Science.gov

Sample records for 10-600 kev energy

  1. 19 CFR 10.600 - Accessories, spare parts, or tools.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Accessories, spare parts, or tools. 10.600 Section 10.600 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. Dominican...

  2. 19 CFR 10.600 - Accessories, spare parts, or tools.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Accessories, spare parts, or tools. 10.600 Section 10.600 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. Dominican Republic-Central America-United States Free Trade...

  3. 19 CFR 10.600 - Accessories, spare parts, or tools.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Accessories, spare parts, or tools. 10.600 Section 10.600 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. Dominican...

  4. 19 CFR 10.600 - Accessories, spare parts, or tools.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Accessories, spare parts, or tools. 10.600 Section 10.600 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. Dominican...

  5. 19 CFR 10.600 - Accessories, spare parts, or tools.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Accessories, spare parts, or tools. 10.600 Section 10.600 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. Dominican...

  6. High resolution 17 keV to 75 keV backlighters for High Energy Density experiments

    SciTech Connect

    Park, H; Maddox, B R; Giraldez, E; Hatchett, S P; Hudson, L; Izumi, N; Key, M H; Pape, S L; MacKinnon, A J; MacPhee, A G; Patel, P K; Phillips, T W; Remington, B A; Seely, J F; Tommasini, R; Town, R; Workman, J

    2008-02-25

    We have developed 17 keV to 75 keV 1-dimensional and 2-dimensional high-resolution (< 10 {micro}m) radiography using high-intensity short pulse lasers. High energy K-{alpha} sources are created by fluorescence from hot electrons interacting in the target material after irradiation by lasers with intensity I{sub L} > 10{sup 17} W/cm{sup 2}. We have achieved high resolution point projection 1-dimensional and 2-dimensional radiography using micro-foil and micro-wire targets attached to low-Z substrate materials. The micro-wire size was 10 {micro}m x 10 {micro}m x 300 {micro}m on a 300 {micro}m x 300 {micro}m x 5 {micro}m CH substrate. The radiography performance was demonstrated using the Titan laser at LLNL. We observed that the resolution is dominated by the micro-wire target size and there is very little degradation from the plasma plume, implying that the high energy x-ray photons are generated mostly within the micro-wire volume. We also observe that there are enough K{alpha} photons created with a 300 J, 1-{omega}, 40 ps pulse laser from these small volume targets, and that the signal-to-noise ratio is sufficiently high, for single shot radiography experiments. This unique technique will be used on future high energy density (HED) experiments at the new Omega-EP, ZR and NIF facilities.

  7. Transmission crystal x-ray spectrometer covering the 6 keV-18 keV energy range with E∕ΔE = 1800 instrumental resolving power.

    PubMed

    Seely, John; Feldman, Uri; Brown, Charles; Pereira, Nino; Hudson, Lawrence; Glover, Jack; Silver, Eric

    2012-10-01

    A high-resolution x-ray spectrometer utilizing a thin quartz transmission crystal and covering the 6 keV-18 keV energy range has been developed and tested. The spectrometer consists of a cylindrically bent crystal in a vacuum housing. The crystal position and the range of Bragg angles that are incident on the crystal can be adjusted to record an ≈4 keV wide spectrum in the 6 keV-18 keV range. The spectrometer is of the Cauchois type and has a compact linear geometry that is convenient for deployment at laser-produced plasma, EBIT, and other x-ray sources. Test spectra of the W L and Mo K lines from laboratory sources have linewidths as small as 11 eV, approaching the natural widths, and instrumental resolving power as high as 1800. Techniques for enhancing the energy resolution are experimentally demonstrated. PMID:23126934

  8. What Happened to the High-Energy (> 100 keV) Particles at Mercury?

    NASA Astrophysics Data System (ADS)

    Schriver, D.; Travnicek, P. M.; Anderson, B. J.; Ashour-Abdalla, M.; Baker, D. N.; Benna, M.; Boardsen, S. A.; Hellinger, P.; Ho, G. C.; Korth, H.; Krimigis, S. M.; McNutt, R. L., Jr.; Raines, J. M.; Richard, R. L.; Slavin, J. A.; Solomon, S. C.; Starr, R. D.; Zurbuchen, T.

    2013-12-01

    After the first Mariner 10 flyby of Mercury in 1974, when high-energy (> 100 keV) particles were observed along with sudden changes in the magnetic field, it was expected that Mercury's magnetosphere would be flooded with energetic particles. However, after more than two years in orbit around Mercury, measurements made by the Energetic Particle Spectrometer (EPS) aboard the MESSENGER spacecraft have revealed that high-energy (> 100 keV) particles are the exception rather than the rule. Typically, the observed bulk particle energies in Mercury's magnetosphere are on the order of 1-10 keV, with observations of electrons at low intensities up to ~100 keV. What makes this relative lack of high-energy particles perhaps even more surprising is that magnetic reconnection is observed by the MESSENGER Magnetometer (MAG) to occur at Mercury with great regularity on both the dayside and nightside. To help understand these observations, global-scale three-dimensional kinetic simulations of Mercury's magnetosphere have been carried out with different solar wind forcing conditions. The results show that because of the relatively small dimensions of the magnetotail, the cross-tail convection electric potential typically achieves maximum values of 10-20 kV. Coupled with a downstream magnetotail reconnection location of at most ~ 4RM (where RM is Mercury's radius), reconnection and betatron acceleration result in plasma bulk energies in the inner magnetosphere that are typically < 20 keV, consistent with the observations. The results also indicate that plasma wave activity, commonly observed near Mercury's geomagnetic equator, is not effective in energizing plasma to energies > 100 keV, although the waves could be responsible for energization of up to several keV, as well as cause strong pitch-angle scattering. When compared with observations and simulations of Earth's magnetosphere, the results found for Mercury's relatively small magnetosphere can be used to understand global-scale transport and acceleration processes more generally in planetary magnetospheres.

  9. Experimental Determination of the HPGe Spectrometer Efficiency Calibration Curves for Various Sample Geometry for Gamma Energy from 50 keV to 2000 keV

    SciTech Connect

    Saat, Ahmad; Hamzah, Zaini; Yusop, Mohammad Fariz; Zainal, Muhd Amiruddin

    2010-07-07

    Detection efficiency of a gamma-ray spectrometry system is dependent upon among others, energy, sample and detector geometry, volume and density of the samples. In the present study the efficiency calibration curves of newly acquired (August 2008) HPGe gamma-ray spectrometry system was carried out for four sample container geometries, namely Marinelli beaker, disc, cylindrical beaker and vial, normally used for activity determination of gamma-ray from environmental samples. Calibration standards were prepared by using known amount of analytical grade uranium trioxide ore, homogenized in plain flour into the respective containers. The ore produces gamma-rays of energy ranging from 53 keV to 1001 keV. Analytical grade potassium chloride were prepared to determine detection efficiency of 1460 keV gamma-ray emitted by potassium isotope K-40. Plots of detection efficiency against gamma-ray energy for the four sample geometries were found to fit smoothly to a general form of {epsilon} = A{Epsilon}{sup a}+B{Epsilon}{sup b}, where {epsilon} is efficiency, {Epsilon} is energy in keV, A, B, a and b are constants that are dependent on the sample geometries. All calibration curves showed the presence of a ''knee'' at about 180 keV. Comparison between the four geometries showed that the efficiency of Marinelli beaker is higher than cylindrical beaker and vial, while cylindrical disk showed the lowest.

  10. Nowcast Model for Low Energy Electrons (10-200 keV) in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Ganushkina, N. Y.; Pitchford, D. A.; Welling, D. T.; Heynderickx, D.

    2014-12-01

    We present the nowcast model for low energy (< 200 keV) electrons in the inner magnetosphere, operating online under the SPACECAST project (http://fp7-spacecast.eu) which is the version of the Inner Magnetosphere Particle Transport and Acceleration model (IMPTAM) for electrons. Low energy electron fluxes are very important to specify when hazardous satellite surface charging phenomena are considered. The presented model provides the low energy electron flux at all L-shells and at all satellite orbits, when necessary. The model is driven by the real time solar wind and Interplanetary Magnetic Field (IMF) parameters with 1 hour time shift for propagation to the Earth's magnetopause, and by the real time Dst index. Real time geostationary GOES 13 or GOES 15 (whenever which available) data on electron fluxes in three energies, such as 40 keV, 75 keV, 150 keV, are used for comparison and validation of IMPTAM running online. On average, the model provides very good agreement with the data, the basic level of the observed fluxes is very well reproduced. The best agreement between the modeled and the observed fluxes are found for <100 keV electrons. At the same time, not all the peaks and dropouts in the observed electron fluxes are reproduced. For 150 keV electrons, the modeled fluxes are often smaller than the observed ones by an order of magnitude. We estimate the The Normalized Root-Mean-Square Deviation (NRMSD), compute the binary event tables for 1 hour window to reveal the model hit rates and Heidke Skill Scores. This is the first attempt to model low energy electrons in real time at 10 minutes resolution. The output of this model can serve as an input of electron seed population for the higher-energy radiation belt modeling.

  11. Charge-coupled-device response to electron beam energies of less than 1 keV up to 20 keV

    NASA Technical Reports Server (NTRS)

    Daud, Taher; Janesick, James R.; Evans, Kenneth; Elliott, Tom

    1987-01-01

    Recent developments of backside treatment for the backside-illuminated scientifc CCD imagers have shown near-theoretical efficiency even at the short wavelength region of the spectrum. By using SEM performance comparisons of backside-treated and untreated CCDs to an electron flux varying from 1 to 100 pA and beam energy ranging from less than 1 keV up to 20 keV are obtained. The theoretical analysis, the SEM testing procedure, and the quantum efficiency measurement results are presented. It is shown, for example, that the average quantum efficiency increases from less than 1 percent for an untreated CCD to nearly 40 percent for a backside-treated CCD at a beam energy of 1 kev.

  12. 183W Resonance Parameter Evaluation in the Neutron Energy Range Up to 5 keV

    SciTech Connect

    Pigni, Marco T; Dunn, Michael E; Guber, Klaus H

    2012-01-01

    We generated a preliminary set of resonance parameters for {sup 183}W in the neutron energy range of thermal up to 5 keV. In the analyzed energy range, this work represents a significant improvement over the current resonance evaluation in the ENDF/B-VII.1 library limited up to 2.2 keV. The evaluation methodology uses the Reich-Moore approximation to fit, with the R-matrix code SAMMY, the high-resolution measurements performed in 2007 at the GEel LINear Accelerator (GELINA) facility. The transmission data and the capture cross sections calculated with the set of resonance parameters are compared with the experimental values, and the average properties of the resonance parameters are discussed.

  13. Self-attenuation correction factors for bioindicators measured by ? spectrometry for energies <100 keV

    NASA Astrophysics Data System (ADS)

    Manduci, L.; Tenailleau, L.; Trolet, J. L.; De Vismes, A.; Lopez, G.; Piccione, M.

    2010-01-01

    The mass attenuation coefficients for a number of marine and terrestrial bioindicators were measured using ? spectrometry for energies between 22 and 80 keV. These values were then used to find the correction factor k for the apparent radioactivity. The experimental results were compared with a Monte Carlo simulation performed using PENELOPE in order to evaluate the reliability of the simplified calculation and to determine the correction factors.

  14. The 93Zr(n,?) reaction up to 8 keV neutron energy

    NASA Astrophysics Data System (ADS)

    Tagliente, G.; Milazzo, P. M.; Fujii, K.; Abbondanno, U.; Aerts, G.; lvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Badurek, G.; Baumann, P.; Be?v?, F.; Belloni, F.; Berthoumieux, E.; Calvio, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapio, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrari, A.; Ferreira-Marques, R.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Jericha, E.; Kppeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Kossionides, E.; Krti?ka, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lukic, S.; Marganiec, J.; Marrone, S.; Martnez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K.

    2013-01-01

    The (n,?) reaction of the radioactive isotope 93Zr has been measured at the n_TOF high-resolution time-of-flight facility at CERN. Resonance parameters have been extracted in the neutron energy range up to 8 keV, yielding capture widths smaller (14%) than reported in an earlier experiment. These results are important for detailed nucleosynthesis calculations and for refined studies of waste transmutation concepts.

  15. Survival Depth of Organics in Ices under Low-energy Electron Radiation (<=2 keV)

    NASA Astrophysics Data System (ADS)

    Barnett, Irene Li; Lignell, Antti; Gudipati, Murthy S.

    2012-03-01

    Icy surfaces in our solar system are continually modified and sputtered with electrons, ions, and photons from solar wind, cosmic rays, and local magnetospheres in the cases of Jovian and Saturnian satellites. In addition to their prevalence, electrons specifically are expected to be a principal radiolytic agent on these satellites. Among energetic particles (electrons and ions), electrons penetrate by far the deepest into the ice and could cause damage to organic material of possible prebiotic and even biological importance. To determine if organic matter could survive and be detected through remote sensing or in situ explorations on these surfaces, such as water ice-rich Europa, it is important to obtain accurate data quantifying electron-induced chemistry and damage depths of organics at varying incident electron energies. Experiments reported here address the quantification issue at lower electron energies (100 eV-2 keV) through rigorous laboratory data analysis obtained using a novel methodology. A polycyclic aromatic hydrocarbon molecule, pyrene, embedded in amorphous water ice films of controlled thicknesses served as an organic probe. UV-VIS spectroscopic measurements enabled quantitative assessment of organic matter survival depths in water ice. Eight ices of various thicknesses were studied to determine damage depths more accurately. The electron damage depths were found to be linear, approximately 110 nm keV-1, in the tested range which is noticeably higher than predictions by Monte Carlo simulations by up to 100%. We conclude that computational simulations underestimate electron damage depths in the energy region <=2 keV. If this trend holds at higher electron energies as well, present models utilizing radiation-induced organic chemistry in icy solar system bodies need to be revisited. For interstellar ices of a few micron thicknesses, we conclude that low-energy electrons generated through photoionization processes in the interstellar medium could penetrate through ice grains significantly and trigger organic reactions several hundred nanometers deepbulk chemistry thus competing with surface chemistry of astrophysical ice grains.

  16. Efficiency of Scintillator Materials in the Energy Range 8.0-32.0 keV

    SciTech Connect

    Kinney, J H; Haupt, D L

    2002-07-01

    X-ray microtomography requires the measurement of x-ray attenuation along ray paths through a specimen, and on the inversion of these data to obtain a spatially resolved mapping of the microstructure of the specimen. To do this efficiently, two-dimensional array detectors are often used to measure the transmitted x-rays by capturing and recording each x-ray incident on the detector. The highest resolution CT instruments perform this by converting the incident x-rays to visible light, and then focusing this light onto a charge-coupled-device (CCD) detector. The light output of the scintillator (photons per incident x-ray), the numerical aperture of the optical lens system, and the quantum efficiency of the CCD govern the efficiency of the detection process. Several years earlier, our group performed an investigation aimed at determining the best scintillator material for high-resolution synchrotron CT. The selection criteria included light output in the 8-32 keV energy range, the spatial resolution of the scintillator, the wavelength of the scintillation radiation, and the stability and ease of polishing of the scintillator. A list of the scintillators that we considered, with the exceptions of the more recently developed glass scintillators, is provided in Table 1. Among these scintillators, we concluded that single crystal cadmium tungstate was optimum; we have used this material in all subsequent synchrotron CT systems. Since this original study, several doped-glass scintillators have become available. The LSO (Lu orthosilicates) scintillators, developed for PET scanning, show considerable light output at high energy (energies above 500 keV). Theoretically, the light output of these scintillators should be twice that of the cadmium tungstate. The purpose of this study was to determine the efficiency of two such scintillators (LSO:Yt and IQI-401 high density terbium activated glass) in the energy range from 8-32 keV.

  17. Auroral electrons of energy less than 1 keV observed at rocket altitudes.

    NASA Technical Reports Server (NTRS)

    Arnoldy, R. L.; Choy, L. W.

    1973-01-01

    Measurements of electrons of energy less than 1 keV in the auroral precipitation with detectors aboard three rocket flights are discussed. Detectors simultaneously measured the flux of electrons moving up and down the magnetic field lines. Electrons of energy less than a few hundred electron volts show directional intensities ranging from isotropic over the upper hemisphere, to field aligned into the atmosphere, to a net streaming out of the atmosphere. Cases of reflection coefficients greater than 1 for the few hundred electron volts and lower-energy electrons occur when measurements were made north of auroral forms. These electrons might represent the high-energy tail of the return Birkeland currents. The origin of the low-energy electrons is itself in question.

  18. Evaluation of Silicon Neutron Resonance Parameters in the Energy Range Thermal to 1800 keV

    SciTech Connect

    Derrien, H.

    2002-09-30

    The evaluation of the neutron cross sections of the three stable isotopes of silicon in the energy range thermal to 20 MeV was performed by Hetrick et al. for ENDF/B-VI (Evaluated Nuclear Data File). Resonance parameters were obtained in the energy range thermal to 1500 keV from a SAMMY analysis of the Oak Ridge National Laboratory experimental neutron transmission data. A new measurement of the capture cross section of natural silicon in the energy range 1 to 700 keV has recently been performed at the Oak Ridge Electron Linear Accelerator. Results of this measurement were used in a SAMMY reevaluation of the resonance parameters, allowing determination of the capture width of a large number of resonances. The experimental data base is described; properties of the resonance parameters are given. For the first time the direct neutron capture component has been taken into account from the calculation by Rauscher et al. in the energy range from thermal to 1 MeV. Results of benchmark calculations are also given. The new evaluation is available in the ENDF/B-VI format.

  19. A neutron spectrometer for neutron energies between 1 eV and 10 keV

    SciTech Connect

    Wang, C.K.; Blue, T.E.

    1988-01-01

    In boron neutron capture therapy (BNCT), it is the consensus that epithermal neutron beams have advantages over thermal beams in treating deep-seated brain tumors, and large neutron fields have advantages over narrow beams, since whole-brain irradiations are thought to be necessary in many cases. Epithermal neutron sources for BNCT, which include filtered reactor neutron beams and moderated reactor neutron fields, are currently being developed at many institutions around the world. Neutrons with energies between 1 eV and 10 keV are most suitable for treating brain tumors. However, techniques for measuring neutron spectra in a vacuum in this energy range are not well developed. This paper describes a new type of neutron spectrometer that has a set of response functions that peak at equally spaced intervals on a logarithmic energy scale ranging from 1 eV to 10 keV; therefore, neutron spectra (or histograms) in this energy range can be obtained by properly applying spectrum unfolding techniques to the measured data. The spectrometer is applicable for measurements in a vacuum for both narrow neutron beams and wide neutron fields.

  20. Extension to Low Energies (<7keV) of High Pressure X-Ray Absorption Spectroscopy

    SciTech Connect

    Itie, J.-P.; Flank, A.-M.; Lagarde, P.; Idir, M.; Polian, A.; Couzinet, B.

    2007-01-19

    High pressure x-ray absorption has been performed down to 3.6 keV, thanks to the new LUCIA beamline (SLS, PSI) and to the use of perforated diamonds or Be gasket. Various experimental geometries are proposed, depending on the energy of the edge and on the concentration of the studied element. A few examples will be presented: BaTiO3 at the titanium K edge, Zn0.95 Mn0.05O at the manganese K edge, KCl at the potassium K edge.

  1. The Perseus and Coma clusters of galaxies at energies above 20 keV

    NASA Technical Reports Server (NTRS)

    Scheepmaker, A.; Ricker, G. R.; Brecher, K.; Ryckman, S. G.; Ballintine, J. E.; Doty, J. P.; Downey, P. M.; Lewin, W. H. G.

    1976-01-01

    Observations of the Perseus and Coma clusters of galaxies were made on June 21, 1974, with a balloon-borne X-ray telescope (energies of approximately 20-150 keV). No positive detection was made. The data favor a thermal bremsstrahlung mechanism for the X-ray production in the Perseus cluster of galaxies over the inverse Compton mechanism. In the case of the Coma cluster of galaxies, the data are inconclusive with respect to determining the origin of the X-rays.

  2. NEUTRON TOTAL CROSS SECTIONS OF 235U FROM TRANSMISSION MEASUREMENTS IN THE ENERGY RANGE 2 keV to 300 keV AND STATISTICAL MODEL ANALYSIS OF THE DATA

    SciTech Connect

    Derrien, H.

    2000-05-22

    The average {sup 235}U neutron total cross sections were obtained in the energy range 2 keV to 330 keV from high-resolution transmission measurements of a 0.033 atom/b sample. The experimental data were corrected for the contribution of isotope impurities and for resonance self-shielding effects in the sample. The results are in very good agreement with the experimental data of Poenitz et al. in the energy range 40 keV to 330 keV and are the only available accurate experimental data in the energy range 2 keV to 40 keV. ENDF/B-VI evaluated data are 1.7% larger. The SAMMY/FITACS code was used for a statistical model analysis of the total cross section, selected fission cross sections and {alpha} data in the energy range 2 keV to 200 keV. SAMMY/FITACS is an extended version of SAMMY which allows consistent analysis of the experimental data in the resolved and unresolved resonance region. The Reich-Moore resonance parameters were obtained from a SAMMY Bayesian fits of high resolution experimental neutron transmission and partial cross section data below 2.25 keV, and the corresponding average parameters and covariance data were used in the present work as input for the statistical model analysis of the high energy range of the experimental data. The result of the analysis shows that the average resonance parameters obtained from the analysis of the unresolved resonance region are consistent with those obtained in the resolved energy region. Another important result is that ENDF/B-VI capture cross section could be too small by more than 10% in the energy range 10 keV to 200 keV.

  3. Neutron Total Cross Sections of {sup 235}U From Transmission Measurements in the Energy Range 2 keV to 300 keV and Statistical Model Analysis of the Data

    SciTech Connect

    Derrien, H.; Harvey, J.A.; Larson, N.M.; Leal, L.C.; Wright, R.Q.

    2000-05-01

    The average {sup 235}U neutron total cross sections were obtained in the energy range 2 keV to 330 keV from high-resolution transmission measurements of a 0.033 atom/b sample.1 The experimental data were corrected for the contribution of isotope impurities and for resonance self-shielding effects in the sample. The results are in very good agreement with the experimental data of Poenitz et al.4 in the energy range 40 keV to 330 keV and are the only available accurate experimental data in the energy range 2 keV to 40 keV. ENDF/B-VI evaluated data are 1.7% larger. The SAMMY/FITACS code 2 was used for a statistical model analysis of the total cross section, selected fission cross sections and data in the energy range 2 keV to 200 keV. SAMMY/FITACS is an extended version of SAMMY which allows consistent analysis of the experimental data in the resolved and unresolved resonance region. The Reich-Moore resonance parameters were obtained 3 from a SAMMY Bayesian fits of high resolution experimental neutron transmission and partial cross section data below 2.25 keV, and the corresponding average parameters and covariance data were used in the present work as input for the statistical model analysis of the high energy range of the experimental data. The result of the analysis shows that the average resonance parameters obtained from the analysis of the unresolved resonance region are consistent with those obtained in the resolved energy region. Another important result is that ENDF/B-VI capture cross section could be too small by more than 10% in the energy range 10 keV to 200 keV.

  4. Energy and position resolution of germanium microstrip detectors at x-ray energies from 15 to 100 keV

    SciTech Connect

    Rossi, G.; Morse, J. ); Protic, D. . Inst. fuer Kernphysik)

    1999-06-01

    In addition to their far greater X-ray detection efficiency, germanium strip detectors offer superior energy and position resolution as compared to those fabricated of silicon for energies in the range of 15 to 100 keV. The authors have characterized 200-[micro]m strip pitch detectors fabricated by two different processes. By scanning a 10-[micro]m-wide monochromatic synchrotron X-ray beam across these detectors, measurements were made on both spectral energy response and spatial resolution. X rays absorbed between neighboring diode strips suffer from charge diffusion splitting of their signals which seriously degrades the detector performance, but by reconstructing events using an energy-sum coincidence algorithm the authors succeeded in producing artifact-free spectra with energy resolution <2 keV, peak/valley ratios > 1000, and count uniformities across the detector surface <1.5% for energies below 60 keV. The experimentally measured energy spectra show remarkable agreement with those predicted by computer simulation, in which the EGS4 code for photon absorption is combined with a simple algorithm to account for charge diffusion.

  5. SURVIVAL DEPTH OF ORGANICS IN ICES UNDER LOW-ENERGY ELECTRON RADIATION ({<=}2 keV)

    SciTech Connect

    Barnett, Irene Li; Lignell, Antti; Gudipati, Murthy S.

    2012-03-01

    Icy surfaces in our solar system are continually modified and sputtered with electrons, ions, and photons from solar wind, cosmic rays, and local magnetospheres in the cases of Jovian and Saturnian satellites. In addition to their prevalence, electrons specifically are expected to be a principal radiolytic agent on these satellites. Among energetic particles (electrons and ions), electrons penetrate by far the deepest into the ice and could cause damage to organic material of possible prebiotic and even biological importance. To determine if organic matter could survive and be detected through remote sensing or in situ explorations on these surfaces, such as water ice-rich Europa, it is important to obtain accurate data quantifying electron-induced chemistry and damage depths of organics at varying incident electron energies. Experiments reported here address the quantification issue at lower electron energies (100 eV-2 keV) through rigorous laboratory data analysis obtained using a novel methodology. A polycyclic aromatic hydrocarbon molecule, pyrene, embedded in amorphous water ice films of controlled thicknesses served as an organic probe. UV-VIS spectroscopic measurements enabled quantitative assessment of organic matter survival depths in water ice. Eight ices of various thicknesses were studied to determine damage depths more accurately. The electron damage depths were found to be linear, approximately 110 nm keV{sup -1}, in the tested range which is noticeably higher than predictions by Monte Carlo simulations by up to 100%. We conclude that computational simulations underestimate electron damage depths in the energy region {<=}2 keV. If this trend holds at higher electron energies as well, present models utilizing radiation-induced organic chemistry in icy solar system bodies need to be revisited. For interstellar ices of a few micron thicknesses, we conclude that low-energy electrons generated through photoionization processes in the interstellar medium could penetrate through ice grains significantly and trigger organic reactions several hundred nanometers deep-bulk chemistry thus competing with surface chemistry of astrophysical ice grains.

  6. Mechanical engineering of a 75-keV proton injector for the Low Energy Demonstration Accelerator

    SciTech Connect

    Hansborough, L.D.; Hodgkins, D.J.; Meyer, E.A.; Schneider, J.D.; Sherman, J.D.; Stevens, R.R. Jr.; Zaugg, T.J.

    1997-10-01

    A dc injector capable of 75-keV, 110-mA proton beam operation is under development for the Low Energy Demonstration Accelerator (LEDA) project at Los Alamos. The injector uses a dc microwave proton source which has demonstrated 98% beam availability while operating at design parameters. A high-voltage isolation transformer is avoided by locating all ion source power supplies and controls at ground potential. The low-energy beam transport system (LEBT) uses two solenoid focusing and two steering magnets for beam matching and centroid control at the RFQ matchpoint. This paper will discuss proton source microwave window design, H{sub 2} gas flow control, vacuum considerations, LEBT design, and an iris for beam current control.

  7. Dermatosis Papulosa Nigra and 10,600-nm CO2 laser, a good choice.

    PubMed

    Bruscino, Nicola; Conti, Rossana; Campolmi, Piero; Bonan, Paolo; Cannarozzo, Giovanni; Lazzeri, Linda; Moretti, Silvia

    2014-06-01

    Dermatosis Papulosa Nigra (DPN) is a common skin condition observed in black people and considered a benign epithelial tumor, and more specifically, a particular topographic form of seborrheic keratosis. We treated five female patients affected by DPN with 10,600-nm CO2 laser. We propose the 10,600-nm CO2 laser as a valid therapeutic option in patients affected by DPN, since the treatment is well tolerated, causes no major side effects, and is effective and long lasting. PMID:24131098

  8. Outflow of Ions: From eV to keV Energies

    NASA Astrophysics Data System (ADS)

    Andre, Mats; Eriksson, Anders; Li, Kun; Nilsson, Hans

    2015-04-01

    Ions apparently originating from the same source, the ionospheric polar cap, can either end up as energized to keV energies in the high-altitude cusp/mantle, or as cold ions in the magnetotail lobes. Cluster observations show that the cusp is a main source of oxygen ion outflow, whereas the polar cap is a main source for cold ions observed in the lobes. Such cold positive ions with energies less than tens of eV are complicated to detect onboard sunlit spacecraft at higher altitudes, which often become positively charged to several tens of volts. We use two Cluster spacecraft and study low-energy ions with a technique based on the detection of the wake behind a charged spacecraft in a supersonic ion flow. We find that low-energy ions usually dominate the density and the outward flux in the geomagnetic tail lobes during all parts of the solar cycle. The global outflow is of the order of 1026 ions/s and often dominates over the outflow at higher energies. The outflow increases by a factor of 2 with increasing solar EUV flux during a solar cycle. This increase is mainly due to the increased density of the outflowing population, while the outflow velocity does not vary much. Thus, the outflow is limited by the available density in the ionospheric source, rather than by the energy available in the magnetosphere to increase the velocity.

  9. High-resolution integrated germanium Compton polarimeter for the ?-ray energy range 80 keV-1 MeV

    NASA Astrophysics Data System (ADS)

    Sareen, R. A.; Urban, W.; Barnett, A. R.; Varley, B. J.

    1995-06-01

    Parameters which govern the choice of a detection system to measure the linear polarization of ? rays at low energies are discussed. An integrated polarimeter is described which is constructed from a single crystal of germanium. It is a compact planar device with the sectors defined electrically, and which gives an energy resolution in the add-back mode of 1 keV at 300 keV. Its performance is demonstrated in a series of calibration measurements using both unpolarized radiation from radioactive sources and polarized ? rays from the 168Er(?,2n)170Yb reaction at E?=25 MeV. Polarization measurements at energies as low as 84 keV have been achieved, where the sensitivity was 0.320.09. The sensitivity, efficiency, and energy resolution are reported. Our results indicate that energy resolution should be included in the definition of the figure of merit and we relate the new definition to earlier work. The comparisons show the advantages of the present design in the energy range below 300 keV and its competitiveness up to 1500 keV.

  10. Observations of solar flare photon energy spectra from 20 keV to 7 MeV

    NASA Technical Reports Server (NTRS)

    Yoshimori, M.; Watanabe, H.; Nitta, N.

    1985-01-01

    Solar flare photon energy spectra in the 20 keV to 7 MeV range are derived from the Apr. 1, Apr. 4, apr. 27 and May 13, 1981 flares. The flares were observed with a hard X-ray and a gamma-ray spectrometers on board the Hinotori satellite. The results show that the spectral shape varies from flare to flare and the spectra harden in energies above about 400 keV. Effects of nuclear line emission on the continuum and of higher energy electron bremsstrahlung are considered to explain the spectral hardening.

  11. X-ray-refractive-index measurements at photon energies above 100 keV with a grating interferometer

    NASA Astrophysics Data System (ADS)

    Ruiz-Yaniz, M.; Zanette, I.; Rack, A.; Weitkamp, T.; Meyer, P.; Mohr, J.; Pfeiffer, F.

    2015-03-01

    The knowledge of the x-ray index of refraction of materials is important for the interpretation or simulation of many x-ray physics phenomena. But its precise and accurate experimental determination is challenging, particularly in the hard x-ray energy range above 100 keV. In this article we present and discuss experimental measurements of the real and imaginary part of the index of refraction for different materials based on x-ray grating interferometry at energies above 130 keV.

  12. Applications of "Tender" Energy (1-5 keV) X-ray Absorption Spectroscopy in Life Sciences.

    PubMed

    Northrup, Paul; Leri, Alessandra; Tappero, Ryan

    2016-01-01

    The "tender" energy range of 1 to 5 keV, between the energy ranges of most "hard" (>5 keV) and "soft" (<1 keV) synchrotron X-ray facilities, offers some unique opportunities for synchrotron- based X-ray absorption fine structure spectroscopy in life sciences. In particular the K absorption edges of Na through Ca offer opportunities to study local structure, speciation, and chemistry of many important biological compounds, structures and processes. This is an area of largely untapped science, in part due to a scarcity of optimized facilities. Such measurements also entail unique experimental challenges. This brief review describes the technique, its experimental challenges, recent progress in development of microbeam measurement capabilities, and several highlights illustrating applications in life sciences. PMID:26740327

  13. Cross section for induced L X-ray emission by protons of energy <400 keV

    NASA Astrophysics Data System (ADS)

    Mohan, Harsh; Jain, Arvind Kumar; Kaur, Mandeep; Singh, Parjit S.; Sharma, Sunita

    2014-08-01

    In performing ion beam analysis, cross section for induced L X-ray emission plays a crucial role. There are different approaches by which these can be found experimentally or can be calculated theoretically based on various models. L X-ray production cross sections for Bi with protons in the energy range 260-400 keV at the interval of 20 keV are measured. These are compared with calculations obtained on the basis of current prevailing theories ECPSSR and ECPSSR-UA. Their importance in understanding this phenomenon and existing arguments in this regard will be highlighted.

  14. Analysis of experimental data on neutron-proton scattering in the energy range between 0 and 150 keV

    NASA Astrophysics Data System (ADS)

    Babenko, V. A.; Petrov, N. M.

    2009-04-01

    Experimental data on neutron-proton scattering in the energy range between 0 and 150 keV are analyzed by using various sets of effective-range parameters. It is shown that, in contrast to the parameters corresponding to the phase shifts of a Nijmegen group, the parameters corresponding to the experimental phase shifts reported by a group from George Washington University (GWU group) lead to very good agreement between the calculated cross sections and their experimental counterparts in the energy region under consideration. On the basis of the experimental value of the cross section for neutronproton scattering at an energy of 2 keV, the total cross section for neutron-proton scattering at zero energy was found to be ? 0 = 20.428(16) b, which is in very good agreement with a value of ? 0 = 20.423(9) b, which was obtained as the weighted mean of the cross sections presented by Houke and Hurst. It is shown that, in the energy region around several tens of keV units, the effective-range parameters matched with Dilgs cross-section value of ? 0 = 20.491(14) b lead to calculated cross sections whose values are in excess of their experimental counterparts.

  15. Improving the energy response of external beam therapy (EBT) GafChromic{sup TM} dosimetry films at low energies (?100 keV)

    SciTech Connect

    Bekerat, H. Devic, S.; DeBlois, F.; Singh, K.; Sarfehnia, A.; Seuntjens, J.; Shih, Shelley; Yu, Xiang; Lewis, D.

    2014-02-15

    Purpose: Purpose of this work is to investigate the effects of varying the active layer composition of external beam therapy (EBT) GafChromic{sup TM} films on the energy dependence of the film, as well as try to develop a new prototype with more uniform energy response at low photon energies (?100?keV). Methods: First, the overall energy response (S{sub AD,} {sub W}(Q)) of different commercial EBT type film models that represent the three different generations produced to date, i.e., EBT, EBT2, and EBT3, was investigated. Pieces of each film model were irradiated to a fixed dose of 2 Gy to water for a wide range of beam qualities and the corresponding S{sub AD,} {sub W}(Q) was measured using a flatbed document scanner. Furthermore, the DOSRZnrc Monte Carlo code was used to determine the absorbed dose to water energy dependence of the film, f(Q). Moreover, the intrinsic energy dependence, k{sub bq}(Q), for each film model was evaluated using the corresponding S{sub AD,} {sub W}(Q) and f(Q). In the second part of this study, the authors investigated the effects of changing the chemical composition of the active layer on S{sub AD,} {sub W}(Q). Finally, based on these results, the film manufacturer fabricated several film prototypes and the authors evaluated their S{sub AD,} {sub W}(Q). Results: The commercial EBT film model shows an under response at all energies below 100 keV reaching 39% 4% at about 20 keV. The commercial EBT2 and EBT3 film models show an under response of about 27% 4% at 20 keV and an over response of about 16% 4% at 40?keV.S{sub AD,} {sub W}(Q) of the three commercial film models at low energies show strong correlation with the corresponding f{sup ?1}(Q) curves. The commercial EBT3 model with 4% Cl in the active layer shows under response of 22% 4% at 20 keV and 6% 4% at about 40?keV. However, increasing the mass percent of chlorine makes the film more hygroscopic which may affect the stability of the film's readout. The EBT3 film prototype with 7.5% Si shows a significant improvement in the energy response at very low energies compared to the commercial EBT3 films with 4% Cl. It shows under response of 15% 5% at about 20 keV to 2% 5% at about 40?keV. However, according to the manufacturer, the addition of 7.5% Si as SiO{sub 2} adversely affected the viscosity of the active fluid and therefore affected the potential use in commercial machine coating. The latest commercial EBT3 film model with 7% Al as Al{sub 2}O{sub 3} shows an overall improvement in S{sub AD,} {sub W}(Q) compared to previous commercial EBT3 films. It shows under response at all energies <100 keV, varying from 20% 4% at 20 keV to 6% 4% at 40?keV. Conclusions: The energy response of films in the energy range <100 keV can be improved by adjusting the active layer chemical composition. Removing bromine eliminated the over response at about 40?keV. The under response at energies ?30 keV is improved by adding 7% Al to the active layer in the latest commercial EBT3 film models.

  16. Sweet spot for endoleak detection: Optimizing contrast to noise using low keV reconstructions from fast-switch kVp dual energy CT

    PubMed Central

    Kaza, Ravi K; Liu, Peter S; Quint, Leslie E; Khalatbari, Shokoufeh H; Platt, Joel F

    2012-01-01

    Objective To assess endoleak detection and conspicuity using low keV monochromatic reconstructions of single source (fast-switch kVp) dual energy datasets. Methods With IRB approval, multiphasic dual energy CT scans for aortic endograft surveillance were retrospectively reviewed for 39 patients. Two abdominal radiologists each performed two separate reading sessions, at 55 keV and standard 75 keV reconstruction, respectively. Readers tabulated endoleak presence, conspicuity on 1-5 scale, and type overall and in arterial and venous phases. Originally dictated reports in medical records were used as gold standard. Results Original dictations identified 19 endoleaks (9 abdominal and 10 thoracic), 13 of which were Type II. The blinded readers (R1 and R2) exhibited good to very good intraobserver and interobserver agreement. Endoleak detection was higher at 55 keV than 75 keV (sensitivity 100% (CI 82.4-100.0%) and 84.2% (CI 60.4-96.6%)at 55 keV vs. 79% (CI 54.4-94.0%)and 68.4% (CI 43.5-87.4%) at 75 keV in venous phase). Further, endoleak conspicuity ratings (where original dictation showed positive leak) were higher at 55 keV than 75 keV, which was a significant difference for R2 in the overall ratings (p=.03) and for both readers in the venous phase ratings (R1:p=.01; R2: p=.004). There was no difference in endoleak type characterization between the keV levels. Conclusion Sensitivity for endoleak detection and overall endoleak conspicuity ratings were both higher at 55 keV than 75 keV, favoring the inclusion of a lower energy monochromatic reconstruction for endoleak surveillance protocols with dual energy CT. PMID:22261775

  17. Studies on effective atomic numbers for photon energy absorption and electron density of some narcotic drugs in the energy range 1 keV-20 MeV

    NASA Astrophysics Data System (ADS)

    Gounhalli, Shivraj G.; Shantappa, Anil; Hanagodimath, S. M.

    2013-04-01

    Effective atomic numbers for photon energy absorption ZPEA,eff, photon interaction ZPI,eff and for electron density Nel, have been calculated by a direct method in the photon-energy region from 1 keV to 20 MeV for narcotic drugs, such as Heroin (H), Cocaine (CO), Caffeine (CA), Tetrahydrocannabinol (THC), Cannabinol (CBD), Tetrahydrocannabivarin (THCV). The ZPEA,eff, ZPI,eff and Nel values have been found to change with energy and composition of the narcotic drugs. The energy dependence ZPEA,eff, ZPI,eff and Nel is shown graphically. The maximum difference between the values of ZPEA,eff, and ZPI,eff occurs at 30 keV and the significant difference of 2 to 33% for the energy region 5-100 keV for all drugs. The reason for these differences is discussed.

  18. Novel Method to Study Neutron Capture of U235 and U238 Simultaneously at keV Energies

    NASA Astrophysics Data System (ADS)

    Wallner, A.; Belgya, T.; Bichler, M.; Buczak, K.; Dillmann, I.; Käppeler, F.; Lederer, C.; Mengoni, A.; Quinto, F.; Steier, P.; Szentmiklosi, L.

    2014-05-01

    The neutron capture cross sections of the main uranium isotopes, U235 and U238, were measured simultaneously for keV energies, for the first time by combining activation technique and atom counting of the reaction products using accelerator mass spectrometry. New data, with a precision of 3%-5%, were obtained from mg-sized natural uranium samples for neutron energies with an equivalent Maxwell-Boltzmann distribution of kT ˜25 keV and for a broad energy distribution peaking at 426 keV. The cross-section ratio of U235(n ,γ)/U238(n ,γ) can be deduced in accelerator mass spectrometry directly from the atom ratio of the reaction products U236/U239, independent of any fluence normalization. Our results confirm the values at the lower band of existing data. They serve as important anchor points to resolve present discrepancies in nuclear data libraries as well as for the normalization of cross-section data used in the nuclear astrophysics community for s-process studies.

  19. Novel method to study neutron capture of 235U and 238U simultaneously at keV energies.

    PubMed

    Wallner, A; Belgya, T; Bichler, M; Buczak, K; Dillmann, I; Käppeler, F; Lederer, C; Mengoni, A; Quinto, F; Steier, P; Szentmiklosi, L

    2014-05-16

    The neutron capture cross sections of the main uranium isotopes, (235)U and (238)U, were measured simultaneously for keV energies, for the first time by combining activation technique and atom counting of the reaction products using accelerator mass spectrometry. New data, with a precision of 3%-5%, were obtained from mg-sized natural uranium samples for neutron energies with an equivalent Maxwell-Boltzmann distribution of kT ∼ 25 keV and for a broad energy distribution peaking at 426 keV. The cross-section ratio of (235)U(n,γ)/(238)U(n,γ) can be deduced in accelerator mass spectrometry directly from the atom ratio of the reaction products (236)U/(239)U, independent of any fluence normalization. Our results confirm the values at the lower band of existing data. They serve as important anchor points to resolve present discrepancies in nuclear data libraries as well as for the normalization of cross-section data used in the nuclear astrophysics community for s-process studies. PMID:24877933

  20. Mass attenuation coefficient of the Earth, Moon and Mars samples over 1keV-100GeV energy range.

    PubMed

    Camargo Moreira, Anderson; Roberto Appoloni, Carlos

    2006-09-01

    This work presents the calculation of the mass attenuation coefficient (micro) of lunar, Martian and terrestrial samples in function of the energy. WinXCOM software was employed to determine the micro values for the samples in the range from 1 keV to 100 GeV. The obtained values were practically the same for energies larger than 100 keV, but marked differences among the samples were observed for energies below 25 keV, which is the energy range of interest for the XRF system used in space probes. PMID:16725330

  1. Studies of polarization bremsstrahlung and ordinary bremsstrahlung from 89Sr beta particles in metallic targets in the photon energy region of 1-100 keV

    NASA Astrophysics Data System (ADS)

    Singh, Amrit; Dhaliwal, A. S.

    2015-06-01

    Studies of polarization bremsstrahlung (PB) and ordinary bremsstrahlung (OB) produced by the 89Sr beta emitter in Al, Ti, Sn and Pb targets were undertaken at photon energies of 1-100 keV. The experimental results are compared with the Elwert corrected (non-relativistic) Bethe-Heitler (EBH) theory and the modified Elwert factor (relativistic) Bethe-Heitler (Fmod BH) theory for OB and with the Avdonina and Pratt (Fmod BH + PB) theory for total bremsstrahlung (BS). These results are in agreement with the Fmod BH + PB theory up to 13 keV, 16 keV, 22 keV and 28 keV energies for Al, Ti, Sn and Pb targets, respectively; Fmod BH theory is more accurate at higher energies.

  2. Sub-second variations of high energy ( 300 keV) hard X-ray emission from solar flares

    NASA Technical Reports Server (NTRS)

    Bai, Taeil

    1986-01-01

    Subsecond variations of hard X-ray emission from solar flares were first observed with a balloon-borne detector. With the launch of the Solar Maximum Mission (SMM), it is now well known that subsecond variations of hard X-ray emission occur quite frequently. Such rapid variations give constraints on the modeling of electron energization. Such rapid variations reported until now, however, were observed at relatively low energies. Fast mode data obtained by the Hard X-ray Burst Spectrometer (HXRBS) has time resolution of approximately 1 ms but has no energy resolution. Therefore, rapid fluctuations observed in the fast-mode HXRBS data are dominated by the low energy hard X-rays. It is of interest to know whether rapid fluctuations are observed in high-energy X-rays. The highest energy band at which subsecond variations were observed is 223 to 1057 keV. Subsecond variations observed with HXRBS at energies greater than 300 keV are reported, and the implications discussed.

  3. Mixing of binary metal systems by noble-gas ions of energies between 30 and 400 keV

    NASA Astrophysics Data System (ADS)

    Hiller, W.; Buchgeister, M.; Eitner, P.; Kopitzki, K.; Lilienthal, V.; Mertler, G.

    1990-03-01

    Multilayered samples of the binary systems Au-Rh and Ni-Pt were bombarded at 77 K with He-, Ne-, Ar- and Kr-ions at energies between 30 and 400 keV. The maximum irradiation dose was 2 1017 ions/cm2. All samples were analysed by X-ray diffraction using a Seemann-Bohlin arrangement. In thermal equilibrium the system Au-Rh has vanishingly small mutual solid solubility whereas the phase diagram of the system Ni-Pt shows that the two metals form a continuous series of solid solutions. By irradiation of Au-Rh samples with Kr-ions a single-phase metastable solid solution was produced. Irradiation with Ar- and Ne-ions results in extension of the terminal solid solubilities. Irradiation with 400 keV He-ions did not cause any mixing. This is in contrast to the experiments with 30 keV He-ions for which we could observe partial mixing. By ion irradiation of Ni-Pt samples solid solutions were produced in all cases. The results are discussed in the frame of the thermal spike model of ion beam mixing.

  4. DWBA analysis of {sup 12}C(d,p){sup 13}C cross section data below 300 keV deuteron energy

    SciTech Connect

    Naqvi, A.A.; Ayer, Z.; Ludwig, E.

    1994-12-31

    {sup 12}C(d,p){sup 13}T differential cross section data at 200, 220, 250, 280 and 300 keV deuteron energies has been analyzed using finite range DWBA codes PTOLEMY and TWOFNR. It was observed that shape and magnitude of the cross section data at 300, 280 keV energies can be fitted well but the shape of 250, 220 and 200 keV data cannot be fitted. However 250, 220 and 200 keV data shape can be fitted by changing the optical model parameters at each energy. This indicates a very strong energy dependence of the optical model parameters data of the entrance channel over such a small energy range which is not observed in the presently available elastic scattering data of the entrance channel.

  5. Low-energy x-ray dosimetry studies (7 to 17.5 keV) with synchroton radiation

    SciTech Connect

    Ipe, N.E.; Bellamy, H.; Flood, J.R.

    1995-06-01

    Unique properties of synchrotron radiation (SR), such as its high intensity, brightness, polarization, and broad spectral distribution (extending from x-ray to infra-red wavelengths) make it an attractive light source for numerous experiments. As SR facilities are rapidly being built all over the world, they introduce the need for low-energy x-ray dosemeters because of the potential radiation exposure to experimenters. However, they also provide a unique opportunity for low-energy x-ray dosimetry studies because of the availability of monochromatic x-ray beams. Results of such studies performed at the Stanford Synchrotron Radiation Laboratory are described. Lithium fluoride TLDs (TLD-100) of varying thicknesses (0.015 to 0.08 cm) were exposed free in air to monochromatic x-rays (7 to 17.5 keV). These exposures were monitored with ionization chambers. The response (nC/Gy) was found to increase with increasing TLD thickness and with increasing beam energy. A steeper increase in response with increasing energy was observed with the thicker TLDs. The responses at 7 and 17.5 keV were within a factor of 2.3 and 5.2 for the 0.015 and 0.08 cm-thick TLDs, respectively. The effects of narrow (beam size smaller than the dosemeter) and broad (beam size larger than the dosemeter) beams on the response of the TLDs are also reported.

  6. Ionic fragmentation of CO and H2O under impact of 10 keV electrons: kinetic energy release distributions

    NASA Astrophysics Data System (ADS)

    Singh, Raj; Bhatt, Pragya; Yadav, Namita; Shanker, R.

    2014-04-01

    Dissociative ionization of COq+ (q=2-4) and H2Oq+ (q=2-3) molecular ions produced from the collisions of CO and H2O with 10 keV electrons is studied using time-of-flight mass spectrometer and position sensitive detector with multi-hit ability, respectively. The kinetic energy release distributions for these channels are obtained. We found that a pure Coulomb explosion model is insufficient to explain the observed kinetic release distributions for the Coulomb explosion channels. A detail of this study is given in references [3, 4].

  7. Absolute Calibration of Image Plate for electrons at energy between 100 keV and 4 MeV

    SciTech Connect

    Chen, H; Back, N L; Eder, D C; Ping, Y; Song, P M; Throop, A

    2007-12-10

    The authors measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV to 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on the solid density targets. This paper presents the calibration results of image plate Photon Stimulated Luminescence PSL per electrons at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energies depositions at these angles. These provide a complete set of tools that allows extraction of the absolute calibration to other spectrometer setting at this electron energy range.

  8. A high-resolution time-of-flight energy analyzer for femtosecond electron pulses at 30 keV

    NASA Astrophysics Data System (ADS)

    Gliserin, Alexander; Walbran, Matthew; Baum, Peter

    2016-03-01

    We report a time-of-flight spectrometer for electron pulses at up to 30 keV, which is a suitable energy for atomic-resolution femtosecond investigations via time-resolved electron diffraction, microscopy, and energy loss spectroscopy. For realistic femtosecond beams without apertures, the instrument's energy resolution is ˜0.5 eV (full width at half maximum) or 2 × 10-5 at a throughput of 50%-90%. We demonstrate the analyzer's versatility by three first applications, namely, femtosecond electron pulse metrology via optical streaking, in situ drift correction in laser-microwave synchronization for electron pulse compression, and time-resolved electron energy loss spectroscopy of aluminum, showing the instrument's capability of tracking plasmonic loss peak positions with few-meV accuracy.

  9. Biological Response of Cancer and Normal Cells on Irradiation from Electrons with Energies up to 200 keV.

    NASA Astrophysics Data System (ADS)

    Prilepskiy, Yuriy

    2007-03-01

    This paper presents continuation data of the series of experiments with the electron gun of the CEBAF machine at Jefferson Lab (Newport News, VA), which is capable of delivering electrons with energies up to 200 keV. This 1.5 GHz beam permits to generate cellular damage within minutes. We have performed irradiation of cancer and normal cells with different electron energies and currents to investigate cell biological responses. The biological response is measured through proteomics analysis before and after irradiation. The living cells are encased in special air containers allowing proper positioning in vacuum where the electrons are present. The containers receive the irradiation from the mono energetic electrons with energy up to 120 keV, resulting in an irradiation from both electrons and a small number of photons from the original beam passing through the thin container window. This window allows approximately half of the beam to come through. The study will permit to address the physical processes involved in the RBE and LET at a level that supersedes current data listed in the literature. We will discuss the experimental setup and the second stage of data collected with the new more developed system. This research is part of a global program to provide detailed information for the understanding of radiation based cancer treatments.

  10. Experimental investigation of the multiple scatter peak of gamma rays in portland cement in the energy range 279-1332 keV

    NASA Astrophysics Data System (ADS)

    Singh, Tejbir; Singh, Parjit S.

    2011-12-01

    The pulse height spectra for different thicknesses of portland cement in the reflected geometry has been recorded with the help of a NaI(Tl) scintillator detector and 2 K MCA card using different gamma-ray sources such as Hg203 (279 keV), Cs137 (662 keV) and Co60 (1173 and 1332 keV). It has been observed that the multiple scatter peak for portland cement appears at 110 (7) keV in all the spectra irrespective of different incident photon energies in the range 279-1332 keV from different gamma-ray sources. Further, the variation in the intensity of the multiple scatter peak with the thickness of portland cement in the backward semi-cylinders has been investigated.

  11. First wave of cultivators spread to Cyprus at least 10,600 y ago

    PubMed Central

    Vigne, Jean-Denis; Briois, François; Zazzo, Antoine; Willcox, George; Cucchi, Thomas; Thiébault, Stéphanie; Carrère, Isabelle; Franel, Yodrik; Touquet, Régis; Martin, Chloé; Moreau, Christophe; Comby, Clothilde; Guilaine, Jean

    2012-01-01

    Early Neolithic sedentary villagers started cultivating wild cereals in the Near East 11,500 y ago [Pre-Pottery Neolithic A (PPNA)]. Recent discoveries indicated that Cyprus was frequented by Late PPNA people, but the earliest evidence until now for both the use of cereals and Neolithic villages on the island dates to 10,400 y ago. Here we present the recent archaeological excavation at Klimonas, which demonstrates that established villagers were living on Cyprus between 11,100 and 10,600 y ago. Villagers had stone artifacts and buildings (including a remarkable 10-m diameter communal building) that were similar to those found on Late PPNA sites on the mainland. Cereals were introduced from the Levant, and meat was obtained by hunting the only ungulate living on the island, a small indigenous Cypriot wild boar. Cats and small domestic dogs were brought from the mainland. This colonization suggests well-developed maritime capabilities by the PPNA period, but also that migration from the mainland may have occurred shortly after the beginning of agriculture. PMID:22566638

  12. First wave of cultivators spread to Cyprus at least 10,600 y ago.

    PubMed

    Vigne, Jean-Denis; Briois, François; Zazzo, Antoine; Willcox, George; Cucchi, Thomas; Thiébault, Stéphanie; Carrère, Isabelle; Franel, Yodrik; Touquet, Régis; Martin, Chloé; Moreau, Christophe; Comby, Clothilde; Guilaine, Jean

    2012-05-29

    Early Neolithic sedentary villagers started cultivating wild cereals in the Near East 11,500 y ago [Pre-Pottery Neolithic A (PPNA)]. Recent discoveries indicated that Cyprus was frequented by Late PPNA people, but the earliest evidence until now for both the use of cereals and Neolithic villages on the island dates to 10,400 y ago. Here we present the recent archaeological excavation at Klimonas, which demonstrates that established villagers were living on Cyprus between 11,100 and 10,600 y ago. Villagers had stone artifacts and buildings (including a remarkable 10-m diameter communal building) that were similar to those found on Late PPNA sites on the mainland. Cereals were introduced from the Levant, and meat was obtained by hunting the only ungulate living on the island, a small indigenous Cypriot wild boar. Cats and small domestic dogs were brought from the mainland. This colonization suggests well-developed maritime capabilities by the PPNA period, but also that migration from the mainland may have occurred shortly after the beginning of agriculture. PMID:22566638

  13. Nuclear and electronic energy loss by 1 keV to 60 keV ions in silicon : comparison of measurement to SRIM

    SciTech Connect

    Funsten, H. O.; Harper, R. W.; Ritzau, S. M.; Korde, R.

    2003-01-01

    Comparison of TRIM simulations with measurements of the energy lost to electronic and nuclear stopping processes using 1 00% internal carrier collection efficiency silicon photodiodes shows a large, systematic overestimation by TRIM of electronic energy loss.

  14. Low-energy (< 10 keV) electron ionization and recombination model for a liquid argon detector

    SciTech Connect

    Foxe, Michael P.; Hagmann, Chris; Jovanovic, Igor; Bernstein, A.; Kazkaz, K.; Mozin, Vladimir V.; Pereverzev, S. V.; Sangiorgio, Samuele; Sorensen, Peter F.

    2015-01-21

    Detailed understanding of the ionization process in dual-phase noble element detectors is important for their use in applications such as the search for Dark Matter and coherent neutrino-nucleus scattering. The response of dual-phase noble element detectors to low-energy ionization events is poorly understood at this time. We describe a new simulation tool which predicts the ionization yield from electronic energy deposits (E < 10 keV) in liquid Ar, including the dependence of the yield on the applied electric drift eld. The ionization signal produced in a dual-phase argon detector from 37Ar beta decay and 55Fe X-rays has been calculated using the new model.

  15. Double ionization of helium by 2-keV electrons in equal- and unequal-energy configurations

    NASA Astrophysics Data System (ADS)

    Ambrosio, M. J.; Mitnik, D. M.; Dorn, A.; Ancarani, L. U.; Gasaneo, G.

    2016-03-01

    We present theoretical and experimental fully differential cross sections, in coplanar scattering geometry, for the double ionization of helium by electron impacting at 2 keV. The observed structures for both equal and unequal sharing of the excess energy are analyzed. Although the incident energy could, in principle, be regarded as high enough for the applicability of the first Born approximation in the projectile-target interaction, the experimental cross sections, measured with a COLTRIMS apparatus, show that further orders' effects can be appreciated. The theoretical cross sections are calculated with the generalized Sturmian functions method, which exactly solves the three-body problem that stems from a first-order projectile-target perturbative treatment.

  16. Cusp shape studies in H + ? He collision in the energy range 75-1400 keV: experiment and theory

    NASA Astrophysics Data System (ADS)

    Zvodszky, P. A.; Gulys, L.; Sarkadi, L.; Vajnai, T.; Szab, Gy.; Ricz, S.; Plinks, J.; Bernyi, D.

    1994-03-01

    The aim of the present study was to measure the double differential cross section (DDCS) for the electron ejection as a function of electron energy at 0 observation angle in H + ? He collisions. Having in mind that the experimental and theoretical shape parameters of the DDCS known in the literature are rather scattered, we made a systematic study in the projectile energy range 75-1400 keV. The total electron yield and the shape parameters of the DDCS were determined and compared with the corresponding values from 2nd order OBK, CDW and CDW-EIS theories. A further aim of this work was to check whether the velocity of the projectile and that of the electrons at the maximum of the cusp peak are indeed equal.

  17. Attenuation coefficients of soils and some building materials of Bangladesh in the energy range 276-1332 keV.

    PubMed

    Alam, M N; Miah, M M; Chowdhury, M I; Kamal, M; Ghose, S; Rahman, R

    2001-06-01

    The linear and mass attenuation coefficients of different types of soil, sand, building materials and heavy beach mineral samples from the Chittagong and Cox's Bazar area of Bangladesh were measured using a high-resolution HPGe detector and the gamma-ray energies 276.1, 302.8, 356.0, 383.8, 661.6 and 1173.2 and 1332.5 keV emitted from point sources of 133Ba, 137Cs and 60Co, respectively. The linear attenuation coefficients show a linear relationship with the corresponding densities of the samples studied. The variations of the mass attenuation coefficient with gamma-ray energy were exponential in nature. The measured mass attenuation coefficient values were compared with measurements made in other countries for similar kinds of materials. The values are in good agreement with each other in most cases. PMID:11300413

  18. Simulations of Microchannel Plate Sensitivity to <20 keV X-rays as a Function of Energy and Incident Angle

    SciTech Connect

    Kruschwitz, Craig; Wu, M.; Rochau, G. A.

    2013-06-13

    We present results of Monte Carlo simulations of microchannel plate (MCP) response to x-rays in the 250 eV to 20 keV energy range as a function of both x-ray energy and impact angle. The model is based on the model presented in Rochau et al. (2006). However, while the Rochau et al. (2006) model was two-dimensional, and their results only went to 5 keV, our results have been expanded to 20 keV, and our model has been incorporated into a three-dimensional Monte Carlo MCP model that we have developed over the past several years (Kruschwitz et al. 2011). X-ray penetration through multiple MCP pore walls is increasingly important above 5 keV. The effect of x-ray penetration through multiple pores on MCP performance was studied and is presented.

  19. Possible Contrast Media Reduction with Low keV Monoenergetic Images in the Detection of Focal Liver Lesions: A Dual-Energy CT Animal Study

    PubMed Central

    Chung, Yong Eun; You, Je Sung; Lee, Hye-Jeong; Lim, Joon Seok; Lee, Hye Sun; Baek, Song-Ee; Kim, Myeong-Jin

    2015-01-01

    Objective To investigate the feasibility of dual-energy CT for contrast media (CM) reduction in the diagnosis of hypervascular and hypovascular focal liver lesions (FLL). Subjects and Methods The Institutional Animal Care and Use Committee approved this study. VX2 tumors were implanted in two different segments of the liver in 13 rabbits. After 2 weeks, two phase contrast enhanced CT scans including the arterial phase (AP) and portal-venous phase (PVP) were performed three times with 24-hour intervals with three different concentrations of iodine, 300 (I300), 150 (I150) and 75 mg I/mL (I75). The mean HU and standard deviation (SD) were measured in the liver, the hypervascular portion of the VX2 tumor which represented hypervascular tumors, and the central necrotic area of the VX2 tumor which represented hypovascular tumors in 140kVp images with I300 as a reference standard and in monoenergetic images (between 40keV and 140keV) with I150 and I75. The contrast-to-noise ratio (CNR) for FLLs and the ratio of the CNRs (CNRratio) between monoenergetic image sets with I150 and I75, and the reference standard were calculated. Results For hypervascular lesions, the CNRratio was not statistically different from 1.0 between 40keV and 70keV images with I150, whereas the CNRratio was significantly lower than 1.0 in all keV images with I75. For hypovascular lesions, the CNRratio was similar to or higher than 1.0 between 40keV and 80keV with I150 and between 40keV and 70keV with I75. Conclusions With dual-energy CT, the total amount of CM might be halved in the diagnosis of hypervascular FLLs and reduced to one-fourth in the diagnosis of hypovascular FLLs, while still preserving CNRs. PMID:26203652

  20. Direct determination of radionuclides in building materials with self-absorption correction for the 63 and 186keV ?-energy lines.

    PubMed

    D?ugosz-Lisiecka, Magdalena; Ziomek, Martyna

    2015-12-01

    The use of 911keV and 129keV ?-line intensity ratio has been applied for self-absorption correction of the 63keV (234)Th ((238)U) and 186keV((226)Ra and (235)U) lines in typical building materials and soil samples. Proposed procedure allows to determine (238)U from the (234)Th line (63keV) and (226)Ra after subtraction of (235)U interference in the 186keV. It is important in the case of low uranium concentration and weak intensity of (235)U 143keV ? energy line, when activity of this radionuclide can be apprised on the natural constant (238)U/(235)U ratio, only (excluding accidental anthropogenic depleted uranium deposition in the soil samples). Therefore, by this method a direct and fast determination of the (226)Ra and other important radionuclides, without one month waiting period for (226)Ra-(222)Rn daughter equilibrium, is possible. The accuracy of the method has been confirmed (relative relation deviation <10%) for typical buildings materials such as: tales, bricks, concrete blocks and various type of ceramic materials. PMID:26275363

  1. Energy response of GR-200A thermoluminescence dosemeters to 60Co and to monoenergetic synchrotron radiation in the energy range 28-40 keV.

    PubMed

    Emiro, F; Di Lillo, F; Mettivier, G; Fedon, C; Longo, R; Tromba, G; Russo, P

    2016-01-01

    The response of LiF:Mg,Cu,P thermoluminescence dosemeters (type GR-200A) to monoenergetic radiation of energy 28, 35, 38 and 40 keV was evaluated with respect to irradiation with a calibrated (60)Co gamma-ray source. High-precision measurements of the relative air kerma response performed at the SYRMEP beamline of the ELETTRA synchrotron radiation facility (Trieste, Italy) showed a significant deviation of the average response to low-energy X-rays from that to (60)Co, with an over-response from 6 % (at 28 keV) to 22 % (at 40 keV). These data are not consistent with literature data for these dosemeters, where model predictions gave deviation from unity of the relative air kerma response of about 10 %. The authors conclude for the need of additional determinations of the low-energy relative response of GR-200A dosemeters, covering a wider range of monoenergetic energies sampled at a fine energy step, as planned in future experiments by their group at the ELETTRA facility. PMID:25737582

  2. Dosimetric prerequisites for routine clinical use of photon emitting brachytherapy sources with average energy higher than 50 kev

    SciTech Connect

    Li Zuofeng; Das, Rupak K.; De Werd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Perez-Calatayud, Jose; Rivard, Mark J.; Sloboda, Ronald S.; Williamson, Jeffrey F.

    2007-01-15

    This paper presents the recommendations of the American Association of Physicists in Medicine (AAPM) and the European Society for Therapeutic Radiology and Oncology (ESTRO) on the dosimetric parameters to be characterized, and dosimetric studies to be performed to obtain them, for brachytherapy sources with average energy higher than 50 keV that are intended for routine clinical use. In addition, this document makes recommendations on procedures to be used to maintain vendor source strength calibration accuracy. These recommendations reflect the guidance of the AAPM and the ESTRO for its members, and may also be used as guidance to vendors and regulatory agencies in developing good manufacturing practices for sources used in routine clinical treatments.

  3. Study of the surface activation of ETFE by low energy (keV) Si and N bombardment

    NASA Astrophysics Data System (ADS)

    Parada, M. A.; de Almeida, A.; Muntele, C.; Muntele, I.; Delalez, N.; Ila, D.

    2005-12-01

    The ethylenetetrafluoroethylene (ETFE) is a polymer formed by alternating ethylene and tetrafluoroethylene segments. It can be applied in the field of medical physics as intra venous catheters and as radiation dosimeters. The increasing application of polymeric materials in technological and scientific fields has motivated the use of surface treatments to modify the physical and chemical properties of polymer surfaces. When a material is exposed to ionizing radiation, it suffers damage leading to surface activation depending on the type, energy and intensity of the applied radiation. In order to determine the radiation damage and the surface activation mechanism ETFE films were bombarded with keV Si and N at various fluences. The bombarded film was also analyzed with optical absorption photospectrometry (OAP), Raman and Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy showing quantitatively the chemical nature at the damage caused by the Si and N bombardment.

  4. 12.6 keV Kr K-alpha X-ray Source For High Energy Density Physics Experiments

    SciTech Connect

    Kugland, N; Constantin, C G; Niemann, C; Neumayer, P; Chung, H; Doppner, T; Kemp, A; Glenzer, S H; Girard, F

    2008-04-22

    A high contrast 12.6 keV Kr K{alpha} source has been demonstrated on the petawatt-class Titan laser facility. The contrast ratio (K{alpha} to continuum) is 65, with a competitive ultra short pulse laser to x-ray conversion efficiency of 10{sup -5}. Filtered shadowgraphy indicates that the Kr K{alpha} and K{beta} x-rays are emitted from a roughly 1 x 2 mm emission volume, making this source suitable for area backlighting and scattering. Spectral calculations indicate a typical bulk electron temperature of 50-70 eV (i.e. mean ionization state 13-16), based on the observed ratio of K{alpha} to K{beta}. Kr gas jets provide a debris-free high energy K{alpha} source for time-resolved diagnosis of dense matter.

  5. Ionic fragmentation of the CO molecule by impact of 10-keV electrons: Kinetic-energy-release distributions

    NASA Astrophysics Data System (ADS)

    Singh, Raj; Bhatt, Pragya; Yadav, Namita; Shanker, R.

    2013-02-01

    The ionic fragmentation of a multiply charged CO molecule is studied under impact of 10-keV electrons using recoil-ion momentum spectroscopy. The kinetic-energy-release distributions for the various fragmentation channels arising from the dissociation of COq+ (q = 2-4) are measured and discussed in light of theoretical calculations available in the literature. It is observed that the present kinetic-energy-release values are much smaller than those predicted by the Coulomb explosion model. The kinetic-energy-release distribution for the C++O+ channel is suggested to arise from the tunneling process. It is seen that the peak of kinetic-energy-release distribution is larger for that dissociation channel that arises from the same molecular ion which has higher charge on the oxygen atom. Further, the relative ionic fractions for seven ion species originating from ionization and subsequent dissociation of the CO molecule are obtained and compared with the existing data reported at low energy of the electron impact. The precursor-specific relative partial ionization cross sections are also obtained and shown to be about 66.4% from single ionization, 29.9% from double ionization, 3.3% from triple ionization, and about 0.4% from quadruple ionization of the precursor CO molecule contributing to the total fragment ion yield.

  6. Low Energy Neutrino and Dark Matter Physics with Sub-Kev Germanium Detector

    NASA Astrophysics Data System (ADS)

    Lin, Shin-Ted

    2013-11-01

    The research program of TEXONO Collaboration is on low energy neutrino and dark matter physics. The current goals are on the development of germanium detectors with sub-keV sensitivities to realize experiments on neutrino magnetic moments, neutrino-nucleus coherent scattering, as well as dark natter searches. The compatible sensitivities on low mass WIMP-nucleus for spin-independent and spin-dependent has been achieved with a four-channel ultra-low-energy germanium prototype detector with 4X5 g at the Kuo-Sheng Neutrino Laboratory (KSNL). Data are being taken with point-contact germanium detector at KSNL is demonstrated. The dark matter program has evolved into a dedicated experiment at China Jin-Ping Laboratory (CJPL), where is world's deepest underground laboratory. Recent status and plans would be discussed.

  7. Laboratory-based x-ray reflectometer for multilayer characterization in the 15–150 keV energy band

    SciTech Connect

    Windt, David L.

    2015-04-15

    A laboratory-based X-ray reflectometer has been developed to measure the performance of hard X-ray multilayer coatings at their operational X-ray energies and incidence angles. The instrument uses a sealed-tube X-ray source with a tungsten anode that can operate up to 160 kV to provide usable radiation in the 15–150 keV energy band. Two sets of adjustable tungsten carbide slit assemblies, spaced 4.1 m apart, are used to produce a low-divergence white beam, typically set to 40 μm × 800 μm in size at the sample. Multilayer coatings under test are held flat using a vacuum chuck and are mounted at the center of a high-resolution goniometer used for precise angular positioning of the sample and detector; additionally, motorized linear stages provide both vertical and horizontal adjustments of the sample position relative to the incident beam. A CdTe energy-sensitive detector, located behind a third adjustable slit, is used in conjunction with pulse-shaping electronics and a multi-channel analyzer to capture both the incident and reflected spectra; the absolute reflectance of the coating under test is computed as the ratio of the two spectra. The instrument’s design, construction, and operation are described in detail, and example results are presented obtained with both periodic, narrow-band and depth-graded, wide-band hard X-ray multilayer coatings.

  8. Laboratory-based x-ray reflectometer for multilayer characterization in the 15-150 keV energy band

    NASA Astrophysics Data System (ADS)

    Windt, David L.

    2015-04-01

    A laboratory-based X-ray reflectometer has been developed to measure the performance of hard X-ray multilayer coatings at their operational X-ray energies and incidence angles. The instrument uses a sealed-tube X-ray source with a tungsten anode that can operate up to 160 kV to provide usable radiation in the 15-150 keV energy band. Two sets of adjustable tungsten carbide slit assemblies, spaced 4.1 m apart, are used to produce a low-divergence white beam, typically set to 40 ?m 800 ?m in size at the sample. Multilayer coatings under test are held flat using a vacuum chuck and are mounted at the center of a high-resolution goniometer used for precise angular positioning of the sample and detector; additionally, motorized linear stages provide both vertical and horizontal adjustments of the sample position relative to the incident beam. A CdTe energy-sensitive detector, located behind a third adjustable slit, is used in conjunction with pulse-shaping electronics and a multi-channel analyzer to capture both the incident and reflected spectra; the absolute reflectance of the coating under test is computed as the ratio of the two spectra. The instrument's design, construction, and operation are described in detail, and example results are presented obtained with both periodic, narrow-band and depth-graded, wide-band hard X-ray multilayer coatings.

  9. Laboratory-based X-ray reflectometer for multilayer characterization in the 15-150 keV energy band.

    PubMed

    Windt, David L

    2015-04-01

    A laboratory-based X-ray reflectometer has been developed to measure the performance of hard X-ray multilayer coatings at their operational X-ray energies and incidence angles. The instrument uses a sealed-tube X-ray source with a tungsten anode that can operate up to 160 kV to provide usable radiation in the 15-150 keV energy band. Two sets of adjustable tungsten carbide slit assemblies, spaced 4.1 m apart, are used to produce a low-divergence white beam, typically set to 40 ?m 800 ?m in size at the sample. Multilayer coatings under test are held flat using a vacuum chuck and are mounted at the center of a high-resolution goniometer used for precise angular positioning of the sample and detector; additionally, motorized linear stages provide both vertical and horizontal adjustments of the sample position relative to the incident beam. A CdTe energy-sensitive detector, located behind a third adjustable slit, is used in conjunction with pulse-shaping electronics and a multi-channel analyzer to capture both the incident and reflected spectra; the absolute reflectance of the coating under test is computed as the ratio of the two spectra. The instrument's design, construction, and operation are described in detail, and example results are presented obtained with both periodic, narrow-band and depth-graded, wide-band hard X-ray multilayer coatings. PMID:25933841

  10. Observations of solar X-ray bursts in the energy range 5-15 keV

    NASA Technical Reports Server (NTRS)

    Datlowe, D. W.; Hudson, H. S.; Peterson, L. E.

    1974-01-01

    Bursts of solar X-rays in the energy range 5-15 keV are associated with flares and are due to thermal emission from a hot coronal plasma. The results of the first study of a large sample of separate bursts, 197 events associated with subflares, and of a few events of importance 1 are presented. The observations were made by a proportional counter on the satellite OSO-7 from October, 1971 to June, 1972. In most cases, the temperature characterizing the X-ray spectrum rises impulsively at the onset of the burst and then declines slowly throughout the remainder of the burst. The emission measure rises exponentially with a time scale of 30-100 sec and then declines slowly on a time scale of the order of 1,000 sec. It is shown that the growth of the thermal energy in the flare plasma throughout the burst can be due to the heating of new cool material.

  11. Calibration system for electron detectors in the energy range from 10 eV to 50 keV

    NASA Astrophysics Data System (ADS)

    Marshall, F. J.; Hardy, D. A.; Huber, A.; Pantazis, J.; McGarity, J.

    1986-02-01

    A system for calibrating electron detectors operating in the energy range 10 eV-50 keV is described. The main component of the system is a large area (730 sq cm) monoenergetic electron beam which is tunable with respect to energy. The beam is produced by illuminating a thin gold film deposited onto a quartz flat with ultraviolet light such that photoelectrons are ejected from the gold surface. The current leaving the gold surface is measured using a specially designed picoammeter. The detectors to be calibrated are mounted within a set of computer-controlled rotational and translational tables which permit the look direction of the detector to be oriented with respect to the beam in two orthogonal angles and two orthogonal directions. The entire calibration system operates within a set of Helmholtz coils which allow for the earth's magnetic field to be canceled. Some results of calibrations of electrostatic analyzers are presented. A schematic diagram showing the wiring arrangement between the voltage supplier and the photocathode is provided.

  12. A Monte Carlo method for calculating the energy response of plastic scintillators to polarized photons below 100 keV

    NASA Astrophysics Data System (ADS)

    Mizuno, T.; Kanai, Y.; Kataoka, J.; Kiss, M.; Kurita, K.; Pearce, M.; Tajima, H.; Takahashi, H.; Tanaka, T.; Ueno, M.; Umeki, Y.; Yoshida, H.; Arimoto, M.; Axelsson, M.; Marini Bettolo, C.; Bogaert, G.; Chen, P.; Craig, W.; Fukazawa, Y.; Gunji, S.; Kamae, T.; Katsuta, J.; Kawai, N.; Kishimoto, S.; Klamra, W.; Larsson, S.; Madejski, G.; Ng, J. S. T.; Ryde, F.; Rydstrm, S.; Takahashi, T.; Thurston, T. S.; Varner, G.

    2009-03-01

    The energy response of plastic scintillators (Eljen Technology EJ-204) to polarized soft gamma-ray photons below 100 keV has been studied, primarily for the balloon-borne polarimeter, PoGOLite. The response calculation includes quenching effects due to low-energy recoil electrons and the position dependence of the light collection efficiency in a 20 cm long scintillator rod. The broadening of the pulse-height spectrum, presumably caused by light transportation processes inside the scintillator, as well as the generation and multiplication of photoelectrons in the photomultiplier tube, were studied experimentally and have also been taken into account. A Monte Carlo simulation based on the Geant4 toolkit was used to model photon interactions in the scintillators. When using the polarized Compton/Rayleigh scattering processes previously corrected by the authors, scintillator spectra and angular distributions of scattered polarized photons could clearly be reproduced, in agreement with the results obtained at a synchrotron beam test conducted at the KEK Photon Factory. Our simulation successfully reproduces the modulation factor, defined as the ratio of the amplitude to the mean of the distribution of the azimuthal scattering angles, within 5% (relative). Although primarily developed for the PoGOLite mission, the method presented here is also relevant for other missions aiming to measure polarization from astronomical objects using plastic scintillator scatterers.

  13. A silicon <111> phase retarder for producing circularly polarized x-rays in the 2.1-3 keV energy range

    NASA Astrophysics Data System (ADS)

    Bouchenoire, Laurence; Morris, Richard J. H.; Hase, Thomas P. A.

    2012-08-01

    Circularly polarized synchrotron light is routinely used to study different material properties but is difficult to generate reproducibly below 3.1 keV. We present data from a 5 μm Si <111> phase retarder (PR) designed to operate in the 2.1 to 3 keV energy range. Measurements were performed at the Pd L3 edge to enable direct comparison with a conventional diamond PR. The degree of circular polarization was ascertained indirectly by recording the resonant specular reflectivity from a [Fe(2 ML)/Pd(15 ML)]×20 multilayer. Our findings show that such a device can be used to extend the usable energy capability of PR technology down to 2.1 keV.

  14. Fine pitch CdTe-based hard-X-ray polarimeter performance for space science in the 70-300 keV energy range

    NASA Astrophysics Data System (ADS)

    Antier, S.; Limousin, O.; Ferrando, P.

    2015-07-01

    X-rays astrophysical sources have been almost characterized through imaging, spectroscopy and timing analysis. Nevertheless, more observational parameters such as polarization are needed because some radiation mechanisms present in gamma-ray sources are still unclear. We have developed a CdTe based fine-pitch imaging spectrometer, Caliste to study polarization. With a 58-micron pitch and 1 keV energy resolution at 60 keV, we are able to accurately reconstruct the polarization angle and fraction of an impinging flux of photons which are scattered by 90° after Compton diffusion within the crystal. In this paper, we present the principles and the results obtained for this kind of measurements: on one hand, we compare simulations results with experimental data taken at ESRF ID15A (European Synchrotron Radiation Facility) using a 35-300 keV mono-energetic polarized beam. Applying a judicious energy selection to our data set, we reach a remarkable sensitivity level characterized by a measured Quality factor of 0.78±0.02 in the 200-300 keV range; and a measured Q factor of 0.64±0.0 at 70 keV where hard X-rays mirrors are already available.

  15. A balloon-borne instrument for high-resolution astrophysical spectroscopy in the 20-8000 keV energy range

    NASA Technical Reports Server (NTRS)

    Paciesas, W. S.; Baker, R.; Boclet, D.; Brown, S.; Cline, T.; Costlow, H.; Durouchoux, P.; Ehrmann, C.; Gehrels, N.; Hameury, J. M.

    1983-01-01

    The Low Energy Gamma ray Spectrometer (LEGS) is designed to perform fine energy resolution measurements of astrophysical sources. The instrument is configured for a particular balloon flight with either of two sets of high purity germanium detectors. In one configuration, the instrument uses an array of three coaxial detectors (effective volume equal to or approximately 230 cubic cm) inside an NaI (T1) shield and collimator (field of view equal to or approximately 16 deg FWHM) and operates in the 80 to 8000 keV energy range. In the other configuration, three planar detectors (effective area equal to or approximately square cm) surrounded by a combination of passive Fe and active NaI for shielding and collimation (field of view equal to or approximately 5 deg x 10 deg FWHM) are optimized for the 20 to 200 keV energy range. In a typical one day balloon flight, LEGS sensitivity limit (3 sigma) for narrow line features is less than or approximately .0008 ph/cm/s square (coaxial array: 80 to 2000 keV) and less than or approximately .0003 ph/square cm/s (planar array: 50 to 150 keV).

  16. Variation in the calibrated response of LiF, Al2O3, and silicon dosimeters when used for in-phantom measurements of source photons with energies between 30 KeV AND 300 KeV.

    PubMed

    Poudel, Sashi; Currier, Blake; Medich, David C

    2015-04-01

    The MCNP5 radiation transport code was used to quantify changes in the absorbed dose conversion factor for LiF, Al2O3, and silicon-based electronic dosimeters calibrated in-air using standard techniques and summarily used to measure absorbed dose to water when placed in a water phantom. A mono-energetic photon source was modeled at energies between 30 keV and 300 keV for a point-source placed at the center of a water phantom, a point-source placed at the surface of the phantom, and for a 10-cm radial field geometry. Dosimetric calculations were obtained for water, LiF, Al2O3, and silicon at depths of 0.2 cm and 10 cm from the source. These results were achieved using the MCNP5 *FMESH photon energy-fluence tally, which was coupled with the appropriate DE/DF card for each dosimetric material studied to convert energy-fluence into the absorbed dose. The dosimeter's absorbed dose conversion factor was calculated as a ratio of the absorbed dose to water to that of the dosimeter measured at a specified phantom depth. The dosimeter's calibration value also was obtained. Based on these results, the absorbed dose conversion factor for a LiF dosimeter was found to deviate from its calibration value by up to 9%, an Al2O3 dosimeter by 43%, and a silicon dosimeter by 61%. These data therefore can be used to obtain LiF, Al2O3, and silicon dosimeter correction factors for mono-energetic and poly-energetic sources at measurement depths up to 10 cm under the irradiation geometries investigated herein. PMID:25706137

  17. Measurement of high-energy (10-60 keV) x-ray spectral line widths with eV accuracy.

    PubMed

    Seely, J F; Glover, J L; Hudson, L T; Ralchenko, Y; Henins, Albert; Pereira, N; Feldman, U; Di Stefano, C A; Kuranz, C C; Drake, R P; Chen, Hui; Williams, G J; Park, J

    2014-11-01

    A high resolution crystal spectrometer utilizing a crystal in transmission geometry has been developed and experimentally optimized to measure the widths of emission lines in the 10-60 keV energy range with eV accuracy. The spectrometer achieves high spectral resolution by utilizing crystal planes with small lattice spacings (down to 2d = 0.099 nm), a large crystal bending radius and Rowland circle diameter (965 mm), and an image plate detector with high spatial resolution (60 ?m in the case of the Fuji TR image plate). High resolution W L-shell and K-shell laboratory test spectra in the 10-60 keV range and Ho K-shell spectra near 47 keV recorded at the LLNL Titan laser facility are presented. The Ho K-shell spectra are the highest resolution hard x-ray spectra recorded from a solid target irradiated by a high-intensity laser. PMID:25430194

  18. Measurement of high-energy (1060 keV) x-ray spectral line widths with eV accuracy

    SciTech Connect

    Seely, J. F. Feldman, U.; Glover, J. L.; Hudson, L. T.; Ralchenko, Y.; Henins, Albert; Pereira, N.; Di Stefano, C. A.; Kuranz, C. C.; Drake, R. P.; Chen, Hui; Williams, G. J.; Park, J.

    2014-11-15

    A high resolution crystal spectrometer utilizing a crystal in transmission geometry has been developed and experimentally optimized to measure the widths of emission lines in the 1060 keV energy range with eV accuracy. The spectrometer achieves high spectral resolution by utilizing crystal planes with small lattice spacings (down to 2d = 0.099 nm), a large crystal bending radius and Rowland circle diameter (965 mm), and an image plate detector with high spatial resolution (60 ?m in the case of the Fuji TR image plate). High resolution W L-shell and K-shell laboratory test spectra in the 1060 keV range and Ho K-shell spectra near 47 keV recorded at the LLNL Titan laser facility are presented. The Ho K-shell spectra are the highest resolution hard x-ray spectra recorded from a solid target irradiated by a high-intensity laser.

  19. Measurement of high-energy (10-60 keV) x-ray spectral line widths with eV accuracya)

    NASA Astrophysics Data System (ADS)

    Seely, J. F.; Glover, J. L.; Hudson, L. T.; Ralchenko, Y.; Henins, Albert; Pereira, N.; Feldman, U.; Di Stefano, C. A.; Kuranz, C. C.; Drake, R. P.; Chen, Hui; Williams, G. J.; Park, J.

    2014-11-01

    A high resolution crystal spectrometer utilizing a crystal in transmission geometry has been developed and experimentally optimized to measure the widths of emission lines in the 10-60 keV energy range with eV accuracy. The spectrometer achieves high spectral resolution by utilizing crystal planes with small lattice spacings (down to 2d = 0.099 nm), a large crystal bending radius and Rowland circle diameter (965 mm), and an image plate detector with high spatial resolution (60 ?m in the case of the Fuji TR image plate). High resolution W L-shell and K-shell laboratory test spectra in the 10-60 keV range and Ho K-shell spectra near 47 keV recorded at the LLNL Titan laser facility are presented. The Ho K-shell spectra are the highest resolution hard x-ray spectra recorded from a solid target irradiated by a high-intensity laser.

  20. Development of a High Energy, kHz, Mid-Infrared OPCPA Laser for keV High Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Gerrity, M. R.

    Coherent keV photon energy x-rays have many applications for materials science at the shortest length and time scales. Unfortunately, there are relatively few options for coherent x-ray generation. One of the most promising methods is high harmonic generation, wherein a femtosecond driving laser pulse is coherently upconverted to the x-ray region of the spectrum. Recent work has shown that the maximum x-ray photon energy that can be generated via high harmonic generation scales favorably with the wavelength of the driving laser pulse. This has sparked an interest in using mid-infrared (3-5mum) lasers to drive high harmonic generation. However, high harmonic generation necessitates a mJ level, kHz repetition rate, femtosecond driving laser. At present, there are no such lasers in the mid-infrared region of the spectrum. This necessitates the development of new laser architectures for tabletop coherent x-ray generation. OPCPA technology is one of the most promising avenues for high energy, high repletion rate lasers in the mid-infrared. This thesis reports on the design and development of a mJ level, kHz repetition rate, femtosecond OPCPA laser running at 3mum, optimized for tabletop coherent x-ray generation. The system described here integrates and extends a variety of laser technologies towards this goal. The full laser is based upon an Yb:fiber oscillator and MgO:PPLN OPO front end. To pump our OPCPA system, we developed a four stage, cryogenic Yb:YAG laser running with >35mJ of output energy at 1kHz. We then use this to a pump a three stage OPCPA system, likewise running at 1kHz. We demonstrate over 3.4mJ of output energy at 1.55mum, along with 1.4mJ at 3mum. We then show compression of the 3mum output to <110fs. Finally, we conclude with the future directions for this laser, and discuss how it may be scaled to higher energies, shorter pulse lengths, and even further into the mid-infrared.

  1. Interferometric phase-contrast X-ray CT imaging of VX2 rabbit cancer at 35keV X-ray energy

    SciTech Connect

    Takeda, Tohoru; Wu Jin; Tsuchiya, Yoshinori; Lwin, Thet-Thet; Itai, Yuji; Yoneyama, Akio; Hyodo, Kazuyuki

    2004-05-12

    Imaging of large objects at 17.7-keV low x-ray energy causes huge x-ray exposure to the objects even using interferometric phase-contrast x-ray CT (PCCT). Thus, we tried to obtain PCCT images at high x-ray energy of 35keV and examined the image quality using a formalin-fixed VX2 rabbit cancer specimen with 15-mm in diameter. The PCCT system consisted of an asymmetrically cut silicon (220) crystal, a monolithic x-ray interferometer, a phase-shifter, an object cell and an x-ray CCD camera. The PCCT at 35 keV clearly visualized various inner structures of VX2 rabbit cancer such as necrosis, cancer, the surrounding tumor vessels, and normal liver tissue. Besides, image-contrast was not degraded significantly. These results suggest that the PCCT at 35 KeV is sufficient to clearly depict the histopathological morphology of VX2 rabbit cancer specimen.

  2. Medium-energy ion irradiation of Si and Ge wafers: studies of surface nanopatterning and signature of recrystallization in 100 keV Kr+ bombarded a-Si

    NASA Astrophysics Data System (ADS)

    Kumar, Pravin

    2016-03-01

    We report new and exciting experimental results on ion-induced nanopatterning of a-Si and a-Ge surfaces. The crystalline Si (100) and Ge (100) wafers were amorphized and an a/c interface was developed by pre-irradiation with a 50 keV Ar+ beam at normal incidence with an ion fluence of 5.0 × 1015 ions cm‑2. These amorphized surfaces were post-irradiated with Ar+ and Kr+ beams at an angle of 60°. The post irradiation was done with ion fluences of 1.0 × 1017 ions cm‑2. For each beam, two energies (50 and 200 keV for Ar+, 100 and 250 keV for Kr+) were chosen to ensure ion stopping in both sides of the a/c interface. Regular nanopatterning (in the form of ripples) is observed on the Ge surface only with the post irradiation of the Kr+ beam. The Si surface showed regular nanopatterning with the irradiation of both beams with two energies. For the ion beams crossing the a/c interface, ripples of higher amplitude and longer wavelength were formed. Further, the irradiation with a heavy beam yielded surface ripples of relatively larger amplitudes. The Raman measurements confirm amorphization of the pre-irradiated surfaces. Surprisingly, the post-irradiated Si surface with the 100 keV Kr+ beam showed evidence of recrystallization. In the paper we discuss the physics at the interface and explain the experimental findings.

  3. Multilayer Fresnel zone plates for high energy radiation resolve 21 nm features at 1.2 keV.

    PubMed

    Keskinbora, Kahraman; Robisch, Anna-Lena; Mayer, Marcel; Sanli, Umut T; Grévent, Corinne; Wolter, Christian; Weigand, Markus; Szeghalmi, Adriana; Knez, Mato; Salditt, Tim; Schütz, Gisela

    2014-07-28

    X-ray microscopy is a successful technique with applications in several key fields. Fresnel zone plates (FZPs) have been the optical elements driving its success, especially in the soft X-ray range. However, focusing of hard X-rays via FZPs remains a challenge. It is demonstrated here, that two multilayer type FZPs, delivered from the same multilayer deposit, focus both hard and soft X-rays with high fidelity. The results prove that these lenses can achieve at least 21 nm half-pitch resolution at 1.2 keV demonstrated by direct imaging, and sub-30 nm FWHM (full-pitch) resolution at 7.9 keV, deduced from autocorrelation analysis. Reported FZPs had more than 10% diffraction efficiency near 1.5 keV. PMID:25089463

  4. Effective atomic numbers and electron densities of bacteriorhodopsin and its comprising amino acids in the energy range 1 keV-100 GeV

    NASA Astrophysics Data System (ADS)

    Ahmadi, Morteza; Lunscher, Nolan; Yeow, John T. W.

    2013-04-01

    Recently, there has been an interest in fabrication of X-ray sensors based on bacteriorhodopsin, a proton pump protein in cell membrane of Halobacterium salinarium. Therefore, a better understanding of interaction of X-ray photons with bacteriorhodopsin is required. We use WinXCom program to calculate the mass attenuation coefficient of bacteriorhodopsin and its comprising amino acids for photon energies from 1 keV to 100 GeV. These amino acids include alanine, arginine, asparagine, aspartic acid, glutamine, glutamic acid, glycine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, Asx1, Asx2, Glx1 and Glx2. We then use that data to calculate effective atomic number and electron densities for the same range of energy. We also emphasize on two ranges of energies (10-200 keV and 1-20 MeV) in which X-ray imaging and radiotherapy machines work.

  5. The response of a fast phosphor screen scintillator (ZnO:Ga) to low energy ions (0-60 keV)

    SciTech Connect

    Jimenez-Rey, D.; Rodriguez-Barquero, L.

    2010-10-15

    ZnO:Ga is a promising, high time resolution candidate for use as a fast-ion-loss detector in TJ-II. We compare its ionoluminescence with that of the standard fast-ion-loss detector material, SrGa{sub 2}S{sub 4}:Eu (also known as TG-Green), when irradiated by H{sup +} ions with a range of energies E{<=}60 keV using a dedicated laboratory setup. It is found that ZnO:Ga is a reasonably good candidate for detecting low energy (E<60 keV) ions as it has excellent time resolution; however, its sensitivity is about 100 times lower than TG-Green, potentially limiting it to applications with high energy ion loss signals.

  6. Measurement of the 17 O(p , ?) 18 F nuclear reaction cross section in the energy range Elab = 360 - 1625 keV

    NASA Astrophysics Data System (ADS)

    Kontos, Antonios; Grres, Joachim; Best, Andreas; Li, Qian; Schrmann, Daniel; Stech, Ed; Uberseder, Ethan; Wiescher, Michael; Imbriani, Gianluca; Azuma, Richard

    2011-10-01

    The 17 O(p , ?) 18 F reaction influences hydrogen-burning nucleosynthesis in several stellar sites, such as red giants, asymptotic giant branch (AGB) stars, massive stars and classical novae. In the relevant temperature range for these environments (T9 = 0 . 01 - 0 . 4), the main contributions to the rate of this reaction are the direct capture process, two low lying narrow resonances (ERlab = 70 and 193 keV) and the low energy tails of two broad resonances (ERlab = 587 and 714 keV). Previous measurements and calculations give contradictory results for the direct capture contribution which in turn increases the uncertainty of the reaction rate. In addition, very few published cross section data exist for the high energy region that might affect the interpretation of the direct capture and the broad resonances contributions in the lower energy range. In this work we present a measurement of the reaction at a wide proton energy range (Elab = 360 - 1625 keV) and at several angles (?lab =0 ,45 ,90 ,135). All detected primary transitions and all angles were fitted simultaneously and extrapolated to lower energies using the multi-level, multi-channel R-matrix code, AZURE.

  7. The association of fractional CO2 laser 10.600nm and photodynamic therapy in the treatment of onychomycosis*

    PubMed Central

    de Oliveira, Guilherme Bueno; Antonio, Joo Roberto; Antonio, Carlos Roberto; Tom, Fernanda Alves

    2015-01-01

    BACKGROUND Onychomycosis is a fungal infection of the nails caused in most cases by dermatophytes Trichophyton rubrum and Trichophyton mentagrophytes. Despite numerous available antifungal drugs for therapy of this infection, the cure rate is low, with high rates of relapse after treatment and side effects. OBJECTIVES To present a new option for the treatment of onychomycosis, in search of a more effective and rapid method than conventional ones. METHODS Patients underwent two sessions of CO2 fractional laser 10.600nm associated with photodynamic therapy. Mycological and digital photography were performed before and after the treatment. RESULTS McNemar test with continuity correction and degrees of freedom = 1: for clinical cure rate, 13.06, with p=0.00005; for mycological cure, 17.05, with p=0.00005; 72% felt fully satisfied with the procedure. CONCLUSIONS The use of fractional CO2 laser 10.600nm associated with photodynamic therapy can be effective in the treatment of onychomycosis, decreasing the risk of systemic lesions that may be triggered with prolonged use of oral antifungals. PMID:26375214

  8. Effective atomic numbers of different types of materials for proton interaction in the energy region 1 keV-10 GeV

    NASA Astrophysics Data System (ADS)

    Kurudirek, Murat

    2014-10-01

    The effective atomic numbers (Zeff) of different types of materials such as tissues, tissue equivalents, organic compounds, glasses and dosimetric materials have been calculated for total proton interactions in the energy region 1 keV-10 GeV. Also, effective atomic numbers relative to water (Zeff RW) have been presented in the entire energy region for the materials that show better water equivalent properties. Some human tissues such as adipose tissue, bone compact, muscle skeletal and muscle striated have been investigated in terms of tissue equivalency by comparing Zeff values and the better tissue equivalents have been determined for these tissues. With respect to the variation of Zeff with kinetic energy, it has been observed that Zeff seems to be more or less the same in the energy region 400 keV-10 GeV for the given materials except for the photographic emulsion, calcium fluoride, silicon dioxide, aluminum oxide and Teflon. The values of Zeff have found to be constant for photographic emulsion after 1 GeV, for calcium fluoride between 1 MeV and 1 GeV and for silicon dioxide, aluminum oxide and Teflon between 400 keV and 1 GeV. This constancy clearly shows the availability of using Zeff in estimating radiation response of the materials at first glance.

  9. Radiation damage in coronene, rubrene and p-terphenyl, measured for incident electrons of kinetic energy between 100 and 200 kev.

    PubMed

    Li, P; Egerton, R F

    2004-11-01

    We have measured the sensitivity of three highly conjugated organic compounds to electron irradiation. Using a 200 keV TEM, loss of crystallinity was determined from quantitative electron-diffraction measurements. Degradation of the molecular ring structure was monitored from fading of the 6 eV pi-excitation peak in the energy-loss spectrum. Measurements at incident energies between 30 keV and 100 eV were made using a scanning electron microscope (SEM), by recording gradual decay of the cathodoluminescence (CL) signal. Expressed in Grays, the energy dose required for CL decay in coronene is a factor of 30 lower than for destruction of crystallinity and a factor of 300 lower than for destruction of the molecular structure. Below 1 keV, the CL-decay cross section shows no evidence of a threshold effect, indicating that the damage involved is caused by valence-electron (rather than K-shell) excitation. Therefore even relatively radiation-resistant organic materials may undergo some form of damage when examined in a low-energy electron microscope or a low-voltage SEM. PMID:15450662

  10. Dose distribution of a 125 keV mean energy microplanar x-ray beam for basic studies on microbeam radiotherapy

    SciTech Connect

    Ohno, Yumiko; Torikoshi, Masami; Suzuki, Masao; Umetani, Keiji; Imai, Yasuhiko; Uesugi, Kentaro; Yagi, Naoto

    2008-07-15

    A multislit collimator was designed and fabricated for basic studies on microbeam radiation therapy (MRT) with an x-ray energy of about 100 keV. It consists of 30 slits that are 25 {mu}m high, 30 mm wide, and 5 mm thick in the beam direction. The slits were made of 25 {mu}m-thick polyimide sheets that were separated by 175 {mu}m-thick tungsten sheets. The authors measured the dose distribution of a single microbeam with a mean energy of 125 keV by a scanning slit method using a phosphor coupled to a charge coupled device camera and found that the ratios of the dose at the center of a microbeam to that at midpositions to adjacent slits were 1050 and 760 for each side of the microbeam. This dose distribution was well reproduced by the Monte Carlo simulation code PHITS.

  11. First INTEGRAL Observations of V404 Cygni during the 2015 Outburst: Spectral Behavior in the 20-650 keV Energy Range

    NASA Astrophysics Data System (ADS)

    Roques, Jean-Pierre; Jourdain, Elisabeth; Bazzano, Angela; Fiocchi, Mariateresa; Natalucci, Lorenzo; Ubertini, Pietro

    2015-11-01

    In 2015 June, the source V404 Cygni (= GS2023+38) underwent an extraordinary outburst. We present the results obtained during the first revolution dedicated to this target by the INTEGRAL mission and focus on the spectral behavior in the hard X-ray domain, using both SPI and IBIS instruments. The source exhibits extreme variability and reaches fluxes of several tens of Crab. However, the emission between 20 and 650 keV can be understood in terms of two main components, varying on all the observable timescales, similar to what is observed in the persistent black hole system Cyg X-1. The low-energy component (up to ˜200 keV) presents a rather unusual shape, probably due to the intrinsic source variability. Nonetheless, a satisfactory description is obtained with a Comptonization model, if an unusually hot population of seed photons (kT0 ˜ 7 keV) is introduced. Above this first component, a clear excess extending up to 400-600 keV leads us to investigate a scenario where an additional (cutoff) power law could correspond to the contribution of the jet synchrotron emission, as proposed in Cyg X-1. A search for an annihilation feature did not provide any firm detection, with an upper limit of 2 × 10-4 ph cm-2 s-1 (2σ) for a narrow line centered at 511 keV, on the averaged obtained spectrum. Based on observations with INTEGRAL, an ESA project with instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Spain, and Switzerland), Czech Republic, and Poland with the participation of Russia and USA.

  12. Relativistic calculations of M-shell photoionization and X-ray production cross-sections for Hg at 5.96 keV excitation energy

    NASA Astrophysics Data System (ADS)

    Sampaio, J. M.; Madeira, T. I.; Parente, F.; Indelicato, P.; Santos, J. P.; Marques, J. P.

    2015-02-01

    In this work we calculate photoionization and X-ray production cross-sections (XPCS) of M-shell vacancies in Hg at an incident photon energy of 5.96 keV (low energy X-rays of 55Fe radioactive source) using the Dirac-Fock method. Calculations are performed in single configuration approach with the Breit interaction and some vacuum polarization corrections included in the self-consistent method. Higher-order retardation corrections, self-energy and other vacuum polarization effects were also included as perturbations. Fluorescence and Coster-Kronig yields necessary to derive XPCS were obtained in a previous work using the exact same approach.

  13. Energy loss and straggling of 1-50 keV H, He, C, N, and O ions passing through few layer graphene

    NASA Astrophysics Data System (ADS)

    Allegrini, Frdric; Bedworth, Peter; Ebert, Robert W.; Fuselier, Stephen A.; Nicolaou, Georgios; Sinton, Steve

    2015-09-01

    Graphene could be an alternative to amorphous carbon foils, in particular in space plasma instrumentation. The interaction of ions or neutral atoms with these foils results in different effects: electron emission, charge exchange, angular scattering, and energy straggling. We showed in previous studies that (1) the charge exchange properties are similar for graphene and regular carbon foils, and (2) the scattering at low energies (few keVs) is less for graphene than for one of our thinnest practical carbon foils. In this study, we report measurements of the energy loss and straggling of ?1-50 keV H, He, C, N, and O ions in graphene. We compare graphene and a carbon foil for hydrogen. We provide simple power law fits to the average energy loss, energy straggling, and skewness of the energy distributions. We find the energy loss for ions transiting through graphene to be reduced compared to thin carbon foils but the energy straggling to be larger, which we attribute to the non-uniformity of the graphene foils used in this study.

  14. Neutron Resonance Parameters of 238U and the Calculated Cross Sections from the Reich-Moore Analysis of Experimental Data in the Neutron Energy Range from 0 keV to 20 keV

    SciTech Connect

    Derrien, H

    2005-12-05

    The neutron resonance parameters of {sup 238}U were obtained from a SAMMY analysis of high-resolution neutron transmission measurements and high-resolution capture cross section measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA) in the years 1970-1990, and from more recent transmission and capture cross section measurements performed at the Geel Linear Accelerator (GELINA). Compared with previous evaluations, the energy range for this resonance analysis was extended from 10 to 20 keV, taking advantage of the high resolution of the most recent ORELA transmission measurements. The experimental database and the method of analysis are described in this report. The neutron transmissions and the capture cross sections calculated with the resonance parameters are compared with the experimental data. A description is given of the statistical properties of the resonance parameters and of the recommended values of the average parameters. The new evaluation results in a slight decrease of the effective capture resonance integral and improves the prediction of integral thermal benchmarks by 70 pcm to 200 pcm.

  15. Measurement of the x-ray mass attenuation coefficient and determination of the imaginary component of the atomic form-factor of tin over the energy range of 29 keV-60 keV.

    SciTech Connect

    de Jonge, M. D.; Tran, C. Q.; Chantler, C. T.; Barnea, Z.; Dhal, B. P.; Paterson, D.; Kanter, E. P.; Southworth, S. H.; Young, L.; Beno, M. A.; Linton, J. A.; Jennings, G.; Univ. of Melbourne; Australian Synchrotron Project

    2007-01-01

    We use the x-ray extended-range technique (XERT) [C. T. Chantler et al., Phys. Rev. A 64, 062506 (2001)] to measure the mass attenuation coefficients of tin in the x-ray energy range of 29-60 keV to 0.04-3 % accuracy, and typically in the range 0.1-0.2 %. Measurements made over an extended range of the measurement parameter space are critically examined to identify, quantify, and correct a number of potential experimental systematic errors. These results represent the most extensive experimental data set for tin and include absolute mass attenuation coefficients in the regions of x-ray absorption fine structure, extended x-ray absorption fine structure, and x-ray absorption near-edge structure. The imaginary component of the atomic form factor f{sub 2} is derived from the photoelectric absorption after subtracting calculated Rayleigh and Compton scattering cross sections from the total attenuation. Comparison of the result with tabulations of calculated photoelectric absorption coefficients indicates that differences of 1-2 % persist between calculated and observed values.

  16. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    NASA Astrophysics Data System (ADS)

    Marshall, F. J.; Knauer, J. P.; Anderson, D.; Schmitt, B. L.

    2006-10-01

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si (Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3keV but has reduced sensitivity above 3keV (˜50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.

  17. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    SciTech Connect

    Marshall, F. J.; Knauer, J. P.; Anderson, D.; Schmitt, B. L

    2006-10-15

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si(Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3 keV but has reduced sensitivity above 3 keV ({approx}50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.

  18. Development of a long-pulse (30-s), high-energy (120-keV) ion source for neutral-beam applications

    SciTech Connect

    Tsai, C.C.; Barber, G.C.; Blue, C.W.

    1983-01-01

    Multimegawatt neutral beams of hydrogen or deuterium atoms are needed for fusion machine applications such as MFTB-B, TFTR-U, DIII-U, and FED (INTOR or ETR). For these applications, a duoPIGatron ion source is being developed to produce high-brightness deuterium beams at a beam energy of approx. 120 keV for pulse lengths up to 30 s. A long-pulse plasma generator with active water cooling has been operated at an arc level of 1200 A with 30-s pulse durations. The plasma density and uniformity are sufficient for supplying a 60-A beam of hydrogen ions to a 13- by 43-cm accelerator. A 10- by 25-cm tetrode accelerator has been operated to form 120-keV hydrogen ion beams. Using the two-dimensional (2-D) ion extraction code developed at Oak Ridge National Laboratory (ORNL), a 13- by 43-cm tetrode accelerator has been designed and is being fabricated. The aperture shapes of accelerator grids are optimized for 120-keV beam energy.

  19. A low background-rate detector for ions in the 5 to 50 keV energy range to be used for radioisotope dating with a small cyclotron

    SciTech Connect

    Friedman, P.G.

    1986-11-25

    Accelerator mass spectrometry in tandem Van de Graaff accelerators has proven successful for radioisotope dating small samples. We are developing a 20 cm diameter 30 to 40 keV cyclotron dedicated to high-sensitivity radioisotope dating, initially for /sup 14/C. At this energy, range and dE/dx methods of particle identification are impossible. Thus arises the difficult problem of reliably detecting 30 to 40 keV /sup 14/C at 10/sup -2/ counts/sec in the high background environment of the cyclotron, where lower energy ions, electrons, and photons bombard the detector at much higher rates. We have developed and tested an inexpensive, generally useful ion detector that allows dark-count rates below 10/sup -4/ counts/sec and excellent background suppression. With the cyclotron tuned near the /sup 13/CH background peak, to the frequency for /sup 14/C, the detector suppresses the background to 6 x 10/sup -4/ counts/sec. For each /sup 14/C ion the detectors grazing-incidence Al/sub 2/O/sub 3/ conversion dynode emits about 20 secondary electrons, which are independently multiplied in separate pores of a microchannel plate. The output signal is proportional to the number of secondary electrons, allowing pulse-height discrimination of background. We have successfully tested the detector with positive /sup 12/C, /sup 23/Na, /sup 39/K, /sup 41/K, /sup 85/Rb, /sup 87/Rb, and /sup 133/Cs at 5 to 40 keV, and with 36 keV negative /sup 12/C and /sup 13/CH. It should detect ions and neutrals of all species, at energies above 5 keV, with good efficiency and excellent background discrimination. Counting efficiency and background discrimination improve with higher ion energy. The detector can be operated at least up to 2 x 10/sup -7/ Torr and be repeatedly exposed to air. The maximum rate is 10/sup 6.4/ ions/sec in pulse counting mode and 10/sup 9.7/ ions/sec in current integrating mode.

  20. Reduction in the intensity of solar X-ray emission in the 2- to 15-keV photon energy range and heating of the solar corona

    SciTech Connect

    Mirzoeva, I. K.

    2013-04-15

    The time profiles of the energy spectra of low-intensity flares and the structure of the thermal background of the soft X-ray component of solar corona emission over the period of January-February, 2003, are investigated using the data of the RHESSI project. A reduction in the intensity of X-ray emission of the solar flares and the corona thermal background in the 2- to 15-keV photon energy range is revealed. The RHESSI data are compared with the data from the Interball-Geotail project. A new mechanism of solar corona heating is proposed on the basis of the results obtained.

  1. Analysis of sub-1 keV implants in silicon using SIMS, SRP, MEISS and DLTS: The xRLEAP low energy, high current implanter evaluated

    SciTech Connect

    Foad, M.A.; England, J.G.; Moffatt, S.; Armour, D.G.

    1996-12-31

    Ultra shallow junctions can be formed, amongst other techniques, by very low energy ion implantation. The Implant Division of Applied Materials have recently developed a low energy, high current ion implanter, the xRLEAP (xR family, Low Energy Advance Process). This implanter is capable of delivering product worthy beam currents, in the milli-ampere regime down to energies of few hundred electron volts. A series of B and BF{sub 2} implants were carried out onto non-amorphised, 200mm Si wafers using beam energies in the range 0.2keV < E < 1keV. As-implanted and annealed samples were profiled using Secondary Ion Mass Spectrometry (SIMS). Surface damage due to implantation was evaluated using Medium Energy Ion Scattering Spectroscopy (MEISS). The carrier concentration profiles and junction depths of the annealed samples were investigated using Spreading Resistance Probe (SRP). Samples with ultra shallow junctions, < 0.07{mu}m, were examined using Deep Level Transient Spectroscopy (DLTS) for the first time.

  2. Bremsstrahlung in Mo and Pt targets produced by 90Sr beta particles in the photon energy region of 1-100 keV

    NASA Astrophysics Data System (ADS)

    Singh, Amrit; Dhaliwal, A. S.

    2015-08-01

    Bremsstrahlung spectra in thick targets of Mo and Pt, produced by beta emitter 90Sr (end point energy = 546 keV) have been studied in the photon energy range of 1-100 keV. The experimentally measured bremsstrahlung spectra measured with Si(Li) detector were compared with the theoretical spectral distributions calculated from Elwert corrected (non relativistic) Bethe-Heitler [EBH] theory, modified Elwert factor (relativistic) Bethe-Heitler (FmodBH) theory for ordinary bremsstrahlung (OB) and the modified Elwert factor (relativistic) Bethe-Heitler (FmodBH+PB) theory, which includes the polarization bremsstrahlung (PB) into total bremsstrahlung (BS). The present results indicate the correctness of FmodBH+PB theory in the low energy region, where the contributions of PB into BS are dominant, which is described in terms of stripped atom (SA) approximation. But at the middle and higher energy region of the bremsstrahlung spectrum, where the contribution of PB is negligible, the FmodBH theory is more close to the experimental results. Hence, it is clear that the production of PB in the low energy region, due to the dynamic response of the target atom suppresses the production of bremsstrahlung at higher energy ends.

  3. Moiré deflectometry using the Talbot-Lau interferometer as refraction diagnostic for high energy density plasmas at energies below 10 keV.

    PubMed

    Valdivia, M P; Stutman, D; Finkenthal, M

    2014-07-01

    The highly localized density gradients expected in High Energy Density (HED) plasma experiments can be characterized by x-ray phase-contrast imaging in addition to conventional attenuation radiography. Moiré deflectometry using the Talbot-Lau grating interferometer setup is an attractive HED diagnostic due to its high sensitivity to refraction induced phase shifts. We report on the adaptation of such a system for operation in the sub-10 keV range by using a combination of free standing and ultrathin Talbot gratings. This new x-ray energy explored matches well the current x-ray backlighters used for HED experiments, while also enhancing phase effects at lower electron densities. We studied the performance of the high magnification, low energy Talbot-Lau interferometer, for single image phase retrieval using Moiré fringe deflectometry. Our laboratory and simulation studies indicate that such a device is able to retrieve object electron densities from phase shift measurements. Using laboratory x-ray sources from 7 to 15 μm size we obtained accurate simultaneous measurements of refraction and attenuation for both sharp and mild electron density gradients. PMID:25085141

  4. Moiré deflectometry using the Talbot-Lau interferometer as refraction diagnostic for High Energy Density plasmas at energies below 10 keV

    SciTech Connect

    Valdivia, M. P.; Stutman, D.; Finkenthal, M.

    2014-07-15

    The highly localized density gradients expected in High Energy Density (HED) plasma experiments can be characterized by x-ray phase-contrast imaging in addition to conventional attenuation radiography. Moiré deflectometry using the Talbot-Lau grating interferometer setup is an attractive HED diagnostic due to its high sensitivity to refraction induced phase shifts. We report on the adaptation of such a system for operation in the sub-10 keV range by using a combination of free standing and ultrathin Talbot gratings. This new x-ray energy explored matches well the current x-ray backlighters used for HED experiments, while also enhancing phase effects at lower electron densities. We studied the performance of the high magnification, low energy Talbot-Lau interferometer, for single image phase retrieval using Moiré fringe deflectometry. Our laboratory and simulation studies indicate that such a device is able to retrieve object electron densities from phase shift measurements. Using laboratory x-ray sources from 7 to 15 μm size we obtained accurate simultaneous measurements of refraction and attenuation for both sharp and mild electron density gradients.

  5. Energy-dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions

    NASA Astrophysics Data System (ADS)

    Reeves, Geoffrey D.; Friedel, Reiner H. W.; Larsen, Brian A.; Skoug, Ruth M.; Funsten, Herbert O.; Claudepierre, Seth G.; Fennell, Joseph F.; Turner, Drew L.; Denton, Mick H.; Spence, Harlan E.; Blake, J. Bernard; Baker, Daniel N.

    2016-01-01

    We present observations of the radiation belts from the Helium Oxygen Proton Electron and Magnetic Electron Ion Spectrometer particle detectors on the Van Allen Probes satellites that illustrate the energy dependence and L shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on 1 March in more detail. The observations show the following: (a) at all L shells, lower energy electrons are enhanced more often than higher energies; (b) events that fill the slot region are more common at lower energies; (c) enhancements of electrons in the inner zone are more common at lower energies; and (d) even when events do not fully fill the slot region, enhancements at lower energies tend to extend to lower L shells than higher energies. During enhancement events the outer zone extends to lower L shells at lower energies while being confined to higher L shells at higher energies. The inner zone shows the opposite with an outer boundary at higher L shells for lower energies. Both boundaries are nearly straight in log(energy) versus L shell space. At energies below a few 100 keV, radiation belt electron penetration through the slot region into the inner zone is commonplace, but the number and frequency of "slot filling" events decreases with increasing energy. The inner zone is enhanced only at energies that penetrate through the slot. Energy- and L shell-dependent losses (that are consistent with whistler hiss interactions) return the belts to more quiescent conditions.

  6. Sputtering yields, range and range straggling in Al following Kr + ions bombardment in the energy range (20-160) keV

    NASA Astrophysics Data System (ADS)

    Mammeri, S.; Ouichaoui, S.; Zemih, R.; Ammi, H.; Abdesselam, M.; Chami, A. C.

    2005-10-01

    The sputtering of Al metallic films by 84Kr+ ions has been studied over the energy range (20-160) keV. Sputtering yield data have been extracted by means of the Rutherford backscattering technique (RBS) using a 2 MeV beam of 4He+ ions. They have been compared to values derived by Sigmund's linear cascade theory, Yamamura's semi-empirical formula or by Monte Carlo computer simulation using the TRIM code. A fair agreement was observed between the measured sputtering yields and the predicted ones. The depth profiles of the implanted Kr+ ions into Al have also been measured, and then fitted assuming Gaussian shape distributions, which allowed us to extract the projected range, Rp, and the associated range straggling, ΔRp. For the former stopping parameter, a very good agreement is obtained between experiment and the LSS theory predictions while the MC simulation also accounts satisfactorily for the measured data over the whole explored energy range, reflecting an adequate description of the projectile-target interaction by the universal potential of the Thomas-Fermi type assumed in the LSS formalism. In contrast, the ΔRp measured data show to be consistent with the predicted values only at E ⩾ 60 keV but lie to ∼30% above them at lower energies. This discrepancy not caused by the sputtering effect relates to an incomplete evaluation of the range straggling by theory at low bombarding energies.

  7. Surface modifications of hydrogen storage alloy by heavy ion beams with keV to MeV irradiation energies

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Tokuhira, Shinnosuke; Uchida, Hirohisa; Ohshima, Takeshi

    2015-12-01

    This study deals with the effect of surface modifications induced from keV to MeV heavy ion beams on the initial reaction rate of a hydrogen storage alloy (AB5) in electrochemical process. The rare earth based alloys like this sample alloy are widely used as a negative electrode of Ni-MH (Nickel-Metal Hydride) battery. We aimed to improve the initial reaction rate of hydrogen absorption by effective induction of defects such as vacancies, dislocations, micro-cracks or by addition of atoms into the surface region of the metal alloys. Since defective layer near the surface can easily be oxidized, the conductive oxide layer is formed on the sample surface by O+ beams irradiation, and the conductive oxide layer might cause the improvement of initial reaction rate of hydriding. This paper demonstrates an effective surface treatment of heavy ion irradiation, which induces catalytic activities of rare earth oxides in the alloy surface.

  8. Facilities and techniques for x-ray diagnostic calibration in the 100-eV to 100-keV energy range

    SciTech Connect

    Gaines, J.L.; Wittmayer, F.J.

    1986-06-01

    The Lawrence Livermore National Laboratory (LLNL) has been a pioneer in the field of x-ray diagnostic calibration for more than 20 years. We have built steady state x-ray sources capable of supplying fluorescent lines of high spectral purity in the 100-eV to 100-keV energy range, and these sources have been used in the calibration of x-ray detectors, mirrors, crystals, filters, and film. This paper discusses our calibration philosophy and techniques, and describes some of our x-ray sources. Examples of actual calibration data are presented as well.

  9. Measurement of X-ray mass attenuation coefficients in biological and geological samples in the energy range of 7-12keV.

    PubMed

    Trunova, Valentina; Sidorina, Anna; Kriventsov, Vladimir

    2014-10-17

    Information about X-ray mass attenuation coefficients in different materials is necessary for accurate X-ray fluorescent analysis. The X-ray mass attenuation coefficients for energy of 7-12keV were measured in biological (Mussel and Oyster tissues, blood, hair, liver, and Cabbage leaves) and geological (Baikal sludge, soil, and Alaskite granite) samples. The measurements were carried out at the EXAFS Station of Siberian Synchrotron Radiation Center (VEPP-3). Obtained experimental mass attenuation coefficients were compared with theoretical values calculated for some samples. PMID:25464176

  10. Inelastic energy loss in 100-keV H+ scattering from single atoms: Theory and experiment for K, Rb, and Cs

    NASA Astrophysics Data System (ADS)

    Hentz, A.; Parkinson, G. S.; Window, A. J.; Quinn, P. D.; Woodruff, D. P.; Grande, P. L.; Schiwietz, G.; Bailey, P.; Noakes, T. C. Q.

    2006-09-01

    The energy-loss spectrum associated with scattering of 100-keV H+ ions from K, Rb, and Cs atoms adsorbed on Al(111) has been investigated both experimentally and theoretically. Theoretical simulations were conducted based on calculations of the energy loss experienced in specific ion trajectories at the surface, using coupled-channel calculations to describe inner-shell ionization and excitation as a function of impact parameter. The energy losses can be attributed entirely to single atomic collisions from the alkali atoms, and the experiments reproduce the markedly increased asymmetry in scattering from Rb and Cs relative to K, attributable largely to the role of 3d and 4d excitations, respectively, and particularly the role of multiple excitations of these states. For Rb and Cs scattering, the data show excellent quantitative agreement between theory and experiment; for the K scattering, a discrepancy of a low-energy shoulder is attributed to a problem associated with the sample preparation.

  11. A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV

    NASA Astrophysics Data System (ADS)

    Li, Zhichao; Jiang, Xiaohua; Liu, Shenye; Huang, Tianxuan; Zheng, Jian; Yang, Jiamin; Li, Sanwei; Guo, Liang; Zhao, Xuefeng; Du, Huabin; Song, Tianming; Yi, Rongqing; Liu, Yonggang; Jiang, Shaoen; Ding, Yongkun

    2010-07-01

    A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photon energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector.

  12. A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV

    SciTech Connect

    Li Zhichao; Guo Liang; Jiang Xiaohua; Liu Shenye; Huang Tianxuan; Yang Jiamin; Li Sanwei; Zhao Xuefeng; Du Huabin; Song Tianming; Yi Rongqing; Liu Yonggang; Jiang Shaoen; Ding Yongkun; Zheng Jian

    2010-07-15

    A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photon energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector.

  13. A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV.

    PubMed

    Li, Zhichao; Jiang, Xiaohua; Liu, Shenye; Huang, Tianxuan; Zheng, Jian; Yang, Jiamin; Li, Sanwei; Guo, Liang; Zhao, Xuefeng; Du, Huabin; Song, Tianming; Yi, Rongqing; Liu, Yonggang; Jiang, Shaoen; Ding, Yongkun

    2010-07-01

    A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photon energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector. PMID:20687719

  14. A Review of X-ray Diagnostic Calibrations in the 2 to 100 keV Region Using the High Energy X-ray Calibration Facility (HEX)

    SciTech Connect

    Ali, Zaheer; Pond, T; Buckles, R A; Maddox, B R; Chen, C D; DeWald, E L; Izumi, N; Stewart, R

    2010-05-19

    The precise and accurate measurement of X-rays in the 2 keV to 100 keV region is crucial to the understanding of HED plasmas and warm dense matter in general. With the emergence of inertially confined plasma facilities as the premier platforms for ICF, laboratory astrophysics, and national security related plasma experiments, the need to calibrate diagnostics in the high energy X-ray regime has grown. At National Security Technologies High Energy X-ray Calibration Facility (HEX) in Livermore, California, X-ray imagers, filter-fluorescer spectrometers, crystal spectrometers, image plates, and nuclear diagnostics are calibrated. The HEX can provide measurements of atomic line radiation, X-ray flux (accuracy within 10%), and X-ray energy (accuracy within 1%). The HEX source is comprised of a commercial 160 kV X-ray tube, a fluorescer wheel, a filter wheel, and a lead encasement. The X-ray tube produces a Tungsten bremsstrahlung spectrum which causes a foil to fluoresce line radiation. To minimize bremsstrahlung in the radiation for calibration we also provide various foils as filters. For experimental purposes, a vacuum box capable of 10{sup -7} Torr, as well as HPGe and CdTe radiation detectors, are provided on an optical table. Most geometries and arrangements can be changed to meet experimental needs.

  15. Measurement of the mass energy-absorption coefficient of air for x-rays in the range from 3 to 60 keV.

    PubMed

    Buhr, H; Büermann, L; Gerlach, M; Krumrey, M; Rabus, H

    2012-12-21

    For the first time the absolute photon mass energy-absorption coefficient of air in the energy range of 10 to 60 keV has been measured with relative standard uncertainties below 1%, considerably smaller than those of up to 2% assumed for calculated data. For monochromatized synchrotron radiation from the electron storage ring BESSY II both the radiant power and the fraction of power deposited in dry air were measured using a cryogenic electrical substitution radiometer and a free air ionization chamber, respectively. The measured absorption coefficients were compared with state-of-the art calculations and showed an average deviation of 2% from calculations by Seltzer. However, they agree within 1% with data calculated earlier by Hubbell. In the course of this work, an improvement of the data analysis of a previous experimental determination of the mass energy-absorption coefficient of air in the range of 3 to 10 keV was found to be possible and corrected values of this preceding study are given. PMID:23192280

  16. Measurement of the x-ray mass attenuation coefficients of gold in the 38-50-keV energy range

    SciTech Connect

    Islam, M T; Rae, N A; Glover, J L; Barnea, Z; de Jonge, M D; Tran, C Q; Wang, J; Chantler, C T

    2010-11-12

    We used synchrotron x rays to measure the x-ray mass attenuation coefficients of gold at nine energies from 38 to 50 keV with accuracies of 0.1%. Our results are much more accurate than previous measurements in this energy range. A comparison of our measurements with calculated mass attenuation coefficients shows that our measurements fall almost exactly midway between the XCOM and FFAST calculated theoretical values, which differ from one another in this energy region by about 4%, even though the range includes no absorption edge. The consistency and accuracy of these measurements open the way to investigations of the x-ray attenuation in the region of the L absorption edge of gold.

  17. 950 keV X-Band Linac For Material Recognition Using Two-Fold Scintillator Detector As A Concept Of Dual-Energy X-Ray System

    SciTech Connect

    Lee, Kiwoo; Natsui, Takuya; Hirai, Shunsuke; Uesaka, Mitsuru; Hashimoto, Eiko

    2011-06-01

    One of the advantages of applying X-band linear accelerator (Linac) is the compact size of the whole system. That shows us the possibility of on-site system such as the custom inspection system in an airport. As X-ray source, we have developed X-band Linac and achieved maximum X-ray energy 950 keV using the low power magnetron (250 kW) in 2 {mu}s pulse length. The whole size of the Linac system is 1x1x1 m{sup 3}. That is realized by introducing X-band system. In addition, we have designed two-fold scintillator detector in dual energy X-ray concept. Monte carlo N-particle transport (MCNP) code was used to make up sensor part of the design with two scintillators, CsI and CdWO4. The custom inspection system is composed of two equipments: 950 keV X-band Linac and two-fold scintillator and they are operated simulating real situation such as baggage check in an airport. We will show you the results of experiment which was performed with metal samples: iron and lead as targets in several conditions.

  18. Measurement of mass attenuation coefficients of Eremurus-Rhizophora spp. particleboards for X-ray in the 16.63-25.30 keV energy range

    NASA Astrophysics Data System (ADS)

    Tousi, E. T.; Bauk, S.; Hashim, R.; Jaafar, M. S.; Abuarra, A.; Aldroobi, K. S. A.; Al-Jarrah, A. M.

    2014-10-01

    The roots of Eremurus spp. were used as a bio-adhesive in the fabrication of Rhizophora spp. particleboards. The mass attenuation coefficients of Eremurus-Rhizophora spp. particleboard of six samples with two different weight percentages of the Eremurus spp. root (6% and 12%) and three various Rhizophora spp. particle sizes (?149 ?m, 149-500 ?m and 500-1000 ?m) were determined by using X-ray fluorescence (XRF) photons in 16.63 keV and 25.30 keV of the photon energy range. The results were compared with theoretically calculated mass attenuations using the XCOM computer program for younger-age (breast 1: 75% muscle+25% fat), middle-age (breast 2: 50% muscle+50% fat), and old-age (breast 3: 25% muscle+75% fat) breasts. The results indicated that Eremurus-Rhizophora spp. particleboard is the appropriate suitable phantom in the diagnostic energy region. The mass attenuation coefficient in the low weight percentage of the bio-adhesive and the large Rhizophora spp. particle size were found very close to breast 1. Moreover the mass attenuation coefficient of the sample with high weight percentage of the bio-adhesive and small Rhizophora spp. particle size was found very close to water as a standard material phantom. In addition, the viscosity of dissolved Eremurus spp. root in water could be considerably higher than that of formaldehyde-based adhesives, which affects on some properties such as high strength and high binding.

  19. Low-background-rate detector for ions in the 5- to 50-keV energy range to be used for radioisotope dating with a small cyclotron

    SciTech Connect

    Friedman, P.G.

    1986-01-01

    Accelerator mass spectrometry in tandem Van de Graaff accelerators has proven successful for radioisotope dating small samples. Small, inexpensive cyclotrons serving this purpose would make the technique accessible to more researchers and inexpensive enough to compare many small samples. To this end, VC Berkeley is developing a 20-cm-diameter, 30- to 40-keV cyclotron dedicated to high-sensitivity radioisotope dating, initially for /sup 14/C. At this energy, range and dE/dx methods of particle identification are impossible. Thus arises the difficult problem of reliably detecting 30- to 40-keV /sup 14/C at 10/sup -1/ counts/sec in the high-background environment of the cyclotron, where lower energy ions, electrons, and photons bombard the detector at much higher rates. To meet this challenge, an inexpensive, generally useful ion detector was developed that allows dark-count rates below 10/sup -4/ counts/sec and excellent background suppression. With the cyclotron tuned near the /sup 13/CH background peak, to the frequency for /sup 14/C, the detector suppresses the background to 6 x 10/sup -4/ counts/sec. For each /sup 14/C ion, the detector's grazing-incidence Al/sub 2/O/sub 3/ conversion dynode emits about 20 secondary electrons, which are independently multiplied in separate pores of a microchannel plate. The output signal is proportional to the number of secondary electrons, allowing pulse-height discrimination of background.

  20. Inelastic processes in Na+-Ne, Na+-Ar, Ne+-Na, and Ar+-Na collisions in the energy range 0.5-14 keV

    NASA Astrophysics Data System (ADS)

    Lomsadze, R. A.; Gochitashvili, M. R.; Kezerashvili, R. Ya.

    2015-12-01

    Absolute cross sections for charge-exchange, ionization, and excitation in Na+-Ne and Na+-Ar collisions were measured in the ion energy range 0.5 -10 keV using a refined version of a capacitor method and collision and optical spectroscopy methods simultaneously in the same experimental setup. Ionization cross sections for Ne+-Na and Ar+-Na collisions are measured at energies of 2 -14 keV using a crossed-beam spectroscopy method. The experimental data and the schematic correlation diagrams are used to analyze and determine the mechanisms for these processes. For the charge-exchange process in Na+-Ar collisions two nonadiabatic regions are revealed and mechanisms responsible for these regions are explained. Structural peculiarity on the excitation function for the resonance lines of argon atoms in Na+-Ar collisions are observed and the possible mechanisms of this phenomenon are explored. The measured ionization cross sections for Na+-Ne and Ne+-Na collisions in conjunction with the Landau-Zener formula are used to determine the coupling matrix element and transition probability in a region of pseudocrossing of the potential curves.

  1. Efficacy and Safety of 10,600-nm Carbon Dioxide Fractional Laser on Facial Skin with Previous Volume Injections

    PubMed Central

    Hlou, Josiane; Maatouk, Ismal; Moutran, Roy; Obeid, Grace; Stephan, Farid

    2013-01-01

    Background: Fractionated carbon dioxide (CO2) lasers are a new treatment modality for skin resurfacing. The cosmetic rejuvenation market abounds with various injectable devices (poly-L-lactic acid, polymethyl-methacrylate, collagens, hyaluronic acids, silicone). The objective of this study is to examine the efficacy and safety of 10,600-nm CO2 fractional laser on facial skin with previous volume injections. Materials and Methods: This is a retrospective study including 14 patients treated with fractional CO2 laser and who have had previous facial volume restoration. The indication for the laser therapy, the age of the patients, previous facial volume restoration, and side effects were all recorded from their medical files. Objective assessments were made through clinical physician global assessment records and improvement scores records. Patients satisfaction rates were also recorded. Results: Review of medical records of the 14 patients show that five patients had polylactic acid injection prior to the laser session. Eight patients had hyaluronic acid injection prior to the laser session. Two patients had fat injection, two had silicone injection and one patient had facial thread lift. Side effects included pain during the laser treatment, post-treatment scaling, post-treatment erythema, hyperpigmentation which spontaneously resolved within a month. Concerning the previous facial volume restoration, no granulomatous reactions were noted, no facial shape deformation and no asymmetry were encountered whatever the facial volume product was. Conclusion: CO2 fractional laser treatments do not seem to affect facial skin which had previous facial volume restoration with polylactic acid for more than 6 years, hyaluronic acid for more than 0.5 year, silicone for more than 6 years, or fat for more than 1.4 year. Prospective larger studies focusing on many other variables (skin phototype, injected device type) are required to achieve better conclusions. PMID:23723602

  2. Remote Sensing of Icy Galilean Moon Surface and Atmospheric Composition Using Low Energy (1 eV-4 keV) Neutral Atom Imaging

    NASA Technical Reports Server (NTRS)

    Collier, M. R.; Sittler, E.; Chornay, D.; Cooper, J. F.; Coplan, M.; Johnson, R. E.

    2004-01-01

    We describe a low energy neutral atom imager suitable for composition measurements Europa and other icy Galilean moons in the Jovian magnetosphere. This instrument employs conversion surface technology and is sensitive to either neutrals converted to negative ions, neutrals converted to positive ions and the positive ions themselves depending on the power supply. On a mission such as the Jupiter Icy Moons Orbiter (JIMO), two back-to-back sensors would be flown with separate power supplies fitted to the neutral atom and iodneutral atom sides. This will allow both remote imaging of 1 eV < E < 4 keV neutrals from icy moon surfaces and atmospheres, and in situ measurements of ions at similar energies in the moon ionospheres and Jovian magnetospheric plasma. The instrument provides composition measurements of the neutrals and ions that enter the spectrometer with a mass resolution dependent on the time-of-flight subsystem and capable of resolving molecules. The lower energy neutrals, up to tens of eV, arise from atoms and molecules sputtered off the moon surfaces and out of the moon atmospheres by impacts of more energetic (keV to MeV) ions from the magnetosphere. Direct Simulation Monte Carlo (DSMC) models are used to convert measured neutral abundances to compositional distributions of primary and trace species in the sputtered surfaces and atmospheres. The escaping neutrals can also be detected as ions after photo- or plasma-ionization and pickup. Higher energy, keV neutrals come from charge exchange of magnetospheric ions in the moon atmospheres and provide information on atmospheric structure. At the jovicentric orbits of the icy moons the presence of toroidal gas clouds, as detected at Europa's orbit, provide M e r opportunities to analyze both the composition of neutrals and ions originating from the moon surfaces, and the characteristics of magnetospheric ions interacting with neutral cloud material. Charge exchange of low energy ions near the moons, and directional distributions of the resultant neutrals, allow indirect global mapping of magnetic field structures around the moons. Temporal variation of the magnetic structures can be linked to induced magnetic fields associated with subsurface oceans.

  3. Dose calculation for photon-emitting brachytherapy sources with average energy higher than 50 keV: Report of the AAPM and ESTRO

    SciTech Connect

    Perez-Calatayud, Jose; Ballester, Facundo; Das, Rupak K.; DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Ouhib, Zoubir; Rivard, Mark J.; Sloboda, Ron S.; Williamson, Jeffrey F.

    2012-05-15

    Purpose: Recommendations of the American Association of Physicists in Medicine (AAPM) and the European Society for Radiotherapy and Oncology (ESTRO) on dose calculations for high-energy (average energy higher than 50 keV) photon-emitting brachytherapy sources are presented, including the physical characteristics of specific {sup 192}Ir, {sup 137}Cs, and {sup 60}Co source models. Methods: This report has been prepared by the High Energy Brachytherapy Source Dosimetry (HEBD) Working Group. This report includes considerations in the application of the TG-43U1 formalism to high-energy photon-emitting sources with particular attention to phantom size effects, interpolation accuracy dependence on dose calculation grid size, and dosimetry parameter dependence on source active length. Results: Consensus datasets for commercially available high-energy photon sources are provided, along with recommended methods for evaluating these datasets. Recommendations on dosimetry characterization methods, mainly using experimental procedures and Monte Carlo, are established and discussed. Also included are methodological recommendations on detector choice, detector energy response characterization and phantom materials, and measurement specification methodology. Uncertainty analyses are discussed and recommendations for high-energy sources without consensus datasets are given. Conclusions: Recommended consensus datasets for high-energy sources have been derived for sources that were commercially available as of January 2010. Data are presented according to the AAPM TG-43U1 formalism, with modified interpolation and extrapolation techniques of the AAPM TG-43U1S1 report for the 2D anisotropy function and radial dose function.

  4. Absolute calibration of the Agfa Structurix series films at energies between 2.7 and 6.2 keV.

    PubMed

    Lanier, N E; Cowan, J S

    2014-11-01

    Although photo-emulsion technology is many decades old, x-ray film still remains a key asset for diagnosing hydrodynamic features in High-Energy Density (HED) experiments. For decades, the preferred option had been Kodak's direct exposure film. After its discontinuance in 2004, the push to find alternatives began. In many situations, the Agfa Structurix series offers the most favorable substitute, but being new to the HED community, its characterization was lacking. To remedy this, recent experiments, conducted at Brookhaven's National Synchrotron Light Source, provide absolute, monochromatic calibration data for the Agfa Structurix series films at K-shell backlighter energies between 2.7 and 6.2 keV. Absolute response curves are presented for Agfa D8, D7, D4, D4sc, D3, and D2. Moreover, the transmission of each film type is also measured. PMID:25430208

  5. Array-compatible transition-edge sensor microcalorimeter {gamma}-ray detector with 42 eV energy resolution at 103 keV

    SciTech Connect

    Zink, B. L.; Ullom, J. N.; Beall, J. A.; Irwin, K. D.; Doriese, W. B.; Duncan, W. D.; Ferreira, L.; Hilton, G. C.; Horansky, R. D.; Reintsema, C. D.; Vale, L. R.

    2006-09-18

    The authors describe a microcalorimeter {gamma}-ray detector with measured energy resolution of 42 eV full width at half maximum for 103 keV photons. This detector consists of a thermally isolated superconducting transition-edge thermometer and a superconducting bulk tin photon absorber. The absorber is attached with a technique compatible with producing arrays of high-resolution {gamma}-ray detectors. The results of a detailed characterization of the detector, which includes measurements of the complex impedance, detector noise, and time-domain pulse response, suggest that a deeper understanding and optimization of the thermal transport between the absorber and thermometer could significantly improve the energy resolution of future detectors.

  6. Developing a bright 17 keV x-ray source for probing high-energy-density states of matter at high spatial resolution

    NASA Astrophysics Data System (ADS)

    Huntington, C. M.; Park, H.-S.; Maddox, B. R.; Barrios, M. A.; Benedetti, R.; Braun, D. G.; Hohenberger, M.; Landen, O. L.; Regan, S. P.; Wehrenberg, C. E.; Remington, B. A.

    2015-04-01

    A set of experiments were performed on the National Ignition Facility (NIF) to develop and optimize a bright, 17 keV x-ray backlighter probe using laser-irradiated Nb foils. High-resolution one-dimensional imaging was achieved using a 15 ?m wide slit in a Ta substrate to aperture the Nb He? x-rays onto an open-aperture, time integrated camera. To optimize the x-ray source for imaging applications, the effect of laser pulse shape and spatial profile on the target was investigated. Two laser pulse shapes were useda "prepulse" shape that included a 3 ns, low-intensity laser foot preceding the high-energy 2 ns square main laser drive, and a pulse without the laser foot. The laser spatial profile was varied by the use of continuous phase plates (CPPs) on a pair of shots compared to beams at best focus, without CPPs. A comprehensive set of common diagnostics allowed for a direct comparison of imaging resolution, total x-ray conversion efficiency, and x-ray spectrum between shots. The use of CPPs was seen to reduce the high-energy tail of the x-ray spectrum, whereas the laser pulse shape had little effect on the high-energy tail. The measured imaging resolution was comparably high for all combinations of laser parameters, but a higher x-ray flux was achieved without phase plates. This increased flux was the result of smaller laser spot sizes, which allowed us to arrange the laser focal spots from multiple beams and produce an x-ray source which was more localized behind the slit aperture. Our experiments are a first demonstration of point-projection geometry imaging at NIF at the energies (>10 keV) necessary for imaging denser, higher-Z targets than have previously been investigated.

  7. {sup 241}Am(n,{gamma}) cross section in the neutron energy region between 0.02 eV and 300 keV

    SciTech Connect

    Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O' Donnell, J. M.; Haight, R. C.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Macri, R. A.; Wu, C. Y.; Becker, J. A.

    2008-04-17

    The Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL) was used for a neutron capture cross section measurement on {sup 241}Am. The high granularity of the DANCE array (160 BaF2 detectors in a 4{pi} geometry) enables an efficient detection of prompt gamma rays following neutron capture. The preliminary results on the {sup 241}Am(n,{gamma}) cross section are presented from 0.02 eV to 300 keV. The cross section at thermal energy E{sub n} = 0.0253 eV was determined to be 665{+-}33 barns. Resonance parameters were obtained using the SAMMY7 fit to the measured cross section in the resonance region. Significant discrepancies were found between our results and data evaluations for the first three lowest lying resonances. The cross section for neutrons with E{sub n}>l keV agrees well with the ENDF/B-VII.0 and JENDL-3.3 evaluations.

  8. Energy dependence of effective atomic numbers for photon energy absorption and photon interaction: studies of some biological molecules in the energy range 1 keV-20 MeV.

    PubMed

    Manohara, S R; Hanagodimath, S M; Gerward, L

    2008-01-01

    Effective atomic numbers for photon energy absorption, Z(PEA,eff), and for photon interaction, Z(PI,eff), have been calculated by a direct method in the photon-energy region from 1 keV to 20 MeV for biological molecules, such as fatty acids (lauric, myristic, palmitic, stearic, oleic, linoleic, linolenic, arachidonic, and arachidic acids), nucleotide bases (adenine, guanine, cytosine, uracil, and thymine), and carbohydrates (glucose, sucrose, raffinose, and starch). The Z(PEA,eff) and Z(PI,eff) values have been found to change with energy and composition of the biological molecules. The energy dependence of the mass attenuation coefficient, Z(PEA,eff), and the mass energy-absorption coefficient, Z(PI,eff), is shown graphically and in tabular form. Significant differences of 17%-38% between Z(PI,eff) and Z(PEA,eff) occur in the energy region 5-100 keV. The reasons for these differences, and for using Z(PEA,eff) rather than Z(PI,eff) in calculations of the absorbed dose, are discussed. PMID:18293593

  9. Absolute Calibration of Kodak Biomax-MS Film Response to X Rays in the 1.5- to 8-keV Energy Range

    SciTech Connect

    Marshall, F.J.; Knauer, J.P.; Anderson, D.; Schmitt, B.L.

    2006-09-28

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory e-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si(Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations.

  10. Mass attenuation coefficient of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using 16.59 - 25.26 keV photon energy range

    NASA Astrophysics Data System (ADS)

    Mohd Yusof, Mohd Fahmi; Hamid, Puteri Nor Khatijah Abdul; Bauk, Sabar; Hashim, Rokiah; Tajuddin, Abdul Aziz

    2015-04-01

    The Rhizophora spp. particleboards were fabricated using ≤ 104 µm particle size at three different fabrication methods; binderless, steam pre-treated and tannin-added. The mass attenuation coefficient of Rhizophora spp. particleboards were measured using x-ray fluorescent (XRF) photon from niobium, molybdenum, palladium, silver and tin metal plates that provided photon energy between 16.59 to 25.26 keV. The results were compared to theoretical values for water calculated using photon cross-section database (XCOM).The results showed that all Rhizophora spp. particleboards having mass attenuation coefficient close to calculated XCOM for water. Tannin-added Rizophora spp. particleboard was nearest to calculated XCOM for water with χ2 value of 13.008 followed by binderless Rizophora spp. (25.859) and pre-treated Rizophora spp. (91.941).

  11. Liquid helium cryostat with internal fluorescence detection for x-ray absorption studies in the 26 keV energy region

    PubMed Central

    Holman, Karen L. McFarlane; Latimer, Matthew J.; Yachandra, Vittal K.

    2014-01-01

    X-ray absorption spectroscop (XAS) in the intermediate x-ray region (26 keV) for dilute biological samples has been limited because of detector/flux limitations and inadequate cryogenic instrumentation. We have designed and constructed a new tailpiece/sample chamber for a commercially available liquid helium cooled cryostat which overcomes difficulties related to low fluorescence signals by using thin window materials and incorporating an internal photodiode detector. With the apparatus, XAS data at the Cl, S, and Ca K edges have been collected on frozen solutions and biological samples at temperatures down to 60 K. A separate chamber has been incorporated for collecting room-temperature spectra of standard compounds (for energy calibration purposes) which prevents contamination of the cryostat chamber and allows the sample to remain undisturbed, both important concerns for studying dilute and radiation-sensitive samples. PMID:25057214

  12. Calibration of X-ray detectors in the 8 to 115 keV energy range and their application to diagnostics on the National Ignition Facility

    SciTech Connect

    J. J. Lee, M. J. Haugh, G. LaCaille, and P. Torres

    2012-10-01

    The calibration of X-ray diagnostics is of paramount importance to the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). National Security Technologies LLC (NSTec) fills this need by providing a wide variety of calibration and diagnostic development services in support of the ongoing research efforts at NIF. The X-ray source in the High Energy X-ray lab utilizes induced fluorescence in a variety of metal foils to produce a beam of characteristic X rays ranging from 8 to 111 keV. Presented are the methods used for calibrating a High Purity Germanium detector, which has been absolutely calibrated using radioactive check sources, compared against a silicon photodiode calibrated at Physikalisch Technische Bundesanstalt (PTB). Also included is a limited presentation of results from the recent calibration of the upgraded Filter Fluorescer X ray Spectrometer.

  13. A semi-empirical approach to analyze the activities of cylindrical radioactive samples using gamma energies from 185 to 1764 keV.

    PubMed

    Huy, Ngo Quang; Binh, Do Quang

    2014-12-01

    This work suggests a method for determining the activities of cylindrical radioactive samples. The self-attenuation factor was applied for providing the self-absorption correction of gamma rays in the sample material. The experimental measurement of a (238)U reference sample and the calculation using the MCNP5 code allow obtaining the semi-empirical formulae of detecting efficiencies for the gamma energies ranged from 185 to 1764keV. These formulae were used to determine the activities of the (238)U, (226)Ra, (232)Th, (137)Cs and (40)K nuclides in the IAEA RGU-1, IAEA-434, IAEA RGTh-1, IAEA-152 and IAEA RGK-1 radioactive standards. The coincidence summing corrections for gamma rays in the (238)U and (232)Th series were applied. The activities obtained in this work were in good agreement with the reference values. PMID:25113537

  14. A multilayer grating with a novel layer structure for a flat-field spectrograph attached to transmission electron microscopes in energy region of 2-4 keV

    NASA Astrophysics Data System (ADS)

    Imazono, T.; Koike, M.; Koeda, M.; Nagano, T.; Sasai, H.; Oue, Y.; Yonezawa, Z.; Kuramoto, S.; Terauchi, M.; Takahashi, H.; Handa, N.; Murano, T.

    2012-05-01

    A multilayer mirror with a novel layer structure to uniformly enhance the reflectivity in a few keV energy range at a fixed angle of incidence is invented and applied to a multilayer grating for use in a flat-field spectrograph attached to a conventional electron microscope. The diffraction efficiency of the fabricated multilayer grating having the new layer structure is evaluated at the angle of incidence of 88.65° in the energy region of 2.1-4.0 keV. It is shown that the multilayer grating is effective to uniformly enhance the diffraction efficiency and able to be practically used in this energy region.

  15. A multilayer grating with a novel layer structure for a flat-field spectrograph attached to transmission electron microscopes in energy region of 2-4 keV

    SciTech Connect

    Imazono, T.; Koike, M.; Koeda, M.; Nagano, T.; Sasai, H.; Oue, Y.; Yonezawa, Z.; Kuramoto, S.; Terauchi, M.; Takahashi, H.; Handa, N.; Murano, T.

    2012-05-17

    A multilayer mirror with a novel layer structure to uniformly enhance the reflectivity in a few keV energy range at a fixed angle of incidence is invented and applied to a multilayer grating for use in a flat-field spectrograph attached to a conventional electron microscope. The diffraction efficiency of the fabricated multilayer grating having the new layer structure is evaluated at the angle of incidence of 88.65 deg. in the energy region of 2.1-4.0 keV. It is shown that the multilayer grating is effective to uniformly enhance the diffraction efficiency and able to be practically used in this energy region.

  16. High-precision measurement of the light response of BC-418 plastic scintillator to protons with energies from 100 keV to 10 MeV

    NASA Astrophysics Data System (ADS)

    Henzl, Vladimir; Daub, Brian; French, Jennifer; Matthews, June; Kovash, Michael; Wender, Stephen; Famiano, Michael; Koehler, Katrina; Yuly, Mark

    2010-11-01

    The determination of the light response of many organic scintillators to various types of radiation has been a subject of numerous experimental as well as theoretical studies in the past. But while the data on light response to particles with energies above 1 MeV are precise and abundant, the information on light response to very low energy particles (i.e. below 1 MeV) is scarce or completely missing. In this study we measured the light response of a BC-418 scintillator to protons with energies from 100 keV to 10 MeV. The experiment was performed at Weapons Neutron Research Facility at LANSCE, Los Alamos. The neutron beam from a spallation source is used to irradiate the active target made from BC-418 plastic scintillator. The recoiled protons detected in the active target are measured in coincidence with elastically scattered incident neutrons detected by and adjacent liquid scintillator. Time of flight of the incident neutron and the knowledge of scattering geometry allow for a kinematically complete and high-precision measurement of the light response as a function of the proton energy.

  17. Gamma-ray bursts investigations: perspectives for the GAMMA-400 space experiment in the energy range of 100 keV-3 TeV

    NASA Astrophysics Data System (ADS)

    Arkhangelskaja, Irene; Yurkin, Yuri T.; Arkhangelsky, Andrey; Topchiev, Nikolay; Kheymits, Maxim; Runtso, Mikhail; Suchkov, Sergey; Galper, Arkady

    Several thousands of gamma-ray bursts were observed by various experiments, but their sources origin still remains unclear up to now. During several GRBs very high-energy photons were detected both in space and ground-based experiments (up to some tens of GeV and up to some TeV, respectively). The GAMMA-400 future space experiment consists of the GAMMA-400 gamma-ray telescope to detect gammas in the energy range of 100 MeV - 3 TeV and the KONUS-FG system to detect gamma-ray bursts in the range of 100 keV - 10 MeV similar to the KONUS/WIND instrument. The GAMMA-400 gamma-ray telescope will have the angular resolution of 0.02 deg for E > 100 GeV, the energy resolution of 2% for E > 10 GeV, time resolution of ˜ 0.1 ms and allow us together with KONUS-FG to investigate GRBs spectra and temporal profiles in details in the wide energy range.

  18. Learning to Apply Metrology Principles to the Measurement of X-ray Intensities in the 500 eV to 110 keV Energy Range

    SciTech Connect

    Haugh, M. J.; Pond, T.; Silbernagel, C.; Torres, P.; Marlett, K.; Goldin, F.; Cyr, S.

    2011-02-08

    National Security Technologies, LLC (NSTec), Livermore Operations, has two optical radiation calibration laboratories accredited by “the National Voluntary Laboratories Accreditation Program (NVLAP) which is the accrediting body of” the National Institute of Standards and Technology (NIST), and is now working towards accreditation for its X-ray laboratories. NSTec operates several laboratories with X-ray sources that generate X-rays in the energy range from 50 eV to 115 keV. These X-ray sources are used to characterize and calibrate diagnostics and diagnostic components used by the various national laboratories, particularly for plasma analysis on the Lawrence Livermore National Laboratory (LLNL) National Ignition Facility (NIF). Because X-ray photon flux measurement methods that can be accredited, i.e., traceable to NIST, have not been developed for sources operating in these energy ranges, NSTec, NIST, and the National Voluntary Accreditation Program (NVLAP) together have defined a path toward the development and validation of accredited metrology methods for X-ray energies. The methodology developed for the high energy X-ray (HEX) Laboratory was NSTec’s starting point for X-ray metrology accreditation and will be the basis for the accredited processes in the other X-ray laboratories. This paper will serve as a teaching tool, by way of this example using the NSTec X-ray sources, for the process and methods used in developing an accredited traceable metrology.

  19. Dependence of spectral shape of bremsstrahlung spectra on atomic number of target materials in the photon energy range of 5-30 keV

    NASA Astrophysics Data System (ADS)

    Singh, Tajinder; Kahlon, K. S.; Dhaliwal, A. S.

    2012-02-01

    Dependence of spectral shape of total bremsstrahlung spectra i.e. the sum of ordinary bremsstrahlung (OB) and polarization bremsstrahlung (PB), on the atomic number ( Z) of target materials (Al, Ti, Sn and Pb), produced by continuous beta particles of 90Sr and 204Tl, has been investigated in the photon energy region of 5-30 keV. It has been found that the spectral shape of total bremsstrahlung spectra, in terms of S ( k, Z) i.e. the number of photons of energy k per moc2 per beta disintegration, is not linearly dependent on the atomic number ( Z) of the target material and rather it is proportional to Zn. At lower photon energies, the index values ' n' of Z-dependence are much higher than unity, which is due to the larger contribution of PB into OB. The decrease in ' n' values with increase of photon energy is due to the decrease in contribution of PB into OB. It is clear that the index ' n' values obtained from the modified Elwert factor (relativistic) Bethe-Heitler theory, which include the contribution PB into OB, are in agreement with the experimentally measured results using X-PIPS Si(Li) detector. Hence the contribution of PB into the formation of a spectral shape of total bremsstrahlung spectra plays a vital role.

  20. Reevaluation of 58Ni and 60Ni Resonance Parameters in the Energy Range Thermal to 800 keV

    SciTech Connect

    Derrien, Herve; Leal, Luiz C; Guber, Klaus H; Wiarda, Dorothea; Arbanas, Goran

    2009-01-01

    The previous 58Ni and 60Ni set of resonance parameters (ENDF/B-VII-0, JEFF-3, etc.) was based on the SAMMY analysis of Oak Ridge National Laboratory neutron transmission, scattering cross section and capture cross section measurements by C. M. Perey et al. The present results were obtained by adding to the SAMMY experimental data base the capture cross sections measured recently at the Oak Ridge Linear Electron Accelerator by Guber et al. and the Geel Electron Linear Accelerator very high-resolution neutron transmission measurements performed by Brusegan et al. A complete resonance parameter covariance matrix (RPCM) was obtained from the SAMMY analysis of the experimental database. The data sets were made consistent, when needed, by adjusting the neutron energy scales, the normalization coefficients, and the background corrections. The RPCM allows the calculation of the cross section uncertainties due mainly to statistical errors in the experimental data. The systematic uncertainties of the experimental data, estimated from the preliminary analyses of the experimental database, were taken into account in the cross section covariance matrix (CSCM) for total, scattering, and capture cross sections. The diagonal elements of the CSCM were obtained by quadratic combination of the different components of the uncertainties. Because of a lack of experimental information, the energy correlations were not obtained, and a value of 0.5 was arbitrarily taken for all the CSCM nondiagonal elements.

  1. Ion Beam Materials Analysis and Modifications at keV to MeV Energies at the University of North Texas

    NASA Astrophysics Data System (ADS)

    Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.; Kummari, Venkata C.; Lakshantha, Wickramaarachchige J.; Manuel, Jack E.; Bohara, Gyanendra; Szilasi, Szabolcs Z.; Glass, Gary A.; McDaniel, Floyd D.

    2014-02-01

    The University of North Texas (UNT) Ion Beam Modification and Analysis Laboratory (IBMAL) has four particle accelerators including a National Electrostatics Corporation (NEC) 9SDH-2 3 MV tandem Pelletron, a NEC 9SH 3 MV single-ended Pelletron, and a 200 kV Cockcroft-Walton. A fourth HVEC AK 2.5 MV Van de Graaff accelerator is presently being refurbished as an educational training facility. These accelerators can produce and accelerate almost any ion in the periodic table at energies from a few keV to tens of MeV. They are used to modify materials by ion implantation and to analyze materials by numerous atomic and nuclear physics techniques. The NEC 9SH accelerator was recently installed in the IBMAL and subsequently upgraded with the addition of a capacitive-liner and terminal potential stabilization system to reduce ion energy spread and therefore improve spatial resolution of the probing ion beam to hundreds of nanometers. Research involves materials modification and synthesis by ion implantation for photonic, electronic, and magnetic applications, micro-fabrication by high energy (MeV) ion beam lithography, microanalysis of biomedical and semiconductor materials, development of highenergy ion nanoprobe focusing systems, and educational and outreach activities. An overview of the IBMAL facilities and some of the current research projects are discussed.

  2. Angular distribution of thick-target bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on Ag

    NASA Astrophysics Data System (ADS)

    Gonzales, D.; Cavness, B.; Williams, S.

    2011-11-01

    Experimental results are presented comparing the intensities of the bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on a thick Ag target, measured at forward angles in the range of 0° to 55°. When the data are corrected for attenuation due to photon absorption within the target, the results indicate that the detected radiation is distributed anisotropically only at photon energies k that are approximately equal to the initial energy of the incident electrons E0. The results of our experiments suggest that, as k/E0 → 0, the detected radiation essentially becomes isotropic due primarily to the scattering of electrons within the target. A comparison to the theory of Kissel [At. Data Nucl. Data TablesADNDAT0092-640X10.1016/0092-640X(83)90001-3 28, 381 (1983)] suggests that the angular distribution of bremsstrahlung emitted by electrons incident on thick targets is similar to the angular distribution of bremsstrahlung emitted by electrons incident on free-atom targets only when k/E0 ≈ 1. The experimental data also are in approximate agreement with the angular distribution predictions of the Monte Carlo program penelope.

  3. Angular distribution of bremsstrahlung produced by electrons with initial energies in the range from 10 to 20 keV incident on thick Ag

    NASA Astrophysics Data System (ADS)

    Gonzales, Daniel; Cavness, Brandon; Williams, Scott

    2012-03-01

    Experimental results are presented comparing the intensities of the thick-target bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on Ag, measured at forward angles in the range of 0 to 55 degrees. When the data are corrected for attenuation due to photon absorption within the target, the results indicate that the detected radiation is distributed anisotropically only at photon energies k that are approximately equal to the initial energy of the incident electrons E0. The results of our experiments suggest that, as k/E0->0, the detected radiation essentially becomes isotropic due primarily to the scattering of electrons within the target. Comparison to the theory of Kissel et al. [At. Data Nucl. Data Tables 28, 381 (1983)] suggests that the angular distribution of bremsstrahlung emitted by electrons incident on thick targets is similar to the angular distribution of bremsstrahlung emitted by electrons incident on free-atom targets only when k/E0 1. The experimental data also are in approximate agreement with the angular distribution predictions of the Monte Carlo program PENELOPE.

  4. Angular distribution of thick-target bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on Ag

    SciTech Connect

    Gonzales, D.; Cavness, B.; Williams, S.

    2011-11-15

    Experimental results are presented comparing the intensities of the bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on a thick Ag target, measured at forward angles in the range of 0 degree sign to 55 degree sign . When the data are corrected for attenuation due to photon absorption within the target, the results indicate that the detected radiation is distributed anisotropically only at photon energies k that are approximately equal to the initial energy of the incident electrons E{sub 0}. The results of our experiments suggest that, as k/E{sub 0}{yields} 0, the detected radiation essentially becomes isotropic due primarily to the scattering of electrons within the target. A comparison to the theory of Kissel et al.[At. Data Nucl. Data Tables 28, 381 (1983)] suggests that the angular distribution of bremsstrahlung emitted by electrons incident on thick targets is similar to the angular distribution of bremsstrahlung emitted by electrons incident on free-atom targets only when k/E{sub 0}{approx_equal} 1. The experimental data also are in approximate agreement with the angular distribution predictions of the Monte Carlo program penelope.

  5. Probabilities of multiple electron emission from thin ( 50 ) carbon foils after impact of neutral oxygen at energies between 30 and 200 keV

    NASA Astrophysics Data System (ADS)

    Kozochkina, A. A.; Leonas, V. B.; Witte, M.

    1991-11-01

    The multiple secondary electron emission from a thin ( 50 ) carbon foil has been measured for impacting primary oxygen atoms with energies of 30, 50, 100 and 200 keV. The absolute probabilities Pk, Pk', Pkk' of the emission of k, k' = 0, 1numbers of electrons in forward (k'), and/or backward (k) directions from the foil have been derived. It is observed that (i) the probabilities Pk, Pk' disagree with those expected from Poisson statistics, (ii) there is an asymmetry in the forward/backward emission, (iii) the probabilities Pk(E) change in a different way with energy E than it is expected from the energy dependence of the stopping power dE/dx, (iv) in individual events there is no correlation between the numbers of electrons going in forward and/or backward directions. From these observations and further statistical analysis it is concluded that the emission of multiple electrons is not the result of only one primary process (ionization by collision between the projectile and target atoms). Rather, larger numbers of emitted electrons are mainly produced in an additional process (cascade electron production), in which the internal secondary electrons produce further (tertiary) electrons.

  6. High accuracy experimental determination of copper and zinc mass attenuation coefficients in the 100 eV to 30 keV photon energy range

    NASA Astrophysics Data System (ADS)

    Ménesguen, Y.; Gerlach, M.; Pollakowski, B.; Unterumsberger, R.; Haschke, M.; Beckhoff, B.; Lépy, M.-C.

    2016-02-01

    The knowledge of atomic fundamental parameters such as mass attenuation coefficients with low uncertainties, is of decisive importance in elemental quantification using x-ray fluorescence analysis techniques. Several databases are accessible and frequently used within a large community of users. These compilations are most often in good agreement for photon energies in the hard x-ray ranges. However, they significantly differ for low photon energies and around the absorption edges of any element. In a joint cooperation of the metrology institutes of France and Germany, mass attenuation coefficients of copper and zinc were determined experimentally in the photon energy range from 100 eV to 30 keV by independent approaches using monochromatized synchrotron radiation at SOLEIL (France) and BESSY II (Germany), respectively. The application of high-accuracy experimental techniques resulted in mass attenuation coefficient datasets determined with low uncertainties that are directly compared to existing databases. The novel datasets are expected to enhance the reliability of mass attenuation coefficients.

  7. OSO-7 observations of solar X-rays in the energy range 10-100 keV

    NASA Technical Reports Server (NTRS)

    Datlowe, D. W.; Elcan, M. J.; Hudson, H. S.

    1974-01-01

    Data on 123 hard X-ray bursts observed by the satellite OSO-7 between Oct. 10, 1971 and June 6, 1972 are described and evaluated. Typical duration of a burst is 100 sec. Average spectral indices lie between 3.5 and 5.5 for two-thirds of the 123 bursts, with a median of 4.6. In some events a soft-hard-soft pattern is observed, but there are numerous examples in which the spectrum softens continuously throughout the burst. The mean shape of the hard X-ray time profile as measured by the full width at half maximum does not depend on burst amplitude; nor does the spectral hardness correlate with the flux. The distribution of burst peak fluxes and the observation of large soft X-ray bursts without accompanying hard X rays suggest the existence of a distinct class of solar flares which emit only soft X rays. No center-to-limb variation was found in the frequency of occurrence of bursts or in the fraction with a nonthermal component. Estimates of the energy in the form of nonthermal electrons and in the flare plasma derived from these data indicate that the total amounts in each are comparable.

  8. Focusing x-ray monochromator for EXAFS studies in the energy range 4-30 keV

    SciTech Connect

    Heald, S.M.

    1983-01-01

    The design and operating principles of a focusing x-ray monochromator are described. Consistent with extended x-ray absorption fine structure (EXAFS) applications it allows rapid tuning while maintaining high energy resolution and a fixed focus at the sample. The basic instrument consists of two opposing two crystal monochromators with the second and third crystals operating as a dispersive monochromator. This provides the intrinsic resolution of the crystals independent of silt settings or source size effects. Focusing is achieved by a sagittally bent fourth crystal. To maintain a fixed focus two options are available. In the first, the second crystal pair is translated while the radius of the fourth crystal is held fixed. Thus, the focus remains at the sample even though the angle of incidence on the bent crystal is changing. In the second option the radius of the bent crystal is changed dynamically as the scan is carried out. These techniques are compared and a crystal bender designed for rapid tuning is described.

  9. Imaging detectors for 20-100 keV x-ray backlighters in high-energy-density experimental science petawatt experiments

    NASA Astrophysics Data System (ADS)

    Wickersham, J. E.; Park, H.-S.; Bell, P. M.; Koch, J. A.; Landen, O. L.; Moody, J. D.

    2004-10-01

    We are developing a petawatt laser for use as a high-energy backlighter source in the 20-100 keV range on the National Ignition Facility (NIF). High-energy x-ray backlighters will be essential for radiographing high-energy-density experimental science (HEDES) targets, especially to probe implosions and high areal density planar samples. For these high energy backlighter imaging experiments, we are developing two types of detectors: a columnar grown CsI scintillator coupled to a 2 K2 K charge-coupled device camera, and a CdTe crystal with special application specific integrated circuit readout electronics in a 508512 format array. We characterized these sensors using Cd109 and Am241 radioactive isotopes. In addition, we employed them to measure the Sm K? source size generated by the short pulse laser, JanUSP, at Lawrence Livermore National Laboratory. The CsI camera performed well, allowing a measurement of the Sm K? source size. Calibration of this camera has shown that it has low noise and good resolution. The new CdTe camera performed well, however the noise level was too high for single photon counting. Some modifications to the camera will also be necessary in order to meet the needs of future hard x-ray experiments. Both cameras showed considerable promise as diagnostic tools for future high-energy x-ray backlighters for NIF HEDES experiments. This article will present the results of our characterizations of these detectors, and initial results from the JanUSP experiments.

  10. The X-ray behaviour of the high-energy peaked BL Lacertae source PKS 2155-304 in the 0.3-10 keV band

    NASA Astrophysics Data System (ADS)

    Kapanadze, B.; Romano, P.; Vercellone, S.; Kapanadze, S.

    2014-10-01

    We present the results of our monitoring of the high-energy peaked BL Lac object PKS 2155-304 by the Swift/X-Ray Telescope (XRT) during 2005-2012. Our timing study shows that the source was highly variable both on longer (weeks-to-months) and intra-day time-scales, up to a factor of 7 in flux, and 30 per cent in fractional variability amplitudes, with no periodic variations. The X-ray spectra are mainly curved with broad ranges of photon index, curvature parameter, and hardness ratio which exhibit significant variability with the flux on different time-scales. Our study of multi-wavelength cross-correlations has revealed that the one-zone SSC scenario seems to be valid for the most optical-to-gamma-ray flares observed during 2006-2012. An `orphan' X-ray flare with no counterpart in other spectral bands suggests the existence of different electron populations. Based on the absence of a correlation between photon index and curvature parameter (expected from the energy-dependent acceleration probability scenario), the observed distribution of curvature parameter from the XRT spectra peaking at b = 0.37, and the observed anti-correlation between the curvature parameter and the 0.3-10 keV flux (i.e. lower curvatures in flaring states), we conclude that the most likely mechanism responsible for producing X-ray emission during the flares is the stochastic acceleration of the electrons.

  11. Atom penetration from a thin film into the substrate during sputtering by polyenergetic Ar{sup +} ion beam with mean energy of 9.4 keV

    SciTech Connect

    Kalin, B.A.; Gladkov, V.P.; Volkov, N.V.; Sabo, S.E.

    1995-12-31

    Penetration of alien atoms (Be, Ni) into Be, Al, Zr, Si and diamond was investigated under Ar{sup +} ion bombardment of samples having thermally evaporated films of 30--50 nm. Sputtering was carried out using a wide energy spectrum beam of Ar{sup +} ions of 9.4 keV to dose D = 1 {times} 10{sup 16}--10{sup 19} ion/cm{sup 2}. Implanted atom distribution in the targets was measured by Rutherford backscattering spectrometry (RBS) of H{sup +} and He{sup +} ions with energy of 1.6 MeV as well as secondary ion mass-spectrometry (SIMS). During the bombardment, the penetration depth of Ar atoms increases with dose linearly. This depth is more than 3--20 times deeper than the projected range of bombarding ions and recoil atoms. This is a deep action effect. The analysis shows that the experimental data for foreign atoms penetration depth are similar to the data calculated for atom migration through the interstitial site in a field of internal (lateral) compressive stresses created in the near-surface layer of the substrate as a result of implantation. Under these experimental conditions atom ratio r{sub i}/r{sub m} (r{sub i} -- radius of dopant, r{sub m} -- radius target of substrate) can play a principal determining role.

  12. Energy dependent response of the Fricke gel dosimeter prepared with 270 Bloom gelatine for photons in the energy range 13.93 keV-6 MeV

    NASA Astrophysics Data System (ADS)

    Cavinato, C. C.; Campos, L. L.

    2010-07-01

    The spectrophotometric energy dependent response to photons with effective energies between 13.93 keV and 6 MeV of the Fricke xylenol gel (FXG) dosimeter developed at IPEN, prepared using 270 Bloom gelatine, was evaluated in order to verify the possible dosimeter application in other medicine areas in addition to radiosurgery, for example, breast radiotherapy and blood bags radiosterilization. Other dosimetric characteristics were also evaluated. The obtained results indicate that the FXG dosimeter can contribute to dosimetry in different medical application areas including magnetic resonance imaging (MRI) evaluation technique that permits three-dimensional (3D) dose distribution evaluation.

  13. Saturated ablation in metal hydrides and acceleration of protons and deuterons to keV energies with a soft-x-ray laser

    SciTech Connect

    Andreasson, J.; Iwan, B.; Abreu, E.; Seibert, M. M.; Hajdu, J.; Timneanu, N.; Andrejczuk, A.; Bergh, M.; Caleman, C.; Nelson, A. J.; Bajt, S.; Faeustlin, R. R.; Singer, W.; Toleikis, S.; Tschentscher, T.; Chalupsky, J.; Hajkova, V.; Juha, L.; Chapman, H. N.; Heimann, P. A.

    2011-01-15

    Studies of materials under extreme conditions have relevance to a broad area of research, including planetary physics, fusion research, materials science, and structural biology with x-ray lasers. We study such extreme conditions and experimentally probe the interaction between ultrashort soft x-ray pulses and solid targets (metals and their deuterides) at the FLASH free-electron laser where power densities exceeding 10{sup 17} W/cm{sup 2} were reached. Time-of-flight ion spectrometry and crater analysis were used to characterize the interaction. The results show the onset of saturation in the ablation process at power densities above 10{sup 16} W/cm{sup 2}. This effect can be linked to a transiently induced x-ray transparency in the solid by the femtosecond x-ray pulse at high power densities. The measured kinetic energies of protons and deuterons ejected from the surface reach several keV and concur with predictions from plasma-expansion models. Simulations of the interactions were performed with a nonlocal thermodynamic equilibrium code with radiation transfer. These calculations return critical depths similar to the observed crater depths and capture the transient surface transparency at higher power densities.

  14. Low energy (10eV to 10 keV) equatorial particle fluxes and soft particle fluxes near the equator

    NASA Technical Reports Server (NTRS)

    Winningham, J. D.; Heikkila, W. J.

    1974-01-01

    Several spectra are shown that represent one rotation of ISIS-1. Spectra 1, 2, 3, represent particles moving down the field line into northern ionosphere and spectra 4, 5, 6 represent particles moving up field lines towards the magnetic equator. The former are direct fluxes and the latter are albedo fluxes. The spectra observed are remarkably similar to these observed in the auroral zone. The direct fluxes exhibit a relative maximum in the few keV range and the albedo a power low spectrum with increased fluxes at low energies. Examination of concurrent topside sounder data on ISIS-1 revealed a positive correlation between a region of turbulent ionosphere and particle fluxes. This ionospheric condition is referred to as equatorial spread F and has been studied extensively with bottomside ionospheric sounders and backscatter radars. The perigee of ISIS crossed the magnetic equator at four local times (0400, 1000, 1600, 2100) during the lifetime of the particle spectrometer. No fluxes were observed at 0400 and 1000 local time. At 1600 a few instances of particles were observed. At 2100 essentially all passes included detectable equatorial fluxes. This is in agreement with the frequency of occurence of equatorial spread F.

  15. Azimuthal and polar angle dependence of L X-ray differential cross-sections of Yb at 59.54 keV photon energy

    NASA Astrophysics Data System (ADS)

    Akku?, T.; ?ahin, Y.; Y?lmaz, D.

    2016-01-01

    The azimuthal and polar angle dependence of L X-ray was investigated in the same experimental setup to remove the existing ambiguity about alignments measurements. We measured Ll, L?, L? and L? X-ray differential cross sections of Yb for several different azimuthal angles (30, 20, 10, 0, -10 and -20) and polar angles (90, 100, 110, 120, 130 and 140) at 59.54 keV photon energy by using a Si(Li) detector. The azimuthal angle dependence of Ll and L? X-rays were observed. The azimuthal anisotropy of L? and L? X-rays were not observed. On the other hand, differential cross-sections for L? and L? X-rays were found independent on the polar angle within experimental error, those for Ll and L? X-rays depended on the polar angles. Azimuthal and polar angles dependence of L X-ray differential cross-sections contrast with the other experimental and theoretical results, which report evidence of the isotropic emission of Ll and L? X-rays following photoionization.

  16. Absolute Energy Calibration of X-ray TESs with 0.04 eV Uncertainty at 6.4 keV in a Hadron-Beam Environment

    NASA Astrophysics Data System (ADS)

    Tatsuno, H.; Doriese, W. B.; Bennett, D. A.; Curceanu, C.; Fowler, J. W.; Gard, J.; Gustafsson, F. P.; Hashimoto, T.; Hayano, R. S.; Hays-Wehle, J. P.; Hilton, G. C.; Iliescu, M.; Ishimoto, S.; Itahashi, K.; Iwasaki, M.; Kuwabara, K.; Ma, Y.; Marton, J.; Noda, H.; O'Neil, G. C.; Okada, S.; Outa, H.; Reintsema, C. D.; Sato, M.; Schmidt, D. R.; Shi, H.; Suzuki, K.; Suzuki, T.; Uhlig, J.; Ullom, J. N.; Widmann, E.; Yamada, S.; Zmeskal, J.; Swetz, D. S.

    2016-01-01

    A performance evaluation of superconducting transition-edge sensors (TESs) in the environment of a pion beam line at a particle accelerator is presented. Averaged across the 209 functioning sensors in the array, the achieved energy resolution is 5.2 eV FWHM at Co K_{α } (6.9 keV) when the pion beam is off and 7.3 eV at a beam rate of 1.45 MHz. Absolute energy uncertainty of ± 0.04 eV is demonstrated for Fe K_{α } (6.4 keV) with in-situ energy calibration obtained from other nearby known X-ray lines. To achieve this small uncertainty, it is essential to consider the non-Gaussian energy response of the TESs and thermal cross-talk pile-up effects due to charged particle hits in the silicon substrate of the TES array.

  17. Investigation of the 37Ar(n /, p)37Cl and 37Ar(n /,? )34S reactions in the neutron energy range from 10 meV to 100 keV

    NASA Astrophysics Data System (ADS)

    Goeminne, G.; Wagemans, C.; Wagemans, J.; Serot, O.; Loiselet, M.; Gaelens, M.

    2000-09-01

    The 37Ar(n, p) 37Cl and 37Ar(n, ? ) 34S reactions were studied for the first time as a function of the neutron energy at the neutron spectrometer GELINA at the IRMM in Geel (Belgium). For the 37Ar(n, ? ) 34S reaction, cross section data were obtained covering the neutron energy region from 10 meV up to 100 keV, but the sensitivity was too low to observe the 37Ar(n, p) 37Cl reaction. In the low energy region, the (n, ? ) cross-section was shown to have a 1 / v shape, while in the keV region several resonances were determined and subsequently analysed. Finally, the Maxwellian averaged cross section value was calculated at astrophysically relevant temperatures.

  18. Structure determination from XAFS using high-accuracy measurements of x-ray mass attenuation coefficients of silver, 11 keV-28 keV, and development of an all-energies approach to local dynamical analysis of bond length, revealing variation of effective thermal contributions across the XAFS spectrum.

    PubMed

    Tantau, L J; Chantler, C T; Bourke, J D; Islam, M T; Payne, A T; Rae, N A; Tran, C Q

    2015-07-01

    We use the x-ray extended range technique (XERT) to experimentally determine the mass attenuation coefficient of silver in the x-ray energy range 11 kev-28 kev including the silver K absorption edge. The results are accurate to better than 0.1%, permitting critical tests of atomic and solid state theory. This is one of the most accurate demonstrations of cross-platform accuracy in synchrotron studies thus far. We derive the mass absorption coefficients and the imaginary component of the form factor over this range. We apply conventional XAFS analytic techniques, extended to include error propagation and uncertainty, yielding bond lengths accurate to approximately 0.24% and thermal Debye-Waller parameters accurate to 30%. We then introduce the FDMX technique for accurate analysis of such data across the full XAFS spectrum, built on full-potential theory, yielding a bond length accuracy of order 0.1% and the demonstration that a single Debye parameter is inadequate and inconsistent across the XAFS range. Two effective Debye-Waller parameters are determined: a high-energy value based on the highly-correlated motion of bonded atoms (?(DW) = 0.1413(21) ), and an uncorrelated bulk value (?(DW) = 0.1766(9) ) in good agreement with that derived from (room-temperature) crystallography. PMID:26075571

  19. Neutron physics of the Re/Os clock. II. The (n,n{sup '}) cross section of {sup 187}Os at 30 keV neutron energy

    SciTech Connect

    Mosconi, M.; Heil, M.; Kaeppeler, F.; Plag, R.; Mengoni, A.

    2010-07-15

    The inelastic neutron-scattering cross section of {sup 187}Os has been determined in a time-of-flight experiment at the Karlsruhe 3.7-MV Van de Graaff accelerator. An almost monoenergetic beam of 30-keV neutrons was produced at the threshold of the {sup 7}Li(p,n){sup 7}Be reaction. Information on the inelastic channel is required for reliable calculations of the so-called stellar enhancement factor, by which the laboratory cross section of {sup 187}Os must be corrected in order to account for the thermal population of low-lying excited states at the temperatures of s-process nucleosynthesis, in particular of the important state at 9.75 keV. This correction represents a crucial step in the interpretation of the {sup 187}Os/{sup 187}Re pair as a cosmochronometer.

  20. Studies of total bremsstrahlung in thick targets of Al, Ti, Sn and Pb for 90Sr beta particles in the photon energy region of 1-100 keV

    NASA Astrophysics Data System (ADS)

    Singh, Amrit; Dhaliwal, A. S.

    2016-02-01

    Total bremsstrahlung (BS) spectra in thick targets of Al, Ti, Sn and Pb produced by beta emitter 90Sr (End point energy=546 keV) are studied in the photon energy range of 1-100 keV. The experimentally measured BS spectra are compared with the theoretical spectral distributions calculated from Elwert corrected (non relativistic) Bethe-Heitler [EBH] theory, modified Elwert factor (relativistic) Bethe-Heitler [Fmod BH] theory for ordinary bremsstrahlung (OB) and the Avdonina and Pratt [Fmod BH+PB] theory, which include the contribution of polarization bremsstrahlung (PB) into OB. The present results are indicating the correctness of Fmod BH+PB theory in the low energy region, where PB dominates into the BS, but at the middle and higher photon energy region of the bremsstrahlung spectrum, the Fmod BH theory is more close to the experimental results. The description of the bremsstrahlung process in stripped atom (SA) approximation, which indicates the suppression of the bremsstrahlung at higher energy ends due to the production of PB in the low energy region, needs further considerations. Hence, the present measurements for BS for different target materials indicates that the considerations of the screening effects along with other secondary effects during the interaction of incident electrons with the target nuclei are important while describing the production of bremsstrahlung, particularly for the higher energy regions.

  1. Energy dependence of photon-induced K? and K? x-ray production cross-sections for some elements with 42?Z?68 in the energy range 38-80 keV

    NASA Astrophysics Data System (ADS)

    Seven, Sabriye; Erdo?an, Hasan

    2015-12-01

    The energy dependence of photon-induced K? and K? x-ray production cross-sections for Mo, Ru, Pd, In, Sb, Cs, La, Pr, Sm, Tb and Er elements has been studied in the energy range of 38-80 keV with secondary excitation method. K x-ray intensities were measured using Energy Dispersive X-Ray Fluorescence (EDXRF) Spectrometry. The measurements have been made by observing the x-ray emissions, with the help of HPGe detector coupled with a multichannel analyzer. The areas of the K? and K? spectral peaks, as well as the net peak areas, have been determined by a fitting process. The measured K? and K? x-ray production cross-sections have been compared with calculated theoretical values in this energy regime. The results have been plotted versus excitation energy. The present experimental K? and K? x-ray production cross-section values for all the elements were in general agreement with the theoretical values calculated using photoionization cross-sections, fluorescence yields and fractional rates based on Hartree-Slater potentials.

  2. Tensor analyzing powers for 2H(d,p)3H and 2H(d,n)3He at deuteron energies of 25, 40, 60, and 80 keV

    NASA Astrophysics Data System (ADS)

    Fletcher, K. A.; Ayer, Z.; Black, T. C.; Das, R. K.; Karwowski, H. J.; Ludwig, E. J.; Hale, G. M.

    1994-05-01

    Angular distributions of the tensor analyzing powers Azz and Axx-Ayy for the reactions 2H(d,p)3H and 2H(d,n)3He are presented at deuteron energies of 25, 40, 60, and 80 keV. The analyzing powers for the two reaction channels are quite similar at these energies. The data have been included in an R-matrix analysis of the four nucleon system. According to this analysis, transitions from entrance-channel quintet-S states are important in these reactions, so that the use of polarized fuels would not result in a neutron-lean fusion reactor.

  3. Comparison of simulated and measured spectra from an X-ray tube for the energies between 20 and 35 keV

    NASA Astrophysics Data System (ADS)

    Yücel, M.; Emirhan, E.; Bayrak, A.; Ozben, C. S.; Yücel, E. Barlas

    2015-11-01

    Design and production of a simple and low cost X-ray imaging system that can be used for light industrial applications was targeted in the Nuclear Physics Laboratory of Istanbul Technical University. In this study, production, transmission and detection of X-rays were simulated for the proposed imaging device. OX/70-P dental tube was used and X-ray spectra simulated by Geant4 were validated by comparison with X-ray spectra measured between 20 and 35 keV. Relative detection efficiency of the detector was also determined to confirm the physics processes used in the simulations. Various time optimization tools were performed to reduce the simulation time.

  4. Investigation of the effective atomic numbers of dosimetric materials for electrons, protons and alpha particles using a direct method in the energy region 10 keV-1 GeV: a comparative study.

    PubMed

    Kurudirek, Murat; Aksakal, O?uz; Akku?, Tuba

    2015-11-01

    A direct method has been used for the first time, to compute effective atomic numbers (Z eff) of water, air, human tissues, and some organic and inorganic compounds, for total electron proton and alpha particle interaction in the energy region 10 keV-1 GeV. The obtained values for Z eff were then compared to those obtained using an interpolation procedure. In general, good agreement has been observed for electrons, and the difference (%) in Z eff between the results of the direct and the interpolation method was found to be <10 % for all materials, in the energy range from 10 keV to 1 MeV. More specifically, results of the two methods were found to agree well (Dif. <10 %) for air, calcium fluoride, kapton polyimide film, paraffin wax and plastic scintillator in the entire energy region with respect to the total electron interaction. On the other hand, values for Z eff calculated using both methods for protons and alpha particles generally agree with each other in the high-energy region above 10 MeV. PMID:26082026

  5. Experimental and theoretical studies of the He(2+)-He system - Differential cross sections for direct, single-, and double-charge-transfer scattering at keV energies

    NASA Technical Reports Server (NTRS)

    Gao, R. S.; Dutta, C. M.; Lane, N. F.; Smith, K. A.; Stebbings, R. F.; Kimura, M.

    1992-01-01

    Measurements and calculations of differential cross sections for direct scattering, single-charge transfer, and double-charge transfer in collisions of 1.5-, 2.0-, 6.0-, and 10.0-keV (He-3)2+ with an He-4 target are reported. The measurements cover laboratory scattering angles below 1.5 deg with an angular resolution of about 0.03 deg. A quantum-mechanical molecular-state representation is employed in the calculations; in the case of single-charge transfer a two-state close-coupling calculation is carried out taking into account electron-translation effects. The theoretical calculations agree well with the experimental results for direct scattering and double-charge transfer. The present calculation identifies the origins of oscillatory structures observed in the differential cross sections.

  6. Determination of Kα,β excitation factors in thin target for selected elements from Y to Te at 59.54keV excitation energy.

    PubMed

    Akman, F; Akdemir, F; Durak, R; Kaçal, M R; Aksakal, O; Araz, A

    2016-01-01

    The paper presents the first measurements of the Kα and Kβ excitation factors for some selected elements from Y to Te. To determine the Kα and Kβ excitation factors, the experimental values of K shell X-ray production cross sections and total absorption photoelectric cross sections were used. The measurements were performed using a Si(Li) detector coupled with 2048 multichannel analyzer and an Am-241 annular radioisotope source which is emitted 59.54keV γ-photons. It is observed that the Kα excitation factors are 5-6 times larger than the Kβ excitation factors. The measured excitation factors were compared only with theoretical calculated ones since there are no other experimental reports for the present elements in the literature. The present experimental values of Kα and Kβ excitation factors are in satisfactory agreement with the theoretical results. PMID:26623929

  7. On the possibility of the generation of high harmonics with photon energies greater than 10 keV upon interaction of intense mid-IR radiation with neutral gases

    SciTech Connect

    Emelina, A S; Emelin, M Yu; Ryabikin, M Yu

    2014-05-30

    Based on the analytical quantum-mechanical description in the framework of the modified strong-field approximation, we have investigated high harmonic generation of mid-IR laser radiation in neutral gases taking into account the depletion of bound atomic levels of the working medium and the electron magnetic drift in a high-intensity laser field. The possibility is shown to generate high-order harmonics with photon energies greater than 10 keV under irradiation of helium atoms by intense femtosecond laser pulses with a centre wavelength of 8 10.6 ?m. (interaction of radiation with matter)

  8. Effective atomic numbers, water and tissue equivalence properties of human tissues, tissue equivalents and dosimetric materials for total electron interaction in the energy region 10 keV-1 GeV.

    PubMed

    Kurudirek, Murat

    2014-12-01

    Effective atomic numbers (Zeff) of 107 different materials of dosimetric interest have been calculated for total electron interactions in the wide energy region 10keV-1GeV. The stopping cross sections of elements and dosimetric materials were used to calculate Zeff of the materials. Differences (%) in Zeff relative to water have been calculated in the entire energy region to evaluate the water equivalency of the used materials. Moreover, the tissue equivalent materials have been compared with the tissues and dosimetric materials in terms of Zeff to reveal their ability to use as tissue substitutes. Possible conclusions were drawn based on the variation of Zeff through the entire energy region and water and tissue equivalency comparisons in terms of Zeff. PMID:25061891

  9. Measurements of the absolute spectral sensitivity of X-ray semiconductor detectors in the photon energy range of 1.5-15 keV using ``white'' SR beam of the VEPP-3 storage ring

    NASA Astrophysics Data System (ADS)

    Dolbnya, I. P.; Makarov, O. A.; Mezentsev, N. A.; Pindyurin, V. F.; Subbotin, A. N.

    1995-02-01

    Results of measurements of the absolute spectral sensitivity of silicon semiconductor detectors in the X-ray quanta energy range of 1.5-15 keV are presented. The detectors, being calibrated, were placed into the direct "white" synchrotron radiation (SR) beam from the VEPP-3 storage ring. The spectrum of X-radiation at the entrance window of the detectors was changed by using sets of calibrated filters, as well as by varying the energy of the electrons in the storage ring. The possibility of accurate calculation of the SR spectrum on the calibrated detector under its irradiation in different conditions allowed us to determine the detector spectral sensitivity from a set of integral equations connecting the spectral sensitivity to the registered detector currents. The analysis of possible experimental errors indicates that the absolute spectral sensitivity of the detectors was restored with an accuracy of not worse than 10% in the total photon energy range under the study.

  10. Internal electron conversion of the isomeric {sup 57}Fe nucleus state with an energy of 14.4 keV excited by the radiation of the plasma of a high-power femtosecond laser pulse

    SciTech Connect

    Golovin, G V; Savel'ev-Trofimov, Andrei B; Uryupina, D S; Volkov, Roman V

    2011-03-31

    We recorded the spectrum of delayed secondary electrons ejected from the target, which was coated with a layer of iron enriched with the {sup 57}Fe isotope to 98%, under its irradiation by fluxes of broadband X-ray radiation and fast electrons from the plasma produced by a femtosecond laser pulse at an intensity of 10{sup 17} W cm{sup -2}. Maxima were identified at energies of 5.6, 7.2, and 13.6 keV in the spectrum obtained for a delay of 90 - 120 ns. The two last-listed maxima owe their origin to the internal electron conversion of the isomeric level with an energy of 14.4 keV and a lifetime of 98 ns to the K and L shells of atomic iron, respectively; the first-named level arises from a cascade K - L{sub 2}L{sub 3} Auger process. Photoexcitaion by the X-ray plasma radiation is shown to be the principal channel of the isomeric level excitation. (interaction of laser radiation with matter)

  11. Positronium origin of 476 keV galactic feature.

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1973-01-01

    Leventhal noticed that the gamma-ray spectrum due to the annihilation of positronium, which consists of two 511 keV photons from the singlet state and three photons from the triplet state, produces a spectral feature with an apparent peak at an energy less than 511 keV when viewed with a gamma-ray telescope having a Gaussian energy resolution. He calculated that the observed peak will lie at 490 keV. The author calculates that if the positronium spectrum sits atop a steeply falling continuum due to other sources, then the apparent peak can easily fall near 476 keV where it was observed. It is shown that explosive nucleosynthesis is a plausible source of the positrons.

  12. Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 meV for elements z = 1 to 92 and 48 additional substances of dosimetric interest

    SciTech Connect

    Hubbell, J.H.; Seltzer, S.M.

    1995-05-01

    Tables and graphs of the photon mass attenuation coefficient mu/rho and the mass energy-absorption coefficient mu(en)/rho are presented for all of the elements Z=1 to 92, and for 48 compounds and mixtures of radiological interest. The tables cover energies of the photon (x ray, gamma ray, bremsstrahlung) from 1 keV to 20 MeV. The mu/rho values are taken from the current photon interaction database at the National Institute of Standards and Technology, and the mu(en)/rho values are based on the new calculations by Seltzer described in Radiation Research. These tables of mu/rho and mu(en)/rho replace and extend the tables given by Hubbell in the International Journal of Applied Radiation and Isotopes.

  13. Transmission images and evaluation of tomographic imaging based scattered radiation from biological materials using 10, 15, 20 and 25 keV synchrotron X-rays: An analysis in terms of optimum energy

    SciTech Connect

    Rao, Donepudi V.; Akatsuka, Takao; Tromba, Giuliana

    2004-05-12

    Transmission images and tomographic imaging based scattered radiation is evaluated from biological materials, for example, Polyethylene, Poly carbonate, Plexiglas and Nylon using 10, 15, 20 and 25 keV synchrotron X-rays. The SYRMEP facility at Elettra,Trieste, Italy and the associated detection system has been used for the image acquisition. The scattered radiation is detected for each sample at three energies at an angle of 90 deg. using Si-Pin detector coupled to a multi-channel analyzer. The contribution of transmitted, Compton and fluorescence photons are assessed for a test phantom of small dimensions. The optimum analysis is performed with the use of the dimensions of the sample and detected radiation at various energies.

  14. Ultra-thin curved transmission crystals for high resolving power (up to E/?E = 6300) x-ray spectroscopy in the 6-13??keV energy range.

    PubMed

    Seely, John F; Hudson, Lawrence T; Glover, Jack L; Henins, Albert; Pereira, Nino

    2014-12-15

    Ultra-thin curved transmission crystals operating in the Cauchois spectrometer geometry were evaluated for the purpose of achieving high spectral resolution in the 6-13 keV x-ray energy range. The crystals were silicon (111) and sapphire R-cut wafers, each 18 ?m thick, and a silicon (100) wafer of 50-?m thickness. The W L?(1) spectral line at 8.398 keV from a laboratory source was used to evaluate the resolution. The highest crystal resolving power, E/?E=6300, was achieved by diffraction from the (33-1) planes of the Si(100) wafer that was cylindrically bent to a radius of curvature of 254 mm, where the (33-1) planes have an asymmetric angle of 13.26 from the normal of the crystal surface facing the x-ray source. This work demonstrates the ability to measure highly resolved line shapes of the K transitions of the elements Fe through Kr and the L transitions of the elements Gd through Th using a relatively compact spectrometer optical system and readily available thin commercial wafers. The intended application is as a diagnostic of laser-produced plasmas where the presence of multiple charged states and broadenings from high temperature and density requires high-resolution methods that are robust in a noisy source environment. PMID:25503010

  15. Calculation of proton total reaction cross sections for some target nuclei in incident energy range of 10-600 MeV

    SciTech Connect

    Bueyuekuslu, H.; Kaplan, A.; Aydin, A.; Tel, E.; Yildirim, G.

    2010-10-15

    In this study, proton total reaction cross sections have been investigated for some isotopes such as {sup 12}C, {sup 27}Al, {sup 9}Be, {sup 16}O, {sup 181}Ta, {sup 197}Au, {sup 6}Li, and {sup 14}N by a proton beam up to 600 MeV. Calculation of the proton total cross sections has been carried out by the analytic expression formulated by M.A. Alvi by using Coulomb-modified Glauber theory with the Helm model nuclear form factor. The obtained results have been discussed and compared with the available experimental data and found to be in agreement with each other.

  16. A NOVEL APPROACH TO MEASURE THE CROSS SECTION OF THE {sup 18}O(p, alpha){sup 15}N RESONANT REACTION IN THE 0-200 keV ENERGY RANGE

    SciTech Connect

    La Cognata, M.; Spitaleri, C.; Cherubini, S.; Crucilla, V.; Gulino, M.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Mukhamedzhanov, A.; Banu, A.; Goldberg, V.; Tabacaru, G.; Trache, L.; Coc, A.; Kiss, G. G.; Mrazek, J.

    2010-01-01

    The {sup 18}O(p, alpha){sup 15}N reaction is of primary importance to pin down the uncertainties, due to nuclear physics input, affecting present-day models of asymptotic giant branch stars. Its reaction rate can modify both fluorine nucleosynthesis inside such stars and oxygen and nitrogen isotopic ratios, which allow one to constrain the proposed astrophysical scenarios. Thus, an indirect measurement of the low-energy region of the {sup 18}O(p, alpha){sup 15}N reaction has been performed to access, for the first time, the range of relevance for astrophysical application. In particular, a full, high-accuracy spectroscopic study of the 20 and 90 keV resonances has been performed and the strengths deduced to evaluate the reaction rate and the consequences for astrophysics.

  17. Mass attenuation coefficient of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using 16.59 – 25.26 keV photon energy range

    SciTech Connect

    Mohd Yusof, Mohd Fahmi Hamid, Puteri Nor Khatijah Abdul; Tajuddin, Abdul Aziz; Bauk, Sabar; Hashim, Rokiah

    2015-04-29

    The Rhizophora spp. particleboards were fabricated using ≤ 104 µm particle size at three different fabrication methods; binderless, steam pre-treated and tannin-added. The mass attenuation coefficient of Rhizophora spp. particleboards were measured using x-ray fluorescent (XRF) photon from niobium, molybdenum, palladium, silver and tin metal plates that provided photon energy between 16.59 to 25.26 keV. The results were compared to theoretical values for water calculated using photon cross-section database (XCOM).The results showed that all Rhizophora spp. particleboards having mass attenuation coefficient close to calculated XCOM for water. Tannin-added Rizophora spp. particleboard was nearest to calculated XCOM for water with χ2 value of 13.008 followed by binderless Rizophora spp. (25.859) and pre-treated Rizophora spp. (91.941)

  18. M-shell X-ray production cross-sections for elements with 67 {<=} Z {<=} 92 at incident photon energies E{sub M{sub 1}}keV

    SciTech Connect

    Chauhan, Yogeshwar; Kumar, Anil; Puri, Sanjiv

    2009-07-15

    The X-ray production cross-sections for the Mk (k = {xi}, {delta}, {alpha}, {beta}, {zeta}, {gamma}, m{sub 1} and m{sub 2}) groups of X-rays have been evaluated for all the elements with 67 {<=} Z {<=} 92 at incident photon energies ranging E{sub M{sub 1}}keV using currently available theoretical data sets of different physical parameters, namely, partial photoionization cross-sections, X-ray emission rates, fluorescence and Coster-Kronig yields, and the K-shell/L{sub j} (j = 1-3) subshell to the M{sub i} (i = 1-5) subshell vacancy transfer probabilities, based on the independent particle models.

  19. Experimental study of interactions of highly charged ions with atoms at keV energies. Progress report, August 15, 1990--February 15, 1993

    SciTech Connect

    Kostroun, V.O.

    1993-01-29

    This final progress report summarizes the work carried out during the 29 month period from August 15, 1990 to February 15, 1993 under grant DE-FG02-86ER13519. The following experiments were done. We measured the absolute total and one- and two- electron transfer cross sections for Ar{sup q+} (8{le} q {le} 16) on He and H{sub 2} at 2.3 qkeV, the angular distributions of the scattered projectiles in Ar{sup 8+,9+} collisions, with Ar and Kr at 2.3 qkeV, the electron emissions in low energy Ar{sup q+} on Ar collisions, the recoil ion charge state distributions in low energy Ar{sup q+} -Ar collisions, the absolute total and one-and two-electron transfer cross sections for Ar{sup 8+} on Ar at 2.3 qkeV, and the absolute total and one- and two-electron transfer cross sections for Ar{sup 8+} on Ar as a function of energy. We also used energy gain spectroscopy to study Ar{sup q+} on Ar collisions at 40 and 30 qeV, and time of flight spectroscopy to investigate ionization and dissociation of CO and N{sub 2} in collisions with low energy, highly charged argon ions. In addition, we applied the Goldberger and Watson transition theory to derive transition rates and cross sections for atomic radiative and/or non radiative processes, wrote a computer code TRANSIT which can calculate energies, wave functions and radiative and non radiative rates for atoms and ions. The code is highly modular and can easily be modified to calculate higher order processes. Finally, we have done an Ab-Initio molecular orbital electronic energy level calculation for the (ArAr){sup 8+} system as a function internuclear separation.

  20. Analysis of temperature-dependent neutron transmission and self-indication measurements on tantalum at 2-keV neutron energy

    NASA Technical Reports Server (NTRS)

    Semler, T. T.

    1973-01-01

    The method of pseudo-resonance cross sections is used to analyze published temperature-dependent neutron transmission and self-indication measurements on tantalum in the unresolved region. In the energy region analyzed, 1825.0 to 2017.0 eV, a direct application of the pseudo-resonance approach using a customary average strength function will not provide effective cross sections which fit the measured cross section behavior. Rather a local value of the strength function is required, and a set of resonances which model the measured behavior of the effective cross sections is derived. This derived set of resonance parameters adequately represents the observed resonance hehavior in this local energy region. Similar analyses for the measurements in other unresolved energy regions are necessary to obtain local resonance parameters for improved reactor calculations. This study suggests that Doppler coefficients calculated by sampling from grand average statistical distributions over the entire unresolved resonance region can be in error, since significant local variations in the statistical distributions are not taken into consideration.

  1. On the existence of low-energy photons (<150 keV) in the unflattened x-ray beam from an ordinary radiotherapeutic target in a medical linear accelerator

    NASA Astrophysics Data System (ADS)

    Tsechanski, A.; Krutman, Y.; Faermann, S.

    2005-12-01

    Low-energy photons (<150 keV) are essential for obtaining high quality x-ray radiographs. These photons are usually produced in the accelerator target, but are effectively absorbed by the flattening filter and, at least partially, by the target itself. Experimental proof is presented for the existence of low-energy photons in the unflattened x-ray beam produced by a 6 MeV electron beam normally incident on the thinner of the two existing ports of the all-Cu radiotherapeutic target of a Clinac 18 (Varian Associates) linear accelerator. A number of one-shot absorption measurements were carried out with 12 foils of Pb absorbers with thicknesses varying from 0.25 to 3 mm in steps of 0.25 mm arranged symmetrically around the central axis on a 7.2 cm radius circumference. A Kodak ECL film-screen-cassette combination was used as a detector in the absorption measurements, in which optical density was measured as a function of the thickness of the Pb absorbers. Two sets of absorption measurements were carried out: the first one with the Clinac 18 6 MV unflattened beam and the second one with the Clinac 600C 6 MV therapeutic counterpart beam. There is a striking difference between the two sets: the optical density versus Pb-absorber thickness curve shows a sharp increase in optical density at small absorber thicknesses in the case of the unflattened 6 MV x-ray beam as compared with a gently sloping dependence in the case of the 6 MV therapeutic beam. A semi-quantitative assessment of the low-energy photon contribution to the whole optical density/contrast is presented. A 0.85 mm thick Pb absorber intercepting the 6 MV unflattened x-ray beam eliminates almost totally the sharp peak in the optical density curve at small Pb-absorber thicknesses. This constitutes additional evidence for the existence of low-energy photons (<150 keV) in the unflattened 6 MV beam from the Cu therapeutic target.

  2. Surface-morphology changes and damage in hot tungsten by impact of 80 eV - 12 keV He-ions and keV-energy self-atoms

    NASA Astrophysics Data System (ADS)

    Meyer, F. W.; Krstic, P. S.; Hijazi, H.; Bannister, M. E.; Dadras, J.; Parish, C. M.; Meyer, H. M., Iii

    2014-04-01

    We report results of measurements on the evolution of the surface morphology of a hot tungsten surface due to impacting low-energy (80 - 12,000 eV) He ions, performed at the ORNL Multicharged Ion Research Facility (MIRF). Surface-morphology changes were investigated over a broad range of fluences, energies and temperatures for both virgin and pre-damaged W-targets. At low fluences, ordered coral-like and ridge-like surface structures are observed, with great grain-to-grain variability. At the largest fluences, individual grain characteristics disappear in FIB/SEM scans, and the entire surface is covered by a multitude of near-surface bubbles with a broad range of sizes, and disordered whisker growth, while in top-down SEM imaging the surface is virtually indistinguishable from the nanofuzz produced on linear plasma devices. These features are evident at progressively lower fluences as the He-ion energy is increased. In addition, simulations were carried out of damage caused by cumulative bombardment of 1 keV W self-atoms, using LAMMPS at the Kraken supercomputing facility of the University of Tennessee. The simulations show strong defect-recombination effects that lead to a saturation of the total defect number after a few hundred impacts, while sputtering and implantation lead to an imbalance of the vacancy and interstitial numbers.

  3. Observations of celestial X-ray sources above 20 keV with the high-energy scintillation spectrometer on board OSO 8

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Dennis, B. R.; Dolan, J. H.; Frost, K. J.; Orwig, L. E.; Beall, J. H.; Maurer, G. S.

    1977-01-01

    High-energy X-ray spectra of the Crab Nebula, Cyg- XR-1, and Cen A were determined from observations with the scintillation spectrometer on board the OSO-8 satellite, launched in June, 1975. Each of these sources was observed over two periods of 8 days or more, enabling a search for day-to-day and year to year variations in the spectral and temporal characteristics of the X-ray emission. No variation in the light curve of the Crab pulsar was found from observations which span a 15-day period in March 1976, with demonstrable phase stability. Transitions associated with the binary phase of Cyg XR-1 and a large change in the emission from Con A are reported.

  4. The x-ray calibration facility of the laser integration line in the 0.9-10 keV range: The high energy x-ray source and some applications

    SciTech Connect

    Hubert, S.; Dubois, J. L.; Gontier, D.; Lidove, G.; Reverdin, C.; Soullie, G.; Stemmler, P.; Villette, B.

    2010-05-15

    The laser integration line (LIL) located at CEA-CESTA is equipped with x-ray plasma diagnostics using different kinds of x-ray components such as filters, mirrors, crystals, detectors, and cameras. The CEA-DAM of Arpajon is currently developing x-ray calibration methods and carrying out absolute calibration of LIL x-ray photodetectors. To guarantee LIL measurements, detectors such as x-ray cameras must be regularly calibrated close to the facility. A new x-ray facility is currently available to perform these absolute x-ray calibrations. This paper presents the x-ray tube based high energy x-ray source delivering x-ray energies ranging from 0.9 to 10 keV by means of an anode barrel. The purpose of this source is mainly to calibrate LIL x-ray cameras but it can also be used to measure x-ray filter transmission of plasma diagnostics. Different x-ray absolute calibrations such as x-ray streak and framing camera yields, x-ray charge-coupled device quantum efficiencies, and x-ray filter transmissions are presented in this paper. A x-ray flat photocathode detector sensitivity calibration recently performed for a CEA Z-pinch facility is also presented.

  5. The x-ray calibration facility of the laser integration line in the 0.9-10 keV range: the high energy x-ray source and some applications.

    PubMed

    Hubert, S; Dubois, J L; Gontier, D; Lidove, G; Reverdin, C; Soulli, G; Stemmler, P; Villette, B

    2010-05-01

    The laser integration line (LIL) located at CEA-CESTA is equipped with x-ray plasma diagnostics using different kinds of x-ray components such as filters, mirrors, crystals, detectors, and cameras. The CEA-DAM of Arpajon is currently developing x-ray calibration methods and carrying out absolute calibration of LIL x-ray photodetectors. To guarantee LIL measurements, detectors such as x-ray cameras must be regularly calibrated close to the facility. A new x-ray facility is currently available to perform these absolute x-ray calibrations. This paper presents the x-ray tube based high energy x-ray source delivering x-ray energies ranging from 0.9 to 10 keV by means of an anode barrel. The purpose of this source is mainly to calibrate LIL x-ray cameras but it can also be used to measure x-ray filter transmission of plasma diagnostics. Different x-ray absolute calibrations such as x-ray streak and framing camera yields, x-ray charge-coupled device quantum efficiencies, and x-ray filter transmissions are presented in this paper. A x-ray flat photocathode detector sensitivity calibration recently performed for a CEA Z-pinch facility is also presented. PMID:20515133

  6. Linear attenuation coefficients of tissues from 1 keV to 150 keV

    NASA Astrophysics Data System (ADS)

    Bke, Aysun

    2014-09-01

    The linear attenuation coefficients and three interaction processes have been computed for liver, kidney, muscle, fat and for a range of x-ray energies from 1 keV to 150 keV. Molecular photoelectric absorption cross sections were calculated from atomic cross section data. Total coherent (Rayleigh) and incoherent (Compton) scattering cross sections were obtained by numerical integration over combinations of F2m(x) with the Thomson formula and Sm(x) with the Klein-Nishina formula, respectively. For the coherent (Rayleigh) scattering cross section calculations, molecular form factors were obtained from recent experimental data in the literature for values of x<1 -1 and from the relativistic modified atomic form factors for values of x?1 -1. With the inclusion of molecular interference effects in the coherent (Rayleigh) scattering, more accurate knowledge of the scatter from these tissues will be provided. The number of elements involved in tissue composition is 5 for liver, 47 for kidney, 44 for muscle and 3 for fat. The results are compared with previously published experimental and theoretical linear attenuation coefficients. In general, good agreement is obtained. The molecular form factors and scattering functions and cross sections are incorporated into a Monte Carlo program. The energy distributions of x-ray photons scattered from tissues have been simulated and the results are presented.

  7. The 65 keV resonance in the 17O(p,?)14N thermonuclear reaction

    NASA Astrophysics Data System (ADS)

    Sergi, M. L.; Spitaleri, C.; Coc, A.; Mukhamedzhanov, A.; Burjan, S. V.; Gulino, M.; Hammache, F.; Hons, Z.; Irgaziev, B.; Kiss, G. G.; Kroha, V.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; de Srville, N.; Somorjai, E.

    2010-03-01

    The indirect measurement of 17O(p,?)14N cross section was performed by means of the Trojan Horse Method. This approach allowed to investigate the ultra-low energy range (E=0-300 keV) relevant for several astrophysics environments, where two resonant levels of 18F at Ec.m.R=65 keV and Ec.m.R=183 keV play a significant role in the reaction rate determination.

  8. Dedicated STEM for 200 to 40 keV operation

    NASA Astrophysics Data System (ADS)

    Dellby, N.; Bacon, N. J.; Hrncirik, P.; Murfitt, M. F.; Skone, G. S.; Szilagyi, Z. S.; Krivanek, O. L.

    2011-06-01

    A dedicated STEM developed for operation at primary energies from 200 keV to 40 keV and lower is described. It has a new cold field emission gun (CFEG) that gives a normalized brightness of 3 × 108 A/(m2 sr V), and excellent short-term and long-term stability. It includes two gun lenses (one electrostatic and one electromagnetic), a fast electrostatic beam blanker, three condenser lenses, a corrector of third- and fifth-order geometric aberrations, an objective lens with low aberration coefficients, a flexible set of projector lenses, an ultra-stable sample stage, and provision for storing up to five samples under high vacuum and loading them into the microscope's objective lens under remote control. The microscope is enclosed in a magnetically and acoustically shielding enclosure, which allows it to operate at a high performance level even in non-optimal environments. It has reached 53 pm resolution at 200 keV and 123 pm at 40 keV, and an EELS energy resolution of 0.26 eV. Dedicated to Christian Colliex

  9. Radiative n11B capture accounting 21 and 430 keV resonances

    NASA Astrophysics Data System (ADS)

    Dubovichenko, S. B.; Burkova, N. A.

    2014-03-01

    In the framework of the modified potential cluster model (PCM), the possibility of describing the available experimental data for the total cross-sections for n11B radiative capture at thermal and astrophysical energies were considered with taking into account the 21 keV and 430 keV resonances.

  10. Detection of interplanetary electrons from 18 keV to 1.8 MeV during solar quiet times, 1. On the origin of 200 KeV interplanetary electrons, 2.

    NASA Technical Reports Server (NTRS)

    Lin, R. P.; Anderson, K. A.; Cline, T. L.; Ramaty, R.; Fisk, L. A.

    1972-01-01

    A quiet time component of interplanetary electrons having energies above solar wind energies and below those characterized as cosmic radiation was observed. Its energy spectrum falls with energy from 18 keV to 1.8 MeV, but it shows a feature in the 100 to 300 keV range. The observed temporal variations of the intensity suggest that the 18 to 100 keV portion is solar and the 0.3 to 1.8 MeV portion is galactic in origin. Solar and terrestrial neutron decay electrons appear inadequate to explain the 100 to 300 keV feature.

  11. High-resolution detection of 100 keV electrons using avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Ogasawara, K.; Hirahara, M.; Miyake, W.; Kasahara, S.; Takashima, T.; Asamura, K.; Saito, Y.; Mukai, T.

    2008-08-01

    With two electron beam sources, we have tested two new Hamamatsu [Hamamatsu Photonics K.K., Shizuoka, Japan ] avalanche photodiodes (APDs) of spl 3988 and spl 6098 to detect electron beams up to 100 keV. Though our previous results showed the effectiveness and the advantage of an APD to measure 2-40 keV electrons, its upper limit was not high enough to detect so-called medium-energy electrons. In addition to the limitation of its detectable range, the response at different energies was also not linear. These newly developed APDs, which have thicker depletion-layers, provide full coverage of this missing range along with a good linearity. The depletion-layer thickness was increased to 140 ?m for both APDs, the dead-layer of spl 3988 became 10 times thicker than that of spl 6098. The thin-surface dead-layer and thick depletion-layer of spl 6098 allows the detection of electrons from 3 keV up to 100 keV with a good linearity and with an excellent energy resolution of 4 keV at 100-keV electrons. The wide dynamic range from 3 keV to 100 keV of those APDs will increase their appeal in detecting electrons for space plasma research.

  12. Search For Anomalous n-p Scattering At 60 eV-140 keV

    SciTech Connect

    Moreh, R.; Block, R. C.; Danon, Y.

    2009-01-28

    A search for an anomalous n-p scattering from a polyethylene sample (CH{sub 2}) at 8 final energies between 64 eV and 2.5 keV was carried out. The scattering intensities were compared to that from a graphite (C) sample. The results were found to confirm our previous n-p results on H{sub 2}O at a final energy of 24.3 keV where no n-p scattering anomaly was observed. The present results refute all proposed models attempting to explain the occurrence of any n-p scattering anomaly at keV neutron energies.

  13. High angular resolution cosmic X-ray astronomy observations in the energy range 0.15-2 keV and XUV observations of nearby stars from an attitude controlled rocket

    NASA Technical Reports Server (NTRS)

    Garmire, G. P.

    1974-01-01

    The construction of a two dimensional focusing Wolter Type I mirror system for X-ray and XUV astronomical observations from an Astrobee F sounding rocket is described. The mirror design goal will have a one degree field, a 20-arc seconds resolution, an effective area of about 50 sq cm at 1 keV and 10 sq cm at 0.25 keV on axis. A star camera provides aspect data to about 15-arc seconds. Two detectors are placed at the focus with an interchange mechanism to allow a detector change during flight. The following specific developments are reported: (1) position sensitive proportional counter development; (2) channel plate multiplier development; (3) telescope mirror development and payload structure; (4) Australian rocket flight results; (5) Comet Kohoutek He I observation; and (6) Vela, Puppis A, and Gem-Mon bright patch observations.

  14. Gel behavior of keV ion irradiated polystyrene

    SciTech Connect

    Calcagno, L.; Foti, G.; Licciardello, A.; Puglisi, O.

    1988-10-17

    Among the chemical and physical modifications induced by ion bombardment of polymers, the solubility changes are very important because of technological application for lithography in microelectronic devices. Solubility changes due to the occurrence of crosslinkings have been followed on monodisperse and polydisperse polystyrene after ion irradiations (10/sup 11/--10/sup 14/ ions/cm/sup 2/, keV energy). By using the Inokuty gel theory (M. Inokuti J. Appl. Phys. 38, 2999 (1963)), the chemical yield (crosslinking/eV) has been determined for different molecular weights and molecular weight distributions.

  15. Heliospheric Neutral Atom Spectra Between 0.01 and 6 keV fom IBEX

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Allegrini, F.; Bzowski, M.; Funsten, H. O.; Ghielmetti, A. G.; Gloeckler, G.; Heirtzler, D.; Janzen, P.; Kubiak, M.; Kucharek, H.; McComas, D. J.; Moebius, E.; Moore, T. E.; Petrinec, S. M.; Quinn, M.; Reisenfeld, D.; Saul, L. A.; Scheer, J. A.; Schwardron, N.; Trattner, K. J.; Vanderspek, R.; Wurz, P.

    2012-01-01

    Since 2008 December, the Interstellar Boundary Explorer (IBEX) has been making detailed observations of neutrals from the boundaries of the heliosphere using two neutral atom cameras with overlapping energy ranges. The unexpected, yet defining feature discovered by IBEX is a Ribbon that extends over the energy range from about 0.2 to 6 keV. This Ribbon is superposed on a more uniform, globally distributed heliospheric neutral population. With some important exceptions, the focus of early IBEX studies has been on neutral atoms with energies greater than approx. 0.5 keV. With nearly three years of science observations, enough low-energy neutral atom measurements have been accumulated to extend IBEX observations to energies less than approx. 0.5 keV. Using the energy overlap of the sensors to identify and remove backgrounds, energy spectra over the entire IBEX energy range are produced. However, contributions by interstellar neutrals to the energy spectrum below 0.2 keV may not be completely removed. Compared with spectra at higher energies, neutral atom spectra at lower energies do not vary much from location to location in the sky, including in the direction of the IBEX Ribbon. Neutral fluxes are used to show that low energy ions contribute approximately the same thermal pressure as higher energy ions in the heliosheath. However, contributions to the dynamic pressure are very high unless there is, for example, turbulence in the heliosheath with fluctuations of the order of 50-100 km/s.

  16. Compton backscattered 511 keV annihilation line emission and the 170 keV line from the Galactic center direction

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.; Hua, Xin-Min

    1991-01-01

    It is shown that Compton scattering of 511 keV electron-positron annihilation radiation produces a linelike reflection feature at 170 keV from backscattered photons. Assuming simple models of clouds and accretion disks around a compact source, the paper explores the spectrum of Compton-scattered annihilation line emission for a range of geometries, opacities, and observing angles, and finds that the linelike feature is produced under a wide variety of conditions. It is further shown that such Compton backscattering of slightly redshifted annihilation line emission from the inner edge of an accretion disk could account for the 170 keV line emission and higher energy continuum observed together with the 511 keV annihilation radiation from the direction of the Galactic center. Identification of the observed 170 keV line as a slightly redshifted annihilation line reflection feature provides strong new evidence that the source of this emission is a compact object surrounded by a disk of presumably accreting matter.

  17. X-ray spectroscopy for chemistry in the 2-4 keV energy regime at the XMaS beamline: ionic liquids, Rh and Pd catalysts in gas and liquid environments, and Cl contamination in ?-Al2O3.

    PubMed

    Thompson, Paul B J; Nguyen, Bao N; Nicholls, Rachel; Bourne, Richard A; Brazier, John B; Lovelock, Kevin R J; Brown, Simon D; Wermeille, Didier; Bikondoa, Oier; Lucas, Christopher A; Hase, Thomas P A; Newton, Mark A

    2015-11-01

    The 2-4 keV energy range provides a rich window into many facets of materials science and chemistry. Within this window, P, S, Cl, K and Ca K-edges may be found along with the L-edges of industrially important elements from Y through to Sn. Yet, compared with those that cater for energies above ca. 4-5 keV, there are relatively few resources available for X-ray spectroscopy below these energies. In addition, in situ or operando studies become to varying degrees more challenging than at higher X-ray energies due to restrictions imposed by the lower energies of the X-rays upon the design and construction of appropriate sample environments. The XMaS beamline at the ESRF has recently made efforts to extend its operational energy range to include this softer end of the X-ray spectrum. In this report the resulting performance of this resource for X-ray spectroscopy is detailed with specific attention drawn to: understanding electrostatic and charge transfer effects at the S K-edge in ionic liquids; quantification of dilution limits at the Cl K- and Rh L3-edges and structural equilibria in solution; in vacuum deposition and reduction of [Rh(I)(CO)2Cl]2 to ?-Al2O3; contamination of ?-Al2O3 by Cl and its potential role in determining the chemical character of supported Rh catalysts; and the development of chlorinated Pd catalysts in `green' solvent systems. Sample environments thus far developed are also presented, characterized and their overall performance evaluated. PMID:26524308

  18. Hyper-filter-fluorescer spectrometer for x-rays above 120 keV

    DOEpatents

    Wang, Ching L. (Livermore, CA)

    1983-01-01

    An apparatus utilizing filter-fluorescer combinations is provided to measure short bursts of high fluence x-rays above 120 keV energy, where there are no practical absorption edges available for conventional filter-fluorescer techniques. The absorption edge of the prefilter is chosen to be less than that of the fluorescer, i.e., E.sub.PRF E.sub.F. In this way, the response function is virtually zero between E.sub.PRF and E.sub.F and well defined and enhanced in an energy band of less than 1000 keV above the 120 keV energy.

  19. Observations of 12-200 keV X-rays from GX 339-4

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Gruber, D. E.; Knight, F. K.; Matteson, J. L.; Peterson, L. E.; Levine, A. M.; Lewin, W. H. G.; Primini, F. A.

    1982-01-01

    X-ray spectra of GX 339-4 measured on three occasions in 1977 and 1978 are presented. These are the first reported measurements above 10 keV. The spectra can be described as the superposition of a soft component, which is dominant below about 20 keV, and a hard component at higher energy. Simultaneous measurements at lower energy show that the soft component vanished during the observation in early 1978. The behavior of these two components is similar to that of the spectrum of Cygnus X-1; this reinforces the previously noted resemblance in rapid X-ray variability.

  20. Multi-crystal native SAD analysis at 6?keV

    PubMed Central

    Liu, Qun; Guo, Youzhong; Chang, Yanqi; Cai, Zheng; Assur, Zahra; Mancia, Filippo; Greene, Mark I.; Hendrickson, Wayne A.

    2014-01-01

    Anomalous diffraction signals from typical native macromolecules are very weak, frustrating their use in de novo structure determination. Here, native SAD procedures are described to enhance signal to noise in anomalous diffraction by using multiple crystals in combination with synchrotron X-rays at 6?keV. Increased anomalous signals were obtained at 6?keV compared with 7?keV X-ray energy, which was used for previous native SAD analyses. A feasibility test of multi-crystal-based native SAD phasing was performed at 3.2? resolution for a known tyrosine protein kinase domain, and real-life applications were made to two novel membrane proteins at about 3.0? resolution. The three applications collectively serve to validate the robust feasibility of native SAD phasing at lower energy. PMID:25286840

  1. The Morphology of the X-ray Emission above 2 keV from Jupiter's Aurorae

    NASA Technical Reports Server (NTRS)

    Elsner, R.; Branduardi-Raymont, G.; Galand, M.; Grodent, D.; Waite, J. H.; Cravens, T.; Ford, P.

    2007-01-01

    The discovery in XMM-Newton X-ray data of X-ray emission above 2 keV from Jupiter's aurorae has led us to reexamine the Chandra ACIS-S observations taken in Feb 2003. Chandra's superior spatial resolution has revealed that the auroral X-rays with E > 2 keV are emitted from the periphery of the region emitting those with E < 1 keV. We are presently exploring the relationship of this morphology to that of the FUV emission from the main auroral oval and the polar cap. The low energy emission has previously been established as due to charge exchange between energetic precipitating ions of oxygen and either sulfur or carbon. It seems likely to us that the higher energy emission is due to precipitation of energetic electrons, possibly the same population of electrons responsible for the FUV emission. We discuss our analysis and interpretation.

  2. Interstellar photoelectric absorption cross sections, 0.03-10 keV

    NASA Technical Reports Server (NTRS)

    Morrison, R.; Mccammon, D.

    1983-01-01

    An effective absorption cross section per hydrogen atom has been calculated as a function of energy in the 0.03-10 keV range using the most recent atomic cross section and cosmic abundance data. Coefficients of a piecewise polynomial fit to the numerical results are given to allow convenient application in automated calculations.

  3. Novel Generation Method of 24-keV Monoenergetic Neutrons Using Accelerators

    SciTech Connect

    Matsumoto, Tetsuro; Harano, Hideki; Nishiyama, Jun; Kudo, Katsuhisa; Uritani, Akira

    2009-03-10

    This paper describes a novel 24-keV monoenergetic neutron source that consists of an iron filter and a thick lithium target. The 24 keV neutrons are obtained with iron filtering of a neutron beam from the {sup 7}Li(p,n){sup 7}Be reaction near threshold energy using the 4 MV Pelletron accelerator. Neutron spectra were calculated using the NRESP-ANT simulation code. This neutron source was investigated using a {sup 3}He cylindrical proportional counter to measure the spatial distribution and neutron flux.

  4. AXAF synchrotron witness mirror calibrations 2 to 12 keV

    NASA Astrophysics Data System (ADS)

    Fitch, Jonathan J.; Blake, Richard L.; Burek, A. J.; Clark, Anna M.; Graessle, Dale E.; Harris, Bernard; Schwartz, Daniel A.; Sweeney, J.

    1997-07-01

    We have completed another full year of reflectance calibrations of AXAF witness mirrors at the National Synchrotron Light Source. At the NSLS, we have used beamlines X8C (5 - 12 keV) and X8A (2 - 6 keV), sponsored by Los Alamos National Laboratory. All of the flats have been calibrated in the 5 - 12 keV range, and approximately 1/4 of all our flats have been calibrated in the 2 - 6.2 keV range. The repeatability in the coating processes reported in Denver has continued with the measurement of additional mirrors. Optical constants from reflectances have been derived for six of the eight AXAF mirror elements, and a degree of spatial uniformity information exists for three of these six. The addition of a semitransparent monitor has markedly increased efficiency of measurements in the 5 - 12 keV range, and efforts are being made to provide such a monitor detector for the lower energy ranges. We report the progress in reflectance data acquisition and optical constant derivations, and discuss implications of the results for the AXAF program.

  5. AXAF Synchrotron Witness Mirror Calibrations, 2-12 keV

    NASA Astrophysics Data System (ADS)

    Fitch, J. J.; Burek, A. J.; Clark, A. M.; Graessle, D. E.; Harris, B.; Schwartz, D. A.; Blake, R. L.

    1997-05-01

    We have completed another full year of reflectance calibrations of AXAF witness mirrors at the National Synchrotron Light Source, Brookhaven National Laboratory. At the NSLS, we have used Beamlines X8C (5-12 keV) and X8A (2-6.2 keV). These beamlines are sponsored by Los Alamos National Laboratory. All of the scheduled flats have been calibrated in the 5-12 keV range, and approximately one-fourth of those scheduled have been calibrated in the 2-6.2 keV range. The repeatability in the coating processes reported last year (SPIE, Denver, July 1996) has persisted with the measurement of additional mirrors. Optical constants from reflectances have been derived for six of the eight AXAF mirror elements, and a degree of spatial uniformity information exists for three of these six. The addition of a semitransparent monitor has markedly increased efficiency of measurements in the 5-12 keV range, and efforts are being made to provide such a monitor detector for the lower energy ranges. We report progress in reflectance data acquisition and optical constants derivations, and discuss implications of the results for the AXAF program. This research is supported by the US D.O.E., and by NASA under contract NAS8-40224.

  6. Characteristics of 80 keV positive ion source for Large Helical Device.

    PubMed

    Nakano, H; Osakabe, M; Tsumori, K; Sato, M; Shibuya, M; Ikeda, K; Nagaoka, K; Kaneko, O; Asano, E; Kondo, T; Komada, S; Takeiri, Y

    2010-02-01

    An additional beamline, BL5, equipped with four positive ion sources will be installed on Large Helical Device (LHD) in 2010. The performance of an ion source which generates 80 keV deuterium and 60 keV hydrogen beams was investigated. The structure of the ion source is based on that of a BL4 ion source on LHD. The main differences between the ion sources for the BL4 and BL5 are the acceleration voltages and the materials of plasma electrodes: copper and molybdenum, respectively. The molybdenum plasma electrode for BL5 has better performance than the copper plasma electrode of BL4. The integrated performance of the ion source for BL5 reached a value equivalent to approximately 58 A in the beam current of hydrogen positive ion at 60 keV in the beam energy. PMID:20192422

  7. A possible line feature at 73 keV from the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Ling, J. C.; Mahoney, W. A.; Willett, J. B.; Jacobson, A. S.

    1979-01-01

    Evidence is reported for a possible line feature at 73 keV from the Crab Nebula. The experiment was conducted with a balloon-borne high-resolution gamma-ray spectrometer on June 10, 1974, over Palestine, Texas. The intensity and the width of the line derived from the fitting of these data are approximately 0.0038 photon per (sq cm-sec) and less than 4.9 keV FWHM, respectively. The line is superposed on a power-law continuum of 11.2 E to the -2.16 photons per (sq cm-keV) in the energy range from 53 to 300 keV, which is consistent with other measurements of the Crab Nebula spectrum.

  8. A search for the reported 400-keV gamma-ray line from Crab Nebula

    NASA Technical Reports Server (NTRS)

    Ling, J. C.; Mahoney, W. A.; Willett, J. B.; Jacobson, A. S.

    1977-01-01

    A balloon-borne large volume high resolution gamma-ray spectrometer which utilizes 40 cu cm Ge(Li) crystals was used June 10, 1974 to search for a 400-keV gamma-ray line from the Crab Nebula. Energy loss spectra in the 400-keV vicinity are compared with gamma-ray measurements of the same source which were reported by Leventhal et al. (1977). In contrast with the 1976 experimental results reported by Leventhal et al., a 400-keV line was not observed. Further, it is thought that the 1974 data contradict the measurement reported by Leventhal et al. if a constant source intensity is assumed.

  9. Tomographic All-sky Imaging Above 200 keV With BATSE

    NASA Astrophysics Data System (ADS)

    Wheaton, William A.; Case, G. L.; Cherry, M. L.; Ling, J. C.; Lo, M. W.; Roland, J. M.; Shimizu, T.

    2010-02-01

    We describe a tomographic method of mapping the gamma-ray sky above 200 keV with earth-occultation data from BATSE, the Burst And Transient Source Experiment on the Compton Gamma-Ray Observatory (CGRO). The method combines good sensitivity with 0.5 angular resolution over the whole sky. Our previous occultation analysis of the BATSE data indicates the presence of a significant number of unmodeled cosmic sources. The Earth's horizon cuts the sky in a cycle that repeats with the 51 day precession of the CGRO orbit plane, which is reflected in periodic effects due to the uncatalogued sources. Such cycles are then a natural data unit for all-sky mapping by a tomographic method using the Radon transform. Because the airmass profile of the horizon is nearly independent of energy, we obtain 0.5 angular resolution over the entire low-energy gamma-ray region. To improve sensitivity, we subtract a phenomenological model for the non-cosmic gamma-ray background from the raw count data before performing the imaging analysis, which uses a simple planar approximation to the inverse Radon transform on a tiling of the sky. We present images in four broad energy bands (23-98 keV, 98-230 keV, 230-595 keV and 595-1800 keV) centered on selected sources to illustrate the power of this approach. Our preliminary results tentatively show several sources in the 230-595 keV and 595-1800 keV bands, which will be presented. We easily image the Crab in the 595-1800 keV band in a single precession cycle. With 64 cycles in the 9 year CGRO data set, we expect a flux-complete survey of the entire sky, with multiple independent sky maps achieving a combined sensitivity typically less than 125 mCrab near 1 MeV. This work has been supported by grants from NASA, JPL, and LSU.

  10. Evidence for electron acceleration up to approximately 300 keV in the magnetic reconnection diffusion region of earth's magnetotail.

    PubMed

    Ieroset, M; Lin, R P; Phan, T D; Larson, D E; Bale, S D

    2002-11-01

    We report direct measurements of high-energy particles in a rare crossing of the diffusion region in Earth's magnetotail by the Wind spacecraft. The fluxes of energetic electrons up to approximately 300 keV peak near the center of the diffusion region and decrease monotonically away from this region. The diffusion region electron flux spectrum obeys a power law with an index of -3.8 above approximately 2 keV, and the electron angular distribution displays strong field-aligned bidirectional anisotropy at energies below approximately 2 keV, becoming isotropic above approximately 6 keV. These observations indicate significant electron acceleration inside the diffusion region. Ions show no such energization. PMID:12443119

  11. Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-keV ions

    NASA Astrophysics Data System (ADS)

    Jamieson, D. N.; Yang, C.; Hopf, T.; Hearne, S. M.; Pakes, C. I.; Prawer, S.; Mitic, M.; Gauja, E.; Andresen, S. E.; Hudson, F. E.; Dzurak, A. S.; Clark, R. G.

    2005-05-01

    We demonstrate a method for the controlled implantation of single ions into a silicon substrate with energy of sub-20-keV. The method is based on the collection of electron-hole pairs generated in the substrate by the impact of a single ion. We have used the method to implant single 14-keV P31 ions through nanoscale masks into silicon as a route to the fabrication of devices based on single donors in silicon.

  12. Preparation for B4C/Mo2C multilayer deposition of alternate multilayer gratings with high efficiency in the 0.5-2.5 keV energy range

    NASA Astrophysics Data System (ADS)

    Choueikani, Fadi; Delmotte, Franck; Bridou, Franoise; Lagarde, Bruno; Mercere, Pascal; Otero, Edwige; Ohresser, Philippe; Polack, Franois

    2013-03-01

    This paper presents a study of B4C/Mo2C multilayers mirrors with the aim of using it in the achievement of Alternate MultiLayer (AML) grating. Such component allows a high efficiency in the 500-2500 eV energy range for the DEIMOS beamline. Multilayers were deposited on silicon substrate. They are characterized by reflectometry under grazing incidence. Numerical adjustments were performed with a model of two layers in the period without any interfacial. A prototype of AML grating was fabricated and characterized. The efficiency of the first order of diffraction was worth 15% at 1700 eV.

  13. The Highest Historical 0.3-10 keV Flux in HBL Source Markarian 501

    NASA Astrophysics Data System (ADS)

    Kapanadze, Bidzina

    2014-05-01

    We report the highest historical X-ray flux level from the nearby (z=0.034) high-energy peaked BL Lacertae source Mrk 501 in the 0.3-10 keV energy band, detected by the X-ray Telescope (XRT) onboard the Swift satellite which observed the source 8 times since May 1 (total exposure - about 7.5 ks). ...

  14. Observations of proton spectra (1.0 less than or equal to proton energy less than or equal to 300 keV) and pitch angle distributions at the plasmapause

    NASA Technical Reports Server (NTRS)

    Williams, D. J.; Fritz, T. A.; Konradi, A.

    1972-01-01

    Detailed proton spectral and pitch angle distribution observations were obtained from two proton detectors and a fluxgate magnetometer flown on Small Scientific Satellite A (Explorer 45). The data of interest are from orbit 99 in-bound occurring on 17 December 1971, some 8 hours prior to the sudden commencement of a magnetic storm. The data are consistent with the initiation of ion cyclotron instability when certain requirements are met. These criteria are met initially at the altitude at which the sudden intensity decrease occurs. However, after the initiation of the instability, the linear theory is unable to explain the further evolution of intensities, pitch angle distributions, and energy spectra of the ring current particles.

  15. Solar wind ions accelerated to 40 keV by shock wave disturbances

    NASA Astrophysics Data System (ADS)

    Gosling, J. T.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Paschmann, G.; Sckopke, N.

    1980-02-01

    Observations in the solar wind with the LASL/MPI fast plasma experiment on ISEE 1 and 2 reveal the common presence of ions with energies extending from 100 eV up to at least 40 keV in a broad region, typically 10 million kilometers wide, following interplanetary shocks. Peak differential fluxes up to 5000/sq cm s sr keV at 28 keV are observed either at the shock or within the first 1.5 hours following shock passage. In the solar wind frame the distribution function of these ions is roughly isotropic, peaks near zero velocity, and above 5 keV can adequately be characterized as power law in energy with a spectral index of 2.7. The effective 'temperature' of these ions generally exceeds 100 million K. These suprathermal interplanetary ions are almost certainly solar wind ions which have been accelerated by some mechanism associated with the shock wave disturbance. Present evidence leads the authors to favor stochastic particle acceleration involving electrostatic and/or electromagnetic turbulence in the postshock flow.

  16. The Solar Flare 4: 10 keV X-ray Spectrum

    NASA Technical Reports Server (NTRS)

    Phillips, K. J. H.

    2004-01-01

    The 4-10 keV solar flare spectrum includes highly excited lines of stripped Ca, Fe, and Ni ions as well as a continuum steeply falling with energy. Groups of lines at approximately 7 keV and approximately 8 keV, observed during flares by the broad-band RHESSI spectrometer and called here the Fe-line and Fe/Ni-line features, are formed mostly of Fe lines but with Ni lines contributing to the approximately 8 keV feature. Possible temperature indicators of these line features are discussed - the peak or centroid energies of the Fe-line feature, the line ratio of the Fe-line to the Fe/Ni-line features, and the equivalent width of the Fe-line feature. The equivalent width is by far the most sensitive to temperature. However, results will be confused if, as is commonly believed, the abundance of Fe varies from flare to flare, even during the course of a single flare. With temperature determined from the thermal continuum, the Fe-line feature becomes a diagnostic of the Fe abundance in flare plasmas. These results are of interest for other hot plasmas in coronal ionization equilibrium such as stellar flare plasmas, hot gas in galaxies, and older supernova remnants.

  17. Monitoring the >100 keV Gamma-Ray Sky Using GBM: The First Two Years

    NASA Astrophysics Data System (ADS)

    Case, G. L.; Camero-Arranz, A.; Chaplin, V.; Cherry, M. L.; Finger, M. H.; Jenke, P.; Rodi, J.; Wilson-Hodge, C. A.

    2010-10-01

    The Gamma-Ray Burst Monitor (GBM) onboard Fermi is being used to monitor hard x-ray/soft gamma-ray sources in the energy range of 8-1000 keV using the Earth occultation technique. Through the first two years of this monitoring program, eight sources have been detected at energies above 100 keV, including six persistent sources (Crab, Cyg X-1, Cen A, 1E 1740-29, SWIFT J1753.5-0127, and GRS 1915+105) and two transients (XTE J1752-223 and GX 339-4). Light curves of all eight sources using the GBM 8-channel CTIME data are presented along with discussion of the high energy behavior.

  18. Excimer Emission using 20keV Electron Beam Excitation

    NASA Astrophysics Data System (ADS)

    Wieser, J.; Ulrich, A.; Murnick, D. E.

    1996-10-01

    A small, continuously emitting rare gas excimer light source has been developed. The gas is excited by a 20keV dc-electron beam. A 300nm thick, 11mm^2 SiNx foil sustaining a pressure difference up to 2bar, separates the target volume from the high vacuum part of the electron gun. Spectra of the rare gases Ar, Kr, and Xe have been studied. The monochromator detector system was intensity calibrated in the wavelength range from 115nm to 320nm. Electron beam currents of typically 1?A were used for excitation. When used as a VUV lamp on the second excimer continua, energy conversion efficiencies of 30% were obtained. Emissions originating from the so called left turning points have been clearly observed at 155, 173, and 222nm in Ar_2^*, Kr_2^*, and Xe_2^*, respectively. The so called third continua between 185nm and 240nm (Ar), 220nm and 250nm (Kr), and at 270nm (Xe) have been studied. A new continuum in Xe at 280nm was found. (Funded by the A.v.Humboldt Foundation and NSF (CTS 94-19440). The authors acknowledge support by H. Huggins, A. Liddle and W.L. Brown (Bell Laboratories, Lucent Technologies))

  19. Spectral Analysis on Solar Flares with an Emission > 300 keV

    NASA Astrophysics Data System (ADS)

    Vargas, R.; Connaughton, V.

    2013-12-01

    The continuum gamma-ray emission from solar flares is caused when a population of electrons is accelerated to relativistic speeds and interacts with the solar plasma. However, it has been theorized that the gamma-ray emission from some brighter flares comes from two populations of electrons. Using the Gamma-Ray Burst Monitor (GBM), we studied the gamma-ray emission spectra of solar flares and paid special attention to the solar flares that showed emission above 300 keV. We found that the emission above 300 keV was better fit with a broken power-law than a single power-law, evidence that the gamma-ray emission from certain solar flares involved two populations of electrons. Specifically, our best model involved a broken power law that had a steeper slope before the break in energy than after. We studied the spectral parameters as a function of time during the period of the high-energy emission. We also found that solar flares with emission above 300 keV form a small subset (~4%) of flares that trigger GBM above 20 keV. One of the flares with an emission greater than 300 keV was fitted with a Broken Power Law model. Only data from the BGO detector was used in making the plots. Various parameters of the fit have been plotted vs. time with the top two graphs representing the light curves of the flare from different detectors (BGO-0 and NaI-4). A spectral fit for bn100612038 for the time interval of [45s-50s] using only the BGO (0) detector file. Data from this fit was used in creating the other plots.

  20. X-ray phase-contrast imaging at 100?keV on a conventional source

    PubMed Central

    Thring, T.; Abis, M.; Wang, Z.; David, C.; Stampanoni, M.

    2014-01-01

    X-ray grating interferometry is a promising imaging technique sensitive to attenuation, refraction and scattering of the radiation. Applications of this technique in the energy range between 80 and 150?keV pose severe technical challenges, and are still mostly unexplored. Phase-contrast X-ray imaging at such high energies is of relevant scientific and industrial interest, in particular for the investigation of strongly absorbing or thick materials as well as for medical imaging. Here we show the successful implementation of a Talbot-Lau interferometer operated at 100?keV using a conventional X-ray tube and a compact geometry, with a total length of 54?cm. We present the edge-on illumination of the gratings in order to overcome the current fabrication limits. Finally, the curved structures match the beam divergence and allow a large field of view on a short and efficient setup. PMID:24903579

  1. Development of a Portable 950 keV X-band Linac for NDT

    SciTech Connect

    Natsui, Takuya; Uesaka, Mitsuru; Yamamoto, Tomohiko; Sakamoto, Fumito; Hashimoto, Eiko; Kiwoo, Lee; Nakamura, Naoki; Yamamoto, Masashi; Tanabe, Eiji; Yoshida, Mitsuhiro; Higo, Toshiyasu; Fukuda, Shigeki

    2009-03-10

    We are developing a portable 950 keV X-band (9.4 GHz) linac X-ray source for on-site nondestructive testing of erosion of metal pipes at a petrochemical complex. To develop it, we adopted a compact X-band 9.4 GHz magnetron of 250 kW for RF generation device. The whole device, including power supply and cooling devices, were also downsized. The dose rate of X-ray converted in a tungsten target is designed to be 0.2 Gy/min at 1-m distance. We designed an accelerating tube that uses the {pi} mode for the lower energy part and the {pi}/2 mode cavity for the higher energy. We manufactured the accelerating tube and carried out beam acceleration tests, confirming that the electron beam was accelerated up to 950 keV.

  2. Few arc-minute and keV resolutions with the TIGRE Compton telescope

    NASA Technical Reports Server (NTRS)

    Zych, A.; Bhattacharya, D.; Dixon, D.; ONeill, T.; Tuemer, T.; White, R. S.; Ryan, J.; McConnell, M.; Macri, J.; Oegelman, H.; Paulos, R.; Wheaton, W.; Akyuez, A.; Samimi, J.; Oezel, M.

    1997-01-01

    The tracking and imaging gamma ray experiment (TIGRE) Compton telescope concept can provide an angular resolution of a few arcmin, an energy resolution of a few keV and high sensitivity, while providing the wide field of view necessary for surveying and monitoring observations. Silicon and CdZnTe strip detectors are used to detect Compton pair events and determine their incident directions and energies. Above 400 keV, Compton recoil electrons are tracked through successive layers of thin silicon strip detectors. Compton scattered photons are detected with CdZnTe strip detectors. Pair electrons and positrons are tracked to provide high sensitivity observations in the 10 to 100 MeV range. Polarization studies are performed with large angle Compton scatter events. The TIGRE concept and development status are described.

  3. The Morphology of the X-ray Emission above 2 keV from Jupiter's Aurorae

    NASA Technical Reports Server (NTRS)

    Elsner, R.; Branduardi-Raymont, G.; Galand, M.; Grodent, D.; Gladstone, G. R.; Waite, J. H.; Cravens, T.; Ford, P.

    2007-01-01

    The discovery in XMM-Newton X-ray data of X-ray emission above 2 keY from Jupiter's aurorae has led us to reexamine the Chandra ACIS-S observations taken in Feb 2003. Chandra's superior spatial resolution has revealed that the auroral X-rays with E > 2 keV are emitted from the periphery of the region emitting those with E < 1 keV. We are presently exploring the relationship of this morphology to that of the FUV emission from the main auroral oval and the polar cap. The low energy emission has previously been established as due to charge exchange between energetic precipitating ions of oxygen and either sulfur or carbon. It seems likely to us that the higher energy emission is due to precipitation of energetic electrons, possibly the same population of electrons responsible for the FUV emission. We discuss our analysis and interpretation.

  4. Calibration of SIOM-5FW film in the range of 0.1-4 keV

    NASA Astrophysics Data System (ADS)

    Chenais-Popovics, C.; Reverdin, C.; Ioannou, I.

    2006-06-01

    The SIOM-5FW film produced for the sub-keV x-ray detection range was calibrated here in a wide energy range (0.1-4keV). A single set of parameters valid in the whole measured energy range was determined for the calibration of the Shangai 5F (SIOM-5FW) film from a parametric fit of the data. The sensitivity of the SIOM-5FW film was measured to be four times lower than that of the Kodak DEF film at 2.5keV photon energy. Modeling of the DEF and SIOM-5FW films provides a good comparison of their sensitivity in the 0.1-10keV range.

  5. The diffuse X-ray spectrum from 14-200 keV as measured on OSO-5

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Suri, A. N.; Frost, K. J.

    1973-01-01

    The measurement of energy spectrum of the diffuse component of cosmic X-ray flux made on the OSO-5 spacecraft is described. The contributions to the total counting rate of the actively shielded X-ray detector are considered in some detail and the techniques used to eliminate the non-cosmic components are described. Positive values for the cosmic flux are obtained in seven energy channels between 14 and 200 keV and two upper limits are obtained between 200 and 254 keV. The results can be fitted by a power law spectrum. A critical comparison is made with the OSO-3 results. Conclusions show that the reported break in the energy spectrum at 40 keV is probably produced by an erroneous correction for the radioactivity induced in the detector on each passage through the intense charged particle fluxes in the South Atlantic anomaly.

  6. Compton polarimeter for 10-30 keV x rays.

    PubMed

    Weber, S; Beilmann, C; Shah, C; Tashenov, S

    2015-09-01

    We present a simple and versatile polarimeter for x rays in the energy range of 10-30 keV. It uses Compton scattering in low-Z materials such as beryllium or boron carbide. The azimuthal distribution of the scattered x rays is sampled by an array of 12 silicon PIN diodes operated at room temperature. We evaluated the polarimetry performance using Monte-Carlo simulations and show experimental results. PMID:26429432

  7. INTEGRAL 11-year hard X-ray survey above 100 keV

    NASA Astrophysics Data System (ADS)

    Krivonos, R.; Tsygankov, S.; Lutovinov, A.; Revnivtsev, M.; Churazov, E.; Sunyaev, R.

    2015-04-01

    We present the results of an all-sky survey, performed with data acquired by the Imager on-Board the INTEGRAL Satellite (IBIS) telescope on board the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) observatory over 11 years of operation, at energies above 100 keV. The catalogue of detected sources includes 132 objects. The statistical sample detected on the time-averaged 100-150 keV map at a significance above 5? contains 88 sources: 28 active galactic nuclei (AGNs), 38 low-mass X-ray binaries (LMXBs), 10 high-mass X-ray binaries (HMXBs) and 12 rotation-powered young X-ray pulsars. The catalogue also includes 15 persistent sources, which were registered at significance 4? ? S/N < 5?, where S/N is the signal-to-noise ratio, but at the same time were firmly detected (?12?) in the lower 17-60 keV energy band. All registered sources are known X-ray emitters, which means that the catalogue has 100 per cent purity in this respect. Additionally, 29 catalogued sources were detected significantly in different time slices of the survey. In the context of the survey, we present a hardness ratio for Galactic and extragalactic sources, an LMXB longitudinal asymmetry and a number-flux relation for non-blazar AGNs. At higher energies, in the 150-300 keV energy band, 25 sources have been detected with S/N ? 5?, including seven AGNs, 13 LMXBs, three HMXBs and two rotation-powered pulsars. Among LMXBs and HMXBs, we identified 12 black hole candidates (BHCs) and four neutron star (NS) binaries.

  8. Compton polarimeter for 10-30 keV x rays

    NASA Astrophysics Data System (ADS)

    Weber, S.; Beilmann, C.; Shah, C.; Tashenov, S.

    2015-09-01

    We present a simple and versatile polarimeter for x rays in the energy range of 10-30 keV. It uses Compton scattering in low-Z materials such as beryllium or boron carbide. The azimuthal distribution of the scattered x rays is sampled by an array of 12 silicon PIN diodes operated at room temperature. We evaluated the polarimetry performance using Monte-Carlo simulations and show experimental results.

  9. Optimization of single keV ion implantation for the construction of single P-donor devices

    NASA Astrophysics Data System (ADS)

    Yang, Changyi; Jamieson, David N.; Hopf, Toby; Andresen, Soren E.; Hearne, Sean M.; Hudson, Fay E.; Pakes, Christopher I.; Mitic, Mladen; Gauja, Eric; Tamanyan, Grigori; Dzurak, Andrew S.; Prawer, Steven; Clark, Robert G.

    2005-02-01

    We report recent progress in single keV ion implantation and online detection for the controlled implantation of single donors in silicon. When integrated with silicon nanofabrication technology this forms the "top down" strategy for the construction of prototype solid state quantum computer devices based on phosphorus donors in silicon. We have developed a method of single ion implantation and online registration that employs detector electrodes adjacent to the area into which the donors are to be implanted. The implantation sites are positioned with nanometer accuracy using an electron beam lithography patterned PMMA mask. Control of the implantation depth of 20 nm is achieved by tuning the phosphorus ion energy to 14 keV. The counting of single ion implantation in each site is achieved by the detection of e-/h+ pairs produced by the implanted phosphorus ion in the substrate. The system is calibrated by use of Mn K-line x-rays (5.9 and 6.4 keV) and we find the ionization energy of the 14 keV phosphorus ions in silicon to be about 3.5-4.0 keV for implants through a 5 nm SiO2 surface layer. This paper describes the development of an improved PIN detector structure that provides more reliable performance of the earlier MOS structure. With the new structure, the energy noise threshold has been minimized to 1 keV or less. Unambiguous detection/counting of single keV ion implantation events were achieved with a confidence level greater than 98% with a reliable and reproducible fabrication process.

  10. New Observations of Soft X-ray (0.5-5 keV) Solar Spectra

    NASA Astrophysics Data System (ADS)

    Caspi, A.; Woods, T. N.; Mason, J. P.; Jones, A. R.; Warren, H. P.

    2013-12-01

    The solar corona is the brightest source of X-rays in the solar system, and the X-ray emission is highly variable on many time scales. However, the actual solar soft X-ray (SXR) (0.5-5 keV) spectrum is not well known, particularly during solar quiet periods, as, with few exceptions, this energy range has not been systematically studied in many years. Previous observations include high-resolution but very narrow-band spectra from crystal spectrometers (e.g., Yohkoh/BCS), or integrated broadband irradiances from photometers (e.g., GOES/XRS, TIMED/XPS, etc.) that lack detailed spectral information. In recent years, broadband measurements with moderate energy resolution (~0.5-0.7 keV FWHM) were made by SphinX on CORONAS-Photon and SAX on MESSENGER, although they did not extend to energies below ~1 keV. We present observations of solar SXR emission obtained using new instrumentation flown on recent SDO/EVE calibration rocket underflights. The photon-counting spectrometer, a commercial Amptek X123 with a silicon drift detector and an 8 ?m Be window, measures the solar disk-integrated SXR emission from ~0.5 to >10 keV with ~0.15 keV FWHM resolution and 1 s cadence. A novel imager, a pinhole X-ray camera using a cooled frame-transfer CCD (15 ?m pixel pitch), Ti/Al/C filter, and 5000 line/mm Au transmission grating, images the full Sun in multiple spectral orders from ~0.1 to ~5 nm with ~10 arcsec/pixel and ~0.01 nm/pixel spatial and spectral detector scales, respectively, and 10 s cadence. These instruments are prototypes for future CubeSat missions currently being developed. We present new results of solar observations on 04 October 2013 (NASA sounding rocket 36.290). We compare with previous results from 23 June 2012 (NASA sounding rocket 36.286), during which solar activity was low and no signal was observed above ~4 keV. We compare our spectral and imaging measurements with spectra and broadband irradiances from other instruments, including SDO/EVE, GOES/XRS, TIMED/XPS, and RHESSI, as well as the SphinX observations during the deep solar minimum of 2009. Using newly-developed computational methods, we analyze the differential emission measure (DEM) of the solar corona, and discuss the possible implications for X-ray-producing physical processes in the quiescent corona.

  11. Type IA Supernovae & 511 keV Annihilation Radiation

    NASA Astrophysics Data System (ADS)

    Milne, P. A.; Leising, M. D.; The, L. S.

    1998-12-01

    This dissertation investigates the contributions of supernovae (SNe) to galactic positrons. Previous works have suggested that for favorable conditions, (56) Co positrons can escape from the SN ejecta into the ISM. The lifetimes of positrons are long enough to permit the contributions of many SNe to collectively produce a ``sea of positrons". The transport of positrons through SN ejecta and annihilation of positrons in the ISM give rise to two observable effects; the deposition of positron kinetic energy into the SN ejecta drives the SN emission at late times, and the annihilation of positrons with electrons in the ISM produces 511 keV photons. We model the transport of positrons in SN ejecta, estimating positron yields and generating bolometric light curves. The curves are compared with observed SN light curves and positron escape is indicated. The yields from SN models are combined with SN rates, galactic SN distributions and estimates of the yield of positrons from other SN-synthesized positron emitting radionuclei to generate a collective SN map of the galactic annihilation radiation. The SN map and many other maps are then compared to the observations of galactic annihilation radiation taken by the Oriented Scintillation Spectrometer Experiment (OSSE) to determine if the SN map is favored. The SN distribution was found to agree with the data if certain assumptions are made about the distribution of type Ia SNe in the Galaxy, and if other sources of galactic annihilation radiation were present. We conclude with a discussion of what observations would further the arguments for positron escape from SNe, and the SN galactic annihilation radiation map.

  12. Mutagenic effect of a keV range N + beam on mammalian cells

    NASA Astrophysics Data System (ADS)

    Feng, Huiyun; Wu, Lijun; Yu, Lixiang; Han, Wei; Liu, Xuelan; Yu, Zengliang

    2005-07-01

    The radiobiological effects of a keV (5-20 keV) range nitrogen ion (N +) beam on mammalian cells were studied, particularly with regard to the induction of mutation in the cell genome. The experiment demonstrated that the 20 keV N + beam, which resulted in cell death to a certain extent, induced a 2-3 fold increase in the mutation rates at the CD59 gene locus of the mammalian A L cells as compared to the control. Within certain fluence ranges (0-6 10 14 N +/cm 2), the cell survival displayed a down-up-down pattern which is similar to the phenomenon known as 'hyper-radiosensitivity' manifested under low-dose irradiation; the CD59 mutation rate firstly showed a gradual rise up to a 3-fold increment above the background level as the ion fluence went up to 4 10 14 N +/cm 2, after this peak point however, a downtrend appeared though the ion fluence increased further. It was also observed that the fraction of CD59 mutation bears no proportional relation to ion energy in further experiments of mutation induction by N + beams with the incident energies of 5, 10, 15 and 20 keV at the same fluence of 3 10 14 N +/cm 2. Analyses of the deletion patterns of chromosome 11 in CD59- mutants induced by 5-20 keV N + beams showed that these ions did not result in large-size chromosome deletions in this mammalian cell system. A preliminary discussion, suggesting that the mutagenic effect of such low-energy ion influx on mammalian cells could result from multiple processes involving direct collision of particles with cellular DNA, and cascade atomic and molecular reactions due to plentiful primary and secondary particles, was also presented. The study provided the first glimpse into the roles low-energy ions may play in inducing mutagenesis in mammalian cells, and results will be of much value in helping people to understand the contribution of low-energy ions to radiological effects of various ionising radiations.

  13. Compton Profiles of Silver with 662 keV ?-Rays

    NASA Astrophysics Data System (ADS)

    Chang, Chu-Nan; Lee, Syh-Bin; Chen, Chuhn-Chih

    1991-12-01

    The isotropic Compton profiles of Ag for two thicknesses, 2 mm and 4 mm, have been measured by means of 662 keV ?-rays from Cs137 source. A HpGe detector with resolution of 190 eV at 5.9 keV was used to detect the backward scattering photons. Comparison with the renormalized-free-atom model calculations was made, and the agreement between the experimental and the calculated values has been found to be good for the electron configuration 4d105s1.

  14. Reflectance calibrations of AXAF witness mirrors using synchrotron radiation: 2 to 12 keV

    NASA Astrophysics Data System (ADS)

    Graessle, Dale E.; Clark, Anna M.; Fitch, J. J.; Harris, Bernard; Schwartz, Daniel A.; Blake, Richard L.

    1996-07-01

    For the past six years, a high-accuracy reflectance calibration system has been under development at the National Synchrotron Light Source at Brookhaven National Laboratory. The system utilizes Los Alamos National Laboratory's Beamlines X8A and X8C. Its purpose is to calibrate the reflection efficiencies of witness coupons associated with the coating of the eight mirror elements composing the High Resolution Mirror Assembly for NASA's Advanced X-ray Astrophysics Facility (AXAF). During the past year, measurements of reflectances of numerous iridium- coated witness flat mirrors have been obtained to a relative statistical precision of 0.4 percent, and an overall repeatability within 0.8 percent in the overlapping energy regions. The coating processes are strikingly repeatable, with reflectances in the 5-10 keV range for off-end witness flats nearly always being within 1 percent of one another, excluding interference fringes. The comparison reflectances between flats obtained from qualification coating runs and production runs of the Wolter Type I mirror elements are in turn nearly equal, indicating that the qualification run witness flats provide a good representation of the flight optics. Results will produce a calibration of AXAF with extremely good energy detail over the 2-12 keV range, which includes details of the M-absorption edge region for Ir. Development of the program to cover 0.05-2 keV continues.

  15. Production of Sterile Neutrino dark matter and the 3.5 keV line

    NASA Astrophysics Data System (ADS)

    Merle, Alexander; Schneider, Aurel

    2015-10-01

    The recent observation of an X-ray line at an energy of 3.5 keV mainly from galaxy clusters has initiated a discussion about whether we may have seen a possible dark matter signal. If confirmed, this signal could stem from a decaying sterile neutrino of a mass of 7.1 keV. Such a particle could make up all the dark matter, but it is not clear how it was produced in the early Universe. In this letter we show that it is possible to discriminate between different production mechanisms with present-day astronomical data. The most stringent constraint comes from the Lyman-? forest and seems to disfavor all but one of the main production mechanisms proposed in the literature, which is the production via decay of heavy scalar singlets. Pinning down the production mechanism will help to decide whether the X-ray signal indeed comprises an indirect detection of dark matter.

  16. Energetic (greater than 100 keV) O(+) ions in the plasma sheet

    NASA Technical Reports Server (NTRS)

    Ipavich, F. M.; Galvin, A. B.; Gloeckler, G.; Hovestadt, D.; Klecker, B.; Scholer, M.

    1984-01-01

    The first measurements of very energetic (112 - 157 keV) O(+) ions in the earth's magnetosphere are presented. The observations were made with the UMd/MPE ULECA sensor on ISEE-1 on 5 March 1981 at geocentric distances approximately 20 R(E) in the earth's magnetotail. During this time period an Energetic Storm Particle event was observed by the nearly identical sensor on the ISEE-3 spacecraft, located approximately 250 R(E) upstream of the earth's magnetosphere. The ISEE-1 sensor observed a similar temporal profile except for several sharp intensity enhancements, corresponding to substorm recoveries during which the plasma sheet engulfed the spacecraft. During these plasma sheet encounters we observe O(+)/H(+) abundance ratios, at approximately 130 kev, as large as 0.35. In between plasma sheet encounters the O(+)/H(+) ratio at this energy is consistent with zero.

  17. A 24 keV liquid-metal-jet x-ray source for biomedical applications

    SciTech Connect

    Larsson, D. H.; Takman, P. A. C.; Lundstroem, U.; Burvall, A.; Hertz, H. M.

    2011-12-15

    We present a high-brightness 24-keV electron-impact microfocus x-ray source based on continuous operation of a heated liquid-indium/gallium-jet anode. The 30-70 W electron beam is magnetically focused onto the jet, producing a circular 7-13 {mu}m full width half maximum x-ray spot. The measured spectral brightness at the 24.2 keV In K{sub {alpha}} line is 3 x 10{sup 9} photons/(s x mm{sup 2}x mrad{sup 2}x 0.1% BW) at 30 W electron-beam power. The high photon energy compared to existing liquid-metal-jet sources increases the penetration depth and allows imaging of thicker samples. The applicability of the source in the biomedical field is demonstrated by high-resolution imaging of a mammography phantom and a phase-contrast angiography phantom.

  18. Study of avalanche photodiodes for soft X-ray detection below 20 keV

    NASA Astrophysics Data System (ADS)

    Yatsu, Y.; Kuramoto, Y.; Kataoka, J.; Kotoku, J.; Saito, T.; Ikagawa, T.; Sato, R.; Kawai, N.; Kishimoto, S.; Mori, K.; Kamae, T.; Ishikawa, Y.; Kawabata, N.

    2006-08-01

    The performance of the large area reach-through avalanche photodiode (APD), manufactured by Hamamatsu Photonics, K.K. as a high resolution X-ray detector is presented. The mentioned APD has an area of 3 mm ?, a fast time response for signal carrier collection and its thick depletion layer of 130 ?m shows a potential to be used as an effective X-ray absorber below 20 keV. Having a capacitance of 10 pF and a low dark current of 5 nA for a gain of 15, at room temperature, this APD had demonstrated one of the best energy resolutions within this kind of devices: 6.4% (FWHM) for 5.9 keV photons with a minimum detectable energy of 0.3 keV, measured at -20C. The experiments for the timing property were made in a synchrotron beam facility using an 8 keV X-ray beam; the reached count rate was above 108 counts/s, corresponding to a very short dead time of 4.5 ns/pulse. In order to test the radiation hardness of the APD, the device was irradiated at a Ring Cyclotron Facility with a 53.5 MeV proton beam. The total dose was of 11.3 krad and no fatal damage was found in the APD, although the dark current of the APD had shown an increase of one order of magnitude. Finally, the obtained results allow us to affirm that the reach-through APD has the potential to become an excellent X-ray detector, especially in the space mission application.

  19. The 511 keV emission from positron annihilation in the Galaxy

    SciTech Connect

    Prantzos, N.; Boehm, C.; Bykov, A. M.; Diehl, R.; Ferriere, K.; Guessoum, N.; Jean, P.; Knoedlseder, J.; Marcowith, A.; Moskalenko, I. V.; Strong, A.; Weidenspointner, G.

    2011-07-01

    The first {gamma}-ray line originating from outside the Solar System that was ever detected is the 511 keV emission from positron annihilation in the Galaxy. Despite 30 years of intense theoretical and observational investigation, the main sources of positrons have not been identified up to now. Observations in the 1990s with OSSE/CGRO (Oriented Scintillation Spectrometer Experiment on GRO satellite/Compton Gamma Ray Observatory) showed that the emission is strongly concentrated toward the Galactic bulge. In the 2000s, the spectrometer SPI aboard the European Space Agency's (ESA) International Gamma Ray Astrophysics Laboratory (INTEGRAL) allowed scientists to measure that emission across the entire Galaxy, revealing that the bulge-to-disk luminosity ratio is larger than observed at any other wavelength. This mapping prompted a number of novel explanations, including rather ''exotic'' ones (e.g., dark matter annihilation). However, conventional astrophysical sources, such as type Ia supernovae, microquasars, or x-ray binaries, are still plausible candidates for a large fraction of the observed total 511 keV emission of the bulge. A closer study of the subject reveals new layers of complexity, since positrons may propagate far away from their production sites, making it difficult to infer the underlying source distribution from the observed map of 511 keV emission. However, in contrast to the rather well-understood propagation of high-energy (>GeV) particles of Galactic cosmic rays, understanding the propagation of low-energy ({approx}MeV) positrons in the turbulent, magnetized interstellar medium still remains a formidable challenge. The spectral and imaging properties of the observed 511 keV emission are reviewed and candidate positron sources and models of positron propagation in the Galaxy are critically discussed.

  20. The 511 keV emission from positron annihilation in the Galaxy

    NASA Astrophysics Data System (ADS)

    Prantzos, N.; Boehm, C.; Bykov, A. M.; Diehl, R.; Ferrire, K.; Guessoum, N.; Jean, P.; Knoedlseder, J.; Marcowith, A.; Moskalenko, I. V.; Strong, A.; Weidenspointner, G.

    2011-07-01

    The first ?-ray line originating from outside the Solar System that was ever detected is the 511 keV emission from positron annihilation in the Galaxy. Despite 30 years of intense theoretical and observational investigation, the main sources of positrons have not been identified up to now. Observations in the 1990s with OSSE/CGRO (Oriented Scintillation Spectrometer Experiment on GRO satellite/Compton Gamma Ray Observatory) showed that the emission is strongly concentrated toward the Galactic bulge. In the 2000s, the spectrometer SPI aboard the European Space Agencys (ESA) International Gamma Ray Astrophysics Laboratory (INTEGRAL) allowed scientists to measure that emission across the entire Galaxy, revealing that the bulge-to-disk luminosity ratio is larger than observed at any other wavelength. This mapping prompted a number of novel explanations, including rather exotic ones (e.g., dark matter annihilation). However, conventional astrophysical sources, such as type Ia supernovae, microquasars, or x-ray binaries, are still plausible candidates for a large fraction of the observed total 511 keV emission of the bulge. A closer study of the subject reveals new layers of complexity, since positrons may propagate far away from their production sites, making it difficult to infer the underlying source distribution from the observed map of 511 keV emission. However, in contrast to the rather well-understood propagation of high-energy (>GeV) particles of Galactic cosmic rays, understanding the propagation of low-energy (MeV) positrons in the turbulent, magnetized interstellar medium still remains a formidable challenge. The spectral and imaging properties of the observed 511 keV emission are reviewed and candidate positron sources and models of positron propagation in the Galaxy are critically discussed.

  1. KevJumba and the Adolescence of YouTube

    ERIC Educational Resources Information Center

    Saul, Roger

    2010-01-01

    This article considers the significance of YouTube as a pedagogical space from which young people can play participatory roles as theorists in their own constructions as popular cultural subjects. Drawing upon the public profile of "KevJumba," a teenager who makes videos of himself on YouTube, the article suggests that representational practices

  2. Compact 300 keV electron gun for radiation processing

    SciTech Connect

    Auditore, L.; Barna, R.C.; De Pasquale, D.; Interdonato, S.; Italiano, A.; Trifiro, A.; Trimarchi, M.

    2005-12-15

    A new self-shielded system for surface radiation treatments has been developed, based on a 300 keV electron gun, able to irradiate a 100 mmx10 mm area. The compact and durable system described in this paper provides the required dose of treatment for several industrial or scientific research applications, with a good reproducibility of the parameters.

  3. KevJumba and the Adolescence of YouTube

    ERIC Educational Resources Information Center

    Saul, Roger

    2010-01-01

    This article considers the significance of YouTube as a pedagogical space from which young people can play participatory roles as theorists in their own constructions as popular cultural subjects. Drawing upon the public profile of "KevJumba," a teenager who makes videos of himself on YouTube, the article suggests that representational practices…

  4. Energetic (approx. 100-keV) tailward-directed ion beam outside the Jovian plasma boundary

    SciTech Connect

    Krimigis, S.M.; Armstrong, T.P.; Axford, W.I.; Bostrom, C.O.; Fan, C.Y.; Gloeckler, G.; Lanzerotti, L.J.; Hamilton, D.C.; Zwickl, R.D.

    1980-01-01

    The hot plasma instrument on the Voyager-2 spacecraft measured a nearly monoenergetic (approx.100 keV) ion beam several hours after crossing the Jovian plasma boundary on the nightside of the planet. The beam, deduced to consist primarily of heavy ions, persisted for about four hours and originated from the general direction of Jupiter. The energy density of the beam was approx. several times the energy density of the magnetic field (..beta..>1). This beam, a product of an as yet not understood Jovian plasma acceleration mechanism, provides a dramatic example of the energetic dynamics of Jupiter's magnetosphere.

  5. OSSE observations of galactic 511 keV annihilation radiation

    NASA Technical Reports Server (NTRS)

    Purcell, W. R.; Grabelsky, D. A.; Johnson, W. N.; Jung, G. V.; Kinzer, R. L.; Kurfess, J. D.; Strickman, M. S.; Ulmer, M. P.

    1992-01-01

    The Oriented Scintillation Spectrometer Experiment (OSSE) on the Compton Gamma-Ray Observatory has performed several observations of the galactic plane and galactic center region to measure the distribution of galactic 511 keV positron annihilation radiation. Preliminary analysis of data collected during the observation of the galactic center region over the period 13-24 Jun. 1991, indicates the presence of a 511 keV line and positronium continuum superimposed on a power-law continuum. The line of flux was found to be (2.7 +/- 0.5) x 10(exp -4) gamma/sq cm sec, with a positronium fraction of (0.9 +/- 0.2). The 3(sigma) upper limit to daily variations in the 511 keV line flux from the mean during the observation interval is 3 x 10(exp -4) gamma/sq cm sec. If all of the observed annihilation radiation is assumed to originate from the x-ray source 1E 1740.7-2942, the corresponding 511 keV line flux would be (3.0 +/- 0.6) x 10(exp -4) gamma/sq cm sec. The 3(sigma) upper limit for 511 keV line emission from the x-ray binary GX1+4 is 6 x 10(exp -4) gamma/sq cm sec. Results from the galactic plane observations at galactic longitudes of 25 degrees (16-21 Aug. 1991) and 339 degrees (6-11 Sep. 1991) suggest that the emission is concentrated near the galactic center. The observations and the preliminary results are described.

  6. The Hard X-ray 20-40 keV AGN Luminosity Function

    NASA Technical Reports Server (NTRS)

    Beckmann, V.; Soldi, S.; Shrader, C. R.; Gehrels, N.; Produit, N.

    2006-01-01

    We have compiled a complete, significance limited extragalactic sample based on approximately 25,000 deg(sup 2) to a limiting flux of 3 x 10(exp -11) ergs per square centimeter per second. (approximately 7,000 deg(sup 2)) to a flux limit of 10(exp -11) ergs per square centimeter per second)) in the 20 - 40 keV band with INTEGRAL. We have constructed a detailed exposure map to compensate for effects of non-uniform exposure. The flux-number relation is best described by a power-law with a slope of alpha = 1.66 plus or minus 0.11. The integration of the cumulative flux per unit area leads to f(sub 20-40 keV) = 2.6 x 10(exp -10) ergs per square centimeter per second per sr(sup -1) which is about 1% of the known 20-40 keV X-ray background. We present the first luminosity function of AGN in the 20-40 keV energy range, based on 68 extragalactic objects detected by the imager IBIS/ISGRI on-board INTEGRAL. The luminosity function shows a smoothly connected two power-law form, with an index of gamma (sub 1) = 0.9 below, and gamma (sub 2) = 2.2 above the turn-over luminosity of L(sub *), = 4.6 x 10(sup 43) ergs per second. The emissivity of all INTEGRAL AGNs per unit volume is W(sub 20-40keV)(greater than 10(sup 41) ergs per second) = 2.8 x 10(sup 38) ergs per second h(sup 3)(sub 70) Mpc(sup -3). These results are consistent with those derived in the 2-20keV energy band and do not show a significant contribution by Compton-thick objects. Because the sample used in this study is truly local (z(raised bar) = 0.022)), only limited conclusions can be drawn for the evolution of AGNs in this energy band. But the objects explaining the peak in the cosmic X-ray background are likely to be either low luminosity AGN (L(sub x) less than 10(sup 41) ergs per second) or of other type, such as intermediate mass black holes, clusters, and star forming regions.

  7. Effective field theory and keV lines from dark matter

    SciTech Connect

    Krall, Rebecca; Reece, Matthew; Roxlo, Thomas E-mail: mreece@physics.harvard.edu

    2014-09-01

    We survey operators that can lead to a keV photon line from dark matter decay or annihilation. We are motivated in part by recent claims of an unexplained 3.5 keV line in galaxy clusters and in Andromeda, but our results could apply to any hypothetical line observed in this energy range. We find that given the amount of flux that is observable, explanations in terms of decay are more plausible than annihilation, at least if the annihilation is directly to Standard Model states rather than intermediate particles. The decay case can be explained by a scalar or pseudoscalar field coupling to photons suppressed by a scale not far below the reduced Planck mass, which can be taken as a tantalizing hint of high-scale physics. The scalar case is particularly interesting from the effective field theory viewpoint, and we discuss it at some length. Because of a quartically divergent mass correction, naturalness strongly suggests the theory should be cut off at or below the 1000 TeV scale. The most plausible such natural UV completion would involve supersymmetry. These bottom-up arguments reproduce expectations from top-down considerations of the physics of moduli. A keV line could also arise from the decay of a sterile neutrino, in which case a renormalizable UV completion exists and no direct inference about high-scale physics is possible.

  8. A study of 2-20 KeV X-rays from the Cygnus region

    NASA Technical Reports Server (NTRS)

    Bleach, R. D.

    1972-01-01

    Two rocket-borne proportional counters, each with 650 sq c, met area and 1.8 x 7.1 deg FWHM rectangular mechanical collimation, surveyed the Cygnus region in the 2 to 20 keV energy range on two occasions. X-ray spectral data gathered on 21 September 1970 from discrete sources in Cygnus are presented. The data from Cyg X-1, Cyg X-2, and Cyg X-3 have sufficient statistical significance to indicate mutually exclusive spectral forms for the three. Upper limits are presented for X-ray intensities above 2 keV for Cyg X-4 and Cyg X-5 (Cygnus loop). A search was made on 9 August 1971 for a diffuse component of X-rays 1.5 keV associated with an interarm region of the galaxy at galactic longitudes in the vicinity of 60 degrees. A statistically significant excess associated with a narrow disk component was detected. Several possible emission models are discussed, with the most likely candidate being a population of unresolvable low luminosity discrete sources.

  9. Feasibility study for DEXA using synchrotron CT at 20-35keV.

    PubMed

    Midgley, S M

    2013-02-21

    A nonlinear model for the x-ray linear attenuation coefficient ? is employed for dual energy x-ray analysis (DEXA). Nonlinear simultaneous equations formed by ? and energy dependent model parameters are solved for the electron density N(e) and fourth compositional ratio R(4) which has the same 'units' as the atomic number. Computed tomography data was acquired at 20-35keV using bending magnet synchrotron radiation, a double crystal monochromator, a rotation stage and an area detector. Test objects contained liquid samples as mixtures of ethanol, water and salt solutions with known density and composition. Various noise sources are identified and give ? uncertainties of 1-2%. A fan beam geometry allowed the detection of forward scattered radiation with measured ? being 6% lower than expectations for a narrow beam. Energy dependent model parameters were obtained by solving linear simultaneous equations formed by ? and material parameters based upon N(e) and R(4). DEXA accuracy was studied as a function of photon energy and sample composition. Propagation of errors analysis identifies the importance of the fractional compositional cross-products whose difference at the two beam energies should exceed 0.1, requiring 10keV or more separation. For a reasonable approximation for the adjustable model parameters, the mean difference between the DEXA solution and true values (?N(e), ?R(4)) are (1.0%, 0.5%) for soft tissue and (1.5%, 0.8%) for bone like samples. PMID:23369847

  10. Study on the keV neutron capture reaction in 56Fe and 57Fe

    NASA Astrophysics Data System (ADS)

    Wang, Taofeng; Lee, Manwoo; Kim, Guinyun; Ro, Tae-Ik; Kang, Yeong-Rok; Igashira, Masayuki; Katabuchi, Tatsuya

    2014-03-01

    The neutron capture cross-sections and the radiative capture gamma-ray spectra from the broad resonances of 56Fe and 57Fe in the neutron energy range from 10 to 90keV and 550keV have been measured with an anti-Compton NaI(Tl) detector. Pulsed keV neutrons were produced from the 7Li 7Be reaction by bombarding the lithium target with the 1.5ns bunched proton beam from the 3MV Pelletron accelerator. The incident neutron spectrum on a capture sample was measured by means of a time-of-flight (TOF) method with a 6Li -glass detector. The number of weighted capture counts of the iron or gold sample was obtained by applying a pulse height weighting technique to the corresponding capture gamma-ray pulse height spectrum. The neutron capture gamma-ray spectra were obtained by unfolding the observed capture gamma-ray pulse height spectra. To achieve further understanding on the mechanism of neutron radiative capture reaction and study on physics models, theoretical calculations of the -ray spectra for 56Fe and 57Fe with the POD program have been performed by applying the Hauser-Feshbach statistical model. The dominant ingredients to perform the statistical calculation were the Optical Model Potential (OMP), the level densities described by the Mengoni-Nakajima approach, and the -ray transmission coefficients described by -ray strength functions. The comparison of the theoretical calculations, performed only for the 550keV point, show a good agreement with the present experimental results.

  11. Demonstration of a 13-keV Kr K-shell x-ray source at the National Ignition Facility.

    PubMed

    Fournier, K B; May, M J; Colvin, J D; Barrios, M A; Patterson, J R; Regan, S P

    2013-09-01

    We report 3% conversion efficiency of laser energy into Kr K-shell (≈13 keV) radiation, consistent with theoretical predictions. This is ≈10× greater than previous work. The emission was produced from a 4.1-mm-diameter, 4-mm-tall gas pipe target filled with 1.2 or 1.5 atm of Kr gas. 160 of the National Ignition Facility laser beams deposited ≈700 kJ of 3ω light into the target in an ≈140 TW, 5.0-ns-duration square pulse. The Dante diagnostics measured ≈5 TW into 4π solid angle of ≥12 keV x rays for ≈4 ns, which includes both continuum emission and flux in the Kr He_{α} line at 13 keV. PMID:24125368

  12. Contrasting physics in sources of 1-20keV emission on the Z facility

    NASA Astrophysics Data System (ADS)

    Ampleford, David

    2013-10-01

    Imploding wire arrays on the 20 MA Z generator have recently provided some of the brightest laboratory sources of multi-keV photons, including ~ 400 kJ of Al K-shell radiation (h? ~ 1 - 2 keV), 80 kJ of Stainless Steel K-shell (h? ~ 5 - 9 keV) and a few kJ of Kr and Mo emission (h? ~ 13 keV and ~ 17 keV, respectively). The x-ray line emission in these sources originates from highly ionized charge states that are produced by thermalization of the high kinetic energies imparted to the ions by the jxB force. Spectroscopy demonstrates that pinch pressures can approach ~ 40 Mbar. Here we discuss how the physics of these x-ray sources fall into three categories. Al wire arrays produce a column of plasma with densities up to ~ 3 .1021 ions/cm3. In this regime opacity limits the radiation from increasing linearly with the emitter density. Significant structure from instabilities can reduce the density and increasing the surface area, therefore increasing the total emission. The opacity of the column can be experimentally assessed using a Mg dopant. In contrast, Stainless Steel wire arrays operate in the traditional regime where implosion velocity is critical and, while opacity is present, it has less impact on the pinch emissivity. We have recently developed a technique for determining the implosion velocity based on the radiation pulse shape, demonstrating direct correlation between implosion velocity (up to 130 cm/ ?s), electron temperature in the stagnated pinch (up to 5 keV) and the emissivity of K-shell photons (up to 80 kJ). At higher photon energies, the velocities required for traditional thermal K-shell emission become prohibitive. Instead, recent experiments aim to optimize the production of hot electrons; these hot electrons cause inner-shell ionization leading to the production of non-thermal K-alpha emission. We contrast experimental data indicative of these different effects and discuss how they affect the radiative output of pinch plasmas, and how this insight can be used to better optimize these radiating pinches. Sandia National Labs is a multiprogram laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. DOE's NNSA under Contract No. DE-AC04- 94AL85000. Work partially supported by Sandia's LDRD program.

  13. Measurement of the Ec.m. = 184 keV resonance strength in the 26gAl (p, gamma)27 Si reaction.

    PubMed

    Ruiz, C; Parikh, A; José, J; Buchmann, L; Caggiano, J A; Chen, A A; Clark, J A; Crawford, H; Davids, B; D'Auria, J M; Davis, C; Deibel, C; Erikson, L; Fogarty, L; Frekers, D; Greife, U; Hussein, A; Hutcheon, D A; Huyse, M; Jewett, C; Laird, A M; Lewis, R; Mumby-Croft, P; Olin, A; Ottewell, D F; Ouellet, C V; Parker, P; Pearson, J; Ruprecht, G; Trinczek, M; Vockenhuber, C; Wrede, C

    2006-06-30

    The strength of the Ec.m. = 184 keV resonance in the 26gAl(p, gamma)27 reaction has been measured in inverse kinematics using the DRAGON recoil separator at TRIUMF's ISAC facility. We measure a value of omega gamma = 35 +/- 7 microeV and a resonance energy of Ec.m. = 184 +/- 1 keV, consistent with p-wave proton capture into the 7652(3) keV state in 27Si, and discuss the implications of these values for 26GAl nucleosynthesis in typical oxygen-neon white-dwarf novae. PMID:16907298

  14. Spectroscopy from 2 to 200 keV

    NASA Astrophysics Data System (ADS)

    Helfand, D. J.; Chanan, G. A.; Novick, R.; MacCallum, C. J.; Leventhal, M.

    1981-11-01

    The astrophysical processes responsible for line and continuum emission in the spectra range 2 keV to 200 keV are examined from the viewpoint of designing a spectrometer which would operate in this regime. Phenomena considered include fluorescent line radiation in X-ray binaries, magnetically shifted iron lines and cyclotron emission from neutron star surfaces, line emission from cosmically abundant elements in thermal plasmas, and nuclear deexcitation lines in fresh nucleosynthetically produced matter. An instrument consisting of a approximately 10 sq cm array of planar germanium detectors surrounded by a large sodium-iodide anticoincidence shield is described and projected background rates and sensitivities are considered. A sample observing program for a two-day shuttle-based mission is included as an example of the wide range of scientific questions which could be addressed by such an instrument.

  15. Proximity functions for electrons up to 10 keV

    SciTech Connect

    Chmelevsky, D.; Kellerer, A.M.; Terrissol, M.; Patau, J.P.

    1980-11-01

    Proximity functions for electrons up to 10 keV in water are computed from simulated particle tracks. Numerical results are given for the differential functions t(x) and the integral functions T(x). Basic characteristics of these functions and their connections to other microdosimetric quantities are considered. As an example of the applicability of the proximity functions, the quantity y/sub D/ for spheres is derived from t(x).

  16. Neutron transmission and capture measurements and analysis of /sup 60/Ni from 1 to 450 keV

    SciTech Connect

    Perey, C.M.; Harvey, J.A.; Macklin, R.L.; Winters, R.R.; Perey, F.G.

    1982-11-01

    High-resolution transmission and capture measurements of /sup 60/Ni-enriched targets have been made at the Oak Ridge Electron Linear Accelerator (ORELA) from a few eV to 1800 keV in transmission and from 2.5 keV to 5 MeV in capture . The transmission data from 1 to 450 keV were analyzed with a multi-level R-matrix code which uses the Bayes' theorem for the fitting process. This code provides the energies and neutron widths of the resonances inside the 1- to 450-keV region as well as a possible parameterization for outside resonances to describe the smooth cross section in this region. The capture data were analyzed with a least-squares fitting code using the Breit-Wigner formula. From 2.5 to 450 keV, 166 resonances were seen in both sets of data. Correspondence between the energy scales shows a discontinuity around 300 keV which makes the matching of resonances at higher energies difficult. Eighty-nine resonances were seen in the capture data only. Average parameters for the 30 observed s-wave resonances were deduced. The average level spacing D/sub 0/ was found to be equal to 15.2 +- 1.5 keV, the strength function, S/sub 0/, equal to (2.2 +- 0.6) x 10/sup -4/ and the average radiation width, GAMMA/sub ..gamma../, equal to 1.30 +- 0.07 eV. The staircase plot of the reduced level widths and the plot of the Lorentz-weighted strength function averaged over various energy intervals show possible evidence for doorway states. The level densities calculated with the Fermi-gas model for l = 0 and for l > 0 resonances were compared with the cumulative number of observed resonances, but the analysis is not conclusive. The average capture cross section as a function of the neutron incident energy is compared to the tail of the giant electric dipole resonance prediction.

  17. Ionization and Fragmentation of 5-Chlorouracil induced by 100 keV protons collisions

    SciTech Connect

    Cafarelli, Pierre; Champeaux, Jean-Philippe; Le Padellec, Arnaud; Moretto-Capelle, Patrick; Rabier, Julien; Sence, Martine; Carcabal, Pierre

    2008-12-08

    We present preliminary experimental results on the dissociation of singly and doubly ionized 5-Chlorouracil induced by collisions with proton of 100 keV energy. Multiple coincidence techniques are used to detect the ionic fragments from single dissociation events. This enables a thorough analysis of kinetic momentums of the charged and neutral species involved in the dissociation. In many cases, this leads to the establishment of the scenario the molecule undergoes after ionization as well as the determination of the nature of intermediate (undetected) species. In other cases, the dissociation scenario cannot be unambiguously identified and further analysis as well as theoretical support is needed.

  18. Relative thermoluminescent response of LiF-TLD to 4 keV X-rays

    NASA Astrophysics Data System (ADS)

    Horowitz, Y. S.; Kalef-Ezra, J.

    The relative thermoluminescent response of 4 keV X-rays to 60Co gamma rays has been found to be 1.03 ± 0.05 for LiF-TLD (Harshaw) in our possession. The result stengthens the contention that the relative TL response of LiF-TLD can be essentially independent of energy. Further experiments are necessary to determine the material or experimental parameters which may lead to relative TL response significantly different from unity as previously reported in some experimental investigations.

  19. Cusp electron production in 75--300 keV He{sup +} + Ar collisions

    SciTech Connect

    Plano, V.L.; Sarkadi, L.; Zavodszky, P.; Berenyi, D.; Palinkas, J.; Gulyas, L.; Takacs, E.; Toth, L.; Tanis, J.A.

    1992-12-31

    Cusp-electron production has been investigated in collisions of 75--300 keV He{sup +} with Ar. The relative contributions from electron capture to the continuum (ECC), transfer ionization (TI), and electron loss to the continuum (ELC) to the total cusp electron production were measured. Over the energy range investigated, ECC was found to decrease from about 86% to 80%, TI decreased from about 12% to 1%, and ELC increased from about 2% to 20%. The present results are consistent with earlier work for He{sup +} and O{sup q+} projectiles.

  20. Cusp electron production in 75--300 keV He[sup +] + Ar collisions

    SciTech Connect

    Plano, V.L. ); Sarkadi, L.; Zavodszky, P.; Berenyi, D.; Palinkas, J.; Gulyas, L.; Takacs, E.; Toth, L. ); Tanis, J.A. )

    1993-06-05

    Cusp-electron production has been investigated in collisions of 75--300 keV He[sup +] with Ar. The relative contributions from electron capture to the continuum (ECC), transfer ionization (TI), and electron loss to the continuum (ELC) to the total cusp-electron production were measured. Over the energy range investigated, ECC was found to decrease from about 86% to 80%, TI decreased from about 12% to 1%, and ELC increased from about 2% to 20%. The present results are consistent with earlier work for He[sup +] and O[sup q+] projectiles.

  1. Photon, Electron and Secondary Ion Emission from Single C60 keV Impacts

    PubMed Central

    Fernandez-Lima, F. A.; Eller, M. J.; Verkhoturov, S. V.; Della-Negra, S.; Schweikert, E. A.

    2010-01-01

    This paper presents the first observation of coincidental emission of photons, electrons and secondary ions from individual C60 keV impacts. An increase in photon, electron and secondary ion yields is observed as a function of C60 projectile energy. The effect of target structure/composition on photon and electron emissions at the nanometer level is shown for a CsI target. The time-resolved photon emission may be characterized by a fast component emission in the UV-Vis range with a short decay time, while the electron and secondary ion emission follow a Poisson distribution. PMID:21218166

  2. Asymmetric 511 keV Positron Annihilation Line Emission from the Inner Galactic Disk

    NASA Technical Reports Server (NTRS)

    Skinner, Gerry; Weidenspointner, Georg; Jean, Pierre; Knodlseder, Jurgen; Ballmoos, Perer von; Bignami, Giovanni; Diehl, Roland; Strong, Andrew; Cordier, Bertrand; Schanne, Stephane; Winkler, Christoph

    2008-01-01

    A recently reported asymmetry in the 511 keV gamma-ray line emission from the inner galactic disk is unexpected and mimics an equally unexpected one in the distribution of LMXBs seen at hard X-ray energies. A possible conclusion is that LMXBs are an important source of the positrons whose annihilation gives rise to the line. We will discuss these results, their statistical significance and that of any link between the two. The implication of any association between LMXBs and positrons for the strong annihilation radiation from the galactic bulge will be reviewed.

  3. The effect of 1 to 5 keV electrons on the reproductive integrity of microorganisms

    NASA Technical Reports Server (NTRS)

    Barengoltz, J. B.; Brady, J.

    1977-01-01

    Microorganisms were exposed to simulated space environment in order to assess the effect of electrons in the energy range 1 to 5 keV on their colony-forming ability. The test system consisted of an electron gun and power supply, a dosimetry subsystem, and a vacuum subsystem. The system was capable of current densities ranging from 0.1 nA/sq cm to 5 micro A/sq cm on a 25 sq on target and an ultimate vacuum of 0.0006 N/sq m (0.000004 torr). The results of the experimental program show a significant reduction in microbial reproductive integrity.

  4. Rise time in 20-32 keV impulsive X-radiation

    NASA Technical Reports Server (NTRS)

    Vorpahl, J. A.; Takakura, T.

    1974-01-01

    A new property of the X-ray impulsive component observed in solar flares is discussed, giving attention to the relation between the slope of the electron power spectrum and the rise time in the 20-32 keV X-ray spike. This particular energy range was chosen because it offered the greatest number of impulsive events while being sufficiently high to avoid contamination by soft X radiation. It is found for the thin-target model that the electron spectrum tends to be softer when the acceleration rate is smaller.

  5. Zeptosecond high harmonic keV x-ray waveforms driven by midinfrared laser pulses.

    PubMed

    Hernández-García, C; Pérez-Hernández, J A; Popmintchev, T; Murnane, M M; Kapteyn, H C; Jaron-Becker, A; Becker, A; Plaja, L

    2013-07-19

    We demonstrate theoretically that the temporal structure of high harmonic x-ray pulses generated with midinfrared lasers differs substantially from those generated with near-infrared pulses, especially at high photon energies. In particular, we show that, although the total width of the x-ray bursts spans femtosecond time scales, the pulse exhibits a zeptosecond structure due to the interference of high harmonic emission from multiple reencounters of the electron wave packet with the ion. Properly filtered and without any compensation of the chirp, regular subattosecond keV waveforms can be produced. PMID:23909315

  6. The average 0.5-200 keV spectrum of local active galactic nuclei and a new determination of the 2-10 keV luminosity function at z ? 0

    NASA Astrophysics Data System (ADS)

    Ballantyne, D. R.

    2014-01-01

    The broad-band X-ray spectra of active galactic nuclei (AGNs) contains information about the nuclear environment from Schwarzschild radii scales (where the primary power law is generated in a corona) to distances of 1 pc (where the distant reflector may be located). In addition, the average shape of the X-ray spectrum is an important input into X-ray background synthesis models. Here, local (z ? 0) AGN luminosity functions (LFs) in five energy bands are used as a low-resolution, luminosity-dependent X-ray spectrometer in order to constrain the average AGN X-ray spectrum between 0.5 and 200 keV. The 15-55 keV LF measured by Swift-BAT is assumed to be the best determination of the local LF, and then a spectral model is varied to determine the best fit to the 0.5-2 keV, 2-10 keV, 3-20 keV and 14-195 keV LFs. The spectral model consists of a Gaussian distribution of power laws with a mean photon-index and cutoff energy Ecut, as well as contributions from distant and disc reflection. The reflection strength is parametrized by varying the Fe abundance relative to solar, AFe, and requiring a specific Fe K? equivalent width (EW). In this way, the presence of the X-ray Baldwin effect can be tested. The spectral model that best fits the four LFs has = 1.85 0.15, E_{cut}=270^{+170}_{-80} keV, A_{Fe}=0.3^{+0.3}_{-0.15}. The sub-solar AFe is unlikely to be a true measure of the gas-phase metallicity, but indicates the presence of strong reflection given the assumed Fe K? EW. Indeed, parametrizing the reflection strength with the R parameter gives R=1.7^{+1.7}_{-0.85}. There is moderate evidence for no X-ray Baldwin effect. Accretion disc reflection is included in the best-fitting model, but it is relatively weak (broad iron K? EW < 100 eV) and does not significantly affect any of the conclusions. A critical result of our procedure is that the shape of the local 2-10 keV LF measured by HEAO-1 and MAXI is incompatible with the LFs measured in the hard X-rays by Swift-BAT and RXTE. We therefore present a new determination of the local 2-10 keV LF that is consistent with all other energy bands, as well as the de-evolved 2-10 keV LF estimated from the XMM-Newton Hard Bright Survey. This new LF should be used to revise current measurements of the evolving AGN LF in the 2-10 keV band. Finally, the suggested absence of the X-ray Baldwin effect points to a possible origin for the distant reflector in dusty gas not associated with the AGN obscuring medium. This may be the same material that produces the compact 12 ?m source in local AGNs.

  7. The TIGRE desktop prototype results for 511 and 900 keV gamma rays.

    NASA Astrophysics Data System (ADS)

    O'Neill, T. J.; Bhattacharya, D.; Blair, S.; Case, G.; Tmer, O. T.; White, R. S.; Zych, A. D.

    1995-08-01

    A small desktop prototype of the Tracking and Imaging Gamma-Ray Experiment (TIGRE) has been assembled and tested at 511 keV and 900 keV. TIGRE was designed to observe cosmic gamma ray sources at energies of 0.3 to 100 MeV. Its major feature is its use of multi-layer silicon strip detectors to track Compton recoil electrons and positron-electron pairs. The small prototype consists of 7 double sided silicon strip detectors 3.2 cm3.2 cm300 micron with 1 mm pitch in both the x and y directions. The direction and energy of the Compton scattered gamma ray is measured with small CsI(Tl) photodiode detectors. Knowing the energy and momentum of the scattered electron and scattered photon allows to determine the incident direction uniquely. Non-tracked events, those interacting in only a single silicon plane, can only be determined to within the Compton scatter ring. An important requirement of TIGRE will be its ability to separate the upward moving gamma rays produced by cosmic ray interactions in the atmosphere from the downward moving gamma rays.

  8. Directivity of 100-500 keV solar flare hard X-ray emission

    NASA Technical Reports Server (NTRS)

    Li, P.; Hurley, K.; Barat, C.; Niel, M.; Talon, R.; Kurt, V.

    1994-01-01

    We have identified 28 solar flares simultaneously observed by a SIGNE detector aboard the Venera 13 and Venera 14 spacecraft and the Hard X-Ray Burst Spectrometer (HXRBS) aboard the Solar Maximum Mission (SMM), over a wide range of observing angles. Fourteen of them were also observed by the Gamma Ray Spectrometer (GRS) on SMM and were included in a study of the directivity of solar X-radiation. The SIGNE and HXRBS energy coverages overlap in the 50-500 keV range, allowing a detailed comparison of energy spectra. Using this database, we have conducted stereoscopic studies of flare hard X-ray anisotropy. It is found that the 100-500 keV directivity is less than 3, both for the entire set of 28 flares and for the 14 flares which gave evidence for directivity in the SMM GRS study. We conclude that solar flare X-ray directivity can only be marginally present in our energy/observing angle range.

  9. The 6.4 keV Fe line and the SiO emission in the GC

    NASA Astrophysics Data System (ADS)

    Martn-Pintado, J.; de Vicente, P.; Rodrguez-Fernndez, N. J.; Fuente, A.; Planesas, P.

    2001-01-01

    Molecular gas can be exposed to X-rays in a wide range of astrophysical environments like active nuclei, near supernova remnants, in fast socks, or in molecular clouds with embedded X-ray sources. X-rays will heat and influence the chemisty of the molecular clouds. The Galactic center (GC) is a strong source of diffuse X-ray emission in the 2-10 keV energy range and in lines from several elements and contains warm molecular clouds with an usual chemistry. The origin of the morphology and intensity of the 6.4 keV Fe line and the heating and chemistry in the GC have been a puzzle. We present a map of the GC in the J=1-0 line of SiO covering the region mapped with the ASCA satellite in the 6.4 keV Fe line. We find a correlation between the spatial distribution of the Fe 6.4 keV line and the SiO emission, both on the large scale and within the Sgr A and Sgr B complexes. The SiO abundance increases by a factor of >~20 in the regions with strong Fe 6.4 keV line. This indicates that the Fe 6.4 keV line mainly arises from molecular clouds with large gas phase abundance of refractory elements. We discuss the implications of the correlation on the origin of the hard X-rays, and the heating and the chemistry of the molecular clouds in the GC.

  10. Charge state distributions and charge exchange cross sections of carbon in helium at 30-258 keV

    NASA Astrophysics Data System (ADS)

    Maxeiner, Sascha; Seiler, Martin; Suter, Martin; Synal, Hans-Arno

    2015-10-01

    With the introduction of helium stripping in radiocarbon (14C) accelerator mass spectrometry (AMS), higher +1 charge state yields in the 200 keV region and fewer beam losses are observed compared to nitrogen or argon stripping. To investigate the feasibility of even lower beam energies for 14C analyses the stripping characteristics of carbon in helium need to be further studied. Using two different AMS systems at ETH Zurich (myCADAS and MICADAS), ion beam transmissions of carbon ions for the charge states -1, +1, +2 and +3 were measured in the range of 258 keV down to 30 keV. The correction for beam losses and the extraction of charge state yields and charge exchange cross sections will be presented. An increase in population of the +1 charge state towards the lowest measured energies up to 75% was found as well as agreement with previous data from literature. The findings suggest that more compact radiocarbon AMS systems are possible and could provide even higher efficiency than current systems operating in the 200 keV range.

  11. Development of a modular CdTe detector plane for gamma-ray burst detection below 100 keV

    NASA Astrophysics Data System (ADS)

    Ehanno, M.; Amoros, C.; Barret, D.; Lacombe, K.; Pons, R.; Rouaix, G.; Gevin, O.; Limousin, O.; Lugiez, F.; Bardoux, A.; Penquer, A.

    We report on the development of an innovative CdTe detector plane (DPIX) optimized for the detection and localization of gamma-ray bursts in the X-ray band (below 100 keV). DPIX is part of an R&D program funded by the French Space Agency (CNES). DPIX builds upon the heritage of the ISGRI instrument, currently operating with great success on the ESA INTEGRAL mission. DPIX is an assembly of 200 elementary modules (XRDPIX) equipped with 32 CdTe Schottky detectors (4 4 mm 2, 1 mm thickness) produced by ACRORAD Co., Ltd. in Japan. These detectors offer good energy response up to 100 keV. Each XRDPIX is readout by the very low noise front-end electronics chip IDeF-X, currently under development at CEA/DSM/DAPNIA. In this paper, we describe the design of XRDPIX, the main features of the IDeF-X chip, and will present preliminary results of the reading out of one CdTe Schottky detector by the IDeF-X V1.0 chip. A low-energy threshold around 2.7 keV has been measured. This is to be compared with the 12-15 keV threshold of the ISGRI-INTEGRAL and BAT-SWIFT instruments, which both use similar bulk detector material.

  12. Cassini ENA (E > 5 keV) Heliosphere Belt and overlapping in-situ Voyager measurements: Pressure and ISMF implications

    NASA Astrophysics Data System (ADS)

    Krimigis, S. M.; Mitchell, D. G.; Roelof, E. C.; Decker, R. B.

    2010-12-01

    Maps of energetic neutral atoms (ENA) of the heliosphere from Cassini (Krimigis et al, 2009) have been constructed spanning the energy range ~ 5 ? E ? 55 keV, and show a Belt in the sky of ~ 100 FWHM. ENA maps < 6 keV have been obtained by the IBEX mission (McComas et al, 2009) and show a Ribbon that is narrower than the Belt and inclined to it in both ecliptic latitude (~25) and longitude (~30). The overlap in energy between Voyager ions (Decker et al, 2009) and Cassini ENA intensities (averaged over the ENA line of sight) enables us to deduce ion fluxes in the heliosheath, thus providing a continuous spectrum 5 ? E ? 4000 keV. The Cassini ENAs provide a smooth transition spectrum between the accelerated pickup ions (PUI) and the well-established Voyager LECP j?E-1.5 tail at E > 28 keV, and lead to a thickness of the heliosheath of ~ 50 AU. These measurements are then used to estimate the local partial pressure over this energy range (~ 0.1 pPa), suggesting ? > 25 locally. Using a simulated PUI distribution (Giacalone and Decker, 2010) we estimate the E < 6 keV contribution to the pressure to be ~ 0.12 pPa. Assuming constant total pressure throughout the heliosheath, the balance of the non-thermal pickup ion (PUI) pressure against the stagnation pressure of the interstellar plasma and the hydrostatic pressure of the local interstellar magnetic field (ISMF) at the nose of the heliopause implies an upper bound on the ISMF of ~ 0.64 nT. Implications on the shape of the heliosphere are discussed.

  13. Metastable dark matter mechanisms for INTEGRAL 511 keV {gamma} rays and DAMA/CoGeNT events

    SciTech Connect

    Cline, James M.; Frey, Andrew R.; Chen, Fang

    2011-04-15

    We explore dark matter mechanisms that can simultaneously explain the galactic 511 keV gamma rays observed by INTEGRAL/SPI, the DAMA/LIBRA annual modulation, and the excess of low-recoil dark matter candidates observed by CoGeNT. It requires three nearly degenerate states of dark matter in the 4-7 GeV mass range, with splittings, respectively, of order MeV and a few keV. The top two states have the small mass gap and transitions between them, either exothermic or endothermic, and can account for direct detections. Decays from one of the top states to the ground state produce low-energy positrons in the Galaxy whose associated 511 keV gamma rays are seen by INTEGRAL. This decay can happen spontaneously, if the excited state is metastable (longer lived than the age of the Universe), or it can be triggered by inelastic scattering of the metastable states into the shorter-lived ones. We focus on a simple model where the dark matter is a triplet of an SU(2) hidden sector gauge symmetry, broken at the scale of a few GeV, giving masses of order < or approx. 1 GeV to the dark gauge bosons, which mix kinetically with the standard model hypercharge. The purely decaying scenario can give the observed angular dependence of the 511 keV signal with no positron diffusion, while the inelastic scattering mechanism requires transport of the positrons over distances {approx}1 kpc before annihilating. We note that an x-ray line of several keV in energy, due to single-photon decays involving the top dark matter states, could provide an additional component to the diffuse x-ray background. The model is testable by proposed low-energy fixed-target experiments.

  14. SPECTRAL PROPERTIES OF {approx}0.5-6 keV ENERGETIC NEUTRAL ATOMS MEASURED BY THE INTERSTELLAR BOUNDARY EXPLORER (IBEX) ALONG THE LINES OF SIGHT OF VOYAGER

    SciTech Connect

    Desai, M. I.; Allegrini, F. A.; Dayeh, M. A.; McComas, D. J.; Schwadron, N. A.; De Majistre, B.; Funsten, H.; Heerikhuisen, J.; Pogorelov, N.; Zank, G. P.

    2012-04-20

    Energetic neutral atoms (ENAs) observed by the Interstellar Boundary Explorer (IBEX) provide powerful diagnostics about the origin of the progenitor ion populations and the physical mechanisms responsible for their production. Here we survey the fluxes, energy spectra, and energy dependence of the spectral indices of {approx}0.5-6 keV ENAs measured by IBEX-Hi along the lines of sight of Voyager 1 and 2. We compare the ENA spectra observed at IBEX with predictions of Zank et al. who modeled the microphysics of the heliospheric termination shock to predict the shape and relative contributions of three distinct heliosheath ion populations. We show that (1) the ENA spectral indices exhibit similar energy dependence along V1 and V2 directions-the spectrum hardens to {gamma} {approx} 1 between {approx}1 and 2 keV and softens to {gamma} {approx} 2 below {approx}1 keV and above {approx}2 keV, (2) the observed ENA fluxes agree to within {approx}50% of the Zank et al. predictions and are unlikely to be produced by core solar wind (SW) ions, and (3) the ENA spectra do not exhibit sharp cutoffs at {approx}twice the SW speed as is typically observed for shell-like pickup ion (PUI) distributions in the heliosphere. We conclude that ENAs at IBEX are generated by at least two types of ion populations whose relative contributions depend on the ENA energy: transmitted PUIs in the {approx}0.5-5 keV energy range and reflected PUIs above {approx}5 keV energy. The {approx}0.5-5 keV PUI distribution is probably a superposition of Maxwellian or kappa distributions and partially filled shell distributions in velocity space.

  15. Fragmentation of singly charged adenine induced by neutral fluorine beam impact at 3 keV.

    PubMed

    Chen, L; Brdy, R; Bernard, J; Montagne, G; Allouche, A R; Martin, S

    2011-09-21

    The fragmentation scheme of singly charged adenine molecule (H(5)C(5)N(5)(+)) has been studied via neutral fluorine impact at 3 keV. By analyzing in correlation the kinetic energy loss of the scattered projectile F(-) produced in single charge transfer process and the mass of the charged fragments, the excitation energy distribution of the parent adenine molecular ions has been determined for each of the main dissociation channels. Several fragmentation pathways unrevealed in standard mass spectra or in appearance energy measurements are investigated. Regarding the well-known hydrogen cyanide (HCN) loss sequence, we demonstrate that although the loss of a HCN is the dominant decay channel for the parent H(5)C(5)N(5)(+) (m = 135), the decay of the first daughter ion H(4)C(4)N(4)(+) (m = 108) involves not only the HNC (m = 27) loss but also the symmetric breakdown into two dimers of HCN. PMID:21950864

  16. Fragmentation of singly charged adenine induced by neutral fluorine beam impact at 3 keV

    NASA Astrophysics Data System (ADS)

    Chen, L.; Brdy, R.; Bernard, J.; Montagne, G.; Allouche, A. R.; Martin, S.

    2011-09-01

    The fragmentation scheme of singly charged adenine molecule (H5C5N5+) has been studied via neutral fluorine impact at 3 keV. By analyzing in correlation the kinetic energy loss of the scattered projectile F- produced in single charge transfer process and the mass of the charged fragments, the excitation energy distribution of the parent adenine molecular ions has been determined for each of the main dissociation channels. Several fragmentation pathways unrevealed in standard mass spectra or in appearance energy measurements are investigated. Regarding the well-known hydrogen cyanide (HCN) loss sequence, we demonstrate that although the loss of a HCN is the dominant decay channel for the parent H5C5N5+ (m = 135), the decay of the first daughter ion H4C4N4+ (m = 108) involves not only the HNC (m = 27) loss but also the symmetric breakdown into two dimers of HCN.

  17. Differential Cross Sections for Ionization of Argon by 1 keV Positron and Electron Impact

    NASA Astrophysics Data System (ADS)

    Gavin, J.; DuBois, R. D.; de Lucio, O. G.

    2014-04-01

    Differential information was generated by establishing coincidences and imposing conditions on data recorded for target ions, scattered projectiles, and ejected electrons, as a function of projectile energy loss and scattering angles; in order to describe the interaction between a positron (electron) 1 keV beam and a simple Ar jet. Single ionization triply differential cross section (TDCS) results exhibit two distinct regions (lobes) for which binary (events arising from 2-body interaction) and recoil (events which can only be produced by many-body interactions) interactions are associated. Results indicate that binary events are significantly larger for positron impact, in accordance with theoretical predictions. A similar feature is found for different energy losses and scattering angles. Intensity of the recoil lobe for both projectiles, positron and electron, is observed to depend on the energy loss and scattering angle. Also, it can be noticed that for positron impact the recoil interactions intensity is larger than that observed for electron impact.

  18. Relic keV sterile neutrinos and reionization.

    PubMed

    Biermann, Peter L; Kusenko, Alexander

    2006-03-10

    A sterile neutrino with a mass of several keV can account for cosmological dark matter, as well as explain the observed velocities of pulsars. We show that x rays produced by the decays of these relic sterile neutrinos can boost the production of molecular hydrogen, which can speed up the cooling of gas and the early star formation, which can, in turn, lead to a reionization of the Universe at a high enough redshift to be consistent with the Wilkinson Microwave Anisotropy Probe results. PMID:16606252

  19. Proposed FNAL 750 KeV Linac Injector Upgrade

    SciTech Connect

    Tan, C.Y.; Bollinger, D.S.; Schmidt, C.W.; /Fermilab

    2009-04-01

    The present FNAL linac H{sup -} injector has been operational since 1978 and consists of a magnetron H{sup -} source and a 750 keV Cockcroft-Walton Accelerator. The proposed upgrade to this injector is to replace the present magnetron source having a rectangular aperture with a circular aperture, and to replace the Cockcroft-Walton with a 200 MHz RFQ. Operational experience at other laboratories has shown that the upgraded source and RFQ will be more reliable and require less manpower than the present system.

  20. Relic keV Sterile Neutrinos and Reionization

    SciTech Connect

    Biermann, Peter L.; Kusenko, Alexander

    2006-03-10

    A sterile neutrino with a mass of several keV can account for cosmological dark matter, as well as explain the observed velocities of pulsars. We show that x rays produced by the decays of these relic sterile neutrinos can boost the production of molecular hydrogen, which can speed up the cooling of gas and the early star formation, which can, in turn, lead to a reionization of the Universe at a high enough redshift to be consistent with the Wilkinson Microwave Anisotropy Probe results.

  1. Astrophysics and cosmology confront the 17 keV neutrino

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Turner, Michael S.

    1991-01-01

    A host of astrophysical and cosmological arguments severely constrain the properties of a 17 keV Dirac neutrino. Such a neutrino must have interactions beyond those of the standard electroweak theory to reduce its cosmic abundance (through decay or annihilation) by a factor of two hundred. A predicament arises because the additional helicity states of the neutrino necessary to construct a Dirac mass must have interactions strong enough to evade the astrophysical bound from SN 1987A, but weak enough to avoid violating the bound from primordial nucleosynthesis.

  2. Astrophysics and cosmology confront the 17-keV neutrino

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Turner, Michael S.

    1991-01-01

    A host of astrophysical and cosmological arguments severely constrain the properties of a 17 keV Dirac neutrino. Such a neutrino must have interactions beyond those of the standard electroweak theory to reduce its cosmic abundance (through decay or annihilation) by a factor of two hundred. A predicament arises because the additional helicity states of the neutrino necessary to construct a Dirac mass must have interactions strong enough to evade the astrophysical bound from SN 1987A, but weak enough to avoid violating the bound from primordial nucleosynthesis.

  3. Nucleosynthesis confronts an unstable, inert 17-keV state

    SciTech Connect

    Enqvist, K.; Kainulainen, K. ); Thomson, M. )

    1992-02-10

    We study the cosmological consequences of an inert 17-keV state mixing with the electron neutrino. We find that the nucleosynthesis upper bound on the primordial helium abundance prohibits the existence of such a state, unless its lifetime falls into the range 6{times}10{sup {minus}4}{approx lt}{tau}{sub vac}{approx lt}2{times}10{sup {minus}2} s. In this range the decay occurs after the chemical decoupling of the electron neutrinos and before the beginning of the nucleosynthesis, with the result that the predicted helium abundance can be lower than what it would be in the standard scenario.

  4. A radio frequency helical deflector for keV electrons

    NASA Astrophysics Data System (ADS)

    Gevorgian, L.; Ajvazyan, R.; Kakoyan, V.; Margaryan, A.; Annand, J. R. M.

    2015-06-01

    This paper describes a helical deflector to perform circular sweeps of keV electrons by means of radio frequency fields in a frequency range of 500-1000 MHz. By converting the time dependence of incident electrons to a hit position dependence on a circle, this device can potentially achieve extremely precise timing. The system can be adjusted to the velocity of the electrons to exclude the reduction of deflection sensitivity due to finite transit time effects. The deflection electrodes form a resonant circuit, with quality factor Q in excess of 100, and at resonance the sensitivity of the deflection system is around 1 mm per V of applied RF input.

  5. Status report on a dc 130-mA, 75-keV proton injector

    SciTech Connect

    Sherman, J.; Arvin, A.; Hodgkins, D.

    1997-10-01

    A 110-mA, 75-keV dc proton injector is being developed at Los Alamos. We use a microwave proton source coupled to a two solenoid, space-charge neutralized, low-energy beam transport (LEBT) system. The ion source produces 110-mA proton current at 75 keV using 600 - 800 W of 2.45 GHz input discharge power. Typical proton fraction is 85-90% of the total extracted ion current, and the rms normalized beam emittance after transport through a prototype 2.1 m LEBT is 0.20 ({pi}mm-mrad). Beam space-charge neutralization is measured to be > 98% which enables the solenoid magnetic transport to successfully match the injector beam into a radio-frequency quadrupole (RFQ). Beam simulations indicate small emittance growth in the proposed 2.8 m low-energy demonstration accelerator (LEDA) LEBT. The LEBT also contains beam diagnostics, steering, and a beam deflector for variable duty factor and accelerator fast protect functions. The injector computer controls and reliability status are also discussed.

  6. Impulsive solar flare X-rays greater than 10 keV and some characteristics of cosmic gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Kane, S. R.

    1975-01-01

    Observations of impulsive solar flare X-rays greater than 10 keV are summarized and their interpretation in terms of nonthermal and thermal electron spectra is discussed. This is followed by a brief consideration of models of the hard X-ray source and the requirements of the electron acceleration process during the flash phase of solar flares. Finally, the characteristics of the recently discovered cosmic gamma-ray bursts are compared with those of the impulsive solar X-ray bursts. If both types of emissions are interpreted as bremsstrahlung from energetic electrons, then the electron spectra must be widely different in the two cases. For example, in case of solar flares, most of the energy is carried by electrons with energies of about 5 keV. On the other hand, electrons with kinetic energy of about 300 keV carry most of the energy in the cosmic source.

  7. Hard x-ray broad band Laue lenses (80-600 keV): building methods and performances

    NASA Astrophysics Data System (ADS)

    Virgilli, E.; Frontera, F.; Rosati, P.; Liccardo, V.; Squerzanti, S.; Carassiti, V.; Caroli, E.; Auricchio, N.; Stephen, J. B.

    2015-09-01

    We present the status of the LAUE project devoted to develop a technology for building a 20 meter long focal length Laue lens for hard X-/soft gamma-ray astronomy (80-600 keV). The Laue lens is composed of bent crystals of Gallium Arsenide (GaAs, 220) and Germanium (Ge, 111), and, for the first time, the focusing property of bent crystals has been exploited for this field of applications. We show the preliminary results concerning the adhesive employed to fix the crystal tiles over the lens support, the positioning accuracy obtained and possible further improvements. The Laue lens petal that will be completed in a few months has a pass band of 80-300 keV and is a fraction of an entire Laue lens capable of focusing x-rays up to 600 keV, possibly extendable down to ~20-30 keV with suitable low absorption crystal materials and focal length. The final goal is to develop a focusing optics that can improve the sensitivity over current telescopes in this energy band by 2 orders of magnitude.

  8. 3.55 keV photon lines from axion to photon conversion in the Milky Way and M31

    NASA Astrophysics Data System (ADS)

    Conlon, Joseph P.; Day, Francesca V.

    2014-11-01

    We further explore a scenario in which the recently observed 3.55 keV photon line arises from dark matter decay to an axion-like particle (ALP) of energy 3.55 keV, which then converts to a photon in astrophysical magnetic fields. This ALP scenario is well-motivated by the observed morphology of the 3.55 keV flux. For this scenario we study the expected flux from dark matter decay in the galactic halos of both the Milky Way and Andromeda (M31). The Milky Way magnetic field is asymmetric about the galactic centre, and so the resulting 3.55 keV flux morphology differs significantly from the case of direct dark matter decay to photons. However the Milky Way magnetic field is not large enough to generate an observable signal, even with ASTRO-H. In contrast, M31 has optimal conditions for a ? ? conversion and the intrinsic signal from M31 becomes two orders of magnitude larger than for the Milky Way, comparable to that from clusters and consistent with observations.

  9. 3.55 keV photon lines from axion to photon conversion in the Milky Way and M31

    SciTech Connect

    Conlon, Joseph P.; Day, Francesca V. E-mail: francesca.day@physics.ox.ac.uk

    2014-11-01

    We further explore a scenario in which the recently observed 3.55 keV photon line arises from dark matter decay to an axion-like particle (ALP) of energy 3.55 keV, which then converts to a photon in astrophysical magnetic fields. This ALP scenario is well-motivated by the observed morphology of the 3.55 keV flux. For this scenario we study the expected flux from dark matter decay in the galactic halos of both the Milky Way and Andromeda (M31). The Milky Way magnetic field is asymmetric about the galactic centre, and so the resulting 3.55 keV flux morphology differs significantly from the case of direct dark matter decay to photons. However the Milky Way magnetic field is not large enough to generate an observable signal, even with ASTRO-H. In contrast, M31 has optimal conditions for a?? conversion and the intrinsic signal from M31 becomes two orders of magnitude larger than for the Milky Way, comparable to that from clusters and consistent with observations.

  10. A New Observation of the Quiet Sun Soft X-ray (0.5-5 keV) Spectrum

    NASA Astrophysics Data System (ADS)

    Caspi, A.; Woods, T. N.; Stone, J.

    2012-12-01

    The solar corona is the brightest source of X-rays in the solar system, and the X-ray emission is highly variable with solar activity. While this is particularly true during solar flares, when emission can be enhanced by many orders of magnitude up to gamma-ray energies, even the so-called "quiet Sun" is bright in soft X-rays (SXRs), as the ~1-2 MK ambient plasma of the corona emits significant thermal bremsstrahlung up to ~5 keV. However, the actual solar SXR (0.5-5 keV) spectrum is not well known, particularly during quiet periods, as, with few exceptions, this energy range has not been systematically studied in many years. Previous observations include ultra-high-resolution but very narrow-band spectra from crystral spectrometers (e.g. Yohkoh/BCS), or integrated broadband irradiances from photometers (e.g. GOES/XRS, TIMED/XPS, etc.) that lack detailed spectral information. In recent years, broadband measurements with fair energy resolution (~0.5-0.7 keV FWHM) were made by SphinX on CORONAS-Photon and XRS on MESSENGER, although they did not extend below ~1 keV. We present observations of the quiet Sun SXR emission obtained using a new SXR spectrometer flown on the third SDO/EVE underflight calibration rocket (NASA 36.286). The commercial off-the-shelf Amptek X123 silicon drift detector, with an 8-micron Be window and custom aperture, measured the solar SXR emission from ~0.5 to >10 keV with ~0.15 keV FWHM resolution (though, due to hardware limitations, with only ~0.12 keV binning) and 2-sec cadence over ~5 minutes on 23 June 2012. Despite the rising solar cycle, activity on 23 June 2012 was abnormally low, with no visible active regions and GOES XRS emission near 2010 levels; we measured no solar counts above ~4 keV during the observation period. We compare our X123 measurements with spectra and broadband irradiances from other instruments, including the SphinX observations during the deep solar minimum of 2009, and with upper limits of >3 keV quiet Sun emission determined from RHESSI. We discuss the possible implications for X-ray-producing physical processes in the quiescent, active-region-free corona. The X123 spectrum could potentially serve as a reference for ~0.5-4 keV quiet Sun emission, to help improve solar spectral models such as CHIANTI and XPS Level 4. Our comparisons indicate that XPS Level 4 likely requires significant revisions in the SXR range, which may have downstream implications for the Earth ionosphere models that have used XPS Level 4 as their solar input.

  11. Variable Gap Undulator for 1.5-48 Kev Free Electron Laser at Linac Coherent Light Source

    SciTech Connect

    Pellegrini, C.; Wu, J.; ,

    2011-08-17

    We study the feasibility of generating femtosecond duration Free-Electron Laser with a variable photon energy from 1.5 to 48 keV, using an electron bunch with the same characteristics of the LINAC Coherent Light Source (LCLS) bunch, and a planar undulator with additional focusing. We assume that the electron bunch energy can be changed, and the undulator has a variable gap, allowing a variable undulator parameter. It is assumed to be operated in an ultra-low charge and ultra-short pulse regime. We study the feasibility of a tunable, short pulse, X-ray FEL with photon energy from 1.5 to 48 keV, using an electron beam like the one in the LCLS and a 2:5 cm period, variable gap, planar undulator. The beam energy changes from 4.6 to 13.8 GeV, the electorn charge is kept at 10 pC, and the undulator parameter varies from 1 to 3. The undulator length needed to saturate the 48 keV FEL is about 55 m, with a peak power around 5 GW. At longer wavelength the saturation length is as short as 15 m, and the peak power around 20 GW. The results from the analytical models and the GENESIS simulations show that the system is feasible. The large wavelength range, full tunability and short, few femtosecond pulses, together with the large peak power, would provide a powerful research tool.

  12. Centaurus A (NGC 5128) at 2 keV--2. 3 MeV: HEAO 1 observations and implications

    SciTech Connect

    Baity, W.A.; Rothschild, R.E.; Lingenfelter, R.E.; Stein, W.A.; Nolan, P.L.; Gruber, D.E.; Knight, F.K.; Matteson, J.L.; Peterson, L.E.; Primini, F.A.; Levine, A.M.; Lewin, W.H.G.; Mushotzky, R.F.; Tennant, A.F.

    1981-03-01

    The nearby active-nucleus galaxy Centaurus A (NGC 5128) has been studied at 2 keV--2.3 MeV using data from both the UCSD/MIT hard X-ray and low energy ..gamma..-ray instrument and from the GSFC/CIT cosmic X-ray experiment on HEAO 1. We find that an E/sup -1.60plus-or-minus0.03/ power law spectrum breaking to E/sup -2.0plus-or-minus0.2/ at 140 keV best describes the 1978 January and July data. The average intensity was 50% higher during the January observations. We have searched our data for faster variations and set limits in several energy ranges over times from fractions of a day to several days. Upper limits to unresolved lines at 511 keV and 1.6 MeV are 6.5 x 10/sup -4/ photons cm/sup -2/ s/sup -1/ and 2.2 x 10/sup -4/ photons cm/sup -2/ s/sup -1/, respectively, at the 90% confidence level. Continuation of the observed power law to higher energies is used to constrain various models of energy generation in the nucleus of NGC 5128.

  13. Decaying vector dark matter as an explanation for the 3.5 keV line from galaxy clusters

    SciTech Connect

    Farzan, Yasaman; Akbarieh, Amin Rezaei E-mail: am_rezaei@physics.sharif.ir

    2014-11-01

    We present a Vector Dark Matter (VDM) model that explains the 3.5 keV line recently observed in the XMM-Newton observatory data from galaxy clusters. In this model, dark matter is composed of two vector bosons, V and V', which couple to the photon through an effective generalized Chern-Simons coupling, g{sub V}. V' is slightly heavier than V with a mass splitting m{sub V'} – m{sub V} ≅ 3.5 keV. The decay of V' to V and a photon gives rise to the 3.5 keV line. The production of V and V' takes place in the early universe within the freeze-in framework through the effective g{sub V} coupling when m{sub V'} < T < Λ, Λ being the cut-off above which the effective g{sub V} coupling is not valid. We introduce a high energy model that gives rise to the g{sub V} coupling at low energies. To do this, V and V' are promoted to gauge bosons of spontaneously broken new U(1){sub V} and U(1){sub V'} gauge symmetries, respectively. The high energy sector includes milli-charged chiral fermions that lead to the g{sub V} coupling at low energy via triangle diagrams.

  14. Construction of a 300-keV compact ion microbeam system with a three-stage acceleration lens

    NASA Astrophysics Data System (ADS)

    Ishii, Yasuyuki; Ohkubo, Takeru; Kojima, Takuji; Kamiya, Tomihiro

    2014-08-01

    Hydrogen ion microbeams were experimentally formed at beam energies below 150 keV using a 300-keV compact microbeam system that was constructed at the Japan Atomic Energy Agency. This paper is a preliminary report on the performance of the three-stage acceleration lens used in the compact microbeam system. This system consists of a three-stage acceleration lens and a plasma-type ion source. Since the three-stage acceleration lens was designed to simultaneously accelerate and focus the ion beam, the compact microbeam system is only about 1-m high and can be placed in a small experimental room. To evaluate the effectiveness of the three-stage acceleration lens, experimentally measured beam sizes are compared with theoretically calculated ones. The calculated and measured beam sizes were consistent within 10%. This shows that the three-stage acceleration lens is effective as a focusing lens for forming microbeams.

  15. Active detection of shielded SNM with 60-keV neutrons

    SciTech Connect

    Hagmann, C; Dietrich, D; Hall, J; Kerr, P; Nakae, L; Newby, R; Rowland, M; Snyderman, N; Stoeffl, W

    2008-07-08

    Fissile materials, e.g. {sup 235}U and {sup 239}Pu, can be detected non-invasively by active neutron interrogation. A unique characteristic of fissile material exposed to neutrons is the prompt emission of high-energy (fast) fission neutrons. One promising mode of operation subjects the object to a beam of medium-energy (epithermal) neutrons, generated by a proton beam impinging on a Li target. The emergence of fast secondary neutrons then clearly indicates the presence of fissile material. Our interrogation system comprises a low-dose 60-keV neutron generator (5 x 10{sup 6}/s), and a 1 m{sup 2} array of scintillators for fast neutron detection. Preliminary experimental results demonstrate the detectability of small quantities (370 g) of HEU shielded by steel (200 g/cm{sup 2}) or plywood (30 g/cm{sup 2}), with a typical measurement time of 1 min.

  16. Fluence to dose equivalent conversion factors calculated with EGS3 for electrons from 100 keV to 20 GeV and photons from 11 keV to 20 GeV.

    PubMed

    Rogers, D W

    1984-04-01

    The EGS3 Monte-Carlo electron-photon transport simulation package has been used to calculate dose equivalent per unit fluence vs depth curves for broad parallel beams of mono-energetic electrons, positrons and photons incident on a 30-cm-thick slab of ICRU four-element tissue. The electron kinetic energy range covered is 100 keV to 20 GeV and that for photons is 11 keV to 20 GeV. It was found that by making minor modifications, EGS3 is in reasonable agreement with other codes for electron energies down to 100 keV. Complete dose equivalent vs depth curves as a function of electron and photon energy are presented to allow proper calculations of the maximum dose equivalent for a mixed photon and electron spectrum since there are substantial variations in the locations of the peak dose equivalent. Explicit calculations demonstrate that l/r2 corrections give an accurate means to convert results for broad parallel beams to those for point source geometries. The relative contributions of various physical processes to the peak dose equivalent are presented. PMID:6546741

  17. Deep XMM Observations of Draco rule out at the 99% Confidence Level a Dark Matter Decay Origin for the 3.5 keV Line

    NASA Astrophysics Data System (ADS)

    Jeltema, Tesla; Profumo, Stefano

    2016-03-01

    We searched for an X-ray line at energies around 3.5 keV in deep, ˜1.6 Msec XMM-Newton observations of the dwarf spheroidal galaxy Draco. No line was found in either the MOS or the PN detectors. The data in this energy range are completely consistent with a single, unfolded power law modeling the particle background, which dominates at these energies, plus instrumental lines; the addition of a ˜3.5 keV line feature gives no improvement to the fit. The corresponding upper limit on the line flux rules out a dark matter decay origin for the 3.5 keV line found in observations of clusters of galaxies and in the Galactic Center at greater than 99% C.L..

  18. The Electron Excitation Function of H Lyman-(alpha) from Threshold to 1.8 keV

    NASA Technical Reports Server (NTRS)

    James, G. K.; Slevin, J. A.; Shemansky, D. E.; McConkey, J. W.; Dziczek, D.; Kanik, I.; Ajello, J. M.

    1996-01-01

    The excitation function of prompt Lyman-(alpha) radiation, produced by electron impact excitation of atomic hydrogen, has been measured for the first time over an extended energy range from threshold to 1.8 keV. Measurments were obtained in a crossed-beams experiment using both magnetically confined and electrostatically focused electrons in collision with atomic hydrogen produced by an intense discharge source.

  19. Operation and Development of the 500-keV Negative-Ion-Based Neutral Beam Injection System for JT-60U

    SciTech Connect

    Kuriyama, M.; Akino, N.; Ebisawa, N.; Grisham, L.; Honda, A.; Itoh, T.; Kawai, M.; Kazawa, M.; Mogaki, K.; Ohara, Y.; Ohga, T.; Okumura, Y.; Oohara, H.; Umeda, N.; Usui, K.; Watanabe, K.; Yamamoto, M.; Yamamoto, T.

    2002-09-15

    The 500-keV negative-ion based neutral beam injector for JT-60U started operation in 1996. The beam power has been increased gradually through optimizing operation parameters of the ion sources and conquering many troubles in the ion source and power supplies caused by a high voltage break-down in the accelerator. However, some issues remain to be solved concerning the ion source for increasing further the beam power and the beam energy. The most serious issue of them is non-uniformity of source plasma in the arc chamber. Various countermeasures have been implemented to improve the non-uniformity. Some of those countermeasures have been found to be partially effective in reducing the non-uniformity of the source plasma, and as the result the ion source, so far, has accelerated negative-ion beams of 17.4A at 403keV with deuterium and 20A at 360keV with hydrogen against the goal of 22A at 500keV. The neutral beam injection power into the plasma has reached 5.8MW at 400keV with deuterium. Further efforts to reach the target of 10MW at 500keV have been continued.

  20. Strengths of the resonances at 436, 479, 639, 661, and 1279 keV in the 22Ne(p ,? ) 23Na reaction

    NASA Astrophysics Data System (ADS)

    Depalo, Rosanna; Cavanna, Francesca; Ferraro, Federico; Slemer, Alessandra; Al-Abdullah, Tariq; Akhmadaliev, Shavkat; Anders, Michael; Bemmerer, Daniel; Elekes, Zoltn; Mattei, Giovanni; Reinicke, Stefan; Schmidt, Konrad; Scian, Carlo; Wagner, Louis

    2015-10-01

    The 22Ne(p ,? )23Na reaction is included in the neon-sodium cycle of hydrogen burning. A number of narrow resonances in the Gamow window dominate the thermonuclear reaction rate. Several resonance strengths are only poorly known. As a result, the 22Ne(p ,? )23Na thermonuclear reaction rate is the most uncertain rate of the cycle. Here, a new experimental study of the strengths of the resonances at 436, 479, 639, 661, and 1279 keV proton beam energy is reported. The data have been obtained using a tantalum target implanted with 22Ne. The strengths ? ? of the resonances at 436, 639, and 661 keV have been determined with a relative approach, using the 479- and 1279-keV resonances for normalization. Subsequently, the ratio of resonance strengths of the 479- and 1279-keV resonances were determined, improving the precision of these two standards. The new data are consistent with, but more precise than, the literature with the exception of the resonance at 661 keV, which is found to be less intense by one order of magnitude. In addition, improved branching ratios have been determined for the gamma decay of the resonances at 436, 479, and 639 keV.

  1. On the origin of variable 511 keV line emission from the Galactic center region

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Leventhal, M.; Chan, K. W.; Lingenfelter, R. E.

    1992-01-01

    Variable narrow-line emission at 511 keV, due to positron annihilation, has been observed from the region of the Galactic center for over a decade with high-resolution Ge spectrometers. The variable nature of this emission suggests that a significant fraction of the observed radiation is produced by a single source in the central region of the Galaxy. Recent observations with an imaging gamma-ray spectrometer of low energy resolution have revealed a daylong burst of annihilation radiation from the X-ray source 1E 1740.7-2042 located at an angular distance of 0.9 deg from the Galactic center and aligned with a dense molecular cloud. It is proposed that the variable narrow 511 keV line emission is due to positrons released impulsively (time scale of about 1 day) from 1E 1740.7-2942 into the molecular cloud where they slow down and annihilate on a longer time scale of up to a year.

  2. Interstitial defects in silicon from 1{endash}5 keV Si{sup +} ion implantation

    SciTech Connect

    Agarwal, A.; Haynes, T.E.; Eaglesham, D.J.; Gossmann, H.; Jacobson, D.C.; Poate, J.M.; Erokhin, Y.E.

    1997-06-01

    Extended defects from 5-, 2-, and 1-keV Si{sup +} ion implantation are investigated by transmission electron microscopy using implantation doses of 1 and 3{times}10{sup 14}cm{sup {minus}2} and annealing temperatures from 750 to 900{degree}C. Despite the proximity of the surface, {l_brace}311{r_brace}-type defects are observed even for 1 keV. Samples with a peak concentration of excess interstitials exceeding {approximately}1{percent} of the atomic density also contain some {l_brace}311{r_brace} defects which are corrugated across their width. These so-called zig-zag {l_brace}311{r_brace} defects are more stable than the ordinary {l_brace}311{r_brace} defects, having a dissolution rate at 750{degree}C which is ten times smaller. Due to their enhanced stability, the zig-zag {l_brace}311{r_brace} defects grow to lengths that are many times longer than their distance from the surface. It is proposed that zig-zag {l_brace}311{r_brace} defects form during the early stages of annealing by coalescence the high volume density of {l_brace}311{r_brace} defects confined within a very narrow implanted layer. These findings indicate that defect formation and dissolution will continue to control the interstitial supersaturation from ion implantation down to very low energies. {copyright} {ital 1997 American Institute of Physics.}

  3. A cryogenic electrostatic trap for long-time storage of keV ion beams.

    PubMed

    Lange, M; Froese, M; Menk, S; Varju, J; Bastert, R; Blaum, K; López-Urrutia, J R Crespo; Fellenberger, F; Grieser, M; von Hahn, R; Heber, O; Kühnel, K-U; Laux, F; Orlov, D A; Rappaport, M L; Repnow, R; Schröter, C D; Schwalm, D; Shornikov, A; Sieber, T; Toker, Y; Ullrich, J; Wolf, A; Zajfman, D

    2010-05-01

    We report on the realization and operation of a fast ion beam trap of the linear electrostatic type employing liquid helium cooling to reach extremely low blackbody radiation temperature and residual gas density and, hence, long storage times of more than 5 min which are unprecedented for keV ion beams. Inside a beam pipe that can be cooled to temperatures <15 K, with 1.8 K reached in some locations, an ion beam pulse can be stored at kinetic energies of 2-20 keV between two electrostatic mirrors. Along with an overview of the cryogenic trap design, we present a measurement of the residual gas density inside the trap resulting in only 2 x 10(3) cm(-3), which for a room temperature environment corresponds to a pressure in the 10(-14) mbar range. The device, called the cryogenic trap for fast ion beams, is now being used to investigate molecules and clusters at low temperatures, but has also served as a design prototype for the cryogenic heavy-ion storage ring currently under construction at the Max-Planck Institute for Nuclear Physics. PMID:20515170

  4. Optima MDxt: A high throughput 335 keV mid-dose implanter

    SciTech Connect

    Eisner, Edward; David, Jonathan; Justesen, Perry; Kamenitsa, Dennis; McIntyre, Edward; Rathmell, Robert; Ray, Andrew; Rzeszut, Richard

    2012-11-06

    The continuing demand for both energy purity and implant angle control along with high wafer throughput drove the development of the Axcelis Optima MDxt mid-dose ion implanter. The system utilizes electrostatic scanning, an electrostatic parallelizing lens and an electrostatic energy filter to produce energetically pure beams with high angular integrity. Based on field proven components, the Optima MDxt beamline architecture offers the high beam currents possible with singly charged species including arsenic at energies up to 335 keV as well as large currents from multiply charged species at energies extending over 1 MeV. Conversely, the excellent energy filtering capability allows high currents at low beam energies, since it is safe to utilize large deceleration ratios. This beamline is coupled with the >500 WPH capable endstation technology used on the Axcelis Optima XEx high energy ion implanter. The endstation includes in-situ angle measurements of the beam in order to maintain excellent beam-to-wafer implant angle control in both the horizontal and vertical directions. The Optima platform control system provides new generation dose control system that assures excellent dosimetry and charge control. This paper will describe the features and technologies that allow the Optima MDxt to provide superior process performance at the highest wafer throughput, and will provide examples of the process performance achievable.

  5. Magnetospheric plasma modeling (0-100 keV)

    NASA Technical Reports Server (NTRS)

    Garrett, H. B.; Spitale, G. C.

    1985-01-01

    Spacecraft surface charging, which is primarily a current balance phenomenon, is in general a function of the dominant currents to and from the vehicle's surface. Within the near-earth magnetosphere the dominant currents to the surface are the ambient space plasma fluxes between approximately 0 and 100 keV. A major effort to understand the near-earth environment was initiated when spacecraft charging became a major issue. The present paper has the objective to summarize the basic features of the models which have resulted from this effort. A description is given of four categories of models, based primarily on the degree of empirical and theoretical input. Types of quantitative models are discussed, taking into account definitions, statistical models, analytic models, static models, and time-dependent models. Engineering models are also considered, giving attention to baseline models and 'worst-case' models.

  6. Radiation effects on optical and structural properties of GG17 Glasses induced by 170 keV electrons and protons

    NASA Astrophysics Data System (ADS)

    Wang, Qingyan; Geng, Hongbin; Sun, Chengyue; Li, Xingji; Zhao, Haifa; Liu, Weilong; Xiao, Jingdong; Hu, Zhaochu

    2016-01-01

    The effects of 170 keV electron and proton irradiation are investigated on the optical property and the structure of GG17-type borosilicate glasses for the purpose of assessing the suitability of this material for the rubidium lamp envelope, based on GEANT4 simulating calculation, using electron paramagnetic resonance and Fourier transform infrared spectra and optical-transmittance measurements. The Micro-mechanisms on damage of GG17 Glasses are clarified for electron and proton, respectively. For the electron with the energy of 170 keV, defect creation is due to ionization energy losses and the center is mainly boron oxygen hole center (BOHC) formed by one hole trapped on a bridge oxygen structure with [BO4]-. As a result the number of BOHCs grows as the electron fluence increases. However, for the proton with the energy of 170 keV, the creation of structural defects dominates by means of debonding as a result of an atom having been kicked off the structural chain (displacement effect). This leads to the intensive generation of silicon oxygen hole centers, as well as BOHCs, by the holes trapped on non-bridge oxygen.

  7. The first MAXI/SSC catalog of X-ray sources in 0.7-7.0 keV

    NASA Astrophysics Data System (ADS)

    Tomida, Hiroshi; Uchida, Daiki; Tsunemi, Hiroshi; Imatani, Ritsuko; Kimura, Masashi; Nakahira, Satoshi; Hanayama, Takanori; Yoshidome, Koshiro

    2016-03-01

    We present the first source catalog of the Solid-state Slit Camera (SSC) of the Monitor of All-sky X-ray Image (MAXI) mission on the International Space Station, using the 45-month data from 2010 August to 2014 April in the 0.7-7.0 keV bands. Sources are searched for in two energy bands, 0.7-1.85 keV (soft) and 1.85-7.0 keV (hard), the limiting sensitivity of 3 and 4 mCrab are achieved, and 140 and 138 sources are detected in the soft and hard energy bands, respectively. Combining the two energy bands, 170 sources are listed in the MAXI/SSC catalog. All but 2 sources are identified with 22 galaxies including AGNs, 29 cluster of galaxies, 21 supernova remnants, 75 X-ray binaries, 8 stars, 5 isolated pulsars, and 9 non-categorized objects. Comparing the soft-band fluxes at the brightest end in our catalog with the ROSAT survey, which was performed about 20 years ago, 10% of the cataloged sources are found to have changed flux since the ROSAT era.

  8. Direct and indirect signal detection of 122 keV photons with a novel detector combining a pnCCD and a CsI(Tl) scintillator

    NASA Astrophysics Data System (ADS)

    Schlosser, D. M.; Huth, M.; Hartmann, R.; Abboud, A.; Send, S.; Conka-Nurdan, T.; Shokr, M.; Pietsch, U.; Strüder, L.

    2016-01-01

    By combining a low noise fully depleted pnCCD detector with a CsI(Tl) scintillator, an energy-dispersive area detector can be realized with a high quantum efficiency (QE) in the range from below 1 keV to above 100 keV. In direct detection mode the pnCCD exhibits a relative energy resolution of 1% at 122 keV and spatial resolution of less than 75 μm, the pixel size of the pnCCD. In the indirect detection mode, i.e. conversion of the incoming X-rays in the scintillator, the measured energy resolution was about 9-13% at 122 keV, depending on the depth of interaction in the scintillator, while the position resolution, extracted with the help of simulations, was 30 μm only. We show simulated data for incident photons of 122 keV and compare the various interaction processes and relevant physical parameters to experimental results obtained with a radioactive 57Co source.

  9. A coincidence study of electron and positron impact ionization of Ar (3p) at 1 keV

    NASA Astrophysics Data System (ADS)

    Campeanu, Radu I.; Walters, James H. R.; Whelan, Colm T.

    2015-10-01

    Distorted-wave calculations of the triple differential cross section (TDCS) are presented for electron and positron impact ionization of Ar(3p) in coplanar asymmetric geometry at an impact energy of 1 keV and are compared with a recent experiment. The experiment indicates that the positron TDCS is generally larger than the equivalent electron TDCS. It is shown that the magnitude of the TDCS is extremely sensitive to the energy of the ejected electron and that only when the cross section is averaged over energy do we get a reasonable agreement with experiment.

  10. A coincidence study of electron and positron impact ionization of Ar (3p) at 1 keV

    NASA Astrophysics Data System (ADS)

    Campeanu, Radu I.; Walters, James H. R.; Whelan, Colm T.

    2015-10-01

    Distorted-wave calculations of the triple differential cross section (TDCS) are presented for electron and positron impact ionization of Ar(3 p) in coplanar asymmetric geometry at an impact energy of 1 keV and are compared with a recent experiment. The experiment indicates that the positron TDCS is generally larger than the equivalent electron TDCS. It is shown that the magnitude of the TDCS is extremely sensitive to the energy of the ejected electron and that only when the cross section is averaged over energy do we get a reasonable agreement with experiment.

  11. Contrasting physics in wire array z pinch sources of 1-20 keV emission on the Z facilitya)

    NASA Astrophysics Data System (ADS)

    Ampleford, D. J.; Jones, B.; Jennings, C. A.; Hansen, S. B.; Cuneo, M. E.; Harvey-Thompson, A. J.; Rochau, G. A.; Coverdale, C. A.; Laspe, A. R.; Flanagan, T. M.; Moore, N. W.; Sinars, D. B.; Lamppa, D. C.; Harding, E. C.; Thornhill, J. W.; Giuliani, J. L.; Chong, Y.-K.; Apruzese, J. P.; Velikovich, A. L.; Dasgupta, A.; Ouart, N.; Sygar, W. A.; Savage, M. E.; Moore, J. K.; Focia, R.; Wagoner, T. C.; Killebrew, K. L.; Edens, A. D.; Dunham, G. S.; Jones, M. C.; Lake, P. W.; Nielsen, D. S.; Wu, M.; Carlson, A. L.; Kernahan, M. D.; Ball, C. R.; Scharberg, R. D.; Mulville, T. D.; Breden, E. W.; Speas, C. S.; Olivas, G.; Sullivan, M. A.; York, A. J.; Justus, D. W.; Cisneros, J. C.; Strizic, T.; Reneker, J.; Cleveland, M.; Vigil, M. P.; Robertson, G.; Sandoval, D.; Cox, C.; Maurer, A. J.; Graham, D. A.; Huynh, N. B.; Toledo, S.; Molina, L. P.; Lopez, M. R.; Long, F. W.; McKee, G. R.; Porter, J. L.; Herrmann, M. C.

    2014-05-01

    Imploding wire arrays on the 20 MA Z generator have recently provided some of the most powerful and energetic laboratory sources of multi-keV photons, including 375 kJ of Al K-shell emission (h? 1-2 keV), 80 kJ of stainless steel K-shell emission (h? 5-9 keV) and a kJ-level of Mo K-shell emission (h? 17 keV). While the global implosion dynamics of these different wire arrays are very similar, the physical process that dominates the emission from these x-ray sources fall into three broad categories. Al wire arrays produce a column of plasma with densities up to 3 1021 ions/cm3, where opacity inhibits the escape of K-shell photons. Significant structure from instabilities can reduce the density and increase the surface area, therefore increase the K-shell emission. In contrast, stainless steel wire arrays operate in a regime where achieving a high pinch temperature (achieved by thermalizing a high implosion kinetic energy) is critical and, while opacity is present, it has less impact on the pinch emissivity. At higher photon energies, line emission associated with inner shell ionization due to energetic electrons becomes important.

  12. Excess astrophysical photons from a 0.1-1 keV cosmic axion background.

    PubMed

    Conlon, Joseph P; Marsh, M C David

    2013-10-11

    Primordial decays of string theory moduli at z~10(12) naturally generate a dark radiation cosmic axion background with 0.1-1 keV energies. This cosmic axion background can be detected through axion-photon conversion in astrophysical magnetic fields to give quasithermal excesses in the extreme ultraviolet and soft x-ray bands. Substantial and observable luminosities may be generated even for axion-photon couplings <10(-11) GeV(-1). We propose that axion-photon conversion may explain the observed excess emission of soft x rays from galaxy clusters, and may also contribute to the diffuse unresolved cosmic x-ray background. We list a number of correlated predictions of the scenario. PMID:24160588

  13. Solution of controversy over 1583-keV levels in sup 204 Pb

    SciTech Connect

    Trzaska, W.H.; Julin, R.; Kantele, J.; Kumpulainen, J. )

    1989-09-01

    Data from {sup 204}Pb({ital p},{ital p}{prime}){sup 204}Pb conversion-electron and gamma-ray experiments, together with previous results, prove the existence of two levels (0{sup +} and 2{sup +}) at 1583-keV excitation energy in {sup 204}Pb. Modified values (limits) of the {rho}{sub 21}{sup 2} and {ital X}{sub 211} are 0.0013{lt}{rho}{sub 21}{sup 2}{lt}0.015 and {ital X}{sub 211}{gt}0.073. New experimental evidence indicates that all the three observed excited {ital O}{sup +} states in {sup 204}Pb can be explained as belonging to the four-neutron-hole valence space and, therefore, there is no clear candidate for the proton 2p-2h intruder state in this nucleus.

  14. SMM observations of gamma-ray transients. 2: A search for gamma-ray lines between 400 and 600 keV from the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Harris, Michael J.; Share, Gerald H.; Leising, Mark D.

    1994-01-01

    We have search spectra obtained by the Solar Maximum Mission Gamma-Ray Spectrometer during 1981-1988 for evidence of transient gamma-ray lines from the Crab Nebula which have been reported by previous experiments at energies 400-460 keV and 539 keV. We find no evidence for significant emission in any of these lines on time scales between aproximately 1 day and approximately 1 yr. Our 3 sigma upper limits on the transient flux during 1 d intervals are approximately equal to 2.2 x 10(exp -3) photons/sq cm/s for narrow lines at any energy, and approximately equal to 2.9 x 10(exp -3) photons/sq cm/s for the 539 keV line if it is as broad as 42 keV Full Width at Half Maximum (FWHM). We also searched our data during the approximately 5 hr period on 1981 June 6 during which Owens, Myers, & Thompson (1985) reported a strong line at 405 keV. We detected no line down to a 3 upper sigma limit of 3.3 x 10(exp -3) photons/sq cm/s in disagreement with the flux 7.2 +/- 2.1 x 10(exp -3) photos/sq cm/s measured by Owens et al.

  15. Where do the 3.5 keV photons come from? A morphological study of the Galactic Center and of Perseus

    SciTech Connect

    Carlson, Eric; Jeltema, Tesla; Profumo, Stefano E-mail: tesla@ucsc.edu

    2015-02-01

    We test the origin of the 3.5 keV line photons by analyzing the morphology of the emission at that energy from the Galactic Center and from the Perseus cluster of galaxies. We employ a variety of different templates to model the continuum emission and analyze the resulting radial and azimuthal distribution of the residual emission. We then perform a pixel-by-pixel binned likelihood analysis including line emission templates and dark matter templates and assess the correlation of the 3.5 keV emission with these templates. We conclude that the radial and azimuthal distribution of the residual emission is incompatible with a dark matter origin for both the Galactic center and Perseus; the Galactic center 3.5 keV line photons trace the morphology of lines at comparable energy, while the Perseus 3.5 keV photons are highly correlated with the cluster's cool core, and exhibit a morphology incompatible with dark matter decay. The template analysis additionally allows us to set the most stringent constraints to date on lines in the 3.5 keV range from dark matter decay.

  16. Structural defects and positronium formation in 40 keV B(+)-implanted polymethylmethacrylate.

    PubMed

    Kavetskyy, Taras; Tsmots, Volodymyr; Kinomura, Atsushi; Kobayashi, Yoshinori; Suzuki, Ryoichi; Mohamed, Hamdy F M; aua, Ondrej; Nuzhdin, Vladimir; Valeev, Valery; Stepanov, Andrey L

    2014-04-17

    Slow positron beam and optical absorption measurements are carried out to study structural defects and positronium formation in 40 keV B(+)-implanted polymethylmethacrylate (B:PMMA) with ion doses from 6.25 10(14) to 5.0 10(16) ions/cm(2). Detailed depth-selective information on defects in implanted samples was obtained by measuring of Doppler broadening of positron annihilation ? rays as a function of incident positron energy and these experimental results were compared with SRIM (stopping and range of ions in matter) simulation results. Two general processes, appearance of free radicals at lower ion doses (<10(16) ions/cm(2)) and carbonization at higher ion doses (>10(16) ions/cm(2)), are considered from the Doppler S-E and W-E dependences in the framework of the concept of defects formation during radiation damage of polymer structure. Probabilities of ortho-positronium (o-Ps) formation are analyzed using S-W plot and slow positron annihilation lifetime measurements. Dose dependence of o-Ps lifetime ?3 and intensity I3 at the incident positron energy of 2.15 keV correlates well with the dose dependence of S-parameter and seems to account for the existence of the expected two processes, i.e., scission of polymer chains and appearance of free radicals preceding the aggregation of the clusters resulting in the formation of network of conjugated bonds at lower ion doses and carbonization at higher ion doses. The increase of optical absorption observed with increasing ion implantation dose also suggests a formation of carbonaceous phase in the ion-irradiated PMMA. PMID:24467662

  17. Motion of 3-6 keV Nonthermal Sources Along the Legs of a Flare Loop

    NASA Technical Reports Server (NTRS)

    Sui, Linhui; Holman, Gordon D.; Dennis, Brian R.

    2007-01-01

    Observations of nonthermal X-ray sources me critical to studying electron acceleration and transport in solar flares. Strong thermal emission radiated from the preheated plasma before the flare impulsive phase often makes it difficult to detect low-energy X-ray sources that are produced by relatively low-energy nonthermal electrons. Knowledge of the distribution of these low-energy nonthermal electrons is particularly important in determining the total nonthermal electron energy in solar flares. We report on an 'early impulsive flare' in which impulsive hard X-ray emission was seen early in the flare before the soft X-ray emission had risen significantly, indicating limited plasma pre-heating. Early in the flare, RHESSI < 25 keV images show coronal sources that moved first downward and then upwards along the legs of a flare loop. In particular, the 3-6 keV source appeared as a single coronal source at the start of the flare, and then it involved into two coronal sources moving down along the two legs of the loop. After nearly reaching the two footpoints at the hard X-ray peak, the two sources moved back up to the looptop again. RHESSI images and light curves all indicate that nonthermal emission dominated at energies as low as 3-6 keV. We suggest that the evolution of both the spectral index and the low-energy cutoff of the injected electron distribution could result in the accelerated electrons reaching a lower altitude along the legs of the dense flare loop and hence result in the observed downward and upward motions of the nonthermal sources.

  18. Sterilization of foods with low-energy electrons (``soft-electrons'')

    NASA Astrophysics Data System (ADS)

    Hayashi, Toru; Takahashi, Yoko; Todoriki, Setsuko

    1998-06-01

    Electrons with an energy of 300 keV or lower were defined as "Soft-electrons", which showed several advantages over conventional irradiation with gamma-rays or high-energy electrons in decontamination of grains and spices. Energies of electrons necessary to reduce microbial loads to levels lower than 10 CFU/g were 60 keV for brown rice, 75 keV for wheat, 100 keV for white pepper, coriander and basil, 130 keV for buckwheat, 160 keV for rough rice, and 210 keV for black pepper. Electrons with such energies did not significantly influence the quality.

  19. The structure and dynamics of the radiation belts from 10 keV to 2 MeV

    NASA Astrophysics Data System (ADS)

    Reeves, Geoffrey D.; Larsen, Brian A.; Friedel, Reiner H. W.; Claudepierre, Seth G.; Fennell, Joseph F.; Spence, Harlan E.; Turner, Drew L.

    2015-04-01

    The Van Allen Probes mission measures the Earth’s radiation belts with very high spatial, temporal, and energy resolution. Recent analysis has taken advantage of the capability of the ECT/MagEIS instrument’s ability to directly measure penetrating background radiation contributions to the electron count rates - and subtract it - providing spectral measurements that are essentially free of background contamination [Claudepierre et al., 2014]. The “background-subtracted” measurements show a surprising lack of MeV electrons in inner zone of the radiation belt [Fennell et al., 2014]. However at energies below ~1 MeV electrons can be injected through the slot region into the inner belt.Our analysis of these deep particle injections shows (1) there is great variability in the location of the inner edge of the outer zone - both from one event to another and from one energy to another, (2) lower energy electrons (e.g. <300 keV) are injected into the inner zone (e.g. L<2) more often than higher energy electrons (3) electrons with energies as low as 50 keV are frequently injected into the inner zone. We discuss the implications of these new observations for our understanding of radiation belt acceleration and transport.

  20. Checking the potassium origin of the new emission line at 3.5 keV using the K XIX line complex at 3.7 keV

    NASA Astrophysics Data System (ADS)

    Iakubovskyi, Dmytro

    2015-11-01

    It is currently unclear whether the new line at 3.5 keV, recently detected in various samples of galaxy clusters, the Andromeda galaxy and the central part of our Galaxy, is caused by potassium emission lines. By using the latest astrophysical atomic emission line data base, AtomDB v. 3.0.2, we show that the most promising method to check its potassium origin directly will be the study of the K XIX emission line complex at 3.7 keV using forthcoming X-ray imaging spectrometers such as the Soft X-ray spectometer onboard the Astro-H mission or the microcalorimeter onboard the Micro-X sounding rocket experiment. In order to further reduce the remaining (factor of 3-5) uncertainty of the 3.7/3.5 keV ratio, more precise modelling should be performed, including the removal of significant spatial inhomogeneities, a detailed treatment of background components, and the extension of the modelled energy range.

  1. ON THE SPECTRAL HARDENING AT {approx}>300 keV IN SOLAR FLARES

    SciTech Connect

    Li, G.; Kong, X.; Zank, G.; Chen, Y.

    2013-05-20

    It has long been noted that the spectra of observed continuum emissions in many solar flares are consistent with double power laws with a hardening at energies {approx}>300 keV. It is now widely believed that at least in electron-dominated events, the hardening in the photon spectrum reflects an intrinsic hardening in the source electron spectrum. In this paper, we point out that a power-law spectrum of electrons with a hardening at high energies can be explained by the diffusive shock acceleration of electrons at a termination shock with a finite width. Our suggestion is based on an early analytical work by Drury et al., where the steady-state transport equation at a shock with a tanh profile was solved for a p-independent diffusion coefficient. Numerical simulations with a p-dependent diffusion coefficient show hardenings in the accelerated electron spectrum that are comparable with observations. One necessary condition for our proposed scenario to work is that high-energy electrons resonate with the inertial range of the MHD turbulence and low-energy electrons resonate with the dissipation range of the MHD turbulence at the acceleration site, and the spectrum of the dissipation range {approx}k {sup -2.7}. A {approx}k {sup -2.7} dissipation range spectrum is consistent with recent solar wind observations.

  2. Capture of a neutron to excited states of a {sup 9}Be nucleus taking into account resonance at 622 keV

    SciTech Connect

    Dubovichenko, S. B.

    2013-10-15

    Radiative capture of a neutron to the ground and excited states of the 9Be nucleus is considered using the potential cluster model with forbidden states and with classification of cluster states by the Young schemes taking into account resonance at 622 keV for thermal and astrophysical energies.

  3. First Results from Fermi Gamma-ray Burst Monitor Earth Occultation Monitoring: Observations of Soft Gamma-ray Sources Above 100 keV

    NASA Astrophysics Data System (ADS)

    Case, G. L.; Cherry, M. L.; Wilson-Hodge, C. A.; Camero-Arranz, A.; Rodi, J. C.; Chaplin, V.; Finger, M. H.; Jenke, P.; Beklen, E.; Bhat, P. N.; Briggs, M. S.; Connaughton, V.; Greiner, J.; Kippen, R. M.; Meegan, C. A.; Paciesas, W. S.; Preece, R.; von Kienlin, A.

    2011-03-01

    The NaI and BGO detectors on the Gamma-ray Burst Monitor (GBM) on Fermi are now being used for long-term monitoring of the hard X-ray/low-energy gamma-ray sky. Using the Earth occultation technique as demonstrated previously by the BATSE instrument on the Compton Gamma-Ray Observatory, GBM can be used to produce multiband light curves and spectra for known sources and transient outbursts in the 8 keV to 1 MeV energy range with its NaI detectors and up to 40 MeV with its BGO detectors. Over 85% of the sky is viewed every orbit, and the precession of the Fermi orbit allows the entire sky to be viewed every ~26 days with sensitivity exceeding that of BATSE at energies below ~25 keV and above ~1.5 MeV. We briefly describe the technique and present preliminary results using the NaI detectors after the first two years of observations at energies above 100 keV. Eight sources are detected with a significance greater than 7?: the Crab, Cyg X-1, SWIFT J1753.5-0127, 1E 1740-29, Cen A, GRS 1915+105, and the transient sources XTE J1752-223 and GX 339-4. Two of the sources, the Crab and Cyg X-1, have also been detected above 300 keV.

  4. Centaurus A /NGC 5128/ at 2 keV-2.3 MeV - HEAO 1 observations and implications

    NASA Technical Reports Server (NTRS)

    Baity, W. A.; Rothschild, R. E.; Lingenfelter, R. E.; Stein, W. A.; Nolan, P. L.; Gruber, D. E.; Knight, F. K.; Matteson, J. L.; Peterson, L. E.; Mushotzky, R. F.

    1981-01-01

    The active-nucleus galaxy Centaurus A has been studied at 2 keV-2.3 MeV using data from the UCSD/MIT hard X-ray and low-energy gamma-ray instrument and the GSFC/CIT cosmic X-ray experiment on HEAO-1. It is found that an E exp -1.60 + or - 0.03 power law spectrum breaking to E exp -2.0 + or - 0.2 at 140 keV best describes the January and July 1978 data. The average intensity was 50% higher during the January observations. Upper limits to unresolved lines at 511 keV and 1.6 MeV were found to be 6.5 x 10 to the -4th photons/sq cm-s and 2.2 x 10 to the -4th photons/sq cm-s, respectively, at the 90% confidence level. The present data are consistent with the detailed calculations of the synchrotron self-Compton mechanism; they may also agree, marginally, with the predictions of emission from spherical accretion onto black holes.

  5. Applications of non-periodic multilayer optics for high-resolution x-ray microscopes below 30 keV.

    PubMed

    Troussel, Ph; Dennetiere, D; Rousseau, A; Darbon, S; Hghj, P; Hedacq, S; Krumrey, M

    2012-10-01

    Multilayer mirrors with enhanced bandwidth were developed with special performances for dense plasma diagnostics and mainly for high spatial resolution x-ray imaging. The multilayer coatings are designed to provide broadband x-ray reflectance at low grazing incidence angles. They are deposited onto toroidal mirror substrates. Our research is directed at the development of non-periodic (depth graded) W?Si multilayer specifically designed for use in the 1 to 30 keV photon energy band. First, we present a study for a 5 to 22 keV x-ray spectral window at 0.45 grazing angle. The goal is to obtain a high and constant reflectivity. Second, we have modeled a broadband mirror coating for harder x-rays in the range from 10 to 30 keV, with a non-periodic structure containing 300 W?SiC layers with periods in the range from 0.8 to 4 nm, designed for 0.35 grazing incidence angle. PMID:23127039

  6. Ionization and fragmentation of polycyclic aromatic hydrocarbon clusters in collisions with keV ions

    SciTech Connect

    Johansson, H. A. B.; Zettergren, H.; Holm, A. I. S.; Seitz, F.; Schmidt, H. T.; Cederquist, H.; Rousseau, P.; Lawicki, A.; Capron, M.; Domaracka, A.; Lattouf, E.; Maclot, S.; Maisonny, R.; Chesnel, J.-Y.; Adoui, L.; Huber, B. A.

    2011-10-15

    We report on an experimental study of the ionization and fragmentation of clusters of k polycyclic aromatic hydrocarbon (PAH) molecules using anthracene, C{sub 14}H{sub 10}, or coronene, C{sub 24}H{sub 12}. These PAH clusters are moderately charged and strongly heated in small impact parameter collisions with 22.5-keV He{sup 2+} ions, after which they mostly decay in long monomer evaporation sequences with singly charged and comparatively cold monomers as dominating end products. We describe a simple cluster evaporation model and estimate the number of PAH molecules in the clusters that have to be hit by He{sup 2+} projectiles for such complete cluster evaporations to occur. Highly charged and initially cold clusters are efficiently formed in collisions with 360-keV Xe{sup 20+} ions, leading to cluster Coulomb explosions and several hot charged fragments, which again predominantly yield singly charged, but much hotter, monomer ions than the He{sup 2+} collisions. We present a simple formula, based on density-functional-theory calculations, for the ionization energy sequences as functions of coronene cluster size, rationalized in terms of the classic electrostatic expression for the ionization of a charged conducting object. Our analysis indicates that multiple electron removal by highly charged ions from a cluster of PAH molecules rapidly may become more important than single ionization as the cluster size k increases and that this is the main reason for the unexpectedly strong heating in these types of collisions.

  7. Sub-arcsec X-Ray Telescope for Imaging The Solar Corona In the 0.25 - 1.2 keV Band

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis; Cash, Webster; Jelsma, Schuyler; Farmer, Jason

    1996-01-01

    We have developed an X-ray telescope that uses a new technique for focusing X-rays with grazing incidence optics. The telescope was built with spherical optics for all of its components, utilizing the high quality surfaces obtainable when polishing spherical (as opposed to aspherical) optics. We tested the prototype X-ray telescope in the 300 meter vacuum pipe at White Sands Missile Range, NM. The telescope features 2 degee graze angles with tungsten coatings, yielding a bandpass of 0.25-1.5 keV with a peak effective area of 0.8 sq cm at 0.83 keV. Results from X-ray testing at energies of 0.25 keV and 0.93 keV (C-K and Cu-L) verify 0.5 arcsecond performance at 0.93 keV. Results from modeling the X-ray telescope's response to the Sun show that the current design would be capable of recording 10 half arcsecond images of a solar active region during a 300 second NASA sounding rocket flight.

  8. Statistical Properties of Local AGNs Inferred from the RXTE 3-20 keV All-Sky Survey

    NASA Astrophysics Data System (ADS)

    Revnivtsev, M.; Sazonov, S. Yu.

    We have recently ([1]) performed an all-sky survey in the 3-20 keV band from the data accumulated during satellite slews in 1996-2002 - the RXTE slew survey (XSS). For 90% of the sky at |b|>10 , a flux limit for source detection of 2.510-11 erg/s/sq.cm(3-20 keV) or lower was achieved, while a combined area of 7000 sq.deg was sampled to record flux levels (for such very large-area surveys) below 10-11 erg/s/sq.cm. A catalog contains 294 X-ray sources. 236 of these sources were identified with a single known astronomical object. Of particular interest are 100 identified active galactic nuclei (AGNs) and 35 unidentified sources. The hard spectra of the latter suggest that many of them will probably also prove AGNs when follow-up observations are performed. Most of the detected AGNs belong to the local population (z<0.1). In addition, the hard X-ray band of the XSS (3-20 keV) as compared to most previous X-ray surveys, performed at photon energies below 10 keV, has made possible the detection of a substantial number of X-ray absorbed AGNs (mostly Seyfert 2 galaxies). These properties make the XSS sample of AGNs a valuable one for the study of the local population of AGNs. We carried out a thorough statistical analysis of the above sample in order to investigate several key properties of the local population of AGNs, in particular their distribution in intrinsic absorption column density (NH) and X-ray luminosity function ([2]). Knowledge of these characteristics provides important constraints for AGN unification models and synthesis of the cosmic X-ray background, and is further needed to understand the details of the accretion-driven growth of supermassive black holes in the nuclei of galaxies.

  9. Polar and azimuthal angular dependence of coherent to incoherent scattering differential cross-section ratios of Au at 59.54 keV

    NASA Astrophysics Data System (ADS)

    Akku?, Tuba; Pirimo?lu Dal, Mev?en; ?ahin, Yusuf

    2015-12-01

    Coherent to incoherent differential cross-section ratios of Au have been measured for several polar scattering angles (90, 100, 110, 120 and 130) and azimuthal angles (30, 20, 10, 0, -10, and -20) at 59.54 keV photon energy by using high purity germanium (HPGe) detector, which has a resolution of 199.6 eV at the 5.9 keV. The samples were excited with 59.54 keV gamma rays emitted from 3.7109 Bq (100 mCi) Am241 point source. The intensity ratios were corrected due to the photopeak efficiency of gamma detector and absorption of photons in the target and air. The experimental values obtained in this study were compared with those estimated on the basis of the non-relativistic form factors and relativistic form factors.

  10. Extended observations of higher than 7-keV X-rays from Centaurus X-3 by the OSO-7 satellite

    NASA Technical Reports Server (NTRS)

    Baity, W. A.; Ulmer, M. P.; Wheaton, W. A.; Peterson, L. E.

    1974-01-01

    The UCSD X-ray telescope on board OSO-7 provided 43 days of continuous coverage of the variable X-ray source Cen X-3 at energies above 7 keV during December 1971 and January 1972. We detected the 4.8-sec pulsation period, the 2.087-day eclipse cycle, and an apparently nonperiodic, low-intensity state lasting more than 12 days. Spectra obtained over the 7-30 keV range during noneclipsed high-intensity states are steeper than those previously reported. Large changes, which may be characterized by a number spectral index alpha varying between 3.0 plus or minus 0.2 and 2.0 plus or minus 0.3, or by exponential spectra with kT varying from 6 plus or minus 2 to 13 plus or minus 3 keV, occur at different high-intensity states.

  11. CAN THE EXCESS IN THE Fe XXVI Ly{gamma} LINE FROM THE GALACTIC CENTER PROVIDE EVIDENCE FOR 17 keV STERILE NEUTRINOS?

    SciTech Connect

    Prokhorov, Dmitry; Silk, Joseph

    2010-12-20

    Sterile neutrinos (or right-handed neutrinos) are a plausible warm dark matter candidate. We find that the excess of the intensity in the 8.7 keV line (at the energy of the Fe XXVI Ly{gamma} line) in the spectrum of the Galactic center observed by Suzaku cannot be explained by standard ionization and recombination processes. We suggest that the origin of this excess is via decays of sterile neutrinos with a mass of 17.4 keV. The estimated value of the mixing angle sin{sup 2}(2{theta}) = (4.4 {+-} 2.2) x 10{sup -12} lies in the allowed region of the mixing angle for a dark matter sterile neutrino with a mass of 17-18 keV.

  12. Rapid variability of 10-140 keV X-rays from Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Gruber, D. E.; Matteson, J. L.; Peterson, L. E.; Rothschild, R. E.; Doty, J. P.; Levine, A. M.; Lewin, W. H. G.; Primini, F. A.

    1981-01-01

    On five occasions in 1977 and 1978, Cygnus X-1 was observed using the low-energy detectors of the UCSD/MIT Hard X-ray and Low-Energy Gamma Ray experiment on the HEAO 1 satellite. Rapid (times between 0.08 and 1000 sec) variability was found in the 10-140 keV band. The power spectrum was white for frequencies between 0.001 and 0.05 Hz and was proportional to the inverse of the frequency for frequencies between 0.05 and 3 Hz, indicating correlations on all time scales less than approximately 20 s. The shape of the energy spectrum was correlated with intensity; it was harder at higher intensity. If the emission is produced by Comptonization of a soft photon flux in a hot cloud, the heating of the cloud cannot be constant; it must vary on time scales up to approximately 20 s. A variable accretion rate could cause the observed effects.

  13. ART: Surveying the Local Universe at 2-11 keV

    NASA Technical Reports Server (NTRS)

    O'Dell, S. L.; Ramsey, B. D.; Adams, M. L.; Brandt, W. N.; Bubarev, M. V.; Hassinger, G.; Pravlinski, M.; Predehl, P.; Romaine, S. E.; Swartz, D. A.; Urry, C. M.; Vikhlinin, A.; Weisskopf, M. C.

    2008-01-01

    The Astronomical Rontgen Telescope (ART) is a medium-energy x-ray telescope system proposed for the Russian-led mission Spectrum Rontgen-Gamma (SRG). Optimized for performance over the 2-11-keV band, ART complements the softer response of the SRG prime instrument-the German eROSITA x-ray telescope system. The anticipated number of ART detections is 50,000-with 1,000 heavily-obscured (N(sub H)> 3x10(exp 23)/sq cm) AGN-in the SRG 4-year all-sky survey, plus a comparable number in deeper wide-field (500 deg(sup 2) total) surveys. ART's surveys will provide a minimally-biased, nearly-complete census of the local Universe in the medium-energy x-ray band (including Fe-K lines), at CCD spectral resolution. During long (approx.100-ks) pointed observations, ART can obtain statistically significant spectral data up to about 15 keY for bright sources and medium-energy x-ray continuum and Fe-K-line spectra of AGN detected with the contemporaneous NuSTAR hard-x-ray mission.

  14. K X-ray production cross sections in aluminium for 15, 20 and 25 keV protons

    NASA Astrophysics Data System (ADS)

    do Carmo, S. J. C.; Borges, F. I. G. M.; Trindade, A. M. F.; Conde, C. A. N.

    2012-12-01

    A low-energy particle accelerator has been used to determine experimentally low-energy X-ray production cross sections through the irradiation of thick targets with ions with energies up to 25 keV/ion charge by measuring thick target yields. We obtained aluminium K- X-ray production cross sections values of 8.4 10-4, 1.3 10-3 and 1.8 10-3 barn for 15, 20 and 25 keV protons, respectively. Although there are no results in the literature for such low-energy impinging protons for comparison, the results presented here are in good agreement with the general trend exhibited for higher energy ranges.

  15. Characterizations of MCP performance in the hard x-ray range (6-25 keV)

    NASA Astrophysics Data System (ADS)

    Wu, Ming; Moy, Ken; Kruschwitz, Craig; Rochau, Greg

    2014-11-01

    MCP detector performance at hard x-ray energies from 6 to 25 keV was recently investigated using NSLS beamline X15A at BNL. Measurements were made with an NSTec Gen-II (H-CA-65) framing camera, based on a Photonis MCP with 10 ?m in diameter pores, 12 ?m center-center spacing, an L/D ratio of 46, and a bias angle of 8. The MCP characterizations were focused on (1) energy and angle dependent sensitivity, (2) energy and angle dependent spatial resolution, (3) energy dependent gain performance, and (4) energy dependent dynamic range. These measurement corroborated simulation results using a Monte Carlo model that included hard x-ray interactions and the subsequent electron cascade in the MCP.

  16. Characterizations of MCP performance in the hard x-ray range (6–25 keV)

    SciTech Connect

    Wu, Ming Rochau, Greg; Moy, Ken; Kruschwitz, Craig

    2014-11-15

    MCP detector performance at hard x-ray energies from 6 to 25 keV was recently investigated using NSLS beamline X15A at BNL. Measurements were made with an NSTec Gen-II (H-CA-65) framing camera, based on a Photonis MCP with ∼10 μm in diameter pores, ∼12 μm center-center spacing, an L/D ratio of 46, and a bias angle of 8°. The MCP characterizations were focused on (1) energy and angle dependent sensitivity, (2) energy and angle dependent spatial resolution, (3) energy dependent gain performance, and (4) energy dependent dynamic range. These measurement corroborated simulation results using a Monte Carlo model that included hard x-ray interactions and the subsequent electron cascade in the MCP.

  17. Study of 18 keV K-? x-ray emission from high intensity femtosecond laser produced plasma

    SciTech Connect

    Arora, V. Naik, P. A.; Chakera, J. A.; Bagchi, S.; Tayyab, M.; Gupta, P. D.

    2014-04-15

    We report an experimental study on the optimization of a laser plasma based x-ray source of ultra-short duration K-? line radiation. The interaction of pulses from a CPA based Ti:sapphire laser (10 TW, 45 fs, 10 Hz) system with magnesium, titanium, iron and copper solid target generates bright 1-8 keV K-? x-ray radiation. The x-ray yield was optimized with the laser pulse duration (at fixed fluence) which is varied in the range of 45 fs to 1.4 ps. It showed a maximum at laser pulse duration of ?740 fs, 420 fs, 350 and 250 fs for Mg (1.3 keV), Ti (4.5 keV), Fe (6.4 keV) and Cu (8.05 keV) respectively. The x-ray yield is observed to be independent of the sign of the chirp. The scaling of the K-? yield (I{sub x} ? I{sub L}{sup ?}) for 45 fs and optimized pulse duration were measured for laser intensities in the region of 3 10{sup 14} 8 10{sup 17}. The x-ray yield shows a much faster scaling exponent ? = 1.5, 2.1, 2.4 and 2.6 for Mg, Ti, Fe and Cu respectively at optimized pulse duration compared to scaling exponent of 0.65, 1.3, 1.5, and 1.7 obtained for 45 fs duration laser pulses. The laser to x-ray energy conversion efficiencies obtained for different target materials are ?{sub Mg} = 1.2 10{sup ?5}, ?{sub Ti} = 3.1 10{sup ?5}, ?{sub Fe} = 2.7 10{sup ?5}, ?{sub Cu} = 1.9 10{sup ?5}. The results have been explained from the efficient generation of optimal energy hot electrons at longer laser pulse duration. The faster scaling observed at optimal pulse duration indicates that the x-ray source is generated at the target surface and saturation of x-ray emission would appear at larger laser fluence. An example of utilization of the source for measurement of shock-wave profiles in a silicon crystal by time resolved x-ray diffraction is also presented.

  18. Excitation of the helium autoionizing states in He/sup +/+He collisions, between 3 and 140 keV

    SciTech Connect

    Bordenave-Montesquieu, A.; Gleizes, A.; Benoit-Cattin, P.

    1982-01-01

    The autoionization of the helium atom has been experimentally studied in He/sup +/+He collisions between 3 and 140 keV by electron spectrometry. The excitation of the two collision partners has been considered. Above 10 keV, the shapes and excitation cross sections of the 2s/sup 2/ /sup 1/S, 2s2p /sup 3/P, 2p/sup 2/ /sup 1/D, and 2s2p /sup 1/P are determined by a numerical fitting procedure which is reported in detail; below 10 keV the (/sup 1/D+/sup 1/P), and 2p/sup 2/ /sup 1/S line intensities are obtained by planimetry since important post-collision effects are observed. From the angular distributions measured below 15 keV, the relative sublevel populations are deduced for the 2p/sup 2/ /sup 1/D and 2s2p/sup 1/ P levels and are compared with those obtained by other authors in a coincidence experiment; the excitation processes are then discussed within the quasimolecular-excitation model. For the highest collision energies, the asymmetry of the angular distributions with respect to 90 /sup 0/ as well as the line shapes above 100 keV are interpreted by the occurrence of sudden electronic transitions to the continuum. A comparison of the differential cross sections for emission of electrons by autoionization of the fast and slow particles permits us to show that the quasimolecule model cannot explain what is observed above a collision velocity of about 0.5 a.u. The dependence of the total cross sections against the collision energy is also discussed in terms of an evolution of the excitation mechanism from a quasimolecular to an atomic one; the specific variation of the 2s2p /sup 3/P cross section strengthens this interpretation. These total cross sections are compared with those estimated from earlier H/sup +/+He data published by us; similar autoionization cross-section values are expected for the two systems at high collision velocity.

  19. HEAO 1 observations of the Perseus cluster above 10 keV

    NASA Technical Reports Server (NTRS)

    Primini, F. A.; Howe, S. K.; Lang, F.; Levine, A. M.; Lewin, W. H. G.; Rothschild, R.; Baity, W. A.; Gruber, D. E.; Knight, F. K.; Basinska, E.

    1981-01-01

    Results are presented of HEAO 1 observations of the Perseus cluster from 10 to 150 keV in 1977 August and 1978 February and August. The spectrum exhibits a previously unknown hard (greater than 25 keV) component in addition to the previously known thermal bremsstrahlung emission. The data presented show no significant evidence of variability from 10.5 keV to 93.5 keV, and a comparison of our results with earlier results indicates no strong evidence for variability above 25 keV over a time scale of 4 yr. If the hard-component excess is due to NGC 1275, the data imply a 2-6 keV X-ray luminosity of 1 x 10 to the 44th ergs/s for the galaxy, or about 15% of the total cluster emission from 2 to 6 keV and a 25-40 keV luminosity of 8 x 10 to the 43rd ergs/s.

  20. Desorption Induced by KEV Molecular and Cluster Projectiles.

    NASA Astrophysics Data System (ADS)

    Blain, Matthew Glenn

    1990-01-01

    A new experimental method has been developed for studying negative secondary ion (SI) emission from solid surfaces bombarded by polyatomic primary ions of 5 to 30 keV. The method is based on the time-of-flight (TOF) analysis of primary ions which are produced by either ^ {252}Cf fission fragment induced desorption or by extraction from a liquid metal ion source, and then accelerated into a field free region. The primary ions included organic monomer, dimer, and fragment ions of coronene and phenylalanine, (CsI)_ nCs ^{+} cluster ions, and Au _sp{n}{+} cluster ions. Secondary electrons, emitted from a target surface upon primary ion impact, are used to identify which primary ion has hit the surface. An event-by-event coincidence counting technique allows several secondary ion TOF spectra, correlated to several different primary ions, to be acquired simultaneously. Negative SI yields from organic (phenylalanine and dinitrostilbene), CsI, and Au surfaces have been measured for a number of different mono- and polyatomic primary ions. The results show, for example, yields ranging from 1 to 10% for phenylalanine (M-H) ^{ -}, 1 to 10% for I^{-} , and 1 to 5% for Au^{-} , with Cs_2I^ {+} and Cs_3I _sp{2}{+} clusters as projectiles. Yields for the same surfaces using Cs ^{+} primary ions are much less than 1%, indicating that SI yields are enhanced with clusters. A yield enhancement occurs when the SI yield per atom of a polyatomic projectile is greater than the SI yield of its monoatomic equivalent, at the same velocity. Thus, a (M-H) ^{-} yield increase of a factor of 50, when phenylalanine is bombarded with Cs_3I_sp{2} {+} instead of Cs^{+ }, represents a yield enhancement factor of 10. For the projectiles and samples studied, it was observed that the heavier the mass of the constituents of a projectile, the larger the enhancement effects, and that the largest yield enhancements (with CsI and Au _ n projectiles) occur for the organic target, phenylalanine. One possible explanation for the larger enhancements with organics, namely a thermal spike process, appears unlikely. Experiments with high and low melting point isomers of dinitrostilbene, bombarded with Cs _2I^{+} and Cs^{+} projectiles, showed larger Cs_2I^ {+} yield enhancements for the high melting point isomer.

  1. The Physical Nature of the Sharp Spectral Feature at 7 keV Detected in 1H0707-495

    NASA Technical Reports Server (NTRS)

    Brandt, Niel

    2005-01-01

    XMM-Newton acquired data on the accepted target, 1H0707-495, on 2002 October 13 during revolution 0521. The observation was successful, with only about 5% data loss due to background flaring. We compared the data from this observation with earlier data taken on this Narrow-Line Seyfert 1 about two years before, performing interpretation studies in the context of the partial-covering model. Our second longer observation once again displays a sharp (< 200 eV) spectral drop above 7 keV. However, in comparison to the first observation, the edge depth and energy have changed significantly. In addition to changes in the edge parameters, the high-energy spectrum appears steeper. The changes in the high-energy spectrum can be adequately explained in terms of a partial-covering absorber out-flowing from the central region. The low-energy spectrum also shows significant long-term spectral variability, including (1) a substantial increase in the disk temperature, (2) detection of an approx. 0.9 keV emission feature, and (3) the presence of ionized absorption that was detected during the ASCA mission. The large increase in disk temperature, and the more modest rise in luminosity, can be understood if we consider a slim-disk model for 1H0707-495. In addition, the higher disk luminosity could be the driving force behind the outflow and the re-appearance of an ionized medium during the second XMM-Newton observation.

  2. Electron events from the scattering with solar neutrinos in the search of keV scale sterile neutrino dark matter

    NASA Astrophysics Data System (ADS)

    Liao, Wei; Wu, Xiao-Hong; Zhou, Hang

    2014-05-01

    In a previous work, we showed that it is possible to detect keV scale sterile neutrino dark matter ?s in a ? decay experiment using radioactive sources such as T3 or Ru106. The signals of this dark matter candidate are monoenergetic electrons produced in the neutrino capture process ?s+ N'?N+e-. These electrons have energy greater than the maximum energy of the electrons produced in the associated decay process N'?N+e-+? e. Hence, signal electron events are well beyond the end point of the ? decay spectrum and are not polluted by the ? decay process. Another possible background, which is a potential threat to the detection of ?s dark matter, is the electron event produced by the scattering of solar neutrinos with electrons in target matter. In this article, we study in detail this possible background and discuss its implications for the detection of keV scale sterile neutrino dark matter. In particular, bound state features of electrons in Ru atoms are considered with care in the scattering process when the kinetic energy of the final electron is the same order of magnitude of the binding energy.

  3. Impact of IUdR on Rat 9L glioma cell survival for 25-35 keV photon-activated auger electron therapy.

    PubMed

    Alvarez, Diane; Hogstrom, Kenneth R; Brown, Thomas A D; Ii, Kenneth L Matthews; Dugas, Joseph P; Ham, Kyungmin; Varnes, Marie E

    2014-12-01

    The goal of the current study was to measure the energy dependence of survival of rat 9L glioma cells labeled with iododeoxyuridine (IUdR) that underwent photon-activated Auger electron therapy using 25-35 keV monochromatic X rays, i.e., above and below the K-edge energy of iodine. Rat 9L glioma cells were selected because of their radioresistance, ability to be implanted for future in vivo studies and analogy to radioresistant human gliomas. Survival curves were measured for a 4 MV X-ray beam and synchrotron produced monochromatic 35, 30 and 25 keV X-ray beams. IUdR was incorporated into the DNA at levels of 0, 9 and 18% thymidine replacement for 4 MV and 35 keV and 0 and 18% thymidine replacement for 30 and 25 keV. For 10 combinations of beam energy and thymidine replacement, 62 data sets (3-13 per combination) provided 776 data points (47-148 per combination). Survival versus dose data taken for the same combination, but on different days, were merged by including the zero-dose points in the nonlinear, chi-squared data fitting using the linear-quadratic model and letting the best estimate to the zero-dose plating efficiency for each of the different days be a fitting parameter. When comparing two survival curves, the ratio of doses resulting in 10% survival gave sensitization enhancement ratios (SER10) from which contributions due to linear energy transfer (LET) (SER10,LET), IUdR radiosensitization (SER10,RS), the Auger effect (SER10,AE) and the total of all effects (SER10,T) were determined. At 4 MV and 35, 30 and 25 keV, SER10,LET values were 1.00, 1.08 ± 0.03, 1.22 ± 0.02 and 1.37 ± 0.02, respectively. At 4 MV SER10,RS values for 9 and 18% IUdR were 1.28 ± 0.02 and 1.40 ± 0.02, respectively. Assuming LET effects were independent of percentage IUdR and radiosensitization effects were independent of energy, SER10,AE values for 18% IUdR at 35, 30 and 25 keV were 1.35 ± 0.05, 1.06 ± 0.03 and 0.98 ± 0.03, respectively. The value for 9% IUdR at 35 keV was 1.01 ± 0.04. First, we found the radioresistant rat 9L glioma cell line exhibited an SER10 due to the Auger effect of 1.35 at (35 keV, 18% IUdR) and an SER10 due to the radiosensitizing effect of 1.40 at (4 MV, 18% IUdR), both significantly less than values for previously reported cell lines. These low individual values emphasize the benefit of their combined value (SER10 of approximately 1.9) for achieving clinical benefit. Second, as expected, we observed that energies below the K-edge of iodine (25 and 30 keV), for which there are L, M and higher shell photoelectric events creating Auger electrons, show no promise for Auger electron therapy. Third, to proceed with future in vivo studies, additional data from 35-65 keV are needed to determine the optimal X-ray energy for IUdR Auger electron therapy. Only then can there be an answer to the question, how well the energy dependence of in vitro survival data supports the potential for photon-activated Auger electron therapy with IUdR in cancer radiotherapy. PMID:25409122

  4. Quiet-time Suprathermal (~0.1–1.5 keV) Electrons in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Tao, Jiawei; Wang, Linghua; Zong, Qiugang; Li, Gang; Salem, Chadi S.; Wimmer-Schweingruber, Robert F.; He, Jiansen; Tu, Chuanyi; Bale, Stuart D.

    2016-03-01

    We present a statistical survey of the energy spectrum of solar wind suprathermal (∼0.1–1.5 keV) electrons measured by the WIND 3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. After separating (beaming) strahl electrons from (isotropic) halo electrons according to their different behaviors in the angular distribution, we fit the observed energy spectrum of both strahl and halo electrons at ∼0.1–1.5 keV to a Kappa distribution function with an index κ and effective temperature Teff. We also calculate the number density n and average energy Eavg of strahl and halo electrons by integrating the electron measurements between ∼0.1 and 1.5 keV. We find a strong positive correlation between κ and Teff for both strahl and halo electrons, and a strong positive correlation between the strahl n and halo n, likely reflecting the nature of the generation of these suprathermal electrons. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. The halo κ is generally smaller than the strahl κ (except during the solar minimum of cycle 23). The strahl n is larger at solar maximum, but the halo n shows no difference between solar minimum and maximum. Both the strahl n and halo n have no clear association with the solar wind core population, but the density ratio between the strahl and halo roughly anti-correlates (correlates) with the solar wind density (velocity).

  5. Atomic, Molecular, and Optical Physics: Optical Excitation Function of H(1s-2p) Produced by electron Impact from Threshold to 1.8 keV

    NASA Technical Reports Server (NTRS)

    James, G. K.; Slevin, J. A.; Shemansky, D. E.; McConkey, J. W.; Bray, I.; Dziczek, D.; Kanik, I.; Ajello, J. M.

    1997-01-01

    The optical excitation function of prompt Lyman-Alpha radiation, produced by electron impact on atomic hydrogen, has been measured over the extended energy range from threshold to 1.8 keV. Measurements were obtained in a crossed-beams experiment using both magnetically confined and electrostatically focused electrons in collision with atomic hydrogen produced by an intense discharge source. A vacuum-ultraviolet mono- chromator system was used to measure the emitted Lyman-Alpha radiation. The absolute H(1s-2p) electron impact excitation cross section was obtained from the experimental optical excitation function by normalizing to the accepted optical oscillator strength, with corrections for polarization and cascade. Statistical and known systematic uncertainties in our data range from +/- 4% near threshold to +/- 2% at 1.8 keV. Multistate coupling affecting the shape of the excitation function up to 1 keV impact energy is apparent in both the present experimental data and present theoretical results obtained with convergent close- coupling (CCC) theory. This shape function effect leads to an uncertainty in absolute cross sections at the 10% level in the analysis of the experimental data. The derived optimized absolute cross sections are within 7% of the CCC calculations over the 14 eV-1.8 keV range. The present CCC calculations converge on the Bethe- Fano profile for H(1s-2p) excitation at high energy. For this reason agreement with the CCC values to within 3% is achieved in a nonoptimal normalization of the experimental data to the Bethe-Fano profile. The fundamental H(1s-2p) electron impact cross section is thereby determined to an unprecedented accuracy over the 14 eV - 1.8 keV energy range.

  6. Single-photon entanglement in the keV regime via coherent control of nuclear forward scattering.

    PubMed

    Plffy, Adriana; Keitel, Christoph H; Evers, Jrg

    2009-07-01

    Generation of single-photon entanglement is discussed in nuclear forward scattering. Using successive switchings of the direction of the nuclear hyperfine magnetic field, the coherent scattering of photons on nuclei is controlled such that two signal pulses are generated out of one initial pump pulse. The two time-resolved correlated signal pulses have different polarizations and energy in the keV regime. Spatial separation of the entangled field modes and extraction of the signal from the background can be achieved with the help of state-of-the-art x-ray polarizers and piezoelectric fast steering mirrors. PMID:19659176

  7. M Sub-Shell Cross Sections For 75-300 keV Proton Impact On W, Pt And Pb

    SciTech Connect

    Cipolla, Sam J.

    2011-06-01

    M sub-shell x-ray production cross sections from 75-300 keV proton bombardment of thick elemental targets of W, Pt, and Pb were measured and compared with ECPSSR and relativistic RPWBA-BC cross sections using different data bases of fluorescence yields, Coster-Kronig factors, and x-ray transition rates. With a few exceptions, the differences between the various data base comparisons were not significant. For different sub-shells, either ECPSSR or RPWBA-BC compared better with the measurements. In all cases, agreement with theory improved as the collision energy increased.

  8. One-dimensional x-ray imaging using a spherically bent mica crystal at 4.75 keV

    SciTech Connect

    Workman, J.; Evans, S.; Kyrala, G. A.

    2001-01-01

    One-dimensional x-ray imaging of static gold bars using a spherically bent mica crystal is presented for the first time at an x-ray energy of 4.75 keV. X rays are produced using 1-ns-square pulses on the TRIDENT laser facility driving the He-like resonance transition in solid titanium disks. Time-integrated images of square profile parallel gold bars are recorded on direct exposure film with a magnification of {approx}10. Rising edge measurements of the bars demonstrate resolutions of about 6--7 {mu}m over a 400 {mu}m field of view.

  9. Using a multielement refractive lens for the formation of a beam of 5.4-keV photons

    NASA Astrophysics Data System (ADS)

    Asadchikov, Victor E.; Dudchik, Yury I.; Kolchevsky, Nikolai N.; Komarov, Fadei F.; Senin, R. A.; Vinogradov, Alexander V.

    2002-07-01

    We developed and studied refracting microcapillary lens for x-ray photons with energy 5.4 keV. This lens is a glass capillary wiht a central channel filled with a number of concave microlenses. The lenses are made by injection compressed air into a capillary channel, previously filled by liquid polymer. The images of 20-100?m width slits are obtained. A good agreement is seen betweenthe image and slits sizes. Ray tracing calculations of iamge formation are made. Experimental and calculated results are in a good agreement.

  10. Phenomenological treatments of cross-sections for proton and hydrogen impact below 1 keV on molecular nitrogen

    NASA Technical Reports Server (NTRS)

    Porter, H. S.; Green, A. E. S.; Szydlik, P. P.

    1975-01-01

    An analytic independent-particle model is used to construct static potentials to describe the interaction of hydrogen-like ions with atoms and molecules. Parameters of the ion-atom potential are determined from ab initio total energy minimization procedure. The elastic scattering of He(+) from Ne and Ar is investigated as a test case and comparison is made with experiment. The model is then used in conjunction with low energy H(+)-N2 experimental data to construct differential and total cross-sections for the scattering of protons and hydrogen in the energy range of 10 eV to 1 keV from molecular nitrogen. Analytic forms are used to parametrize these cross-sections to facilitate their use in the calculation of energy deposition by protons and hydrogen atoms in atmospheric gases.

  11. MULTI-KEV X-RAY YIELDS FROM HIGH-Z GAS TARGETS FIELDED AT OMEGA

    SciTech Connect

    Kane, J O; Fournier, K B; May, M J; Colvin, J D; Thomas, C A; Marrs, R E; Compton, S M; Moody, J D; Bond, E J; Davis, J F

    2010-11-04

    The authors report on modeling of x-ray yield from gas-filled targets shot at the OMEGA laser facility. The OMEGA targets were 1.8 mm long, 1.95 mm in diameter Be cans filled with either a 50:50 Ar:Xe mixture, pure Ar, pure Kr or pure Xe at {approx} 1 atm. The OMEGA experiments heated the gas with 20 kJ of 3{omega} ({approx} 350 nm) laser energy delivered in a 1 ns square pulse. the emitted x-ray flux was monitored with the x-ray diode based DANTE instruments in the sub-keV range. Two-dimensional x-ray images (for energies 3-5 keV) of the targets were recorded with gated x-ray detectors. The x-ray spectra were recorded with the HENWAY crystal spectrometer at OMEGA. Predictions are 2D r-z cylindrical with DCA NLTE atomic physics. Models generally: (1) underpredict the Xe L-shell yields; (2) overpredict the Ar K-shell yields; (3) correctly predict the Xe thermal yields; and (4) greatly underpredict the Ar thermal yields. However, there are spreads within the data, e.g. the DMX Ar K-shell yields are correctly predicted. The predicted thermal yields show strong angular dependence.

  12. Monochromatic 8.05-keV Flash Radiography of Imploded Cone-in-Shell Targets

    NASA Astrophysics Data System (ADS)

    Theobald, W.; Solodov, A. A.; Stoeckl, C.; Glebov, V. Yu.; Ivancic, S.; Marshall, F. J.; McKiernan, G.; Mileham, C.; Sangster, T. C.; Beg, F. N.; Jarrott, C.; Giraldez, E.; Stephens, R. B.; Wei, M. S.; Key, M. H.; McLean, H.; Santos, J.

    2012-10-01

    Fast ignition has the potential of high fusion gains through the ignition of massive DT fuel assemblies. The cone-in-shell target concept might be one way of achieving this goal. Integrated experiments on OMEGA have demonstrated 4% coupling efficiency of short-pulse laser energy into the compressed target.footnotetextW. Theobald et al., Phys. Plasmas 18, 056305 (2011). An improved target design has been developed with a low-Z cone tip. The goal was to validate 2-D radiation--hydrodynamic modeling predictions of the new target design. The technique used was flash radiography from a monochromatic 8.05-keV x-ray source.footnotetext J. A. King et al., Appl. Phys. Lett. 86, 191501 (2005). Cu foils were irradiated by the 1.5-kJ, 10-ps OMEGA EP short-pulse laser to generate a bright Cu K? area backlighter source, which was used in combination with monochromatic imaging with a spherical Bragg crystal to backlight the cone-in-shell implosions at various times around peak compression. Flash radiography provides high-quality images of the fuel assembly with 10-ps time resolution and 10-?m spatial resolution. This work was supported by the U.S. Department of Energy under Cooperative Agreement Nos. DE-FC52-08NA28302 and DE-FC02-04ER54789.

  13. High-efficiency multilevel zone plates for keV X-rays

    NASA Astrophysics Data System (ADS)

    di Fabrizio, E.; Romanato, F.; Gentili, M.; Cabrini, S.; Kaulich, B.; Susini, J.; Barrett, R.

    1999-10-01

    The development of high brilliance X-ray sources coupled with advances in manufacturing technologies has led to significant improvements in submicrometre probes for spectroscopy, diffraction and imaging applications. The generation of a small beam spot size is commonly based on three principles: total reflection (as used in optical elements involving mirrors or capillaries), refraction (such as in refractive lenses) and diffraction. The latter effect is employed in Bragg-Fresnel or Soret lenses, commonly known as Fresnel zone plate lenses. These lenses currently give the best spatial resolution, but are traditionally limited to rather soft X-rays-at high energies, their use is still limited by their efficiency. Here we report the fabrication of high-efficiency, high-contrast gold and nickel multistep (quaternary) Fresnel zone plates using electron beam lithography. We achieve a maximum efficiency of 55% for the nickel plate at 7keV. In addition to their high efficiency, the lenses offer the advantages of low background signal and effective reduction of unwanted diffraction orders. We anticipate that these lenses should have a significant impact on techniques such as microscopy, micro-fluorescence and micro-diffraction, which require medium resolution (500-100nm) and high flux at fixed energies.

  14. LUCIA - a new 1-7 keV {mu}-XAS Beamline

    SciTech Connect

    Janousch, M.; Schmidt, Th.; Wetter, R.; Grolimund, G.; Scheidegger, A.M.; Flank, A.-M.; Lagarde, P.; Cauchon, G.; Bac, S.; Dubuisson, J.M.

    2004-05-12

    LURE-SOLEIL (France) and the Swiss Light Source (SLS) are building together a new micro focused beamline for micro x-ray absorption spectroscopy and micro imaging. This line is designed to deliver a photon flux of the order of 1012 ph/sec on a 1 x 1 {mu}m spot within the energy domain of 0.8 to 7 keV. This beam line is being installed on the X07M straight section of SLS. The source is an APPLE II undulator with a period of 54 mm. The main advantage of this device lies in the delivery of any degree of polarization, linear or circular, over the whole energy range, without the need of a sample-position change. The monochromator will be a fixed exit double crystal equipped with 5 sets of crystals, thanks to the very narrow photon beam from the undulator ( Beryl, KTP, YB66, InSb(111), Si(111) ). The optics includes a first horizontal focusing mirror (spherical), which produces an intermediate source for the horizontal mirror of a Kirkpatrick-Baez (KB) system. The vertical mirror of the KB directly images the source. Finally, a low-pass double mirror filter insures a proper harmonic rejection.

  15. Depth profiling of nitrogen using 429 keV and 897 keV resonances in the 15N(p, ??) 12C reaction

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjiv; Vikram Kumar, S.; Reddy, G. L. N.; Kain, Vivekanand; Ramana, J. V.; Raju, V. S.

    2005-11-01

    Resonances at 429 keV and 897 keV in the 15N(p, ??)12C reaction were investigated for depth profiling nitrogen in materials containing nitrogen isotopes in natural abundances. Both resonances exhibit identical sensitivity, however the resonance at 897 keV is prone to interferences from light elements, F and Al in particular. These resonances were employed to depth profile nitrogen in binary and ternary nitride films and in stainless steel wires that had fractured while in use in an ammonia converter vessel of a heavy water plant. The studies indicated the ingress of nitrogen into the interiors of the wires under operating conditions of the plant that lead to nitriding causing embrittlement of the components.

  16. Measurement of the ionization yield of nuclear recoils in liquid argon at 80 and 233 keV

    NASA Astrophysics Data System (ADS)

    Bondar, A.; Buzulutskov, A.; Dolgov, A.; Grishnyaev, E.; Polosatkin, S.; Shekhtman, L.; Shemyakina, E.; Sokolov, A.

    2014-10-01

    The energy calibration of nuclear recoil detectors is of primary importance to rare-event experiments such as those of direct dark matter search and coherent neutrino-nucleus scattering. In particular, such a calibration is performed by measuring the ionization yield of nuclear recoils in liquid Ar and Xe detection media, using neutron elastic scattering off nuclei. In the present work, the ionization yield for nuclear recoils in liquid Ar has for the first time been measured in the higher energy range, at 80 and 233 keV, using a two-phase Cryogenic Avalanche Detector (CRAD) and DD neutron generator. The ionization yield in liquid Ar at an electric field of 2.3 kV/cm amounted to 7.8+/-1.1 and 9.7+/-1.3 \\text{e}^-/\\text{keV} at 80 and 233 keV, respectively. The Jaffe model for nuclear recoil-induced ionization, in contrast to that of Thomas-Imel, can probably consistently describe the energy dependence of the ionization yield.

  17. HEAO 1 Observations of the Perseus cluster above 10 keV

    SciTech Connect

    Primini, F.A.; Basinska, E.; Howe, S.K.; Land, F.; Levine, A.M.; Lewin, W.H.G.; Rothschild, R.; Baity, W.A.; Gruber, D.E.; Knight, F.K.; Matteson, J.L.; Lea, S.M.; Reichert, G.A.

    1981-01-01

    We present the results of HEAO 1 observations of the Perseus cluster from 10 to 150 keV in 1977 August and 1978 February and August. The spectrum exhibits a previously unknown hard (>25 keV) component in addition to the previously known thermal bremsstrahlung emission. The data presented show no significant evidence of variability from 10.5 keV to 93.5 keV, and a comparison of our results with earlier results indicates no strong evidence for variability above 25 keV over a time scale of approx. 4 yr. If the hard-component excess is due to NGC 1275, the data imply a 2--6 keV X-ray luminosity of approx.1 x 10/sup 44/ ergs s /sup -1/ for the galaxy, or approx.15% of the total cluster emission from 2 to 6 keV and a 25--40 luminosity of approx.8 x 10/sup 43/ ergs s/sup -1/. In the context of a model of hard-X-ray emission by inverse Compton scattering of relativistic electrons on the 2.7 K background, the X-ray spectrum, in conjuction with previously reported radio data, implies a magnetic field of B>10/sup -7/ gauss.

  18. Digging gold: keV He+ ion interaction with Au

    PubMed Central

    Veligura, Vasilisa; Hlawacek, Gregor; Berkelaar, Robin P; Zandvliet, Harold J W; Poelsema, Bene

    2013-01-01

    Summary Helium ion microscopy (HIM) was used to investigate the interaction of a focused He+ ion beam with energies of several tens of kiloelectronvolts with metals. HIM is usually applied for the visualization of materials with extreme surface sensitivity and resolution. However, the use of high ion fluences can lead to significant sample modifications. We have characterized the changes caused by a focused He+ ion beam at normal incidence to the Au{111} surface as a function of ion fluence and energy. Under the influence of the beam a periodic surface nanopattern develops. The periodicity of the pattern shows a power-law dependence on the ion fluence. Simultaneously, helium implantation occurs. Depending on the fluence and primary energy, porous nanostructures or large blisters form on the sample surface. The growth of the helium bubbles responsible for this effect is discussed. PMID:23946914

  19. Digging gold: keV He(+) ion interaction with Au.

    PubMed

    Veligura, Vasilisa; Hlawacek, Gregor; Berkelaar, Robin P; van Gastel, Raoul; Zandvliet, Harold J W; Poelsema, Bene

    2013-01-01

    Helium ion microscopy (HIM) was used to investigate the interaction of a focused He(+) ion beam with energies of several tens of kiloelectronvolts with metals. HIM is usually applied for the visualization of materials with extreme surface sensitivity and resolution. However, the use of high ion fluences can lead to significant sample modifications. We have characterized the changes caused by a focused He(+) ion beam at normal incidence to the Au{111} surface as a function of ion fluence and energy. Under the influence of the beam a periodic surface nanopattern develops. The periodicity of the pattern shows a power-law dependence on the ion fluence. Simultaneously, helium implantation occurs. Depending on the fluence and primary energy, porous nanostructures or large blisters form on the sample surface. The growth of the helium bubbles responsible for this effect is discussed. PMID:23946914

  20. Improved methods for the generation of 24.5 keV neutron beams with possible application to boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Constantine, G.; Baker, L. J.; Taylor, N. P.

    1986-09-01

    The production of epithermal neutron beams, filtered to provide a spectrum in which a small energy range predominates, is of importance for radiobiological research and in the development and calibration of instruments for monitoring intermediate energy neutrons. The penetration characteristics of intermediate energy neutrons in tissue lead to the possibility of application in the field of neutron capture therapy if beams of sufficient intensity and adequate spectral properties can be generated. In this paper methods of utilising the 24.5 keV antiresonance in the iron neutron cross section are described, and the DENIS (depth enhanced neutron intense source) principle by which beam intensities may be optimised is explained. Calculations and experimental measurements in an in-core facility in the DIDO reactor at Harwell have indicated that a DENIS scatterer can achieve a 6-fold improvement in 24.5 keV beam intensity compared with a conventional titanium disc scatterer.

  1. Measurement of the 10 keV resonance in the B10(p,?0)Be7 reaction via the Trojan Horse method

    NASA Astrophysics Data System (ADS)

    Spitaleri, C.; Lamia, L.; Puglia, S. M. R.; Romano, S.; La Cognata, M.; Crucill, V.; Pizzone, R. G.; Rapisarda, G. G.; Sergi, M. L.; Del Santo, M. Gimenez; Carlin, N.; Munhoz, M. G.; Souza, F. A.; Szanto de Toledo, A.; Tumino, A.; Irgaziev, B.; Mukhamedzhanov, A.; Tabacaru, G.; Burjan, V.; Kroha, V.; Hons, Z.; Mrazek, J.; Zhou, Shu-Hua; Li, Chengbo; Wen, Qungang; Wakabayashi, Y.; Yamaguchi, H.; Somorjai, E.

    2014-09-01

    The B10(p ,?0)Be7 bare nucleus astrophysical S (E) factor has been measured for the first time at energies from about 100 keV down to about 5 keV by means of the Trojan Horse method (THM). In this energy region, the S (E) factor is strongly dominated by the 8.699 MeV C11 level (J?=52+), producing an s-wave resonance centered at about 10 keV in the entrance channel. Up to now, only the high-energy tail of this resonance has been measured, while the low-energy trend is extrapolated from the available direct data. The THM has been applied to the quasifree H2(B10,?0 Be7)n reaction induced at a boron-beam energy of 24.5 MeV. An accurate analysis leads to the determination of the B10(p ,?0)Be7 S (E) factor and of the corresponding electron screening potential Ue, thus giving for the first time an independent evaluation of it.

  2. The Swift/Fermi GRB 080928 from 1 eV to 150 keV

    NASA Technical Reports Server (NTRS)

    Sonbas, Eda; Rossi, A.; Schulze, S.; Klose, S.; Kann, D. A.; Ferrero, P.; NicuesaGuelbenzu, A.; Rau, A.; Kruehler, T.; Greiner, J.; Schady, P.; Afonso, P. M. J.; Clemens, C.; Filgas, R.; KuepcuYoldas, A.; McBreen, S.; Olivares, F.; Szokoly, G.; Yoldas, A.; Krimm, H. A.; Johannesson, G.; Panaitescu, A.; Yuan, F.; Pandey, S. B.; Akerlof, C. W.

    2010-01-01

    We present the results of a comprehensive study of the Gamma-Ray Burst 080928 and of its afterglow. GRB 08092 was a long burst detected by Swift/BAT and Fermi/GBM, It is one of the exceptional cases where optical emission was already detected when the GRB itself was still radiating in the gamma-ray band. for nearly 100 seconds simultaneous optical X-ray and gamma-ray data provide a coverage of the spectral energy distribution of the transient source from about 1 eV to 150 keV. Here we analyze the prompt emission, constrain its spectral propertIes. and set lower limits on the initial Lorentz factor of the relativistic outflow, In particular. we show that the SED during the main prompt emission phase is in agreement with synchrotron radiation. We construct the optical/near-infrared light curve and the spectral energy distribution based on Swift/UVOT. ROTSE-Illa (Australia) and GROND (La Silla) data and compare it to the X-ray light curve retrieved from the Swift/XRT repository. We show that its bumpy shape can be modeled by multiple energy injections into the forward shock. Furthermore, we provide evidence that the temporal and spectral evolution of the first strong flare seen in the early X-ray light curve can be explained by large-angle emission. Finally, we report on the results of our search for the GRB host galaxy, for which only a deep upper limit can be provided.

  3. An Einstein survey of the 1 keV soft X-ray background in the Galactic plane

    NASA Technical Reports Server (NTRS)

    Stanford, John M.; Caillault, Jean-Pierre

    1994-01-01

    We have analyzed 56 Einstein Observatory Imaging Proportional Counter (IPC) observations within +/- 3 deg of the Galactic plane in order to determine the low-latitude soft X-ray background flux in the 0.56-1.73 keV band. Any detected X-ray point source which fell within our regions of study was removed from the image, enabling us to present maps of the background flux as a function of Galactic latitude along 18 meridians. These maps reveal considerable structure to the background in the Galactic plane on an angular scale of approximately 1 deg. Our results are compared with those of an earlier study of the 1 keV X-ray background along l = 25 deg by Kahn & Caillault. The double-peaked structure they found is not discernible in our results, possibly because of the presence of solar backscattered flux in their data. A model which takes into account contributions to the background by extragalactic and stellar sources, the distribution of both atomic and molecular absorbing material with the Galaxy, the energy dependence of the cross section for absorption of X-rays, and the energy dependence of the detector has been constructed and fitted to these new data to derive constraints on the scale height, temperature, and volume emissivity of the unaccounted-for X-ray-emitting material. The results of this model along l = 25 deg are roughly similar to those of the model of Kahn & Caillault along the same meridian.

  4. A DATABASE OF >20 keV ELECTRON GREEN'S FUNCTIONS OF INTERPLANETARY TRANSPORT AT 1 AU

    SciTech Connect

    Agueda, N.; Sanahuja, B.; Vainio, R.

    2012-10-15

    We use interplanetary transport simulations to compute a database of electron Green's functions, i.e., differential intensities resulting at the spacecraft position from an impulsive injection of energetic (>20 keV) electrons close to the Sun, for a large number of values of two standard interplanetary transport parameters: the scattering mean free path and the solar wind speed. The nominal energy channels of the ACE, STEREO, and Wind spacecraft have been used in the interplanetary transport simulations to conceive a unique tool for the study of near-relativistic electron events observed at 1 AU. In this paper, we quantify the characteristic times of the Green's functions (onset and peak time, rise and decay phase duration) as a function of the interplanetary transport conditions. We use the database to calculate the FWHM of the pitch-angle distributions at different times of the event and under different scattering conditions. This allows us to provide a first quantitative result that can be compared with observations, and to assess the validity of the frequently used term beam-like pitch-angle distribution.

  5. The System of Nanosecond 280-KeV He+ Pulsed Beam

    SciTech Connect

    Junphong, P.; Ano, V.; Lekprasert, B.; Suwannakachorn, D.; Thongnopparat, N.; Vilaithong, T.; Wiedemann, H.; /SLAC /SLAC, SSRL

    2006-05-01

    At Fast Neutron Research Facility, the 150 kV-pulses neutron generator is being upgraded to a 280-kV-pulsed-He beam for time-of-flight Rutherford backscattering spectrometry. It involves replacing the existing beam line elements by a multicusp ion source, a 400-kV accelerating tube, 45{sup o}-double focusing dipole magnet and quadrupole lens. The multicusp ion source is a compact filament-driven of 2.6 cm in diameter and 8 cm in length. The current extracted is 20.4 {micro}A with 13 kV of extraction voltage and 8.8 kV of Einzel lens voltage. The beam emittance has found to vary between 6-12 mm mrad. The beam transport system has to be redesigned based on the new elements. The important part of a good pulsed beam depends on the pulsing system. The two main parts are the chopper and buncher. An optimized geometry for the 280 keV pulsed helium ion beam will be presented and discussed. The PARMELA code has been used to optimize the space charge effect, resulting in pulse width of less than 2 ns at a target. The calculated distance from a buncher to the target is 4.6 m. Effects of energy spread and phase angle between chopper and buncher have been included in the optimization of the bunch length.

  6. The 3 H(d , γ) Reaction at Ec . m . <= 300 keV

    NASA Astrophysics Data System (ADS)

    Parker, C. E.; Brune, C. R.; Massey, T. N.; O'Donnell, J. E.; Richard, A. L.; Sayre, D. B.

    2015-04-01

    The 3 H(d , γ) 5He reaction has been measured using a 500-keV pulsed deuteron beam incident on a stopping titanium tritide target at the Edwards Accelerator Laboratory. The time-of-flight technique has been used to distinguish the γ-rays from neutrons in the bismuth germinate (BGO) γ-ray detector. A stilbene scintillator and an NE-213 scintillator have been used to detect the neutrons from the 3 H(d , n) α reaction using both the pulse-shape discrimination and time-of-flight techniques. A newly designed target holder with a silicon surface barrier detector to simultaneously measure α-particles to normalize the number of neutrons, along with a new titanium tritide target, was incorporated for subsequent measurements. The γ-rays have been measured at laboratory angles of 0 °, 45 °, 90 °, and 135 °. Information about the γ-ray energy distribution for the unbound ground state and first excited state of 5He can be obtained experimentally by comparing the BGO data to Monte Carlo simulations. The 3 H(d , γ) /3 H(d , n) branching ratio has also been measured. Data analysis is currently underway for the subsequent measurements. This work is supported in part by Lawrence Livermore National Laboratory and the U.S. D.O.E. (NNSA) through Grant No. DE-NA0001837.

  7. Characterization of 1 MW, 40 keV, 1 s neutral beam for plasma heating.

    PubMed

    Sorokin, A; Belov, V; Davydenko, V; Deichuli, P; Ivanov, A; Podyminogin, A; Shikhovtsev, I; Shulzhenko, G; Stupishin, N; Tiunov, M

    2010-02-01

    Neutral beam with geometrical focusing for plasma heating in moderate-size plasma devices has been developed in Budker Institute of Nuclear Physics, Novosibirsk. When operated with hydrogen, the neutral beam power is 1 MW, pulse duration is 1 s, beam energy is 40 keV, and angular divergence is 1.2 degrees. Initial ion beam is extracted and accelerated by triode multiapertures ion-optical system. To produce 1 MW neutral beam, about 40 A proton current is extracted with nominal current density of 320 mA/cm(2). Ion-optical system has 200 mm diameter grids with 44% transparency. The grids have inertia cooling and heat is removed between the pulses by water flowing in channels placed on periphery of the grids. A plasma emitter for ion extraction is produced by rf-plasma box. Ion species mix of rf plasma source amounts to 70%, 20%, and 10% of H(+), H(2)(+), and H(3)(+) ions, respectively, by current. Heavy impurities contribute less than 0.3%. PMID:20192415

  8. The 5-10 keV AGN luminosity function at 0.01 < z < 4.0

    NASA Astrophysics Data System (ADS)

    Fotopoulou, S.; Buchner, J.; Georgantopoulos, I.; Hasinger, G.; Salvato, M.; Georgakakis, A.; Cappelluti, N.; Ranalli, P.; Hsu, L. T.; Brusa, M.; Comastri, A.; Miyaji, T.; Nandra, K.; Aird, J.; Paltani, S.

    2016-03-01

    The active galactic nuclei (AGN) X-ray luminosity function traces actively accreting supermassive black holes and is essential for the study of the properties of the AGN population, black hole evolution, and galaxy-black hole coevolution. Up to now, the AGN luminosity function has been estimated several times in soft (0.5-2 keV) and hard X-rays (2-10 keV). AGN selection in these energy ranges often suffers from identification and redshift incompleteness and, at the same time, photoelectric absorption can obscure a significant amount of the X-ray radiation. We estimate the evolution of the luminosity function in the 5-10 keV band, where we effectively avoid the absorbed part of the spectrum, rendering absorption corrections unnecessary up to NH ~ 1023 cm-2. Our dataset is a compilation of six wide, and deep fields: MAXI, HBSS, XMM-COSMOS, Lockman Hole, XMM-CDFS, AEGIS-XD, Chandra-COSMOS, and Chandra-CDFS. This extensive sample of ~1110 AGN (0.01 < z < 4.0, 41 < log Lx < 46) is 98% redshift complete with 68% spectroscopic redshifts. For sources lacking a spectroscopic redshift estimation we use the probability distribution function of photometric redshift estimation specifically tuned for AGN, and a flat probability distribution function for sources with no redshift information. We use Bayesian analysis to select the best parametric model from simple pure luminosity and pure density evolution to more complicated luminosity and density evolution and luminosity-dependent density evolution (LDDE). We estimate the model parameters that describe best our dataset separately for each survey and for the combined sample. We show that, according to Bayesian model selection, the preferred model for our dataset is the LDDE. Our estimation of the AGN luminosity function does not require any assumption on the AGN absorption and is in good agreement with previous works in the 2-10 keV energy band based on X-ray hardness ratios to model the absorption in AGN up to redshift three. Our sample does not show evidence of a rapid decline of the AGN luminosity function up to redshift four.

  9. THE ORIGIN OF THE 6.4 keV LINE EMISSION AND H{sub 2} IONIZATION IN THE DIFFUSE MOLECULAR GAS OF THE GALACTIC CENTER REGION

    SciTech Connect

    Dogiel, V. A.; Chernyshov, D. O.; Tatischeff, V.; Terrier, R.

    2013-07-10

    We investigate the origin of the diffuse 6.4 keV line emission recently detected by Suzaku and the source of H{sub 2} ionization in the diffuse molecular gas of the Galactic center (GC) region. We show that Fe atoms and H{sub 2} molecules in the diffuse interstellar medium of the GC are not ionized by the same particles. The Fe atoms are most likely ionized by X-ray photons emitted by Sgr A* during a previous period of flaring activity of the supermassive black hole. The measured longitudinal intensity distribution of the diffuse 6.4 keV line emission is best explained if the past activity of Sgr A* lasted at least several hundred years and released a mean 2-100 keV luminosity {approx}> 10{sup 38} erg s{sup -1}. The H{sub 2} molecules of the diffuse gas cannot be ionized by photons from Sgr A*, because soft photons are strongly absorbed in the interstellar gas around the central black hole. The molecular hydrogen in the GC region is most likely ionized by low-energy cosmic rays, probably protons rather than electrons, whose contribution into the diffuse 6.4 keV line emission is negligible.

  10. Origins of the 1/4 keV Soft X-Ray Background

    NASA Astrophysics Data System (ADS)

    Bellm, Eric C.; Vaillancourt, John E.

    2005-04-01

    Snowden and coworkers have presented a model for the 1/4 keV soft X-ray diffuse background in which the observed flux is dominated by a ~106 K thermal plasma located in a 100-300 pc diameter bubble surrounding the Sun but has significant contributions from a very patchy Galactic halo. Halo emission provides about 11% of the total observed flux and is responsible for half of the H I anticorrelation. The remainder of the anticorrelation is presumably produced by displacement of disk H I by the varying extent of the Local Hot Bubble (LHB). The ROSAT R1 and R2 bands used for this work had the unique spatial resolution and statistical precision required for separating the halo and local components but provide little spectral information. Some consistency checks had been made with older observations at lower X-ray energies, but we have made a careful investigation of the extent to which the model is supported by existing sounding rocket data in the Be (73-111 eV) and B (115-188 eV) bands, where the sensitivities to the model are qualitatively different from the ROSAT bands. We conclude that the two-component model is well supported by the low-energy data. We find that these combined observations of the local component may be consistent with single-temperature thermal emission models in collisional ionization equilibrium if depleted abundances are assumed. However, different model implementations give significantly different results, offering little support for the conclusion that the astrophysical situation is so simple.

  11. Scaling of above 4keV X-ray Sources to 100kJ Yields from the "Z" Accelerator

    NASA Astrophysics Data System (ADS)

    Deeney, C.; Nash, T. J.; Douglas, M. R.; Spielman, R. B.; Chandler, G. A.; Fehl, D.; Thornhill, J. W.; Davis, J.; Clark, R. C.; Apruzese, J. P.; Whitney, K. G.

    1997-11-01

    The ``Z'' accelerator at SNL implodes masses of above 1 mg/cm with 1 MJ of kinetic energy. Experiments with titanium wire arrays and stainless steel have shown that these implosions produce more than 100 kJ of x-rays above 4 keV and above 100TW, 1.3 MJ of total radiation. In the Ti case, the measured energies are only a factor of 2 lower than 1D predictions. Spectral analyses using CRE models indicate that ion densities of 2E20/cc and electron temperatures of 2.5 keV are being achieved. In this paper, we present these results and compare them to 1D ad 2D calculations.

  12. A laboratory 8 keV transmission full-field x-ray microscope with a polycapillary as condenser for bright and dark field imaging

    NASA Astrophysics Data System (ADS)

    Baumbach, S.; Kanngießer, B.; Malzer, W.; Stiel, H.; Wilhein, T.

    2015-08-01

    This article introduces a laboratory setup of a transmission full-field x-ray microscope at 8 keV photon energy. The microscope operates in bright and dark field imaging mode with a maximum field of view of 50 μm. Since the illumination geometry determines whether the sample is illuminated homogeneously and moreover, if different imaging methods can be applied, the condenser optic is one of the most significant parts. With a new type of x-ray condenser, a polycapillary optic, we realized bright field imaging and for the first time dark field imaging at 8 keV photon energy in a laboratory setup. A detector limited spatial resolution of 210 nm is measured on x-ray images of Siemens star test patterns.

  13. Compact focusing spectrometer: Visible (1 eV) to hard x-rays (200 keV)

    NASA Astrophysics Data System (ADS)

    Baronova, E. O.; Stepanenko, A. M.; Pereira, N. R.

    2014-11-01

    A low-cost spectrometer that covers a wide range of photon energies can be useful to teach spectroscopy, and for simple, rapid measurements of the photon spectrum produced by small plasma devices. The spectrometer here achieves its wide range, nominally from 1 eV to 200 keV, with a series of spherically and cylindrically bent gratings or crystals that all have the same shape and the same radius of curvature; they are complemented by matching apertures and diagnostics on the Rowland circle that serves as the circular part of the spectrometer's vacuum vessel. Spectral lines are easily identified with software that finds their positions from the dispersion of each diffractive element and the known energies of the lines.

  14. Investigating ionisation cluster size distribution due to sub-1 keV electrons in view of Heisenberg's Uncertainty

    NASA Astrophysics Data System (ADS)

    Li, B.; Palmans, H.; Hao, L.; Nisbet, A.

    2015-09-01

    As the wavelengths of low energy electrons become comparable with the length scale of the mean ionisation step size, each event particle should be treated with care as the condition outlined in Heisenberg's uncertainty principle (HUP) should also be satisfied. Within this quantum-classical regime, spatial delocalisations of individual ionisation event sites that are generated outside the target region are calculated, and particular attention is given to the validity of using classical transport methods in simulations of nanodosimetric parameters such as mean cluster size, first and second moments, variance and cumulative frequency of ionisation cluster-size probability distributions. This paper presents the comparison between conventionally calculated nanodosimetric quantities and the ones where interacting particles are treated semi-classically with spatial uncertainties satisfied by HUP. The simulated primary charged particles are electrons of energies between 100 eV and 1 keV in DNA equivalent target aqueous water volumes using GEANT4-DNA.

  15. INTEGRAL Observations of the Galactic 511 keV Emission and MeV Gamma-ray Astrophysics

    NASA Technical Reports Server (NTRS)

    Watanabe, Ken

    2005-01-01

    Although there are a number of interesting phenomena, such as Nucleosynthesis in stars, in the MeV energy region, the observations have been difficult due to a small signal to noise (background) ratio (less than 1%). While NASA's Compton Gamma-ray Observatory (CGRO) enabled us to explore the Gamma-ray universe, ESA's INTEGRAL mission, launched in 2002, is providing us more detailed information with its superior energy and angular resolution. We will briefly discuss some of the current issues in MeV Gamma-ray Astrophysics. Then, we will focus on the Galactic 511 keV emission with the latest INTEGRAL observations, and talk about challenges we currently have.

  16. Study of K-line radiation of thick titanium produced in collisions of keV electrons.

    PubMed

    Yadav, Namita; Bhatt, Pragya; Singh, Raj; Llovet, X; Shanker, R

    2011-10-01

    The characteristic K-line yields Y(E?) of a pure thick titanium (Z=22) element target are measured for 8-18 keV electron impact and compared with the simulation calculations using PENELOPE code. A fair agreement between experiment and simulation results is found within the existing experimental uncertainty of measurements. The ratio F of indirectly produced characteristic Ti K X-ray yield to its total (directly+indirectly) yield is determined by employing an approximate analytical formulation of Hanson and Cowan (Hanson, H.P., Cowan, D.J., 1961. Phys. Rev. 124, 22-26). It is found that F changes strongly with impact energy E? for normal angle of incidence in contrast to a mild change predicted by the simulation calculations. Furthermore, experimental and simulation results for peak to effective continuum ratio R of Ti K-line are compared and discussed for the energy range of impact of the present investigation. PMID:21723738

  17. Ion range and damage depth parameters for 20-200 keV Pb + ion implantation in Si

    NASA Astrophysics Data System (ADS)

    Christodoulides, C. E.; Kadhim, N. J.; Carter, G.; Jimenez-Rodriguez, J. J.; Gras-Marti, A.

    The depth distributions of both implanted atoms and radiation damage generated by 20-200 keV Pb + ion implantation of Si at room temperature have been measured by high resolution (low angle incidence or exit) Rutherford backscattering and channeling. The moments derived from these distributions are found to fit well to the Wilson, Haggmark and Biersack model calculations whilst the fit of the ion range data to Kalbitzer-Oetzmann's compilations is excellent. The variation of the damage depth distributions with increasing ion fluence were also determined and the increase in the depth of the amorphous layercrystalline substrate interface was measured as a function of both fluence and energy. The variation of this interface depth with fluence and energy was found to agree well with a simple direct amorphous zone creation and overlap model.

  18. Measurement of88Sr K-shell ionization probability across the nuclear elastic-scattering resonance at 5060 keV

    NASA Astrophysics Data System (ADS)

    Chemin, J. F.; Anholt, R.; Stoller, Ch.; Meyerhot, W. E.; Amundsen, P. A.

    1981-09-01

    We have measured the dependence of the Sr K-shell-ionization probability on the projectile energy in the vicinity of the d-wave iosobaric analog resonance at 5060 keV in the reaction 88Sr(p,p)88Sr. The variation of the ionization probability with projectile enegy is interpreted in terms of a phase shift between the incoming and outgoing atomic ionization amplitudes due to the nuclear time delay.

  19. Alignment of the 1s2p vacancy states of Ne doubly ionized by 700-2000-keV proton impact

    NASA Astrophysics Data System (ADS)

    Takcs, E.; Ricz, S.; Vgh, J.; Kdr, I.; Plinks, J.; Sulik, B.; Tth, L.; Bernyi, D.; Kabachnik, N. M.

    1994-08-01

    The angular distribution of KL23-LLL23 Auger electrons emitted from the decay of 1s2p vacancy states of Ne doubly ionized by 700-2000-keV protons has been measured. From the measured anisotropy of the Auger lines the alignment of the double-vacancy states has been deduced. Our data compared with different theories indicate that the shake-off plays an important role in the double-ionization process at these energies.

  20. Electron collisional detachment processes for a 250 keV D/sup -/ ion beam in a partially ionized hydrogen target

    SciTech Connect

    Savas, S.E.

    1980-09-01

    Neutral atom beams with energies above 200 keV may be required for various purposes in magnetic fusion devices following TFTR, JET and MFTF-B. These beams can be produced much more efficiently by electron detachment from negative ion beams than by electron capture by positive ions. We have investigated the efficiency with which such neutral atoms can be produced by electron detachment in partially ionized hydrogen plasma neutralizers.

  1. Microcollimator for micrometer-wide stripe irradiation of cells using 20-30 keV X rays.

    PubMed

    Pataky, Kristopher; Villanueva, Guillermo; Liani, Andre; Zgheib, Omar; Jenkins, Nathan; Halazonetis, Demetrios J; Halazonetis, Thanos D; Brugger, Juergen

    2009-08-01

    Abstract Pataky, K., Villanueva, G., Liani, A., Zgheib, O., Jenkins, N., Halazonetis, D. J., Halazonetis, T. D. and Brugger, J. Microcollimator for Micrometer-Wide Stripe Irradiation of Cells Using 20-30 keV X Rays. Radiat. Res. 172, 252-259 (2009). The exposure of subnuclear compartments of cells to ionizing radiation is currently not trivial. We describe here a collimator for micrometer-wide stripe irradiation designed to work with conventional high-voltage X-ray tubes and cells cultured on standard glass cover slips. The microcollimator was fabricated by high-precision silicon micromachining and consists of X-ray absorbing chips with grooves of highly controlled depths, between 0.5-10 microm, along their surfaces. These grooves form X-ray collimating slits when the chips are stacked against each other. The use of this device for radiation biology was examined by irradiating human cells with X rays having energies between 20-30 keV. After irradiation, p53 binding protein 1 (53BP1), a nuclear protein that is recruited at sites of DNA double-strand breaks, clustered in lines corresponding to the irradiated stripes. PMID:19630530

  2. keV scale {nu}{sub R} dark matter and its detection in {beta} decay experiments

    SciTech Connect

    Liao Wei

    2010-10-01

    We study dark matter (DM) in the model with one keV scale right-handed neutrino {nu}{sub R1} and two GeV scale right-handed neutrinos {nu}{sub R2,3}, the {nu}SM. We find that one of the GeV scale right-handed neutrinos can have a much longer lifetime than the other when two GeV scale right-handed neutrinos are degenerate. We show that the mass and mixing of light neutrinos can be explained in this case. Significant entropy release can be generated in a reheating produced by the decay of one of the GeV scale {nu}{sub R}. The density of {nu}{sub R1} DM can be diluted by 2 orders of magnitude, and the mixing of {nu}{sub R1} with active neutrinos is allowed to be much larger, reaching the bound from x-ray observation. This mixing can lead to a sizable rate of {nu}{sub R1} capture by radioactive nuclei. The {nu}{sub R1} capture events are mono-energetic electrons with keV scale energy away from the beta decay spectrum. This is a new way to detect DM in the Universe.

  3. The 0.3-30 keV Spectra of Powerful Starburst Galaxies: NuSTAR and Chandra Observations of NGC 3256 and NGC 3310

    NASA Astrophysics Data System (ADS)

    Lehmer, B. D.; Tyler, J. B.; Hornschemeier, A. E.; Wik, D. R.; Yukita, M.; Antoniou, V.; Boggs, S.; Christensen, F. E.; Craig, W. W.; Hailey, C. J.; Harrison, F. A.; Maccarone, T. J.; Ptak, A.; Stern, D.; Zezas, A.; Zhang, W. W.

    2015-06-01

    We present nearly simultaneous Chandra and NuSTAR observations of two actively star-forming galaxies within 50 Mpc: NGC 3256 and NGC 3310. Both galaxies are significantly detected by both Chandra and NuSTAR, which together provide the first-ever spectra of these two galaxies spanning 0.3-30 keV. The X-ray emission from both galaxies is spatially resolved by Chandra; we find that hot gas dominates the E < 1-3 keV emission while ultraluminous X-ray sources (ULXs) provide majority contributions to the emission at E > 1-3 keV. The NuSTAR galaxy-wide spectra of both galaxies follow steep power-law distributions with ? ? 2.6 at E > 5-7 keV. Using new and archival Chandra data, we search for signatures of heavily obscured or low luminosity active galactic nuclei (AGNs). We find that both NGC 3256 and NGC 3310 have X-ray detected sources coincident with nuclear regions; however, the steep NuSTAR spectra of both galaxies restricts these sources to be either low luminosity AGNs (L2-10 keV/LEdd ? 10-5) or non-AGNs in nature (e.g., ULXs or crowded X-ray sources that reach L2-10 keV 1040 erg s-1 cannot be ruled out). Combining our constraints on the 0.3-30 keV spectra of NGC 3256 and NGC 3310 with equivalent measurements for nearby star-forming galaxies M83 and NGC 253, we analyze the star formation rate (SFR) normalized spectra of these starburst galaxies. The spectra of all four galaxies show sharply declining power-law slopes at energies above 3-6 keV primarily due to ULX populations. Our observations therefore constrain the average spectral shape of galaxy-wide populations of luminous accreting binaries (i.e., ULXs). Interestingly, despite a completely different galaxy sample selection, emphasizing here a range of SFRs and stellar masses, these properties are similar to those of super-Eddington accreting ULXs that have been studied individually in a targeted NuSTAR ULX program. We also find that NGC 3310 exhibits a factor of ?3-10 elevation of X-ray emission over the other star-forming galaxies due to a corresponding overabundance of ULXs. We argue that the excess of ULXs in NGC 3310 is most likely explained by the relatively low metallicity of the young stellar population in this galaxy, a property that is expected to produce an excess of luminous X-ray binaries for a given SFR.

  4. Steady State Sputtering Yields and Surface Compositions of Depleted Uranium and Uranium Carbide bombarded by 30 keV Gallium or 16 keV Cesium Ions.

    SciTech Connect

    Siekhaus, W. J.; Teslich, N. E.; Weber, P. K.

    2014-10-23

    Depleted uranium that included carbide inclusions was sputtered with 30-keV gallium ions or 16-kev cesium ions to depths much greater than the ions’ range, i.e. using steady-state sputtering. The recession of both the uranium’s and uranium carbide’s surfaces and the ion corresponding fluences were used to determine the steady-state target sputtering yields of both uranium and uranium carbide, i.e. 6.3 atoms of uranium and 2.4 units of uranium carbide eroded per gallium ion, and 9.9 uranium atoms and 3.65 units of uranium carbide eroded by cesium ions. The steady state surface composition resulting from the simultaneous gallium or cesium implantation and sputter-erosion of uranium and uranium carbide were calculated to be U₈₆Ga₁₄, (UC)₇₀Ga₃₀ and U₈₁Cs₉, (UC)₇₉Cs₂₁, respectively.

  5. Angular scattering of 150 keV ions through graphene and thin carbon foils: Potential applications for space plasma instrumentation

    SciTech Connect

    Ebert, Robert W.; Allegrini, Frdric; Fuselier, Stephen A.; Nicolaou, Georgios; Physics and Astronomy Department, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249 ; Bedworth, Peter; Sinton, Steve; Trattner, Karlheinz J.; Laboratory for Atmospheric and Space Physics, University of Colorado, 1234 Innovation Drive, Boulder, Colorado 80303

    2014-03-15

    We present experimental results for the angular scattering of ?150 keV H, He, C, O, N, Ne, and Ar ions transiting through graphene foils and compare them with scattering through nominal ?0.5 ?g?cm{sup ?2} carbon foils. Thin carbon foils play a critical role in time-of-flight ion mass spectrometers and energetic neutral atom sensors in space. These instruments take advantage of the charge exchange and secondary electron emission produced as ions or neutral atoms transit these foils. This interaction also produces angular scattering and energy straggling for the incident ion or neutral atom that acts to decrease the performance of a given instrument. Our results show that the angular scattering of ions through graphene is less pronounced than through the state-of-the-art 0.5 ?g?cm{sup ?2} carbon foils used in space-based particle detectors. At energies less than 50 keV, the scattering angle half width at half maximum, ?{sub 1/2}, for ?35 atoms thick graphene is up to a factor of 3.5 smaller than for 0.5 ?g?cm{sup ?2} (?20 atoms thick) carbon foils. Thus, graphene foils have the potential to improve the performance of space-based plasma instruments for energies below ?50 keV.

  6. Origin of the 871-keV gamma ray and the ``oxide'' attribute

    SciTech Connect

    AJ Peurrung; RJ Arthur; BD Geelhood; RD Scheele; RJ Elovich; SL Pratt

    2000-03-22

    This work concludes the investigation of the oxide attribute of current interest for the characterization of stored plutonium. Originally it was believed that the presence of oxide could be ascertained by measurement of the 871-keV line in a high-resolution gamma-ray spectrum. However, recent work has suggested that the 871-keV gamma ray in plutonium oxide arises from the reaction {sup 14}N({alpha},p){sup 17}O rather than the inelastic scattering reaction {sup 17}O({alpha},{alpha}{prime}){sup 17}O*. This conclusion, though initially surprising, was obtained during efforts to determine the relative importance of americium and plutonium alpha-particle decay for the production of the 871-keV gamma ray. Several questions were raised by previous experiments: What role, if any does {sup 17}O have in the generation of the 871-keV gamma ray? How does sufficient nitrogen come to be present in plutonium oxide? Under what conditions is the 871-keV gamma ray measurable in plutonium oxide? This paper describes the answers to these questions.

  7. Energetic Neutral Atom Spectra in the 0.2-3.0 keV from a Residual Source Across the Sky Obtained by the Neutral Particle Detector on board Venus Express

    NASA Astrophysics Data System (ADS)

    Brandt, Pontus; Roelof, Edmond; Wurz, Peter; Decker, Robert; Barabash, Stas; Bazell, David; Sotirelis, Thomas

    We have surveyed the sky for residual energetic neutral atom (ENA) signals in the energy range of 0.2-3.0 keV [Brandt et al., AIP Proceedings, 2009]. Approximately three years of data obtained by the Neutral Particle Detector (NPD) on board Venus Express (VEX) from May 2006 through August 2009 have been analyzed. After applying strict viewing criteria to minimize all known signals and subtracting the UV background from the Milky Way, we find a residual energy spectral shape with a ledge/bump at around 0.5 keV and a break in the spectral slope at about 1.0 keV, reiminiscent of the spectral shape obtained in reverse shocks. The ledge/bump at about 0.5 keV appears consistent with twice the plasma flow velocity obtained by the V1 measurements in the inner HS. When the ENA spectrum is divided by the energy dependent charge exchange cross section its slope above 1 keV has a spectral power-law index of 1.5, with some variations across the sky. In order to better understand the spectral shape over an extended energy range we compare the spectra obtained by VEX/NPD with the ones reported by the Interstellar Boundary Explorer (IBEX) [Funsten et al., Science, 2009], by the Ion Neutral Camera (INCA) on board Cassini [Krimigis et al., Science, 2009]and with those measured in-situ in the inner heliosheath (HS) by the Low-Energy Charged Particle (LECP) instrument (>40 keV) on board Voyager-1 (V1).

  8. Ion-chain interaction in keV ion-beam-irradiated polystyrene

    SciTech Connect

    Calcagno, L.; Foti, G.; Licciardello, A.; Puglisi, O.

    1987-09-21

    Molecular weight distribution has been measured in monodisperse polystyrene film (MW = 9 000 amu) after ion bombardment, in the ion fluence range 10/sup 11/--10/sup 13/ ions/cm/sup 2/. The chosen beams are 100 keV He, 200 keV Ne, and 400 keV Ar. The experimental data have been interpreted in terms of a simple statistical model for cross-links. The chemical yield is found to be very high and equal to 0.30, about a factor of 10 higher than the values given in the literature for gamma irradiation (M. Dole, in The Radiation Chemistry of Macromolecules (Academic, New York, 1973), Vol. 2, Chap. 5, p. 57).

  9. Evaluation of the 1077 keV ?-ray emission probability from 68Ga decay

    NASA Astrophysics Data System (ADS)

    Huang, Xiao-Long; Jiang, Li-Yang; Chen, Xiong-Jun; Chen, Guo-Chang

    2014-04-01

    68Ga decays to the excited states of 68Zn through the electron capture decay mode. New recommended values for the emission probability of 1077 keV ?-ray given by the ENSDF and DDEP databases all use data from absolute measurements. In 2011, JIANG Li-Yang deduced a new value for 1077 keV ?-ray emission probability by measuring the 69Ga(n,2n) 68Ga reaction cross section. The new value is about 20% lower than values obtained from previous absolute measurements and evaluations. In this paper, the discrepancies among the measurements and evaluations are analyzed carefully and the new values are re-recommended. Our recommended value for the emission probability of 1077 keV ?-ray is (2.720.16)%.

  10. Suprathermal (E greater than 5 keV) ENA images of the Heliosphere from Cassini and in situ Voyager measurements: Is there pressure balance?

    NASA Astrophysics Data System (ADS)

    Krimigis, Stamatios; Krimigis, Stamatios M.; Mitchell, Donald; Roelof, Edmond; Decker, Robert

    The Ion and Neutral Camera (INCA), part of the Magnetospheric Imaging Instrument(MIMI) sensor suite on the Cassini orbiter at Saturn, is an ENA imager designed to obtain measurements of magnetospheric phenomena, and has done so for more than five years. When not pointing at the planet, INCA can sense ENA from other sources, notably those traversing the interplanetary medium from all directions. Maps of such emissions (Krimigis et al, 2009) have now been constructed spanning the energy range 5 < E < 55 keV, and show a "Belt" in the sky of about 100 FWHM. Similarly, maps < 6 keV have been obtained by the IBEX mission (McComas et al, 2009) and show a "Ribbon" that is narrower than the Belt and inclined to it in both ecliptic latitude (25 ) and longitude (30 ). Measurements of energetic ions by Voyagers 1, 2 in the heliosheath (Decker et al, 2009) show pressures 28 keV about 0.2 pdynes/cm2 vs 0.04 pdynes/cm2 for the local B about 0.1nT (Burlaga et al, 2009), i.e. ? > 5. The overlap in energy between Voyager ions and Cassini ENA intensities (averaged over the ENA line of sight) enables us to deduce ion fluxes in the heliosheath, thus providing a continuous spectrum 5 < E < 4000 keV. These measurements are then used to estimate the thickness of the heliosheath (about 50 AU) and the local pressure ( 1.3 pdynes/cm2 ), suggesting ? > 33. The pressure at < 6 keV is more difficult to estimate because appropriate Voyager normalization between the IBEX ENA and in situ heliosheath ions is currently unavailable. Nevertheless, pick up ions (PUI) dominate the heliosheath at > 5 keV, at least at the location of the two Voyagers. Based on the symmetrical distribution of ENA intensities in galactic coordinates, it is hypothesized that the local interstellar magnetic field plays an important role in determining the shape of the heliospheric cavity and it must have a central role in global pressure balance of heliosheath plasma and the local interstellar flow. >>

  11. WE-E-BRE-08: Impact of IUdR in Rat 9L Glioma Cell Survival for 25–35 KeV Photo-Activated Auger Electron Therapy

    SciTech Connect

    Alvarez, D; Hogstrom, K; Brown, T; Dugas, J; Varnes, M; Matthews, K

    2014-06-15

    Purpose: To determine the biological effect from Auger electrons with 9% and 18% iododeoxyuridine (IUdR) incorporated into the DNA of rat 9L glioma cells at photon energies above and below the K-edge of iodine (33.2 keV). Methods: Rat 9L glioma cell survival versus dose curves with 0%, 9%, and 18% thymidine replacement with IUdR were measured using four irradiation energies (4 MV x-rays; monochromatic 35, 30, and 25 keV synchrotron photons). For each of 11 conditions (Energy, %IUdR) survival curves were fit to the data (826 cell cultures) using the linear-quadratic model. The ratio of doses resulting in 10% survival gave sensitization enhancement ratios (SER10) from which contributions due to linear-energy transfer (LET), radiosensitization (RS), and Auger effect (AE) were extracted. Results: At 35, 30, and 25 keV, SER10,LET values were 1.08±0.03, 1.22±0.02, and 1.37±0.02, respectively. At 4 MV SER10,RS values for 9% and 18% IUdR were 1.28±0.02 and 1.40±0.02, respectively. Assuming LET effects are independent of %IUdR and radiosensitization effects are independent of energy, SER10,AE values for 18% IUdR at 35, 30, and 25 keV were 1.35±0.05, 1.06±0.03, and 0.98±0.03, respectively; values for 9% IUdR at 35 and 25 keV were 1.01±0.04 and 0.82±0.02, respectively. Conclusion: For 18% IUdR the radiosensitization effect of 1.40 and the Auger effect of 1.35 at 35 keV are equally important to the combined effect of 1.90. No measureable Auger effect was observed for energies below the K-edge at 20 and 25 keV, as expected. The insignificant Auger effect at 9% IUdR was not expected. Additional data (40–70 keV) and radiobiological modeling are being acquired to better understand the energy dependence of Auger electron therapy with IUdR. Funding support in part by the National Science Foundation Graduate Research Fellowship Program and in part by Contract No. W81XWH-10-1-0005 awarded by the U.S. Army Research Acquisition Activity. This paper does not necessarily reflect the position or policy of the Government, and no official endorsement should be inferred.

  12. Realistic Sterile Neutrino Dark Matter with KeV Mass does not Contradict Cosmological Bounds

    SciTech Connect

    Boyarsky, Alexey; Lesgourgues, Julien; Ruchayskiy, Oleg

    2009-05-22

    Previous fits of sterile neutrino dark matter (DM) models to cosmological data ruled out masses smaller than {approx}8 keV, assuming a production mechanism that is not the best motivated from a particle physics point of view. Here we focus on a realistic extension of the standard model with three sterile neutrinos, consistent with neutrino oscillation data and baryogenesis, with the lightest sterile neutrino being the DM particle. We show that for each mass {>=}2 keV there exists at least one model accounting for 100% of DM and consistent with Lyman-{alpha} and other cosmological, astrophysical, and particle physics data.

  13. 3.55 keV line in minimal decaying dark matter scenarios

    SciTech Connect

    Arcadi, Giorgio; Covi, Laura; Dradi, Federico

    2015-07-20

    We investigate the possibility of reproducing the recently reported 3.55 keV line in some simple decaying dark matter scenarios. In all cases a keV scale decaying DM is coupled with a scalar field charged under SM gauge interactions and thus capable of pair production at the LHC. We will investigate how the demand of a DM lifetime compatible with the observed signal, combined with the requirement of the correct DM relic density through the freeze-in mechanism, impacts the prospects of observation at the LHC of the decays of the scalar field.

  14. Measurement of the nitrogen total cross section from 0. 5 eV to 50 MeV, and analysis of the 433-keV resonance

    SciTech Connect

    Harvey, J.A.; Hill, N.W.; Larson, N.M.; Larson, D.C.

    1991-01-01

    High-resolution neutron transmission measurements have been made on several thicknesses of nitrogen gas samples from 0.5 eV to 50 MeV at the Oak Ridge Electron Linear Accelerator (ORELA). A preliminary R-matrix analysis has been done for resonances up to 800 keV. An R-matrix analysis of previous data was done by LANL and ENDF/B-VI, including the lowest energy resonance in {sup 14}N at 433 keV. They found a spin of 3/2 (with {ell} {equals} 1) and a peak cross section of 7.0 b. Analysis of the present data yield a spin of 7/2 (requiring {ell} {ge} 2) and a peak cross section of 11.5 b for this resonance. These results are important for transport calculations of neutrons through air. Scattering measurements are planned to determine the parity of this resonance. 6 refs., 2 figs.

  15. New limit on the mass of 14.4-keV solar axions emitted in an M1 transition in {sup 57}Fe nuclei

    SciTech Connect

    Derbin, A. V. Muratova, V. N.; Semenov, D. A.; Unzhakov, E. V.

    2011-04-15

    Axions of energy 14.4 keV that originated from the M1 transition in {sup 57}Fe nuclei in the Sun were sought by using the resonance-absorption reaction A+{sup 57}Fe {yields} {sup 57}Fe* {yields} {sup 57}Fe+{gamma} (14.4 keV). Asectioned Si(Li) detector arranged in a low-background facility was used to record photons from this reaction. This resulted in setting a new limit on the axion couplings to nucleons, vertical bar -1.19g{sub AN}{sup 0} + g{sub AN}{sup 3} vertical bar {<=} 3.0 Multiplication-Sign 10{sup -6}. Within the hadronic-axion model, the respective constraint on the axion mass is m{sub A} {<=} 145 eV (at a 95% C.L.).

  16. Properties of the 5{sup -} state at 839 keV in {sup 176}Lu and the s-process branching at A=176

    SciTech Connect

    Mohr, P.; Bisterzo, S.; Gallino, R.; Kaeppeler, F.; Kneissl, U.; Winckler, N.

    2009-04-15

    The s-process branching at mass number A=176 depends on the coupling between the high-K ground state and a low-lying low-K isomer in {sup 176}Lu. This coupling is based on electromagnetic transitions via intermediate states at higher energies. The properties of the lowest experimentally confirmed intermediate state at 839 keV are reviewed, and the transition rate between low-K and high-K states under stellar conditions is calculated on the basis of new experimental data for the 839-keV state. Properties of further candidates for intermediate states are briefly analyzed. It is found that the coupling between the high-K ground state and the low-K isomer in {sup 176}Lu is at least one order of magnitude stronger than previously assumed, leading to crucial consequences for the interpretation of the {sup 176}Lu/{sup 176}Hf pair as an s-process thermometer.

  17. Dwarf galaxy γ-excess and 3.55 keV X-ray line in a nonthermal Dark Matter model

    NASA Astrophysics Data System (ADS)

    Biswas, Anirban; Majumdar, Debasish; Roy, Probir

    2016-01-01

    Recent data from Reticulum II (RetII) require the energy range of the FermiLAT γ-excess to be ∼2\\text-10 \\text{GeV} . We adjust our unified nonthermal Dark Matter (DM) model to accommodate this. We have two extra scalars beyond the Standard Model to also explain the 3.55 keV X-ray line. Now the mass of the heavier of them has to be increased to lie around 250 GeV, while that of the lighter one remains at 7.1 keV. This requires a new seed mechanism for the γ-excess and new Boltzmann equations for the generation of the DM relic density. All concerned data for RetII and the X-ray line can now be fitted well and consistency with other indirect limits attained.

  18. The search for absorption of 1 keV X-rays by the Small Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Marazas, Brad

    1989-01-01

    The contribution of the extragalactic component of the diffuse background to the 1 keV energy band remains unknown. An effective way to ascertain this contribution is to measure the absorption of the extragalactic component by the neutral hydrogen in the Small Magellanic Cloud (SMC) with an instrument capable of eliminating point sources from the X-ray data that compensate for absorption. The image proportional counter data from the Einstein observatory can be used for this purpose. Additionally, any extended emission must also be eliminated. The resulting source free data can be compared to the neutral hydrogen and the amount of absorption can then be obtained when compared to the diffuse flux away from the SMC. However, due to other types of radiation contaminating the X-ray data, a true measure of the X-ray absorption was not obtained.

  19. Ranges of Channelled keV B Ions in Si Crystals with Impact Parameter Dependent Stopping Power

    NASA Astrophysics Data System (ADS)

    Kabadayi, nder

    In this study we calculated channelled ion ranges of boron ions by using an impact parameter dependent stopping power model. Impact parameter dependent stopping powers for boron ions penetrating into Si <100> are investigated first for energies from 10 to 150 keV. We assumed that impact parameter dependent stopping powers can be expressed by a modified Oen-Robinson formula [1] (Oen et al. Nucl. Instr. Meth. B132, 647 (1976)). The model is implemented by developing a computer code to solve a differential equation numerically for which mean ion ranges can be obtained. The results are compared with experimental data as well as Crystal-TRIM, SRIM and similar procedures calculating ion ranges in solids. We have found an agreement between our results and literature.

  20. Classical trajectory Monte Carlo model calculations for ionization of atomic hydrogen by 75-keV proton impact

    NASA Astrophysics Data System (ADS)

    Sarkadi, L.

    2010-11-01

    Cross sections differential with respect to the energy loss and scattering angle of the projectile have been calculated for ionization of atomic hydrogen by 75-keV proton impact using the classical trajectory Monte Carlo method. The results are compared with the experimental data measured by Laforge [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.053201 103, 053201 (2009)] and Schulz [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.81.052705 81, 052705 (2010)], as well as with the predictions of several quantum-mechanical theoretical models. The analysis of the deviations between the classical and the quantum-mechanical results shows that the three-body fragmentation dynamics cannot be understood purely classically; for the description of the process the quantum-mechanical treatment of the interplay between the electron-projectile and the projectile-target-nucleus interaction is unavoidable.

  1. A method to obtain a Maxwell-Boltzmann neutron spectrum at kT=30 keV for nuclear astrophysics studies

    NASA Astrophysics Data System (ADS)

    Mastinu, P. F.; Martn Hernndez, G.; Praena, J.

    2009-04-01

    A method based on shaping the proton beam energy in order to shape the neutron beam energy to a desired form for accelerator-based neutron sources is proposed. An application to a superconductive RFQ proton accelerator of 5 MeV and 50 mA for the production of a stellar neutron spectrum at thermal energy equal to 30 keV using the 7Li(p,n)7Be reaction is investigated. The chosen energy beam shaper is a carbon foil which shapes the quasi-monochromatic proton beam to a quasi-Gaussian distribution: after the carbon foil, the beam is still shaped by chopping the Gaussian distribution at the reaction energy threshold. The obtained proton beam is impinged in a metallic lithium target. The concepts of the energy shaper, the proposed lithium target and the calculations performed to remove their power load are presented. Calculations show that a power density of 3 kW/cm2 can be sustained by the target which produces a forward-directed neutron source of 7.31010 neutrons/s. The obtained neutron spectrum resembles a Maxwell-Boltzmann distribution at kT=30 keV with a coefficient of determination of 0.997. The method is intended to be applied in activation analysis for measuring the Maxwellian-averaged neutron capture cross-section of elements of interest for astrophysics and validation of integral neutron data in the epithermal energy range.

  2. Molecular dynamics simulations of sputtering of Langmuir-Blodgett multilayers by keV C60 projectiles

    PubMed Central

    Paruch, R.; Rzeznik, L.; Czerwinski, B.; Garrison, B. J.; Winograd, N.; Postawa, Z.

    2009-01-01

    Coarse-grained molecular dynamics computer simulations are applied to investigate fundamental processes induced by an impact of keV C60 projectile at an organic overlayer composed of long, well-organized linear molecules. The energy transfer pathways, sputtering yields, and the damage induced in the irradiated system, represented by a Langmuir-Blodgett (LB) multilayers composed from molecules of bariated arachidic acid, are investigated as a function of the kinetic energy and impact angle of the projectile and the thickness of the organic system. In particular, the unique challenges of depth profiling through a LB film vs. a more isotropic solid are discussed. The results indicate that the trajectories of projectile fragments and, consequently, the primary energy can be channeled by the geometrical structure of the overlayer. Although, a similar process is known from sputtering of single crystals by atomic projectiles, it has not been anticipated to occur during C60 bombardment due to the large size of the projectile. An open and ordered molecular structure of LB films is responsible for such behavior. Both the extent of damage and the efficiency of sputtering depend on the kinetic energy, the impact angle, and the layer thickness. The results indicate that the best depth profiling conditions can be achieved with low-energy cluster projectiles irradiating the organic overlayer at large off-normal angles. PMID:20174461

  3. Influence of organic ions on DNA damage induced by 1 eV to 60 keV electrons

    SciTech Connect

    Zheng Yi; Sanche, Leon

    2010-10-21

    We report the results of a study on the influence of organic salts on the induction of single strand breaks (SSBs) and double strand breaks (DSBs) in DNA by electrons of 1 eV to 60 keV. Plasmid DNA films are prepared with two different concentrations of organic salts, by varying the amount of the TE buffer (Tris-HCl and EDTA) in the films with ratio of 1:1 and 6:1 Tris ions to DNA nucleotide. The films are bombarded with electrons of 1, 10, 100, and 60 000 eV under vacuum. The damage to the 3197 base-pair plasmid is analyzed ex vacuo by agarose gel electrophoresis. The highest yields are reached at 100 eV and the lowest ones at 60 keV. The ratios of SSB to DSB are surprisingly low at 10 eV ({approx}4.3) at both salt concentrations, and comparable to the ratios measured with 100 eV electrons. At all characteristic electron energies, the yields of SSB and DSB are found to be higher for the DNA having the lowest salt concentration. However, the organic salts are more efficient at protecting DNA against the damage induced by 1 and 10 eV electrons. DNA damage and protection by organic ions are discussed in terms of mechanisms operative at each electron energy. It is suggested that these ions create additional electric fields within the groove of DNA, which modify the resonance parameter of 1 and 10 eV electrons, namely, by reducing the electron capture cross-section of basic DNA units and the lifetime of corresponding transient anions. An interstrand electron transfer mechanism is proposed to explain the low ratios for the yields of SSB to those of DSB produced by 10 eV electrons.

  4. Evidence for Halo Contributions to the 1/4 keV Diffuse Soft X-Ray Background

    NASA Astrophysics Data System (ADS)

    Bellm, E. C.

    2003-12-01

    The 1/4-keV diffuse soft X-ray background (SXRB) apparently originates in a thermal plasma at around 106 K, but the location of this emission has proven to be difficult to determine. The finite flux in the Galactic plane and similarity of the spectrum at all latitudes led to a model where essentially all of the observed flux originated in a local hot bubble (LHB) surrounding the Sun. Snowden et al. (1998) have proposed a three-component model of the SXRB from the ROSAT All-Sky Survey R12 (1/4 keV) map which consists of an unabsorbed local component, an absorbed halo component, and an absorbed power law to represent the known contribution from AGN, which is quite small. We have investigated whether this model is consistent with the lower-energy data available from sounding rocket flights in the B and Be bands. We find that the Snowden model provides better correspondence with the low-energy Wisconsin bands than the pure LHB model. The differences are subtle because the bulk of the intensity variation in the Snowden model is still due to differences in the extent of the local bubble. We have also investigated whether the observed band ratios are fit by the emission models used. We find that with current collisional ionization equilibrium models, depleted abundances are necessary to be consistent with the observed band ratios. We also show that the model predictions depend strongly on the model version, which does little to lend confidence to their predictions. This work was supported by a NSF-REU site grant (AST-0139563) to the University of Wisconsin-Madison.

  5. Field aligned currents and the auroral spectrum below 1 keV

    NASA Technical Reports Server (NTRS)

    Arnoldy, R. L.

    1973-01-01

    Measurements during auroral events were conducted with the aid of detectors flown aboard three Nike-Tomahawk rocket flights. The detectors used to measure the auroral spectrum below 1 keV consisted of electrostatic analyzers positioned in the rocket to measure particles moving up and down the magnetic field lines. The analyzers measured electrons and protons simultaneously during a given sweep.

  6. A study on the microstructural parameters of 550 keV electron irradiated Lexan polymer films

    SciTech Connect

    Hareesh, K.; Pramod, R.; Petwal, V. C.; Dwivedi, Jishnu; Sangappa; Sanjeev, Ganesh

    2012-06-05

    Lexan polymer films irradiated with 550 keV Electron Beam (EB) were characterized using Wide Angle Xray Scattering (WAXS) data to study the microstructural parameters. The crystal imperfection parameters like crystal size , lattice strain (g in %) and enthalpy ({alpha}) have been determined by Line Profile Analysis (LPA) using Fourier method of Warren.

  7. Diffuse x-ray background spectrum from 3 to 50 keV

    SciTech Connect

    Marshall, F.E.; Boldt, E.A.; Holt, S.S.; Miller, R.B.; Mushotzky, R.F.; Rose, L.A.; Rothschild, R.E.; Serlemitsos, P.J.

    1980-01-01

    The spectrum of the extragalactic diffuse X-ray background has been measured with the GSFC Cosmic X-Ray Experiment on HEAO 1 for regions of the sky away from known point sources and more than 20 /sup 0/ from the galactic plane. A total exposure of 80 m/sup 2/-s-sr is available at present. Free-free emission from an optically thin plasma of 40 +- 5 keV provides an excellent description of the observed spectrum from 3 to 50 keV. This spectral shape is confirmed by measurements from five separate layers of three independent detectors. With an estimated absolute precision of approx.10%, the intensity of the emission at 10 keV is 3.2 keV keV/sup -1/ cm/sup -2/ s/sup -1/ sr/sup -1/, a value consistent with the average of previously reported spectra. No other spectral features, such as iron line emission, are evident. This spectrum is not typical of known extra-galactic objects. A uniform hot intergalactic medium of approximately 36% of the closure density of the universe would produce such a flux, although nonuniform models indicating less total matter are probably more realistic.

  8. Improvements of the standardization of (134)Cs by the critical window setting for 605keV photopeak.

    PubMed

    Yunoki, Akira; Kawada, Yasushi; Hino, Yoshio

    2016-03-01

    In the standardization of (134)Cs by the 4πβ-γ coincidence method with a γ-window at 605keV, the satellite components of 563keV and 569keV overlapping the 605keV peak cause a steep slope and non-linearity of the efficiency extrapolation function. By shifting the lower threshold of a γ-window higher, the satellite components are eliminated, and the slope tends to horizontal. Nearly flat efficiency curves were obtained by using a CeBr3 scintillator for detecting γ-photons, as well as a NaI(Tl) scintillator. PMID:26702547

  9. PeV neutrinos and a 3.5 keV x-ray line from a PeV-scale supersymmetric neutrino sector

    NASA Astrophysics Data System (ADS)

    Roland, Samuel B.; Shakya, Bibhushan; Wells, James D.

    2015-11-01

    Recent measurements of PeV energy neutrinos at IceCube and a 3.5 keV x-ray line in the spectra of several galaxies are both tantalizing signatures of new physics. This paper shows that one or both of these observations can be explained within an extended supersymmetric neutrino sector. Obtaining light active neutrino masses as well as phenomenologically interesting (keV-GeV) sterile neutrino masses without any unnaturally small parameters hints at a new symmetry in the neutrino sector that is broken at the PeV scale, presumably tied to supersymmetry breaking. The same symmetry and structure can sufficiently stabilize an additional PeV particle, produce its abundance through the freeze-in mechanism, and lead to decays that can give the energetic neutrinos observed by IceCube. The lightest sterile neutrino, if at 7 keV, is a nonresonantly produced fraction of dark matter, and can account for the 3.5 keV x-ray line. The two signals could therefore be the first probes of an extended supersymmetric neutrino sector.

  10. Development of a CdTe detector plane for gamma-ray burst detection in the X-ray band (< 100 keV)

    NASA Astrophysics Data System (ADS)

    Barret, D.; Ehanno, M.; Pons, R.; Gevin, O.; Limousin, O.; Lugiez, F.; Penquer, A.; Bardoux, A.

    We report on the development of an inovative CdTe detector plane DPIX optimized for the detection and localisation of gamma-ray bursts in the X-ray band below 100 keV DPIX is part of an R D program funded by the French Space Agency CNES DPIX builds upon the heritage of the ISGRI instrument currently operating with great success on the ESA INTEGRAL mission DPIX is an assembly of 200 elementary modules XRDPIX equipped with 32 CdTe Schottky detectors 4x4 mm2 1 mm thickness produced by ACRORAD Co LTD in Japan Each XRDPIX is readout by the very low noise front-end electronics chip IDeF-X currently under development at CEA DSM DAPNIA In this paper we will describe the main features of the IDeF-X chip and will present preliminary results of the reading out of one CdTe Schottky detector by the IDeF-X V1 0 chip A low-energy threshold around 2 keV has been achieved This is to be compared with the 12-15 keV threshold of the ISGRI-INTEGRAL and BAT-SWIFT instruments We will conclude this paper by presenting the next development phase which will take us to the hybridization of an XRDPIX

  11. Dose distributions for containers electron sterilized at energies from 150-250 keV

    NASA Astrophysics Data System (ADS)

    Nablo, Sam V.; Cleghorn, Denise A.; Fletcher, P. Michael

    1993-10-01

    An electron beam facility is described utilizing a 30 cm wide x 250 kV x 20 ma processor for the study of the in-line sterilization of containers for aseptic food and medical device packaging. The sterilizer permits the handling of containers of varying length to diameter ratios, ranging from 1.36 liter (46 oz) two piece cans, to 0.5 liter (16.9 oz) liquid food cartons to 3-90 ml pharmaceutical syringes and vials. The thin film dosimetric techniques used to survey these containers and the results obtained under in-line, continuous motion conditions are described.

  12. Lifetime measurement of the 6792 keV state in {sup 15}O, important for the astrophysical S factor extrapolation in {sup 14}N(p,{gamma}){sup 15}O

    SciTech Connect

    Schuermann, D.; Kunz, R.; Lingner, I.; Rolfs, C.; Schuemann, F.; Strieder, F.; Trautvetter, H.-P.

    2008-05-15

    We report on a new lifetime measurement of the E{sub x}=6792 keV state in {sup 15}O via the Doppler-shift attenuation method at the E=259 keV resonance in the reaction {sup 14}N(p,{gamma}){sup 15}O. This subthreshold state is of particular importance for the determination of the ground state astrophysical S factor of {sup 14}N(p,{gamma}){sup 15}O at stellar energies. The measurement technique has been significantly improved over that used in previous work. The conclusion of a finite lifetime drawn there cannot be confirmed with the present data. In addition, the lifetimes of the two states at E{sub x}=5181 and 6172 keV have been measured with the same technique in order to verify the experimental method. We observe an attenuation factor F({tau})>0.98 for the E{sub x}=6172 and 6792 keV states, respectively, corresponding to {tau}<0.77 fs. The attenuation factor for the E{sub x}=5181 keV state results in F({tau})=0.78{+-}0.02 corresponding to {tau}=8.4{+-}1.0 fs, which is in excellent agreement with literature.

  13. Secondary ion emission from polymethacrylate LB-layers under 0.5 11 keV atomic and molecular primary ion bombardment

    NASA Astrophysics Data System (ADS)

    Stapel, D.; Thiemann, M.; Benninghoven, A.

    2000-02-01

    Secondary ion yields Y(X iq) increase considerably when changing from atomic to molecular primary ions, whereas the parallel increase in the corresponding damage cross sections ?(X iq) is much smaller. This results in a net increase of ion formation efficiencies E(X iq)= Y/ ?. For a more detailed understanding of the complex sputtering and ion formation processes, in particular for molecular primary ion bombardment, the secondary ion emission of well-defined polymethacrylate LB mono- and multilayers on Ag was investigated. For characteristic secondary ions X iq emitted from these overlayers Y(X iq) and ?(X iq) for 11 keV Ne +, Ar +, Xe +, O 2+, SF 5+, C 7H 7+, C 10H 8+, C 6F 6+ and C 10F 8+ bombardment were determined and compared. The influence of primary ion energy was investigated in the energy range between 0.5 and 10 keV for Xe + and SF 5+ bombardment. For multilayers we found yield increases up to nearly a factor of 1000, when changing from Ne + to SF 5+ bombardment. We found a more pronounced yield and efficiency enhancement for multi than for monolayer coverages, a saturation of Y, ? and E enhancement for primary ions made of more than 6 heavy constituents at constant primary ion energy, no chemical effect on the secondary ion yields under static SIMS conditions (SF 5+ / C 7H 7+ e.g.), and a pronounced decrease in secondary ion yields and secondary ion formation efficiencies for SF 5+ primary ions with impact energies below 2 keV.

  14. Measurement of the -3keV Resonance in the Reaction C13(?,n)O16 of Importance in the s-Process

    NASA Astrophysics Data System (ADS)

    La Cognata, M.; Spitaleri, C.; Trippella, O.; Kiss, G. G.; Rogachev, G. V.; Mukhamedzhanov, A. M.; Avila, M.; Guardo, G. L.; Koshchiy, E.; Kuchera, A.; Lamia, L.; Puglia, S. M. R.; Romano, S.; Santiago, D.; Spart, R.

    2012-12-01

    The C13(?,n)O16 reaction is the neutron source for the main component of the s-process, responsible for the production of most nuclei in the mass range 90?A?204. It is active inside the helium-burning shell in asymptotic giant branch stars, at temperatures ?108K, corresponding to an energy interval where the C13(?,n)O16 is effective from 140 to 230 keV. In this region, the astrophysical S(E)-factor is dominated by the -3keV subthreshold resonance due to the 6.356 MeV level in O17, giving rise to a steep increase of the S(E)-factor. Notwithstanding that it plays a crucial role in astrophysics, no direct measurements exist inside the s-process energy window. The magnitude of its contribution is still controversial as extrapolations, e.g., through the R matrix and indirect techniques, such as the asymptotic normalization coefficient (ANC), yield inconsistent results. The discrepancy amounts to a factor of 3 or more right at astrophysical energies. Therefore, we have applied the Trojan horse method to the C13(Li6,nO16)d quasifree reaction to achieve an experimental estimate of such contribution. For the first time, the ANC for the 6.356 MeV level has been deduced through the Trojan horse method as well as the n-partial width, allowing to attain an unprecedented accuracy in the C13(?,n)O16 study. Though a larger ANC for the 6.356 MeV level is measured, our experimental S(E)-factor agrees with the most recent extrapolation in the literature in the 140-230 keV energy interval, the accuracy being greatly enhanced thanks to this innovative approach.

  15. Tables and graphs of photon-interaction cross sections from 0. 1 keV to 100 MeV derived from the LLL evaluated-nuclear-data library

    SciTech Connect

    Plechaty, E.F.; Cullen, D.E.; Howerton, R.J.

    1981-11-11

    Energy-dependent evaluated photon interaction cross sections and related parameters are presented for elements H through Cf(Z = 1 to 98). Data are given over the energy range from 0.1 keV to 100 MeV. The related parameters include form factors and average energy deposits per collision (with and without fluorescence). Fluorescence information is given for all atomic shells that can emit a photon with a kinetic energy of 0.1 keV or more. In addition, the following macroscopic properties are given: total mean free path and energy deposit per centimeter. This information is derived from the Livermore Evaluated-Nuclear-Data Library (ENDL) as of October 1978.

  16. Production and Performance of the InFOCmicronS 20-40 keV Graded Multilayer Mirror

    NASA Technical Reports Server (NTRS)

    Berendse, F.; Owens, S. M.; Serlemitsos, P. J.; Tueller, J.; Chan, K.-W.; Soong, Y.; Krimm, H.; Baumgartner, W. H.; Tamura, K.; Okajima, T.; Tawara, Y.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The International Focusing Optics Collaboration for micron Crab Sensitivity (InFOC micronS) balloon-borne hard x-ray incorporates graded multilayer technology to obtain significant effective area at energies previously inaccessible to x-ray optics. The telescope mirror consists of 2040 segmented thin aluminum foils coated with replicated Pt/C multilayers. A sample of these foils was scanned using a pencil-beam reflectometer to determine, multilayer quality. The results of the reflectometer measurements demonstrate our capability to produce large quantity of foils while maintaining high-quality multilayers with a mean Nevot-Croce interface roughness of 0.5nm. We characterize the performance of the complete InFOC micronS telescope with a pencil beam raster scan to determine the effective area and encircled energy function of the telescope. The effective area of the complete telescope is 78, 42 and 22 square centimeters at 20 30 and 40 keV. respectively. The measured encircled energy fraction of the mirror has a half-power diameter of 2.0 plus or minus 0.5 arcmin (90% confidence). The mirror successfully obtained an image of the accreting black hole Cygnus X-1 during a balloon flight in July, 2001. The successful completion and flight test of this telescope demonstrates that graded-multilayer telescopes can be manufactured with high reliability for future x-ray telescope missions such as Constellation-X.

  17. Characterization and performance of the InFOCuS 20-40 keV x-ray focusing mirror

    NASA Astrophysics Data System (ADS)

    Owens, Scott M.; Berendse, Fred; Okajima, Takashi; Misaki, Kazutami; Ogasaka, Yasushi; Tamura, Keisuke; Tawara, Yuzuru; Kunieda, Hideyo; Chan, Kai-Wing; Soong, Yang; Baumgartner, Wayne; Krimm, Hans; Tueller, Jack; Serlemitsos, Peter J.; Yamashita, Kojun; Haga, Kazutoshi; Ichimaru, Satoshi; Takahashi, S.; Gotou, Arifumi; Kitou, Hideo; Fukuda, Shinichi; Kamata, Yuichi; Furuzawa, Akihiro; Akimoto, Fumie; Yoshioka, Tsutomu; Kondou, Kazuo; Haba, Yoshito; Tanaka, Takeshi

    2002-01-01

    Mass production of replicated thin aluminum x-ray reflecting foils for the InFOC(mu) S (International Focusing Optics Collaboration for Micro-Crab Sensitivity) balloon payload is complete, and the full mirror has been assembled. InFOC(mu) S is an 8-meter focal length hard x-ray telescope scheduled for first launch in July 2001 and will be the first instrument to focus and image x-rays at high energies (20-40 keV) using multilayer-based reflectors. The individual reflecting elements are replicated thin aluminum foils, in a conical approximation Wolter-I system similar to those built for ASCA and ASTRO-E. These previous imaging systems achieved half-power-diameters of 3.5 and 1.7-2.1 arcminutes respectively. The InFOC(mu) S mirror is expected to have angular resolution similar to the ASTRO-E mirror. The reflecting foils for InFOC(mu) S, however, utilize a vertically graded Pt/C multilayer to provide broad-band high-energy focusing. We present the results of our pre-flight characterization of the full mirror, including imaging and sensitivity evaluations. If possible, we will include imaging results from the first flight of a multilayer-based high-energy focusing telescope.

  18. Total L-shell X-ray production cross sections by 400-700 keV proton impact for elements with 34 < or = Z < or = 53.

    PubMed

    Miranda, J; Ledesma, R; de Lucio, O G

    2001-03-01

    Total L-shell X-ray production cross sections induced by protons with energies between 400 and 700 keV were measured for elements with atomic number Z between 34 and 53. The ECPSSR theory describes appropriately the results. This model modifies the plane wave born approximation by considering projectile energy loss (E), Coulomb deflection of the incoming ion (C), polarization and change in electron binding energies through a perturbed stationary states method (PSS) and relativistic values of target electron mass (R). A comparison is given with previously published data for proton energies below 1 MeV and 26 < or = Z < or = 53, based on a scaling obtained from a reduced velocity parameter zeta(L)R. The results show that the scaling for these atomic numbers and energy ranges is adequate and a semi-empirical expression to calculate those cross sections is proposed. PMID:11214881

  19. No evidence for a 17-keV neutrino in the electron-capture decay of {sup 55}Fe

    SciTech Connect

    Sykora, I.; Janko, K.; Povinec, P.P.

    1995-05-01

    Internal bremsstrahlung spectrum associated with electron-capture decay of {sup 55}Fe was measured using a HPGe detector to search for the presence of a heavy neutrino in the mass range 5--30 keV. A 17-keV neutrino with sin{sup 2}{theta}{ge}0.007 has been excluded at the 5{sigma} confidence level.

  20. Precise Determination of the Intensity of 226Ra Alpha Decay to the 186 keV Excited State

    SciTech Connect

    S.P. LaMont; R.J. Gehrke; S.E. Glover; R.H. Filby

    2001-04-01

    There is a significant discrepancy in the reported values for the emission probability of the 186 keV gamma-ray resulting from the alpha decay of 226 Ra to 186 keV excited state of 222 Rn. Published values fall in the range of 3.28 to 3.59 gamma-rays per 100 alpha-decays. An interesting observation is that the lower value, 3.28, is based on measuring the 186 keV gamma-ray intensity relative to the 226 Ra alpha-branch to the 186 keV level. The higher values, which are close to 3.59, are based on measuring the gamma-ray intensity from mass standards of 226 Ra that are traceable to the mass standards prepared by HNIGSCHMID in the early 1930''s. This discrepancy was resolved in this work by carefully measuring the 226 Ra alpha-branch intensities, then applying the theoretical E2 multipolarity internal conversion coefficient of 0.6920.007 to calculate the 186 keV gamma-ray emission probability. The measured value for the alpha branch to the 186 keV excited state was (6.160.03)%, which gives a 186 keV gamma-ray emission probability of (3.640.04)%. This value is in excellent agreement with the most recently reported 186 keV gamma-ray emission probabilities determined using 226 Ra mass standards.

  1. Experimental results of a dual-beam ion source for 200 keV ion implanter

    SciTech Connect

    Chen, L. H. Cui, B. Q.; Ma, R. G.; Ma, Y. J.; Tang, B.; Huang, Q. H.; Jiang, W. S.; Zheng, Y. N.

    2014-02-15

    A dual beam ion source for 200 keV ion implanter aimed to produce 200 keV H{sub 2}{sup +} and He{sup +} beams simultaneously has been developed. Not suitable to use the analyzing magnet, the purity of beam extracted from the source becomes important to the performance of implanter. The performance of ion source was measured. The results of experiments show that the materials of inlet tube of ion source, the time of arc ionization in ion source, and the amount of gas flow have significant influence on the purity of beam. The measures by using copper as inlet tube material, long time of arc ionization, and increasing the inlet of gas flow could effectively reduce the impurity of beam. And the method using the gas mass flow controller to adjust the proportion of H{sub 2}{sup +} and He{sup +} is feasible.

  2. The 871 keV gamma ray from 17O and the identification of plutonium oxide

    NASA Astrophysics Data System (ADS)

    Peurrung, Anthony; Arthur, Richard; Elovich, Robert; Geelhood, Bruce; Kouzes, Richard; Pratt, Sharon; Scheele, Randy; Sell, Richard

    2001-12-01

    Disarmament agreements and discussions between the United States and the Russian Federation for reducing the number of stockpiled nuclear weapons require verification of the origin of materials as having come from disassembled weapons. This has resulted in the identification of measurable "attributes" that characterize such materials. It has been proposed that the 871 keV gamma ray of 17O can be observed as an indicator of the unexpected presence of plutonium oxide, as opposed to plutonium metal, in such materials. We have shown that the observation of the 871 keV gamma ray is not a specific indicator of the presence of the oxide, but rather indicates the presence of nitrogen.

  3. Limits on a variable source of 511 keV annihilation radiation near the Galactic center

    NASA Technical Reports Server (NTRS)

    Share, Gerald H.; Leising, Mark D.; Messina, Daniel C.; Purcell, William R.

    1990-01-01

    The Gamma Ray Spectrometer (GRS) on the Solar Maximum Mission satellite (SMM) has observed a strong Galactic source of 511 keV annihilation radiation from its launch in 1980 to its reentry in 1989. These observations are consistent with an extended source having an intensity of about 0.002 gamma/sq cm/s averaged over the central radian of Galactic longitude. These data are searched for evidence of the variable Galactic center source of 511 keV line radiation which was reported to have reappeared in 1988 by Leventhal et al. The SMM data are consistent with, but do not require, a compact source emitting a time-averaged flux of about 0.0004 gamma/sq cm/s during about 3 month transits in 1987 and 1988; they are inconsistent with a compact source flux in excess of 0.0008 gamma/sq cm/s for each year.

  4. Experimental results of a dual-beam ion source for 200 keV ion implanter.

    PubMed

    Chen, L H; Cui, B Q; Ma, R G; Ma, Y J; Tang, B; Huang, Q H; Jiang, W S; Zheng, Y N

    2014-02-01

    A dual beam ion source for 200 keV ion implanter aimed to produce 200 keV H2 (+) and He(+) beams simultaneously has been developed. Not suitable to use the analyzing magnet, the purity of beam extracted from the source becomes important to the performance of implanter. The performance of ion source was measured. The results of experiments show that the materials of inlet tube of ion source, the time of arc ionization in ion source, and the amount of gas flow have significant influence on the purity of beam. The measures by using copper as inlet tube material, long time of arc ionization, and increasing the inlet of gas flow could effectively reduce the impurity of beam. And the method using the gas mass flow controller to adjust the proportion of H2 (+) and He(+) is feasible. PMID:24593645

  5. Refractive lens based full-field x-ray imaging at 45-50 keV with sub-micron resolution

    NASA Astrophysics Data System (ADS)

    Shastri, S. D.; Kenesei, P.; Suter, R. M.

    2015-09-01

    Combining sub-micron spatial resolution full-field-imaging with the penetration property of high-energy x-rays (> 50 keV) offers numerous applications, such as the ability to observe cracks and voids associated with the onset of failure in engineering materials, complementing x-ray diffraction microscopy probes. Progress in the development of adding such an imaging capability at the Advanced Photon Source high-energy x-ray undulator beamline 1-ID is reported. An initially tested, long baseline configuration had 18-21 x-ray image magnification with compound refractive lenses (as objective) placed 1.8 m after the specimen, and a two-dimensional detector located at a 32-37 m additional distance, in a different experimental station. Later, a more compact set-up of 3.5 magnification with a ?6 m sample-to-detector separation, fitting within a single end-station, was tested. Both set-ups demonstrated 500 nm level spatial resolutions at energies within the 45-50 keV range. Phase contrast artifacts are present, and are discussed in view of the goal of achieving tomography capability, at even higher resolution, in such an instrument with high x-ray energies.

  6. Fission cross-section measurements of sup 247 Cm, sup 254 Es, and sup 250 Cf from 0. 1 eV to 80 keV

    SciTech Connect

    Danon, Y.; Slovacek, R.E.; Block, R.C. ); Lougheed, R.W.; Hoff, R.W. ); Moore, M.S. )

    1991-12-01

    This paper reports on the fission cross sections of {sup 247}Cm, {sup 254}Es, and {sup 250}Cf that are measured with the Rensselaer intense neutron spectrometer from 0.1 eV to 80 keV. The cross sections are normalized to the {sup 235}U ENDF/B-V broadened cross section. Fission areas and resonance widths are determined for low-energy resonances in {sup 247}Cm. The {sup 254}Es and {sup 250}Cf fission cross sections are the only reported measurements for these isotopes. The {sup 254}Es isotope is the heaviest odd- odd isotope ever measured over this energy range. The thermal fission cross sections for {sup 247}Cm, {sup 254}Es, and {sup 250}Cf are determined by extrapolation of the low-energy region of the cross section and are in good agreement with other reported measurements. Resonance integrals are reported for the energy range of 0.1 eV to 80 keV, and the areas for {sup 247}Cm and {sup 250}Cf resonances are also reported. The previously reported {sup 246}Cm fission cross section was corrected for fission in {sup 247}Cm.

  7. Reduction of transient diffusion from 1{endash}5 keV Si{sup +} ion implantation due to surface annihilation of interstitials

    SciTech Connect

    Agarwal, A.; Gossmann, H.-.; Eaglesham, D.J.; Pelaz, L.; Jacobson, D.C.; Haynes, T.E.; Erokhin, Y.E.

    1997-11-01

    The reduction of transient enhanced diffusion (TED) with reduced implantation energy has been investigated and quantified. A fixed dose of 1{times}10{sup 14} cm{sup {minus}2} Si{sup +} was implanted at energies ranging from 0.5 to 20 keV into boron doping superlattices and enhanced diffusion of the buried boron marker layers was measured for anneals at 810, 950, and 1050{degree}C. A linearly decreasing dependence of diffusivity enhancement on decreasing Si{sup +} ion range is observed at all temperatures, extrapolating to {approximately}1 for 0 keV. This is consistent with our expectation that at zero implantation energy there would be no excess interstitials from the implantation and hence no TED. Monte Carlo modeling and continuum simulations are used to fit the experimental data. The results are consistent with a surface recombination length for interstitials of {lt}10 nm. The data presented here demonstrate that in the range of annealing temperatures of interest for p-n junction formation, TED is reduced at smaller ion implantation energies and that this is due to increased interstitial annihilation at the surface. {copyright} {ital 1997 American Institute of Physics.}

  8. Picosecond x-ray measurements from 100 eV to 30 keV

    SciTech Connect

    Attwood, D.T.; Kauffman, R.L.; Stradling, G.L.

    1980-10-15

    Picosecond x-ray measurements relevant to the Livermore Laser Fusion Program are reviewed. Resolved to 15 picoseconds, streak camera detection capabilities extend from 100 eV to higher than 30 keV, with synchronous capabilities in the visible, near infrared, and ultraviolet. Capabilities include automated data retrieval using charge coupled devices (CCD's), absolute x-ray intensity levels, novel cathodes, x-ray mirror/reflector combinations, and a variety of x-ray imaging devices.

  9. New XAFS spectroscopic investigations in the 1-2 keV region. Final report on LDRD program

    SciTech Connect

    Wong, J.; Froba, M.; Tamura, E.

    1996-03-01

    Until recently x-ray absorption fine structure (XAFS) measurements in the 1-2 keV region remained a challenging experimental task. This was primarily due to the lack of an adequate monochromator crystal that possessed both the required x-ray properties (large d-spacing, high resolution and reflectivity) and materials properties (ultra-high vacuum (UHV) capability, damage resistance in a synchrotron radiation beam, absence of constituent element absorption edges and stability, both thermal and mechanical). Traditionally, XAFS spectra in this photon energy range have been measured in a piece-wise fashion using a combination of monochromator crystals. Very recently, we have an experimental breakthrough in XAFS spectroscopy in this soft x-ray region. This energy region is of great importance for materials and basic research since the K-edges of Na (1070 eV), Mg (1303 eV), Al (1557 eV) and Si (1839 eV), the L-edges of some 4p elements from Ga to Sr and the M-edges of the rare-earth elements fall within this energy window of the electromagnetic spectrum. YB{sub 66}, a complex binary semiconducting yttrium boride having a cubic crystal structure with a lattice constant of 23.44 {angstrom} has been singled out as a candidate monochromator material for synchrotron radiation in the 1-2 keV region. There is no intrinsic absorption by the constituent elements in this region, which can adequately be dispersed by the (400) reflection having a 2d value of 11.76 {angstrom}. In terms of vacuum compatibility, resistance to radiation damage, thermal and mechanical stability, YB{sub 66} satisfies all the material requirements for use as a monochromator in a synchrotron beam. In the past few years, LLNL in collaboration with a number of other research institutes has pioneered the development of this unique man-made crystal for use as soft x-ray monochromator with synchrotron light sources for materials science studies. 23 refs., 4 figs.

  10. Searching for keV Sterile Neutrino Dark Matter with X-Ray Microcalorimeter Sounding Rockets

    NASA Astrophysics Data System (ADS)

    Figueroa-Feliciano, E.; Anderson, A. J.; Castro, D.; Goldfinger, D. C.; Rutherford, J.; Eckart, M. E.; Kelley, R. L.; Kilbourne, C. A.; McCammon, D.; Morgan, K.; Porter, F. S.; Szymkowiak, A. E.; XQC Collaboration

    2015-11-01

    High-resolution X-ray spectrometers onboard suborbital sounding rockets can search for dark matter candidates that produce X-ray lines, such as decaying keV-scale sterile neutrinos. Even with exposure times and effective areas far smaller than XMM-Newton and Chandra observations, high-resolution, wide field of view observations with sounding rockets have competitive sensitivity to decaying sterile neutrinos. We analyze a subset of the 2011 observation by the X-ray Quantum Calorimeter instrument centered on Galactic coordinates l=165,b=-5 with an effective exposure of 106 s, obtaining a limit on the sterile neutrino mixing angle of {{sin}}22? < 7.2 {10}-10 at 95% CL for a 7 keV neutrino. Better sensitivity at the level of {{sin}}22? ? 2.1 {10}-11 at 95% CL for a 7 keV neutrino is achievable with future 300-s observations of the galactic center by the Micro-X instrument, providing a definitive test of the sterile neutrino interpretation of the reported 3.56 keV excess from galaxy clusters.

  11. 1/4 keV Fluctuations Due to the Local Hot Bubble

    NASA Astrophysics Data System (ADS)

    Kuntz, K. D.; Snowden, S. L.; Warwick, R. S.

    1997-12-01

    As part of a program to characterize 1/4 keV fluctuations at high galactic latitudes, such as those discovered by Barber, Warwick, & Snowden (1995), it is necessary to characterize the fluctuations produced by the principal foreground components of the 1/4 keV background, the Local Hot Bubble. To do so, we are studying a substantial number of deep, overlapping ROSAT PSPC pointings towards the Hyades cluster, a region which has a substantial absorbing column outside the LHB that effectively blocks the distant 1/4 keV emission. Absorption of X-ray emission by clouds within the LHB is thought to be small in this direction and can be determined by modeling the ROSAT response function. The structure of the X-ray emission in this field can be caused by 1.) changes in the pathlength to the LHB boundary, and 2.) variation in emission measure within the LHB. The amplitude of fluctuations can then place limits on these quantities, but cannot separate their effects.

  12. Measurement of the 20 and 90 keV Resonances in the {sup 18}O(p,{alpha}){sup 15}N Reaction via the Trojan Horse Method

    SciTech Connect

    La Cognata, M.; Spitaleri, C.; Cherubini, S.; Crucilla, V.; Gulino, M.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Tumino, A.; Mukhamedzhanov, A. M.; Tribble, R. E.; Banu, A.; Goldberg, V. Z.; Tabacaru, G.; Trache, L.; Irgaziev, B.; Coc, A.

    2008-10-10

    The {sup 18}O(p,{alpha}){sup 15}N reaction is of primary importance in several astrophysical scenarios, including fluorine nucleosynthesis inside asymptotic giant branch stars as well as oxygen and nitrogen isotopic ratios in meteorite grains. Thus the indirect measurement of the low energy region of the {sup 18}O(p,{alpha}){sup 15}N reaction has been performed to reduce the nuclear uncertainty on theoretical predictions. In particular the strength of the 20 and 90 keV resonances has been deduced and the change in the reaction rate evaluated.

  13. Fission cross section measurements of Cm-247, Cf-250 and Es-254 from 0. 1 eV to 80 keV

    SciTech Connect

    Danon, Y.; Slovacek, R.E.; Block, R.C. . Dept. of Nuclear Engineering and Engineering Physics); Lougheed, R.W.; Hoff, R.W. ); Moore, M.S. )

    1990-01-01

    Fission cross section measurements were made with the RINS system over the neutron energy range from approximately 0.1 eV to 80 keV upon samples of Cm-247, Cf-250 and Es-254. The Cm-247 measurement was undertaken to complete the RINS fission cross section measurement sequence of the curium isotopes, Es-254 was measured because it is a very heavy odd-odd nucleus which might show interesting nuclear structure effects in its fission cross section, and Cf-250 was measured to account for its buildup as a daughter product from the 276-day halflife Es-254. 6 refs., 3 figs.

  14. Measurement of the 20 and 90keV Resonances in the O18(p,?)N15 Reaction via the Trojan Horse Method

    NASA Astrophysics Data System (ADS)

    La Cognata, M.; Spitaleri, C.; Mukhamedzhanov, A. M.; Irgaziev, B.; Tribble, R. E.; Banu, A.; Cherubini, S.; Coc, A.; Crucill, V.; Goldberg, V. Z.; Gulino, M.; Kiss, G. G.; Lamia, L.; Mrazek, J.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Tabacaru, G.; Trache, L.; Trzaska, W.; Tumino, A.

    2008-10-01

    The O18(p,?)N15 reaction is of primary importance in several astrophysical scenarios, including fluorine nucleosynthesis inside asymptotic giant branch stars as well as oxygen and nitrogen isotopic ratios in meteorite grains. Thus the indirect measurement of the low energy region of the O18(p,?)N15 reaction has been performed to reduce the nuclear uncertainty on theoretical predictions. In particular the strength of the 20 and 90 keV resonances has been deduced and the change in the reaction rate evaluated.

  15. 30 nm resolution x-ray imaging at 8 keV using third order diffraction of a zone plate lens objective in a transmission microscope

    SciTech Connect

    Yin, G.-C.; Song, Y.-F.; Tang, M.-T.; Chen, F.-R.; Liang, Keng S.; Duewer, Frederick W.; Feser, Michael; Yun Wenbing; Shieh, H.-P.D.

    2006-11-27

    A hard x-ray transmission microscope with 30 nm spatial resolution has been developed employing the third diffraction order of a zone plate objective. The microscope utilizes a capillary type condenser with suitable surface figure to generate a hollow cone illumination which is matched in illumination range to the numerical aperture of the third order diffraction of a zone plate with an outmost zone width of 50 nm. Using a test sample of a 150 nm thick gold spoke pattern with finest half-pitch of 30 nm, the authors obtained x-ray images with 30 nm resolution at 8 keV x-ray energy.

  16. Measurement of the 20 and 90 keV resonances in the 18O(p,alpha)15N reaction via the Trojan horse method.

    PubMed

    La Cognata, M; Spitaleri, C; Mukhamedzhanov, A M; Irgaziev, B; Tribble, R E; Banu, A; Cherubini, S; Coc, A; Crucillà, V; Goldberg, V Z; Gulino, M; Kiss, G G; Lamia, L; Mrazek, J; Pizzone, R G; Puglia, S M R; Rapisarda, G G; Romano, S; Sergi, M L; Tabacaru, G; Trache, L; Trzaska, W; Tumino, A

    2008-10-10

    The 18O(p,alpha)15N reaction is of primary importance in several astrophysical scenarios, including fluorine nucleosynthesis inside asymptotic giant branch stars as well as oxygen and nitrogen isotopic ratios in meteorite grains. Thus the indirect measurement of the low energy region of the 18O(p,alpha)15N reaction has been performed to reduce the nuclear uncertainty on theoretical predictions. In particular the strength of the 20 and 90 keV resonances has been deduced and the change in the reaction rate evaluated. PMID:18999593

  17. Molecular dynamics simulation of radiation damage in CaCd{sub 6} quasicrystal cubic approximant up to 10 keV

    SciTech Connect

    Chen, P. H.; Avchachov, K.; Nordlund, K.; Pussi, K.

    2013-06-21

    Due to the peculiar nature of the atomic order in quasicrystals, examining phase transitions in this class of materials is of particular interest. Energetic particle irradiation can provide a way to modify the structure locally in a quasicrystal. To examine irradiation-induced phase transitions in quasicrystals on the atomic scale, we have carried out molecular dynamics simulations of collision cascades in CaCd{sub 6} quasicrystal cubic approximant with energies up to 10 keV at 0 and 300 K. The results show that the threshold energies depend surprisingly strongly on the local coordination environments. The energy dependence of stable defect formation exhibits a power-law dependence on cascade energy, and surviving defects are dominated by Cd interstitials and vacancies. Only a modest effect of temperature is observed on defect survival, while irradiation temperature increases lead to a slight increase in the average size of both vacancy clusters and interstitial clusters.

  18. A new international geostationary electron model: IGE-2006, from 1 keV to 5.2 MeV

    NASA Astrophysics Data System (ADS)

    Sicard-Piet, A.; Bourdarie, S.; Boscher, D.; Friedel, R. H. W.; Thomsen, M.; Goka, T.; Matsumoto, H.; Koshiishi, H.

    2008-07-01

    Dpartement Environnement Spatial, Office National d'Etudes et de Recherches Arospatiales (ONERA) has been developing a model for the geostationary electron environment since 2003. Until now, this model was called Particle ONERA-LANL Environment (POLE), and it is valid from 30 keV up to 5.2 MeV. POLE is based on the full complement of Los Alamos National Laboratory geostationary satellites, covers the period 1976-2005, and takes into account the solar cycle variation. Over the period 1976 to present, four different detectors were flown: charged particle analyzer (CPA), synchronous orbit particle analyzer (SOPA), energetic spectra for particles (ESP), and magnetospheric plasma analyzer (MPA). Only the first three were used to develop the POLE model. Here we extend the energy coverage of the model to low energies using MPA measurements. We further include the data from the Japanese geostationary spacecraft, Data Relay Test Satellite (DRTS). These data are now combined into an extended geostationary electron model which we call IGE-2006.

  19. Performance characteristics of HBC stripper foils irradiated by 650 keV H- and high intensity DC ion beams

    NASA Astrophysics Data System (ADS)

    Sugai, I.; Takagi, A.; Takeda, Y.; Irie, Y.; Oyaizu, M.; Kawakami, H.

    2014-06-01

    Newly developed Hybrid type Boron mixed Carbon (HBC) stripper foils are extensively used not only for the RCS of J-PARC and PSR of LANL, but also for other low energy, high intensity proton accelerators in medical applications. We had before tested HBC stripper foils with 3.2 MeV Ne+ and DC heavy ion beams. In order to further understand characteristics of HBC stripper foils, we measured the following parameters using the KEK-650 keV H- and light ion Cockcroft Walton DC accelerator: foil lifetime, thickness reduction, uniformity before and after beam irradiation, and foil deformation. Energy deposition in the present experiment was adjusted to a similar level to that of the HBC foil used in the RCS of J-PARC. In addition, to understand the reason why the HBC stripper foils have high durability against high intensity beam irradiation, we investigated various physical properties, and compared them between the HBC foils and other tested carbon stripper foils. The sizes of the carbon particles in the HBC foil were found to play a vital role in the lifetime.

  20. Single impacts of keV fullerene ions on free standing graphene: Emission of ions and electrons from confined volume

    NASA Astrophysics Data System (ADS)

    Verkhoturov, Stanislav V.; Geng, Sheng; Czerwinski, Bartlomiej; Young, Amanda E.; Delcorte, Arnaud; Schweikert, Emile A.

    2015-10-01

    We present the first data from individual C60 impacting one to four layer graphene at 25 and 50 keV. Negative secondary ions and electrons emitted in transmission were recorded separately from each impact. The yields for Cn- clusters are above 10% for n ? 4, they oscillate with electron affinities and decrease exponentially with n. The result can be explained with the aid of MD simulation as a post-collision process where sufficient vibrational energy is accumulated around the rim of the impact hole for sputtering of carbon clusters. The ionization probability can be estimated by comparing experimental yields of Cn- with those of Cn0 from MD simulation, where it increases exponentially with n. The ionization probability can be approximated with ejecta from a thermally excited (3700 K) rim damped by cluster fragmentation and electron detachment. The experimental electron probability distributions are Poisson-like. On average, three electrons of thermal energies are emitted per impact. The thermal excitation model invoked for Cn- emission can also explain the emission of electrons. The interaction of C60 with graphene is fundamentally different from impacts on 3D targets. A key characteristic is the high degree of ionization of the ejecta.

  1. 20-150-keV proton-impact-induced ionization of uracil: Fragmentation ratios and branching ratios for electron capture and direct ionization

    SciTech Connect

    Tabet, J.; Eden, S.; Feil, S.; Abdoul-Carime, H.; Farizon, B.; Farizon, M.; Ouaskit, S.; Maerk, T. D.

    2010-01-15

    Fragmentation ratios and branching ratios are measured for ionization and dissociative ionization for 20-150 keV (0.9-2.4v{sub 0}) proton collisions with gas-phase uracil molecules. Through event-by-event determination of the postcollision projectile charge, it is possible for such a key biomolecule to distinguish between electron capture (EC) by the incident proton and direct ionization (DI) without projectile neutralization. While the same fragment ion groups are observed in the mass spectra for both processes, EC induces dissociation with greater efficiency than DI in the impact energy range of 35-150 keV (1.2-2.4v{sub 0}). In this range EC is also less abundant than DI with a branching ratio for EC/total ionization of <50%. Moreover, whereas fragmentation ratios do not change with energy in the case of EC, DI mass spectra show a tendency for increased fragmentation at lower impact energies.

  2. Investigation on gamma-ray position sensitivity at 662 keV in a spectroscopic 3' x 3' LaBr3:Ce scintillator

    NASA Astrophysics Data System (ADS)

    Giaz, A.; Camera, F.; Birocchi, F.; Blasi, N.; Boiano, C.; Brambilla, S.; Coelli, S.; Fiorini, C.; Marone, A.; Million, B.; Riboldi, S.; Wieland, O.

    2015-02-01

    The position sensitivity of a thick, cylindrical and continuous 3" x 3" (7.62 cm x 7.62 cm) LaBr3:Ce crystal was studied using a 1 mm collimated beam of 662 keV gamma rays from a 400 MBq intense 137Cs source and a spectroscopic photomultiplier (PMT) (HAMAMATSU R6233-100SEL). The PMT entrance window was covered by black absorber except for a small window 1 cm x 1 cm wide. A complete scan of the detector over a 0.5 cm step grid was performed for three positions of the 1 cm x 1 cm window. For each configuration the energy spectrum was measured and the peak centroid, the FWHM, the area and peak asymmetry of the 662 keV gamma transition were analyzed. The data show that, even in a 3" thick LaBr3:Ce crystal with diffusive surfaces the position of the full energy peak centroid depends on the source position. We verified that, on average, the position of the full energy peak centroids measured in the three 1 cm x 1 cm window configurations is sufficient for the correct identification of the collimated gamma source position.

  3. Dosimetry of ultrasoft x-rays (1.5 keV Al(Kalpha)) using radiochromatic films and colour scanners.

    PubMed

    Cai, Zhongli; Pan, Xiaoning; Hunting, Darel; Cloutier, Pierre; Lemay, Rosalie; Sanche, Lon

    2003-12-21

    This work explores the possibility of measuring the absorbed dose of ultrasoft x-rays (USX, 1.5 keV Al(Kalpha)) with GAFCHROMIC HD-810 radiochromatic dosimetry films (HD-810 films) and colour scanners. HD-810 films were exposed to USX, soft x-rays (14.8 keV) and gamma-rays (60Co) for various times. The response of HD-810 films to absorbed doses of gamma-rays in water was calibrated with Fricke dosimetry and used for the calibration of USX. The optical density of the HD-810 films was quantified with an HP ScanJet 6100C scanner and Corel Picture Paint 7. The choice of the reading channel and colour adjustment settings were optimized to either improve sensitivity or expand the measurable dose range. The response of the HD-810 films to the absorbed dose in water decreased by 50% when the effective photon energy decreased from 1.25 MeV to 14.8 keV. The ratio of the mass energy absorption coefficient of the active layer of HD-810 films to that of water was found to play a major role in this decrease. The mean absorbed doses of the active layer of the HD-810 films exposed to USX were derived. The calculation of the initial photon fluence rate and the mean absorbed doses of USX to biological samples such as plasmid DNA is discussed. This study suggests that radiochromatic dosimetry films are promising secondary dosimeters for measuring the absorbed dose of USX. PMID:14727755

  4. Measurement of the -3 keV resonance in the 13C(?,n)16O reaction and its influence on the synthesis of s-process nuclei

    NASA Astrophysics Data System (ADS)

    La Cognata, M.; Spitaleri, C.; Trippella, O.; Kiss, G. G.; Rogachev, G. V.; Mukhamedzhanov, A. M.; Avila, M.; Guardo, G. L.; Koshchiy, E.; Kuchera, A.; Lamia, L.; Puglia, S. M. R.; Romano, S.; Santiago, D.; Spart, R.

    2012-11-01

    The 13C(?,n)16O reaction is the neutron source for the main component of the s-process, responsible of the production of most nuclei in the mass range 90 < A < 204. It is active inside the helium-burning shell in asymptotic giant branch stars, at temperatures < 108 K, corresponding to an energy interval where the 13C(?,n)16O is effective of 140 - 230 keV. In this region, the astrophysical S(E)-factor is dominated by the -3 keV sub-threshold resonance due to the 6.356 MeV level in 17O, giving rise to a steep increase of the S-factor. Notwithstanding that it plays a crucial role in astrophysics, no direct measurements exist. Therefore, we have applied the Trojan Horse Method (THM) to the 13C(6Li,n16O)d quasi-free reaction to achieve an experimental estimate of such contribution. For the first time, the ANC for the 6.356 MeV level has been deduced through the THM as well as the n-partial width, allowing to attain an unprecedented accuracy in the 13C(?,n)16O study. Though a larger ANC for the 6.356 MeV level is measured, our experimental S(E) factor agrees with the most recent extrapolation in the literature in the 140 - 230 keV energy interval, the accuracy being greatly enhanced thanks to this innovative approach.

  5. WE-E-18A-05: Bremsstrahlung of Laser-Plasma Interaction at KeV Temperature: Forward Dose and Attenuation Factors

    SciTech Connect

    Saez-Beltran, M; Fernandez Gonzalez, F

    2014-06-15

    Purpose: To obtain an analytical empirical formula for the photon dose source term in forward direction from bremsstrahlung generated from laser-plasma accelerated electron beams in aluminum solid targets, with electron-plasma temperatures in the 10–100 keV energy range, and to calculate transmission factors for iron, aluminum, methacrylate, lead and concrete and air, materials most commonly found in vacuum chamber labs. Methods: Bremsstrahlung fluence is calculated from the convolution of thin-target bremsstrahlung spectrum for monoenergetic electrons and the relativistic Maxwell-Juettner energy distribution for the electron-plasma. Unattenuatted dose in tissue is calculated by integrating the photon spectrum with the mass-energy absorption coefficient. For the attenuated dose, energy dependent absorption coefficient, build-up factors and finite shielding correction factors were also taken into account. For the source term we use a modified formula from Hayashi et al., and we fitted the proportionality constant from experiments with the aid of the previously calculated transmission factors. Results: The forward dose has a quadratic dependence on electron-plasma temperature: 1 joule of effective laser energy transferred to the electrons at 1 m in vacuum yields 0,72 Sv per MeV squared of electron-plasma temperature. Air strongly filters the softer part of the photon spectrum and reduce the dose to one tenth in the first centimeter. Exponential higher energy tail of maxwellian spectrum contributes mainly to the transmitted dose. Conclusion: A simple formula for forward photon dose from keV range temperature plasma is obtained, similar to those found in kilovoltage x-rays but with higher dose per dissipated electron energy, due to thin target and absence of filtration.

  6. Theoretical Investigation of Transmission-Type Phase Shifter Made with Muscovite Mica Crystal for 1-keV Region

    SciTech Connect

    Imazono, Takashi; Koike, Masato

    2007-01-19

    In a soft x-ray region from 0.7 keV to 1.1 keV, the performance of transmission-type phase shifter was investigated theoretically based on the dynamical theory. As the result it was found that natural muscovite, KAl2(AlSi3O10)(OH)2, could be used as phase shifters in both symmetric Bragg and Laue geometries. In particular, the muscovite(002) having 5 {mu}m thickness in Laue geometry showed a phase retardation of {approx}{+-}90 deg. and a transmittance of {approx}0.02% at 0.88 keV.

  7. Study and implementation of a soft X-ray 100 eV -20 keV fixed exit monochromator system

    NASA Astrophysics Data System (ADS)

    Pelliciari, C.; Barbera, M.; Candia, R.; Collura, A.; Di Cicca, G.; Pareschi, G.; Varisco, S.

    2006-06-01

    We describe a "built in house" X-ray monochromator which produces a fixed exit X-ray beam tunable in the full energy range 0.1 - 20 keV. The system is based on a double diffraction on two large size parallel crystals positioned using a remotely controlled micropositioning system in order to keep the position of the monochromatic beam for any chosen energy. Up to six different diffracting elements can be selected without breaking the vacuum. This allows to cover the full energy range of interest. The system is part of an upgrading project of the XACT facility at the Istituto Nazionale di Astrofisica - Osservatorio Astronomico di Palermo G.S. Vaiana, and will be employed for the testing and calibration of filters, detectors and optics at X-ray wavelengths.

  8. Development of the EXITE detector - A new imaging detector for 20 - 300 keV astronomy. [Energetic X-ray Imaging Telescope Experiment

    NASA Technical Reports Server (NTRS)

    Garcia, M. R.; Grindlay, J. E.; Burg, R.; Murray, S. S.; Flanagan, J.

    1986-01-01

    The development and testing of a detector to be used in the Energetic X-ray Imaging Telescope Experiment (EXITE) are reported. It consists of a 34 cm diameter NaI(Tl) crystal coupled directly to a single large image intensifier tube with associated silicon PIN diode readout. The measured spatial and energy resolutions at 122 keV are 6mm (FWHM) and 9 percent (FWHM), respectively. This energy resolution is about 50 percent better than that of any previously flown hard X-ray experiment. These resolutions decrease with the square root of the energy of the incident X-ray, indicating that they are determined by the number of photons emitted in the NaI(Tl) scintillator light flash.

  9. Decline of the 2-10 keV Emission from Eta Carinae

    NASA Technical Reports Server (NTRS)

    Liburd, Jamar; Corcoran, Michael F.; Hamaguchi, Kenji; Gull, Theodore R.; Madura, Thomas; Teodoro, Mairan; Moffat, Anthony; Richardson, Noel; Russell, Chris; Pollock, Andrew; Owocki, Stan

    2014-01-01

    Analysis of Eta Car's X-ray spectrum in the 2-10 keV band using processed data from the X-ray Telescope on Swift reveals a peak flux on July 16, 2014 of 0.046 photons s(exp -1) cm(exp -2) (3.37+/-0.15×10(exp -10) ergs s(exp -1) cm(exp -2). This flux is similar to the previous maximum flux seen by the XRT, 3.53+/-0.13×10(exp -10) ergs s(exp -1) cm(exp -2) (0.049 photons s(exp -1) cm(exp -2), ATEL #6298). Since this peak on July 16, the most recent Swift XRT quicklook data show a drop in flux. On July 20, 2014 the XRT flux as seen in the quicklook data was 0.011 photons s(exp -1) cm(exp -2) (8.3+/-0.5×10(exp -11) ergs s(exp -1) cm(exp -2)). This most likely indicates that the 2-10 keV flux is in its declining phase as Eta Car approaches its deep X-ray minimum stage (Hamaguchi et al., 2014, ApJ, 784, 125) associated with periastron passage of the 2024-day binary orbit. The column density derived from analysis of the July 20 XRT quicklook data is 7.2×10(exp 22) cm(exp -2). This is consistent with the column density seen near the same orbital phase in 2003 (7.7×10(exp 22) cm(exp -2), Hamaguchi et al., 2007, ApJ, 663, 522). Eta Car's deep X-ray minimum phase is expected to begin on July 30, 2014. Weekly Swift/XRT observations of Eta Car in the 2-10 keV band are planned throughout the X-ray minimum.

  10. Microchannel plate pinhole camera for 20 to 100 keV x-ray imaging

    SciTech Connect

    Wang, C.L.; Leipelt, G.R.; Nilson, D.G.

    1984-10-03

    We present the design and construction of a sensitive pinhole camera for imaging suprathermal x-rays. Our device is a pinhole camera consisting of four filtered pinholes and microchannel plate electron multiplier for x-ray detection and signal amplification. We report successful imaging of 20, 45, 70, and 100 keV x-ray emissions from the fusion targets at our Novette laser facility. Such imaging reveals features of the transport of hot electrons and provides views deep inside the target.

  11. Setup of an 8 keV laboratory transmission x-ray microscope

    NASA Astrophysics Data System (ADS)

    Baumbach, S.; Kanngieer, B.; Malzer, W.; Stiel, H.; Bjeoumikhova, S.; Wilhein, T.

    2014-04-01

    This article presents a concept and the first results for the setup of an 8keV laboratory transmission x-ray microscope with a polycapillary optic as condenser at the BliX in Berlin. The incentive of building such a microscope is that the penetration depth for hard x-rays is much higher than in the soft x-ray range, e.g. the water window. Therefore, it is possible to investigate even dense materials such as metal compounds, bones or geological samples. The future aim is to achieve a spatial resolution better than 200 nm.

  12. Evolving starburst galaxies, faint number counts, and the 2 keV background

    NASA Technical Reports Server (NTRS)

    Lonsdale, C.; Harmon, R.

    1991-01-01

    Blue and 60 micron extragalactic number counts and redshift distributions are modeled using evolutionary models in which galaxies periodically undergo transient starburst events. Support is found for the hypothesis that the same starburst phenomenon is responsible for the excess source counts seen at both wavelengths, though observed at lower mean redshift in the far infrared than in the blue. The soft X-ray emission from these evolving starburst events is not likely to exceed the 2 keV background unless the evolutionary rate is greater than (1 + z)-cubed (luminosity or density evolution) and the redshift of galaxy formation is greater than about five.

  13. On the vectorial photoelectric effect at 2.69 keV

    NASA Technical Reports Server (NTRS)

    Shaw, P. S.; Hanany, S.; Liu, Y.; Church, E. D.; Fleischman, J.; Kaaret, P.; Novick, R.; Santangelo, A.

    1991-01-01

    Recent experiments conducted to study the vectorial photoelectric effect with CsI, Al2O3 and Si photocathodes at 2.69 keV indicate null results. Detailed analysis shows that previously measured modulation can be well explained by geometrical misalignment and a combination of the asymmetric shape of the incident X-ray beam and a small detection area of the photoelectron detector. After the elimination of the sources of spurious modulation, we observed a modulation factor of less than 3 percent for a grazing incidence angle as small as 5 deg. There is no observable difference in the pulse height distribution between s and p states.

  14. Differential cross sections for single ionization of H2 by 75keV proton impact

    NASA Astrophysics Data System (ADS)

    Chowdhury, U.; Schulz, M.; Madison, D. H.

    2012-11-01

    We have calculated Triply differential cross sections (TDCS) and doubly differential cross sections (DDCS) for single ionization of H2 by 75 keV proton impact using the molecular 3 body distorted wave Eikonal initial state (M3DW-EIS) approach. Previously published measured DDCS-P (differential in the projectile scattering angle and integrated over the ejected electron angles) found pronounced structures at relatively large angles which were interpreted as an interference resulting from the two-centered potential of the molecule.

  15. Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation.

    PubMed

    Wang, Lei; Wang, Ke-Ming; Chen, Feng; Wang, Xue-Lin; Wang, Liang-Ling; Liu, Hong; Lu, Qing-Ming

    2007-12-10

    We report on the fabrication of planar waveguide in stoichiometric lithium niobate by 500 keV proton implantation with a dose of 1x10(17) ions/cm(2). The formation of n(e) enhancement planar waveguide in the crystal was disclosed by the dark mode spectra and the subsequent endface coupling measurement. The absorption spectra show that the postannealing treatments above 400 masculineC temperature can remove the color centers induced by implantation efficiently. The propagation loss and near-field profiles of the planar waveguide were obtained with an end-face coupling system. PMID:19550978

  16. ABRIXAS, an imaging telescope for a 0.5-10 keV survey.

    NASA Astrophysics Data System (ADS)

    Friedrich, P.; Hasinger, G.; Richter, G.; Fritze, K.; Trümper, J.; Bräuninger, H.; Predehl, P.; Staubert, R.; Kendziorra, E.

    1996-02-01

    In cooperation with DARA the authors are planning the small X-ray satellite mission ABRIXAS (A Broadband Imaging X-ray All-sky Survey), extending the ROSAT survey to the harder X-ray band (0.5-10 keV) with an angular resolution better than 1'. As a pathfinder mission, ideally before XMM and AXAF, it can pinpoint objects obscured for soft X-rays by absorbing gas and dust. Its main goal is to study the absorbed AGN population and its contribution to the X-ray background.

  17. No evidence of the 17-keV neutrino in the decay of [sup 71]Ge

    SciTech Connect

    DiGregorio, D.E.; Gil, S.; Huck, H.; Batista, E.R.; Ferrero, A.M.J.; Gattone, A.O. )

    1993-06-01

    We have measured the internal bremsstrahlung spectrum of the electron capture decay of [sup 71]Ge in search for a possible mass component of the emitted neutrino. The main relevance of this experiment is given by the collected statistics which is 20 times larger than in a previously published work studying the same decay. Analyses of the data exclude the presence of a massive component of 17.2[sub [minus]1.1][sup +1.3] keV and (1.6[plus minus]0.7)% mixing fraction claimed by Zlimen [ital et] [ital al]. for this same nucleus, at the 99.0% confidence level.

  18. First Double Excitation Cross Sections of Helium Measured for 100-keV Proton Impact

    SciTech Connect

    Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A.; Godunov, A.L.; Schipakov, V.A.

    1997-12-01

    Excitation cross sections of the (2s{sup 2}){sup 1}S, (2p{sup 2}){sup 1}D , and (2s2p){sup 1}P autoionizing states of helium, produced in collisions with 100-keV protons, have been measured for the first time. Using a high resolution electron spectroscopy together with a recently proposed parametrization of autoionizing resonances distorted by Coulomb interaction in the final state makes it possible to extract from electron spectra {ital total cross sections} as well as {ital magnetic sublevel populations.} These new experimental data are briefly compared with out theoretical calculations. {copyright} {ital 1997} {ital The American Physical Society}

  19. Comparative Dosimetric Estimates of a 25 keV Electron Micro-beam with three Monte Carlo Codes

    SciTech Connect

    Mainardi, Enrico; Donahue, Richard J.; Blakely, Eleanor A.

    2002-09-11

    The calculations presented compare the different performances of the three Monte Carlo codes PENELOPE-1999, MCNP-4C and PITS, for the evaluation of Dose profiles from a 25 keV electron micro-beam traversing individual cells. The overall model of a cell is a water cylinder equivalent for the three codes but with a different internal scoring geometry: hollow cylinders for PENELOPE and MCNP, whereas spheres are used for the PITS code. A cylindrical cell geometry with scoring volumes with the shape of hollow cylinders was initially selected for PENELOPE and MCNP because of its superior simulation of the actual shape and dimensions of a cell and for its improved computer-time efficiency if compared to spherical internal volumes. Some of the transfer points and energy transfer that constitute a radiation track may actually fall in the space between spheres, that would be outside the spherical scoring volume. This internal geometry, along with the PENELOPE algorithm, drastically reduced the computer time when using this code if comparing with event-by-event Monte Carlo codes like PITS. This preliminary work has been important to address dosimetric estimates at low electron energies. It demonstrates that codes like PENELOPE can be used for Dose evaluation, even with such small geometries and energies involved, which are far below the normal use for which the code was created. Further work (initiated in Summer 2002) is still needed however, to create a user-code for PENELOPE that allows uniform comparison of exact cell geometries, integral volumes and also microdosimetric scoring quantities, a field where track-structure codes like PITS, written for this purpose, are believed to be superior.

  20. Cross-field diffusion of energetic (100 keV to 2 MeV) protons in interplanetary space

    SciTech Connect

    Costa Jr, Edio da; Tsurutani, Bruce T.; Alves, Maria Virgnia; Echer, Ezequiel; Lakhina, Gurbax S. E-mail: costajr.e@gmail.com

    2013-12-01

    Magnetic field magnitude decreases (MDs) are observed in several regions of the interplanetary medium. In this paper, we characterize MDs observed by the Ulysses spacecraft instrumentation over the solar south pole by using magnetic field data to obtain the empirical size, magnetic field MD, and frequency of occurrence distribution functions. The interaction of energetic (100 keV to 2 MeV) protons with these MDs is investigated. Charged particle and MD interactions can be described by a geometrical model allowing the calculation of the guiding center shift after each interaction. Using the distribution functions for the MD characteristics, Monte Carlo simulations are used to obtain the cross-field diffusion coefficients as a function of particle kinetic energy. It is found that the protons under consideration cross-field diffuse at a rate of up to ?11% of the Bohm rate. The same method used in this paper can be applied to other space regions where MDs are observed, once their local features are well known.

  1. 60 keV Ar?-ion induced modification of microstructural, compositional, and vibrational properties of InSb

    SciTech Connect

    Datta, D. P.; Garg, S. K.; Som, T.; Satpati, B.; Kanjilal, A.; Dhara, S.; Kanjilal, D.

    2014-10-14

    Room temperature irradiation of InSb(111) by 60 keV Ar?-ions at normal (0) and oblique (60) angles of incidence led to the formation of nanoporous structure in the high fluence regime of 110? to 310? ions cm?. While a porous layer comprising of a network of interconnected nanofibers was generated by normal ion incidence, evolution of plate-like structures was observed for obliquely incident ions. Systematic studies of composition and structure using energy dispersive x-ray spectroscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, Raman mapping, grazing incidence x-ray diffraction, and cross-sectional transmission electron microscopy revealed a high degree of oxidation of the ion-induced microstructures with the presence of In?O? and Sb?O? phases and presence of nanocrystallites within the nanoporous structures. The observed structural evolution was understood in terms of processes driven by ion-induced defect accumulation within InSb.

  2. Formation of carbon nanoclusters by implantation of keV carbon ions in fused silica followed by thermal annealing

    NASA Astrophysics Data System (ADS)

    Olivero, P.; Peng, J. L.; Liu, A.; Reichart, P.; McCallum, J. C.; Sze, J. Y.; Lau, S. P.; Tay, B. K.; Kalish, R.; Dhar, S.; Feldman, Leonard; Jamieson, David N.; Prawer, Steven

    2005-02-01

    In the last decade, the synthesis and characterization of nanometer sized carbon clusters have attracted growing interest within the scientific community. This is due to both scientific interest in the process of diamond nucleation and growth, and to the promising technological applications in nanoelectronics and quantum communications and computing. Our research group has demonstrated that MeV carbon ion implantation in fused silica followed by thermal annealing in the presence of hydrogen leads to the formation of nanocrystalline diamond, with cluster size ranging from 5 to 40 nm. In the present paper, we report the synthesis of carbon nanoclusters by the implantation into fused silica of keV carbon ions using the Plasma Immersion Ion Implantation (PIII) technique, followed by thermal annealing in forming gas (4% 2H in Ar). The present study is aimed at evaluating this implantation technique that has the advantage of allowing high fluence-rates on large substrates. The carbon nanostructures have been characterized with optical absorption and Raman spectroscopies, cross sectional Transmission Electron Microscopy (TEM), and Parallel Electron Energy Loss Spectroscopy (PEELS). Nuclear Reaction Analysis (NRA) has been employed to evaluate the deuterium incorporation during the annealing process, as a key mechanism to stabilize the formation of the clusters.

  3. Improving accuracy and reliability of 186-keV measurements for unattended enrichment monitoring

    SciTech Connect

    Ianakiev, Kiril D; Boyer, Brian D; Swinhoe, Martyn T; Moss, Calvin E; Goda, Joetta M; Favalli, Andrea; Lombardi, Marcie; Paffett, Mark T; Hill, Thomas R; MacArthur, Duncan W; Smith, Morag K

    2010-04-13

    Improving the quality of safeguards measurements at Gas Centrifuge Enrichment Plants (GCEPs), whilst reducing the inspection effort, is an important objective given the number of existing and new plants that need to be safeguarded. A useful tool in many safeguards approaches is the on-line monitoring of enrichment in process pipes. One aspect of this measurement is a simple, reliable and precise passive measurement of the 186-keV line from {sup 235}U. (The other information required is the amount of gas in the pipe. This can be obtained by transmission measurements or pressure measurements). In this paper we describe our research efforts towards such a passive measurement system. The system includes redundant measurements of the 186-keV line from the gas and separately from the wall deposits. The design also includes measures to reduce the effect of the potentially important background. Such an approach would practically eliminate false alarms and can maintain the operation of the system even with a hardware malfunction in one of the channels. The work involves Monte Carlo modeling and the construction of a proof-of-principle prototype. We will carry out experimental tests with UF{sub 6} gas in pipes with and without deposits in order to demonstrate the deposit correction.

  4. The 16 August 1997 Novaya Zemlya seismic event as viewed from GSN stations KEV and KBS

    SciTech Connect

    Hartse, H.E.

    1997-11-01

    Using current and historic seismic records from Global Seismic Network stations KEV and KBS, the authors find that S minus P arrival time comparisons between nuclear explosions and the 16 August 1997 seismic event (m{sub b} {approx} 3.6) from near Novaya Zemlya clearly indicate that (relative to KEV) the 16 August event occurred at least 80 km east of the Russian test site. Including S minus P arrival times from KBS constrains the location to beneath the Kara Sea and in good agreement with previously reported locations, over 100 km southeast of the test site. From an analysis of P{sub n}/S{sub n} waveform ratios at frequencies above 4 Hz, they find that the 16 August event falls within the population of regional earthquakes and is distinctly separated from Novaya Zemlya and other northern Eurasian nuclear explosion populations. Thus, given its location and waveform characteristics, they conclude the 16 August event was an earthquake. The 16 August event was not detected at teleseismic distances, and thus, this event provides a good example of the regional detection, location, and identification efforts that will be required to monitor the Comprehensive Test Ban Treaty below m{sub b} {approx} 4.

  5. Blistering of GaAs by low keV H, D, and He ions

    SciTech Connect

    Giguere, Alexandre; Desrosiers, Nicholas; Terreault, Bernard

    2005-11-21

    The thermally activated blistering of the GaAs (100) surface after 5- and 10 keV H, D, and He ion implantations was investigated. A large isotope effect is observed as the critical blistering fluences are two to three times higher for D than for H ions. Blistering and exfoliation are also obtained for very low He ion fluence, contrary to Si which is impervious to He blistering in the same conditions. The exfoliated crater depth depends strongly on the He fluence, varying, at 10 keV, from 75{+-}10 nm (for 1.6x10{sup 16} He/cm{sup 2}), consistent with the ion projected range determined by computation, to a saturation value of 155{+-}10 nm for doses >4x10{sup 16} He/cm{sup 2}. Our results suggest that the fracture leading to cleavage is triggered at a local He concentration of about 2 at. %, where dislocations and nanocavities are created.

  6. 7 keV scalar dark matter and the anomalous extragalactic x-ray spectrum

    NASA Astrophysics Data System (ADS)

    Babu, K. S.; Mohapatra, Rabindra N.

    2014-06-01

    We present a simple model for a 7 keV scalar dark matter particle which also explains the recently reported anomalous peak in the extragalactic x-ray spectrum at 3.55 keV in terms of its two photon decay. The model is arguably the simplest extension of the Standard Model, with the addition of a real scalar gauge singlet field subject to a reflection symmetry. This symmetry breaks spontaneously at a temperature of order few GeV which triggers the decay of the dark matter particle into two photons. In this framework, the Higgs boson of the Standard Model is also the source of dark matter in the Universe. The model fits the relic dark matter abundance and the partial lifetime for two photon decay, while being consistent with constraints from domain wall formation and dark matter self-interactions. We show that all these features of the model are preserved in its natural embedding into a simple dark U(1) gauge theory with a Higgs mechanism. The properties of the dark photon get determined in such a scenario. High precision cosmological measurements can potentially test these models, as there are residual effects from domain wall formation and non-negligible self-interactions of dark matter.

  7. Performance improvement of keV Neutrons-based PGNAA setups.

    PubMed

    Naqvi, A A; Abdelmonem, M S; Al-Misned, Ghada; Al-Ghamdi, Hanan

    2006-12-01

    The performance of keV neutrons based Prompt Gamma Ray Neutron Activation Analysis (PGNAA) setups have been observed to improve by enclosing its neutron source inside the moderator. The keV neutrons were produced via (7)Li(p,n) reaction and (3)H(p,n) reactions. For the two PGNAA setups, the maximum intensity of the prompt gamma-ray yield was observed for a 5cm long moderator with the neutron source positioned at a distance of 0.5cm from the moderator-end facing the sample. Due to enclosing the source inside the moderator, the prompt gamma-ray yield from the (7)Li(p,n) reaction and (3)H(p,n) reaction based PGNAA setups have increased by a factor of three as compared to that achieved from these setups with the source outside the moderator. This study provides a theoretical basis for the measurement of performance of (7)Li(p,n) reaction and the (3)H(p,n) reaction based PGNAA setups. PMID:16837206

  8. Excitation and charge transfer in H-H+ collisions at 5-80 keV and application to astrophysical shocks

    NASA Astrophysics Data System (ADS)

    Tseliakhovich, Dmitriy; Hirata, Christopher M.; Heng, Kevin

    2012-05-01

    In astrophysical regimes where the collisional excitation of hydrogen atoms is relevant, the cross-sections for the interactions of hydrogen atoms with electrons and protons are necessary for calculating line profiles and intensities. In particular, at relative velocities exceeding 1000 km s-1, collisional excitation by protons dominates over that by electrons. Surprisingly, the H-H+ cross-sections at these velocities do not exist for atomic levels of n? 4, forcing researchers to utilize extrapolation via inaccurate scaling laws. In this study, we present a faster and improved algorithm for computing cross-sections for the H-H+ collisional system, including excitation and charge transfer to the n? 2 levels of the hydrogen atom. We develop a code named BDSCX which directly solves the Schrdinger equation with variable (but non-adaptive) resolution and utilizes a hybrid spatial-Fourier grid. Our novel hybrid grid reduces the number of grid points needed from 4000n6 (for a 'brute force', Cartesian grid) to 2000n4 and speeds up the computation by a factor of 50 for calculations going up to n= 4. We present (l, m)-resolved results for charge transfer and excitation final states for n= 2-4 and for projectile energies of 5-80 keV, as well as fitting functions for the cross-sections. The ability to accurately compute H-H+ cross-sections to n= 4 allows us to calculate the Balmer decrement, the ratio of H? to H? line intensities. We find that the Balmer decrement starts to increase beyond its largely constant value of 2-3 below 10 keV, reaching values of 4-5 at 5 keV, thus complicating its use as a diagnostic of dust extinction when fast (1000 km s-1) shocks are impinging upon the ambient interstellar medium.

  9. Enhanced nonlinear coupling in the keV x-ray range: Xe(L) hollow atom excitation with Xe(M) radiation at ?? ? 1 keV

    NASA Astrophysics Data System (ADS)

    Borisov, Alex B.; McCorkindale, John C.; Poopalasingam, Sankar; Longworth, James W.; Rhodes, Charles K.

    2015-08-01

    Anomalously enhanced nonlinear electromagnetic coupling can arise from ordered driven collective motions in many electron systems. The augmented strength of the interaction can be expressed as an effective increase in the fine structure constant ? in which ? ? Z2?, where Z specifies the number of electrons involved in the ordered response to the external field. The present work illustrates this phenomenon in the x-ray range with the observation of the 5-photon nonlinear excitation of Xe(L)* hollow atom states that are generated by intense (7 1015 W cm-2) Xe(M) radiation {? }{{M}} at 1 keV. The nonlinear cross section experimentally determined for the 5{? }{{M}} + Xe ? [Xeq+(L)]* + qe- amplitude is {? }5 2 10-21 cm2. The matching theoretical cross section corresponds to Z = 18, an outcome indicating the participation of the full Xe(4d105s25p6) supershell, a dynamic feature of Xe that also plays a significant role in the linear photoionization of neutral Xe atoms in the kilovolt region. For the high-intensity 5? nonlinear coupling, the outcome for the Xe(L)* hollow atom excitation is an enhancement of the strength of the interaction by a factor of 1012 and, with Z2? > 1, a fundamentally new region of strong coupling is entered. The experimental value of {? }5 is likewise shown to be in very good accord with an earlier analysis that estimated the upper bound of cross sections for high-order multi-photon cross sections in the combined high-Z and high-intensity limit. These results forecast the general presence of comparably enhanced coupling strengths in the interaction of sufficiently intense (I ? 7 1015 W cm-2) x-rays with high-Z atoms and molecules.

  10. Close-packed Arrays of Transition-edge X-ray Microcalorimeters with High Spectral Resolution at 5.9 keV

    NASA Technical Reports Server (NTRS)

    Iyomoto, N.; Bandler, S. R.; Brekosky, R. P.; Brown, A.-D.; Chervenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Figueroa-Feliciano, E.

    2007-01-01

    We present measurements of high fill-factor arrays of superconducting transition-edge x-ray microcalorimeters designed to provide rapid thermalization of the x-ray energy. We designed an x-ray absorber that is cantilevered over the sensitive part of the thermometer itself, making contact only at normal metal-features. With absorbers made of electroplated gold, we have demonstrated an energy resolution between 2.4 and 3.1 eV at 5.9 keV on 13 separate pixels. We have determined the thermal and electrical parameters of the devices throughout the superconducting transition, and, using these parameters, have modeled all aspects of the detector performance.

  11. Cross calibration of new x-ray films against direct exposure film from 1 to 8 keV using the X-pinch x-ray source

    NASA Astrophysics Data System (ADS)

    Chandler, K. M.; Pikuz, S. A.; Shelkovenko, T. A.; Mitchell, M. D.; Hammer, D. A.; Knauer, J. P.

    2005-11-01

    A cross calibration of readily available x-ray sensitive films has been carried out against the calibrated direct exposure film (DEF) which is no longer being manufactured by Kodak. Four-wire X pinches made from various metal wires were used as x-ray sources for this purpose. Tests were carried out for the Kodak films Biomax MS, Biomax XAR, M100, Technical Pan, and T-Max over the energy range of 1-8keV (12.4-1.5Å wavelength). The same hand-development procedures as described by Henke et al. [J. Opt. Soc. Am. B 3, 1540 (1986)] were followed for all films in every test. Sensitivity curves as a function of wavelength for these films relative DEF are presented. These relative calibrations show that Biomax MS is likely to be the best replacement film for DEF for most purposes over the energy range tested here.

  12. Observations of energetic electrons /E no less than about 200 keV/ in the earth's magnetotail - Plasma sheet and fireball observations

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Stone, E. C.

    1977-01-01

    An earlier paper by the authors (1976) has reported on energetic electron anisotropies observed in conjunction with the acceleration regions identified by Frank et al., (1976). The present paper gives more detailed analyses of observations in the distant plasma sheet, including specific features of intensities, energy spectra, and pitch angle distributions of the very energetic electrons associated with intense plasma particle events, with energies ranging between 50 eV and 45 keV, detected with an electron/isotope spectrometer aboard the earth-orbiting spacecraft Imp 8. Two domains are considered: the plasma sheet and the regions near and within the localized magnetotail acceleration regions known as the fireball regions. The instrumentation used offered a number of observational advantages over many previous studies, including inherently low background, large geometric factors, excellent species identification, good angular distribution measurement capability, and availability of high resolution of differential intensities.

  13. Classical-trajectory Monte Carlo calculations of the electronic stopping cross section for keV protons and antiprotons impinging on hydrogen atoms

    SciTech Connect

    Custidiano, Ernesto R.; Jakas, Mario M.

    2005-08-15

    Using the classical-trajectory Monte Carlo (CTMC) method, the electronic stopping cross sections of hydrogen atoms by protons and antiprotons impact are calculated. The results show that the CTMC method compares fairly well with previous quantum mechanics calculations of the stopping cross sections for the same colliding pairs. It turns out therefore that the CTMC method constitutes a reliable and, computationally speaking, convenient alternative to calculate the stopping of ions in matter. The present results also show that the stopping appears to be particularly sensitive to the angular momentum (L) of the electron orbit. In the case of protons, the highest sensitivity to L becomes evident around the energy of the maximum stopping. While for antiprotons the largest sensitivity of the stopping to L is observed down at low bombarding energies, i.e., below 10 keV.

  14. Damage behavior and atomic migration in MgAl2O4 under an 80 keV scanning focused probe in a STEM.

    PubMed

    Zhu, Guo-zhen; Botton, Gianluigi A

    2015-01-01

    With the dramatic improvement in the spatial resolution of scanning transmission electron microscopes over the past few decades, the tolerance of a specimen to the high-energy electron beam becomes the limiting factor for the quality of images and spectra obtained. Therefore, a deep understanding of the beam irradiation processes is crucial to extend the applications of electron microscopy. In this paper, we report the structural evolution of a selected oxide, MgAl2O4, under an 80 keV focused electron probe so that the beam irradiation process is not dominated by the knock-on mechanism. The formation of peroxyl bonds and the assisted atomic migration were studied using imaging and electron energy-loss spectroscopic techniques. PMID:25043440

  15. Fragmentation of doubly charged HDO, H2O, and D2O molecules induced by proton and monocharged fluorine beam impact at 3 keV.

    PubMed

    Martin, S; Chen, L; Brdy, R; Bernard, J; Cassimi, A

    2015-03-01

    Doubly charged ions HDO(2+), H2O(2+), and D2O(2+) were prepared selectively to triplet or singlet excited states in collisions with F(+) or H(+) projectiles at 3 keV. Excitation energies of dications following two-body or three-body dissociation channels were measured and compared with recent calculations using ab initio multi-reference configuration interaction method [Gervais et al., J. Chem. Phys. 131, 024302 (2009)]. For HDO(2+), preferential cleavage of O-H rather than O-D bond has been observed and the ratio between the populations of the fragmentation channels OD(+)_H(+) and OH(+)_D(+) were measured. The kinetic energy release has been measured and compared with previous experiments. PMID:25747080

  16. Close-packed arrays of transition-edge x-ray microcalorimeters with high spectral resolution at 5.9 keV

    SciTech Connect

    Iyomoto, N.; Bandler, S. R.; Brekosky, R. P.; Brown, A.-D.; Chervenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Figueroa-Feliciano, E.

    2008-01-07

    We present measurements of high fill-factor arrays of superconducting transition-edge x-ray microcalorimeters designed to provide rapid thermalization of the x-ray energy. We designed an x-ray absorber that is cantilevered over the sensitive part of the thermometer itself, making contact only at normal-metal features. With absorbers made of electroplated gold, we have demonstrated an energy resolution between 2.4 and 3.1 eV at 5.9 keV on 13 separate pixels. We have determined the thermal and electrical parameters of the devices throughout the superconducting transition and, using these parameters, have modeled all aspects of the detector performance.

  17. Common origin of the 3.55 keV x-ray line and the Galactic Center gamma-ray excess in a radiative neutrino mass model

    NASA Astrophysics Data System (ADS)

    Borah, Debasish; Dasgupta, Arnab; Adhikari, Rathin

    2015-10-01

    We attempt to simultaneously explain the recently observed 3.55 keV x-ray line in the analysis of XMM-Newton telescope data and the Galactic Center gamma ray excess observed by the Fermi Gamma Ray Space Telescope within an Abelian gauge extension of the standard model. We consider a two component dark matter scenario with tree level mass difference 3.55 keV such that the heavier one can decay into the lighter one and a photon with energy 3.55 keV. The lighter dark matter candidate is protected from decaying into the standard model particles by a remnant Z2 symmetry into which the Abelian gauge symmetry gets spontaneously broken. If the mass of the dark matter particle is chosen to be within 31-40 GeV, then this model can also explain the Galactic Center gamma ray excess if the dark matter annihilation into b b ¯ pairs has a cross section of ⟨σ v ⟩≃(1.4 -2.0 )×1 0-26 cm3/s . We constrain the model from the requirement of producing correct dark matter relic density, 3.55 keV x-ray line flux, and Galactic Center gamma ray excess. We also impose the bounds coming from dark matter direct detection experiments as well as collider limits on additional gauge boson mass and gauge coupling. We also briefly discuss how this model can give rise to subelectron volt neutrino masses at tree level as well as the one-loop level while keeping the dark matter mass at a few tens of giga-electron volts. We also constrain the model parameters from the requirement of keeping the one-loop mass difference between two dark matter particles below a kilo-electron volt. We find that the constraints from light neutrino mass and kilo-electron volt mass splitting between two dark matter components show more preference for opposite C P eigenvalues of the two fermion singlet dark matter candidates in the model.

  18. A mass analysis technique using coincidence measurements from the Interstellar Boundary Explorer-Hi (approximately 0.3- approximately 6 keV) detector.

    PubMed

    Allegrini, F; Ebert, R W; Alquiza, J; Broiles, T; Dunn, C; McComas, D J; Silva, I; Valek, P; Westlake, J

    2008-09-01

    NASA's Interstellar Boundary Explorer (IBEX) mission, scheduled to launch in October 2008, will make the first observations of charge exchange energetic neutral atoms (ENAs) produced near the edge of the heliosphere. IBEX will measure these ENAs with two ultra-high sensitivity, single-pixel ENA sensors in the energy range of approximately 0.01- approximately 2 keV (IBEX-Lo) and approximately 0.3- approximately 6 keV (IBEX-Hi), respectively. The primary purpose of IBEX is to measure hydrogen ENAs from the outer heliosphere, but it will also be sensitive to heavier species of ENAs produced anywhere throughout the solar system. For this study, we measured the coincidence response of the IBEX-Hi detector section to H, He, N, and O ions. Based on these results, we have developed an innovative technique in estimating the hydrogen to heavy ion ratio in the signal. This new technique can be applied more widely than the IBEX-Hi detector section, and the basic principle may be useful for other, future space and ground-based measurements. PMID:19044461

  19. Non-abelian dark matter solutions for Galactic gamma-ray excess and Perseus 3.5 keV X-ray line

    SciTech Connect

    Cheung, Kingman; Huang, Wei-Chih; Tsai, Yue-Lin Sming

    2015-05-26

    We attempt to explain simultaneously the Galactic center gamma-ray excess and the 3.5 keV X-ray line from the Perseus cluster based on a class of non-abelian SU(2) DM models, in which the dark matter and an excited state comprise a “dark” SU(2) doublet. The non-abelian group kinetically mixes with the standard model gauge group via dimensions-5 operators. The dark matter particles annihilate into standard model fermions, followed by fragmentation and bremsstrahlung, and thus producing a continuous spectrum of gamma-rays. On the other hand, the dark matter particles can annihilate into a pair of excited states, each of which decays back into the dark matter particle and an X-ray photon, which has an energy equal to the mass difference between the dark matter and the excited state, which is set to be 3.5 keV. The large hierarchy between the required X-ray and γ-ray annihilation cross-sections can be achieved by a very small kinetic mixing between the SM and dark sector, which effectively suppresses the annihilation into the standard model fermions but not into the excited state.

  20. Measurement of the 13C(?,n)16O reaction with the Trojan horse method: Focus on the sub threshold resonance at -3 keV

    NASA Astrophysics Data System (ADS)

    La Cognata, M.; Spitaleri, C.; Trippella, O.; Kiss, G. G.; Rogachev, G. V.; Mukhamedzhanov, A. M.; Avila, M.; Guardo, G. L.; Koshchiy, E.; Kuchera, A.; Lamia, L.; Puglia, S. M. R.; Romano, S.; Santiago, D.; Spart, R.

    2014-05-01

    The 13C(?,n)16O reaction is the neutron source of the main component of the s-process. The astrophysical S(E)-factor is dominated by the -3 keV sub-threshold resonance due to the 6.356 MeV level in 17O. Its contribution is still controversial as extrapolations, e.g., through R-matrix calculations, and indirect techniques, such as the asymptotic normalization coefficient (ANC), yield inconsistent results. Therefore, we have applied the Trojan Horse Method (THM) to the 13C(6Li,n16O)d reaction to measure its contribution. For the first time, the ANC for the 6.356 MeV level has been deduced through the THM, allowing to attain an unprecedented accuracy. Though a larger ANC for the 6.356 MeV level is measured, our experimental S(E) factor agrees with the most recent extrapolation in the literature in the 140-230 keV energy interval, the accuracy being greatly enhanced thanks to this innovative approach, merging together two well establish indirect techniques, namely, the THM and the ANC.

  1. M-L band x-rays (3-3.5 KeV) from palladium coated targets for isochoric radiative heating of thin foil samples

    NASA Astrophysics Data System (ADS)

    Kettle, B.; Dzelzainis, T.; White, S.; Li, L.; Rigby, A.; Spindloe, C.; Notley, M.; Heathcote, R.; Lewis, C. L. S.; Riley, D.

    2015-11-01

    We describe experiments designed to produce a bright M-L band x-ray source in the 3-3.5 keV region. Palladium targets irradiated with a 1015 W cm-2 laser pulse have previously been shown to convert up to 2% of the laser energy into M-L band x-rays with similar pulse duration to that of the incident laser. This x-ray emission is further characterized here, including pulse duration and source size measurements, and a higher conversion efficiency than previously achieved is demonstrated (4%) using more energetic and longer duration laser pulses (200 ps). The emission near the aluminium K-edge (1.465-1.550 keV) is also reported for similar conditions, along with the successful suppression of such lower band x-rays using a CH coating on the rear side of the target. The possibility of using the source to radiatively heat a thin aluminium foil sample to uniform warm dense matter conditions is discussed.

  2. An accuracy assessment of photo-ionization cross-section datasets for 1-2 keV x-rays in light elements using PIXE

    NASA Astrophysics Data System (ADS)

    Heirwegh, C. M.; Pradler, I.; Campbell, J. L.

    2013-09-01

    Proton-induced x-ray emission (PIXE) was used to assess the accuracy of the National Institute of Standards and Technology XCOM and FFAST photo-ionization cross-section databases in the low energy region (1-2 keV) for light elements. Characteristic x-ray yields generated in thick samples of Mg, Al and Si in elemental and oxide form, were compared to fundamental parameters computations of the expected x-ray yields; the database for this computation included XCOM attenuation coefficients. The resultant PIXE instrumental efficiency constant was found to differ by 4-6% between each element and its oxide. This discrepancy was traced to use of the XCOM Hartree-Slater photo-electric cross-sections. Substitution of the FFAST Hartree-Slater cross-sections reduced the effect. This suggests that for 1-2 keV x-rays in light element absorbers, the FFAST predictions of the photo-electric cross-sections are more accurate than the XCOM values.

  3. Reaction rate of the 13C(α,n)16O neutron source using the ANC of the -3 keV resonance measured with the THM

    NASA Astrophysics Data System (ADS)

    La Cognata, M.; Spitaleri, C.; Trippella, O.; Kiss, G. G.; Rogachev, G. V.; Mukhamedzhanov, A. M.; Avila, M.; Guardo, G. L.; Koshchiy, E.; Kuchera, A.; Lamia, L.; Puglia, S. M. R.; Romano, S.; Santiago, D.; Spartà, R.

    2016-01-01

    The s-process is responsible of the synthesis of most of the nuclei in the mass range 90 ≤ A ≤ 208. It consists in a series of neutron capture reactions on seed nuclei followed by β-decays, since the neutron accretion rate is slower than the β-decay rate. Such small neutron flux is supplied by the 13C(α,n)16O reaction. It is active inside the helium-burning shell of asymptotic giant branch stars, at temperatures < 108 K, corresponding to an energy interval of 140–230 keV. In this region, the astrophysical S (E)-factor is dominated by the ‑3 keV sub-threshold resonance due to the 6.356 MeV level in 17O. In this work, we have applied the Trojan Horse Method (THM) to the 13C(6Li,n16O)d quasi-free reaction to extract the 6.356 MeV level resonance parameters, in particular the asymptotic normalization coefficient . A preliminary analysis of a partial data set has lead to , slightly larger than the values in the literature. However, the deduced 13C(α, n)16O reaction rate is in agreement with most results in the literature at ∼ 108 K, with enhanced accuracy thanks to our innovative approach merging together ANC and THM.

  4. Effects of low temperature periodic annealing on the deep-level defects in 200 keV proton irradiated AlGaAs-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.; Chiu, T. T.; Loo, R. Y.

    1981-01-01

    The GaAs solar cell has shown good potential for space applications. However, degradation in performance occurred when the cells were irradiated by high energy electrons and protons in the space environment. The considered investigation is concerned with the effect of periodic thermal annealing on the deep-level defects induced by the 200 keV protons in the AlGaAs-GaAs solar cells. Protons at a fluence of 10 to the 11th P/sq cm were used in the irradiation cycle, while annealing temperatures of 200 C (for 24 hours), 300 C (six hours), and 400 C (six hours) were employed. The most likely candidate for the E(c) -0.71 eV electron trap observed in the 200 keV proton irradiated samples may be due to GaAs antisite, while the observed E(v) +0.18 eV hole trap has been attributed to the gallium vacancy related defect. The obtained results show that periodic annealing in the considered case does not offer any advantages over the one time annealing process.

  5. Ion Source Development For The Proposed FNAL 750 keV Injector Upgrade

    SciTech Connect

    Bollinger, D. S.

    2011-09-26

    Currently there is a Proposed FNAL 750 keV Injector Upgrade for the replacement of the 40 year old Fermi National Laboratory (FNAL) Cockcroft-Walton accelerators with a new ion source and 200 MHz Radio Frequency Quadruple (RFQ). The slit type magnetron being used now will be replaced with a round aperture magnetron similar to the one used at Brookhaven National Lab (BNL). Operational experience from BNL has shown that this type of source is more reliable with a longer lifetime due to better power efficiency. The current source development effort is to produce a reliable source with >60 mA of H{sup -} beam current, 15 Hz rep-rate, 100 {mu}s pulse width, and a duty factor of 0.15%. The source will be based on the BNL design along with development done at FNAL for the High Intensity Neutrino Source (HINS).

  6. Laboratory source based full-field x-ray microscopy at 9 keV

    NASA Astrophysics Data System (ADS)

    Fella, C.; Balles, A.; Wiest, W.; Zabler, S.; Hanke, R.

    2016-01-01

    In the past decade, hard x-ray transmission microscopy experienced tremendous developments. With the avail-ability of efficient Fresnel zone plates, even set-ups utilizing laboratory sources were developed [1]. In order to improve the performance of these x-ray microscopes, novel approaches to fabricate optical elements [2] and brighter x-ray tubes [3] are promising candidates. We are currently building a laboratory transmission x-ray microscope for 9.25 keV, using an electron impact liquid-metal-jet anode source. Up to now, the further elements of our setup are: a polycapillary condenser, a tungsten zone plate, and a scintillator which is optically coupled to a CMOS camera. However, further variations in terms of optical elements are intended. Here we present the current status of our work, as well as first experimental results.

  7. Microwave ion source with permanent magnet for 100 keV ion implantation

    SciTech Connect

    Ming Jianchuan; Guo Qiqian; Wang Jinhui; Zhao Weijiang; Bai Yulan; Zhu Qiliang; Ding Jia

    2006-03-15

    An electron cyclotron resonance ion source has been developed in RIAMB for 100 keV ion implantation. Its magnetic field was produced by NdFeB permanent magnet and its outline dimension is about 160 mm in diameter and 150 mm in height. It operates in pulse mode, at nitrogen discharge, 100 kV extraction voltages, and 60 kV acceleration voltages; more than 40 mA ion pulse current was extracted from seven emission apertures of 3.5 mm in diameter. Even ion beam over an area of about 250 mm in diameter has been obtained on the sample stage at a distance about 1000 mm from the emission aperture.

  8. Solar energetic photon transients - 50 keV-100 MeV

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.

    1982-01-01

    The observed properties of solar transient photon impulses between a few keV and 100 MeV recorded by the SMM are compared and reasons for continued monitoring of solar photon transients are discussed. Various solar flare events observed are reviewed, along with gamma ray measurements. It is calculated that the emission of energetic photons is due to ion and electron interactions with matter, with both species undergoing acceleration at close time intervals. The gamma ray events and microwave emissions showed time structures similar to previously recorded X ray emissions. Bursts of all three radiation types have displayed a quasi-periodicity of less than 10 sec. Data on the 2.223 MeV neutron capture line have shown a decay in line intensity to take about 50 sec, consistent with Monte Carlo calculation for a He-3/H abundance of 0.00005.

  9. MOLECULAR DYNAMICS OF CASCADES OVERLAP IN TUNGSTEN WITH 20-KEV PRIMARY KNOCK-ON ATOMS

    SciTech Connect

    Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.

    2015-04-16

    Molecular dynamics simulations are performed to investigate the mutual influence of two subsequent cascades in tungsten. The influence is studied using 20-keV primary knock-on atoms, to induce one cascade after another separated by 15 ps, in a lattice temperature of 1025 K (i.e. 0.25 of the melting temperature of the interatomic potential). The center of mass of the vacancies at the peak damage during the cascade is taken as the location of the cascade. The distance between this location to that of the next cascade is taken as the overlap parameter. Empirical fits describing the number of surviving vacancies and interstitial atoms as a function of overlap are presented.

  10. Sputtering yields exceeding 1000 by 80 keV Xe irradiation of Au nanorods

    NASA Astrophysics Data System (ADS)

    Ilinov, A.; Kuronen, A.; Nordlund, K.; Greaves, G.; Hinks, J. A.; Busby, P.; Mellors, N. J.; Donnelly, S. E.

    2014-12-01

    Using experiments and computer simulations, we find that 80 keV Xe ion irradiation of Au nanorods can produce sputtering yields exceeding 1000, which to our knowledge are the highest yields reported for sputtering by single ions in the nuclear collision regime. This value is enhanced by more than an order of magnitude compared to the same irradiation of flat Au surfaces. Using MD simulations, we show that the very high yield can be understood as a combination of enhanced yields due to low incoming angles at the sides of the nanowire, as well as the high surface-to-volume ratio causing enhanced explosive sputtering from heat spikes. We also find, both in experiments and simulations, that channeling has a strong effect on the sputtering yield: if the incoming beam happens to be aligned with a crystal axis of the nanorod, the yield can decrease to about 100.

  11. 350 keV accelerator based PGNAA setup to detect nitrogen in bulk samples

    NASA Astrophysics Data System (ADS)

    Naqvi, A. A.; Al-Matouq, Faris A.; Khiari, F. Z.; Gondal, M. A.; Rehman, Khateeb-ur; Isab, A. A.; Raashid, M.; Dastageer, M. A.

    2013-11-01

    Nitrogen concentration was measured in explosive and narcotics proxy material, e.g. anthranilic acid, caffeine, melamine, and urea samples, bulk samples through thermal neutron capture reaction using 350 keV accelerator based prompt gamma ray neutron activation (PGNAA) setup. Intensity of 2.52, 3.53-3.68, 4.51, 5.27-5.30 and 10.38 MeV prompt gamma rays of nitrogen from the bulk samples was measured using a cylindrical 100 mm×100 mm (diameter×height ) BGO detector. Inspite of interference of nitrogen gamma rays from bulk samples with capture prompt gamma rays from BGO detector material, an excellent agreement between the experimental and calculated yields of nitrogen gamma rays has been obtained. This is an indication of the excellent performance of the PGNAA setup for detection of nitrogen in bulk samples.

  12. 200 keV electron mini-accelerators for scientific and applied purposes

    NASA Astrophysics Data System (ADS)

    Kazarezov, I. V.

    2006-12-01

    Created in BINP, 200 keV electron mini-accelerators with different types of high voltage generators are described: cascade generator with serial capacitance connection generator with high voltage step-up transformer and voltage-doubling circuit of rectification generators on the base of pulse and Tesla step-up transformers. Described are their circuit and design performance peculiarities and fields of application.

  13. Fabrication and evaluation of transmissive multilayer optics for 8 keV x rays. [Zone plates

    SciTech Connect

    Bionta, R.M.; Jankowski, A.F.; Makowiecki, D.M.

    1987-12-01

    We have investigated an alternative technique for fabricating zone plates that operate in the 5 to 10 keV regime. Ultimately we plan to make zone plates by sputtering alternating layers of opaque and transparent materials onto a thin wire core, then slicing perpendicular to the core axis to produce many zone plates. This technique shows promise for making x-ray optical elements that can be used in industrial crystallography, microprobe and radiography equipment. In a previous publication we reported on the favorable comparison between the measured performance of an Al/Ta diffraction grating and our numerical simulation. In this report we concentrate on the fabrication techniques used to produce diffraction gratings and linear zone plates. 2 refs., 10 figs.

  14. Microstructural investigation of alumina implanted with 30 keV nitrogen ions

    NASA Astrophysics Data System (ADS)

    Shikha, Deep; Jha, Usha; Sinha, S. K.; Barhai, P. K.; Sarkhel, G.; Nair, K. G. M.; Dash, S.; Tyagi, A. K.; Kothari, D. C.

    2007-11-01

    Among ceramics, alumina is being widely used as biomaterials now these days. It is being used as hip joints, tooth roots etc. Ion implantation has been employed to modify its surface without changing it bulk properties. 30 keV nitrogen with varying ion dose ranging from 5 10 15 ions/cm 2 to 5 10 17 ions/cm 2 is implanted in alumina. Surface morphology has been studied with optical microscope and atomic force microscope (AFM). Improvement in brittleness has been observed with the increase in ion dose. Compound formation and changes in grain size have been studied using X-Ray diffraction (XRD). AlN compound formation is also observed by Fourier transform infrared spectroscopy (FTIR). The change in the grain size is related with the nanohardness and Hall-Petch relationship is verified.

  15. Tip-based source of femtosecond electron pulses at 30?keV

    SciTech Connect

    Hoffrogge, Johannes; Paul Stein, Jan; Krger, Michael; Frster, Michael; Hammer, Jakob; Ehberger, Dominik; Hommelhoff, Peter; Baum, Peter

    2014-03-07

    We present a nano-scale photoelectron source, optimized for ultrashort pulse durations and well-suited for time-resolved diffraction and advanced laser acceleration experiments. A tungsten tip of several-ten-nanometers diameter mounted in a suppressor-extractor electrode configuration allows the generation of 30?keV electron pulses with an estimated pulse duration of 9?fs (standard deviation; 21?fs full width at half maximum) at the gun exit. We infer the pulse duration from particle tracking simulations, which are in excellent agreement with experimental measurements of the electron-optical properties of the source in the spatial domain. We also demonstrate femtosecond-laser triggered operation of the apparatus. The temporal broadening of the pulse upon propagation to a diffraction sample can be greatly reduced by collimating the beam. Besides the short electron pulse duration, a tip-based source is expected to feature a large transverse coherence and a nanometric emittance.

  16. Effects of 70-keV electrons on two polyarylene ether ketones

    NASA Technical Reports Server (NTRS)

    Kingsbury, Kevin B.; Hawkins, Douglas S.; Orwoll, Robert A.; Kiefer, Richard L.; Long, Sheila A. T.

    1989-01-01

    Films prepared from two polyarylene ether ketones with the repeat units -PhC(O)PhC(O)-PhOPhXPhO- where X = C(CH3)2 or CH2 and Ph = C6H4, were bombarded with 70-keV electrons. The effects of irradiation were determined from the fraction of gel formed; the intrinsic viscosities, gel permeation chromatography, and NMR spectroscopy of the soluble portion of the irradiated films; and the changes in the IR spectra of the materials. In a Charlesby-Pinner analysis of the gel fractions of the polyarylene ether ketone with the isopropylidene group, the numbers of scission and cross-linking events per 100 eV (9649 kJ/mol) absorbed were found to be small with G(S) = 0.002 and G(X) = 0.009, respectively.

  17. The Galactic 511 keV Line and the Intergalactic Positron Density

    NASA Astrophysics Data System (ADS)

    Vincent, Aaron C.; Vecchio, Antonio; Miralda-Escud, Jordi; Garay, Carlos Pea

    1043 positrons per second annihilate in a compact spherical region around the centre of the Milky Way. At present, known astrophysical sources cannot account for this signal. In Ref. [1] we propose a novel scenario in which extragalactic positron sources such as radio jets of active galactic nuclei (AGN) fill the intergalactic medium (IGM) with MeV-scale e+e- pairs, which are then accreted into galaxies like the Milky Way. Interpreting the diffuse cosmic radio background (CRB) as arising from synchrotron radiation by such sources suggests that the intergalactic positron-to-electron ratio may be as high as 10-6. Assuming a simple spherical accretion model, this could account for the 511 keV emission of the galaxy.

  18. Ion source development for the proposed FNAL 750keV injector upgrade

    SciTech Connect

    Bollinger, D.S.; /Fermilab

    2010-11-01

    Currently there is a Proposed FNAL 750keV Injector Upgrade for the replacement of the 40 year old Fermi National Laboratory (FNAL) Cockcroft-Walton accelerators with a new ion source and 200MHz Radio Frequency Quadruple (RFQ). The slit type magnetron being used now will be replaced with a round aperture magnetron similar to the one used at Brookhaven National Lab (BNL). Operational experience from BNL has shown that this type of source is more reliable with a longer lifetime due to better power efficiency. The current source development effort is to produce a reliable source with >60mA of H- beam current, 15Hz rep-rate, 100s pulse width, and a duty factor of 0.15%. The source will be based on the BNL design along with development done at FNAL for the High Intensity Neutrino Source (HINS).

  19. 200 keV Xe+ ions irradiation effects on Zr-Ti binary films

    NASA Astrophysics Data System (ADS)

    Wang, Weipeng; Chai, Maosheng; Feng, Wei; Li, Zhengcao; Zhang, Zhengjun

    2015-05-01

    200 keV Xenon irradiation experiments were performed on magnetron sputtered Zr-Ti films under different doses up to 9 * 1015 ions/cm2. XRD, FE-SEM, AFM, HRTEM, nano-indentation and white light interferometer characterizations were applied to study the structural and mechanical properties modification introduced by the bombardment. Upon Xenon irradiation, structure of film matrix kept stable while the crystallinity of the top surface degraded significantly. Meanwhile, properties of irradiated films such as hardness, modulus and sheet resistance evolved with the same tendency, i.e. increased firstly and decrease with further increasing the irradiation dose. By selective area irradiation, competition between the surface sputtering and swelling was revealed, by which surface defects evolution was highlighted. The micro-defects evolution during Xenon irradiation was believed to be responsible for the macro-properties' modification.

  20. Precision Measurements of {sup 56}Fe Cross Sections for the 847-keV Gamma Transition

    SciTech Connect

    Dickens, J.K.

    1997-12-31

    At the First Research Coordination Meeting of the IAEA/NDS CRP on Measurement, Calculation and Evaluation of Photon Production Data an experiment to measure with high precision the cross sections of the production of the 847-keV gamma ray due to inelastic neutron scattering with iron was proposed and discussed. The main justification for the proposed improved precision was the need for improved calculations of radiation transport through thick iron components of nuclear reactors. Present evaluated data for the subject reaction in the ENDF/B-VI files have evaluated uncertainties {approx} 10%; consequently, the results of computation of deep penetration of radiation in iron can have quite large uncertainties -- larger than 100%, for example, for an attenuation of {approximately} three orders of magnitude -- which can be a serious problem when one considers the magnitude of the radiation field inside a pressure vessel. This report describes progress toward obtaining more precise data. 13 refs., 1 fig.