicating that some transitions observed in water (i.e. , "we t" folding, are accessible (albeit inefficient) in vacuo. Lastly, these "dry" folding experiments show that PPI (all cis) is favored under "dry" conditions, which underscores the role of water as the major factor promoting preference for trans proline.

  13. Fiber content of diet affects exhaled breath volatiles in fasting and postprandial state in a pilot crossover study.

    PubMed

    Raninen, Kaisa J; Lappi, Jenni E; Mukkala, Maria L; Tuomainen, Tomi-Pekka; Mykkänen, Hannu M; Poutanen, Kaisa S; Raatikainen, Olavi J

    2016-06-01

    Our pilot study examined the potential of exhaled breath analysis in studying the metabolic effects of dietary fiber (DF). We hypothesized that a high-fiber diet (HFD) containing whole grain rye changes volatile organic compound (VOC) levels in exhaled breath and that consuming a single meal affects these levels. Seven healthy men followed a week-long low-fiber diet (17 g/d) and HFD (44 g/d) in a randomized crossover design. A test meal containing 50 g of the available carbohydrates from wheat bread was served as breakfast after each week. Alveolar exhaled breath samples were analyzed at fasting state and 30, 60, and 120 minutes after this meal parallel to plasma glucose, insulin, and serum lipids. We used solid-phase microextraction and gas chromatography-mass spectrometry for detecting changes in 15 VOCs. These VOCs were acetone, ethanol, 1-propanol, 2-propanol, 1-butanol, acetic acid, propionic acid, butyric acid, valeric acid, isovaleric acid, 2-methylbutyric acid, hexanoic acid, acetoin, diacetyl, and phenol. Exhaled breath 2-methylbutyric acid in the fasting state and 1-propanol at 120 minutes decreased (P = .091 for both) after an HFD. Ingestion of the test meal increased ethanol, 1-propanol, acetoin, propionic acid, and butyric acid levels while reducing acetone, 1-butanol, diacetyl, and phenol levels. Both DF diet content and having a single meal affected breathVOCs. Exploring exhaled breath further could help to develop tools for monitoring the metabolic effects of DF. PMID:27188907

  14. Aversive olfactory learning and associative long-term memory in Caenorhabditis elegans.

    PubMed

    Amano, Hisayuki; Maruyama, Ichiro N

    2011-10-01

    The nematode Caenorhabditis elegans (C. elegans) adult hermaphrodite has 302 invariant neurons and is suited for cellular and molecular studies on complex behaviors including learning and memory. Here, we have developed protocols for classical conditioning of worms with 1-propanol, as a conditioned stimulus (CS), and hydrochloride (HCl) (pH 4.0), as an unconditioned stimulus (US). Before the conditioning, worms were attracted to 1-propanol and avoided HCl in chemotaxis assay. In contrast, after massed or spaced training, worms were either not attracted at all to or repelled from 1-propanol on the assay plate. The memory after the spaced training was retained for 24 h, while the memory after the massed training was no longer observable within 3 h. Worms pretreated with transcription and translation inhibitors failed to form the memory by the spaced training, whereas the memory after the massed training was not significantly affected by the inhibitors and was sensitive to cold-shock anesthesia. Therefore, the memories after the spaced and massed trainings can be classified as long-term memory (LTM) and short-term/middle-term memory (STM/MTM), respectively. Consistently, like other organisms including Aplysia, Drosophila, and mice, C. elegans mutants defective in nmr-1 encoding an NMDA receptor subunit failed to form both LTM and STM/MTM, while mutations in crh-1 encoding the CREB transcription factor affected only the LTM. PMID:21960709

  15. The use of coenzyme Q0 as a template in the development of a molecularly imprinted polymer for the selective recognition of coenzyme Q10.

    PubMed

    Contin, Mario; Flor, Sabrina; Martinefski, Manuela; Lucangioli, Silvia; Tripodi, Valeria

    2014-01-01

    In this work, a novel molecularly imprinted polymer (MIP) for use as a solid phase extraction sorbent was developed for the determination of coenzyme Q10 (CoQ10) in liver extract. CoQ10 is an essential cofactor in mitochondrial oxidative phosphorylation and a powerful antioxidant agent found in low concentrations in biological samples. This fact and its high hydrophobicity make the analysis of CoQ10 technically challenging. Accordingly, a MIP was synthesised using coenzyme Q0 as the template, methacrylic acid as the functional monomer, acetonitrile as the porogen, ethylene glycol dimethacrylate as the crosslinker and benzoyl peroxide as the initiator. Various parameters affecting the polymer preparation and extraction efficiency were evaluated. Morphological characterisation of the MIP and its proper comparison with C18 as a sorbent in solid phase extraction were performed. The optimal conditions for the molecularly imprinted solid phase extraction (MISPE) consisted of 400 μL of sample mixed with 30 mg of MIP and 600 μL of water to reach the optimum solution loading. The loading was followed by a washing step consisting of 1 mL of a 1-propanol solution (1-propanol:water, 30:70,v/v) and elution with 1 mL of 1-propanol. After clean-up, the CoQ10 in the samples was analysed by high performance liquid chromatography. The extraction recoveries were higher than 73.7% with good precision (3.6-8.3%). The limits of detection and quantification were 2.4 and 7.5 μg g(-1), respectively, and a linear range between 7.5 and 150 μg g(-1) of tissue was achieved. The new MISPE procedure provided a successful clean-up for the determination of CoQ10 in a complex matrix. PMID:24356222

  16. Systematic analysis of intracellular mechanisms of propanol production in the engineered Thermobifida fusca B6 strain.

    PubMed

    Deng, Yu; Fisher, Adam B; Fong, Stephen S

    2015-10-01

    Thermobifida fusca is a moderately thermophilic actinobacterium naturally capable of utilizing lignocellulosic biomass. The B6 strain of T. fusca was previously engineered to produce 1-propanol directly on lignocellulosic biomass by expressing a bifunctional butyraldehyde/alcohol dehydrogenase (adhE2). To characterize the intracellular mechanisms related to the accumulation of 1-propanol, the engineered B6 and wild-type (WT) strains were systematically compared by analysis of the transcriptome and intracellular metabolome during exponential growth on glucose, cellobiose, and Avicel. Of the 18 known cellulases in T. fusca, 10 cellulase genes were transcriptionally expressed on all three substrates along with three hemicellulases. Transcriptomic analysis of cellodextrin and cellulose transport revealed that Tfu_0936 (multiple sugar transport system permease) was the key enzyme regulating the uptake of sugars in T. fusca. For both WT and B6 strains, it was found that growth in oxygen-limited conditions resulted in a blocked tricarboxylic acid (TCA) cycle caused by repressed expression of Tfu_1925 (aconitate hydratase). Further, the transcriptome suggested a pathway for synthesizing succinyl-CoA: oxaloacetate to malate (by malate dehydrogenase), malate to fumarate (by fumarate hydratase), and fumarate to succinate (by succinate dehydrogenase/fumarate reductase) which was ultimately converted to succinyl-CoA by succinyl-CoA synthetase. Both the transcriptome and the intracellular metabolome confirmed that 1-propanol was produced through succinyl-CoA, L-methylmalonyl-CoA, D-methylmalonyl-CoA, and propionyl-CoA in the B6 strain. PMID:26227414

  17. A spectroscopic and theoretical study in the near-infrared region of low concentration aliphatic alcohols.

    PubMed

    Beć, Krzysztof B; Futami, Yoshisuke; Wójcik, Marek J; Ozaki, Yukihiro

    2016-05-11

    The near-infrared (NIR) spectra of low-concentration (5 × 10(-3) M) solutions in CCl4 of basic aliphatic alcohols, methanol, ethanol, and 1-propanol were, for the first time, calculated by second-order vibrational perturbation theory computations and were compared with the corresponding experimental data. Density functional theory (DFT) using single hybrid (B3LYP) and double hybrid (B2PLYP) density functionals and their derivatives with additional empirical dispersion correction (B3LYP-D3 and B2PLYP-D, respectively) and second order Møller-Plesset perturbation theory were used in combination with selected basis sets including fairly new basis sets from the "spectroscopic" SNS family, double-ζ SNSD and triple-ζ SNST basis sets. Each time, anharmonic vibrational modes and intensities were calculated by using second-order vibrational perturbation theory. The effect of solvent cavity on the calculated results was included by the application of a self-consistent reaction field with a polarized continuum model. Ethanol and 1-propanol have conformational isomerism; following a conformational analysis, theoretical spectra of all isomers were calculated and their final predicted NIR spectra were obtained as Boltzmann-averaged spectra of resolved conformers. For ethanol and 1-propanol, the observed broadening of the overtone band of the OH stretching mode was well reflected by the differences in the position of the relevant band among conformational isomers of these alcohols; the effect of solvent on broadening was also discussed. Detailed band assignments in the experimental NIR spectra of the studied alcohols were proposed based on the calculation of potential energy distributions. The final accuracy of the predicted NIR spectra for each of the theoretical methods was estimated based on the errors in calculated frequencies of overtones and combination bands. PMID:27137865

  18. Production of propyl gallate in nonaqueous medium using cell-associated tannase of Bacillus massiliensis: effect of various parameters and statistical optimization.

    PubMed

    Aithal, Mahesh; Belur, Prasanna D

    2013-01-01

    Enzymatic synthesis of propyl gallate in an organic solvent was studied using cell-associated tannase (E.C. 3.1.1.20) of Bacillus massiliensis. Lyophilized biomass showing tannase activity was used as a biocatalyst. The influence of buffer pH and strength, water activity, temperature, biocatalyst loading, gallic acid concentration, and 1-propanol concentration was studied by the one-factor-at-a-time method. Subsequently, response surface methodology was applied based on a central composite design to determine the effects of three independent variables (biocatalyst loading, gallic acid concentration, and 1-propanol concentration) and their mutual interactions. A total of 20 experiments were conducted, and a statistical model was developed, which predicted the maximum propyl gallate yield of 20.28 μg/mL in the reaction mixture comprising 40.4 mg biocatalyst, 0.4 mM gallic acid, and 6.52 % (v/v) 1-propanol in 9.5 mL benzene at 30°C. The subsequent verification experiments established the validity of the model. Under optimal conditions, 25% conversion of gallic acid to propyl gallate was achieved on a molar basis. The absence of the need for enzyme purification and subsequent immobilization steps and good conversion efficiency makes this enzyme system an interesting one. Reports on the applications of bacterial whole cell systems for synthetic reactions in organic solvents are scarce, and perhaps this is the first report on bacterial cell-associated tannase-mediated esterification in a nonaqueous medium. PMID:23600575

  19. "Wet" Versus "Dry" Folding of Polyproline

    NASA Astrophysics Data System (ADS)

    Shi, Liuqing; Holliday, Alison E.; Bohrer, Brian C.; Kim, Doyong; Servage, Kelly A.; Russell, David H.; Clemmer, David E.

    2016-04-01

    When the all-cis polyproline-I helix (PPI, favored in 1-propanol) of polyproline-13 is introduced into water, it folds into the all-trans polyproline-II (PPII) helix through at least six intermediates [Shi, L., Holliday, A.E., Shi, H., Zhu, F., Ewing, M.A., Russell, D.H., Clemmer, D.E.: Characterizing intermediates along the transition from PPI to PPII using ion mobility-mass spectrometry. J. Am. Chem. Soc. 136, 12702-12711 (2014)]. Here, we show that the solvent-free intermediates refold into the all-cis PPI helix with high (>90%) efficiency. Moreover, in the absence of solvent, each intermediate appears to utilize the same small set of pathways observed for the solution-phase PPII → PPI transition upon immersion of PPIIaq in 1-propanol. That folding in solution (under conditions where water is displaced by propanol) and folding in vacuo (where energy required for folding is provided by collisional activation) occur along the same pathway is remarkable. Implicit in this statement is that 1-propanol mimics a "dry" environment, similar to the gas phase. We note that intermediates with structures that are similar to PPIIaq can form PPII under the most gentle activation conditions—indicating that some transitions observed in water (i.e., "wet" folding, are accessible (albeit inefficient) in vacuo. Lastly, these "dry" folding experiments show that PPI (all cis) is favored under "dry" conditions, which underscores the role of water as the major factor promoting preference for trans proline.

  20. Nanoparticle-Mediated, Light-Induced Phase Separations.

    PubMed

    Neumann, Oara; Neumann, Albert D; Silva, Edgar; Ayala-Orozco, Ciceron; Tian, Shu; Nordlander, Peter; Halas, Naomi J

    2015-12-01

    Nanoparticles that both absorb and scatter light, when dispersed in a liquid, absorb optical energy and heat a reduced fluid volume due to the combination of multiple scattering and optical absorption. This can induce a localized liquid-vapor phase change within the reduced volume without the requirement of heating the entire fluid. For binary liquid mixtures, this process results in vaporization of the more volatile component of the mixture. When subsequently condensed, these two steps of vaporization and condensation constitute a distillation process mediated by nanoparticles and driven by optical illumination. Because it does not require the heating of a large volume of fluid, this process requires substantially less energy than traditional distillation using thermal sources. We investigated nanoparticle-mediated, light-induced distillation of ethanol-H2O and 1-propanol-H2O mixtures, using Au-SiO2 nanoshells as the absorber-scatterer nanoparticle and nanoparticle-resonant laser irradiation to drive the process. For ethanol-H2O mixtures, the mole fraction of ethanol obtained in the light-induced process is substantially higher than that obtained by conventional thermal distillation, essentially removing the ethanol-H2O azeotrope that limits conventional distillation. In contrast, for 1-propanol-H2O mixtures the distillate properties resulting from light-induced distillation were very similar to those obtained by thermal distillation. In the 1-propanol-H2O system, a nanoparticle-mediated, light-induced liquid-liquid phase separation was also observed. PMID:26535465

  1. Biosorption of organochlorine pesticides using fungal biomass.

    PubMed

    Juhasz, A L; Smith, E; Smith, J; Naidu, R

    2002-10-01

    Cladosporium strain AJR(3)18501 was tested for its ability to sorb the organochlorine pesticide (OCP) p,p'-DDT from aqueous media. When p,p'-DDT was added to distilled water, ethanol or 1-propanol solutions in excess of its solubility, p,p'-DDT was sorbed onto the fungal biomass. Increasing the amount of p,p'-DDT in solution by changing the medium composition increased sorbent uptake: p,p'-DDT uptake by the fungal biomass was 2.5 times greater in 25% 1-propanol (17 mg of p,p'-DDT g(-1) dry weight fungal biomass) than in distilled water. When p,p'-DDT was dissolved in 25% 1-propanol (12 mg x l(-1)), rapid p,p'-DDT sorption occurred during the first 60 min of incubation. p,p'-DDT in solution was reduced to 2.5 mg x l(-1) with the remaining p,p'-DDT recovered from the fungal biomass. A number of environmental parameters were tested to determine their effect on p,p'-DDT biosorption. As arsenic (As) is prevalent at DDT-contaminated cattle dip sites, its effect on p,p'-DDT uptake was determined. The presence of As [As(III) or As(V) up to 50 mg x l(-1)] did not inhibit p,p'-DDT uptake and neither As species could be sorbed by the fungal biomass. Changing the pH of the medium from pH 3 to 10 had a small effect on p,p'-DDT sorption at low pH indicating that an ion exchange process is not the major mechanism for p,p'-DDT sorption. Other mechanisms such as Van der Waals forces, chemical binding, hydrogen bonding or ligand exchange may be involved in p,p'-DDT uptake by Cladosporium strain AJR(3)18501. PMID:12355313

  2. Self-reduction of a copper complex MOD ink for inkjet printing conductive patterns on plastics.

    PubMed

    Farraj, Yousef; Grouchko, Michael; Magdassi, Shlomo

    2015-01-31

    Highly conductive copper patterns on low-cost flexible substrates are obtained by inkjet printing a metal complex based ink. Upon heating the ink, the soluble complex, which is composed of copper formate and 2-amino-2-methyl-1-propanol, decomposes under nitrogen at 140 °C and is converted to pure metallic copper. The decomposition process of the complex is investigated and a suggested mechanism is presented. The ink is stable in air for prolonged periods, with no sedimentation or oxidation problems, which are usually encountered in copper nanoparticle based inks. PMID:25482984

  3. Novel Detection Method of Liquid-Liquid Phase Separation

    NASA Astrophysics Data System (ADS)

    Kato, Hitoshi; Katayanagi, Hideki; Koga, Yoshikata; Nishikawa, Keiko

    2004-12-01

    A novel method of determining a liquid-liquid phase boundary was developed. This method is based on our discovery that a nascent low-density phase is attracted to the center of a Rankine vortex at the onset of phase separation. Thus a liquid-liquid phase boundary is detected easily, rapidly, and accurately. The phase diagrams of the ternary systems NaCl-H2O-1-propanol and NaCl-H2O-1-butanol were obtained by this method. The results matched well with literature values.

  4. Isothermal compressibility of amino alcohols in the pressure range from 0.1 to 300 MPa at 298 K

    NASA Astrophysics Data System (ADS)

    Rodnikova, M. N.; Troitskii, V. M.; Solonina, I. A.; Shirokova, E. V.; Kraevskii, S. V.

    2015-01-01

    The isothermal compressibilities of three amino alcohols are measured on a unique setup for direct compression in the pressure range of 0.1 to 300 MPa at 298 K. The lowest baric dependence of isothermal compressibility is found for 3-amino-1-propanol, while 2-amino-1-butanol is characterized by the highest isothermal compressibility. The crystallization of 4-amino-1-butanol is observed at pressures of 200-250 MPa. The resulting data are discussed from the viewpoint of the stability of spatial hydrogen bond networks in amino alcohols and are compared to the similar dependences of liquid diols.

  5. Studies on the oxidation reaction of tyrosine (Tyr) with H 2O 2 catalyzed by horseradish peroxidase (HRP) in alcohol-water medium by spectrofluorimetry and differential spectrophotometry

    NASA Astrophysics Data System (ADS)

    Tang, Bo; Wang, Yan; Liang, Huiling; Chen, Zhenzhen; He, Xiwen; Shen, Hanxi

    2006-03-01

    An oxidation reaction of tyrosine (Tyr) with H 2O 2 catalyzed by horseradish peroxidase (HRP) was studied by spectrofluorimetry and differential spectrophotometry in the alcohol(methanol, ethanol, 1-propanol and isopropanol)-water mutual solubility system. Compared with the enzymatic-catalyzed reaction in the water medium, the fluorescence intensities of the product weakened, even extinguished. Because the addition of alcohols made the conformation of HRP change, the catalytic reaction shifted to the side of polymerization and the polymer (A nH 2, n ≥ 3) exhibited no fluorescence. The four alcohols cannot deactivate HRP. Moreover isopropanol activated HRP remarkably.

  6. Propylene from renewable resources: catalytic conversion of glycerol into propylene.

    PubMed

    Yu, Lei; Yuan, Jing; Zhang, Qi; Liu, Yong-Mei; He, He-Yong; Fan, Kang-Nian; Cao, Yong

    2014-03-01

    Propylene, one of the most demanded commodity chemicals, is obtained overwhelmingly from fossil resources. In view of the diminishing fossil resources and the ongoing climate change, the identification of new efficient and alternative routes for the large-scale production of propylene from biorenewable resources has become essential. Herein, a new selective route for the synthesis of propylene from bio-derived glycerol is demonstrated. The route consists of the formation of 1-propanol (a versatile bulk chemical) as intermediate through hydrogenolysis of glycerol at a high selectivity. A subsequent dehydration produces propylene. PMID:24578188

  7. Surface tension of aqueous solutions of diethanolamine and triethanolamine from 25 C to 50 C

    SciTech Connect

    Vazquez, G.; Alvarez, E.; Rendo, R.; Romero, E.; Navaza, J.M.

    1996-07-01

    Aqueous solutions of alkanolamines such as monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), N-methyldiethanolamine (MDEA), and 2-amino-2-methyl-1-propanol (AMP) are good solvents for the removal of acid gases such CO{sub 2} and H{sub 2}S from the gas streams of many processes in the natural gas, ammonia synthesis, and some chemical industries. The surface tension of aqueous solutions of diethanolamine and triethanolamine was measured over the entire concentration range at temperatures of 25 C to 50 C. The experimental values were correlated with temperature and with mole fraction. The maximum deviation was in both cases always less than 0.5%.

  8. Method for producing high dielectric strength microvalves

    SciTech Connect

    Kirby, Brian J.; Reichmuth, David S.; Shepodd, Timothy J.

    2006-04-04

    A microvalve having a cast-in-place and lithographically shaped mobile, polymer monolith for fluid flow control in microfluidic devices and method of manufacture. The microvalve contains a porous fluorinated polymer monolithic element whose pores are filled with an electrically insulating, high dielectric strength fluid, typically a perfluorinated liquid. This combination provides a microvalve that combines high dielectric strength with extremely low electrical conductivity. These microvalves have been shown to have resistivities of at least 100 G.OMEGA. and are compatible with solvents such as water at a pH between 2.7 and 9.0, 1-1 propanol, acetonitrile, and acetone.

  9. Characteristic of Nitron for Use as a Chemical Sensor in Studies of the Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Meadows, Kapres; Wright, Cassandra K.; Sims, S. C.; Morris, V. R.

    1997-01-01

    We are investigating the use of nitron as a potential chemical sensor for nitric acid and other electron deficient nitrogen oxides. Solutions of nitron in 1-propanol, toluene, and chloroform have been tested for use on a piezoelectric quartz crystal microbalance. We are testing various solvents and metal cations which can maximize the lifetime and reaction specificity of nitron so that they may be used as chemical coatings for stratospheric measurement of trace gases. Results of the work to date will be shown, and future direction discussed.

  10. Monoparticulate layers of titanium dioxide nanocrystallites with controllable interparticle distances

    SciTech Connect

    Kotov, N.A.; Meldrum, F.C.; Fendler, J.H. )

    1994-09-08

    The arrested hydrolysis of titanium tetraisopropoxide by millimolar concentrations of water in a mixture of chloroform and 1-propanol in the presence of hexadecyltrimethylammonium bromide and tetramethylammonium hydroxide resulted in the formation of stable dispersions (sols) of nanocrystalline (18-22 A diameter) TiO[sub 2]. Spreading the sols on water surfaces in a Langmuir film balance produced monoparticulate TiO[sub 2] films. Heat treatment of a given sol prior to dispersion on the aqueous subphase resulted in nanocrystalline monoparticulate TiO[sub 2] films with reduced interparticulate distances. 14 refs., 7 figs.

  11. VOC breath biomarkers in lung cancer.

    PubMed

    Saalberg, Yannick; Wolff, Marcus

    2016-08-01

    This review provides an overview of volatile organic compounds (VOCs) which are considered lung cancer biomarkers for diagnostic breath analysis. It includes results of scientific publications from 1985 to 2015. The identified VOCs are listed and ranked according to their occurrence of nomination. The applied detection and sampling methods are specified but not evaluated. Possible reasons for the different results of the studies are stated. Among the most frequently emerging biomarkers are 2-butanone and 1-propanol as well as isoprene, ethylbenzene, styrene and hexanal. The outcome of this review may be helpful for the development of a lung cancer screening device. PMID:27221203

  12. Investigation of chemical modifiers for the direct determination of arsenic in fish oil using high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Pereira, Éderson R; de Almeida, Tarcísio S; Borges, Daniel L G; Carasek, Eduardo; Welz, Bernhard; Feldmann, Jörg; Campo Menoyo, Javier Del

    2016-04-01

    High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) has been applied for the development of a method for the determination of total As in fish oil samples using direct analysis. The method does not use any sample pretreatment, besides dilution with 1-propanole, in order to decrease the oil viscosity. The stability and sensitivity of As were evaluated using ruthenium and iridium as permanent chemical modifiers and palladium added in solution over the sample. The best results were obtained with ruthenium as the permanent modifier and palladium in solution added to samples and standard solutions. Under these conditions, aqueous standard solutions could be used for calibration for the fish oil samples diluted with 1-propanole. The pyrolysis and atomization temperatures were 1400 °C and 2300 °C, respectively, and the limit of detection and characteristic mass were 30 pg and 43 pg, respectively. Accuracy and precision of the method have been evaluated using microwave-assisted acid digestion of the samples with subsequent determination by HR-CS GF AAS and ICP-MS; the results were in agreement (95% confidence level) with those of the proposed method. PMID:26838392

  13. Effects of water-alcohol binary solvents on the thermochemical characteristics of L-tryptophane dissolution at 298.15 K

    NASA Astrophysics Data System (ADS)

    Badelin, V. G.; Smirnov, V. I.

    2013-01-01

    The enthalpies of L-tryptophane solution in water-methanol, water-ethanol, water-1-propanol, and water-2-propanol mixtures at alcohol concentrations of x 2 = 0-0.4 mole fractions were measured by calorimetry. The standard enthalpies of L-tryptophane solution (Δsol H ∘) and transfer (Δtr H ∘) from water to the binary solvent were calculated. The influence of the composition of the water-alcohol mixture and the structure and properties of L-tryptophane on the enthalpy characteristics of the latter was considered. The enthalpy coefficients of pair interactions ( h xy ) of L-tryptophane with alcohol molecules were calculated. The coefficients were positive and increased in the series: methanol (MeOH), ethanol (EtOH), 1-propanol (1-PrOH), and 2-propanol (2-PrOH). The solution and transfer enthalpies of L-tryptophane were compared with those of aliphatic amino acids (glycine, L-threonine, DL-alanine, L-valine, and L-phenylalanine) in similar binary solvents.

  14. Impact of different techniques involving contact with lees on the volatile composition of cider.

    PubMed

    Antón-Díaz, María José; Suárez Valles, Belén; Mangas-Alonso, Juan José; Fernández-García, Ovidio; Picinelli-Lobo, Anna

    2016-01-01

    The effect of different treatments involving contact with natural lees on the aromatic profile of cider has been evaluated. Comparing with the untreated ciders, the contact with lees brought about a significant increase of the concentrations of most of the volatile compounds analysed, in particular fatty acids, alcohols, ethyl esters and 3-ethoxy-1-propanol. The opposite was observed among fusel acetate esters and 4-vinylguaiacol. The addition of β-glucanase enhanced the increase of ethyl octanoate, but produced a decrease in the contents of decanoic acid and all of the major volatiles excepting acetaldehyde, ethyl acetate and acetoine, whereas the application of oxygen influenced the rise of the level of 3-ethoxy-1-propanol only. The olfactometric profiles also revealed significant effects of the treatment with lees for ethyl propionate, diacetyl, cis-3-hexenol, acetic acid, benzyl alcohol, and m-cresol, while the addition of oxygen significantly influenced the perception of ethyl hexanoate, 1-octen-3-one, 3-methyl-2-butenol, t-3-hexenol and c-3-hexenol. PMID:26213084

  15. Structure and thermodynamics of core-softened models for alcohols

    SciTech Connect

    Munaò, Gianmarco; Urbic, Tomaz

    2015-06-07

    The phase behavior and the fluid structure of coarse-grain models for alcohols are studied by means of reference interaction site model (RISM) theory and Monte Carlo simulations. Specifically, we model ethanol and 1-propanol as linear rigid chains constituted by three (trimers) and four (tetramers) partially fused spheres, respectively. Thermodynamic properties of these models are examined in the RISM context, by employing closed formulæ for the calculation of free energy and pressure. Gas-liquid coexistence curves for trimers and tetramers are reported and compared with already existing data for a dimer model of methanol. Critical temperatures slightly increase with the number of CH{sub 2} groups in the chain, while critical pressures and densities decrease. Such a behavior qualitatively reproduces the trend observed in experiments on methanol, ethanol, and 1-propanol and suggests that our coarse-grain models, despite their simplicity, can reproduce the essential features of the phase behavior of such alcohols. The fluid structure of these models is investigated by computing radial distribution function g{sub ij}(r) and static structure factor S{sub ij}(k); the latter shows the presence of a low−k peak at intermediate-high packing fractions and low temperatures, suggesting the presence of aggregates for both trimers and tetramers.

  16. Biodegradation of bisphenol A and other bisphenols by a gram-negative aerobic bacterium

    SciTech Connect

    Lobos, J.H.; Leib, T.K. ); Tahmun Su )

    1992-06-01

    A novel bacterium designated strain MV1 was isolated from a sludge enrichmet takes from the wastewater treatment plant at a plastics manufacturing facility and shown to degrade 2,2-bis(4-hydroxyphenyl)propane (4,4[prime]-isopropylidenediphenol or bisphenol A). Strain MV1 is a gram-negative, aerobic bacillus that grows on bisphenol A as a sole source of carbon and energy. Total carbon analysis for bisphenol A degradation demonstrated that 60% of the carbon was mineralized to CO[sub 2], 20% was associated with the bacterial cells, and 20% was converted to soluble organic compounds. Metabolic intermediates detected in the culture medium during growth on bisphenol A were identified as 4-hydroxybenzoic acid, 4-hydroxyacetophenone, 2,2-bis(4-hydroxyphenyl)-1-propanol, and 2,3-bis(4-hydroxyphenyl)-1,2-propanediol. Most of the bisphenol A degraded by strain MV1 is cleaved in some way to form 4-hydroxybenzoic acid and 4-hydroxyacetophenone, which are subsequently mineralized or assimilated into cell carbon. In addition, about 20% of the bisphenol A is hydroxylated to form 2,2-bis(4-hydroxyphenyl)-1-propanol, which is slowly biotransformed to 2,3-bis(4-hydroxyphenyl)-1,2-propanediol. Cells that were grown on bisphenol A degraded a variety of bisphenol alkanes, hydroxylated benzoic acids, and hydroxylated acetophenones during resting-cell assays. Transmission electron microscopy of cells grown on bisphenol A revealed lipid storage granules and intracytoplasmic membranes.

  17. PDMP sensitizes neuroblastoma to paclitaxel by inducing aberrant cell cycle progression leading to hyperploidy.

    PubMed

    Dijkhuis, Anne-Jan; Klappe, Karin; Jacobs, Susan; Kroesen, Bart-Jan; Kamps, Willem; Sietsma, Hannie; Kok, Jan Willem

    2006-03-01

    The sphingolipid ceramide has been recognized as an important mediator in the apoptotic machinery, and its efficient conversion to glucosylceramide has been associated with multidrug resistance. Therefore, inhibitors of glucosylceramide synthase are explored as tools for treatment of cancer. In this study, we used D,L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol to sensitize Neuro-2a murine neuroblastoma cells to the microtubule-stabilizing agent paclitaxel. This treatment resulted in a synergistic inhibition of viable cell number increase, which was based on a novel mechanism: (a) After a transient mitotic arrest, cells proceeded through an aberrant cell cycle resulting in hyperploidy. Apoptosis also occurred but to a very limited extent. (b) Hyperploidy was not abrogated by blocking de novo sphingolipid biosynthesis using ISP-1, ruling out involvement of ceramide as a mediator. (c) Cyclin-dependent kinase 1 and 2 activities were synergistically decreased on treatment. In conclusion, instead of inducing apoptosis through ceramide accumulation, D,L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol by itself affects cell cycle-related proteins in paclitaxel-arrested Neuro-2a cells resulting in aberrant cell cycle progression leading to hyperploidy. PMID:16546973

  18. Efficient yet accurate approximations for ab initio calculations of alcohol cluster thermochemistry

    NASA Astrophysics Data System (ADS)

    Umer, Muhammad; Kopp, Wassja A.; Leonhard, Kai

    2015-12-01

    We have calculated the binding enthalpies and entropies of gas phase alcohol clusters from ethanol to 1-decanol. In addition to the monomers, we have investigated dimers, tetramers, and pentamers. Geometries have been obtained at the B3LYP/TZVP level and single point energy calculations have been performed with the Resolution of the Identity-MP2 (RIMP2) method and basis set limit extrapolation using aug-cc-pVTZ and aug-cc-pVQZ basis sets. Thermochemistry is calculated with decoupled hindered rotor treatment for large amplitude motions. The results show three points: First, it is more accurate to transfer the rigid-rotor harmonic oscillator entropies from propanol to longer alcohols than to compute them with an ultra-fine grid and tight geometry convergence criteria. Second, the computational effort can be reduced considerably by using dimerization energies of longer alcohols at density functional theory (B3LYP) level plus a RIMP2 correction obtained from 1-propanol. This approximation yields results almost with the same accuracy as RIMP2 — both methods differ for 1-decanol only 0.4 kJ/mol. Third, the entropy of dimerization including the hindered rotation contribution is converged at 1-propanol with respect to chain length. This allows for a transfer of hindered rotation contributions from smaller alcohols to longer ones which reduces the required computational and man power considerably.

  19. Microemulsion system for topical delivery of thai mango seed kernel extract: development, physicochemical characterisation and ex vivo skin permeation studies.

    PubMed

    Leanpolchareanchai, Jiraporn; Padois, Karine; Falson, Françoise; Bavovada, Rapepol; Pithayanukul, Pimolpan

    2014-01-01

    A microemulsion system containing Thai mango seed kernel extract (MSKE, cultivar "Fahlun") was developed and characterised for the purpose of topical skin delivery. The MSKE-loaded microemulsions were prepared by using the spontaneous emulsification method. Isopropyl myristate (IPM) was selected as the oil phase. A polyoxyethylene sorbitan monooleate and sorbitan monododecanoate (1:1, w/w) system was used as the surfactant phase; an aqueous mixture of different cosurfactants (absolute ethanol, 96.3% v/v ethanol, 1-propanol, 2-propanol or 1,2-propanediol) at a weight ratio of 1:1 was used as the aqueous phase. Among the cosurfactants studied, the 1-propanol aqueous mixture had the largest microemulsion region (48.93%) in the pseudo-ternary phase diagram. Microemulsions containing 1% MSKE demonstrated good physicochemical stability during a six-month study period at 25 ± 2 °C/60% ± 5% RH. The ex vivo skin permeation study demonstrated that the microemulsions exhibited a potent skin enhancement effect allowing MSKE to penetrate skin layers up to 60-fold higher compared with the control. Neither skin irritation nor skin corrosion was observed in ex vivo studies. The present study revealed that IPM-based microemulsion systems may be promising carriers to enhance skin penetration and delivering MSKE for topical treatment. PMID:25347456

  20. CEC column behaviour of butyl and lauryl methacrylate monoliths prepared in non-aqueous media.

    PubMed

    Cantó-Mirapeix, Amparo; Herrero-Martínez, José M; Mongay-Fernández, Carlos; Simó-Alfonso, Ernesto F

    2009-02-01

    Polymeric monolithic stationary phases for capillary electrochromatography were prepared using two bulk monomers, butyl methacrylate (BMA) and lauryl methacrylate (LMA), by in situ polymerization in non-aqueous media. The effect of 1,4-butanediol/1-propanol ratio on porous properties was investigated separately for each monomer, keeping the proportion of monomers to pore-forming solvents fixed at 40:60 wt:wt. Also, mixtures of BMA and LMA at different 1,4-butanediol/1-propanol ratios were studied for tailoring the morphological features of the monolithic columns. The chromatographic performance of the different columns was evaluated by means of van Deemter plots of polycyclic aromatic hydrocarbons. Mercury-intrusion porosimetry, SEM, and nitrogen-adsorption measurements were also performed in order to understand their retention behaviour and porous properties. A comparison of these features was also performed for monoliths made with one bulk monomer (BMA or LMA) and with mixtures of both. These mixed monoliths showed satisfactory efficiencies and analysis times compared with those made with one bulk monomer; thus, the BMA-LMA monoliths constitute an attractive alternative to manipulate the electrochromatographic properties of methacrylate beds in CEC. PMID:19170053

  1. N-substituted monodentate alcohols as ligands modifying structure, properties and thermal stability of Mo(IV) complexes

    NASA Astrophysics Data System (ADS)

    Jurowska, Anna; Szklarzewicz, Janusz; Hodorowicz, Maciej; Tomecka, Monika; Lipkowski, Janusz; Nitek, Wojciech

    2015-02-01

    The reaction of N-substituted alcohols (2-aminoethanol, 3-amino-1-propanol and 2-hydroxyethylhydrazine) with K3Na[Mo(CN)4O2]ṡ6H2O in water-ethanol solution results in isolation of three new complexes of formulae: (PPh4)2[Mo(CN)4O(amet)]ṡ3H2O (1), (amet = 2-aminoethanol), (PPh4)2[Mo(CN)4O(ampro)]ṡ3H2O (2) (ampro = 3-amino-1-propanol) and (PPh4)2[Mo(CN)4O(ethyd)]ṡ3H2O (3) (ethyd = 2-hydroxyethylhydrazine). The isolated salts were characterized by elemental analysis, single crystal X-ray structure measurements, IR and UV-Vis spectroscopy and cyclic voltammetry. The complexes crystalize in triclinic space group with distorted octahedral geometry of the anion. The obtained salts belongs to a very rare group of complexes with monodentate terminal N-donating alcohols. The thermal stability is described for all complexes and compared with crystal structure parameters.

  2. Biodegradation of bisphenol A and other bisphenols by a gram-negative aerobic bacterium.

    PubMed

    Lobos, J H; Leib, T K; Su, T M

    1992-06-01

    A novel bacterium designated strain MV1 was isolated from a sludge enrichment taken from the wastewater treatment plant at a plastics manufacturing facility and shown to degrade 2,2-bis(4-hydroxyphenyl)propane (4,4'-isopropylidenediphenol or bisphenol A). Strain MV1 is a gram-negative, aerobic bacillus that grows on bisphenol A as a sole source of carbon and energy. Total carbon analysis for bisphenol A degradation demonstrated that 60% of the carbon was mineralized to CO2, 20% was associated with the bacterial cells, and 20% was converted to soluble organic compounds. Metabolic intermediates detected in the culture medium during growth on bisphenol A were identified as 4-hydroxybenzoic acid, 4-hydroxyacetophenone, 2,2-bis(4-hydroxyphenyl)-1-propanol, and 2,3-bis(4-hydroxyphenyl)-1,2-propanediol. Most of the bisphenol A degraded by strain MV1 is cleaved in some way to form 4-hydroxybenzoic acid and 4-hydroxyacetophenone, which are subsequently mineralized or assimilated into cell carbon. In addition, about 20% of the bisphenol A is hydroxylated to form 2,2-bis(4-hydroxyphenyl)-1-propanol, which is slowly biotransformed to 2,3-bis(4-hydroxyphenyl)-1,2-propanediol. Cells that were grown on bisphenol A degraded a variety of bisphenol alkanes, hydroxylated benzoic acids, and hydroxylated acetophenones during resting-cell assays. Transmission electron microscopy of cells grown on bisphenol A revealed lipid storage granules and intracytoplasmic membranes. PMID:1622258

  3. Nucleation of ethanol, propanol, butanol, and pentanol: A systematic experimental study along the homologous series

    NASA Astrophysics Data System (ADS)

    Manka, Alexandra A.; Wedekind, Jan; Ghosh, David; Höhler, Kristina; Wölk, Judith; Strey, Reinhard

    2012-08-01

    We present homogeneous vapor-liquid nucleation rates of the 1-alcohols (CnH2n+1OH, n = 2-4) measured in the well-established two-valve nucleation pulse chamber as well as in a novel one-piston nucleation pulse chamber at temperatures between 235 and 265 K. The nucleation rates and critical cluster sizes show a very systematic behavior with respect to the hydrocarbon chain length of the alcohol, just as their thermo-physical parameters such as surface tension, vapor pressure, and density would suggest. For all alcohols, except ethanol, predictions of classical nucleation theory lie several orders of magnitude below the experimental results and show a strong temperature-dependence typically found in nucleation experiments. The more recent Reguera-Reiss theory [J. Phys. Chem. B 108(51), 19831 (2004)] achieves reasonably good predictions for 1-propanol, 1-butanol, and 1-pentanol, and independent of the temperature. Ethanol, however, clearly shows the influence of strong association between molecules even in the vapor phase. We also scaled all experimental results with classic nucleation theory to compare our data with other data from the literature. We find the same overall temperature trend for all measurement series together but inverted and inconsistent temperature trends for individual 1-propanol and 1-butanol measurements in other devices. Overall, our data establishe a comprehensive and reliable data set that forms an ideal basis for comparison with nucleation theory.

  4. Efficient yet accurate approximations for ab initio calculations of alcohol cluster thermochemistry.

    PubMed

    Umer, Muhammad; Kopp, Wassja A; Leonhard, Kai

    2015-12-01

    We have calculated the binding enthalpies and entropies of gas phase alcohol clusters from ethanol to 1-decanol. In addition to the monomers, we have investigated dimers, tetramers, and pentamers. Geometries have been obtained at the B3LYP/TZVP level and single point energy calculations have been performed with the Resolution of the Identity-MP2 (RIMP2) method and basis set limit extrapolation using aug-cc-pVTZ and aug-cc-pVQZ basis sets. Thermochemistry is calculated with decoupled hindered rotor treatment for large amplitude motions. The results show three points: First, it is more accurate to transfer the rigid-rotor harmonic oscillator entropies from propanol to longer alcohols than to compute them with an ultra-fine grid and tight geometry convergence criteria. Second, the computational effort can be reduced considerably by using dimerization energies of longer alcohols at density functional theory (B3LYP) level plus a RIMP2 correction obtained from 1-propanol. This approximation yields results almost with the same accuracy as RIMP2 - both methods differ for 1-decanol only 0.4 kJ/mol. Third, the entropy of dimerization including the hindered rotation contribution is converged at 1-propanol with respect to chain length. This allows for a transfer of hindered rotation contributions from smaller alcohols to longer ones which reduces the required computational and man power considerably. PMID:26646881

  5. Electron beam induced synthesis of uranium dioxide nanoparticles: Effect of solvent composition

    NASA Astrophysics Data System (ADS)

    Rath, M. C.; Keny, S. J.; Naik, D. B.

    2016-09-01

    The effect of various compositions of solvents was investigated on the electron beam induced synthesis of uranium dioxide, UO2 nanoparticles. The synthesis was carried out at different pHs from 2 to 7 in the aqueous solutions containing 10 mM uranyl nitrate and 10% 2-propanol. The formation of UO2 nanoparticles was found to occur only in the pH range from 2.5 to 3.7. Experiments were also carried out in the aqueous solutions containing various other alcohols (10% v/v) such as methanol, ethanol, 1-propanol, 1-butanol or tert-butanol as well as in solutions containing 10 mM sodium formate at pH 3.4. The formation of UO2 nanoparticles in the aqueous solutions was found to occur only in the presence of ethanol, 1-propanol, 2-propanol or 1-butanol. It is therefore confirmed that the electron beam induced synthesis of UO2 nanoparticles strongly depends on the solvent compositions as well as the pH of the medium.

  6. Disposition of short-chain aliphatic alcohols in rabbit vitreous by ocular microdialysis.

    PubMed

    Atluri, Harisha; Mitra, Ashim K

    2003-03-01

    Anatomic and physiological barriers limit drug delivery to the posterior segment of the eye via topical or systemic administration. Intravitreal administration has proven to be a safe and effective means of treating various posterior segment diseases. Elimination of a compound from the vitreous chamber may depend on lipophilicity, diffusivity, and aqueous solubility. This information is critical for optimizing intravitreal dosing which in turn can aid in the design of drug delivery systems. The purpose of this study is to determine the vitreous disposition of an ascending homologous series of short chain aliphatic alcohols ranging from hydrophilic methanol to lipophilic 1-heptanol by microdialysis. Radiolabelled 14C-methanol, 14C-1-propanol, 14C-1-pentanol, and 14C-1-heptanol with log partition coefficient values ranging from -0.77 to 2.7 were studied. Microdialysis probes were implanted in both anterior and vitreous chamber of the rabbit eye to sample aqueous and vitreous humors simultaneously. Concentric probe was implanted in vitreous chamber about 3mm below the cornealscleral limbus. Linear probe was implanted in the anterior chamber using a 25-guage needle. Isotonic phosphate buffer saline (IPBS) (pH 7.4) was perfused through the probe with a flow rate of 2 microlml(-1). Alcohols (2.0 microg-130.72 microg) were injected into the vitreous body. In vitro recovery for the probes was calculated using respective alcohols in IPBS. Pharmacokinetic parameters were determined by non-compartmental analysis. Vitreal elimination half-lives of methanol, 1-propanol, 1-pentanol and 1-heptanol are 52.0+/-5.7, 58.5+/-5.8, 72.9+/-5.8 and 153.7+/-21.6 min, respectively. Dose normalized area under the aqueous concentration time curve values of methanol, 1-propanol and 1-pentanol are 33.8+/-13.4, 28.3+/-11.9 and 29.2+/-4.9 microgminml(-1)microg(-1)10(-2), respectively. Time taken to reach maximum concentration in the anterior chamber for methanol, 1-propanol and 1-pentanol is 120

  7. Potassium sorbate reduces production of ethanol and 2 esters in corn silage.

    PubMed

    Hafner, Sasha D; Franco, Roberta B; Kung, Limin; Rotz, C Alan; Mitloehner, Frank

    2014-12-01

    The objective of this work was to evaluate the effects of biological and chemical silage additives on the production of volatile organic compounds (VOC; methanol, ethanol, 1-propanol, methyl acetate, and ethyl acetate) within corn silage. Recent work has shown that silage VOC can contribute to poor air quality and reduce feed intake. Silage additives may reduce VOC production in silage by inhibiting the activity of bacteria or yeasts that produce them. We produced corn silage in 18.9-L bucket silos using the following treatments: (1) control (distilled water); (2) Lactobacillus buchneri 40788, with 400,000 cfu/g of wet forage; (3) Lactobacillus plantarum MTD1, with 100,000 cfu/g; (4) a commercial buffered propionic acid-based preservative (68% propionic acid, containing ammonium and sodium propionate and acetic, benzoic, and sorbic acids) at a concentration of 1 g/kg of wet forage (0.1%); (5) a low dose of potassium sorbate at a concentration of 91 mg/kg of wet forage (0.0091%); (6) a high dose of potassium sorbate at a concentration of 1g/kg of wet forage (0.1%); and (7) a mixture of L. plantarum MTD1 (100,000 cfu/g) and a low dose of potassium sorbate (91 mg/kg). Volatile organic compound concentrations within silage were measured after ensiling and sample storage using a headspace gas chromatography method. The high dose of potassium sorbate was the only treatment that inhibited the production of multiple VOC. Compared with the control response, it reduced ethanol by 58%, ethyl acetate by 46%, and methyl acetate by 24%, but did not clearly affect production of methanol or 1-propanol. The effect of this additive on ethanol production was consistent with results from a small number of earlier studies. A low dose of this additive does not appear to be effective. Although it did reduce methanol production by 24%, it increased ethanol production by more than 2-fold and did not reduce the ethyl acetate concentration. All other treatments increased ethanol production

  8. Odorous gaseous emissions as influence by process condition for the forced aeration composting of pig slaughterhouse sludge

    SciTech Connect

    Blazy, V.; Guardia, A. de; Benoist, J.C; Daumoin, M.; Lemasle, M.; Wolbert, D.; Barrington, S.

    2014-07-15

    Highlights: • The gaseous emissions produced by various composting process conditions were characterized and quantified. • Nine compounds were potentially odorous: TMA, NH{sub 3}, 2-pentanone, 1-propanol-2-methyl, acetophenone and sulphur forms. • The tested composting process conditions reduced odour emissions by a factor of 5–10. • A reduction of 10{sup 5} to 10{sup 6} is required to reach an odour threshold limit at peak event emissions. • Both aeration rate and bulking agent had the most impact on reducing odour emissions. - Abstract: Compost sustainability requires a better control of its gaseous emissions responsible for several impacts including odours. Indeed, composting odours have stopped the operation of many platforms and prevented the installation of others. Accordingly, present technologies collecting and treating gases emitted from composting are not satisfactory and alternative solutions must be found. Thus, the aim of this paper was to study the influence of composting process conditions on gaseous emissions. Pig slaughterhouse sludge mixed with wood chips was composted under forced aeration in 300 L laboratory reactors. The process conditions studied were: aeration rate of 1.68, 4.03, 6.22, 9.80 and 13.44 L/h/kg of wet sludge; incorporation ratio of 0.55, 0.83 and 1.1 (kg of wet wood chips/kg of wet sludge), and; bulking agent particles size of <10, 10 < 20 and 20 < 30 mm. Out-going gases were sampled every 2 days and their composition was analysed using gas chromatography coupled with mass spectrometry (GC–MS). Fifty-nine compounds were identified and quantified. Dividing the cumulated mass production over 30 days of composting, by odour threshold, 9 compounds were identified as main potential odour contributors: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone, 1-propanol-2-methyl, dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide and acetophenone. Five gaseous compounds were correlated with both aeration rate and

  9. Synthesis of functionalized poly(ester carbonate) with laminin-derived peptide for promoting neurite outgrowth of PC12 cells.

    PubMed

    Xing, Dongming; Ma, Lie; Gao, Changyou

    2014-10-01

    Maleimide-functionalized poly(ester carbonate)s are synthesized by ring-opening copolymerization of furan-maleimide functionalized trimethylene carbonate (FMTMC) with L-lactide and a subsequent retro Diels-Alder reaction. The maleimide groups on poly(ester carbonate)s are amenable to Michael addition with thiol-containing molecules such as 3-mercapto-1-propanol, 2-aminoethanethiol hydrochloride, and mercaptoacetic acid under mild conditions, enabling the formation of biodegradable materials with various functional groups (e.g., hydroxyl, amine, and carboxyl). In particular, the maleimide-functionalized poly(ester carbonate) is clicked with a laminin-derived peptide CQAASIKVAV. In vitro culture of PC12 cells shows that the maleimide-functionalized polymers, especially the CQAASIKVAV-grafted one, could support cell proliferation and neurite outgrowth. The maleimide-functionalized poly(ester carbonate)s provide a versatile platform for diverse functionalization and have comprehensive potential in biomedical engineering. PMID:24962245

  10. Controlling surface energy of glass substrates to prepare superhydrophobic and transparent films from silica nanoparticle suspensions.

    PubMed

    Ogihara, Hitoshi; Xie, Jing; Saji, Tetsuo

    2015-01-01

    We fabricated superhydrophobic and transparent silica nanoparticle (SNP) films on glass plates via spray-coating technique. When suspensions containing 1-propanol and hydrophobic SNPs were sprayed over glass plates that were modified with dodecyl groups, superhydrophobic and transparent SNP films were formed on the substrates. Surface energy of the glass plates had a significant role to obtain superhydrophobic and transparent SNP films. SNP films did not show superhydrophobicity when bare glass plates were used as substrates, because water droplets tend to adhere the exposed part of the hydrophilic glass plate. Glass plates having extreme low surface energy were not also suitable because suspension solution was repelled from the substrates, which resulted in forming non-uniform SNP films. PMID:25310579

  11. Nanorod mediated collagen scaffolds as extra cellular matrix mimics.

    PubMed

    Vedhanayagam, Mohan; Mohan, Ranganathan; Nair, Balachandran Unni; Sreeram, Kalarical Janardhanan

    2015-12-01

    Creating collagen scaffolds that mimic extracellular matrices without using toxic exogenous materials remains a big challenge. A new strategy to create scaffolds through end-to-end crosslinking through functionalized nanorods leading to well-designed architecture is presented here. Self-assembled scaffolds with a denaturation temperature of 110 °C, porosity of 70%, pore size of 0.32 μm and Young's modulus of 231 MPa were developed largely driven by imine bonding between 3-mercapto-1-propanal (MPA) functionalized ZnO nanorods and collagen. The mechanical properties obtained were much higher than that of native collagen, collagen-MPA, collagen-3-mercapto-1-propanol (3MPOH) or collagen- 3-MPOH-ZnO, clearly bringing out the relevance of nanorod mediated assembly of fibrous networks. This new strategy has led to scaffolds with mechanical properties much higher than earlier reports and can provide support for cell growth and facilitation of cell attachment. PMID:26586667

  12. A study on corrosion resistant graphene films on low alloy steel

    NASA Astrophysics Data System (ADS)

    Sai Pavan, A. S.; Ramanan, Sutapa Roy

    2016-04-01

    Graphene nanosheets were produced after synthesizing graphene oxide via Hummer's method and a modified Hummer's method. The obtained graphene after reduction was dispersed in 1-propanol to get a coating solution. Mild steel coupons were coated with the graphene solution via dip coating method. Corrosion studies were carried out at different environments like water (pH 6.0), HCl (0.1 N), NaCl (3.5 wt%) and NaOH (1 M). Tafel analysis showed a reduction in the corrosion rate up to 99 % after three layer deposition with the graphene developed using the modified Hummer's method. X-ray diffraction and Raman Spectroscopy confirmed the presence of graphene.

  13. Electron emission and fragmentation of molecules in intense laser fields

    NASA Astrophysics Data System (ADS)

    Ueda, K.; Prümper, G.; Hatamoto, T.; Okunishi, M.; Mathur, D.

    2007-06-01

    We have constructed an apparatus for high-resolution electron spectroscopy and electron-ion coincidence experiments on gas-phase molecules in intense laser fields. The apparatus comprises an electron time-of-flight (TOF) spectrometer and an ion TOF spectrometer with a position detector, placed on either side of an effusive molecular beam. The ionizing radiation is either the fundamental (800 nm wavelength) of a Ti:sapphire laser or frequency doubled 400-nm light, with pulse durations of ~ 150 fs and the repetition rate of 1 kHz. We have investigated the electron emission and fragmentation of linear alcohol molecules, methanol, ethanol and 1-propanol, in laser fields with peak intensities up to ~ 1×10 14 W/cm2. Details of our apparatus are described along with an overview of some recent results.

  14. Characterization of a new mobility separation tool: HRIMS as differential mobility analyzer.

    PubMed

    Bouza, Marcos; López-Vidal, Silvia; Pisonero, Jorge; Bordel, Nerea; Pereiro, Rosario; Sanz-Medel, Alfredo

    2014-12-01

    High resolution ion mobility spectrometer (HRIMS) is a new instrument that uses parallel plate Differential Mobility Analysis as principle of separation. Gas phase analysis of volatile organic compounds (VOCs) has been performed for the characterization of this new mobility system using an UV-lamp for ionization. Studies of the effect of temperature and the presence of a desiccant are detailed. Identification of the different peaks obtained with an electrometer was successfully carried out for a group of alcohols, aromatic compounds and ketones (ethanol, 1-propanol, isopropanol, 1-butanol, 1-pentanol, 1-heptanol, acetone, 2-butanone, 2-pentanone, 2-octanone, benzene, toluene, xylene and bromobenzene) following a modified Millikan equation. Moreover, the investigation of the discrimination capabilities within the different VOCs families as well as the mobility dependence with molecular mass was successfully achieved. PMID:25159427

  15. Rapid preparation and characterization of methacrylate-based monoliths for chromatographic and electrophoretic separation.

    PubMed

    Fan, Li-Qun; Zhang, Yu-Ping; Gong, Wen-Jun; Qu, Ling-Bo; Lee, Kwang-Pill

    2010-01-01

    Butyl-methacrylate-based porous monoliths were rapidly prepared in the fused-silica capillary with a 10-cm stripe of polyimide removed from its exterior. The photopolymerization could be carried out in 150 s using ethylene glycol dimethacrylate as a cross-linking agent; 1-propanol, 1,4-butanediol, and water as tri-porogenic solvents; and Irgacure 1800 as a photo-initiator. The effect of different morphologies on the efficiency and retention properties was investigated using pressure-assisted CEC (p-CEC), CEC, and low pressure-assisted liquid chromatography modes (LPLC). Baseline separation of the model analytes was respectively achieved including thiourea, toluene, naphthalene, and biphenyl with the lowest theoretical height up to 8.0 microm for thiourea in the mode of p-CEC. Furthermore, the influence of the tri-porogenic solvents on the morphology of methacrylate-based monoliths was systematically studied with mercury intrusion porosimetry and scanning electron microscopy. PMID:20515536

  16. Fast Scanning Calorimetry study of non-equilibrium relaxation in fragile organic liquids

    NASA Astrophysics Data System (ADS)

    Sadtchenko, Vlad; Bhattacharya, Deepanjan; O'Reilly, Liam

    2013-03-01

    Fast scanning calorimetry (FSC), capable of heating rates in excess of 1000000 K/s, was combined with vapor deposition technique to investigate non-equilibrium relaxation in micrometer thick viscous liquid films of several organic compounds (e.g.2-ethyl-1-hexanol, Toluene, and 1-propanol) under high vacuum conditions. Rapid heating of samples, vapor deposited at temperatures above their standard glass softening transition (Tg), resulted in observable endotherms which onset temperatures were strongly dependent on heating rate and the deposition temperature. Furthermore, all of the studied compounds were characterized by distinct critical deposition temperatures at which observation of endotherm became impossible. Based on the results of these studies, we have developed a simple model which makes it possible to infer the equilibrium enthalpy relaxation times for liquids from FSC data. We will discuss implications of these studies for contemporary models of non-equilibrium relaxation in glasses and supercooled liquids. Supported by NSF Grant 1012692.

  17. Fast online emission monitoring of volatile organic compounds (VOC) in wastewater and product streams (using stripping with direct steam injection).

    PubMed

    Schocker, Alexander; Lissner, Bert

    2012-03-01

    Open-loop stripping analysis (also referred to as dynamic headspace) is a very flexible and robust technology for online monitoring of volatile organic compounds in wastewater or coolant. However, the quality and reliability of the analytical results depend strongly on the temperature during the stripping process. Hence, the careful and constant heating of the liquid phase inside the stripping column is a critical parameter. In addition, this stripping at high temperatures extends the spectrum of traceable organics to less volatile and more polar compounds with detection limits down to the ppm-level. This paper presents a novel and promising approach for fast, efficient, and constant heating by the direct injection of process steam into the strip medium. The performance of the system is demonstrated for temperatures up to 75 °C and traces of various hydrocarbons in water (e.g., tetrahydrofuran, methanol, 1-propanol, n-butanol, ethylbenzene). PMID:22186871

  18. By-product inhibition effects of ethanolic fermentation by Saccharomyces cerevisiae

    SciTech Connect

    Maiorella, B.; Blanch, H.W.; Wilke, C.R.

    1983-01-01

    Inhibition by secondary fermentation products may limit the ultimate productivity of new glucose to ethanol fermentation processes. New processes are under development whereby ethanol is selectively removed from the fermenting broth to eliminate ethanol inhibition effects. These processes can concentrate minor secondary products to the point where they become toxic to the yeast. Vacuum fermentation selectively concentrates nonvolatile products in the fermentation broth. Membrane fermentation systems may concentrate large molecules which are sterically blocked from membrane transport. Extractive fermentation systems, employing nonpolar solvents, may concentrate small organic acids. By-product production rates and inhibition levels in continuous fermentation with Saccharomyces cerevisiae have been determined for acetaldehyde, glycerol, formic, lactic, and acetic acids, 1-propanol, 2-methyl-1-butanol, and 2,3- butanediol to assess the potential effects of these by-products on new fermentation processes. Mechanisms are proposed for the various inhibition effects observed. (Refs. 15).

  19. By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae

    SciTech Connect

    Mairoella, B.; Blanch, H.W.; Wilke, C.R.

    1983-01-01

    Inhibition by secondary fermentation products may limit the ultimate productivity of new glucose to ethanol fermentation processes. New processes are under development whereby ethanol is selectively removed from the fermenting broth to eliminate ethanol inhibition effects. These processes can concentrate minor secondary products to the point where they become toxic to the yeast. Vacuum fermentation selectively concentrates nonvolatile products in the fermentation broth. Membrane fermentation systems may concentrate large molecules which are sterically blocked from membrane transport. Extractive fermentation systems, employing nonpolar solvents, may concentrate small organic acids. By-product production rates and inhibition levels in continuous fermentation with Saccharomyces cerevisiae have been determined for acetaldehyde, glycerol, formic, lactic, and acetic acids, 1-propanol, 2-methyl-1-butanol, and 2,3-butanediol to assess the potential effects of these by-products on new fermentation processes. Mechanisms are proposed for the various inhibition effects observed.

  20. Shock Hugoniot equations of state for binary water-alcohol liquid mixtures

    NASA Astrophysics Data System (ADS)

    Moore, David; Bolme, Cynthia; Brown, Kathryn; McGrane, Shawn; Schulze, Peter

    2015-06-01

    Shock Hugoniot data were obtained using laser generated shock and ultrafast dynamic ellipsometry (UDE) methods for several non-ideal water-alcohol liquid mixtures, using methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and t-butanol (a.k.a., 2-methyl-2-propanol or tert-butanol). The sound speeds of the mixtures were obtained using Brillouin scattering when not available in the literature. The shock and particle velocities obtained from the UDE data were compared to expectations of the universal liquid Hugoniot (ULH) and to literature shock (plate impact) data where available. The shock Hugoniot trends for all these mixtures, represented as deviations from predictions of the ULH, versus fraction of alcohol are quite similar to each other and suggest that complex hydrogen bonding networks in water-alcohol mixtures alter the compressibility of the mixtures. Data and trends will be presented. LA-UR-15-20328.

  1. Diffusion in mixed solvents. II - The heat of mixing parameter

    NASA Technical Reports Server (NTRS)

    Carapellucci, P. A.

    1975-01-01

    Correlation of second-order rate constants for many reactions involving electron transfer between organic molecules, solvated electron reactions, iodine diffusion coefficients, and triplet state electron transfer reactions has been made with the heat of mixing parameter (HMP) for the aqueous binary solvent systems. The aqueous binary solvents studied are those containing methanol or ethanol (type I solvent); 1-propanol or tert-butyl alcohol (type II solvent); or sucrose or glycerol (type III solvent). A plot of the HMP vs. the diffusion parameter for each reaction yields superimposable curves for these reactions in a particular solvent mixture over the entire solvent mixture range, irrespective of the value of the reaction's rate constant or diffusion coefficient in water.

  2. Optical constants of alcohols in the infrared

    NASA Technical Reports Server (NTRS)

    Sethna, P. P.; Williams, D.

    1979-01-01

    The spectral reflectances at near-normal incidence for methanol, ethanol, 1-propanol, 1-butanol, and 1-pentanol are reported for the spectral range 6700-350 kaysers. The real and imaginary parts of the complex index of refraction of these liquids are obtained in the range 4000-400 kaysers by use of Kramers-Kronig phase-shift analysis. For all of the alcohols studied, the strength for the OH-stretch bands is directly proportional to the number of OH groups per unit volume; similar relations are established for CH- and CO-stretch bands. Absorption cross sections for stretch vibrations of the three groups are considered, and the role of characteristic group intensities in intensity spectroscopy is discussed.

  3. Method for producing high surface area chromia materials for catalysis

    DOEpatents

    Gash, Alexander E.; Satcher, Joe; Tillotson, Thomas; Hrubesh, Lawrence; Simpson, Randall

    2007-05-01

    Nanostructured chromium(III)-oxide-based materials using sol-gel processing and a synthetic route for producing such materials are disclosed herein. Monolithic aerogels and xerogels having surface areas between 150 m.sup.2/g and 520 m.sup.2/g have been produced. The synthetic method employs the use of stable and inexpensive hydrated-chromium(III) inorganic salts and common solvents such as water, ethanol, methanol, 1-propanol, t-butanol, 2-ethoxy ethanol, and ethylene glycol, DMSO, and dimethyl formamide. The synthesis involves the dissolution of the metal salt in a solvent followed by an addition of a proton scavenger, such as an epoxide, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively.

  4. Fragrance contact dermatitis - a worldwide multicenter investigation (Part III).

    PubMed

    Larsen, Walter; Nakayama, Hideo; Fischer, Torkil; Elsner, Peter; Frosch, Peter; Burrows, Desmond; Jordan, William; Shaw, Stephanie; Wilkinson, John; Marks, James; Sugawara, M; Nethercott, Marc; Nethercott, James

    2002-03-01

    The purpose of this study was to determine the frequency of responses to selected fragrance materials in patients who were fragrance sensitive. 218 fragrance sensitive subjects were evaluated in eight centres worldwide with a fragrance mixture (FM) and 17 less well-studied fragrance materials. Reaction to the fragrance mixture (FM) occurred in 76% of the subjects. The (FM) detected all reactions to nerol and hydroxycitronellol and 93% of the reactions to clove bud oil. Ten fragrance materials were not detected by the FM and deserve further study: benzenepropanol, beta, beta, 3-trimethyl, hexyl-salicylate, dl-citronellol, synthetic ylang ylang oil, benzyl mixture, cyclohexyl-acetate, eugenyl methyl ether, isoeugenyl methyl ether, 3-phenyl-1-propanol, and 3, 7-dimethyl-7-methoxyoctan-2-ol. PMID:12000321

  5. Catalytic activity of carbon nanotubes in the conversion of aliphatic alcohols

    NASA Astrophysics Data System (ADS)

    Zhitnev, Yu. N.; Tveritinova, E. A.; Chernyak, S. A.; Savilov, S. V.; Lunin, V. V.

    2016-06-01

    Carbon nanotubes (CNTs) obtained via the catalytic pyrolysis of hexane at 750°C were studied as the catalysts in conversion of C2-C4 alcohols. The efficiency of CNTs as catalysts in dehydration and dehydrogenation of ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, and tert-butanol was studied by means of pulse microcatalysis. The surface and structural characteristics of CNTs are investigated via SEM, TEM, DTA, BET, and XPS. CNTs are shown to be effective catalysts in the conversion of alcohols and do not require additional oxidative treatment. The regularities of the conversion of aliphatic alcohols, related to the properties of the CNTs surface and the structure of the alcohols are identified.

  6. [The resolution of racemic sec-phenethyl alcohol on cellulose tribenzoate-based CSP: influence of different alcohols in the mobile phase].

    PubMed

    Wang, L; Lü, S; Gao, P; Li, S

    1999-07-01

    Several primary and secondary alcohols (ethanol, 1-propanol, 2-propanol, 1-butanol) were used as the mobile phase components separately, to investigate their effects on the capacity factor and stereoselectivity of sec-phenethyl alcohol enantiomers on cellulose tribenzoate-based CSP. The chiral recognition mechanism for the enantiomeric aromatic alcohols studied may involve: (1) the aromatic portion of the solute may insert into a chiral cavity of the CSP through a hydrogen bonding interaction between the solute's alcoholic hydrogen and the ester carbonyl group on the CSP; (2) the mobile phase modifiers (various alcohols) compete with the solutes for chiral, as well as achiral, binding sites on the CSP; (3) the structure of the modifier has some effect on stereoselectivity through an alteration of the steric environment of the chiral cavity. PMID:12552849

  7. Transient infrared temperature measurements of liquid-fuel surfaces: results of studies of flames spread over liquids.

    PubMed

    Konishi, T; Ito, A; Saito, K

    2000-08-20

    An infrared thermograph technique with an 8-12-microm spectral range was used to measure transient two-dimensional profiles of liquid (1-propanol) surface temperatures. An IR camera was placed over the liquid, allowing us to observe the fuel surface through propanol vapor. To use this technique, one must know the emissivity of the liquid surface and the IR absorption of both the liquid propanol and the propanol vapor. The emissivity of the liquid propanol was determined with a fine thermocouple temperature measurement, IR absorption with the propanol vapor was calibrated with a blackbody source, and IR absorption with a liquid propanol was theoretically estimated. The accuracy of our infrared thermograph technique proved to be better than 97% in detecting the liquid-surface temperature with a temperature sensitivity of 0.1 degrees C and a time response of 30 ms. PMID:18350009

  8. Organizational chirality expression as a function of the chirality measure of simple amino alcohols on Cu(100)

    NASA Astrophysics Data System (ADS)

    Ronci, F.; Gatti, R.; Caponi, G.; Colonna, S.; Galeotti, G.; Catone, D.; Turchini, S.; Prosperi, T.; Zema, N.; Palma, A.; Gori, P.; Contini, G.

    2014-11-01

    Chiral self-assembled molecular networks (SAMNs) are important for technological and fundamental reasons. In spite of the large number of works in this field, the mechanism of chirality transfer from single molecules to large-scale two-dimensional (2D) networks is not fully understood yet. This work reports on the self-assembly of simple amino alcohols with different chirality measures on Cu(100). Ethanolamine (2-amino-1-ethanol), alaninol (2-amino-1-propanol) and butanolamine (2-amino-1-butanol) adsorbed on Cu(100) have been investigated with scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), photoelectron spectroscopy (PES) and density functional theory (DFT) calculations. This study addresses the role of the single-molecule handedness in the global chirality expression, showing how the chirality measure of the precursors plays an important role in the formation of globally chiral superstructures.

  9. SO3H-functionalized ionic liquid: efficient catalyst for bagasse liquefaction.

    PubMed

    Long, Jinxing; Guo, Bin; Teng, Junjiang; Yu, Yinghao; Wang, Lefu; Li, Xuehui

    2011-11-01

    Liquefaction is a process for the production of biofuel or value-added biochemicals from non-food biomass. SO(3)H-, COOH-functionalized and HSO(4)-paired imidazolium ionic liquids were shown to be efficient catalysts for bagasse liquefaction in hot compressed water. Using SO(3)H-functionalized ionic liquid, 96.1% of bagasse was liquefied and 50.6% was selectively converted to low-boiling biochemicals at 543 K. The degree of liquefaction and selectivity for low-boiling products increased and the average molecular weight of the tetrahydrofuran soluble products decreased with increasing acidic strength of ionic liquids. Analysis of products and comparative characterization of raw materials and residues suggested that both catalytic liquefaction and hydrolysis processes contribute to the high conversion of bagasse. A possible liquefaction mechanism based on the generation of 3-cyclohexyl-1-propanol, one of the main products, is proposed. PMID:21906936

  10. A re-appraisal of the concept of ideal mixtures through a computer simulation study of the methanol-ethanol mixtures

    NASA Astrophysics Data System (ADS)

    Požar, Martina; Lovrinčević, Bernarda; Zoranić, Larisa; Mijaković, Marijana; Sokolić, Franjo; Perera, Aurélien

    2016-08-01

    Methanol-ethanol mixtures under ambient conditions of temperature and pressure are studied by computer simulations, with the aim to sort out how the ideality of this type of mixtures differs from that of a textbook example of an ideal mixture. This study reveals two types of ideality, one which is related to simple disorder, such as in benzene-cyclohexane mixtures, and another found in complex disorder mixtures of associated liquids. It underlines the importance of distinguishing between concentration fluctuations, which are shared by both types of systems, and the structural heterogeneity, which characterises the second class of disorder. Methanol-1propanol mixtures are equally studied and show a quasi-ideality with many respect comparable to that of the methanol-ethanol mixtures, hinting at the existence of a super-ideality in neat mono-ol binary mixtures, driven essentially by the strong hydrogen bonding and underlying hydroxyl group clustering.

  11. Phase Transition of a Structure II Cubic Clathrate Hydrate to a Tetragonal Form.

    PubMed

    Takeya, Satoshi; Fujihisa, Hiroshi; Yamawaki, Hiroshi; Gotoh, Yoshito; Ohmura, Ryo; Alavi, Saman; Ripmeester, John A

    2016-08-01

    The crystal structure and phase transition of cubic structure II (sII) binary clathrate hydrates of methane (CH4 ) and propanol are reported from powder X-ray diffraction measurements. The deformation of host water cages at the cubic-tetragonal phase transition of 2-propanol+CH4 hydrate, but not 1-propanol+CH4 hydrate, was observed below about 110 K. It is shown that the deformation of the host water cages of 2-propanol+CH4 hydrate can be explained by the restriction of the motion of 2-propanol within the 5(12) 6(4) host water cages. This result provides a low-temperature structure due to a temperature-induced symmetry-lowering transition of clathrate hydrate. This is the first example of a cubic structure of the common clathrate hydrate families at a fixed composition. PMID:27346760

  12. [Effect of elastin peptides on the production of matrix metalloproteinase 2 by human skin fibroblasts in culture].

    PubMed

    Huet, E; Brassart, B; Wallach, J; Debelle, L; Haye, B; Emonard, H; Hornebeck, W

    2001-01-01

    Soluble elastin-derived peptides from alkaline or elastase hydrolysis of insoluble elastin, as well as tropoelastin, increase matrix metalloproteinase-2 (MMP-2) production by human skin fibroblasts in culture as determined by gelatin zymography and ELISA. Such an effect is time and concentration dependent; it can be reproduced by synthetic elastin: VGVAPG, PGAIPG, and laminin: LGTIPG, hexapeptides and inhibited by lactose and is therefore elastin receptor-mediated. The steady state levels of MMP-2 mRNAs are invariant following elastin-fibroblasts interaction. Inhibition of phospholipase C (D-609), ADP-ribosylation factor (brefeldin), protein kinase C (RO-318220) and phospholipase D (1-propanol) totally abolished the elastin-mediated increase of MMP-2 production. It suggested that the post-transcriptional mechanism controlling the elastin-mediated overproduction of MMP-2 involved a cascade leading to phospholipase D activation. PMID:11723829

  13. Prebiotic Oxidative Polymerization of 2,3 Dimercaptopropanol on the Surface of Iron(III) Hydroxide Oxide

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1994-01-01

    The oxidation of 2,3-Dimercapto-1-propanol by ferric ions on the surface of iron (III) hydroxide oxide yielded polydisulfide polymers. This polymerization occured readily at low dithiol concentration under mild aqueous conditions. Polydisulfide polymers up to the 15-mer were synthesized from 1 mM dithiol in 5 ml water reacted with iron (III) hydroxide oxide (20 mg, 160 micro mole Fe) for 3 days under anaerobic conditions at 40 C and pH 4. About 91% of the dithiol was converted to short soluble oligomers and 9% to insoluble larger oligomers that were isolated with the mineral phase. Reactions at higher dithiol concentrations with the same ratio of dithiol to mineral gave a higher yield of the larger insoluble oligomers. The relationship of these results to prebiotic polymer synthesis will be discussed.

  14. Metabolic Engineering of Microorganisms for the Production of Higher Alcohols

    PubMed Central

    Choi, Yong Jun; Lee, Joungmin; Jang, Yu-Sin

    2014-01-01

    ABSTRACT Due to the increasing concerns about limited fossil resources and environmental problems, there has been much interest in developing biofuels from renewable biomass. Ethanol is currently used as a major biofuel, as it can be easily produced by existing fermentation technology, but it is not the best biofuel due to its low energy density, high vapor pressure, hygroscopy, and incompatibility with current infrastructure. Higher alcohols, including 1-propanol, 1-butanol, isobutanol, 2-methyl-1-butanol, and 3-methyl-1-butanol, which possess fuel properties more similar to those of petroleum-based fuel, have attracted particular interest as alternatives to ethanol. Since microorganisms isolated from nature do not allow production of these alcohols at high enough efficiencies, metabolic engineering has been employed to enhance their production. Here, we review recent advances in metabolic engineering of microorganisms for the production of higher alcohols. PMID:25182323

  15. PMR-15 polyimide modifications for improved prepreg tack

    NASA Technical Reports Server (NTRS)

    Vannucci, R. D.

    1982-01-01

    The use of mixed solvents and of modified monomeric ester reactants was investigated as a means of improving the tack and drape retention characteristics of PMR-15 polyimide prepreg. Methanol, ethanol, 1-propanol and 1-butanol were used to prepare the esters, prepreg solutions, and T-300 graphite fabric and Celion 6000 unidirectional fiber prepregs. The tack retention characteristics of the T-300 fabric prepreg after exposure to simulated use conditions were determined using a simple lap shear test. Drape was qualitatively assessed by visually monitoring the deformability of the prepreg. Thermo-oxidative stability and mechanical properties retention of the Celion 6000 grahite fiber composites were determined as a function of exposure time in air at 600 F.

  16. Influence of cyclodextrin on the UCST- and LCST-behavior of poly(2-methacrylamido-caprolactam)-co-(N,N-dimethylacrylamide)

    PubMed Central

    Burkhart, Alexander

    2014-01-01

    Summary The monomer 2-methacrylamido-caprolactam (4) was synthesized from methacryloyl chloride (3) and racemic α-amino-ε-caprolactam (2). Copolymerization of 4 with N,N-dimethylacrylamide (5) was carried out by a free-radical mechanism using 2,2’-azobis(2-methylpropionitrile) (AIBN) as an initiator. The new copolymers show a lower critical solution temperature (LCST) in water and an upper critical solution temperature (UCST) in ethanol, 1-propanol, and 1-butanol. The solubility properties of the copolymers can be influenced significantly by the addition of randomly methylated β-cyclodextrin (CD). The complexation of the copolymers with CD, was confirmed by the use of ROESY-NMR-spectroscopy. PMID:25246954

  17. Use of a flor velum yeast for modulating colour, ethanol and major aroma compound contents in red wine.

    PubMed

    Moreno, Juan; Moreno-García, Jaime; López-Muñoz, Beatriz; Mauricio, Juan Carlos; García-Martínez, Teresa

    2016-12-15

    The most important and negative effect of the global warming for winemakers in warm and sunny regions is the observed lag between industrial and phenolic grape ripeness, so only it is possible to obtain an acceptable colour when the ethanol content of wine is high. By contrast, the actual market trends are to low ethanol content wines. Flor yeast growing a short time under velum conditions, decreases the ethanol and volatile acidity contents, has a favorable effect on the colour and astringency and significantly changes the wine content in 1-propanol, isobutanol, acetaldehyde, 1,1-diethoxiethane and ethyl lactate. The Principal Component Analysis of six enological parameters or five aroma compounds allows to classify the wines subjected to different velum formation conditions. The obtained results in two tasting sessions suggest that the flor yeast helps to modulate the ethanol, astringency and colour and supports a new biotechnological perspective for red winemakers. PMID:27451159

  18. Rapid purification of iodinated ligands for cyclic nucleotide radioimmunoassays

    SciTech Connect

    Wilson, S.P.

    1988-01-01

    The tyrosine methyl esters of succinyl cyclic AMP and succinyl cyclic GMP were iodinated by the chloramine T method and individually applied to C18 cartridges. A solution of 1-propanol/0.1 M sodium acetate pH 4.75 (17.5:82.5) was then pumped onto each cartridge and the eluate collected. A large peak of radioactivity, containing primarily the monoiodo and diiodo derivatives, was eluted. Radioactivity in peak fractions was greater than or equal to 95% the monoiodo derivative and represented 20 to 25% of the starting radioactivity. Contamination by the native cyclic nucleotide analogs was less than 5%. These peak fractions containing primarily monoiodinated products worked well in cyclic nucleotide radioimmunoassays. This fractionation required less than 30 min.

  19. Effect of the composition of a water-alcohol solvent on the thermodynamics of dissolution of DL-α-alanyl-β-alanine at 298.15 K

    NASA Astrophysics Data System (ADS)

    Smirnov, V. I.; Badelin, V. G.

    2014-12-01

    Enthalpies of solution for DL-α-alanyl-β-alanine in H2O-ethanol, H2O-1-propanol, and H2O-2-propanol mixed solvents with the alcohol mole fraction x 2 = 0-0.3 are measured at 298.15 K. Standard enthalpies of solution (Δsol H ∘), standard enthalpies of transfer of DL-α-alanyl-β-alanine from water to binary solvent (Δtr H ∘), and coefficients of enthalpies of pair interactions with alcohol molecules ( h xy) are calculated. The effect the structure and properties of alcohols and the composition of a water-alcohol mixture have on the enthalpy of dissolution for DL-α-alanyl-β-alanine are discussed. The h xy values for dipeptides of the alanine series in water-alcohol binary solvents are compared.

  20. Dielectric relaxation study of mixtures of alkyl methacrylates and 1-alcohols using time-domain reflectometry

    NASA Astrophysics Data System (ADS)

    Sivagurunathan, P.; Dharmalingam, K.; Ramachandran, K.; Prabhakar Undre, B.; Khirade, P. W.; Mehrotra, S. C.

    2006-05-01

    Dielectric relaxation measurements on alkyl methacrylates (methyl methacrylate, ethyl methacrylate and butyl methacrylate) with 1-alcohols (1-propanol, 1-pentanol, 1-heptanol, 1-octanol and 1-decanol) have been carried out using time-domain reflectometry (TDR) over the frequency range 10 MHz to 20 GHz at 303 K for different concentrations of alcohols. The dielectric parameters, namely the static dielectric constant (ɛ0), the dielectric constant at microwave frequencies (ɛ∞) and the relaxation time (τ) were determined. The Kirkwood correlation factor, which contains information regarding solute-solvent interaction and corresponding structural information, the excess permittivity and the excess inverse relaxation time were also determined. The values of the static dielectric constant and the relaxation time increase with the percentage of alkyl methacrylates in the alcohol, whereas the static dielectric constant decreases and the relaxation time increases with an increase in the alkyl chain length of both the methacrylates and the alcohols.

  1. Quantum-chemical modeling of energy parameters and vibrational spectra of chain and cyclic clusters of monohydric alcohols

    NASA Astrophysics Data System (ADS)

    Golub, P.; Doroshenko, I.; Pogorelov, V.

    2014-05-01

    The specific peculiarities of alcohols such as heightened viscosity, boiling temperature and surface tension can be explained by the capability of their molecules to form relatively stable associates named clusters due to hydrogen bonding. In present work the stability of different chain-like and cyclic clusters of methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol and 1-hexanol was investigated by means of quantum-chemical simulation and particular by recently developed DFT exchange-correlation functional M06-2X. The relative stability of the cluster structure was evaluated by the total energy per molecule at low temperatures (where all alcohols exist in solid state) and by the changing of the free Gibbs energy upon cluster formation at the room temperature. For the verification of revealed results the conformity of calculated IR spectra of the most stable cluster structures with the experimental IR spectra at different temperatures was analyzed.

  2. Nonionic gelation agents prepared from hydroxypropyl guar gum.

    PubMed

    Kono, Hiroyuki; Hara, Hideyuki; Hashimoto, Hisaho; Shimizu, Yuuichi

    2015-03-01

    Nonionic gels were prepared from hydroxypropyl guar gum (HPG) with different molar substitution degrees by crosslinking with ethylene glycol diglycidyl ether (EGDE). FTIR and solid-state NMR spectroscopy revealed that the crosslinking degree of HPG gels increased with the amount of EGDE used during the reaction; this result was also confirmed by the water mobility in the swollen gels. Rheological characterization revealed behaviors typical of true gels, and their viscoelastic behaviors strongly depended on the crosslinking degree. The HPG gels absorbed buffers, aqueous saline, and water, and the absorption was not affected by the ionic strength or pH of the solution. In addition, HPG gels with high crosslinking degrees and molar substitution degrees exhibited gelation ability toward protic organic solvents such as methanol, ethanol, and 1-propanol. These HPG gels may find application as gelation agents for many industrial uses. PMID:25498682

  3. Conversion of sunflower oil to biodiesel by alcoholysis using immobilized lipase.

    PubMed

    Sagiroglu, Ayten

    2008-01-01

    Transesterification reaction was performed using sunflower oil and short-chain alcohol by immobilized lipases in organic solvents. The fatty acid ester, which is the product of this reaction, can be used as a diesel fuel that does not produce sulfur oxide and minimize the soot particulate. Immobilized porcine pancreatic lipase (PPL) and Candida rugosa lipase (CRL) showed the satisfactory activity in these reactions. Immobilization of lipases was carried out using inorganic absorbance Celit 545 particle as a carrier. Organic solvent like hexane in reactions was required when methanol and ethanol were used as alcoholic substrate. The reaction could be performed in absence of solvent when 1-propanol and 1-butanol were used as short-chain alcohol. The activities of immobilized lipases were highly increased in comparison with free lipases because its activity sites became more effective. Immobilized enzyme could be repeatedly used without difficult method of separation and the decrease in its activity was not largely observed. PMID:18437590

  4. Complex formation equilibria of some beta-amino-alcohols with lead(II) and cadmium(II) in aqueous solution.

    PubMed

    Canepari, S; Carunchio, V; Castellano, P; Messina, A

    1998-12-01

    A study of complex formation equilibria of some beta-amino-alcohols with lead(II) and cadmium(II) ions at 25 degrees C and in 0.5 M KNO(3) is reported. The amino-alcohols considered are 2-amino-1-propanol, 2-amino-1-butanol, 2-amino-1-pentanol and 2-amino-1,3-propanediol. sec-Buthylamine and 2-amino-1-methoxy-propane have been also considered for comparison. The results are discussed in terms of ligand structure, paying attention to the number of hydroxyl groups and to the length of the alkyl residual. A weak contribution of the alcoholic oxygen in the coordination of cadmium(II) and the presence of a mixed hydroxyl species in lead(II) containing systems are hypothesized. PMID:18967412

  5. Effects of solvent hydrogen bonding, viscosity, and polarity on the dispersion and alignment of nanofluids containing Fe2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Christensen, Greg; Younes, Hammad; Hong, Haiping; Smith, Pauline

    2015-12-01

    It has been shown that the alignment of Iron (III) oxide (Fe2O3) nanoparticles in water (H2O) can enhance the thermal conductivity of nanofluids. To better understand solvent effects such as hydrogen bonding, viscosity, and polarity, nanofluids were prepared by mixing Fe2O3 nanoparticles and various solvents (water, ethanol, 1-propanol, isopropanol, 2-propanone, hexane, cyclohexane, ethylene glycol, glycerol, etc.), and the dispersions and alignments of the Fe2O3 nanoparticles in these solvents with and without an applied magnetic field were investigated using an optical microscope. The microscope images indicated that inter-molecule hydrogen bonding of the solvents with one OH group (water, ethanol, 1-propanol, and isopropanol) could help to disperse and align the Fe2O3 nanoparticles. The intra-molecular hydrogen bonding causes a dramatic increase in viscosity for fluids with multiple OH groups, such as ethylene glycol (C2H6O2) and glycerol (C3H8O3), and makes the Fe2O3 nanoparticles dispersion and alignment difficult. Adding water to those fluids could lead to significantly reduced viscosity and make the particles disperse and align well. Polarity studies indicated that higher polarity yields better dispersion and alignment of the Fe2O3 nanoparticles. Thermal studies showed that thermal conductivity of nanofluids containing metal oxide particles with hydrogen bonding in solvents is enhanced compared to the theoretically calculated data. Intermolecular hydrogen bonding between water and ethylene glycol increases the thermal conductivity of nanofluids while decreasing the fluid viscosity. The results also well explain why 50 wt. % water/50 wt. % ethylene glycol is an excellent commercial coolant. Since high thermal conductivity enhancement with minimal viscosity increase is the primary goal of heat transfer nanofluids, this current research may open new doors to better understanding of the fundamental nature of nanofluids.

  6. Conversion of 1,3-Propylene Glycol on Rutile TiO2(110)

    SciTech Connect

    Chen, Long; Li, Zhenjun; Smith, R. Scott; Kay, Bruce D.; Dohnalek, Zdenek

    2014-10-09

    The adsorption of 1,3-propylene glycol (1,3-PG) on partially reduced TiO2(110) and its conversion to products have been studied by a combination of molecular beam dosing and temperature programmed desorption (TPD). When the Ti surface sites are saturated by 1,3-PG, ~80% of the molecules undergo further reactions to yield products that are liberated during the TPD ramp. In contrast to ethylene glycol (EG) and 1,2- propylene glycol (1,2-PG) that yield only alkenes and water at very low coverages (< 0.05 ML), two additional products, HCHO and C2H4, along with propylene (CH3CHCH2) and water are observed for 1,3-PG. Identical TPD line shapes and desorption yields for HCHO and C2H4 suggest that these products result from C-C bond cleavage and are coupled. At higher 1,3-PG coverages (> 0.1 ML), propanal (CH3CH2CHO) and two additional products, 1-propanol (CH3CH2CH2OH) and acrolein (CH2CHCHO), are observed. The desorption of 1-propanol is found to be coupled with the desorption of acrolein, suggesting that these products are formed by the disproportionation of two 1,3-PG molecules. The coverage dependent TPD results further show that propylene formation dominates at low coverages (< 0.3 ML), while the decomposition and disproportionation channels increase rapidly at higher coverages and reach yields comparable to that of propylene at the 1,3-PG saturation coverage of 0.5 ML. The observed surface chemistry clearly shows how the molecular structure of glycols influences their reaction pathways on oxide surfaces.

  7. The influence of oxygen on the selectivity of alcohol conversion on the Pd(111) surface

    NASA Astrophysics Data System (ADS)

    Davis, J. L.; Barteau, M. A.

    The reactions of methanol, ethanol, 1-propanol, and 2-propanol were examined on a Pd(111) surface containing one-quarter monolayer of adsorbed oxygen atoms. The presence of surface oxygen led to the oxidation of the primary alcohols to the corresponding aldehyde and carboxylate species, with carboxylate production the major reaction pathway. Methanol was oxidized on the oxygen-dosed Pd(111) surface to formaldehyde and surface formate species. Formaldehyde desorbed at 240 K and adsorbed formate species decomposed at 280 K to produce CO 2, HCOOH, and surface hydrogen. The adsorption of ethanol on the oxygen-dosed Pd(111) surface resulted in the desorption of acetaldehyde at 220 K and the formation of surface acetate species. Adsorbed acetate species reacted via either decomposition at 410 K or hydrogenation to acetic acid at 280 K. The relative importance of the two acetate reaction channels was found to depend on the availability of surface hydrogen. Similarly, the adsorption of 1-propanol on O/Pd(111) produced both propanal and adsorbed propanoate species. The propanoate species were removed from the surface by either decomposition at 360 K or hydrogenation at 280 K. In contrast, oxidation of the secondary alcohol 2-propanol resulted mainly in the production of acetone, with acetate formation a relatively minor reaction pathway. The roles of oxygen adatoms in these reactions include(1) direct reaction as Brønsted bases with proton donors; (2) stabilization of surface alkoxide species; (3) alteration of the interaction of carbonyl compounds with the surface; (4) nucleophilic oxidation of adsorbed aldehydes to carboxylates; and (5) scavenging of surface hydrogen which would otherwise be available for hydrogenation reactions.

  8. Combustion chemistry of the propanol isomers : investigated by electron ionization and VUV-photoionization molecular-beam mass spectrometry.

    SciTech Connect

    Wang, J.; Kohse-Hoinghaus, Katharina; Cool, Terrill A.; Taatjes, Craig A.; Struckmeier, Ulf; OBwald, Patrick; Morel, Aude; Westmoreland, Phillip R.; Kasper, Tina Silvia

    2008-10-01

    The combustion of 1-propanol and 2-propanol was studied in low-pressure, premixed flat flames using two independent molecular-beam mass spectrometry (MBMS) techniques. For each alcohol, a set of three flames with different stoichiometries was measured, providing an extensive data base with in total twelve conditions. Profiles of stable and intermediate species, including several radicals, were measured as a function of height above the burner. The major-species mole fraction profiles in the 1-propanol flames and the 2-propanol flames of corresponding stoichiometry are nearly identical, and only small quantitative variations in the intermediate species pool could be detected. Differences between flames of the isomeric fuels are most pronounced for oxygenated intermediates that can be formed directly from the fuel during the oxidation process. The analysis of the species pool in the set of flames was greatly facilitated by using two complementary MBMS techniques. One apparatus employs electron ionization (EI) and the other uses VUV light for single-photon ionization (VUV-PI). The photoionization technique offers a much higher energy resolution than electron ionization and as a consequence, near-threshold photoionization-efficiency measurements provide selective detection of individual isomers. The EI data are recorded with a higher mass resolution than the PI spectra, thus enabling separation of mass overlaps of species with similar ionization energies that may be difficult to distinguish in the photoionization data. The quantitative agreement between the EI- and PI-datasets is good. In addition, the information in the EI- and PI-datasets is complementary, aiding in the assessment of the quality of individual burner profiles. The species profiles are supplemented by flame temperature profiles. The considerable experimental efforts to unambiguously assign intermediate species and to provide reliable quantitative concentrations are thought to be valuable for improving

  9. Combustion chemistry of the propanol isomers - investigated by electron ionization and VUV-photoionization molecular-beam mass spectrometry

    SciTech Connect

    Kasper, T.; Osswald, P.; Struckmeier, U.; Kohse-Hoeinghaus, K.; Taatjes, C.A.; Wang, J.; Cool, T.A.; Law, M.E.; Morel, A.; Westmoreland, P.R.

    2009-06-15

    The combustion of 1-propanol and 2-propanol was studied in low-pressure, premixed flat flames using two independent molecular-beam mass spectrometry (MBMS) techniques. For each alcohol, a set of three flames with different stoichiometries was measured, providing an extensive data base with in total twelve conditions. Profiles of stable and intermediate species, including several radicals, were measured as a function of height above the burner. The major-species mole fraction profiles in the 1-propanol flames and the 2-propanol flames of corresponding stoichiometry are nearly identical, and only small quantitative variations in the intermediate species pool could be detected. Differences between flames of the isomeric fuels are most pronounced for oxygenated intermediates that can be formed directly from the fuel during the oxidation process. The analysis of the species pool in the set of flames was greatly facilitated by using two complementary MBMS techniques. One apparatus employs electron ionization (EI) and the other uses VUV light for single-photon ionization (VUV-PI). The photoionization technique offers a much higher energy resolution than electron ionization and as a consequence, near-threshold photoionization-efficiency measurements provide selective detection of individual isomers. The EI data are recorded with a higher mass resolution than the PI spectra, thus enabling separation of mass overlaps of species with similar ionization energies that may be difficult to distinguish in the photoionization data. The quantitative agreement between the EI- and PI-datasets is good. In addition, the information in the EI- and PI-datasets is complementary, aiding in the assessment of the quality of individual burner profiles. The species profiles are supplemented by flame temperature profiles. The considerable experimental efforts to unambiguously assign intermediate species and to provide reliable quantitative concentrations are thought to be valuable for improving

  10. Determination of volatile compounds in wine by gas chromatography-flame ionization detection: comparison between the U.S. Environmental Protection Agency 3sigma approach and Hubaux-Vos calculation of detection limits using ordinary and bivariate least squares.

    PubMed

    Caruso, Rosario; Scordino, Monica; Traulo, Pasqualino; Gagliano, Giacomo

    2012-01-01

    A capillary GC-flame ionization detection (FID) method to determine volatile compounds (ethyl acetate, 1,1-diethoxyethane, methyl alcohol, 1-propanol, 2-methyl-1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 1-butanol, and 2-butanol) in wine was investigated in terms of calculation of detection limits and calibration method. The main objectives were: (1) calculation of regression coefficient parameters by ordinary least-squares (OLS) and bivariate least-squares (BLS) regression models, taking into account errors in both axes; (2) estimation of linear dynamic range (LDR) according to International Conference on Harmonization recommendations; (3) performance evaluation of a method by using three different internal standards (ISs) such as acetonitrile, acetone, and 1-pentanol; (4) evaluation of LODs according to the U.S. Environmental Protection Agency (EPA) 3sigma approach and the Hubaux-Vos (H-V) method; (5) application of H-V theory to a gas chromatographic analytical method and to a food matrix; and (6) accuracy assessment of the method relative to methyl alcohol content through a Unione Italiana Vini (UIV) interlaboratory proficiency test. Calibration curves calculated via BLS and OLS show similar slopes, while intercepts are closer to zero in the first case, independent of the chosen IS. The studied ISs show a substantially equivalent behavior, even though the IS closer to the analyte retention time seems to be more appropriate in terms of LDR and LOD. Results indicate an underestimation of LODs using the EPA 3sigma approach instead of the more realistic H-V method, both with OLS and BLS regression models. Methanol contents compared with UIV average values indicate recovery between 90 and 110%. PMID:22649934

  11. Evaluating paint-sludge chars for adsorption of selected paint solvents

    SciTech Connect

    Kim, B.R.; Kalis, E.M.; Salmeen, I.T.; Kruse, C.W.; Demir, I.; Rostam-Abadi, M.; Carlson, S.L.

    1996-06-01

    At Ford, a study had been carried out to investigate the technical feasibility of converting paint sludge to activated char and reusing the char in paint spray-booth water to capture paint solvents from spray-booth air. As part of the study, several chars were made from a paint sludge and six dried paints to evaluate their effectiveness as adsorbents by conducting a series of liquid-phase adsorption experiments. Three commonly-used paint solvents and p-nitrophenol were selected as adsorbates. The three paint solvents were toluene, 2-methyl-1-propanol (iso-butanol), and 2-butoxyethanol (butylcellosolve). In this paper, the results of the pyrolysis and adsorption experiments are presented along with practical implications. The primary findings include the following: (1) Black-paint chars showed substantially larger surface area and higher adsorption capacity (based on total weight) than white-paint chars which had high ash contents due to the white pigment, titanium dioxide; (2) the adsorption capacity of the paint-sludge char was between those of black-paint and white-paint chars, and was 5--20% that of a commercial activated carbon; (3) titanium dioxide in white-paint chars did not improve the chars` affinity for hydrophilic compounds such as 2-methyl-1-propanol and 2-butoxyethanol; (4) coal could be added to paint sludge to improve the quality of the resulting char and to reduce ash content; and (5) the pyrolysis of paint sludge could present an attractive opportunity for reusing and recycling a waste product for pollution abatement and as a vehicle component.

  12. Contribution of liver alcohol dehydrogenase to metabolism of alcohols in rats.

    PubMed

    Plapp, Bryce V; Leidal, Kevin G; Murch, Bruce P; Green, David W

    2015-06-01

    The kinetics of oxidation of various alcohols by purified rat liver alcohol dehydrogenase (ADH) were compared with the kinetics of elimination of the alcohols in rats in order to investigate the roles of ADH and other factors that contribute to the rates of metabolism of alcohols. Primary alcohols (ethanol, 1-propanol, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol) and diols (1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol) were eliminated in rats with zero-order kinetics at doses of 5-20 mmol/kg. Ethanol was eliminated most rapidly, at 7.9 mmol/kgh. Secondary alcohols (2-propanol-d7, 2-propanol, 2-butanol, 3-pentanol, cyclopentanol, cyclohexanol) were eliminated with first order kinetics at doses of 5-10 mmol/kg, and the corresponding ketones were formed and slowly eliminated with zero or first order kinetics. The rates of elimination of various alcohols were inhibited on average 73% (55% for 2-propanol to 90% for ethanol) by 1 mmol/kg of 4-methylpyrazole, a good inhibitor of ADH, indicating a major role for ADH in the metabolism of the alcohols. The Michaelis kinetic constants from in vitro studies (pH 7.3, 37 °C) with isolated rat liver enzyme were used to calculate the expected relative rates of metabolism in rats. The rates of elimination generally increased with increased activity of ADH, but a maximum rate of 6±1 mmol/kg h was observed for the best substrates, suggesting that ADH activity is not solely rate-limiting. Because secondary alcohols only require one NAD(+) for the conversion to ketones whereas primary alcohols require two equivalents of NAD(+) for oxidation to the carboxylic acids, it appears that the rate of oxidation of NADH to NAD(+) is not a major limiting factor for metabolism of these alcohols, but the rate-limiting factors are yet to be identified. PMID:25641189

  13. Supporting technology for the development of Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Li, Ku-Yen; Yaws, Carl L.; Simon, William E.; Mei, Harry T.

    1995-01-01

    To support the development of Controlled Ecological Life Support Systems (CELSS) in the space program, a metabolic simulator has been selected for use in a closed chamber to test functions of the CELSS. This metabolic simulator is a catalytic reactor which oxidizes the methyl acetate to produce carbon dioxide and water vapor. In this project, kinetic studies of catalytic oxidation of methyl acetate were conducted using monolithic and pellet catalysts with 0.5% (by weight) platinum (Pt) on aluminum oxide (Al2O3). The reaction was studied at a pressure of one atmosphere and at temperatures varying from 160 C to 420 C. By-products were identified at the exit of the preheater and reactor. For the kinetic study with the monolithic catalyst, a linear regression method was used to correlate the kinetic data with zero-order, first-order and Langmuir-Hinshelwood models. Results indicate that the first-order model represents the data adequately at low concentrations of methyl acetate. For higher concentrations of methyl acetate, the Langmuir-Hinshelwood model best represents the kinetic data. Both rate constant and adsorption equilibrium constants were estimated from the regression. A Taguchi orthogonal array (L(sub 9)) was used to investigate the effects of temperature, flow rate, and concentration on the catalytic oxidation of methyl acetate. For the monolithic catalyst, temperature exerts the most significant effect, followed by concentration of methyl acetate. For the pellet catalyst, reaction temperature is the most significant factor, followed by gas flow rate and methyl acetate concentration. Concentrations of either carbon dioxide or oxygen were seen to have insignificant effect on the methyl acetate conversion process. Experimental results indicate that the preheater with glass beads can accomplish thermal cracking and catalytic reaction of methyl acetate to produce acetic acid, methanol, methyl formate, and 1-propanol. The concentration of all by-products was

  14. Studies of solvent effects on reaction dynamics using ultrafast transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Harris, Don Ahmasi

    Ultrafast transient absorption spectroscopy was used to investigate the solvent dependent reaction dynamics of two prototypical chemical systems: (1) The ring-opening reaction of 1,3-cyclohexadiene, the isolated chromophore in Provitamin D, and (2) The photolysis of various Vitamin B12 cofactors. We investigated the influence of solvent polarity on the ground state conformational relaxation of 1,3,5-cis hexatriene subsequent to the ring opening of 1,3-cyclohexadiene in methanol and 1-propanol solvents. Comparisons to the conformational relaxation in alkane solvents studied earlier demonstrated a surprising influence of solvent polarity on single bond isomerization. Temperature dependent transient absorption measurements were performed on 1,3,5-cis hexatriene in cyclohexane and 1-propanol to determine the effect of solvent polarity on the activation energy barrier for ground state single bond isomerization. These measurements conclude that the polar solvent lowers the energy barrier for single bond isomerization allowing conformational relaxation to proceed faster in alcohol solvents compared to alkane solvents. With no perceived polar transition state for single bond isomerization, this result disagrees with the conventional view of solvation and differentiates the single bond isomerization dynamics of polyenes from alkanes. Transient absorption spectroscopy was also utilized to study the solvent effects in the photolysis of various B12 cofactors in different environments. We investigated the solvent dependent photolysis of adenosylcobalamin, methylcobalamin, and cyanocobalamin in water and ethylene glycol as a function of solvent temperature. In comparing the radical cage escape of adenosylcobalamin and cyanocobalamin, we determined a larger than expected hydrodynamic radii for the diffusing radicals in water compared to ethylene glycol, thus making necessary a revised perspective of solvent interaction with the diffusing radical. In addition, we investigated the

  15. Separation of fluorescently labeled phosphoinositides and sphingolipids by capillary electrophoresis

    PubMed Central

    Wang, Kelong; Jiang, Dechen; Sims, Christopher E.; Allbritton, Nancy L.

    2012-01-01

    Phosphoinositides (PIs) and sphingolipids regulate many aspects of cell behavior and are often involved in disease processes such as oncogenesis. Capillary electrophoresis with laser induced fluorescence detection (CE-LIF) is emerging as an important tool for enzymatic assays of the metabolism of these lipids, particularly in cell-based formats. Previous separations of phosphoinositide lipids by CE required a complex buffer with polymer additives which had the disadvantages of high cost and/or short shelf life. Further a simultaneous separation of these classes of lipids has not been demonstrated in a robust buffer system. In the current work, a simple separation buffer based on NaH2PO4 and 1-propanol was optimized to separate two sphingolipids and multiple phosphoinositides by CE. The NaH2PO4 concentration, pH, 1-propanol fraction, and a surfactant additive to the buffer were individually optimized to achieve simultaneous separation of the sphingolipids and phosphoinositides. Fluorescein-labeled sphingosine (SFL) and sphingosine 1-phosphate (S1PFL), fluorescein-labeled phosphatidyl-inositol 4,5-bisphosphate (PIP2) and phosphatidyl-inositol 3,4,5-trisphosphate (PIP3), and bodipy-fluorescein (BFL)-labeled PIP2 and PIP3 were separated pairwise and in combination to demonstrate the generalizability of the method. Theoretical plate numbers achieved were as high as 2×105 in separating fluorophore-labeled PIP2 and PIP3. Detection limits for the 6 analytes were in the range of 10−18 to 10−20 mol. The method also showed high reproducibility, as the relative standard deviation of the normalized migration time for each analyte in the simultaneous separation of all 6 compounds was less than 1%. The separation of a mixture composed of diacylglycerol (DAG) and multiple phosphoinositides was also demonstrated. As a final test, fluorescent lipid metabolites formed within cells loaded with BFLPIP2 were separated from a cell lysate as well as a single cell. This simple and

  16. Contribution of Liver Alcohol Dehydrogenase to Metabolism of Alcohols in Rats

    PubMed Central

    Plapp, Bryce V.; Leidal, Kevin G.; Murch, Bruce P.; Green, David W.

    2015-01-01

    The kinetics of oxidation of various alcohols by purified rat liver alcohol dehydrogenase (ADH) were compared with the kinetics of elimination of the alcohols in rats in order to investigate the roles of ADH and other factors that contribute to the rates of metabolism of alcohols. Primary alcohols (ethanol, 1-propanol, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol) and diols (1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol) were eliminated in rats with zero-order kinetics at doses of 5–20 mmole/kg. Ethanol was eliminated most rapidly, at 7.9 mmole/kg•h. Secondary alcohols (2-propanol-d7, 2-propanol, 2-butanol, 3-pentanol, cyclopentanol, cyclohexanol) were eliminated with first order kinetics at doses of 5–10 mmole/kg, and the corresponding ketones were formed and slowly eliminated with zero or first order kinetics. The rates of elimination of various alcohols were inhibited on average 73% (55% for 2-propanol to 90% for ethanol) by 1 mmole/kg of 4-methylpyrazole, a good inhibitor of ADH, indicating a major role for ADH in the metabolism of the alcohols. The Michaelis kinetic constants from in vitro studies (pH 7.3, 37 °C) with isolated rat liver enzyme were used to calculate the expected relative rates of metabolism in rats. The rates of elimination generally increased with increased activity of ADH, but a maximum rate of 6 ± 1 mmole/kg•h was observed for the best substrates, suggesting that ADH activity is not solely rate-limiting. Because secondary alcohols only require one NAD+ for the conversion to ketones whereas primary alcohols require two equivalents of NAD+ for oxidation to the carboxylic acids, it appears that the rate of oxidation of NADH to NAD+ is not a major limiting factor for metabolism of these alcohols, but the rate-limiting factors are yet to be identified. PMID:25641189

  17. The Low-Temperature Redox-Assisted Seeded Growth of Cadmium Selenide Nanocrystals

    NASA Astrophysics Data System (ADS)

    Doll, Jonathan Daniel

    2011-12-01

    Semiconducting CdSe nanocrystals (NCs) are a unique class of materials that exhibit properties that are dependant on their size, morphology and composition. When the radius of a nanocrystal is decreased below its Bohr exciton radius, the nanocrystal exhibits quantum confinement, and the bandgap of the material increases as the radius decreases. When the morphology of a NC is changed from a zero-dimensional quantum dot (QD) to a one-dimensional quantum rod (QR), the material begins to show new properties such as the emission of polarized light and switching behavior in electric fields. Synthesis of QRs is not trivial, however, and to date a number of different approaches have been developed using an initial QD which acts as a seed for further rod growth. One such method of this seeded growth of QRs is the low-temperature redox-assisted growth of NCs in 9:1 3-amino-1-propanol:water mixtures. By tuning the concentration of dissolved O2 in 9:1 3-amino-1-propanol:water, the growth of NCs can be directed along the NCs c-axis at high O2 concentrations, and can proceed in three dimensions when the concentration of O2 is reduced. This occurs because of selective O2 passivation of the nonpolar NC facets while on the polar facets remain relatively unpassivatcd. By adding different precursors to the NC growth solution, the growth can be further tuned to produce high aspect ratio rods or promote large scale three dimensional growth. Low-temperature, redox-assisted growth can also be used to fabricate both one-dimensional rod and three-dimensional core-shell heterostructures. Finally, this growth method can be tuned to fuse NCs in a film that is deposited on a substrate, which has profound implications for devices such as photovoltaics. The role of O2 on directing seeded CdSe NC growth, as well as the fabrication of one-dimensional CdSe/CdxHg1-x Se heterostructures, is described in Chapter 2 of this dissertation. The role of the anionic precursor is explored in Chapter 3 of this

  18. Application of an isothermal, three-phase catalytic reactor model to predict unsteady-state fixed-bed performance.

    PubMed

    Yang, Ji; Hand, David W; Hokanson, David R; Crittenden, John C

    2003-01-15

    CatReac, a three-phase catalytic mathematical model, was developed for analysis and optimization of the volatile reactor assembly used in International Space Station water processor. This wet oxidation process is used to remove low molecular weight contaminants such as acetic acid, acetone, ethanol, 1-propanol, 2-propanol, and propionic acid, which are not removed by the other treatment processes. The Langmuir-Hinshelwood (Hinshelwood, C. N. The Kinetics of Chemical Change in Gaseous Systems, 3rd ed.; Oxford: London, 1933; pp 301-347) isothermal adsorption expression was successfully used to describe the reaction kinetics of compounds on the catalyst surface for the compounds mentioned above. Small-column experiments combined with the use of the Arrhenius equation were successfully used to predict the Langmuir-Hinshelwood parameters under different temperatures for a temperature range from 93 to 149 degrees C. Full-scale and small-column experiments were successfully used to validate the model predictions for unsteady-state fixed-bed operations. PMID:12564919

  19. Acid lipase from Candida viswanathii: production, biochemical properties, and potential application.

    PubMed

    de Almeida, Alex Fernando; Tauk-Tornisielo, Sâmia Maria; Carmona, Eleonora Cano

    2013-01-01

    Influences of environmental variables and emulsifiers on lipase production of a Candida viswanathii strain were investigated. The highest lipase activity (101.1 U) was observed at 210 rpm, pH 6.0, and 27.5°C. Other fermentation parameters analyzed showed considerable rates of biomass yield (Y L/S = 1.381 g/g), lipase yield (Y L/S = 6.892 U/g), and biomass productivity (P X = 0.282 g/h). Addition of soybean lecithin increased lipase production in 1.45-fold, presenting lipase yield (Y L/S ) of 10.061 U/g. Crude lipase presented optimal activity at acid pH of 3.5, suggesting a new lipolytic enzyme for this genus and yeast in general. In addition, crude lipase presented high stability in acid conditions and temperature between 40 and 45°C, after 24 h of incubation in these temperatures. Lipase remained active in the presence of organic solvents maintaining above 80% activity in DMSO, methanol, acetonitrile, ethanol, acetone, 1-propanol, isopropanol, and 2-propanol. Effectiveness for the hydrolysis of a wide range of natural triglycerides suggests that this new acid lipase has high potential application in the oleochemical and food industries for hydrolysis and/or modification of triacylglycerols to improve the nutritional properties. PMID:24350270

  20. Increased significance of food wastes: selective recovery of added-value compounds.

    PubMed

    Reis, Igor A O; Santos, Samuel B; Santos, Ludmila A; Oliveira, Naiana; Freire, Mara G; Pereira, Jorge F B; Ventura, Sónia P M; Coutinho, João A P; Soares, Cleide M F; Lima, Álvaro S

    2012-12-15

    A single-step selective separation of two food additives was investigated using alcohol-salt aqueous two-phase systems (ATPS). The selective partitioning of two of the most used additives from a processed food waste material, vanillin and l-ascorbic acid, was successfully accomplished. The results obtained prove that alcohol-salt ATPS can be easily applied as cheaper processes for the selective recovery of valuable chemical products from food wastes and other sources. As a first approach, the phase diagrams of ATPS composed of different alcohol+inorganic salt+water were determined at 298 (± 1)K and atmospheric pressure. The influence of methanol, ethanol, 1-propanol, and 2-propanol and K(3)PO(4), K(2)HPO(4) or KH(2)PO(4)/K(2)HPO(4) in the design of the phase diagrams was addressed. After the evaluation of the phase diagrams behaviour, the influence of the phase forming constituents was assessed towards the partition coefficients and recovery percentages of vanillin and l-ascorbic acid among the coexisting phases. Both model systems and real processed food waste materials were employed. Using these ATPS as partitioning systems it is possible to recover and separate vanillin, which migrates for the alcohol-rich phase, from l-ascorbic acid, which preferentially partitions for the salt-rich phase. PMID:22980828

  1. Heterometallic Cu(II)-Dy(III) Clusters of Different Nuclearities with Slow Magnetic Relaxation.

    PubMed

    Modak, Ritwik; Sikdar, Yeasin; Cosquer, Goulven; Chatterjee, Sudipta; Yamashita, Masahiro; Goswami, Sanchita

    2016-01-19

    The synthesis, structures, and magnetic properties of two heterometallic Cu(II)-Dy(III) clusters are reported. The first structural motif displays a pentanuclear Cu(II)4Dy(III) core, while the second one reveals a nonanuclear Cu(II)6Dy(III)3 core. We employed o-vanillin-based Schiff base ligands combining o-vanillin with 3-amino-1-propanol, H2vap, (2-[(3-hydroxy-propylimino)-methyl]-6-methoxy-phenol), and 2-aminoethanol, H2vae, (2-[(3-hydroxy-ethylimino)-methyl]-6-methoxy-phenol). The differing nuclearities of the two clusters stem from the choice of imino alcohol arm in the Schiff bases, H2vap and H2vae. This work is aimed at broadening the diversity of Cu(II)-Dy(III) clusters and to perceive the consequence of changing the length of the alcohol arm on the nuclearity of the cluster, providing valuable insight into promising future synthetic directions. The underlying topological entity of the pentanuclear Cu4Dy cluster is reported for the first time. The investigation of magnetic behaviors of 1 and 2 below 2 K reveals slow magnetic relaxation with a significant influence coming from the variation of the alcohol arm affecting the nature of magnetic interactions. PMID:26702645

  2. Ternary DNA chip based on a novel thymine spacer group chemistry.

    PubMed

    Yang, Yanli; Yildiz, Umit Hakan; Peh, Jaime; Liedberg, Bo

    2015-01-01

    A novel thymine-based surface chemistry suitable for label-free electrochemical DNA detection is described. It involves a simple two-step sequential process: immobilization of 9-mer thymine-terminated probe DNAs followed by backfilling with 9-mer thymine-based spacers (T9). As compared to commonly used organic spacer groups like 2-mercaptoethanol, 3-mercapto-1-propanol and 6-mercapto-1-hexanol, the 9-mer thymine-based spacers offer a 10-fold improvement in discriminating between complementary and non-complementary target hybridization, which is due mainly to facilitated transport of the redox probes through the probe-DNA/T9 layers. Electrochemical measurements, complemented with Surface Plasmon Resonance (SPR) and Quartz Crystal Microbalance (QCM-D) binding analyses, reveal that optimum selectivity between complementary and non-complementary hybridization is obtained for a sensing surface prepared using probe-DNA and backfiller T9 at equimolar concentration (1:1). At this particular ratio, the probe-DNAs are preferentially oriented and easily accessible to yield a sensing surface with favorable hybridization and electron transfer characteristics. Our findings suggest that oligonucleotide-based spacer groups offer an attractive alternative to short organic thiol spacers in the design of future DNA biochips. PMID:25465760

  3. Health assessment for Velsicol Chemical Corporation (St. Louis Plant Site), Gratiot County, Michigan, Region 5. CERCLIS No. MID000722439. Preliminary report

    SciTech Connect

    Not Available

    1989-04-18

    The Velsicol Chemical Corporation (Velsicol) site is currently listed on the National Priorities List. More than 60 contaminants were found throughout the site, but polybrominated biphenyl (PBB) is the contaminant that caused the most concern. Phenols, calcium, magnesium, sodium (as chloride or bromium salts) and PBB were present in wastes. Soil samples collected had the following maximum concentrations (parts per million - ppm); PBB, 1,100; phenol, 4.2; lead, 11,100; hexabromebenzene, 56; 2,3-dibromo-1-propanol phosphate, 4,700; and dimethylaminoethylchloride hydrochloride (DMAE), 53. On-site ground water samples contained the following maximum concentrations (ppm): PBB, 0.013; chloride, 82,000; sulfate, 650; phenol, 1.2; DMAE, 20 and carbon tetrachloride, 0.080. Of various species of fish carp had the highest maximum PBB concentrations. Wildlife (mice, earthworms, a raccoon and ducks) in the area were found to be contaminated with PBB and/or DDT. The site is of potential public health concern because of the risk to human health that could result from possible human exposure to hazardous substances at levels that may result in adverse human health effects over time. Occupational exposure to many harmful contaminants, including PBB and DDT, has occurred and exposure to the general population may possibly still be occurring via ingestion of contaminated fish and wildlife.

  4. High octane ethers from synthesis gas-derived alcohols. Final technical report, September 25, 1990--December 24, 1993

    SciTech Connect

    Klier, K.; Herman, R.G.

    1994-05-01

    The objective of the research was to develop the methodology for the catalytic synthesis of ethers, primarily methyl isobutyl ether (MIBE) and methyl tertiary butyl ether (MTBE), directly from alcohol mixtures that are rich in methanol and 2-methyl-1-propanol (isobutanol). The overall scheme involves gasification of coal, purification and shifting of the synthesis gas, higher alcohol synthesis, and direct synthesis of ethers. The last stage of the synthesis involves direct coupling of synthesis gas-derived methanol and isobutanol that has been previously demonstrated by us to occur over superacid catalysts to yield MIBE and smaller amounts of MTBE at moderate pressures and a mixture of methanol and isobutene at low pressures. A wide range of organic resin catalysts and inorganic oxide and zeolite catalysts have been investigated for activity and selectivity in directly coupling alcohols, principally methanol and isobutanol, to form ethers and in the dehydration of isobutanol to isobutene in the presence of methanol. All of these catalysts are strong acids, and it was found that the organic and inorganic catalysts operate in different, but overlapping, temperature ranges, i.e. mainly 60--120{degrees}C for the organic resins and 90--175{degrees}C for the inorganic catalysts. For both types of catalysts, the presence of strong acid centers is required for catalytic activity, as was demonstrated by lack of activity of fully K{sup +} ion exchanged Nafion resin and zirconia prior to being sulfated by treatment with sulfuric acid.

  5. Simultaneous Determination of Genotoxic Impurities in Fudosteine Drugs by GC-MS.

    PubMed

    Gooty, Amarnatha Reddy; Katreddi, Hussain Reddy; S, Raghavender Reddy; Hunnur, Raveendra K; Sharma, Hemant Kumar; Masani, Narendra Kumar

    2016-09-01

    A simple, sensitive and reliable gas chromatography mass spectrometry (GC-MS) method has been developed, optimized and validated for the simultaneous determination of 3-chloro-1-propanol (CHP), 1,3-dichloropropane (DCP), 3-chloropropylacetate (CPA) and chloropropyl hydroxypropyl ether (CHE) contents in fudosteine, using chlorobenzene as internal standard. Efficient chromatographic separations were achieved on an Agilent J&W DB-WAXetr, 30 m long with 0.32 mm i.d., 1.0 µm particle diameter column that consists of bonded and cross-linked polyethylene glycol as a stationary phase by passing helium as the carrier gas. The analytes were extracted in dichloromethane and monitored by gas chromatography electron ionization mass spectrometry (GC-EI-MS) with selective ion monitoring (SIM) mode. The performance of the method was assessed by evaluating specificity, precision (repeatability and reproducibility), sensitivity, linearity and accuracy. The limit of detection and limit of quantification established for CHP, DCP, CPA and CHE were in the range of 0.05-0.08 µg mL(-1) and 0.10-0.17 µg mL(-1), respectively. The recoveries for CHP, DCP, CPA and CHE were in the range of 92.0-101.5%. The results proved that the method is suitable for the simultaneous determination of contents of CHP, DCP, CPA and CHE in fudosteine. PMID:27261527

  6. Evaluation of alkanolamine solutions for carbon dioxide removal in cross-flow rotating packed beds.

    PubMed

    Lin, Chia-Chang; Lin, Yu-Hong; Tan, Chung-Sung

    2010-03-15

    The removal of CO(2) from a 10 vol% CO(2) gas by chemical absorption with 30 wt% alkanolamine solutions containing monoethanolamine (MEA), piperazine (PZ), and 2-amino-2-methyl-1-propanol (AMP) in the cross-flow rotating packed bed (RPB) was investigated. The CO(2) removal efficiency increased with rotor speed, liquid flow rate and inlet liquid temperature. However, the CO(2) removal efficiency decreased with gas flow rate. Also, the CO(2) removal efficiency was independent of inlet gas temperature. The 30 wt% alkanolamine solutions containing PZ with MEA were the appropriate absorbents compared with the single alkanolamine (MEA, AMP) and the mixed alkanolamine solutions containing AMP with MEA. A higher portion of PZ in alkanolamine solutions was more favorable to CO(2) removal. Owing to less contact time in the cross-flow RPB, alkanolamines having high reaction rates with CO(2) are suggested to be used. For the mixed alkanolamine solution containing 12 wt% PZ and 18 wt% MEA, the highest gas flow rate allowed to achieve the CO(2) removal efficiency more than 90% at a liquid flow rate of 0.54 L/min was of 29 L/min. The corresponding height of a transfer unit (HTU) was found to be less than 5.0 cm, lower than that in the conventional packed bed. PMID:19910115

  7. Protease activation in glycerol-based deep eutectic solvents

    PubMed Central

    Zhao, Hua; Baker, Gary A.; Holmes, Shaletha

    2011-01-01

    Deep eutectic solvents (DESs) consisting of mixtures of a choline salt (chloride or acetate form) and glycerol are prepared as easily accessible, biodegradable, and inexpensive alternatives to conventional aprotic cation-anion paired ionic liquids. These DES systems display excellent fluidity coupled with thermal stability to nearly 200 °C. In this work, the transesterification activities of cross-linked proteases (subtilisin and α-chymotrypsin), immobilized on chitosan, were individually examined in these novel DESs. In the 1:2 molar ratio mixture of choline chloride/glycerol containing 3% (v/v) water, cross-linked subtilisin exhibited an excellent activity (2.9 μmo l min−1 g−1) in conjunction with a selectivity of 98% in the transesterification reaction of N-acetyl-L-phenylalanine ethyl ester with 1-propanol. These highly encouraging results advocate more extensive exploration of DESs in protease-mediated biotransformations of additional polar substrates and use of DESs in biocatalysis more generally. PMID:21909232

  8. A rapid and sensitive alcohol oxidase/catalase conductometric biosensor for alcohol determination.

    PubMed

    Hnaien, M; Lagarde, F; Jaffrezic-Renault, N

    2010-04-15

    A new conductometric biosensor has been developed for the determination of short chain primary aliphatic alcohols. The biosensor assembly was prepared through immobilization of alcohol oxidase from Hansenula sp. and bovine liver catalase in a photoreticulated poly(vinyl alcohol) membrane at the surface of interdigitated microelectrodes. The local conductivity increased rapidly after alcohol addition, reaching steady-state within 10 min. The sensitivity was maximal for methanol (0.394+/-0.004 microS microM(-1), n=5) and decreased by increasing the alcohol chain length. The response was linear up to 75 microM for methanol, 70 microM for ethanol and 65 microM for 1-propanol and limits of detection were 0.5 microM, 1 microM and 3 microM, respectively (S/N=3). No significant loss of the enzyme activities was observed after 3 months of storage at 4 degrees C in a 20mM phosphate buffer solution pH 7.2 (two or three measurements per week). After 4 months, 95% of the initial signal still remained. The biosensor response to ethanol was not significantly affected by acetic, lactic, ascorbic, malic, oxalic, citric, tartaric acids or glucose. The bi-enzymatic sensor was successfully applied to the determination of ethanol in different alcoholic beverages. PMID:20188912

  9. Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets

    NASA Astrophysics Data System (ADS)

    Faubel, Manfred; Steiner, Björn; Toennies, J. Peter

    1997-06-01

    The recently developed technique of accessing volatile liquids in a high vacuum environment by using a very thin liquid jet is implemented to carry out the first measurements of photoelectron spectra of pure liquid water, methanol, ethanol, 1-propanol, 1-butanol, and benzyl alcohol as well as of liquid n-nonane. The apparatus, which consists of a commercial hemispherical (10 cm mean radius) electron analyzer and a hollow cathode discharge He I light source is described in detail and the problems of the sampling of the photoelectrons in such an environment are discussed. For water and most of the alcohols up to six different electronic bands could be resolved. The spectra of 1-butanol and n-nonane show two weakly discernable peaks from which the threshold ionization potential could be determined. A deconvolution of the photoelectron spectra is used to extract ionization potentials of individual molecular bands of molecules near the surface of the liquid and shifts of the order of 1 eV compared to the gas phase are observed. A molecular orientation for water molecules at the surface of liquid water is inferred from a comparison of the relative band strengths with the gas phase. Similar effects are also observed for some of the alcohols. The results are discussed in terms of a simple "Born-solvation" model.

  10. Biosynthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) terpolymer with various monomer compositions by Cupriavidus sp. USMAA2-4.

    PubMed

    Ramachandran, Hema; Iqbal, Nurhezreen Md; Sipaut, Coswald Stephen; Abdullah, Amirul Al-Ashraf

    2011-07-01

    Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-3HV-co-4HB)] terpolymer was produced using Cupriavidus sp. USMAA2-4 via one-step cultivation process through combination of various carbon sources such as 1,4-butanediol or γ-butyrolactone with either 1-pentanol, valeric acid, or 1-propanol. Oleic acid was added to increase the biomass production. The composition of 3HV and 4HB monomers were greatly affected by the concentration of 1,4-butanediol and 1-pentanol. Terpolymers with 3HV and 4HB molar fractions ranging from 2 to 41 mol.% and 5 to 31 mol.%, respectively, were produced by varying the concentration of carbon precursors. The thermal and mechanical properties of the terpolymers containing different proportions of the constituent monomers were characterized using gel permeation chromatography (GPC), DSC, and tensile machine. GPC analysis showed that the molecular weights (M (w)) of the terpolymer produced were within the range of 346 to 1,710 kDa. The monomer compositions of 3HV and 4HB were also found to have great influences on the thermal and mechanical properties of the terpolymer P(3HB-co-3HV-co-4HB) produced. PMID:21302147

  11. Phase separation phenomena of polysulfone/solvent/organic nonsolvent and polyethersulfone/solvent/organic nonsolvent systems

    SciTech Connect

    Wang, Dongliang; Li, K.; Sourirajan, S.; Teo, W.K. . Dept. of Chemical Engineering)

    1993-12-10

    The precipitation values (PVs) of several organic nonsolvents in polysulfone (PSf)/solvent and polyethersulfone (PESf)/solvent systems were measured in temperatures ranging from 10 to 80 C by the direct titration method and compared with those of water in the same systems. The solvents used were N-methyl-2-pyrrolidone (NMP) and N,N-dimethylacetamide (DMAC); the organic nonsolvents employed were methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, ethylene glycol, and diethylene glycol as well as acetic acid and propionic acid. The compositions of nonsolvent, polymer, and solvent at the precipitation points for different polymer concentrations up to 10 wt% were also determined at 30 C with respect to both the polymers and six nonsolvents presented. These results were used to obtain the polymer precipitation curves in the polymer-solvent-nonsolvent triangular phase diagrams and to determine the theta composition of solvent-nonsolvent triangular phase diagrams and to determine the theta composition of solvent-nonsolvent for a polymer. The effect of temperature on the precipitation value was observed to be dramatically different for different polymer/solvent/nonsolvent systems. These results were explained on the basis of polar and nonpolar interactions of the polymer, solvent, and nonsolvent system.

  12. Impact of alcohols on the formation and stability of protein-stabilized nanoemulsions.

    PubMed

    Zeeb, Benjamin; Herz, Eva; McClements, David Julian; Weiss, Jochen

    2014-11-01

    Nanoemulsions are increasingly being used for encapsulation, protection, and delivery of bioactive lipids, however, their formation from natural emulsifiers is still challenging. We investigated the impact of alcohol on the formation and stability of protein-stabilized oil-in-water nanoemulsions prepared by high-pressure homogenization. The influence of different alcohols (ethanol, 1-propanol, and 1-butanol) at various concentrations (0-25% w/w) on the formation and stability of emulsions stabilized by sodium caseinate, whey protein isolate, and fish gelatin was investigated. The mean particle diameter decreased with increasing alcohol concentrations from 0 to 10%w/w, but extensive droplet aggregation occurred at higher levels. This phenomenon was attributed to enhanced protein-protein interactions between the adsorbed emulsifier molecules in the presence of alcohol leading to droplet flocculation. The smallest droplets (d<100nm) were obtained when 10%w/w 1-butanol was added to sodium caseinate-stabilized nanoemulsions, but relatively small droplets (d<150nm) could also be obtained in the presence of a food-grade alcohol (ethanol). This study demonstrated that alcohol addition might be a useful tool for producing protein-stabilized nanoemulsions suitable for use as delivery systems of lipophilic bioactive agents. PMID:25129338

  13. Simple cerium-triethanolamine complex: Synthesis, characterization, thermal decomposition and its application to prepare ceria support for platinum catalysts used in methane steam reforming

    NASA Astrophysics Data System (ADS)

    Wattanathana, Worawat; Nootsuwan, Nollapan; Veranitisagul, Chatchai; Koonsaeng, Nattamon; Laosiripojana, Navadol; Laobuthee, Apirat

    2015-06-01

    Cerium-triethanolamine complex was synthesized by simple complexation method in 1-propanol solvent using cerium(III) chloride as a metal source and triethanolamine as a ligand. The structures of the prepared complex were proposed based on FT-IR, FT-Raman and ESI-MS results as equimolar of triethanolamine and cerium chelated complex having monomeric tricyclic structure with and without chloride anion as another coordinating group known as ceratrane. The complex was used as a precursor for ceria material done by thermal decomposition. XRD result revealed that when calcined at 600 °C for 2 h, the cerium complex was totally turned into pure ceria with cubic fluorite structure. The obtained ceria was then employed to synthesize platinum doped ceria catalysts for methane steam reforming. Various amounts of platinum i.e. 1, 3, 5 and 10 mol percents were introduced on the ceria support by microwave-assisted wetness impregnation using ammonium tetrachloroplatinate(II). The platinum-impregnated ceria powders were subjected to calcination in 10% hydrogen/helium atmosphere at 500 °C for 3 h to reduce platinum(II) to platinum(0). XRD patterns of the catalysts confirmed that the platinum particles doped on the ceria support were in the form of platinum(0). Catalytic activity test showed that the catalytic activities got higher as the amounts of platinum doped increased. Besides, the portions of coke formation on the surface of catalysts were reduced as the amounts of platinum doped increased.

  14. Screening for potential hazard effects from four nitramines on human eye and skin.

    PubMed

    Fjellsbø, Lise Marie; Van Rompay, An R; Hooyberghs, Jef; Nelissen, Inge; Dusinska, Maria

    2013-06-01

    Amines have potential to be used in CO2 capture and storage (CCS) technology, but as they can be released into the environment and be degraded into more toxic compounds, such as nitrosamines and nitramines, there have been concerns about their negative impact on human health. We investigated the potential toxic effects from acute exposure to dimethylnitramine (DMA-NO2), methylnitramine (MA-NO2), ethanolnitramine (MEA-NO2) and 2-methyl-2-(nitroamino)-1-propanol (AMP-NO2). The eye irritation, and skin sensitization, irritation and corrosion potential of these substances have been evaluated in vitro using the Bovine Corneal Opacity and Permeability (BCOP) assay, VITOSENS® assay, Reconstructed Human Epidermis (RHE) skin irritation test and Corrositex Skin corrosion test, respectively. Exposure to DMA-NO2 induced a mild eye irritation response, while MA-NO2, MEA-NO2 and AMP-NO2 were shown to be very severe eye irritants. MA-NO2 and MEA-NO2 were tested for skin sensitization and found to be non-sensitizers to the skin. In addition, none of the four test substances was irritant or corrosive to the skin. PMID:23416265

  15. The Effect of Organic Solvents and Other Parameters on Trypsin-Catalyzed Hydrolysis of Na-Benzoyl-arginine-p-nitroanilide. A Project-Oriented Biochemical Experiment

    NASA Astrophysics Data System (ADS)

    Correia, L. C.; Bocewicz, A. C.; Esteves, S. A.; Pontes, M. G.; Versieux, L. M.; Teixeira, S. M. R.; Santoro, M. M.; Bemquerer, M. P.

    2001-11-01

    The study of enzymatic catalysis is a classical biochemistry experiment for undergraduate classes. We propose the utilization of the serine protease trypsin to discuss several parameters affecting enzyme catalysis. Hydrolysis of the chromogenic substrate Na -benzoyl-arginine-p-nitroanilide (BApNA) was followed by spectrophotometric monitoring. The optimal pH and temperature values were found to be 8.0 and 40 °C, respectively. Km and Vmax values were obtained by adjustment to Michaelis-Menten, Lineweaver-Burke, and Hanes equations. We then investigated the effect of organic solvents (a series of alcohols) on the hydrolysis of the chromogenic substrate. The reaction rate was reduced in the presence of methanol and further reduced by ethanol, 1-propanol, and 2-propanol, when compared to the data obtained with buffer. Finally the students were asked to measure the molar absorptivity of p-nitrophenol in the presence of the alcohols employed for the kinetic experiments. Thus they could learn that the value of this parameter varies with the solvent. These experiments were designed as a project-oriented approach to teach biochemistry methodologies and theoretical aspects of enzyme kinetics. They took about four months with four to six hours per week spent in the laboratory.

  16. Oxidation, Reduction, and Condensation of Alcohols over (MO3)3 (M=Mo, W) Nanoclusters

    SciTech Connect

    Fang, Zongtang; Li, Zhenjun; Kelley, Matthew S.; Kay, Bruce D.; Li, Shenggang; Hennigan, Jamie M.; Rousseau, Roger J.; Dohnalek, Zdenek; Dixon, David A.

    2014-10-02

    The reactions of deuterated methanol, ethanol, 1-propanol, 1-butanol, 2-propanol, 2-butanol and t-butanol over cyclic (MO3)3 (M = Mo, W) clusters were studied experimentally with temperature programmed desorption (TPD) and theoretically with coupled cluster CCSD(T) theory and density functional theory. The reactions of two alcohols per M3O9 cluster are required to provide agreement with experiment for D2O release, dehydrogenation and dehydration. The reaction begins with the elimination of water by proton transfers and forms an intermediate dialkoxy species which can undergo further reaction. Dehydration proceeds by a β hydrogen transfer to a terminal M=O. Dehydrogenation takes place via an α hydrogen transfer to an adjacent MoVI = O atom or a WVI metal center with redox involved for M = Mo and no redox for M = W. The two channels have comparable activation energies. H/D exchange to produce alcohols can take place after olefin is released or via the dialkoxy species depending on the alcohol and the cluster. The Lewis acidity of the metal center with WVI being larger than MoVI results in the increased reactivity of W3O9 over Mo3O9 for dehydrogenation and dehydration.

  17. Effects of polar and nonpolar groups on the solubility of organic compounds in soil organic matter

    USGS Publications Warehouse

    Chiou, C.T.; Kile, D.E.

    1994-01-01

    Vapor sorption capacities on a high-organic-content peat, a model for soil organic matter (SOM), were determined at room temperature for the following liquids: n-hexane, 1,4-dioxane, nitroethane, acetone, acetonitrile, 1-propanol, ethanol, and methanol. The linear organic vapor sorption is in keeping with the dominance of vapor partition in peat SOM. These data and similar results of carbon tetrachloride (CT), trichloroethylene (TCE), benzene, ethylene glycol monoethyl ether (EGME), and water on the same peat from earlier studies are used to evaluate the effect of polarity on the vapor partition in SOM. The extrapolated liquid solubility from the vapor isotherm increases sharply from 3-6 wt % for low-polarity liquids (hexane, CT, and benzene) to 62 wt % for polar methanol and correlates positively with the liquid's component solubility parameters for polar interaction (??P) and hydrogen bonding (??h). The same polarity effect may be expected to influence the relative solubilities of a variety of contaminants in SOM and, therefore, the relative deviations between the SOM-water partition coefficients (Kom) and corresponding octanol-water partition coefficients (Kow) for different classes of compounds. The large solubility disparity in SOM between polar and nonpolar solutes suggests that the accurate prediction of Kom from Kow or Sw (solute water solubility) would be limited to compounds of similar polarity.

  18. Liquid chromatographic analysis of coal surface properties. Quarterly progress report, January--March 1994

    SciTech Connect

    Kwon, K.C.; Martin, L.L.

    1994-05-01

    Experiments on flotation of 60--200 mesh treated Illinois No. 6 coal (PSOC-1539) and Wyodak coal (PSOC-1545) were performed. The coals were treated with 20-ppM alcohol aqueous solutions (soln) for 1-24 hours at the 0.002-g/min mass flow rate at 225C. Flotation of Illinois No. 6 coal, treated with 1-propanol aqueous solution, increases with treatment durations for the first 10 hours and then decreases. Flotation of Illinois No. 6 coal, treated with isopropanol soln increases with treatment durations for the first 18 hours and then levels off. Flotation of Illinois No. 6 coal, treated with butanol soln, increases with treatment durations. Flotation of 1-butanol-treated Illinois No. 6 coal is higher than that of t-butanol-treated Illinois No. 6 coal. Flotation of Illinois No. 6 coal, treated with 20-ppM-isobutanol 20-ppM-HCl soln, increases with treatment durations for the first 10 hours treatment period, and then decreases sharply with treatment durations. Flotation of Wyodak coal, treated with water only, increases with treatment durations. Effects of water treatment on flotation of Wyodak coal are significantly pronounced compared to Illinois No. 6 coal.

  19. Application of integrated comprehensive/multidimensional gas chromatography with mass spectrometry and olfactometry for aroma analysis in wine and coffee.

    PubMed

    Chin, Sung-Tong; Eyres, Graham T; Marriott, Philip J

    2015-10-15

    Component coelution in chromatographic analysis complicates identification and attribution of individual odour-active volatile molecules in complex multi-component samples. An integrated system incorporating comprehensive two-dimensional gas chromatography (GC × GC) and multidimensional gas chromatography (MDGC), with flame ionisation, olfactometry and mass spectrometry detection was developed to circumvent data correlation across different systems. Identification of potent odorants in Shiraz wine and the headspace of ground coffee are demonstrated as selected applications. Multiple solid-phase microextraction (SPME) sampling with GC-O located odour-active regions; GC × GC established the complexity of odour-active regions; MDGC provided high-resolution separation for each region; simultaneous 'O' and MS detection completed the analysis for target resolved peaks. Seven odour regions in Shiraz were analysed with MDGC-O/MS detection, revealing 11 odour volatiles through matching of mass spectrometry and retention indices from both separating dimensions, including acetic acid; octen-3-ol; ethyl octanoate; methyl-2-oxo-nonanoate; butanoic acid, 2-methylbutanoic acid, and 3-methylbutanoic acid; 3-(methylthio)-1-propanol; hexanoic acid; β-damascenone; and ethyl-3-phenylpropanoate. A capsicum odour in ground coffee was identified as 2-methoxy-3-isobutylpyrazine with a 5-fold increase in S/N of the odorant when acquired using a 6-time cumulative SPME sampling approach. PMID:25952879

  20. Characterization of key odorants in Chinese chixiang aroma-type liquor by gas chromatography-olfactometry, quantitative measurements, aroma recombination, and omission studies.

    PubMed

    Fan, Haiyan; Fan, Wenlai; Xu, Yan

    2015-04-15

    Chixiang aroma-type liquor is extensively welcomed by consumers owing to its typical fatty aroma, particularly in southern China. To our knowledge, no comprehensive characterization of aroma and flavor from chixiang aroma-type liquor has been published. It is still a confused question which components are the most important in characterizing its unique aroma. A total of 56 odorants were identified in chixiang aroma-type liquor by aroma extract dilution analysis (AEDA), and in different quantitative measurements, 34 aroma compounds were further demonstrated as important odorants according to odor activity values (OAVs). Furthermore, this research suggested that the aroma of chixiang aroma-type finished liquor could be successfully reconstituted by mixing 34 aroma compounds in the concentrations measured. Omission experiments further confirmed (E)-2-nonenal as the key odorant and revealed the significance of (E)-2-octenal and 2-phenylethanol for the overall aroma of chixiang aroma-type liquor. 3-(Methylthio)-1-propanol (methionol), diethyl 1,7-heptanedioate (diethyl pimelate), diethyl 1,8-octanedioate (diethyl suberate), and diethyl 1,9-nonanedioate (diethyl azelate), identified as the characteristic aromas of chixiang aroma-type liquor in 1995, had no effects on aroma based on omission/addition experiments. PMID:25797496

  1. Photoisomerization mechanism of 1,1'-dimethyl-2,2'-pyridocyanine in the gas phase and in solution.

    PubMed

    Gao, Aihua; Zhang, Peiyu; Zhao, Meiyu; Liu, Jianyong

    2015-02-01

    The trans→cis and cis→trans photoisomerization mechanisms of 1,1'-dimethyl-2,2'-pyridocyanine have been investigated theoretically in the gas phase and in methanol. Two-dimensional potential energy surfaces were computed for the ground and first excited singlet states of the isolated molecule using complete active space self-consistent field method. Our computations suggest that the torsion around the central C-C bonds with carbon-out-of-plane motion is the preferred photoisomerization mechanism. In the gas phase, conical intersections were found near the minima of excited state. The excited-state decay follows a barrierless minimum-energy pathway before the molecule moves to the excited-state global minimum (minS1) and the system relaxes to the ground state through a conical intersection. In methanol, the system would first reach a stationary structure of C2 symmetry after the trans form is electronically excited. Solvent polarity effects were investigated in chloroform, dichloromethane, 1-propanol, ethanol, methanol, and water. There is a significant barrier between the stationary structure of C2 symmetry and minS1 in the excited state in high polarity solvents. Thus, Me-1122P has a much longer lifetime of the excited state in solvents of high polarity. PMID:25456657

  2. Reprint of: Impact of alcohols on the formation and stability of protein-stabilized nanoemulsions.

    PubMed

    Zeeb, Benjamin; Herz, Eva; McClements, David Julian; Weiss, Jochen

    2015-07-01

    Nanoemulsions are increasingly being used for encapsulation, protection, and delivery of bioactive lipids, however, their formation from natural emulsifiers is still challenging. We investigated the impact of alcohol on the formation and stability of protein-stabilized oil-in-water nanoemulsions prepared by high-pressure homogenization. The influence of different alcohols (ethanol, 1-propanol, and 1-butanol) at various concentrations (0-25% w/w) on the formation and stability of emulsions stabilized by sodium caseinate, whey protein isolate, and fish gelatin was investigated. The mean particle diameter decreased with increasing alcohol concentrations from 0 to 10%w/w, but extensive droplet aggregation occurred at higher levels. This phenomenon was attributed to enhanced protein-protein interactions between the adsorbed emulsifier molecules in the presence of alcohol leading to droplet flocculation. The smallest droplets (d<100 nm) were obtained when 10%w/w 1-butanol was added to sodium caseinate-stabilized nanoemulsions, but relatively small droplets (d<150 nm) could also be obtained in the presence of a food-grade alcohol (ethanol). This study demonstrated that alcohol addition might be a useful tool for producing protein-stabilized nanoemulsions suitable for use as delivery systems of lipophilic bioactive agents. PMID:25865241

  3. Accelerated solvent extraction of alkylresorcinols in food products containing uncooked and cooked wheat.

    PubMed

    Holt, Monte D; Moreau, Robert A; DerMarderosian, Ara; McKeown, Nicola; Jacques, Paul F

    2012-05-16

    This research focuses on the overall extraction process of alkylresorcinols (ARs) from uncooked grains and baked products that have been processed with wheat, corn, rice, and white flour. Previously established extraction methods developed by Ross and colleagues, as well as a semiautomated method involving accelerated solvent extraction (ASE), were applied to extract ARs within freshly ground samples. For extraction of alkylresorcinols, nonpolar solvents such as ethyl acetate have been recommended for the extraction of uncooked foods, and polar solvents such as 1-propanol:water (3:1 v/v) have been recommended for the extraction of baked foods that contain rye, wheat, or other starch-rich grains. A comparison of AR extraction methods has been investigated with the application of gas chromatography and a flame ionization detector (GC-FID) to quantify the AR content. The goal of this research was to compare the rapid accelerated solvent extraction of the alkylresorcinols (ASE-AR) method to the previous manual AR extraction methods. Results for this study as well as the investigation of the overall efficiency of ASE-AR extraction with the use of a spiking study indicated that it can be comparable to current extraction methods but with less time required. Furthermore, the extraction time for ASE (approximately 40 min) is much more convenient and less tedious and time-consuming than previously established methods, which range from 5 h for processed foods to 24 h for raw grains. PMID:22530555

  4. Physico-chemical and microbiological characterization of spontaneous fermentation of Cellina di Nardò and Leccino table olives

    PubMed Central

    Bleve, Gianluca; Tufariello, Maria; Durante, Miriana; Perbellini, Ezio; Ramires, Francesca A.; Grieco, Francesco; Cappello, Maria S.; De Domenico, Stefania; Mita, Giovanni; Tasioula-Margari, Maria; Logrieco, Antonio F.

    2014-01-01

    Table olives are one of the most important traditional fermented vegetables in Europe and their world consumption is constantly increasing. In the Greek style, table olives are obtained by spontaneous fermentations, without any chemical debittering treatment. Evolution of sugars, organic acids, alcohols, mono, and polyphenol compounds and volatile compounds associated with the fermentative metabolism of yeasts and bacteria throughout the natural fermentation process of the two Italian olive cultivars Cellina di Nardò and Leccino were determined. A protocol was developed and applied aimed at the technological characterization of lactic acid bacteria (LAB) and yeast strains as possible candidate autochthonous starters for table olive fermentation from Cellina di Nardò and Leccino cultivars. The study of the main physic-chemical parameters and volatile compounds during fermentation helped to determine chemical descriptors that may be suitable for monitoring olive fermentation. In both the analyzed table olive cultivars, aldehydes proved to be closely related to the first stage of fermentation (30 days), while higher alcohols (2-methyl-1-propanol; 3-methyl-1-butanol), styrene, and o-cymene were associated with the middle stage of fermentation (90 days) and acetate esters with the final step of olive fermentation (180 days). PMID:25389422

  5. Analysis of methanol and ethanol in virgin olive oil

    PubMed Central

    Gómez-Coca, Raquel B.; Cruz-Hidalgo, Rosario; Fernandes, Gabriel D.; Pérez-Camino, María del Carmen; Moreda, Wenceslao

    2014-01-01

    This work provides a short and easy protocol that allows the analysis of both methanol and ethanol in the static headspace of olive oil. The procedure avoids any kind of sample pre-treatment beyond that of heating the oil to allow a maximum volatile concentration in the headspace of the vials. The method's LOD is 0.55 mg kg−1 and its LOQ is 0.59 mg kg−1. Advantages of this method are:•Simultaneous determination of methanol and ethanol (the pre-existing Spanish specification UNE-EN 14110 only analyses methanol).•No need of equipment modifications (standard split injectors work perfectly). Use of a highly polar capillary GC column, leading in most cases to chromatograms in which only three dominant peaks are present – methanol, ethanol, and propanol (that is extremely positive for easy interpretation of results).•Use of an internal standard (1-propanol) to determine the concentration of the analytes, reducing the presence of error sources. PMID:26150954

  6. The Amino Acid Specificity for Activation of Phenylalanine Hydroxylase Matches the Specificity for Stabilization of Regulatory Domain Dimers

    PubMed Central

    2016-01-01

    Liver phenylalanine hydroxylase is allosterically activated by phenylalanine. The structural changes that accompany activation have not been identified, but recent studies of the effects of phenylalanine on the isolated regulatory domain of the enzyme support a model in which phenylalanine binding promotes regulatory domain dimerization. Such a model predicts that compounds that stabilize the regulatory domain dimer will also activate the enzyme. Nuclear magnetic resonance spectroscopy and analytical ultracentrifugation were used to determine the ability of different amino acids and phenylalanine analogues to stabilize the regulatory domain dimer. The abilities of these compounds to activate the enzyme were analyzed by measuring their effects on the fluorescence change that accompanies activation and on the activity directly. At concentrations of 10–50 mM, d-phenylalanine, l-methionine, l-norleucine, and (S)-2-amino-3-phenyl-1-propanol were able to activate the enzyme to the same extent as 1 mM l-phenylalanine. Lower levels of activation were seen with l-4-aminophenylalanine, l-leucine, l-isoleucine, and 3-phenylpropionate. The ability of these compounds to stabilize the regulatory domain dimer agreed with their ability to activate the enzyme. These results support a model in which allosteric activation of phenylalanine hydroxylase is linked to dimerization of regulatory domains. PMID:26252467

  7. Protease activation in glycerol-based deep eutectic solvents.

    PubMed

    Zhao, Hua; Baker, Gary A; Holmes, Shaletha

    2011-11-01

    Deep eutectic solvents (DESs) consisting of mixtures of a choline salt (chloride or acetate form) and glycerol are prepared as easily accessible, biodegradable, and inexpensive alternatives to conventional aprotic cation-anion paired ionic liquids. These DES systems display excellent fluidity coupled with thermal stability to nearly 200 °C. In this work, the transesterification activities of cross-linked proteases (subtilisin and α-chymotrypsin), immobilized on chitosan, were individually examined in these novel DESs. In the 1:2 molar ratio mixture of choline chloride/glycerol containing 3% (v/v) water, cross-linked subtilisin exhibited an excellent activity (2.9 μmo l min(-1) g(-1)) in conjunction with a selectivity of 98% in the transesterification reaction of N-acetyl-L-phenylalanine ethyl ester with 1-propanol. These highly encouraging results advocate more extensive exploration of DESs in protease-mediated biotransformations of additional polar substrates and use of DESs in biocatalysis more generally. PMID:21909232

  8. Improved homopolymer separation to enable the application of 1H NMR and HPLC for the determination of the reaction parameters of the graft copolymerization of acrylic acid onto starch.

    PubMed

    Witono, Judy R; Marsman, Jan Henk; Noordergraaf, Inge-Willem; Heeres, Hero J; Janssen, Leon P B M

    2013-04-01

    Graft copolymers of starch with acrylic acid are a promising green, bio based material with many potential applications. The grafting of acrylic acid onto cassava starch in an aqueous medium initiated by Fenton's reagent has been studied. Common grafting result parameters are add-on (yield) and graft efficiency (selectivity). However, the analysis of the reaction products and an accurate determination of these parameters stand or fall with a complete separation of the entangled but ungrafted homopolymer from the grafted product. Therefore, this separation is the core of the newly developed analytical procedure. An appropriate solvent has been selected with dedicated testing from the range methanol, ethanol, acetone, dioxane, 2-propanol, and 1-propanol. Acetone showed the best performance in many respects. It has a high dissolving power for the homopolymer, as well as the highest yield of precipitation for the starch derivatives and it is the most economical in use. After the successful separation, the precipitated graft copolymers could be analyzed quantitatively by nuclear magnetic resonance. The liquid with homopolymer and unreacted monomer was analyzed by high pressure liquid chromatography. Proof of grafting has been found by FTIR and TGA analyses. The mass balance calculation shows a systematic error which appears fairly consistent: 18.0±2.5 wt%. This was used as a correction factor in the calculation of the grafting parameters but more importantly, it means that the method we developed has a high level of repeatability, in the order of 97%. PMID:23435285

  9. Simultaneous profiling of multiple neurochemical pathways from a single cerebrospinal fluid sample using GC/MS/MS with electron capture detection.

    PubMed

    Eckstein, James A; Ammerman, Gina M; Reveles, Jessica M; Ackermann, Bradley L

    2008-06-01

    Biogenic amines and amino acids are widely characterized in the pathways representing neurotransmission. Although several analytical methodologies have been used to detect specific target molecules in relevant fluids such as cerebrospinal fluid (CSF), multiple assays must be used to survey the primary pathways involved. This article describes the development of a GC/MS/MS method capable of analyzing up to 43 analytes (representing 20 amino acids and more than seven neurochemical pathways) from a single 50 microl CSF sample. In this procedure, a CSF sample is first treated with acetonitrile to precipitate proteins. The dried sample is then derivatized with a mixture of 2,2,3,3,3-pentafluoro-1-propanol and pentafluoropropionic acetic anhydride to replace all active hydrogen atoms with fluorine-containing groups. Due to the concentration difference between amino acids and neurotransmitters, these two compound classes are analyzed in separate injections of the same derivatized extract. The total run time for each injection is approximately 15-20 min. An essential feature of the method is the use of argon as a reagent gas for electron capture chemical ionization (ECCI), as the use of the more traditional gas (methane) lacked sufficient durability to be considered for use with the present instrumentation. This article describes the development of this method including a detailed investigation of the chemical ionization conditions used. The resultant conditions allow for the profiling of biogenic amines (e.g. serotonin, norepinephrine, and dopamine) in the low picogram per milliliter range. PMID:18286669

  10. Electrical response of monolayer MoS2 to vapors of aliphatic alcohols

    NASA Astrophysics Data System (ADS)

    Sepulveda, Pablo; Ramos, Idalia; Naylor, Carl; Johnson, A. T. Charlie; Pinto, Nicholas

    Monolayer MoS2 crystals were used to sense vapors of Methanol, Ethanol and 1-Propanol. Due to the large surface area, these sensors are expected to show rapid response and recovery times. The current through the sensor was monitored as a function of time with a constant applied voltage. This current decreased in the presence of the sensing gas and recovered upon its removal. Our results show that the response time gets longer as the size of the alcohol increases, but the recovery time stays approximately the same (~20s) regardless of the size of the alcohol. The sensitivity was also seen to decrease as the size of the alcohol increased. These observations could be associated with the slower diffusion of the larger alcohol molecules into the MoS2 crystal. The sensors are also fairly robust since the same sensor was used in all of the measurements after annealing in air at 70C for 10 minutes. Additional sensing measurements as a function of gas concentration will also be presented. This work was supported by NSF under Grants DMR-PREM-1523463 and DMR-RUI-1360772.

  11. Comparisons of amine solvents for post-combustion CO{sub 2} capture: A multi-objective analysis approach

    SciTech Connect

    Lee, Anita S; Eslick, John C; Miller, David C; Kitchin, John R

    2013-10-01

    Amine solvents are of great interest for post-combustion CO{sub 2} capture applications. Although the development of new solvents is predominantly conducted at the laboratory scale, the ability to assess the performance of newly developed solvents at the process scale is crucial to identifying the best solvents for CO{sub 2} capture. In this work we present a methodology to evaluate and objectively compare the process performance of different solvents. We use Aspen Plus, with the electrolyte-NRTL thermodynamic model for the solvent CO{sub 2} interactions, coupled with a multi-objective genetic algorithm optimization to determine the best process design and operating conditions for each solvent. This ensures that the processes utilized for the comparison are those which are best suited for the specific solvent. We evaluate and compare the process performance of monoethanolamine (MEA), diethanolamine (DEA), and 2-amino-2-methyl-1-propanol (AMP) in a 90% CO{sub 2} capture process from a 550 MW coal fired power plant. From our analysis the best process specifications are amine specific and with those specific, optimized specifications DEA has the potential to be a better performing solvent than MEA, with a lower energy penalty and lower capital cost investment.

  12. Solvent Effect on the Photolysis of Riboflavin.

    PubMed

    Ahmad, Iqbal; Anwar, Zubair; Ahmed, Sofia; Sheraz, Muhammad Ali; Bano, Raheela; Hafeez, Ambreen

    2015-10-01

    The kinetics of photolysis of riboflavin (RF) in water (pH 7.0) and in organic solvents (acetonitrile, methanol, ethanol, 1-propanol, 1-butanol, ethyl acetate) has been studied using a multicomponent spectrometric method for the assay of RF and its major photoproducts, formylmethylflavin and lumichrome. The apparent first-order rate constants (k obs) for the reaction range from 3.19 (ethyl acetate) to 4.61 × 10(-3) min(-1) (water). The values of k obs have been found to be a linear function of solvent dielectric constant implying the participation of a dipolar intermediate along the reaction pathway. The degradation of this intermediate is promoted by the polarity of the medium. This indicates a greater stabilization of the excited-triplet states of RF with an increase in solvent polarity to facilitate its reduction. The rate constants for the reaction show a linear relation with the solvent acceptor number indicating the degree of solute-solvent interaction in different solvents. It would depend on the electron-donating capacity of RF molecule in organic solvents. The values of k obs are inversely proportional to the viscosity of the medium as a result of diffusion-controlled processes. PMID:25698084

  13. Acid Lipase from Candida viswanathii: Production, Biochemical Properties, and Potential Application

    PubMed Central

    de Almeida, Alex Fernando; Carmona, Eleonora Cano

    2013-01-01

    Influences of environmental variables and emulsifiers on lipase production of a Candida viswanathii strain were investigated. The highest lipase activity (101.1 U) was observed at 210 rpm, pH 6.0, and 27.5°C. Other fermentation parameters analyzed showed considerable rates of biomass yield (YL/S = 1.381 g/g), lipase yield (YL/S = 6.892 U/g), and biomass productivity (PX = 0.282 g/h). Addition of soybean lecithin increased lipase production in 1.45-fold, presenting lipase yield (YL/S) of 10.061 U/g. Crude lipase presented optimal activity at acid pH of 3.5, suggesting a new lipolytic enzyme for this genus and yeast in general. In addition, crude lipase presented high stability in acid conditions and temperature between 40 and 45°C, after 24 h of incubation in these temperatures. Lipase remained active in the presence of organic solvents maintaining above 80% activity in DMSO, methanol, acetonitrile, ethanol, acetone, 1-propanol, isopropanol, and 2-propanol. Effectiveness for the hydrolysis of a wide range of natural triglycerides suggests that this new acid lipase has high potential application in the oleochemical and food industries for hydrolysis and/or modification of triacylglycerols to improve the nutritional properties. PMID:24350270

  14. Antimicrobial evaluation of selected naturally occurring oxyprenylated secondary metabolites.

    PubMed

    Di Giulio, Mara; Genovese, Salvatore; Fiorito, Serena; Epifano, Francesco; Nostro, Antonia; Cellini, Luigina

    2016-08-01

    This study tested the antimicrobial activity of eight selected naturally occurring oxyprenylated secondary metabolites against Staphylococcus aureus ATCC 29213, S. epidermidis ATCC 35984, Escherichia coli ATCC 8739, Pseudomonas aeruginosa ATCC 9027 and Candida albicans ATCC 10231. Results showed a moderate antimicrobial activity. The most active compounds were 3-(4-geranyloxyphenyl)-1-ethanol (4) and 3-(4-isopentenyloxyphenyl)-1-propanol (5) that were tested on mature and in-formation biofilms of all micro-organisms, moreover the cytotoxic activity was evaluated. Except for S. epidermidis, both compounds reduced significantly (p < 0.05) the microbial biofilm formation at 1/2 MIC and 1/4 MIC, in particular, compounds 4 and 5 at each concentration, inhibited E. coli biofilm formation to a greater extent, the biofilm formation was never more than 44% in respect to the control, moreover both compounds showed a low cytotoxic effect. Oxyprenylated derivatives may be of great interest for the development of novel antimicrobial therapeutic strategies and the synthesis of semi-synthetic analogues with anti-biofilm efficacy. PMID:27498831

  15. Amplification of hofmeister effect by alcohols.

    PubMed

    Xu, Yun; Liu, Guangming

    2014-07-01

    We have demonstrated that Hofmeister effect can be amplified by adding alcohols to aqueous solutions. The lower critical solution temperature behavior of poly(N-isopropylacrylamide) has been employed as the model system to study the amplification of Hofmeister effect. The alcohols can more effectively amplify the Hofmeister effect following the series methanol < ethanol < 1-propanol < 2-propanol for the monohydric alcohols and following the series d-sorbitol ≈ xylitol ≈ meso-erythritol < glycerol < ethylene glycol < methanol for the polyhydric alcohols. Our study reveals that the relative extent of amplification of Hofmeister effect is determined by the stability of the water/alcohol complex, which is strongly dependent on the chemical structure of alcohols. The more stable solvent complex formed via stronger hydrogen bonds can more effectively differentiate the anions through the anion-solvent complex interactions, resulting in a stronger amplification of Hofmeister effect. This study provides an alternative method to tune the relative strength of Hofmeister effect besides salt concentration. PMID:24921669

  16. A Pseudomonas putida Strain Genetically Engineered for 1,2,3-Trichloropropane Bioremediation

    PubMed Central

    Samin, Ghufrana; Pavlova, Martina; Arif, M. Irfan; Postema, Christiaan P.; Damborsky, Jiri

    2014-01-01

    1,2,3-Trichloropropane (TCP) is a toxic compound that is recalcitrant to biodegradation in the environment. Attempts to isolate TCP-degrading organisms using enrichment cultivation have failed. A potential biodegradation pathway starts with hydrolytic dehalogenation to 2,3-dichloro-1-propanol (DCP), followed by oxidative metabolism. To obtain a practically applicable TCP-degrading organism, we introduced an engineered haloalkane dehalogenase with improved TCP degradation activity into the DCP-degrading bacterium Pseudomonas putida MC4. For this purpose, the dehalogenase gene (dhaA31) was cloned behind the constitutive dhlA promoter and was introduced into the genome of strain MC4 using a transposon delivery system. The transposon-located antibiotic resistance marker was subsequently removed using a resolvase step. Growth of the resulting engineered bacterium, P. putida MC4-5222, on TCP was indeed observed, and all organic chlorine was released as chloride. A packed-bed reactor with immobilized cells of strain MC4-5222 degraded >95% of influent TCP (0.33 mM) under continuous-flow conditions, with stoichiometric release of inorganic chloride. The results demonstrate the successful use of a laboratory-evolved dehalogenase and genetic engineering to produce an effective, plasmid-free, and stable whole-cell biocatalyst for the aerobic bioremediation of a recalcitrant chlorinated hydrocarbon. PMID:24973068

  17. Rotational Spectrum of Neopentyl Alcohol, (CH_3)_3CCH_2OH

    NASA Astrophysics Data System (ADS)

    Kisiel, Zbigniew; Pszczołkowski, Lech; Xue, Zhifeng; Suhm, Martin A.

    2012-06-01

    The rotational spectrum of neopentyl alcohol (2,2-dimethyl-1-propanol, (CH_3)_3CCH_2OH) has been investigated for the first time. This molecule differs from ethanol only in having the ^tBu group instead of the methyl group, and is likewise anticipated to exhibit two spectroscopic species, with trans and gauche hydroxyl orientation. Quantum chemistry computations predict the trans to be the more stable species. Rotational transitions of both species have now been assigned in supersonic expansion cm-wave FTMW experiment and in room temperature, mm-wave spectra up to 280 GHz. The supersonic expansion measurements with Ar carrier gas confirm that trans is the global minimum species. The trans spectrum is predominantly b-type, while the gauche is predominantly a-type and the frequencies of rotational transitions in both species appear to be perturbed in different ways. The results from effective and from coupled Hamiltonian fits for neopentyl alcohol are presented, and are compared with predictions from ab initio calculations.

  18. Fluorescent-protein stabilization and high-resolution imaging of cleared, intact mouse brains.

    PubMed

    Schwarz, Martin K; Scherbarth, Annemarie; Sprengel, Rolf; Engelhardt, Johann; Theer, Patrick; Giese, Guenter

    2015-01-01

    In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain. PMID:25993380

  19. Production of CaCO3/hyperbranched polyglycidol hybrid films using spray-coating technique.

    PubMed

    Malinova, Kalina; Gunesch, Manfred; Montero Pancera, Sabrina; Wengeler, Robert; Rieger, Bernhard; Volkmer, Dirk

    2012-05-15

    Biomineralizing organisms employ macromolecules and cellular processing strategies in order to produce highly complex composite materials such as nacre. Bionic approaches translating this knowledge into viable technical production schemes for a large-scale production of biomimetic hybrid materials have met with limited success so far. Investigations presented here thus focus on the production of CaCO(3)/polymer hybrid coatings that can be applied to huge surface areas via reactive spray-coating. Technical requirements for simplicity and cost efficiency include a straightforward one-pot synthesis of low molecular weight hyperbranched polyglycidols (polyethers of 2,3-epoxy-1-propanol) as a simple mimic of biological macromolecules. Polymers functionalized with phosphate monoester, sulfate or carboxylate groups provide a means of controlling CaCO(3) particle density and morphology in the final coatings. We employ reactive spray-coating techniques to generate CaCO(3)/hybrid coatings among which vaterite composites can be prepared in the presence of sulfate-containing hyperbranched polyglycidol. These coatings show high stability and remained unchanged for periods longer than 9 months. By employing carboxylate-based hyperbranched polyglycidol, it is possible to deposit vaterite-calcite composites, whereas phosphate-ester-based hyperbranched polyglycidol leads to calcite composites. Nanoindentation was used to study mechanical properties, showing that coatings thus obtained are slightly harder than pure calcite. PMID:22386308

  20. Bismuth Dimercaptopropanol (BisBAL) Inhibits the Expression of Extracellular Polysaccharides and Proteins by Brevundimonas diminuta: Implications for Membrane Microfiltration

    SciTech Connect

    Badireddy, Appala R.; Chellam, Shankararaman; Yanina, Svetlana; Gassman, Paul L.; Rosso, Kevin M.

    2008-02-15

    A 2:1 molar ratio preparation of bismuth with a lipophilic dithiol (3-dimercapto-1-propanol, BAL)significantly reduced extracellular polymeric substances (EPS) expression by Brevundimonas diminuta in suspended cultures at levels just below the minimum inhibitory concentration (MIC). Total polysaccharides and proteins secreted by B. diminuta decreased by approximately 95% over a 5-day period when exposed to the bismuth-BAL chelate (BisBAL) at near MIC (12 μM). Fourier-transform infrared spectroscopy (FTIR) suggested that a possible mechanism of biofilm disruption by BisBAL is the inhibition of carbohydrate Oacetylation. FTIR also revealed extensive homology between EPS samples with and without BisBAL treatment, with proteins, polysaccharides, and peptides varying predominantly only in the amount expressed. EPS secretion decreased following BisBAL treatment as verified by atomic force microscopy and scanning electron microscopy. Without BisBAL treatment, a slime-like EPS matrix secreted by B. diminuta resulted in biofouling and inefficient hydrodynamic backwashing of microfiltration membranes.

  1. Lipid substrate specificity of phosphatidylethanolamine N-methyltransferase of Tetrahymena

    SciTech Connect

    Smith, J.D.

    1986-05-01

    The ciliate protozoan Tetrahymena thermophila forms about 60% of its phosphatidylcholine by methylation of phosphatidylethanolamine with S-adenosylmethionine using the enzyme phosphatidylethanolamine N-methyltransferase. Analogues of ethanolamine or of ethanolamine phosphate are incorporated into the phospholipids of Tetrahymena when cells are cultured in their presence. These compounds, 3-amino-1-propanol, 2-aminoethylphosphonate, 3-aminopropylphosphonate and N,N-dimethylaminoethylphosphonate replace from 50 to 75% of the ethanolamine phosphate in phosphatidylethanolamine. However, analysis of the phospholipids of lipid-altered Tetrahymena showed that none of the phosphatidylethanolamine analogues had been converted to the corresponding phosphatidylcholine analogue. No incorration of (/sup 14/C-CH/sub 3/)methionine into the phosphatidylcholine analogues could be demonstrated in vivo, nor was label from (/sup 3/H-CH/sub 3/)S-adenosylmethionine incorporated in virto. Thus, only phosphatidylethanolamine and its monomethyl and dimethyl derivatives have been found to be substrates for the phosphatidylethanoiamine N-methyltransferase. The enzyme therefore requires a phospholipid substrate containing an ester linkage between the alkylamine and phosphorus, with the amino group required to be ..beta.. to the alcohol.

  2. Alcohol action on a neuronal membrane receptor: evidence for a direct interaction with the receptor protein.

    PubMed Central

    Li, C; Peoples, R W; Weight, F F

    1994-01-01

    For almost a century, alcohols have been thought to produce their effects by actions on the membrane lipids of central nervous system neurons--the well known "lipid theory" of alcohol action. The rationale for this theory is the correlation of potency with oil/water or membrane/buffer partition coefficient. Although a number of recent studies have shown that alcohols can affect the function of certain neuronal neurotransmitter receptors, there is no evidence that the alcohols interact directly with these membrane proteins. In the present study, we report that inhibition of a neuronal neurotransmitter receptor, an ATP-gated ion channel, by a series of alcohols exhibits a distinct cutoff effect. For alcohols with a molecular volume of < or = 42.2 ml/mol, potency for inhibiting ATP-activated current was correlated with lipid solubility (order of potency: 1-propanol = trifluoroethanol > monochloroethanol > ethanol > methanol). However, despite increased lipid solubility, alcohols with a molecular volume of > or = 46.1 ml/mol (1-butanol, 1-pentanol, trichloroethanol, and dichloroethanol) were without effect on the ATP-activated current. The results suggest that alcohols inhibit the function of this neurotransmitter receptor by interacting with a small hydrophobic pocket on the receptor protein. PMID:8058780

  3. The Search for a Volatile Human Specific Marker in the Decomposition Process

    PubMed Central

    Rosier, E.; Loix, S.; Develter, W.; Van de Voorde, W.; Tytgat, J.; Cuypers, E.

    2015-01-01

    In this study, a validated method using a thermal desorber combined with a gas chromatograph coupled to mass spectrometry was used to identify the volatile organic compounds released during decomposition of 6 human and 26 animal remains in a laboratory environment during a period of 6 months. 452 compounds were identified. Among them a human specific marker was sought using principle component analysis. We found a combination of 8 compounds (ethyl propionate, propyl propionate, propyl butyrate, ethyl pentanoate, pyridine, diethyl disulfide, methyl(methylthio)ethyl disulfide and 3-methylthio-1-propanol) that led to the distinction of human and pig remains from other animal remains. Furthermore, it was possible to separate the pig remains from human remains based on 5 esters (3-methylbutyl pentanoate, 3-methylbutyl 3-methylbutyrate, 3-methylbutyl 2-methylbutyrate, butyl pentanoate and propyl hexanoate). Further research in the field with full bodies has to corroborate these results and search for one or more human specific markers. These markers would allow a more efficiently training of cadaver dogs or portable detection devices could be developed. PMID:26375029

  4. The fabrication of monolithic capillary column based on poly (bisphenol A epoxy vinyl ester resin-co-ethylene glycol dimethacrylate) and its applications for the separation of small molecules in high performance liquid chromatography.

    PubMed

    Niu, Wenjing; Wang, Lijuan; Bai, Ligai; Yang, Gengliang

    2013-07-01

    A new polymeric monolith was synthesized in fused-silica capillary by in situ polymerization technique. In the polymerization, bisphenol A epoxy vinyl ester resin (VER) was used as the functional monomer, ethylene glycol dimethacrylate (EDMA) as the crosslinking monomer, 1,4-butanediol, 1-propanol and water as the co-porogens, and azobisisobutyronitrile (AIBN) as the initiator. The conditions of polymerization have been optimized. Morphology of the prepared poly (VER-co-EDMA) monolith was investigated by the scanning electron microscopy (SEM); pore properties were assayed by mercury porosimetry and nitrogen adsorption. The optimized poly (VER-co-EDMA) monolith showed a uniform structure, good permeability and mechanical stability. Then, the column was used as the stationary phase of high performance liquid chromatography (HPLC) to separate the mixture of benzene derivatives. The best column efficiency achieved for phenol was 235790 theoretical plates per meter. Baseline separations of benzene derivatives and halogenated benzene compounds under optimized isocratic mode conditions were achieved with high column efficiency. The column showed good reproducibility: the relative standard deviation (RSD) values based on the retention times (n=3) for run-to-run, column-to-column and batch-to-batch were less than 0.98, 1.68, 5.48%, respectively. Compared with poly (BMA-co-EDMA) monolithic column, the proposed monolith exhibited more efficiency in the separation of small molecules. PMID:23726080

  5. Engineering Escherichia coli for Microbial Production of Butanone.

    PubMed

    Srirangan, Kajan; Liu, Xuejia; Akawi, Lamees; Bruder, Mark; Moo-Young, Murray; Chou, C Perry

    2016-05-01

    To expand the chemical and molecular diversity of biotransformation using whole-cell biocatalysts, we genetically engineered a pathway inEscherichia colifor heterologous production of butanone, an important commodity ketone. First, a 1-propanol-producingE. colihost strain with its sleeping beauty mutase (Sbm) operon being activated was used to increase the pool of propionyl-coenzyme A (propionyl-CoA). Subsequently, molecular heterofusion of propionyl-CoA and acetyl-CoA was conducted to yield 3-ketovaleryl-CoA via a CoA-dependent elongation pathway. Lastly, 3-ketovaleryl-CoA was channeled into the clostridial acetone formation pathway for thioester hydrolysis and subsequent decarboxylation to form butanone. Biochemical, genetic, and metabolic factors affecting relative levels of ketogenesis, acidogenesis, and alcohologenesis under selected fermentative culture conditions were investigated. Using the engineeredE. colistrain for batch cultivation with 30 g liter(-1)glycerol as the carbon source, we achieved coproduction of 1.3 g liter(-1)butanone and 2.9 g liter(-1)acetone. The results suggest that approximately 42% of spent glycerol was utilized for ketone biosynthesis, and thus they demonstrate potential industrial applicability of this microbial platform. PMID:26896132

  6. Adsorption and Reaction of C1-C3 Alcohols over CeOx(111) Thin Films

    SciTech Connect

    D Mullins; S Senanayake; T Chen

    2011-12-31

    This study reports the interaction of methanol, ethanol, 1-propanol, and 2-propanol with well-ordered CeO{sub 2}(111) thin film surfaces. All of the alcohols adsorb at low temperature by forming alkoxy and hydroxyl species on the surface. On fully oxidized CeO{sub 2}(111), recombination occurs between some of the alkoxys and hydroxyls, resulting in alcohol desorption near 220 K. At the same temperature, some of the surface hydroxyls disproportionate to produce water and the loss of lattice O. The remaining alkoxys react above 550 K. The primary alcohols favor dehydrogenation products (aldehydes). There is a net loss of O from the system, resulting in a reduction of the ceria. The secondary alcohol, 2-propanol, undergoes primarily dehydration, producing propene with no net change in the cerium oxidation state. Reduced CeO{sub x}(111) competes with the gaseous products for available O. Little or no water is produced. The reaction selectivity for the C{sub 2} and C{sub 3} alcohols shifts toward favoring dehydration products. The loss of O from the alcohols leads to oxidation of the reduced ceria. Compared with the oxidized surface, the alkene desorption shifts to lower temperature, whereas the aldehyde desorption shifts to higher temperature. This indicates that, on the reduced surface, it is easier to break the C-O bond but more difficult to break the O-substrate bond.

  7. Thermal desorption gas chromatography with mass spectrometry study of outgassing from polymethacrylimide foam (Rohacell®).

    PubMed

    Carrasco-Correa, Enrique J; Herrero-Martínez, José M; Consuegra, Lina; Ramis-Ramos, Guillermo; Sanz, Rafael Mata; Martínez, Benito Gimeno; Esbert, Vicente E Boria; García-Baquero, David Raboso

    2015-09-01

    Polymethacrylimide foams are used as light structural materials in outer-space devices; however, the foam closed cells contain volatile compounds that are outgassed even at low temperatures. These compounds ignite as plasmas under outer-space radiation and the intense radio-frequency fields used in communications. Since plasmas may cause spacecraft fatal events, the conditions in which they are ignited should be investigated. Therefore, qualitative and quantitative knowledge about polymethacrylimide foam outgassing should be established. Using thermogravimetric analysis, weight losses reached 3% at ca. 200°C. Thermal desorption gas chromatography with mass spectrometry detection was used to study the offgassed compounds. Using successive 4 min heating cycles at 125°C, each one corresponding to an injection, significant amounts of nitrogen (25.3%), water (2.6%), isobutylene (11.3%), tert-butanol (2.9%), 1-propanol (11.9%), hexane (25.3%), propyl methacrylate (1.4%), higher hydrocarbons (11.3%), fatty acids (2.2%) and their esters (1.3%), and other compounds were outgassed. Other compounds were observed during the main stage of thermal destruction (220-280°C). A similar study at 175°C revealed the extreme difficulty in fully outgassing polar compounds from polymethacrylimide foams by baking and showed the different compositions of the offgassed atmosphere that can be expected in the long term. PMID:26106018

  8. Densities of aqueous blended amines

    SciTech Connect

    Hsu, C.H.; Li, M.H.

    1997-05-01

    Solutions of alkanolamines are an industrially important class of compounds used in the natural gas and synthetic ammonia industries and petroleum chemical plants for the removal of CO{sub 2} and H{sub 2}S from gas streams. The densities of aqueous mixtures of diethanolamine (DEA) + N-methyldiethanolamine (MDEA) + water, DEA + 2-amino-2-methyl-1-propanol (AMP) + water, and monoethanolamine (MEA) + 2-piperidineethanol (2-PE) + water were measured from 30 C to 80 C. A Redlich-Kister equation of the excess volume was applied to represent the density. Based on the available density data for five ternary systems: MEA + MDEA + H{sub 2}O, MEA + AMP + H{sub 2}O, DEA + MDEA + H{sub 2}O, DEA + AMP + H{sub 2}O, and MEA + 2-PE + H{sub 2}O, a generalized set of binary parameters were determined. The density calculations show quite satisfactory results. The overall average absolute percent deviation is about 0.04% for a total of 686 data points.

  9. Viscosities of aqueous blended amines

    SciTech Connect

    Hsu, C.H.; Li, M.H.

    1997-07-01

    Solutions of alkanolamines are an industrially important class of compounds used in the natural gas, oil refineries, petroleum chemical plants, and synthetic ammonia industries for the removal of acidic components like CO{sub 2} and H{sub 2}S from gas streams. The viscosities of aqueous mixtures of diethanolamine (DEA) + N-methyldiethanolamine (MDEA), DEA + 2-amino-2-methyl-1-propanol (AMP), and monoethanolamine (MEA) + 2-piperidineethanol (2-PE) were measured from 30 C to 80 C. A Redlich-Kister equation for the viscosity deviation was applied to represent the viscosity. On the basis of the available viscosity data for five ternary systems, MEA + MDEA + H{sub 2}O, MEA + AMP + H{sub 2}O, DEA + MDEA + H{sub 2}O, DEA + AMP + H{sub 2}O, and MEA + 2-PE + H{sub 2}O, a generalized set of binary parameters were determined. For the viscosity calculation of the systems tested, the overall average absolute percent deviation is about 1.0% for a total of 499 data points.

  10. Solubility of acid gases in a mixed solvent

    SciTech Connect

    MacGregor, R.J.; Mather, A.E.

    1987-01-01

    The solubility of hydrogen sulphide and carbon dioxide and their mixtures has been measured at 40/sup 0/ and 100/sup 0/C in a mixed solvent consisting of 20.9 wt% (2.0 M) MDEA (methyldiethanolamine), 30.5 wt% sulfolane, and 48.6 wt% water. The results have been compared with those for aqueous 2.0 M MDEA and an analogous mixed solvent, containing AMP (2-amino-2-methyl-1-propanol), which are available in the literature. At solution loadings less than 1 mol acid gas/mol MDEA, the solubility of the acid gas was lower in the mixed solvent that in the corresponding aqueous MDEA solvent; at solution loadings greater than 1 mol acid gas/mol MDEA, the reverse was true. At all loadings and at both temperatures studied, the mixed MDEA solvent absorbed equal or lesser quantities of acid gas than the comparable mixed AMP solvent. However, the shapes of the solubility curves show that the mixed MDEA solvent would be a better choice for certain industrial applications. These data were used to modify the solubility model of Deshmukh and Mather to account for the mixed solvent effects on the system thermodynamics. Results show that the model is useful as a first approximation in predicting acid gas solubilities; agreement with experiment was generally found to be within +-15%.

  11. Gene cloning and catalytic characterization of cold-adapted lipase of Photobacterium sp. MA1-3 isolated from blood clam.

    PubMed

    Kim, Young Ok; Khosasih, Vivia; Nam, Bo-Hye; Lee, Sang-Jun; Suwanto, Antonius; Kim, Hyung Kwoun

    2012-12-01

    A lipase-producing Photobacterium strain (MA1-3) was isolated from the intestine of a blood clam caught at Namhae, Korea. The lipase gene was cloned by shotgun cloning and encoded 340 amino acids with a molecular mass of 38,015 Da. It had a very low sequence identity with other bacterial lipases, with the exception of that of Photobacterium lipolyticum M37 (83.2%). The MA1-3 lipase was produced in soluble form when Escherichia coli cells harboring the gene were cultured at 18°C. Its optimum temperature and pH were 45°C and pH 8.5, respectively. Its activation energy was calculated to be 2.69 kcal/mol, suggesting it to be a cold-adapted lipase. Its optimum temperature, temperature stability, and substrate specificity were quite different from those of M37 lipase, despite the considerable sequence similarities. Meanwhile, MA1-3 lipase performed a transesterification reaction using olive oil and various alcohols including methanol, ethanol, 1-propanol, and 1-butanol. In the presence of t-butanol as a co-solvent, this lipase produced biodiesel using methanol and plant or waste oils. The highest biodiesel conversion yield (73%) was achieved using waste soybean oil and methanol at a molar ratio of 1:5 after 12 h using 5 units of lipase. PMID:22841866

  12. Comparative studies on the alcohol types presence in Gracilaria sp. and rice fermentation using Sasad

    NASA Astrophysics Data System (ADS)

    Mansa, R.; Mansuit, H.; Sipaut, C. S.; Yee, C. F.; Yasir, S. M.

    2016-06-01

    Alternative fuel sources such as biofuels are needed in order to overcome environmental problem caused by fossil fuel consumption. Currently, most biofuel are produced from land based crops and there is a possibility that marine biomass such as macroalgae can be an alternative source for biofuel production. The carbohydrate in macroalgae can be broken down into simple sugar through thermo-chemical hydrolysis and enzymatic hydrolysis. Dilute-acid hydrolysis was believed to be the most available and affordable method. However, the process may release inhibitors which would affect alcohol yield from fermentation. Thus, this work was aimed at investigating if it is possible to avoid this critical pre-treatment step in macroalgae fermentation process by using Sasad, a local Sabahan fermentation agent and to compare the yield with rice wine fermentation. This work hoped to determine and compare the alcohol content from Gracilaria sp. and rice fermentation with Sasad. Rice fermentation was found containing ethanol and 2 - methyl - 1 - propanol. Fermentation of Gracilaria sp. had shown the positive presence of 3 - methyl - 1 - butanol. It was found that Sasad can be used as a fermentation agent for bioalcohol production from Gracilaria sp. without the need for a pretreatment step. However further investigations are needed to determine if pre-treatment would increase the yield of alcohol.

  13. Conversion of Methanol, Ethanol and Propanol over Zeolites

    SciTech Connect

    Ramasamy, Karthikeyan K.; Wang, Yong

    2013-06-04

    Renewable fuel from lignocellulosic biomass has recently attracted more attention due to its environmental and the potential economic benefits over the crude oil [1]. In particular the production of fuel range hydrocarbon (HC) from alcohol generated lots of interest since the alcohol can be produced from biomass via thermochemical [2] (mixed alcohol from gasification derived synthesis gas) as well as the biochemical routes [3] (alcohol fermentation). Along with the development of ZSM5 synthesis and the discovery of methanol-to-gasoline (MTG) process by Mobil in 1970’s triggered lots of interest in research and development arena to understand the reaction mechanisms of alcohols over zeolites in particular ZSM5 [4]. More detailed research on methanol conversion was extensively reported [5] and in recent times the research work can be found on ethanol [6] and other alcohols as well but comprehensive comparison of catalyst activity and the deactivation mechanism of the conversion of various alcohols over zeolites has not been reported. The experiments were conducted on smaller alcohols such as methanol, ethanol and 1-propanol over HZSM5. The experimental results on the catalyst activity and the catalyst deactivation mechanism will be discussed.

  14. Photoisomerization mechanism of 1,1‧-dimethyl-2,2‧-pyridocyanine in the gas phase and in solution

    NASA Astrophysics Data System (ADS)

    Gao, Aihua; Zhang, Peiyu; Zhao, Meiyu; Liu, Jianyong

    2015-02-01

    The trans→cis and cis→trans photoisomerization mechanisms of 1,1‧-dimethyl-2,2‧-pyridocyanine have been investigated theoretically in the gas phase and in methanol. Two-dimensional potential energy surfaces were computed for the ground and first excited singlet states of the isolated molecule using complete active space self-consistent field method. Our computations suggest that the torsion around the central Csbnd C bonds with carbon-out-of-plane motion is the preferred photoisomerization mechanism. In the gas phase, conical intersections were found near the minima of excited state. The excited-state decay follows a barrierless minimum-energy pathway before the molecule moves to the excited-state global minimum (minS1) and the system relaxes to the ground state through a conical intersection. In methanol, the system would first reach a stationary structure of C2 symmetry after the trans form is electronically excited. Solvent polarity effects were investigated in chloroform, dichloromethane, 1-propanol, ethanol, methanol, and water. There is a significant barrier between the stationary structure of C2 symmetry and minS1 in the excited state in high polarity solvents. Thus, Me-1122P has a much longer lifetime of the excited state in solvents of high polarity.

  15. Electron spin-lattice relaxation of nitroxyl radicals in temperature ranges that span glassy solutions to low-viscosity liquids.

    PubMed

    Sato, Hideo; Bottle, Steven E; Blinco, James P; Micallef, Aaron S; Eaton, Gareth R; Eaton, Sandra S

    2008-03-01

    Electron spin-lattice relaxation rates, 1/T1, at X-band of nitroxyl radicals (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl, 4-oxo-2,2,6,6-tetramethylpiperidin-1-oxyl, 3-carbamoyl-2,2,5,5-tetramethylpyrrolidin-1-oxyl and 3-carbamoyl-2,2,5,5-tetramethylpyrrolin-1-oxyl) in glass-forming solvents (decalin, glycerol, 3-methylpentane, o-terphenyl, 1-propanol, sorbitol, sucrose octaacetate, and 1:1 water:glycerol) at temperatures between 100 and 300K were measured by long-pulse saturation recovery to investigate the relaxation processes in slow-to-fast tumbling regimes. A subset of samples was also studied at lower temperatures or at Q-band. Tumbling correlation times were calculated from continuous wave lineshapes. Temperature dependence and isotope substitution (2H and 15N) were used to distinguish the contributions of various processes. Below about 100K relaxation is dominated by the Raman process. At higher temperatures, but below the glass transition temperature, a local mode process makes significant contributions. Above the glass transition temperature, increased rates of molecular tumbling modulate nuclear hyperfine and g anisotropy. The contribution from spin rotation is very small. Relaxation rates at X-band and Q-band are similar. The dependence of 1/T1 on tumbling correlation times fits better with the Cole-Davidson spectral density function than with the Bloembergen-Purcell-Pound model. PMID:18166493

  16. Resveratrol triggers apoptosis through regulating ceramide metabolizing genes in human K562 chronic myeloid leukemia cells.

    PubMed

    Kartal, Melis; Saydam, Guray; Sahin, Fahri; Baran, Yusuf

    2011-01-01

    Resveratrol, an important phytoalexin in many plants, has been reported to have cytotoxic effects on various types of cancer. Ceramide is a bioactive sphingolipid that regulates many signaling pathways, including cell growth and proliferation, senescence and quiescence, apoptosis, and cell cycle. Ceramides are generated by longevity assurance genes (LASS). Glucosylceramide synthase (GCS) and sphingosine kinase-1 (SK-1) enzymes can convert ceramides to antiapoptotic molecules, glucosylceramide, and sphingosine-1-phosphate, respectively. C8:ceramide, an important cell-permeable analogue of natural ceramides, increases intracellular ceramide levels significantly, while 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) and SK-1 inhibitor increase accumulation of ceramides by inhibiting GCS and SK-1, respectively. Chronic myelogenous leukemia (CML) is a hematological disorder resulting from generation of BCR/ABL oncogene. In this study, we examined the roles of ceramide metabolizing genes in resveratrol-induced apoptosis in K562 CML cells. There were synergistic cytotoxic and apoptotic effects of resveratrol with coadministration of C8:ceramide, PDMP, and SK-1 inhibitor. Interestingly, there were also significant increases in expression levels of LASS genes and decreases in expression levels of GCS and SK-1 in K562 cells in response to resveratrol. Our data, in total, showed for the first time that resveratrol might kill CML cells through increasing intracellular generation and accumulation of apoptotic ceramides. PMID:21500096

  17. High octane ethers from synthesis gas-derived alcohols. Quarterly technical progress report, July--September 1993

    SciTech Connect

    Klier, K.; Herman, R.G.; Feeley, O.C.; Johansson, M.A.

    1993-11-01

    The objective of the proposed research is to synthesize oxygenated fuel ethers, primarily methyl isobutyl ether (MIBE) and methyl tertiary butyl ether (MTBE), directly from coal-derived H{sub 2}/CO/CO{sub 2} synthesis via alcohol mixtures that are rich in methanol and 2-methyl-1-proanol (isobutanol). The overall scheme involves gasification of coal, purification and shifting of the synthesis gas, higher alcohol synthesis, and direct synthesis of ethers. Both organic and inorganic catalysts will be investigated, and the better catalysts will be subjected to long term performance studies. The project is divided into the following three tasks: (1) synthesis of high octane ethers from alcohol mixtures containing predominantly methanol and 2-methyl-1-propanol over superacid resins, (2) inorganic catalysts for the synthesis of high octane ethers form alcohols, and (3) long term performance and reaction engineering for scale-up of the alcohols-to-ether process. A summary of technical progress is provided in this report.

  18. Gas-liquid solubilities of carbon monoxide, carbon dioxide, hydrogen, water, 1-alcohols (1 [<=] n [<=] 6), and n-paraffins (2 [<=] n [<=] 6) in hexadecane, octacosane, 1-hexadecanol, phenanthrene, and tetraethylene glycol at pressures up to 5. 5 MPa and temperatures from 293 to 553 K

    SciTech Connect

    Breman, B.B.; Beenackers, A.A.C.M.; Rietjens, E.W.J.; Stege, R.J.H. . Dept. of Chemical Engineering)

    1994-10-01

    At temperatures between 473 and 673 K and pressures between 2 and 10 MPa, synthesis gas can be converted toward methanol, fuel-methanol (a mixture of methanol and higher alcohols), or a mixture of hydrocarbons (Fischer-Tropsch synthesis), depending on the type of heterogeneous catalyst applied. The gas-liquid solubilities of the solutes carbon monoxide, carbon dioxide, hydrogen, water, ethane, propane, pentane, hexane, methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, and 1-hexanol in the solvents tetraethylene glycol, hexadecane, octacosane, 1-hexadecanol, and phenanthrene were measured as a function of temperature. The solutes are all reactants or products relevant for synthesis gas conversion into alcohols and/or hydrocarbons. The solvents are seen as potentially attractive for synthesis gas conversion via gas-slurry processes. Experimental conditions varied between 293 and 553 K and 0.06 and 5.5 MPa, covering typical process conditions for synthesis gas conversion. The total set of experimental results consists of 1,533 gas-liquid solubilities divided over 60 binary systems. As far as the authors know hardly any of the gas-liquid solubilities from this set have been reported previously in the literature. Where literature data are available, a comparison is made with their data. This comparison always shows an agreement within the calculated experimental errors with an average deviation of 7.6% and a maximal deviation of 15.0%.

  19. New organic aerogels based upon a phenolic-furfural reaction

    SciTech Connect

    Hrubesh, L.W.

    1994-09-01

    The aqueous polycondensation of (1) resorcinol with formaldehyde and (2) melamine with formaldehyde are two proven synthetic routes for the formation of organic aerogels. Recently, we have discovered a new type of organic aerogel based upon a phenolic-furfural (PF) reaction. This sol-gel polymerization has a major advantage over past approaches since it can be conducted in alcohol (e.g., 1-propanol), thereby eliminating the need for a solvent exchange step prior to supercritical drying from carbon dioxide. The resultant aerogels are dark brown in color and can be converted to a carbonized version upon pyrolysis in an inert atmosphere. BET surface areas of 350--600 m{sup 2}/g have been measured, and transmission electron microscopy reveals an interconnected structure of irregularly-shaped particles or platelets with {approximately}10 nm dimensions. Thermal conductivities as low as 0.015 W/m-K have been recorded for PF aerogels under ambient conditions. This paper describes the chemistry-structure-property relationships of these new materials in detail.

  20. The PQQ biosynthetic operons and their transcriptional regulation in Pseudomonas aeruginosa.

    PubMed

    Gliese, Nicole; Khodaverdi, Viola; Görisch, Helmut

    2010-01-01

    Gene PA1990 of Pseudomonas aeruginosa, located downstream of pqqE and encoding a putative peptidase, was shown to be involved in excretion of PQQ into the culture supernatant. This gene is cotranscribed with the pqqABCDE cluster and was named pqqH. A PA1990::Km(r) mutant (VK3) did not show any effect in growth behaviour; however, in contrast to the wild-type, no excretion of PQQ into the culture supernatant was observed. The putative pqqF gene of P. aeruginosa was shown to be essential for PQQ biosynthesis. A pqqF::Km(r) mutant did not grow aerobically on ethanol, because of its inability to produce PQQ. Transcription of the pqqABCDEH operon was induced upon aerobic growth on ethanol, 1-propanol, 1,2-propanediol and 1-butanol, while on glycerol, succinate and acetate, transcription was low. Transcription of the pqqABCDEH operon was also found upon anoxic growth on ethanol with nitrate as electron acceptor, but no PQQ was produced. Expression of the pqqABCDEH operon is regulated at the transcriptional level. In contrast, the pqqF operon appeared to be transcribed constitutively at a very low level under all growth conditions studied. PMID:19902179

  1. Cryopreservation of the late stage embryos of Spodoptera exigua (Lepidoptera: Noctuidae).

    PubMed

    Luo, Li; Pang, Yi; Chen, Qijin; Li, Guanghong

    2006-01-01

    Genetic devolution, genetic drift and contamination are all threats to maintain germplasm stability during mass rearing of many insects. Cryopreservation of beet armworm (Spodoptera exigua) embryos was studied to provide information to improve mass rearing. A series of experiments was conducted on late-stage embryos (45-48 h at 27 degree C) of the beet armyworm, which included evaluation of cryoprotectants (CPAs), their toxicity and glass-forming tendency and optimization of experimental procedures. The results showed that ethylene glycol (EG) was the best CPA with comparatively low toxicity compared to the other six CPAs tested (methanol, 1,3-propanediol, glycerol, 2-amino-1-ethanol, 3-amino-1-propanol 3-methoxy-1 and 2-propanediol). The highest hatching rate of 8.8 degree was attained after freezing with a 3-step loading procedure and a 1-step unloading procedure, but the hatched larvae from frozen-thawed embryos did not actively feed and could not develop to a later stage. This was attributed to injuries from freezing in late stage embryos of S. exigua which had formed midguts. PMID:17256068

  2. Enthalpies of Mixing for Binary Liquid Mixtures of Monocarbonic Acids and Alcohols

    NASA Astrophysics Data System (ADS)

    Haase, R.; Lorenz, R.

    1985-09-01

    We present the results of calorimetric measurements of the molar enthalpy of mixing (molar excess enthalpy) H¯E as a function of temperature and composition (described by the mole fraction x of the alcohol) for 18 binary liquid systems consisting of an aliphatic monocarbonic acid (formic, acetic, propionic, butyric, valeric acids) and an aliphatic alcohol (methanol, ethanol, 1-propanol. 2-propanol, 1-butanol, 2-methyl-2-propanol). The experiments cover temperatures between 298.15 K and 318.15 K and the whole range of compositions (usually nearly 40 compositions at each temperature). There is a great variety of behaviour as far as the function H¯E(x) for T= const is concerned. Many systems show endothermic mixing ( H¯E > 0), other systems exothermic mixing (H¯E < 0), again other systems partly endothermic, partly exothermic behaviour. There is one case (acetic acid + 2-methyl-2-propanol) where H¯E(x) changes its sign twice and the molar excess heat capacity exhibits unusually large negative values.

  3. Flow Synthesis of 2-Methylpyridines via α-Methylation.

    PubMed

    Manansala, Camille; Tranmer, Geoffrey K

    2015-01-01

    A series of simple 2-methylpyridines were synthesized in an expedited and convenient manner using a simplified bench-top continuous flow setup. The reactions proceeded with a high degree of selectivity, producing α-methylated pyridines in a much greener fashion than is possible using conventional batch reaction protocols. Eight 2-methylated pyridines were produced by progressing starting material through a column packed with Raney(®) nickel using a low boiling point alcohol (1-propanol) at high temperature. Simple collection and removal of the solvent gave products in very good yields that were suitable for further use without additional work-up or purification. Overall, this continuous flow method represents a synthetically useful protocol that is superior to batch processes in terms of shorter reaction times, increased safety, avoidance of work-up procedures, and reduced waste. A brief discussion of the possible mechanism(s) of the reaction is also presented which involves heterogeneous catalysis and/or a Ladenberg rearrangement, with the proposed methyl source as C1 of the primary alcohol. PMID:26334262

  4. Physicochemical aspects of epoxide driven nano-ZrO2 hydrogel formation: milder kinetics for better properties.

    PubMed

    Oestreicher, V; Perullini, M; Jobbágy, M

    2016-06-14

    Robust and highly transparent quasi amorphous ZrO2-water-glycerol hydrogels were obtained in a mild one pot procedure, based on the 2,3-epoxy-1-propanol driven alkalinization. SAXS-based characterization of the sol-gel transition revealed that an homogeneously nucleated sol composed of 2 nm primary particles continuously grows up to a critical size of 5-6 nm, when gelation takes place. These particles reach a size of 8-10 nm, depending on the Zr(iv) concentration. Conductivity measurements offer an overall in situ assessment of the reaction rate. The gelled samples share a common trend: once the conductivity decays to 40% of the starting value, the primary particles nucleate and when this decay reaches 20%, the sol-gel transition takes place. The mild conditions employed herein prevent massive ripening and recrystallization leaving hydrogels with extremely low undesired visible light scattering. This suitable nanostructure was achieved in a wide range of total Zr(iv) concentrations or water to glycerol ratios. PMID:26974822

  5. Graphene oxide membrane for liquid phase organic molecular separation

    NASA Astrophysics Data System (ADS)

    Liu, Renlong; Arabale, Girish; Kim, Jinseon; Sun, Ke; Lee, Yongwoon; Ryu, Changkook; Lee, Changgu

    2015-03-01

    The selective permeation of organic solvents and water through graphene oxide (GO) membranes has been demonstrated. Water was found to permeate through GO membranes faster than various alcohols. The permeation rates of propanol are about 80 times lower than that of water. Taking advantage of the differences in the permeation rates, we separated water from the alcohols and obtained alcohols with high purity. For ethanol and 1-propanol, binary solutions of the alcohol and water were filtered efficiently to produce alcohols with concentration of about 97%. However, the selectivity of the filtration of methanol is significantly lower than those of the other alcohols. To understand the mechanism we followed the structural changes in the GO membranes by X-Ray diffraction analysis. From the X-ray diffraction results we speculate that the selectivity of the permeation of water and alcohols is closely related to the molecular sizes of the solvents and their polarity. In order to demonstrate the potential applications of this process for the selective removal of water from aqueous organic mixtures, we performed the separation of water from a bio-oil containing 73% of water. The majority of the water was filtered out resulting in a higher purity bio-oil.

  6. A Pseudomonas putida strain genetically engineered for 1,2,3-trichloropropane bioremediation.

    PubMed

    Samin, Ghufrana; Pavlova, Martina; Arif, M Irfan; Postema, Christiaan P; Damborsky, Jiri; Janssen, Dick B

    2014-09-01

    1,2,3-Trichloropropane (TCP) is a toxic compound that is recalcitrant to biodegradation in the environment. Attempts to isolate TCP-degrading organisms using enrichment cultivation have failed. A potential biodegradation pathway starts with hydrolytic dehalogenation to 2,3-dichloro-1-propanol (DCP), followed by oxidative metabolism. To obtain a practically applicable TCP-degrading organism, we introduced an engineered haloalkane dehalogenase with improved TCP degradation activity into the DCP-degrading bacterium Pseudomonas putida MC4. For this purpose, the dehalogenase gene (dhaA31) was cloned behind the constitutive dhlA promoter and was introduced into the genome of strain MC4 using a transposon delivery system. The transposon-located antibiotic resistance marker was subsequently removed using a resolvase step. Growth of the resulting engineered bacterium, P. putida MC4-5222, on TCP was indeed observed, and all organic chlorine was released as chloride. A packed-bed reactor with immobilized cells of strain MC4-5222 degraded >95% of influent TCP (0.33 mM) under continuous-flow conditions, with stoichiometric release of inorganic chloride. The results demonstrate the successful use of a laboratory-evolved dehalogenase and genetic engineering to produce an effective, plasmid-free, and stable whole-cell biocatalyst for the aerobic bioremediation of a recalcitrant chlorinated hydrocarbon. PMID:24973068

  7. In Situ Focused Beam Reflectance Measurement (FBRM), Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) and Raman Characterization of the Polymorphic Transformation of Carbamazepine

    PubMed Central

    Zhao, Yingying; Bao, Ying; Wang, Jingkang; Rohani, Sohrab

    2012-01-01

    The objective of this work was to study the polymorphic transformation of carbamazepine from Form II to Form III in 1-propanol during seeded isothermal batch crystallization. First, the pure Form II and Form III were obtained and characterized. Then their solubilities and metastable zone limits were measured by in-situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and focused beam reflectance measurement (FBRM). A transition temperature at about 34.2 °C was deduced suggesting the enantiotropic nature of this compound over the studied temperature range. To quantify the polymorph ratio during the transformation process, a new in-situ quantitative method was developed to measure the fraction of Form II by Raman spectroscopy. Successful tracking of the nucleation of the stable form and the transformation from Form II to Form III during isothermal crystallization was achieved by Raman spectroscopy and FBRM. The results from these three in-situ techniques, FBRM, FTIR and Raman were consistent with each other. The results showed a strong dependency on the amount of seeds added during isothermal crystallization. PMID:24300186

  8. Isobutanol-methanol mixtures from synthesis gas. Quarterly technical progress report, 1 January--31 March 1996

    SciTech Connect

    1996-04-20

    A series of CuMgCeO{sub x} catalysts have been prepared. Range of Cu dispersion, determined by N{sub 2}O titration, was 19-48% and are among the highest reported in the literature for Cu-based methanol and higher alcohol synthesis catalysts. Kinetics of MeOH and EtOH coupling reactions on Cu/ZnO and K-Cu/MgO/CeO{sub 2} catalysts indicate that Cu promotes alcohol dehydrogenation. Acetaldehyde is a reactive intermediate. High-pressure isobutanol synthesis studies have been carried out on K- and Cs-promoted Cu/MgO/CeO{sub 2} catalysts. The K promoter is more active than Cs for CO conversion, but the Cs promoter activates the C{sub 1} to C{sub 2} step more effectively. Catalysts with high alkali loading resulted in low conversions. Temperature programmed surface reaction studies of MeOH, EtOH, and acetaldehyde on MgO/CeO{sub 2}-based Cu catalysts show evolution of acetone, crotonaldehyde, methyl ethyl ketone, H2, carbon oxides. Neither EtOH nor acetaldehyde produces propionaldehyde or 1- propanol, suggesting that these C{sub 3} species can only form via reactions involving C{sub 1} and C{sub 2} oxygenate species.

  9. Oleic acid based heterolipid synthesis, characterization and application in self-microemulsifying drug delivery system.

    PubMed

    Kalhapure, Rahul S; Akamanchi, Krishnacharya G

    2012-04-01

    There is increasing demand for lipids owing to their use in formulating lipid based drug delivery systems of poorly soluble drugs. The present work discusses the synthesis, characterization of oleic acid based heterolipid and its use as oil in the development of self-microemulsifying drug delivery system (SMEDDS) for parenteral delivery. Synthesis was carried out by Michael addition of tert-butyl acrylate to 3-amino-1-propanol to obtain di-tert-butyl aminopropanol derivative. Reaction of this di-tert-butyl aminopropanol derivative with oleoyl chloride using p-dimethylaminopyridine as a coupling agent gave the desired heterolipid. It was characterized by (1)H NMR, (13)C NMR and MS to confirm the structure. It did not exhibit any measurable cytotoxicity, even up to 80μg/ml concentration. Application in parenteral drug delivery was explored using furosemide (FUR), a BCS class IV drug, as a model. FUR showed three times greater solubility in the heterolipid as compared to oleic acid. SMEDDSs were developed using heterolipid as oily phase, Solutol HS 15(®) as surfactant and ethanol as a co-surfactant. Developed SMEDDS could form spontaneous microemulsion on addition to various aqueous phases with mean globule size <70nm without any phase separation or drug precipitation even after 24h, and exhibited negligible hemolytic potential. PMID:22266534

  10. Modeling CO2 mass transfer in amine mixtures: PZ-AMP and PZ-MDEA.

    PubMed

    Puxty, Graeme; Rowland, Robert

    2011-03-15

    The most common method of carbon dioxide (CO(2)) capture is the absorption of CO(2) into a falling thin film of an aqueous amine solution. Modeling of mass transfer during CO(2) absorption is an important way to gain insight and understanding about the underlying processes that are occurring. In this work a new software tool has been used to model CO(2) absorption into aqueous piperazine (PZ) and binary mixtures of PZ with 2-amino-2-methyl-1-propanol (AMP) or methyldiethanolamine (MDEA). The tool solves partial differential and simultaneous equations describing diffusion and chemical reaction automatically derived from reactions written using chemical notation. It has been demonstrated that by using reactions that are chemically plausible the mass transfer in binary mixtures can be fully described by combining the chemical reactions and their associated parameters determined for single amines. The observed enhanced mass transfer in binary mixtures can be explained through chemical interactions occurring in the mixture without need to resort to using additional reactions or unusual transport phenomena such as the "shuttle mechanism". PMID:21329341

  11. Treating exposure to chemical warfare agents: Implications for health care providers and community emergency planning

    SciTech Connect

    Munro, N.B.; Watson, A.P.; Ambrose, K.R.; Griffin, G.D. )

    1990-11-01

    Current treatment protocols for exposure to nerve and vesicant agents found in the US stockpile of unitary chemical weapons are summarized, and the toxicities of available antidotes are evaluated. The status of the most promising of the new nerve agent antidotes is reviewed. In the US, atropine and pralidoxime compose the only approved antidote regimen for organophosphate nerve agent poisoning. Diazepam may also be used if necessary to control convulsions. To avoid death, administration must occur within minutes of substantial exposure together with immediate decontamination. Continuous observation and repeated administration of antidotes are necessary as symptoms warrant. Available antidotes do not necessarily prevent respiratory failure or incapacitation. The toxicity of the antidotes themselves and the individualized nature of medical care preclude recommending that autoinjectors be distributed to the general public. In addition, precautionary administration of protective drugs to the general population would not be feasible or desirable. No antidote exists for poisoning by the vesicant sulfur mustard (H, HD, HT); effective intervention can only be accomplished by rapid decontamination followed by palliative treatment of symptoms. British anti-Lewisite (BAL) (2,3-dimercapto-1-propanol) is the antidote of choice for treatment of exposure to Lewisite, another potent vesicant. Experimental water-soluble BAL analogues have been developed that are less toxic than BAL. Treatment protocols for each antidote are summarized in tabular form for use by health care providers.

  12. Dielectric barrier discharge carbon atomic emission spectrometer: universal GC detector for volatile carbon-containing compounds.

    PubMed

    Han, Bingjun; Jiang, Xiaoming; Hou, Xiandeng; Zheng, Chengbin

    2014-01-01

    It was found that carbon atomic emission can be excited in low temperature dielectric barrier discharge (DBD), and an atmospheric pressure, low power consumption, and compact microplasma carbon atomic emission spectrometer (AES) was constructed and used as a universal and sensitive gas chromatographic (GC) detector for detection of volatile carbon-containing compounds. A concentric DBD device was housed in a heating box to increase the plasma operation temperature to 300 °C to intensify carbon atomic emission at 193.0 nm. Carbon-containing compounds directly injected or eluted from GC can be decomposed, atomized, and excited in this heated DBD for carbon atomic emission. The performance of this new optical detector was first evaluated by determination of a series of volatile carbon-containing compounds including formaldehyde, ethyl acetate, methanol, ethanol, 1-propanol, 1-butanol, and 1-pentanol, and absolute limits of detection (LODs) were found at a range of 0.12-0.28 ng under the optimized conditions. Preliminary experimental results showed that it provided slightly higher LODs than those obtained by GC with a flame ionization detector (FID). Furthermore, it is a new universal GC detector for volatile carbon-containing compounds that even includes those compounds which are difficult to detect by FID, such as HCHO, CO, and CO2. Meanwhile, hydrogen gas used in conventional techniques was eliminated; and molecular optical emission detection can also be performed with this GC detector for multichannel analysis to improve resolution of overlapped chromatographic peaks of complex mixtures. PMID:24328147

  13. In vitro study on the disinfectability of two split-septum needle-free connection devices using different disinfection procedures

    PubMed Central

    Engelhart, Steffen; Exner, Martin; Simon, Arne

    2015-01-01

    This in vitro study investigated the external disinfection of two needle-free connection devices (NFC) using Octeniderm® (spraying and wiping technique) vs. Descoderm® pads (wiping technique). The split-septum membrane of the NFC was contaminated with >105 CFU K. pneumoniae or S. epidermidis. The efficacy of the disinfection at 30 sec. exposure time was controlled by taking a swab sample and by flushing the NFC with sterile 0.9% sodium chloride solution. Disinfection with octenidine dihydrochloride 0.1 g, 1-Propanol 30.0 g, and 2-Propanol 45.0 g in 100 g solution was highly effective (CFU reduction ≥4 log) against both microorganisms, whereas the use of 63.1 g 2-Propanol in 100 ml solution led to residual contamination with S. epidermidis. Our investigation underlines that (i) in clinical practice disinfection of NFCs before use is mandatory, and that (ii) details of disinfection technique are of utmost importance regarding their efficacy. Our investigation revealed no significant differences between both split-septum NFC types. Clinical studies are needed to confirm a possible superiority of disinfectants with long-lasting residual antimicrobial activity. PMID:26693394

  14. Toxicity in relation to mode of action for the nematode Caenorhabditis elegans: Acute-to-chronic ratios and quantitative structure-activity relationships.

    PubMed

    Ristau, Kai; Akgül, Yeliz; Bartel, Anna Sophie; Fremming, Jana; Müller, Marie-Theres; Reiher, Luise; Stapela, Frederike; Splett, Jan-Paul; Spann, Nicole

    2015-10-01

    Acute-to-chronic ratios (ACRs) and quantitative structure-activity relationships (QSARs) are of particular interest in chemical risk assessment. Previous studies focusing on the relationship between the size or variation of ACRs to substance classes and QSAR models were often based on data for standard test organisms, such as daphnids and fish. In the present study, acute and chronic toxicity tests were performed with the nematode Caenorhabditis elegans for a total of 11 chemicals covering 3 substance classes (nonpolar narcotics: 1-propanol, ethanol, methanol, 2-butoxyethanol; metals: copper, cadmium, zinc; and carbamates: methomyl, oxamyl, aldicarb, dioxacarb). The ACRs were variable, especially for the carbamates and metals, although there was a trend toward small and less variable ACRs for nonpolar narcotic substances. The octanol-water partition coefficient was a good predictor for explaining acute and chronic toxicity of nonpolar narcotic substances to C. elegans, but not for carbamates. Metal toxicity could be related to the covalent index χm2r. Overall, the results support earlier results from ACR and QSAR studies with standard freshwater test animals. As such C. elegans as a representative of small soil/sediment invertebrates would probably be protected by risk assessment strategies already in use. To increase the predictive power of ACRs and QSARs, further research should be expanded to other species and compounds and should also consider the target sites and toxicokinetics of chemicals. PMID:25994998

  15. Experimental Measurement and Thermodynamic Modeling of the Solubility of Carbon Dioxide in Aqueous Alkanolamine Solutions in the High Gas Loading Region

    NASA Astrophysics Data System (ADS)

    Suleman, Humbul; Maulud, Abdulhalim Shah; Man, Zakaria

    2016-09-01

    The solubility of carbon dioxide in aqueous alkanolamine solutions was investigated in the high gas loading region based on experimental measurements and thermodynamic modeling. An experimental phase equilibrium study was performed to evaluate the absorption of carbon dioxide in aqueous solutions of five representative alkanolamines, including monoethanolamine, diethanolamine, N-methyldiethanolamine, 2-amino-2-methyl-1-propanol and piperazine. The carbon dioxide loadings of these solutions were determined for a wide range of pressures (62.5 kPa to 4150 kPa), temperatures (303.15 K to 343.15 K) and alkanolamine concentrations (2 M to 4 M). The results were found to be largely consistent with those previously reported in the literature. Furthermore, a hybrid Kent-Eisenberg model was developed for the correlation of the experimental data points. This new model incorporated an equation of state/excess Gibbs energy model for determining the solubility of carbon dioxide in the high-pressure-high gas loading region. This approach also used a single correction parameter, which was a function of the alkanolamine concentration. The results of this model were in excellent agreement with our experimental results. Most notably, this model was consistent with other reported values from the literature.

  16. Aminiphilus circumscriptus gen. nov., sp. nov., an anaerobic amino-acid-degrading bacterium from an upflow anaerobic sludge reactor.

    PubMed

    Díaz, C; Baena, S; Fardeau, M-L; Patel, B K C

    2007-08-01

    Strain ILE-2(T) was isolated from an upflow anaerobic sludge bed reactor treating brewery wastewater. The motile, non-sporulating, slightly curved cells (2-4 x 0.1 microm) stained Gram-negative and grew optimally at 42 degrees C and pH 7.1 with 0.5 % NaCl. The strain required yeast extract for growth and fermented Casamino acids, peptone, isoleucine, arginine, lysine, alanine, valine, glutamate, histidine, glutamine, methionine, malate, fumarate, glycerol and pyruvate to acetate, propionate and minor amounts of branched-chain fatty acids. Carbohydrates, formate, acetate, propionate, butyrate, isovalerate, methanol, ethanol, 1-propanol, butanol, lactate, succinate, starch, casein, gelatin, xylan and a number of other amino acids were not utilized. The DNA G+C content of strain ILE-2(T) was 52.7 mol%. 16S rRNA gene sequence analysis revealed that ILE-2(T) was distantly related to members of the genera Aminobacterium (83 % similarity) and Aminomonas (85 % similarity) in the family Syntrophomonadaceae, order Clostridiales, phylum Firmicutes. On the basis of the results of our polyphasic analysis, strain ILE-2(T) represents a novel species and genus within the family Syntrophomonadaceae, for which the name Aminiphilus circumscriptus gen. nov., sp. nov. is proposed. The type strain of Aminiphilus circumscriptus is ILE-2(T) (=DSM 16581(T) =JCM 14039(T)). PMID:17684281

  17. Kinetics of OH-initiated oxidation of some oxygenated organic compounds in the aqueous phase under tropospheric conditions

    NASA Astrophysics Data System (ADS)

    Poulain, L.; Grubert, S.; François, S.; Monod, A.; Wortham, H.

    2003-04-01

    The interest for multiphase interactions of Volatile Organic Compounds (VOCs) in the troposphere has increased for a few years. Inside the clouds water droplets, soluble VOCs can be oxidized by free radicals thus modifying the droplet composition. This reactivity has an impact on the tropospheric oxidizing capacity as well as the aerosols' properties. In the present work, we measured aqueous phase OH-initiated oxidation rate constants of several oxygenated organic compounds relevant to the atmosphere or chosen as test compounds (ethanol, t-butanol, 1-butanol, iso-propanol, 1-propanol, acetaldehyde, propionaldehyde, butyraldehyde, valeraldehyde, phenol, ethyl ter-butyl ether (ETBE), n-propyl acetate, acetone, methyl ethyl ketone (MEK), methyl iso-butyl ketone (MIBK), ethyl formate). Experiments took place in an aqueous phase photoreactor. The rate constants were determinated using the relative kinetic method. Different OH-radical sources were tested, as well as different reference compounds in order to detect any artifact. The results have shown validation of the experimental protocol on test compounds. The overall results allowed to propose a structure reactivity method in order to predict OH-oxidation rate constant of new compounds. Finally, tropospheric life times of the studied compounds were compared inside and outside a cloud.

  18. Degradation of carbofuran in water by solar photocatalysis in presence of photosensitizers.

    PubMed

    Kuo, W S; Chiang, Y H; Lai, L S

    2006-01-01

    The effect of the presence of photosensitizers, methylene blue (MB) and rose Bengal (RB), on the degradation of carbofuran (2,3-dihydro-2,2-dimethylbenzofuran-7-yl methylcarbamate) in water in a solar photocatalytic system was investigated. It was found that as compared to MB, RB generally showed a stronger effect on the decomposition of carbofuran under comparable conditions. Among the conditions studied, adding 2 x 10(-6) M of RB, that corresponding to 2% of the initial concentration of carbofuran solution in the system, rendered the most effective degradation of carbofuran. As a result, a carbofuran removal percentage of 69.9%, a mineralization efficiency of 28.0%, and a microtoxicity reduction of 65.0% could be achieved. The degradation and mineralization of carbofuran was found to follow the pseudo-first order reaction kinetics. The decomposition mechanism of carbofuran was further investigated through identification of the intermediates to elaborate the influence of dye photosensitizer on the solar photocatalysis of carbofuran in water. On the basis of the intermediates identified, including carbofuran phenol, 3-hydroxy carbofuran phenol, and substituted alcohols (3-phenoxy 1-propanol, 2-ethyl 1-hexanol, 2-butoxyl ethanol), it appears that hydrolysis and hydroxylation were the two key mechanisms for decomposing carbofuran during the process of solar photocatalysis with the aid of dye photosensitizer. PMID:16893781

  19. Prepared polymethacrylate-based monoliths for the separation of cations by non-suppressed capillary ion chromatography.

    PubMed

    Li, Jing; Zhu, Yan

    2014-01-01

    This paper describes a novel analytical system for non-suppressed capillary ion chromatography. Methacrylate monolithic columns were prepared from silanized fused-silica capillaries of 320 µm i.d. by in situ polymerization of glycidyl methacrylate and ethylene dimethacrylate in the presence of 1,4-butanediol, 1-propanol and water as the porogen solvents. The introduction of cation-exchange sites was achieved by sulfonating the matrix with sodium sulfite to produce total cation-exchange capacities in the range of 45-105 μequiv/mL for a 25 cm column. The conditions (concentrations of sodium sulfite solution, reacting time and modified flow rate) of sulfonation were optimized. The hydrodynamic and chromatographic performances were estimated. Coupled with a conductivity detector, a capillary ion chromatography system was set up with the prepared column. Finally, the resultant column was used for the separations of five common univalent cations (Li(+), Na(+), NH4(+), K(+) and Cs(+)) using methanesulfonic acid as the eluent and four divalent cations (Mg(2+), Ca(2+), Sr(2+) and Ba(2+)) by non-suppressed capillary ion chromatography; the chromatographic parameters were further researched. PMID:23677716

  20. Lysozyme gelation in mixtures of tetramethylurea with protic solvents: Use of solvatochromic indicators to probe medium microstructure and solute solvent interactions

    NASA Astrophysics Data System (ADS)

    da Silva, Marcelo A.; El Seoud, Omar A.; Arêas, Elizabeth P. G.

    2007-09-01

    This work investigated the relationship between the structure of binary mixtures of tetramethylurea and protic solvents and their capacity to induce lysozyme gelation. In order to get an insight into the mechanism of gel formation, the solvatochromic behavior of zwitterionic probes, employed as simple models for the protein, was investigated. We studied two probes of similar p Ka's, but different hydrophobic character, namely 2,6-diphenyl-4-(2,4,6-triphenylpyridinium-1-yl) phenolate, RB, and 4-[2-(1-methylpyridinium-4-yl) ethenyl] phenolate, MC. The protic solvents used included water, 1-propanol and 2- n-butoxyethanol in the temperature range from 10 to 60 °C, and methanol, from 10 to 40 °C. In all cases, the dependence of the empirical solvent polarity parameter, ET, on mixture composition was non-ideal with negative deviation for TMU-water and positive deviation for TMU-organic solvent. For all binary mixtures, the deviation from linearity decreased as a function of increasing the temperature. In TMU/alcohol, the effect became more pronounced with increasing alcohol hydrophobicity.

  1. Photocatalytic degradation of Reactive Black 5 and Malachite Green with ZnO and lanthanum doped nanoparticles

    NASA Astrophysics Data System (ADS)

    Kaneva, N.; Bojinova, A.; Papazova, K.

    2016-02-01

    Here we report the preparation of ZnO particles with different concentrations of La3+ doping (0, 0.5 and 1 wt%) via sol-gel method. The nanoparticles are synthesized directly from Zn(CH3COO)2.2H2O in the presence of 1-propanol and triethylamine at 80°C. The conditions are optimized to obtain particles of uniform size, easy to isolate and purify. The nanoparticles are characterized by SEM, XRD and UV-Vis analysis. The photocatalytic properties of pure and La-doped ZnO are studied in the photobleaching of Malachite Green (MG) and Reactive Black 5 (RB5) dyes in aqueous solutions upon UV illumination. It is observed that the rate constant increases with the La loading up to 1 wt%. The doping helps to achieve complete mineralization of MG within a short irradiation time. 1 wt% La-doped ZnO nanoparticles show highest photocatalytic activity. The La3+ doped ZnO particles degrade faster RB5 than MG. The reason is weaker N=N bond in comparison with the C-C bond between the central carbon atom and N,N-dimethylaminobenzyl in MG. The as-prepared ZnO particles can find practical application in photocatalytic purification of textile wastewaters.

  2. Intracerebroventricular injection of propionic acid, an enteric bacterial metabolic end-product, impairs social behavior in the rat: implications for an animal model of autism.

    PubMed

    Shultz, Sandy R; MacFabe, Derrick F; Ossenkopp, Klaus-Peter; Scratch, Shannon; Whelan, Jennifer; Taylor, Roy; Cain, Donald P

    2008-05-01

    Environmental, dietary, and gastrointestinal factors may contribute to autism spectrum disorders (ASD). Propionic acid (PPA) is a short chain fatty acid, a metabolic end-product of enteric bacteria in the gut, and a common food preservative. Recent evidence indicates that PPA can cause behavioral abnormalities and a neuroinflammatory response in rats. Social behavior was examined in similarly-treated pairs of adult male Long-Evans rats placed in an open field following intracerebroventricular (ICV) injection of PPA (4 microl of 0.26 M solution) or control compounds. Behavior was analyzed using both the EthoVision behavior tracking system and by blind scoring of videotapes of social behaviors. Compared to controls, rats treated with PPA displayed social behavior impairments as indicated by significantly greater mean distance apart, reduced time spent in close proximity, reduced playful interaction, and altered responses to playful initiations. Treatment with another short chain fatty acid, sodium acetate, produced similar impairments, but treatment with the alcohol analog of PPA, 1-propanol, did not produce impairments. Immunohistochemical analysis of brain tissue taken from rats treated with PPA revealed reactive astrogliosis, indicating a neuroinflammatory response. These findings suggest that PPA can change both brain and behavior in the laboratory rat in a manner that is consistent with symptoms of human ASD. PMID:18395759

  3. Identification and characterization of stress degradants of lacosamide by LC-MS and ESI-Q-TOF-MS/MS: development and validation of a stability indicating RP-HPLC method.

    PubMed

    Ramisetti, Nageswara Rao; Kuntamukkala, Ramakrishna; Lakshetti, Sridhar; Sripadi, Prabhakar

    2014-07-01

    The current study dealt with the degradation behavior of lacosamide (LAC) under ICH prescribed stress conditions. LAC was found to be labile under acid and base hydrolytic stress conditions, while it was stable to neutral hydrolytic, oxidative, photolytic and thermal stress. In total, seven degradation products (DPs) were formed, which were separated on a C18 column using a stability-indicating method. LC-MS analyses indicated that one of the DPs had the same molecular mass as that of the drug. Structural characterization of DPs was carried out using ESI-Q-TOF-MS/MS technique. The degradation pathways and mechanisms of degradation of the drug were delineated by carrying out the degradation in different co-solvents viz. methanol, deuterated methanol, ethanol, 1-propanol and acetonitrile. The developed LC method was validated for the determination of related substances and assay of LAC as per ICH guidelines. This study demonstrates a comprehensive approach of LAC degradation studies during its development phase. PMID:24699370

  4. Polypeptide-based aerosol nanoparticles: self-assembly and control of conformation by solvent and thermal annealing.

    PubMed

    Rahikkala, Antti; Junnila, Susanna; Vartiainen, Ville; Ruokolainen, Janne; Ikkala, Olli; Kauppinen, Esko; Raula, Janne

    2014-07-14

    Nanoconfined self-assemblies within aerosol nanoparticles and control of the secondary structures are shown here upon ionically complexing poly(L-lysine) (PLL) with dodecylbenzenesulfonic acid (DBSA) surfactant and using solvents chloroform, 1-propanol, or dimethylformamide. Different solvent volatilities and drying temperatures allowed tuning the kinetics of morphology formation. The supramolecular self-assembly and morphology were studied using cryo-TEM and SEM, and the secondary structures, using FT-IR. Highly volatile chloroform led to the major fraction of α-helical conformation of PLL(DBSA), whereas less volatile solvents or higher drying temperatures led to the increasing fraction of β-sheets. Added drugs budesonide and ketoprofen prevented β-sheet formation and studied PLL(DBSA)-drug nanoparticles were in the α-helical conformation. Preliminary studies showed that ketoprofen released with a slower rate than budesonide which was hypothesized to result from different localization of drugs within the PLL(DBSA) nanoparticles. These results instruct to prepare polypeptide aerosol nanoparticles with internal self-assembled structures and to control the secondary structures by aerosol solvent annealing, which we foresee to be useful, e.g., toward controlling the release of poorly soluble drug molecules. PMID:24848300

  5. Capillary electrochromatography-atmospheric pressure ionization mass spectrometry of pesticides using a surfactant-bound monolithic column

    PubMed Central

    Gu, Congying; Shamsi, Shahab A.

    2011-01-01

    A surfactant bound poly (11-acrylaminoundecanoic acid-ethylene dimethacrylate) (AAUA-EDMA) monolithic column was simply prepared by in-situ co-polymerization of AAUA and EDMA with 1-propanol, 1,4-butanediol and water as porogens in 100 µm id fused silica capillary in one step. This column was used in capillary electrochromatography (CEC)-atmospheric pressure photoionization (APPI)-mass spectrometry system for separation and detection of N-methylcarbamates (NMCs) pesticides. Numerous parameters are optimized for CEC-APPI-MS. After evaluation of the mobile phase composition, sheath liquid composition and the monolithic capillary outlet position, a fractional factorial design (FFD) was selected as a screening procedure to identify factors of ionization source parameters, such as sheath liquid flow rate, drying gas flow rate, drying gas temperature, nebulizing gas pressure, vaporizer temperature, and capillary voltage, which significantly influence APPI-MS sensitivity. A face-centered central composite design (CCD) was further utilized to optimize the most significant parameters and predict the best sensitivity. Under optimized conditions signal-to-noise ratios (S/N) around 78 were achieved for an injection of 100 ng/mL of each pesticide. Finally, this CEC-APPI-MS method was successfully applied to the analysis of nine NMCs in spiked apple juice sample after solid phase extraction with recoveries in the range of 65 to 109%. PMID:20349511

  6. Bismuth dimercaptopropanol (BisBAL) inhibits the expression of extracellular polysaccharides and proteins by Brevundimonas diminuta: implications for membrane microfiltration.

    PubMed

    Badireddy, Appala Raju; Chellam, Shankararaman; Yanina, Svetlana; Gassman, Paul; Rosso, Kevin M

    2008-02-15

    A 2:1 molar ratio preparation of bismuth with a lipophilic dithiol (3-dimercapto-1-propanol, BAL) significantly reduced extracellular polymeric substances (EPS) expression by Brevundimonas diminuta in suspended cultures at levels just below the minimum inhibitory concentration (MIC). Total polysaccharides and proteins secreted by B. diminuta decreased by approximately 95% over a 5-day period when exposed to the bismuth-BAL chelate (BisBAL) at near MIC (12 microM). Fourier-transform infrared spectroscopy (FTIR) suggested that a possible mechanism of biofilm disruption by BisBAL is the inhibition of carbohydrate O-acetylation. FTIR also revealed extensive homology between EPS samples with and without BisBAL treatment, with proteins, polysaccharides, and peptides varying predominantly only in the amount expressed. EPS secretion decreased following BisBAL treatment as verified by atomic force microscopy and scanning electron microscopy. Without BisBAL treatment, a slime-like EPS matrix secreted by B. diminuta resulted in biofouling and inefficient hydrodynamic backwashing of microfiltration membranes. PMID:17705249

  7. Molecular spectroscopic studies and ab initio calculations of four alcohols derived from 2,2-dimethylpropane

    NASA Astrophysics Data System (ADS)

    Granzow, B.; Klaeboe, P.; Sablinskas, V.

    1995-04-01

    Four alcohols with the formulas C(CH 2OH) x(CH 3) 4- x (x=1,2,3,4) have been investigated by IR and Raman spectroscopy at different temperatures from the crystalline phases to the plastic phases and the melts. Solution spectra in different solvents have also been obtained. The alcohols with the highest vapour pressures, 2,2-dimethyl-1-propanol and 2,2-dimethyl-1,3-propanediol were studied in argon and nitrogen matrices at 4.5 K using the hot nozzle technique. As observed for the corresponding halogenated compounds, the alcohols are expected to have conformational equilibria due to restricted rotations around the C-C bonds in the plastic phases, the melts and in solution. Additional conformers from rotations around the C-O bonds cannot be excluded. The energies and frequencies of the expected conformations were determined by ab initio calculations using a 3-21 G∗ basis set and compared with the experimental values. The data reveal that the {G}/{G} ( C2) conformer is the most stable in 2,2-dimethyl-1,3-propanediol, while in 2-hydroxymethyl-2-methyl-1,3-propanediol the C1 conformer is more stable than both C3 and Cs with enthalpy differences of 2.9 and 3.7 kJ mol -1, respectively.

  8. A Sphingolipid Inhibitor Induces a Cytokinesis Arrest and Blocks Stage Differentiation in Giardia lamblia▿

    PubMed Central

    Sonda, Sabrina; Štefanić, Saša; Hehl, Adrian B.

    2008-01-01

    Sphingolipid biosynthesis pathways have recently emerged as a promising target for therapeutic intervention against pathogens, including parasites. A key step in the synthesis of complex sphingolipids is the glucosylation of ceramide, mediated by glucosylceramide (GlcCer) synthase, whose activity can be inhibited by PPMP (1-phenyl-2-palmitoylamino-3-morpholino-1-propanol). In this study, we investigated whether PPMP inhibits the proliferation and differentiation of the pathogenic parasite Giardia lamblia, the major cause of parasite-induced diarrhea worldwide. PPMP was found to block in vitro parasite replication in a dose-dependent manner, with a 50% inhibitory concentration of 3.5 μM. The inhibition of parasite replication was irreversible at 10 μM PPMP, a concentration that did not affect mammalian cell metabolism. Importantly, PPMP inhibited the completion of cell division at a specific stage in late cytokinesis. Microscopic analysis of cells incubated with PPMP revealed the aberrant accumulation of cellular membranes belonging to the endoplasmic reticulum network in the caudal area of the parasites. Finally, PPMP induced a 90% reduction in G. lamblia differentiation into cysts, the parasite stage responsible for the transmission of the disease. These results show that PPMP is a powerful inhibitor of G. lamblia in vitro and that as-yet-uncharacterized sphingolipid biosynthetic pathways are potential targets for the development of anti-G. lamblia agents. PMID:18086854

  9. A sphingolipid inhibitor induces a cytokinesis arrest and blocks stage differentiation in Giardia lamblia.

    PubMed

    Sonda, Sabrina; Stefanic, Sasa; Hehl, Adrian B

    2008-02-01

    Sphingolipid biosynthesis pathways have recently emerged as a promising target for therapeutic intervention against pathogens, including parasites. A key step in the synthesis of complex sphingolipids is the glucosylation of ceramide, mediated by glucosylceramide (GlcCer) synthase, whose activity can be inhibited by PPMP (1-phenyl-2-palmitoylamino-3-morpholino-1-propanol). In this study, we investigated whether PPMP inhibits the proliferation and differentiation of the pathogenic parasite Giardia lamblia, the major cause of parasite-induced diarrhea worldwide. PPMP was found to block in vitro parasite replication in a dose-dependent manner, with a 50% inhibitory concentration of 3.5 muM. The inhibition of parasite replication was irreversible at 10 muM PPMP, a concentration that did not affect mammalian cell metabolism. Importantly, PPMP inhibited the completion of cell division at a specific stage in late cytokinesis. Microscopic analysis of cells incubated with PPMP revealed the aberrant accumulation of cellular membranes belonging to the endoplasmic reticulum network in the caudal area of the parasites. Finally, PPMP induced a 90% reduction in G. lamblia differentiation into cysts, the parasite stage responsible for the transmission of the disease. These results show that PPMP is a powerful inhibitor of G. lamblia in vitro and that as-yet-uncharacterized sphingolipid biosynthetic pathways are potential targets for the development of anti-G. lamblia agents. PMID:18086854

  10. Production and Utilization of Ethanol by the Homoacetogen Acetobacterium woodii.

    PubMed

    Buschhorn, H; Dürre, P; Gottschalk, G

    1989-07-01

    Acetobacterium woodii formed ethanol as a fermentation product in addition to acetate when the phosphate concentration of the medium was between 0.2 and 8.4 mM. Considerable amounts of alanine were also found (2 to 11 mM). Supplementation with phosphate caused a shift to acetate as the only end product. Ethanol could also serve as a substrate for A. woodii. The fermentation yielded predominantly acetate and was strictly dependent on high bicarbonate concentrations. 1-Propanol, 1-butanol, and 1-pentanol were converted to the corresponding fatty acids but allowed only marginal growth. A. wieringae and A. carbinolicum grown under identical conditions were also able to form ethanol, and A. wieringae could use ethanol as a substrate, too. Alcohol dehydrogenase and acetaldehyde dehydrogenase activities were determined in A. woodii. Activity stains of polyacrylamide gels with crude extracts allowed the detection of acetaldehyde dehydrogenase but not of alcohol dehydrogenase. Trace amounts of methane were detected during growth of A. woodii on glucose and ethanol. PMID:16347978

  11. Fluorescent-Protein Stabilization and High-Resolution Imaging of Cleared, Intact Mouse Brains

    PubMed Central

    Schwarz, Martin K.; Scherbarth, Annemarie; Sprengel, Rolf; Engelhardt, Johann; Theer, Patrick; Giese, Guenter

    2015-01-01

    In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain. PMID:25993380

  12. Growth of Methanogenic Bacteria in Pure Culture with 2-Propanol and Other Alcohols as Hydrogen Donors

    PubMed Central

    Widdel, Friedrich

    1986-01-01

    Two types of mesophilic, methanogenic bacteria were isolated in pure culture from anaerobic freshwater and marine mud with 2-propanol as the hydrogen donor. The freshwater strain (SK) was a Methanospirillum species, the marine, salt-requiring strain (CV), which had irregular coccoid cells, resembled Methanogenium sp. Stoichiometric measurements revealed formation of 1 mol of CH4 by CO2 reduction, with 4 mol of 2-propanol being converted to acetone. In addition to 2-propanol, the isolates used 2-butanol, H2, or formate but not methanol or polyols. Acetate did not serve as an energy substrate but was necessary as a carbon source. Strain CV also oxidized ethanol or 1-propanol to acetate or propionate, respectively; growth on the latter alcohols was slower, but final cell densities were about threefold higher than on 2-propanol. Both strains grew well in defined, bicarbonate-buffered, sulfide-reduced media. For cultivation of strain CV, additions of biotin, vitamin B12, and tungstate were necessary. The newly isolated strains are the first methanogens that were shown to grow in pure culture with alcohols other than methanol. Bioenergetic aspects of secondary and primary alcohol utilization by methanogens are discussed. Images PMID:16347050

  13. Comparative Transcriptome Analysis of Methylibium petroleiphilum PM1 Exposed to the Fuel Oxygenates Methyl tert-Butyl Ether and Ethanol▿ †

    PubMed Central

    Hristova, Krassimira R.; Schmidt, Radomir; Chakicherla, Anu Y.; Legler, Tina C.; Wu, Janice; Chain, Patrick S.; Scow, Kate M.; Kane, Staci R.

    2007-01-01

    High-density whole-genome cDNA microarrays were used to investigate substrate-dependent gene expression of Methylibium petroleiphilum PM1, one of the best-characterized aerobic methyl tert-butyl ether (MTBE)-degrading bacteria. Differential gene expression profiling was conducted with PM1 grown on MTBE and ethanol as sole carbon sources. Based on microarray high scores and protein similarity analysis, an MTBE regulon located on the megaplasmid was identified for further investigation. Putative functions for enzymes encoded in this regulon are described with relevance to the predicted MTBE degradation pathway. A new unique dioxygenase enzyme system that carries out the hydroxylation of tert-butyl alcohol to 2-methyl-2-hydroxy-1-propanol in M. petroleiphilum PM1 was discovered. Hypotheses regarding the acquisition and evolution of MTBE genes as well as the involvement of IS elements in these complex processes were formulated. The pathways for toluene, phenol, and alkane oxidation via toluene monooxygenase, phenol hydroxylase, and propane monooxygenase, respectively, were upregulated in MTBE-grown cells compared to ethanol-grown cells. Four out of nine putative cyclohexanone monooxygenases were also upregulated in MTBE-grown cells. The expression data allowed prediction of several hitherto-unknown enzymes of the upper MTBE degradation pathway in M. petroleiphilum PM1 and aided our understanding of the regulation of metabolic processes that may occur in response to pollutant mixtures and perturbations in the environment. PMID:17890343

  14. Fungal volatiles as indicators of food and feeds spoilage.

    PubMed

    Schnürer, J; Olsson, J; Börjesson, T

    1999-01-01

    Fungal growth leads to spoilage of food and animal feeds and to formation of mycotoxins and potentially allergenic spores. Fungi produce volatile compounds, during both primary and secondary metabolism, which can be used for detection and identification. Fungal volatiles from mainly Aspergillus, Fusarium, and Penicillium have been characterized with gas chromatography, mass spectrometry, and sensory analysis. Common volatiles are 2-methyl-1-propanol, 3-methyl-1-butanol, 1-octen-3-ol, 3-octanone, 3-methylfuran, ethyl acetate, and the malodorous 2-methyl-isoborneol and geosmin. Volatile sesquiterpenes can be used for taxonomic classification and species identification in Penicillium, as well as to indicate mycotoxin formation in Fusarium and Aspergillus. Developments in sensor technology have led to the construction of "electronic noses" (volatile compound mappers). Exposure of different nonspecific sensors to volatile compounds produces characteristic electrical signals. These are collected by a computer and processed by multivariate statistical methods or in an artificial neural network (ANN). Such systems can grade cereal grain with regard to presence of molds as efficiently as sensory panels evaluating grain odor. Volatile compound mapping can also be used to predict levels of ergosterol and fungal colony-forming units in grain. Further developments should make it possible to detect individual fungal species as well as the degree of mycotoxin contamination of food and animal feeds. PMID:10441446

  15. Highly conductive side chain block copolymer anion exchange membranes.

    PubMed

    Wang, Lizhu; Hickner, Michael A

    2016-06-28

    Block copolymers based on poly(styrene) having pendent trimethyl styrenylbutyl ammonium (with four carbon ring-ionic group alkyl linkers) or benzyltrimethyl ammonium groups with a methylene bridge between the ring and ionic group were synthesized by reversible addition-fragmentation radical (RAFT) polymerization as anion exchange membranes (AEMs). The C4 side chain polymer showed a 17% increase in Cl(-) conductivity of 33.7 mS cm(-1) compared to the benzyltrimethyl ammonium sample (28.9 mS cm(-1)) under the same conditions (IEC = 3.20 meq. g(-1), hydration number, λ = ∼7.0, cast from DMF/1-propanol (v/v = 3 : 1), relative humidity = 95%). As confirmed by small angle X-ray scattering (SAXS), the side chain block copolymers with tethered ammonium cations showed well-defined lamellar morphologies and a significant reduction in interdomain spacing compared to benzyltrimethyl ammonium containing block copolymers. The chemical stabilities of the block copolymers were evaluated under severe, accelerated conditions, and degradation was observed by (1)H NMR. The block copolymer with C4 side chain trimethyl styrenylbutyl ammonium motifs displayed slightly improved stability compared to that of a benzyltrimethyl ammonium-based AEM at 80 °C in 1 M NaOD aqueous solution for 30 days. PMID:27216558

  16. Separation of neutral compounds by microemulsion electrokinetic chromatography: fundamental studies on selectivity.

    PubMed

    Gabel-Jensen, C; Honoré Hansen, S; Pedersen-Bjergaard, S

    2001-04-01

    The selectivity of microemulsion electrokinetic chromatography (MEEKC) was studied utilizing some uncharged model compounds like aromatic amides, steroids, and esters of nicotinic acid. The cosurfactant of the microemulsion was found to be the most important factor affecting the selectivity, and alteration between 6.6% of 1-propanol, 1-butanol, tetrahydrofuran, and 2-ethoxyethanol caused several substantial changes in the migration order. In addition, the nature of the surfactant was found to significantly affect the selectivity. In this case, changes in order of migration was observed by replacement of half the content of sodium dodecyl sulfate (SDS) with either sodium dioctyl sulfosuccinate (SDOSS), 3-(N,N-dimethylmyristylammonio) propanesulfonate (MAPS), polyoxyethylene sorbitan monolaurate (Tween 21), and polyoxyethylene 23 lauryl ether (Brij 35). MEEKC was also accomplished with 3.3% of the anionic surfactant sodium cholate and with the cationic surfactant N-cetyl-N,N,N-trimethylammonium bromide (CTMA). Both provided substantial differences in selectivity as compared to the SDS-based systems. With SDS as surfacant, the concentration was varied within 1.0-4.5%. Minor selectivity changes were observed as the concentration of the surfacant was reduced, but the major effect was a reduction in the total migration time. The organic solvent of the microemulsion droplets was found only to have minor impact on the selectivity. PMID:11379955

  17. Inhibition of ceramide glucosylation sensitizes lung cancer cells to ABC294640, a first-in-class small molecule SphK2 inhibitor.

    PubMed

    Guan, Shuhong; Liu, Yuan Y; Yan, Tingzan; Zhou, Jun

    2016-08-01

    Sphingosine kinase 2 (SphK2) is proposed as a novel oncotarget for lung cancer. Here, we studied the anti-lung cancer cell activity by ABC294640, a first-in-class SphK2 inhibitor. We showed that ABC294640 suppressed growth of primary and A549 human lung cancer cells, but sparing SphK2-low lung epithelial cells. Inhibition of SphK2 by ABC294640 increased ceramide accumulation, but decreased pro-survival sphingosine-1-phosphate (S1P) content, leading to lung cancer cell apoptosis activation. Significantly, we show that glucosylceramide synthase (GCS) might be a major resistance factor of ABC294640. The GCS inhibitor 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) or GCS shRNA/siRNA knockdown facilitated ABC294640-induced ceramide production and lung cancer cell apoptosis. Reversely, forced overexpression of GCS reduced ABC294640's sensitivity, resulting in decreased ceramide accumulation and apoptosis induction in A549 cells. These findings provide further evidences to support that targeting SphK2 by ABC294640 may be a rational treatment option for lung cancer. Ceramide glucosylation inhibition may further sensitize lung cancer cells to ABC294640. PMID:27221045

  18. Adsorption and Reaction of C(1)-C(3) Alcohols over CeO(x)(111) Thin Films

    SciTech Connect

    Mullins, David R; Senanayake, Sanjaya D; Chen, Tsung-Liang

    2010-01-01

    This study reports the interaction of methanol, ethanol, 1-propanol, and 2-propanol with well-ordered CeO{sub 2}(111) thin film surfaces. All of the alcohols adsorb at low temperature by forming alkoxy and hydroxyl species on the surface. On fully oxidized CeO{sub 2}(111), recombination occurs between some of the alkoxys and hydroxyls, resulting in alcohol desorption near 220 K. At the same temperature, some of the surface hydroxyls disproportionate to produce water and the loss of lattice O. The remaining alkoxys react above 550 K. The primary alcohols favor dehydrogenation products (aldehydes). There is a net loss of O from the system, resulting in a reduction of the ceria. The secondary alcohol, 2-propanol, undergoes primarily dehydration, producing propene with no net change in the cerium oxidation state. Reduced CeO{sub X}(111) competes with the gaseous products for available O. Little or no water is produced. The reaction selectivity for the C{sub 2} and C{sub 3} alcohols shifts toward favoring dehydration products. The loss of O from the alcohols leads to oxidation of the reduced ceria. Compared with the oxidized surface, the alkene desorption shifts to lower temperature, whereas the aldehyde desorption shifts to higher temperature. This indicates that, on the reduced surface, it is easier to break the C-O bond but more difficult to break the O-substrate bond.

  19. Oxidation of 2-propanol ligands during collision-induced dissociation of a gas-phase uranyl complex

    NASA Astrophysics Data System (ADS)

    van Stipdonk, Michael J.; Chien, Winnie; Anbalagan, Victor; Gresham, Garold L.; Groenewold, Gary S.

    2004-10-01

    We demonstrate, by way of multi-stage tandem mass spectrometry and extensive deuterium labeling, that 2-propanol is converted to acetone, and 2-propoxide to acetaldehyde, when monopositive 2-propanol-coordinated uranyl-ligand cations are subjected to collision-induced dissociation in the gas-phase environment of an ion trap mass spectrometer. A species with formula [(UO2OCH(CH3)2)(HOCH(CH3)2)]+, derived from dissociation of the gas-phase precursor [(UO2NO3)(HOCH(CH3)2)3]+ eliminates two H atoms and CH3 in consecutive stages to generate a monopositive complex composed of the U(V) species UO2+ coordinated by acetone and acetaldehyde, i.e. [UO2+(OC(CH3)2)(OC(H)CH3)]. Dissociation of this latter ion resulted in elimination of the two coordinating carbonyl ligands in two consecutive dissociation stages to leave UO2+. Analogous reactions were not observed for uranyl complexes containing 1-propanol or 2-methyl-2-propanol, or for cationic complexes with divalent metals such as Ni2+, Co2+, Pb2+ and Ca2+. One explanation for these reactions is bond insertion by the metal center in the bis-ligated uranyl complex, which would be expected to have an LUMO consisting of unoccupied 6d-orbitals that would confer transition metal-like behavior on the complex.

  20. Evaluation of the water and organic liquids extraction efficiency of Spirulina maxima dyes using thermostated micro thin-layer chromatography.

    PubMed

    Zarzycki, Paweł K; Zarzycka, Magdalena B

    2008-01-01

    Thermostated micro thin-layer chromatography was applied for separation and quantification studies of Spirulina maxima dyes isolated from pharmaceutical formulation by a simple one-step liquid extraction. The isolation process was performed using a number of liquids, including water; 10 mM water solutions of native alpha-, beta-, and gamma-cyclodextrin and their hydroxypropyl derivatives; and a number of common organic liquids characterized by different polarity, namely, methanol, ethanol, 1-propanol, 2-propanol, acetonitrile, acetone, tetrahydrofuran, dichloromethane, toluene, and n-hexane. Chromatographic studies were performed on RP18W plates working inside a small thermostated horizontal chamber allowing a development distance of 45 mm. Using a mobile phase consisting of acetone-n-hexane (30 + 70, v/v) and 40 degrees C separation temperature, plate peak capacity of at least 15 spots/lane and developing time <5 min were obtained. Validation data indicated that under such conditions, with an office scanner used for chromatogram digitalization, spot quantification could be accurately performed within an analyte mass range of 2 factors. The raw quantitative data obtained from microchromatograms acquired under visible light conditions were explored using cluster analysis and principal components analysis. Chemometric investigations revealed that the best extraction liquids for isolation of dye mixtures from Spirulina samples were methanol, ethanol, tetrahydrofuran, and dichloromethane. Moreover, it was found that the liquids' parachor values could be used for estimation of the dye extraction efficiency from complex samples. PMID:18980141

  1. Phase behavior and second osmotic virial coefficient for competitive polymer solvation in mixed solvent solutions

    NASA Astrophysics Data System (ADS)

    Dudowicz, Jacek; Freed, Karl F.; Douglas, Jack F.

    2015-11-01

    We apply our recently developed generalized Flory-Huggins (FH) type theory for the competitive solvation of polymers by two mixed solvents to explain general trends in the variation of phase boundaries and solvent quality (quantified by the second osmotic virial coefficient B 2 ) with solvent composition. The complexity of the theoretically predicted miscibility patterns for these ternary mixtures arises from the competitive association between the polymer and the solvents and from the interplay of these associative interactions with the weak van der Waals interactions between all components of the mixture. The main focus here lies in determining the influence of the free energy parameters for polymer-solvent association (solvation) and the effective FH interaction parameters {χαβ} (driving phase separation) on the phase boundaries (specifically the spinodals), the second osmotic virial coefficient B 2 , and the relation between the positions of the spinodal curves and the theta temperatures at which B 2 vanishes. Our classification of the predicted miscibility patterns is relevant to numerous applications of ternary polymer solutions in industrial formulations and the use of mixed solvent systems for polymer characterization, such as chromatographic separation where mixed solvents are commonly employed. A favorable comparison of B 2 with experimental data for poly(methyl methacrylate)/acetonitrile/methanol (or 1-propanol) solutions only partially supports the validity of our theoretical predictions due to the lack of enough experimental data and the neglect of the self and mutual association of the solvents.

  2. Highly stabilized lipase in polyaniline nanofibers for surfactant-mediated esterification of ibuprofen.

    PubMed

    Hong, Sung-Gil; Kim, Han Sol; Kim, Jungbae

    2014-01-28

    Lipase (LP) from Candida rugosa was immobilized and stabilized in polyaniline nanofibers (PANFs) via a three-step process of enzyme adsorption, precipitation, and cross-linking, which generates the final immobilization called "EAPC". The activity of EAPC was 5.1 and 5.9 times higher than those of LP immobilizations via enzyme adsorption (EA) and enzyme adsorption/cross-linking (EAC), respectively. After incubation in an aqueous buffer under shaking (200 rpm) for 84 days, EAPC maintained 74% of its initial activity, while EA and EAC retained 11 and 24% of their initial activities, respectively. Highly stable and active EAPC was employed for the resolution of racemic ibuprofen via esterification of S-(+)-ibuprofen with 1-propanol in isooctane. The addition of 100 mM dioctyl sulfosuccinate (AOT) into the reaction medium increased the esterification activity by 61-fold, which can be explained by the better dispersion of EAPC in isooctane. EAPC showed 42% conversion in the esterification of racemic ibuprofen after 102 h, whereas EA and EAC showed only 1.2 and 1.4% conversion in the same condition, respectively. The EAPC approach increases both loading and stability of LP, and the combination of EAPC with the surfactant addition can be employed for efficient enzymatic reactions in organic solvents. PMID:24417226

  3. Rapid and sensitive analysis of three polyphenols in tobacco by CE using homemade C(4)D with a mini detection cell.

    PubMed

    Xie, Fuwei; Zhang, Yanhao; Zheng, Bo; Xu, Feifei; Su, Jianpo; Lu, Yanyan; Zeng, Fanya; Zhang, Bin; Guo, Yaxiao; Zhang, Shusheng

    2012-08-01

    A rapid, sensitive, and practical CE with C(4) D detection was developed for the analysis of three polyphenols (rutin, scopoletin, and chlorogenic acid) in tobacco samples. The constructed mini detection cell (12 mm × 10 mm × 10 mm) of C(4) D featured with small inner cell volume (∼2 nL), smaller noise (<0.9 mV), repeatability, high strength and durableness. Three polyphenols were ultrasonically extracted with methanol-water (70:30, v/v) solution following SPE cleanup. The CE method was optimized with the running buffer of 150 mmol L(-1) 2-amino-2-methyl-1-propanol (pH 11.2), and the applied separation voltage of +20 kV over a capillary of 50 μm id × 375 μm od × 50 cm (38 cm to the C(4) D window, 41.5 cm to the UV detector window), which gave a baseline separation of three polyphenols within ca. 6 min. The method provided the limits of quantification (S/N = 10) at about 0.08-0.15 μg g(-1) for three polyphenols, whereas the overall recoveries ranged from 82% to 88%. The proposed method has been successfully applied to measure three polyphenols in the actual tobacco samples, and their contents were calculated and evaluated. PMID:22887165

  4. Volatile compounds in whole meal bread crust: The effects of yeast level and fermentation temperature.

    PubMed

    Nor Qhairul Izzreen, M N; Hansen, Se S; Petersen, Mikael A

    2016-11-01

    The influence of fermentation temperatures (8°C, 16°C, and 32°C) and yeast levels (2%, 4%, and 6% of the flour) on the formation of volatile compounds in the crust of whole meal wheat bread was investigated. The fermentation times were regulated to optimum bread height for each treatment. The volatile compounds were extracted by dynamic headspace extraction and analyzed by gas chromatography-mass spectrometry. The results were evaluated using multivariate data analysis and ANOVA. In all crust samples 28 volatile compounds out of 58 compounds were identified and the other 30 compounds were tentatively identified. Higher fermentation temperatures promoted the formation of Maillard reaction products 3-methyl-1-butanol, pyrazine, 2-ethylpyrazine, 2-ethyl-3-methylpyrazine, 2-vinylpyrazine, 3-hydroxy-2-butanone, 3-(methylsulfanyl)-propanal, and 5-methyl-2-furancarboxaldehyde whereas at lower temperature (8°C) the formation of 2- and 3-methylbutanal was favored. Higher levels of yeast promoted the formation of 3-methyl-1-butanol, 2-methyl-1-propanol and 3-(methylsulfanyl)-propanal, whereas hexanal was promoted in the crust fermented with lower yeast level. PMID:27211683

  5. Effects of Fermentation Temperature on Key Aroma Compounds and Sensory Properties of Apple Wine.

    PubMed

    Peng, Bangzhu; Li, Fuling; Cui, Lu; Guo, Yaodong

    2015-12-01

    Fermentation temperature strongly affects yeast metabolism during apple wine making and thus aromatic and quality profiles. In this study, the temperature effect during apple wine making on both the key aroma compounds and sensory properties of apple wine were investigated. The concentration of nine key aroma compounds (ethyl acetate, isobutyl acetate, isopentylacetate, ethyl caprylate, ethyl 4-hydroxybutanoate, isobutylalcohol, isopentylalcohol, 3-methylthio-1-propanol, and benzeneethanol) in apple wine significantly increased with the increase of fermentation temperature from 17 to 20 °C, and then eight out of the nine key aroma compounds with an exception of ethyl 4-hydroxybutanoate, decreased when the temperature goes up 20 to 26 °C. Sensory analysis showed that the apple wine fermented at 20 °C had the highest acceptance for consumers. Fermentation at the temperature of 20 °C was therefore considered to be the most suitable condition using the selected yeast strain (Saccharomyces cerevisiae AP05) for apple wine making. Changes in the fermentation temperature can considerably affect the production of key aroma compounds and sensory profiles of apple wine. These results could help apple wine producers make better quality production for consumers at the optimal fermentation temperature. PMID:26509667

  6. Upconversion, size analysis, and fiber filling of NaYF4: Ho3+, Yb3+ crystals and nanocolloids

    NASA Astrophysics Data System (ADS)

    Patel, Darayas; Lewis, Ashley; Wright, Donald; Velentine, Maucus; Lewis, Danielle; Valentine, Ruben; Sarkisov, Sergey

    2014-03-01

    Nano-colloids and nano-crystals doped with ions of rare-earth elements have recently attracted a lot of attention in the scientific community. This attention is due to unique physical, chemical and optical properties attributed to nanometer size of the particles. They have great potential of being used in applications spanning from new types of lasers, especially blue and UV ones, phosphorous display monitors, optical communications, and fluorescence imaging. In this paper we investigate the near-infrared upconversion luminescence in bulk crystals and nanocolloid filled photonic crystal fiber with ytterbium and holmium co-doped NaYF4 phosphor. The phosphor is prepared by using simple co-precipitation synthetic method. The initially prepared phosphor has very week upconversion fluorescence. The fluorescence significantly increased after the phosphor was annealed at a temperature of 600 °C. Nanocolloids of this phosphor were obtained using 1-propanol as solvent and they were utilized as laser filling medium in photonic crystal fibers. Under 980 nm diode laser excitation very strong upconversion signals were obtained for ytterbium and holmium co-doped phosphor at 541 nm, 646 nm and 751 nm. Pump power emissions, laser ablation and size analysis of the particles was conducted to understand the upconversion mechanisms. The particle sizes of the nanocolloids were analyzed using Atomic Force Microscope and Malvern Zetasizer instrument. The reported nanocolloids are good candidates for fluorescent biosensing applications and also as a new laser filling medium in fiber laser.

  7. Propagation of dynamic nuclear polarization across the xenon cluster boundaries: Elucidation of the spin-diffusion bottleneck

    NASA Astrophysics Data System (ADS)

    Pourfathi, M.; Kuzma, N. N.; Kara, H.; Ghosh, R. K.; Shaghaghi, H.; Kadlecek, S. J.; Rizi, R. R.

    2013-10-01

    Earlier Dynamic Nuclear Polarization (DNP) experiments with frozen xenon/1-propanol/trityl mixtures have demonstrated spontaneous formation of pure xenon clusters above 120 K, enabling spectrally-resolved real-time measurements of 129Xe nuclear magnetization in the clusters and in the surrounding radical-rich matrix. A spin-diffusion bottleneck was postulated to explain the peculiar time evolution of 129Xe signals in the clusters as well as the apparent discontinuity of 129Xe polarization across the cluster boundaries. A self-contained ab initio model of nuclear spin diffusion in heterogeneous systems is developed here, incorporating the intrinsic T1 relaxation towards the temperature-dependent equilibrium polarization and the spin-diffusion coefficients based on the measured NMR line widths and the known atomic densities in each compartment. This simple model provides the physical basis for the observed spin-diffusion bottleneck and is in a good quantitative agreement with the earlier measurements. A simultaneous fit of the model to the time-dependent NMR data at two different DNP frequencies provides excellent estimates of the cluster size, the intrinsic sample temperature, and 129Xe T1 constants. The model was also applied to the NMR data acquired during relaxation towards the thermal equilibrium after the microwaves were turned off, to estimate T1 relaxation time constants inside and outside the clusters. Fitting the model to the data during and after DNP provides consistent estimates of the cluster size.

  8. Cluster formation restricts dynamic nuclear polarization of xenon in solid mixtures

    NASA Astrophysics Data System (ADS)

    Kuzma, N. N.; Pourfathi, M.; Kara, H.; Manasseh, P.; Ghosh, R. K.; Ardenkjaer-Larsen, J. H.; Kadlecek, S. J.; Rizi, R. R.

    2012-09-01

    During dynamic nuclear polarization (DNP) at 1.5 K and 5 T, 129Xe nuclear magnetic resonance (NMR) spectra of a homogeneous xenon/1-propanol/trityl-radical solid mixture exhibit a single peak, broadened by 1H neighbors. A second peak appears upon annealing for several hours at 125 K. Its characteristic width and chemical shift indicate the presence of spontaneously formed pure Xe clusters. Microwave irradiation at the appropriate frequencies can bring both peaks to either positive or negative polarization. The peculiar time evolution of 129Xe polarization in pure Xe clusters during DNP can be modelled as an interplay of spin diffusion and T1 relaxation. Our simple spherical-cluster model offers a sensitive tool to evaluate major DNP parameters in situ, revealing a severe spin-diffusion bottleneck at the cluster boundaries and a significant sample overheating due to microwave irradiation. Subsequent DNP system modifications designed to reduce the overheating resulted in four-fold increase of 129Xe polarization, from 5.3% to 21%.

  9. Use of micellar liquid chromatography to analyze oxolinic acid, flumequine, marbofloxacin and enrofloxacin in honey and validation according to the 2002/657/EC decision.

    PubMed

    Tayeb-Cherif, K; Peris-Vicente, J; Carda-Broch, S; Esteve-Romero, J

    2016-07-01

    A micellar liquid chromatographic method was developed for the analysis of oxolinic acid, flumequine, marbofloxacin and enrofloxacin in honey. These quinolines are unethically used in beekeeping, and a zero-tolerance policy to antibiotic residues in honey has been stated by the European Union. The sample pretreatment was a 1:1 dilution with a 0.05M SDS at pH 3 solution, filtration and direct injection, thus avoiding extraction steps. The quinolones were eluted without interferences using mobile phase of 0.05M SDS/12.5% 1-propanol/0.5% triethylamine at pH 3, running at 1mL/min under isocratic room through a C18 column. The analytes were detected by fluorescence. The method was successfully validated according to the requirements of the European Union Decision 2002/657/EC in terms of: specificity, linearity (r(2)>0.995), limit of detection and decision limit (0.008-0.070mg/kg), lower limit of quantification (0.02-0.2mg/kg), detection capability (0.010-0.10mg/kg), recovery (82.1-110.0%), precision (<9.4%), matrix effects, robustness (<10.4%), and stability. The procedure was applied to several commercial honey supplied by a local supermarket, and the studied antibiotics were not detected. Therefore, the method was rapid, simple, safe, eco friendly, reliable and useful for the routine analysis of honey samples. PMID:26920300

  10. Correlation of Chemical and Physical Test Data for the Environmental Ageing of Tefzel (ETFE). Revised

    NASA Technical Reports Server (NTRS)

    Morgan, G. J.; Campion, R. P.

    1997-01-01

    In a similar approach to that used for the previously issued correlation report for Coflon (CAPP/M.10), this report aims to identify any correlations between mechanical property changes and chemical/morphological changes for Tefzel, using information supplied in other MERL and TRI project reports. Differences identified with Coflon behaviour will be of scientific interest as well as appropriate to project applications, as Tefzel and Coflon are chemical isomers. Owing to the considerable chemical resistance of Tefzel, much of its testing so far has been based on mechanical properties. Where changes have occurred, chemical analysis can now be targeted more effectively. Relevant test data collated here include: tensile modulus and related properties, permeation coefficients, % crystallinity, some crack growth resistance measurements, and other observations where significant. Fluids based on methanol and amine (Fluid G), a mixture of methane, carbon dioxide and hydrogen sulphide gases plus an aqueous amine solution (Fluid F), and an aromatic oil mix of heptane, cyclohexane, toluene and 1-propanol (Fluid I) have affected Tefzel to varying degrees, and are discussed in some detail herein.

  11. Detection of palladium by cold atom solution atomic absorption.

    PubMed

    Molloy, John L; Holcombe, James A

    2006-09-15

    One of the largest obstacles in miniaturizing traditional atomic spectroscopic sources is the need for a thermal/electrical source for free atom production. A single article in the literature has demonstrated atomic absorption detection of Ag, Cu, and Pd in solution at room temperature for atoms in the gas phase, which may ultimately permit miniaturization. Unfortunately, several laboratories have found that reproducing the phenomenon has been difficult. Without a sound fundamental explanation of the processes leading to the signal, one must conclude that it can be done, but some unsuspected and unknown design/methodological nuances are responsible for only a single reported success. Gas phase atoms could exist at room temperature "in solution" if the atoms were trapped in very small bubbles. In the current study, submicrometer-sized bubbles were created in a flow-through cell during the mixing of an alcohol-water solution containing a reducing agent with water containing the analyte. A repeatable atomic absorption signal was produced. Replacement of ethanol with 1-propanol and use of a surfactant increased the signal. Limits of detection of approximately 100 ppb in Pd were achieved, and it is estimated that approximately 0.4% of the Pd initially added is contained within the bubbles as gaseous atoms. The paper discusses the fundamental processes needed to achieve a repeatable signal. PMID:16970344

  12. Multiobjective optimization strategy based on desirability functions used for the microemulsion liquid chromatographic separation and quantification of norfloxacin and tinidazole in plasma and formulations.

    PubMed

    Abou-Taleb, Noura Hemdan; El-Wasseef, Dalia Rashad; El-Sherbiny, Dina Tawfik; El-Ashry, Saadia Mohamed

    2015-03-01

    The aim of the present study was to optimize a microemulsion liquid chromatography method for the simultaneous determination of norfloxacin and tinidazole binary mixture using a chemometric protocol. Optimization experiments were conducted through a process of screening and optimization. A 2(7-4) fractional factorial design was used as screening design. While the location of optimum conditions was established by applying Derringer's desirability function. The optimal mobile phase composition was predicted to be: 3.5% w/v SDS, 10.03% v/v 1-propanol, 0.5% v/v 1-octanol, and 0.3% triethylamine in 0.02 M phosphoric acid at pH 6.5. The mobile phase was delivered isocratically at a flow rate of 1 mL/min with UV detection at 290 nm. Tinidazole and norfloxacin were eluted with retention times of 1.8 and 5.8 min, respectively. The calibration plots displayed good linear relationships in the concentration ranges of 0.5-50 and 0.75-75 μg/mL for norfloxacin and tinidazole, respectively. The method was successfully applied for determination of both drugs in pharmaceutical dosage forms and real human plasma. Where the accuracy was proved by the low values of % error and high values of recovery, also the relative standard deviation for the results did not exceed 1.5%, proving the precision of the method. PMID:25565679

  13. Water miscible mono alcohols' effect on the proteolytic performance of Bacillus clausii serine alkaline protease.

    PubMed

    Duman, Yonca Avci; Kazan, Dilek; Denizci, Aziz Akin; Erarslan, Altan

    2014-01-01

    In this study, our investigations showed that the increasing concentrations of all examined mono alcohols caused a decrease in the Vm, kcat and kcat/Km values of Bacillus clausii GMBE 42 serine alkaline protease for casein hydrolysis. However, the Km value of the enzyme remained almost the same, which was an indicator of non-competitive inhibition. Whereas inhibition by methanol was partial non-competitive, inhibition by the rest of the alcohols tested was simple non-competitive. The inhibition constants (KI) were in the range of 1.32-3.10 M, and the order of the inhibitory effect was 1-propanol>2-propanol>methanol>ethanol. The ΔG(≠) and ΔG(≠)E-T values of the enzyme increased at increasing concentrations of all alcohols examined, but the ΔG(≠)ES value of the enzyme remained almost the same. The constant Km and ΔG(≠)ES values in the presence and absence of mono alcohols indicated the existence of different binding sites for mono alcohols and casein on enzyme the molecule. The kcat of the enzyme decreased linearly by increasing log P and decreasing dielectric constant (D) values, but the ΔG(≠) and ΔG(≠)E-T values of the enzyme increased by increasing log P and decreasing D values of the reaction medium containing mono alcohols. PMID:24092453

  14. Internal surface modification of zeolite MFI particles and membranes for gas separation

    NASA Astrophysics Data System (ADS)

    Kassaee, Mohamad H.

    Zeolites are a well-known class of crystalline oxide materials with tunable compositions and nanoporous structures, and have been used extensively in catalysis, adsorption, and ion exchange. The zeolite MFI is one of the well-studied zeolites because it has a pore size and structure suitable for separation or chemical conversion of many industrially important molecules. I synthesized MFI membranes with [h0h] out-of-plane orientation on α-alumina supports. The membranes were modified by the same procedures as used for MFI particles and with 1-butanol, 3-amino-1-propanol, 2-[(2-aminoethyl)amino]ethanol, and benzenemethanol. The existence of functional groups in the pores of the zeolite was confirmed by PA-FTIR measurements. Permeation measurements of H2, N2, CO2, CH 4, and SF6, were performed at room temperature before and after modification. Permeation of n-butane, and i-butane were measured before and after modification with 1-butanol. For all of the studied gases, gas permeances decreased by 1-2 orders of magnitude compared to bare MFI membranes for modified membranes. This is a strong indication that the organic species in the MFI framework are interacting with or blocking the gas molecule transport through the MFI pores. The CO2/CH 4 permeation selectivity was close to the Knudsen selectivity (0.6) for the membranes before modification. CO2/CH4 selectivity increased for MFI/benzenemethanol modified membrane (1.0), whereas it decreased for the MFI/2-[(2-aminoethyl)amino]ethanol modified membrane (0.5). MFI/benzenemethanol crystals were shown to have a highest sorption capacity for CH4, whereas, MFI/2-[(2-aminoethyl)amino]ethanol crystals were shown to have a highest sorption capacity for CO2 over all other studied molecules Higher sorption of CH4 in MFI/benzenemethanol and higher sorption of CO2 in MFI/2-[(2-aminoethyl)amino]ethanol and their strong binding to the modified membrane are likely the reasons for observing higher and lower CO2/CH4 permeation

  15. Towards the rational design of organic/inorganic interface for solid supported CO2 capture

    NASA Astrophysics Data System (ADS)

    He, Feng

    Monoethanolamine (MEA, HO(CH2)2NH2) aqueous solution based CO2 capture is the current technology used to mitigate power plants' green house gas emission. Solid based CO2 capture technique is regarded as a promising alternative, because it is more cost-effective and environmentally friendly than the solution based technique. Recently, solid-supported CO2 capture on MEA modified TiO 2 powders has been demonstrated [1]. It is believed that the main reaction pathway involved in solid-supported amine based CO2 capture is similar to the reaction in the amine solution, where the amine group reacts with CO2 to form carbamate (--NHCOO--). From the previous work on the MEA/TiO2 (110) system [2], it is found that MEA covered rutile TiO2 (110) did not capture CO 2. The main reaction pathway in this system was blocked because the amine group attached to the surface. In order to design a functional system, we proposed two possible mechanisms to free --NH2 from rutile TiO2 (110) surface. In this work, we investigated one of our six candidates, the 3-Amino-1-propanol (3AP, HO(CH2) 3NH2) molecule. The classical reactive force field (ReaxFF) [3] method has been employed to investigate the 3AP/TiO2 (110) system with emphasis on binding configurations and binding energies. We found that the amine group of 3AP did not attach to the rutile TiO2 (110) surface, indicating the CO2 capture capability of the 3AP/TiO 2 (110) system, which was confirmed by our experimental collaborators [4].

  16. Decomposition degree of chlorofluorocarbon (CFC) and CFC replacements during recovery with surface-modified activated carbon

    SciTech Connect

    Tanada, Seiki; Kawasaki, Naohito; Nakamura, Takeo; Abe, Ikuo

    1996-02-10

    The recovery efficiency of 1,1,2-trichloro-1,2,2-trifluoroethane (CFC113) and three CFC replacements (1,1-dichloro-1-fluoroethane, HCFC141b; 1,3-dichloro-1,1,2,2,3-pentafluoro-propane, HCFC225cb; and 2,2,3,3,3-pentafluoro-1-propanol, 5FP) were investigated on the basis of their degree of decomposition and adsorption isotherms. The authors prepared activated carbons with various surface polarities to elucidate the recovery efficiency, the amount adsorbed, and the degree of decomposition. The amount of CFC113 adsorbed onto untreated activated carbon was the largest of all. That of HCFC225cb adsorbed onto activated carbon treated with hydrogen gas was larger than that adsorbed onto untreated activated carbon and activated carbon treated with 6 N nitric acid. The amount of 5FP and HCFC141b adsorbed on the various activated carbons was not substantial. The degree of decomposition of CFC replacements using the untreated activated carbon except for HCFC225cb was the largest of all. In the case without the activated carbon, that of CFC and the CFC replacements increased in the order 5FP, CFC113 or HCFC225cb, and HCFC141b. It is concluded that the recovery of CFC replacements was possible using the surface-modified activated carbons rather than the untreated activated carbon. The degree of decomposition of the CFC replacements during recovery using the activated carbon depends on the relationship between the adsorption site of the surface of the activated carbon and the polarity, hydrophilic site, or hydrophobic site of the CFC replacement molecule.

  17. Theoretical Modeling of the Chirality Discrimination of Enantiomers by Nanotubular Cyclic Peptides using Gas-Phase Photoelectron Spectroscopy: An ONIOM Spectroscopic Calculations.

    PubMed

    Farrokhpour, H; Karachi, S; Chermahini, A Najafi

    2016-09-01

    In the present work, the chirality recognition of the enantiomers of a chiral molecule (1-phenyl-1-propanol) interacting with a nanotubular cyclic peptide (E-type cyclic decapeptide) was investigated by their ionization in the gas phase, theoretically. The absolute energy difference between the interaction of the S- and R-enantiomer with the cyclic peptide, calculated at the M06-2X/6-311++G(d, p) level of theory, was 4.70 kcal·mol(-1). Two different schemes of "Our own N-layered Integrated molecular Orbital and molecular Mechanics (ONIOM)" method such as (quantum mechanics (QM):molecular mechanics (MM)) and (QM:QM) were employed to study the effect of the interaction on the gas-phase ionization energies of the enantiomers and cyclic peptide, separately. The symmetry-adapted cluster/configuration interaction (SAC-CI) methodology was used for the calculation of the ionization energies. It was found that the difference between the interactions of R- and S-enantiomer with the cyclic peptide caused different changes in the photoelectron spectrum of each enantiomer so that these changes could be used for the chirality discrimination of the enantiomers in the gas phase. Similarly, the photoelectron spectrum of the cyclic peptide interacting with the R and S-enantiomer were calculated, separately, and it was observed that the difference in the interaction with the R- and S-enantiomer created different changes in the spectrum of cyclic peptide. Finally, it was shown that the difference in the interaction of cyclic peptide with the enantiomers of a chiral molecule in the gas phase can be used for the identification of enantiomers in the gas phase by the direct ionization. PMID:27500312

  18. Water-soluble Pd nanoparticles synthesized from ω-carboxyl-S-alkanethiosulfate ligand precursors as unimolecular micelle catalysts.

    PubMed

    Gavia, Diego J; Maung, May S; Shon, Young-Seok

    2013-12-11

    This report describes a two-phase synthesis of water-soluble carboxylate-functionalized alkanethiolate-capped Pd nanoparticles from ω-carboxyl-S-alkanethiosulfate sodium salts. The two-phase methodology using the thiosulfate ligand passivation protocol allowed a highly specific control over the surface ligand coverage of these nanoparticles, which are lost in a one-phase aqueous system because of the base-catalyzed hydrolysis of thiosulfate to thiolate. Systematic synthetic variations investigated in this study included the concentration of ω-carboxyl-S-alkanethiosulfate ligand precursors and reducing agent, NaBH4, and the overall ligand chain length. The resulting water-soluble Pd nanoparticles were isolated and characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), (1)H NMR, UV-vis, and FT-IR spectroscopy. Among different variations, a decrease in the molar equivalent of NaBH4 resulted in a reduction in the surface ligand density while maintaining a similar particle core size. Additionally, reducing the chain length of the thiosulfate ligand precursor also led to the formation of stable nanoparticles with a lower surface coverage. Since the metal core size of these Pd nanoparticle variations remained quite consistent, direct correlation studies between ligand properties and catalytic activities against hydrogenation/isomerization of allyl alcohol could be performed. Briefly, Pd nanoparticles dissolved in water favored the hydrogenation of allyl alcohol to 1-propanol whereas Pd nanoparticles heterogeneously dispersed in chloroform exhibited a rather high selectivity towards the isomerization product (propanal). The results suggested that the surrounding ligand environments, such as the ligand structure, conformation, and surface coverage, were crucial in determining the overall activity and selectivity of the Pd nanoparticle catalysts. PMID:24246150

  19. Oxovanadium(V) tetrathiacalix[4]arene complexes and their activity as oxidation catalysts.

    PubMed

    Hoppe, Elke; Limberg, Christian

    2007-01-01

    With the aim of modeling reactive moieties and relevant intermediates on the surfaces of vanadium oxide based catalysts during oxygenation/dehydrogenation of organic substrates, mono- and dinuclear vanadium oxo complexes of doubly deprotonated p-tert-butylated tetrathiacalix[4]arene (H4TC) have been synthesized and characterized: PPh4[(H2TC)VOCl(2)] (1) and (PPh4)2[{(H2TC)V(O)(mu-O)}2] (2). According to the NMR spectra of the dissolved complexes they both retain the structures adopted in the crystalline state, as revealed by single-crystal X-ray crystallography. Compounds 1 and 2 were tested as catalysts for the oxidation of alcohols with O(2) at 80 degrees C. Both 1 and 2 efficiently catalyze the oxidation of benzyl alcohol, crotyl alcohol, 1-phenyl-1-propanol, and fluorenol, and in most cases dinuclear complex 2 is more active than mononuclear complex 1. Moreover, the two thiacalixarene complexes 1 and 2 are in many instances more active than oxovanadium(V) complexes containing "classical" calixarene ligands tested previously. Complexes 1 and 2 also show significant activity in the oxidation of dihydroanthracene. Further investigations led to the conclusion that 1 acts as precatalyst that is converted to the active species PPh4[(TC)V==O] (3) at 80 degrees C by double intramolecular HCl elimination. For complex 2, the results of mechanistic investigations indicated that the oxidation chemistry takes place at the bridging oxo ligands and that the two vanadium centers cooperate during the process. The intermediate (PPh4)2[{H2TCV(O)}2(mu-OH)(mu-OC13H9)] (4) was isolated and characterized, also with respect to its reactivity, and the results afforded a mechanistic proposal for a reasonable catalytic cycle. The implications which these findings gathered in solution may have for oxidation mechanisms on the surfaces of V-based heterogeneous catalysts are discussed. PMID:17566134

  20. Preparation of a polymeric ionic liquid-based adsorbent for stir cake sorptive extraction of preservatives in orange juices and tea drinks.

    PubMed

    Chen, Lei; Huang, Xiaojia

    2016-04-15

    In this study, a new polymeric ionic liquid-based adsorbent was prepared and used as the extraction medium of stir cake sorptive extraction (SCSE) of three organic acid preservatives, namely, p-hydroxybenzoic acid, sorbic acid and cinnamic acid. The adsorbent was synthesized by the copolymerization of 1-ally-3-vinylimidazolium chloride (AV) and divinylbenzene (DVB) in the presence of a porogen solvent containing 1-propanol and 1,4-butanediol. The effect of the content of monomer and the porogen solvent in the polymerization mixture on the extraction performance was investigated thoroughly. The adsorbent was characterized by infrared spectroscopy, elemental analysis, scanning electron microscopy and mercury intrusion porosimetry. To obtain the optimal extraction conditions of SCSE/AVDVB for target analytes, key parameters including desorption solvent, adsorption and desorption time, ionic strength and pH value in sample matrix were studied in detail. The results showed that under the optimized conditions, the SCSE/AVDVB could extract the preservatives effectively through multiply interactions. At the same time, a simple and sensitive method by combining SCSE/AVDVB and high-performance liquid chromatography with diode array detection was developed for the simultaneous analysis of the target preservatives in orange juices and tea drinks. Low limits of detection (S/N = 3) and quantification limits (S/N = 10) of the proposed method for the target analytes were achieved within the range of 0.012-0.23 μg/L and 0.039-0.42 μg/L, respectively. The precision of the proposed method was evaluated in terms of intra- and inter-assay variability calculated as relative standard deviation (RSD), and it was found that the values were all below 10%. Finally, the proposed method was used to detect preservatives in different orange juice and tea drink samples successfully. The recoveries were in the range of 71.9-116%, and the RSDs were below 10% in the all cases. PMID:27016436

  1. Ion Mobility-Mass Spectrometry Reveals the Energetics of Intermediates that Guide Polyproline Folding.

    PubMed

    Shi, Liuqing; Holliday, Alison E; Glover, Matthew S; Ewing, Michael A; Russell, David H; Clemmer, David E

    2016-01-01

    Proline favors trans-configured peptide bonds in native proteins. Although cis/trans configurations vary for non-native and unstructured states, solvent also influences these preferences. Water induces the all-cis right-handed polyproline-I (PPI) helix of polyproline to fold into the all-trans left-handed polyproline-II (PPII) helix. Our recent work has shown that this occurs via a sequential mechanism involving six resolved intermediates [Shi, L., Holliday, A.E., Shi, H., Zhu, F., Ewing, M.A., Russell, D.H., Clemmer, D.E.: Characterizing intermediates along the transition from PPI to PPII using ion mobility-mass spectrometry. J. Am. Chem. Soc. 136, 12702-12711 (2014)]. Here, we use ion mobility-mass spectrometry to make the first detailed thermodynamic measurements of the folding intermediates, which inform us about how and why this transition occurs. It appears that early intermediates are energetically favorable because of the hydration of the peptide backbone, whereas late intermediates are enthalpically unfavorable. However, folding continues, as the entropy of the system increases upon successive formation of each new structure. When PPII is immersed in 1-propanol, the PPII→PPI transition occurs, but this reaction occurs through a very different mechanism. Early on, the PPII population splits onto multiple pathways that eventually converge through a late intermediate that continues on to the folded PPI helix. Nearly every step is endothermic. Folding results from a stepwise increase in the disorder of the system, allowing a wide-scale search for a critical late intermediate. Overall, the data presented here allow us to establish the first experimentally determined energy surface for biopolymer folding as a function of solution environment. PMID:26362047

  2. Biodegradation of the gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propane-oxidizing bacteria.

    PubMed Central

    Steffan, R J; McClay, K; Vainberg, S; Condee, C W; Zhang, D

    1997-01-01

    Several propane-oxidizing bacteria were tested for their ability to degrade gasoline oxygenates, including methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME). Both a laboratory strain and natural isolates were able to degrade each compound after growth on propane. When propane-grown strain ENV425 was incubated with 20 mg of uniformly labeled [14C]MTBE per liter, the strain converted > 60% of the added MTBE to 14CO2 in < 30 h. The initial oxidation of MTBE and ETBE resulted in the production of nearly stoichiometric amounts of tert-butyl alcohol (TBA), while the initial oxidation of TAME resulted in the production of tert-amyl alcohol. The methoxy methyl group of MTBE was oxidized to formaldehyde and ultimately to CO2. TBA was further oxidized to 2-methyl-2-hydroxy-1-propanol and then 2-hydroxy isobutyric acid; however, neither of these degradation products was an effective growth substrate for the propane oxidizers. Analysis of cell extracts of ENV425 and experiments with enzyme inhibitors implicated a soluble P-450 enzyme in the oxidation of both MTBE and TBA. MTBE was oxidized to TBA by camphor-grown Pseudomonas putida CAM, which produces the well-characterized P-450cam, but not by Rhodococcus rhodochrous 116, which produces two P-450 enzymes. Rates of MTBE degradation by propane-oxidizing strains ranged from 3.9 to 9.2 nmol/min/mg of cell protein at 28 degrees C, whereas TBA was oxidized at a rate of only 1.8 to 2.4 nmol/min/mg of cell protein at the same temperature. PMID:9361407

  3. Anti-amyloidogenic effects of glycosphingolipid synthesis inhibitors occur independently of ganglioside alterations.

    PubMed

    Noel, Anastasia; Ingrand, Sabrina; Barrier, Laurence

    2016-09-01

    Evidence has suggested that ganglioside abnormalities may be linked to the proteolytic processing of amyloid precursor protein (APP) in Alzheimer's disease (AD) and that pharmacological inhibition of ganglioside synthesis may reduce amyloid β-peptide (Aβ) production. In this study, we assessed the usefulness of two well-established glycosphingolipid (GSL) synthesis inhibitors, the synthetic ceramide analog D-PDMP (1-phenyl 2-decanoylamino-3-morpholino-1-propanol) and the iminosugar N-butyldeoxynojirimycin (NB-DNJ or miglustat), as anti-amyloidogenic drugs in a human cellular model of AD. We found that both GSL inhibitors were able to markedly inhibit Aβ production, although affecting differently the APP cleavage. Surprisingly, the L-enantiomer of PDMP, which promotes ganglioside accumulation, acted similarly to D-PDMP to inhibit Aβ production. Concurrently, both D- and L-PDMP strongly and equally reduced the levels of long-chain ceramides. Altogether, our data suggested that the anti-amyloidogenic effects of PDMP agents are independent of the altered cellular ganglioside composition, but may result, at least in part, from their ability to reduce ceramide levels. Moreover, our current study established for the first time that NB-DNJ, a drug already used as a therapeutic for Gaucher disease (a lysosomal storage disorder), was also able to reduce Aβ production in our cellular model. Therefore, our study provides novel information regarding the possibilities to target amyloidogenic processing of APP through modulation of sphingolipid metabolism and emphasizes the potential of the iminosugar NB-DNJ as a disease modifying therapy for AD. PMID:27373967

  4. Study of the art: canine olfaction used for cancer detection on the basis of breath odour. Perspectives and limitations.

    PubMed

    Jezierski, Tadeusz; Walczak, Marta; Ligor, Tomasz; Rudnicka, Joanna; Buszewski, Bogusław

    2015-06-01

    Experimental studies using trained dogs to identify breath odour markers of human cancer, published in the recent decade, have been analyzed and compared with the authors' own results. Particular published studies differ as regards the experimental setup, kind of odour samples (breath, urine, tumor tissue, serum), sample collection methods, dogs' characteristics and dog training methods as well as in results presented in terms of detection sensitivity and specificity. Generally it can be stated that trained dogs are able to distinguish breath odour samples typical for patients with lung cancer and other cancers from samples typical for healthy humans at a 'better than by chance' rate. Dogs' indications were positively correlated with content of 2-pentanone and ethyl acetate (r = 0.97 and r = 0.85 respectively) and negatively correlated with 1-propanol and propanal in breath samples (r = -0.98 and -0.87 respectively). The canine method has some advantages as a potential cancer-screening method, due to its non-invasiveness, simplicity of odour sampling and storage, ease of testing and interpretation of results and relatively low costs. Disadvantages and limitations of this method are related to the fact that it is still not known exactly to which chemical compounds and/or their combinations the dogs react. So far it could not be confirmed that dogs are able to sniff out early preclinical cancer stages with approximately the same accuracy as already diagnosed cases. The detection accuracy may vary due to failure in conditioning of dogs, decreasing motivation or confounding factors. The dogs' performance should be systematically checked in rigorous double-blind procedures. Recommendations for methodological standardization have been proposed. PMID:25944810

  5. The Same Microbiota and a Potentially Discriminant Metabolome in the Saliva of Omnivore, Ovo-Lacto-Vegetarian and Vegan Individuals

    PubMed Central

    De Filippis, Francesca; Vannini, Lucia; La Storia, Antonietta; Laghi, Luca; Piombino, Paola; Stellato, Giuseppina; Serrazanetti, Diana I.; Gozzi, Giorgia; Turroni, Silvia; Ferrocino, Ilario; Lazzi, Camilla; Di Cagno, Raffaella; Gobbetti, Marco; Ercolini, Danilo

    2014-01-01

    The salivary microbiota has been linked to both oral and non-oral diseases. Scant knowledge is available on the effect of environmental factors such as long-term dietary choices on the salivary microbiota and metabolome. This study analyzed the microbial diversity and metabolomic profiles of the saliva of 161 healthy individuals who followed an omnivore or ovo-lacto-vegetarian or vegan diet. A large core microbiota was identified, including 12 bacterial genera, found in >98% of the individuals. The subjects could be stratified into three “salivary types” that differed on the basis of the relative abundance of the core genera Prevotella, Streptococcus/Gemella and Fusobacterium/Neisseria. Statistical analysis indicated no effect of dietary habit on the salivary microbiota. Phylogenetic beta-diversity analysis consistently showed no differences between omnivore, ovo-lacto-vegetarian and vegan individuals. Metabolomic profiling of saliva using 1H-NMR and GC-MS/SPME identified diet-related biomarkers that enabled a significant discrimination between the 3 groups of individuals on the basis of their diet. Formate, urea, uridine and 5-methyl-3-hexanone could discriminate samples from omnivores, whereas 1-propanol, hexanoic acid and proline were characteristic of non-omnivore diets. Although the salivary metabolome can be discriminating for diet, the microbiota has a remarkable inter-individual stability and did not vary with dietary habits. Microbial homeostasis might be perturbed with sub-standard oral hygiene or other environmental factors, but there is no current indication that a choice of an omnivore, ovo-lacto-vegetarian or vegan diet can lead to a specific composition of the oral microbiota with consequences on the oral homeostasis. PMID:25372853

  6. Phosphatidic acid mobilized by phospholipase D is involved in the phorbol 12-myristate 13-acetate-induced G2 delay of A431 cells.

    PubMed Central

    Kaszkin, M; Richards, J; Kinzel, V

    1996-01-01

    This study was aimed at gaining an understanding of metabolic events responsible for the inhibition of cells in G2 phase, a known physiological restriction site in the cell cycle of multicellular organisms. In an earlier study, phosphatidic acid was proposed as an inhibitory mediator in the epidermal growth factor (EGF)-induced inhibition of A431 cells in G2 phase via the phospholipase C pathway [Kaszkin, Richards and Kinzel (1992) Cancer Res. 52, 5627-5634]. We show here that the phorbol ester phorbol 12-myristate 13-acetate (PMA) induces a reversible inhibition of the G2/M transition in A431 cells under conditions of phospholipase D-catalysed phosphatidic acid formation. Such PMA-induced inhibition in G2 phase is largely attenuated in the presence of 1-propanol (but not of 2-propanol). In this case the amount of phosphatidic acid is reduced to almost control levels, and instead phosphatidylpropanol is formed. In the case of EGF-induced activation of a phospholipase D the amount of phosphatidic acid is only slightly decreased in the presence of a primary alcohol. Under these conditions the EGF-induced G2 delay was not affected. The correlation between the formation of phosphatidic acid and the G2 delay induced by PMA, as well as by an exogenous bacterial phospholipase D (from Streptomyces chromofuscus), could be supported by using synchronized cells in order to increase the population of cells in G2 phase. This study indicates that the formation of substantial amounts of phosphatidic acid immediately before entry into mitosis seems to be important for establishing a delay in the cell cycle at the G2/M border by exogenous ligands. PMID:8660273

  7. Genotoxic and mutagenic potential of nitramines.

    PubMed

    Fjellsbø, Lise Marie; Verstraelen, Sandra; Kazimirova, Alena; Van Rompay, An R; Magdolenova, Zuzana; Dusinska, Maria

    2014-10-01

    Climate change is one of the major challenges in the world today. To reduce the amount of CO2 released into the atmosphere, CO2 at major sources, such as power plants, can be captured. Use of aqueous amine solutions is one of the most promising methods for this purpose. However, concerns have been raised regarding its impacts on human health and the environment due to the degradation products, such as nitrosamines and nitramines that may be produced during the CO2 capture process. While several toxicity studies have been performed investigating nitrosamines, little is known about the toxic potential of nitramines. In this study a preliminary screening was performed of the genotoxic and mutagenic potential of nitramines most likely produced during amine based CO2 capture; dimethylnitramine (DMA-NO2), methylnitramine (MA-NO2), ethanolnitramine (MEA-NO2), 2-methyl-2-(nitramino)-1-propanol (AMP-NO2) and piperazine nitramine (PZ-NO2), by the Bacterial Reverse Mutation (Ames) Test, the Cytokinesis Block Micronucleus (CBMN) Assay and the in vitro Single-Cell Gel Electrophoresis (Comet) Assay. MA-NO2 and MEA-NO2 showed mutagenic potential in the Ames test and a weak genotoxic response in the CBMN Assay. AMP-NO2 and PZ-NO2 significantly increased the amount of DNA strand breaks; however, the level of breaks was below background. Most previous studies on nitramines have been performed on DMA-NO2, which in this study appeared to be the least potent nitramine. Our results indicate that it is important to investigate other nitramines that are more likely to be produced during CO2 capture, to ensure that the risk is realistically evaluated. PMID:25042035

  8. Time-activity relationships to VOC personal exposure factors

    NASA Astrophysics Data System (ADS)

    Edwards, Rufus D.; Schweizer, Christian; Llacqua, Vito; Lai, Hak Kan; Jantunen, Matti; Bayer-Oglesby, Lucy; Künzli, Nino

    Social and demographic factors have been found to play a significant role in differences between time-activity patterns of population subgroups. Since time-activity patterns largely influence personal exposure to compounds as individuals move across microenvironments, exposure subgroups within the population may be defined by factors that influence daily activity patterns. Socio-demographic and environmental factors that define time-activity subgroups also define quantifiable differences in VOC personal exposures to different sources and individual compounds in the Expolis study. Significant differences in exposures to traffic-related compounds ethylbenzene, m- and p-xylene and o-xylene were observed in relation to gender, number of children and living alone. Categorization of exposures further indicated time exposed to traffic at work and time in a car as important determinants. Increased exposures to decane, nonane and undecane were observed for males, housewives and self-employed. Categorization of exposures indicated exposure subgroups related to workshop use and living downtown. Higher exposures to 3-carene and α-pinene commonly found in household cleaning products and fragrances were associated with more children, while exposures to traffic compounds ethylbenzene, m- and p-xylene and o-xylene were reduced with more children. Considerable unexplained variation remained in categorization of exposures associated with home product use and fragrances, due to individual behavior and product choice. More targeted data collection methods in VOC exposure studies for these sources should be used. Living alone was associated with decreased exposures to 2-methyl-1-propanol and 1-butanol, and traffic-related compounds. Identification of these subgroups may help to reduce the large amount of unexplained variation in VOC exposure studies. Further they may help in assessing impacts of urban planning that result in changes in behavior of individuals, resulting in shifts in

  9. Novel role of lactosylceramide in vascular endothelial growth factor-mediated angiogenesis in human endothelial cells.

    PubMed

    Rajesh, Mohanraj; Kolmakova, Antonina; Chatterjee, Subroto

    2005-10-14

    Vascular endothelial growth factor (VEGF) has been implicated in angiogenesis associated with coronary heart disease, vascular complications in diabetes, inflammatory vascular diseases, and tumor metastasis. The mechanism of VEGF-driven angiogenesis involving glycosphingolipids such as lactosylceramide (LacCer), however, is not known. To demonstrate the involvement of LacCer in VEGF-induced angiogenesis, we used small interfering RNA (siRNA)-mediated silencing of LacCer synthase expression (GalT-V) in human umbilical vein endothelial cells. This gene silencing markedly inhibited VEGF-induced platelet endothelial cell adhesion molecule-1 (PECAM-1) expression and angiogenesis. Second, we used D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), an inhibitor of LacCer synthase and glucosylceramide synthase, that significantly mitigated VEGF-induced PECAM-1 expression and angiogenesis. Interestingly, these phenotypic changes were reversed by LacCer but not by structurally related compounds such as glucosylceramide, digalactosylceramide, and ceramide. In a human mesothelioma cell line (REN) that lacks the endogenous expression of PECAM-1, VEGF/LacCer failed to stimulate PECAM-1 expression and tube formation/angiogenesis. In REN cells expressing human PECAM-1 gene/protein, however, both VEGF and LacCer-induced PECAM-1 protein expression and tube formation/angiogenesis. In fact, VEGF-induced but not LacCer-induced angiogenesis was mitigated by SU-1498, a VEGF receptor tyrosine kinase inhibitor. Also, VEGF/LacCer-induced PECAM-1 expression and angiogenesis was mitigated by protein kinase C and phospholipase A2 inhibitors. These results indicate that LacCer generated in VEGF-treated endothelial cells may serve as an important signaling molecule for PECAM-1 expression and in angiogenesis. This finding and the reagents developed in our report may be useful as anti-angiogenic drugs for further studies in vitro and in vivo. PMID:16151023

  10. Radical intermediates in the addition of OH to propene: photolytic precursors and angular momentum effects.

    PubMed

    Brynteson, M D; Womack, C C; Booth, R S; Lee, S-H; Lin, J J; Butler, L J

    2014-05-01

    We investigate the photolytic production of two radical intermediates in the reaction of OH with propene, one from addition of the hydroxyl radical to the terminal carbon and the other from addition to the center carbon. In a collision-free environment, we photodissociate a mixture of 1-bromo-2-propanol and 2-bromo-1-propanol at 193 nm to produce these radical intermediates. The data show two primary photolytic processes occur: C-Br photofission and HBr photoelimination. Using a velocity map imaging apparatus, we measured the speed distribution of the recoiling bromine atoms, yielding the distribution of kinetic energies of the nascent C3H6OH radicals + Br. Resolving the velocity distributions of Br((2)P(1/2)) and Br((2)P(3/2)) separately with 2 + 1 REMPI allows us to determine the total (vibrational + rotational) internal energy distribution in the nascent radicals. Using an impulsive model to estimate the rotational energy imparted to the nascent C3H6OH radicals, we predict the percentage of radicals having vibrational energy above and below the lowest dissociation barrier, that to OH + propene; it accurately predicts the measured velocity distribution of the stable C3H6OH radicals. In addition, we use photofragment translational spectroscopy to detect several dissociation products of the unstable C3H6OH radicals: OH + propene, methyl + acetaldehyde, and ethyl + formaldehyde. We also use the angular momenta of the unstable radicals and the tensor of inertia of each to predict the recoil kinetic energy and angular distributions when they dissociate to OH + propene; the prediction gives an excellent fit to the data. PMID:24758210

  11. Ion Mobility-Mass Spectrometry Reveals the Energetics of Intermediates that Guide Polyproline Folding

    NASA Astrophysics Data System (ADS)

    Shi, Liuqing; Holliday, Alison E.; Glover, Matthew S.; Ewing, Michael A.; Russell, David H.; Clemmer, David E.

    2016-01-01

    Proline favors trans-configured peptide bonds in native proteins. Although cis/ trans configurations vary for non-native and unstructured states, solvent also influences these preferences. Water induces the all- cis right-handed polyproline-I (PPI) helix of polyproline to fold into the all- trans left-handed polyproline-II (PPII) helix. Our recent work has shown that this occurs via a sequential mechanism involving six resolved intermediates [Shi, L., Holliday, A.E., Shi, H., Zhu, F., Ewing, M.A., Russell, D.H., Clemmer, D.E.: Characterizing intermediates along the transition from PPI to PPII using ion mobility-mass spectrometry. J. Am. Chem. Soc. 136, 12702-12711 (2014)]. Here, we use ion mobility-mass spectrometry to make the first detailed thermodynamic measurements of the folding intermediates, which inform us about how and why this transition occurs. It appears that early intermediates are energetically favorable because of the hydration of the peptide backbone, whereas late intermediates are enthalpically unfavorable. However, folding continues, as the entropy of the system increases upon successive formation of each new structure. When PPII is immersed in 1-propanol, the PPII→PPI transition occurs, but this reaction occurs through a very different mechanism. Early on, the PPII population splits onto multiple pathways that eventually converge through a late intermediate that continues on to the folded PPI helix. Nearly every step is endothermic. Folding results from a stepwise increase in the disorder of the system, allowing a wide-scale search for a critical late intermediate. Overall, the data presented here allow us to establish the first experimentally determined energy surface for biopolymer folding as a function of solution environment.

  12. VOC concentrations measured in personal samples and residential indoor, outdoor and workplace microenvironments in EXPOLIS-Helsinki, Finland

    NASA Astrophysics Data System (ADS)

    Edwards, Rufus D.; Jurvelin, J.; Saarela, K.; Jantunen, M.

    Thirty target volatile organic compounds (VOC) were analyzed in personal 48-h exposure samples and residential indoor, residential outdoor and workplace indoor microenvironment samples as a component of EXPOLIS-Helsinki, Finland. Geometric mean residential indoor concentrations were higher than geometric mean residential outdoor concentrations for all target compounds except hexane, which was detected in 40% of residential outdoor samples and 11% of residential indoor samples, respectively. Geometric mean residential indoor concentrations were significantly higher than personal exposure concentrations, which in turn were significantly higher than workplace concentrations for compounds that had strong residential indoor sources ( d-limonene, alpha pinene, 3-carene, hexanal, 2-methyl-1-propanol and 1-butanol). 40% of participants in EXPOLIS-Helsinki reported personal exposure to environmental tobacco smoke (ETS). Participants in Helsinki that were exposed to ETS at any time during the 48-h sampling period had significantly higher personal exposures to benzene, toluene, styrene, m, p-xylene, o-xylene, ethylbenzene and trimethylbenzene. Geometric mean ETS-free workplace concentrations were higher than ETS-free personal exposure concentrations for styrene, hexane and cyclohexane. Geometric mean personal exposures of participants not exposed to ETS were approximately equivalent to time weighted ETS-free indoor and workplace concentrations, except for octanal and compounds associated with traffic, which showed higher geometric mean personal exposure concentrations than any microenvironment ( o-xylene, ethylbenzene,benzene, undecane, nonane, decane, m, p-xylene, and trimethylbenzene). Considerable differences in personal exposure concentrations and residential levels of compounds with mainly indoor sources suggested differences in product types or the frequency of product use between Helsinki, Germany and the United States.

  13. Scleroglucan compatibility with thickeners, alcohols and polyalcohols and downstream processing implications.

    PubMed

    Viñarta, Silvana C; Yossen, Mariana M; Vega, Jorge R; Figueroa, Lucía I C; Fariña, Julia I

    2013-02-15

    Thickening capacity and compatibility of scleroglucan with commercial thickeners (corn starch, gum arabic, carboxymethylcellulose, gelatin, xanthan and pectin), glycols (ethylene glycol and polyethylene glycol), alcohols (methanol, ethanol, 1-propanol and isopropanol) and polyalcohols (sorbitol, xylitol and mannitol) was explored. Exopolysaccharides (EPSs) from Sclerotium rolfsii ATCC 201126 and a commercial scleroglucan were compared. Compatibility and synergism were evaluated taking into account rheology, pH and sensory properties of different thickener/scleroglucan mixtures in comparison with pure solutions. S. rolfsii ATCC 201126 EPSs induced or increased pseudoplastic behaviour with a better performance than commercial scleroglucan, showing compatibility and synergy particularly with corn starch, xanthan, pectin and carboxymethylcellulose. Compatibility and a slight synergistic behaviour were also observed with 30% (w/v) ethylene glycol whereas mixtures with polyethylene glycol (PEG) precipitated. Scleroglucan was compatible with polyalcohols, whilst lower alcohols led to scleroglucan precipitation at 20% (v/v) and above. PEG-based scleroglucan downstream processing was compared to the usual alcohol precipitation. Downstream processed EPSi (with isopropanol) and EPS-p (with PEG) were evaluated on their yield, purity, rheological properties and visual aspect pointing to alcohol downstream processing as the best methodology, whilst PEG recovery would be unsuitable. The highest purified EPSi attained a recovery yield of ~23%, similar to ethanol purification, with a high degree of purity (88%, w/w vs. EPS-p, 8%, w/w) and exhibited optimal rheological properties, water solubility and appearance. With a narrower molecular weight distribution (M(w), 2.66×10(6) g/mol) and a radius of gyration (R(w), 245 nm) slightly lower than ethanol-purified EPSs, isopropanol downstream processing showed to be a proper methodology for obtaining a refined-grade scleroglucan. PMID

  14. Proteinase-producing halophilic lactic acid bacteria isolated from fish sauce fermentation and their ability to produce volatile compounds.

    PubMed

    Udomsil, Natteewan; Rodtong, Sureelak; Tanasupawat, Somboon; Yongsawatdigul, Jirawat

    2010-07-15

    Halophilic lactic acid bacteria were isolated from fish sauce mashes fermented at 1 to 12 months. Seven out of sixty-four isolates were selected according to their proteolytic activity and growth at 25% NaCl for characterization and investigation of volatile compound production. All selected isolates were Gram-positive cocci with pairs/tetrads and grew at 0-25% NaCl, pH 4.5-9.0. Results of 16S rRNA gene sequence analysis showed 99% homology to Tetragenococcus halophilus ATCC 33315. The restriction fragment length polymorphism (RFLP) patterns of all isolates were also similar to those of T. halophilus ATCC 33315. These isolates were, thus, identified as T. halophilus. All isolates hydrolyzed fish protein in the medium containing 25% NaCl. Intracellular aminopeptidase of 7 isolates exhibited the highest activity of 2.85-3.67 U/ml toward Ala-p-nitroanilide (Ala-pNA). T.halophilus strains MS33 and M11 showed the highest alanyl aminopeptidase activity (P<0.05), and produced histamine in mGYP broth containing 5 and 25% NaCl in the level of 6.62-22.55 and 13.14-20.39 mg/100ml, respectively. Predominant volatile compounds of fish broth containing 25% NaCl inoculated with T. halophilus MS33 and MRC5-5-2 were 1-propanol, 2-methylpropanal, and benzaldehyde, corresponding to major volatile compounds in fish sauce. T.halophilus appeared to play an important role in volatile compound formation during fish sauce fermentation. PMID:20541276

  15. The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading

    DOE PAGESBeta

    Holwerda, Evert K.; Thorne, Philip G.; Olson, Daniel G.; Amador-Noguez, Daniel; Engle, Nancy L.; Tschaplinski, Timothy J.; van Dijken, Johannes P.; Lynd, Lee R.

    2014-10-21

    Background: Clostridium thermocellum is a model thermophilic organism for the production of biofuels from lignocellulosic substrates. The majority of publications studying the physiology of this organism use substrate concentrations of ≤10 g/L. However, industrially relevant concentrations of substrate start at 100 g/L carbohydrate, which corresponds to approximately 150 g/L solids. To gain insight into the physiology of fermentation of high substrate concentrations, we studied the growth on, and utilization of high concentrations of crystalline cellulose varying from 50 to 100 g/L by C. thermocellum. Results: Using a defined medium, batch cultures of C. thermocellum achieved 93% conversion of cellulose (Avicel)more » initially present at 100 g/L. The maximum rate of substrate utilization increased with increasing substrate loading. During fermentation of 100 g/L cellulose, growth ceased when about half of the substrate had been solubilized. However, fermentation continued in an uncoupled mode until substrate utilization was almost complete. In addition to commonly reported fermentation products, amino acids - predominantly L-valine and L-alanine - were secreted at concentrations up to 7.5 g/L. Uncoupled metabolism was also accompanied by products not documented previously for C. thermocellum, including isobutanol, meso- and RR/SS-2,3-butanediol and trace amounts of 3-methyl-1-butanol, 2-methyl-1-butanol and 1-propanol. We hypothesize that C. thermocellum uses overflow metabolism to balance its metabolism around the pyruvate node in glycolysis. In conclusion: C. thermocellum is able to utilize industrially relevant concentrations of cellulose, up to 93 g/L. We report here one of the highest degrees of crystalline cellulose utilization observed thus far for a pure culture of C. thermocellum, the highest maximum substrate utilization rate and the highest amount of isobutanol produced by a wild-type organism.« less

  16. The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading

    SciTech Connect

    Holwerda, Evert K.; Thorne, Philip G.; Olson, Daniel G.; Amador-Noguez, Daniel; Engle, Nancy L.; Tschaplinski, Timothy J.; van Dijken, Johannes P.; Lynd, Lee R.

    2014-10-21

    Background: Clostridium thermocellum is a model thermophilic organism for the production of biofuels from lignocellulosic substrates. The majority of publications studying the physiology of this organism use substrate concentrations of ≤10 g/L. However, industrially relevant concentrations of substrate start at 100 g/L carbohydrate, which corresponds to approximately 150 g/L solids. To gain insight into the physiology of fermentation of high substrate concentrations, we studied the growth on, and utilization of high concentrations of crystalline cellulose varying from 50 to 100 g/L by C. thermocellum. Results: Using a defined medium, batch cultures of C. thermocellum achieved 93% conversion of cellulose (Avicel) initially present at 100 g/L. The maximum rate of substrate utilization increased with increasing substrate loading. During fermentation of 100 g/L cellulose, growth ceased when about half of the substrate had been solubilized. However, fermentation continued in an uncoupled mode until substrate utilization was almost complete. In addition to commonly reported fermentation products, amino acids - predominantly L-valine and L-alanine - were secreted at concentrations up to 7.5 g/L. Uncoupled metabolism was also accompanied by products not documented previously for C. thermocellum, including isobutanol, meso- and RR/SS-2,3-butanediol and trace amounts of 3-methyl-1-butanol, 2-methyl-1-butanol and 1-propanol. We hypothesize that C. thermocellum uses overflow metabolism to balance its metabolism around the pyruvate node in glycolysis. In conclusion: C. thermocellum is able to utilize industrially relevant concentrations of cellulose, up to 93 g/L. We report here one of the highest degrees of crystalline cellulose utilization observed thus far for a pure culture of C. thermocellum, the highest maximum substrate utilization rate and the highest amount of isobutanol produced by a wild-type organism.

  17. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci

    PubMed Central

    Pavlova, Sylvia I.; Jin, Ling; Gasparovich, Stephen R.

    2013-01-01

    Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci. PMID:23637459

  18. Automatic in-syringe dispersive liquid-liquid microextraction of ⁹⁹Tc from biological samples and hospital residues prior to liquid scintillation counting.

    PubMed

    Villar, Marina; Avivar, Jessica; Ferrer, Laura; Borràs, Antoni; Vega, Fernando; Cerdà, Víctor

    2015-07-01

    A new approach exploiting in-syringe dispersive liquid-liquid microextraction (DLLME) for (99)Tc extraction and preconcentration from biological samples, i.e., urine and saliva, and liquid residues from treated patients is presented. (99)Tc is a beta emitter with a long half-life (2.111 × 10(5) years) and mobility in the different environmental compartments. One of the sources of this radionuclide is through the use of its father (99m)Tc in medical diagnosis. For the first time a critical comparison between extractants and disperser solvents for (99)Tc DLLME is presented, e.g., tributyl phosphate (TBP), trioctylmethylammonium chloride (Aliquat®336), triisooctylamine (TiOA), as extractants in apolar solvents such as xylene and dodecane, and disperser solvents such as acetone, acetonitrile, ethanol, methanol, 1-propanol, and 2-propanol. The system was optimized by experimental design, and 22.5% of Aliquat®336 in acetone was selected as extractant and disperser, respectively. Off-line detection was performed using a liquid scintillation counter. The present method has a (99)Tc minimum detectable activity (MDA) of 0.075 Bq with a high extraction/preconcentration frequency (8 h(-1)). Urine, saliva, and hospital residues were satisfactorily analyzed with recoveries of 82-119%. Thus, the proposed system is an automatic powerful tool to monitor the entry of (99)Tc into the environment. Graphical Abstract (99m)Tc is widely used in Nuclear Medicine for diagnosis. Its daugther (99)Tc is automatically monitored in biological samples from treated patients by in-syringe dispersive liquid-liquid microextraction. PMID:26007698

  19. Inhibition of hemopoiesis in vitro by neuroblastoma-derived gangliosides.

    PubMed

    Sietsma, H; Nijhof, W; Dontje, B; Vellenga, E; Kamps, W A; Kok, J W

    1998-11-01

    Hemopoiesis is disturbed in bone marrow-involving cancers like leukemia and neuroblastoma. Shedding of gangliosides by tumor cells may contribute to this tumor-induced bone marrow suppression. We studied in vitro the inhibitory effects of murine neuroblastoma cells (Neuro-2a and C1300) and their gangliosides on hemopoiesis using normal murine hemopoietic progenitor colony-forming assays. Transwell cultured neuroblastoma cells showed a dose-dependent inhibition on hemopoiesis, indicating that a soluble factor was responsible for this effect. Furthermore, the supernatant of Neuro-2a cultured cells inhibited hemopoietic proliferation and differentiation. To determine whether the inhibitory effect was indeed due to shed gangliosides and not, for instance, caused by cytokines, the effect of DL-threo-1 -phenyl-2-decanoylamino-3-morpholino-1-propanol (DL-PDMP) on Neuro-2a cells was studied. DL-PDMP is a potent inhibitor of glucosylceramide synthase, resulting in inhibition of the synthesis and shedding of gangliosides. The initially observed inhibitory effect of supernatant of Neuro-2a cells was abrogated by culturing these cells for 3 days in the presence of 10 microM DL-PDMP. Moreover, gangliosides isolated from Neuro-2a cell membranes inhibited hemopoietic growth. To determine whether the described phenomena in vitro are a reflection of bone marrow suppression occurring in vivo, gangliosides isolated from plasma of neuroblastoma patients were tested for their effects on human hemopoietic progenitor colony-forming assays. These human neuroblastoma-derived gangliosides inhibited normal erythropoiesis (colony-forming unit-erythroid/burst-forming unit-erythroid) and myelopoiesis (colony-forming unit-granulocyte/macrophage) to a higher extent compared with gangliosides isolated from control plasma. Altogether these results suggest that gangliosides shed by neuroblastoma cells inhibit hemopoiesis and may contribute to the observed bone marrow depression in neuroblastoma

  20. Gangliosides do not affect ABC transporter function in human neuroblastoma cells.

    PubMed

    Dijkhuis, Anne-Jan; Klappe, Karin; Kamps, Willem; Sietsma, Hannie; Kok, Jan Willem

    2006-06-01

    Previous studies have indicated a role for glucosylceramide synthase (GCS) in multidrug resistance (MDR), either related to turnover of ceramide (Cer) or generation of gangliosides, which modulate apoptosis and/or the activity of ABC transporters. This study challenges the hypothesis that gangliosides modulate the activity of ABC transporters and was performed in two human neuroblastoma cell lines, expressing either functional P-glycoprotein (Pgp) or multidrug resistance-related protein 1 (MRP1). Two inhibitors of GCS, D,L-threo-1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (t-PPPP) and N-butyldeoxynojirimycin (NB-dNJ), very efficiently depleted ganglioside content in two human neuroblastoma cell lines. This was established by three different assays: equilibrium radiolabeling, cholera toxin binding, and mass analysis. Fluorescence-activated cell sorting (FACS) analysis showed that ganglioside depletion only slightly and in the opposite direction affected Pgp- and MRP1-mediated efflux activity. Moreover, both effects were marginal compared with those of well-established inhibitors of either MRP1 (i.e., MK571) or Pgp (i.e., GF120918). t-PPPP slightly enhanced cellular sensitivity to vincristine, as determined by 3-[4,5-dimethylthiazol-2-yl]2,5-diphenyl tetrazolium bromide analysis, in both neuroblastoma cell lines, whereas NB-dNJ was without effect. MRP1 expression and its localization in detergent-resistant membranes were not affected by ganglioside depletion. Together, these results show that gangliosides are not relevant to ABC transporter-mediated MDR in neuroblastoma cells. PMID:16547352

  1. Multi-dimensional gas chromatography with a planar microfluidic device for the characterization of volatile oxygenated organic compounds.

    PubMed

    Luong, J; Gras, R; Cortes, H; Shellie, R A

    2012-09-14

    Oxygenated compounds like methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, acetaldehyde, crotonaldehyde, ethylene oxide, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, and 2-chloromethyl-1,3-dioxolane are commonly encountered in industrial manufacturing processes. Despite the availability of a variety of column stationary phases for chromatographic separation, it is difficult to separate these solutes from their respective matrices using single dimension gas chromatography. Implemented with a planar microfluidic device, conventional two-dimensional gas chromatography and the employment of chromatographic columns using dissimilar separation mechanisms like that of a selective wall-coated open tubular column and an ionic sorbent column have been successfully applied to resolve twelve industrially significant volatile oxygenated compounds in both gas and aqueous matrices. A Large Volume Gas Injection System (LVGIS) was also employed for sample introduction to enhance system automation and precision. By successfully integrating these concepts, in addition to having the capability to separate all twelve components in one single analysis, features associated with multi-dimensional gas chromatography like dual retention time capability, and the ability to quarantine undesired chromatographic contaminants or matrix components in the first dimension column to enhance overall system cleanliness were realized. With this technique, a complete separation for all the compounds mentioned can be carried out in less than 15 min. The compounds cited can be analyzed over a range of 250 ppm (v/v) to 100 ppm (v/v) with a relative standard deviation of less than 5% (n=20) with high degree of reliability. PMID:22410155

  2. Inactivation of Staphylococcus aureus in Oat and Soya Drinks by Enterocin AS-48 in Combination with Other Antimicrobials.

    PubMed

    Burgos, María José Grande; Aguayo, M Carmen López; Pulido, Rubén Pérez; Gálvez, Antonio; López, Rosario Lucas

    2015-09-01

    The presence of toxicogenic Staphylococcus aureus in foods and the dissemination of methicillin-resistant S. aureus (MRSA) in the food chain are matters of concern. In the present study, the circular bacteriocin enterocin AS-48, applied singly or in combination with phenolic compounds (carvacrol, eugenol, geraniol, and citral) or with 2-nitro-1-propanol (2NPOH), was investigated in the control of a cocktail made from 1 methicillin-sensitive and 1 MRSA strains inoculated on commercial oat and soya drinks. Enterocin AS-48 exhibited low bactericidal activity against staphylococci in the drinks investigated when applied singly. The combinations of sub-inhibitory concentrations of enterocin AS-48 (25 μg/mL) and phenolic compounds or 2NPOH caused complete inactivation of staphylococci in the drinks within 24 h of incubation at 22 °C. When tested in oat and soya drinks stored for 7 d at 10 °C, enterocin AS-48 (25 μg/mL) in combination with 2NPOH (5.5 mM) reduced viable counts rapidly in the case of oat drink (4.2 log cycles after 12 h) or slowly in soya drink (3.8 log cycles after 3 d). The same combined treatment applied on drinks stored at 22 °C achieved a fast inactivation of staphylococci within 12 to 24 h in both drinks, and no viable staphylococci were detected for up to 7 d of storage. Results from the study highlight the potential of enterocin AS-48 in combination with 2NPOH for inactivation of staphylococci. PMID:26256434

  3. Crystal Structure, Cytotoxicity and Interaction with DNA of Zinc (II) Complexes with o-Vanillin Schiff Base Ligands

    PubMed Central

    Niu, Mei-Ju; Li, Zhen; Chang, Guo-Liang; Kong, Xiang-Jin; Hong, Min; Zhang, Qing-fu

    2015-01-01

    Two new zinc complexes, Zn(HL1)2 (1) and [Zn2(H2L2)(OAc)2]2 (2) [H2L1 = Schiff base derived from o-vanillin and (R)-(+)-2-amino-3-phenyl-1-propanol, H3L2 = Schiff base derived from o-vanillin and 2-amino-2-ethyl-1,3-propanediol], have been synthesized and characterized by single crystal X-ray diffraction, elemental analyses, TG analyses, solid fluorescence, IR, UV-Vis and circular dichroism spectra. The structural analysis shows that complex 1 has a right-handed double helical chain along the crystallographic b axis. A homochiral 3D supramolecular architecture has been further constructed by intermolecular C-H··· π, O-H···O and C-H···O interactions. Complex 2 includes two crystallographically independent binuclear zinc molecules. The two binuclear zinc molecules are isostructural. The 2-D sheet supramolecular structure was formed by intermolecular hydrogen bonding interaction. The fluorescence of ligands and complexes in DMF at room temperature are studied. The interactions of two complexes with calf thymus DNA (CT-DNA) are investigated using UV-Vis, CD and fluorescence spectroscopy. The results show that complex 1 exhibits higher interaction with CT-DNA than complex 2. In addition, in vitro cytotoxicity of the complexes towards four kinds of cancerous cell lines (A549, HeLa, HL-60 and K562) were assayed by the MTT method. Investigations on the structures indicated that the chirality and nuclearity of zinc complexes play an important role on cytotoxic activity. PMID:26114437

  4. Ruminal Fermentation of Anti-Methanogenic Nitrate- and Nitro-Containing Forages In Vitro

    PubMed Central

    Anderson, Robin C.; Ripley, Laura H.; Bowman, Jan G. P.; Callaway, Todd R.; Genovese, Kenneth J.; Beier, Ross C.; Harvey, Roger B.; Nisbet, David J.

    2016-01-01

    Nitrate, 3-nitro-1-propionic acid (NPA) and 3-nitro-1-propanol (NPOH) can accumulate in forages and be poisonous to animals if consumed in high enough amounts. These chemicals are also recognized as potent anti-methanogenic compounds, but plants naturally containing these chemicals have been studied little in this regard. Presently, we found that nitrate-, NPA-, or NPOH-containing forages effectively decreased methane production, by 35–87%, during in vitro fermentation by mixed cultures of ruminal microbes compared to fermentation by cultures incubated similarly with alfalfa. Methane production was further decreased during the incubation of mixed cultures also inoculated with Denitrobacterium detoxificans, a ruminal bacterium known to metabolize nitrate, NPA, and NPOH. Inhibition of methanogens within the mixed cultures was greatest with the NPA- and NPOH-containing forages. Hydrogen accumulated in all the mixed cultures incubated with forages containing nitrate, NPA or NPOH and was dramatically higher, exceeding 40 μmol hydrogen/mL, in mixed cultures incubated with NPA-containing forage but not inoculated with D. detoxificans. This possibly reflects the inhibition of hydrogenase-catalyzed uptake of hydrogen produced via conversion of 50 μmol added formate per milliliter to hydrogen. Accumulations of volatile fatty acids revealed compensatory changes in fermentation in mixed cultures incubated with the nitrate-, NPA-, and NPOH-containing forages as evidenced by lower accumulations of acetate, and in some cases, higher accumulations of butyrate and lower accumulations of ammonia, iso-buytrate, and iso-valerate compared to cultures incubated with alfalfa. Results reveal that nitrate, NPA, and NPOH that accumulate naturally in forages can be made available within ruminal incubations to inhibit methanogenesis. Further research is warranted to determine if diets can be formulated with nitrate-, NPA-, and NPOH-containing forages to achieve efficacious mitigation

  5. [Influences of uncommon isoenzymes on determination of alkaline phosphatase activity by dry-chemistry analyzers].

    PubMed

    Tozawa, T; Hashimoto, M

    2001-04-01

    Dry-chemistry(DC) analysis may be influenced by some matrix effects for measuring uncommon isoenzyme forms. Placental and intestinal alkaline phosphatase(AP) are overestimated by the VITROS DC, compared with results obtained with the wet-chemistry(WC) method of Bretaudiere, et al. using 2-amino-2-methyl-1-propanol (AMP) buffer, however, no such discrepancy between AP results in any DC method and that with a routine WC method recommended by Japanese Society of Clinical Chemistry in that 2-ethylaminoethanol(EAE) buffer is used, has been demonstrated. The type of buffer used affects differently the rates of AP isoenzymes activities. We therefore examined whether the presence of uncommon AP isoenzyme forms in serum caused aberrant DC results for AP in comparison with a routine WC method using EAE buffer. Here, serum samples with only liver AP and bone AP(n : 32); high-molecular-mass AP(n : 11); placental AP(n : 12); intestinal AP(n : 13) and immunoglobulin (Ig) bound AP(n : 12) were analyzed for total AP activity on three different DC analyzers: VITROS 700XR, FUJIDRYCHEM 5000, SPOTCHEM 4410 and a WC analyzer: HITACHI 7350. Values obtained in all of the DCs for sera containing only liver/bone AP agreed with those with the WC method. For sera containing placental AP, the VITROS values were higher than those with the WC method, while the FUJIDRYCHEM values and the SPOTCHEM values were lower. The VITROS values and the FUJIDRYCHEM values for sera containing intestinal AP were lower than those with the WC method, while the SPOTCHEM values were higher. All of the DCs did not affect high-molecular-mass AP and Ig bound liver/bone AP types of macro AP, but underestimated Ig bound intestinal type. Ig bound intestinal AP may be sieved by DC multilayer elements. PMID:11391954

  6. Gas signatures from Escherichia coli and Escherichia coli-inoculated human whole blood

    PubMed Central

    2013-01-01

    Background The gaseous headspace above naïve Escherichia Coli (E. coli) cultures and whole human blood inoculated with E. coli were collected and analyzed for the presence of trace gases that may have the potential to be used as novel, non-invasive markers of infectious disease. Methods The naïve E. coli culture, LB broth, and human whole blood or E. coli inoculated whole blood were incubated in hermetically sealable glass bioreactors at 37°C for 24 hrs. LB broth and whole human blood were used as controls for background volatile organic compounds (VOCs). The headspace gases were collected after incubation and analyzed using a gas chromatographic system with multiple column/detector combinations. Results Six VOCs were observed to be produced by E. coli-infected whole blood while there existed nearly zero to relatively negligible amounts of these gases in the whole blood alone, LB broth, or E. coli-inoculated LB broth. These VOCs included dimethyl sulfide (DMS), carbon disulfide (CS2), ethanol, acetaldehyde, methyl butanoate, and an unidentified gas S. In contrast, there were several VOCs significantly elevated in the headspace above the E. coli in LB broth, but not present in the E. coli/blood mixture. These VOCs included dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS), methyl propanoate, 1-propanol, methylcyclohexane, and unidentified gases R2 and Q. Conclusions This study demonstrates 1) that cultivated E. coli in LB broth produce distinct gas profiles, 2) for the first time, the ability to modify E. coli-specific gas profiles by the addition of whole human blood, and 3) that E. coli-human whole blood interactions present different gas emission profiles that have the potential to be used as non-invasive volatile biomarkers of E. coli infection. PMID:23842518

  7. Metabolism of L-methionine linked to the biosynthesis of volatile organic sulfur-containing compounds during the submerged fermentation of Tuber melanosporum.

    PubMed

    Liu, Rui-Sang; Zhou, Huan; Li, Hong-Mei; Yuan, Zhan-Peng; Chen, Tao; Tang, Ya-Jie

    2013-12-01

    Tuber melanosporum, known as the black diamond of cuisine, is highly appreciated for its unique and characteristic aroma, which is mainly due to its volatile organic sulfur-containing compounds (VOSCs). In this work, by adding 5 g/L L-methionine to the fermentation medium, the activities of aminotransferase and α-ketoacid decarboxylase were significantly enhanced by 103 and 250%, respectively, while the activities of alcohol dehydrogenase and demethiolase were decreased by 277 and 39%. Then, the six VOSCs, i.e., methanethiol (MTL), dimethyl sulfide (DMS), dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS), 3-(methylthio)propanal (methional), and 3-(methylthio)-1-propanol (methionol), were first detected in the submerged fermentation of T. melanosporum. These results indicated that the biosynthesis of VOSCs was triggered by aminotransferase and α-ketoacid decarboxylase. The production of methional and methionol increased with the increased concentrations of L-methionine (i.e., 5, 10, 15, and 20 g/L) before day 4 of the culture protocol, and methionol was the major product in the Ehrlich pathway. The production of MTL was significantly decreased after day 4 with a significantly increased DMDS, and DMDS was the major product of the demethiolation pathway. Compared with the demethiolation pathway with a total flux of sulfur of 11.33-24.32 μM, the Ehrlich pathway with a total flux of sulfur of 6,149-10,330 μM was considered the major pathway for the biosynthesis of VOSCs. This is the first report linking the metabolism of L-methionine to the biosynthesis of VOSCs by the Ehrlich and demethiolation pathways during the submerged fermentation of T. melanosporum. PMID:24092005

  8. Effect of organic solvents on J aggregation of pseudoisocyanine dye at mica/water interfaces: morphological transition from three-dimension to two-dimension.

    PubMed

    Yao, Hiroshi; Morita, Yoshinobu; Kimura, Keisaku

    2008-02-01

    Morphological and spectroscopic properties of pseudoisocyanine (PIC) J aggregates produced at mica/solution interfaces have been characterized by absorption/fluorescence spectroscopy, fluorescence microscopy, and atomic force microscopy. Addition of organic solvents (1-propanol (PrOH) or 1,4-dioxane (Dox)) into aqueous solutions of the PIC dye induced a transition of the morphology of the interfacial J aggregates. The characteristic feature of this transition is the thickness (or height) change of the aggregate domain layers from three-dimensions to two-dimensions: The domain area of the J aggregates was dependent on the amount of the organic cosolvent, while the domain thickness was dependent on the type of the cosolvent. In pure aqueous solution, the J aggregates at the mica/water interface had a three-dimensional structure with the height of approximately 3 nm (multilayer structure). In mixed solvents of PrOH/water or Dox/water (5 or 10 vol%), the interfacial aggregates became a bilayer or monolayer structure, respectively, assuming that PIC molecules are adsorbed on their molecular plane perpendicular to the mica surface. Meanwhile, optical properties (band width and peak position) of the J band were invariant upon addition of the organic cosolvents, suggesting that molecular packing in the J aggregates is essentially unchanged. These results revealed that spectroscopic properties of the interfacial PIC J aggregates were determined only by the lateral (two-dimensional) interaction within the adsorbed monolayer of PIC molecules on mica, and interlayer interaction in the multilayered J aggregate was consequently small. PMID:17963780

  9. [Study of new blended chemical absorbents to absorb CO2].

    PubMed

    Wang, Jin-Lian; Fang, Meng-Xiang; Yan, Shui-Ping; Luo, Zhong-Yang; Cen, Ke-Fa

    2007-11-01

    Three kinds of blended absorbents were investigated on bench-scale experimental bench according to absorption rate and regeneration grade to select a reasonable additive concentration. The results show that, among methyldiethanolamine (MDEA) and piperazine (PZ) mixtures, comparing MDEA : PZ = 1 : 0.4 (m : m) with MDEA : PZ = 1 : 0.2 (m : m), the absorption rate is increased by about 70% at 0.2 mol x mol(-1). When regeneration lasting for 40 min, regeneration grade of blended absorbents with PZ concentration of 0.2, 0.4, and 0.8 is decreased to 83.06%, 77.77% and 76.67% respectively while 91.04% for PZ concentration of 0. MDEA : PZ = 1 : 0.4(m : m) is a suitable ratio for MDEA/PZ mixtures as absorption and regeneration properties of the blended absorbents are all improved. The aqueous blends with 10% primary amines and 2% tertiary amines could keep high CO2 absorption rate, and lower regeneration energy consumption. Adding 2% 2-Amino-2-methyl-1-propanol (AMP) to 10% diethanolamine (DEA), the blended amine solvents have an advantage in absorption and regeneration properties over other DEA/AMP mixtures. Blended solvents, which consist of a mixture of primary amines with a small amount of tertiary amines, have the highest absorption rate among the three. And mixed absorbents of secondary amines and a small amount of sterically hindered amines have the best regeneration property. To combine absorption and regeneration properties, blends with medium activator addition to tertiary amines are competitive. PMID:18290495

  10. Influence of fluorocarbon flat-membrane hydrophobicity on carbon dioxide recovery.

    PubMed

    Lin, Su-Hsia; Tung, Kuo-Lun; Chang, Hao-Wei; Lee, Kueir-Rarn

    2009-06-01

    The influence of hydrophobicity in flat-plate porous poly(vinylidene fluoride) (PVDF) and expended polytetrafluoroethylene (PTFE) membranes on CO(2) recovery using aqueous solutions of piperazine (PZ) and alkanolamine is examined. Experiments were conducted at various gas flow rates, liquid flow rates, and absorbent concentrations. The CO(2) absorption flux increased with increasing gas flow rates and absorbent concentrations. When using 2-amino-2-methyl-1-propanol (AMP) or AMP+PZ aqueous solution as absorbent, this process was dominantly governed by gas film layer diffusion and membrane diffusion. The diffusion resistance of the membrane phase was only important when using N-methyldiethanolamine as the sole absorbent. The water contact angle increased initially with increasing plasma working power and reached at steady state value of 155 degrees beyond 100 W. The elemental fluorine-to-carbon ratio (F/C) and water contact angle of the PVDF membrane increased with increasing treatment time and reached a plateau after 5min of CH(4) plasma (100 W). Increases in the CO(2) absorption fluxes of 7% and 17% were observed for plasma-treated PVDF membranes in comparison to non-treated PVDF and PTFE, respectively, when using 1M AMP as absorbent. The membrane mass transfer coefficient, k(m), for plasma-treated PVDF membranes increased from 2.1 x 10(-4) to 2.5 x 10(-4)ms(-1). Membrane durability was greatly improved by CF(4) plasma treatment (100 W/5 min) and comparable to that of PTFE membranes. PMID:19289246

  11. Redox effect on volatile compound formation in wine during fermentation by Saccharomyces cerevisiae.

    PubMed

    Fariña, Laura; Medina, Karina; Urruty, Maia; Boido, Eduardo; Dellacassa, Eduardo; Carrau, Francisco

    2012-09-15

    Although redox state is a well-known key process parameter in microbial activity, its impact on wine volatile aroma compounds produced during fermentation has not been studied in detail. In this study we report the effect of reductive and microaerobic conditions on wine aroma compound production using different initial amounts of yeast assimilable nitrogen (YAN: 180 and 400 mg N/l) in a simil grape must defined medium and two S. cerevisiae strains commonly used in wine-making. In batch fermentation culture conditions, reductive conditions were obtained using flasks plugged with Muller valves filled with sulphuric acid; while microaerobic conditions were attained with defined cotton plugs. It was found that significant differences in redox potential were obtained using the different plugs, and with variation of over 100 mV during the main fermentation period. Significant differences in the final concentration of higher alcohols, esters and fatty acids were attributed to differences in the redox state in the medium in both strains. A consistent increase in esters and medium chain fatty acids, as well as a decrease of higher alcohols and isoacids, was seen under reductive fermentation conditions. Interestingly, 1-propanol, δ-butyrolactone and ethyl lactate concentrations, showed no significant variation under the different redox conditions. A better understanding of the influence of redox state of the fermentation medium on the composition of volatile compounds in wine could enable improvement of vinification management. From a microbiological standpoint results presented here will contribute to the standardization of data models for the application of metabolic footprinting methods for wine yeast strain phenotyping and characterization. PMID:23107710

  12. Water-Soluble Pd Nanoparticles Synthesized from ω-Carboxyl-S-Alkanethiosulfate Ligand Precursors as Unimolecular Micelle Catalysts

    PubMed Central

    Gavia, Diego J.; Maung, May S.; Shon, Young-Seok

    2014-01-01

    This report describes a two-phase synthesis of water-soluble carboxylate-functionalized alkanethiolate-capped Pd nanoparticles from ω-carboxyl-S-alkanethiosulfate sodium salts. The two-phase methodology using the thiosulfate ligand passivation protocol allowed a highly specific control over the surface ligand coverage of these nanoparticles, which are lost in a one-phase aqueous system because of the base-catalyzed hydrolysis of thiosulfate to thiolate. Systematic synthetic variations investigated in this study included the concentration of ω-carboxyl-S-alkanethiosulfate ligand precursors and reducing agent, NaBH4, and the overall ligand chain length. The resulting water-soluble Pd nanoparticles were isolated and characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), 1H NMR, UV–vis, and FT-IR spectroscopy. Among different variations, a decrease in the molar equivalent of NaBH4 resulted in a reduction in the surface ligand density while maintaining a similar particle core size. Additionally, reducing the chain length of the thiosulfate ligand precursor also led to the formation of stable nanoparticles with a lower surface coverage. Since the metal core size of these Pd nanoparticle variations remained quite consistent, direct correlation studies between ligand properties and catalytic activities against hydrogenation/isomerization of allyl alcohol could be performed. Briefly, Pd nanoparticles dissolved in water favored the hydrogenation of allyl alcohol to 1-propanol whereas Pd nanoparticles heterogeneously dispersed in chloroform exhibited a rather high selectivity towards the isomerization product (propanal). The results suggested that the surrounding ligand environments, such as the ligand structure, conformation, and surface coverage, were crucial in determining the overall activity and selectivity of the Pd nanoparticle catalysts. PMID:24246150

  13. Volatile organic compound concentrations, emission rates, and source apportionment in newly-built apartments at pre-occupancy stage.

    PubMed

    Shin, Seung H; Jo, Wan K

    2012-10-01

    The present study investigated the indoor concentrations of selected volatile organic compounds (VOCs) and formaldehyde and their indoor emission characteristics in newly-built apartments at the pre-occupancy stage. In total, 107 apartments were surveyed for indoor and outdoor VOC concentrations in two metropolitan cities and one rural area in Korea. A mass balanced model was used to estimate surface area-specific emission rates of individual VOCs and formaldehyde. Seven (benzene, ethyl benzene, toluene, m,p-xylene, o-xylene, n-hexane, and n-heptane) of 40 target compounds were detectable in all indoor air samples, whereas the first five were detected in all outdoor air samples. Formaldehyde was also predominant in the indoor air samples, with a high detection frequency of 96%. The indoor concentrations were significantly higher than the outdoor concentrations for aromatics, alcohols, terpenes, and ketones. However, six halogenated VOCs exhibited similar concentrations for indoor and outdoor air samples, suggesting that they are not major components emitted from building materials. It was also suggested that a certain portion of the apartments surveyed were constructed by not following the Korean Ministry of Environment guidelines for formaldehyde emissions. Toluene exhibited the highest emission rate with a median value of 138 μg m(-2) h(-1). The target compounds with median emission rates greater than 20 μg m(-2) h(-1) were toluene, 1-propanol, formaldehyde, and 2-butanone. The wood panels/vinyl floor coverings were the largest indoor pollutant source, followed by floorings, wall coverings, adhesives, and paints. The wood panels/vinyl floor coverings contributed nearly three times more to indoor VOC concentrations than paints. PMID:22698369

  14. Thermodynamic Stability Analysis of Tolbutamide Polymorphs and Solubility in Organic Solvents.

    PubMed

    Svärd, Michael; Valavi, Masood; Khamar, Dikshitkumar; Kuhs, Manuel; Rasmuson, Åke C

    2016-06-01

    Melting temperatures and enthalpies of fusion have been determined by differential scanning calorimetry (DSC) for 2 polymorphs of the drug tolbutamide: FI(H) and FV. Heat capacities have been determined by temperature-modulated DSC for 4 polymorphs: FI(L), FI(H), FII, FV, and for the supercooled melt. The enthalpy of fusion of FII at its melting point has been estimated from the enthalpy of transition of FII into FI(H) through a thermodynamic cycle. Calorimetric data have been used to derive a quantitative polymorphic stability relationship between these 4 polymorphs, showing that FII is the stable polymorph below approximately 333 K, above which temperature FI(H) is the stable form up to its melting point. The relative stability of FV is well below the other polymorphs. The previously reported kinetic reversibility of the transformation between FI(L) and FI(H) has been verified using in situ Raman spectroscopy. The solid-liquid solubility of FII has been gravimetrically determined in 5 pure organic solvents (methanol, 1-propanol, ethyl acetate, acetonitrile, and toluene) over the temperature range 278 to 323 K. The ideal solubility has been estimated from calorimetric data, and solution activity coefficients at saturation in the 5 solvents determined. All solutions show positive deviation from Raoult's law, and all van't Hoff plots of solubility data are nonlinear. The solubility in toluene is well below that observed in the other investigated solvents. Solubility data have been correlated and extrapolated to the melting point using a semiempirical regression model. PMID:27238487

  15. Volatile sulphur compounds and pathways of L-methionine catabolism in Williopsis yeasts.

    PubMed

    Tan, Amelia W J; Lee, Pin-Rou; Seow, Yi-Xin; Ong, Peter K C; Liu, Shao-Quan

    2012-08-01

    Volatile sulphur compounds (VSCs) are important to the food industry due to their high potency and presence in many foods. This study assessed for the first time VSC production and pathways of L: -methionine catabolism in yeasts from the genus Williopsis with a view to understanding VSC formation and their potential flavour impact. Five strains of Williopsis saturnus (var. saturnus, var. subsufficiens, var. suavolens, var. sargentensis and var. mrakii) were screened for VSC production in a synthetic medium supplemented with L: -methionine. A diverse range of VSCs were produced including dimethyl disulphide, dimethyl trisulphide, 3-(methylthio)-1-propanal (methional), 3-(methylthio)-1-propanol (methionol), 3-(methylthio)-1-propene, 3-(methylthio)-1-propyl acetate, 3-(methylthio)-1-propanoic acid (methionic acid) and ethyl 3-(methylthio)-1-propanoate, though the production of these VSCs varied between yeast strains. W. saturnus var. saturnus NCYC22 was selected for further studies due to its relatively high VSC production. VSC production was characterised step-wise with yeast strain NCYC22 in coconut cream at different L: -methionine concentrations (0.00-0.20%) and under various inorganic sulphate (0.00-0.20%) and nitrogen (ammonia) supplementation (0.00-0.20%), respectively. Optimal VSC production was obtained with 0.1% of L: -methionine, while supplementation of sulphate had no significant effect. Nitrogen supplementation showed a dramatic inhibitory effect on VSC production. Based on the production of VSCs, the study suggests that the Ehrlich pathway of L: -methionine catabolism is operative in W. saturnus yeasts and can be manipulated by adjusting certain nutrient parameters to control VSC production. PMID:22370952

  16. Antioxidation Properties and Surface Interactions of Polyvinylpyrrolidone-Capped Zerovalent Copper Nanoparticles Synthesized in Supercritical Water.

    PubMed

    Morioka, Takuya; Takesue, Masafumi; Hayashi, Hiromichi; Watanabe, Masaru; Smith, Richard L

    2016-01-27

    Zerovalent copper nanoparticles (CuNPs) (diameter, 26.5 ± 9 nm) capped with polyvinylpyrrolidone (PVP) were synthesized in supercritical water at 400 °C and 30 MPa with a continuous flow reactor. The PVP-capped CuNPs were dispersed in distilled water, methanol, ethanol, 1-propanol, 2-propanol, butanol, and their mixed solvents to study their long-term stability. Temporal variation of UV-vis spectra and surface plasmon resonance were measured and showed that ethanol, the propanols, and butanol solvents provided varying degrees of oxidative protection for Cu(0). Fourier transform infrared spectroscopy showed that PVP adsorbed onto the surface of the CuNPs with a pyrrolidone ring of PVP even if the CuNPs were oxidized. Intrinsic viscosities of PVP were higher for solvents that provided antioxidation protection than those that give oxidized CuNPs. In solvents that provided Cu(0) with good oxidative protection (ethanol, the propanols, and butanol), PVP polymer chains formed large radii of gyration and coil-like conformations in the solvents so that they were arranged uniformly and orderly on the surface of the CuNPs and could provide protection of the Cu(0) surface against dissolved oxygen. In solvents that provided poor oxidative protection for Cu(0) (water, alcohol-water mixed solvents with 30% water), PVP polymer chains had globular-like conformations due to their relatively high hydrogen-bonding interactions and sparse adsorption onto the CuNP surface. Antioxidative properties of PVP-capped CuNPs in a solvent can be ascribed to the conformation of PVP polymer chains on the Cu(0) particle surface that originates from the interaction between polymer chains and its interaction with the solvent. PMID:26716468

  17. Cyanobacterial blue color formation during lysis under natural conditions.

    PubMed

    Arii, Suzue; Tsuji, Kiyomi; Tomita, Koji; Hasegawa, Masateru; Bober, Beata; Harada, Ken-ichi

    2015-04-01

    Cyanobacteria produce numerous volatile organic compounds (VOCs), such as β-cyclocitral, geosmin, and 2-methylisoborneol, which show lytic activity against cyanobacteria. Among these compounds, only β-cyclocitral causes a characteristic color change from green to blue (blue color formation) in the culture broth during the lysis process. In August 2008 and September 2010, the lysis of cyanobacteria involving blue color formation was observed at Lake Tsukui in northern Kanagawa Prefecture, Japan. We collected lake water containing the cyanobacteria and investigated the VOCs, such as β-cyclocitral, β-ionone, 1-propanol, 3-methyl-1-butanol, and 2-phenylethanol, as well as the number of cyanobacterial cells and their damage and pH changes. As a result, the following results were confirmed: the detection of several VOCs, including β-cyclocitral and its oxidation product, 2,2,6-trimethylcyclohexene-1-carboxylic acid; the identification of phycocyanin based on its visible spectrum; the lower pH (6.7 and 5.4) of the lysed samples; and characteristic morphological change in the damaged cyanobacterial cells. We also encountered the same phenomenon on 6 September 2013 in Lake Sagami in northern Kanagawa Prefecture and obtained almost the same results, such as blue color formation, decreasing pH, damaged cells, and detection of VOCs, including the oxidation products of β-cyclocitral. β-Cyclocitral derived from Microcystis has lytic activity against Microcystis itself but has stronger inhibitory activity against other cyanobacteria and algae, suggesting that the VOCs play an important role in the ecology of aquatic environments. PMID:25662969

  18. Hygienic safety of alcohol-based hand disinfectants and skin antiseptics

    PubMed Central

    Steinhauer, Katrin; Meyer, Bernhard; Ostermeyer, Christiane; Rödger, Hans-Joachim; Hintzpeter, Matthias

    2013-01-01

    Purpose: The aim of this study was to evaluate the overall risk of hand disinfectants and skin antiseptics to become contaminated with bacterial spores throughout the production process and the subsequent in-use period, hence posing a public health risk. Methods: Microbiological assessment of primary packaging material was carried out and long-term survival of bacterial spores in alcohol was assessed using sporulated B. subtilis ATCC 6633 as a standard. In-use contamination of alcohol-based formulations was tested by repeated use over 12 months under practical conditions and microbiological and physico-chemical data were determined. Results: Among 625 containers analyzed, 542 did not yield any microbial growth. Median colony count for aerobic spore-forming bacteria was 0.2 cfu/10 ml container content. No anaerobic spore-forming bacteria were detected. Additionally, long-term survival of bacterial spores in aliphatic C2–C3 alcohols revealed 1-propanol to reduce the number of spores most effectively, with 2-propanol and ethanol having a somewhat less pronounced impact. In-use tests did not detect any microbial contamination or change in the physicochemical properties of the tested products over 12 months. Conclusions: Our data reveals that state-of-the-art production processes of alcohol-based hand rubs and antiseptics can be regarded safe. Primary packaging material and use were not found to pose a significant contamination risk as far as bacterial spores are concerned. Based on the data from this study, a microbial limit of <1 cfu/10 ml can be suggested as a quality-control threshold for finished goods to ensure high quality and safe products. PMID:24327945

  19. On the effective measurement frequency of time domain reflectometry in dispersive and nonconductive dielectric materials

    NASA Astrophysics Data System (ADS)

    Robinson, D. A.; Schaap, M. G.; Or, D.; Jones, S. B.

    2005-02-01

    Time domain reflectometry (TDR) is one of the most commonly used techniques for water content determination in the subsurface. The measurement results in a single bulk permittivity value that corresponds to a particular, but unknown, ``effective'' frequency (feff). Estimating feff using TDR is important, as it allows comparisons with other techniques, such as impedance or capacitance probes, or microwave remote sensing devices. Soils, especially those with high clay and organic matter content, show appreciable dielectric dispersion, i.e., the real permittivity changes as a function of frequency. Consequently, comparison of results obtained with different sensor types must account for measurement frequency in assessing sensor accuracy and performance. In this article we use a transmission line model to examine the impact of dielectric dispersion on the TDR signal, considering lossless materials (negligible electrical conductivity). Permittivity is inferred from the standard tangent line fitting procedure (KaTAN) and by a method of using the apex of the derivative of the TDR waveform (KaDER). The permittivity determined using the tangent line method is considered to correspond to a velocity associated with a maximum passable frequency; whereas we consider the permittivity determined from the derivative method to correspond with the frequency associated with the signal group velocity. The effective frequency was determined from the 10-90% risetime of the reflected signal. On the basis of this definition, feff was found to correspond with the permittivity determined from KaDER and not from KaTAN in dispersive dielectrics. The modeling is corroborated by measurements in bentonite, ethanol and 1-propanol/water mixtures, which demonstrate the same result. Interestingly, for most nonconductive TDR measurements, frequencies are expected to lie in a range from 0.7 to 1 GHz, while in dispersive media, feff is expected to fall below 0.6 GHz.

  20. On the effective measurement frequency of time domain reflectometry in dispersive and nonconductive dielectric materials

    NASA Astrophysics Data System (ADS)

    Robinson, D. A.; Schaap, M. G.; Or, D.; Jones, S. B.

    2005-02-01

    Time domain reflectometry (TDR) is one of the most commonly used techniques for water content determination in the subsurface. The measurement results in a single bulk permittivity value that corresponds to a particular, but unknown, "effective" frequency (feff). Estimating feff using TDR is important, as it allows comparisons with other techniques, such as impedance or capacitance probes, or microwave remote sensing devices. Soils, especially those with high clay and organic matter content, show appreciable dielectric dispersion, i.e., the real permittivity changes as a function of frequency. Consequently, comparison of results obtained with different sensor types must account for measurement frequency in assessing sensor accuracy and performance. In this article we use a transmission line model to examine the impact of dielectric dispersion on the TDR signal, considering lossless materials (negligible electrical conductivity). Permittivity is inferred from the standard tangent line fitting procedure (KaTAN) and by a method of using the apex of the derivative of the TDR waveform (KaDER). The permittivity determined using the tangent line method is considered to correspond to a velocity associated with a maximum passable frequency; whereas we consider the permittivity determined from the derivative method to correspond with the frequency associated with the signal group velocity. The effective frequency was determined from the 10-90% risetime of the reflected signal. On the basis of this definition, feff was found to correspond with the permittivity determined from KaDER and not from KaTAN in dispersive dielectrics. The modeling is corroborated by measurements in bentonite, ethanol and 1-propanol/water mixtures, which demonstrate the same result. Interestingly, for most nonconductive TDR measurements, frequencies are expected to lie in a range from 0.7 to 1 GHz, while in dispersive media, feff is expected to fall below 0.6 GHz.

  1. Measurement of nitrosamine and nitramine formation from NOx reactions with amines during amine-based carbon dioxide capture for postcombustion carbon sequestration.

    PubMed

    Dai, Ning; Shah, Amisha D; Hu, Lanhua; Plewa, Michael J; McKague, Bruce; Mitch, William A

    2012-09-01

    With years of full-scale experience for precombustion CO(2) capture, amine-based technologies are emerging as the prime contender for postcombustion CO(2) capture. However, concerns for postcombustion applications have focused on the possible contamination of air or drinking water supplies downwind by potentially carcinogenic N-nitrosamines and N-nitramines released following their formation by NO(x) reactions with amines within the capture unit. Analytical methods for N-nitrosamines in drinking waters were adapted to measure specific N-nitrosamines and N-nitramines and total N-nitrosamines in solvent and washwater samples. The high levels of amines, aldehydes, and nitrite in these samples presented a risk for the artifactual formation of N-nitrosamines during sample storage or analysis. Application of a 30-fold molar excess of sulfamic acid to nitrite at pH 2 destroyed nitrite with no significant risk of artifactual nitrosation of amines. Analysis of aqueous morpholine solutions purged with different gas-phase NO and NO(2) concentrations indicated that N-nitrosamine formation generally exceeds N-nitramine formation. The total N-nitrosamine formation rate was at least an order of magnitude higher for the secondary amine piperazine (PZ) than for the primary amines 2-amino-2-methyl-1-propanol (AMP) and monoethanolamine (MEA) and the tertiary amine methyldiethanolamine (MDEA). Analysis of pilot washwater samples indicated a 59 μM total N-nitrosamine concentration for a system operated with a 25% AMP/15% PZ solvent, but only 0.73 μM for a 35% MEA solvent. Unfortunately, a greater fraction of the total N-nitrosamine signal was uncharacterized for the MEA-associated washwater. At a 0.73 μM total N-nitrosamine concentration, a ~25000-fold reduction in concentration is needed between washwater units and downwind drinking water supplies to meet proposed permit limits. PMID:22831707

  2. Ruminal Fermentation of Anti-Methanogenic Nitrate- and Nitro-Containing Forages In Vitro.

    PubMed

    Anderson, Robin C; Ripley, Laura H; Bowman, Jan G P; Callaway, Todd R; Genovese, Kenneth J; Beier, Ross C; Harvey, Roger B; Nisbet, David J

    2016-01-01

    Nitrate, 3-nitro-1-propionic acid (NPA) and 3-nitro-1-propanol (NPOH) can accumulate in forages and be poisonous to animals if consumed in high enough amounts. These chemicals are also recognized as potent anti-methanogenic compounds, but plants naturally containing these chemicals have been studied little in this regard. Presently, we found that nitrate-, NPA-, or NPOH-containing forages effectively decreased methane production, by 35-87%, during in vitro fermentation by mixed cultures of ruminal microbes compared to fermentation by cultures incubated similarly with alfalfa. Methane production was further decreased during the incubation of mixed cultures also inoculated with Denitrobacterium detoxificans, a ruminal bacterium known to metabolize nitrate, NPA, and NPOH. Inhibition of methanogens within the mixed cultures was greatest with the NPA- and NPOH-containing forages. Hydrogen accumulated in all the mixed cultures incubated with forages containing nitrate, NPA or NPOH and was dramatically higher, exceeding 40 μmol hydrogen/mL, in mixed cultures incubated with NPA-containing forage but not inoculated with D. detoxificans. This possibly reflects the inhibition of hydrogenase-catalyzed uptake of hydrogen produced via conversion of 50 μmol added formate per milliliter to hydrogen. Accumulations of volatile fatty acids revealed compensatory changes in fermentation in mixed cultures incubated with the nitrate-, NPA-, and NPOH-containing forages as evidenced by lower accumulations of acetate, and in some cases, higher accumulations of butyrate and lower accumulations of ammonia, iso-buytrate, and iso-valerate compared to cultures incubated with alfalfa. Results reveal that nitrate, NPA, and NPOH that accumulate naturally in forages can be made available within ruminal incubations to inhibit methanogenesis. Further research is warranted to determine if diets can be formulated with nitrate-, NPA-, and NPOH-containing forages to achieve efficacious mitigation in

  3. Thermodynamical and structural properties of binary mixtures of imidazolium chloride ionic liquids and alcohols from molecular simulation

    NASA Astrophysics Data System (ADS)

    Raabe, Gabriele; Köhler, Jürgen

    2008-10-01

    We have performed molecular dynamics simulations to determine the densities, excess energies of mixing, and structural properties of binary mixtures of the 1-alkyl-3-methylimidazolium chloride ionic liquids (ILs) [amim][Cl] and ethanol and 1-propanol in the temperature range from 298.15to363.15K. As in our previous work [J. Chem. Phys. 128, 154509 (2008)], our simulation studies are based on a united atom model from Liu et al. [Phys. Chem. Chem. Phys. 8, 1096 (2006)] for the 1-ethyl- and 1-butyl-3-methylimidazolium cations [emim+] and [bmim+], which we have extended to the 1-hexyl-3-methylimidazolium [hmim+] cation and combined with parameters of Canongia Lopes et al. [J. Phys. Chem. B 108, 2038 (2004)] for the chloride anion [Cl-] and the force field by Khare et al. for the alcohols [J. Phys. Chem. B 108, 10071 (2004)]. With this, we provide both prediction for the densities of the mixtures that have mostly not been investigated experimentally yet and a molecular picture of the interactions between the alcohol molecules and the ions. The negative excess energies of all mixtures indicate an energetically favorable mixing of [amim][Cl] ILs and alcohols. To gain insight into the nonideality of the mixtures on the molecular level, we analyzed their local structures by radial and spatial distribution functions. These analyses show that the local ordering in these mixtures is determined by strong hydrogen-bond interactions between the chloride anion and the hydroxyls of the alcohols, enhanced interactions between the anion and the charged domain of the cation, and an increasing aggregation of the nonpolar alkyl tails of the alcohols and the cations with increasing cation size, which results in a segregation of polar and nonpolar domains.

  4. Exhalation of volatile organic compounds during hemorrhagic shock and reperfusion in rats: an exploratory trial.

    PubMed

    Hüppe, Tobias; Lorenz, Dominik; Maurer, Felix; Albrecht, Frederic W; Schnauber, Kristina; Wolf, Beate; Sessler, Daniel I; Volk, Thomas; Fink, Tobias; Kreuer, Sascha

    2016-03-01

    Ischemia and reperfusion alter metabolism. Multi-capillary column ion-mobility spectrometry (MCC-IMS) can identify volatile organic compounds (VOCs) in exhaled gas. We therefore used MCC-IMS to evaluate exhaled gas in a rat model of hemorrhagic shock with reperfusion. Adult male Sprague-Dawley rats (n  =  10 in control group, n  =  15 in intervention group) were anaesthetized and ventilated via tracheostomy for 14 h or until death. Hemorrhagic shock was maintained for 90 min by removing blood from the femoral artery to a target of MAP 35  ±  5 mmHg, and then retransfusing the blood over 60 min in 15 rats; 10 control rats were evaluated without shock and reperfusion. Exhaled gas was analyzed with MCC-IMS, VOCs were identified using the BS-MCC/IMS analytes database (Version 1209). VOC intensities were analyzed at the end of shock, end of reperfusion, and after 9 h. All normotensive animals survived the observation period, whereas mean survival time was 11.2 h in shock and reperfusion animals. 16 VOCs differed significantly for at least one of the three analysis periods. Peak intensities of butanone, 2-ethyl-1-hexanol, nonanal, and an unknown compound were higher in shocked than normotensive rats, and another unknown compound increased over the time. 1-butanol increased only during reperfusion. Acetone, butanal, 1.2-butandiol, isoprene, 3-methylbutanal, 3-pentanone, 2-propanol, and two unknown compounds were lower and decreased during shock and reperfusion. 1-pentanol and 1-propanol were significant greater in the hypotensive animals during shock, were comparable during reperfusion, and then decreased after resuscitation. VOCs differ during hemorrhagic shock, reperfusion, and after reperfusion. MCC-IMS of exhaled breath deserves additional study as a non-invasive approach for monitoring changes in metabolism during ischemia and reperfusion. PMID:26971584

  5. Fabrication and evaluation of an organic monolithic column based upon the polymerisation of hexyl methacrylate with 1,6-hexanediol ethoxylate diacrylate for the separation of small molecules by capillary liquid chromatography.

    PubMed

    Alshitari, Wael; Quigley, Cristina Legido; Smith, Norman

    2015-08-15

    This paper describes the fabrication of a new porous monolith, prepared in 100μm i.d. capillaries by the co-polymerisation of hexyl methacrylate with 1,6-hexanediol ethoxylate diacrylate, poly (HMA-co-1,6 HEDA), in the presence of azobisisobutyronitrile, 1, 4-butanediol and 1-propanol were used as porogens for the monoliths; the monoliths were then used as a stationary phase for capillary liquid chromatography. Two cross linkers namely 1,6 HEDA and EDMA were utilised in order to investigate the effects of cross linker length on the separation efficiency of small molecules, and it was found that the efficiency of the separation improved tenfold when using the longer cross linker, 1,6 HEDA. This improvement is associated with the increase in number of methylene groups which resulted in an increased number of mesopores, less than 50nm. The 1,6 HEDA based monolith showed a high porosity (90%) and no evidence of swelling or shrinking with the use of organic solvents. Moreover, the 1,6 HEDA monolith demonstrated high reproducibility for the separation of the retained compounds anisole and naphthalene; these showed retention time RSDs of 1.79% and 2.74% respectively. The fabricated monolith also demonstrated high selectivity for neutral non-polar molecules, weak acids, and basic molecules. The asymmetry factors for basic molecules (nortriptyline and amitriptyline) were 1.5 and 1.3 respectively, indicating slight tailing, which is often noticeable on silica based phases due to secondary interactions between basic moieties and the hydroxyl groups of the silica. PMID:25966388

  6. Influence of Sol-Gel Conditions on the Growth of Thiol-Functionalized Silsesquioxanes Prepared by In Situ Water Production.

    PubMed

    Borovin, Evgeny; Callone, Emanuela; Papendorf, Benjamin; Guella, Graziano; Diré, Sandra

    2016-03-01

    Thiol-functionalized oligosilsesquioxanes have been synthesized by sol-gel chemistry via the in-situ water production (ISWP) approach, exploiting the esterification reaction of chloro-acetic acid and 1-propanol. The extent of hydrolysis-condensation of 3-Mercaptopropyltrimethoxysilane (McPTMS) has been studied by FT-IR and NMR spectroscopy, gel permeation chromatography (GPC) and MALDI-TOF techniques. The esterification reaction plays a key role in ruling out the oligomer structural development. In this work, we have investigated the influence of the theoretical amount of water available for the organosilane hydrolysis, defined by the ratio of chloro-acetic acid to McPTMS in the reaction mixture, and the role of different catalysts like trifluoroacetic acid (TFA) and dibutyldilauryltin (DBTL). The behavior of the catalyst is complex since, according to its nature, it may improve the kinetics of the sol-gel reactions and the esterification reaction as well. Comparing the reactions carried out with under-stoichiometric water content, the degree of condensation of the silsesquioxanes is higher if the reaction is catalyzed by TFA than by DBTL, because TFA may improve the kinetics of both hydrolysis-condensation and esterification reactions. The use of DBTL in under-stoichiometric and stoichiometric hydrolytic conditions raises the yield in ladder-like structures. The degree of condensation generally increases increasing the hydrolysis ratio as well as the yield in cage-like structures. However, when an over-stoichiometric amount of water is provided for the sol-gel reaction, condensation degree and ratio among cages and ladder-like structures appear unaffected by the employed catalyst. PMID:27455755

  7. 1,2-Ethanediol and 1,3-Propanediol Conversions over (MO3)3 (M = Mo, W) Nanoclusters: A Computational Study.

    PubMed

    Fang, Zongtang; Zetterholm, Patrick; Dixon, David A

    2016-03-24

    The dehydration and dehydrogenation reactions of one and two 1,2-ethanediol and 1,3-propanediol molecules on (MO3)3 (M = Mo, W) nanoclusters have been studied computationally using density functional and coupled cluster (CCSD(T)) theory. The reactions are initiated by the formation of a Lewis acid-base complex with an additional hydrogen bond. Dehydration is the dominant reaction proceeding via a metal bisdiolate. Acetaldehyde, the major product for 1,2-ethanediol, is produced by α-hydrogen transfer from one CH2 group to the other. For 1,3-propanediol, the C-C bond breaking pathways to produce C2H4 and HCH═O simultaneously and proton transfer to generate propylene oxide have comparable barrier energies. The barrier to produce propanal from the propylene oxide complex is less than that for epoxide release from the cluster. On the Mo3O9 cluster, a redox reaction channel for 1,2-ethanediol to break the C-C bond to form two formaldehyde molecules and then to produce C2H4 is slightly more favorable than the formation of acetaldehyde. For W(VI), the energy barrier for the reduction pathway is larger due to the lower reducibility of W3O9. Similar reduction on Mo(VI) for 1,3-propanediol to form propene is not a favorable pathway compared with the other pathways as additional C-H bond breaking is required in addition to breaking a C-C bond. The dehydrogenation and dehydration activation energies for the selected glycols are larger than the reactions of ethanol and 1-propanol on the same clusters. The CCSD(T) method is required because density functional theory with the M06 and B3LYP functionals does not predict quantitative energies on the potential energy surface. The M06 functional performs better than does the B3LYP functional. PMID:26901665

  8. Unified concept of solubilization in water by hydrotropes and cosolvents.

    PubMed

    Bauduin, P; Renoncourt, A; Kopf, A; Touraud, D; Kunz, W

    2005-07-19

    In the present work hydrophobic dyes, i.e. disperse red 13 (DR-13; (2-[4-(2-chloro-4-nitrophenylazo)-N-ethylphenylamino]ethanol) and Jaune au gras W1201 (1H-indene-1,3(2H)-dione,2-(2-quinolinyl)), are solubilized in water with the help of different additives: acetone and 1-propanol as typical cosolvents, sodium xylene sulfonate (SXS) as a representative of a classical hydrotrope, sodium dodecyl sulfate (SDS) as a typical surfactant, and finally some "solvosurfactants" [ propylene glycol monoalkyl ether derivatives (CiPOj: i = 1, j = 1 and 3; i = 3, j = 1 and 2; i = 4 and tertio-butyl, j = 1) and 1-propoxy-2-ethanol (C3EO1)]. These solvosurfactants are short amphiphiles that do not form well-defined structures in water such as micelles. For all additives an exponential increase in the solubilizations of the two studied hydrophobic dyes was observed when their concentrations in water were increased. Except for the SDS solution, no difference in the overall shapes of the solubilization curves (dye solubility against additive concentration) was found. All the studied molecules were classified according to their hydrotropic efficiencies, i.e., their abilities to solubilize a hydrophobic, sparingly soluble compound in water. The volume of the hydrophobic parts of the studied additives, roughly evaluated by simple calculations, was found to influence strongly the hydrotropic efficiency; i.e. the larger the hydrophobic part of the additive, the better the hydrotropic efficiency. By contrast, the hydrophilic part carrying a charge or not is of minor importance. Taking the hydrophobic part of the molecules as the key parameter, the water solubilization efficiency of cosolvents, hydrotropes, and solvosurfactants can be described in a coherent way. PMID:16008386

  9. Quantification of melamine in drinking water and wastewater by micellar liquid chromatography.

    PubMed

    Beltrán-Martinavarro, Beatriz; Peris-Vicente, Juan; Rambla-Alegre, Maria; Marco-Peiró, Sergio; Esteve-Romero, Josep; Carda-Broch, Samuel

    2013-01-01

    Because of the large potential health impact caused by deliberate contamination with the synthetic chemical melamine of different products for human and animal consumption, the World Health Organization and the Food and Agriculture Organization of the United Nations provided a range of recommendations in order to facilitate obtaining needed data, among which was the determination of the background levels of melamine in drinking water and wastewater (December 4, 2008). A chromatographic procedure using a C18 column, a micellar mobile phase consisting of sodium dodecyl sulfate (0.1 M), and 1-propanol (7.5%) buffered at pH 3, and detection by absorbance at 210 nm is reported in this paper for the quantification of melamine in drinking water and wastewater. Samples were filtered and directly injected into the chromatographic system, thus avoiding an extraction procedure. The optimal mobile phase composition was obtained by a chemometrics approach that considered the retention factor, efficiency, and peak shape. Melamine was eluted in about 6.2 min without interferences. Validation was performed following U.S. Food and Drug Administration guidelines. The analytical parameters studied were linearity (0.03-5 microg/mL, R2 = 0.998), LOD (13 nglmL), intraday and interday accuracy (between 4.1 and 12.2%), intraday and interday precision (less than 14.8%), and robustness (RSD < 5.1% for retention time and <9.0% for area). The proposed methodology was successfully applied for analysis of local wastewater and drinking water, in which no melamine was found. PMID:24000762

  10. An ATR-FTIR Study on the Effect of Molecular Structural Variations on the CO2 Absorption Characteristics of Heterocyclic Amines, Part II

    PubMed Central

    Robinson, Kelly; McCluskey, Adam; Attalla, Moetaz I

    2012-01-01

    This paper reports on an ATR-FTIR spectroscopic investigation of the CO2 absorption characteristics of a series of heterocyclic diamines: hexahydropyrimidine (HHPY), 2-methyl and 2,2-dimethylhexahydropyrimidine (MHHPY and DMHHPY), hexahydropyridazine (HHPZ), piperazine (PZ) and 2,5- and 2,6-dimethylpiperazine (2,6-DMPZ and 2,5-DMPZ). By using in situ ATR-FTIR the structure–activity relationship of the reaction between heterocyclic diamines and CO2 is probed. PZ forms a hydrolysis-resistant carbamate derivative, while HHPY forms a more labile carbamate species with increased susceptibility to hydrolysis, particularly at higher CO2 loadings (>0.5 mol CO2/mol amine). HHPY exhibits similar reactivity toward CO2 to PZ, but with improved aqueous solubility. The α-methyl-substituted MHHPY favours HCO3− formation, but MHHPY exhibits comparable CO2 absorption capacity to conventional amines MEA and DEA. MHHPY show improved reactivity compared to the conventional α-methyl- substituted primary amine 2-amino-2-methyl-1-propanol. DMHHPY is representative of blended amine systems, and its reactivity highlights the advantages of such systems. HHPZ is relatively unreactive towards CO2. The CO2 absorption capacity CA (mol CO2/mol amine) and initial rates of absorption RIA (mol CO2/mol amine min−1) for each reactive diamine are determined: PZ: CA=0.92, RIA=0.045; 2,6-DMPZ: CA=0.86, RIA=0.025; 2,5-DMPZ: CA=0.88, RIA=0.018; HHPY: CA=0.85, RIA=0.032; MHHPY: CA=0.86, RIA=0.018; DMHHPY: CA=1.1, RIA=0.032; and HHPZ: no reaction. Calculations at the B3LYP/6-31+G** and MP2/6-31+G** calculations show that the substitution patterns of the heterocyclic diamines affect carbamate stability, which influences hydrolysis rates. PMID:22517608

  11. Synthesis, Characterization, and Intercalation of Vanadyl Phosphate Modified with Manganese

    NASA Astrophysics Data System (ADS)

    Richtrová, Klára; Votinský, Jiří; Kalousová, Jaroslava; Beneš, Ludvík.; Zima, Vítěslav

    1995-05-01

    A yellow-brown crystalline solid, stable in air and having a variable composition of [Mn(H 2O] x(VO) 1- xPO 4 · 2H 2O (0 ≤ x ≤ 0.25), has been prepared by the reaction of solid V 2O 5 with a bolling aqueous solution of H 3PO 4 and KMnO 4. The elementary cell of this compound is tetragonal (space symmetry group either P4/ n or P 4/ nmm) with the following parameters for x = 0.25: a = 0.62034 nm, c = 1.3814 nm, V = 0.51359 nm 3, Z = 4, Mr = 199.44, Dcalc = 2.492 g/cm 3, and Dexp = 2.52 g/cm 3. The magnetic behavior of this substance indicates the presence of manganese atoms at the oxidation level of III. The paramagnetic centers formed by the Mn III atoms are not markedly magnetically coupled. The structure of the compound is probably derived from the original layered lattice of vanadyl phosphate hydrate VOPO 4 · 2H 2O by replacement of at most one quarter of the vanadyl groups (V VO) 3+ by [Mn III(H 2O)] 3+ groups. Upon being heated, the substance forms a monohydrate at first, then the anhydrous salt forms, and finally the water coordinated with manganese atoms escapes. The compound can be intercalated with foreign molecules and ions in the same way as vanadyl phosphate, and the results of intercalation experiments with methanol, ethanol, 1-propanol, l-butanol, 1-butylamine, 1-octylamine, formic acid, acetic acid, and pyridine, as well as those of oxidation-reduction intercalation with a solution of sodium iodide in acetone, are presented. The experimental conditions of the intercalations are described. The layered complexes formed have been identified by powder X-ray structure analysis, thermogravimetry, differential thermal analysis, and infrared absorption spectroscopy.

  12. Experimental consideration of capillary chromatography based on tube radial distribution of ternary mixture carrier solvents under laminar flow conditions.

    PubMed

    Jinno, Naoya; Hashimoto, Masahiko; Tsukagoshi, Kazuhiko

    2011-01-01

    A capillary chromatography system has been developed based on the tube radial distribution of the carrier solvents using an open capillary tube and a water-acetonitrile-ethyl acetate mixture carrier solution. This tube radial distribution chromatography (TRDC) system works under laminar flow conditions. In this study, a phase diagram for the ternary mixture carrier solvents of water, acetonitrile, and ethyl acetate was constructed. The phase diagram that included a boundary curve between homogeneous and heterogeneous solutions was considered together with the component ratios of the solvents in the homogeneous carrier solutions required for the TRDC system. It was found that the TRDC system performed well with homogeneous solutions having component ratios of the solvents that were positioned near the homogeneous-heterogeneous solution boundary of the phase diagram. For preparing the carrier solutions of water-hydrophilic/hydrophobic organic solvents for the TRDC system, we used for the first time methanol, ethanol, 1,4-dioxane, and 1-propanol, instead of acetonitrile (hydrophilic organic solvent), as well as chloroform and 1-butanol, instead of ethyl acetate (hydrophobic organic solvent). The homogeneous ternary mixture carrier solutions were prepared near the homogeneous-heterogeneous solution boundary. Analyte mixtures of 2,6-naphthalenedisulfonic acid and 1-naphthol were separated with the TRDC system using these homogeneous ternary mixture carrier solutions. The pressure change in the capillary tube under laminar flow conditions might alter the carrier solution from homogeneous in the batch vessel to heterogeneous, thus affecting the tube radial distribution of the solvents in the capillary tube. PMID:21415507

  13. Isolation and Characterization of Ethane, Propane, and Butane Consuming Bacteria from Marine Hydrocarbon Seeps

    NASA Astrophysics Data System (ADS)

    Redmond, M. C.; Valentine, D. L.

    2005-12-01

    Three strains of ethane, propane, or butane consuming bacteria were isolated from marine hydrocarbon seep sediments at Coal Oil Point, off shore Santa Barbara, CA. These three isolates (MR1, MR2 and MR3) were capable of growth at natural environmental temperatures and salinity. Isolate MR2 was capable of growth on ethane or propane as the sole carbon source, isolate MR4 on propane or butane, and isolate MR3 on ethane, propane, or butane. All three isolates were also able to grow on other carbon-containing molecules, including ethanol, 1-propanol, 2-propanol, acetate, butyrate, sucrose, and dextrose, and isolates MR3 and MR4 were able to grow on 1-butanol and 2-butanol. None showed significant growth with methane, methanol, or formate as the sole carbon source. 16S rDNA sequencing indicated that isolate MR2 was most closely related to the gamma-Proteobacterium Pseudomonas stutzeri, while isolates MR3 and MR4 were both Gram-positive and most similar to Rhodococcus wratislaviensis and Rhodococcus opacus, respectively. Compared to methanotrophs, relatively little is known about the organisms that consume the C2-C4 alkanes, but both our isolates and the previously described species appear to be capable of metabolizing a wide variety of carbon compounds, including several common pollutants. The growth of these hydrocarbon-oxidizing bacteria on other organic compounds raises the possibility that the abundance and distribution of organic matter might be expected to impact the oxidation of C2-C4 hydrocarbons. Additional studies will further characterize the range of metabolism, and will investigate the importance of these organisms in natural hydrocarbon seep environments.

  14. Development and validation of an analytical method for the separation and determination of major bioactive curcuminoids in Curcuma longa rhizomes and herbal products using non-aqueous capillary electrophoresis.

    PubMed

    Anubala, S; Sekar, R; Nagaiah, K

    2014-06-01

    A simple, fast and efficient non-aqueous capillary electrophoresis method (NACE) was developed for the simultaneous determination of three major bioactive curcuminoids (CMNs) in Curcuma longa rhizomes and its herbal products. Good separation, resolution and reproducibility were achieved with the background electrolyte (BGE) consisting a mixture of 15.0 mM sodium tetraborate and 7.4 mM sodium hydroxide (NaOH) in 2:10:15 (v/v/v) of water, 1-propanol, and methanol. The influences of background electrolyte, sodium hydroxide, water, sodium dodecyl sulfate and hydroxylpropyl-β-cyclodextrin on separations were investigated. The separation was carried out in a fused-silica capillary tube with reverse polarity. Hydrodynamic injection of 25mbar for 12s was used for injecting samples and a voltage of 28 kV was applied for separation. The ultrasonication method was used for the extraction of CMNs from the turmeric herbal products and the extract was filtered and directly injected without any further treatments. The limits of detection and quantification were less than 5.0 and 14.6 µg/ml respectively for all CMNs. The percentage recoveries for CMNs were >97.2% (%RSD, <2.62). The results obtained by the method were compared with existing spectrophotometric and HPLC methods. The related compounds in the extract did not interfere in the determination of CMNs. The proposed NACE method is better than existing chromatographic and electrophoretic methods in terms of simple electrophoretic medium, fast analysis and good resolution. PMID:24725858

  15. Effects of new Torulaspora delbrueckii killer yeasts on the must fermentation kinetics and aroma compounds of white table wine

    PubMed Central

    Velázquez, Rocío; Zamora, Emiliano; Álvarez, María L.; Hernández, Luis M.; Ramírez, Manuel

    2015-01-01

    Torulaspora delbrueckii is becoming widely recommended for improving some specific characteristics of wines. However, its impact on wine quality is still far from satisfactory at the winery level, mostly because it is easily replaced by Saccharomyces cerevisiae-like yeasts during must fermentation. New T. delbrueckii killer strains were here isolated and selected for winemaking. They killed S. cerevisiae yeasts and were able to dominate and complete the fermentation of sterile grape must. Sequential yeast inoculation of non-sterile white must with T. delbrueckii followed by S. cerevisiae did not ensure T. delbrueckii dominance or wine quality improvement. Only a single initial must inoculation at high cell concentrations allowed the T. delbrueckii killer strains to dominate and complete the must fermentation to reach above 11% ethanol, but not the non-killer strains. None of the wines underwent malolactic fermentation as long as the must had low turbidity and pH. Although no statistically significant differences were found in the wine quality score, the S. cerevisiae-dominated wines were preferred over the T. delbrueckii-dominated ones because the former had high-intensity fresh fruit aromas while the latter had lower intensity, but nevertheless nice and unusual dried fruit/pastry aromas. Except for ethyl propanoate and 3-ethoxy-1-propanol, which were more abundant in the T. delbrueckii–dominated wines, most of the compounds with fresh fruit odor descriptors, including those with the greatest odor activity values (isoamyl acetate, ethyl hexanoate, and ethyl octanoate), were more abundant in the S. cerevisiae–dominated wines. The low relative concentrations of these fruity compounds made it possible to detect in the T. delbrueckii–dominated wines the low-relative-concentration compounds with dried fruit and pastry odors. An example was γ-ethoxy-butyrolactone which was significantly more abundant in these wines than in those dominated by S. cerevisiae. PMID

  16. The same microbiota and a potentially discriminant metabolome in the saliva of omnivore, ovo-lacto-vegetarian and Vegan individuals.

    PubMed

    De Filippis, Francesca; Vannini, Lucia; La Storia, Antonietta; Laghi, Luca; Piombino, Paola; Stellato, Giuseppina; Serrazanetti, Diana I; Gozzi, Giorgia; Turroni, Silvia; Ferrocino, Ilario; Lazzi, Camilla; Di Cagno, Raffaella; Gobbetti, Marco; Ercolini, Danilo

    2014-01-01

    The salivary microbiota has been linked to both oral and non-oral diseases. Scant knowledge is available on the effect of environmental factors such as long-term dietary choices on the salivary microbiota and metabolome. This study analyzed the microbial diversity and metabolomic profiles of the saliva of 161 healthy individuals who followed an omnivore or ovo-lacto-vegetarian or vegan diet. A large core microbiota was identified, including 12 bacterial genera, found in >98% of the individuals. The subjects could be stratified into three "salivary types" that differed on the basis of the relative abundance of the core genera Prevotella, Streptococcus/Gemella and Fusobacterium/Neisseria. Statistical analysis indicated no effect of dietary habit on the salivary microbiota. Phylogenetic beta-diversity analysis consistently showed no differences between omnivore, ovo-lacto-vegetarian and vegan individuals. Metabolomic profiling of saliva using (1)H-NMR and GC-MS/SPME identified diet-related biomarkers that enabled a significant discrimination between the 3 groups of individuals on the basis of their diet. Formate, urea, uridine and 5-methyl-3-hexanone could discriminate samples from omnivores, whereas 1-propanol, hexanoic acid and proline were characteristic of non-omnivore diets. Although the salivary metabolome can be discriminating for diet, the microbiota has a remarkable inter-individual stability and did not vary with dietary habits. Microbial homeostasis might be perturbed with sub-standard oral hygiene or other environmental factors, but there is no current indication that a choice of an omnivore, ovo-lacto-vegetarian or vegan diet can lead to a specific composition of the oral microbiota with consequences on the oral homeostasis. PMID:25372853

  17. Effects of Gangliosides on the Activity of the Plasma Membrane Ca2+-ATPase

    PubMed Central

    Jiang, Lei; Bechtel, Misty D.; Bean, Jennifer L.; Winefield, Robert; Williams, Todd D.; Zaidi, Asma; Michaelis, Elias K.; Michaelis, Mary L.

    2014-01-01

    Control of intracellular calcium concentrations ([Ca2+]i) is essential for neuronal function, and the plasma membrane Ca2+-ATPase (PMCA) is crucial for the maintenance of low [Ca2+]i. We previously reported on loss of PMCA activity in brain synaptic membranes during aging. Gangliosides are known to modulate Ca2+ homeostasis and signal transduction in neurons. In the present study, we observed age-related changes in the ganglioside composition of synaptic plasma membranes. This led us to hypothesize that alterations in ganglioside species might contribute to the age-associated loss of PMCA activity. To probe the relationship between changes in endogenous ganglioside content or composition and PMCA activity in membranes of cortical neurons, we induced depletion of gangliosides by treating neurons with D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP). This caused a marked decrease in the activity of PMCA, which suggested a direct correlation between ganglioside content and PMCA activity. Neurons treated with neuraminidase exhibited an increase in GM1 content, a loss in poly-sialoganglioside content, and a decrease in PMCA activity that was greater than that produced by D-PDMP treatment. Thus, it appeared that poly-sialogangliosides had a stimulatory effect whereas mono-sialogangliosides had the opposite effect. Our observations add support to previous reports of PMCA regulation by gangliosides by demonstrating that manipulations of endogenous ganglioside content and species affect the activity of PMCA in neuronal membranes. Furthermore, our studies suggest that age-associated loss in PMCA activity may result in part from changes in the lipid environment of this Ca2+ transporter. PMID:24434060

  18. Cyanobacterial Blue Color Formation during Lysis under Natural Conditions

    PubMed Central

    Tsuji, Kiyomi; Tomita, Koji; Hasegawa, Masateru; Bober, Beata; Harada, Ken-Ichi

    2015-01-01

    Cyanobacteria produce numerous volatile organic compounds (VOCs), such as β-cyclocitral, geosmin, and 2-methylisoborneol, which show lytic activity against cyanobacteria. Among these compounds, only β-cyclocitral causes a characteristic color change from green to blue (blue color formation) in the culture broth during the lysis process. In August 2008 and September 2010, the lysis of cyanobacteria involving blue color formation was observed at Lake Tsukui in northern Kanagawa Prefecture, Japan. We collected lake water containing the cyanobacteria and investigated the VOCs, such as β-cyclocitral, β-ionone, 1-propanol, 3-methyl-1-butanol, and 2-phenylethanol, as well as the number of cyanobacterial cells and their damage and pH changes. As a result, the following results were confirmed: the detection of several VOCs, including β-cyclocitral and its oxidation product, 2,2,6-trimethylcyclohexene-1-carboxylic acid; the identification of phycocyanin based on its visible spectrum; the lower pH (6.7 and 5.4) of the lysed samples; and characteristic morphological change in the damaged cyanobacterial cells. We also encountered the same phenomenon on 6 September 2013 in Lake Sagami in northern Kanagawa Prefecture and obtained almost the same results, such as blue color formation, decreasing pH, damaged cells, and detection of VOCs, including the oxidation products of β-cyclocitral. β-Cyclocitral derived from Microcystis has lytic activity against Microcystis itself but has stronger inhibitory activity against other cyanobacteria and algae, suggesting that the VOCs play an important role in the ecology of aquatic environments. PMID:25662969

  19. A test method for the measurement of arylamines in stationary source emissions

    SciTech Connect

    Peterson, M.R.; Pate, B.A.; Wright, R.S.

    1996-12-31

    Title III of the Clean Air Act Amendments of 1990 lists eighteen arylamines as hazardous air pollutants to be regulated. The eighteen arylamines range from semivolatile to almost nonvolatile, from almost water-insoluble to hygroscopic, from thermally quite stable to unstable, and from fairly toxic to confirmed human carcinogens. This paper presents a report on progress in the development of a method to measure this quite disparate group of compounds in stationary source emissions. The proposed method involves collection in an acidic aqueous solution, sorption of collected arylamines on a cation exchange resin, desorption of arylamines from the resin with a small volume of a basic solution, and separation and measurement by high pressure liquid chromatography with photodiode array (HPLC-PDA) detection. Evaluation of cation exchange resins and resin elution solvents and the analytical portions of the method are being conducted using a subset of eight arylamines: aniline, chloramben, 2,4-diaminotoluene, N,N-dimethylaniline, 3,3`-dimethylbenzidine, quinoline, o-toluidine, and trifluralin. Sorption on a solid-phase extraction resin (LC-SCX, Supelco) followed by elution off the resin with a 2.2 normal solution of ammonia in a 50:35:15 mixture of 1-butanol, 1-propanol, and water gave the best recoveries of the test compounds (except chloramben, which contains a carboxylic acid group and does not elute) from the acidified collection solution. The compounds were separated on an Alltech Alltima C18 5{mu}m, 150 {times} 4.6 mm HPLC column using solvent programming with acetonitrile and either water or an acetate/acetic acid pH 7 buffer. 1 fig., 3 tabs.

  20. Lactivibrio alcoholicus gen. nov., sp. nov., an anaerobic, mesophilic, lactate-, alcohol-, carbohydrate- and amino-acid-degrading bacterium in the phylum Synergistetes.

    PubMed

    Qiu, Yan-Ling; Hanada, Satoshi; Kamagata, Yoichi; Guo, Rong-Bo; Sekiguchi, Yuji

    2014-06-01

    A mesophilic, obligately anaerobic, lactate-, alcohol-, carbohydrate- and amino-acid- degrading bacterium, designated strain 7WAY-8-7(T), was isolated from an upflow anaerobic sludge blanket reactor treating high-strength organic wastewater from isomerized sugar production processes. Cells of strain 7WAY-8-7(T) were motile, curved rods (0.7-1.0×5.0-8.0 µm). Spore formation was not observed. The strain grew optimally at 37 °C (range for growth was 25-40 °C) and pH 7.0 (pH 6.0-7.5), and could grow fermentatively on yeast extract, glucose, ribose, xylose, malate, tryptone, pyruvate, fumarate, Casamino acids, serine and cysteine. The main end-products of glucose fermentation were acetate and hydrogen. In co-culture with the hydrogenotrophic methanogen Methanospirillum hungatei DSM 864(T), strain 7WAY-8-7(T) could utilize lactate, glycerol, ethanol, 1-propanol, 1-butanol, L-glutamate, alanine, leucine, isoleucine, valine, histidine, asparagine, glutamine, arginine, lysine, threonine, 2-oxoglutarate, aspartate and methionine. A Stickland reaction was not observed with some pairs of amino acids. Yeast extract was required for growth. Nitrate, sulfate, thiosulfate, elemental sulfur, sulfite and Fe (III) were not used as terminal electron acceptors. The G+C content of the genomic DNA was 61.4 mol%. 16S rRNA gene sequence analysis revealed that the isolate belongs to the uncultured environmental clone clade (called 'PD-UASB-13' in the Greengenes database) in the bacterial phylum Synergistetes, showing less than 90% sequence similarity with closely related described species such as Aminivibrio pyruvatiphilus and Aminobacterium colombiense (89.7% and 88.7%, respectively). The major cellular fatty acids were iso-C(13 : 0), iso-C(15 : 0), anteiso-C(15 : 0), C(18 : 1), C(19 : 1), C(20 : 1) and C(21 : 1). A novel genus and species, Lactivibrio alcoholicus gen. nov., sp. nov. is proposed to accommodate strain 7WAY-8-7(T) ( = JCM 17151(T

  1. Photochemical ozone creation potentials for oxygenated volatile organic compounds: sensitivity to variations in kinetic and mechanistic parameters

    NASA Astrophysics Data System (ADS)

    Jenkin, Michael E.; Hayman, Garry D.

    The sensitivity of Photochemical Ozone Creation Potentials (POCP) to a series of systematic variations in the rates and products of reactions of radical intermediates and oxygenated products is investigated for the C 4 alcohols, 1-butanol ( n-butanol) and 2-methyl-1-propanol ( i-butanol), using the recently developed Master Chemical Mechanism (MCM) as the base case. The POCP values are determined from the calculated formation of ozone in the boundary layer over a period of approximately five days along an idealised straight line trajectory, using a photochemical trajectory model and methodology described in detail previously. The results allow the relative impacts on calculated ozone formation of various classes of chemical reaction within the degradation chemistry to be assessed. The calculated POCP is found to be very insensitive to many of the changes investigated. However, it is found to be sensitive to variations in the rate coefficient for the initiating reaction with OH ( kOH), although the sensitivity decreases with increasing kOH. The POCP appears to vary approximately linearly with kOH at low values (i.e. kOH less than ca. 4×10 -13 cm 3 molecule -1 s -1), whereas at high reactivities (i.e. kOH greater than ca. 4×10 -11 cm 3 molecule -1 s -1), the calculated POCP value is comparatively insensitive to the precise value of kOH. The POCP is also very sensitive to mechanistic changes which influence the yields of unreactive oxygenated products (i.e. those with OH reactivities below ca. 10 -12 cm 3 molecule -1 s -1), for example acetone. The propensity of the organic compound to produce organic nitrates (which act as comparatively unreactive reservoirs for free radicals and NO x) also appears to have a notable influence on the calculated POCP. Recently reported information relevant to the degradation of oxygenated VOCs is then used to update the chemical schemes for the 17 alcohols and glycols, 10 ethers and glycol ethers, and 8 esters included in the MCM

  2. The effect of thiolated additives on the properties of wheat gluten based plastics, aqueous solutions and electrospun fibers

    NASA Astrophysics Data System (ADS)

    Dong, Jing

    Wheat gluten (WG) is a promising substitute for petroleum-based plastics due to its unique ability to form a cohesive blend with viscoelastic properties once plasticized. Previous work blending WG with thiolated poly(vinyl alcohol) (TPVA) showed that both the strength and elongation of compression molded native WG bars can be improved via thiol/disulfide interchange reactions between WG and TPVA. In this study, the morphology of WG/TPVA blends was investigated by atomic force (AFM) and transmission electron microscopy (TEM), as well as by modulated dynamic scanning calorimetry (MDSC). Consistent with our earlier results, AFM and TEM imaging clearly indicated that TPVA is much more compatible with WG compared with poly(vinyl alcohol) (PVA) although there are still two phases in the blend: one WG rich phase and another TPVA rich phase. TPVA was also blended with WG in an aqueous solvent (1/1 (v/v) water/1-propanol mixture) to improve its solubility and spinnability. Control experiments were conducted with PVA and dithiothreitol (DTT) for comparison purposes. The concentration and the thiolation level of TPVA were also varied to explore the parameter space. The interactions of thiol groups from TPVA and soluble WG were found to be important during electrospinning. The fiber diameter became more uniform and the fiber quality increased very noticeably when TPVA was included. Furthermore, the time-dependent rheology behaviors of TPVA/WG and DTT/WG electrospinning solutions were investigated by using steady shear sweeps, oscillatory frequency sweeps, SE-HPLC and free -SH content determination. A two-step mechanism of interaction was proposed for DTT/WG and TPVA/WG solutions based on current results and other earlier studies. In comparison with WG and PVA/WG solutions, the reduction and reformation of disulfide linkages in both TPVA/WG and DTT/WG solutions were believed to play a key role in determining the rheological properties and molecular weight distribution of WG

  3. Regulation of SREBPs by Sphingomyelin in Adipocytes via a Caveolin and Ras-ERK-MAPK-CREB Signaling Pathway.

    PubMed

    Makdissy, Nehman; Haddad, Katia; Mouawad, Charbel; Popa, Iuliana; Younsi, Mohamed; Valet, Philippe; Brunaud, Laurent; Ziegler, Olivier; Quilliot, Didier

    2015-01-01

    Sterol response element binding protein (SREBP) is a key transcription factor in insulin and glucose metabolism. We previously demonstrated that elevated levels of membrane sphingomyelin (SM) were related to peroxisome proliferator-activated receptor-γ (PPARγ), which is a known target gene of SREBP-1 in adipocytes. However, the role of SM in SREBP expression in adipocytes remains unknown. In human abdominal adipose tissue from obese women with various concentrations of fasting plasma insulin, SREBP-1 proteins decreased in parallel with increases in membrane SM levels. An inverse correlation was found between the membrane SM content and the levels of SREBP-1c/ERK/Ras/PPARγ/CREB proteins. For the first time, we demonstrate the effects of SM and its signaling pathway in 3T3-F442A adipocytes. These cells were enriched or unenriched with SM in a range of concentrations similar to those observed in obese subjects by adding exogenous natural SMs (having different acyl chain lengths) or by inhibiting neutral sphingomyelinase. SM accumulated in caveolae of the plasma membrane within 24 h and then in the intracellular space. SM enrichment decreased SREBP-1 through the inhibition of extracellular signal-regulated protein kinase (ERK) but not JNK or p38 mitogen-activated protein kinase (MAPK). Ras/Raf-1/MEK1/2 and KSR proteins, which are upstream mediators of ERK, were down-regulated, whereas SREBP-2/caveolin and cholesterol were up-regulated. In SM-unmodulated adipocytes treated with DL-1-Phenyl-2-Palmitoylamino-3-morpholino-1-propanol (PPMP), where the ceramide level increased, the expression levels of SREBPs and ERK were modulated in an opposite direction relative to the SM-enriched cells. SM inhibited the insulin-induced expression of SREBP-1. Rosiglitazone, which is an anti-diabetic agent and potent activator of PPARγ, reversed the effects of SM on SREBP-1, PPARγ and CREB. Taken together, these findings provide novel insights indicating that excess membrane SM might

  4. Synthesis, characterization, and intercalation of vanadyl phsophate modified with manganese

    SciTech Connect

    Richtrova, K.; Votinsky, J.; Kalousova, J.

    1995-05-01

    A yellow-brown crystalline solid, stable in air and having a variable composition of [Mn(H{sub 2}O)]{sub x}(VO){sub 1-x}PO{sub 4}{center_dot}2H{sub 2}O (0 {le} x {le} 0.25), has been prepared by the reaction of solid V{sub 2}O{sub 5} with a boiling aqueous solution of H{sub 3}PO{sub 4} and KMnO{sub 4}. The elementary cell of this compound is tetragonal (space symmetry group either P4/n or P4/nmm) with the following parameters for x = 0.25; a = 0.62034 nm, c = 1.3813 nm, V = 0.51359 nm{sup 3}, Z = 4, M{sub r} = 199.44, D{sub calc} = 2.492 g/cm{sup 3}, and D{sub exp} = 2.52 g/cm{sup 3}. The magnetic behavior of this substance indicates the presence of manganese atoms at the oxidation level of III. The paramagnetic centers formed by the Mn{sub III} atoms are not markedly magnetically coupled. The structure of the compound is probably derived from the original layered lattice of vanadyl phosphate hydrate VOPO{sub 4}{center_dot}2H{sub 2}O by replacement of at most one quarter of the vanadyl groups (V{sup V}O){sup 3+} by [Mn{sup III}(H{sub 2}O)]{sup 3+} groups. Upon being heated, the substance forms a monohydrate at first, then the anhydrous salt forms, and finally the water coordinated with manganese atoms escapes. The compound can be intercalated with foreign molecules and ions in the same way as vanadyl phosphate, and the results of intercalation experiments with methanol, ethanol, 1-propanol, 1-butanol, 1-butylamine, 1-octylamine, formic acid, acetic acid, and pyridine, as well as those of oxidation-reduction intercalation with a solution of sodium intercalations are described. The layered complexes formed have been identified by powder X-ray structure analysis, thermogravimetry, differential thermal analysis, and infrared absorption spectroscopy.

  5. Aliphatic β-nitroalcohols for therapeutic corneoscleral cross-linking: corneal permeability considerations

    PubMed Central

    Wen, Quan; Trokel, Stephen L.; Paik, David C.

    2012-01-01

    Introduction Our recent tissue cross-linking studies have raised the possibility of using aliphatic β-nitro alcohols (BNAs) for pharmacologic, therapeutic corneal cross-linking. The present study was performed in order to determine the permeability of BNAs and to explore the use of permeability enhancing agents. Methods Ex vivo rabbit corneas were mounted in a typical Franz diffusion chamber. BNA permeability was determined by assaying the recipient chamber over time using a modification of the Griess nitrite colorimetric assay. The apparent permeability coefficient (Ptot) was determined for 2 mono-nitroalcohols, 2-nitroethanol (2NE) and 2-nitro-1-propanol (2NProp); a nitro-diol (2-methyl-2-nitro-1,3-propanediol=MNPD); and a nitro-triol (2-hydroxymethyl-2-nitro-1,3-propanediol=HNPD). Permeability enhancing effects using benzalkonium chloride (BAC) [0.01 and 0.02%], ethylenediaminetetraacetic acid (EDTA) [0.05%], and a combination of BAC 0.01% + tetracaine (TC) [0.5%] were also studied. Results The Ptot (+/−S.E.) values (cm/sec) were as follows: Ptot=4.33×10−5 (+/−9.82×10−6) for 2NE (MW=91), Ptot=9.34×10−6 (+/− 2.16×10−7) for 2NProp (MW=105), Ptot=4.37×10−6 (+/− 1.86×10−7) for MNPD (MW=135), and Ptot=8.95×10−7 (+/−1.93×10−8) for HNPD (MW=151). Using the nitrodiol, permeability increased approximately two-fold using BAC 0.01%, five-fold using BAC 0.02% and five-fold using the combination of BAC 0.01% + TC 0.5%. No effect was observed using EDTA 0.05%. Conclusions The results indicate that the corneal epithelium is permeable to BNAs with the apparent permeability corresponding to molecular weight. The findings are consistent with previous literature indicating that the small size of these compounds (<10Å) favors their passage through the corneal epithelium via the paracellular route. This information will help to guide dosing regimens for in vivo topical cross-linking studies. PMID:22868628

  6. Identification of potent odourants in wine and brewed coffee using gas chromatography-olfactometry and comprehensive two-dimensional gas chromatography.

    PubMed

    Chin, Sung-Tong; Eyres, Graham T; Marriott, Philip J

    2011-10-21

    Volatile constituents in wine and brewed coffee were analyzed using a combined system incorporating both GC-olfactometry (GC-O) and comprehensive two-dimensional GC-flame ionization detection (GC×GC-FID). A column set consisting of a 15m first dimension ((1)D; DB-FFAP (free fatty acid phase)), and a 1.0m (2)D column (DB-5 phase) was applied to achieve the GC×GC separation of the volatile extracts isolated by using solid phase extraction (SPE). While 1D GC resulted in many overlapping peaks, GC×GC allowed resolution of co-eluting compounds which coincided with the odour region located using GC-O. Character-impact odourants were tentatively identified through data correlation of GC×GC contour plots across results obtained using either time-of-flight mass spectrometry (TOFMS), or with flame photometric detection (FPD) for sulfur speciation. The odourants 2-methyl-2-butenal, 2-(methoxymethyl)-furan, dimethyl trisulfide, 2-ethyl-5-methyl-pyrazine, 2-octenal, 2-furancarboxaldehyde, 3-mercapto-3-methyl-1-butanol, 2-methoxy-3-(2-methylpropyl)-pyrazine, 2-furanmethanol and isovaleric acid were suspected to be particularly responsible for coffee aroma using this approach. The presented methodology was applied to identify the potent odourants in two different Australian wine varietals. 1-Octen-3-ol, butanoic acid and 2-methylbutanoic acid were detected in both Merlot and a Sauvignon Blanc+Semillon (SV) blend with high aroma potency. Several co-eluting peaks of ethyl 4-oxo-pentanoate, 3,7-dimethyl-1,5,7-octatrien-3-ol, (Z)-2-octen-1-ol, 5-hydroxy-2-methyl-1,3-dioxane were likely contributors to the Merlot wine aroma; while (Z)-3-hexen-1-ol, β-phenylethyl acetate, hexanoic acid and co-eluting peaks of 3-ethoxy-1-propanol and hexyl formate may contribute to SV wine aroma character. The volatile sulfur compound 2-mercapto-ethyl acetate was believed to contribute a fruity, brothy, meaty, sulfur odour to Australian Merlot and SV wines. PMID:21741655

  7. Overloaded elution band profiles of ionizable compounds in reversed-phase liquid chromatography: Influence of the competition between the neutral and the ionic species

    SciTech Connect

    Gritti, Fabrice; Guiochon, Georges A

    2008-01-01

    The parameters that affect the shape of the band profiles of acido-basic compounds under moderately overloaded conditions (sample size less than 500 nmol for a conventional column) in RPLC are discussed. Only analytes that have a single pK{sub a} are considered. In the buffer mobile phase used for their elution, their dissociation may, under certain conditions, cause a significant pH perturbation during the passage of the band. Two consecutive injections (3.3 and 10 {micro}L) of each one of three sample solutions (0.5, 5, and 50 mM) of ten compounds were injected on five C{sub 18}-bonded packing materials, including the 5 {micro}m Xterra-C{sub 18} (121 {angstrom}), 5 {micro}m Gemini-C{sub 18} (110 {angstrom}), 5 {micro}m Luna-C{sub 18}(2) (93 {angstrom}), 3.5 {micro}m Extend-C{sub 18} (80 {angstrom}), and 2.7 {micro}m Halo-C{sub 18} (90 {angstrom}). The mobile phase was an aqueous solution of methanol buffered at a constant {sub W}{sup W}pH of 6, with a phosphate buffer. The total concentration of the phosphate groups was constant at 50 mM. The methanol concentration was adjusted to keep all the retention factors between 1 and 10. The compounds injected were phenol, caffeine, 3-phenyl 1-propanol, 2-phenyl butyric acid, amphetamine, aniline, benzylamine, p-toluidine, procainamidium chloride, and propranololium chloride. Depending on the relative values of the analyte pK{sub a} and the buffer solution pH, these analytes elute as the neutral, the cationic, or the anionic species. The influence of structural parameters such as the charge, the size, and the hydrophobicity of the analytes on the shape of its overloaded band profile is discussed. Simple but general rules predict these shapes. An original adsorption model is proposed that accounts for the unusual peak shapes observed when the analyte is partially dissociated in the buffer solution during its elution.

  8. Chromatographic assessment of two hybrid monoliths prepared via epoxy-amine ring-opening polymerization and methacrylate-based free radical polymerization using methacrylate epoxy cyclosiloxane as functional monomer.

    PubMed

    Wang, Hongwei; Ou, Junjie; Lin, Hui; Liu, Zhongshan; Huang, Guang; Dong, Jing; Zou, Hanfa

    2014-11-01

    Two kinds of hybrid monolithic columns were prepared by using methacrylate epoxy cyclosiloxane (epoxy-MA) as functional monomer, containing three epoxy moieties and one methacrylate group. One column was in situ fabricated by ring-opening polymerization of epoxy-MA and 1,10-diaminodecane (DAD) using a porogenic system consisting of isopropanol (IPA), H2O and ethanol at 65°C for 12h. The other was prepared by free radical polymerization of epoxy-MA and ethylene dimethacrylate (EDMA) using 1-propanol and 1,4-butanediol as the porogenic solvents at 60°C for 12h. Two hybrid monoliths were investigated on the morphology and chromatographic assessment. Although two kinds of monolithic columns were prepared with epoxy-MA, their morphologies looked rather different. It could be found that the epoxy-MA-DAD monolith possessed higher column efficiencies (25,000-34,000plates/m) for the separation of alkylbenzenes than the epoxy-MA-EDMA monolith (12,000-13,000plates/m) in reversed-phase nano-liquid chromatography (nano-LC). Depending on the remaining epoxy or methacrylate groups on the surface of two pristine monoliths, the epoxy-MA-EDMA monolith could be easily modified with 1-octadecylamine (ODA) via ring-opening reaction, while the epoxy-MA-DAD monolith could be modified with stearyl methacrylate (SMA) via free radical reaction. The chromatographic performance for the separation of alkylbenzenes on SMA-modified epoxy-MA-DAD monolith was remarkably improved (42,000-54,000 plates/m) when compared with that on pristine epoxy-MA-DAD monolith, while it was not obviously enhanced on ODA-modified epoxy-MA-EDMA monolith when compared with that on pristine epoxy-MA-EDMA monolith. The enhancement of the column efficiency of epoxy-MA-DAD monolith after modification might be ascribed to the decreased mass-transfer resistence. The two kinds of hybrid monoliths were also applied for separations of six phenols and seven basic compounds in nano-LC. PMID:25311483

  9. Synthesis and evaluation of N-(2,3-dihydroxypropyl)-PEIs as efficient vectors for nucleic acids.

    PubMed

    Tripathi, Sushil K; Yadav, Santosh; Gupta, Kailash C; Kumar, Pradeep

    2012-04-01

    Branched polyethylenimine (bPEI, 25 kDa) has been widely used as an efficient delivery vector for nucleic acids in vitro. However, its charge-associated toxicity has limited its in vivo applications. In an attempt to control its toxicity, it was reacted with varying amounts of glycidol (2,3-epoxy-1-propanol) to obtain a small series of hydrophilic polymers, 2,3-dihydroxypropyl-grafted-polyethylenimines (DHP-g-P). The resulting polymers were characterized by (1)H-NMR and subjected to interaction with negatively charged pDNA, which yielded complexes in the size range of ~171-190 nm with a zeta potential of ∼+33-39 mV. Acid-base titration revealed no effect of substitution on the buffering capacity of the modified polymers. Grafting of 2,3-dihydroxypropyl groups on bPEI significantly improved the cell viability (i.e. almost non-toxic) as well as the DNA release properties of these modified polymers compared to native bPEI. Formation of a relatively loose DHP-g-P25/pDNA complex (the best working system in terms of transfection efficiency) resulted in the efficient nuclear release of pDNA for transcription, a prerequisite for efficient transfection. Subsequently, upon evaluation of their ability to transfer nucleic acids in vitro, the DHP-g-P/pDNA complexes exhibited higher gene transfection efficiency with one of the formulations, DHP-g-P25/DNA complex, displaying ~2.7 folds higher GFP expression than bPEI and ~2.3-3.5 folds higher than the selected commercial transfection reagents used in this study. Further to quantify the extent of GFP positive cells, FACS analysis was performed, which revealed DHP-g-P25/DNA mediated gene expression in ~51% cells outcompeting bPEI, Superfect™, Fugene™ and Lipofectamine™. Sequential delivery of GFP-specific siRNA resulted in ~78% suppression of the target gene compared to ~49% achieved by Fugene™. All these results demonstrate the potential of these polymers for in vivo gene delivery. PMID:22419101

  10. Dexamethasone modulates rat renal brush border membrane phosphate transporter mRNA and protein abundance and glycosphingolipid composition.

    PubMed Central

    Levi, M; Shayman, J A; Abe, A; Gross, S K; McCluer, R H; Biber, J; Murer, H; Lötscher, M; Cronin, R E

    1995-01-01

    Glucocorticoids are important regulators of renal phosphate transport. This study investigates the role of alterations in renal brush border membrane (BBM) sodium gradient-dependent phosphate transport (Na-Pi cotransporter) mRNA and protein abundance in the dexamethasone induced inhibition of Na-Pi cotransport in the rat. Dexamethasone administration for 4 d caused a 1.5-fold increase in the Vmax of Na-Pi cotransport (1785 +/- 119 vs. 2759 +/- 375 pmol/5 s per mg BBM protein in control, P < 0.01), which was paralleled by a 2.5-fold decrease in the abundance of Na-Pi mRNA and Na-Pi protein. There was also a 1.7-fold increase in BBM glucosylceramide content (528 +/- 63 vs. 312 +/- 41 ng/mg BBM protein in control, P < 0.02). To determine whether the alteration in glucosylceramide content per se played a functional role in the decrease in Na-Pi cotransport, control rats were treated with the glucosylceramide synthase inhibitor, D-threo-1-phenyl-2-decanoyl-amino-3-morpholino-1-propanol (PDMP). The resultant 1.5-fold decrease in BBM glucosylceramide content (199 +/- 19 vs. 312 +/- 41 ng/mg BBM protein in control, P < 0.02) was associated with a 1.4-fold increase in Na-Pi cotransport activity (1422 +/- 73 vs. 1048 +/- 85 pmol/5 s per mg BBM protein in control, P < 0.01), and a 1.5-fold increase in BBM Na-Pi protein abundance. Thus, dexamethasone-induced inhibition of Na-Pi cotransport is associated with a decrease in BBM Na-Pi cotransporter abundance, and an increase in glucosylceramide. Since primary alteration in BBM glucosylceramide content per se directly and selectively modulates BBM Na-Pi cotransport activity and Na-Pi protein abundance, we propose that the increase in BBM glucosylceramide content plays an important role in mediating the inhibitory effect of dexamethasone on Na-Pi cotransport activity. Images PMID:7615789

  11. Enneanuclear [Ni6Ln3] Cages: [Ln(III)3] Triangles Capping [Ni(II)6] Trigonal Prisms Including a [Ni6Dy3] Single-Molecule Magnet.

    PubMed

    Canaj, Angelos B; Tzimopoulos, Demetrios I; Siczek, Milosz; Lis, Tadeusz; Inglis, Ross; Milios, Constantinos J

    2015-07-20

    The use of (2-(β-naphthalideneamino)-2-hydroxymethyl-1-propanol) ligand, H3L, in Ni/Ln chemistry has led to the isolation of three new isostructural [Ni(II)6Ln(III)3] metallic cages. More specifically, the reaction of Ni(ClO4)2·6H2O, the corresponding lanthanide nitrate salt, and H3L in MeCN, under solvothermal conditions in the presence of NEt3, led to the isolation of three complexes with the formulas [Ni6Gd3(OH)6(HL)6(NO3)3]·5.75MeCN·2Et2O·1.5H2O (1·5.75MeCN·2Et2O·1.5H2O), [Ni6Dy3(OH)6(HL)6(NO3)3]·2MeCN·2.7Et2O·2.4H2O (2·2MeCN·2.7Et2O·2.4H2O), and [Ni6Er3(OH)6(HL)6(NO3)3]·5.75MeCN·2Et2O·1.5H2O (3·5.75MeCN·2Et2O·1.5H2O). The structure of all three clusters describes a [Ln(III)3] triangle capping a [Ni(II)6] trigonal prism. Direct current magnetic susceptibility studies in the 5-300 K range for complexes 1-3 reveal the different nature of the magnetic interactions within the clusters: dominant antiferromagnetic exchange interactions for the Dy(III) and Er(III) analogues and dominant ferromagnetic interactions for the Gd(III) example. Alternating current magnetic susceptibility measurements under zero external dc field displayed fully formed temperature- and frequency-dependent out-of-phase peaks for the [Ni(II)6Dy(III)3] analogue, establishing its single molecule magnetism behavior with Ueff = 24 K. PMID:26135204

  12. The effect of cavitating ultrasound on the aqueous phase hydrogenation of cis-2-buten-1-ol and cis-2-penten-1-ol on Pd-black

    SciTech Connect

    Disselkamp, Robert S.; Denslow, Kayte M.; Hart, Todd R.; White, James F.; Peden, Charles HF.

    2005-07-15

    We have studied the effect of cavitating ultrasound on the heterogeneous aqueous hydrogenation of cis-2-buten-1-ol (C4 olefin) and cis-2-penten-1-ol (C5 olefin) on Pd-black to form the trans-olefins (trans-2-buten-1-ol and trans-2-penten-1-ol) and saturated alcohols (1-butanol and 1-pentanol, respectively). Silent (and magnetically stirred) experiments served as control experiments. As described in an earlier publication by our group, we have added an inert dopant, 1-propanol, in the reaction mixture to ensure the rapid onset of cavitation in the ultrasound-assisted reactions that can lead to altered selectivity compared to silent reaction systems [R.S. Disselkamp, Ya-Huei Chin, C.H.F. Peden, J. Catal. 227 (2004) 552]. The motivation for this study is to examine whether cavitating ultrasound can reduce the [trans-olefin/saturated alcohol] molar ratio during the course of the reaction. This could have practical application in that it may offer an alternative processing methodology of synthesizing healthier edible seed oils by reducing trans-fat content.We have observed that cavitating ultrasound results in a [(trans-olefin/saturated alcohol)ultrasound/(trans-olefin/saturated alcohol)silent] ratio quantity less than 0.5 at the reaction mid-point for both the C4 and C5 olefin systems. This indicates that ultrasound reduces trans-olefin production compared to the silent control experiment. Furthermore, there is an added 30% reduction for the C5 versus C4 olefin compounds again at reaction mid-point. We attribute differences in the ratio quantity as a moment of inertia effect. In principle, the C4 versus C5 olefins has a {approx}52% increase in moment of inertia about C2 C3 double bond slowing isomerization. Since seed oils are C18 multiple cis-olefins and have a moment of inertia even greater than our C5 olefin here, our study suggests that even a greater reduction in trans-olefin content may occur for partial hydrogenation of C18 seed oils.

  13. The Effect of Cavitating Ultrasound on the Aqueous Phase Hydrogenation of Cis-2-buten-1-ol and Cis-2-penten-1-ol on Pd-black

    SciTech Connect

    Disselkamp, Robert S.; Denslow, Kayte M.; Hart, Todd R.; White, James F.; Peden, Charles HF.

    2005-07-15

    We have studied the effect of cavitating ultrasound on the heterogeneous aqueous hydrogenation of cis-2-buten-1-ol (C4 olefin) and cis-2-penten-1-ol (C5 olefin) on Pd-black to form the trans-olefins (trans-2-buten-1-ol and trans-2-penten-1-ol) and saturated alcohols (1-butanol and 1-pentanol, respectively). Silent (and magnetically stirred) experiments served as control experiments. As described in an earlier publication by our group, we have added an inert dopant, 1-propanol, in the reaction mixture to ensure the rapid onset of cavitation in the ultrasound-assisted reactions that can lead to altered selectivity compared to silent reaction systems [Disselkamp et al., J. Catal., 227 (2004) 552]. The motivation for this study is to examine whether cavitating ultrasound can reduce the [trans-olefin/saturated alcohol] molar ratio during the course of the reaction. This could have practical application in that it may offer an alternative processing methodology of synthesizing healthier edible seed oils by reducing trans-fat content. We have observed that cavitating ultrasound results in a [(trans-olefin/saturated alcohol)ultrasound/(trans-olefin/saturated alcohol)silent] ratio quantity less than 0.5 at the reaction mid-point for both the C4 and C5 olefin systems. This indicates that ultrasound reduces trans-olefin production compared to the silent control experiment. Furthermore, there is an added 30% reduction for the C5 versus C4 olefin compounds again at reaction mid-point. We attribute differences in the ratio quantity as a moment of inertia effect. In principle, the C4 versus C5 olefins has a {approx}52% increase in moment of inertia about C2=C3 double bond slowing isomerization. Since seed oils are C18 multiple cis olefins and have an moment of inertia even greater than our C5 olefin here, our study suggests that even a greater reduction in trans-olefin content may occur for partial hydrogenation of C18 seed oils.

  14. Molecular analysis of volatile metabolites released specifically by staphylococcus aureus and pseudomonas aeruginosa

    PubMed Central

    2012-01-01

    Background The routinely used microbiological diagnosis of ventilator associated pneumonia (VAP) is time consuming and often requires invasive methods for collection of human specimens (e.g. bronchoscopy). Therefore, it is of utmost interest to develop a non-invasive method for the early detection of bacterial infection in ventilated patients, preferably allowing the identification of the specific pathogens. The present work is an attempt to identify pathogen-derived volatile biomarkers in breath that can be used for early and non- invasive diagnosis of ventilator associated pneumonia (VAP). For this purpose, in vitro experiments with bacteria most frequently found in VAP patients, i.e. Staphylococcus aureus and Pseudomonas aeruginosa, were performed to investigate the release or consumption of volatile organic compounds (VOCs). Results Headspace samples were collected and preconcentrated on multibed sorption tubes at different time points and subsequently analyzed with gas chromatography mass spectrometry (GC-MS). As many as 32 and 37 volatile metabolites were released by S. aureus and P. aeruginosa, respectively. Distinct differences in the bacteria-specific VOC profiles were found, especially with regard to aldehydes (e.g. acetaldehyde, 3-methylbutanal), which were taken up only by P. aeruginosa but released by S. aureus. Differences in concentration profiles were also found for acids (e.g. isovaleric acid), ketones (e.g. acetoin, 2-nonanone), hydrocarbons (e.g. 2-butene, 1,10-undecadiene), alcohols (e.g. 2-methyl-1-propanol, 2-butanol), esters (e.g. ethyl formate, methyl 2-methylbutyrate), volatile sulfur compounds (VSCs, e.g. dimethylsulfide) and volatile nitrogen compounds (VNCs, e.g. 3-methylpyrrole). Importantly, a significant VOC release was found already 1.5 hours after culture start, corresponding to cell numbers of ~8*106 [CFUs/ml]. Conclusions The results obtained provide strong evidence that the detection and perhaps even identification of bacteria

  15. Microstructure investigation on micropore formation in microporous silica materials prepared via a catalytic sol-gel process by small angle X-ray scattering.

    PubMed

    Shimizu, Wataru; Hokka, Junsuke; Sato, Takaaki; Usami, Hisanao; Murakami, Yasushi

    2011-08-01

    The so-called sol-gel technique has been shown to be a template-free, efficient way to create functional porous silica materials having uniform micropores. This appears to be closely linked with a postulation that the formation of weakly branched polymer-like aggregates in a precursor solution is a key to the uniform micropore generation. However, how such a polymer-like structure can precisely be controlled, and further, how the generated low-fractal dimension solution structure is imprinted on the solid silica materials still remain elusive. Here we present fabrication of microporous silica from tetramethyl orthosilicate (TMOS) using a recently developed catalytic sol-gel process based on a nonionic hydroxyacetone (HA) catalyst. Small angle X-ray scattering (SAXS), nitrogen adsorption porosimetry, and transmission electron microscope (TEM) allowed us to observe the whole structural evolution, ranging from polymer-like aggregates in the precursor solution to agglomeration with heat treatment and microporous morphology of silica powders after drying and hydrolysis. Using the HA catalyst with short chain monohydric alcohols (methanol or ethanol) in the precursor solution, polymer-like aggregates having microscopic correlation length (or mesh-size) < 2 nm and low fractal dimensions ∼2, which is identical to that of an ideal coil polymer, can selectively be synthesized, yielding the uniform micropores with diameters <2 nm in the solid materials. In contrast, the absence of HA or substitution of 1-propanol led to considerably different scattering behavior reflecting the particle-like aggregate formation in the precursor solution, which resulted in the formation of mesopores (diameter >2 nm) in the solid product due to apertures between the particle-like aggregates. The data demonstrate that the extremely fine porous silica architecture comes essentially from a gaussian polymer-like nature of the silica aggregates in the precursor having the microscopic mesh-size and

  16. Porcine Sapelovirus Uses α2,3-Linked Sialic Acid on GD1a Ganglioside as a Receptor

    PubMed Central

    Kim, Deok-Song; Son, Kyu-Yeol; Koo, Kyung-Min; Kim, Ji-Yun; Alfajaro, Mia Madel; Park, Jun-Gyu; Hosmillo, Myra; Soliman, Mahmoud; Baek, Yeong-Bin; Cho, Eun-Hyo; Lee, Ju-Hwan; Kang, Mun-Il

    2016-01-01

    ABSTRACT The receptor(s) for porcine sapelovirus (PSV), which causes diarrhea, pneumonia, polioencephalomyelitis, and reproductive disorders in pigs, remains largely unknown. Given the precedent for other picornaviruses which use terminal sialic acids (SAs) as receptors, we examined the role of SAs in PSV binding and infection. Using a variety of approaches, including treating cells with a carbohydrate-destroying chemical (NaIO4), mono- or oligosaccharides (N-acetylneuraminic acid, galactose, and 6′-sialyllactose), linkage-specific sialidases (neuraminidase and sialidase S), lectins (Maakia amurensis lectin and Sambucus nigra lectin), proteases (trypsin and chymotrypsin), and glucosylceramide synthase inhibitors (dl-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol and phospholipase C), we demonstrated that PSV could recognize α2,3-linked SA on glycolipids as a receptor. On the other hand, PSVs had no binding affinity for synthetic histo-blood group antigens (HBGAs), suggesting that PSVs could not use HBGAs as receptors. Depletion of cell surface glycolipids followed by reconstitution studies indicated that GD1a ganglioside, but not other gangliosides, could restore PSV binding and infection, further confirming α2,3-linked SA on GD1a as a PSV receptor. Our results could provide significant information on the understanding of the life cycle of sapelovirus and other picornaviruses. For the broader community in the area of pathogens and pathogenesis, these findings and insights could contribute to the development of affordable, useful, and efficient drugs for anti-sapelovirus therapy. IMPORTANCE The porcine sapelovirus (PSV) is known to cause enteritis, pneumonia, polioencephalomyelitis, and reproductive disorders in pigs. However, the receptor(s) that the PSV utilizes to enter host cells remains largely unknown. Using a variety of approaches, we showed that α2,3-linked terminal sialic acid (SA) on the cell surface GD1a ganglioside could be used for PSV

  17. Liquid-feed flame spray pyrolysis synthesis of oxide nanopowders for the processing of ceramic composites

    NASA Astrophysics Data System (ADS)

    Taylor, Nathan John

    In the liquid-feed flame spray pyrolysis (LF-FSP) process, alcohol solutions of metalloorganic precursors are aerosolized by O2 and combusted. The metal oxide combustion products are rapidly quenched (< 10 ms) from flame temperatures of 1500°C to temperatures < 400° C, limiting particle growth. The resulting nanopowders are typically agglomerated but unaggregated. Here, we demonstrate two processing approaches to dense materials: nanopowders with the exact composition, and mixed single metal oxide nanopowders. The effect of the initial degree of phase separation on the final microstructures was determined by sintering studies. Our first studies included the production of yttrium aluminum garnet, Y3Al5O12 (YAG), tubes which we extruded from a thermoplastic/ceramic blend. At equivalent final densities, we found finer grain sizes in the from the mixed Y2O3 and Al2 O3 nanopowders, which was attributed to densification occurring before full transformation to the YAG phase. The enhanced densification in production of pure YAG from the reactive sintering process led us to produce composites in the YAG/alpha-Al 2O3 system. Finally, a third Y2O3 stabilized ZrO2 (YSZ) phase was added to further refine grain sizes using the same two processing approaches. In a separate study, single-phase metastable Al2O3 rich spinels with the composition MO•3Al 2O3 where M = Mg, Ni, and Co were sintered to produce dense MAl2O4/alpha-Al2O3 composites. All of these studies provide a test of the bottom-up approach; that is, how the initial length scale of mixing affects the final composite microstructure. Overall, the length scale of mixing is highly dependent upon the specific oxide composites studied. This work provides a processing framework to be adopted by other researchers to further refine microstructural size. LF-FSP flame temperatures were mapped using different alcohols with different heats of combustion: methanol, ethanol, 1-propanol, and n-butanol. The effect of different

  18. An examination of the H/D isotope substitution effect on selectivity and activity in the cavitating ultrasound hydrogenation of aqueous 3-buten-2-ol and 1,4-pentadien-3-ol on Pd-black

    SciTech Connect

    Boyles, Kelly R.; Chajkowski, Sarah M.; Disselkamp, Robert S.; Peden, Charles HF

    2006-05-24

    An H/D isotope effect study of the (H2 versus D2) hydrogenation of the aqueous substrates 3-buten-2-ol (3B2OL) and 1,4-pentadien-3-ol (14PD3OL) was performed using Pd-black catalyst. Either H2O or D2O solvents were employed (for alcohol H/D isotope substitution). Two experimental processing conditions of cavitating ultrasound (CUS) and stirred/silent (SS) methods were used. Products formed include 2-butanol and 2-butanone for the former, and 3-pentanol and 3-pentanone for the latter. The observed selectivity and pseudo-first order reaction rate coefficients (e.g., activity) to these products enabled a mechanistic interpretation of the various reaction conditions to be proposed. Experiments utilized a 50 mL batch reactor maintained at 298 K, employed 5.4 atm of H2 or D2 gas, while seven aliquots were collected during the course of the reaction. We have utilized 1-propanol as an inert dopant in all experiments to enable the rapid onset of cavitation in the CUS systems as described earlier [R.S. Disselkamp et al., J. Catal., 227, 552 (2004)]. The following conclusions were noted. First, the activity of the CUS compared to SS processing were ~100-fold larger. Second, variable catalyst loading experiments for stirred/silent D2 hydrogenation processing indicated that mass transfer of hydrogen gas to the Pd-surface played a role such that higher catalyst loading reduced surface D-atom concentrations and reduced saturated alcohol formation (e.g., via reduced H-addition to surface alkyl radicals). Third, for CUS processing the ketone selectivities for experiments employing water compared to D2O indicated that 3B2OL were twice as large, whereas for 14PD3OL they were comparable. This suggests, somewhat surprisingly, that for 3B2OL enol tautomerization to ketone is a slow, and possibly rate-controlling, process. Finally, again for CUS processing, the similarity in ketone selectivities (all ~17%) for H2 compared to D2 hydrogenation for both 3B2OL and 14PD3OL suggest that both H

  19. Lipolytic activity of ricin from Ricinus sanguineus and Ricinus communis on neutral lipids.

    PubMed Central

    Lombard, S; Helmy, M E; Piéroni, G

    2001-01-01

    The present study was carried out with a view of determining ricin lipolytic activity on neutral lipids in emulsion and in a membrane-like model. Using 2,3-dimercapto-1-propanol tributyrate (BAL-TC(4)) as substrate, the lipolytic activity of ricin was found to be proportional to ricin and substrate concentrations, with an apparent K(m) (K(m,app)) of 2.4 mM, a k(cat) of 200 min(-1) and a specific activity of 1.0 unit/mg of protein. This work was extended to p-nitrophenyl (pNP) fatty acid esters containing two to twelve carbon atoms. Maximum lipolytic activity was registered on pNP decanoate (pNPC(10)), with a K(m,app) of 3.5 mM, a k(cat) of 173 min(-1) and a specific activity of 3.5 units/mg of protein. Ricin lipolytic activity is pH and galactose dependent, with a maximum at pH 7.0 in the presence of 0.2 M galactose. Using the monolayer technique with dicaprin as substrate, ricin showed a lipolytic activity proportional to the ricin concentration at 20 mN/m, which is dependent on the surface pressure of the lipid monolayer and is detectable up to 30 mN/m, a surface pressure that is of the same order of magnitude as that of natural cell membranes. The methods based on pNPC(10) and BAL-TC(4) hydrolysis are simple and reproducible; thus they can be used for routine studies of ricin lipolytic activity. Ricin from Ricinus communis and R. sanguineus were treated with diethyl p-nitrophenylphosphate, an irreversible serine esterase inhibitor, and their lipolytic activities on BAL-TC(4) and pNPC(10), and cytotoxic activity, were concurrently recorded. A reduction in lipolytic activity was accompanied by a decrease in cytotoxicity on Caco2 cells. These data support the idea that the lipolytic activity associated with ricin is relevant to a lipase whose activity is pH and galactose dependent, sensitive to diethyl p-nitrophenylphosphate, and that a lipolytic step may be involved in the process of cell poisoning by ricin. Both colorimetric tests used in this study are sensitive

  20. Regulation of SREBPs by Sphingomyelin in Adipocytes via a Caveolin and Ras-ERK-MAPK-CREB Signaling Pathway

    PubMed Central

    Makdissy, Nehman; Popa, Iuliana; Younsi, Mohamed; Valet, Philippe; Brunaud, Laurent; Ziegler, Olivier; Quilliot, Didier

    2015-01-01

    Sterol response element binding protein (SREBP) is a key transcription factor in insulin and glucose metabolism. We previously demonstrated that elevated levels of membrane sphingomyelin (SM) were related to peroxisome proliferator–activated receptor-γ (PPARγ), which is a known target gene of SREBP-1 in adipocytes. However, the role of SM in SREBP expression in adipocytes remains unknown. In human abdominal adipose tissue from obese women with various concentrations of fasting plasma insulin, SREBP-1 proteins decreased in parallel with increases in membrane SM levels. An inverse correlation was found between the membrane SM content and the levels of SREBP-1c/ERK/Ras/PPARγ/CREB proteins. For the first time, we demonstrate the effects of SM and its signaling pathway in 3T3-F442A adipocytes. These cells were enriched or unenriched with SM in a range of concentrations similar to those observed in obese subjects by adding exogenous natural SMs (having different acyl chain lengths) or by inhibiting neutral sphingomyelinase. SM accumulated in caveolae of the plasma membrane within 24 h and then in the intracellular space. SM enrichment decreased SREBP-1 through the inhibition of extracellular signal-regulated protein kinase (ERK) but not JNK or p38 mitogen-activated protein kinase (MAPK). Ras/Raf-1/MEK1/2 and KSR proteins, which are upstream mediators of ERK, were down-regulated, whereas SREBP-2/caveolin and cholesterol were up-regulated. In SM-unmodulated adipocytes treated with DL-1-Phenyl-2-Palmitoylamino-3-morpholino-1-propanol (PPMP), where the ceramide level increased, the expression levels of SREBPs and ERK were modulated in an opposite direction relative to the SM-enriched cells. SM inhibited the insulin-induced expression of SREBP-1. Rosiglitazone, which is an anti-diabetic agent and potent activator of PPARγ, reversed the effects of SM on SREBP-1, PPARγ and CREB. Taken together, these findings provide novel insights indicating that excess membrane SM

  1. Insights on Alterations to the Rumen Ecosystem by Nitrate and Nitrocompounds.

    PubMed

    Latham, Elizabeth A; Anderson, Robin C; Pinchak, William E; Nisbet, David J

    2016-01-01

    Nitrate and certain short chain nitrocompounds and nitro-oxy compounds are being investigated as dietary supplements to reduce economic and environmental costs associated with ruminal methane emissions. Thermodynamically, nitrate is a preferred electron acceptor in the rumen that consumes electrons at the expense of methanogenesis during dissimilatory reduction to an intermediate, nitrite, which is primarily reduced to ammonia although small quantities of nitrous oxide may also be produced. Short chain nitrocompounds act as direct inhibitors of methanogenic bacteria although certain of these compounds may also consume electrons at the expense of methanogenesis and are effective inhibitors of important foodborne pathogens. Microbial and nutritional consequences of incorporating nitrate into ruminant diets typically results in increased acetate production. Unlike most other methane-inhibiting supplements, nitrate decreases or has no effect on propionate production. The type of nitrate salt added influences rates of nitrate reduction, rates of nitrite accumulation and efficacy of methane reduction, with sodium and potassium salts being more potent than calcium nitrate salts. Digestive consequences of adding nitrocompounds to ruminant diets are more variable and may in some cases increase propionate production. Concerns about the toxicity of nitrate's intermediate product, nitrite, to ruminants necessitate management, as animal poisoning may occur via methemoglobinemia. Certain of the naturally occurring nitrocompounds, such as 3-nitro-1-propionate or 3-nitro-1-propanol also cause poisoning but via inhibition of succinate dehydrogenase. Typical risk management procedures to avoid nitrite toxicity involve gradually adapting the animals to higher concentrations of nitrate and nitrite, which could possibly be used with the nitrocompounds as well. A number of organisms responsible for nitrate metabolism in the rumen have been characterized. To date a single rumen bacterium

  2. Volumetric Properties of Dilute Aqueous Solutions of 1- and 2-propanol to 50 MPa and 373.15 K

    NASA Astrophysics Data System (ADS)

    Seitz, J.; Bahramian, J.; Blackwell, R.; Inaki, T.; York, D.; Schulte, M. D.

    2014-12-01

    The need to accurately model and understand reactions among organic compounds and biomolecules in solution is necessary to develop realistic chemical models for the reactions leading to the emergence of life and metabolic processes of extremophiles under elevated temperature and pressure conditions. Unfortunately, the scarcity of experimentally determined volumetric (and other) properties for important compounds at high temperatures and pressures leads to uncertainty in the calculation of reaction properties. Experimentally determined volumetric properties of aqueous solutions at non-standard conditions provide direct tests of current estimation methods and aid in the refinement of these methods. The goal of our research is to provide a database of experimentally determined volumetric properties. In previous studies, we have examined important organic molecules and biomolecules such as adenosine, coenzyme M and D-ribose. In this study, we investigate the volumetric properties of the structural isomers 1- and 2-propanol. 1-propanol (n-propanol) is a primary alcohol (CH3CH2CH2OH) and 2-propanol (isopropanol) is the simplest example of a secondary alcohol (CH3CHOHCH3). These compounds differ slightly in structure depending on to which carbon atom the hydroxyl group is bonded and will provide a sensitive test of current estimation methods and lead to more accurate predictions of the properties of complex aqueous systems at elevated temperatures and pressures. We obtained the densities of aqueous solutions of the alchohols using an Anton Paar DMA HP vibrating tube densimeter. Pressure was measured (pressure transducer) to an accuracy of ±0.01% and temperature was measured (integrated platinum thermometer) with an accuracy of ±0.05 K. Experimental uncertainty of density measurements is less than ±0.0001 g·cm-3. The partial molar volumes at infinite dilution (V∞) for 1- and 2-propanol were calculated from the measured densities and are shown in the figure at 0

  3. Synthesis of a spacer-containing repeating unit of the capsular polysaccharide of Streptococcus pneumoniae type 23F.

    PubMed

    van Steijn, A M; Kamerling, J P; Vliegenthart, J F

    1991-04-24

    The synthesis is reported of 3-aminopropyl 4-O-(4-O-beta-D-glucopyranosyl-2-O-alpha-L-rhamnopyranosyl-beta-D- galactopyranosyl)-beta-L-rhamnopyranoside 3'-(glycer-2-yl sodium phosphate) (25 beta), which represents the repeating unit of the capsular polysaccharide of Streptococcus pneumoniae type 23F (American type 23) [(----4)-beta-D-Glcp-(1----4)-[Glycerol-(2-P----3)] [alpha-L- Rhap-(1----2)]-beta-D-Galp-(1----4)-beta-L-Rhap-(1----)n). 2,4,6-Tri-O-acetyl-3-O-allyl-alpha-D-galactopyranosyl trichloroacetimidate (5) was coupled with ethyl 2,3-di-O-benzyl-1-thio-alpha-L-rhamnopyranoside (6). Deacetylation of the resulting disaccharide derivative, followed by benzylidenation, and condensation with 2,3,4-trio-O-acetyl-alpha-L-rhamnopyranosyl trichloroacetimidate (10) afforded ethyl 4-O-[3-O-allyl-4,6-O-benzylidene-2-O-(2,3,4-trio-O-acetyl- alpha-L-rhamnopyranosyl)-beta-D-galactopyranosyl]-2,3-di-O-benzyl-1-thio - alpha-L-rhamnopyranoside (11). Deacetylation of 11, followed by benzylation, selective benzylidene ring-opening, and coupling with 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (15) gave ethyl 4-O-[3-O-allyl-6-O-benzyl-4-O-(2,3,4,6- tetra-O-acetyl-beta-D-glucopyranosyl)-2-O-(2,3,4-tri-O-benzyl-alpha-L- rhamnopyranosyl)-beta-D-galactopyranosyl]-2,3-di-O-benzyl-1-thio-alpha-L - rhamnopyranoside (16). Deacetylation of 16 followed by benzylation, deallylation, and acetylation yielded ethyl 4-O-[3-O-acetyl-6-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-beta-D-glucopy ran osyl)- 2-O-(2,3,4-tri-O-benzyl-alpha-L-rhamnopyranosyl)-beta-D-galactopyranosyl ]-2,3- di-O-benzyl-1-thio-alpha-L-rhamnopyranoside (20). The glycosyl bromide derived from 20, when coupled with 3-benzyloxycarbonylamino-1-propanol, gave the beta-glycoside (21 beta) as the major product. Deacetylation of 21 beta followed by condensation with 1,3-di-O-benzylglycerol 2-(triethylammonium phosphonate) (27), oxidation, and deprotection, afforded 25 beta. PMID:1769015

  4. Insights on Alterations to the Rumen Ecosystem by Nitrate and Nitrocompounds

    PubMed Central

    Latham, Elizabeth A.; Anderson, Robin C.; Pinchak, William E.; Nisbet, David J.

    2016-01-01

    Nitrate and certain short chain nitrocompounds and nitro-oxy compounds are being investigated as dietary supplements to reduce economic and environmental costs associated with ruminal methane emissions. Thermodynamically, nitrate is a preferred electron acceptor in the rumen that consumes electrons at the expense of methanogenesis during dissimilatory reduction to an intermediate, nitrite, which is primarily reduced to ammonia although small quantities of nitrous oxide may also be produced. Short chain nitrocompounds act as direct inhibitors of methanogenic bacteria although certain of these compounds may also consume electrons at the expense of methanogenesis and are effective inhibitors of important foodborne pathogens. Microbial and nutritional consequences of incorporating nitrate into ruminant diets typically results in increased acetate production. Unlike most other methane-inhibiting supplements, nitrate decreases or has no effect on propionate production. The type of nitrate salt added influences rates of nitrate reduction, rates of nitrite accumulation and efficacy of methane reduction, with sodium and potassium salts being more potent than calcium nitrate salts. Digestive consequences of adding nitrocompounds to ruminant diets are more variable and may in some cases increase propionate production. Concerns about the toxicity of nitrate's intermediate product, nitrite, to ruminants necessitate management, as animal poisoning may occur via methemoglobinemia. Certain of the naturally occurring nitrocompounds, such as 3-nitro-1-propionate or 3-nitro-1-propanol also cause poisoning but via inhibition of succinate dehydrogenase. Typical risk management procedures to avoid nitrite toxicity involve gradually adapting the animals to higher concentrations of nitrate and nitrite, which could possibly be used with the nitrocompounds as well. A number of organisms responsible for nitrate metabolism in the rumen have been characterized. To date a single rumen bacterium

  5. Aliphatic β-Nitroalcohols for Therapeutic Corneoscleral Cross-linking: Chemical Mechanisms and Higher Order Nitroalcohols

    PubMed Central

    Solomon, Marissa R.; Wen, Quan; Turro, Nicholas J.; Trokel, Stephen L.

    2010-01-01

    Purpose. The recent tissue cross-linking studies indicate that aliphatic β-nitroalcohols (BNAs) may be useful as pharmacologic corneoscleral cross-linking agents. The present study was performed to identify the specific chemistry involved under physiologic conditions, with the intent of identifying more effective agents. Methods. The mechanism of chemical cross-linking at pH 7.4 and 37°C was studied using three techniques. The colorimetric Griess assay was used to follow the release of nitrite from three mono-nitroalcohols (2-nitroethanol [2ne], 2-nitro-1-propanol [2nprop]), and 3-nitro-2-pentanol [3n2pent]). Second, the evolution of 2nprop in 0.2 M NaH2PO4/Na2HPO4/D2O was studied using 1H-NMR. Third, thermal shrinkage temperature analysis (Ts), a measure of tissue cross-linking, was used to support information from 1the H-NMR studies. Results. A time-dependent release of nitrite was observed for all three mono-nitroalcohols studied. The maximum levels were comparable using either 2ne or 2nprop (∼30%). However, much less (∼10%) was observed from 3n2pent. Using 1H-NMR, 2nprop evolved into a unique splitting pattern. No match was observed with reference spectra from three possible products of denitration. In contrast, 2-methyl-2-nitro-1,3-propanediol (MNPD), a nitro-diol, was identified, implying the formation of formaldehyde from a retro-nitroaldol (i.e., reverse Henry) reaction. In support of this mechanism, Ts shifts induced by the nitro-triol 2-hydroxymethyl-2-nitro-1,3-propanediol (HNPD) were superior to the nitro-diol MNPD which were superior to the mono nitroalcohol 2nprop. Conclusions. BNAs function as both formaldehyde and nitrite donors under physiologic conditions to cross-link collagenous tissue. Higher order BNAs are more effective than mono nitroalcohols, raising the possibility of using these agents for therapeutic corneoscleral cross-linking. PMID:19797229

  6. Cell growth regulation through GM3-enriched microdomain (glycosynapse) in human lung embryonal fibroblast WI38 and its oncogenic transformant VA13.

    PubMed

    Toledo, Marcos S; Suzuki, Erika; Handa, Kazuko; Hakomori, Senitiroh

    2004-08-13

    Cell growth control mechanisms were studied based on organization of components in glycosphingolipid-enriched microdomain (GEM) in WI38 cells versus their oncogenic transformant VA13 cells. Levels of fibroblast growth factor receptor (FGFR) and cSrc were 4 times and 2-3 times higher, respectively, in VA13 than in WI38 GEM, whereas the level of tetraspanin CD9/CD81 was 3-5 times higher in WI38 than in VA13 GEM. Csk, the physiological inhibitor of cSrc, was present in WI38 but not in VA13 GEM. Functional association of GEM components in control of cell growth in WI38 is indicated by several lines of evidence. (i) Confluent, growth-inhibited WI38 showed a lower degree of FGF-induced MAPK activation than actively growing cells in sparse culture. (ii) The level of inactive cSrc (with Tyr-527 phosphate) was higher in confluent cells than in actively growing cells. Both processes i and ii were inhibited by GM3 since they were enhanced by GM3 depletion with d-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (P4). (iii) The high level of inactive cSrc associated with growth-inhibited cells was caused by coexisting Csk in WI38 GEM. (iv) Interaction of GM3 with FGFR was demonstrated by binding of GM3 to FGFR in the GEM fraction, as probed with GM3-coated beads, and by confocal microscopy. In contrast to WI38, both cSrc and MAPK in VA13 were strongly activated regardless of FGF stimulation or GM3 depletion by P4. Continuous, constitutive activation of both cSrc and MAPK was due to (i) a much higher level of cSrc and FGFR in VA13 than in WI38 GEM, (ii) their close association/interaction in VA13 GEM as indicated by clear coimmunoprecipitation between cSrc and FGFR, and (iii) the absence of Csk in VA13 GEM, making GEM incapable of inhibiting cSrc activation. PMID:15143068

  7. Dip-angle influence on areal DNAPL recovery by co-solvent flooding with and without pre-flooding.

    PubMed

    Boyd, Glen R; Li, Minghua; Husserl, Johana; Ocampo-Gómez, Ana M

    2006-01-10

    A two-dimensional (2D) laboratory model was used to study effects of gravity on areal recovery of a representative dense non-aqueous phase liquid (DNAPL) contaminant by an alcohol pre-flood and co-solvent flood in dipping aquifers. Recent studies have demonstrated that injection of alcohol and co-solvent solutions can be used to reduce in-situ the density of DNAPL globules and displace the contaminant from the source zone. However, contact with aqueous alcohol reduces interfacial tension and causes DNAPL swelling, thus facilitating risk of uncontrolled downward DNAPL migration. The 2D laboratory model was operated with constant background gradient flow and a DNAPL spill was simulated using tetrachloroethene (PCE). The spill was dispersed to a trapped, immobile PCE saturation by a water flood. Areal PCE recovery was studied using a double-triangle well pattern to simulate a remediation scheme consisting of an alcohol pre-flood using aqueous isobutanol ( approximately 10% vol.) followed by a co-solvent flood using a solution of ethylene glycol (65%) and 1-propanol (35%). Experiments were conducted with the 2D model oriented in the horizontal plane and compared to experiments at the 15 degrees and 30 degrees dip-angle orientations. Injection was applied either in the downward or upward direction of flow. Experimental results were compared to theoretical predictions for flood front stability and used to evaluate effects of gravity on areal PCE recovery. Sensitivity experiments were performed to evaluate effects of the alcohol pre-flood on PCE areal recovery. For experiments conducted with the alcohol pre-flood and the 2D model oriented in the horizontal plane, results indicate that 89-93% of source zone PCE was recovered. With injection oriented downward, results indicate that areal PCE recovery was 70-77% for a 15 degrees dip angle and 57-59% for a 30 degrees dip angle. With injection oriented upward, results indicate that areal PCE recovery was 57-60% at the 30

  8. Peak shapes of acids and bases under overloaded conditions in reversed-phase liquid chromatography, with weakly buffered mobile phases of various pH: A thermodynamic interpretation

    SciTech Connect

    Gritti, Fabrice; Guiochon, Georges A

    2009-01-01

    We measured overloaded band profiles for a series of nine compounds (phenol, caffeine, 3-phenyl 1-propanol, 2-phenylbutyric acid, amphetamine, aniline, benzylamine, p-toluidine, and procainamidium chloride) on columns packed with four different C{sub 18}-bonded packing materials: XTerra-C{sub 18}, Gemini-C{sub 18}, Luna-C{sub 18}(2), and Halo-C{sub 18}, using buffered methanol-water mobile phases. The {sub W}{sup S}pH of the mobile phase was increased from 2.6 to 11.3. The buffer concentration (either phosphate, acetate, or carbonate buffers) was set constant at values below the maximum concentration of the sample in the band. The influence of the surface chemistry of the packing material on the retention and the shape of the peaks was investigated. Adsorbents having a hybrid inorganic/organic structure tend to give peaks exhibiting moderate or little tailing. The retention and the shape of the band profiles can easily be interpreted at {sub W}{sup S}pHs that are well above or well below the {sub W}{sup S}pK{sub a} of the compound studied. In contrast, the peak shapes in the intermediary pH range (i.e., close to the compound {sub W}{sup S}pK{sub a}) have rarely been studied. These shapes reveal the complexity of the competitive adsorption behavior of couples of acido-basic conjugated compounds at {sub W}{sup S}pHs that are close to their {sub W}{sup S}pK{sub a}. They also reveal the role of the buffer capacity on the resulting peak shape. With increasing {sub W}{sup S}pH, the overloaded profiles are first langmuirian (isotherm type I) at low {sub W}{sup S}pHs, they become S-shaped (isotherm type II), then anti-langmuirian (isotherm type III), S-shaped again at intermediate {sub W}{sup S}pHs, and finally return to a langmuirian shape at high {sub W}{sup S}pHs. A new general adsorption isotherm model that takes into account the dissociation equilibrium of conjugated acidic and basic species in the bulk mobile phase accounts for these transient band shapes. An

  9. Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces.

    PubMed

    Dridi, Bédis; Fardeau, Marie-Laure; Ollivier, Bernard; Raoult, Didier; Drancourt, Michel

    2012-08-01

    During attempts to obtain novel, human-associated species of the domain Archaea, a coccoid micro-organism, designated strain B10(T), was isolated in pure culture from a sample of human faeces collected in Marseille, France. On the basis of its phenotypic characteristics and 16S rRNA and mcrA gene sequences, the novel strain was classified as a methanogenic archaeon. Cells of the strain were non-motile, Gram-staining-positive cocci that were approximately 850 nm in diameter and showed autofluorescence at 420 nm. Cells were lysed by 0.1% (w/v) SDS. With hydrogen as the electron donor, strain B10(T) produced methane by reducing methanol. The novel strain was unable to produce methane when hydrogen or methanol was the sole energy source. In an atmosphere containing CO(2), strain B10(T) could not produce methane from formate, acetate, trimethylamine, 2-butanol, 2-propanol, cyclopentanol, 2-pentanol, ethanol, 1-propanol or 2,3-butanediol. Strain B10(T) grew optimally with 0.5-1.0% (w/v) NaCl, at pH 7.6 and at 37 °C. It required tungstate-selenite for growth. The complete genome of the novel strain was sequenced; the size of the genome was estimated to be 2.05 Mb and the genomic DNA G+C content was 59.93 mol%. In phylogenetic analyses based on 16S rRNA gene sequences, the highest sequence similarities (98.0-98.7%) were seen between strain B10(T) and several uncultured, methanogenic Archaea that had been collected from the digestive tracts of a cockroach, a chicken and mammals. In the same analysis, the non-methanogenic 'Candidatus Aciduliprofundum boonei' DSM 19572 was identified as the cultured micro-organism that was most closely related to strain B10(T) (83.0% 16S rRNA gene sequence similarity). Each of the three treeing algorithms used in the analysis of 16S rRNA gene sequences indicated that strain B10(T) belongs to a novel order that is distinct from the Thermoplasmatales. The novel strain also appeared to be distinct from Methanosphaera stadtmanae DSM 3091(T) (72

  10. a Theoretical and Experimental Study of the Conformation of Peroxynitrite Anion (onoo(minus)) and its Stability.

    NASA Astrophysics Data System (ADS)

    Tsai, Jyh-Hsin Michael

    obtained; the torsional band width was significantly reduced due to the decrease in solvent interactions. A series of ultraviolet absorption spectra of peroxynitrite diluted in methanol, ethanol, 1-propanol, and 2-propanol showed an apparent 7 nm red shift relative to the 302 nm characteristic peak of aqueous peroxynitrite. Semi -empirical ZINDO calculations with solvent simulation showed that the cis conformation could predict the characteristic UV peaks of peroxynitrite correctly whereas those based upon the trans conformation failed. From these experimental and theoretical studies, we propose that the stability of peroxynitrite anion in alkaline solution and nitrate crystals is related to the molecule being locked in the cis conformation. The stability of peroxynitrite anion in the cis conformation allows it to diffuse farther in biological systems. Peroxynitrite becomes far more reactive when protonated, in part by allowing the isomerization to the trans isomer. As a consequence, the conformation of peroxynitrite influences its reactivity at physiological pH.

  11. NTP Toxicology and Carcinogenesis Studies of 1-Chloro-2-propanol (Technical Grade) (CAS NO. 127-00-4) in F344/N Rats and B6C3F1 Mice (Drinking Water Studies.

    PubMed

    1998-09-01

    1-Chloro-2-propanol and its positional isomer, 2-chloro-1-propanol, are used as chemical intermediates for the manufacture of propylene oxide, a starting material for production of polyurethane polyols and propylene glycol. The National Cancer Institute nominated 1-chloro-2-propanol for study because of potential for human exposure due to its residues in various foods that are fumigated with ethylene oxide or propylene oxide. Male and female F344/N rats and B6C3F1 mice were exposed to technical grade 1-chloro-2-propanol (75% to 76%% 1-chloro-2-propanol; 24% to 25%% 2-chloro-1-propanol) in drinking water for 14 days, 14 weeks, or 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium, cultured Chinese hamster ovary cells, Drosophila melanogaster, and mouse peripheral blood erythrocytes. Continuous breeding studies were conducted in Sprague-Dawley rats. 14-DAY STUDY IN RATS: Groups of 10 male and 10 female F344/N rats were administered 1-chloro-2-propanol in drinking water at concentrations of 0, 100, 330, 1,000, 3,300, or 10,000 ppm for 14 days. Two 10,000 ppm females died before the end of the study. The final mean body weights and body weight gains of 3,300 and 10,000 ppm rats were significantly less than those of the controls; rats in the 10,000 ppm groups lost weight. Water consumption by the 3,300 and 10,000 ppm groups was significantly less than that by the controls throughout the study. The thymus weights of 10,000 ppm rats were significantly less than those of the controls. Exposure to 1-chloro-2-propanol caused cytoplasmic alteration and degeneration of the acinar cells and fatty change in the pancreas, atrophy of the bone marrow, and atrophy and hematopoiesis of the spleen in males and females. 14-DAY STUDY IN MICE: Groups of 10 male and 10 female B6C3F1 mice were administered 1-chloro-2-propanol in drinking water at concentrations of 0, 100, 330, 1,000, 3,300, or 10,000 ppm for 14 days. One male mouse in the 10,000 ppm group died

  12. The Production of Biodiesel from Cottonseed Oil Using Rhizopus oryzae Whole Cell Biocatalysts

    NASA Astrophysics Data System (ADS)

    Athalye, Sneha Kishor

    accumulation of 15.6 g (dry cell wt)/L. A reduction in dynamic viscosity of the reaction mixture from 47.3 centipoise to 30.6 centipoise was observed. The impact of moisture addition to the reaction mixture and use of ethanol as acylating agent on R.oryzae BSP fatty acid alkyl ester production was also tested. The presence of 10 wt % moisture in the reaction system had a significant effect (p ≤ 0.05) on the transesterification reaction with ethanol unlike methanol. Fatty acid ethyl ester concentration tripled from 39.3 to 129.1 g/L when moisture was added during transesterification .When oil to acyl acceptor ratio was increased from 1:3 and 1:6 to determine effect of excess alcohol on conversion, an ester conversion of 128.1 g/L for methanol and 129.1 g/L for ethanol were observed. Use of excess amount of acylating agent had a significant adverse effect (p ≤ 0.05) on the overall FAAE production due to deactivation of lipases on contact with large amounts of insoluble alcohol in the oil phase of the reaction. The effect of short chain alcohols on the enzymatic transesterification of cottonseed oil using freeze dried Rhizopus oryzae biomass was examined with and without water addition using methanol, ethanol, 1-Propanol and 1-Butanol at various molar ratios. 1- Butanol in the absence of water resulted in a significantly higher (p . 0.1) conversion of cottonseed oil to 12.5 % fatty acid butyl esters (FABEs). Addition of 10 % water to the reaction mixture significantly reduced (p ≤ 0.1) conversion. No significant difference (p > 0.1) between the conversions was observed for time points after 24 h for a 72 h reaction. 1- Butanol in ratios higher than 3:1 to cottonseed oil had a significant impact (p ≤ 0.1) on conversion. Increasing the amount of biomass used during the reaction lead to significantly higher conversion (p ≤ 0.1). The highest conversion of 27.9 % was observed for the transesterification reaction between cottonseed oil and 1-Butanol, in a 1:6 molar ratio, in

  13. Oxy-combustion of high water content fuels

    NASA Astrophysics Data System (ADS)

    Yi, Fei

    As the issues of global warming and the energy crisis arouse extensive concern, more and more research is focused on maximizing energy efficiency and capturing CO2 in power generation. To achieve this, in this research, we propose an unconventional concept of combustion - direct combustion of high water content fuels. Due to the high water content in the fuels, they may not burn under air-fired conditions. Therefore, oxy-combustion is applied. Three applications of this concept in power generation are proposed - direct steam generation for the turbine cycle, staged oxy-combustion with zero flue gas recycle, and oxy-combustion in a low speed diesel-type engine. The proposed processes could provide alternative approaches to directly utilize fuels which intrinsically have high water content. A large amount of energy to remove the water, when the fuels are utilized in a conventional approach, is saved. The properties and difficulty in dewatering high water content fuels (e.g. bioethanol, microalgae and fine coal) are summarized. These fuels include both renewable and fossil fuels. In addition, the technique can also allow for low-cost carbon capture due to oxy-combustion. When renewable fuel is utilized, the whole process can be carbon negative. To validate and evaluate this concept, the research focused on the investigation of the flame stability and characteristics for high water content fuels. My study has demonstrated the feasibility of burning fuels that have been heavily diluted with water in a swirl-stabilized burner. Ethanol and 1-propanol were first tested as the fuels and the flame stability maps were obtained. Flame stability, as characterized by the blow-off limit -- the lowest O2 concentration when a flame could exist under a given oxidizer flow rate, was determined as a function of total oxidizer flow rate, fuel concentration and nozzle type. Furthermore, both the gas temperature contour and the overall ethanol concentration in the droplets along the

  14. Oxygenates vs. synthesis gas

    SciTech Connect

    Kamil Klier; Richard G. Herman; Alessandra Beretta; Maria A. Burcham; Qun Sun; Yeping Cai; Biswanath Roy

    1999-04-01

    Methanol synthesis from H{sub 2}/CO has been carried out at 7.6 MPa over zirconia-supported copper catalysts. Catalysts with nominal compositions of 10/90 mol% and 30/70 mol% Cu/ZrO{sub 2} were used in this study. Additionally, a 3 mol% cesium-doped 10/90 catalyst was prepared to study the effect of doping with heavy alkali, and this promoter greatly increased the methanol productivity. The effects of CO{sub 2} addition, water injection, reaction temperature, and H{sub 2}/C0 ratio have been investigated. Both CO{sub 2} addition to the synthesis gas and cesium doping of the catalyst promoted methanol synthesis, while inhibiting the synthesis of dimethyl ether. Injection of water, however, was found to slightly suppress methanol and dimethyl ether formation while being converted to CO{sub 2} via the water gas shift reaction over these catalysts. There was no clear correlation between copper surface area and catalyst activity. Surface analysis of the tested samples revealed that copper tended to migrate and enrich the catalyst surface. The concept of employing a double-bed reactor with a pronounced temperature gradient to enhance higher alcohol synthesis was explored, and it was found that utilization of a Cs-promoted Cu/ZnO/Cr{sub 2}O{sub 3} catalyst as a first lower temperature bed and a Cs-promoted ZnO/Cr{sub 2}O{sub 3} catalyst as a second high-temperature bed significantly promoted the productivity of 2-methyl-1-propanol (isobutanol) from H{sub 2}/CO synthesis gas mixtures. While the conversion of CO to C{sub 2+} oxygenates over the double-bed configuration was comparable to that observed over the single Cu-based catalyst, major changes in the product distribution occurred by the coupling to the zinc chromite catalyst; that is, the productivity of the C{sub 1}-C{sub 3} alcohols decreased dramatically, and 2-methyl branched alcohols were selectively formed. The desirable methanol/2-methyl oxygenate molar ratios close to 1 were obtained in the present double

  15. The Production of Biodiesel from Cottonseed Oil Using Rhizopus oryzae Whole Cell Biocatalysts

    NASA Astrophysics Data System (ADS)

    Athalye, Sneha Kishor

    accumulation of 15.6 g (dry cell wt)/L. A reduction in dynamic viscosity of the reaction mixture from 47.3 centipoise to 30.6 centipoise was observed. The impact of moisture addition to the reaction mixture and use of ethanol as acylating agent on R.oryzae BSP fatty acid alkyl ester production was also tested. The presence of 10 wt % moisture in the reaction system had a significant effect (p ≤ 0.05) on the transesterification reaction with ethanol unlike methanol. Fatty acid ethyl ester concentration tripled from 39.3 to 129.1 g/L when moisture was added during transesterification .When oil to acyl acceptor ratio was increased from 1:3 and 1:6 to determine effect of excess alcohol on conversion, an ester conversion of 128.1 g/L for methanol and 129.1 g/L for ethanol were observed. Use of excess amount of acylating agent had a significant adverse effect (p ≤ 0.05) on the overall FAAE production due to deactivation of lipases on contact with large amounts of insoluble alcohol in the oil phase of the reaction. The effect of short chain alcohols on the enzymatic transesterification of cottonseed oil using freeze dried Rhizopus oryzae biomass was examined with and without water addition using methanol, ethanol, 1-Propanol and 1-Butanol at various molar ratios. 1- Butanol in the absence of water resulted in a significantly higher (p . 0.1) conversion of cottonseed oil to 12.5 % fatty acid butyl esters (FABEs). Addition of 10 % water to the reaction mixture significantly reduced (p ≤ 0.1) conversion. No significant difference (p > 0.1) between the conversions was observed for time points after 24 h for a 72 h reaction. 1- Butanol in ratios higher than 3:1 to cottonseed oil had a significant impact (p ≤ 0.1) on conversion. Increasing the amount of biomass used during the reaction lead to significantly higher conversion (p ≤ 0.1). The highest conversion of 27.9 % was observed for the transesterification reaction between cottonseed oil and 1-Butanol, in a 1:6 molar ratio, in

  16. Oxy-combustion of high water content fuels

    NASA Astrophysics Data System (ADS)

    Yi, Fei

    As the issues of global warming and the energy crisis arouse extensive concern, more and more research is focused on maximizing energy efficiency and capturing CO2 in power generation. To achieve this, in this research, we propose an unconventional concept of combustion - direct combustion of high water content fuels. Due to the high water content in the fuels, they may not burn under air-fired conditions. Therefore, oxy-combustion is applied. Three applications of this concept in power generation are proposed - direct steam generation for the turbine cycle, staged oxy-combustion with zero flue gas recycle, and oxy-combustion in a low speed diesel-type engine. The proposed processes could provide alternative approaches to directly utilize fuels which intrinsically have high water content. A large amount of energy to remove the water, when the fuels are utilized in a conventional approach, is saved. The properties and difficulty in dewatering high water content fuels (e.g. bioethanol, microalgae and fine coal) are summarized. These fuels include both renewable and fossil fuels. In addition, the technique can also allow for low-cost carbon capture due to oxy-combustion. When renewable fuel is utilized, the whole process can be carbon negative. To validate and evaluate this concept, the research focused on the investigation of the flame stability and characteristics for high water content fuels. My study has demonstrated the feasibility of burning fuels that have been heavily diluted with water in a swirl-stabilized burner. Ethanol and 1-propanol were first tested as the fuels and the flame stability maps were obtained. Flame stability, as characterized by the blow-off limit -- the lowest O2 concentration when a flame could exist under a given oxidizer flow rate, was determined as a function of total oxidizer flow rate, fuel concentration and nozzle type. Furthermore, both the gas temperature contour and the overall ethanol concentration in the droplets along the