Science.gov

Sample records for 10-600 kev energy

  1. 19 CFR 10.600 - Accessories, spare parts, or tools.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 10.600 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. Dominican Republic-Central America-United States Free Trade Agreement Rules of Origin § 10.600 Accessories, spare parts,...

  2. 19 CFR 10.600 - Accessories, spare parts, or tools.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 10.600 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. Dominican Republic-Central America-United States Free Trade Agreement Rules of Origin § 10.600 Accessories, spare parts,...

  3. 19 CFR 10.600 - Accessories, spare parts, or tools.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 10.600 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. Dominican Republic-Central America-United States Free Trade Agreement Rules of Origin § 10.600 Accessories, spare parts,...

  4. 19 CFR 10.600 - Accessories, spare parts, or tools.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 10.600 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. Dominican Republic-Central America-United States Free Trade Agreement Rules of Origin § 10.600 Accessories, spare parts,...

  5. 19 CFR 10.600 - Accessories, spare parts, or tools.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Accessories, spare parts, or tools. 10.600 Section... tools. (a) General. Accessories, spare parts, or tools that are delivered with a good and that form part of the good's standard accessories, spare parts, or tools will be treated as originating goods if...

  6. High resolution 17 keV to 75 keV backlighters for High Energy Density experiments

    SciTech Connect

    Park, H; Maddox, B R; Giraldez, E; Hatchett, S P; Hudson, L; Izumi, N; Key, M H; Pape, S L; MacKinnon, A J; MacPhee, A G; Patel, P K; Phillips, T W; Remington, B A; Seely, J F; Tommasini, R; Town, R; Workman, J

    2008-02-25

    We have developed 17 keV to 75 keV 1-dimensional and 2-dimensional high-resolution (< 10 {micro}m) radiography using high-intensity short pulse lasers. High energy K-{alpha} sources are created by fluorescence from hot electrons interacting in the target material after irradiation by lasers with intensity I{sub L} > 10{sup 17} W/cm{sup 2}. We have achieved high resolution point projection 1-dimensional and 2-dimensional radiography using micro-foil and micro-wire targets attached to low-Z substrate materials. The micro-wire size was 10 {micro}m x 10 {micro}m x 300 {micro}m on a 300 {micro}m x 300 {micro}m x 5 {micro}m CH substrate. The radiography performance was demonstrated using the Titan laser at LLNL. We observed that the resolution is dominated by the micro-wire target size and there is very little degradation from the plasma plume, implying that the high energy x-ray photons are generated mostly within the micro-wire volume. We also observe that there are enough K{alpha} photons created with a 300 J, 1-{omega}, 40 ps pulse laser from these small volume targets, and that the signal-to-noise ratio is sufficiently high, for single shot radiography experiments. This unique technique will be used on future high energy density (HED) experiments at the new Omega-EP, ZR and NIF facilities.

  7. Characterization of the PILATUS photon-counting pixel detector for X-ray energies from 1.75 keV to 60 keV

    NASA Astrophysics Data System (ADS)

    Donath, T.; Brandstetter, S.; Cibik, L.; Commichau, S.; Hofer, P.; Krumrey, M.; Lüthi, B.; Marggraf, S.; Müller, P.; Schneebeli, M.; Schulze-Briese, C.; Wernecke, J.

    2013-03-01

    The PILATUS detector module was characterized in the PTB laboratory at BESSY II comparing modules with 320 μm thick and newly developed 450 μm and 1000 μm thick silicon sensors. Measurements were carried out over a wide energy range, in-vacuum from 1.75 keV to 8.8 keV and in air from 8 keV to 60 keV. The quantum efficiency (QE) was measured as a function of energy and the spatial resolution was measured at several photon energies both in terms of the modulation transfer function (MTF) from edge profile measurements and by directly measuring the point spread function (PSF) of a single pixel in a raster scan with a pinhole beam. Independent of the sensor thickness, the measured MTF and PSF come close to those for an ideal pixel detector with the pixel size of the PILATUS detector (172 × 172 μm2). The measured QE follows the values predicted by calculation. Thicker sensors significantly enhance the QE of the PILATUS detectors for energies above 10 keV without impairing the spatial resolution and noise-free detection. In-vacuum operation of the PILATUS detector is possible at energies as low as 1.75 keV.

  8. Experimental Determination of the HPGe Spectrometer Efficiency Calibration Curves for Various Sample Geometry for Gamma Energy from 50 keV to 2000 keV

    SciTech Connect

    Saat, Ahmad; Hamzah, Zaini; Yusop, Mohammad Fariz; Zainal, Muhd Amiruddin

    2010-07-07

    Detection efficiency of a gamma-ray spectrometry system is dependent upon among others, energy, sample and detector geometry, volume and density of the samples. In the present study the efficiency calibration curves of newly acquired (August 2008) HPGe gamma-ray spectrometry system was carried out for four sample container geometries, namely Marinelli beaker, disc, cylindrical beaker and vial, normally used for activity determination of gamma-ray from environmental samples. Calibration standards were prepared by using known amount of analytical grade uranium trioxide ore, homogenized in plain flour into the respective containers. The ore produces gamma-rays of energy ranging from 53 keV to 1001 keV. Analytical grade potassium chloride were prepared to determine detection efficiency of 1460 keV gamma-ray emitted by potassium isotope K-40. Plots of detection efficiency against gamma-ray energy for the four sample geometries were found to fit smoothly to a general form of {epsilon} = A{Epsilon}{sup a}+B{Epsilon}{sup b}, where {epsilon} is efficiency, {Epsilon} is energy in keV, A, B, a and b are constants that are dependent on the sample geometries. All calibration curves showed the presence of a ''knee'' at about 180 keV. Comparison between the four geometries showed that the efficiency of Marinelli beaker is higher than cylindrical beaker and vial, while cylindrical disk showed the lowest.

  9. Experimental Determination of the HPGe Spectrometer Efficiency Calibration Curves for Various Sample Geometry for Gamma Energy from 50 keV to 2000 keV

    NASA Astrophysics Data System (ADS)

    Saat, Ahmad; Hamzah, Zaini; Yusop, Mohammad Fariz; Zainal, Muhd Amiruddin

    2010-07-01

    Detection efficiency of a gamma-ray spectrometry system is dependent upon among others, energy, sample and detector geometry, volume and density of the samples. In the present study the efficiency calibration curves of newly acquired (August 2008) HPGe gamma-ray spectrometry system was carried out for four sample container geometries, namely Marinelli beaker, disc, cylindrical beaker and vial, normally used for activity determination of gamma-ray from environmental samples. Calibration standards were prepared by using known amount of analytical grade uranium trioxide ore, homogenized in plain flour into the respective containers. The ore produces gamma-rays of energy ranging from 53 keV to 1001 keV. Analytical grade potassium chloride were prepared to determine detection efficiency of 1460 keV gamma-ray emitted by potassium isotope K-40. Plots of detection efficiency against gamma-ray energy for the four sample geometries were found to fit smoothly to a general form of ɛ = AΕa+BΕb, where ɛ is efficiency, Ε is energy in keV, A, B, a and b are constants that are dependent on the sample geometries. All calibration curves showed the presence of a "knee" at about 180 keV. Comparison between the four geometries showed that the efficiency of Marinelli beaker is higher than cylindrical beaker and vial, while cylindrical disk showed the lowest.

  10. sup 56 Fe resonance parameters for neutron energies up to 850 keV

    SciTech Connect

    Perey, C.M.; Perey, F.G.; Harvey, J.A.; Hill, N.W.; Larson, N.M.

    1990-12-01

    High-resolution neutron measurements for {sup 56}Fe-enriched iron targets were made at the Oak Ridge Electron Linear Accelerator (ORELA) in transmission below 20 MeV and in differential elastic scattering below 5 MeV. Transmission measurements were also performed with a natural iron target below 160 keV. The transmission data were analyzed from 5 to 850 keV with the multilevel R-matrix code SAMMY which uses Bayes' theorem for the fitting process. This code provides energies and neutron widths of the resonances inside the 5- to 850-keV energy region, as well as possible parameterization for resonances external to the analyzed region to describe the smooth cross section from a few eV to 850 keV. The resulting set of resonance parameters yields the accepted values for the thermal total and capture cross sections. The differential elastic-scattering data at several scattering angles were compared to theoretical calculations from 40 to 850 keV using the R-matrix code RFUNC based on the Blatt-Biedenharn formalism. Various combinations of spin and parity were tried to predict cross sections for the well defined {ell} > 0 resonances; comparison of these predictions with the data allowed us to determine the most likely spin and parity assignments for these resonances. The results of a capture data analysis by Corvi et al. (COR84), from 2 to 350 keV, were combined with our results to obtain the radiation widths of the resonances below 350 keV observed in transmission, capture, and differential elastic-scattering experiments.

  11. High-energy recoil-ion emission in keV heavy-ion surface collisions

    NASA Astrophysics Data System (ADS)

    van Someren, B.; Rudolph, H.; Urazgil'din, I. F.; van Emmichoven, P. A. Zeijlmans; Niehaus, A.

    1997-11-01

    For keV Xe +, Kr + and Ar + ions incident at 30° on Cu(110) we have observed the emission of negatively charged particles with energies up to about 40% of the primary energy. By time-of-flight techniques we have found that electrons are emitted with energies up to 80 eV, whereas the negatively charged high-energy particles are Cu - recoil ions. High-energy Cu + ions have also been found. Simple energy and momentum conservation arguments show that such high recoil energies are indeed possible for multiple collision events in which the primary recoil ion scatters off one or more Cu atoms.

  12. Energy loss of tens keV charged particles traveling in the hot dense carbon plasma

    NASA Astrophysics Data System (ADS)

    Fu, ZhenGuo; Wang, ZhiGang; He, Bin; Li, DaFang; Zhang, Ping

    2016-08-01

    The energy loss of charged particles, including electrons, protons, and α-particles with tens keV initial energy E 0, traveling in the hot dense carbon (C) plasma for densities from 2.281 to 22.81 g/cm3 and temperatures from 400 to 1500 eV is systematically and quantitatively studied by using the dimensional continuation method. The behaviors of different charged particles are readily distinguishable from each other. Firstly, because an ion is thousands times heavier than an electron, the penetration distance of the electron is much longer than that of proton and α-particle traveling in the plasma. Secondly, most energy of electron projectile with E 0 < 100 keV deposits into the electron species of C plasma, while for the cases of proton and α-particle with E 0 < 100 keV, about more than half energy transfers into the ion species of C plasma. A simple decreasing law of the penetration distance as a function of the plasma density is fitted, and different behaviors of each projectile particle can be clearly found from the fitted data. We believe that with the advanced progress of the present experimental technology, the findings shown here could be confirmed in ion-stopping experiments in the near future.

  13. Tuning of wettability of PANI-GNP composites using keV energy ions

    NASA Astrophysics Data System (ADS)

    Lakshmi, G. B. V. S.; Avasthi, D. K.

    2016-07-01

    Polyaniline nanofiber composites with various nanomaterials have several applications in electrochemical biosensors. The surface properties of these composites coated electrodes play crucial role in enzyme absorption and analyte detection process. In the present study, Polyaniline-Graphene nanopowder (PANI-GNP) composites were prepared by rapid-mixing polymerization method. The films were prepared on ITO coated glass substrates and irradiated with 42 keV He+ ions produced by indigenously fabricated accelerator at IUAC, New Delhi. The films were characterized before and after irradiation by SEM, Raman spectroscopy and contact angle measurements. The as-prepared films show superhydrophilic nature and after irradiation the films show highly hydrophobic nature with water contact angle (135°). The surface morphology was studied by SEM and structural changes were studied by Raman spectra. The surface morphological modifications induced by keV energy ions helps in tuning the wettability at different ion fluences.

  14. Auroral electrons of energy less than 1 keV observed at rocket altitudes.

    NASA Technical Reports Server (NTRS)

    Arnoldy, R. L.; Choy, L. W.

    1973-01-01

    Measurements of electrons of energy less than 1 keV in the auroral precipitation with detectors aboard three rocket flights are discussed. Detectors simultaneously measured the flux of electrons moving up and down the magnetic field lines. Electrons of energy less than a few hundred electron volts show directional intensities ranging from isotropic over the upper hemisphere, to field aligned into the atmosphere, to a net streaming out of the atmosphere. Cases of reflection coefficients greater than 1 for the few hundred electron volts and lower-energy electrons occur when measurements were made north of auroral forms. These electrons might represent the high-energy tail of the return Birkeland currents. The origin of the low-energy electrons is itself in question.

  15. Attenuation of photons at 3 to 14 keV energies in helium

    SciTech Connect

    Azuma, Y.; Berry, H.G.; Gemmell, D.S.

    1995-08-01

    Using X-ray photons at the X24A, X23B and X23A2 beam lines at NSLS, we measured the total photo-attenuation cross section of helium for photons in the energy range of 3 to 14 keV. In this range the photoionization cross section decreases rapidly with energy, so that Compton scattering is significant at 4 keV and dominates at the highest energies. The apparatus consisted of a 1.4-m long helium-absorption tube, 5 cm in diameter, with 75-{mu} thick, 7-mm diameter, kapton end windows. The tube could be filled with helium up to a pressure of 10{sup 6} Pa. We attained a precision of 1-2% in the attenuation cross section. The measurements verify the dominance of Compton scattering in this energy range and its importance in recent measurements of the ratio of double-to-single photoionization of helium. The measured cross sections are close to the combined calculated cross sections for Compton scattering and photoionization, and we are able to distinguish the contributions of the two effects.

  16. A neutron spectrometer for neutron energies between 1 eV and 10 keV

    SciTech Connect

    Wang, C.K.; Blue, T.E.

    1988-01-01

    In boron neutron capture therapy (BNCT), it is the consensus that epithermal neutron beams have advantages over thermal beams in treating deep-seated brain tumors, and large neutron fields have advantages over narrow beams, since whole-brain irradiations are thought to be necessary in many cases. Epithermal neutron sources for BNCT, which include filtered reactor neutron beams and moderated reactor neutron fields, are currently being developed at many institutions around the world. Neutrons with energies between 1 eV and 10 keV are most suitable for treating brain tumors. However, techniques for measuring neutron spectra in a vacuum in this energy range are not well developed. This paper describes a new type of neutron spectrometer that has a set of response functions that peak at equally spaced intervals on a logarithmic energy scale ranging from 1 eV to 10 keV; therefore, neutron spectra (or histograms) in this energy range can be obtained by properly applying spectrum unfolding techniques to the measured data. The spectrometer is applicable for measurements in a vacuum for both narrow neutron beams and wide neutron fields.

  17. Evaluation of Silicon Neutron Resonance Parameters in the Energy Range Thermal to 1800 keV

    SciTech Connect

    Derrien, H.

    2002-09-30

    The evaluation of the neutron cross sections of the three stable isotopes of silicon in the energy range thermal to 20 MeV was performed by Hetrick et al. for ENDF/B-VI (Evaluated Nuclear Data File). Resonance parameters were obtained in the energy range thermal to 1500 keV from a SAMMY analysis of the Oak Ridge National Laboratory experimental neutron transmission data. A new measurement of the capture cross section of natural silicon in the energy range 1 to 700 keV has recently been performed at the Oak Ridge Electron Linear Accelerator. Results of this measurement were used in a SAMMY reevaluation of the resonance parameters, allowing determination of the capture width of a large number of resonances. The experimental data base is described; properties of the resonance parameters are given. For the first time the direct neutron capture component has been taken into account from the calculation by Rauscher et al. in the energy range from thermal to 1 MeV. Results of benchmark calculations are also given. The new evaluation is available in the ENDF/B-VI format.

  18. X-ray grating interferometry at photon energies over 180 keV

    NASA Astrophysics Data System (ADS)

    Ruiz-Yaniz, M.; Koch, F.; Zanette, I.; Rack, A.; Meyer, P.; Kunka, D.; Hipp, A.; Mohr, J.; Pfeiffer, F.

    2015-04-01

    We report on the implementation and characterization of grating interferometry operating at an x-ray energy of 183 keV. With the possibility to use this technique at high x-ray energies, bigger specimens could be studied in a quantitative way. Also, imaging strongly absorbing specimens will benefit from the advantages of the phase and dark-field signals provided by grating interferometry. However, especially at these high photon energies the performance of the absorption grating becomes a key point on the quality of the system, because the grating lines need to keep their small width of a couple of micrometers and exhibit a greater height of hundreds of micrometers. The performance of high aspect ratio absorption gratings fabricated with different techniques is discussed. Further, a dark-field image of an alkaline multicell battery highlights the potential of high energy x-ray grating based imaging.

  19. Extension to Low Energies (<7keV) of High Pressure X-Ray Absorption Spectroscopy

    SciTech Connect

    Itie, J.-P.; Flank, A.-M.; Lagarde, P.; Idir, M.; Polian, A.; Couzinet, B.

    2007-01-19

    High pressure x-ray absorption has been performed down to 3.6 keV, thanks to the new LUCIA beamline (SLS, PSI) and to the use of perforated diamonds or Be gasket. Various experimental geometries are proposed, depending on the energy of the edge and on the concentration of the studied element. A few examples will be presented: BaTiO3 at the titanium K edge, Zn0.95 Mn0.05O at the manganese K edge, KCl at the potassium K edge.

  20. Neutron Total Cross Sections of {sup 235}U From Transmission Measurements in the Energy Range 2 keV to 300 keV and Statistical Model Analysis of the Data

    SciTech Connect

    Derrien, H.; Harvey, J.A.; Larson, N.M.; Leal, L.C.; Wright, R.Q.

    2000-05-01

    The average {sup 235}U neutron total cross sections were obtained in the energy range 2 keV to 330 keV from high-resolution transmission measurements of a 0.033 atom/b sample.1 The experimental data were corrected for the contribution of isotope impurities and for resonance self-shielding effects in the sample. The results are in very good agreement with the experimental data of Poenitz et al.4 in the energy range 40 keV to 330 keV and are the only available accurate experimental data in the energy range 2 keV to 40 keV. ENDF/B-VI evaluated data are 1.7% larger. The SAMMY/FITACS code 2 was used for a statistical model analysis of the total cross section, selected fission cross sections and data in the energy range 2 keV to 200 keV. SAMMY/FITACS is an extended version of SAMMY which allows consistent analysis of the experimental data in the resolved and unresolved resonance region. The Reich-Moore resonance parameters were obtained 3 from a SAMMY Bayesian fits of high resolution experimental neutron transmission and partial cross section data below 2.25 keV, and the corresponding average parameters and covariance data were used in the present work as input for the statistical model analysis of the high energy range of the experimental data. The result of the analysis shows that the average resonance parameters obtained from the analysis of the unresolved resonance region are consistent with those obtained in the resolved energy region. Another important result is that ENDF/B-VI capture cross section could be too small by more than 10% in the energy range 10 keV to 200 keV.

  1. NEUTRON TOTAL CROSS SECTIONS OF 235U FROM TRANSMISSION MEASUREMENTS IN THE ENERGY RANGE 2 keV to 300 keV AND STATISTICAL MODEL ANALYSIS OF THE DATA

    SciTech Connect

    Derrien, H.

    2000-05-22

    The average {sup 235}U neutron total cross sections were obtained in the energy range 2 keV to 330 keV from high-resolution transmission measurements of a 0.033 atom/b sample. The experimental data were corrected for the contribution of isotope impurities and for resonance self-shielding effects in the sample. The results are in very good agreement with the experimental data of Poenitz et al. in the energy range 40 keV to 330 keV and are the only available accurate experimental data in the energy range 2 keV to 40 keV. ENDF/B-VI evaluated data are 1.7% larger. The SAMMY/FITACS code was used for a statistical model analysis of the total cross section, selected fission cross sections and {alpha} data in the energy range 2 keV to 200 keV. SAMMY/FITACS is an extended version of SAMMY which allows consistent analysis of the experimental data in the resolved and unresolved resonance region. The Reich-Moore resonance parameters were obtained from a SAMMY Bayesian fits of high resolution experimental neutron transmission and partial cross section data below 2.25 keV, and the corresponding average parameters and covariance data were used in the present work as input for the statistical model analysis of the high energy range of the experimental data. The result of the analysis shows that the average resonance parameters obtained from the analysis of the unresolved resonance region are consistent with those obtained in the resolved energy region. Another important result is that ENDF/B-VI capture cross section could be too small by more than 10% in the energy range 10 keV to 200 keV.

  2. Characterisation of a counting imaging detector for electron detection in the energy range 10-20 keV

    NASA Astrophysics Data System (ADS)

    Moldovan, G.; Sikharulidze, I.; Matheson, J.; Derbyshire, G.; Kirkland, A. I.; Abrahams, J. P.

    2012-07-01

    As part of a feasibility study into the use of novel electron detector for X-ray photoelectron emission microscopes (XPEEM) and related methods, we have characterised the imaging performance of a counting Medipix 2 readout chip bump bonded to a Silicon diode array sensor and directly exposed to electrons in the energy range 10-20 keV. Detective Quantum Efficiency (DQE), Modulation Transfer Function (MTF) and Noise Power Spectra (NPS) are presented, demonstrating very good performance for the case of electrons with an energy of 20 keV. Significant reductions in DQE are observed for electrons with energy of 15 keV and less, down to levels of 20% for electrons of 10 keV.

  3. Evaluation of silicon neutron resonance parameters in the thermal to 1800 keV energy range.

    PubMed

    Derrien, H; Leal, L C; Guber, K H; Larson, N M

    2005-01-01

    Because silicon is a major constituent of concrete and soil, neutron and gamma ray information on silicon is important for reactor shielding and criticality safety calculations. Therefore, much effort was put into the ENDF/B-VI evaluation for the three stable isotopes of silicon. The neutron capture cross section of natural silicon was recently measured at the Oak Ridge Electron Linear Accelerator (ORELA) in the energy range 1-700 keV. Using the ENDF/B-VI evaluation for initial values, a new evaluation of the resonance parameters was performed by adding the results of the ORELA capture measurements to the experimental database. The computer code SAMMY was used for the analysis of the experimental data; the new version of SAMMY allows accurate calculations of the self-shielding and multiple scattering effects in the capture measurements. The accuracy of the radiative capture widths of the resonances was improved by this analysis. Accurate values of the s-, p- and d-wave neutron strength functions were also obtained. Although the resonance capture component of the present evaluation is 2-3 times smaller than that in ENDF/B-VI, the total capture cross section is much larger, at least for energies >250 keV, because the direct capture component contributes values of the same order of magnitude as the resonance component. The direct component was not taken into account in the ENDF/B-VI evaluation and was calculated for the first time in the present evaluation. PMID:16381717

  4. High Spatial Resolution STXM at 6.2 keV Photon Energy

    NASA Astrophysics Data System (ADS)

    Vila-Comamala, Joan; Dierolf, Martin; Kewish, Cameron M.; Thibault, Pierre; Pilvi, Tero; Färm, Elina; Guzenko, Vitaliy; Gorelick, Sergey; Menzel, Andreas; Bunk, Oliver; Ritala, Mikko; Pfeiffer, Franz; David, Christian

    2010-04-01

    We report on a zone-doubling technique that bypasses the electron-beam lithography limitations for the production of X-ray diffractive optics and enables the fabrication of Fresnel zone plates with smaller outermost zone widths than other well-established approaches. We have applied this method to manufacture hard X-ray Fresnel zone plates with outermost zone widths of 25 and 20 nm. These lenses have been tested in scanning transmission X-ray microscopy (STXM) at energies up to 6.2 keV, producing images of test structures that demonstrate a spatial resolution of 25 nm. High spatial resolution STXM images of several biological specimens have been acquired in transmission, dark-field and differential phase contrast modes.

  5. Observations of solar flare photon energy spectra from 20 keV to 7 MeV

    NASA Technical Reports Server (NTRS)

    Yoshimori, M.; Watanabe, H.; Nitta, N.

    1985-01-01

    Solar flare photon energy spectra in the 20 keV to 7 MeV range are derived from the Apr. 1, Apr. 4, apr. 27 and May 13, 1981 flares. The flares were observed with a hard X-ray and a gamma-ray spectrometers on board the Hinotori satellite. The results show that the spectral shape varies from flare to flare and the spectra harden in energies above about 400 keV. Effects of nuclear line emission on the continuum and of higher energy electron bremsstrahlung are considered to explain the spectral hardening.

  6. Stochastic spatial energy deposition profiles for MeV protons and keV electrons

    NASA Astrophysics Data System (ADS)

    Udalagama, C.; Bettiol, A. A.; Watt, F.

    2009-12-01

    With the rapid advances being made in novel high-energy ion-beam techniques such as proton beam writing, single-ion-event effects, ion-beam-radiation therapy, ion-induced fluorescence imaging, proton/ion microscopy, and ion-induced electron imaging, it is becoming increasingly important to understand the spatial energy-deposition profiles of energetic ions as they penetrate matter. In this work we present the results of comprehensive yet straightforward event-by-event Monte Carlo calculations that simulate ion/electron propagation and secondary electron ( δ ray) generation to yield spatial energy-deposition data. These calculations combine SRIM/TRIM features, EEDL97 data and volume-plasmon-localization models with a modified version of one of the newer δ ray generation models, namely, the Hansen-Kocbach-Stolterfoht. The development of the computer code DEEP (deposition of energy due to electrons and protons) offers a unique means of studying the energy-deposition/redistribution problem while still retaining the important stochastic nature inherent in these processes which cannot be achieved with analytical modeling. As an example of an application of DEEP we present results that compare the energy-deposition profiles of primary MeV protons and primary keV electrons in polymethymethacrylate. Such data are important when comparing proximity effects in the direct write lithography processes of proton-beam writing and electron-beam writing. Our calculations demonstrate that protons are able to maintain highly compact spatial energy-deposition profiles compared with electrons.

  7. Low-energy x-ray dosimetry studies (6 to 16 keV) at SSRL beamline 1-5

    NASA Astrophysics Data System (ADS)

    Ipe, N. E.; Chatterji, S.; Fassò, A.; Kase, K. R.; Seefred, R.; Olko, P.; Bilski, P.; Soares, C.

    1997-07-01

    Synchrotron radiation facilities provide a unique opportunity for low-energy x-ray dosimetry studies because of the availability of monochromatic x-ray beams. Results of such studies performed at the Stanford Synchrotron Radiation Laboratory (SSRL) are described. Polish lithium fluoride thermoluminescent dosemeters (TLDs), MTS-N(LiF:Mg, Ti- 0.4 mm thick), MCP-N (LiF:Mg, Cu, P - 0.4 mm thick) were exposed free in air to monochromatic x-rays (6-16 keV). These exposures were monitored with an SSRL ionization chamber. The responses (counts/Gy) of MTS-N and MCP-N were generally found to increase with increasing energy. The response at 16 keV is about 3 and 4 times higher than the response at 6 keV for MTS-N and MCP-N, respectively. Irradiation at 6 keV indicates a fairly linear dose response for both type of TLDs over a dose range of 0.01 to 0.4 Gy. In addition there appears to be no significant difference in responses between irradiating the TLDs from the front and the back sides. The energy response of the PTW ionization chamber type 23342 relative to the SSRL ionization chamber is within ±4.5% between 6 and 16 keV. Both the TLDs and the PTW ionization chamber can also be used for beam dosimetry.

  8. Imager of low energy neutral atoms (ILENA) - Imaging neutrals from the magnetosphere at energies below 20 keV

    NASA Technical Reports Server (NTRS)

    Herrero, Federico A.; Smith, Mark F.

    1992-01-01

    We describe a new imager suitable for measurements of magnetospheric neutrals with energies from about 100 eV to about 10 keV; an energy range adequate for imaging the plasmasheet neutral atoms out to about 10 R(E). The instrument, an outgrowth of a study of atom-surface collisions in support of satellite drag calculations, separates incident photons from neutral atoms by surface scattering and conversion of the neutrals to ions. Subsequently, the ions formed on the first surface are accelerated through a light rejection section which also disperses the ions according to energy. The dispersed ion beam is then allowed to impact a second surface where a start pulse is generated to obtain ion velocity and energy/charge. The second surface is chosen to give large secondary electron emission without regard to charge state of the particles reflected from it. The data supporting the proposed ILENA design is presented in the first part of the paper.

  9. Cross section for induced L X-ray emission by protons of energy <400 keV

    NASA Astrophysics Data System (ADS)

    Mohan, Harsh; Jain, Arvind Kumar; Kaur, Mandeep; Singh, Parjit S.; Sharma, Sunita

    2014-08-01

    In performing ion beam analysis, cross section for induced L X-ray emission plays a crucial role. There are different approaches by which these can be found experimentally or can be calculated theoretically based on various models. L X-ray production cross sections for Bi with protons in the energy range 260-400 keV at the interval of 20 keV are measured. These are compared with calculations obtained on the basis of current prevailing theories ECPSSR and ECPSSR-UA. Their importance in understanding this phenomenon and existing arguments in this regard will be highlighted.

  10. The energy spectrum of 20 keV-20 MeV electrons accelerated in large solar flares

    NASA Technical Reports Server (NTRS)

    Lin, R. P.; Mewaldt, R. A.; Van Hollebeke, M. A. I.

    1982-01-01

    IMP 6, 7, and 8 measurements of the energy spectrum of 20 keV to 20 MeV electrons observed from large solar flares are presented. To minimize propagation effects, only events from flares at W30 deg to W90 deg solar longitude are considered. The energy spectra are constructed using the maximum flux observed at each energy. It is shown that these spectra are representative of the spectra of the electrons escaping from the sun over this range of energies. It is found that every event shows the same spectral shape: a double power law with a smooth transition around 100-200 keV and power law exponents of 0.6-2.0 below and 2.4-4.3 above. The more intense the event, the harder the observed spectrum; in certain cases, the spectra are observed to steepen above 3 MeV.

  11. 5 to 160 keV continuous-wave x-ray spectral energy distribution and energy flux density measurements

    SciTech Connect

    Tallon, R.W.; Koller, D.C.; Pelzl, R.M.; Pugh, R.D.; Bellem, R.D. . Microelectronics and Photonics Research Branch)

    1994-12-01

    In 1991, the USAF Phillips Laboratory Microelectronics and Photonics Research Branch installed a low energy x-ray facility (LEXR) for use in microelectronics radiation-effects analysis and research. Techniques developed for measuring the x-ray spectral energy distribution (differential intensity) from a tungsten-target bremsstrahlung x-ray source are reported. Spectra with end-point energies ranging from 20 to 160 keV were recorded. A separate effort to calibrate the dosimetry for the Phillips Laboratory low-energy x-ray facility established a need to know the spectral energy distributions at some point within the facility (previous calibration efforts had relies on spectra obtained from computer simulations). It was discovered that the primary discrepancy between the simulated and measured spectra was in the L- K-line data. The associated intensity (energy flux density) of the measured distributions was found to be up to 30% higher. Based on the measured distributions, predicted device responses were within 10% of the measured response as compared to about 30% accuracy obtained with simulated distributions.

  12. Neutron Scattering Cross Sections for Natural Carbon in the Energy Range 2-133 keV

    SciTech Connect

    Gritzay, O; Gnidak, M; Kolotyi, V; Korol, O; Razbudey, V; Venedyktov, V; Richardson, J H; Sale, K

    2006-06-14

    Natural carbon is well known as reactor structure material and at the same time as one of the most important neutron scattering standards, especially at energies less than 2 MeV, where the neutron total and neutron scattering cross sections are essentially identical. The best neutron total cross section experimental data for natural carbon in the range 1-500 keV have uncertainties of 1-4%. However, the difference between these data and those based on R-matrix analysis and used in the ENDF libraries is evident, especially in the energy range 1-60 keV. Experimental data for total scattering neutron cross sections for this element in the energy range 1-200 keV are scanty. The use of the technique of neutron filtered beams developed at the Kyiv Research Reactor makes it possible to reduce the uncertainty of the experimental data and to measure the neutron scattering cross sections on natural carbon in the energy range 2-149 keV with accuracies of 3-6%. Investigations of the neutron scattering cross section on carbon were carried out using 5 filters with energies 2, 3.5, 24, 54 and 133 keV. The neutron scattering cross sections were measured using a detector system covering nearly 2{pi}. The detector consisting of {sup 3}He counters (58 units), was located just above the carbon samples. The {sup 3}He counters (CHM-37, 7 atm, diameter =18 mm, L=50 cm) are placed in five layers (12 or 11 in each layer). To determine the neutron scattering cross section on carbon the relative method of measurement was used. The isotope {sup 208}Pb was used as the standard. The normalization factor, which is a function of detector efficiency, thickness of the carbon samples, thickness of the {sup 208}Pb sample, geometry, etc., for each sample and for each filter energy has been obtained through Monte Carlo calculations by means of the MCNP4C code. The results of measurements of the neutron scattering cross sections at reactor neutron filtered beams with energies in the range 2-133 keV on

  13. Analysis of experimental data on neutron-proton scattering in the energy range between 0 and 150 keV

    SciTech Connect

    Babenko, V. A. Petrov, N. M.

    2009-04-15

    Experimental data on neutron-proton scattering in the energy range between 0 and 150 keV are analyzed by using various sets of effective-range parameters. It is shown that, in contrast to the parameters corresponding to the phase shifts of a Nijmegen group, the parameters corresponding to the experimental phase shifts reported by a group from George Washington University (GWU group) lead to very good agreement between the calculated cross sections and their experimental counterparts in the energy region under consideration. On the basis of the experimental value of the cross section for neutron-proton scattering at an energy of 2 keV, the total cross section for neutron-proton scattering at zero energy was found to be {sigma}{sub 0} = 20.428(16) b, which is in very good agreement with a value of {sigma}{sub 0} = 20.423(9) b, which was obtained as the weighted mean of the cross sections presented by Houke and Hurst. It is shown that, in the energy region around several tens of keV units, the effective-range parameters matched with Dilg's cross-section value of {sigma}{sub 0} = 20.491(14) b lead to calculated cross sections whose values are in excess of their experimental counterparts.

  14. Analysis of experimental data on neutron-proton scattering in the energy range between 0 and 150 keV

    NASA Astrophysics Data System (ADS)

    Babenko, V. A.; Petrov, N. M.

    2009-04-01

    Experimental data on neutron-proton scattering in the energy range between 0 and 150 keV are analyzed by using various sets of effective-range parameters. It is shown that, in contrast to the parameters corresponding to the phase shifts of a Nijmegen group, the parameters corresponding to the experimental phase shifts reported by a group from George Washington University (GWU group) lead to very good agreement between the calculated cross sections and their experimental counterparts in the energy region under consideration. On the basis of the experimental value of the cross section for neutron—proton scattering at an energy of 2 keV, the total cross section for neutron-proton scattering at zero energy was found to be σ 0 = 20.428(16) b, which is in very good agreement with a value of σ 0 = 20.423(9) b, which was obtained as the weighted mean of the cross sections presented by Houke and Hurst. It is shown that, in the energy region around several tens of keV units, the effective-range parameters matched with Dilg’s cross-section value of σ 0 = 20.491(14) b lead to calculated cross sections whose values are in excess of their experimental counterparts.

  15. Studies on effective atomic numbers for photon energy absorption and electron density of some narcotic drugs in the energy range 1 keV-20 MeV

    NASA Astrophysics Data System (ADS)

    Gounhalli, Shivraj G.; Shantappa, Anil; Hanagodimath, S. M.

    2013-04-01

    Effective atomic numbers for photon energy absorption ZPEA,eff, photon interaction ZPI,eff and for electron density Nel, have been calculated by a direct method in the photon-energy region from 1 keV to 20 MeV for narcotic drugs, such as Heroin (H), Cocaine (CO), Caffeine (CA), Tetrahydrocannabinol (THC), Cannabinol (CBD), Tetrahydrocannabivarin (THCV). The ZPEA,eff, ZPI,eff and Nel values have been found to change with energy and composition of the narcotic drugs. The energy dependence ZPEA,eff, ZPI,eff and Nel is shown graphically. The maximum difference between the values of ZPEA,eff, and ZPI,eff occurs at 30 keV and the significant difference of 2 to 33% for the energy region 5-100 keV for all drugs. The reason for these differences is discussed.

  16. Optical constants for hard x-ray multilayers over the energy range E = 35 - 180 keV

    NASA Astrophysics Data System (ADS)

    Windt, David L.; Donguy, Soizik; Hailey, Charles J.; Koglin, Jason E.; Honkimaki, Veijo; Ziegler, Eric; Christensen, Finn E.; Harrison, Fiona A.

    2004-02-01

    We have determined experimentally optical constants for eight thin film materials that can be used in hard X-ray multilayer coatings. Thin film samples of Ni.97V.03, Mo, W, Pt, C, B4C, Si and SiC were deposited by magnetron sputtering onto superpolished optical flats. Optical constants were determined from fits to reflectance-vs-incidence angle measurements made using synchrotron radiation over the energy range E=35 180 keV. We have also measured the X-ray reflectance of a prototype W/SiC multilayer coating over the energy range E=35 100 keV, and we compare the measured reflectance with a calculation using the newly derived optical constants.

  17. Self-attenuation correction factors for bioindicators measured by γ spectrometry for energies <100 keV

    NASA Astrophysics Data System (ADS)

    Manduci, L.; Tenailleau, L.; Trolet, J. L.; De Vismes, A.; Lopez, G.; Piccione, M.

    2010-01-01

    The mass attenuation coefficients for a number of marine and terrestrial bioindicators were measured using γ spectrometry for energies between 22 and 80 keV. These values were then used to find the correction factor k for the apparent radioactivity. The experimental results were compared with a Monte Carlo simulation performed using PENELOPE in order to evaluate the reliability of the simplified calculation and to determine the correction factors.

  18. Novel method to study neutron capture of 235U and 238U simultaneously at keV energies.

    PubMed

    Wallner, A; Belgya, T; Bichler, M; Buczak, K; Dillmann, I; Käppeler, F; Lederer, C; Mengoni, A; Quinto, F; Steier, P; Szentmiklosi, L

    2014-05-16

    The neutron capture cross sections of the main uranium isotopes, (235)U and (238)U, were measured simultaneously for keV energies, for the first time by combining activation technique and atom counting of the reaction products using accelerator mass spectrometry. New data, with a precision of 3%-5%, were obtained from mg-sized natural uranium samples for neutron energies with an equivalent Maxwell-Boltzmann distribution of kT ∼ 25 keV and for a broad energy distribution peaking at 426 keV. The cross-section ratio of (235)U(n,γ)/(238)U(n,γ) can be deduced in accelerator mass spectrometry directly from the atom ratio of the reaction products (236)U/(239)U, independent of any fluence normalization. Our results confirm the values at the lower band of existing data. They serve as important anchor points to resolve present discrepancies in nuclear data libraries as well as for the normalization of cross-section data used in the nuclear astrophysics community for s-process studies. PMID:24877933

  19. Novel Method to Study Neutron Capture of U235 and U238 Simultaneously at keV Energies

    NASA Astrophysics Data System (ADS)

    Wallner, A.; Belgya, T.; Bichler, M.; Buczak, K.; Dillmann, I.; Käppeler, F.; Lederer, C.; Mengoni, A.; Quinto, F.; Steier, P.; Szentmiklosi, L.

    2014-05-01

    The neutron capture cross sections of the main uranium isotopes, U235 and U238, were measured simultaneously for keV energies, for the first time by combining activation technique and atom counting of the reaction products using accelerator mass spectrometry. New data, with a precision of 3%-5%, were obtained from mg-sized natural uranium samples for neutron energies with an equivalent Maxwell-Boltzmann distribution of kT ˜25 keV and for a broad energy distribution peaking at 426 keV. The cross-section ratio of U235(n ,γ)/U238(n ,γ) can be deduced in accelerator mass spectrometry directly from the atom ratio of the reaction products U236/U239, independent of any fluence normalization. Our results confirm the values at the lower band of existing data. They serve as important anchor points to resolve present discrepancies in nuclear data libraries as well as for the normalization of cross-section data used in the nuclear astrophysics community for s-process studies.

  20. Improved energy of the 21.5 keV M1 + E2 nuclear transition in 151Eu

    NASA Astrophysics Data System (ADS)

    Inoyatov, A. Kh.; Kovalík, A.; Filosofov, D. V.; Ryšavý, M.; Perevoshchikov, L. L.; Baimukhanova, A.

    2016-05-01

    Using internal conversion electron spectroscopy, improved energy 21 541.5±0.5 eV was determined for the 21.5keV M1 + E2 nuclear transition in 151Eu populated in the electron capture decay of 151Gd . This value was found to agree well with the present adopted value but is much more accurate. A value of 0.0305±0.0011 derived for the E2 admixture parameter \\vertδ(E2/M1)\\vert from the measured conversion electron line intensities corresponds to the present adopted value. A possible effect of nuclear structure on the multipolarity of the 21.5 keV transition was also investigated.

  1. Neutron total cross section measurements in the energy region from 47 keV to 20 MeV

    SciTech Connect

    Poenitz, W.P.; Whalen, J.F.

    1983-05-01

    Neutron total cross sections were measured for 26 elements. Data were obtained in the energy range from 47 keV to 20 MeV for 11 elements in the range of light-mass fission products. Previously reported measurements for eight heavy and actinide isotopes were extended to 20 MeV. Data were also obtained for Cu (47 keV to 1.4 MeV) and for Sc, Zn, Nd, Hf, and Pt (1.8 to 20 MeV). The present work is part of a continuing effort to provide accurate neutron total cross sections for evaluations and for optical-model parameteriztions. The latter are required for the derivation of other nuclear-data information of importance to applied programs. 37 references.

  2. Studies of polarization bremsstrahlung and ordinary bremsstrahlung from 89Sr beta particles in metallic targets in the photon energy region of 1-100 keV

    NASA Astrophysics Data System (ADS)

    Singh, Amrit; Dhaliwal, A. S.

    2015-06-01

    Studies of polarization bremsstrahlung (PB) and ordinary bremsstrahlung (OB) produced by the 89Sr beta emitter in Al, Ti, Sn and Pb targets were undertaken at photon energies of 1-100 keV. The experimental results are compared with the Elwert corrected (non-relativistic) Bethe-Heitler (EBH) theory and the modified Elwert factor (relativistic) Bethe-Heitler (Fmod BH) theory for OB and with the Avdonina and Pratt (Fmod BH + PB) theory for total bremsstrahlung (BS). These results are in agreement with the Fmod BH + PB theory up to 13 keV, 16 keV, 22 keV and 28 keV energies for Al, Ti, Sn and Pb targets, respectively; Fmod BH theory is more accurate at higher energies.

  3. Sub-second variations of high energy ( 300 keV) hard X-ray emission from solar flares

    NASA Technical Reports Server (NTRS)

    Bai, Taeil

    1986-01-01

    Subsecond variations of hard X-ray emission from solar flares were first observed with a balloon-borne detector. With the launch of the Solar Maximum Mission (SMM), it is now well known that subsecond variations of hard X-ray emission occur quite frequently. Such rapid variations give constraints on the modeling of electron energization. Such rapid variations reported until now, however, were observed at relatively low energies. Fast mode data obtained by the Hard X-ray Burst Spectrometer (HXRBS) has time resolution of approximately 1 ms but has no energy resolution. Therefore, rapid fluctuations observed in the fast-mode HXRBS data are dominated by the low energy hard X-rays. It is of interest to know whether rapid fluctuations are observed in high-energy X-rays. The highest energy band at which subsecond variations were observed is 223 to 1057 keV. Subsecond variations observed with HXRBS at energies greater than 300 keV are reported, and the implications discussed.

  4. DWBA analysis of {sup 12}C(d,p){sup 13}C cross section data below 300 keV deuteron energy

    SciTech Connect

    Naqvi, A.A.; Ayer, Z.; Ludwig, E. ||

    1994-12-31

    {sup 12}C(d,p){sup 13}T differential cross section data at 200, 220, 250, 280 and 300 keV deuteron energies has been analyzed using finite range DWBA codes PTOLEMY and TWOFNR. It was observed that shape and magnitude of the cross section data at 300, 280 keV energies can be fitted well but the shape of 250, 220 and 200 keV data cannot be fitted. However 250, 220 and 200 keV data shape can be fitted by changing the optical model parameters at each energy. This indicates a very strong energy dependence of the optical model parameters data of the entrance channel over such a small energy range which is not observed in the presently available elastic scattering data of the entrance channel.

  5. Low-energy x-ray dosimetry studies (7 to 17.5 keV) with synchroton radiation

    SciTech Connect

    Ipe, N.E.; Bellamy, H.; Flood, J.R.

    1995-06-01

    Unique properties of synchrotron radiation (SR), such as its high intensity, brightness, polarization, and broad spectral distribution (extending from x-ray to infra-red wavelengths) make it an attractive light source for numerous experiments. As SR facilities are rapidly being built all over the world, they introduce the need for low-energy x-ray dosemeters because of the potential radiation exposure to experimenters. However, they also provide a unique opportunity for low-energy x-ray dosimetry studies because of the availability of monochromatic x-ray beams. Results of such studies performed at the Stanford Synchrotron Radiation Laboratory are described. Lithium fluoride TLDs (TLD-100) of varying thicknesses (0.015 to 0.08 cm) were exposed free in air to monochromatic x-rays (7 to 17.5 keV). These exposures were monitored with ionization chambers. The response (nC/Gy) was found to increase with increasing TLD thickness and with increasing beam energy. A steeper increase in response with increasing energy was observed with the thicker TLDs. The responses at 7 and 17.5 keV were within a factor of 2.3 and 5.2 for the 0.015 and 0.08 cm-thick TLDs, respectively. The effects of narrow (beam size smaller than the dosemeter) and broad (beam size larger than the dosemeter) beams on the response of the TLDs are also reported.

  6. A high-resolution time-of-flight energy analyzer for femtosecond electron pulses at 30 keV

    NASA Astrophysics Data System (ADS)

    Gliserin, Alexander; Walbran, Matthew; Baum, Peter

    2016-03-01

    We report a time-of-flight spectrometer for electron pulses at up to 30 keV, which is a suitable energy for atomic-resolution femtosecond investigations via time-resolved electron diffraction, microscopy, and energy loss spectroscopy. For realistic femtosecond beams without apertures, the instrument's energy resolution is ˜0.5 eV (full width at half maximum) or 2 × 10-5 at a throughput of 50%-90%. We demonstrate the analyzer's versatility by three first applications, namely, femtosecond electron pulse metrology via optical streaking, in situ drift correction in laser-microwave synchronization for electron pulse compression, and time-resolved electron energy loss spectroscopy of aluminum, showing the instrument's capability of tracking plasmonic loss peak positions with few-meV accuracy.

  7. Absolute Calibration of Image Plate for electrons at energy between 100 keV and 4 MeV

    SciTech Connect

    Chen, H; Back, N L; Eder, D C; Ping, Y; Song, P M; Throop, A

    2007-12-10

    The authors measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV to 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on the solid density targets. This paper presents the calibration results of image plate Photon Stimulated Luminescence PSL per electrons at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energies depositions at these angles. These provide a complete set of tools that allows extraction of the absolute calibration to other spectrometer setting at this electron energy range.

  8. A high-resolution time-of-flight energy analyzer for femtosecond electron pulses at 30 keV.

    PubMed

    Gliserin, Alexander; Walbran, Matthew; Baum, Peter

    2016-03-01

    We report a time-of-flight spectrometer for electron pulses at up to 30 keV, which is a suitable energy for atomic-resolution femtosecond investigations via time-resolved electron diffraction, microscopy, and energy loss spectroscopy. For realistic femtosecond beams without apertures, the instrument's energy resolution is ∼0.5 eV (full width at half maximum) or 2 × 10(-5) at a throughput of 50%-90%. We demonstrate the analyzer's versatility by three first applications, namely, femtosecond electron pulse metrology via optical streaking, in situ drift correction in laser-microwave synchronization for electron pulse compression, and time-resolved electron energy loss spectroscopy of aluminum, showing the instrument's capability of tracking plasmonic loss peak positions with few-meV accuracy. PMID:27036767

  9. Frequency of occurrence of LCS per cascade in bcc iron by PKA energy 30 keV

    NASA Astrophysics Data System (ADS)

    Elias, A.; Driss Khodja, M.

    2009-11-01

    The frequency of occurrence per cascade in bcc iron is studied by PKA energy 30keV using the fitting of potentials on linear collision sequences (LCS). Two embedded atom potentials that essentially differ by their repulsive branches are used in classical molecular dynamic (MD) with the code DYMOKA and its binary collision approximation (BCA) The Molière and Born Mayer potentials are used in the Binary Collision Approximation (BCA). The linear collision sequences (LCS) in iron can be generated with Marlowe code in BCA, using the potentials parameters. The BCA is used to accumulate cascade statistics and to build linear collision sequences distributions.

  10. Ionic fragmentation of CO and H2O under impact of 10 keV electrons: kinetic energy release distributions

    NASA Astrophysics Data System (ADS)

    Singh, Raj; Bhatt, Pragya; Yadav, Namita; Shanker, R.

    2014-04-01

    Dissociative ionization of COq+ (q=2-4) and H2Oq+ (q=2-3) molecular ions produced from the collisions of CO and H2O with 10 keV electrons is studied using time-of-flight mass spectrometer and position sensitive detector with multi-hit ability, respectively. The kinetic energy release distributions for these channels are obtained. We found that a pure Coulomb explosion model is insufficient to explain the observed kinetic release distributions for the Coulomb explosion channels. A detail of this study is given in references [3, 4].

  11. Mass attenuation coefficients of soil and sediment samples using gamma energies from 46.5 to 1332 keV.

    PubMed

    Al-Masri, M S; Hasan, M; Al-Hamwi, A; Amin, Y; Doubal, A W

    2013-02-01

    Mass attenuation coefficients of various soil and sediment samples (density range between 1.0 and 1.7 g cm(-3)) collected from 60 sites distributed in Syrian land have been determined for gamma lines of 46.5, 59.5, 88, 122, 165, 392, 661, 1173, and 1332 keV using gamma spectrometry and simulation software program X-com. The average mass attenuation coefficients for the studied samples were found to be 0.513, 0.316, 0.195, 0.155, 0.134, 0.096, 0.077, 0.058, and 0.055 cm(2) g(-1) at previous energies, respectively. The results have shown that Ca and Fe contents of the samples have strong effect on the mass attenuation coefficient at lower energies. In addition, self-attenuation correction factors determined using mass attenuation coefficient was in good agreement with addition spiked reference material method provided that the sample thickness is 2.7 cm. However, mass attenuation coefficients determined in this study can be used for determination of gamma emitters at energy ranges from 46.5 to 1332 keV in any soil and sediment samples having density of 1.0-1.7 g cm(-3). PMID:23103572

  12. Experimental investigation of the multiple scatter peak of gamma rays in portland cement in the energy range 279-1332 keV

    NASA Astrophysics Data System (ADS)

    Singh, Tejbir; Singh, Parjit S.

    2011-12-01

    The pulse height spectra for different thicknesses of portland cement in the reflected geometry has been recorded with the help of a NaI(Tl) scintillator detector and 2 K MCA card using different gamma-ray sources such as Hg203 (279 keV), Cs137 (662 keV) and Co60 (1173 and 1332 keV). It has been observed that the multiple scatter peak for portland cement appears at 110 (±7) keV in all the spectra irrespective of different incident photon energies in the range 279-1332 keV from different gamma-ray sources. Further, the variation in the intensity of the multiple scatter peak with the thickness of portland cement in the backward semi-cylinders has been investigated.

  13. Improving the energy response of external beam therapy (EBT) GafChromic{sup TM} dosimetry films at low energies (≤100 keV)

    SciTech Connect

    Bekerat, H. Devic, S.; DeBlois, F.; Singh, K.; Sarfehnia, A.; Seuntjens, J.; Shih, Shelley; Yu, Xiang; Lewis, D.

    2014-02-15

    Purpose: Purpose of this work is to investigate the effects of varying the active layer composition of external beam therapy (EBT) GafChromic{sup TM} films on the energy dependence of the film, as well as try to develop a new prototype with more uniform energy response at low photon energies (⩽100 keV). Methods: First, the overall energy response (S{sub AD,} {sub W}(Q)) of different commercial EBT type film models that represent the three different generations produced to date, i.e., EBT, EBT2, and EBT3, was investigated. Pieces of each film model were irradiated to a fixed dose of 2 Gy to water for a wide range of beam qualities and the corresponding S{sub AD,} {sub W}(Q) was measured using a flatbed document scanner. Furthermore, the DOSRZnrc Monte Carlo code was used to determine the absorbed dose to water energy dependence of the film, f(Q). Moreover, the intrinsic energy dependence, k{sub bq}(Q), for each film model was evaluated using the corresponding S{sub AD,} {sub W}(Q) and f(Q). In the second part of this study, the authors investigated the effects of changing the chemical composition of the active layer on S{sub AD,} {sub W}(Q). Finally, based on these results, the film manufacturer fabricated several film prototypes and the authors evaluated their S{sub AD,} {sub W}(Q). Results: The commercial EBT film model shows an under response at all energies below 100 keV reaching 39% ± 4% at about 20 keV. The commercial EBT2 and EBT3 film models show an under response of about 27% ± 4% at 20 keV and an over response of about 16% ± 4% at 40 keV.S{sub AD,} {sub W}(Q) of the three commercial film models at low energies show strong correlation with the corresponding f{sup −1}(Q) curves. The commercial EBT3 model with 4% Cl in the active layer shows under response of 22% ± 4% at 20 keV and 6% ± 4% at about 40 keV. However, increasing the mass percent of chlorine makes the film more hygroscopic which may affect the stability of the film's readout. The

  14. Measurement of low energy neutron spectrum below 10 keV with the slowing down time method

    NASA Astrophysics Data System (ADS)

    Maekawa, F.; Oyama, Y.

    1996-02-01

    No general-purpose method of neutron spectrum measurement in the energy region around eV has been established so far. Neutron spectrum measurement in this energy region was attempted by applying the slowing down time (SDT) method, for the first time, inside two types of shield for fusion reactors, type 316 stainless steel (SS316) and SS316/water layered assemblies, incorporating with pulsed neutrons. In the SS316 assembly, neutron spectra below 1 keV were measured with an accuracy less than 10%. Although application of the SDT method was expected very difficult for SS316/water assembly since it contained lightest atoms of hydrogen, the measurement demonstrated that the SDT method was still effective for such shield assembly. The SDT method was also extended to thermal flux measurement in the SS316/water assembly. The present study demonstrated that the SDT method was effective for neutron spectrum measurement in the energy region around eV.

  15. Suppression of repetitive surface exfoliation of Inconel 625 implanted sequentially with helium ions of different energies (20 100 keV)

    NASA Astrophysics Data System (ADS)

    Rao, A. S.; Whitton, J. L.; Kaminsky, M.

    Studies were conducted to explore if the surface exfoliation of Inconel 625, typical for 100 keV 4He + irradiations can be reduced by pre-irradiating the surfaces with helium ions sequentially over the energy range 20 to 50 keV. Polished, polycrystalline Inconel 625 samples were irradiated at 298K and 573K with 4He + at six different energies in the range from 20 to 50 keV in an order of decreasing energies. For each energy the dose was 0.13 C/cm 2, resulting in a total dose of 0.89 C/cm 2. Subsequently, these samples were implanted with 100 keV 4He + to a dose of 1.0 C/cm 2 or 2.0 C/cm 2. The results reveal that the low energy 4He + implants prior to the 100 keV 4He + implant reduce significantly the erosion yield typical for 100-keV 4He + irradiations alone. For 573K these reduced yields are still about one order of magnitude greater than physical sputtering yields.

  16. Ionization at the Noble Gases Ion-Atom Collisions in the 1-7 KeV Energy Range

    NASA Astrophysics Data System (ADS)

    Kikiani, Boris; Chitaladze, Marika; Japaridze, Josif; Kavlashvili, Nana

    2002-10-01

    The absolute total cross sections for production of free electrons, all positive show target gas ions and partial cross sections for production of double charged slow target gas ions at these collisions have been measured. The measurements were carried out by improved transfers electric field ("condenser") and magnetic mass-analyzer methods[1]. It was shown that in the investigated energy range practically there are now slow ions with charged state more than two. Control experiments have been shown that process of electron's liberation from fast particles ("stripping" process) is unlikely in the investigated energy range. Therefore, one can to suppose that total cross sections for productions of free electrons are equal to the total cross sections of ionization of the target gas atoms. For symmetrical pairs of colliding particles (He+ _ He, Ne+ _ Ne , etc) and for pairs He+ _ Ne, Ar+ _ Kr and Kr+ _ Xe values of partial cross-sections are negligible. In the cases of He+ _ Kr and He+ _ Xe pairs value of these partial cross sections increases with colliding energy and reaches about three percent at the energy 4kev. However, in the cases of He+ _ Ar, Na+ _ Ar, Kr, Xe the values of relative portion of the double charged ions in the total amount of slow positive ions are significant (for example in He+ _ Ar collision at the energy of 4kev this portion is about 20-25 percent). Analyzes of the correlation diagrams of the diabetics terms of colliding particles system (MS) [2] show that the electron capture processes are accompanying by simultaneous excitation of auto- ionization states of target gas ions. The decay of these states are responsible for realize of double ionization process of the target gas atoms. 1. B. Kikiani, R.Lomsadze, N. Mosulishvili, Proceedings of Tbilisi State University, Physics, 34, 114, 1999; 2 M. Barat, W.Lichten, Phys. Rev, A6, 211, 1972.

  17. Attenuation coefficients of soils and some building materials of Bangladesh in the energy range 276-1332 keV.

    PubMed

    Alam, M N; Miah, M M; Chowdhury, M I; Kamal, M; Ghose, S; Rahman, R

    2001-06-01

    The linear and mass attenuation coefficients of different types of soil, sand, building materials and heavy beach mineral samples from the Chittagong and Cox's Bazar area of Bangladesh were measured using a high-resolution HPGe detector and the gamma-ray energies 276.1, 302.8, 356.0, 383.8, 661.6 and 1173.2 and 1332.5 keV emitted from point sources of 133Ba, 137Cs and 60Co, respectively. The linear attenuation coefficients show a linear relationship with the corresponding densities of the samples studied. The variations of the mass attenuation coefficient with gamma-ray energy were exponential in nature. The measured mass attenuation coefficient values were compared with measurements made in other countries for similar kinds of materials. The values are in good agreement with each other in most cases. PMID:11300413

  18. Double ionization of helium by 2-keV electrons in equal- and unequal-energy configurations

    NASA Astrophysics Data System (ADS)

    Ambrosio, M. J.; Mitnik, D. M.; Dorn, A.; Ancarani, L. U.; Gasaneo, G.

    2016-03-01

    We present theoretical and experimental fully differential cross sections, in coplanar scattering geometry, for the double ionization of helium by electron impacting at 2 keV. The observed structures for both equal and unequal sharing of the excess energy are analyzed. Although the incident energy could, in principle, be regarded as high enough for the applicability of the first Born approximation in the projectile-target interaction, the experimental cross sections, measured with a COLTRIMS apparatus, show that further orders' effects can be appreciated. The theoretical cross sections are calculated with the generalized Sturmian functions method, which exactly solves the three-body problem that stems from a first-order projectile-target perturbative treatment.

  19. Cross sections for ionization of tetrahydrofuran by protons at energies between 300 and 3000 keV

    NASA Astrophysics Data System (ADS)

    Wang, Mingjie; Rudek, Benedikt; Bennett, Daniel; de Vera, Pablo; Bug, Marion; Buhr, Ticia; Baek, Woon Yong; Hilgers, Gerhard; Rabus, Hans

    2016-05-01

    Double-differential cross sections for ionization of tetrahydrofuran by protons with energies from 300 to 3000 keV were measured at the Physikalisch-Technische Bundesanstalt ion accelerator facility. The electrons emitted at angles between 15∘ and 150∘ relative to the ion-beam direction were detected with an electrostatic hemispherical electron spectrometer. Single-differential and total ionization cross sections have been derived by integration. The experimental results are compared to the semiempirical Hansen-Kocbach-Stolterfoht model as well as to the recently reported method based on the dielectric formalism. The comparison to the latter showed good agreement with experimental data in a broad range of emission angles and energies of secondary electrons. The scaling property of ionization cross sections for tetrahydrofuran was also investigated. Compared to molecules of different size, the ionization cross sections of tetrahydrofuran were found to scale with the number of valence electrons at large impact parameters.

  20. Simulations of Microchannel Plate Sensitivity to <20 keV X-rays as a Function of Energy and Incident Angle

    SciTech Connect

    Kruschwitz, Craig; Wu, M.; Rochau, G. A.

    2013-06-13

    We present results of Monte Carlo simulations of microchannel plate (MCP) response to x-rays in the 250 eV to 20 keV energy range as a function of both x-ray energy and impact angle. The model is based on the model presented in Rochau et al. (2006). However, while the Rochau et al. (2006) model was two-dimensional, and their results only went to 5 keV, our results have been expanded to 20 keV, and our model has been incorporated into a three-dimensional Monte Carlo MCP model that we have developed over the past several years (Kruschwitz et al. 2011). X-ray penetration through multiple MCP pore walls is increasingly important above 5 keV. The effect of x-ray penetration through multiple pores on MCP performance was studied and is presented.

  1. Possible Contrast Media Reduction with Low keV Monoenergetic Images in the Detection of Focal Liver Lesions: A Dual-Energy CT Animal Study

    PubMed Central

    Chung, Yong Eun; You, Je Sung; Lee, Hye-Jeong; Lim, Joon Seok; Lee, Hye Sun; Baek, Song-Ee; Kim, Myeong-Jin

    2015-01-01

    Objective To investigate the feasibility of dual-energy CT for contrast media (CM) reduction in the diagnosis of hypervascular and hypovascular focal liver lesions (FLL). Subjects and Methods The Institutional Animal Care and Use Committee approved this study. VX2 tumors were implanted in two different segments of the liver in 13 rabbits. After 2 weeks, two phase contrast enhanced CT scans including the arterial phase (AP) and portal-venous phase (PVP) were performed three times with 24-hour intervals with three different concentrations of iodine, 300 (I300), 150 (I150) and 75 mg I/mL (I75). The mean HU and standard deviation (SD) were measured in the liver, the hypervascular portion of the VX2 tumor which represented hypervascular tumors, and the central necrotic area of the VX2 tumor which represented hypovascular tumors in 140kVp images with I300 as a reference standard and in monoenergetic images (between 40keV and 140keV) with I150 and I75. The contrast-to-noise ratio (CNR) for FLLs and the ratio of the CNRs (CNRratio) between monoenergetic image sets with I150 and I75, and the reference standard were calculated. Results For hypervascular lesions, the CNRratio was not statistically different from 1.0 between 40keV and 70keV images with I150, whereas the CNRratio was significantly lower than 1.0 in all keV images with I75. For hypovascular lesions, the CNRratio was similar to or higher than 1.0 between 40keV and 80keV with I150 and between 40keV and 70keV with I75. Conclusions With dual-energy CT, the total amount of CM might be halved in the diagnosis of hypervascular FLLs and reduced to one-fourth in the diagnosis of hypovascular FLLs, while still preserving CNRs. PMID:26203652

  2. Measurement of Lα and Lβ1,3,4 fluorescence cross sections of La, Ce, Pr and Nd induced by photons of energies between 7.01 keV and 8.75 keV

    NASA Astrophysics Data System (ADS)

    Reyes-Herrera, J.; Miranda, J.

    2016-06-01

    This study presents measurement results of x-ray production cross sections of Lα and Lβ1,3,4 emitted by four lanthanoid elements (La, Ce, Pr and Nd), after irradiation with Kα and Kβ X rays of the elements Co, Ni, Cu, and Zn (covering energies between 7.01 keV and 8.75 keV). Primary x-rays were induced in turn by the irradiation of thick targets of these elements with a beam of x-rays produced by a tube with an Rh anode, operating at 50 kV and 850 μA. The experimental results are compared with theoretical cross sections predicted using known tabulations of photoelectric cross sections. Dirac-Hartree-Slater (DHS) atomic parameters were used for these calculations. An acceptable match between experiment and both sets of tabulated data is found.

  3. Energy response of GR-200A thermoluminescence dosemeters to 60Co and to monoenergetic synchrotron radiation in the energy range 28-40 keV.

    PubMed

    Emiro, F; Di Lillo, F; Mettivier, G; Fedon, C; Longo, R; Tromba, G; Russo, P

    2016-01-01

    The response of LiF:Mg,Cu,P thermoluminescence dosemeters (type GR-200A) to monoenergetic radiation of energy 28, 35, 38 and 40 keV was evaluated with respect to irradiation with a calibrated (60)Co gamma-ray source. High-precision measurements of the relative air kerma response performed at the SYRMEP beamline of the ELETTRA synchrotron radiation facility (Trieste, Italy) showed a significant deviation of the average response to low-energy X-rays from that to (60)Co, with an over-response from 6 % (at 28 keV) to 22 % (at 40 keV). These data are not consistent with literature data for these dosemeters, where model predictions gave deviation from unity of the relative air kerma response of about 10 %. The authors conclude for the need of additional determinations of the low-energy relative response of GR-200A dosemeters, covering a wider range of monoenergetic energies sampled at a fine energy step, as planned in future experiments by their group at the ELETTRA facility. PMID:25737582

  4. Spectral Efficiency and Resolution of Si(Li)-Detectors for Photon Energies between 0.3 keV and 5 keV

    NASA Astrophysics Data System (ADS)

    Riehle, F.; Tegeler, E.; Wende, B.

    1986-01-01

    The spectral efficiencies of energy dispersive Si(Li) photon counters have been measured using the storage ring BESSY as a radiometric standard source of extremely low photon flux of the order of 1 photon/(s eV). The detectors were irradiated with white synchrotron radia-tion when the storage ring was operated with only about 5 electrons stored. For energy calibration and measurement of the energy resolution X-ray emission lines excited by a 55-Fe source were used. Towards lower photon energies the efficiency is drastically decreased by the building-up of an ice-layer on the permanently cooled detector. By this surface contamination also the energy resolution of the detector is affected. The performance of detector can be recovered by a warming-up procedure.

  5. High-resolution integrated germanium Compton polarimeter for the γ-ray energy range 80 keV-1 MeV

    NASA Astrophysics Data System (ADS)

    Sareen, R. A.; Urban, W.; Barnett, A. R.; Varley, B. J.

    1995-06-01

    Parameters which govern the choice of a detection system to measure the linear polarization of γ rays at low energies are discussed. An integrated polarimeter is described which is constructed from a single crystal of germanium. It is a compact planar device with the sectors defined electrically, and which gives an energy resolution in the add-back mode of 1 keV at 300 keV. Its performance is demonstrated in a series of calibration measurements using both unpolarized radiation from radioactive sources and polarized γ rays from the 168Er(α,2n)170Yb reaction at Eα=25 MeV. Polarization measurements at energies as low as 84 keV have been achieved, where the sensitivity was 0.32±0.09. The sensitivity, efficiency, and energy resolution are reported. Our results indicate that energy resolution should be included in the definition of the figure of merit and we relate the new definition to earlier work. The comparisons show the advantages of the present design in the energy range below 300 keV and its competitiveness up to 1500 keV.

  6. Ionic fragmentation of the CO molecule by impact of 10-keV electrons: Kinetic-energy-release distributions

    NASA Astrophysics Data System (ADS)

    Singh, Raj; Bhatt, Pragya; Yadav, Namita; Shanker, R.

    2013-02-01

    The ionic fragmentation of a multiply charged CO molecule is studied under impact of 10-keV electrons using recoil-ion momentum spectroscopy. The kinetic-energy-release distributions for the various fragmentation channels arising from the dissociation of COq+ (q = 2-4) are measured and discussed in light of theoretical calculations available in the literature. It is observed that the present kinetic-energy-release values are much smaller than those predicted by the Coulomb explosion model. The kinetic-energy-release distribution for the C++O+ channel is suggested to arise from the tunneling process. It is seen that the peak of kinetic-energy-release distribution is larger for that dissociation channel that arises from the same molecular ion which has higher charge on the oxygen atom. Further, the relative ionic fractions for seven ion species originating from ionization and subsequent dissociation of the CO molecule are obtained and compared with the existing data reported at low energy of the electron impact. The precursor-specific relative partial ionization cross sections are also obtained and shown to be about 66.4% from single ionization, 29.9% from double ionization, 3.3% from triple ionization, and about 0.4% from quadruple ionization of the precursor CO molecule contributing to the total fragment ion yield.

  7. Determination of energy loss of 1200 keV deuterons along axial and planar channels of Si

    NASA Astrophysics Data System (ADS)

    Shafiei, S.; Lamehi-Rachti, M.

    2015-02-01

    In this paper, the energy loss of 1200 keV deuterons along the <1 0 0> and <1 1 0> axes as well as the {1 0 0} and {1 1 0} planes of Si were determined by the simulation of the channeling Rutherford backscattering spectra. The simulation was done by taking two considerations into account: (i) a minimum random component of the beam which enters the sample because of the scattering ions from the surface, (ii) the dechanneling starts at greater penetration depths, xDech. Moreover, it was assumed that the dechanneling follows a Gompertz type sigmoidal function with two parameters k and xc which present the dechanneling rate and range, respectively. The best simulation parameters, penetration depth at which the dechanneling starts, energy loss and dechanneling rate and range, were chosen by using the Levenberg-Marquardt algorithm. The experimental results are well reproduced by this simulation. The ratio of channeling energy loss to the random is changed from 0.63 ± 0.02 along the <1 1 0> axial channel to the 0.91 ± 0.02 along the {1 0 0} planar direction. The differences in the energy loss and the dechanneling process along the axial and planar channels are attributed to the potential barrier and the fractional area of each channel blocked by atoms. The ratio of channeling to random energy loss of deuterons along the <1 0 0> axial direction is in agreement with another reference.

  8. Investigation of Coulombic bremsstrahlung spectra of metallic targets for the photon energy region of 1-100keV.

    PubMed

    Singh, Amrit; Dhaliwal, A S

    2016-09-01

    In the present paper, the formation of bremsstrahlung spectra by ordinary bremsstrahlung (OB) and polarization bremsstrahlung (PB) in metallic targets by (35)S beta particles has been investigated in the photon energy region of 1-100keV. From the experimental measurements and the theoretical results obtained from Elwert corrected (non-relativistic) Bethe Heitler (EBH) theory, modified Elwert factor (relativistic) (FmodBH) theories for OB and Avdonina and Pratt (FmodBH+PB) theory for total bremsstrahlung (BS) having the contribution of PB into OB, it has been found that the contribution of PB into BS in a target is limited to a low energy region only and also varies with the atomic number of target material. The FmodBH+PB theory is in agreement with the experimental results in low energy regions of the target, whereas at high energy region FmodBH is found to give better agreement. Further, the present experimental results indicate that the screening effects in the Coulombic bremsstrahlung process cannot be neglected in the high energy region, and the multiple scattering and secondary electron emissions effects in thick target are required to be taken into account in describing the bremsstrahlung process. PMID:27400163

  9. Dosimetric prerequisites for routine clinical use of photon emitting brachytherapy sources with average energy higher than 50 kev

    SciTech Connect

    Li Zuofeng; Das, Rupak K.; De Werd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Perez-Calatayud, Jose; Rivard, Mark J.; Sloboda, Ronald S.; Williamson, Jeffrey F.

    2007-01-15

    This paper presents the recommendations of the American Association of Physicists in Medicine (AAPM) and the European Society for Therapeutic Radiology and Oncology (ESTRO) on the dosimetric parameters to be characterized, and dosimetric studies to be performed to obtain them, for brachytherapy sources with average energy higher than 50 keV that are intended for routine clinical use. In addition, this document makes recommendations on procedures to be used to maintain vendor source strength calibration accuracy. These recommendations reflect the guidance of the AAPM and the ESTRO for its members, and may also be used as guidance to vendors and regulatory agencies in developing good manufacturing practices for sources used in routine clinical treatments.

  10. Dosimetric properties of high energy current (HEC) detector in keV x-ray beams

    NASA Astrophysics Data System (ADS)

    Zygmanski, Piotr; Shrestha, Suman; Elshahat, Bassem; Karellas, Andrew; Sajo, Erno

    2015-04-01

    We introduce a new x-ray radiation detector. The detector employs high-energy current (HEC) formed by secondary electrons consisting predominantly of photoelectrons and Auger electrons, to directly convert x-ray energy to detector signal without externally applied power and without amplification. The HEC detector is a multilayer structure composed of thin conducting layers separated by dielectric layers with an overall thickness of less than a millimeter. It can be cut to any size and shape, formed into curvilinear surfaces, and thus can be designed for a variety of QA applications. We present basic dosimetric properties of the detector as function of x-ray energy, depth in the medium, area and aspect ratio of the detector, as well as other parameters. The prototype detectors show similar dosimetric properties to those of a thimble ionization chamber, which operates at high voltage. The initial results obtained for kilovoltage x-rays merit further research and development towards specific medical applications.

  11. First wave of cultivators spread to Cyprus at least 10,600 y ago.

    PubMed

    Vigne, Jean-Denis; Briois, François; Zazzo, Antoine; Willcox, George; Cucchi, Thomas; Thiébault, Stéphanie; Carrère, Isabelle; Franel, Yodrik; Touquet, Régis; Martin, Chloé; Moreau, Christophe; Comby, Clothilde; Guilaine, Jean

    2012-05-29

    Early Neolithic sedentary villagers started cultivating wild cereals in the Near East 11,500 y ago [Pre-Pottery Neolithic A (PPNA)]. Recent discoveries indicated that Cyprus was frequented by Late PPNA people, but the earliest evidence until now for both the use of cereals and Neolithic villages on the island dates to 10,400 y ago. Here we present the recent archaeological excavation at Klimonas, which demonstrates that established villagers were living on Cyprus between 11,100 and 10,600 y ago. Villagers had stone artifacts and buildings (including a remarkable 10-m diameter communal building) that were similar to those found on Late PPNA sites on the mainland. Cereals were introduced from the Levant, and meat was obtained by hunting the only ungulate living on the island, a small indigenous Cypriot wild boar. Cats and small domestic dogs were brought from the mainland. This colonization suggests well-developed maritime capabilities by the PPNA period, but also that migration from the mainland may have occurred shortly after the beginning of agriculture. PMID:22566638

  12. Experimental study of interactions of highly charged ions with atoms at keV energies

    SciTech Connect

    Kostroun, V.O.

    1992-07-05

    This Progress Report describes the experimental work carried out, and the work in progress, at the Cornell EBIS Laboratory during the period 7/1/1991 to 6/30/1992. During this period, a number of experiments were carried out. The absolute values of the total, one, two and three electron transfer cross sections for highly charged argon ions (8{le}q{le}16) colliding with argon at 2.3 qkev laboratory energy were measured. The distribution of recoil ions and molecular fragments formed in highly charged ion atom and molecule collisions was measured in order to help the interpretation of electron spectra in the 40--320 eV energy range emitted in Ar{sup q+}+Ar(8{le}q{le}16) collisions at 2.3 qkeV that were measured in our laboratory. The interpretation of the electron spectra is still under way. A new collision chamber was built which contains an ion decelerating lens system and a high resolution monochromator-analyzer combination. Ions extracted from the Cornell Electron Beam Ion Source were successfully decelerated from 2.3 qkeV down to 30 qeV Preliminary 0{degree} translational energy spectra for Ar{sup l2+} on Ar at a collision energy of 38.6 qeV show a 0.56 qeV resolution. Work is in progress to extend measurements of cross sections and recoil ion charge state distributions down to collision energies in the 10 eV/amu range.

  13. Parameter estimation of magnetospheric particle distributions in the energy range 20 to 500 keV

    NASA Astrophysics Data System (ADS)

    Torkar, K. M.

    1982-04-01

    A computer program which analyzes the energy spectra of energetic magnetospheric particles is described. The instrument characteristics and experimental design of the geostationary satellite GEOS-2 which provided the raw data are indicated. The program is designed to run on a UNIVAC 1100/81 computer and requires a plotter and a terminal with basic display enhancement features. Three dimensional charts showing the spectral distribution of energetic electrons are included.

  14. Dosimetric properties of high energy current (HEC) detector in keV x-ray beams.

    PubMed

    Zygmanski, Piotr; Shrestha, Suman; Elshahat, Bassem; Karellas, Andrew; Sajo, Erno

    2015-04-01

    We introduce a new x-ray radiation detector. The detector employs high-energy current (HEC) formed by secondary electrons consisting predominantly of photoelectrons and Auger electrons, to directly convert x-ray energy to detector signal without externally applied power and without amplification. The HEC detector is a multilayer structure composed of thin conducting layers separated by dielectric layers with an overall thickness of less than a millimeter. It can be cut to any size and shape, formed into curvilinear surfaces, and thus can be designed for a variety of QA applications. We present basic dosimetric properties of the detector as function of x-ray energy, depth in the medium, area and aspect ratio of the detector, as well as other parameters. The prototype detectors show similar dosimetric properties to those of a thimble ionization chamber, which operates at high voltage. The initial results obtained for kilovoltage x-rays merit further research and development towards specific medical applications. PMID:25789488

  15. Laboratory-based x-ray reflectometer for multilayer characterization in the 15–150 keV energy band

    SciTech Connect

    Windt, David L.

    2015-04-15

    A laboratory-based X-ray reflectometer has been developed to measure the performance of hard X-ray multilayer coatings at their operational X-ray energies and incidence angles. The instrument uses a sealed-tube X-ray source with a tungsten anode that can operate up to 160 kV to provide usable radiation in the 15–150 keV energy band. Two sets of adjustable tungsten carbide slit assemblies, spaced 4.1 m apart, are used to produce a low-divergence white beam, typically set to 40 μm × 800 μm in size at the sample. Multilayer coatings under test are held flat using a vacuum chuck and are mounted at the center of a high-resolution goniometer used for precise angular positioning of the sample and detector; additionally, motorized linear stages provide both vertical and horizontal adjustments of the sample position relative to the incident beam. A CdTe energy-sensitive detector, located behind a third adjustable slit, is used in conjunction with pulse-shaping electronics and a multi-channel analyzer to capture both the incident and reflected spectra; the absolute reflectance of the coating under test is computed as the ratio of the two spectra. The instrument’s design, construction, and operation are described in detail, and example results are presented obtained with both periodic, narrow-band and depth-graded, wide-band hard X-ray multilayer coatings.

  16. Laboratory-based x-ray reflectometer for multilayer characterization in the 15-150 keV energy band

    NASA Astrophysics Data System (ADS)

    Windt, David L.

    2015-04-01

    A laboratory-based X-ray reflectometer has been developed to measure the performance of hard X-ray multilayer coatings at their operational X-ray energies and incidence angles. The instrument uses a sealed-tube X-ray source with a tungsten anode that can operate up to 160 kV to provide usable radiation in the 15-150 keV energy band. Two sets of adjustable tungsten carbide slit assemblies, spaced 4.1 m apart, are used to produce a low-divergence white beam, typically set to 40 μm × 800 μm in size at the sample. Multilayer coatings under test are held flat using a vacuum chuck and are mounted at the center of a high-resolution goniometer used for precise angular positioning of the sample and detector; additionally, motorized linear stages provide both vertical and horizontal adjustments of the sample position relative to the incident beam. A CdTe energy-sensitive detector, located behind a third adjustable slit, is used in conjunction with pulse-shaping electronics and a multi-channel analyzer to capture both the incident and reflected spectra; the absolute reflectance of the coating under test is computed as the ratio of the two spectra. The instrument's design, construction, and operation are described in detail, and example results are presented obtained with both periodic, narrow-band and depth-graded, wide-band hard X-ray multilayer coatings.

  17. First direct high-precision energy determination for the 8.4 and 20.7 keV nuclear transitions in 169Tm

    NASA Astrophysics Data System (ADS)

    Inoyatov, A. Kh.; Kovalík, A.; Filosofov, D. V.; Ryšavý, M.; Perevoshchikov, L. L.; Gurov, Yu. B.

    2015-06-01

    Energies of 8410.1 ± 0.4, 20743.9 ± 0.3, and 63121.6 ± 1.2 eV were determined for the 8.4 keV M1 + E2, 20.7 keV M1 + E2, and 63.1 keV E1 nuclear transitions in 169Tm (generated in the EC decay of 169Yb, respectively, by means of the internal conversion electron spectroscopy. The 169Yb sources used were prepared by vacuum evaporation deposition on polycrystalline carbon and platinum foils as well as by ion implantation at 30keV into a polycrystalline aluminum foil. The relevant conversion electron spectra were measured by a high-resolution combined electrostatic electron spectrometer at 7 eV instrumental resoluition. Values of 0.0326(14) and 0.0259(17) were derived from our experimental data for the E2 admixture parameter |δ ( E2/ M1)| for the 8.4 and 20.7 keV transitions, respectively. A possible effect of nuclear structure on multipolarity of the 20.7 keV transition was also investigated.

  18. Studies of internal bremsstrahlung spectrum of (35)S beta emitter in the photon energy region of 1-100 keV.

    PubMed

    Singh, Amrit; Dhaliwal, A S

    2014-12-01

    The internal bremsstrahlung (IB) spectral photon distribution, produced by soft beta particles of (35)S (Wmax=164keV), in the photon energy region of 1-100keV, is measured by using a Si(Li) detector, having high energy resolution and efficiency at low energy region. The measured spectral IB photon distribution is compared with KUB theory and Coulomb corrected IB theories given by Nilsson, and Lewis and Ford. After applying the necessary corrections, the experimental and theoretical IB spectral photon distributions are compared in terms of the number of IB photon of energy k per moc(2) per unit photon yield. In the low energy region (below 10keV), the experimental results are in agreement with all the theories. However, in photon energy region of 10-50keV, experimental results are in agreement with Coulomb corrected Nilsson theory only, within the experimental errors. Further, beyond 50keV, the Nilsson theory is more close to the experimental results than the KUB, and the Lewis and Ford theories. Hence, the Nilsson theory is more accurate than the other theories given by KUB and Lewis and Ford, particularly at a high energy end. The experimental results reported here with Si(Li) detector are free from number of ambiguities in earlier measurements reported with NaI(Tl) and HPGe detectors. The present results are indicating a relook into the theoretical considerations, given by different theories, while taking into account the Coulomb corrections for predicting the IB spectrum, particularly at high photon energy region. PMID:25103247

  19. Mass attenuation coefficients of Martian meteorites and Earth composition in the energy range 1 keV-100 GeV

    NASA Astrophysics Data System (ADS)

    Ün, M.; Han, E. Narmanli; Ün, A.

    2016-04-01

    Mass attenuation coefficients for 24 Martian meteorites have been determined in the energy range from 1 keV to 100 GeV. The values of mass attenuation coefficients (µ/ρ) of the samples were calculated the WINXCOM program. The obtained results for Martian meteorites have been compared with the results for Earth composition and similarities or differences also evaluated.

  20. A balloon-borne instrument for high-resolution astrophysical spectroscopy in the 20-8000 keV energy range

    NASA Technical Reports Server (NTRS)

    Paciesas, W. S.; Baker, R.; Boclet, D.; Brown, S.; Cline, T.; Costlow, H.; Durouchoux, P.; Ehrmann, C.; Gehrels, N.; Hameury, J. M.

    1983-01-01

    The Low Energy Gamma ray Spectrometer (LEGS) is designed to perform fine energy resolution measurements of astrophysical sources. The instrument is configured for a particular balloon flight with either of two sets of high purity germanium detectors. In one configuration, the instrument uses an array of three coaxial detectors (effective volume equal to or approximately 230 cubic cm) inside an NaI (T1) shield and collimator (field of view equal to or approximately 16 deg FWHM) and operates in the 80 to 8000 keV energy range. In the other configuration, three planar detectors (effective area equal to or approximately square cm) surrounded by a combination of passive Fe and active NaI for shielding and collimation (field of view equal to or approximately 5 deg x 10 deg FWHM) are optimized for the 20 to 200 keV energy range. In a typical one day balloon flight, LEGS sensitivity limit (3 sigma) for narrow line features is less than or approximately .0008 ph/cm/s square (coaxial array: 80 to 2000 keV) and less than or approximately .0003 ph/square cm/s (planar array: 50 to 150 keV).

  1. Measurement of high-energy (10–60 keV) x-ray spectral line widths with eV accuracy

    SciTech Connect

    Seely, J. F. Feldman, U.; Glover, J. L.; Hudson, L. T.; Ralchenko, Y.; Henins, Albert; Pereira, N.; Di Stefano, C. A.; Kuranz, C. C.; Drake, R. P.; Chen, Hui; Williams, G. J.; Park, J.

    2014-11-15

    A high resolution crystal spectrometer utilizing a crystal in transmission geometry has been developed and experimentally optimized to measure the widths of emission lines in the 10–60 keV energy range with eV accuracy. The spectrometer achieves high spectral resolution by utilizing crystal planes with small lattice spacings (down to 2d = 0.099 nm), a large crystal bending radius and Rowland circle diameter (965 mm), and an image plate detector with high spatial resolution (60 μm in the case of the Fuji TR image plate). High resolution W L-shell and K-shell laboratory test spectra in the 10–60 keV range and Ho K-shell spectra near 47 keV recorded at the LLNL Titan laser facility are presented. The Ho K-shell spectra are the highest resolution hard x-ray spectra recorded from a solid target irradiated by a high-intensity laser.

  2. High Voltage-Cylinder Sector Analyzer 300/15: a cylindrical sector analyzer for electron kinetic energies up to 15 keV.

    PubMed

    Rubio-Zuazo, J; Escher, M; Merkel, M; Castro, G R

    2010-04-01

    We have developed an energy analyzer, High Voltage-Cylinder Sector Analyzer 300/15, for electron kinetic energies up to 15 keV. It is especially suited for hard x-ray photoelectron spectroscopy, but also for ultraviolet and soft x-ray photoelectron spectroscopy (ultraviolet photoemission spectroscopy, x-ray photoemission spectroscopy), Auger electron spectroscopy, and reflection high energy electron spectroscopy. The analyzer is based on a cylinder sector with 90 degrees deflection, 300 mm slit-to-slit distance, and a four-element pre-retarding lens system with 50 mm sample-to-lens distance. The result is a very compact design of the analyzer that is easily integrated into a multipurpose experiment with different techniques. A low noise/low drift electronics is capable of continuous energy scans from 0 to 15 keV using nonlinear lens curves. The first analyzer is allocated at the Spanish CRG SpLine beamline at the ESRF at an end station where simultaneous surface x-ray diffraction is possible. The analyzer is operated routinely since 2006 up to 15 keV electron kinetic energy, expanding the achievable electron kinetic energy range compared to other commercial analyzers. In this work we present a detailed description of the developed electron analyzer. The analyzer capabilities, in terms of energy resolution and transmission, are shown by using an electron gun, an ultraviolet-discharge lamp, and hard x-ray synchrotron radiation as excitation sources. PMID:20441333

  3. Comparison of Martian meteorites with earth composition: Study of effective atomic numbers in the energy range 1 keV-100 GeV

    NASA Astrophysics Data System (ADS)

    Ün, Adem; Han, Ibrahim; Ün, Mümine

    2016-04-01

    Effective atomic (Zeff) and electron numbers (Neff) for 24 Martian meteorites have been determined in the energy range from 1 keV to 100 GeV and also for sixteen significant energies of commonly used radioactive sources. The values of Zeff and Neff for all sample were obtained from the DirectZeff program. The obtained results for Martian meteorites have been compared with the results for Earth composition and similarities or differences also evaluated.

  4. Interferometric phase-contrast X-ray CT imaging of VX2 rabbit cancer at 35keV X-ray energy

    SciTech Connect

    Takeda, Tohoru; Wu Jin; Tsuchiya, Yoshinori; Lwin, Thet-Thet; Itai, Yuji; Yoneyama, Akio; Hyodo, Kazuyuki

    2004-05-12

    Imaging of large objects at 17.7-keV low x-ray energy causes huge x-ray exposure to the objects even using interferometric phase-contrast x-ray CT (PCCT). Thus, we tried to obtain PCCT images at high x-ray energy of 35keV and examined the image quality using a formalin-fixed VX2 rabbit cancer specimen with 15-mm in diameter. The PCCT system consisted of an asymmetrically cut silicon (220) crystal, a monolithic x-ray interferometer, a phase-shifter, an object cell and an x-ray CCD camera. The PCCT at 35 keV clearly visualized various inner structures of VX2 rabbit cancer such as necrosis, cancer, the surrounding tumor vessels, and normal liver tissue. Besides, image-contrast was not degraded significantly. These results suggest that the PCCT at 35 KeV is sufficient to clearly depict the histopathological morphology of VX2 rabbit cancer specimen.

  5. Medium-energy ion irradiation of Si and Ge wafers: studies of surface nanopatterning and signature of recrystallization in 100 keV Kr+ bombarded a-Si

    NASA Astrophysics Data System (ADS)

    Kumar, Pravin

    2016-03-01

    We report new and exciting experimental results on ion-induced nanopatterning of a-Si and a-Ge surfaces. The crystalline Si (100) and Ge (100) wafers were amorphized and an a/c interface was developed by pre-irradiation with a 50 keV Ar+ beam at normal incidence with an ion fluence of 5.0 × 1015 ions cm-2. These amorphized surfaces were post-irradiated with Ar+ and Kr+ beams at an angle of 60°. The post irradiation was done with ion fluences of 1.0 × 1017 ions cm-2. For each beam, two energies (50 and 200 keV for Ar+, 100 and 250 keV for Kr+) were chosen to ensure ion stopping in both sides of the a/c interface. Regular nanopatterning (in the form of ripples) is observed on the Ge surface only with the post irradiation of the Kr+ beam. The Si surface showed regular nanopatterning with the irradiation of both beams with two energies. For the ion beams crossing the a/c interface, ripples of higher amplitude and longer wavelength were formed. Further, the irradiation with a heavy beam yielded surface ripples of relatively larger amplitudes. The Raman measurements confirm amorphization of the pre-irradiated surfaces. Surprisingly, the post-irradiated Si surface with the 100 keV Kr+ beam showed evidence of recrystallization. In the paper we discuss the physics at the interface and explain the experimental findings.

  6. An innovative experimental setup for the measurement of sputtering yield induced by keV energy ions

    NASA Astrophysics Data System (ADS)

    Salou, P.; Lebius, H.; Benyagoub, A.; Langlinay, T.; Lelièvre, D.; Ban-d'Etat, B.

    2013-09-01

    An innovative experimental equipment allowing to study the sputtering induced by ion beam irradiation is presented. The sputtered particles are collected on a catcher which is analyzed in situ by Auger electron spectroscopy without breaking the ultra high vacuum (less than 10-9 mbar), avoiding thus any problem linked to possible contamination. This method allows to measure the angular distribution of sputtering yield. It is now possible to study the sputtering of many elements such as carbon based materials. Preliminary results are presented in the case of highly oriented pyrolytic graphite and tungsten irradiated by an Ar+ beam at 2.8 keV and 7 keV, respectively.

  7. Effective atomic numbers and electron densities of bacteriorhodopsin and its comprising amino acids in the energy range 1 keV-100 GeV

    NASA Astrophysics Data System (ADS)

    Ahmadi, Morteza; Lunscher, Nolan; Yeow, John T. W.

    2013-04-01

    Recently, there has been an interest in fabrication of X-ray sensors based on bacteriorhodopsin, a proton pump protein in cell membrane of Halobacterium salinarium. Therefore, a better understanding of interaction of X-ray photons with bacteriorhodopsin is required. We use WinXCom program to calculate the mass attenuation coefficient of bacteriorhodopsin and its comprising amino acids for photon energies from 1 keV to 100 GeV. These amino acids include alanine, arginine, asparagine, aspartic acid, glutamine, glutamic acid, glycine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, Asx1, Asx2, Glx1 and Glx2. We then use that data to calculate effective atomic number and electron densities for the same range of energy. We also emphasize on two ranges of energies (10-200 keV and 1-20 MeV) in which X-ray imaging and radiotherapy machines work.

  8. Possible low energy (E less than keV) nonthermal X-ray events. [analysis of proportional counter detector data from OGO-5

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.

    1973-01-01

    A search of the 3- to 30-keV data from the NRL proportional counter detector on the Orbiting Geophysical Observatory-5 (OGO-5) satellite has yielded several events which may be nearly completely nonthermal in the e greater than 3 and less than 10 keV range. In each case an impulsive hard X-ray burst accompained by an impulsive microwave burst was associated with a low energy X-ray burst whose profile was a simple rise and fall. The lack of a two component nature in the low energy range argues that the low energy X-ray flux is due to a single physical mechanism, in this case nonthermal bremsstrahlung from accelerated electrons. However, the spectra and time profiles are quite consistent with a thermal interpretation. Polarization measurements are probably necessary to resolve the physical origin of such bursts.

  9. The response of a fast phosphor screen scintillator (ZnO:Ga) to low energy ions (0-60 keV)

    SciTech Connect

    Jimenez-Rey, D.; Rodriguez-Barquero, L.

    2010-10-15

    ZnO:Ga is a promising, high time resolution candidate for use as a fast-ion-loss detector in TJ-II. We compare its ionoluminescence with that of the standard fast-ion-loss detector material, SrGa{sub 2}S{sub 4}:Eu (also known as TG-Green), when irradiated by H{sup +} ions with a range of energies E{<=}60 keV using a dedicated laboratory setup. It is found that ZnO:Ga is a reasonably good candidate for detecting low energy (E<60 keV) ions as it has excellent time resolution; however, its sensitivity is about 100 times lower than TG-Green, potentially limiting it to applications with high energy ion loss signals.

  10. Effective atomic numbers of different types of materials for proton interaction in the energy region 1 keV-10 GeV

    NASA Astrophysics Data System (ADS)

    Kurudirek, Murat

    2014-10-01

    The effective atomic numbers (Zeff) of different types of materials such as tissues, tissue equivalents, organic compounds, glasses and dosimetric materials have been calculated for total proton interactions in the energy region 1 keV-10 GeV. Also, effective atomic numbers relative to water (Zeff RW) have been presented in the entire energy region for the materials that show better water equivalent properties. Some human tissues such as adipose tissue, bone compact, muscle skeletal and muscle striated have been investigated in terms of tissue equivalency by comparing Zeff values and the better tissue equivalents have been determined for these tissues. With respect to the variation of Zeff with kinetic energy, it has been observed that Zeff seems to be more or less the same in the energy region 400 keV-10 GeV for the given materials except for the photographic emulsion, calcium fluoride, silicon dioxide, aluminum oxide and Teflon. The values of Zeff have found to be constant for photographic emulsion after 1 GeV, for calcium fluoride between 1 MeV and 1 GeV and for silicon dioxide, aluminum oxide and Teflon between 400 keV and 1 GeV. This constancy clearly shows the availability of using Zeff in estimating radiation response of the materials at first glance.

  11. Measurements of the X-ray linear attenuation coefficient for low atomic number materials at energies 32-66 and 140 keV

    NASA Astrophysics Data System (ADS)

    Midgley, S. M.

    2005-03-01

    The X-ray linear attenuation coefficient was measured for materials containing elements hydrogen to calcium. Characteristic X-rays with energies 32- 66 keV were produced by X-ray fluorescence using a secondary target system, and 140 keV gamma rays were obtained from an unsealed 99 mTc source. The photon beams were highly collimated and recorded using energy dispersive detection. A high-purity germanium detector was utilised to distinguish between measurements with K α and K β characteristic X-rays, and the gamma ray measurements used a sodium iodide detector. Samples were selected on the basis of having known composition and mass densities were measured using a pycnometer. The samples comprised six plastics, seven crystalline materials, three tissue substitute materials, three liquids and six salt solutions. Our results have an uncertainty of less than 2% and are a few percent lower than values predicted by the tabulations.

  12. Measurement of attenuation coefficients for bone, muscle, fat and water at 140, 364 and 662 keV γ-ray energies

    NASA Astrophysics Data System (ADS)

    Akar, A.; Baltaş, H.; Çevik, U.; Korkmaz, F.; Okumuşoğlu, N. T.

    2006-11-01

    The half-value thicknesses, linear and mass attenuation coefficients of biological samples such as bone, muscle, fat and water have been measured at 140, 364 and 662 keV γ-ray energies by using the ATOMLABTM-930 medical spectrometer. The γ-rays were obtained from 99mTc, 131I and 137Cs γ-ray point sources. Also theoretical calculations have been performed in order to obtain the half-value thicknesses and, mass and linear attenuation coefficients at photon energies 0.001 keV 20 MeV for bone, muscle and water samples. The calculated value and the experimental results of this work and the other results in literature are found to be in good agreement.

  13. Electron density of Rhizophora spp. wood using Compton scattering technique at 15.77, 17.48 and 22.16 keV XRF energies

    NASA Astrophysics Data System (ADS)

    Shakhreet, B. Z.; Bauk, S.; Shukri, A.

    2015-02-01

    Compton (incoherently) scattered photons which are directly proportional to the electron density of the scatterer, have been employed in characterizing Rhizophora spp. as breast tissue equivalent. X-ray fluorescent scattered incoherently from Rhizophora spp. sample was measured using Si-PIN detector and three XRF energy values 15.77, 17.48 and 22.16 keV. This study is aimed at providing electron density information in support of the introduction of new tissue substitute materials for mammography phantoms.

  14. First INTEGRAL Observations of V404 Cygni during the 2015 Outburst: Spectral Behavior in the 20–650 keV Energy Range

    NASA Astrophysics Data System (ADS)

    Roques, Jean-Pierre; Jourdain, Elisabeth; Bazzano, Angela; Fiocchi, Mariateresa; Natalucci, Lorenzo; Ubertini, Pietro

    2015-11-01

    In 2015 June, the source V404 Cygni (= GS2023+38) underwent an extraordinary outburst. We present the results obtained during the first revolution dedicated to this target by the INTEGRAL mission and focus on the spectral behavior in the hard X-ray domain, using both SPI and IBIS instruments. The source exhibits extreme variability and reaches fluxes of several tens of Crab. However, the emission between 20 and 650 keV can be understood in terms of two main components, varying on all the observable timescales, similar to what is observed in the persistent black hole system Cyg X-1. The low-energy component (up to ∼200 keV) presents a rather unusual shape, probably due to the intrinsic source variability. Nonetheless, a satisfactory description is obtained with a Comptonization model, if an unusually hot population of seed photons (kT0 ∼ 7 keV) is introduced. Above this first component, a clear excess extending up to 400–600 keV leads us to investigate a scenario where an additional (cutoff) power law could correspond to the contribution of the jet synchrotron emission, as proposed in Cyg X-1. A search for an annihilation feature did not provide any firm detection, with an upper limit of 2 × 10‑4 ph cm‑2 s‑1 (2σ) for a narrow line centered at 511 keV, on the averaged obtained spectrum. Based on observations with INTEGRAL, an ESA project with instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Spain, and Switzerland), Czech Republic, and Poland with the participation of Russia and USA.

  15. First INTEGRAL Observations of V404 Cygni during the 2015 Outburst: Spectral Behavior in the 20-650 keV Energy Range

    NASA Astrophysics Data System (ADS)

    Roques, Jean-Pierre; Jourdain, Elisabeth; Bazzano, Angela; Fiocchi, Mariateresa; Natalucci, Lorenzo; Ubertini, Pietro

    2015-11-01

    In 2015 June, the source V404 Cygni (= GS2023+38) underwent an extraordinary outburst. We present the results obtained during the first revolution dedicated to this target by the INTEGRAL mission and focus on the spectral behavior in the hard X-ray domain, using both SPI and IBIS instruments. The source exhibits extreme variability and reaches fluxes of several tens of Crab. However, the emission between 20 and 650 keV can be understood in terms of two main components, varying on all the observable timescales, similar to what is observed in the persistent black hole system Cyg X-1. The low-energy component (up to ˜200 keV) presents a rather unusual shape, probably due to the intrinsic source variability. Nonetheless, a satisfactory description is obtained with a Comptonization model, if an unusually hot population of seed photons (kT0 ˜ 7 keV) is introduced. Above this first component, a clear excess extending up to 400-600 keV leads us to investigate a scenario where an additional (cutoff) power law could correspond to the contribution of the jet synchrotron emission, as proposed in Cyg X-1. A search for an annihilation feature did not provide any firm detection, with an upper limit of 2 × 10-4 ph cm-2 s-1 (2σ) for a narrow line centered at 511 keV, on the averaged obtained spectrum. Based on observations with INTEGRAL, an ESA project with instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Spain, and Switzerland), Czech Republic, and Poland with the participation of Russia and USA.

  16. Reference neutron fields of the KIGAM for the neutron energy range between 144 keV and 2.5 MeV

    NASA Astrophysics Data System (ADS)

    Kim, G. D.; Woo, H. J.; Choi, H. W.; Park, J. W.; Trinh, T. A.

    2012-08-01

    The Korea Institute of Geoscience and Mineral Resources (KIGAM) is constructing a reference neutron field facility as a national project. Neutron fields consist of mono-energetic sources of 144 keV, 250 keV, 565 keV, and 2.5 MeV have a fluence range from 102 neutrons/cm2/sec to 103 neutrons/cm2/sec. The systems for the reference neutron fields, such as a duo-plasmatron ion source, a 4-MHz beam bunching system, a neutron chamber, an irradiation room, a neutron time-of-flight (n-TOF) system, a long-counter, and a sample moving system, were designed and fabricated. The neutron energies of the reference neutron fields and their spreads were observed by using the n-TOF system. The neutron fluence was measured by using a long-counter for energies below 1 MeV and a proton-recoil counter for 2.5 MeV. The long-counter efficiency was calibrated by the Japan Atomic Energy Agency (JAEA) which had a traceability of mono-energetic neutron sources to both Japanese and international standards. The efficiency of the proton-recoil counter was obtained by using a calculation with detailed construction information.

  17. Measurement of lineal-energy distributions for neutrons of 8 keV to 65 MeV by using a tissue-equivalent proportional counter.

    PubMed

    Nunomiya, T; Kim, E; Kurosaw, T; Taniguchi, S; Nakamura, T; Nakane, Y; Sakamoto, Y; Tanaka, S

    2002-01-01

    The lineal-energy spectra for monoenergetic and quasi-monoenergetic neutrons of 8 keV to 65 MeV were obtained using a tissue-equivalent proportional counter (TEPC). The frequency-mean lineal energy, the dose-average lineal energy and mean quality factor were estimated from the measured data. The neutron absorbed doses obtained with this TEPC were compared with the kerma coefticient for A-150 plastic defined by ICRP 26 and the mean quality factors were compared with the data of ICRP 74. respectively. These comparisons indicated good agreement between them. PMID:12212902

  18. Neutron Resonance Parameters of 238U and the Calculated Cross Sections from the Reich-Moore Analysis of Experimental Data in the Neutron Energy Range from 0 keV to 20 keV

    SciTech Connect

    Derrien, H

    2005-12-05

    The neutron resonance parameters of {sup 238}U were obtained from a SAMMY analysis of high-resolution neutron transmission measurements and high-resolution capture cross section measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA) in the years 1970-1990, and from more recent transmission and capture cross section measurements performed at the Geel Linear Accelerator (GELINA). Compared with previous evaluations, the energy range for this resonance analysis was extended from 10 to 20 keV, taking advantage of the high resolution of the most recent ORELA transmission measurements. The experimental database and the method of analysis are described in this report. The neutron transmissions and the capture cross sections calculated with the resonance parameters are compared with the experimental data. A description is given of the statistical properties of the resonance parameters and of the recommended values of the average parameters. The new evaluation results in a slight decrease of the effective capture resonance integral and improves the prediction of integral thermal benchmarks by 70 pcm to 200 pcm.

  19. Measurement of the x-ray mass attenuation coefficient and determination of the imaginary component of the atomic form-factor of tin over the energy range of 29 keV-60 keV.

    SciTech Connect

    de Jonge, M. D.; Tran, C. Q.; Chantler, C. T.; Barnea, Z.; Dhal, B. P.; Paterson, D.; Kanter, E. P.; Southworth, S. H.; Young, L.; Beno, M. A.; Linton, J. A.; Jennings, G.; Univ. of Melbourne; Australian Synchrotron Project

    2007-01-01

    We use the x-ray extended-range technique (XERT) [C. T. Chantler et al., Phys. Rev. A 64, 062506 (2001)] to measure the mass attenuation coefficients of tin in the x-ray energy range of 29-60 keV to 0.04-3 % accuracy, and typically in the range 0.1-0.2 %. Measurements made over an extended range of the measurement parameter space are critically examined to identify, quantify, and correct a number of potential experimental systematic errors. These results represent the most extensive experimental data set for tin and include absolute mass attenuation coefficients in the regions of x-ray absorption fine structure, extended x-ray absorption fine structure, and x-ray absorption near-edge structure. The imaginary component of the atomic form factor f{sub 2} is derived from the photoelectric absorption after subtracting calculated Rayleigh and Compton scattering cross sections from the total attenuation. Comparison of the result with tabulations of calculated photoelectric absorption coefficients indicates that differences of 1-2 % persist between calculated and observed values.

  20. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    SciTech Connect

    Marshall, F. J.; Knauer, J. P.; Anderson, D.; Schmitt, B. L

    2006-10-15

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si(Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3 keV but has reduced sensitivity above 3 keV ({approx}50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.

  1. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    NASA Astrophysics Data System (ADS)

    Marshall, F. J.; Knauer, J. P.; Anderson, D.; Schmitt, B. L.

    2006-10-01

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si (Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3keV but has reduced sensitivity above 3keV (˜50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.

  2. A low background-rate detector for ions in the 5 to 50 keV energy range to be used for radioisotope dating with a small cyclotron

    SciTech Connect

    Friedman, P.G.

    1986-11-25

    Accelerator mass spectrometry in tandem Van de Graaff accelerators has proven successful for radioisotope dating small samples. We are developing a 20 cm diameter 30 to 40 keV cyclotron dedicated to high-sensitivity radioisotope dating, initially for /sup 14/C. At this energy, range and dE/dx methods of particle identification are impossible. Thus arises the difficult problem of reliably detecting 30 to 40 keV /sup 14/C at 10/sup -2/ counts/sec in the high background environment of the cyclotron, where lower energy ions, electrons, and photons bombard the detector at much higher rates. We have developed and tested an inexpensive, generally useful ion detector that allows dark-count rates below 10/sup -4/ counts/sec and excellent background suppression. With the cyclotron tuned near the /sup 13/CH background peak, to the frequency for /sup 14/C, the detector suppresses the background to 6 x 10/sup -4/ counts/sec. For each /sup 14/C ion the detectors grazing-incidence Al/sub 2/O/sub 3/ conversion dynode emits about 20 secondary electrons, which are independently multiplied in separate pores of a microchannel plate. The output signal is proportional to the number of secondary electrons, allowing pulse-height discrimination of background. We have successfully tested the detector with positive /sup 12/C, /sup 23/Na, /sup 39/K, /sup 41/K, /sup 85/Rb, /sup 87/Rb, and /sup 133/Cs at 5 to 40 keV, and with 36 keV negative /sup 12/C and /sup 13/CH. It should detect ions and neutrals of all species, at energies above 5 keV, with good efficiency and excellent background discrimination. Counting efficiency and background discrimination improve with higher ion energy. The detector can be operated at least up to 2 x 10/sup -7/ Torr and be repeatedly exposed to air. The maximum rate is 10/sup 6.4/ ions/sec in pulse counting mode and 10/sup 9.7/ ions/sec in current integrating mode.

  3. Moiré deflectometry using the Talbot-Lau interferometer as refraction diagnostic for High Energy Density plasmas at energies below 10 keV

    SciTech Connect

    Valdivia, M. P.; Stutman, D.; Finkenthal, M.

    2014-07-15

    The highly localized density gradients expected in High Energy Density (HED) plasma experiments can be characterized by x-ray phase-contrast imaging in addition to conventional attenuation radiography. Moiré deflectometry using the Talbot-Lau grating interferometer setup is an attractive HED diagnostic due to its high sensitivity to refraction induced phase shifts. We report on the adaptation of such a system for operation in the sub-10 keV range by using a combination of free standing and ultrathin Talbot gratings. This new x-ray energy explored matches well the current x-ray backlighters used for HED experiments, while also enhancing phase effects at lower electron densities. We studied the performance of the high magnification, low energy Talbot-Lau interferometer, for single image phase retrieval using Moiré fringe deflectometry. Our laboratory and simulation studies indicate that such a device is able to retrieve object electron densities from phase shift measurements. Using laboratory x-ray sources from 7 to 15 μm size we obtained accurate simultaneous measurements of refraction and attenuation for both sharp and mild electron density gradients.

  4. Moiré deflectometry using the Talbot-Lau interferometer as refraction diagnostic for High Energy Density plasmas at energies below 10 keV

    NASA Astrophysics Data System (ADS)

    Valdivia, M. P.; Stutman, D.; Finkenthal, M.

    2014-07-01

    The highly localized density gradients expected in High Energy Density (HED) plasma experiments can be characterized by x-ray phase-contrast imaging in addition to conventional attenuation radiography. Moiré deflectometry using the Talbot-Lau grating interferometer setup is an attractive HED diagnostic due to its high sensitivity to refraction induced phase shifts. We report on the adaptation of such a system for operation in the sub-10 keV range by using a combination of free standing and ultrathin Talbot gratings. This new x-ray energy explored matches well the current x-ray backlighters used for HED experiments, while also enhancing phase effects at lower electron densities. We studied the performance of the high magnification, low energy Talbot-Lau interferometer, for single image phase retrieval using Moiré fringe deflectometry. Our laboratory and simulation studies indicate that such a device is able to retrieve object electron densities from phase shift measurements. Using laboratory x-ray sources from 7 to 15 μm size we obtained accurate simultaneous measurements of refraction and attenuation for both sharp and mild electron density gradients.

  5. Moiré deflectometry using the Talbot-Lau interferometer as refraction diagnostic for high energy density plasmas at energies below 10 keV.

    PubMed

    Valdivia, M P; Stutman, D; Finkenthal, M

    2014-07-01

    The highly localized density gradients expected in High Energy Density (HED) plasma experiments can be characterized by x-ray phase-contrast imaging in addition to conventional attenuation radiography. Moiré deflectometry using the Talbot-Lau grating interferometer setup is an attractive HED diagnostic due to its high sensitivity to refraction induced phase shifts. We report on the adaptation of such a system for operation in the sub-10 keV range by using a combination of free standing and ultrathin Talbot gratings. This new x-ray energy explored matches well the current x-ray backlighters used for HED experiments, while also enhancing phase effects at lower electron densities. We studied the performance of the high magnification, low energy Talbot-Lau interferometer, for single image phase retrieval using Moiré fringe deflectometry. Our laboratory and simulation studies indicate that such a device is able to retrieve object electron densities from phase shift measurements. Using laboratory x-ray sources from 7 to 15 μm size we obtained accurate simultaneous measurements of refraction and attenuation for both sharp and mild electron density gradients. PMID:25085141

  6. Optimization of the cell in the ion-optical system of a powerful source of protons with energy 15 keV

    NASA Astrophysics Data System (ADS)

    Sorokin, A. V.; Davydenko, V. I.; Deichuli, P. P.; Ivanov, A. A.

    2016-07-01

    We have described the results of numerical investigations of different versions of a three-electrode elementary slit cell for the formation a hydrogen ion beam with a relatively low energy and a high emission current density. The version of the cell chosen from the results of these investigations makes it possible to obtain a hydrogen atom beam with an energy of 15 keV, an ion current density of ~500 mA/cm2, and an angular divergence of 24 mrad.

  7. Experimental study of interactions of highly charged ions with atoms at keV energies. Progress report, February 16, 1993--April 15, 1994

    SciTech Connect

    Kostroun, V.O.

    1994-04-27

    Experimental study of low energy, highly charged ions with other atomic species requires an advanced ion source such as an electron beam ion source, EBIS or an electron cyclotron ion source, ECRIS. Five years ago we finished the design and construction of the Cornell superconducting solenoid, cryogenic EBIS (CEBIS). Since then, this source has been in continuous operation in a program whose main purpose is the experimental study of interactions of highly charged ions with atoms at keV energies. This progress report for the period February 16, 1993 to April 15, 1994 describes the work accomplished during this time in the form of short abstracts.

  8. The low energy particle detector sled (~30 keV-3.2 MeV) and its performance on the phobos mission to mars and its moons

    NASA Astrophysics Data System (ADS)

    McKenna-Lawlor, S.; Afonin, V. V.; Gringauz, K. I.; Keppler, E.; Kirsch, E.; Richter, A.; Witte, M.; O'Sullivan, D.; Thompson, A.; Somogyi, A. J.; Szabo, L.; Varga, A.

    1990-05-01

    A low energy particle detector system (SLED) is described which was designed to measure the flux densities of electrons and ions in the energy range from ~30 keV to a few MeV in (a) the varying solar aspect angles and temperatures pertaining during the Cruise Phase of the Phobos Mission and (b) in the low temperature environment (reaching -25° C) pertaining during Mars Encounter. Representative data illustrating the excellent functioning of SLED during both phases of the mission are presented.

  9. Reduction in the intensity of solar X-ray emission in the 2- to 15-keV photon energy range and heating of the solar corona

    SciTech Connect

    Mirzoeva, I. K.

    2013-04-15

    The time profiles of the energy spectra of low-intensity flares and the structure of the thermal background of the soft X-ray component of solar corona emission over the period of January-February, 2003, are investigated using the data of the RHESSI project. A reduction in the intensity of X-ray emission of the solar flares and the corona thermal background in the 2- to 15-keV photon energy range is revealed. The RHESSI data are compared with the data from the Interball-Geotail project. A new mechanism of solar corona heating is proposed on the basis of the results obtained.

  10. Electron energy spectra of H{sup {minus}} autodetaching states resulting from collisions of H{sup {minus}} with He at 1 keV

    SciTech Connect

    Kimura, M.; Sato, H. |; Hino, K.; Matsuzawa, M.

    1995-06-01

    Electron energy spectra for H{sup {minus}} autodetaching states resulting from collisions H{sup {minus}} with He at 1 keV are rigorously calculated by including couplings between doubly excited states and continuum states and their interference with direct detachment processes. An energy sampling procedure, based on the Gauss quadratures, is used to discretize continuum states. The present theoretical result, for the first time, clarifies mechanisms of excitation to doubly excited states, quantitatively reproduces the experimental spectra first observed by Risley and Geballe in 1974, separates the contributions from each of three autodetaching states, and identifies the cause of the interference between autodetaching and direct-detaching excitation channels.

  11. High-energy-resolution monochromator for nuclear resonant scattering of synchrotron radiation by Te-125 at 35.49 keV

    NASA Astrophysics Data System (ADS)

    Imai, Yasuhiko; Yoda, Yoshitaka; Kitao, Shinji; Masuda, Ryo; Higashitaniguchi, Satoshi; Inaba, Chika; Seto, Makoto

    2007-09-01

    We have developed a high-resolution monochromator (HRM) for the measurement of nuclear resonant scattering (NRS) of synchrotron radiation by Te-125 at 35.49 keV using the backscattering of sapphire (9 1 -10 68). HRMs for nuclei with excitation energies less than 30 keV have been successfully developed using high angle diffractions by silicon crystals. Nearly perfect silicon crystal, however, is not suitable for high efficient HRMs at higher energy regions because the symmetry of the crystal structure is high and the Debye-temperature is low. Therefore, we used high quality synthetic sapphire crystal, which has low symmetry of crystal structure and high Debye-temperature. The temperature of the crystal was precisely controlled around 218 K to diffract synchrotron radiation with a Bragg angle of π/2 - 0.52 mrad. Energy was tuned by changing the crystal temperature under the condition of constant diffraction angle. Energy resolution was measured by detecting nuclear forward scattering by Te-125 in enriched TeO II. The relative energy resolution of 2.1×10 -7 is achieved, that is 7.5 meV in energy bandwidth. This HRM opens studies on element-specific dynamics and electronic state of substances containing Te-125.

  12. Bremsstrahlung in Mo and Pt targets produced by {sup 90}Sr beta particles in the photon energy region of 1-100 keV

    SciTech Connect

    Singh, Amrit; Dhaliwal, A. S.

    2015-08-28

    Bremsstrahlung spectra in thick targets of Mo and Pt, produced by beta emitter {sup 90}Sr (end point energy = 546 keV) have been studied in the photon energy range of 1-100 keV. The experimentally measured bremsstrahlung spectra measured with Si(Li) detector were compared with the theoretical spectral distributions calculated from Elwert corrected (non relativistic) Bethe-Heitler [EBH] theory, modified Elwert factor (relativistic) Bethe-Heitler (F{sub mod}BH) theory for ordinary bremsstrahlung (OB) and the modified Elwert factor (relativistic) Bethe-Heitler (F{sub mod}BH+PB) theory, which includes the polarization bremsstrahlung (PB) into total bremsstrahlung (BS). The present results indicate the correctness of F{sub mod}BH+PB theory in the low energy region, where the contributions of PB into BS are dominant, which is described in terms of stripped atom (SA) approximation. But at the middle and higher energy region of the bremsstrahlung spectrum, where the contribution of PB is negligible, the F{sub mod}BH theory is more close to the experimental results. Hence, it is clear that the production of PB in the low energy region, due to the dynamic response of the target atom suppresses the production of bremsstrahlung at higher energy ends.

  13. Bremsstrahlung in Mo and Pt targets produced by 90Sr beta particles in the photon energy region of 1-100 keV

    NASA Astrophysics Data System (ADS)

    Singh, Amrit; Dhaliwal, A. S.

    2015-08-01

    Bremsstrahlung spectra in thick targets of Mo and Pt, produced by beta emitter 90Sr (end point energy = 546 keV) have been studied in the photon energy range of 1-100 keV. The experimentally measured bremsstrahlung spectra measured with Si(Li) detector were compared with the theoretical spectral distributions calculated from Elwert corrected (non relativistic) Bethe-Heitler [EBH] theory, modified Elwert factor (relativistic) Bethe-Heitler (FmodBH) theory for ordinary bremsstrahlung (OB) and the modified Elwert factor (relativistic) Bethe-Heitler (FmodBH+PB) theory, which includes the polarization bremsstrahlung (PB) into total bremsstrahlung (BS). The present results indicate the correctness of FmodBH+PB theory in the low energy region, where the contributions of PB into BS are dominant, which is described in terms of stripped atom (SA) approximation. But at the middle and higher energy region of the bremsstrahlung spectrum, where the contribution of PB is negligible, the FmodBH theory is more close to the experimental results. Hence, it is clear that the production of PB in the low energy region, due to the dynamic response of the target atom suppresses the production of bremsstrahlung at higher energy ends.

  14. The association of fractional CO2 laser 10.600nm and photodynamic therapy in the treatment of onychomycosis*

    PubMed Central

    de Oliveira, Guilherme Bueno; Antonio, João Roberto; Antonio, Carlos Roberto; Tomé, Fernanda Alves

    2015-01-01

    BACKGROUND Onychomycosis is a fungal infection of the nails caused in most cases by dermatophytes Trichophyton rubrum and Trichophyton mentagrophytes. Despite numerous available antifungal drugs for therapy of this infection, the cure rate is low, with high rates of relapse after treatment and side effects. OBJECTIVES To present a new option for the treatment of onychomycosis, in search of a more effective and rapid method than conventional ones. METHODS Patients underwent two sessions of CO2 fractional laser 10.600nm associated with photodynamic therapy. Mycological and digital photography were performed before and after the treatment. RESULTS McNemar test with continuity correction and degrees of freedom = 1: for clinical cure rate, 13.06, with p=0.00005; for mycological cure, 17.05, with p=0.00005; 72% felt fully satisfied with the procedure. CONCLUSIONS The use of fractional CO2 laser 10.600nm associated with photodynamic therapy can be effective in the treatment of onychomycosis, decreasing the risk of systemic lesions that may be triggered with prolonged use of oral antifungals. PMID:26375214

  15. Energy-dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions

    NASA Astrophysics Data System (ADS)

    Reeves, Geoffrey D.; Friedel, Reiner H. W.; Larsen, Brian A.; Skoug, Ruth M.; Funsten, Herbert O.; Claudepierre, Seth G.; Fennell, Joseph F.; Turner, Drew L.; Denton, Mick H.; Spence, Harlan E.; Blake, J. Bernard; Baker, Daniel N.

    2016-01-01

    We present observations of the radiation belts from the Helium Oxygen Proton Electron and Magnetic Electron Ion Spectrometer particle detectors on the Van Allen Probes satellites that illustrate the energy dependence and L shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on 1 March in more detail. The observations show the following: (a) at all L shells, lower energy electrons are enhanced more often than higher energies; (b) events that fill the slot region are more common at lower energies; (c) enhancements of electrons in the inner zone are more common at lower energies; and (d) even when events do not fully fill the slot region, enhancements at lower energies tend to extend to lower L shells than higher energies. During enhancement events the outer zone extends to lower L shells at lower energies while being confined to higher L shells at higher energies. The inner zone shows the opposite with an outer boundary at higher L shells for lower energies. Both boundaries are nearly straight in log(energy) versus L shell space. At energies below a few 100 keV, radiation belt electron penetration through the slot region into the inner zone is commonplace, but the number and frequency of "slot filling" events decreases with increasing energy. The inner zone is enhanced only at energies that penetrate through the slot. Energy- and L shell-dependent losses (that are consistent with whistler hiss interactions) return the belts to more quiescent conditions.

  16. Comparison of GATE/GEANT4 with EGSnrc and MCNP for electron dose calculations at energies between 15 keV and 20 MeV

    NASA Astrophysics Data System (ADS)

    Maigne, L.; Perrot, Y.; Schaart, D. R.; Donnarieix, D.; Breton, V.

    2011-02-01

    The GATE Monte Carlo simulation platform based on the GEANT4 toolkit has come into widespread use for simulating positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging devices. Here, we explore its use for calculating electron dose distributions in water. Mono-energetic electron dose point kernels and pencil beam kernels in water are calculated for different energies between 15 keV and 20 MeV by means of GATE 6.0, which makes use of the GEANT4 version 9.2 Standard Electromagnetic Physics Package. The results are compared to the well-validated codes EGSnrc and MCNP4C. It is shown that recent improvements made to the GEANT4/GATE software result in significantly better agreement with the other codes. We furthermore illustrate several issues of general interest to GATE and GEANT4 users who wish to perform accurate simulations involving electrons. Provided that the electron step size is sufficiently restricted, GATE 6.0 and EGSnrc dose point kernels are shown to agree to within less than 3% of the maximum dose between 50 keV and 4 MeV, while pencil beam kernels are found to agree to within less than 4% of the maximum dose between 15 keV and 20 MeV.

  17. 6 x 6-cm fully depleted pn-junction CCD for high-resolution spectroscopy in the 0.1- to 15-keV photon energy range

    NASA Astrophysics Data System (ADS)

    von Zanthier, Christoph; Holl, Peter; Kemmer, Josef; Lechner, Peter; Maier, B.; Soltau, Heike; Stoetter, R.; Braeuninger, Heinrich W.; Dennerl, Konrad; Haberl, Frank; Hartmann, R.; Hartner, Gisela D.; Hippmann, H.; Kastelic, E.; Kink, W.; Krause, N.; Meidinger, Norbert; Metzner, G.; Pfeffermann, Elmar; Popp, M.; Reppin, Claus; Stoetter, Diana; Strueder, Lothar; Truemper, Joachim; Weber, U.; Carathanassis, D.; Engelhard, S.; Gebhart, Th.; Hauff, D.; Lutz, G.; Richter, R. H.; Seitz, H.; Solc, P.; Bihler, Edgar; Boettcher, H.; Kendziorra, Eckhard; Kraemer, J.; Pflueger, Bernhard; Staubert, Ruediger

    1998-04-01

    The concept and performance of the fully depleted pn- junction CCD system, developed for the European XMM- and the German ABRIXAS-satellite missions for soft x-ray imaging and spectroscopy in the 0.1 keV to 15 keV photon range, is presented. The 58 mm X 60 mm large pn-CCD array uses pn- junctions for registers and for the backside instead of MOS registers. This concept naturally allows to fully deplete the detector volume to make it an efficient detector to photons with energies up to 15 keV. For high detection efficiency in the soft x-ray region down to 100 eV, an ultrathin pn-CCD backside deadlayer has been realized. Each pn-CCD-channel is equipped with an on-chip JFET amplifier which, in combination with the CAMEX-amplifier and multiplexing chip, facilitates parallel readout with a pixel read rate of 3 MHz and an electronic noise floor of ENC < e-. With the complete parallel readout, very fast pn-CCD readout modi can be implemented in the system which allow for high resolution photon spectroscopy of even the brightest x-ray sources in the sky.

  18. Comparison of GATE/GEANT4 with EGSnrc and MCNP for electron dose calculations at energies between 15 keV and 20 MeV.

    PubMed

    Maigne, L; Perrot, Y; Schaart, D R; Donnarieix, D; Breton, V

    2011-02-01

    The GATE Monte Carlo simulation platform based on the GEANT4 toolkit has come into widespread use for simulating positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging devices. Here, we explore its use for calculating electron dose distributions in water. Mono-energetic electron dose point kernels and pencil beam kernels in water are calculated for different energies between 15 keV and 20 MeV by means of GATE 6.0, which makes use of the GEANT4 version 9.2 Standard Electromagnetic Physics Package. The results are compared to the well-validated codes EGSnrc and MCNP4C. It is shown that recent improvements made to the GEANT4/GATE software result in significantly better agreement with the other codes. We furthermore illustrate several issues of general interest to GATE and GEANT4 users who wish to perform accurate simulations involving electrons. Provided that the electron step size is sufficiently restricted, GATE 6.0 and EGSnrc dose point kernels are shown to agree to within less than 3% of the maximum dose between 50 keV and 4 MeV, while pencil beam kernels are found to agree to within less than 4% of the maximum dose between 15 keV and 20 MeV. PMID:21239846

  19. Interferometric X-Ray Imaging of Breast Cancer Specimens at 51 keV X-Ray Energy

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Wu, Jin; Tsuchiya, Yoshinori; Yoneyama, Akio; Lwin, Thet Thet; Aiyoshi, Yuji; Zeniya, Tsutomu; Hyodo, Kazuyuki; Ueno, Ei

    2004-08-01

    The feasibility of the interferometric X-ray imaging technique is examined for revealing the features of breast cancer specimens. The interferometric X-ray imaging system consisted of an asymmetrically cut silicon crystal, a monolithic X-ray interferometer, a phase-shifter, an object cell, and an X-ray CCD camera. Ten 10-mm-thick formalin-fixed breast cancer specimens were imaged at 51 keV, and these images were compared with absorption-contrast X-ray images obtained at 18 keV monochromatic synchrotron X-ray. The interferometric X-ray images clearly depicted the essential features of the breast cancer such as microcalcification down to a size of 0.036 mm, spiculation, and detailed inner soft tissue structures closely matched with histopathological morphology, while the absorption-contrast X-ray images obtained using nearly the same X-ray dose only resolved microcalcification down to a size of 0.108 mm and spiculation. The interferometric X-ray imaging technique can be considered to be an innovative technique for the early and accurate diagnosis of breast cancer using an extremely low X-ray dose.

  20. The response of a radiation resistant ceramic scintillator (Al{sub 2}O{sub 3}:Cr) to low energy ions (0-60 keV)

    SciTech Connect

    Jimenez-Rey, D.; Zurro, B.; McCarthy, K. J.; Baciero, A.; Garcia, G.

    2008-10-15

    This work extends a previous study on ionoluminescence of a radiation-hard ceramic scintillator, Al{sub 2}O{sub 3}:Cr, to ions accelerated to keV energies [K. J. McCarthy et al., J. Nucl. Mater. 321, 78 (2003)]. It is motivated by the identification of this material as a promising candidate for use in the fast-ion-loss detector for ITER [for the range of thermal (low energy) and suprathermal ions]. In the paper we quantify and compare its ionoluminescence with that of some common luminescent materials (YAG:Ce and ruby) when irradiated by H{sup +} ions accelerated to {<=}60 keV using a purpose built laboratory setup. Next, studies are made on the ceramic to quantify its response as a function of incident ion mass, i.e., to He{sup +}. For this, the absolute luminosities of the material are estimated in terms of the number of photons emitted per incident ion as a function of energy. Moreover, the radiation hardness and postirradiation recovery of the ceramic are investigated. Finally, from the studies it can be concluded that the ceramic ruby is a good candidate for detecting low energy ions as long as its temporal response (approximately several milliseconds) is not a constraint for specific ion measurements.

  1. Energy loss of keV fluorine ions scattered off a missing-row reconstructed Au(110) surface under grazing incidence

    SciTech Connect

    Chen, L.; Shen, J.; Esaulov, V. A.; Valdes, J. E.; Vargas, P.

    2011-03-15

    A joint experimental and theoretical study of energy loss is presented for 1-to-4-keV fluorine negative ions in grazing scattering on a missing-row reconstructed Au(110) surface. Measurements of energy losses for various azimuthal orientations of the crystal have been performed by means of a time-of-flight method with a pulsed beam. The dependence of the fraction of surviving negative ions on azimuthal angles, was determined. Our energy-loss data are discussed in light of trajectory and stopping-power calculations, where the explicit inclusion of the nonuniform electron density at the surface provides good agreement with the experimental data. The simulation allows us to delineate various trajectory classes that correspond to different contributions in the energy-loss spectra for various azimuthal orientations of the surface.

  2. Surface modifications of hydrogen storage alloy by heavy ion beams with keV to MeV irradiation energies

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Tokuhira, Shinnosuke; Uchida, Hirohisa; Ohshima, Takeshi

    2015-12-01

    This study deals with the effect of surface modifications induced from keV to MeV heavy ion beams on the initial reaction rate of a hydrogen storage alloy (AB5) in electrochemical process. The rare earth based alloys like this sample alloy are widely used as a negative electrode of Ni-MH (Nickel-Metal Hydride) battery. We aimed to improve the initial reaction rate of hydrogen absorption by effective induction of defects such as vacancies, dislocations, micro-cracks or by addition of atoms into the surface region of the metal alloys. Since defective layer near the surface can easily be oxidized, the conductive oxide layer is formed on the sample surface by O+ beams irradiation, and the conductive oxide layer might cause the improvement of initial reaction rate of hydriding. This paper demonstrates an effective surface treatment of heavy ion irradiation, which induces catalytic activities of rare earth oxides in the alloy surface.

  3. Measurement of X-ray mass attenuation coefficients in biological and geological samples in the energy range of 7-12keV.

    PubMed

    Trunova, Valentina; Sidorina, Anna; Kriventsov, Vladimir

    2014-10-17

    Information about X-ray mass attenuation coefficients in different materials is necessary for accurate X-ray fluorescent analysis. The X-ray mass attenuation coefficients for energy of 7-12keV were measured in biological (Mussel and Oyster tissues, blood, hair, liver, and Cabbage leaves) and geological (Baikal sludge, soil, and Alaskite granite) samples. The measurements were carried out at the EXAFS Station of Siberian Synchrotron Radiation Center (VEPP-3). Obtained experimental mass attenuation coefficients were compared with theoretical values calculated for some samples. PMID:25464176

  4. Evaluation of Neutron Capture Cross Sections and Covariances on 99Tc and 129I in the keV Energy Region

    NASA Astrophysics Data System (ADS)

    Iwamoto, Nobuyuki

    2016-03-01

    Neutron capture cross sections and covariances on radioactive 99Tc and 129I have been required for developing environmental load-reducing technology. Their evaluation was performed by using nuclear reaction calculation code CCONE and Baysian code KALMAN with data assumed on the basis of measured data. The obtained total and capture cross sections are in good agreement with the measured data. The resulting uncertainties of capture cross section were 12-18% and 20-29% for 99Tc and 129I, respectively, in the keV energy region.

  5. A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV

    NASA Astrophysics Data System (ADS)

    Li, Zhichao; Jiang, Xiaohua; Liu, Shenye; Huang, Tianxuan; Zheng, Jian; Yang, Jiamin; Li, Sanwei; Guo, Liang; Zhao, Xuefeng; Du, Huabin; Song, Tianming; Yi, Rongqing; Liu, Yonggang; Jiang, Shaoen; Ding, Yongkun

    2010-07-01

    A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photon energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector.

  6. A Review of X-ray Diagnostic Calibrations in the 2 to 100 keV Region Using the High Energy X-ray Calibration Facility (HEX)

    SciTech Connect

    Ali, Zaheer; Pond, T; Buckles, R A; Maddox, B R; Chen, C D; DeWald, E L; Izumi, N; Stewart, R

    2010-05-19

    The precise and accurate measurement of X-rays in the 2 keV to 100 keV region is crucial to the understanding of HED plasmas and warm dense matter in general. With the emergence of inertially confined plasma facilities as the premier platforms for ICF, laboratory astrophysics, and national security related plasma experiments, the need to calibrate diagnostics in the high energy X-ray regime has grown. At National Security Technologies High Energy X-ray Calibration Facility (HEX) in Livermore, California, X-ray imagers, filter-fluorescer spectrometers, crystal spectrometers, image plates, and nuclear diagnostics are calibrated. The HEX can provide measurements of atomic line radiation, X-ray flux (accuracy within 10%), and X-ray energy (accuracy within 1%). The HEX source is comprised of a commercial 160 kV X-ray tube, a fluorescer wheel, a filter wheel, and a lead encasement. The X-ray tube produces a Tungsten bremsstrahlung spectrum which causes a foil to fluoresce line radiation. To minimize bremsstrahlung in the radiation for calibration we also provide various foils as filters. For experimental purposes, a vacuum box capable of 10{sup -7} Torr, as well as HPGe and CdTe radiation detectors, are provided on an optical table. Most geometries and arrangements can be changed to meet experimental needs.

  7. A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV.

    PubMed

    Li, Zhichao; Jiang, Xiaohua; Liu, Shenye; Huang, Tianxuan; Zheng, Jian; Yang, Jiamin; Li, Sanwei; Guo, Liang; Zhao, Xuefeng; Du, Huabin; Song, Tianming; Yi, Rongqing; Liu, Yonggang; Jiang, Shaoen; Ding, Yongkun

    2010-07-01

    A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photon energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector. PMID:20687719

  8. A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV

    SciTech Connect

    Li Zhichao; Guo Liang; Jiang Xiaohua; Liu Shenye; Huang Tianxuan; Yang Jiamin; Li Sanwei; Zhao Xuefeng; Du Huabin; Song Tianming; Yi Rongqing; Liu Yonggang; Jiang Shaoen; Ding Yongkun; Zheng Jian

    2010-07-15

    A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photon energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector.

  9. Use of a 10,600-nm CO2 Laser Mandibular Vestibular Extension in a Patient With a Chromosomal Abnormality.

    PubMed

    Levine, Robert; Vitruk, Peter

    2016-09-01

    Vestibuloplasty involves a series of surgical procedures designed to restore alveolar ridge height by lowering the muscles attached to the buccal, labial, and lingual aspects of the jaws. The technique is indicated in cases of insufficient vestibular depth that may result from atrophy of the alveolar ridge and/or high attachment of muscle or movable mucosa. This article focuses on a carbon dioxide (CO2) laser vestibular extension procedure performed in a patient with Klinefelter syndrome, which is caused by a chromosomal abnormality. The 10,600-nm CO2 laser is shown to offer several advantages over a conventional scalpel and other laser wavelengths for soft-tissue pre-prosthetic surgery, including vestibular extension. PMID:27608196

  10. Measurement of the x-ray mass attenuation coefficients of gold in the 38-50-keV energy range

    SciTech Connect

    Islam, M T; Rae, N A; Glover, J L; Barnea, Z; de Jonge, M D; Tran, C Q; Wang, J; Chantler, C T

    2010-11-12

    We used synchrotron x rays to measure the x-ray mass attenuation coefficients of gold at nine energies from 38 to 50 keV with accuracies of 0.1%. Our results are much more accurate than previous measurements in this energy range. A comparison of our measurements with calculated mass attenuation coefficients shows that our measurements fall almost exactly midway between the XCOM and FFAST calculated theoretical values, which differ from one another in this energy region by about 4%, even though the range includes no absorption edge. The consistency and accuracy of these measurements open the way to investigations of the x-ray attenuation in the region of the L absorption edge of gold.

  11. Wide-Band KB Optics for Spectro-Microscopy Imaging Applications in the 6-13 keV X-ray Energy Range

    SciTech Connect

    Ziegler, E.; De Panfilis, S.; Peverini, L.; Vaerenbergh, P. van; Rocca, F.

    2007-01-19

    We present a Kirkpatrick-Baez optics (KB) system specially optimized to operate in the 6-13 keV X-ray range, where valuable characteristic lines are present. The mirrors are coated with aperiodic laterally graded (Ru/B4C)35 multilayers to define a 15% energy bandpass and to gain flux as compared to total reflection mirrors. For any X-ray energy selected the shape of each mirror can be optimized with a dynamical bending system so as to concentrate the X-ray beam into a micrometer-size spot. Once the KB mirrors are aligned at the X-ray energy corresponding to the barycenter of the XAS spectrum to be performed they remain in a steady state during the micro-XAS scans to minimize beam displacements. Results regarding the performance of the wideband KB optics and of the spectro-microscopy setup are presented, including beam stability issues.

  12. 950 keV X-Band Linac For Material Recognition Using Two-Fold Scintillator Detector As A Concept Of Dual-Energy X-Ray System

    SciTech Connect

    Lee, Kiwoo; Natsui, Takuya; Hirai, Shunsuke; Uesaka, Mitsuru; Hashimoto, Eiko

    2011-06-01

    One of the advantages of applying X-band linear accelerator (Linac) is the compact size of the whole system. That shows us the possibility of on-site system such as the custom inspection system in an airport. As X-ray source, we have developed X-band Linac and achieved maximum X-ray energy 950 keV using the low power magnetron (250 kW) in 2 {mu}s pulse length. The whole size of the Linac system is 1x1x1 m{sup 3}. That is realized by introducing X-band system. In addition, we have designed two-fold scintillator detector in dual energy X-ray concept. Monte carlo N-particle transport (MCNP) code was used to make up sensor part of the design with two scintillators, CsI and CdWO4. The custom inspection system is composed of two equipments: 950 keV X-band Linac and two-fold scintillator and they are operated simulating real situation such as baggage check in an airport. We will show you the results of experiment which was performed with metal samples: iron and lead as targets in several conditions.

  13. Low-energy Rutherford backscattering-ion channeling measurement system with the use of several tens keV hydrogen and a time-of-flight spectrometer

    NASA Astrophysics Data System (ADS)

    Hasegawa, Masataka; Kobayashi, Naoto; Hayashi, Nobuyuki

    1996-10-01

    We have developed a low-energy Rutherford backscattering spectrometry (RBS)-ion channeling measurement system for the analysis of thin films and solid surfaces with the use of several tens keV hydrogen ions and a time-of-flight spectrometer which was originally developed by Mendenhall and Weller. The depth resolution of our system is better than that of a conventional RBS system with MeV helium ions and silicon surface barrier detectors. This measurement system is very small in size compared to the conventional RBS-ion channeling measurement system with the use of MeV He ions, because of the small ion accelerator for several tens keV ions. The analysis of crystalline thin films which utilizes ion channeling effect can be performed with the use of this low-energy RBS-ion channeling measurement system. The in situ observation of the thermal reaction between iron and silicon substrate with the use of this measurement system is also demonstrated.

  14. Low-background-rate detector for ions in the 5- to 50-keV energy range to be used for radioisotope dating with a small cyclotron

    SciTech Connect

    Friedman, P.G.

    1986-01-01

    Accelerator mass spectrometry in tandem Van de Graaff accelerators has proven successful for radioisotope dating small samples. Small, inexpensive cyclotrons serving this purpose would make the technique accessible to more researchers and inexpensive enough to compare many small samples. To this end, VC Berkeley is developing a 20-cm-diameter, 30- to 40-keV cyclotron dedicated to high-sensitivity radioisotope dating, initially for /sup 14/C. At this energy, range and dE/dx methods of particle identification are impossible. Thus arises the difficult problem of reliably detecting 30- to 40-keV /sup 14/C at 10/sup -1/ counts/sec in the high-background environment of the cyclotron, where lower energy ions, electrons, and photons bombard the detector at much higher rates. To meet this challenge, an inexpensive, generally useful ion detector was developed that allows dark-count rates below 10/sup -4/ counts/sec and excellent background suppression. With the cyclotron tuned near the /sup 13/CH background peak, to the frequency for /sup 14/C, the detector suppresses the background to 6 x 10/sup -4/ counts/sec. For each /sup 14/C ion, the detector's grazing-incidence Al/sub 2/O/sub 3/ conversion dynode emits about 20 secondary electrons, which are independently multiplied in separate pores of a microchannel plate. The output signal is proportional to the number of secondary electrons, allowing pulse-height discrimination of background.

  15. Inelastic processes in Na+-Ne, Na+-Ar, Ne+-Na, and Ar+-Na collisions in the energy range 0.5-14 keV

    NASA Astrophysics Data System (ADS)

    Lomsadze, R. A.; Gochitashvili, M. R.; Kezerashvili, R. Ya.

    2015-12-01

    Absolute cross sections for charge-exchange, ionization, and excitation in Na+-Ne and Na+-Ar collisions were measured in the ion energy range 0.5 -10 keV using a refined version of a capacitor method and collision and optical spectroscopy methods simultaneously in the same experimental setup. Ionization cross sections for Ne+-Na and Ar+-Na collisions are measured at energies of 2 -14 keV using a crossed-beam spectroscopy method. The experimental data and the schematic correlation diagrams are used to analyze and determine the mechanisms for these processes. For the charge-exchange process in Na+-Ar collisions two nonadiabatic regions are revealed and mechanisms responsible for these regions are explained. Structural peculiarity on the excitation function for the resonance lines of argon atoms in Na+-Ar collisions are observed and the possible mechanisms of this phenomenon are explored. The measured ionization cross sections for Na+-Ne and Ne+-Na collisions in conjunction with the Landau-Zener formula are used to determine the coupling matrix element and transition probability in a region of pseudocrossing of the potential curves.

  16. Energy-dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions

    DOE PAGESBeta

    Reeves, Geoffrey D.; Friedel, Reiner H. W.; Larsen, Brian A.; Skoug, Ruth M.; Funsten, Herbert O.; Claudepierre, Seth G.; Fennell, Joseph F.; Turner, Drew L.; Denton, Mick H.; Spence, Harlan E.; et al

    2016-01-28

    Here, we present observations of the radiation belts from the Helium Oxygen Proton Electron and Magnetic Electron Ion Spectrometer particle detectors on the Van Allen Probes satellites that illustrate the energy dependence and L shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on 1 March in more detail. The observations show the following: (a) at all L shells, lower energy electrons are enhanced more often than higher energies; (b) events that fill the slot region are more common at lower energies; (c) enhancements of electrons in the inner zone are moremore » common at lower energies; and (d) even when events do not fully fill the slot region, enhancements at lower energies tend to extend to lower L shells than higher energies. During enhancement events the outer zone extends to lower L shells at lower energies while being confined to higher L shells at higher energies. The inner zone shows the opposite with an outer boundary at higher L shells for lower energies. Both boundaries are nearly straight in log(energy) versus L shell space. At energies below a few 100 keV, radiation belt electron penetration through the slot region into the inner zone is commonplace, but the number and frequency of “slot filling” events decreases with increasing energy. The inner zone is enhanced only at energies that penetrate through the slot. Energy- and L shell-dependent losses (that are consistent with whistler hiss interactions) return the belts to more quiescent conditions.« less

  17. Remote Sensing of Icy Galilean Moon Surface and Atmospheric Composition Using Low Energy (1 eV-4 keV) Neutral Atom Imaging

    NASA Technical Reports Server (NTRS)

    Collier, M. R.; Sittler, E.; Chornay, D.; Cooper, J. F.; Coplan, M.; Johnson, R. E.

    2004-01-01

    We describe a low energy neutral atom imager suitable for composition measurements Europa and other icy Galilean moons in the Jovian magnetosphere. This instrument employs conversion surface technology and is sensitive to either neutrals converted to negative ions, neutrals converted to positive ions and the positive ions themselves depending on the power supply. On a mission such as the Jupiter Icy Moons Orbiter (JIMO), two back-to-back sensors would be flown with separate power supplies fitted to the neutral atom and iodneutral atom sides. This will allow both remote imaging of 1 eV < E < 4 keV neutrals from icy moon surfaces and atmospheres, and in situ measurements of ions at similar energies in the moon ionospheres and Jovian magnetospheric plasma. The instrument provides composition measurements of the neutrals and ions that enter the spectrometer with a mass resolution dependent on the time-of-flight subsystem and capable of resolving molecules. The lower energy neutrals, up to tens of eV, arise from atoms and molecules sputtered off the moon surfaces and out of the moon atmospheres by impacts of more energetic (keV to MeV) ions from the magnetosphere. Direct Simulation Monte Carlo (DSMC) models are used to convert measured neutral abundances to compositional distributions of primary and trace species in the sputtered surfaces and atmospheres. The escaping neutrals can also be detected as ions after photo- or plasma-ionization and pickup. Higher energy, keV neutrals come from charge exchange of magnetospheric ions in the moon atmospheres and provide information on atmospheric structure. At the jovicentric orbits of the icy moons the presence of toroidal gas clouds, as detected at Europa's orbit, provide M e r opportunities to analyze both the composition of neutrals and ions originating from the moon surfaces, and the characteristics of magnetospheric ions interacting with neutral cloud material. Charge exchange of low energy ions near the moons, and

  18. Dose calculation for photon-emitting brachytherapy sources with average energy higher than 50 keV: Report of the AAPM and ESTRO

    SciTech Connect

    Perez-Calatayud, Jose; Ballester, Facundo; Das, Rupak K.; DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Ouhib, Zoubir; Rivard, Mark J.; Sloboda, Ron S.; Williamson, Jeffrey F.

    2012-05-15

    Purpose: Recommendations of the American Association of Physicists in Medicine (AAPM) and the European Society for Radiotherapy and Oncology (ESTRO) on dose calculations for high-energy (average energy higher than 50 keV) photon-emitting brachytherapy sources are presented, including the physical characteristics of specific {sup 192}Ir, {sup 137}Cs, and {sup 60}Co source models. Methods: This report has been prepared by the High Energy Brachytherapy Source Dosimetry (HEBD) Working Group. This report includes considerations in the application of the TG-43U1 formalism to high-energy photon-emitting sources with particular attention to phantom size effects, interpolation accuracy dependence on dose calculation grid size, and dosimetry parameter dependence on source active length. Results: Consensus datasets for commercially available high-energy photon sources are provided, along with recommended methods for evaluating these datasets. Recommendations on dosimetry characterization methods, mainly using experimental procedures and Monte Carlo, are established and discussed. Also included are methodological recommendations on detector choice, detector energy response characterization and phantom materials, and measurement specification methodology. Uncertainty analyses are discussed and recommendations for high-energy sources without consensus datasets are given. Conclusions: Recommended consensus datasets for high-energy sources have been derived for sources that were commercially available as of January 2010. Data are presented according to the AAPM TG-43U1 formalism, with modified interpolation and extrapolation techniques of the AAPM TG-43U1S1 report for the 2D anisotropy function and radial dose function.

  19. INTEGRAL IGR J18135-1751 = HESS J1813-178: A New Cosmic High-Energy Accelerator from keV to TeV Energies

    NASA Astrophysics Data System (ADS)

    Ubertini, P.; Bassani, L.; Malizia, A.; Bazzano, A.; Bird, A. J.; Dean, A. J.; De Rosa, A.; Lebrun, F.; Moran, L.; Renaud, M.; Stephen, J. B.; Terrier, R.; Walter, R.

    2005-08-01

    We report the discovery of a soft gamma-ray source, namely, IGR J18135-1751, detected with IBIS, the Imager on Board the INTEGRAL Satellite. The source is persistent and has a 20-100 keV luminosity of ~5.7× 1034 ergs s-1 (assuming a distance of 4 kpc). This source is coincident with one of the eight unidentified objects recently reported by the HESS collaboration as part of the first TeV survey of the inner part of the Galaxy. Two of these new sources found along the Galactic plane, HESS J1813-178 and HESS J1614-518, have no obvious lower energy counterparts, a fact that motivated the suggestion that they might be dark cosmic ray accelerators. HESS J1813-178 has a strongly absorbed X-ray counterpart, the ASCA source AGPS 273.4-17.8, showing a power-law spectrum with photon index ~1.8 and a total (Galactic plus intrinsic) absorption corresponding to NH~5×1022 cm-2. We hypothesize that the source is a pulsar wind nebula embedded in its supernova remnant. The lack of X-ray or gamma-ray variability, the radio morphology, and the ASCA spectrum are all compatible with this interpretation. In any case we rule out the hypothesis that HESS J1813-178 belongs to a new class of TeV objects or that it is a cosmic ``dark particle'' accelerator. Based on observations with INTEGRAL, an ESA project with instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), the Czech Republic, and Poland and with the participation of Russia and the US.

  20. 14-pixel, multiplexed array of gamma-ray microcalorimeters with 47 eV energy resolution at 103 keV

    SciTech Connect

    Doriese, W. B.; Ullom, J. N.; Beall, J. A.; Duncan, W. D.; Ferreira, L.; Hilton, G. C.; Horansky, R. D.; Irwin, K. D.; Mates, J. A. B.; Reintsema, C. D.; Vale, L. R.; Xu, Y.; Zink, B. L.; Rabin, M. W.; Hoover, A. S.; Rudy, C. R.; Vo, D. T.

    2007-05-07

    The authors present a prototype for a high-energy-resolution, high-count-rate, gamma-ray spectrometer intended for nuclear forensics and international nuclear safeguards. The prototype spectrometer is an array of 14 transition-edge-sensor microcalorimeters with an average energy resolution of 47 eV (full width at half maximum) at 103 keV. The resolution of the best pixel is 25 eV. A cryogenic, time-division multiplexer reads out the array. Several important topics related to microcalorimeter arrays are discussed, including cross-talk, the uniformity of detector bias conditions, fabrication of the arrays, and the multiplexed readout. The measurements and calculations demonstrate that a kilopixel array of high-resolution microcalorimeters is feasible.

  1. Array-compatible transition-edge sensor microcalorimeter {gamma}-ray detector with 42 eV energy resolution at 103 keV

    SciTech Connect

    Zink, B. L.; Ullom, J. N.; Beall, J. A.; Irwin, K. D.; Doriese, W. B.; Duncan, W. D.; Ferreira, L.; Hilton, G. C.; Horansky, R. D.; Reintsema, C. D.; Vale, L. R.

    2006-09-18

    The authors describe a microcalorimeter {gamma}-ray detector with measured energy resolution of 42 eV full width at half maximum for 103 keV photons. This detector consists of a thermally isolated superconducting transition-edge thermometer and a superconducting bulk tin photon absorber. The absorber is attached with a technique compatible with producing arrays of high-resolution {gamma}-ray detectors. The results of a detailed characterization of the detector, which includes measurements of the complex impedance, detector noise, and time-domain pulse response, suggest that a deeper understanding and optimization of the thermal transport between the absorber and thermometer could significantly improve the energy resolution of future detectors.

  2. {sup 241}Am(n,{gamma}) cross section in the neutron energy region between 0.02 eV and 300 keV

    SciTech Connect

    Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O' Donnell, J. M.; Haight, R. C.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Macri, R. A.; Wu, C. Y.; Becker, J. A.

    2008-04-17

    The Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL) was used for a neutron capture cross section measurement on {sup 241}Am. The high granularity of the DANCE array (160 BaF2 detectors in a 4{pi} geometry) enables an efficient detection of prompt gamma rays following neutron capture. The preliminary results on the {sup 241}Am(n,{gamma}) cross section are presented from 0.02 eV to 300 keV. The cross section at thermal energy E{sub n} = 0.0253 eV was determined to be 665{+-}33 barns. Resonance parameters were obtained using the SAMMY7 fit to the measured cross section in the resonance region. Significant discrepancies were found between our results and data evaluations for the first three lowest lying resonances. The cross section for neutrons with E{sub n}>l keV agrees well with the ENDF/B-VII.0 and JENDL-3.3 evaluations.

  3. Ionic Liquids as a Reference Material Candidate for the Quick Performance Check of Energy Dispersive X-ray Spectrometers for the Low Energy Range below 1 keV

    PubMed Central

    2016-01-01

    Ionic liquids (ILs) are proposed as simple and efficient test materials to evaluate the performance of energy dispersive X-ray spectrometers (EDS) in the low energy range below 1 keV. By only one measurement, C Kα, N Kα, O Kα, and F Kα X-ray lines can be excited. Additionally, the S Kα line at 2.3 keV and, particularly, the S L series at 149 eV complete the picture with X-ray lines offered by the selected ILs. The well-known (certifiable) elemental composition of the ILs selected in the present study can be used to check the accuracy of results produced with the available EDS quantification routines in the low energy range, simultaneously, for several low atomic number elements. A comparison with other reference materials in use for testing the performance of EDS in the low energy range is included. PMID:27336962

  4. YIELDS OF IONS AND EXCITED STATES IN NONPOLAR LIQUIDS EXPOSED TO X-RAYS OF 1 TO 30 KEV ENERGY

    SciTech Connect

    HOLROYD,R.A.

    1999-08-18

    When x-rays from a synchrotron source are absorbed in a liquid, the x-ray energy (E{sub x}) is converted by the photoelectric effect into the kinetic energy of the electrons released. For hydrocarbons, absorption by the K-electrons of carbon dominates. Thus the energy of the photoelectron (E{sub pe}) is E{sub x}-E{sub b}, where E{sub b} is the K-shell binding energy of carbon. Additional electrons with energy equal to E{sub b} is released in the Auger process that fills the hole in the K-shell. These energetic electrons will produce many ionizations, excitations and products. The consequences of the high density of ionizations and excitations along the track of the photoelectron and special effects near the K-edge are examined here.

  5. Absolute Calibration of Kodak Biomax-MS Film Response to X Rays in the 1.5- to 8-keV Energy Range

    SciTech Connect

    Marshall, F.J.; Knauer, J.P.; Anderson, D.; Schmitt, B.L.

    2006-09-28

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory e-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si(Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations.

  6. Mass attenuation coefficient of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using 16.59 - 25.26 keV photon energy range

    NASA Astrophysics Data System (ADS)

    Mohd Yusof, Mohd Fahmi; Hamid, Puteri Nor Khatijah Abdul; Bauk, Sabar; Hashim, Rokiah; Tajuddin, Abdul Aziz

    2015-04-01

    The Rhizophora spp. particleboards were fabricated using ≤ 104 µm particle size at three different fabrication methods; binderless, steam pre-treated and tannin-added. The mass attenuation coefficient of Rhizophora spp. particleboards were measured using x-ray fluorescent (XRF) photon from niobium, molybdenum, palladium, silver and tin metal plates that provided photon energy between 16.59 to 25.26 keV. The results were compared to theoretical values for water calculated using photon cross-section database (XCOM).The results showed that all Rhizophora spp. particleboards having mass attenuation coefficient close to calculated XCOM for water. Tannin-added Rizophora spp. particleboard was nearest to calculated XCOM for water with χ2 value of 13.008 followed by binderless Rizophora spp. (25.859) and pre-treated Rizophora spp. (91.941).

  7. Liquid helium cryostat with internal fluorescence detection for x-ray absorption studies in the 2-6 keV energy region

    NASA Astrophysics Data System (ADS)

    McFarlane Holman, Karen L.; Latimer, Matthew J.; Yachandra, Vittal K.

    2004-06-01

    X-ray absorption spectroscopy (XAS) in the intermediate x-ray region (2-6 keV) for dilute biological samples has been limited because of detector/flux limitations and inadequate cryogenic instrumentation. We have designed and constructed a new tailpiece/sample chamber for a commercially available liquid helium cooled cryostat which overcomes difficulties related to low fluorescence signals by using thin window materials and incorporating an internal photodiode detector. With the apparatus, XAS data at the Cl, S, and Ca K edges have been collected on frozen solutions and biological samples at temperatures down to 60 K. A separate chamber has been incorporated for collecting room-temperature spectra of standard compounds (for energy calibration purposes) which prevents contamination of the cryostat chamber and allows the sample to remain undisturbed, both important concerns for studying dilute and radiation-sensitive samples.

  8. A semi-empirical approach to analyze the activities of cylindrical radioactive samples using gamma energies from 185 to 1764 keV.

    PubMed

    Huy, Ngo Quang; Binh, Do Quang

    2014-12-01

    This work suggests a method for determining the activities of cylindrical radioactive samples. The self-attenuation factor was applied for providing the self-absorption correction of gamma rays in the sample material. The experimental measurement of a (238)U reference sample and the calculation using the MCNP5 code allow obtaining the semi-empirical formulae of detecting efficiencies for the gamma energies ranged from 185 to 1764keV. These formulae were used to determine the activities of the (238)U, (226)Ra, (232)Th, (137)Cs and (40)K nuclides in the IAEA RGU-1, IAEA-434, IAEA RGTh-1, IAEA-152 and IAEA RGK-1 radioactive standards. The coincidence summing corrections for gamma rays in the (238)U and (232)Th series were applied. The activities obtained in this work were in good agreement with the reference values. PMID:25113537

  9. Development of 4.5 keV monochromatic X-ray radiography using the high-energy, picosecond LFEX laser

    NASA Astrophysics Data System (ADS)

    Sawada, H.; Fujioka, S.; Hosoda, T.; Zhang, Z.; Arikawa, Y.; Nagatomo, H.; Nishimura, H.; Sunahara, A.; Theobald, W.; Patel, P. K.; Beg, F. N.

    2016-05-01

    Development of a monochromatic x-ray imaging system using a high-energy short- pulse laser LFEX and a spherical crystal is reported. Irradiation of the intense short-pulse laser produces a flash of 4.51 keV Ti K-alpha x-ray while the spherically bent quartz crystal provides a narrow spectral bandwidth and high spatial resolution. This high spatiotemporal imaging technique was applied for recording 2-D monochromatic x-ray images of laser-driven Fast Ignition targets. The results show a sufficiently high spatial resolution to characterize the implosion core, suggesting that the core information extracted from the radiograph images can be used to benchmark a 2-D radiation-hydrodynamic code for accurate hydrodynamic modelling and optimization of FI fuel assembly in the asymmetrical implosion.

  10. Absolute detection efficiency of a microchannel plate detector to X rays in the 1-100 KeV energy range

    NASA Astrophysics Data System (ADS)

    Burginyon, Gary A.; Jacoby, Barry A.; Wobser, James K.; Ernst, Richard; Ancheta, Dione S.; Tirsell, Kenneth G.

    1993-02-01

    There is little information in the literature on the performance of working micro-channel plate (MCP) detectors at high x-ray energies. We have measured the absolute efficiency of a microchannel-plate-intensified, subnanosecond, one dimensional imaging x-ray detector developed at LLNL in the 1 to 100 keV range and at 1.25 MeV. The detector consists of a gold photocathode deposited on the front surface of the MCP (optimized for Ni K(subscript (alpha) ) x rays) to convert x rays to electrons, an MCP to amplify the electrons, and a fast In:CdS phosphor that converts the electron's kinetic energy to light. The phosphor is coated on a fiber-optic faceplate to transmit the light out of the vacuum system. Electrostatic focusing electrodes compress the electron current out of the MCP in one dimension while preserving spatial resolution in the other. The calibration geometry, dictated by a recent experiment, required grazing incidence x rays (15.6 degree(s)) onto the MCP detector in order to maximize deliverable current. The experiment also used a second detector made up of 0.071 in. thick BC422 plastic scintillator material from the Bicron Corporation. We compare the absolute efficiencies of these two detectors in units of optical W/cm(superscript 2) into 4 (pi) per x ray W/cm(superscript 2) incident. At 7.47 keV and 900 volts MCP bias, the MCP detector delivers approximately 1400 times more light than the scintillator detector.

  11. A multilayer grating with a novel layer structure for a flat-field spectrograph attached to transmission electron microscopes in energy region of 2-4 keV

    SciTech Connect

    Imazono, T.; Koike, M.; Koeda, M.; Nagano, T.; Sasai, H.; Oue, Y.; Yonezawa, Z.; Kuramoto, S.; Terauchi, M.; Takahashi, H.; Handa, N.; Murano, T.

    2012-05-17

    A multilayer mirror with a novel layer structure to uniformly enhance the reflectivity in a few keV energy range at a fixed angle of incidence is invented and applied to a multilayer grating for use in a flat-field spectrograph attached to a conventional electron microscope. The diffraction efficiency of the fabricated multilayer grating having the new layer structure is evaluated at the angle of incidence of 88.65 deg. in the energy region of 2.1-4.0 keV. It is shown that the multilayer grating is effective to uniformly enhance the diffraction efficiency and able to be practically used in this energy region.

  12. Learning to Apply Metrology Principles to the Measurement of X-ray Intensities in the 500 eV to 110 keV Energy Range

    SciTech Connect

    Haugh, M. J.; Pond, T.; Silbernagel, C.; Torres, P.; Marlett, K.; Goldin, F.; Cyr, S.

    2011-02-08

    National Security Technologies, LLC (NSTec), Livermore Operations, has two optical radiation calibration laboratories accredited by “the National Voluntary Laboratories Accreditation Program (NVLAP) which is the accrediting body of” the National Institute of Standards and Technology (NIST), and is now working towards accreditation for its X-ray laboratories. NSTec operates several laboratories with X-ray sources that generate X-rays in the energy range from 50 eV to 115 keV. These X-ray sources are used to characterize and calibrate diagnostics and diagnostic components used by the various national laboratories, particularly for plasma analysis on the Lawrence Livermore National Laboratory (LLNL) National Ignition Facility (NIF). Because X-ray photon flux measurement methods that can be accredited, i.e., traceable to NIST, have not been developed for sources operating in these energy ranges, NSTec, NIST, and the National Voluntary Accreditation Program (NVLAP) together have defined a path toward the development and validation of accredited metrology methods for X-ray energies. The methodology developed for the high energy X-ray (HEX) Laboratory was NSTec’s starting point for X-ray metrology accreditation and will be the basis for the accredited processes in the other X-ray laboratories. This paper will serve as a teaching tool, by way of this example using the NSTec X-ray sources, for the process and methods used in developing an accredited traceable metrology.

  13. Observations of the scatter-free solar-flare electrons in the energy range 20-1000 keV

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Fisk, L. A.; Lin, R. P.

    1971-01-01

    Observations of the scatter-free electron events from solar active region McMath No. 8905 are presented. The measurements were made on Explorer 33 satellite. The data show that more than 80% of the electrons from these events undergo no or little scattering and that these electrons travel only approximately 1.5 a.u. between the sun and the earth. The duration of these events cannot be accounted fully by velocity dispersion alone. It is suggested that these electrons could be continuously injected into interplanetary medium for a time interval of approximately 2 to 3 minutes. Energy spectra of these electrons are discussed.

  14. Angular distribution of bremsstrahlung produced by electrons with initial energies in the range from 10 to 20 keV incident on thick Ag

    NASA Astrophysics Data System (ADS)

    Gonzales, Daniel; Cavness, Brandon; Williams, Scott

    2012-03-01

    Experimental results are presented comparing the intensities of the thick-target bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on Ag, measured at forward angles in the range of 0 to 55 degrees. When the data are corrected for attenuation due to photon absorption within the target, the results indicate that the detected radiation is distributed anisotropically only at photon energies k that are approximately equal to the initial energy of the incident electrons E0. The results of our experiments suggest that, as k/E0->0, the detected radiation essentially becomes isotropic due primarily to the scattering of electrons within the target. Comparison to the theory of Kissel et al. [At. Data Nucl. Data Tables 28, 381 (1983)] suggests that the angular distribution of bremsstrahlung emitted by electrons incident on thick targets is similar to the angular distribution of bremsstrahlung emitted by electrons incident on free-atom targets only when k/E0 1. The experimental data also are in approximate agreement with the angular distribution predictions of the Monte Carlo program PENELOPE.

  15. High accuracy experimental determination of copper and zinc mass attenuation coefficients in the 100 eV to 30 keV photon energy range

    NASA Astrophysics Data System (ADS)

    Ménesguen, Y.; Gerlach, M.; Pollakowski, B.; Unterumsberger, R.; Haschke, M.; Beckhoff, B.; Lépy, M.-C.

    2016-02-01

    The knowledge of atomic fundamental parameters such as mass attenuation coefficients with low uncertainties, is of decisive importance in elemental quantification using x-ray fluorescence analysis techniques. Several databases are accessible and frequently used within a large community of users. These compilations are most often in good agreement for photon energies in the hard x-ray ranges. However, they significantly differ for low photon energies and around the absorption edges of any element. In a joint cooperation of the metrology institutes of France and Germany, mass attenuation coefficients of copper and zinc were determined experimentally in the photon energy range from 100 eV to 30 keV by independent approaches using monochromatized synchrotron radiation at SOLEIL (France) and BESSY II (Germany), respectively. The application of high-accuracy experimental techniques resulted in mass attenuation coefficient datasets determined with low uncertainties that are directly compared to existing databases. The novel datasets are expected to enhance the reliability of mass attenuation coefficients.

  16. Atom penetration from a thin film into the substrate during sputtering by polyenergetic Ar{sup +} ion beam with mean energy of 9.4 keV

    SciTech Connect

    Kalin, B.A.; Gladkov, V.P.; Volkov, N.V.; Sabo, S.E.

    1995-12-31

    Penetration of alien atoms (Be, Ni) into Be, Al, Zr, Si and diamond was investigated under Ar{sup +} ion bombardment of samples having thermally evaporated films of 30--50 nm. Sputtering was carried out using a wide energy spectrum beam of Ar{sup +} ions of 9.4 keV to dose D = 1 {times} 10{sup 16}--10{sup 19} ion/cm{sup 2}. Implanted atom distribution in the targets was measured by Rutherford backscattering spectrometry (RBS) of H{sup +} and He{sup +} ions with energy of 1.6 MeV as well as secondary ion mass-spectrometry (SIMS). During the bombardment, the penetration depth of Ar atoms increases with dose linearly. This depth is more than 3--20 times deeper than the projected range of bombarding ions and recoil atoms. This is a deep action effect. The analysis shows that the experimental data for foreign atoms penetration depth are similar to the data calculated for atom migration through the interstitial site in a field of internal (lateral) compressive stresses created in the near-surface layer of the substrate as a result of implantation. Under these experimental conditions atom ratio r{sub i}/r{sub m} (r{sub i} -- radius of dopant, r{sub m} -- radius target of substrate) can play a principal determining role.

  17. The X-ray behaviour of the high-energy peaked BL Lacertae source PKS 2155-304 in the 0.3-10 keV band

    NASA Astrophysics Data System (ADS)

    Kapanadze, B.; Romano, P.; Vercellone, S.; Kapanadze, S.

    2014-10-01

    We present the results of our monitoring of the high-energy peaked BL Lac object PKS 2155-304 by the Swift/X-Ray Telescope (XRT) during 2005-2012. Our timing study shows that the source was highly variable both on longer (weeks-to-months) and intra-day time-scales, up to a factor of 7 in flux, and 30 per cent in fractional variability amplitudes, with no periodic variations. The X-ray spectra are mainly curved with broad ranges of photon index, curvature parameter, and hardness ratio which exhibit significant variability with the flux on different time-scales. Our study of multi-wavelength cross-correlations has revealed that the one-zone SSC scenario seems to be valid for the most optical-to-gamma-ray flares observed during 2006-2012. An `orphan' X-ray flare with no counterpart in other spectral bands suggests the existence of different electron populations. Based on the absence of a correlation between photon index and curvature parameter (expected from the energy-dependent acceleration probability scenario), the observed distribution of curvature parameter from the XRT spectra peaking at b = 0.37, and the observed anti-correlation between the curvature parameter and the 0.3-10 keV flux (i.e. lower curvatures in flaring states), we conclude that the most likely mechanism responsible for producing X-ray emission during the flares is the stochastic acceleration of the electrons.

  18. Energy dependent response of the Fricke gel dosimeter prepared with 270 Bloom gelatine for photons in the energy range 13.93 keV-6 MeV

    NASA Astrophysics Data System (ADS)

    Cavinato, C. C.; Campos, L. L.

    2010-07-01

    The spectrophotometric energy dependent response to photons with effective energies between 13.93 keV and 6 MeV of the Fricke xylenol gel (FXG) dosimeter developed at IPEN, prepared using 270 Bloom gelatine, was evaluated in order to verify the possible dosimeter application in other medicine areas in addition to radiosurgery, for example, breast radiotherapy and blood bags radiosterilization. Other dosimetric characteristics were also evaluated. The obtained results indicate that the FXG dosimeter can contribute to dosimetry in different medical application areas including magnetic resonance imaging (MRI) evaluation technique that permits three-dimensional (3D) dose distribution evaluation.

  19. Saturated ablation in metal hydrides and acceleration of protons and deuterons to keV energies with a soft-x-ray laser

    SciTech Connect

    Andreasson, J.; Iwan, B.; Abreu, E.; Seibert, M. M.; Hajdu, J.; Timneanu, N.; Andrejczuk, A.; Bergh, M.; Caleman, C.; Nelson, A. J.; Bajt, S.; Faeustlin, R. R.; Singer, W.; Toleikis, S.; Tschentscher, T.; Chalupsky, J.; Hajkova, V.; Juha, L.; Chapman, H. N.; Heimann, P. A.

    2011-01-15

    Studies of materials under extreme conditions have relevance to a broad area of research, including planetary physics, fusion research, materials science, and structural biology with x-ray lasers. We study such extreme conditions and experimentally probe the interaction between ultrashort soft x-ray pulses and solid targets (metals and their deuterides) at the FLASH free-electron laser where power densities exceeding 10{sup 17} W/cm{sup 2} were reached. Time-of-flight ion spectrometry and crater analysis were used to characterize the interaction. The results show the onset of saturation in the ablation process at power densities above 10{sup 16} W/cm{sup 2}. This effect can be linked to a transiently induced x-ray transparency in the solid by the femtosecond x-ray pulse at high power densities. The measured kinetic energies of protons and deuterons ejected from the surface reach several keV and concur with predictions from plasma-expansion models. Simulations of the interactions were performed with a nonlocal thermodynamic equilibrium code with radiation transfer. These calculations return critical depths similar to the observed crater depths and capture the transient surface transparency at higher power densities.

  20. Neutron capture and fission cross section of /sup 243/Am in the energy range from 5 to 250 keV

    SciTech Connect

    Wisshak, K.; Kappeler, F.

    1983-11-01

    The neutron capture and subthreshold fission cross section of /sup 243/Am was measured in the energy range from 5 to 250 keV using /sup 197/Au and /sup 235/U as the respective standards. Neutrons were produced via the /sup 7/Li(p,n) and the T(p,n) reaction with the Karlsruhe 3-MV pulsed Van de Graaff accelerator. Capture events were detected by two Moxon-Rae detectors with graphite and bismuth graphite converters, respectively. Fission events were registered by an Ne-213 liquid scintillator with pulse-shape discriminator equipment. Flight paths as short as 50 to 70 mm were used to obtain an optimum signal-to-background ratio. After correction for the different efficiency of the individual converter materials, the capture cross section could be determined with a total uncertainty of 3 to 6%. The respective values for the fission cross section are 8 to 12%. The results are compared to predictions of recent evaluations, which in some cases are severely discrepant.

  1. Size saturation in low energy ion beam synthesized nanoparticles in silica glass: 50 keV Ag{sup -} ions implantation, a case study

    SciTech Connect

    Kuiri, P. K.

    2010-09-15

    Fluence-dependent formation of Ag nanoparticles (NPs) in silica glass by 50 keV Ag{sup -} ions implantation has been studied. Samples implanted with fluences of 2x10{sup 16} ions cm{sup -2} and above are found to show an absorption band at around 410 nm, corresponding to the surface plasmon resonance (SPR) of the Ag NPs in silica glass. An increase in SPR peak intensity with increase in fluence has been observed up to a fluence of 7x10{sup 16} ions cm{sup -2} (F7), after which the absorption intensity shows a saturation. Simulations of the optical absorption spectra also indicated an increase in the absorption intensity and hence the size of the NPs with increase in fluence up to F7, beyond which NP size is seen to saturate. The saturation of fluence and the SPR intensity (or NP size) have been explained as coming due to a break up of larger Ag NPs formed near the surface by displacement spikes induced by subsequently incident Ag ions against their regrowth from the movement of Ag atoms toward the surface and their sputtering loss. Further, we have compared our observations with the earlier data on saturation of fluence and size of NPs in cases of Au and Zn, and concluded that the saturation of both fluence and NP size are general phenomena for low energy high fluence metal ion implantation.

  2. Saturated ablation in metal hydrides and acceleration of protons and deuterons to keV energies with a soft-x-ray laser

    NASA Astrophysics Data System (ADS)

    Andreasson, J.; Iwan, B.; Andrejczuk, A.; Abreu, E.; Bergh, M.; Caleman, C.; Nelson, A. J.; Bajt, S.; Chalupsky, J.; Chapman, H. N.; Fäustlin, R. R.; Hajkova, V.; Heimann, P. A.; Hjörvarsson, B.; Juha, L.; Klinger, D.; Krzywinski, J.; Nagler, B.; Pálsson, G. K.; Singer, W.; Seibert, M. M.; Sobierajski, R.; Toleikis, S.; Tschentscher, T.; Vinko, S. M.; Lee, R. W.; Hajdu, J.; Tîmneanu, N.

    2011-01-01

    Studies of materials under extreme conditions have relevance to a broad area of research, including planetary physics, fusion research, materials science, and structural biology with x-ray lasers. We study such extreme conditions and experimentally probe the interaction between ultrashort soft x-ray pulses and solid targets (metals and their deuterides) at the FLASH free-electron laser where power densities exceeding 1017 W/cm2 were reached. Time-of-flight ion spectrometry and crater analysis were used to characterize the interaction. The results show the onset of saturation in the ablation process at power densities above 1016 W/cm2. This effect can be linked to a transiently induced x-ray transparency in the solid by the femtosecond x-ray pulse at high power densities. The measured kinetic energies of protons and deuterons ejected from the surface reach several keV and concur with predictions from plasma-expansion models. Simulations of the interactions were performed with a nonlocal thermodynamic equilibrium code with radiation transfer. These calculations return critical depths similar to the observed crater depths and capture the transient surface transparency at higher power densities.

  3. Low energy (10eV to 10 keV) equatorial particle fluxes and soft particle fluxes near the equator

    NASA Technical Reports Server (NTRS)

    Winningham, J. D.; Heikkila, W. J.

    1974-01-01

    Several spectra are shown that represent one rotation of ISIS-1. Spectra 1, 2, 3, represent particles moving down the field line into northern ionosphere and spectra 4, 5, 6 represent particles moving up field lines towards the magnetic equator. The former are direct fluxes and the latter are albedo fluxes. The spectra observed are remarkably similar to these observed in the auroral zone. The direct fluxes exhibit a relative maximum in the few keV range and the albedo a power low spectrum with increased fluxes at low energies. Examination of concurrent topside sounder data on ISIS-1 revealed a positive correlation between a region of turbulent ionosphere and particle fluxes. This ionospheric condition is referred to as equatorial spread F and has been studied extensively with bottomside ionospheric sounders and backscatter radars. The perigee of ISIS crossed the magnetic equator at four local times (0400, 1000, 1600, 2100) during the lifetime of the particle spectrometer. No fluxes were observed at 0400 and 1000 local time. At 1600 a few instances of particles were observed. At 2100 essentially all passes included detectable equatorial fluxes. This is in agreement with the frequency of occurence of equatorial spread F.

  4. Azimuthal and polar angle dependence of L X-ray differential cross-sections of Yb at 59.54 keV photon energy

    NASA Astrophysics Data System (ADS)

    Akkuş, T.; Şahin, Y.; Yılmaz, D.

    2016-01-01

    The azimuthal and polar angle dependence of L X-ray was investigated in the same experimental setup to remove the existing ambiguity about alignments measurements. We measured Ll, Lα, Lβ and Lγ X-ray differential cross sections of Yb for several different azimuthal angles (30°, 20°, 10°, 0°, -10° and -20°) and polar angles (90°, 100°, 110°, 120°, 130° and 140°) at 59.54 keV photon energy by using a Si(Li) detector. The azimuthal angle dependence of Ll and Lα X-rays were observed. The azimuthal anisotropy of Lβ and Lγ X-rays were not observed. On the other hand, differential cross-sections for Lβ and Lγ X-rays were found independent on the polar angle within experimental error, those for Ll and Lα X-rays depended on the polar angles. Azimuthal and polar angles dependence of L X-ray differential cross-sections contrast with the other experimental and theoretical results, which report evidence of the isotropic emission of Ll and Lα X-rays following photoionization.

  5. Absolute Energy Calibration of X-ray TESs with 0.04 eV Uncertainty at 6.4 keV in a Hadron-Beam Environment

    NASA Astrophysics Data System (ADS)

    Tatsuno, H.; Doriese, W. B.; Bennett, D. A.; Curceanu, C.; Fowler, J. W.; Gard, J.; Gustafsson, F. P.; Hashimoto, T.; Hayano, R. S.; Hays-Wehle, J. P.; Hilton, G. C.; Iliescu, M.; Ishimoto, S.; Itahashi, K.; Iwasaki, M.; Kuwabara, K.; Ma, Y.; Marton, J.; Noda, H.; O'Neil, G. C.; Okada, S.; Outa, H.; Reintsema, C. D.; Sato, M.; Schmidt, D. R.; Shi, H.; Suzuki, K.; Suzuki, T.; Uhlig, J.; Ullom, J. N.; Widmann, E.; Yamada, S.; Zmeskal, J.; Swetz, D. S.

    2016-01-01

    A performance evaluation of superconducting transition-edge sensors (TESs) in the environment of a pion beam line at a particle accelerator is presented. Averaged across the 209 functioning sensors in the array, the achieved energy resolution is 5.2 eV FWHM at Co K_{α } (6.9 keV) when the pion beam is off and 7.3 eV at a beam rate of 1.45 MHz. Absolute energy uncertainty of ± 0.04 eV is demonstrated for Fe K_{α } (6.4 keV) with in-situ energy calibration obtained from other nearby known X-ray lines. To achieve this small uncertainty, it is essential to consider the non-Gaussian energy response of the TESs and thermal cross-talk pile-up effects due to charged particle hits in the silicon substrate of the TES array.

  6. Absolute Energy Calibration of X-ray TESs with 0.04 eV Uncertainty at 6.4 keV in a Hadron-Beam Environment

    NASA Astrophysics Data System (ADS)

    Tatsuno, H.; Doriese, W. B.; Bennett, D. A.; Curceanu, C.; Fowler, J. W.; Gard, J.; Gustafsson, F. P.; Hashimoto, T.; Hayano, R. S.; Hays-Wehle, J. P.; Hilton, G. C.; Iliescu, M.; Ishimoto, S.; Itahashi, K.; Iwasaki, M.; Kuwabara, K.; Ma, Y.; Marton, J.; Noda, H.; O'Neil, G. C.; Okada, S.; Outa, H.; Reintsema, C. D.; Sato, M.; Schmidt, D. R.; Shi, H.; Suzuki, K.; Suzuki, T.; Uhlig, J.; Ullom, J. N.; Widmann, E.; Yamada, S.; Zmeskal, J.; Swetz, D. S.

    2016-08-01

    A performance evaluation of superconducting transition-edge sensors (TESs) in the environment of a pion beam line at a particle accelerator is presented. Averaged across the 209 functioning sensors in the array, the achieved energy resolution is 5.2 eV FWHM at Co K_{α } (6.9 keV) when the pion beam is off and 7.3 eV at a beam rate of 1.45 MHz. Absolute energy uncertainty of ± 0.04 eV is demonstrated for Fe K_{α } (6.4 keV) with in-situ energy calibration obtained from other nearby known X-ray lines. To achieve this small uncertainty, it is essential to consider the non-Gaussian energy response of the TESs and thermal cross-talk pile-up effects due to charged particle hits in the silicon substrate of the TES array.

  7. Calculation of K Shell Intensity Ratios and Line Widths of Ti and some of its compounds by means of 5,96 keV energy

    NASA Astrophysics Data System (ADS)

    Kağan Köksal, Oğuz; Apaydın, Gökhan; Cengiz, Erhan; Karabulut, Kazım

    2016-04-01

    K shell intensity ratios and Line Widths of pure Ti and some of its compounds have been determined experimentally using an Ultra-LEGe detector with resolution 140 eV at 5.9 keV. The samples were excited 5.96 keV photons emitted from a 55Fe radioisotope source with 50 mCi activity. The experimental values of the K shell intensity ratios have been compared with the experimental and theoretical values available in the literature for pure Ti and line widths have been only compared with a theoretical value for pure Ti.

  8. One 17-keV Majorana neutrino?

    NASA Astrophysics Data System (ADS)

    Carlson, Eric; Randall, Lisa

    1991-06-01

    A model is presented accommodating a 17-keV neutrino with 1 percent mixing with the electron neutrino and bounds on the electron-neutrino mass and neutrinoless double-beta decay. However, in contrast to previous models, there is only a single state with mass 17 keV. This model is consistent with cosmological and supernova-cooling constraints, and incorporates the Mikheyev-Smirnov-Wolfenstein explanation of the low solar-neutrino counts. Possible signatures of this model include an excess of muon neutrinos from a supernova explosion, spread over a period of 10-1000 sec, and a Higgs-boson decay signature of leptons plus missing energy.

  9. Neutron physics of the Re/Os clock. II. The (n,n{sup '}) cross section of {sup 187}Os at 30 keV neutron energy

    SciTech Connect

    Mosconi, M.; Heil, M.; Kaeppeler, F.; Plag, R.; Mengoni, A.

    2010-07-15

    The inelastic neutron-scattering cross section of {sup 187}Os has been determined in a time-of-flight experiment at the Karlsruhe 3.7-MV Van de Graaff accelerator. An almost monoenergetic beam of 30-keV neutrons was produced at the threshold of the {sup 7}Li(p,n){sup 7}Be reaction. Information on the inelastic channel is required for reliable calculations of the so-called stellar enhancement factor, by which the laboratory cross section of {sup 187}Os must be corrected in order to account for the thermal population of low-lying excited states at the temperatures of s-process nucleosynthesis, in particular of the important state at 9.75 keV. This correction represents a crucial step in the interpretation of the {sup 187}Os/{sup 187}Re pair as a cosmochronometer.

  10. Neutron physics of the Re/Os clock. II. The (n,n') cross section of Os187 at 30 keV neutron energy

    NASA Astrophysics Data System (ADS)

    Mosconi, M.; Heil, M.; Käppeler, F.; Plag, R.; Mengoni, A.

    2010-07-01

    The inelastic neutron-scattering cross section of Os187 has been determined in a time-of-flight experiment at the Karlsruhe 3.7-MV Van de Graaff accelerator. An almost monoenergetic beam of 30-keV neutrons was produced at the threshold of the Li7(p,n)Be7 reaction. Information on the inelastic channel is required for reliable calculations of the so-called stellar enhancement factor, by which the laboratory cross section of Os187 must be corrected in order to account for the thermal population of low-lying excited states at the temperatures of s-process nucleosynthesis, in particular of the important state at 9.75 keV. This correction represents a crucial step in the interpretation of the Os187/Re187 pair as a cosmochronometer.

  11. Studies of total bremsstrahlung in thick targets of Al, Ti, Sn and Pb for 90Sr beta particles in the photon energy region of 1-100 keV

    NASA Astrophysics Data System (ADS)

    Singh, Amrit; Dhaliwal, A. S.

    2016-02-01

    Total bremsstrahlung (BS) spectra in thick targets of Al, Ti, Sn and Pb produced by beta emitter 90Sr (End point energy=546 keV) are studied in the photon energy range of 1-100 keV. The experimentally measured BS spectra are compared with the theoretical spectral distributions calculated from Elwert corrected (non relativistic) Bethe-Heitler [EBH] theory, modified Elwert factor (relativistic) Bethe-Heitler [Fmod BH] theory for ordinary bremsstrahlung (OB) and the Avdonina and Pratt [Fmod BH+PB] theory, which include the contribution of polarization bremsstrahlung (PB) into OB. The present results are indicating the correctness of Fmod BH+PB theory in the low energy region, where PB dominates into the BS, but at the middle and higher photon energy region of the bremsstrahlung spectrum, the Fmod BH theory is more close to the experimental results. The description of the bremsstrahlung process in stripped atom (SA) approximation, which indicates the suppression of the bremsstrahlung at higher energy ends due to the production of PB in the low energy region, needs further considerations. Hence, the present measurements for BS for different target materials indicates that the considerations of the screening effects along with other secondary effects during the interaction of incident electrons with the target nuclei are important while describing the production of bremsstrahlung, particularly for the higher energy regions.

  12. Thick target D-T neutron yield measurements using metal occluders of scandium, titanium, yttrium, zirconium, gadolinium, erbium, hafnium, and tantalum at energies from 25 to 200 keV

    SciTech Connect

    Malbrough, D.J.; Molloy, J.T. Jr.; Becker, R.H.

    1990-11-19

    Deuterium-Tritium (D-T) neutron yields from thick films of scandium, titanium, yttrium, zirconium, gadolinium, erbium, hafnium, and tantalum were measured by the associated particle technique using the 200-keV accelerator at the Pinellas Plant. The neutron yields were measured for all targets at energies from 25 to 200 keV in 5-keV steps with an average uncertainty of {plus_minus}6.8%. Tabulated results are presented with yield versus energy curves for each target. Yield curves for D-D neutrons from earlier measurements are also presented with the D-T neutron yield curves. Good fits to the data were found for both D-D and D-T with theoretical calculations that were adjusted by smooth functions of the form: A{sub 0} + A{sub 1}E + A{sub 2}E{sup 2}. The results of the fits strongly suggest that disagreement between measurement and theory is due mainly to inaccuracies in currently available stopping power data. Comparisons with earlier theoretical calculations for titanium and erbium are also presented. 27 refs., 10 figs., 4 tabs.

  13. Energy dependence of photon-induced Kα and Kβ x-ray production cross-sections for some elements with 42≤Z≤68 in the energy range 38-80 keV

    NASA Astrophysics Data System (ADS)

    Seven, Sabriye; Erdoğan, Hasan

    2015-12-01

    The energy dependence of photon-induced Kα and Kβ x-ray production cross-sections for Mo, Ru, Pd, In, Sb, Cs, La, Pr, Sm, Tb and Er elements has been studied in the energy range of 38-80 keV with secondary excitation method. K x-ray intensities were measured using Energy Dispersive X-Ray Fluorescence (EDXRF) Spectrometry. The measurements have been made by observing the x-ray emissions, with the help of HPGe detector coupled with a multichannel analyzer. The areas of the Kα and Kβ spectral peaks, as well as the net peak areas, have been determined by a fitting process. The measured Kα and Kβ x-ray production cross-sections have been compared with calculated theoretical values in this energy regime. The results have been plotted versus excitation energy. The present experimental Kα and Kβ x-ray production cross-section values for all the elements were in general agreement with the theoretical values calculated using photoionization cross-sections, fluorescence yields and fractional rates based on Hartree-Slater potentials.

  14. Experimental and MC determination of HPGe detector efficiency in the 40-2754 keV energy range for measuring point source geometry with the source-to-detector distance of 25 cm.

    PubMed

    Dryak, Pavel; Kovar, Petr

    2006-01-01

    A precise model of a 40% relative efficiency p-type HPGe detector was created for photon detection efficiency calculation using the MCNP code. All detector parameters were determined by different experiments. No experimental calibration points were used for the modification of detector parameters. The model was validated by comparing calculated and experimental full energy peak efficiencies in the 40-2754 keV energy range, for point-source geometry with the source-to-detector distance of 25 cm. PMID:16564693

  15. A comparison of MCNP4C electron transport with ITS 3.0 and experiment at incident energies between 100 keV and 20 MeV: influence of voxel size, substeps and energy indexing algorithm

    NASA Astrophysics Data System (ADS)

    Schaart, Dennis R.; Jansen, Jan Th M.; Zoetelief, Johannes; de Leege, Piet F. A.

    2002-05-01

    The condensed-history electron transport algorithms in the Monte Carlo code MCNP4C are derived from ITS 3.0, which is a well-validated code for coupled electron-photon simulations. This, combined with its user-friendliness and versatility, makes MCNP4C a promising code for medical physics applications. Such applications, however, require a high degree of accuracy. In this work, MCNP4C electron depth-dose distributions in water are compared with published ITS 3.0 results. The influences of voxel size, substeps and choice of electron energy indexing algorithm are investigated at incident energies between 100 keV and 20 MeV. Furthermore, previously published dose measurements for seven beta emitters are simulated. Since MCNP4C does not allow tally segmentation with the *F8 energy deposition tally, even a homogeneous phantom must be subdivided in cells to calculate the distribution of dose. The repeated interruption of the electron tracks at the cell boundaries significantly affects the electron transport. An electron track length estimator of absorbed dose is described which allows tally segmentation. In combination with the ITS electron energy indexing algorithm, this estimator appears to reproduce ITS 3.0 and experimental results well. If, however, cell boundaries are used instead of segments, or if the MCNP indexing algorithm is applied, the agreement is considerably worse.

  16. Comparison of simulated and measured spectra from an X-ray tube for the energies between 20 and 35 keV

    NASA Astrophysics Data System (ADS)

    Yücel, M.; Emirhan, E.; Bayrak, A.; Ozben, C. S.; Yücel, E. Barlas

    2015-11-01

    Design and production of a simple and low cost X-ray imaging system that can be used for light industrial applications was targeted in the Nuclear Physics Laboratory of Istanbul Technical University. In this study, production, transmission and detection of X-rays were simulated for the proposed imaging device. OX/70-P dental tube was used and X-ray spectra simulated by Geant4 were validated by comparison with X-ray spectra measured between 20 and 35 keV. Relative detection efficiency of the detector was also determined to confirm the physics processes used in the simulations. Various time optimization tools were performed to reduce the simulation time.

  17. Electron Flux Models at GEO: 30 keV - 600 keV

    NASA Astrophysics Data System (ADS)

    Boynton, R.; Balikhin, M. A.; Sibeck, D. G.; Walker, S. N.; Ganushkina, N. Y.

    2015-12-01

    Forecast models are developed for the electron fluxes measured by the Magnetospheric Electron Detector (MagED) onboard the Geostationary Operational Environmental Satellite (GOES) 13. The models employ solar wind and geomagnetic indices as inputs to produce a forecast of the electron flux at Geostationary Earth Orbit (GEO) for five energy ranges from 30 keV - 600 keV. All of these models will be implemented in real time to forecast the electron fluxes on the PROGRESS project website (https://ssg.group.shef.ac.uk/progress2/html/index.phtml).

  18. Experimental and theoretical studies of the He(2+)-He system - Differential cross sections for direct, single-, and double-charge-transfer scattering at keV energies

    NASA Technical Reports Server (NTRS)

    Gao, R. S.; Dutta, C. M.; Lane, N. F.; Smith, K. A.; Stebbings, R. F.; Kimura, M.

    1992-01-01

    Measurements and calculations of differential cross sections for direct scattering, single-charge transfer, and double-charge transfer in collisions of 1.5-, 2.0-, 6.0-, and 10.0-keV (He-3)2+ with an He-4 target are reported. The measurements cover laboratory scattering angles below 1.5 deg with an angular resolution of about 0.03 deg. A quantum-mechanical molecular-state representation is employed in the calculations; in the case of single-charge transfer a two-state close-coupling calculation is carried out taking into account electron-translation effects. The theoretical calculations agree well with the experimental results for direct scattering and double-charge transfer. The present calculation identifies the origins of oscillatory structures observed in the differential cross sections.

  19. Schwinger variational approach for a direct excitation of hydrogen-like (Li2+ (1s)) target to the level n=3 by proton impact energies from 9 keV to 3 MeV

    NASA Astrophysics Data System (ADS)

    Khelfaoui, Friha; Lasri, Boumediene; Abbes, Oukacha

    2012-06-01

    The excitation cross sections for hydrogen-like (Li2+(1s)) to the 3s, 3p and 3d states by proton impact have been calculated in a wide energy range from 9 keV to 3 MeV, using the Schwinger's variational principle within the impact parameter formalism. These cross sections are relevant to controlled nuclear fusion studies [1]. The behaviors of the computed cross sections are in excellent agreement with available theoretical results, obtained by close-coupling method which is those of TCAO of Ermolaev et al [1] and SCE of Hall et al [2].

  20. Neutron capture cross sections of natural Yb, /sup 170/Yb, /sup 175/Lu, and /sup 184/W in the energy range from 5 to 200 keV for the /sup 176/Lu-chronometer

    SciTech Connect

    Beer, H.; Wisshak, K.; Kaeppeler, F.

    1980-09-01

    The neutron capture cross sections of natural Yb, /sup 170/Yb, /sup 175/Lu and /sup 184/W have been measured in the keV neutron energy range with a pulsed Van de Graaff accelerator using the kinematically collimated neutron beam from the /sup 7/Li(p,n) and the T(p,n) reaction. Prompt capture gamma rays were registered by a Moxon-Rae detector. All measurements were performed in a single run relative to the /sup 197/Au cross section as a standard. The cross sections of /sup 175/Lu and /sup 170/Yb were used to investigate the /sup 176/Lu-cosmic clock.

  1. On the possibility of the generation of high harmonics with photon energies greater than 10 keV upon interaction of intense mid-IR radiation with neutral gases

    SciTech Connect

    Emelina, A S; Emelin, M Yu; Ryabikin, M Yu

    2014-05-30

    Based on the analytical quantum-mechanical description in the framework of the modified strong-field approximation, we have investigated high harmonic generation of mid-IR laser radiation in neutral gases taking into account the depletion of bound atomic levels of the working medium and the electron magnetic drift in a high-intensity laser field. The possibility is shown to generate high-order harmonics with photon energies greater than 10 keV under irradiation of helium atoms by intense femtosecond laser pulses with a centre wavelength of 8 – 10.6 μm. (interaction of radiation with matter)

  2. Effective atomic numbers, water and tissue equivalence properties of human tissues, tissue equivalents and dosimetric materials for total electron interaction in the energy region 10 keV-1 GeV.

    PubMed

    Kurudirek, Murat

    2014-12-01

    Effective atomic numbers (Zeff) of 107 different materials of dosimetric interest have been calculated for total electron interactions in the wide energy region 10keV-1GeV. The stopping cross sections of elements and dosimetric materials were used to calculate Zeff of the materials. Differences (%) in Zeff relative to water have been calculated in the entire energy region to evaluate the water equivalency of the used materials. Moreover, the tissue equivalent materials have been compared with the tissues and dosimetric materials in terms of Zeff to reveal their ability to use as tissue substitutes. Possible conclusions were drawn based on the variation of Zeff through the entire energy region and water and tissue equivalency comparisons in terms of Zeff. PMID:25061891

  3. Transmission images and evaluation of tomographic imaging based scattered radiation from biological materials using 10, 15, 20 and 25 keV synchrotron X-rays: An analysis in terms of optimum energy

    SciTech Connect

    Rao, Donepudi V.; Akatsuka, Takao; Tromba, Giuliana

    2004-05-12

    Transmission images and tomographic imaging based scattered radiation is evaluated from biological materials, for example, Polyethylene, Poly carbonate, Plexiglas and Nylon using 10, 15, 20 and 25 keV synchrotron X-rays. The SYRMEP facility at Elettra,Trieste, Italy and the associated detection system has been used for the image acquisition. The scattered radiation is detected for each sample at three energies at an angle of 90 deg. using Si-Pin detector coupled to a multi-channel analyzer. The contribution of transmitted, Compton and fluorescence photons are assessed for a test phantom of small dimensions. The optimum analysis is performed with the use of the dimensions of the sample and detected radiation at various energies.

  4. Characteristics of Protons Exiting from a Polyethylene Converter Irradiated by Neutrons with Energies between 1 keV and 10 MeV.

    PubMed

    Nikezic, D; Shahmohammadi Beni, Mehrdad; Krstic, D; Yu, K N

    2016-01-01

    Monte Carlo method has been used to determine the efficiency for proton production and to study the energy and angular distributions of the generated protons. The ENDF library of cross sections is used to simulate the interactions between the neutrons and the atoms in a polyethylene (PE) layer, while the ranges of protons with different energies in PE are determined using the Stopping and Range of Ions in Matter (SRIM) computer code. The efficiency of proton production increases with the PE layer thickness. However the proton escaping from a certain polyethylene volume is highly dependent on the neutron energy and target thickness, except for a very thin PE layer. The energy and angular distributions of protons are also estimated in the present paper, showing that, for the range of energy and thickness considered, the proton flux escaping is dependent on the PE layer thickness, with the presence of an optimal thickness for a fixed primary neutron energy. PMID:27362656

  5. Characteristics of Protons Exiting from a Polyethylene Converter Irradiated by Neutrons with Energies between 1 keV and 10 MeV

    PubMed Central

    Nikezic, D.; Shahmohammadi Beni, Mehrdad; Krstic, D.; Yu, K. N.

    2016-01-01

    Monte Carlo method has been used to determine the efficiency for proton production and to study the energy and angular distributions of the generated protons. The ENDF library of cross sections is used to simulate the interactions between the neutrons and the atoms in a polyethylene (PE) layer, while the ranges of protons with different energies in PE are determined using the Stopping and Range of Ions in Matter (SRIM) computer code. The efficiency of proton production increases with the PE layer thickness. However the proton escaping from a certain polyethylene volume is highly dependent on the neutron energy and target thickness, except for a very thin PE layer. The energy and angular distributions of protons are also estimated in the present paper, showing that, for the range of energy and thickness considered, the proton flux escaping is dependent on the PE layer thickness, with the presence of an optimal thickness for a fixed primary neutron energy. PMID:27362656

  6. Neutron Capture Cross-Section Measurement of Rhodium in the Energy Region from 0.003 eV to 80 keV by Linac Time-of-Flight Method

    SciTech Connect

    Lee, Samyol; Yamamoto, Shuji; Kobayashi, Katsuhei; Kim, Guinyun; Chang, Jonghwa

    2003-05-15

    The neutron capture cross section of rhodium has been measured in the energy region from 0.003 eV to 80 keV by the neutron time-of-flight method with a 46-MeV electron linear accelerator of the Kyoto University, Research Reactor Institute. An assembly of Bi{sub 4}Ge{sub 3}O{sub 12} (BGO) scintillators, which was composed of 12 pieces of BGO and placed at a distance 12.7 {+-} 0.02 m from the neutron source, was employed as a total energy absorption detector for the prompt capture gamma-ray measurement from the sample. In order to determine the neutron flux impinging on the capture sample, a plug of {sup 10}B powder sample and the {sup 10}B(n, {alpha}{gamma}) standard cross section were used.The existing experimental data and evaluated capture cross sections in ENDF/B-VI, JENDL-3.2, and JEF-2.2 have been compared with the current measurement. Popov and Shapiro obtained poor energy resolution data in the resonance region with a lead slowing-down spectrometer. Furthermore, their data are a little higher than the current values above {approx}1 keV. The experimental data measured by Weston et al., Hockenbury et al., Macklin and Halperin, Fricke et al., and Block et al. are somewhat higher than the current values. The data measured by Moxon and Rae are somewhat lower than the current values above {approx}100 eV. The data measured by Wisshak et al. and Bokhovko et al. are in general agreement with the measurement above 4 keV within the experimental error. The evaluated data in ENDF/B-VI, JENDL-3.2, and JEF-2.2 have been in good agreement with the current result, although the JENDL-3.2 and the JEF-2.2 values are somewhat lower than the measurement in the cross section minimum region from 10 to 100 eV.The thermal neutron cross sections (2200 m/s values) measured by Seren et al. and Walker et al. are in good agreement with the current measurement (133.0 {+-} 0.93 b) within the experimental error. Other experimental data and the evaluated data are discrepant by 9 to 29% from

  7. OSLD energy response performance and dose accuracy at 24 - 1250 keV: Comparison with TLD-100H and TLD-100

    SciTech Connect

    Kadir, A. B. A.; Priharti, W.; Samat, S. B.; Dolah, M. T.

    2013-11-27

    OSLD was evaluated in terms of energy response and accuracy of the measured dose in comparison with TLD-100H and TLD-100. The OSLD showed a better energy response performance for H{sub p}(10) whereas for H{sub p}(0.07), TLD-100H is superior than the others. The OSLD dose accuracy is comparable with the other two dosimeters since it fulfilled the requirement of the ICRP trumpet graph analysis.

  8. Interplanetary variability in particle fluxes recorded by the low energy charged particle detector SLED (about 30 keV to greater than 30 MeV) during the Cruise Phase of the PHOBOS Mission to Mars and its moons

    NASA Astrophysics Data System (ADS)

    McKenna-Lawlor, S. M. P.; Afonin, V. V.; Gringauz, K. I.; Keppler, E.; Kirsch, E.; Richter, A. K.; Witte, M.; O'Sullivan, D.; Thompson, A.; Kecskemety, K.

    1991-05-01

    Two lightweight telescope detector systems, codenamed SLED-1 and SLED-2, with the capability to monitor electron and ion fluxes within an energy range spanning 34 keV to a few tens of MeV, were launched on the twin spacecraft of the Soviet Phobos Mission to Mars and its moons in July 1988. Solar-related particle enhancements recorded during the Cruise Phase, and also in the near Martian environment, over the interval 19 July 1988-27 March 1989 while the interplanetary medium was in course of changing over from solar-minimum to solar-maximum dominated conditions, are presented. In particular, examples of signatures characterizing events associated with each of these phenomenological states are provided in the context of attempting to elucidate how the solar interplanetary medium evolves from one condition to the other.

  9. Mass attenuation coefficient of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using 16.59 – 25.26 keV photon energy range

    SciTech Connect

    Mohd Yusof, Mohd Fahmi Hamid, Puteri Nor Khatijah Abdul; Tajuddin, Abdul Aziz; Bauk, Sabar; Hashim, Rokiah

    2015-04-29

    The Rhizophora spp. particleboards were fabricated using ≤ 104 µm particle size at three different fabrication methods; binderless, steam pre-treated and tannin-added. The mass attenuation coefficient of Rhizophora spp. particleboards were measured using x-ray fluorescent (XRF) photon from niobium, molybdenum, palladium, silver and tin metal plates that provided photon energy between 16.59 to 25.26 keV. The results were compared to theoretical values for water calculated using photon cross-section database (XCOM).The results showed that all Rhizophora spp. particleboards having mass attenuation coefficient close to calculated XCOM for water. Tannin-added Rizophora spp. particleboard was nearest to calculated XCOM for water with χ2 value of 13.008 followed by binderless Rizophora spp. (25.859) and pre-treated Rizophora spp. (91.941)

  10. Experimental study of interactions of highly charged ions with atoms at keV energies. Progress report, August 15, 1990--February 15, 1993

    SciTech Connect

    Kostroun, V.O.

    1993-01-29

    This final progress report summarizes the work carried out during the 29 month period from August 15, 1990 to February 15, 1993 under grant DE-FG02-86ER13519. The following experiments were done. We measured the absolute total and one- and two- electron transfer cross sections for Ar{sup q+} (8{le} q {le} 16) on He and H{sub 2} at 2.3 qkeV, the angular distributions of the scattered projectiles in Ar{sup 8+,9+} collisions, with Ar and Kr at 2.3 qkeV, the electron emissions in low energy Ar{sup q+} on Ar collisions, the recoil ion charge state distributions in low energy Ar{sup q+} -Ar collisions, the absolute total and one-and two-electron transfer cross sections for Ar{sup 8+} on Ar at 2.3 qkeV, and the absolute total and one- and two-electron transfer cross sections for Ar{sup 8+} on Ar as a function of energy. We also used energy gain spectroscopy to study Ar{sup q+} on Ar collisions at 40 and 30 qeV, and time of flight spectroscopy to investigate ionization and dissociation of CO and N{sub 2} in collisions with low energy, highly charged argon ions. In addition, we applied the Goldberger and Watson transition theory to derive transition rates and cross sections for atomic radiative and/or non radiative processes, wrote a computer code TRANSIT which can calculate energies, wave functions and radiative and non radiative rates for atoms and ions. The code is highly modular and can easily be modified to calculate higher order processes. Finally, we have done an Ab-Initio molecular orbital electronic energy level calculation for the (ArAr){sup 8+} system as a function internuclear separation.

  11. Experimental study of interactions of highly charged ions with atoms at keV energies. Progress report, July 1, 1991--June 30, 1992

    SciTech Connect

    Kostroun, V.O.

    1992-07-05

    This Progress Report describes the experimental work carried out, and the work in progress, at the Cornell EBIS Laboratory during the period 7/1/1991 to 6/30/1992. During this period, a number of experiments were carried out. The absolute values of the total, one, two and three electron transfer cross sections for highly charged argon ions (8{le}q{le}16) colliding with argon at 2.3 qkev laboratory energy were measured. The distribution of recoil ions and molecular fragments formed in highly charged ion atom and molecule collisions was measured in order to help the interpretation of electron spectra in the 40--320 eV energy range emitted in Ar{sup q+}+Ar(8{le}q{le}16) collisions at 2.3 qkeV that were measured in our laboratory. The interpretation of the electron spectra is still under way. A new collision chamber was built which contains an ion decelerating lens system and a high resolution monochromator-analyzer combination. Ions extracted from the Cornell Electron Beam Ion Source were successfully decelerated from 2.3 qkeV down to 30 qeV Preliminary 0{degree} translational energy spectra for Ar{sup l2+} on Ar at a collision energy of 38.6 qeV show a 0.56 qeV resolution. Work is in progress to extend measurements of cross sections and recoil ion charge state distributions down to collision energies in the 10 eV/amu range.

  12. Comparison of some lead and non-lead based glass systems, standard shielding concretes and commercial window glasses in terms of shielding parameters in the energy region of 1 keV-100 GeV: A comparative study

    NASA Astrophysics Data System (ADS)

    Kurudirek, Murat; Özdemir, Yüksel; Şimşek, Önder; Durak, Rıdvan

    2010-12-01

    The effective atomic numbers, Z eff of some glass systems with and without Pb have been calculated in the energy region of 1 keV-100 GeV including the K absorption edges of high Z elements present in the glass. Also, these glass systems have been compared with some standard shielding concretes and commercial window glasses in terms of mean free paths and total mass attenuation coefficients in the continuous energy range. Comparisons with experiments were also provided wherever possible for glasses. It has been observed that the glass systems without Pb have higher values of Z eff than that of Pb based glasses at some high energy regions even if they have lower mean atomic numbers than Pb based glasses. When compared with some standard shielding concretes and commercial window glasses, generally it has been shown that the given glass systems have superior properties than concretes and window glasses with respect to the radiation-shielding properties, thus confirming the availability of using these glasses as substitutes for some shielding concretes and commercial window glasses to improve radiation-shielding properties in the continuous energy region.

  13. Fine pitch transition-edge sensor X-ray microcalorimeters with sub-eV energy resolution at 1.5 keV

    NASA Astrophysics Data System (ADS)

    Lee, S. J.; Adams, J. S.; Bandler, S. R.; Chervenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Wassell, E. J.

    2015-11-01

    We are developing arrays of X-ray microcalorimeters on a 50-µm pitch that utilize transition-edge sensors as the sensor to measure the temperature rise when X-rays are absorbed. An array of this type of pixel has great potential for the study of point sources in future X-ray observatory missions. The pixels have gold absorbers with dimensions 45 × 45 × 4.2 µm3. We measured an energy resolution of 0.72 ± 0.03 eV full width at half maximum for the Al Kα complex in a subset of pixels within the array, which is the best resolution to date using a non-dispersive detector at this energy. We describe our characterization of this device including measurements of the heat capacity, thermal conductance to the heat bath, and the temperature and current sensitivity of the detector, and discuss its potential for improved performance.

  14. Analysis of temperature-dependent neutron transmission and self-indication measurements on tantalum at 2-keV neutron energy

    NASA Technical Reports Server (NTRS)

    Semler, T. T.

    1973-01-01

    The method of pseudo-resonance cross sections is used to analyze published temperature-dependent neutron transmission and self-indication measurements on tantalum in the unresolved region. In the energy region analyzed, 1825.0 to 2017.0 eV, a direct application of the pseudo-resonance approach using a customary average strength function will not provide effective cross sections which fit the measured cross section behavior. Rather a local value of the strength function is required, and a set of resonances which model the measured behavior of the effective cross sections is derived. This derived set of resonance parameters adequately represents the observed resonance hehavior in this local energy region. Similar analyses for the measurements in other unresolved energy regions are necessary to obtain local resonance parameters for improved reactor calculations. This study suggests that Doppler coefficients calculated by sampling from grand average statistical distributions over the entire unresolved resonance region can be in error, since significant local variations in the statistical distributions are not taken into consideration.

  15. Calculation of proton total reaction cross sections for some target nuclei in incident energy range of 10-600 MeV

    SciTech Connect

    Bueyuekuslu, H.; Kaplan, A.; Aydin, A.; Tel, E.; Yildirim, G.

    2010-10-15

    In this study, proton total reaction cross sections have been investigated for some isotopes such as {sup 12}C, {sup 27}Al, {sup 9}Be, {sup 16}O, {sup 181}Ta, {sup 197}Au, {sup 6}Li, and {sup 14}N by a proton beam up to 600 MeV. Calculation of the proton total cross sections has been carried out by the analytic expression formulated by M.A. Alvi by using Coulomb-modified Glauber theory with the Helm model nuclear form factor. The obtained results have been discussed and compared with the available experimental data and found to be in agreement with each other.

  16. Observations of celestial X-ray sources above 20 keV with the high-energy scintillation spectrometer on board OSO 8

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Dennis, B. R.; Dolan, J. H.; Frost, K. J.; Orwig, L. E.; Beall, J. H.; Maurer, G. S.

    1977-01-01

    High-energy X-ray spectra of the Crab Nebula, Cyg- XR-1, and Cen A were determined from observations with the scintillation spectrometer on board the OSO-8 satellite, launched in June, 1975. Each of these sources was observed over two periods of 8 days or more, enabling a search for day-to-day and year to year variations in the spectral and temporal characteristics of the X-ray emission. No variation in the light curve of the Crab pulsar was found from observations which span a 15-day period in March 1976, with demonstrable phase stability. Transitions associated with the binary phase of Cyg XR-1 and a large change in the emission from Con A are reported.

  17. Measurement of the 13C(α, n)16O reaction at astrophysical energies using the Trojan Horse Method. Focus on the -3 keV sub-threshold resonance

    NASA Astrophysics Data System (ADS)

    La Cognata, M.; Spitaleri, C.; Trippella, O.; Kiss, G. G.; Rogachev, G. V.; Mukhamedzhanov, A. M.; Avila, M.; Guardo, G. L.; Koshchiy, E.; Kuchera, A.; Lamia, L.; Puglia, S. M. R.; Romano, S.; Santiago, D.; Spartà, R.

    2014-03-01

    Most of the nuclei in the mass range 90 ≲ A ≲ 208 are produced through the so-called s-process, namely through a series of neutron capture reactions on seed nuclei followed by β-decays. The 13C(α, n)16O reaction is the neutron source for the main component of the s-process. It is active inside the helium-burning shell of asymptotic giant branch stars, at temperatures ≲ 108 K, corresponding to an energy interval of 140 - 230 keV. In this region, the astrophysical S(E)-factor is dominated by the -3 keV sub-threshold resonance due to the 6.356 MeV level in 17O. Direct measurements could not soundly establish its contribution owing to the cross section suppression at astrophysical energies determined by the Coulomb barrier between interacting nuclei. Indirect measurements and extrapolations yielded inconsistent results, calling for further investigations. The Trojan Horse Method turns out to be very suited for the study of the 13C(α, n)16O reaction as it allows us to access the low as well as the negative energy re- gion, in particular in the case of resonance reactions. We have applied the Trojan HorseMethod to the 13C(6Li, n16O)d quasi-free reaction. By using the modified R-matrix approach, the asymptotic normalization coefficient {( {tilde C{α 13{{C}}}17{{O(1/}{{{2}}{ + }}{{)}}}} )^2} of the 6.356 MeV level has been deduced as well as the n-partial width, allowing to attain an unprecedented accuracy for the 13C(α, n)16O astrophysical factor. A preliminary analysis of a partial data set has lead to {( {tilde C{α 13{{C}}}17{{O(1/}{{{2}}{ + }}{{)}}}} )^2} = 6.7 - 0.6 + 0.9 {{f}}{{{m}} - 1}, slightly larger than the values in the literature, determining a 13C(α, n)16O reaction rate in agreement with the most results in the literature at ˜ 108 K, with enhanced accuracy thanks to this innovative approach.

  18. Seeded quantum FEL at 478 keV

    SciTech Connect

    Guenther, M. M.; Jentschel, M.; Thirolf, P. G.; Seggebrock, T.; Habs, D.

    2012-07-09

    We present for the first time the concept of a seeded {gamma} quantum Free-Electron-Laser (QFEL) at 478 keV, which has very different properties compared to a classical. The basic concept is to produce a highly brilliant {gamma} beam via SASE. To produce highly intense and coherent {gamma} beam, we intend to use a seeded FEL scheme. Important for the production of such a {gamma} beam are novel refractive {gamma}-lenses for focusing and an efficient monochromator, allowing to generate a very intense and coherent seed beam. The energy of the {gamma} beam is 478 keV, corresponding to a wavelength in the sub-Angstrom regime (1/38 A). To realize a coherent {gamma} beam at 478 keV, it is necessary to use a quantum FEL design. At such high radiation energies a classical description of the {gamma}-FEL becomes wrong.

  19. High-contrast process using a positive-tone resist with antistatic coating and high-energy (100-keV) e-beam lithography for fabricating diffractive optical elements (DOE) on quartz

    NASA Astrophysics Data System (ADS)

    Poli, Louis C.; Kondek, Christine A.; Shoop, Barry L.; McLane, George F.

    1995-06-01

    Diffractive optical elements (DOE) are becoming important as optical signal processing elements in increasingly diverse applications. These elements, fabricated on quartz, may be used as phase shift type masks or as embedded components that implement a transfer function within a processing network. A process is under development for the fabrication of a DOE implementing a Jervis error diffusion kernel for research in half tone image processing. Dry etching is performed after lithography and pattern transfer through a nickel mask. This results in etched areal features on the substrate. An optical diffraction medium is thus created. Lithographic patterning is done by e-beam lithography (EBL) to realize small features, but also offers the important advantage of a large depth of field which relaxes the problem of complex surface topology. The recent availability of high energy (100 KeV) lithography tools provides a capability for precision overlay, small feature resolution, and enhanced image contrast through a lower induced proximity effect. Patterning by EBL on insulating substrates is complicated by the necessity of providing a vehicle for the avoidance of charge buildup on the surface. In a previously presented paper a methodology was shown for the use of TQV-501 (Nitto Chemical) antistatic compound as a final spin on film for use with PMMA and SAL-601 (Shipley). In this current work, a process is described using EBL and a high performance positive resist working with a final film layer of antistatic TQV-501 on a nickel coated wafer. The process may then be reapplied to realize additional lithographic levels in registration, for multilevel DOE components. High energy (100 KeV) EBL is used to provide high quality pattern definition. The e-beam sensitive resist, ZEP-320-37 (Nagase Chemical) in dilution, together with a top film layer of TQV-501 serves as a bilevel resist system and is used for patterning the desired image before definition of the nickel mask through

  20. Measurement of the x-ray mass attenuation coefficient and determination of the imaginary component of the atomic form factor of molybdenum over the 13.5-41.5-keV energy range

    NASA Astrophysics Data System (ADS)

    de Jonge, Martin D.; Tran, Chanh Q.; Chantler, Christopher T.; Barnea, Zwi; Dhal, Bipin B.; Cookson, David J.; Lee, Wah-Keat; Mashayekhi, Ali

    2005-03-01

    We use the x-ray extended-range technique (XERT) [Chantler , Phys. Rev. A 64, 062506 (2001)] to measure the mass attenuation coefficients of molybdenum in the x-ray energy range of 13.5-41.5keV to 0.02-0.15 % accuracy. Measurements made over an extended range of the measurement parameter space are critically examined to identify, quantify, and correct where necessary a number of experimental systematic errors. These results represent the most extensive experimental data set for molybdenum and include absolute mass attenuation coefficients in the regions of the x-ray absorption fine structure (XAFS) and x-ray-absorption near-edge structure (XANES). The imaginary component of the atomic form-factor f2 is derived from the photoelectric absorption after subtracting calculated Rayleigh and Compton scattering cross sections from the total attenuation. Comparison of the result with tabulations of calculated photoelectric absorption coefficients indicates that differences of 1-15 % persist between the calculated and observed values.

  1. Dynamics of fluxes of protons with energies 30-80 keV during geomagnetic storms on January 21-22, 2005, and December 14-15, 2006, according to data from low-orbit satellites

    NASA Astrophysics Data System (ADS)

    Vlasova, N. A.; Kalegaev, V. V.

    2014-11-01

    We present the results of a comparative analysis of the dynamics of three populations of fluxes of protons with energy 30-80 keV as measured by NOAA solar-synchronous satellites ( POES 15, 16, 17) at low latitudes ( L < 2) and at latitudes lower and higher than the boundary of isotropic precipitation during the geomagnetic storms on January 21-22, 2005 and December 14-15, 2006. Based on a complex analysis of experimental data on particle fluxes at low orbits and on measurements of solar wind parameters performed by the ACE spacecraft, we have studied the dynamical peculiarities of the fluxes of particles and of their longitudinal distributions depending on the conditions in the interplanetary medium. It is shown that an increase of trapped particle fluxes and the development of the main phase of the geomagnetic storm on January 21-22, 2005 are associated with the magnetosphere's response to a prolonged action of an extremely powerful coronal mass ejection at a northern orientation of the IMF. On December 14, 2006 an insufficient amplitude and duration of the pressure impulse did not result in development of a disturbance similar to January 21-22, 2005. The development of the main phase of this storm is related to a southward turn of the IMF, which has occurred only seven hours after the SSC.

  2. Measurement of mass attenuation coefficients of Rhizophora spp. binderless particleboards in the 16.59-25.26 keV photon energy range and their density profile using x-ray computed tomography.

    PubMed

    Marashdeh, M W; Bauk, S; Tajuddin, A A; Hashim, R

    2012-04-01

    The mass attenuation coefficients of Rhizophora spp. binderless particleboard with four different particle sizes (samples A, B, C and D) and natural raw Rhizophora spp. wood (sample E) were determined using single-beam photon transmission in the energy range between 16.59 and 25.26 keV. This was done by determining the attenuation of K(α1) X-ray fluorescent (XRF) photons from niobium, molybdenum, palladium, silver and tin targets. The results were compared with theoretical values of young-age breast (Breast 1) and water calculated using a XCOM computer program. It was found that the mass attenuation coefficient of Rhizophora spp. binderless particleboards to be close to the calculated XCOM values in water than natural Rhizophora spp. wood. Computed tomography (CT) scans were then used to determine the density profile of the samples. The CT scan results showed that the Rhizophora spp. binderless particleboard has uniform density compared to natural Rhizophora spp. wood. In general, the differences in the variability of the profile density decrease as the particle size of the pellet samples decreases. PMID:22304963

  3. Surface morphology changes and damage in hot tungsten by impact of 80 eV - 12 keV He-ions and keV-energy self-atoms

    NASA Astrophysics Data System (ADS)

    Hijazi, Hussein; Bannister, Mark E.; Krstic, Predrag S.; Parish, Chad M.; Meyer, Harry M., III; Meyer, Fred M.

    2013-10-01

    We report on measurements of interactions of 50 - 12,000 eV He ions with heated tungsten surfaces performed at the ORNL MIRF. Surface morphology changes, as well as nano-fuzz formation were investigated as function of flux and total fluence, for both virgin and pre-damaged W-targets. At low fluences, ordered surface structures are observed, with great grain-to-grain variability, together with blisters and pinholes, whose density and size increase with increasing fluence. At larger fluences, individual grain characteristics disappear, and the entire surface assumes a frothy appearance in FIB/SEM, with a multitude of near-surface bubbles with a broad range of sizes, and disordered whisker growth, while in SEM imaging the surface is indistinguishable from nano-fuzz produced on linear plasma devices. These features are evident at progressively lower fluences as the He-ion energy is increased, particularly above 1 keV, where the He beam serves not only to load the near-surface region with He to saturation, but to produce significant near-surface damage sites that can trap He. We also report on observations of the effects on surface morphology changes and nano-fuzz formation of pre-damage created by self-ion impact, and on MD simulations of near-surface damage using self-atoms. Research sponsored by the LDRD Program of ORNL, managed by UT-Battelle, LLC, for the US DOE.

  4. FERMI OBSERVATIONS OF GRB 090510: A SHORT-HARD GAMMA-RAY BURST WITH AN ADDITIONAL, HARD POWER-LAW COMPONENT FROM 10 keV TO GeV ENERGIES

    SciTech Connect

    Ackermann, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Ballet, J.; Baring, M. G.; Bastieri, D.; Bhat, P. N.; Bissaldi, E.; Bonamente, E. E-mail: sylvain.guiriec@lpta.in2p3.f E-mail: ohno@astro.isas.jaxa.j

    2010-06-20

    We present detailed observations of the bright short-hard gamma-ray burst GRB 090510 made with the Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) on board the Fermi observatory. GRB 090510 is the first burst detected by the LAT that shows strong evidence for a deviation from a Band spectral fitting function during the prompt emission phase. The time-integrated spectrum is fit by the sum of a Band function with E{sub peak} = 3.9 {+-} 0.3 MeV, which is the highest yet measured, and a hard power-law component with photon index -1.62 {+-} 0.03 that dominates the emission below {approx}20 keV and above {approx}100 MeV. The onset of the high-energy spectral component appears to be delayed by {approx}0.1 s with respect to the onset of a component well fit with a single Band function. A faint GBM pulse and a LAT photon are detected 0.5 s before the main pulse. During the prompt phase, the LAT detected a photon with energy 30.5{sup +5.8}{sub -2.6} GeV, the highest ever measured from a short GRB. Observation of this photon sets a minimum bulk outflow Lorentz factor, {Gamma}{approx_gt} 1200, using simple {gamma}{gamma} opacity arguments for this GRB at redshift z = 0.903 and a variability timescale on the order of tens of ms for the {approx}100 keV-few MeV flux. Stricter high confidence estimates imply {Gamma} {approx_gt} 1000 and still require that the outflows powering short GRBs are at least as highly relativistic as those of long-duration GRBs. Implications of the temporal behavior and power-law shape of the additional component on synchrotron/synchrotron self-Compton, external-shock synchrotron, and hadronic models are considered.

  5. Fermi Observations of GRB 090510: A Short-Hard Gamma-ray Burst with an Additional, Hard Power-law Component from 10 keV TO GeV Energies

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bhat, P. N.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Briggs, M. S.; Brigida, M.; Bruel, P.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Connaughton, V.; Conrad, J.; Dermer, C. D.; de Palma, F.; Dingus, B. L.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Finke, J.; Focke, W. B.; Frailis, M.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Glanzman, T.; Godfrey, G.; Granot, J.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Harding, A. K.; Hays, E.; Horan, D.; Hughes, R. E.; Jóhannesson, G.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kippen, R. M.; Knödlseder, J.; Kocevski, D.; Kouveliotou, C.; Kuss, M.; Lande, J.; Latronico, L.; Lemoine-Goumard, M.; Llena Garde, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Makeev, A.; Mazziotta, M. N.; McEnery, J. E.; McGlynn, S.; Meegan, C.; Mészáros, P.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakajima, H.; Nakamori, T.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paciesas, W. S.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Preece, R.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Ritz, S.; Rodriguez, A. Y.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sander, A.; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stamatikos, M.; Stecker, F. W.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Toma, K.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Uehara, T.; Usher, T. L.; van der Horst, A. J.; Vasileiou, V.; Vilchez, N.; Vitale, V.; von Kienlin, A.; Waite, A. P.; Wang, P.; Wilson-Hodge, C.; Winer, B. L.; Wu, X. F.; Yamazaki, R.; Yang, Z.; Ylinen, T.; Ziegler, M.

    2010-06-01

    We present detailed observations of the bright short-hard gamma-ray burst GRB 090510 made with the Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) on board the Fermi observatory. GRB 090510 is the first burst detected by the LAT that shows strong evidence for a deviation from a Band spectral fitting function during the prompt emission phase. The time-integrated spectrum is fit by the sum of a Band function with E peak = 3.9 ± 0.3 MeV, which is the highest yet measured, and a hard power-law component with photon index -1.62 ± 0.03 that dominates the emission below ≈20 keV and above ≈100 MeV. The onset of the high-energy spectral component appears to be delayed by ~0.1 s with respect to the onset of a component well fit with a single Band function. A faint GBM pulse and a LAT photon are detected 0.5 s before the main pulse. During the prompt phase, the LAT detected a photon with energy 30.5+5.8 -2.6 GeV, the highest ever measured from a short GRB. Observation of this photon sets a minimum bulk outflow Lorentz factor, Γgsim 1200, using simple γγ opacity arguments for this GRB at redshift z = 0.903 and a variability timescale on the order of tens of ms for the ≈100 keV-few MeV flux. Stricter high confidence estimates imply Γ >~ 1000 and still require that the outflows powering short GRBs are at least as highly relativistic as those of long-duration GRBs. Implications of the temporal behavior and power-law shape of the additional component on synchrotron/synchrotron self-Compton, external-shock synchrotron, and hadronic models are considered.

  6. Detection of interplanetary electrons from 18 keV to 1.8 MeV during solar quiet times, 1. On the origin of 200 KeV interplanetary electrons, 2.

    NASA Technical Reports Server (NTRS)

    Lin, R. P.; Anderson, K. A.; Cline, T. L.; Ramaty, R.; Fisk, L. A.

    1972-01-01

    A quiet time component of interplanetary electrons having energies above solar wind energies and below those characterized as cosmic radiation was observed. Its energy spectrum falls with energy from 18 keV to 1.8 MeV, but it shows a feature in the 100 to 300 keV range. The observed temporal variations of the intensity suggest that the 18 to 100 keV portion is solar and the 0.3 to 1.8 MeV portion is galactic in origin. Solar and terrestrial neutron decay electrons appear inadequate to explain the 100 to 300 keV feature.

  7. K+ charge transfer in H2 at low keV collisions

    NASA Astrophysics Data System (ADS)

    Alarcón, F. B.; Martinez, H.; Fuentes, B. E.; Yousif, F. B.

    2013-08-01

    Absolute electron capture cross sections for the K+-H2 pair, employing beam collision spectroscopy for 0.4-4 keV energy were measured. The capture cross section increased with the increase in collision energy. The results below 2 keV overlap with previously measured data of other investigators and extend down in energy to 400 eV, where no previous data have been reported. Experimental data were compared with calculations employing the Olson model, which were found to agree in behavior as well as with an absolute value above 100 keV.

  8. Energetic electron fluxes (E180 KeV) observed by the Giotto experiment EPA during encounter with Comet Halley

    NASA Astrophysics Data System (ADS)

    Kirsch, E.; McKenna-Lawlor, S.; Thompson, A.; Osullivan, D.; Neubauer, F. M.

    1986-12-01

    The Energetic Particle Detector system EPA/EPONA onboard Giotto detects ions and electrons with energies greater than 20 keV in various energy channels. In this paper, electron fluxes are presented together with data from the Giotto Magnetometer Experiment. Electrons >180 keV were recorded from the transit of the foreshock, inbound, until the last observation outbound at approximately 03:00 UT on 15 March 1986. Energy spectra for the inbound pass are shown. One flux enhancement in the >300 keV channel and several in the >180 keV channel were recorded outbound. Possible acceleration mechanisms for the energetic electrons are considered.

  9. High angular resolution cosmic X-ray astronomy observations in the energy range 0.15-2 keV and XUV observations of nearby stars from an attitude controlled rocket

    NASA Technical Reports Server (NTRS)

    Garmire, G. P.

    1974-01-01

    The construction of a two dimensional focusing Wolter Type I mirror system for X-ray and XUV astronomical observations from an Astrobee F sounding rocket is described. The mirror design goal will have a one degree field, a 20-arc seconds resolution, an effective area of about 50 sq cm at 1 keV and 10 sq cm at 0.25 keV on axis. A star camera provides aspect data to about 15-arc seconds. Two detectors are placed at the focus with an interchange mechanism to allow a detector change during flight. The following specific developments are reported: (1) position sensitive proportional counter development; (2) channel plate multiplier development; (3) telescope mirror development and payload structure; (4) Australian rocket flight results; (5) Comet Kohoutek He I observation; and (6) Vela, Puppis A, and Gem-Mon bright patch observations.

  10. Measurement of photon mass attenuation coefficients of plutonium from 60 to 2615 keV

    NASA Astrophysics Data System (ADS)

    Rettschlag, M.; Berndt, R.; Mortreau, P.

    2007-11-01

    Measurements have been made to determine plutonium photon mass attenuation coefficients by using a collimated-beam transmission method in the energy range from 60 to 2615 keV. These experimental results were compared with previous experimental and theoretical data. Good agreements are observed in the 240-800 keV energy range, whereas differences up to maximum 10% are observed out of these limits.

  11. Stacked depth graded multilayer for hard X-rays measured up to 130 keV

    NASA Astrophysics Data System (ADS)

    Jensen, C. P.; Christensen, F. E.; Romaine, S.; Bruni, R.; Zhong, Z.

    2007-09-01

    Depth graded multilayer designs for hard x-ray telescopes in the 10 keV to 70-80 keV energy range have had either W or Pt as the heavy element. These materials have been chosen because of reasonable optical constants, the possibility to grow smooth interfaces with the spacer material, and the stability over time. On the flip side both W and Pt have an absorption edge -- 69.5 keV (W) and 78.4 keV (Pt) -- which is very close to the two 44Ti lines at 67.9 keV and 78.4 keV that are produced in the envelope of a super nova explosion. Other materials have better optical constants and no absorption edges in this energy range, for example Ni 0.93V 0.07, but are not used because of high interface roughness. By using a WC/SiC multilayer for the bottom and a Ni 0.93V 0.07/SiC multilayer for the thicker top layers of a depth graded multilayer we have made a reflector that doesn't have a clear absorption edge. This reflector has been measured at energies between 8 keV and 130 keV. At a graze angle of 0.11 degree there is still nearly the same reflectivity below the W absorption edge as for a traditional W based coating, and above the W absorption edge there is still 48% reflection at 80 keV.

  12. 40-keV electron durable trapping electron

    SciTech Connect

    Feynman, J.; Hardy, D.A.; Mullen, E.G.

    1984-03-01

    The positron and extent of the region in which electrons with energies less than 40-keV are durably trapped in the nightside magnetosphere is found for both normal and disturbed geomagnetic conditions by using data from the P78-2 (SCATHA) satellite. The region of the magnetosphere from 5.3 to 7.9 R/sub E/ was studied. In this region neither solar-magnetic nor geocentric-solar magnetospheric coordinates order the data satisfactorily. A new coordinate systems called composite coordinates is introduced. It takes account of the fact that this region of the magnetosphere is strongly influenced by both the earth's ddipole field and the direction of the solar wind. In composite coordinates when Kp< or =4+, 40-keV electron fluxes were almost continuously present in a region centered on the equatorial palne and 1.2 R/sub E/ in half width. At larger composite coordinate latitudes there is another region more than 1 R/sub E/ thick within which 40-keV electron fluxes routinely appear and disappear on time scales of one hour as the trapping boundary actively moves over the satellite. We have no evidence that SCATHA over entered the tail lobes where no particles are trapped. When Kp> or =6- the region in which 40-keV electron fluxes were always present moved earthward and/or thinned but remained ordered in composite coordinates. We suggest that the new coordinate system will be useful for ordering other data sets taken in this region of the magnetosphere.

  13. X-ray mass attenuation coefficients and imaginary components of the atomic form factor of zinc over the energy range of 7.2-15.2 keV

    SciTech Connect

    Rae, Nicholas A.; Chantler, Christopher T.; Barnea, Zwi; Jonge, Martin D. de; Tran, Chanh Q.; Hester, James R.

    2010-02-15

    The x-ray mass attenuation coefficients of zinc are measured in a high-accuracy experiment between 7.2 and 15.2 keV with an absolute accuracy of 0.044% and 0.197%. This is the most accurate determination of any attenuation coefficient on a bending-magnet beamline and reduces the absolute uncertainty by a factor of 3 compared to earlier work by advances in integrated column density determination and the full-foil mapping technique described herein. We define a relative accuracy of 0.006%, which is not the same as either the precision or the absolute accuracy. Relative accuracy is the appropriate parameter for standard implementation of analysis of near-edge spectra. Values of the imaginary components f'' of the x-ray form factor of zinc are derived. Observed differences between the measured mass attenuation coefficients and various theoretical calculations reach a maximum of about 5% at the absorption edge and up to 2% further than 1 keV away from the edge. The measurements invite improvements in the theoretical calculations of mass attenuation coefficients of zinc.

  14. Heliospheric Neutral Atom Spectra Between 0.01 and 6 keV fom IBEX

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Allegrini, F.; Bzowski, M.; Funsten, H. O.; Ghielmetti, A. G.; Gloeckler, G.; Heirtzler, D.; Janzen, P.; Kubiak, M.; Kucharek, H.; McComas, D. J.; Moebius, E.; Moore, T. E.; Petrinec, S. M.; Quinn, M.; Reisenfeld, D.; Saul, L. A.; Scheer, J. A.; Schwardron, N.; Trattner, K. J.; Vanderspek, R.; Wurz, P.

    2012-01-01

    Since 2008 December, the Interstellar Boundary Explorer (IBEX) has been making detailed observations of neutrals from the boundaries of the heliosphere using two neutral atom cameras with overlapping energy ranges. The unexpected, yet defining feature discovered by IBEX is a Ribbon that extends over the energy range from about 0.2 to 6 keV. This Ribbon is superposed on a more uniform, globally distributed heliospheric neutral population. With some important exceptions, the focus of early IBEX studies has been on neutral atoms with energies greater than approx. 0.5 keV. With nearly three years of science observations, enough low-energy neutral atom measurements have been accumulated to extend IBEX observations to energies less than approx. 0.5 keV. Using the energy overlap of the sensors to identify and remove backgrounds, energy spectra over the entire IBEX energy range are produced. However, contributions by interstellar neutrals to the energy spectrum below 0.2 keV may not be completely removed. Compared with spectra at higher energies, neutral atom spectra at lower energies do not vary much from location to location in the sky, including in the direction of the IBEX Ribbon. Neutral fluxes are used to show that low energy ions contribute approximately the same thermal pressure as higher energy ions in the heliosheath. However, contributions to the dynamic pressure are very high unless there is, for example, turbulence in the heliosheath with fluctuations of the order of 50-100 km/s.

  15. Measurement of mass attenuation coefficients for four mixtures using X-rays from 13 keV up to 40 keV

    NASA Astrophysics Data System (ADS)

    Angelone, M.; Esposito, A.; Chiti, M.; Gentile, A.

    2001-06-01

    The total absorption coefficients for some selected organic compounds relevant to health physics, Triaflol BN (C 3H 4O 2) n, Triaflol TN (C 12H 18O 7) n, Kapton (C 44H 20O 10) n, and Melinex (C 10H 8N 4O 4) n were measured in the X-ray energy range from 13 keV up to about 40 keV using a collimator, high purity germanium detector with thin Be window and variable energy X-ray source. The measured values are compared with the theoretical ones obtained using the XCOM code. The agreement is generally good within a few percent.

  16. Gel behavior of keV ion irradiated polystyrene

    SciTech Connect

    Calcagno, L.; Foti, G.; Licciardello, A.; Puglisi, O.

    1988-10-17

    Among the chemical and physical modifications induced by ion bombardment of polymers, the solubility changes are very important because of technological application for lithography in microelectronic devices. Solubility changes due to the occurrence of crosslinkings have been followed on monodisperse and polydisperse polystyrene after ion irradiations (10/sup 11/--10/sup 14/ ions/cm/sup 2/, keV energy). By using the Inokuty gel theory (M. Inokuti J. Appl. Phys. 38, 2999 (1963)), the chemical yield (crosslinking/eV) has been determined for different molecular weights and molecular weight distributions.

  17. The Average 0.5-200 keV Spectrum of AGNs at 0

    NASA Astrophysics Data System (ADS)

    Ballantyne, David R.

    2013-04-01

    The X-ray spectra of AGNs span nearly three decades in energy and are comprised of many separate components: a power-law with a high energy cutoff, reflection from the accretion disk as well as distant material, and, in many cases, a soft excess. Aside from a small number of bright sources observed with BeppoSAX, the full energy range of AGN spectra has only been studied in piecemeal by a fleet of X-ray observatories that can only focus on a small part of the entire spectrum. Therefore, while catalogues of the spectral properties of hundreds of AGNs have been published in different energy bands, these results are isolated from one another and a clear picture of the broadband spectral properties of typical AGNs remains elusive. In this work, we make use of the 0 X-ray luminosity functions of AGNs in the 0.5-2 keV, 2-10 keV, 3-20 keV, 15-55 keV and 14-195 keV bands to construct the spectral model of an average AGN that can simultaneously account for all 5 luminosity functions. Enhanced iron abundances, disk reflection, and the presence or absence of the X-ray Baldwin Effect are considered, along with the traditional parameters of photon index and cutoff energy. Applications to X-ray background modelling and AGN physics are discussed.

  18. Calculation of electron-impact rotationally elastic total cross sections for NH{sub 3}, H{sub 2}S, and PH{sub 3} over the energy range from 0.01 eV to 2 keV

    SciTech Connect

    Limbachiya, Chetan; Vinodkumar, Minaxi; Mason, Nigel

    2011-04-15

    This paper report results of calculation of the total cross section Q{sub T} for electron impact on NH{sub 3}, H{sub 2}S, and PH{sub 3} over a wide range of incident energies from 0.01 eV to 2 keV. Total cross sections Q{sub T} (elastic plus electronic excitation) for incident energies below the ionization threshold of the target were calculated using the UK molecular R-matrix code through the Quantemol-N software package and cross sections at higher energies were derived using the spherical complex optical potential formalism. The two methods are found to give self-consistent values where they overlap. The present results are, in general, found to be in good agreement with previous experimental and theoretical results.

  19. Charge dynamics of MgO single crystals subjected to KeV electron irradiation

    NASA Astrophysics Data System (ADS)

    Boughariou, A.; Blaise, G.; Braga, D.; Kallel, A.

    2004-04-01

    A scanning electron microscope has been equipped to study the fundamental aspects of charge trapping in insulating materials, by measuring the secondary electron emission (SEE) yield σ with a high precision (a few percent), as a function of energy, electron current density, and dose. The intrinsic secondary electron emission yield σ0 of uncharged MgO single crystals annealed at 1000 °C, 2 h, has been studied at four energies 1.1, 5, 15, and 30 keV on three different crystal orientations (100), (110), and (111). At low energies (1.1 and 5 keV) σ0 depends on the crystalline orientation wheras at high energies (30 keV) no differentiation occurs. It is shown that the value of the second crossover energy E2, for which the intrinsic SEE yield σ0=1, is extremely delicate to measure with precision. It is about 15 keV±500 eV for the (100) orientation, 13.5 keV±500 eV for the (110), and 18.5 keV±500 eV for the (111) one. At low current density J⩽105 pA/cm2, the variation of σ with the injected dose makes possible the observation of a self-regulated regime characterized by a steady value of the SEE yield σst=1. At low energies 1.1 and 5 keV, there is no current density effects in MgO, but at high energies ≈30 keV, apparent current density effects come from a bad collect of secondary electrons, due to very high negative surface potential. At 30 keV energy, an intense erratic electron exoemission was observed on the MgO (110) orientation annealed at 1500 °C. This phenomenon is the result of a disruptive process similar to flashover, which takes place at the surface of the material.

  20. Measurement of the mass attenuation coefficient from 81 keV to 1333 keV for elemental materials Al, Cu and Pb

    NASA Astrophysics Data System (ADS)

    Gjorgieva, Slavica; Barandovski, Lambe

    2016-03-01

    The mass attenuation coefficients (μ/ρ) for 3 high purity elemental materials Al, Cu and Pb were measured in the γ-ray energy range from 81 keV up to 1333 keV using 22Na, 60Co 133Ba and 133Cs as sources of gamma radiation. Well shielded detector (NaI (Tl) semiconductor detector) was used to measure the intensity of the transmitted beam. The measurements were made under condition of good geometry, assuring that any photon absorbed or deflected appreciably does not reach the detector. The measured values are compared with the theoretical ones obtained by Seltzer (1993).

  1. Hyper-filter-fluorescer spectrometer for x-rays above 120 keV

    DOEpatents

    Wang, Ching L.

    1983-01-01

    An apparatus utilizing filter-fluorescer combinations is provided to measure short bursts of high fluence x-rays above 120 keV energy, where there are no practical absorption edges available for conventional filter-fluorescer techniques. The absorption edge of the prefilter is chosen to be less than that of the fluorescer, i.e., E.sub.PRF E.sub.F. In this way, the response function is virtually zero between E.sub.PRF and E.sub.F and well defined and enhanced in an energy band of less than 1000 keV above the 120 keV energy.

  2. Observations of 12-200 keV X-rays from GX 339-4

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Gruber, D. E.; Knight, F. K.; Matteson, J. L.; Peterson, L. E.; Levine, A. M.; Lewin, W. H. G.; Primini, F. A.

    1982-01-01

    X-ray spectra of GX 339-4 measured on three occasions in 1977 and 1978 are presented. These are the first reported measurements above 10 keV. The spectra can be described as the superposition of a soft component, which is dominant below about 20 keV, and a hard component at higher energy. Simultaneous measurements at lower energy show that the soft component vanished during the observation in early 1978. The behavior of these two components is similar to that of the spectrum of Cygnus X-1; this reinforces the previously noted resemblance in rapid X-ray variability.

  3. Tomographic scanning microscope for 1-4 KeV x-rays

    SciTech Connect

    McNulty, I.; Feng, Y.P.; Hadda, W.S.; Trebes, J.E.

    1995-12-31

    X-ray microtomography enables three-dimensional imaging at submicron resolution with elemental and chemical state contrast. The 1-4 KeV energy region is promising for microtomography of biological, microelectronics, and materials sciences specimens. To capitalize on this potential, we are constructing a tomographic scanning x-ray microscope for 1-4 KeV x-ray on a spherical grating monochromator beamline at the Advance Photon Source. The microscope, which uses zone plate optics, has an anticipated spatial resolution of 100 nm and an energy resolution of better than 1 eV.

  4. The Morphology of the X-ray Emission above 2 keV from Jupiter's Aurorae

    NASA Technical Reports Server (NTRS)

    Elsner, R.; Branduardi-Raymont, G.; Galand, M.; Grodent, D.; Waite, J. H.; Cravens, T.; Ford, P.

    2007-01-01

    The discovery in XMM-Newton X-ray data of X-ray emission above 2 keV from Jupiter's aurorae has led us to reexamine the Chandra ACIS-S observations taken in Feb 2003. Chandra's superior spatial resolution has revealed that the auroral X-rays with E > 2 keV are emitted from the periphery of the region emitting those with E < 1 keV. We are presently exploring the relationship of this morphology to that of the FUV emission from the main auroral oval and the polar cap. The low energy emission has previously been established as due to charge exchange between energetic precipitating ions of oxygen and either sulfur or carbon. It seems likely to us that the higher energy emission is due to precipitation of energetic electrons, possibly the same population of electrons responsible for the FUV emission. We discuss our analysis and interpretation.

  5. Static and time-resolved 10-1000 keV x-ray imaging detector options for NIF

    SciTech Connect

    Landen, O.L.; Bell, P.M.; McDonald, J.W.; Park, H.-S.; Weber, F.; Moody, J.D.; Lowry, M.E.; Stewart, R.E.

    2004-10-01

    High energy (>10 keV) x-ray self-emission imaging and radiography will be essential components of many NIF high energy density physics experiments. In preparation for such experiments, we have evaluated the pros and cons of various static [x-ray film, bare charge-coupled device (CCD), and scintillator + CCD] and time-resolved (streaked and gated) 10-1000 keV detectors.

  6. HEAO 3 upper limits to the expected 1634 KeV line from SS 483

    NASA Technical Reports Server (NTRS)

    Wheaton, W. A.; Ling, J. C.; Mahoney, W. A.; Jacobson, A. S.

    1985-01-01

    A model based on 24 Mg(1369) was developed as the source of the lines in which refractory grains in the jets, containing Mg and 0, are bombarded, by ambient protons in the local ISM. The narrowness of the features results because the recoil Mg nucleus is stopped in the grain before the 1369 keV excited state decays. A consequence of the 24 Mg interpretation is the expected appearance of other emission lines, due to 20 Ne and 20 Na, which are produced by proton bombardment of 24 Mg at the 33 MeV/nucleon energy corresponding to the velocity of the jets. These lines appear at rest energies of 1634 keV and 1636 keV, respectively, and should have essentially the same total flux as that emited at 1369 keV. The HEAO 3 data are examined to search for the 1634 keV (rest) emission. The observation and analysis, the results, and the implications for the understanding of SS 433 are discussed.

  7. Interstellar photoelectric absorption cross sections, 0.03-10 keV

    NASA Technical Reports Server (NTRS)

    Morrison, R.; Mccammon, D.

    1983-01-01

    An effective absorption cross section per hydrogen atom has been calculated as a function of energy in the 0.03-10 keV range using the most recent atomic cross section and cosmic abundance data. Coefficients of a piecewise polynomial fit to the numerical results are given to allow convenient application in automated calculations.

  8. Precision Measurements of the 278 keV {sup 14}N(p,{gamma}) and the 151 keV {sup 18}O(p,{alpha}) Resonance Parameters

    SciTech Connect

    Borowski, M.; Lieb, K. P.; Uhrmacher, M.; Bolse, W.

    2009-01-28

    In thin film technology, analytical methods for monitoring the deposition of oxide and nitride coatings and the effects of corrosive, laser and ion-beam treatments have attracted considerable attention. For depth-profiling the concentrations of light isotopes, resonant nuclear reaction analysis is an excellent non-destructive ion-beam analytical tool. We report here on precision measurements of the 278 keV {sup 14}N(p,{gamma}) and the 151 keV {sup 18}O(p,{alpha}) resonances using the high-resolution proton beam of the Goettingen IONAS accelerator. The deduced resonance energies E{sub R} and total widths {gamma}(in the laboratory system) are E{sub R} = 277.60(27) keV and {gamma} = 1115(33) eV for the {sup 14}N(p,{gamma}) resonance, and E{sub R} = 150.97(26) keV and {gamma} = 178(35) eV for the {sup 18}O(p,{alpha}) resonance. These values are significantly more precise than the ones quoted in the literature.

  9. Spatial distribution of upstream magnetospheric geq50 keV ions

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, G. C.; Argyropoulos, G.; Kaliabetsos, G.

    2000-01-01

    We present for the first time a statistical study of geq50 keV ion events of a magnetospheric origin upstream from Earth's bow shock. The statistical analysis of the 50-220 keV ion events observed by the IMP-8 spacecraft shows: (1) a dawn-dusk asymmetry in ion distributions, with most events and lower intensities upstream from the quasi-parallel pre-dawn side (4 LT-6 LT) of the bow shock, (2) highest ion fluxes upstream from the nose/dusk side of the bow shock under an almost radial interplanetary magnetic field (IMF) configuration, and (3) a positive correlation of the ion intensities with the solar wind speed and the index of geomagnetic index Kp, with an average solar wind speed as high as 620 km s-1 and values of the index Kp > 2. The statistical results are consistent with (1) preferential leakage of sim50 keV magnetospheric ions from the dusk magnetopause, (2) nearly scatter free motion of sim50 keV ions within the magnetosheath, and (3) final escape of magnetospheric ions from the quasi-parallel dawn side of the bow shock. An additional statistical analysis of higher energy (290-500 keV) upstream ion events also shows a dawn-dusk asymmetry in the occurrence frequency of these events, with the occurrence frequency ranging between sim16%-sim34% in the upstream region.

  10. Preparation for B4C/Mo2C multilayer deposition of alternate multilayer gratings with high efficiency in the 0.5-2.5 keV energy range

    NASA Astrophysics Data System (ADS)

    Choueikani, Fadi; Delmotte, Franck; Bridou, Françoise; Lagarde, Bruno; Mercere, Pascal; Otero, Edwige; Ohresser, Philippe; Polack, François

    2013-03-01

    This paper presents a study of B4C/Mo2C multilayers mirrors with the aim of using it in the achievement of Alternate MultiLayer (AML) grating. Such component allows a high efficiency in the 500-2500 eV energy range for the DEIMOS beamline. Multilayers were deposited on silicon substrate. They are characterized by reflectometry under grazing incidence. Numerical adjustments were performed with a model of two layers in the period without any interfacial. A prototype of AML grating was fabricated and characterized. The efficiency of the first order of diffraction was worth 15% at 1700 eV.

  11. Observations of proton spectra (1.0 less than or equal to proton energy less than or equal to 300 keV) and pitch angle distributions at the plasmapause

    NASA Technical Reports Server (NTRS)

    Williams, D. J.; Fritz, T. A.; Konradi, A.

    1972-01-01

    Detailed proton spectral and pitch angle distribution observations were obtained from two proton detectors and a fluxgate magnetometer flown on Small Scientific Satellite A (Explorer 45). The data of interest are from orbit 99 in-bound occurring on 17 December 1971, some 8 hours prior to the sudden commencement of a magnetic storm. The data are consistent with the initiation of ion cyclotron instability when certain requirements are met. These criteria are met initially at the altitude at which the sudden intensity decrease occurs. However, after the initiation of the instability, the linear theory is unable to explain the further evolution of intensities, pitch angle distributions, and energy spectra of the ring current particles.

  12. Secondary ion emission from V and Al surfaces under keV light ion on bombardment

    NASA Astrophysics Data System (ADS)

    Blauner, Patricia G.; Weller, Martha R.; Kaurin, Michael G.; Weller, Robert A.

    1986-03-01

    Positive secondary ion mass spectra have been measured for oxidized polycrystalline V and Al targets bombarded by H +, H 2+, He + and Ar + ions with beam energies ranging from 25 keV to 275 keV. An enhancement in the relative yield of positive ions of electronegative surface constituents, in particular O + is observed under light ion bombardment. Metallic ion intensities were found to decrease with increasing primary beam energy in proportion to the estimated total sputtering yields for these targets and beams. In contrast, the O + secondary ion intensities were independent of primary beam energy. This behavior is similar to that observed previously with heavy ions of comparable velocities. In addition, for the projectiles and targets used in these measurements, no energy thresholds or collective effects were observed in the emission of any positive ion. Published data on secondary ion emission resulting from electron, photon, and heavy ion bombardment are compared with these results.

  13. The Solar Flare 4: 10 keV X-ray Spectrum

    NASA Technical Reports Server (NTRS)

    Phillips, K. J. H.

    2004-01-01

    The 4-10 keV solar flare spectrum includes highly excited lines of stripped Ca, Fe, and Ni ions as well as a continuum steeply falling with energy. Groups of lines at approximately 7 keV and approximately 8 keV, observed during flares by the broad-band RHESSI spectrometer and called here the Fe-line and Fe/Ni-line features, are formed mostly of Fe lines but with Ni lines contributing to the approximately 8 keV feature. Possible temperature indicators of these line features are discussed - the peak or centroid energies of the Fe-line feature, the line ratio of the Fe-line to the Fe/Ni-line features, and the equivalent width of the Fe-line feature. The equivalent width is by far the most sensitive to temperature. However, results will be confused if, as is commonly believed, the abundance of Fe varies from flare to flare, even during the course of a single flare. With temperature determined from the thermal continuum, the Fe-line feature becomes a diagnostic of the Fe abundance in flare plasmas. These results are of interest for other hot plasmas in coronal ionization equilibrium such as stellar flare plasmas, hot gas in galaxies, and older supernova remnants.

  14. Physics of a 17 keV neutrino.

    NASA Astrophysics Data System (ADS)

    Kayser, B.

    The possible 17 keV neutrino, if real, cannot be νμ but could be essentially ντ. Relic 17 keV neutrinos from the big bang must have disappeared, through a non-Standard-Model decay or annihilation process, before the present epoch. If one assumes that the 17 keV neutrino is not a Dirac neutrino of the conventional kind, then one is led to picture it as a Dirac neutrino of the unconventional Zeldovich-Konopinski-Mahmoud kind. It is then an amalgam of ντ and ν¯μ.

  15. Spectral Analysis on Solar Flares with an Emission > 300 keV

    NASA Astrophysics Data System (ADS)

    Vargas, R.; Connaughton, V.

    2013-12-01

    The continuum gamma-ray emission from solar flares is caused when a population of electrons is accelerated to relativistic speeds and interacts with the solar plasma. However, it has been theorized that the gamma-ray emission from some brighter flares comes from two populations of electrons. Using the Gamma-Ray Burst Monitor (GBM), we studied the gamma-ray emission spectra of solar flares and paid special attention to the solar flares that showed emission above 300 keV. We found that the emission above 300 keV was better fit with a broken power-law than a single power-law, evidence that the gamma-ray emission from certain solar flares involved two populations of electrons. Specifically, our best model involved a broken power law that had a steeper slope before the break in energy than after. We studied the spectral parameters as a function of time during the period of the high-energy emission. We also found that solar flares with emission above 300 keV form a small subset (~4%) of flares that trigger GBM above 20 keV. One of the flares with an emission greater than 300 keV was fitted with a Broken Power Law model. Only data from the BGO detector was used in making the plots. Various parameters of the fit have been plotted vs. time with the top two graphs representing the light curves of the flare from different detectors (BGO-0 and NaI-4). A spectral fit for bn100612038 for the time interval of [45s-50s] using only the BGO (0) detector file. Data from this fit was used in creating the other plots.

  16. The Morphology of the X-ray Emission above 2 keV from Jupiter's Aurorae

    NASA Technical Reports Server (NTRS)

    Elsner, R.; Branduardi-Raymont, G.; Galand, M.; Grodent, D.; Gladstone, G. R.; Waite, J. H.; Cravens, T.; Ford, P.

    2007-01-01

    The discovery in XMM-Newton X-ray data of X-ray emission above 2 keY from Jupiter's aurorae has led us to reexamine the Chandra ACIS-S observations taken in Feb 2003. Chandra's superior spatial resolution has revealed that the auroral X-rays with E > 2 keV are emitted from the periphery of the region emitting those with E < 1 keV. We are presently exploring the relationship of this morphology to that of the FUV emission from the main auroral oval and the polar cap. The low energy emission has previously been established as due to charge exchange between energetic precipitating ions of oxygen and either sulfur or carbon. It seems likely to us that the higher energy emission is due to precipitation of energetic electrons, possibly the same population of electrons responsible for the FUV emission. We discuss our analysis and interpretation.

  17. Calibration of SIOM-5FW film in the range of 0.1-4 keV

    SciTech Connect

    Chenais-Popovics, C.; Reverdin, C.; Ioannou, I.

    2006-06-15

    The SIOM-5FW film produced for the sub-keV x-ray detection range was calibrated here in a wide energy range (0.1-4 keV). A single set of parameters valid in the whole measured energy range was determined for the calibration of the Shangai 5F (SIOM-5FW) film from a parametric fit of the data. The sensitivity of the SIOM-5FW film was measured to be four times lower than that of the Kodak DEF film at 2.5 keV photon energy. Modeling of the DEF and SIOM-5FW films provides a good comparison of their sensitivity in the 0.1-10 keV range.

  18. The diffuse X-ray spectrum from 14-200 keV as measured on OSO-5

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Suri, A. N.; Frost, K. J.

    1973-01-01

    The measurement of energy spectrum of the diffuse component of cosmic X-ray flux made on the OSO-5 spacecraft is described. The contributions to the total counting rate of the actively shielded X-ray detector are considered in some detail and the techniques used to eliminate the non-cosmic components are described. Positive values for the cosmic flux are obtained in seven energy channels between 14 and 200 keV and two upper limits are obtained between 200 and 254 keV. The results can be fitted by a power law spectrum. A critical comparison is made with the OSO-3 results. Conclusions show that the reported break in the energy spectrum at 40 keV is probably produced by an erroneous correction for the radioactivity induced in the detector on each passage through the intense charged particle fluxes in the South Atlantic anomaly.

  19. Calibration of SIOM-5FW film in the range of 0.1-4 keV

    NASA Astrophysics Data System (ADS)

    Chenais-Popovics, C.; Reverdin, C.; Ioannou, I.

    2006-06-01

    The SIOM-5FW film produced for the sub-keV x-ray detection range was calibrated here in a wide energy range (0.1-4keV). A single set of parameters valid in the whole measured energy range was determined for the calibration of the Shangai 5F (SIOM-5FW) film from a parametric fit of the data. The sensitivity of the SIOM-5FW film was measured to be four times lower than that of the Kodak DEF film at 2.5keV photon energy. Modeling of the DEF and SIOM-5FW films provides a good comparison of their sensitivity in the 0.1-10keV range.

  20. Study of photon attenuation coefficients of some multielement materials. [123-1250 keV

    SciTech Connect

    Bhandal, G.S. ); Singh, K. . Dept. of Physics)

    1994-03-01

    Total photon mass attenuation of six multielement shielding materials (concrete, plaster of paris, quick lime, black cement, white cement, and silica) is measured in the 123- to 1,250-keV energy range. The experimental results are analyzed in terms of cross sections, effective atomic numbers, and electron densities. Considerable sensitivity of the total mass attenuation coefficients and effective atomic numbers to variations in oxygen content are found in these multielement materials.

  1. Compton polarimeter for 10-30 keV x rays.

    PubMed

    Weber, S; Beilmann, C; Shah, C; Tashenov, S

    2015-09-01

    We present a simple and versatile polarimeter for x rays in the energy range of 10-30 keV. It uses Compton scattering in low-Z materials such as beryllium or boron carbide. The azimuthal distribution of the scattered x rays is sampled by an array of 12 silicon PIN diodes operated at room temperature. We evaluated the polarimetry performance using Monte-Carlo simulations and show experimental results. PMID:26429432

  2. Compton polarimeter for 10–30 keV x rays

    SciTech Connect

    Weber, S.; Beilmann, C.; Shah, C.; Tashenov, S.

    2015-09-15

    We present a simple and versatile polarimeter for x rays in the energy range of 10–30 keV. It uses Compton scattering in low-Z materials such as beryllium or boron carbide. The azimuthal distribution of the scattered x rays is sampled by an array of 12 silicon PIN diodes operated at room temperature. We evaluated the polarimetry performance using Monte-Carlo simulations and show experimental results.

  3. Resolution of the 1,238-keV gamma-ray line from supernova 1987A

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Barthelmy, S. D.; Gehrels, N.; Tueller, J.; Leventhal, M.

    1989-01-01

    Observations of supernova 1987A from the maiden flight of the Gamma-Ray Imaging Spectrometer (GRIS) are reported. SN1987A was observed for a period of 11.1 hours on May 1, 1988. Line emission at 1238 keV and continuum emission from 60-800 keV were detected. A gaussian line profile gives an acceptable fit to the 1238 keV line. The best-fit parameters are: flux = 8.5(+ 2.3, - 2.2) x 10 to the -4th photons/sq cm/s; peak energy = 1235.4 (+ 2.2, - 2.4) keV; FWHM = 16.3 (+ 6.1, - 5.7) keV. No evidence is found for a supernova-produced red- or blueshift in the 1238 keV line. The measured linewidth is a factor of about two greater than model predictions, although the discrepancy represents only two standard deviations. The line profiles are characteristic of optically thin regions, whereas the intensity implies a mean optical depth of about two. Fragmentation or nonspherical geometry of the supernova shell are possible explanations of the data.

  4. Solar wind ˜0.1-1.5 keV electrons at quiet times

    NASA Astrophysics Data System (ADS)

    Tao, Jiawei; Wang, Linghua; Zong, Qiugang; Li, Gang; Salem, Chadi S.; Wimmer-Schweingruber, Robert F.; He, Jiansen; Tu, Chuanyi; Bale, Stuart D.

    2016-03-01

    We present a statistical survey of the energy spectrum of solar wind suprathermal (˜0.1-1.5 keV) electrons measured by the WIND 3-D Plasma & Energetic Particle (3DP) instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. Firstly, we separate strahl (beaming) electrons and halo (isotropic) electrons based on their features in pitch angle distributions. Secondly, we fit the observed energy spectrum of both the strahl and halo electrons at ˜0.1-1.5 keV to a Kappa distribution function with an index κ, effective temperature Teff and density n0. We also integrate the the measurements over ˜0.1-1.5 keV to obtain the average electron energy Eavg of the strahl and halo. We find a strong positive correlation between κ and Teff for both the strahl and halo, possibly reflecting the nature of the generation of these suprathermal electrons. Among the 245 selected samples, ˜68% have the halo κ smaller than the strahl κ, while ˜50% have the halo Eh larger than the strahl Es.

  5. New Observations of Soft X-ray (0.5-5 keV) Solar Spectra

    NASA Astrophysics Data System (ADS)

    Caspi, A.; Woods, T. N.; Mason, J. P.; Jones, A. R.; Warren, H. P.

    2013-12-01

    The solar corona is the brightest source of X-rays in the solar system, and the X-ray emission is highly variable on many time scales. However, the actual solar soft X-ray (SXR) (0.5-5 keV) spectrum is not well known, particularly during solar quiet periods, as, with few exceptions, this energy range has not been systematically studied in many years. Previous observations include high-resolution but very narrow-band spectra from crystal spectrometers (e.g., Yohkoh/BCS), or integrated broadband irradiances from photometers (e.g., GOES/XRS, TIMED/XPS, etc.) that lack detailed spectral information. In recent years, broadband measurements with moderate energy resolution (~0.5-0.7 keV FWHM) were made by SphinX on CORONAS-Photon and SAX on MESSENGER, although they did not extend to energies below ~1 keV. We present observations of solar SXR emission obtained using new instrumentation flown on recent SDO/EVE calibration rocket underflights. The photon-counting spectrometer, a commercial Amptek X123 with a silicon drift detector and an 8 μm Be window, measures the solar disk-integrated SXR emission from ~0.5 to >10 keV with ~0.15 keV FWHM resolution and 1 s cadence. A novel imager, a pinhole X-ray camera using a cooled frame-transfer CCD (15 μm pixel pitch), Ti/Al/C filter, and 5000 line/mm Au transmission grating, images the full Sun in multiple spectral orders from ~0.1 to ~5 nm with ~10 arcsec/pixel and ~0.01 nm/pixel spatial and spectral detector scales, respectively, and 10 s cadence. These instruments are prototypes for future CubeSat missions currently being developed. We present new results of solar observations on 04 October 2013 (NASA sounding rocket 36.290). We compare with previous results from 23 June 2012 (NASA sounding rocket 36.286), during which solar activity was low and no signal was observed above ~4 keV. We compare our spectral and imaging measurements with spectra and broadband irradiances from other instruments, including SDO/EVE, GOES/XRS, TIMED

  6. Mutagenic effect of a keV range N + beam on mammalian cells

    NASA Astrophysics Data System (ADS)

    Feng, Huiyun; Wu, Lijun; Yu, Lixiang; Han, Wei; Liu, Xuelan; Yu, Zengliang

    2005-07-01

    The radiobiological effects of a keV (5-20 keV) range nitrogen ion (N +) beam on mammalian cells were studied, particularly with regard to the induction of mutation in the cell genome. The experiment demonstrated that the 20 keV N + beam, which resulted in cell death to a certain extent, induced a 2-3 fold increase in the mutation rates at the CD59 gene locus of the mammalian A L cells as compared to the control. Within certain fluence ranges (0-6 × 10 14 N +/cm 2), the cell survival displayed a down-up-down pattern which is similar to the phenomenon known as 'hyper-radiosensitivity' manifested under low-dose irradiation; the CD59 mutation rate firstly showed a gradual rise up to a 3-fold increment above the background level as the ion fluence went up to 4 × 10 14 N +/cm 2, after this peak point however, a downtrend appeared though the ion fluence increased further. It was also observed that the fraction of CD59 mutation bears no proportional relation to ion energy in further experiments of mutation induction by N + beams with the incident energies of 5, 10, 15 and 20 keV at the same fluence of 3 × 10 14 N +/cm 2. Analyses of the deletion patterns of chromosome 11 in CD59- mutants induced by 5-20 keV N + beams showed that these ions did not result in large-size chromosome deletions in this mammalian cell system. A preliminary discussion, suggesting that the mutagenic effect of such low-energy ion influx on mammalian cells could result from multiple processes involving direct collision of particles with cellular DNA, and cascade atomic and molecular reactions due to plentiful primary and secondary particles, was also presented. The study provided the first glimpse into the roles low-energy ions may play in inducing mutagenesis in mammalian cells, and results will be of much value in helping people to understand the contribution of low-energy ions to radiological effects of various ionising radiations.

  7. Compact, maintainable 80-KeV neutral beam module

    DOEpatents

    Fink, Joel H.; Molvik, Arthur W.

    1980-01-01

    A compact, maintainable 80-keV arc chamber, extractor module for a neutral beam system immersed in a vacuum of <10.sup.-2 Torr, incorporating a nested 60-keV gradient shield located midway between the high voltage ion source and surrounding grounded frame. The shield reduces breakdown or arcing path length without increasing the voltage gradient, tends to keep electric fields normal to conducting surfaces rather than skewed and reduces the peak electric field around irregularities on the 80-keV electrodes. The arc chamber or ion source is mounted separately from the extractor or ion accelerator to reduce misalignment of the accelerator and to permit separate maintenance to be performed on these systems. The separate mounting of the ion source provides for maintaining same without removing the ion accelerator.

  8. Evaluation of 238U Resonance Parameters from 0 to 20 keV

    NASA Astrophysics Data System (ADS)

    Derrien, H.; Courcelle, A.; Leal, L. C.; Larson, N.; Santamarina, A.

    2005-05-01

    The neutron resonance parameters of 238U were obtained in the energy range 0 to 20 keV from a sequential SAMMY analysis of the most recent high-resolution neutron transmission and neutron capture cross-section measurements. Special care was taken in the analysis of the lowest s-wave resonances leading to resonance parameters slightly different from those of ENDF/B-VI (Moxon-Sowerby resonance parameters). The resolved-resonance range was extended to 20 keV, taking advantage of the high-resolution neutron transmission data of Harvey and neutron capture data of Macklin et al. Preliminary integral tests were performed with the new resonance parameters; thermal low-enriched benchmark calculations show an improvement of the keff prediction, mainly due to a 1.5% decrease of the capture cross section at 0.0253 eV and about a 0.4% decrease of the effective shielded resonance capture integral.

  9. A 24 keV liquid-metal-jet x-ray source for biomedical applications

    SciTech Connect

    Larsson, D. H.; Takman, P. A. C.; Lundstroem, U.; Burvall, A.; Hertz, H. M.

    2011-12-15

    We present a high-brightness 24-keV electron-impact microfocus x-ray source based on continuous operation of a heated liquid-indium/gallium-jet anode. The 30-70 W electron beam is magnetically focused onto the jet, producing a circular 7-13 {mu}m full width half maximum x-ray spot. The measured spectral brightness at the 24.2 keV In K{sub {alpha}} line is 3 x 10{sup 9} photons/(s x mm{sup 2}x mrad{sup 2}x 0.1% BW) at 30 W electron-beam power. The high photon energy compared to existing liquid-metal-jet sources increases the penetration depth and allows imaging of thicker samples. The applicability of the source in the biomedical field is demonstrated by high-resolution imaging of a mammography phantom and a phase-contrast angiography phantom.

  10. Evaluation of 238U Resonance Parameters from 0 to 20 keV

    SciTech Connect

    Derrien, H.; Leal, L.C.; Larson, N.; Courcelle, A.; Santamarina, A.

    2005-05-24

    The neutron resonance parameters of 238U were obtained in the energy range 0 to 20 keV from a sequential SAMMY analysis of the most recent high-resolution neutron transmission and neutron capture cross-section measurements. Special care was taken in the analysis of the lowest s-wave resonances leading to resonance parameters slightly different from those of ENDF/B-VI (Moxon-Sowerby resonance parameters). The resolved-resonance range was extended to 20 keV, taking advantage of the high-resolution neutron transmission data of Harvey and neutron capture data of Macklin et al. Preliminary integral tests were performed with the new resonance parameters; thermal low-enriched benchmark calculations show an improvement of the keff prediction, mainly due to a 1.5% decrease of the capture cross section at 0.0253 eV and about a 0.4% decrease of the effective shielded resonance capture integral.

  11. Energetic (>100 keV) 0/sup +/ ions in the plasma sheet

    SciTech Connect

    Ipavich, F.M.; Galvin, A.B.; Gloeckler, G.; Hovestadt, D.; Klecker, B.; Scholer, M.

    1984-05-01

    We present the first measurements of very energetic (112-157 keV) 0/sup +/ ions in the earth's magnetosphere. The observations were made with the UMd/MPE ULECA sensor on ISEE-1 on 5 March 1981 at geocentric distances approx.20 R/sub E/ in the earth's magnetotail. During this time period an Energetic Storm Particle event was observed by our nearly identical sensor on the ISEE-3 space-craft, located approx.250 R/sub E/ upstream of the earth's magnetosphere. The ISEE-1 sensor observed a similar temporal profile except for several sharp intensity enhancements, corresponding to substorm recoveries during which the plasma sheet engulfed the spacecraft. During these plasma sheet encounters we observe 0/sup +//H/sup +/ abundance ratios, at approx.130 keV, as large as 0.35. In between plasma sheet encounters with 0/sup +//H/sup +/ ratio at this energy is consistent with zero.

  12. Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography

    NASA Astrophysics Data System (ADS)

    Vila-Comamala, Joan; Gorelick, Sergey; Guzenko, Vitaliy A.; Färm, Elina; Ritala, Mikko; David, Christian

    2010-07-01

    We investigated the fabrication of dense, high aspect ratio hydrogen silsesquioxane (HSQ) nanostructures by 100 keV electron beam lithography. The samples were developed using a high contrast developer and supercritically dried in carbon dioxide. Dense gratings with line widths down to 25 nm were patterned in 500 nm-thick resist layers and semi-dense gratings with line widths down to 10 nm (40 nm pitch) were patterned in 250 nm-thick resist layers. The dense HSQ nanostructures were used as molds for gold electrodeposition, and the semi-dense HSQ gratings were iridium-coated by atomic layer deposition. We used these methods to produce Fresnel zone plates with extreme aspect ratio for scanning transmission x-ray microscopy that showed excellent performance at 1.0 keV photon energy.

  13. Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography.

    PubMed

    Vila-Comamala, Joan; Gorelick, Sergey; Guzenko, Vitaliy A; Färm, Elina; Ritala, Mikko; David, Christian

    2010-07-16

    We investigated the fabrication of dense, high aspect ratio hydrogen silsesquioxane (HSQ) nanostructures by 100 keV electron beam lithography. The samples were developed using a high contrast developer and supercritically dried in carbon dioxide. Dense gratings with line widths down to 25 nm were patterned in 500 nm-thick resist layers and semi-dense gratings with line widths down to 10 nm (40 nm pitch) were patterned in 250 nm-thick resist layers. The dense HSQ nanostructures were used as molds for gold electrodeposition, and the semi-dense HSQ gratings were iridium-coated by atomic layer deposition. We used these methods to produce Fresnel zone plates with extreme aspect ratio for scanning transmission x-ray microscopy that showed excellent performance at 1.0 keV photon energy. PMID:20562479

  14. Neutron resonance parameters of /sup 79/Br and /sup 81/Br up to 15 keV

    SciTech Connect

    Ohkubo, M.; Kawarasaki, Y.; Mizumoto, M.

    1980-09-01

    Resonance parameters of separated isotopes of bromine were measured using TOF spectrometer of Japan Atomic Energy Research Institute linear accelerator. Transmission and capture measurements were made with /sup 6/Li-glass and Moxon-Rae detectors, on separated isotopes (approx. 98%) of /sup 79/Br and /sup 81/Br. Resonance analyses were made on transmission data with an area analysis code, and on capture data with a Monte-Carlo program CAFIT. For /sup 79/Br gGAMMA/sup 0//sub n/ values for 156 levels below 10 keV are obtained, and for /sup 81/Br 100 levels below 15 keV. Strength functions are obtained: for /sup 79/Br S/sub O/ = (1.27 +- 0.14) x10/sup -4/ below 10 keV, and for /sup 81/Br S/sub O/ = (0.86 +- 0.14)10/sup -4/ below 15 keV. Intermediate structures are observed in the resonances of /sup 81/Br showing clusters of levels at 1.2, 10, 11.5, and 14 keV, where the sum of gGAMMA/sup 0//sub n/ vs. neutron energy shows steep rises.

  15. CONTRIBUTION OF UNRESOLVED POINT SOURCES TO THE DIFFUSE X-RAY BACKGROUND BELOW 1 keV

    SciTech Connect

    Gupta, A.; Galeazzi, M.

    2009-09-01

    We present here the analysis of X-ray point sources detected in several observations available in the XMM-Newton public archive. We focused, in particular, on energies below 1 keV, which are of particular relevance to the understanding of the diffuse X-ray background (DXB). The average field of all the exposures is 0.09 deg{sup -2}. We reached an average flux sensitivity of 5.8 x 10{sup -16}ergs{sup -1}cm{sup -2} in the soft band (0.5-2.0 keV) and 2.5 x 10{sup -16}ergs{sup -1}cm{sup -2} in the very soft band (0.4-0.6 keV). In this paper, we discuss the log N-log S results, the contribution to the integrated X-ray sky flux, and the properties of the cumulative spectrum from all sources. In particular, we found an excess flux at around 0.5 keV in the composite spectrum of faint sources. The excess seems to be a general property of all the fields observed suggesting an additional class of weak sources is contributing to the X-ray emission at these energies. Combining our results with previous investigations, we have also quantified the contribution of the individual components of the DXB in the 3/4 keV band.

  16. The 511 keV emission from positron annihilation in the Galaxy

    SciTech Connect

    Prantzos, N.; Boehm, C.; Bykov, A. M.; Diehl, R.; Ferriere, K.; Guessoum, N.; Jean, P.; Knoedlseder, J.; Marcowith, A.; Moskalenko, I. V.; Strong, A.; Weidenspointner, G.

    2011-07-01

    The first {gamma}-ray line originating from outside the Solar System that was ever detected is the 511 keV emission from positron annihilation in the Galaxy. Despite 30 years of intense theoretical and observational investigation, the main sources of positrons have not been identified up to now. Observations in the 1990s with OSSE/CGRO (Oriented Scintillation Spectrometer Experiment on GRO satellite/Compton Gamma Ray Observatory) showed that the emission is strongly concentrated toward the Galactic bulge. In the 2000s, the spectrometer SPI aboard the European Space Agency's (ESA) International Gamma Ray Astrophysics Laboratory (INTEGRAL) allowed scientists to measure that emission across the entire Galaxy, revealing that the bulge-to-disk luminosity ratio is larger than observed at any other wavelength. This mapping prompted a number of novel explanations, including rather ''exotic'' ones (e.g., dark matter annihilation). However, conventional astrophysical sources, such as type Ia supernovae, microquasars, or x-ray binaries, are still plausible candidates for a large fraction of the observed total 511 keV emission of the bulge. A closer study of the subject reveals new layers of complexity, since positrons may propagate far away from their production sites, making it difficult to infer the underlying source distribution from the observed map of 511 keV emission. However, in contrast to the rather well-understood propagation of high-energy (>GeV) particles of Galactic cosmic rays, understanding the propagation of low-energy ({approx}MeV) positrons in the turbulent, magnetized interstellar medium still remains a formidable challenge. The spectral and imaging properties of the observed 511 keV emission are reviewed and candidate positron sources and models of positron propagation in the Galaxy are critically discussed.

  17. Radiation safety review for 511-keV emitters in nuclear medicine.

    PubMed

    Dell, M A

    1997-03-01

    With the advent of high-energy collimators and dual-head coincidence cameras, standard nuclear medicine facilities will soon begin imaging with PET isotopes. The use of 511-keV emitters raises new radiation safety concerns for technologists traditionally limited to handling 99mTc and other low-energy isotopes. This article is a basic review of positron emitters, measurement concerns, exposure rates, shielding requirements and external radiation exposure mitigation. Newly developed PET shielding products are presented and regulatory status is discussed briefly. PMID:9239598

  18. Dynamic dependence of interaction potentials for keV atoms at metal surfaces

    SciTech Connect

    Schueller, A.; Adamov, G.; Wethekam, S.; Maass, K.; Mertens, A.; Winter, H.

    2004-05-01

    He and N atoms are scattered with keV energies under a grazing angle of incidence from clean and flat Ag(111) and Al(111) surfaces. For incidence along low index crystallographic directions in the surface plane, atomic projectiles are steered by rows of atoms (''axial surface channeling'') giving rise to characteristic rainbows in their angular distribution. From the analysis of this effect we derive effective scattering potentials which reveal pronounced dynamical effects. We attribute our observation to the embedding energy for penetration of atoms in the electron gas of a metal.

  19. KevJumba and the Adolescence of YouTube

    ERIC Educational Resources Information Center

    Saul, Roger

    2010-01-01

    This article considers the significance of YouTube as a pedagogical space from which young people can play participatory roles as theorists in their own constructions as popular cultural subjects. Drawing upon the public profile of "KevJumba," a teenager who makes videos of himself on YouTube, the article suggests that representational practices…

  20. The Hard X-ray 20-40 keV AGN Luminosity Function

    NASA Technical Reports Server (NTRS)

    Beckmann, V.; Soldi, S.; Shrader, C. R.; Gehrels, N.; Produit, N.

    2006-01-01

    We have compiled a complete, significance limited extragalactic sample based on approximately 25,000 deg(sup 2) to a limiting flux of 3 x 10(exp -11) ergs per square centimeter per second. (approximately 7,000 deg(sup 2)) to a flux limit of 10(exp -11) ergs per square centimeter per second)) in the 20 - 40 keV band with INTEGRAL. We have constructed a detailed exposure map to compensate for effects of non-uniform exposure. The flux-number relation is best described by a power-law with a slope of alpha = 1.66 plus or minus 0.11. The integration of the cumulative flux per unit area leads to f(sub 20-40 keV) = 2.6 x 10(exp -10) ergs per square centimeter per second per sr(sup -1) which is about 1% of the known 20-40 keV X-ray background. We present the first luminosity function of AGN in the 20-40 keV energy range, based on 68 extragalactic objects detected by the imager IBIS/ISGRI on-board INTEGRAL. The luminosity function shows a smoothly connected two power-law form, with an index of gamma (sub 1) = 0.9 below, and gamma (sub 2) = 2.2 above the turn-over luminosity of L(sub *), = 4.6 x 10(sup 43) ergs per second. The emissivity of all INTEGRAL AGNs per unit volume is W(sub 20-40keV)(greater than 10(sup 41) ergs per second) = 2.8 x 10(sup 38) ergs per second h(sup 3)(sub 70) Mpc(sup -3). These results are consistent with those derived in the 2-20keV energy band and do not show a significant contribution by Compton-thick objects. Because the sample used in this study is truly local (z(raised bar) = 0.022)), only limited conclusions can be drawn for the evolution of AGNs in this energy band. But the objects explaining the peak in the cosmic X-ray background are likely to be either low luminosity AGN (L(sub x) less than 10(sup 41) ergs per second) or of other type, such as intermediate mass black holes, clusters, and star forming regions.

  1. Relative dissociation fractions of SF6 under impact of 15-keV to 30-keV H- and C- negative ions

    NASA Astrophysics Data System (ADS)

    Zhao, Zilong; Li, Junqin; Zhang, Xuemei

    2013-10-01

    The relative dissociation fractions for the production of fragment ions and ion pairs of SF6 are studied for H- and C- impact in the energy range from 15 to 30 keV. Recoil ions (SF4+, SF3+, SF2+, SF+, S+, F+, SF42+, SF22+) and ion pairs (SF3++F+,SF2++F+,SF++F+,S++F+, F++F+) are detected and identified in coincidence with scattered projectiles in two charge states (q=0 and q=+1) by using a time-of-flight spectrometer. The relative dissociation fractions are energy dependent for both single-electron-loss (SL) channel and double-electron-loss (DL) channel processes for certain negative ions. It is also found that the relative dissociation fractions for DL are larger than those for SL. In addition, the degree of fragmentation will become greater with a larger mass number of the projectiles at the same impact energy for the same electron-loss channel. A comparison of the time-of-flight spectra is made between that under negative-ion impact and that under electron impact, and it is found that the probability of production of SFn+ ions with n odd is higher than that of similar ions with n even, and the probability of production of SFn2+ ions with n even is higher than that of similar ions withn odd under H-, C-, positive-ion, and electron impact. We analyze this interesting phenomenon from the bond-dissociation energies of SFn+ and SFn2+. We also analyze the coincident time-of-flight spectra of two fragment ions resulting from double ionization of SF6 by H- and C- impact and describe the major dissociation pathways of SF62+ for H- and C- impact in the energy range from 15 to 30 keV.

  2. Possible capture of keV sterile neutrino dark matter on radioactive β-decaying nuclei

    NASA Astrophysics Data System (ADS)

    Li, Y. F.; Xing, Zhi-Zhong

    2011-01-01

    There exists an observed “desert” spanning six orders of magnitude between O(0.5) eV and O(0.5) MeV in the fermion mass spectrum. We argue that it might accommodate one or more keV sterile neutrinos as a natural candidate for warm dark matter. To illustrate this point of view, we simply assume that there is one keV sterile neutrino ν and its flavor eigenstate ν weakly mixes with three active neutrinos. We clarify different active-sterile neutrino mixing factors for the radiative decay of ν and β decays in a self-consistent parametrization. A direct detection of this keV sterile neutrino dark matter in the laboratory is in principle possible since the ν component of ν can leave a distinct imprint on the electron energy spectrum when it is captured on radioactive β-decaying nuclei. We carry out an analysis of its signatures in the capture reactions ν+H3→He3+e- and ν+Ru106→Rh106+e- against the β-decay backgrounds, and conclude that this experimental approach might not be hopeless in the long run.

  3. Effective field theory and keV lines from dark matter

    SciTech Connect

    Krall, Rebecca; Reece, Matthew; Roxlo, Thomas E-mail: mreece@physics.harvard.edu

    2014-09-01

    We survey operators that can lead to a keV photon line from dark matter decay or annihilation. We are motivated in part by recent claims of an unexplained 3.5 keV line in galaxy clusters and in Andromeda, but our results could apply to any hypothetical line observed in this energy range. We find that given the amount of flux that is observable, explanations in terms of decay are more plausible than annihilation, at least if the annihilation is directly to Standard Model states rather than intermediate particles. The decay case can be explained by a scalar or pseudoscalar field coupling to photons suppressed by a scale not far below the reduced Planck mass, which can be taken as a tantalizing hint of high-scale physics. The scalar case is particularly interesting from the effective field theory viewpoint, and we discuss it at some length. Because of a quartically divergent mass correction, naturalness strongly suggests the theory should be cut off at or below the 1000 TeV scale. The most plausible such natural UV completion would involve supersymmetry. These bottom-up arguments reproduce expectations from top-down considerations of the physics of moduli. A keV line could also arise from the decay of a sterile neutrino, in which case a renormalizable UV completion exists and no direct inference about high-scale physics is possible.

  4. A study of 2-20 KeV X-rays from the Cygnus region

    NASA Technical Reports Server (NTRS)

    Bleach, R. D.

    1972-01-01

    Two rocket-borne proportional counters, each with 650 sq c, met area and 1.8 x 7.1 deg FWHM rectangular mechanical collimation, surveyed the Cygnus region in the 2 to 20 keV energy range on two occasions. X-ray spectral data gathered on 21 September 1970 from discrete sources in Cygnus are presented. The data from Cyg X-1, Cyg X-2, and Cyg X-3 have sufficient statistical significance to indicate mutually exclusive spectral forms for the three. Upper limits are presented for X-ray intensities above 2 keV for Cyg X-4 and Cyg X-5 (Cygnus loop). A search was made on 9 August 1971 for a diffuse component of X-rays 1.5 keV associated with an interarm region of the galaxy at galactic longitudes in the vicinity of 60 degrees. A statistically significant excess associated with a narrow disk component was detected. Several possible emission models are discussed, with the most likely candidate being a population of unresolvable low luminosity discrete sources.

  5. The X-ray spectrum of AM Herculis from 0.1 to 150 keV

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.; Gruber, D. E.; Knight, F. K.; Matteson, J. L.; Nolan, P. L.; Swank, J. H.; Holt, S. S.; Serlemitsos, P. J.; Mason, K. O.; Tuohy, I. R.

    1981-01-01

    No significant flux at 100 keV was detected in the observations by the HEAO 1 satellite (March and April of 1978) and in several OSO 7 observations. The spectrum above 2 keV can be fitted by a composite thermal bremsstrahlung model that includes an approximation to the albedo expected from the white dwarf. The bremsstrahlung kT sub e from this model (30.9 + or - 4.5 keV) implies a white dwarf mass in excess of 0.6 solar mass. An emission feature at 6.5 + or - 0.15 keV and equivalent width of 0.8 + or - 0.1 keV is confirmed; it is thought that this might be due to fluorescence from the white dwarf by the bremsstrahlung from a small thin shocked region. It is noted that the continuum could also have been steepened at high energy in scattering in the accretion column, but the line photons cannot have gone through the same optical depths.

  6. Sub-arcsecond X-ray Telescope for Imaging the Solar Corona at 1 keV

    NASA Astrophysics Data System (ADS)

    Gallagher, D.; Cash, W.; Jelsma, S.

    1996-05-01

    Over the past several years at the University of Colorado we have been developing an X-ray telescope that uses a new technique for focusing X-rays with grazing incidence optics The telescope uses spherical optics for all its components, thus utilizing the high quality surfaces obtainable when polishing spherical optics as compared to that of aspherical optics. A prototype engineering X-ray telescope has been fabricated and tested using the 300 meter vacuum pipe at White Sands Missile Range, NM. The telescope uses approximately 2 degree graze angles with tungsten coatings which gives a bandpass of 0.25-1.5 keV and a peak effective area of 0.08 cm(2) at 0.83 keV. Results from X-ray testing at energies of 0.25 keV and 0.93 keV (C-K and Cu-L) will be presented which verify 0.5 arcseconds performance at 0.93 keV. Results from modeling the X-ray telescope's response to the sun show that the current optics design would be capable of recording on the order of 10 images of a solar active region during a 300 second NASA sounding rocket flight at resolution of 0.5 arcsecond.

  7. Degeneracy at 1871 keV in {sup 112}Cd and implications for neutrinoless double electron capture

    SciTech Connect

    Green, K. L.; Garrett, P. E.; Demand, G. A.; Grinyer, G. F.; Leach, K. G.; Phillips, A. A.; Schumaker, M. A.; Svensson, C. E.; Wong, J.; Austin, R. A. E.; Colosimo, S.; Ball, G. C.; Bandyopadhyay, D. S.; Hackman, G.; Morton, A. C.; Pearson, C. J.; Cross, D.; Kulp, W. D.; Wood, J. L.; Yates, S. W.

    2009-09-15

    High-statistics {beta}-decay measurements of {sup 112}Ag and {sup 112}In were performed to study the structure of the {sup 112}Cd nucleus. The precise energies of the doublet of levels at 1871 keV, for which the 0{sup +} member has been suggested as a possible daughter state following neutrinoless double electron capture of {sup 112}Sn, were determined to be 1871.137(72) keV (0{sub 4}{sup +} level) and 1870.743(54) keV (4{sub 2}{sup +} level). The nature of the 0{sub 4}{sup +} level, required for the calculation of the nuclear matrix element that would be needed to extract a neutrino mass from neutrinoless double electron capture to this state, is suggested to be of intruder origin.

  8. Demonstration of a 13-keV Kr K-shell x-ray source at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Fournier, K. B.; May, M. J.; Colvin, J. D.; Barrios, M. A.; Patterson, J. R.; Regan, S. P.

    2013-09-01

    We report 3% conversion efficiency of laser energy into Kr K-shell (≈13 keV) radiation, consistent with theoretical predictions. This is ≈10× greater than previous work. The emission was produced from a 4.1-mm-diameter, 4-mm-tall gas pipe target filled with 1.2 or 1.5 atm of Kr gas. 160 of the National Ignition Facility laser beams deposited ≈700 kJ of 3ω light into the target in an ≈140 TW, 5.0-ns-duration square pulse. The Dante diagnostics measured ≈5 TW into 4π solid angle of ≥12 keV x rays for ≈4 ns, which includes both continuum emission and flux in the Kr Heα line at 13 keV.

  9. Effect of 800 keV argon ions pre-damage on the helium blister formation of tungsten exposed to 60 keV helium ions

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Han, Wenjia; Yu, Jiangang; Zhu, Kaigui

    2016-04-01

    This study aims to investigate the effect of Ar8+ ions pre-damage on the following He2+ irradiation behavior of polycrystalline tungsten. We compared the irradiation resistance performance against 60 keV He2+ ions of undamaged tungsten samples with that of pre-damaged samples which were preliminarily exposed to 800 keV Ar8+ ions at a fluence of 4 × 1019 ions m-2. The experimental results indicate that the helium blistering of tungsten could be effectively relieved by the Ar8+ ions pre-damage, while the retention of helium around low energy desorption sites in the pre-damaged tungsten was larger than that of the undamaged samples. A strong orientation dependence of blistering had been observed, with the blister occurred preferentially on the surface of grains with normal direction close to <111>. The Ar8+ ions irradiation-induced damage altered the morphology of helium bubbles in tungsten exposed to the following He2+ irradiation significantly. The intensity of helium release peaks at relatively low temperatures (<600 K) was enhanced due to Ar8+ ions pre-damage.

  10. Neutron transmission and capture measurements and analysis of /sup 60/Ni from 1 to 450 keV

    SciTech Connect

    Perey, C.M.; Harvey, J.A.; Macklin, R.L.; Winters, R.R.; Perey, F.G.

    1982-11-01

    High-resolution transmission and capture measurements of /sup 60/Ni-enriched targets have been made at the Oak Ridge Electron Linear Accelerator (ORELA) from a few eV to 1800 keV in transmission and from 2.5 keV to 5 MeV in capture . The transmission data from 1 to 450 keV were analyzed with a multi-level R-matrix code which uses the Bayes' theorem for the fitting process. This code provides the energies and neutron widths of the resonances inside the 1- to 450-keV region as well as a possible parameterization for outside resonances to describe the smooth cross section in this region. The capture data were analyzed with a least-squares fitting code using the Breit-Wigner formula. From 2.5 to 450 keV, 166 resonances were seen in both sets of data. Correspondence between the energy scales shows a discontinuity around 300 keV which makes the matching of resonances at higher energies difficult. Eighty-nine resonances were seen in the capture data only. Average parameters for the 30 observed s-wave resonances were deduced. The average level spacing D/sub 0/ was found to be equal to 15.2 +- 1.5 keV, the strength function, S/sub 0/, equal to (2.2 +- 0.6) x 10/sup -4/ and the average radiation width, GAMMA/sub ..gamma../, equal to 1.30 +- 0.07 eV. The staircase plot of the reduced level widths and the plot of the Lorentz-weighted strength function averaged over various energy intervals show possible evidence for doorway states. The level densities calculated with the Fermi-gas model for l = 0 and for l > 0 resonances were compared with the cumulative number of observed resonances, but the analysis is not conclusive. The average capture cross section as a function of the neutron incident energy is compared to the tail of the giant electric dipole resonance prediction.

  11. The effect of 1 to 5 keV electrons on the reproductive integrity of microorganisms

    NASA Technical Reports Server (NTRS)

    Barengoltz, J. B.; Brady, J.

    1977-01-01

    Microorganisms were exposed to simulated space environment in order to assess the effect of electrons in the energy range 1 to 5 keV on their colony-forming ability. The test system consisted of an electron gun and power supply, a dosimetry subsystem, and a vacuum subsystem. The system was capable of current densities ranging from 0.1 nA/sq cm to 5 micro A/sq cm on a 25 sq on target and an ultimate vacuum of 0.0006 N/sq m (0.000004 torr). The results of the experimental program show a significant reduction in microbial reproductive integrity.

  12. Photon, Electron and Secondary Ion Emission from Single C60 keV Impacts

    PubMed Central

    Fernandez-Lima, F. A.; Eller, M. J.; Verkhoturov, S. V.; Della-Negra, S.; Schweikert, E. A.

    2010-01-01

    This paper presents the first observation of coincidental emission of photons, electrons and secondary ions from individual C60 keV impacts. An increase in photon, electron and secondary ion yields is observed as a function of C60 projectile energy. The effect of target structure/composition on photon and electron emissions at the nanometer level is shown for a CsI target. The time-resolved photon emission may be characterized by a fast component emission in the UV-Vis range with a short decay time, while the electron and secondary ion emission follow a Poisson distribution. PMID:21218166

  13. Asymmetric 511 keV Positron Annihilation Line Emission from the Inner Galactic Disk

    NASA Technical Reports Server (NTRS)

    Skinner, Gerry; Weidenspointner, Georg; Jean, Pierre; Knodlseder, Jurgen; Ballmoos, Perer von; Bignami, Giovanni; Diehl, Roland; Strong, Andrew; Cordier, Bertrand; Schanne, Stephane; Winkler, Christoph

    2008-01-01

    A recently reported asymmetry in the 511 keV gamma-ray line emission from the inner galactic disk is unexpected and mimics an equally unexpected one in the distribution of LMXBs seen at hard X-ray energies. A possible conclusion is that LMXBs are an important source of the positrons whose annihilation gives rise to the line. We will discuss these results, their statistical significance and that of any link between the two. The implication of any association between LMXBs and positrons for the strong annihilation radiation from the galactic bulge will be reviewed.

  14. Rise time in 20-32 keV impulsive X-radiation

    NASA Technical Reports Server (NTRS)

    Vorpahl, J. A.; Takakura, T.

    1974-01-01

    A new property of the X-ray impulsive component observed in solar flares is discussed, giving attention to the relation between the slope of the electron power spectrum and the rise time in the 20-32 keV X-ray spike. This particular energy range was chosen because it offered the greatest number of impulsive events while being sufficiently high to avoid contamination by soft X radiation. It is found for the thin-target model that the electron spectrum tends to be softer when the acceleration rate is smaller.

  15. Ionization and Fragmentation of 5-Chlorouracil induced by 100 keV protons collisions

    SciTech Connect

    Cafarelli, Pierre; Champeaux, Jean-Philippe; Le Padellec, Arnaud; Moretto-Capelle, Patrick; Rabier, Julien; Sence, Martine; Carcabal, Pierre

    2008-12-08

    We present preliminary experimental results on the dissociation of singly and doubly ionized 5-Chlorouracil induced by collisions with proton of 100 keV energy. Multiple coincidence techniques are used to detect the ionic fragments from single dissociation events. This enables a thorough analysis of kinetic momentums of the charged and neutral species involved in the dissociation. In many cases, this leads to the establishment of the scenario the molecule undergoes after ionization as well as the determination of the nature of intermediate (undetected) species. In other cases, the dissociation scenario cannot be unambiguously identified and further analysis as well as theoretical support is needed.

  16. Anisotropic pitch angle distribution of ~100 keV microburst electrons in the loss cone: measurements from STSAT-1

    NASA Astrophysics Data System (ADS)

    Lee, J. J.; Parks, G. K.; Lee, E.; Tsurutani, B. T.; Hwang, J.; Cho, K. S.; Kim, K.-H.; Park, Y. D.; Min, K. W.; McCarthy, M. P.

    2012-11-01

    Electron microburst energy spectra in the range of 170 keV to 360 keV have been measured using two solid-state detectors onboard the low-altitude (680 km), polar-orbiting Korean STSAT-1 (Science and Technology SATellite-1). Applying a unique capability of the spacecraft attitude control system, microburst energy spectra have been accurately resolved into two components: perpendicular to and parallel to the geomagnetic field direction. The former measures trapped electrons and the latter those electrons with pitch angles in the loss cone and precipitating into atmosphere. It is found that the perpendicular component energy spectra are harder than the parallel component and the loss cone is not completely filled by the electrons in the energy range of 170 keV to 360 keV. These results have been modeled assuming a wave-particle cyclotron resonance mechanism, where higher energy electrons travelling within a magnetic flux tube interact with whistler mode waves at higher latitudes (lower altitudes). Our results suggest that because higher energy (relativistic) microbursts do not fill the loss cone completely, only a small portion of electrons is able to reach low altitude (~100 km) atmosphere. Thus assuming that low energy microbursts and relativistic microbursts are created by cyclotron resonance with chorus elements (but at different locations), the low energy portion of the microburst spectrum will dominate at low altitudes. This explains why relativistic microbursts have not been observed by balloon experiments, which typically float at altitudes of ~30 km and measure only X-ray flux produced by collisions between neutral atmospheric particles and precipitating electrons.

  17. The average 0.5-200 keV spectrum of local active galactic nuclei and a new determination of the 2-10 keV luminosity function at z ≈ 0

    NASA Astrophysics Data System (ADS)

    Ballantyne, D. R.

    2014-01-01

    The broad-band X-ray spectra of active galactic nuclei (AGNs) contains information about the nuclear environment from Schwarzschild radii scales (where the primary power law is generated in a corona) to distances of ˜1 pc (where the distant reflector may be located). In addition, the average shape of the X-ray spectrum is an important input into X-ray background synthesis models. Here, local (z ≈ 0) AGN luminosity functions (LFs) in five energy bands are used as a low-resolution, luminosity-dependent X-ray spectrometer in order to constrain the average AGN X-ray spectrum between 0.5 and 200 keV. The 15-55 keV LF measured by Swift-BAT is assumed to be the best determination of the local LF, and then a spectral model is varied to determine the best fit to the 0.5-2 keV, 2-10 keV, 3-20 keV and 14-195 keV LFs. The spectral model consists of a Gaussian distribution of power laws with a mean photon-index <Γ> and cutoff energy Ecut, as well as contributions from distant and disc reflection. The reflection strength is parametrized by varying the Fe abundance relative to solar, AFe, and requiring a specific Fe Kα equivalent width (EW). In this way, the presence of the X-ray Baldwin effect can be tested. The spectral model that best fits the four LFs has <Γ> = 1.85 ± 0.15, E_{cut}=270^{+170}_{-80} keV, A_{Fe}=0.3^{+0.3}_{-0.15}. The sub-solar AFe is unlikely to be a true measure of the gas-phase metallicity, but indicates the presence of strong reflection given the assumed Fe Kα EW. Indeed, parametrizing the reflection strength with the R parameter gives R=1.7^{+1.7}_{-0.85}. There is moderate evidence for no X-ray Baldwin effect. Accretion disc reflection is included in the best-fitting model, but it is relatively weak (broad iron Kα EW < 100 eV) and does not significantly affect any of the conclusions. A critical result of our procedure is that the shape of the local 2-10 keV LF measured by HEAO-1 and MAXI is incompatible with the LFs measured in the hard X

  18. Charge state distributions and charge exchange cross sections of carbon in helium at 30-258 keV

    NASA Astrophysics Data System (ADS)

    Maxeiner, Sascha; Seiler, Martin; Suter, Martin; Synal, Hans-Arno

    2015-10-01

    With the introduction of helium stripping in radiocarbon (14C) accelerator mass spectrometry (AMS), higher +1 charge state yields in the 200 keV region and fewer beam losses are observed compared to nitrogen or argon stripping. To investigate the feasibility of even lower beam energies for 14C analyses the stripping characteristics of carbon in helium need to be further studied. Using two different AMS systems at ETH Zurich (myCADAS and MICADAS), ion beam transmissions of carbon ions for the charge states -1, +1, +2 and +3 were measured in the range of 258 keV down to 30 keV. The correction for beam losses and the extraction of charge state yields and charge exchange cross sections will be presented. An increase in population of the +1 charge state towards the lowest measured energies up to 75% was found as well as agreement with previous data from literature. The findings suggest that more compact radiocarbon AMS systems are possible and could provide even higher efficiency than current systems operating in the 200 keV range.

  19. SPECTRAL PROPERTIES OF {approx}0.5-6 keV ENERGETIC NEUTRAL ATOMS MEASURED BY THE INTERSTELLAR BOUNDARY EXPLORER (IBEX) ALONG THE LINES OF SIGHT OF VOYAGER

    SciTech Connect

    Desai, M. I.; Allegrini, F. A.; Dayeh, M. A.; McComas, D. J.; Schwadron, N. A.; De Majistre, B.; Funsten, H.; Heerikhuisen, J.; Pogorelov, N.; Zank, G. P.

    2012-04-20

    Energetic neutral atoms (ENAs) observed by the Interstellar Boundary Explorer (IBEX) provide powerful diagnostics about the origin of the progenitor ion populations and the physical mechanisms responsible for their production. Here we survey the fluxes, energy spectra, and energy dependence of the spectral indices of {approx}0.5-6 keV ENAs measured by IBEX-Hi along the lines of sight of Voyager 1 and 2. We compare the ENA spectra observed at IBEX with predictions of Zank et al. who modeled the microphysics of the heliospheric termination shock to predict the shape and relative contributions of three distinct heliosheath ion populations. We show that (1) the ENA spectral indices exhibit similar energy dependence along V1 and V2 directions-the spectrum hardens to {gamma} {approx} 1 between {approx}1 and 2 keV and softens to {gamma} {approx} 2 below {approx}1 keV and above {approx}2 keV, (2) the observed ENA fluxes agree to within {approx}50% of the Zank et al. predictions and are unlikely to be produced by core solar wind (SW) ions, and (3) the ENA spectra do not exhibit sharp cutoffs at {approx}twice the SW speed as is typically observed for shell-like pickup ion (PUI) distributions in the heliosphere. We conclude that ENAs at IBEX are generated by at least two types of ion populations whose relative contributions depend on the ENA energy: transmitted PUIs in the {approx}0.5-5 keV energy range and reflected PUIs above {approx}5 keV energy. The {approx}0.5-5 keV PUI distribution is probably a superposition of Maxwellian or kappa distributions and partially filled shell distributions in velocity space.

  20. Angular differential cross sections for excitation of atomic hydrogen to its N = 2 level by impact of 15-100 keV He/sup +/ ions

    SciTech Connect

    Aldag, J.E.

    1980-01-01

    Differential cross section for excitation of atomic hydrogen to its n = 2 level by 15-100 keV He/sup +/ ions have been determned for c.m. angles from 0 to 8 mrad. The cross sections were obtained from an analysis of the angular distribution of the scattered ions which had lost an energy corresponding to the excitation of the target to its n = 2 level. The shape of the differential cross section changes rapidly with increasing incident energy. At 15 keV, the cross section changes rapidly with increasing incident energy. At 15 keV, the cross section falls off by a factor of 5 in 6 mrad. At 100 keV, the cross section decreases by nearly six orders or magnitude in the same angular range. The middle and high energy results are in good agreement with a recent Glauber approximation calculation for the scattering. Comparison of the present reduced cross section results with those at lower energy (0.75 to 1.5 keV) indicates that the collision mechanism is not the same. Excitation to n greater than or equal to 3 levels was clearly present in the energy-loss spectra for the process in contradiction to the molecular orbital description of the mechanism. Total cross section results are given for the same scattering process in the 15-200 keV range and are also in good agreement with the Glauber and VPSA theory results. The experimental and Glauber differential results, however, are clearly different at 25 keV.

  1. Metastable dark matter mechanisms for INTEGRAL 511 keV γ rays and DAMA/CoGeNT events

    NASA Astrophysics Data System (ADS)

    Cline, James M.; Frey, Andrew R.; Chen, Fang

    2011-04-01

    We explore dark matter mechanisms that can simultaneously explain the galactic 511 keV gamma rays observed by INTEGRAL/SPI, the DAMA/LIBRA annual modulation, and the excess of low-recoil dark matter candidates observed by CoGeNT. It requires three nearly degenerate states of dark matter in the 4-7 GeV mass range, with splittings, respectively, of order MeV and a few keV. The top two states have the small mass gap and transitions between them, either exothermic or endothermic, and can account for direct detections. Decays from one of the top states to the ground state produce low-energy positrons in the Galaxy whose associated 511 keV gamma rays are seen by INTEGRAL. This decay can happen spontaneously, if the excited state is metastable (longer lived than the age of the Universe), or it can be triggered by inelastic scattering of the metastable states into the shorter-lived ones. We focus on a simple model where the dark matter is a triplet of an SU(2) hidden sector gauge symmetry, broken at the scale of a few GeV, giving masses of order ≲1GeV to the dark gauge bosons, which mix kinetically with the standard model hypercharge. The purely decaying scenario can give the observed angular dependence of the 511 keV signal with no positron diffusion, while the inelastic scattering mechanism requires transport of the positrons over distances ˜1kpc before annihilating. We note that an x-ray line of several keV in energy, due to single-photon decays involving the top dark matter states, could provide an additional component to the diffuse x-ray background. The model is testable by proposed low-energy fixed-target experiments.

  2. Metastable dark matter mechanisms for INTEGRAL 511 keV {gamma} rays and DAMA/CoGeNT events

    SciTech Connect

    Cline, James M.; Frey, Andrew R.; Chen, Fang

    2011-04-15

    We explore dark matter mechanisms that can simultaneously explain the galactic 511 keV gamma rays observed by INTEGRAL/SPI, the DAMA/LIBRA annual modulation, and the excess of low-recoil dark matter candidates observed by CoGeNT. It requires three nearly degenerate states of dark matter in the 4-7 GeV mass range, with splittings, respectively, of order MeV and a few keV. The top two states have the small mass gap and transitions between them, either exothermic or endothermic, and can account for direct detections. Decays from one of the top states to the ground state produce low-energy positrons in the Galaxy whose associated 511 keV gamma rays are seen by INTEGRAL. This decay can happen spontaneously, if the excited state is metastable (longer lived than the age of the Universe), or it can be triggered by inelastic scattering of the metastable states into the shorter-lived ones. We focus on a simple model where the dark matter is a triplet of an SU(2) hidden sector gauge symmetry, broken at the scale of a few GeV, giving masses of order < or approx. 1 GeV to the dark gauge bosons, which mix kinetically with the standard model hypercharge. The purely decaying scenario can give the observed angular dependence of the 511 keV signal with no positron diffusion, while the inelastic scattering mechanism requires transport of the positrons over distances {approx}1 kpc before annihilating. We note that an x-ray line of several keV in energy, due to single-photon decays involving the top dark matter states, could provide an additional component to the diffuse x-ray background. The model is testable by proposed low-energy fixed-target experiments.

  3. The Context for IMAP: Voyager and INCA Observations of the Heliosheath at E > 5 keV

    NASA Astrophysics Data System (ADS)

    Krimigis, Stamatios M.

    2016-04-01

    The basic premise of the proposed Interstellar Mapping and Acceleration Probe (IMAP) is detailed scientific understanding of the Heliosheath (HS) and beyond, a region of space explored in situ by Voyager 1 (V1) since 2004, Voyager 2 (V2) since 2007, and remotely via energetic neutral atoms (ENA) by the Cassini/INCA (Ion and Neutral CAmera) since 2003 and IBEX since 2009. The IMAP instrumentation proposed for this purpose combines and extends the IBEX and INCA ENA energy ranges (0.3- 20 keV and 3-200 keV, for low and high energy, respectively). All three missions-Voyagers, Cassini/INCA, and IBEX- have made discovery-class measurements in the HS, the Voyagers providing in situ ion intensities at E > 30 keV, while INCA images ENA in the range 5 < E < 55 keV, and IBEX 0.3 < E < 6 keV. The partial overlap in energy coverage between Voyager ions and INCA ENA allows for the possibility of observing the intensity and time evolution of ions in the HS, thought to give rise to the ENAs via charge-exchange, and the resultant ENA images in the inner heliosphere and their spatial and/or temporal variability. Unfortunately, no such "ground truth" ion measurements are possible at Voyager in the ENA energy range imaged by IBEX. Some of the key findings from the Voyager and Cassini/INCA measurements are as follows: (1) The HS contains a hot plasma population that carries a substantial part (30-50 %) of the total pressure at E > 5 keV, the rest residing below that range, resulting in a beta (particle/magnetic pressure) always > 1, typically >10. (2) The width of the HS in the direction of V1 is ~ 30 AU, but is thought to be larger (40-70 AU) in the southern ecliptic where V2 currently travels.. (3) The ENA intensities at E > 5 keV exhibit a correlation with the solar cycle (SC) over the period 2003 to 2015, with minimum intensities in the anti-nose direction observed ~ 1.5 yrs after solar minimum followed by a recovery thereafter. (4) The in situ ion measurements at V2 within the HS

  4. Hydroxyapatite-titanium interface reaction induced by keV electron irradiation

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Foti, G.

    1992-03-01

    Thin films of hydroxyapatite bioceramic, 5-50 Å in thickness, have been deposited on ion cleaned titanium surfaces to study the chemical-physical adhesion of metal-ceramic interfaces of biomedical devices (orthopaedic and dentistry prosthesis). Film deposition was performed in ultrahigh vacuum condition (10 -10 mbar) using 5 keV argon sputtering of hydroxyapatite matrix; the film thickness was measured in situ with Auger electron spectroscopy. The hydroxyapatite-titanium interface was irradiated with an electron beam of 0.5-5 keV energy and 0.2-2 A/cm 2 current density. During electron irradiation, Auger spectra show chemical shifts of phosphorus, titanium and oxygen peaks. The released electron energy induces modifications in the tetraedric phosphorus-oxygen groups with production of new chemical bonds between phosphorus, oxygen and titanium. Oxygen, for example, diffuses into the titanium interface forming titanium oxide. Chemical reactions induced by electron irradiation are driven by the metal-ceramic interface. Near the interface a strong and fast effect is observed while far from the interface a weak and slow effect occurs. Chemical reactions depend on the electron irradiation dose showing an inhibition threshold at about 10 19 e/cm 2 and, near the interface, a saturation condition at about 5 × 10 20 e/cm 2. Titanium-ceramic chemical reactions are inhibited if the substrate titanium surface is rich in oxide.

  5. Status report on a dc 130-mA, 75-keV proton injector

    SciTech Connect

    Sherman, J.; Arvin, A.; Hodgkins, D.

    1997-10-01

    A 110-mA, 75-keV dc proton injector is being developed at Los Alamos. We use a microwave proton source coupled to a two solenoid, space-charge neutralized, low-energy beam transport (LEBT) system. The ion source produces 110-mA proton current at 75 keV using 600 - 800 W of 2.45 GHz input discharge power. Typical proton fraction is 85-90% of the total extracted ion current, and the rms normalized beam emittance after transport through a prototype 2.1 m LEBT is 0.20 ({pi}mm-mrad). Beam space-charge neutralization is measured to be > 98% which enables the solenoid magnetic transport to successfully match the injector beam into a radio-frequency quadrupole (RFQ). Beam simulations indicate small emittance growth in the proposed 2.8 m low-energy demonstration accelerator (LEDA) LEBT. The LEBT also contains beam diagnostics, steering, and a beam deflector for variable duty factor and accelerator fast protect functions. The injector computer controls and reliability status are also discussed.

  6. Astrophysics and cosmology confront the 17-keV neutrino

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Turner, Michael S.

    1991-01-01

    A host of astrophysical and cosmological arguments severely constrain the properties of a 17 keV Dirac neutrino. Such a neutrino must have interactions beyond those of the standard electroweak theory to reduce its cosmic abundance (through decay or annihilation) by a factor of two hundred. A predicament arises because the additional helicity states of the neutrino necessary to construct a Dirac mass must have interactions strong enough to evade the astrophysical bound from SN 1987A, but weak enough to avoid violating the bound from primordial nucleosynthesis.

  7. Astrophysics and cosmology confront the 17 keV neutrino

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Turner, Michael S.

    1991-01-01

    A host of astrophysical and cosmological arguments severely constrain the properties of a 17 keV Dirac neutrino. Such a neutrino must have interactions beyond those of the standard electroweak theory to reduce its cosmic abundance (through decay or annihilation) by a factor of two hundred. A predicament arises because the additional helicity states of the neutrino necessary to construct a Dirac mass must have interactions strong enough to evade the astrophysical bound from SN 1987A, but weak enough to avoid violating the bound from primordial nucleosynthesis.

  8. 511 keV photons from superconducting cosmic strings.

    PubMed

    Ferrer, Francesc; Vachaspati, Tanmay

    2005-12-31

    We show that a tangle of light superconducting strings in the Milky Way could be the source of the observed 511 keV emission from electron-positron annihilation in the Galactic bulge. The scenario predicts a flux that is in agreement with observations if the strings are at the approximately 1 TeV scale, making the particle physics within reach of planned accelerator experiments. The emission is directly proportional to the galactic magnetic field, and future observations should be able to differentiate the superconducting string scenario from other proposals. PMID:16486335

  9. 3.55 keV photon lines from axion to photon conversion in the Milky Way and M31

    SciTech Connect

    Conlon, Joseph P.; Day, Francesca V. E-mail: francesca.day@physics.ox.ac.uk

    2014-11-01

    We further explore a scenario in which the recently observed 3.55 keV photon line arises from dark matter decay to an axion-like particle (ALP) of energy 3.55 keV, which then converts to a photon in astrophysical magnetic fields. This ALP scenario is well-motivated by the observed morphology of the 3.55 keV flux. For this scenario we study the expected flux from dark matter decay in the galactic halos of both the Milky Way and Andromeda (M31). The Milky Way magnetic field is asymmetric about the galactic centre, and so the resulting 3.55 keV flux morphology differs significantly from the case of direct dark matter decay to photons. However the Milky Way magnetic field is not large enough to generate an observable signal, even with ASTRO-H. In contrast, M31 has optimal conditions for a → γ conversion and the intrinsic signal from M31 becomes two orders of magnitude larger than for the Milky Way, comparable to that from clusters and consistent with observations.

  10. A New Observation of the Quiet Sun Soft X-ray (0.5-5 keV) Spectrum

    NASA Astrophysics Data System (ADS)

    Caspi, A.; Woods, T. N.; Stone, J.

    2012-12-01

    The solar corona is the brightest source of X-rays in the solar system, and the X-ray emission is highly variable with solar activity. While this is particularly true during solar flares, when emission can be enhanced by many orders of magnitude up to gamma-ray energies, even the so-called "quiet Sun" is bright in soft X-rays (SXRs), as the ~1-2 MK ambient plasma of the corona emits significant thermal bremsstrahlung up to ~5 keV. However, the actual solar SXR (0.5-5 keV) spectrum is not well known, particularly during quiet periods, as, with few exceptions, this energy range has not been systematically studied in many years. Previous observations include ultra-high-resolution but very narrow-band spectra from crystral spectrometers (e.g. Yohkoh/BCS), or integrated broadband irradiances from photometers (e.g. GOES/XRS, TIMED/XPS, etc.) that lack detailed spectral information. In recent years, broadband measurements with fair energy resolution (~0.5-0.7 keV FWHM) were made by SphinX on CORONAS-Photon and XRS on MESSENGER, although they did not extend below ~1 keV. We present observations of the quiet Sun SXR emission obtained using a new SXR spectrometer flown on the third SDO/EVE underflight calibration rocket (NASA 36.286). The commercial off-the-shelf Amptek X123 silicon drift detector, with an 8-micron Be window and custom aperture, measured the solar SXR emission from ~0.5 to >10 keV with ~0.15 keV FWHM resolution (though, due to hardware limitations, with only ~0.12 keV binning) and 2-sec cadence over ~5 minutes on 23 June 2012. Despite the rising solar cycle, activity on 23 June 2012 was abnormally low, with no visible active regions and GOES XRS emission near 2010 levels; we measured no solar counts above ~4 keV during the observation period. We compare our X123 measurements with spectra and broadband irradiances from other instruments, including the SphinX observations during the deep solar minimum of 2009, and with upper limits of >3 keV quiet Sun emission

  11. Cross section measurements of the B10(d,n0)C11 reaction below 160 keV

    NASA Astrophysics Data System (ADS)

    Stave, S.; Ahmed, M. W.; Antolak, A. J.; Blackston, M. A.; Crowell, A. S.; Doyle, B. L.; Henshaw, S. S.; Howell, C. R.; Kingsberry, P.; Perdue, B. A.; Rossi, P.; Prior, R. M.; Spraker, M. C.; Weller, H. R.

    2008-05-01

    New data were taken at the Triangle Universities Nuclear Laboratory to investigate the plausibility of using low energy deuterons and the B10(d,n)C11 reaction as a portable source of 6.3 MeV neutrons. Analysis of the data at and below incident deuteron energies of 160 keV indicates an n0 neutron cross section that is lower than previous estimates by at least three orders of magnitude. In separate runs, deuterons with two different energies (160 and 140 keV) were stopped in a B10 target. The resulting n0 neutrons of approximately 6.3 MeV were detected at angles between 0° and 150°. The angle integrated yields were used to determine the astrophysical S factor for this reaction assuming a constant value for the S factor below 160 keV. The cross sections reported between 130 and 160 keV were calculated using the extracted value of the S factor. The measured n0 cross section is several orders of magnitude smaller than previous results, thus eliminating B10(d,n)C11 as a portable source of intense neutrons with low energy deuteron beams on the order of tens of microamps. In order to gain insight into the reaction dynamics at these low energies the cross section results have been compared with results from calculations using the distorted wave Born approximation (DWBA) and a detailed Hauser-Feshbach calculation performed by the authors. The angular distribution is consistent with the Hauser-Feshbach calculation suggesting a statistical compound nucleus reaction rather than a direct reaction.

  12. Extreme energetic electron fluxes in low Earth orbit: Analysis of POES E > 30, E > 100, and E > 300 keV electrons

    NASA Astrophysics Data System (ADS)

    Meredith, Nigel P.; Horne, Richard B.; Isles, John D.; Green, Janet C.

    2016-02-01

    Energetic electrons are an important space weather hazard. Electrons with energies less than about 100 keV cause surface charging, while higher-energy electrons can penetrate materials and cause internal charging. In this study we conduct an extreme value analysis of the maximum 3-hourly flux of E > 30 keV, E > 100 keV, and E > 300 keV electrons in low Earth orbit as a function of L∗, for geomagnetic field lines that map to the outer radiation belt, using data from the National Oceanic and Atmospheric Administration Polar Operational Environmental Satellites (POES) from July 1998 to June 2014. The 1 in 10 year flux of E > 30 keV electrons shows a general increasing trend with distance ranging from 1.8 × 107 cm-2 s-1 sr-1 at L∗=3.0 to 6.6 × 107 cm-2 s-1 sr-1 at L∗=8.0. The 1 in 10 year flux of E > 100 keV electrons peaks at L∗=4.5-5.0 at 1.9 × 107 cm-2 s-1 sr-1 decreasing to minima of 7.1 × 106 and 8.7 × 106 cm-2 s-1 sr-1 at L∗=3.0 and 8.0, respectively. In contrast to the E > 30 keV electrons, the 1 in 10 year flux of E > 300 keV electrons shows a general decreasing trend with distance, ranging from 2.4 × 106 cm-2 s-1 sr-1 at L∗=3.0 to 1.2 × 105 cm-2 s-1 sr-1 at L∗=8.0. Our analysis suggests that there is a limit to the E > 30 keV electrons with an upper bound in the range 5.1 × 107 to 8.8 × 107 cm-2 s-1 sr-1. However, the results suggest that there is no upper bound for the E > 100 keV and E > 300 keV electrons.

  13. Decaying vector dark matter as an explanation for the 3.5 keV line from galaxy clusters

    SciTech Connect

    Farzan, Yasaman; Akbarieh, Amin Rezaei E-mail: am_rezaei@physics.sharif.ir

    2014-11-01

    We present a Vector Dark Matter (VDM) model that explains the 3.5 keV line recently observed in the XMM-Newton observatory data from galaxy clusters. In this model, dark matter is composed of two vector bosons, V and V', which couple to the photon through an effective generalized Chern-Simons coupling, g{sub V}. V' is slightly heavier than V with a mass splitting m{sub V'} – m{sub V} ≅ 3.5 keV. The decay of V' to V and a photon gives rise to the 3.5 keV line. The production of V and V' takes place in the early universe within the freeze-in framework through the effective g{sub V} coupling when m{sub V'} < T < Λ, Λ being the cut-off above which the effective g{sub V} coupling is not valid. We introduce a high energy model that gives rise to the g{sub V} coupling at low energies. To do this, V and V' are promoted to gauge bosons of spontaneously broken new U(1){sub V} and U(1){sub V'} gauge symmetries, respectively. The high energy sector includes milli-charged chiral fermions that lead to the g{sub V} coupling at low energy via triangle diagrams.

  14. Variable Gap Undulator for 1.5-48 Kev Free Electron Laser at Linac Coherent Light Source

    SciTech Connect

    Pellegrini, C.; Wu, J.; /SLAC

    2011-08-17

    We study the feasibility of generating femtosecond duration Free-Electron Laser with a variable photon energy from 1.5 to 48 keV, using an electron bunch with the same characteristics of the LINAC Coherent Light Source (LCLS) bunch, and a planar undulator with additional focusing. We assume that the electron bunch energy can be changed, and the undulator has a variable gap, allowing a variable undulator parameter. It is assumed to be operated in an ultra-low charge and ultra-short pulse regime. We study the feasibility of a tunable, short pulse, X-ray FEL with photon energy from 1.5 to 48 keV, using an electron beam like the one in the LCLS and a 2:5 cm period, variable gap, planar undulator. The beam energy changes from 4.6 to 13.8 GeV, the electorn charge is kept at 10 pC, and the undulator parameter varies from 1 to 3. The undulator length needed to saturate the 48 keV FEL is about 55 m, with a peak power around 5 GW. At longer wavelength the saturation length is as short as 15 m, and the peak power around 20 GW. The results from the analytical models and the GENESIS simulations show that the system is feasible. The large wavelength range, full tunability and short, few femtosecond pulses, together with the large peak power, would provide a powerful research tool.

  15. Identification of the ~3.55 keV emission line candidate objects across the sky

    NASA Astrophysics Data System (ADS)

    Savchenko, D. O.; Iakubovskyi, D. A.

    2015-12-01

    An emission line at the energy ~3.55 keV detected in different galaxies and galaxy clusters has caused numerous discussions in high-energy astrophysics and particle physics communities. To reveal the origin of the line, we analyzed publicly-available observations of MOS cameras from XMM-Newton cosmic observatory - the instrument with the largest sensitivity for narrow faint X-ray lines - previously combined in X-ray sky maps. Because an extremely large timescale is needed for detailed analysis, we used the wavelet method instead. Extensive simulations of the central part of the Andromeda galaxy are used to check the validity of this method. The resulting list of wavelet detections now contains 235 sky regions. This list will be used in future works for more detailed spectral analysis.

  16. Deep XMM observations of Draco rule out at the 99 per cent confidence level a dark matter decay origin for the 3.5 keV line

    NASA Astrophysics Data System (ADS)

    Jeltema, Tesla; Profumo, Stefano

    2016-06-01

    We searched for an X-ray line at energies around 3.5 keV in deep, ˜1.6 Ms XMM-Newton observations of the dwarf spheroidal galaxy Draco. No line was found in either the Metal Oxide Semi-conductor (MOS) or the p-type/n-type semiconductor (PN) detectors. The data in this energy range are completely consistent with a single, unfolded power-law modelling the particle background, which dominates at these energies, plus instrumental lines; the addition of a ˜3.5 keV line feature gives no improvement to the fit. The corresponding upper limit on the line flux rules out a dark matter decay origin for the 3.5 keV line found in observations of clusters of galaxies and in the Galactic Centre at greater than 99 per cent confidence level.

  17. Storm-associated variations of equatorially mirroring ring current protons, 1-800 keV, at constant first adiabatic invariant

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.; Williams, D. J.

    1976-01-01

    Explorer 45 observations of ring current protons mirroring near the equator, 1-800 keV, are presented at constant first adiabatic invariant mu throughout the period of the December 17, 1971, geomagnetic storm. The parameter mu is obtained from simultaneous magnetic field and particle observations. Particle deceleration in response to the storm time magnetic field decrease causes ring current measurements viewed at constant energy to underestimate the storm time increase in proton intensities at energies not exceeding 200 keV. This adiabatic deceleration also accounts for the large flux decreases observed at energies above 200 keV during the storm, in contradiction with previous results (Soraas and Davis, 1968) obtained using a model for the storm time magnetic field.

  18. The Electron Excitation Function of H Lyman-(alpha) from Threshold to 1.8 keV

    NASA Technical Reports Server (NTRS)

    James, G. K.; Slevin, J. A.; Shemansky, D. E.; McConkey, J. W.; Dziczek, D.; Kanik, I.; Ajello, J. M.

    1996-01-01

    The excitation function of prompt Lyman-(alpha) radiation, produced by electron impact excitation of atomic hydrogen, has been measured for the first time over an extended energy range from threshold to 1.8 keV. Measurments were obtained in a crossed-beams experiment using both magnetically confined and electrostatically focused electrons in collision with atomic hydrogen produced by an intense discharge source.

  19. Strengths of the resonances at 436, 479, 639, 661, and 1279 keV in the 22Ne(p ,γ ) 23Na reaction

    NASA Astrophysics Data System (ADS)

    Depalo, Rosanna; Cavanna, Francesca; Ferraro, Federico; Slemer, Alessandra; Al-Abdullah, Tariq; Akhmadaliev, Shavkat; Anders, Michael; Bemmerer, Daniel; Elekes, Zoltán; Mattei, Giovanni; Reinicke, Stefan; Schmidt, Konrad; Scian, Carlo; Wagner, Louis

    2015-10-01

    The 22Ne(p ,γ )23Na reaction is included in the neon-sodium cycle of hydrogen burning. A number of narrow resonances in the Gamow window dominate the thermonuclear reaction rate. Several resonance strengths are only poorly known. As a result, the 22Ne(p ,γ )23Na thermonuclear reaction rate is the most uncertain rate of the cycle. Here, a new experimental study of the strengths of the resonances at 436, 479, 639, 661, and 1279 keV proton beam energy is reported. The data have been obtained using a tantalum target implanted with 22Ne. The strengths ω γ of the resonances at 436, 639, and 661 keV have been determined with a relative approach, using the 479- and 1279-keV resonances for normalization. Subsequently, the ratio of resonance strengths of the 479- and 1279-keV resonances were determined, improving the precision of these two standards. The new data are consistent with, but more precise than, the literature with the exception of the resonance at 661 keV, which is found to be less intense by one order of magnitude. In addition, improved branching ratios have been determined for the gamma decay of the resonances at 436, 479, and 639 keV.

  20. Optima MDxt: A high throughput 335 keV mid-dose implanter

    SciTech Connect

    Eisner, Edward; David, Jonathan; Justesen, Perry; Kamenitsa, Dennis; McIntyre, Edward; Rathmell, Robert; Ray, Andrew; Rzeszut, Richard

    2012-11-06

    The continuing demand for both energy purity and implant angle control along with high wafer throughput drove the development of the Axcelis Optima MDxt mid-dose ion implanter. The system utilizes electrostatic scanning, an electrostatic parallelizing lens and an electrostatic energy filter to produce energetically pure beams with high angular integrity. Based on field proven components, the Optima MDxt beamline architecture offers the high beam currents possible with singly charged species including arsenic at energies up to 335 keV as well as large currents from multiply charged species at energies extending over 1 MeV. Conversely, the excellent energy filtering capability allows high currents at low beam energies, since it is safe to utilize large deceleration ratios. This beamline is coupled with the >500 WPH capable endstation technology used on the Axcelis Optima XEx high energy ion implanter. The endstation includes in-situ angle measurements of the beam in order to maintain excellent beam-to-wafer implant angle control in both the horizontal and vertical directions. The Optima platform control system provides new generation dose control system that assures excellent dosimetry and charge control. This paper will describe the features and technologies that allow the Optima MDxt to provide superior process performance at the highest wafer throughput, and will provide examples of the process performance achievable.

  1. Neutron activation of natural zinc samples at kT=25 keV

    NASA Astrophysics Data System (ADS)

    Reifarth, R.; Dababneh, S.; Heil, M.; Käppeler, F.; Plag, R.; Sonnabend, K.; Uberseder, E.

    2012-03-01

    The neutron-capture cross sections of 64Zn, 68Zn, and 70Zn have been measured with the activation technique in a quasistellar neutron spectrum corresponding to a thermal energy of kT=25 keV. By a series of repeated irradiations with different experimental conditions, an uncertainty of 3% could be achieved for the 64Zn(n,γ)65Zn cross section and for the partial cross section 68Zn(n,γ)69Znm feeding the isomeric state in 69Zn. For the partial cross sections 70Zn(n,γ)71Znm and 70Zn(n,γ)71Zng, which had not been measured so far, uncertainties of only 16% and 6% could be reached because of limited counting statistics and decay intensities. Compared to previous measurements on 64,68Zn, the uncertainties could be significantly improved, while the 70Zn cross section was found to be two times smaller than existing model calculations. From these results Maxwellian average cross sections were determined between 5 and 100 keV. Additionally, the β-decay half-life of 71Znm could be determined with significantly improved accuracy. The consequences of these data have been studied by network calculations for convective core He burning and convective shell C burning in massive stars.

  2. Calibration of semiconductor detectors in the 200-8500 keV range at VNIIM.

    PubMed

    Tereshchenko, Evgeny E; Moiseev, Nikolay

    2012-09-01

    At the ionising radiation department of the D.I. Mendeleyev Institute for Metrology, a semiconductor detector was calibrated in the energy range 200-8500 keV using (n,2γ) and (n,γ) reactions. Separate cylindrical targets (77 mm diameter and 10mm height) were made from mercuric sulphate, sodium chloride and metallic titanium. A (252)Cf spontaneous fission neutron source, placed in 150 mm diameter polyethylene ball, was used to generate thermal neutrons. The optimal target dimensions were determined taking into account the thermal neutron cross-sections and gamma-radiation attenuations in the target materials. The influence of the background radiation induced by neutrons from the walls, floors and ceilings was also taken into account. The shapes of the efficiency curves for point and volume sources in the 200-8500 keV range have been investigated. The experimental results are in good agreement with Monte-Carlo calculations. The emission rate of the 6.13 MeV photons from a (238)Pu-(13)C source was determined with an expanded uncertainty, U(c), of 10% (k=2). PMID:22512978

  3. Radiation effects on optical and structural properties of GG17 Glasses induced by 170 keV electrons and protons

    NASA Astrophysics Data System (ADS)

    Wang, Qingyan; Geng, Hongbin; Sun, Chengyue; Li, Xingji; Zhao, Haifa; Liu, Weilong; Xiao, Jingdong; Hu, Zhaochu

    2016-01-01

    The effects of 170 keV electron and proton irradiation are investigated on the optical property and the structure of GG17-type borosilicate glasses for the purpose of assessing the suitability of this material for the rubidium lamp envelope, based on GEANT4 simulating calculation, using electron paramagnetic resonance and Fourier transform infrared spectra and optical-transmittance measurements. The Micro-mechanisms on damage of GG17 Glasses are clarified for electron and proton, respectively. For the electron with the energy of 170 keV, defect creation is due to ionization energy losses and the center is mainly boron oxygen hole center (BOHC) formed by one hole trapped on a bridge oxygen structure with [BO4]-. As a result the number of BOHCs grows as the electron fluence increases. However, for the proton with the energy of 170 keV, the creation of structural defects dominates by means of debonding as a result of an atom having been kicked off the structural chain (displacement effect). This leads to the intensive generation of silicon oxygen hole centers, as well as BOHCs, by the holes trapped on non-bridge oxygen.

  4. The first MAXI/SSC catalog of X-ray sources in 0.7-7.0 keV

    NASA Astrophysics Data System (ADS)

    Tomida, Hiroshi; Uchida, Daiki; Tsunemi, Hiroshi; Imatani, Ritsuko; Kimura, Masashi; Nakahira, Satoshi; Hanayama, Takanori; Yoshidome, Koshiro

    2016-06-01

    We present the first source catalog of the Solid-state Slit Camera (SSC) of the Monitor of All-sky X-ray Image (MAXI) mission on the International Space Station, using the 45-month data from 2010 August to 2014 April in the 0.7-7.0 keV bands. Sources are searched for in two energy bands, 0.7-1.85 keV (soft) and 1.85-7.0 keV (hard), the limiting sensitivity of 3 and 4 mCrab are achieved, and 140 and 138 sources are detected in the soft and hard energy bands, respectively. Combining the two energy bands, 170 sources are listed in the MAXI/SSC catalog. All but 2 sources are identified with 22 galaxies including AGNs, 29 cluster of galaxies, 21 supernova remnants, 75 X-ray binaries, 8 stars, 5 isolated pulsars, and 9 non-categorized objects. Comparing the soft-band fluxes at the brightest end in our catalog with the ROSAT survey, which was performed about 20 years ago, 10% of the cataloged sources are found to have changed flux since the ROSAT era.

  5. The first MAXI/SSC catalog of X-ray sources in 0.7-7.0 keV

    NASA Astrophysics Data System (ADS)

    Tomida, Hiroshi; Uchida, Daiki; Tsunemi, Hiroshi; Imatani, Ritsuko; Kimura, Masashi; Nakahira, Satoshi; Hanayama, Takanori; Yoshidome, Koshiro

    2016-03-01

    We present the first source catalog of the Solid-state Slit Camera (SSC) of the Monitor of All-sky X-ray Image (MAXI) mission on the International Space Station, using the 45-month data from 2010 August to 2014 April in the 0.7-7.0 keV bands. Sources are searched for in two energy bands, 0.7-1.85 keV (soft) and 1.85-7.0 keV (hard), the limiting sensitivity of 3 and 4 mCrab are achieved, and 140 and 138 sources are detected in the soft and hard energy bands, respectively. Combining the two energy bands, 170 sources are listed in the MAXI/SSC catalog. All but 2 sources are identified with 22 galaxies including AGNs, 29 cluster of galaxies, 21 supernova remnants, 75 X-ray binaries, 8 stars, 5 isolated pulsars, and 9 non-categorized objects. Comparing the soft-band fluxes at the brightest end in our catalog with the ROSAT survey, which was performed about 20 years ago, 10% of the cataloged sources are found to have changed flux since the ROSAT era.

  6. Direct and indirect signal detection of 122 keV photons with a novel detector combining a pnCCD and a CsI(Tl) scintillator

    NASA Astrophysics Data System (ADS)

    Schlosser, D. M.; Huth, M.; Hartmann, R.; Abboud, A.; Send, S.; Conka-Nurdan, T.; Shokr, M.; Pietsch, U.; Strüder, L.

    2016-01-01

    By combining a low noise fully depleted pnCCD detector with a CsI(Tl) scintillator, an energy-dispersive area detector can be realized with a high quantum efficiency (QE) in the range from below 1 keV to above 100 keV. In direct detection mode the pnCCD exhibits a relative energy resolution of 1% at 122 keV and spatial resolution of less than 75 μm, the pixel size of the pnCCD. In the indirect detection mode, i.e. conversion of the incoming X-rays in the scintillator, the measured energy resolution was about 9-13% at 122 keV, depending on the depth of interaction in the scintillator, while the position resolution, extracted with the help of simulations, was 30 μm only. We show simulated data for incident photons of 122 keV and compare the various interaction processes and relevant physical parameters to experimental results obtained with a radioactive 57Co source.

  7. Sterilization of foods with low-energy electrons (``soft-electrons'')

    NASA Astrophysics Data System (ADS)

    Hayashi, Toru; Takahashi, Yoko; Todoriki, Setsuko

    1998-06-01

    Electrons with an energy of 300 keV or lower were defined as "Soft-electrons", which showed several advantages over conventional irradiation with gamma-rays or high-energy electrons in decontamination of grains and spices. Energies of electrons necessary to reduce microbial loads to levels lower than 10 CFU/g were 60 keV for brown rice, 75 keV for wheat, 100 keV for white pepper, coriander and basil, 130 keV for buckwheat, 160 keV for rough rice, and 210 keV for black pepper. Electrons with such energies did not significantly influence the quality.

  8. K-(alpha) Radiography at 20-100 keV Using Short-Pulse Lasers

    SciTech Connect

    Park, H S; Chambers, D; Clarke, R; Eagleton, R; Giraldez, E; Goldsack, T; Heathcote, R; Izumi, N; Key, M; King, J; Koch, J; Landen, O L; Mackinnon, A; Nikroo, A; Patel, P; Pasley, J; Remington, B; Robey, H; Snavely, R; Steinman, D; Stephenson, R; Stoeckl, C; Storm, M; Tabak, M; Theobald, W; Town, R J

    2005-08-29

    X-ray radiography is an important tool for diagnosing and imaging planar and convergent hydrodynamics phenomena for laser experiments. Until now, hydrodynamics experiments at Omega and NIF utilize E{sub x-ray} < 9 keV backlighter x-rays emitted by thermal plasmas. However, future experiments will need to diagnose larger and denser targets and will require x-ray probes of energies from 20-100 keV and possibly up to 1 MeV. Hard K-{alpha} x-ray photons can be created through high-energy electron interactions in the target material after irradiation by petawatt-class high-intensity-short-pulse lasers with > 10{sup 17} W/cm{sup 2}. We have performed several experiments on the JanUSP, and the Vulcan 100TW, and Vulcan Petawatt lasers to understand K-{alpha} sources and to test radiography concepts. 1-D radiography using an edge-on foil and 2-D radiography using buried wires and cone-fiber targets were tested. We find that 1-D thin edge-on foils can have imaging resolution better than 10 {micro}m. Micro volume targets produce bright sources with measured conversion efficiency from laser energy to x-ray photons of {approx} 1 x 10{sup -5}. This level of conversion may not be enough for 2-D point projection radiography. A comparison of our experimental measurements of small volume sources with the LSP/PIC simulation show similar K-{alpha} creation profiles but discrepancy in absolute yields.

  9. Ion yields and erosion rates for Si{sub 1-x}Ge{sub x}(0<=x<=1) ultralow energy O{sub 2}{sup +} secondary ion mass spectrometry in the energy range of 0.25-1 keV

    SciTech Connect

    Morris, R. J. H.; Dowsett, M. G.

    2009-06-01

    We report the SIMS parameters required for the quantitative analysis of Si{sub 1-x}Ge{sub x} across the range of 0<=x<=1 when using low energy O{sub 2}{sup +} primary ions at normal incidence. These include the silicon and germanium secondary ion yield [i.e., the measured ion signal (ions/s)] and erosion rate [i.e., the speed at which the material sputters (nm/min)] as a function of x. We show that the ratio R{sub x} of erosion rates, Si{sub 1-x}Ge{sub x}/Si, at a given x is almost independent of beam energy, implying that the properties of the altered layer are dominated by the interaction of oxygen with silicon. R{sub x} shows an exponential dependence on x. Unsurprisingly, the silicon and germanium secondary ion yields are found to depart somewhat from proportionality to (1-x) and x, respectively, although an approximate linear relationship could be used for quantification across around 30% of the range of x (i.e., a reference material containing Ge fraction x would give reasonably accurate quantification across the range of +-0.15x). Direct comparison of the useful (ion) yields [i.e., the ratio of ion yield to the total number of atoms sputtered for a particular species (ions/atom)] and the sputter yields [i.e., the total number of atoms sputtered per incident primary ion (atoms/ions)] reveals a moderate matrix effect where the former decrease monotonically with increasing x except at the lowest beam energy investigated (250 eV). Here, the useful yield of Ge is found to be invariant with x. At 250 eV, the germanium ion and sputter yields are proportional to x for all x.

  10. Demonstration of a 13 keV Kr K-shell X-Ray Source at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Fournier, K. B.; May, M. J.; Colvin, J. D.; Barrios, M. A.; Patterson, J. R.; Regan, S. P.

    2013-10-01

    We report 3% conversion efficiency of laser energy into Kr K-shell (~13 keV) radiation, consistent with theoretical predictions. This is ~10 × greater than previous work. The emission was produced from a 4.1 mm diameter, 4 mm tall gas pipe target filled with 1.2 or 1.5 atm of Kr gas. 160 of the NIF laser beams deposited ~700 kJ of 3 ω light into the target in a ~140 TW, 5.0 ns duration square pulse. This laser configuration sufficiently heated the targets to optimize the K-shell x-ray emission. The Dante diagnostics measured ~5 TW into 4 π solid angle of >=12 keV x rays for ~4 ns, which includes both continuum emission and flux in the Kr Heα line at 13 keV. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was supported by the Defense Threat Reduction Agency under the intera- gency agreements 10027-1420 and 10027-6167.

  11. Anomalous scattering of keV neutrons from H2O and D2O : I. Single scattering events

    NASA Astrophysics Data System (ADS)

    Chatzidimitriou-Dreismann, C. A.; Krzystyniak, M.

    2006-05-01

    Scattering of neutrons in the 24-150 keV incident energy range from H2O relative to that of D2O and H2O-D2O mixtures was reported recently by Moreh et al. This work is related to neutron Compton scattering experiments regarding the 'anomalous' scattering from protons, observed earlier at ISIS by Chatzidimitriou-Dreismann et al in the 5-100 eV range. Here we provide the complete data reduction scheme of time-of-flight integrated intensities measured at keV energy transfers, within the impulse approximation of standard theory and for single scattering events. Current investigations of multiple scattering events and the associated preliminary results are mentioned. Direct application of the theoretical results to the new keV scattering data reveals an anomalous ratio of scattering intensity of H2O relative to that of D2O of about 20%, thus being in good agreement with the earlier results of the original experiment at ISIS.

  12. SMM observations of gamma-ray transients. 2: A search for gamma-ray lines between 400 and 600 keV from the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Harris, Michael J.; Share, Gerald H.; Leising, Mark D.

    1994-01-01

    We have search spectra obtained by the Solar Maximum Mission Gamma-Ray Spectrometer during 1981-1988 for evidence of transient gamma-ray lines from the Crab Nebula which have been reported by previous experiments at energies 400-460 keV and 539 keV. We find no evidence for significant emission in any of these lines on time scales between aproximately 1 day and approximately 1 yr. Our 3 sigma upper limits on the transient flux during 1 d intervals are approximately equal to 2.2 x 10(exp -3) photons/sq cm/s for narrow lines at any energy, and approximately equal to 2.9 x 10(exp -3) photons/sq cm/s for the 539 keV line if it is as broad as 42 keV Full Width at Half Maximum (FWHM). We also searched our data during the approximately 5 hr period on 1981 June 6 during which Owens, Myers, & Thompson (1985) reported a strong line at 405 keV. We detected no line down to a 3 upper sigma limit of 3.3 x 10(exp -3) photons/sq cm/s in disagreement with the flux 7.2 +/- 2.1 x 10(exp -3) photos/sq cm/s measured by Owens et al.

  13. Where do the 3.5 keV photons come from? A morphological study of the Galactic Center and of Perseus

    SciTech Connect

    Carlson, Eric; Jeltema, Tesla; Profumo, Stefano E-mail: tesla@ucsc.edu

    2015-02-01

    We test the origin of the 3.5 keV line photons by analyzing the morphology of the emission at that energy from the Galactic Center and from the Perseus cluster of galaxies. We employ a variety of different templates to model the continuum emission and analyze the resulting radial and azimuthal distribution of the residual emission. We then perform a pixel-by-pixel binned likelihood analysis including line emission templates and dark matter templates and assess the correlation of the 3.5 keV emission with these templates. We conclude that the radial and azimuthal distribution of the residual emission is incompatible with a dark matter origin for both the Galactic center and Perseus; the Galactic center 3.5 keV line photons trace the morphology of lines at comparable energy, while the Perseus 3.5 keV photons are highly correlated with the cluster's cool core, and exhibit a morphology incompatible with dark matter decay. The template analysis additionally allows us to set the most stringent constraints to date on lines in the 3.5 keV range from dark matter decay.

  14. HEXIT-SAT: a mission concept for x-ray grazing incidence telescopes from 0.5 to 70 keV

    NASA Astrophysics Data System (ADS)

    Fiore, Fabrizio; Perola, Giuseppe C.; Pareschi, Giovanni; Citterio, Oberto; Anselmi, Alberto; Comastri, Andrea

    2004-10-01

    While the energy density of the Cosmic X-ray Background (CXB) provides a statistical estimate of the super massive black hole (SMBH) growth and mass density in the Universe, the lack, so far, of focusing instrument in the 20-60 keV (where the CXB energy density peaks), frustrates our effort to obtain a comprehensive picture of the SMBH evolutionary properties. HEXIT-SAT (High Energy X-ray Imaging Telescope SATellite) is a mission concept capable of exploring the hard X-ray sky with focusing/imaging instrumentation, to obtain an unbiased census of accreting SMBH up to the redshifts where galaxy formation peaks, and on extremely wide luminosity ranges. This will represent a leap forward comparable to that achieved in the soft X-rays by the Einstein Observatory in the late 70'. In addition to accreting SMBH, and very much like the Einstein Observatory, this mission would also have the capabilities of investigating almost any type of the celestial X-ray sources. HEXIT-SAT is based on high throughput (>400 cm2 @ 30 keV; >1200 cm2 @ 1 keV), high quality (15 arcsec Half Power Diameter) multi-layer optics, coupled with focal plane detectors with high efficiency in the full 0.5-70keV range. Building on the BeppoSAX experience, a low-Earth, equatorial orbit, will assure a low and stable particle background, and thus an extremely good sensitivity for faint hard X-ray sources. At the flux limits of 1/10 microCrab (10-30 keV) and 1/3 microCrab (20-40 keV) (reachable in one Msec observation) we should detect ~100 and ~40 sources in the 15 arcmin FWHM Field of View respectively, thus resolving >80% and ~65% of the CXB where its energy density peaks.

  15. Preliminary resolved resonance region evaluation of copper-63 from 0 to 300 keV

    SciTech Connect

    Sobes, V.; Forget, B.; Leal, L.; Guber, K.

    2012-07-01

    A new preliminary evaluation of Cu-63 was done in the energy region from 0 to 300 keV extending the resolved resonance region of the previous, ENDF/B-VII.0, evaluation three-fold. The new evaluation was based on three experimental transmission data sets; two measured at the Oak Ridge Electron Linear Accelerator (ORELA) and one from the Massachusetts Inst. of Technology Nuclear Reactor (MITR). A total of 275 new resonances were identified and a corresponding set of external resonances was approximated to mock up the external levels. The negative external levels (bound level) were modified to match the thermal cross section values. A preliminary benchmarking calculation was made using 11 ICSBEP benchmarks. This work is in support of the DOE Nuclear Criticality Safety Program. (authors)

  16. Interatomic potentials from rainbow scattering of keV noble gas atoms under axial surface channeling

    NASA Astrophysics Data System (ADS)

    Schüller, A.; Wethekam, S.; Mertens, A.; Maass, K.; Winter, H.; Gärtner, K.

    2005-04-01

    For grazing scattering of keV Ne and Ar atoms from a Ag(1 1 1) and a Cu(1 1 1) surface under axial surface channeling conditions we observe well defined peaks in the angular distributions for scattered projectiles. These peaks can be attributed to "rainbow-scattering" and are closely related to the geometry of potential energy surfaces which can be approximated by the superposition of continuum potentials along strings of atoms in the surface plane. The dependence of rainbow angles on the scattering geometry provides stringent tests on the scattering potentials. From classical trajectory calculations based on universal (ZBL), adjusted Moliere (O'Connor and Biersack), and individual interatomic potentials we obtain corresponding rainbow angles for comparison with the experimental data. We find good overall agreement with the experiments for a description of trajectories based on adjusted Moliere and individual potentials, whereas the agreement is poorer for potentials with ZBL screening.

  17. Excess astrophysical photons from a 0.1-1 keV cosmic axion background.

    PubMed

    Conlon, Joseph P; Marsh, M C David

    2013-10-11

    Primordial decays of string theory moduli at z~10(12) naturally generate a dark radiation cosmic axion background with 0.1-1 keV energies. This cosmic axion background can be detected through axion-photon conversion in astrophysical magnetic fields to give quasithermal excesses in the extreme ultraviolet and soft x-ray bands. Substantial and observable luminosities may be generated even for axion-photon couplings <10(-11) GeV(-1). We propose that axion-photon conversion may explain the observed excess emission of soft x rays from galaxy clusters, and may also contribute to the diffuse unresolved cosmic x-ray background. We list a number of correlated predictions of the scenario. PMID:24160588

  18. Lineshape analysis of keV electrons scattered from hydrogen molecules

    NASA Astrophysics Data System (ADS)

    Vos, Maarten

    2016-07-01

    Accurate measurements of keV electrons scattered elastically from H2 molecules reveal a lineshape that is an intrinsic property of the target. The intrinsic width of the elastic peak is due to the non-zero momentum of a proton bound to a molecule. A more precise analysis of the lineshape shows that it deviates from Gaussian. This deviation is shown to be a consequence of the dominance of the momentum component of the protons along the molecular axis. The mean-kinetic energy of the protons in H2 obtained based on the new peak shape agrees better with theory than the one obtained based on a Gaussian peak shape. These measurements demonstrate the possibility of a new way to study the dynamics of nuclei by electron scattering.

  19. Solution of controversy over 1583-keV levels in sup 204 Pb

    SciTech Connect

    Trzaska, W.H.; Julin, R.; Kantele, J.; Kumpulainen, J. )

    1989-09-01

    Data from {sup 204}Pb({ital p},{ital p}{prime}){sup 204}Pb conversion-electron and gamma-ray experiments, together with previous results, prove the existence of two levels (0{sup +} and 2{sup +}) at 1583-keV excitation energy in {sup 204}Pb. Modified values (limits) of the {rho}{sub 21}{sup 2} and {ital X}{sub 211} are 0.0013{lt}{rho}{sub 21}{sup 2}{lt}0.015 and {ital X}{sub 211}{gt}0.073. New experimental evidence indicates that all the three observed excited {ital O}{sup +} states in {sup 204}Pb can be explained as belonging to the four-neutron-hole valence space and, therefore, there is no clear candidate for the proton 2p-2h intruder state in this nucleus.

  20. 511 keV line and diffuse gamma rays from moduli

    SciTech Connect

    Kasuya, Shinta; Kawasaki, Masahiro

    2006-03-15

    We obtain the spectrum of gamma-ray emissions from the moduli whose decay into e{sup +}e{sup -} accounts for the 511 keV line observed by SPI/INTERGRAL. The moduli emit gamma rays through internal bremsstrahlung, and also decay directly into two gammas via tree and/or one-loop diagrams. We show that the internal bremsstahlung constrains the mass of the moduli below {approx}40 MeV model-independently. On the other hand, the flux of two gammas directly decayed from the moduli through one-loop diagrams will exceed the observed galactic diffuse gamma-ray background if the moduli mass exceeds {approx}20 MeV in the typical situation. Moreover, forthcoming analysis of SPI data in the range of 1-8 MeV may detect the line emisson with the energy half the moduli mass in the near future, which confirms the decaying moduli scenario.

  1. Effect of 200 keV argon ion implantation on refractive index of polyethylene terepthlate (PET)

    NASA Astrophysics Data System (ADS)

    Kumar, Rajiv; Chawla, Mahak; Rubi, Sharma, Annu; Aggarwal, Sanjeev; Kumar, Praveen; Kanjilal, D.

    2012-06-01

    In the present work, the effect of argon ion implantation has been studied on the refractive index of PET. The specimens were implanted at 200 keV with argon ions in the fluence range of 1×1015 to 1×1017 ions cm-2. The refractive indices have been found to increase with implantation dose and wavelength (in visible region) obtained by using UV-visible spectroscopy. Also a drastic decrease in optical band gap (from 3.63 eV to 1.48eV) and increase in Urbach energy (from 0.29 eV to 3.70 eV) with increase in implantation dose has been observed. The possible correlation between the changes observed in the refractive indices and the Urbachenergyhave been discussed.

  2. Motion of 3-6 keV Nonthermal Sources Along the Legs of a Flare Loop

    NASA Technical Reports Server (NTRS)

    Sui, Linhui; Holman, Gordon D.; Dennis, Brian R.

    2007-01-01

    Observations of nonthermal X-ray sources me critical to studying electron acceleration and transport in solar flares. Strong thermal emission radiated from the preheated plasma before the flare impulsive phase often makes it difficult to detect low-energy X-ray sources that are produced by relatively low-energy nonthermal electrons. Knowledge of the distribution of these low-energy nonthermal electrons is particularly important in determining the total nonthermal electron energy in solar flares. We report on an 'early impulsive flare' in which impulsive hard X-ray emission was seen early in the flare before the soft X-ray emission had risen significantly, indicating limited plasma pre-heating. Early in the flare, RHESSI < 25 keV images show coronal sources that moved first downward and then upwards along the legs of a flare loop. In particular, the 3-6 keV source appeared as a single coronal source at the start of the flare, and then it involved into two coronal sources moving down along the two legs of the loop. After nearly reaching the two footpoints at the hard X-ray peak, the two sources moved back up to the looptop again. RHESSI images and light curves all indicate that nonthermal emission dominated at energies as low as 3-6 keV. We suggest that the evolution of both the spectral index and the low-energy cutoff of the injected electron distribution could result in the accelerated electrons reaching a lower altitude along the legs of the dense flare loop and hence result in the observed downward and upward motions of the nonthermal sources.

  3. Measurements of total atomic attenuation cross sections of Tm, Yb, Lu, Hf, Ta, W, Re and Os Elements at 122keV and 136keV

    SciTech Connect

    Kaya, N.; Tirasoglu, E.; Apaydin, G.; Kobya, A. I.

    2007-04-23

    The aim of this study was to measure the total atomic attenuation cross sections ({sigma}t) in eighth elements (69{<=}Z{<=}76) at 122 keV and 136 keV. The experimental values of the cross sections were determined using the transmission geometry. Measurements have been performed using an annular source (Co-57) and Ultra-LEGe solid state detector with a resolution of 150 eV at 5.9 keV. Experimental results have been compared with theoretically calculated values and other available experimental results. Good agreement was observed among the experimental, theoretical and other experimental values.

  4. Backscattering of α-Quartz (0 6 10) for 14.4 keV Mössbauer Photons

    NASA Astrophysics Data System (ADS)

    Imai, Yasuhiko; Yoda, Yoshitaka; Zhang, Xiaowei; Kikuta, Seishi

    2007-01-01

    Backscattering of α-quartz (0 6 10) was investigated using 14.4 keV 57Fe Mössbauer photons from α-57Fe2O3 at nuclear resonant scattering beamline BL09XU, SPring-8. The α-quartz crystal was heated to around 353 K by an oven so that the Bragg angle of α-quartz 0 6 10 diffraction meats 90 degrees. Energy width of the reflection was measured by changing temperature of the oven. The measured bandwidth is 1.14(33) meV. Backscattering by a α-quartz crystal can be applied for high-energy-resolution monochromator or analyzer.

  5. ON THE SPECTRAL HARDENING AT {approx}>300 keV IN SOLAR FLARES

    SciTech Connect

    Li, G.; Kong, X.; Zank, G.; Chen, Y.

    2013-05-20

    It has long been noted that the spectra of observed continuum emissions in many solar flares are consistent with double power laws with a hardening at energies {approx}>300 keV. It is now widely believed that at least in electron-dominated events, the hardening in the photon spectrum reflects an intrinsic hardening in the source electron spectrum. In this paper, we point out that a power-law spectrum of electrons with a hardening at high energies can be explained by the diffusive shock acceleration of electrons at a termination shock with a finite width. Our suggestion is based on an early analytical work by Drury et al., where the steady-state transport equation at a shock with a tanh profile was solved for a p-independent diffusion coefficient. Numerical simulations with a p-dependent diffusion coefficient show hardenings in the accelerated electron spectrum that are comparable with observations. One necessary condition for our proposed scenario to work is that high-energy electrons resonate with the inertial range of the MHD turbulence and low-energy electrons resonate with the dissipation range of the MHD turbulence at the acceleration site, and the spectrum of the dissipation range {approx}k {sup -2.7}. A {approx}k {sup -2.7} dissipation range spectrum is consistent with recent solar wind observations.

  6. On the Spectral Hardening at gsim300 keV in Solar Flares

    NASA Astrophysics Data System (ADS)

    Li, G.; Kong, X.; Zank, G.; Chen, Y.

    2013-05-01

    It has long been noted that the spectra of observed continuum emissions in many solar flares are consistent with double power laws with a hardening at energies gsim300 keV. It is now widely believed that at least in electron-dominated events, the hardening in the photon spectrum reflects an intrinsic hardening in the source electron spectrum. In this paper, we point out that a power-law spectrum of electrons with a hardening at high energies can be explained by the diffusive shock acceleration of electrons at a termination shock with a finite width. Our suggestion is based on an early analytical work by Drury et al., where the steady-state transport equation at a shock with a tanh profile was solved for a p-independent diffusion coefficient. Numerical simulations with a p-dependent diffusion coefficient show hardenings in the accelerated electron spectrum that are comparable with observations. One necessary condition for our proposed scenario to work is that high-energy electrons resonate with the inertial range of the MHD turbulence and low-energy electrons resonate with the dissipation range of the MHD turbulence at the acceleration site, and the spectrum of the dissipation range ~k -2.7. A ~k -2.7 dissipation range spectrum is consistent with recent solar wind observations.

  7. Checking the potassium origin of the new emission line at 3.5 keV using the K XIX line complex at 3.7 keV

    NASA Astrophysics Data System (ADS)

    Iakubovskyi, Dmytro

    2015-11-01

    It is currently unclear whether the new line at ˜3.5 keV, recently detected in various samples of galaxy clusters, the Andromeda galaxy and the central part of our Galaxy, is caused by potassium emission lines. By using the latest astrophysical atomic emission line data base, AtomDB v. 3.0.2, we show that the most promising method to check its potassium origin directly will be the study of the K XIX emission line complex at ˜3.7 keV using forthcoming X-ray imaging spectrometers such as the Soft X-ray spectometer onboard the Astro-H mission or the microcalorimeter onboard the Micro-X sounding rocket experiment. In order to further reduce the remaining (factor of ˜3-5) uncertainty of the 3.7/3.5 keV ratio, more precise modelling should be performed, including the removal of significant spatial inhomogeneities, a detailed treatment of background components, and the extension of the modelled energy range.

  8. Weak Solar Flares in 3 -31.5 keV X-rays Detected in the Coronas-F Experiment

    NASA Astrophysics Data System (ADS)

    Gusev, Anatoly; Pugacheva, Galina; Martin, Inácio M.; Spjeldvik, Walther

    The RPS-1 spectrometer on the board of the Coronas-F satellite detecting solar X-rays in the range of 3-31.5 keV using a CdTe detector is described and some results of the observation of weak solar flares are presented. The detector has a high detection efficiency and radiation damage resistance necessary for long time space experiments. It has an active area of 46 mm2, a thickness of 1.4 mm, an operation voltage of 100 V, an energy resolution of 0.88 keV (13.87 keV Am241), a power consumption of 8.5 W, and a mass of 1.8 kg. The width of the first 12 channels (3-9 keV) is 0.5 keV, the width of the next 12 channels is 1 keV, and the width of the last 8 channels (21-31.5 keV) is 1.3 keV. The spectrum accumulation time in 32 channels is 16 s. The spectrometer provides vast experimental data on the spectra of soft X-ray emission of solar flares. The high spectral resolution of the instrument allows an investigation of the dynamics of the temperature in the source using the direct comparison of the spectrum shape with some models, for example, with the CHIANTI 5.2 model. It was noted that hardness of the spectrum in the flare maximum increases with the flare class and solar activity level. The magnetic heating of the corona was confirmed by the spectra of the background solar X ray radiation for various numbers of sunspots: the more sunspots, the harder the spectrum of the X-ray background radiation was registered and, respectively, the stronger was the impact on the Earth's atmosphere. Near the solar activity maximum, the background radiation intensity increased by more than an order of magnitude and the maximum energy increased from 6 to 20 keV. (To the memory of Drs. V.M. Pankov and V.L. Prokhin, colleagues and coworkers in the Coronas-F mission.)

  9. Capture of a neutron to excited states of a {sup 9}Be nucleus taking into account resonance at 622 keV

    SciTech Connect

    Dubovichenko, S. B.

    2013-10-15

    Radiative capture of a neutron to the ground and excited states of the 9Be nucleus is considered using the potential cluster model with forbidden states and with classification of cluster states by the Young schemes taking into account resonance at 622 keV for thermal and astrophysical energies.

  10. Centaurus A /NGC 5128/ at 2 keV-2.3 MeV - HEAO 1 observations and implications

    NASA Technical Reports Server (NTRS)

    Baity, W. A.; Rothschild, R. E.; Lingenfelter, R. E.; Stein, W. A.; Nolan, P. L.; Gruber, D. E.; Knight, F. K.; Matteson, J. L.; Peterson, L. E.; Mushotzky, R. F.

    1981-01-01

    The active-nucleus galaxy Centaurus A has been studied at 2 keV-2.3 MeV using data from the UCSD/MIT hard X-ray and low-energy gamma-ray instrument and the GSFC/CIT cosmic X-ray experiment on HEAO-1. It is found that an E exp -1.60 + or - 0.03 power law spectrum breaking to E exp -2.0 + or - 0.2 at 140 keV best describes the January and July 1978 data. The average intensity was 50% higher during the January observations. Upper limits to unresolved lines at 511 keV and 1.6 MeV were found to be 6.5 x 10 to the -4th photons/sq cm-s and 2.2 x 10 to the -4th photons/sq cm-s, respectively, at the 90% confidence level. The present data are consistent with the detailed calculations of the synchrotron self-Compton mechanism; they may also agree, marginally, with the predictions of emission from spherical accretion onto black holes.

  11. Sub-arcsec X-Ray Telescope for Imaging The Solar Corona In the 0.25 - 1.2 keV Band

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis; Cash, Webster; Jelsma, Schuyler; Farmer, Jason

    1996-01-01

    We have developed an X-ray telescope that uses a new technique for focusing X-rays with grazing incidence optics. The telescope was built with spherical optics for all of its components, utilizing the high quality surfaces obtainable when polishing spherical (as opposed to aspherical) optics. We tested the prototype X-ray telescope in the 300 meter vacuum pipe at White Sands Missile Range, NM. The telescope features 2 degee graze angles with tungsten coatings, yielding a bandpass of 0.25-1.5 keV with a peak effective area of 0.8 sq cm at 0.83 keV. Results from X-ray testing at energies of 0.25 keV and 0.93 keV (C-K and Cu-L) verify 0.5 arcsecond performance at 0.93 keV. Results from modeling the X-ray telescope's response to the Sun show that the current design would be capable of recording 10 half arcsecond images of a solar active region during a 300 second NASA sounding rocket flight.

  12. Subarcsecond x-ray telescope for imaging the solar corona in the 0.25- to 1.2-keV band

    NASA Astrophysics Data System (ADS)

    Gallagher, Dennis J.; Cash, Webster C.; Jelsma, Schuyler; Farmer, Jason

    1996-07-01

    We have developed an x-ray telescope that uses a new technique for focusing x-rays with grazing incidence optics. The telescope was built with spherical optics for all of its components, utilizing the high quality surfaces obtainable when polishing spherical (as opposed to aspherical) optics. We tested the prototype x-ray telescope in the 300 meter vacuum pipe at White Sands Missile Range, NM. The telescope features 2 degree graze angles with tungsten coatings, yielding a bandpass of 0.25-1.5 keV with a peak effective area of 0.8 cm(superscript 2) at 0.83 keV. Results from x-ray testing at energies of 0.25 keV and 0.93 keV (C-K and Cu-L) verify 0.5 arcsecond performance at 0.93 keV. Results from modeling the x-ray telescope's response to the SUn show that the current design would be capable of recording 10 half arcsecond images of a solar active region during a 300 second NASA sounding rocket flight.

  13. CAN THE EXCESS IN THE Fe XXVI Ly{gamma} LINE FROM THE GALACTIC CENTER PROVIDE EVIDENCE FOR 17 keV STERILE NEUTRINOS?

    SciTech Connect

    Prokhorov, Dmitry; Silk, Joseph

    2010-12-20

    Sterile neutrinos (or right-handed neutrinos) are a plausible warm dark matter candidate. We find that the excess of the intensity in the 8.7 keV line (at the energy of the Fe XXVI Ly{gamma} line) in the spectrum of the Galactic center observed by Suzaku cannot be explained by standard ionization and recombination processes. We suggest that the origin of this excess is via decays of sterile neutrinos with a mass of 17.4 keV. The estimated value of the mixing angle sin{sup 2}(2{theta}) = (4.4 {+-} 2.2) x 10{sup -12} lies in the allowed region of the mixing angle for a dark matter sterile neutrino with a mass of 17-18 keV.

  14. keV fullerene interaction with hydrocarbon targets: Projectile penetration, damage creation and removal

    NASA Astrophysics Data System (ADS)

    Delcorte, Arnaud; Garrison, Barbara J.

    2007-02-01

    The physics of energetic fullerene projectile penetration, damage creation and sputtering in organic solids is investigated via molecular dynamics simulations. Two models are used, the first one based on a full atomistic description of the target and the second one, using a coarse-grain prescription that was recently developed and tested for a benzene molecular crystal [E. Smiley, Z. Postawa, I.A. Wojciechowski, N. Winograd, B. J. Garrison, Appl. Surf. Sci. 252 (2006) 6436]. The results explore the mechanism of energy transfer from the C 60 projectile to the organic target atoms/molecules through the comparison with significantly different projectiles (Argon) and samples (Ag crystal). The effects of the projectile energy on the penetration and fast energy transfer processes (200 fs) are also delineated. The second part of the results investigates the 'long term' consequences (20-50 ps) of fullerene impacts in hydrocarbon sample surfaces. In an icosane (C 20H 42) solid, a 5 keV C 60 projectile induces a crater of ˜10 nm diameter surrounded by a ˜4 nm wide rim and ejects ˜70 intact molecules. More than 75% of the fragments generated by the fullerene in the surface are also sputtered away by the end of the event. The perspective considers the capabilities of fullerene projectiles for depth profile analysis of molecular samples by particle-induced desorption mass spectrometry.

  15. Rapid variability of 10-140 keV X-rays from Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Gruber, D. E.; Matteson, J. L.; Peterson, L. E.; Rothschild, R. E.; Doty, J. P.; Levine, A. M.; Lewin, W. H. G.; Primini, F. A.

    1981-01-01

    On five occasions in 1977 and 1978, Cygnus X-1 was observed using the low-energy detectors of the UCSD/MIT Hard X-ray and Low-Energy Gamma Ray experiment on the HEAO 1 satellite. Rapid (times between 0.08 and 1000 sec) variability was found in the 10-140 keV band. The power spectrum was white for frequencies between 0.001 and 0.05 Hz and was proportional to the inverse of the frequency for frequencies between 0.05 and 3 Hz, indicating correlations on all time scales less than approximately 20 s. The shape of the energy spectrum was correlated with intensity; it was harder at higher intensity. If the emission is produced by Comptonization of a soft photon flux in a hot cloud, the heating of the cloud cannot be constant; it must vary on time scales up to approximately 20 s. A variable accretion rate could cause the observed effects.

  16. ART: Surveying the Local Universe at 2-11 keV

    NASA Technical Reports Server (NTRS)

    O'Dell, S. L.; Ramsey, B. D.; Adams, M. L.; Brandt, W. N.; Bubarev, M. V.; Hassinger, G.; Pravlinski, M.; Predehl, P.; Romaine, S. E.; Swartz, D. A.; Urry, C. M.; Vikhlinin, A.; Weisskopf, M. C.

    2008-01-01

    The Astronomical Rontgen Telescope (ART) is a medium-energy x-ray telescope system proposed for the Russian-led mission Spectrum Rontgen-Gamma (SRG). Optimized for performance over the 2-11-keV band, ART complements the softer response of the SRG prime instrument-the German eROSITA x-ray telescope system. The anticipated number of ART detections is 50,000-with 1,000 heavily-obscured (N(sub H)> 3x10(exp 23)/sq cm) AGN-in the SRG 4-year all-sky survey, plus a comparable number in deeper wide-field (500 deg(sup 2) total) surveys. ART's surveys will provide a minimally-biased, nearly-complete census of the local Universe in the medium-energy x-ray band (including Fe-K lines), at CCD spectral resolution. During long (approx.100-ks) pointed observations, ART can obtain statistically significant spectral data up to about 15 keY for bright sources and medium-energy x-ray continuum and Fe-K-line spectra of AGN detected with the contemporaneous NuSTAR hard-x-ray mission.

  17. Dynamics of charge evolution in glass capillaries for 230-keV Xe23+ ions

    NASA Astrophysics Data System (ADS)

    Cassimi, A.; Ikeda, T.; Maunoury, L.; Zhou, C. L.; Guillous, S.; Mery, A.; Lebius, H.; Benyagoub, A.; Grygiel, C.; Khemliche, H.; Roncin, P.; Merabet, H.; Tanis, J. A.

    2012-12-01

    We have measured the transmission of 230-keV (10-keV/q) Xe23+ ions through insulating tapered glass capillaries of microscopic dimensions. The dynamics of charging and discharging processes have been investigated, evidencing an unexpected slow alignment of the beam along the capillary axis. Oscillations of the exiting beam position have been observed during the charging process associated to the formation of charge patches on the capillary inner walls. The emerging ions are guided with a characteristic guiding angle falling on a universal curve proposed for PET polymer nanocapillaries. This result, very similar to the channeling process, is somewhat surprising in view of the significant differences between the straight nanocapillary polymer foils and the tapered microscopic single glass capillary used here. The transmitted ions show no evidence of energy loss or charge changing except for the production of a small neutral fraction that was determined to be due to ions that had become neutralized to form atoms rather than due to photon emission. These results thus test and confirm the validity of transmission and guiding and provide insight into the dynamics of higher-energy ions than have been previously studied in this regard, allowing a determination of the maximum energy for which the guiding process might occur.

  18. Attosecond quantum entanglement in neutron Compton scattering from water in the keV range

    NASA Astrophysics Data System (ADS)

    Chatzidimitriou-Dreismann, C. A.

    2006-11-01

    Scattering of neutrons in the 24- 150 keV incident energy range from H2O relative to that of D2O and H2O- D2O mixtures was reported very recently. Studying time-of-flight integrated intensities, the applied experimental procedure appears to be transparent and may open up a novel class of neutron experiments regarding the “anomalous” scattering from protons, firstly observed in our experiment at ISIS in the 5- 100 eV range. The keV-results were analyzed within standard theory, also including (1) multiple scattering and (2) the strong incident-energy dependence of the neutron-proton cross-section σH(E0) in this energy range. The analysis reveals a striking anomalous ratio of scattering intensity of H2O relative to that of D2O of about 20%, thus being in surprisingly good agreement with the earlier results of the original experiment at ISIS.

  19. Study of keV radiation properties of Mo and Ti X-pinch plasma sources using a pinhole transmission grating spectrometer

    SciTech Connect

    Li Jing; Deng Jianjun; Xie Weiping; Huang Xianbin; Yang Libing; Zhou Shaotong; Duan Shuchao; Zhang Siqun; Dan Jiakun; Zhu Xiaoli

    2010-07-15

    The properties of keV x-ray radiations from Mo and Ti X-pinch plasma sources at the current of 800 kA were investigated by a pinhole transmission grating spectrometer. The spectrometer was characterized by a high linear dispersion rate (2.9 A/mm), and from its time-integrated diffraction images, rich information about the X-pinch sources (e.g., source number, source size, and absolute spectra) could be obtained. Multiple hot spots were produced in all the Mo tests with loads made of two or four 25 mum wires with or without a shunt wire, and obvious increases both in the radiation intensity and in the source size around the spectral region of 2.6 keV were observed. In Ti X-pinch tests, a single keV x-ray burst with a source size of approx200 mum and a time duration of approx200 ps in full width at half maximum was obtained using a load made of two 50 mum wires plus a shunt wire. The intensity of x-rays decreased sharply from approx10{sup 11} photon eV{sup -1} sr{sup -1} at 1 keV to approx10{sup 8} photon eV{sup -1} sr{sup -1} at 4 keV. The energy-dependent source size in the band of 1-4 keV is less than 100 mum and seemed to shrink quickly as x-ray energy increases.

  20. Do the O2 Schumann-Runge Bands Participate in keV Collision-Induced Dissociation Experiments?

    NASA Astrophysics Data System (ADS)

    Lin, Yawei; Mayer, Paul M.

    2011-01-01

    In high-energy (keV) CID experiments, oxygen has the unique ability to enhance specific ion fragmentation pathways that lie within a relatively narrow band of activation energy. It has been previously proposed that this oxygen-enhanced dissociation phenomenon is due to the participation of the {{O}_{{2}}}{B}{ ^{{3}}}{Σ_{{u}}}^{ + } - {X}{ ^{{3}}}{Σ_{{g}}}^{ - } (Schumann-Runge) system in the collision complex. During the collision, oxygen is first excited to its {B}{ ^{{3}}}{Σ_{{u}}}^{ + } state before it returns this energy to the projectile ion. This energy drives the nonstatistical dissociation of the projectile provided there is an energetically accessible pathway in resonance with the absorbed radiation. To probe the validity of this hypothesis, a modified VG-ZAB mass spectrometer was used to observe the photon emissions from keV collisions of a selection of projectile ions with O2 target gas. By studying the resulting collision-induced emission (CIE) spectra, a second potential mechanism came to light, one that involves the near-isoenergetic O2 +. A 2Πu→X 2 Πg state transition.

  1. Do the O2 Schumann-Runge bands participate in keV collision-induced dissociation experiments?

    PubMed

    Lin, Yawei; Mayer, Paul M

    2011-01-01

    In high-energy (keV) CID experiments, oxygen has the unique ability to enhance specific ion fragmentation pathways that lie within a relatively narrow band of activation energy. It has been previously proposed that this oxygen-enhanced dissociation phenomenon is due to the participation of the O(2) B(3)Σ(u)(+) - X(3)Σ(g)(-) (Schumann-Runge) system in the collision complex. During the collision, oxygen is first excited to its [Formula: see text] state before it returns this energy to the projectile ion. This energy drives the nonstatistical dissociation of the projectile provided there is an energetically accessible pathway in resonance with the absorbed radiation. To probe the validity of this hypothesis, a modified VG-ZAB mass spectrometer was used to observe the photon emissions from keV collisions of a selection of projectile ions with O(2) target gas. By studying the resulting collision-induced emission (CIE) spectra, a second potential mechanism came to light, one that involves the near-isoenergetic O(2) (+.) A (2)Π(u)→X (2) Π(g) state transition. PMID:21472546

  2. Laser-driven 6-16 keV x-ray imaging and backlighting with spherical crystals

    NASA Astrophysics Data System (ADS)

    Schollmeier, M.; Rambo, P. K.; Schwarz, J.; Smith, I. C.; Porter, J. L.

    2014-10-01

    Laser-driven x-ray self-emission imaging or backlighting of High Energy Density Physics experiments requires brilliant sources with keV energies and x-ray crystal imagers with high spatial resolution of about 10 μ m. Spherically curved crystals provide the required resolution when operated at near-normal incidence, which minimizes image aberrations due to astigmatism. However, this restriction dramatically limits the range of suitable crystal and spectral line combinations. We present a survey of crystals and spectral lines for x-ray backlighting and self-emission imaging with energies between 6 and 16 keV. Ray-tracing simulations including crystal rocking curves have been performed to predict image brightness and spatial resolution. Results have been benchmarked to experimental data using both Sandia's 4 kJ, ns Z-Beamlet and 200 J, ps Z-Petawatt laser systems. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2014-15552A.

  3. The Physical Nature of the Sharp Spectral Feature at 7 keV Detected in 1H0707-495

    NASA Technical Reports Server (NTRS)

    Brandt, Niel

    2005-01-01

    XMM-Newton acquired data on the accepted target, 1H0707-495, on 2002 October 13 during revolution 0521. The observation was successful, with only about 5% data loss due to background flaring. We compared the data from this observation with earlier data taken on this Narrow-Line Seyfert 1 about two years before, performing interpretation studies in the context of the partial-covering model. Our second longer observation once again displays a sharp (< 200 eV) spectral drop above 7 keV. However, in comparison to the first observation, the edge depth and energy have changed significantly. In addition to changes in the edge parameters, the high-energy spectrum appears steeper. The changes in the high-energy spectrum can be adequately explained in terms of a partial-covering absorber out-flowing from the central region. The low-energy spectrum also shows significant long-term spectral variability, including (1) a substantial increase in the disk temperature, (2) detection of an approx. 0.9 keV emission feature, and (3) the presence of ionized absorption that was detected during the ASCA mission. The large increase in disk temperature, and the more modest rise in luminosity, can be understood if we consider a slim-disk model for 1H0707-495. In addition, the higher disk luminosity could be the driving force behind the outflow and the re-appearance of an ionized medium during the second XMM-Newton observation.

  4. HEAO 1 observations of the Perseus cluster above 10 keV

    NASA Technical Reports Server (NTRS)

    Primini, F. A.; Howe, S. K.; Lang, F.; Levine, A. M.; Lewin, W. H. G.; Rothschild, R.; Baity, W. A.; Gruber, D. E.; Knight, F. K.; Basinska, E.

    1981-01-01

    Results are presented of HEAO 1 observations of the Perseus cluster from 10 to 150 keV in 1977 August and 1978 February and August. The spectrum exhibits a previously unknown hard (greater than 25 keV) component in addition to the previously known thermal bremsstrahlung emission. The data presented show no significant evidence of variability from 10.5 keV to 93.5 keV, and a comparison of our results with earlier results indicates no strong evidence for variability above 25 keV over a time scale of 4 yr. If the hard-component excess is due to NGC 1275, the data imply a 2-6 keV X-ray luminosity of 1 x 10 to the 44th ergs/s for the galaxy, or about 15% of the total cluster emission from 2 to 6 keV and a 25-40 keV luminosity of 8 x 10 to the 43rd ergs/s.

  5. Impact of IUdR on Rat 9L glioma cell survival for 25-35 keV photon-activated auger electron therapy.

    PubMed

    Alvarez, Diane; Hogstrom, Kenneth R; Brown, Thomas A D; Ii, Kenneth L Matthews; Dugas, Joseph P; Ham, Kyungmin; Varnes, Marie E

    2014-12-01

    The goal of the current study was to measure the energy dependence of survival of rat 9L glioma cells labeled with iododeoxyuridine (IUdR) that underwent photon-activated Auger electron therapy using 25-35 keV monochromatic X rays, i.e., above and below the K-edge energy of iodine. Rat 9L glioma cells were selected because of their radioresistance, ability to be implanted for future in vivo studies and analogy to radioresistant human gliomas. Survival curves were measured for a 4 MV X-ray beam and synchrotron produced monochromatic 35, 30 and 25 keV X-ray beams. IUdR was incorporated into the DNA at levels of 0, 9 and 18% thymidine replacement for 4 MV and 35 keV and 0 and 18% thymidine replacement for 30 and 25 keV. For 10 combinations of beam energy and thymidine replacement, 62 data sets (3-13 per combination) provided 776 data points (47-148 per combination). Survival versus dose data taken for the same combination, but on different days, were merged by including the zero-dose points in the nonlinear, chi-squared data fitting using the linear-quadratic model and letting the best estimate to the zero-dose plating efficiency for each of the different days be a fitting parameter. When comparing two survival curves, the ratio of doses resulting in 10% survival gave sensitization enhancement ratios (SER10) from which contributions due to linear energy transfer (LET) (SER10,LET), IUdR radiosensitization (SER10,RS), the Auger effect (SER10,AE) and the total of all effects (SER10,T) were determined. At 4 MV and 35, 30 and 25 keV, SER10,LET values were 1.00, 1.08 ± 0.03, 1.22 ± 0.02 and 1.37 ± 0.02, respectively. At 4 MV SER10,RS values for 9 and 18% IUdR were 1.28 ± 0.02 and 1.40 ± 0.02, respectively. Assuming LET effects were independent of percentage IUdR and radiosensitization effects were independent of energy, SER10,AE values for 18% IUdR at 35, 30 and 25 keV were 1.35 ± 0.05, 1.06 ± 0.03 and 0.98 ± 0.03, respectively. The value for 9% IUdR at 35 keV was 1

  6. Quiet-time Suprathermal (~0.1-1.5 keV) Electrons in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Tao, Jiawei; Wang, Linghua; Zong, Qiugang; Li, Gang; Salem, Chadi S.; Wimmer-Schweingruber, Robert F.; He, Jiansen; Tu, Chuanyi; Bale, Stuart D.

    2016-03-01

    We present a statistical survey of the energy spectrum of solar wind suprathermal (˜0.1-1.5 keV) electrons measured by the WIND 3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. After separating (beaming) strahl electrons from (isotropic) halo electrons according to their different behaviors in the angular distribution, we fit the observed energy spectrum of both strahl and halo electrons at ˜0.1-1.5 keV to a Kappa distribution function with an index κ and effective temperature Teff. We also calculate the number density n and average energy Eavg of strahl and halo electrons by integrating the electron measurements between ˜0.1 and 1.5 keV. We find a strong positive correlation between κ and Teff for both strahl and halo electrons, and a strong positive correlation between the strahl n and halo n, likely reflecting the nature of the generation of these suprathermal electrons. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. The halo κ is generally smaller than the strahl κ (except during the solar minimum of cycle 23). The strahl n is larger at solar maximum, but the halo n shows no difference between solar minimum and maximum. Both the strahl n and halo n have no clear association with the solar wind core population, but the density ratio between the strahl and halo roughly anti-correlates (correlates) with the solar wind density (velocity).

  7. Sputtering and surface structure modification of gold thin films deposited onto silicon substrates under the impact of 20-160 keV Ar+ ions

    NASA Astrophysics Data System (ADS)

    Mammeri, S.; Ouichaoui, S.; Ammi, H.; Dib, A.

    2014-10-01

    The induced sputtering and surface state modification of Au thin films bombarded by swift Ar+ ions under normal incident angle have been studied over an energy range of (20-160) keV using three complementary techniques: Rutherford backscattering spectroscopy (RBS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The sputtering yields determined by RBS measurements using a 2 MeV 4He+ ion beam were found to be consistent with previous data measured within the Ar+ ion energy region E ⩽ 50 keV, which are thus extended to higher bombarding energies. Besides, the SEM and XRD measurements clearly point out that the irradiated Au film surfaces undergo drastic modifications with increasing the Ar+ ion energy, giving rise to the formation of increasingly sized grains of preferred (1 1 1) crystalline orientations. The relevance of different sputtering yield models for describing experimental data is discussed with invoking the observed surface effects induced by the Ar+ ion irradiation.

  8. Atomic, Molecular, and Optical Physics: Optical Excitation Function of H(1s-2p) Produced by electron Impact from Threshold to 1.8 keV

    NASA Technical Reports Server (NTRS)

    James, G. K.; Slevin, J. A.; Shemansky, D. E.; McConkey, J. W.; Bray, I.; Dziczek, D.; Kanik, I.; Ajello, J. M.

    1997-01-01

    The optical excitation function of prompt Lyman-Alpha radiation, produced by electron impact on atomic hydrogen, has been measured over the extended energy range from threshold to 1.8 keV. Measurements were obtained in a crossed-beams experiment using both magnetically confined and electrostatically focused electrons in collision with atomic hydrogen produced by an intense discharge source. A vacuum-ultraviolet mono- chromator system was used to measure the emitted Lyman-Alpha radiation. The absolute H(1s-2p) electron impact excitation cross section was obtained from the experimental optical excitation function by normalizing to the accepted optical oscillator strength, with corrections for polarization and cascade. Statistical and known systematic uncertainties in our data range from +/- 4% near threshold to +/- 2% at 1.8 keV. Multistate coupling affecting the shape of the excitation function up to 1 keV impact energy is apparent in both the present experimental data and present theoretical results obtained with convergent close- coupling (CCC) theory. This shape function effect leads to an uncertainty in absolute cross sections at the 10% level in the analysis of the experimental data. The derived optimized absolute cross sections are within 7% of the CCC calculations over the 14 eV-1.8 keV range. The present CCC calculations converge on the Bethe- Fano profile for H(1s-2p) excitation at high energy. For this reason agreement with the CCC values to within 3% is achieved in a nonoptimal normalization of the experimental data to the Bethe-Fano profile. The fundamental H(1s-2p) electron impact cross section is thereby determined to an unprecedented accuracy over the 14 eV - 1.8 keV energy range.

  9. Thermal-spikes temperature measurement in pure metals under argon ion irradiation (E = 5-15 keV)

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, V. V.; Makhin'ko, F. F.; Solomonov, V. I.

    2015-11-01

    A method for determining the parameters of energy release in dense cascades of atomic displacements and for estimating the temperature and the level of pressures in thermalized cascade regions (thermal spikes) is proposed. It is based on the measurement and analysis of the spectral composition of the surface glow of condensed media in the course of irradiation with Ar+ 5-15 keV accelerated ions, under the assumption of the presence of a thermal component of glow defined by the presence of thermalized cascade regions.

  10. Radiation transmission of concrete including boron waste for 59.54 and 80.99 keV gamma rays

    NASA Astrophysics Data System (ADS)

    Demir, Demet; Keleş, Gürbüz

    2006-04-01

    Accurate measurement have been made to determine radiation transmission of boron compounds by using an extremely narrow collimated beam transmission method for 59.54 and 80.99 keV gamma energy with a Si(Li) detector. Appreciable variations were observed in the transmission factors of the concrete samples including different boron wastes (borogypsum and colemanite concentrator waste). Additionally, mass attenuation coefficients were also calculated. It is seen that μ/ ρ is increased with increasing boron concentration in the concrete and the both kind of boron waste have nearly the same property in the radiation transmission.

  11. Planned investigation of energetic particle populations (approximately 20-500 keV) in the close Martian environment

    NASA Astrophysics Data System (ADS)

    McKenna-Lawlor, S.; Rusznyak, P.; Gringauz, K.; Klimenko, I.; Lutsenko, V.; Verigin, M.; Korth, A.; Richter, A.; Fischer, S.; Polasek, C.

    1995-04-01

    Energetic particle observations made by the Irish SLED instrument on the Phobos 2 spacecraft in 1989 have revealed the presence, within the overall energy range less than 30 keV - greater than 3.2 MeV, of variously located energetic particle populations in the close Marian environment. The signatures of characteristic boundaries have also been recorded for the first time in energetic particles in the distant Martian magnetotail. The new SLED-II instrument on the Mars-94 Mission is designed to study in detail, with 4 pi measurement capability, these and other energetic particle phenomena at Mars, while operating, over an extended period, at low altitudes above the planet.

  12. One-dimensional x-ray imaging using a spherically bent mica crystal at 4.75 keV

    SciTech Connect

    Workman, J.; Evans, S.; Kyrala, G. A.

    2001-01-01

    One-dimensional x-ray imaging of static gold bars using a spherically bent mica crystal is presented for the first time at an x-ray energy of 4.75 keV. X rays are produced using 1-ns-square pulses on the TRIDENT laser facility driving the He-like resonance transition in solid titanium disks. Time-integrated images of square profile parallel gold bars are recorded on direct exposure film with a magnification of {approx}10. Rising edge measurements of the bars demonstrate resolutions of about 6--7 {mu}m over a 400 {mu}m field of view.

  13. M Sub-Shell Cross Sections For 75-300 keV Proton Impact On W, Pt And Pb

    SciTech Connect

    Cipolla, Sam J.

    2011-06-01

    M sub-shell x-ray production cross sections from 75-300 keV proton bombardment of thick elemental targets of W, Pt, and Pb were measured and compared with ECPSSR and relativistic RPWBA-BC cross sections using different data bases of fluorescence yields, Coster-Kronig factors, and x-ray transition rates. With a few exceptions, the differences between the various data base comparisons were not significant. For different sub-shells, either ECPSSR or RPWBA-BC compared better with the measurements. In all cases, agreement with theory improved as the collision energy increased.

  14. Development of a soft x-ray diffractometer for a wideband multilayer grating with a novel layer structure in the 2-4 keV range

    SciTech Connect

    Imazono, Takashi; Koike, Masato; Kawachi, Tetsuya; Hasegawa, Noboru; Koeda, Masaru; Nagano, Tetsuya; Sasai, Hiroyuki; Oue, Yuki; Yonezawa, Zeno; Kuramoto, Satoshi; Terauchi, Masami; Takahashi, Hideyuki; Handa, Nobuo; Murano, Takanori

    2012-07-11

    We have been developing a wavelength-dispersive soft x-ray spectrograph covering an energy region of 50-4000 eV to attach to a conventional electron microscope. Observation of soft x-ray emission in the 2-4 keV range needs a multilayer coated grating. In order to evaluate the performance of the optical component in the energy region, a goniometric apparatus has been newly developed and the preliminary performance has been tested using synchrotron radiation.

  15. High-efficiency multilevel zone plates for keV X-rays

    NASA Astrophysics Data System (ADS)

    di Fabrizio, E.; Romanato, F.; Gentili, M.; Cabrini, S.; Kaulich, B.; Susini, J.; Barrett, R.

    1999-10-01

    The development of high brilliance X-ray sources coupled with advances in manufacturing technologies has led to significant improvements in submicrometre probes for spectroscopy, diffraction and imaging applications. The generation of a small beam spot size is commonly based on three principles: total reflection (as used in optical elements involving mirrors or capillaries), refraction (such as in refractive lenses) and diffraction. The latter effect is employed in Bragg-Fresnel or Soret lenses, commonly known as Fresnel zone plate lenses. These lenses currently give the best spatial resolution, but are traditionally limited to rather soft X-rays-at high energies, their use is still limited by their efficiency. Here we report the fabrication of high-efficiency, high-contrast gold and nickel multistep (quaternary) Fresnel zone plates using electron beam lithography. We achieve a maximum efficiency of 55% for the nickel plate at 7keV. In addition to their high efficiency, the lenses offer the advantages of low background signal and effective reduction of unwanted diffraction orders. We anticipate that these lenses should have a significant impact on techniques such as microscopy, micro-fluorescence and micro-diffraction, which require medium resolution (500-100nm) and high flux at fixed energies.

  16. LUCIA - a new 1-7 keV {mu}-XAS Beamline

    SciTech Connect

    Janousch, M.; Schmidt, Th.; Wetter, R.; Grolimund, G.; Scheidegger, A.M.; Flank, A.-M.; Lagarde, P.; Cauchon, G.; Bac, S.; Dubuisson, J.M.

    2004-05-12

    LURE-SOLEIL (France) and the Swiss Light Source (SLS) are building together a new micro focused beamline for micro x-ray absorption spectroscopy and micro imaging. This line is designed to deliver a photon flux of the order of 1012 ph/sec on a 1 x 1 {mu}m spot within the energy domain of 0.8 to 7 keV. This beam line is being installed on the X07M straight section of SLS. The source is an APPLE II undulator with a period of 54 mm. The main advantage of this device lies in the delivery of any degree of polarization, linear or circular, over the whole energy range, without the need of a sample-position change. The monochromator will be a fixed exit double crystal equipped with 5 sets of crystals, thanks to the very narrow photon beam from the undulator ( Beryl, KTP, YB66, InSb(111), Si(111) ). The optics includes a first horizontal focusing mirror (spherical), which produces an intermediate source for the horizontal mirror of a Kirkpatrick-Baez (KB) system. The vertical mirror of the KB directly images the source. Finally, a low-pass double mirror filter insures a proper harmonic rejection.

  17. MULTI-KEV X-RAY YIELDS FROM HIGH-Z GAS TARGETS FIELDED AT OMEGA

    SciTech Connect

    Kane, J O; Fournier, K B; May, M J; Colvin, J D; Thomas, C A; Marrs, R E; Compton, S M; Moody, J D; Bond, E J; Davis, J F

    2010-11-04

    The authors report on modeling of x-ray yield from gas-filled targets shot at the OMEGA laser facility. The OMEGA targets were 1.8 mm long, 1.95 mm in diameter Be cans filled with either a 50:50 Ar:Xe mixture, pure Ar, pure Kr or pure Xe at {approx} 1 atm. The OMEGA experiments heated the gas with 20 kJ of 3{omega} ({approx} 350 nm) laser energy delivered in a 1 ns square pulse. the emitted x-ray flux was monitored with the x-ray diode based DANTE instruments in the sub-keV range. Two-dimensional x-ray images (for energies 3-5 keV) of the targets were recorded with gated x-ray detectors. The x-ray spectra were recorded with the HENWAY crystal spectrometer at OMEGA. Predictions are 2D r-z cylindrical with DCA NLTE atomic physics. Models generally: (1) underpredict the Xe L-shell yields; (2) overpredict the Ar K-shell yields; (3) correctly predict the Xe thermal yields; and (4) greatly underpredict the Ar thermal yields. However, there are spreads within the data, e.g. the DMX Ar K-shell yields are correctly predicted. The predicted thermal yields show strong angular dependence.

  18. Attosecond keV x-ray pulses driven by Thomson scattering in a tight focus regime

    NASA Astrophysics Data System (ADS)

    Kim, D.; Lee, H.; Chung, S.; Lee, K.

    2009-06-01

    The radiation of a relativistic electron interacting with a co-propagating tightly focused high-power laser is investigated. High-order fields (HOFs) existing in a tight focus (a few micrometers or so) affect the dynamics of electrons rather significantly so as to enhance radiation intensity by several orders of magnitude. In the case of a co-propagating interaction geometry, the second-order field plays an important role in radiation enhancement. It is demonstrated that when HOFs are included, the radiation efficiency is increased by a factor of up to 100 000 for w0 = 2 and 5 μm, with a laser intensity of 2.2×1020 W cm-2, compared with that when HOFs are not included. The enhancement is larger for smaller electron energies and laser beam waists. It has also been shown that when an electron bunch interacts with a high-intensity tightly-focused femtosecond laser pulse in a co-propagation geometry, attosecond (~300 as) x-ray pulses can be produced. The photon energy can reach about 40 keV for an electron energy of 2 GeV. The physical scheme investigated in this work can be used for an ultrafast (attosecond or femtosecond) x-ray source in the range of 10-100 keV.

  19. Neutron cross sections of 122Te, 123Te, and 124Te between 1 and 60 keV

    NASA Astrophysics Data System (ADS)

    Xia, Y.; Gerstenhöfer, Th. W.; Jaag, S.; Käppeler, F.; Wisshak, K.

    1992-05-01

    The currently favored s process scenario of helium shell burning in low mass stars involves a range of thermal energies from kT=12 to 25 keV with most of the neutron exposure taking place at low temperatures. Therefore, differential cross sections are required down to the region of resolved resonances for the reliable determination of the Maxwellian-averaged cross sections typical of the stellar plasma. This work deals with the neutron capture cross sections of the important s only isotopes 122Te, 123Te, and 124Te, which were measured between 1 and 60 keV neutron energy with a setup of Moxon-Rae detectors. The systematic uncertainties achieved in this experiment are ~5%, but statistical uncertainties are smaller than 2%. In addition to the Moxon-Rae detectors, the setup includes a 6Li glass detector which could be used to determine the total neutron cross sections simultaneously. These results represent the first set of experimental data in this energy range.

  20. Digging gold: keV He(+) ion interaction with Au.

    PubMed

    Veligura, Vasilisa; Hlawacek, Gregor; Berkelaar, Robin P; van Gastel, Raoul; Zandvliet, Harold J W; Poelsema, Bene

    2013-01-01

    Helium ion microscopy (HIM) was used to investigate the interaction of a focused He(+) ion beam with energies of several tens of kiloelectronvolts with metals. HIM is usually applied for the visualization of materials with extreme surface sensitivity and resolution. However, the use of high ion fluences can lead to significant sample modifications. We have characterized the changes caused by a focused He(+) ion beam at normal incidence to the Au{111} surface as a function of ion fluence and energy. Under the influence of the beam a periodic surface nanopattern develops. The periodicity of the pattern shows a power-law dependence on the ion fluence. Simultaneously, helium implantation occurs. Depending on the fluence and primary energy, porous nanostructures or large blisters form on the sample surface. The growth of the helium bubbles responsible for this effect is discussed. PMID:23946914

  1. Fragmentation of H2O by 1 -- 5 keV He^2+ ions: Experiment and Theory

    NASA Astrophysics Data System (ADS)

    Stolterfoht, N.; Hellhammer, R.; Sobocinski, P.; Cabrera-Trujillo, R.; Ohrn, Y.; Deumens, E.; Sabin, J.

    2006-05-01

    Fragmentation of H2O molecules induced by ^3He^2+ impact was investigated experimentally as a function of the energy in the range from 1-5 keV. Collisions at large impact parameters are found to produce fragment protons with energies centered around peaks at 6 eV and 15 eV. The H^+ fragments were detected in the angular range from 25 to 135 with respect to the incident beam direction. Absolute fragmentation cross sections dσ/dφ, differential in the emission angle are found to be anisotropic, with protons preferentially emitted at angles near 90 . In addition to the experiments, we performed quantum-mechanical calculations to understand the fragmentation mechanisms producing protons at preferred energies and angles. The theoretical results are obtained using the Electron-Nuclear Dynamics formalism (END), which solves the time-dependent Schr"odinger equation.

  2. Measurement of the 10 keV resonance in the B10(p,α0)Be7 reaction via the Trojan Horse method

    NASA Astrophysics Data System (ADS)

    Spitaleri, C.; Lamia, L.; Puglia, S. M. R.; Romano, S.; La Cognata, M.; Crucillà, V.; Pizzone, R. G.; Rapisarda, G. G.; Sergi, M. L.; Del Santo, M. Gimenez; Carlin, N.; Munhoz, M. G.; Souza, F. A.; Szanto de Toledo, A.; Tumino, A.; Irgaziev, B.; Mukhamedzhanov, A.; Tabacaru, G.; Burjan, V.; Kroha, V.; Hons, Z.; Mrazek, J.; Zhou, Shu-Hua; Li, Chengbo; Wen, Qungang; Wakabayashi, Y.; Yamaguchi, H.; Somorjai, E.

    2014-09-01

    The B10(p ,α0)Be7 bare nucleus astrophysical S (E) factor has been measured for the first time at energies from about 100 keV down to about 5 keV by means of the Trojan Horse method (THM). In this energy region, the S (E) factor is strongly dominated by the 8.699 MeV C11 level (Jπ=52+), producing an s-wave resonance centered at about 10 keV in the entrance channel. Up to now, only the high-energy tail of this resonance has been measured, while the low-energy trend is extrapolated from the available direct data. The THM has been applied to the quasifree H2(B10,α0 Be7)n reaction induced at a boron-beam energy of 24.5 MeV. An accurate analysis leads to the determination of the B10(p ,α0)Be7 S (E) factor and of the corresponding electron screening potential Ue, thus giving for the first time an independent evaluation of it.

  3. Effect of initial-state target polarization on the single ionization of helium by 1-keV electron impact

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Yan; Ma, Xiao-Yan; Li, Xia; Miao, Xiang-Yang; Jia, Xiang-Fu

    2012-07-01

    We report new results of triple differential cross sections for the single ionization of helium by 1-KeV electron impact at the ejection energy of 10 eV. Investigations have been made for both the perpendicular plane and the plane perpendicular to the momentum transfer geometries. The present calculation is based on the three-Coulomb wave function. Here we have also incorporated the effect of target polarization in the initial state. A comparison is made between the present calculation with the results of other theoretical methods and a recent experiment [Dürr M, Dimopoulou C, Najjari B, Dorn A, Bartschat K, Bray I, Fursa D V, Chen Z, Madison D H and Ullrich J 2008 Phys. Rev. A 77 032717]. At an impact energy of 1 KeV, the target polarization is found to induce a substantial change of the cross section for the ionization process. We observe that the effect of target polarization plays a dominant role in deciding the shape of triple differential cross sections.

  4. An Einstein survey of the 1 keV soft X-ray background in the Galactic plane

    NASA Technical Reports Server (NTRS)

    Stanford, John M.; Caillault, Jean-Pierre

    1994-01-01

    We have analyzed 56 Einstein Observatory Imaging Proportional Counter (IPC) observations within +/- 3 deg of the Galactic plane in order to determine the low-latitude soft X-ray background flux in the 0.56-1.73 keV band. Any detected X-ray point source which fell within our regions of study was removed from the image, enabling us to present maps of the background flux as a function of Galactic latitude along 18 meridians. These maps reveal considerable structure to the background in the Galactic plane on an angular scale of approximately 1 deg. Our results are compared with those of an earlier study of the 1 keV X-ray background along l = 25 deg by Kahn & Caillault. The double-peaked structure they found is not discernible in our results, possibly because of the presence of solar backscattered flux in their data. A model which takes into account contributions to the background by extragalactic and stellar sources, the distribution of both atomic and molecular absorbing material with the Galaxy, the energy dependence of the cross section for absorption of X-rays, and the energy dependence of the detector has been constructed and fitted to these new data to derive constraints on the scale height, temperature, and volume emissivity of the unaccounted-for X-ray-emitting material. The results of this model along l = 25 deg are roughly similar to those of the model of Kahn & Caillault along the same meridian.

  5. Electron back-scattering coefficient below 5 keV: Analytical expressions and surface-barrier effects

    NASA Astrophysics Data System (ADS)

    Cazaux, J.

    2012-10-01

    Simple analytical expressions for the electron backscattering coefficient, η, are established from published data obtained in the ˜0.4-5 keV range for 21 elements ranging from Be to Au. They take into account the decline in η with a decrease in energy E° for high-Z elements and the reverse behavior for low-Z elements. The proposed expressions for η (E°) lead to crossing energies situated in the 0.4-1 keV range and they may be reasonably extended to any of the other elements—via an interpolation procedure—to metallic alloys and probably to compounds. The influence of the surface barrier on the escape probability of the back-scattered electrons is next evaluated. This evaluation provides a theoretical basis to explain the observed deviation between various published data as a consequence of surface contamination or oxidation. Various practical applications and strategies are deduced for the η-measurements in dedicated instruments as well for the image interpretation in low voltage scanning electron microscopy based on the backscattered electron detection. In this microscopy, the present investigation allows to generalize the scarce contrast changes and contrast reversals previously observed on multi elemental samples and it suggests the possibility of a new type of contrast: the work function contrast.

  6. The Swift/Fermi GRB 080928 from 1 eV to 150 keV

    NASA Technical Reports Server (NTRS)

    Sonbas, Eda; Rossi, A.; Schulze, S.; Klose, S.; Kann, D. A.; Ferrero, P.; NicuesaGuelbenzu, A.; Rau, A.; Kruehler, T.; Greiner, J.; Schady, P.; Afonso, P. M. J.; Clemens, C.; Filgas, R.; KuepcuYoldas, A.; McBreen, S.; Olivares, F.; Szokoly, G.; Yoldas, A.; Krimm, H. A.; Johannesson, G.; Panaitescu, A.; Yuan, F.; Pandey, S. B.; Akerlof, C. W.

    2010-01-01

    We present the results of a comprehensive study of the Gamma-Ray Burst 080928 and of its afterglow. GRB 08092 was a long burst detected by Swift/BAT and Fermi/GBM, It is one of the exceptional cases where optical emission was already detected when the GRB itself was still radiating in the gamma-ray band. for nearly 100 seconds simultaneous optical X-ray and gamma-ray data provide a coverage of the spectral energy distribution of the transient source from about 1 eV to 150 keV. Here we analyze the prompt emission, constrain its spectral propertIes. and set lower limits on the initial Lorentz factor of the relativistic outflow, In particular. we show that the SED during the main prompt emission phase is in agreement with synchrotron radiation. We construct the optical/near-infrared light curve and the spectral energy distribution based on Swift/UVOT. ROTSE-Illa (Australia) and GROND (La Silla) data and compare it to the X-ray light curve retrieved from the Swift/XRT repository. We show that its bumpy shape can be modeled by multiple energy injections into the forward shock. Furthermore, we provide evidence that the temporal and spectral evolution of the first strong flare seen in the early X-ray light curve can be explained by large-angle emission. Finally, we report on the results of our search for the GRB host galaxy, for which only a deep upper limit can be provided.

  7. The 5-10 keV AGN luminosity function at 0.01 < z < 4.0

    NASA Astrophysics Data System (ADS)

    Fotopoulou, S.; Buchner, J.; Georgantopoulos, I.; Hasinger, G.; Salvato, M.; Georgakakis, A.; Cappelluti, N.; Ranalli, P.; Hsu, L. T.; Brusa, M.; Comastri, A.; Miyaji, T.; Nandra, K.; Aird, J.; Paltani, S.

    2016-03-01

    The active galactic nuclei (AGN) X-ray luminosity function traces actively accreting supermassive black holes and is essential for the study of the properties of the AGN population, black hole evolution, and galaxy-black hole coevolution. Up to now, the AGN luminosity function has been estimated several times in soft (0.5-2 keV) and hard X-rays (2-10 keV). AGN selection in these energy ranges often suffers from identification and redshift incompleteness and, at the same time, photoelectric absorption can obscure a significant amount of the X-ray radiation. We estimate the evolution of the luminosity function in the 5-10 keV band, where we effectively avoid the absorbed part of the spectrum, rendering absorption corrections unnecessary up to NH ~ 1023 cm-2. Our dataset is a compilation of six wide, and deep fields: MAXI, HBSS, XMM-COSMOS, Lockman Hole, XMM-CDFS, AEGIS-XD, Chandra-COSMOS, and Chandra-CDFS. This extensive sample of ~1110 AGN (0.01 < z < 4.0, 41 < log Lx < 46) is 98% redshift complete with 68% spectroscopic redshifts. For sources lacking a spectroscopic redshift estimation we use the probability distribution function of photometric redshift estimation specifically tuned for AGN, and a flat probability distribution function for sources with no redshift information. We use Bayesian analysis to select the best parametric model from simple pure luminosity and pure density evolution to more complicated luminosity and density evolution and luminosity-dependent density evolution (LDDE). We estimate the model parameters that describe best our dataset separately for each survey and for the combined sample. We show that, according to Bayesian model selection, the preferred model for our dataset is the LDDE. Our estimation of the AGN luminosity function does not require any assumption on the AGN absorption and is in good agreement with previous works in the 2-10 keV energy band based on X-ray hardness ratios to model the absorption in AGN up to redshift three

  8. On the source of the 5-55 keV Heliosphere ENAs measured with Cassini/INCA

    NASA Astrophysics Data System (ADS)

    Dialynas, Konstantinos; Roelof, Edmond; Mitchell, Donald; Krimigis, Stamatios; Decker, Robert

    2016-07-01

    The Low Energy Charged Particle (LECP) in situ measurements from V1 and V2 have revealed a reservoir of ions and electrons that constitute the heliosheath (HS) after crossing the termination shock (TS) 35deg north and 32deg south of the ecliptic plane at 94 and 84 astronomical units (1 AU= 1.5 x10 ^{8} km), respectively. The outer Heliosphere boundary, the Heliopause (HP), has now been determined in the direction of V1 to be at ˜122 AU. The in situ measurements by each Voyager were placed in a global context by remote sensing images using ENA obtained with the Ion and Neutral Camera (INCA) onboard Cassini orbiting Saturn. The ENA images have revealed a 5.2-55 keV hydrogen (H) ENA region (Belt) that loops through the celestial sphere and contributes to balancing the pressure of the interstellar magnetic field (ISMF). Here we address one of the remaining and most important questions: Where do the 5-55 keV ENAs that INCA measures come from? We analyzed INCA all-sky maps from 2003 to 2015 and compare the solar cycle (SC) variation of the ENAs in both the nose (upstream) and anti-nose (downstream) directions with the intensities of > 30 keV ions (source of ENA through charge exchange-CE with H) measured in-situ by V1 and V2, in overlapping energy bands ˜30-55 keV. ENA intensities decrease during the declining phase of SC23 by ˜x3 from 2003 to 2011 but recover through 2014 (SC24); similarly, V1 and V2 ion intensities also decrease and then recover through 2014. The similarity of time profiles of remotely sensed ENA and locally measured ions are consistent with (a) ENA originating in the HS, and (b) the global HS responding promptly (within ˜1-1.5 years) to outward-propagating solar wind changes throughout the SC. Further, recovery of the Belt during SC24 precedes asymmetrically from south to north in the general direction of the nose. This may be related to the non-symmetric evolution of solar coronal holes during SC recovery.

  9. The 3 H(d , γ) Reaction at Ec . m . <= 300 keV

    NASA Astrophysics Data System (ADS)

    Parker, C. E.; Brune, C. R.; Massey, T. N.; O'Donnell, J. E.; Richard, A. L.; Sayre, D. B.

    2015-04-01

    The 3 H(d , γ) 5He reaction has been measured using a 500-keV pulsed deuteron beam incident on a stopping titanium tritide target at the Edwards Accelerator Laboratory. The time-of-flight technique has been used to distinguish the γ-rays from neutrons in the bismuth germinate (BGO) γ-ray detector. A stilbene scintillator and an NE-213 scintillator have been used to detect the neutrons from the 3 H(d , n) α reaction using both the pulse-shape discrimination and time-of-flight techniques. A newly designed target holder with a silicon surface barrier detector to simultaneously measure α-particles to normalize the number of neutrons, along with a new titanium tritide target, was incorporated for subsequent measurements. The γ-rays have been measured at laboratory angles of 0 °, 45 °, 90 °, and 135 °. Information about the γ-ray energy distribution for the unbound ground state and first excited state of 5He can be obtained experimentally by comparing the BGO data to Monte Carlo simulations. The 3 H(d , γ) /3 H(d , n) branching ratio has also been measured. Data analysis is currently underway for the subsequent measurements. This work is supported in part by Lawrence Livermore National Laboratory and the U.S. D.O.E. (NNSA) through Grant No. DE-NA0001837.

  10. A DATABASE OF >20 keV ELECTRON GREEN'S FUNCTIONS OF INTERPLANETARY TRANSPORT AT 1 AU

    SciTech Connect

    Agueda, N.; Sanahuja, B.; Vainio, R.

    2012-10-15

    We use interplanetary transport simulations to compute a database of electron Green's functions, i.e., differential intensities resulting at the spacecraft position from an impulsive injection of energetic (>20 keV) electrons close to the Sun, for a large number of values of two standard interplanetary transport parameters: the scattering mean free path and the solar wind speed. The nominal energy channels of the ACE, STEREO, and Wind spacecraft have been used in the interplanetary transport simulations to conceive a unique tool for the study of near-relativistic electron events observed at 1 AU. In this paper, we quantify the characteristic times of the Green's functions (onset and peak time, rise and decay phase duration) as a function of the interplanetary transport conditions. We use the database to calculate the FWHM of the pitch-angle distributions at different times of the event and under different scattering conditions. This allows us to provide a first quantitative result that can be compared with observations, and to assess the validity of the frequently used term beam-like pitch-angle distribution.

  11. 800-keV Electron Induction Injector with High Average Power

    NASA Astrophysics Data System (ADS)

    Mamaev, G. L.; Glazov, A. I.; Krasnopolsky, V. A.; Latypov, T. A.; Mamaev, S. L.; Puchkov, S. N.; Shcherbakov, A. M.; Tenyakov, I. E.; Terechkin, Y. M.; Vlasenko, S. I.

    1997-05-01

    Design parameters of the induction injector are 800 keV beam energy, 2...5 kA current, 80 ns pulse flat top and 100 Hz repetition rate. The average beam power of the series of pulses is 40 kW. The injector modules use metglass cores. The electron source mounted on the stem consists of a 80 mm diameter velvet cathode placed on a field forming electrode. The tapered insulator assembly separates the oil-filled induction modules from the vacuum diode. The magnetic field necessary for beam extraction is generated by two magntic cores. 150 kV, 40 kA, 100 ns, 100 Hz pulse generator has been designed in Radiotechnical institute. The generator is a two-stage magnetic power compressor with a thyratron switch. The voltage pulse is produced by the water-filled pulse forming line (PFL) with the impedance of 3.3 ohm. The calculated parameters of the injector, the design features of its modules and the experimental results of their testing are presented.

  12. Effects of combined irradiation of 500 keV protons and atomic oxygen on polyimide films

    NASA Astrophysics Data System (ADS)

    Novikov, Lev; Chernik, Vladimir; Zhilyakov, Lev; Voronina, Ekaterina; Chirskaia, Natalia

    2016-07-01

    Polyimide films are widely used on the spacecraft surface as thermal control coating, films in different constuctions, etc. However, the space ionizing radiation of different types can alter the mechanical, optical and electrical properties of polyimide films. For example, it is well known that 20-100 keV proton irradiation causes breaking of chemical bonds and destruction of the surface layer in polyimide, deterioration of its optical properties, etc. In low-Earth orbits serious danger for polymeric materials is atomic oxygen of the upper atmosphere of the Earth, which is the main component in the range of heights of 200-800 km. Due to the orbital spacecraft velocity, the collision energy of oxygen atoms with the surface ( 5 eV) enhances their reactivity and opens additional pathways of their reaction with near-surface layers of materials. Hyperthermal oxygen atom flow causes erosion of the polyimide surface by breaking chemical bonds and forming of volatiles products (primarily, CO and CO _{2}), which leads to mass losses and degradation of material properties. Combined effect of protons and oxygen plasma is expected to give rise to synergistic effects enhancing the destruction of polyimide surface layers. This paper describes experimental investigation of polyimide films sequential irradiation with protons and oxygen plasma. The samples were irradiated by 500 keV protons at fluences of 10 ^{14}-10 ^{16} cm ^{-2} produced with SINP cascade generator KG-500 and 5-20 eV neutral oxygen atoms at fluence of 10 ^{20} cm ^{-2} generated by SINP magnetoplasmodynamics accelerator. The proton bombardment causes the decrease in optical transmission coefficient of samples, but their transmittance recovers partially after the exposure to oxygen plasma. The results of the comparative analysis of polyimide optical transmission spectra, Raman and XPS spectra obtained at different stages of the irradiation of samples, data on mass loss of samples due to erosion of the surface are

  13. Comparison of calculated spectra for the interaction of photons in a liquid scintillator. Example of 54Mn 835 keV emission.

    PubMed

    Cassette, P; Ahn, G H; Alzitzoglou, T; Aubineau-Lanièce, I; Bochud, F; Garcia Torano, E; Grau Carles, A; Grau Malonda, A; Kossert, K; Lee, K B; Laedermann, J P; Simpson, B R S; van Wyngaardt, W M; Zimmerman, B E

    2006-01-01

    The CIEMAT/NIST and TDCR methods in liquid scintillation counting, initially developed for the activity standardization of pure-beta radionuclides, have been extended to the standardization of electron capture and beta-gamma radionuclides. Both methods require the calculation of the energy spectrum absorbed by the liquid scintillator. For radionuclides emitting X-rays or gamma-rays, when the energy is greater than a few tens of keV the Compton interaction is important and the absorption is not total. In this case, the spectrum absorbed by the scintillator must be calculated using analytical or stochastic models. An illustration of this problem is the standardization of 54Mn, which is a radionuclide decaying by electron capture. The gamma transition, very weakly converted, leads to the emission of an 835 keV photon. The calculation of the detection efficiency of this radionuclide requires the calculation of the energy spectrum transferred to the scintillator after the absorption of the gamma ray and the associated probability of absorption. The validity of the method is thus dependent on the correct calculation of the energy transferred to the scintillator. In order to compare the calculation results obtained using various calculation tools, and to provide the metrology community with some information on the choice of these tools, the LS working group of the ICRM organised a comparison of the calculated absorbed spectra for the 835 keV photon of 54Mn. The result is the spectrum of the energy absorbed by the scintillator per emission of an 835 keV gamma ray. This exercise was proposed for a standard 20 ml LS glass vial and for LS cocktail volumes of 10 and 15 ml. The calculation was done for two different cocktails: toluene and a widely used commercial cocktail, Ultima Gold. The paper describes the results obtained by nine participants using a total of 12 calculation codes. PMID:16600600

  14. A laboratory 8 keV transmission full-field x-ray microscope with a polycapillary as condenser for bright and dark field imaging

    NASA Astrophysics Data System (ADS)

    Baumbach, S.; Kanngießer, B.; Malzer, W.; Stiel, H.; Wilhein, T.

    2015-08-01

    This article introduces a laboratory setup of a transmission full-field x-ray microscope at 8 keV photon energy. The microscope operates in bright and dark field imaging mode with a maximum field of view of 50 μm. Since the illumination geometry determines whether the sample is illuminated homogeneously and moreover, if different imaging methods can be applied, the condenser optic is one of the most significant parts. With a new type of x-ray condenser, a polycapillary optic, we realized bright field imaging and for the first time dark field imaging at 8 keV photon energy in a laboratory setup. A detector limited spatial resolution of 210 nm is measured on x-ray images of Siemens star test patterns.

  15. A laboratory 8 keV transmission full-field x-ray microscope with a polycapillary as condenser for bright and dark field imaging.

    PubMed

    Baumbach, S; Kanngießer, B; Malzer, W; Stiel, H; Wilhein, T

    2015-08-01

    This article introduces a laboratory setup of a transmission full-field x-ray microscope at 8 keV photon energy. The microscope operates in bright and dark field imaging mode with a maximum field of view of 50 μm. Since the illumination geometry determines whether the sample is illuminated homogeneously and moreover, if different imaging methods can be applied, the condenser optic is one of the most significant parts. With a new type of x-ray condenser, a polycapillary optic, we realized bright field imaging and for the first time dark field imaging at 8 keV photon energy in a laboratory setup. A detector limited spatial resolution of 210 nm is measured on x-ray images of Siemens star test patterns. PMID:26329204

  16. A laboratory 8 keV transmission full-field x-ray microscope with a polycapillary as condenser for bright and dark field imaging

    SciTech Connect

    Baumbach, S. Wilhein, T.; Kanngießer, B.; Malzer, W.; Stiel, H.

    2015-08-15

    This article introduces a laboratory setup of a transmission full-field x-ray microscope at 8 keV photon energy. The microscope operates in bright and dark field imaging mode with a maximum field of view of 50 μm. Since the illumination geometry determines whether the sample is illuminated homogeneously and moreover, if different imaging methods can be applied, the condenser optic is one of the most significant parts. With a new type of x-ray condenser, a polycapillary optic, we realized bright field imaging and for the first time dark field imaging at 8 keV photon energy in a laboratory setup. A detector limited spatial resolution of 210 nm is measured on x-ray images of Siemens star test patterns.

  17. Investigating ionisation cluster size distribution due to sub-1 keV electrons in view of Heisenberg's Uncertainty

    NASA Astrophysics Data System (ADS)

    Li, B.; Palmans, H.; Hao, L.; Nisbet, A.

    2015-09-01

    As the wavelengths of low energy electrons become comparable with the length scale of the mean ionisation step size, each event particle should be treated with care as the condition outlined in Heisenberg's uncertainty principle (HUP) should also be satisfied. Within this quantum-classical regime, spatial delocalisations of individual ionisation event sites that are generated outside the target region are calculated, and particular attention is given to the validity of using classical transport methods in simulations of nanodosimetric parameters such as mean cluster size, first and second moments, variance and cumulative frequency of ionisation cluster-size probability distributions. This paper presents the comparison between conventionally calculated nanodosimetric quantities and the ones where interacting particles are treated semi-classically with spatial uncertainties satisfied by HUP. The simulated primary charged particles are electrons of energies between 100 eV and 1 keV in DNA equivalent target aqueous water volumes using GEANT4-DNA.

  18. Compact focusing spectrometer: Visible (1 eV) to hard x-rays (200 keV)

    NASA Astrophysics Data System (ADS)

    Baronova, E. O.; Stepanenko, A. M.; Pereira, N. R.

    2014-11-01

    A low-cost spectrometer that covers a wide range of photon energies can be useful to teach spectroscopy, and for simple, rapid measurements of the photon spectrum produced by small plasma devices. The spectrometer here achieves its wide range, nominally from 1 eV to 200 keV, with a series of spherically and cylindrically bent gratings or crystals that all have the same shape and the same radius of curvature; they are complemented by matching apertures and diagnostics on the Rowland circle that serves as the circular part of the spectrometer's vacuum vessel. Spectral lines are easily identified with software that finds their positions from the dispersion of each diffractive element and the known energies of the lines.

  19. Beam Diagnostics for Measurements of In-Flight Annihilation Cross Sections of Antiprotons at 130 keV

    NASA Astrophysics Data System (ADS)

    Aghai-Khozani, Hossein; Barna, Daniel; Corradini, Maurizio; Hayano, Ryugo; Hori, Masaki; Kobayashi, Takumi; Leali, Marco; Lodi-Rizzini, Evandro; Mascagna, Valerio; Prest, Michela; Soter, Anna; Todoroki, Koichi; Vallazza, Erik; Venturelli, Luca; Zurlo, Nicola

    The ASACUSA (the Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration of CERN is currently attempting to measure the antiproton-nucleus in-flight annihilation cross sections on thin target foils of C, Pd, and Pt at the kinetic energy of 130 keV. The low-energy antiprotons were provided by the Antiproton Decelerator of CERN and a radio-frequency quadrupole decelerator developed by the ASACUSA collaboration. A beam profile monitor based on secondary electron emission was developed for this measurement. It was used to measure the spatial profile of 200-ns-long beam pulses containing 105-106 antiprotons with an active area of 40 mm × 40 mm and a spatial resolution of 4 mm. Using this monitor, we succeeded in finely tuning antiproton beams to an 80-mm-diameter target, and observed some annihilation events originating from the target.

  20. INTEGRAL Observations of the Galactic 511 keV Emission and MeV Gamma-ray Astrophysics

    NASA Technical Reports Server (NTRS)

    Watanabe, Ken

    2005-01-01

    Although there are a number of interesting phenomena, such as Nucleosynthesis in stars, in the MeV energy region, the observations have been difficult due to a small signal to noise (background) ratio (less than 1%). While NASA's Compton Gamma-ray Observatory (CGRO) enabled us to explore the Gamma-ray universe, ESA's INTEGRAL mission, launched in 2002, is providing us more detailed information with its superior energy and angular resolution. We will briefly discuss some of the current issues in MeV Gamma-ray Astrophysics. Then, we will focus on the Galactic 511 keV emission with the latest INTEGRAL observations, and talk about challenges we currently have.

  1. Nuclear resonant forward scattering of synchrotron radiation from 121 Sb at 37.13 keV.

    SciTech Connect

    Wille, H. C.; Shvydko, Y. V.; Alp, E. E.; Ruter, H. D.; Leupold, O.; Sergueev, I.; Ruffer, R.; Barla, A.; Sanchez, J. P.; X-Ray Science Division; European Synchrotron Radiation Facility; Univ. of Hamburg; Hamburder Synchrotronstrahlungslabor

    2006-02-22

    We report on the observation of nuclear resonant forward scattering of synchrotron radiation from {sup 121}Sb nuclei. A temperature stabilized {alpha}Al{sub 2}O{sub 3} crystal Bragg backscattering high-resolution monochromator with a relative energy resolution of 2 x 10{sup -7} was introduced. As first spectroscopic applications the hyperfine parameters in Sb{sub 2}O{sub 3}, USb and DySb were determined. The energy of the nuclear transition in {sup 121}Sb was measured to be 37.1298(2)keV, 40 times more precisely than reported before. The results open the field of nuclear resonance spectroscopy on antimony compounds taking advantage of the outstanding features of 3rd-generation synchrotron sources. Nuclear resonance scattering on Sb compounds at these sources allows element-specific dynamical studies on thermoelectric materials as well as studies on magnetism in micro- and nanometer dimensional systems like spintronic devices.

  2. Origins of the 1/4 keV Soft X-Ray Background

    NASA Astrophysics Data System (ADS)

    Bellm, Eric C.; Vaillancourt, John E.

    2005-04-01

    Snowden and coworkers have presented a model for the 1/4 keV soft X-ray diffuse background in which the observed flux is dominated by a ~106 K thermal plasma located in a 100-300 pc diameter bubble surrounding the Sun but has significant contributions from a very patchy Galactic halo. Halo emission provides about 11% of the total observed flux and is responsible for half of the H I anticorrelation. The remainder of the anticorrelation is presumably produced by displacement of disk H I by the varying extent of the Local Hot Bubble (LHB). The ROSAT R1 and R2 bands used for this work had the unique spatial resolution and statistical precision required for separating the halo and local components but provide little spectral information. Some consistency checks had been made with older observations at lower X-ray energies, but we have made a careful investigation of the extent to which the model is supported by existing sounding rocket data in the Be (73-111 eV) and B (115-188 eV) bands, where the sensitivities to the model are qualitatively different from the ROSAT bands. We conclude that the two-component model is well supported by the low-energy data. We find that these combined observations of the local component may be consistent with single-temperature thermal emission models in collisional ionization equilibrium if depleted abundances are assumed. However, different model implementations give significantly different results, offering little support for the conclusion that the astrophysical situation is so simple.

  3. Measurement of88Sr K-shell ionization probability across the nuclear elastic-scattering resonance at 5060 keV

    NASA Astrophysics Data System (ADS)

    Chemin, J. F.; Anholt, R.; Stoller, Ch.; Meyerhot, W. E.; Amundsen, P. A.

    1981-09-01

    We have measured the dependence of the Sr K-shell-ionization probability on the projectile energy in the vicinity of the d-wave iosobaric analog resonance at 5060 keV in the reaction 88Sr(p,p)88Sr. The variation of the ionization probability with projectile enegy is interpreted in terms of a phase shift between the incoming and outgoing atomic ionization amplitudes due to the nuclear time delay.

  4. Electron collisional detachment processes for a 250 keV D/sup -/ ion beam in a partially ionized hydrogen target

    SciTech Connect

    Savas, S.E.

    1980-09-01

    Neutral atom beams with energies above 200 keV may be required for various purposes in magnetic fusion devices following TFTR, JET and MFTF-B. These beams can be produced much more efficiently by electron detachment from negative ion beams than by electron capture by positive ions. We have investigated the efficiency with which such neutral atoms can be produced by electron detachment in partially ionized hydrogen plasma neutralizers.

  5. Neutron capture cross section measurements for 197Au from 3.5 to 84 keV at GELINA

    NASA Astrophysics Data System (ADS)

    Massimi, C.; Becker, B.; Dupont, E.; Kopecky, S.; Lampoudis, C.; Massarczyk, R.; Moxon, M.; Pronyaev, V.; Schillebeeckx, P.; Sirakov, I.; Wynants, R.

    2014-08-01

    Cross section measurements have been performed at the time-of-flight facility GELINA to determine the average capture cross section for 197Au in the energy region between 3.5 keV and 84 keV. Prompt γ-rays, originating from neutron-induced capture events, were detected by two C6 D6 liquid scintillators. The sample was placed at about 13m distance from the neutron source. The total energy detection principle in combination with the pulse height weighting technique was applied. The energy dependence of the neutron flux was measured with a double Frisch-gridded ionization chamber based on the 10B(n,α) reaction. The data have been normalized to the well-isolated and saturated 197Au resonance at 4.9 eV. Special care was taken to reduce bias effects due to the weighting function, normalization, dead time and background corrections. The total uncertainty due to normalization, neutron flux and weighting function is 1.0%. An additional uncertainty of 0.5% results from the correction for self-shielding and multiple interaction events. Fluctuations due to resonance structures have been studied by complementary measurements at a 30m flight path station. The results reported in this work deviate systematically by more than 5% from the cross section that is recommended as a reference for astrophysical applications. They are about 2% lower compared to an evaluation of the 197Au(n, γ) cross section, which was based on a least squares fit of experimental data available in the literature prior to this work. The average capture cross section as a function of neutron energy has been parameterized in terms of average resonance parameters. Maxwellian average cross sections at different temperatures have been calculated.

  6. Soft x-ray (0.2keV) imager for z-pinch plasma radiation sources

    SciTech Connect

    Failor, B.H.; Qi, N.; Levine, J.S.; Sze, H.; Gullickson, E.M.

    2004-10-01

    Z-pinches can produce intense fluxes of argon K-shell (3 keV) radiation, but typically only a fraction of the load mass near the axis of the pinch radiates in this spectral range. The majority of the mass does not get hot or dense enough to radiate efficiently in the K-shell. We have designed, built, and tested an instrument to image pinch emission, specifically the radial emission profile, at energies below the K-shell in order to track the location of the cooler mass. A gold mirror provides a high-energy cut-off at 2 keV while a transmission grating disperses the incoming radiation and provides a low-energy cutoff at 0.1 keV. A vertical slit images the pinch radiation in the radial direction and the emission profile is recorded with either an extreme ultraviolet-sensitive charge-coupled device camera (time-integrated) or a linear photodiode array ({approx}1 ns time resolution). We present results for the mirror, grating, and system characterization obtained at the Advanced Light Source synchrotron located at Lawrence Berkeley National Laboratory (Berkeley, CA)

  7. Angular scattering of 1–50 keV ions through graphene and thin carbon foils: Potential applications for space plasma instrumentation

    SciTech Connect

    Ebert, Robert W.; Allegrini, Frédéric; Fuselier, Stephen A.; Nicolaou, Georgios; Physics and Astronomy Department, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249 ; Bedworth, Peter; Sinton, Steve; Trattner, Karlheinz J.; Laboratory for Atmospheric and Space Physics, University of Colorado, 1234 Innovation Drive, Boulder, Colorado 80303

    2014-03-15

    We present experimental results for the angular scattering of ∼1–50 keV H, He, C, O, N, Ne, and Ar ions transiting through graphene foils and compare them with scattering through nominal ∼0.5 μg cm{sup −2} carbon foils. Thin carbon foils play a critical role in time-of-flight ion mass spectrometers and energetic neutral atom sensors in space. These instruments take advantage of the charge exchange and secondary electron emission produced as ions or neutral atoms transit these foils. This interaction also produces angular scattering and energy straggling for the incident ion or neutral atom that acts to decrease the performance of a given instrument. Our results show that the angular scattering of ions through graphene is less pronounced than through the state-of-the-art 0.5 μg cm{sup −2} carbon foils used in space-based particle detectors. At energies less than 50 keV, the scattering angle half width at half maximum, ψ{sub 1/2}, for ∼3–5 atoms thick graphene is up to a factor of 3.5 smaller than for 0.5 μg cm{sup −2} (∼20 atoms thick) carbon foils. Thus, graphene foils have the potential to improve the performance of space-based plasma instruments for energies below ∼50 keV.

  8. Steady State Sputtering Yields and Surface Compositions of Depleted Uranium and Uranium Carbide bombarded by 30 keV Gallium or 16 keV Cesium Ions.

    SciTech Connect

    Siekhaus, W. J.; Teslich, N. E.; Weber, P. K.

    2014-10-23

    Depleted uranium that included carbide inclusions was sputtered with 30-keV gallium ions or 16-kev cesium ions to depths much greater than the ions’ range, i.e. using steady-state sputtering. The recession of both the uranium’s and uranium carbide’s surfaces and the ion corresponding fluences were used to determine the steady-state target sputtering yields of both uranium and uranium carbide, i.e. 6.3 atoms of uranium and 2.4 units of uranium carbide eroded per gallium ion, and 9.9 uranium atoms and 3.65 units of uranium carbide eroded by cesium ions. The steady state surface composition resulting from the simultaneous gallium or cesium implantation and sputter-erosion of uranium and uranium carbide were calculated to be U₈₆Ga₁₄, (UC)₇₀Ga₃₀ and U₈₁Cs₉, (UC)₇₉Cs₂₁, respectively.

  9. Influence of ~7 keV sterile neutrino dark matter on the process of reionization

    NASA Astrophysics Data System (ADS)

    Rudakovskyi, Anton; Iakubovskyi, Dmytro

    2016-06-01

    Recent reports of a weak unidentified emission line at ~3.5 keV found in spectra of several matter-dominated objects may give a clue to resolve the long-standing problem of dark matter. One of the best physically motivated particle candidate able to produce such an extra line is sterile neutrino with the mass of ~7 keV . Previous works show that sterile neutrino dark matter with parameters consistent with the new line measurement modestly affects structure formation compared to conventional cold dark matter scenario. In this work, we concentrate for the first time on contribution of the sterile neutrino dark matter able to produce the observed line at ~3.5 keV, to the process of reionization. By incorporating dark matter power spectra for ~7 keV sterile neutrinos into extended semi-analytical `bubble' model of reionization we obtain that such sterile neutrino dark matter would produce significantly sharper reionization compared to widely used cold dark matter models, impossible to `imitate' within the cold dark matter scenario under any reasonable choice of our model parameters, and would have a clear tendency of lowering both the redshift of reionization and the electron scattering optical depth (although the difference is still below the existing model uncertainties). Further dedicated studies of reionization (such as 21 cm measurements or studies of kinetic Sunyaev-Zeldovich effect) will thus be essential for reconstruction of particle candidate responsible the ~3.5 keV line.

  10. 2-165 keV observations of active galaxies and the diffuse background

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.; Baity, W. A.; Gruber, D. E.; Matteson, J. L.; Peterson, L. E.; Mushotzky, R. F.

    1983-01-01

    HEAO 1 spectral observations of 12 active galaxies in the 12-165 keV and 2-50 keV ranges are reported. The spectra of these galaxies in the 2-165 keV range are well represented by a single power law model; within experimental uncertainties a narrow dispersion in power law index attributable to the individual galaxies is observed, while the 2-165 keV luminosities of these galaxies ranged from 3 x 10 to the 43rd to 3 x 10 to the 45th ergs/s. An apparent universality of the spectral form is found which can be interpreted as due to a common electron distribution with a temperature of tens of keV in the Compton scattering region or as a common nonthermal power-law distribution generating the observed flux through synchrotron-Compton processes. The data indicate that relativistic particles are likely to be responsible for the X-rays from cores of active galaxies through synchroton-Compton processes. In addition, it is noted that only weak number evolution, if any at all, is present in active galaxies.

  11. An overview of energetic particles (from 55 keV to > 30 MeV) recorded in the close Martian environment, and their energization in local and external processes

    NASA Astrophysics Data System (ADS)

    McKenna-Lawlor, S.; Afonin, V. V.; Kirsch, E.; Schwingenschuh, K.; Slavin, J. A.; Trotignon, J. G.

    1998-01-01

    Observations made by the SLED particle detector on Phobos-2 in the close Martian environment from 29 January to 27 March, 1989 during the early rising phase of Solar Cycle 22, show the frequent presence close to the planet, under reasonably "quiet" interplanetary conditions, of particles with energies ( E) in the range from several tens of, to several hundred, keV. Under disturbed interplanetary circumstances, particles reaching energies of several tens of MeV were recorded close to Mars. Those particles in the keV range were observed at well-defined locations, i.e. at the Terminator Shocks ( E up to ≈600 keV); just inside the subsolar Planetopause ( E up to ≈225 keV), and travelling down the Tail, E≥55 keV. These three populations are herein suggested, instancing various candidate mechanisms, to have been energized by processes local to the planet. Since the seed particles for ions accelerated at the Terminator Shocks may comprise ambient, pre-accelerated, solar particles, the energies of ions detected by SLED during Bow Shock transits was observed (during two months) to vary between ≈50 keV and ≈600 keV. Particles with energies up to several tens of MeV which were found to suffuse the close planetary environment over extended periods, are interpreted to have been produced in association with solar processes external to Mars (Co-rotating Interaction Regions; Gradual and Impulsive Solar Events). Particle enhancements in the keV range recorded by SLED (under favourable magnetic conditions) during Bow Shock traversals, provide topographical information concerning the location of the Martian subsolar and distant shock surfaces. These observations constitute a new data set, complementary to those determinations of key boundaries derived from plasma and magnetic field measurements made aboard various American and Russian spacecraft at Mars which, for more than thirty years now, have been generally used in modelling the Solar Wind interaction with the planet

  12. Solar Cycle dependence of 5-55 keV Cassini/INCA energetic neutral atom (ENA) images of the Heliosheath and in situ Voyager/LECP ion measurements

    NASA Astrophysics Data System (ADS)

    Krimigis, S. M.; Dialynas, K.; Mitchell, D. G.; Decker, R. B.; Roelof, E. C.

    2015-12-01

    The heliosheath has been identified as the most probable source of ENAs that INCA detects but its variability due to solar activity throughout the solar cycle (SC) has not been resolved to date. We show all-sky, 5-55 keV ENA H maps from the year 2003 to 2014 and compare the solar cycle variation of the ENAs in both the heliospheric nose (upstream) and anti-nose (downstream) directions with the > 30 keV ions measured within the heliosheath by the Low Energy Charged Particle (LECP) detector on Voyagers 1, 2 (V1, V2) where we measure protons in overlapping energy bands ~30-55 keV. We find that a) Toward the anti-nose direction the ENA-H intensities decline during SC23, i.e. after 2003 ENA intensities decreased by ~ x2 at all energies by the end of year 2011, ~1 year after the observed minimum in solar activity; b) This ENA decrease (5.2-55 keV) during 2009-2011 is consistent with the concurrent intensity decrease of the > 30 keV ions (by a factor of 2-3) observed in situ by V1 and V2 in the heliosheath; c) Toward the nose direction, minimum intensities in both INCA ENAs and the V2 ions at E > 28 keV occur during the year 2013, with a subsequent recovery from 2014 to date (by a factor of ~2 in the > 35 keV ENA data). These quantitative correlations between the decreases of INCA ENAs (in both the heliospheric nose and anti-nose directions) and the in situ V1 and V2 ion measurements (separated by > 130 AU) during the declining phase of SC23, along with their concurrent jointly shared recoveries at the onset of SC24, imply that: 1) the 5-55 keV ENAs are produced in the heliosheath (because their transit times over 100 AU are less than a few months at energies > 40 keV), thus proving that our ENA observations can provide the ground truth for constructing comprehensive global heliosphere models; 2) the global heliosheath responds promptly (within ~1-1.5 yrs) to outward-propagating solar wind changes throughout the solar cycle.

  13. WE-E-BRE-08: Impact of IUdR in Rat 9L Glioma Cell Survival for 25–35 KeV Photo-Activated Auger Electron Therapy

    SciTech Connect

    Alvarez, D; Hogstrom, K; Brown, T; Dugas, J; Varnes, M; Matthews, K

    2014-06-15

    Purpose: To determine the biological effect from Auger electrons with 9% and 18% iododeoxyuridine (IUdR) incorporated into the DNA of rat 9L glioma cells at photon energies above and below the K-edge of iodine (33.2 keV). Methods: Rat 9L glioma cell survival versus dose curves with 0%, 9%, and 18% thymidine replacement with IUdR were measured using four irradiation energies (4 MV x-rays; monochromatic 35, 30, and 25 keV synchrotron photons). For each of 11 conditions (Energy, %IUdR) survival curves were fit to the data (826 cell cultures) using the linear-quadratic model. The ratio of doses resulting in 10% survival gave sensitization enhancement ratios (SER10) from which contributions due to linear-energy transfer (LET), radiosensitization (RS), and Auger effect (AE) were extracted. Results: At 35, 30, and 25 keV, SER10,LET values were 1.08±0.03, 1.22±0.02, and 1.37±0.02, respectively. At 4 MV SER10,RS values for 9% and 18% IUdR were 1.28±0.02 and 1.40±0.02, respectively. Assuming LET effects are independent of %IUdR and radiosensitization effects are independent of energy, SER10,AE values for 18% IUdR at 35, 30, and 25 keV were 1.35±0.05, 1.06±0.03, and 0.98±0.03, respectively; values for 9% IUdR at 35 and 25 keV were 1.01±0.04 and 0.82±0.02, respectively. Conclusion: For 18% IUdR the radiosensitization effect of 1.40 and the Auger effect of 1.35 at 35 keV are equally important to the combined effect of 1.90. No measureable Auger effect was observed for energies below the K-edge at 20 and 25 keV, as expected. The insignificant Auger effect at 9% IUdR was not expected. Additional data (40–70 keV) and radiobiological modeling are being acquired to better understand the energy dependence of Auger electron therapy with IUdR. Funding support in part by the National Science Foundation Graduate Research Fellowship Program and in part by Contract No. W81XWH-10-1-0005 awarded by the U.S. Army Research Acquisition Activity. This paper does not necessarily

  14. Optical excitation function of H(1s-2p) produced by electron impact from threshold to 1.8 keV

    SciTech Connect

    James, G.K.; Slevin, J.A.; Shemansky, D.E.; McConkey, J.W.; Bray, I.; Dziczek, D.; Kanik, I.; Ajello, J.M.

    1997-02-01

    The optical excitation function of prompt Lyman-{alpha} radiation, produced by electron impact on atomic hydrogen, has been measured over the extended energy range from threshold to 1.8 keV. Measurements were obtained in a crossed-beams experiment using both magnetically confined and electrostatically focused electrons in collision with atomic hydrogen produced by an intense discharge source. A vacuum-ultraviolet monochromator system was used to measure the emitted Lyman-{alpha} radiation. The absolute H(1s-2p) electron impact excitation cross section was obtained from the experimental optical excitation function by normalizing to the accepted optical oscillator strength, with corrections for polarization and cascade. Our data are significantly different from the earlier experimental results and which are limited to energies below 200 eV. Statistical and known systematic uncertainties in our data range from {plus_minus}4{percent} near threshold to {plus_minus}2{percent} at 1.8 keV. Multistate coupling affecting the shape of the excitation function up to 1 keV impact energy is apparent in both the present experimental data and present theoretical results obtained with convergent close-coupling (CCC) theory. This shape function effect leads to an uncertainty in absolute cross sections at the 10{percent} level in the analysis of the experimental data. The derived optimized absolute cross sections are within 7{percent} of the CCC calculations over the 14 eV{endash}1.8 keV range. The present CCC calculations converge on the Bethe-Fano profile for H(1s-2p) excitation at high energy. For this reason agreement with the CCC values to within 3{percent} is achieved in a nonoptimal normalization of the experimental data to the Bethe-Fano profile. The fundamental H(1s-2p) electron impact cross section is thereby determined to an unprecedented accuracy over the 14 eV {endash} 1.8 keV energy range. (Abstract Truncated)

  15. Ion-chain interaction in keV ion-beam-irradiated polystyrene

    SciTech Connect

    Calcagno, L.; Foti, G.; Licciardello, A.; Puglisi, O.

    1987-09-21

    Molecular weight distribution has been measured in monodisperse polystyrene film (MW = 9 000 amu) after ion bombardment, in the ion fluence range 10/sup 11/--10/sup 13/ ions/cm/sup 2/. The chosen beams are 100 keV He, 200 keV Ne, and 400 keV Ar. The experimental data have been interpreted in terms of a simple statistical model for cross-links. The chemical yield is found to be very high and equal to 0.30, about a factor of 10 higher than the values given in the literature for gamma irradiation (M. Dole, in The Radiation Chemistry of Macromolecules (Academic, New York, 1973), Vol. 2, Chap. 5, p. 57).

  16. Width of the 511 keV line from the bulge of the galaxy

    SciTech Connect

    Zhitnitsky, Ariel

    2007-11-15

    In this paper I present the detail estimations for the width of the 511 keV line produced by a mechanism when dark matter is represented by macroscopically large dense nuggets. I argue that the width of 511 keV emission in this mechanism is very narrow (in a few keV range) in agreement with all observations. The dominant mechanism of the annihilation in this case is the positronium formation e{sup +}e{sup -}{yields}{sup 1}S{sub 0}{yields}2{gamma} rather than a direct e{sup +}e{sup -}{yields}2{gamma} annihilation. I also discuss some generic features of the {gamma} rays spectrum (in few MeV range) resulting from this mechanism.

  17. Guidelines for using a 10-keV x-ray source for hardness assurance

    SciTech Connect

    Fleetwood, D.M.

    1986-01-01

    In this paper, work done at Sandia is summarized that demonstrates that it is possible to use a 10-keV x-ray source for hardness assurance. Transistor data is presented that shows that a 10-keV x-ray source can be used as a reliable process monitor, in the sense that Co-60 part response can be predicted easily and reliably from x-ray part response. Further, test structure and functional part data is presented that illustrates how an x-ray source may be employed for wafer lot acceptance for silicon-gate CMOS devices that either employ quardbands or hardened field oxides for device isolation. Finally, a few words are said about the use of high-Z gate metallizations. These results should provide guidelines for implementation of lot acceptance testing with a 10-keV x-ray source.

  18. Evaluation of the 1077 keV γ-ray emission probability from 68Ga decay

    NASA Astrophysics Data System (ADS)

    Huang, Xiao-Long; Jiang, Li-Yang; Chen, Xiong-Jun; Chen, Guo-Chang

    2014-04-01

    68Ga decays to the excited states of 68Zn through the electron capture decay mode. New recommended values for the emission probability of 1077 keV γ-ray given by the ENSDF and DDEP databases all use data from absolute measurements. In 2011, JIANG Li-Yang deduced a new value for 1077 keV γ-ray emission probability by measuring the 69Ga(n,2n) 68Ga reaction cross section. The new value is about 20% lower than values obtained from previous absolute measurements and evaluations. In this paper, the discrepancies among the measurements and evaluations are analyzed carefully and the new values are re-recommended. Our recommended value for the emission probability of 1077 keV γ-ray is (2.72±0.16)%.

  19. Hydrogenation kinetics in oxidized boron-doped silicon irradiated by keV electrons

    NASA Astrophysics Data System (ADS)

    Lin, Wallace Wan-Li; Sah, Chih-Tang

    1988-08-01

    Hydrogenation kinetics of boron acceptors in oxidized silicon during and after repeated 8-keV electron irradiation (225-2700-μC/cm2 stresses and 10-168-h interirradiation anneals) at room temperature are reported. Hydrogenation proceeds rapidly during irradiation but continues for many hours after the 8-keV electron beam is removed. Postoxidation process dependencies show that postoxidation and postmetallization annealing processes reduce the hydrogenation effect during the 8-keV electron irradiation, while exposure of the oxide to water prior to aluminum electrode deposition enhances it. The data can be interpreted by our two-reaction model consisting of the hydrogen capture reaction by the boron acceptor and the hydrogen recombination reaction to form hydrogen molecule.

  20. Studies of Transport Properties and Critical Temperature Suppression Mechanism in Yttrium BARIUM(2) COPPER(3) Oxygen(x) Thin Films Irradiated with 20 TO 120 KEV Electrons

    NASA Astrophysics Data System (ADS)

    Lin, Jiunn-Yuan

    1995-11-01

    We present comprehensive studies of the effects of 20 to 120 keV electron irradiation on rm YBa_2Cu_3O_{x} thin films. Above 60 keV, T_{c } of irradiated samples is suppressed accompanied by a significant increase in residual resistivity, while the carrier concentration remains relatively unchanged. The plane oxygen defects produced by irradiation are found to be responsible for T_{c} suppression. The II suppression mechanism is discussed within several theoretical frameworks. Though in qualitative agreement with d-wave pairing symmetry, our results show a T_{c} suppression rate three times as slow as predicted by the theory when resistivity data are used to extract the impurity scattering rate. Alternatively, phase fluctuations theory gives a qualitative description as well. The displacement energy of plane oxygen is found to be 8.3 eV, which corresponds to a threshold electron energy 58 keV. Finally, an empirical relation is proposed to describe the temperature dependence of the Hall coefficient.

  1. Measurement of the 183 keV Resonance in 17O(p,alpha)14N using a Novel Technique

    SciTech Connect

    Moazen, Brian H; Bardayan, Daniel W; Blackmon, Jeff C; Chae, Kyung Yuk; Chipps, Kelly A; Domizioli, Carlo P; Fitzgerald, Ryan; Greife, Uwe; Hix, William Raphael; Grzywacz-Jones, Kate L; KOZUB, RAYMOND L; Lingerfelt, Eric J; Livesay, Jake; Nesaraja, Caroline D; Pain, Steven D; Roberts, Luke F; Shriner, Jr., John F; Smith, Michael Scott; Thomas, Jeffrey S

    2007-01-01

    We have developed a novel technique for measurements of low energy (p,alpha) reactions using heavy ion beams and a differentially-pumped windowless gas target. We applied this new approach to study the 183 keV resonance in the 17O(p,alpha)14}N reaction. We report a resonance energy (center-of-mass) of 183.5{+0.1}{-0.4} keV, a resonance strength of 1.70 +/- 0.15 meV, and set an upper limit (95\\% confidence) on the total width of the state of < 0.1 keV. This resonance is important for the 17O(p,alpha)14}N reaction rate, and we find that 18F production is significantly decreased in low mass ONeMg novae but less affected in more energetic novae. We also report the first determination of the stopping power for oxygen ions in hydrogen gas near the peak of the Bragg curve (E=193 keV/u) to be (63+/-1)e-15 eV-cm2.

  2. Elastic and inelastic processes in H{sup +}+C{sub 2}H{sub 6} collisions below the 10-keV regime

    SciTech Connect

    Suzuki, Reiko; Rai, Sachchida N.; Liebermann, Heinz-Peter; Buenker, Robert J.; Pichl, Lukas; Kimura, Mineo

    2005-11-15

    Charge-transfer processes in collisions of H{sup +} ions with C{sub 2}H{sub 6} molecules are investigated theoretically below 10-keV collision energies within a molecular representation. Converged total as well as differential cross sections are obtained in this energy range within a discrete basis of electronic states computed by ab inito methods. The present collision system suggests that the combination of the Demkov-type and Landau-Zener-type mechanisms primarily governs the scattering dynamics for the flux exit from the initial channel. The present charge-transfer cross sections determined are found to agree very well with all available experimental data below a few keV, but begin to deviate above 3 keV, in which the present results slowly decrease, while measurements stay nearly constant. From the study of the electronic state calculation, we provide some information on fragmented species, which should help shed some light on the fragmentation mechanism and process of C{sub 2}H{sub 6}{sup +} ions produced after charge transfer. In addition, the vibrational effect of the initial target to charge transfer is examined.

  3. KEY COMPARISON: International key comparison of 24 keV neutron fluence measurements (1993-2009): CCRI(III)-K1

    NASA Astrophysics Data System (ADS)

    Thomas, D. J.; Lewis, V. E.; Klein, H.; Allisy-Roberts, P. J.

    2010-01-01

    A comparison of 24.5 keV neutron fluence standards was organized by Section III (Neutron Measurements) of the Comité Consultatif des Rayonnements Ionisants, (CCRI). The exercise involved the circulation of a set of three different-diameter Bonner spheres for calibration in fields with energies around 24.5 keV. The fields were produced using four different methods of neutron production. The responses (counts per unit neutron fluence) of the individual spheres were initially determined for the neutron energy of the production method, or methods, employed. To derive the 24.5 keV responses, it was necessary to make corrections for spectral effects, and these were achieved by using response functions for the spheres calculated using the code MCNP. The results demonstrate good consistency within the estimated uncertainties (ranging from about 5% to 10% at the 95% confidence level) between the results reported by all the participants. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI Section III, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  4. Constraints on the presence of a 3.5 keV dark matter emission line from Chandra observations of the Galactic centre

    NASA Astrophysics Data System (ADS)

    Riemer-Sørensen, Signe

    2016-05-01

    Context. Recent findings of line emission at 3.5 keV in both individual and stacked X-ray spectra of galaxy clusters have been speculated to have dark matter origin. Aims: If the origin is indeed dark matter, the emission line is expected to be detectable from the Milky Way dark matter halo. Methods: We perform a line search in public Chandra X-ray observations of the region near Sgr A*. We derive upper limits on the line emission flux for the 2.0-9.0 keV energy interval and discuss their potential physical interpretations including various scenarios of decaying and annihilating dark matter. Results: While we find no clear evidence for its presence, the upper flux limits are not inconsistent with the recent detections for conservative mass profiles of the Milky Way. Conclusions: The results depend mildly on the spectral modelling, and strongly on the choice of dark matter profile.

  5. New limit on the mass of 14.4-keV solar axions emitted in an M1 transition in 57Fe nuclei

    NASA Astrophysics Data System (ADS)

    Derbin, A. V.; Muratova, V. N.; Semenov, D. A.; Unzhakov, E. V.

    2011-04-01

    Axions of energy 14.4 keV that originated from the M1 transition in 57Fe nuclei in the Sun were sought by using the resonance-absorption reaction A+57Fe → 57Fe* → 57Fe+ γ (14.4 keV). Asectioned Si(Li) detector arranged in a low-background facility was used to record photons from this reaction. This resulted in setting a new limit on the axion couplings to nucleons, |-1.19 g {/AN 0} + g {/AN 3}| ≤ 3.0×10-6. Within the hadronic-axion model, the respective constraint on the axion mass is m A ≤ 145 eV (at a 95% C.L.).

  6. Dwarf galaxy γ-excess and 3.55 keV X-ray line in a nonthermal Dark Matter model

    NASA Astrophysics Data System (ADS)

    Biswas, Anirban; Majumdar, Debasish; Roy, Probir

    2016-01-01

    Recent data from Reticulum II (RetII) require the energy range of the FermiLAT γ-excess to be ∼2\\text-10 \\text{GeV} . We adjust our unified nonthermal Dark Matter (DM) model to accommodate this. We have two extra scalars beyond the Standard Model to also explain the 3.55 keV X-ray line. Now the mass of the heavier of them has to be increased to lie around 250 GeV, while that of the lighter one remains at 7.1 keV. This requires a new seed mechanism for the γ-excess and new Boltzmann equations for the generation of the DM relic density. All concerned data for RetII and the X-ray line can now be fitted well and consistency with other indirect limits attained.

  7. Properties of the 5{sup -} state at 839 keV in {sup 176}Lu and the s-process branching at A=176

    SciTech Connect

    Mohr, P.; Bisterzo, S.; Gallino, R.; Kaeppeler, F.; Kneissl, U.; Winckler, N.

    2009-04-15

    The s-process branching at mass number A=176 depends on the coupling between the high-K ground state and a low-lying low-K isomer in {sup 176}Lu. This coupling is based on electromagnetic transitions via intermediate states at higher energies. The properties of the lowest experimentally confirmed intermediate state at 839 keV are reviewed, and the transition rate between low-K and high-K states under stellar conditions is calculated on the basis of new experimental data for the 839-keV state. Properties of further candidates for intermediate states are briefly analyzed. It is found that the coupling between the high-K ground state and the low-K isomer in {sup 176}Lu is at least one order of magnitude stronger than previously assumed, leading to crucial consequences for the interpretation of the {sup 176}Lu/{sup 176}Hf pair as an s-process thermometer.

  8. Molecular dynamics simulations of sputtering of Langmuir-Blodgett multilayers by keV C60 projectiles

    PubMed Central

    Paruch, R.; Rzeznik, L.; Czerwinski, B.; Garrison, B. J.; Winograd, N.; Postawa, Z.

    2009-01-01

    Coarse-grained molecular dynamics computer simulations are applied to investigate fundamental processes induced by an impact of keV C60 projectile at an organic overlayer composed of long, well-organized linear molecules. The energy transfer pathways, sputtering yields, and the damage induced in the irradiated system, represented by a Langmuir-Blodgett (LB) multilayers composed from molecules of bariated arachidic acid, are investigated as a function of the kinetic energy and impact angle of the projectile and the thickness of the organic system. In particular, the unique challenges of depth profiling through a LB film vs. a more isotropic solid are discussed. The results indicate that the trajectories of projectile fragments and, consequently, the primary energy can be channeled by the geometrical structure of the overlayer. Although, a similar process is known from sputtering of single crystals by atomic projectiles, it has not been anticipated to occur during C60 bombardment due to the large size of the projectile. An open and ordered molecular structure of LB films is responsible for such behavior. Both the extent of damage and the efficiency of sputtering depend on the kinetic energy, the impact angle, and the layer thickness. The results indicate that the best depth profiling conditions can be achieved with low-energy cluster projectiles irradiating the organic overlayer at large off-normal angles. PMID:20174461

  9. Revisiting the relationship between 6 μm and 2-10 keV continuum luminosities of AGN

    NASA Astrophysics Data System (ADS)

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.; Rovilos, E.; Hernán-Caballero, A.; Barcons, X.; Blain, A.; Caccianiga, A.; Della Ceca, R.; Severgnini, P.

    2015-05-01

    We have determined the relation between the AGN luminosities at rest-frame 6 μm associated with the dusty torus emission and at 2-10 keV energies using a complete, X-ray-flux-limited sample of 232 AGN drawn from the Bright Ultra-hard XMM-Newton Survey. The objects have intrinsic X-ray luminosities between 1042 and 1046 erg s-1 and redshifts from 0.05 to 2.8. The rest-frame 6 μm luminosities were computed using data from the Wide-field Infrared Survey Explorer and are based on a spectral energy distribution decomposition into AGN and galaxy emission. The best-fitting relationship for the full sample is consistent with being linear, L6 μm ∝ L_{2-10 keV}^{0.99± 0.03}, with intrinsic scatter, Δ log L6 μm ˜ 0.35 dex. The L_{6 μ m}/L_{2-10 keV} luminosity ratio is largely independent of the line-of-sight X-ray absorption. Assuming a constant X-ray bolometric correction, the fraction of AGN bolometric luminosity reprocessed in the mid-IR decreases weakly, if at all, with the AGN luminosity, a finding at odds with simple receding torus models. Type 2 AGN have redder mid-IR continua at rest-frame wavelengths <12 μm and are overall ˜1.3-2 times fainter at 6 μm than type 1 AGN at a given X-ray luminosity. Regardless of whether type 1 and type 2 AGN have the same or different nuclear dusty toroidal structures, our results imply that the AGN emission at rest-frame 6 μm is not isotropic due to self-absorption in the dusty torus, as predicted by AGN torus models. Thus, AGN surveys at rest-frame ˜6 μm are subject to modest dust obscuration biases.

  10. Angular dependence of L X-rays emission for Ag by 10 keV electron-impact

    NASA Astrophysics Data System (ADS)

    Wang, Xing; Xu, Zhongfeng; Zhang, Ying; Ma, Chao; Zhu, Chengwei

    2016-08-01

    The characteristic X-ray intensities of Ag-Lα, Lβ1, Lβ2 and Lγ1 are measured in electron-impact ionization at energy of 10 keV. The emission angle in this work ranges from 0° to 20° at interval of 5°. The angular dependence of L X-ray intensity ratios has been investigated for Lα / Lβ1, Lβ2 / Lβ1 and Lγ1 / Lβ1. It is found from the experimental results that the emissions of Lβ1, Lβ2 and Lγ1 X-rays are spatially isotropic, while the Lα X-rays exhibit anisotropic emission. Consequently, the alignment behavior of vacancy states is discussed with thorough analysis of vacancy transfer process.

  11. Collisions of 5 keV H+, H0, H- with Copper: Secondary Electron-Reflected Particle Coincidence Studies

    NASA Astrophysics Data System (ADS)

    Szilagyi, Zoltan; McGrath, Caith; Shah, Mansukh; McCullough, Robert; Woolsey, Jack

    2000-06-01

    The emission of secondary electrons during ion impact on a metal surface may be characterised by the secondary electron emission statistics (ES) and the mean yield g. The ES due to 5 keV H+, H0 and H- projectiles incident at 10 degrees on clean polycrystalline Copper, have been measured. Coincidence counting of electrons with reflected positive ions, neutrals and negative ions allow the ES due to specific scattering events to be recorded. The dependence of g on the incident and scattered projectile charge states has been determined. New information on the formation of negative ions from incident positive ions has been collected from this study. A time of flight technique has been employed to determine the energies of the reflected particles.

  12. The search for absorption of 1 keV X-rays by the Small Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Marazas, Brad

    1989-01-01

    The contribution of the extragalactic component of the diffuse background to the 1 keV energy band remains unknown. An effective way to ascertain this contribution is to measure the absorption of the extragalactic component by the neutral hydrogen in the Small Magellanic Cloud (SMC) with an instrument capable of eliminating point sources from the X-ray data that compensate for absorption. The image proportional counter data from the Einstein observatory can be used for this purpose. Additionally, any extended emission must also be eliminated. The resulting source free data can be compared to the neutral hydrogen and the amount of absorption can then be obtained when compared to the diffuse flux away from the SMC. However, due to other types of radiation contaminating the X-ray data, a true measure of the X-ray absorption was not obtained.

  13. 20-100 keV K(alpha) X-Ray Source Generation by Short Pulse High Intensity Lasers

    SciTech Connect

    Park, H-S; Koch, J A; Landen, O L; Phillips, T W; Goldsack, T

    2003-08-22

    We are studying the feasibility of utilizing K{alpha} x-ray sources in the range of 20 to 100 keV as a backlighters for imaging various stages of implosions and high areal density planar samples driven by the NIF laser facility. The hard x-ray K{alpha} sources are created by relativistic electron plasma interactions in the target material after a radiation by short pulse high intensity lasers. In order to understand K{alpha} source characteristics such as production efficiency and brightness as a function of laser parameters, we have performed experiments using the 10 J, 100 fs JanUSP laser. We utilized single-photon counting spectroscopy and x-ray imaging diagnostics to characterize the K{alpha} source. We find that the K{alpha} conversion efficiency from the laser energy is {approx} 3 x 10{sup -4}.

  14. Analysis of photon emission from 50--350-keV proton impact on H{sub 2}O

    SciTech Connect

    Goldman, Benjamin D.; Timpone, Stephanie A.; Monce, Michael N.; Mitchell, Laurel; Griffin, Brian

    2011-04-15

    We have measured photon emission cross sections from neutral fragments produced by collisions of 50-350 keV protons with H{sub 2}O molecules. Balmer {alpha}-{delta} emissions from both the target and projectile were recorded. We also analyzed A {sup 2}{Sigma}{sup +}-X {sup 2}{Pi} (0,0) and (1,0) emission from the excited OH fragment produced during target dissociation. Trends in the cross sections revealed two key properties of the collision process: (1) The Bethe theory accurately describes target emission from both H and OH fragments and (2) the ratio of any two Balmer emission cross sections for both the target and projectile can be approximated by simple functions of the respective optical oscillator strengths. Finally, we provide the Bethe fit parameters necessary to calculate the target emission cross sections at all nonrelativistic impact energies.

  15. Electrostatic spectrometer for measurement of internal conversion electrons in the 0.1-20 keV region

    NASA Astrophysics Data System (ADS)

    Varga, Dezsö; Kádár, Imre; Kövér, Ákos; Cserny, István; Mórik, Gyula; Brabec, Vlastislav; Dragoun, Otokar; Kovalík, Alojz; Adam, Jindřich

    A new second order focusing, n = 1.5 cylindrical mirror electron spectrometer has been built. It enables us to measure the electrons emitted from the radioactive sources in the 0.1-20 keV region with an instrumental energy resolution of 0.1-1%. The ring-shaped input slit serving as a virtual electron optical object together with the large dimensions of the analyser (the total focal length equals 525 mm) allow us to utilize sources up to 1.5 cm 2 area. The spectrometer was adjusted using electron guns and tested also by 57Co and 169Yb radioactive sources prepared by vacuum evaporation and mass separation. The instrument operates automatically at oil-free vacuum of 4 × 10 -6 Pa and the electron spectra are scanned in cycles. The background of the channeltron is about 1.5 counts/min.

  16. Implantation-induced nonequilibrium reaction between Zn ions of 60 keV and SiO{sub 2} target

    SciTech Connect

    Amekura, H.; Yoshitake, M.; Plaksin, O. A.; Kishimoto, N.; Buchal, Ch.; Mantl, S.

    2007-08-06

    Silica glass (SiO{sub 2}) was implanted with 60 keV Zn{sup +} ions to a fluence of 1.0x10{sup 17} ions/cm{sup 2}, and the chemical states were investigated along the depth in as-implanted state by x-ray excited Auger electron spectroscopy and x-ray photoelectron spectroscopy. The metallic Zn and Zn{sub 2}SiO{sub 4} phases were found to have, respectively, formed in the shallow and deep regions of the SiO{sub 2}, whereas thermodynamics predicts the Zn phase only. Oxygen atoms in SiO{sub 2} are preferentially displaced to the deeper region because of the lighter mass. The excess oxygen in the deep region and athermal energy from the implantation drive the formation of Zn{sub 2}SiO{sub 4}.

  17. Ranges of Channelled keV B Ions in Si Crystals with Impact Parameter Dependent Stopping Power

    NASA Astrophysics Data System (ADS)

    Kabadayi, Önder

    In this study we calculated channelled ion ranges of boron ions by using an impact parameter dependent stopping power model. Impact parameter dependent stopping powers for boron ions penetrating into Si <100> are investigated first for energies from 10 to 150 keV. We assumed that impact parameter dependent stopping powers can be expressed by a modified Oen-Robinson formula [1] (Oen et al. Nucl. Instr. Meth. B132, 647 (1976)). The model is implemented by developing a computer code to solve a differential equation numerically for which mean ion ranges can be obtained. The results are compared with experimental data as well as Crystal-TRIM, SRIM and similar procedures calculating ion ranges in solids. We have found an agreement between our results and literature.

  18. 3.55 keV line in minimal decaying dark matter scenarios

    SciTech Connect

    Arcadi, Giorgio; Covi, Laura; Dradi, Federico

    2015-07-20

    We investigate the possibility of reproducing the recently reported 3.55 keV line in some simple decaying dark matter scenarios. In all cases a keV scale decaying DM is coupled with a scalar field charged under SM gauge interactions and thus capable of pair production at the LHC. We will investigate how the demand of a DM lifetime compatible with the observed signal, combined with the requirement of the correct DM relic density through the freeze-in mechanism, impacts the prospects of observation at the LHC of the decays of the scalar field.

  19. Realistic Sterile Neutrino Dark Matter with KeV Mass does not Contradict Cosmological Bounds

    SciTech Connect

    Boyarsky, Alexey; Lesgourgues, Julien; Ruchayskiy, Oleg

    2009-05-22

    Previous fits of sterile neutrino dark matter (DM) models to cosmological data ruled out masses smaller than {approx}8 keV, assuming a production mechanism that is not the best motivated from a particle physics point of view. Here we focus on a realistic extension of the standard model with three sterile neutrinos, consistent with neutrino oscillation data and baryogenesis, with the lightest sterile neutrino being the DM particle. We show that for each mass {>=}2 keV there exists at least one model accounting for 100% of DM and consistent with Lyman-{alpha} and other cosmological, astrophysical, and particle physics data.

  20. 511 keV line from Q balls in the galactic center

    SciTech Connect

    Kasuya, Shinta; Takahashi, Fuminobu

    2005-10-15

    The 511 keV photons from the galactic center can be explained by positrons produced through Q-ball decay. In the scheme of gauge-mediated supersymmetry breaking, large Q balls with lepton charge are necessarily long-lived. In particular, the lifetime can be as long as (or even longer than) the age of the Universe. If kinematically allowed, such large Q balls decay into positrons, which eventually annihilate with electrons into 511 keV photons. Our scenario is realized within the minimal supersymmetric standard model in the inflationary universe, which is very plausible.

  1. Performance of a 6 mm thick CdTe detector for 166 keV gamma rays

    NASA Astrophysics Data System (ADS)

    McKee, B. T. A.; Goetz, T.; Hazlett, T.; Forkert, L.

    1988-11-01

    In order to extend the utility of CdTe detectors to higher gamma ray energies, yet avoid increasing the charge collection problems of thick detectors, a 6 mm thick detector configuration has been developed consisting of three crystals 2 mm thick and of 16 mm diameter. The active volume is over 1.0 cm 3. The performance of this detector has been evaluated for gamma rays of 166 keV energy by measuring the pulse height spectra and determining the intrinsic peak and total efficiencies over a range of bias voltages and amplifier time constants. A maximum peak and total efficiency of 41% and 80% were obtained with 200 V bias and 2 μs amplifier time constant, although under these conditions the noise width was almost 40 keV FWHM. A Monte Carlo model was used to simulate the gamma ray and electron interaction in this 6 mm detector. Charge collection, including trapping effects, was incorporated into the model. The model pulse height spectra could be approximately matched to the measured data using hole and electron effective mobility values of 60 and 600 cm 2/V s, and hole and electron mean trapping times of 25 and 15 μs. Our findings indicate that detectors such as this will not be useful for high resolution spectroscopic applications, but the high gamma ray stopping power will be of interest for applications where the noise width is acceptable. Results from the modelling imply that in this detector shallow trapping sites (reducing the effective mobility) are more important than deep trapping sites in contributing to incomplete charge collection.

  2. Evidence for Halo Contributions to the 1/4 keV Diffuse Soft X-Ray Background

    NASA Astrophysics Data System (ADS)

    Bellm, E. C.

    2003-12-01

    The 1/4-keV diffuse soft X-ray background (SXRB) apparently originates in a thermal plasma at around 106 K, but the location of this emission has proven to be difficult to determine. The finite flux in the Galactic plane and similarity of the spectrum at all latitudes led to a model where essentially all of the observed flux originated in a local hot bubble (LHB) surrounding the Sun. Snowden et al. (1998) have proposed a three-component model of the SXRB from the ROSAT All-Sky Survey R12 (1/4 keV) map which consists of an unabsorbed local component, an absorbed halo component, and an absorbed power law to represent the known contribution from AGN, which is quite small. We have investigated whether this model is consistent with the lower-energy data available from sounding rocket flights in the B and Be bands. We find that the Snowden model provides better correspondence with the low-energy Wisconsin bands than the pure LHB model. The differences are subtle because the bulk of the intensity variation in the Snowden model is still due to differences in the extent of the local bubble. We have also investigated whether the observed band ratios are fit by the emission models used. We find that with current collisional ionization equilibrium models, depleted abundances are necessary to be consistent with the observed band ratios. We also show that the model predictions depend strongly on the model version, which does little to lend confidence to their predictions. This work was supported by a NSF-REU site grant (AST-0139563) to the University of Wisconsin-Madison.

  3. Influence of organic ions on DNA damage induced by 1 eV to 60 keV electrons

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Sanche, Léon

    2010-10-01

    We report the results of a study on the influence of organic salts on the induction of single strand breaks (SSBs) and double strand breaks (DSBs) in DNA by electrons of 1 eV to 60 keV. Plasmid DNA films are prepared with two different concentrations of organic salts, by varying the amount of the TE buffer (Tris-HCl and EDTA) in the films with ratio of 1:1 and 6:1 Tris ions to DNA nucleotide. The films are bombarded with electrons of 1, 10, 100, and 60 000 eV under vacuum. The damage to the 3197 base-pair plasmid is analyzed ex vacuo by agarose gel electrophoresis. The highest yields are reached at 100 eV and the lowest ones at 60 keV. The ratios of SSB to DSB are surprisingly low at 10 eV (˜4.3) at both salt concentrations, and comparable to the ratios measured with 100 eV electrons. At all characteristic electron energies, the yields of SSB and DSB are found to be higher for the DNA having the lowest salt concentration. However, the organic salts are more efficient at protecting DNA against the damage induced by 1 and 10 eV electrons. DNA damage and protection by organic ions are discussed in terms of mechanisms operative at each electron energy. It is suggested that these ions create additional electric fields within the groove of DNA, which modify the resonance parameter of 1 and 10 eV electrons, namely, by reducing the electron capture cross-section of basic DNA units and the lifetime of corresponding transient anions. An interstrand electron transfer mechanism is proposed to explain the low ratios for the yields of SSB to those of DSB produced by 10 eV electrons.

  4. Influence of organic ions on DNA damage induced by 1 eV to 60 keV electrons

    SciTech Connect

    Zheng Yi; Sanche, Leon

    2010-10-21

    We report the results of a study on the influence of organic salts on the induction of single strand breaks (SSBs) and double strand breaks (DSBs) in DNA by electrons of 1 eV to 60 keV. Plasmid DNA films are prepared with two different concentrations of organic salts, by varying the amount of the TE buffer (Tris-HCl and EDTA) in the films with ratio of 1:1 and 6:1 Tris ions to DNA nucleotide. The films are bombarded with electrons of 1, 10, 100, and 60 000 eV under vacuum. The damage to the 3197 base-pair plasmid is analyzed ex vacuo by agarose gel electrophoresis. The highest yields are reached at 100 eV and the lowest ones at 60 keV. The ratios of SSB to DSB are surprisingly low at 10 eV ({approx}4.3) at both salt concentrations, and comparable to the ratios measured with 100 eV electrons. At all characteristic electron energies, the yields of SSB and DSB are found to be higher for the DNA having the lowest salt concentration. However, the organic salts are more efficient at protecting DNA against the damage induced by 1 and 10 eV electrons. DNA damage and protection by organic ions are discussed in terms of mechanisms operative at each electron energy. It is suggested that these ions create additional electric fields within the groove of DNA, which modify the resonance parameter of 1 and 10 eV electrons, namely, by reducing the electron capture cross-section of basic DNA units and the lifetime of corresponding transient anions. An interstrand electron transfer mechanism is proposed to explain the low ratios for the yields of SSB to those of DSB produced by 10 eV electrons.

  5. Constraining models for keV sterile neutrinos by quasidegenerate active neutrinos

    NASA Astrophysics Data System (ADS)

    Merle, Alexander

    2012-12-01

    We present a no-go theorem for keV sterile neutrino dark matter: if sterile neutrinos at the keV scale play the role of dark matter, they are typically unstable and their decay produces an astrophysical monoenergetic x-ray line. It turns out that the observational bound on this line is so strong that it contradicts the existence of a quasidegenerate spectrum of active neutrinos in a seesaw type I framework where the Casas-Ibarra matrix R is real. This is the case in particular for models without CP violation. We give a general proof of this theorem. While the theorem (like every no-go theorem) relies on certain assumptions, the situation under which it applies is still sufficiently general to lead to interesting consequences for keV neutrino model building. In fact, depending on the outcome of the next generation experiments, one might be able to rule out whole classes of models for keV sterile neutrinos.

  6. Field aligned currents and the auroral spectrum below 1 keV

    NASA Technical Reports Server (NTRS)

    Arnoldy, R. L.

    1973-01-01

    Measurements during auroral events were conducted with the aid of detectors flown aboard three Nike-Tomahawk rocket flights. The detectors used to measure the auroral spectrum below 1 keV consisted of electrostatic analyzers positioned in the rocket to measure particles moving up and down the magnetic field lines. The analyzers measured electrons and protons simultaneously during a given sweep.

  7. Using a 10-keV x-ray source for hardness assurance

    SciTech Connect

    Fleetwood, D.M.; Beegle, R.W.; Sexton, F.W.; Winokur, P.S.; Miller, S.L.; Schwank, J.R.; Jones, R.V.; McWhorter, P.J.

    1986-01-01

    It is shown that a 10 keV x-ray source can be used to predict the responses of microelectronic circuits to Co-60 irradiation. Guidelines for using an x-ray tester in a hardness assurance program for VLSI CMOS circuits are suggested. 5 refs., 2 figs., 1 tbl.

  8. 20-keV undulators for a 6-GeV storage ring

    SciTech Connect

    Kim, S.H.; Cho, Y.

    1985-10-01

    The main goal of the future 6-GeV electron storage ring is to provide 20-keV fundamental harmonic radiations from insertion devices. Parameter restrictions of REC-vanadium permendur hybrid undulators have been examined. The critical factor is the achieveable minimum gap of the undulator. Variations of the spectral brilliance for different beam parameters are also shown.

  9. The 20 keV undulators for a 6-GeV storage ring

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Cho, Y.

    The main goal of the future 6-GeV electron storage ring is to provide 20-keV fundamental harmonic radiations from insertion devices. Parameter restrictions of REC-Vanadium permendur hybrid undulators were examined. The critical factor is the achievable minimum gap of the undulator. Variations of the spectral brilliance for different beam parameters are also shown.

  10. Dynamical framework for KeV Dirac neutrino warm dark matter

    NASA Astrophysics Data System (ADS)

    Robinson, Dean J.; Tsai, Yuhsin

    2014-08-01

    If the source of the reported 3.5 keV x-ray line is a sterile neutrino, comprising an O(1) fraction of the dark matter (DM), then it exhibits the property that its mass times mixing angle is ˜ few×10-2 eV, a plausible mass scale for the active neutrinos. This property is a common feature of Dirac neutrino mixing. We present a framework that dynamically produces light active and keV sterile Dirac neutrinos, with appropriate mixing angles to be the x-ray line source. The central idea is that the right-handed active neutrino is a composite state, while elementary sterile neutrinos gain keV masses similarly to the quarks in extended technicolor. The entire framework is fixed by just two dynamical scales and may automatically exhibit a warm dark matter (WDM) production mechanism—dilution of thermal relics from late decays of a heavy composite neutrino—such that the keV neutrinos may comprise an O(1) fraction of the DM. In this framework, the WDM is typically quite cool and within structure formation bounds, with temperature ˜ few×10-2Tν and free-streaming length ˜ few kpc. A toy model that exhibits the central features of the framework is also presented.

  11. Improvements of the standardization of (134)Cs by the critical window setting for 605keV photopeak.

    PubMed

    Yunoki, Akira; Kawada, Yasushi; Hino, Yoshio

    2016-03-01

    In the standardization of (134)Cs by the 4πβ-γ coincidence method with a γ-window at 605keV, the satellite components of 563keV and 569keV overlapping the 605keV peak cause a steep slope and non-linearity of the efficiency extrapolation function. By shifting the lower threshold of a γ-window higher, the satellite components are eliminated, and the slope tends to horizontal. Nearly flat efficiency curves were obtained by using a CeBr3 scintillator for detecting γ-photons, as well as a NaI(Tl) scintillator. PMID:26702547

  12. Discovery of a 3.5 keV line in the Galactic Centre and a critical look at the origin of the line across astronomical targets

    NASA Astrophysics Data System (ADS)

    Jeltema, Tesla; Profumo, Stefano

    2015-06-01

    We examine the claimed excess X-ray line emission near 3.5 keV including both a new analysis of XMM-Newton observations of the Milky Way centre and a reanalysis of the data on M 31 and clusters. In no case do we find conclusive evidence for an excess. In the case of the Galactic Centre, we show that known plasma lines, including in particular K XVIII lines at 3.48 and 3.52 keV, provide a satisfactory fit to the XMM data. We estimate the expected flux of the K XVIII lines and find that the measured line flux falls squarely within the predicted range based on the brightness of other well-measured lines in the energy range of interest and on detailed multitemperature plasma models. We then re-assess the evidence for excess emission from clusters of galaxies, allowing for systematic uncertainty in the expected flux from known plasma lines and additional uncertainty due to potential variation in the abundances of different elements. We find that no conclusive excess line emission can be advocated when considering systematic uncertainties in Perseus or in other clusters. We also reanalyse the XMM data for M 31 and find no statistically significant line emission near 3.5 keV to a level greater than 1σ. Finally, we analyse the Tycho supernova remnant, which shows similar plasma features to the sources above, but does not host any significant dark matter. We detect a 3.55 keV line from Tycho, which points to possible systematic effects in the flux determination of weak lines, or to relative elemental abundances vastly different from theoretical expectations.

  13. The 0.3-30 keV spectra of Powerful Starburst Galaxies: NuSTAR and Chandra observations ofNGC 3256 and NGC 3310

    NASA Astrophysics Data System (ADS)

    Tyler, Joshua; Lehmer, Bret; Hornschemeier, Ann E.; Yukita, Mihoko; Wik, Daniel R.; Ptak, Andrew; Stern, Daniel; Harrison, Fiona; Maccarone, Tom; Zezas, Andreas; Antoniou, Vallia; NuSTAR Starburst Team

    2015-01-01

    We present nearly simultaneous Chandra and NuSTAR observations of two actively star-forming galaxies: NGC 3256 and NGC 3310. The NuSTAR galaxy-wide spectra of both galaxies follow steep power law distributions, similar to the spectra of bright individual ultra-luminous X-ray sources (ULXs) that have been studied by NuSTAR. The X-ray emission from both galaxies is spatially resolved by Chandra, which indicates that hot gas dominates the E < 1 - 3 keV emission, while ULXs make up a majority of the emission at E > 1-3 keV. Using new and archival Chandra data we found that both galaxies have candidate AGNs coincident with nuclear regions. However, the steep NuSTAR spectra of both galaxies restricts these candidates to be low luminosity AGN, and a non-AGN nature cannot be ruled out. We find the average 0.3 -30 keV SFR-normalized spectra of NGC 3256 and NGC 3310, combined with equivalent measurements for M83 and NGC 253, show sharpening power-law slopes at energies above 3 - 6 keV due to ULX populations. Our observations therefore constrain the average spectral shape of an unbiased population of ULXs to be similar to the super-Eddington accreting ULXs that have been studied by NuSTAR. We also find that for NGC 3310, there is a factor of 5 times excess X-ray emission, due to an overabundance of ULXs in the galaxy compared to typical galaxies. We argue that the excess is due to the relatively low metallicity of the young stellar population in the galaxy.

  14. Uranium enrichment measurements using the intensity ratios of self-fluorescence X-rays to 92* keV gamma ray in UXK alpha spectral region.

    PubMed

    Yücel, H; Dikmen, H

    2009-04-30

    In this paper, the known multigroup gamma-ray analysis method for uranium (MGAU) as one of the non-destructive gamma-ray spectrometry methods has been applied to certified reference nuclear materials (depleted, natural and enriched uranium) containing (235)U isotope in the range of 0.32-4.51% atom (235)U. Its analysis gives incorrect results for the low component (235)U in depleted and natural uranium samples where the build-up of the decay products begins to interfere with the analysis. The results reveal that the build-up of decay products seems to be significant and thus the algorithms for the presence of decay products should be improved to resulting in the correct enrichment value. For instance, for the case of (235)U analysis in depleted uranium or natural ore samples, self-induced X-rays such as 94.6 keV and 98.4 keV lying in UXK(alpha) spectral region used by MGAU can be excluded from the calculation. Because the significant increases have been observed in the intensities of uranium self-induced X-rays due to gamma-ray emissions with above 100 keV energy arising from decay products of (238)U and (235)U and these parents. Instead, the use of calibration curve to be made between the intensity ratios of self-fluorescence X-rays to 92(*)keV gamma-ray and the certified (235)U abundances is suggested for the determination of (235)U when higher amounts of decay products are detected in the gamma-ray spectrum acquired for the MGAU analysis. PMID:19203602

  15. Investigating geomagnetic activity dependent sources of 100s of keV electrons in Earth's inner radiation belt using Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Turner, D. L.; O'Brien, T. P., III; Fennell, J. F.; Claudepierre, S. G.; Blake, J. B.; Baker, D. N.; Henderson, M. G.; Reeves, G. D.

    2015-12-01

    By providing an unprecedented level of reliability in particle flux observations at low L-shells, NASA's Van Allen Probes mission has yielded a series of discoveries and unanswered questions concerning the inner electron radiation belt. Two such discoveries are: 1) a sharp cutoff in the energy distribution of electrons at ~900 keV, such that fluxes of electrons with energies greater than ~900 keV are below the detectability threshold of the Van Allen Probes' MagEIS instruments and consistent with upper flux limits of multi-MeV electrons calculated using the Van Allen Probes' REPT instruments, and 2) that impulsive injections of up to several hundred keV electrons may act as an activity-dependent source of electrons in the slot and inner radiation belt. In this presentation, we discuss results from phase space density (PSD) analysis of inner zone electrons. Such analysis, which examines PSD as a function of the three adiabatic invariants, effectively removes adiabatic variations in the particle observations allowing one to better identify source and loss processes ongoing in the system. We demonstrate that impulsive injections do indeed act as a source of inner radiation belt electrons and, when combined with losses in the slot region, can result in peaked radial distributions of electron PSD in the inner zone. We briefly discuss the nature of these low-L injections, which penetrate inside the plasmasphere and display strong energy and species dependencies. By examining such injections throughout the Van Allen Probes era, we also i) determine the occurrence rate of injections as a function of electron energy (and first adiabatic invariant), geomagnetic activity level, and L-shell; ii) estimate the contribution of such injections to the inner belt population; and iii) investigate how such injections disrupt coherent banded flux structures in the inner zone known as "zebra stripes".

  16. Production and Performance of the InFOCmicronS 20-40 keV Graded Multilayer Mirror

    NASA Technical Reports Server (NTRS)

    Berendse, F.; Owens, S. M.; Serlemitsos, P. J.; Tueller, J.; Chan, K.-W.; Soong, Y.; Krimm, H.; Baumgartner, W. H.; Tamura, K.; Okajima, T.; Tawara, Y.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The International Focusing Optics Collaboration for micron Crab Sensitivity (InFOC micronS) balloon-borne hard x-ray incorporates graded multilayer technology to obtain significant effective area at energies previously inaccessible to x-ray optics. The telescope mirror consists of 2040 segmented thin aluminum foils coated with replicated Pt/C multilayers. A sample of these foils was scanned using a pencil-beam reflectometer to determine, multilayer quality. The results of the reflectometer measurements demonstrate our capability to produce large quantity of foils while maintaining high-quality multilayers with a mean Nevot-Croce interface roughness of 0.5nm. We characterize the performance of the complete InFOC micronS telescope with a pencil beam raster scan to determine the effective area and encircled energy function of the telescope. The effective area of the complete telescope is 78, 42 and 22 square centimeters at 20 30 and 40 keV. respectively. The measured encircled energy fraction of the mirror has a half-power diameter of 2.0 plus or minus 0.5 arcmin (90% confidence). The mirror successfully obtained an image of the accreting black hole Cygnus X-1 during a balloon flight in July, 2001. The successful completion and flight test of this telescope demonstrates that graded-multilayer telescopes can be manufactured with high reliability for future x-ray telescope missions such as Constellation-X.

  17. Study of 1–8 keV K-α x-ray emission from high intensity femtosecond laser produced plasma

    SciTech Connect

    Arora, V. Naik, P. A.; Chakera, J. A.; Bagchi, S.; Tayyab, M.; Gupta, P. D.

    2014-04-15

    We report an experimental study on the optimization of a laser plasma based x-ray source of ultra-short duration K-α line radiation. The interaction of pulses from a CPA based Ti:sapphire laser (10 TW, 45 fs, 10 Hz) system with magnesium, titanium, iron and copper solid target generates bright 1-8 keV K-α x-ray radiation. The x-ray yield was optimized with the laser pulse duration (at fixed fluence) which is varied in the range of 45 fs to 1.4 ps. It showed a maximum at laser pulse duration of ∼740 fs, 420 fs, 350 and 250 fs for Mg (1.3 keV), Ti (4.5 keV), Fe (6.4 keV) and Cu (8.05 keV) respectively. The x-ray yield is observed to be independent of the sign of the chirp. The scaling of the K-α yield (I{sub x} ∝ I{sub L}{sup β}) for 45 fs and optimized pulse duration were measured for laser intensities in the region of 3 × 10{sup 14} – 8 × 10{sup 17}. The x-ray yield shows a much faster scaling exponent β = 1.5, 2.1, 2.4 and 2.6 for Mg, Ti, Fe and Cu respectively at optimized pulse duration compared to scaling exponent of 0.65, 1.3, 1.5, and 1.7 obtained for 45 fs duration laser pulses. The laser to x-ray energy conversion efficiencies obtained for different target materials are η{sub Mg} = 1.2 × 10{sup −5}, η{sub Ti} = 3.1 × 10{sup −5}, η{sub Fe} = 2.7 × 10{sup −5}, η{sub Cu} = 1.9 × 10{sup −5}. The results have been explained from the efficient generation of optimal energy hot electrons at longer laser pulse duration. The faster scaling observed at optimal pulse duration indicates that the x-ray source is generated at the target surface and saturation of x-ray emission would appear at larger laser fluence. An example of utilization of the source for measurement of shock-wave profiles in a silicon crystal by time resolved x-ray diffraction is also presented.

  18. Fission cross-section measurements of sup 247 Cm, sup 254 Es, and sup 250 Cf from 0. 1 eV to 80 keV

    SciTech Connect

    Danon, Y.; Slovacek, R.E.; Block, R.C. ); Lougheed, R.W.; Hoff, R.W. ); Moore, M.S. )

    1991-12-01

    This paper reports on the fission cross sections of {sup 247}Cm, {sup 254}Es, and {sup 250}Cf that are measured with the Rensselaer intense neutron spectrometer from 0.1 eV to 80 keV. The cross sections are normalized to the {sup 235}U ENDF/B-V broadened cross section. Fission areas and resonance widths are determined for low-energy resonances in {sup 247}Cm. The {sup 254}Es and {sup 250}Cf fission cross sections are the only reported measurements for these isotopes. The {sup 254}Es isotope is the heaviest odd- odd isotope ever measured over this energy range. The thermal fission cross sections for {sup 247}Cm, {sup 254}Es, and {sup 250}Cf are determined by extrapolation of the low-energy region of the cross section and are in good agreement with other reported measurements. Resonance integrals are reported for the energy range of 0.1 eV to 80 keV, and the areas for {sup 247}Cm and {sup 250}Cf resonances are also reported. The previously reported {sup 246}Cm fission cross section was corrected for fission in {sup 247}Cm.

  19. Measurement of the 330-keV resonance in 18F(p,alpha)15O

    SciTech Connect

    Moazen, Brian; Blackmon, Jeff C; Bardayan, Daniel W; Chae, K. Y.; Chipps, K.; Jones, K. L.; Kozub, R. L.; Matei, Catalin; Nesaraja, Caroline D; Pain, Steven D; ShrinerJr., J. F.; Smith, Michael Scott

    2009-03-01

    While recent measurements have substantially improved our understanding of the {sup 18}F(p, {alpha}){sup 15}O reaction that is important in novae, the production of {sup 18}F is still uncertain by more than 2 orders of magnitude, due in large part to the contribution of a resonance located at E{sub cm} = 330 keV. We developed a new technique to study resonant (p, {alpha}) reactions and employed it to measure properties of the E{sub cm} = 183 keV resonance in {sup 17}O(p, {alpha}){sup 14}N which had been previously reported to decrease {sup 18}F production in ONeMg novae by as much as a factor of 10. The previous results were confirmed using the new technique and we now propose to use this technique to study the {sup 18}F(p, {alpha}){sup 15}O reaction.

  20. One-ampere, 80-keV, long pulse H - source and accelerator

    NASA Astrophysics Data System (ADS)

    Kwan, J. W.; Ackerman, G. D.; Anderson, O. A.; Chan, C. F.; Cooper, W. S.; deVries, G. J.; Lietzke, A. F.; Soroka, L.; Steele, W. F.

    1986-05-01

    The design and operation of the surface-conversion H- ion source and the 80-keV preaccelerator are discussed. Both the source and the preaccelerator, together with the transverse field focusing (TFF) matching and pumping beam transport section (presently being tested), will be parts of a negative-ion-based neutral beam line. Results from testing the source and preaccelerator have shown that the system can accelerate more than 1 A of H- ions at 80 keV continuously; the preaccelerator operates at an optimum perveance which matches the one predicted by WOLF code computer simulation. Deconditioning of the preaccelerator due to cesium contamination is a critical problem. A method has been developed to cope with this problem.

  1. Design and modeling of 40 keV X-ray optics for Titan experiment

    SciTech Connect

    Bajt, S

    2006-06-22

    In 2004 we designed and fabricated a 40 keV W/SiC multilayer coated mirrors with 2.0 nm period thickness that were tested at RAL (UK) in winter 2004/2005. The mirrors reflected from 35 to 70 keV (different grazing incidence angles) and showed high reflectivity. However, there was not enough beamtime at RAL to obtain quantitative results. Similar experiment will now be performed in Titan facility (LLNL). In this report we design and model multilayers with even shorter period than the ones used in 2004/2005 experiments. Our goal is to fabricate 1 nm period W/SiC multilayers with high reflectivity. This will enable operation at higher angle of grazing incidence and simplified the mounting fixture.

  2. Experimental results of a dual-beam ion source for 200 keV ion implanter

    SciTech Connect

    Chen, L. H. Cui, B. Q.; Ma, R. G.; Ma, Y. J.; Tang, B.; Huang, Q. H.; Jiang, W. S.; Zheng, Y. N.

    2014-02-15

    A dual beam ion source for 200 keV ion implanter aimed to produce 200 keV H{sub 2}{sup +} and He{sup +} beams simultaneously has been developed. Not suitable to use the analyzing magnet, the purity of beam extracted from the source becomes important to the performance of implanter. The performance of ion source was measured. The results of experiments show that the materials of inlet tube of ion source, the time of arc ionization in ion source, and the amount of gas flow have significant influence on the purity of beam. The measures by using copper as inlet tube material, long time of arc ionization, and increasing the inlet of gas flow could effectively reduce the impurity of beam. And the method using the gas mass flow controller to adjust the proportion of H{sub 2}{sup +} and He{sup +} is feasible.

  3. Picosecond x-ray measurements from 100 eV to 30 keV

    SciTech Connect

    Attwood, D.T.; Kauffman, R.L.; Stradling, G.L.

    1980-10-15

    Picosecond x-ray measurements relevant to the Livermore Laser Fusion Program are reviewed. Resolved to 15 picoseconds, streak camera detection capabilities extend from 100 eV to higher than 30 keV, with synchronous capabilities in the visible, near infrared, and ultraviolet. Capabilities include automated data retrieval using charge coupled devices (CCD's), absolute x-ray intensity levels, novel cathodes, x-ray mirror/reflector combinations, and a variety of x-ray imaging devices.

  4. Origin of the Galactic Disk 6.7 kev Line Emission

    NASA Technical Reports Server (NTRS)

    Churchwell, Ed

    1997-01-01

    The goal of this program was to determine if the extended FeXXV 6.7 kev line emission might possibly be produced and confined by the hot wind-shocked bubbles to accompany UC HII regions. The main result of this study are: (1) FeXXV is detected in the W3 complex, but at a level that could only explain a small fraction of the galactic disk emission if all UC HII regions emit at about the same intensity as the W3 complex; (2) Two X-ray sources are detected in W3. W3-X 1 coincides with the radio image of this region, but W3-X2 has no radio, optical, or infrared counterpart; (3) There is no evidence for variability of W3-X1 during the period of observations (approx, 40,000 sec); (4) The X-ray spectrum of W3-X1 has no emission shortward of 1 kev, it peaks at approx. 2 kev and show significant emission out to approx. 6 kev. No individual lines are resolved. There is currently no generally accepted theory for extended hard X-ray emission in HII regions. Perhaps the most significant discovery of this program has been the detection of extended hard X-rays and the realization that some entirely new processes must be invoked to understand this; and (5)A minimum (chi)(sup 2) fit of the spectrum implies a H absorbing column of N(sub H) approx, equals to 2.1 x 10(exp 22)/ cm, a temperature of the emitting plasma of 7 x 10(exp 7) K, and a luminosity of approx. equal to 10(33)erg/s.

  5. 20 keV undulators for a 6-GeV storage ring

    SciTech Connect

    Kim, S.H.; Cho, Y.

    1985-01-01

    The main goal of the future 6-GeV electron storage ring is to provide 20-keV fundamental harmonic radiations from insertion devices. Parameter restrictions of REC-vanadium permendur hybrid undulators have been examined. The critical factor is the achievable minimum gap of the undulator. Variations of the spectral brilliance for different beam parameters are also shown. 6 refs., 5 figs.

  6. Polaroid H-sheet as a polarizer for 33 keV X-rays

    NASA Astrophysics Data System (ADS)

    Collins, S. P.

    1997-07-01

    It is shown that Polaroid H-sheet (iodine-doped polyvinyl alcohol) can be used to good effect as a fixed-wavelength polarizer for 33.17 keV X-ray beams. Iodine K-edge dichroic spectra of HN22 and HN38 sheets are presented, and the HN22 is used to demonstrate X-ray polarization analysis and polarization rotation.

  7. Molecular dynamics simulation of radiation damage in CaCd{sub 6} quasicrystal cubic approximant up to 10 keV

    SciTech Connect

    Chen, P. H.; Avchachov, K.; Nordlund, K.; Pussi, K.

    2013-06-21

    Due to the peculiar nature of the atomic order in quasicrystals, examining phase transitions in this class of materials is of particular interest. Energetic particle irradiation can provide a way to modify the structure locally in a quasicrystal. To examine irradiation-induced phase transitions in quasicrystals on the atomic scale, we have carried out molecular dynamics simulations of collision cascades in CaCd{sub 6} quasicrystal cubic approximant with energies up to 10 keV at 0 and 300 K. The results show that the threshold energies depend surprisingly strongly on the local coordination environments. The energy dependence of stable defect formation exhibits a power-law dependence on cascade energy, and surviving defects are dominated by Cd interstitials and vacancies. Only a modest effect of temperature is observed on defect survival, while irradiation temperature increases lead to a slight increase in the average size of both vacancy clusters and interstitial clusters.

  8. Calculations of electron stopping powers for 41 elemental solids over the 50 eV to 30 keV range with the full Penn algorithm

    NASA Astrophysics Data System (ADS)

    Shinotsuka, H.; Tanuma, S.; Powell, C. J.; Penn, D. R.

    2012-01-01

    We present mass collision electron stopping powers (SPs) for 41 elemental solids (Li, Be, graphite, diamond, glassy C, Na, Mg, Al, Si, K, Sc, Ti, V, Cr, Fe, Co, Ni, Cu, Ge, Y, Nb, Mo, Ru, Rh, Pd, Ag, In, Sn, Cs, Gd, Tb, Dy, Hf, Ta, W, Re, Os, Ir, Pt, Au, and Bi) that were calculated from experimental energy-loss-function data with the full Penn algorithm for electron energies between 50 eV and 30 keV. Improved sets of energy-loss functions were used for 19 solids. Comparisons were made of these SPs with SPs calculated with the single-pole approximation, previous SP calculations, and experimental SPs. Generally satisfactory agreement was found with SPs from the single-pole approximation for energies above 100 eV, with other calculated SPs, and with measured SPs.

  9. Momentum mapping spectrometer for probing the fragmentation dynamics of molecules induced by keV electrons

    NASA Astrophysics Data System (ADS)

    Singh, Raj; Bhatt, Pragya; Yadav, Namita; Shanker, R.

    2011-05-01

    We describe a new experimental setup for studying the fragmentation dynamics of molecules induced by the impact of keV electrons using the well-known technique of recoil ion momentum spectroscopy. The apparatus consists of mainly a time- and position-sensitive multi-hit particle detector for ion analysis and a channel electron multiplier detector for detecting the ejected electrons. Different components of the setup and the relevant electronics for data acquisition are described in detail with their working principles. In order to verify the reliable performance of the setup, we have recorded the collision-induced ionic spectra of the CO2 molecule by the impact of keV electrons. Information about the ion pairs of CO+:O+, C+:O+ and O+:O+ resulting from dissociative ionizing collisions of 20 and 26 keV electrons with a dilute gaseous target of CO2 molecules has been obtained. Under conditions of the present experiment, the momentum resolutions of the spectrometer for the combined momenta of CO+ and O+ ions in the direction of the time-of-flight axis and perpendicular to the direction of an electron beam are found to be 10.0 ± 0.2 and 15.0 ± 0.3 au, respectively.

  10. Searching for keV Sterile Neutrino Dark Matter with X-Ray Microcalorimeter Sounding Rockets

    NASA Astrophysics Data System (ADS)

    Figueroa-Feliciano, E.; Anderson, A. J.; Castro, D.; Goldfinger, D. C.; Rutherford, J.; Eckart, M. E.; Kelley, R. L.; Kilbourne, C. A.; McCammon, D.; Morgan, K.; Porter, F. S.; Szymkowiak, A. E.; XQC Collaboration

    2015-11-01

    High-resolution X-ray spectrometers onboard suborbital sounding rockets can search for dark matter candidates that produce X-ray lines, such as decaying keV-scale sterile neutrinos. Even with exposure times and effective areas far smaller than XMM-Newton and Chandra observations, high-resolution, wide field of view observations with sounding rockets have competitive sensitivity to decaying sterile neutrinos. We analyze a subset of the 2011 observation by the X-ray Quantum Calorimeter instrument centered on Galactic coordinates l=165°,b=-5° with an effective exposure of 106 s, obtaining a limit on the sterile neutrino mixing angle of {{sin}}22θ < 7.2× {10}-10 at 95% CL for a 7 keV neutrino. Better sensitivity at the level of {{sin}}22θ ∼ 2.1× {10}-11 at 95% CL for a 7 keV neutrino is achievable with future 300-s observations of the galactic center by the Micro-X instrument, providing a definitive test of the sterile neutrino interpretation of the reported 3.56 keV excess from galaxy clusters.

  11. 1/4 keV Fluctuations Due to the Local Hot Bubble

    NASA Astrophysics Data System (ADS)

    Kuntz, K. D.; Snowden, S. L.; Warwick, R. S.

    1997-12-01

    As part of a program to characterize 1/4 keV fluctuations at high galactic latitudes, such as those discovered by Barber, Warwick, & Snowden (1995), it is necessary to characterize the fluctuations produced by the principal foreground components of the 1/4 keV background, the Local Hot Bubble. To do so, we are studying a substantial number of deep, overlapping ROSAT PSPC pointings towards the Hyades cluster, a region which has a substantial absorbing column outside the LHB that effectively blocks the distant 1/4 keV emission. Absorption of X-ray emission by clouds within the LHB is thought to be small in this direction and can be determined by modeling the ROSAT response function. The structure of the X-ray emission in this field can be caused by 1.) changes in the pathlength to the LHB boundary, and 2.) variation in emission measure within the LHB. The amplitude of fluctuations can then place limits on these quantities, but cannot separate their effects.

  12. A large scale height galactic component of the diffuse 2-60 keV background

    NASA Technical Reports Server (NTRS)

    Iwan, D.; Marshall, F. E.; Boldt, E. A.; Mushotzky, R.; Shafer, R. A.; Stottlemyer, A.

    1982-01-01

    The diffuse 2-60 keV X-ray background has a galactic component clearly detectable by its strong variation with both galactic latitude and longitude. This galactic component is typically 10 percent of the extragalactic background toward the galactic center, half that strong toward the anticenter, and extrapolated to a few percent of the extragalactic background toward the galactic poles. It is acceptably modeled by a finite radius emission disk with a scale height of several kiloparsecs. The averaged galactic spectrum is best fitted by a thermal spectrum of kT about 9 keV, a spectrum much softer than the about 40 keV spectrum of the extragalactic component. The most likely source of this emission is low luminosity stars with large scale heights such as subdwarfs. Inverse Compton emission from GeV electrons on the microwave background contributes only a fraction of the galactic component unless the local cosmic ray electron spectrum and intensity are atypical.

  13. Fission cross section measurements of Cm-247, Cf-250 and Es-254 from 0. 1 eV to 80 keV

    SciTech Connect

    Danon, Y.; Slovacek, R.E.; Block, R.C. . Dept. of Nuclear Engineering and Engineering Physics); Lougheed, R.W.; Hoff, R.W. ); Moore, M.S. )

    1990-01-01

    Fission cross section measurements were made with the RINS system over the neutron energy range from approximately 0.1 eV to 80 keV upon samples of Cm-247, Cf-250 and Es-254. The Cm-247 measurement was undertaken to complete the RINS fission cross section measurement sequence of the curium isotopes, Es-254 was measured because it is a very heavy odd-odd nucleus which might show interesting nuclear structure effects in its fission cross section, and Cf-250 was measured to account for its buildup as a daughter product from the 276-day halflife Es-254. 6 refs., 3 figs.

  14. Measurement of the 20 and 90 keV resonances in the 18O(p,alpha)15N reaction via the Trojan horse method.

    PubMed

    La Cognata, M; Spitaleri, C; Mukhamedzhanov, A M; Irgaziev, B; Tribble, R E; Banu, A; Cherubini, S; Coc, A; Crucillà, V; Goldberg, V Z; Gulino, M; Kiss, G G; Lamia, L; Mrazek, J; Pizzone, R G; Puglia, S M R; Rapisarda, G G; Romano, S; Sergi, M L; Tabacaru, G; Trache, L; Trzaska, W; Tumino, A

    2008-10-10

    The 18O(p,alpha)15N reaction is of primary importance in several astrophysical scenarios, including fluorine nucleosynthesis inside asymptotic giant branch stars as well as oxygen and nitrogen isotopic ratios in meteorite grains. Thus the indirect measurement of the low energy region of the 18O(p,alpha)15N reaction has been performed to reduce the nuclear uncertainty on theoretical predictions. In particular the strength of the 20 and 90 keV resonances has been deduced and the change in the reaction rate evaluated. PMID:18999593

  15. Measurement of the 20 and 90 keV Resonances in the {sup 18}O(p,{alpha}){sup 15}N Reaction via the Trojan Horse Method

    SciTech Connect

    La Cognata, M.; Spitaleri, C.; Cherubini, S.; Crucilla, V.; Gulino, M.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Tumino, A.; Mukhamedzhanov, A. M.; Tribble, R. E.; Banu, A.; Goldberg, V. Z.; Tabacaru, G.; Trache, L.; Irgaziev, B.; Coc, A.

    2008-10-10

    The {sup 18}O(p,{alpha}){sup 15}N reaction is of primary importance in several astrophysical scenarios, including fluorine nucleosynthesis inside asymptotic giant branch stars as well as oxygen and nitrogen isotopic ratios in meteorite grains. Thus the indirect measurement of the low energy region of the {sup 18}O(p,{alpha}){sup 15}N reaction has been performed to reduce the nuclear uncertainty on theoretical predictions. In particular the strength of the 20 and 90 keV resonances has been deduced and the change in the reaction rate evaluated.

  16. Single impacts of keV fullerene ions on free standing graphene: Emission of ions and electrons from confined volume

    NASA Astrophysics Data System (ADS)

    Verkhoturov, Stanislav V.; Geng, Sheng; Czerwinski, Bartlomiej; Young, Amanda E.; Delcorte, Arnaud; Schweikert, Emile A.

    2015-10-01

    We present the first data from individual C60 impacting one to four layer graphene at 25 and 50 keV. Negative secondary ions and electrons emitted in transmission were recorded separately from each impact. The yields for Cn- clusters are above 10% for n ≤ 4, they oscillate with electron affinities and decrease exponentially with n. The result can be explained with the aid of MD simulation as a post-collision process where sufficient vibrational energy is accumulated around the rim of the impact hole for sputtering of carbon clusters. The ionization probability can be estimated by comparing experimental yields of Cn- with those of Cn0 from MD simulation, where it increases exponentially with n. The ionization probability can be approximated with ejecta from a thermally excited (3700 K) rim damped by cluster fragmentation and electron detachment. The experimental electron probability distributions are Poisson-like. On average, three electrons of thermal energies are emitted per impact. The thermal excitation model invoked for Cn- emission can also explain the emission of electrons. The interaction of C60 with graphene is fundamentally different from impacts on 3D targets. A key characteristic is the high degree of ionization of the ejecta.

  17. Interaction of keV ions with insulator films at grazing incidence: growth characterization and electron emission

    NASA Astrophysics Data System (ADS)

    Sánchez, E. A.; Otero, G.; Tognalli, N.; Grizzi, O.; Ponce, V. H.

    2003-04-01

    We present a study of the growth of AlF 3 thin films on Al(1 1 1) surface, together with the electron emission produced in the scattering of 60 keV protons from these films. The growth of the AlF 3 films at room temperature, from submonolayer coverage up to several layers, was characterised by means of Auger electron spectroscopy and electron energy loss spectroscopy. We found that from the beginning of the evaporation the AlF 3 molecules adsorb stoichiometrically, and layer-by-layer. The electron emission induced by grazing proton bombardment was measured as a function of the film thickness. In the forward direction, the most prominent structure can be related with convoy electron emission. For the case of the metallic surface, the maximum of this peak is located at energies above the corresponding one to electron transfer to projectile continuum states in gas-phase collisions, and shifts to lower values for sufficiently thick films. This result is discussed in terms of the competition between track and polarisation potentials generated in the insulator film, and image potentials induced in the metallic substrate.

  18. Single impacts of keV fullerene ions on free standing graphene: Emission of ions and electrons from confined volume

    SciTech Connect

    Verkhoturov, Stanislav V.; Geng, Sheng; Schweikert, Emile A.; Czerwinski, Bartlomiej; Young, Amanda E.; Delcorte, Arnaud

    2015-10-28

    We present the first data from individual C{sub 60} impacting one to four layer graphene at 25 and 50 keV. Negative secondary ions and electrons emitted in transmission were recorded separately from each impact. The yields for C{sub n}{sup −} clusters are above 10% for n ≤ 4, they oscillate with electron affinities and decrease exponentially with n. The result can be explained with the aid of MD simulation as a post-collision process where sufficient vibrational energy is accumulated around the rim of the impact hole for sputtering of carbon clusters. The ionization probability can be estimated by comparing experimental yields of C{sub n}{sup −} with those of C{sub n}{sup 0} from MD simulation, where it increases exponentially with n. The ionization probability can be approximated with ejecta from a thermally excited (3700 K) rim damped by cluster fragmentation and electron detachment. The experimental electron probability distributions are Poisson-like. On average, three electrons of thermal energies are emitted per impact. The thermal excitation model invoked for C{sub n}{sup −} emission can also explain the emission of electrons. The interaction of C{sub 60} with graphene is fundamentally different from impacts on 3D targets. A key characteristic is the high degree of ionization of the ejecta.

  19. Design of doubly focusing, tunable (5 to 30 keV), wide-bandpass optics made from layered synthetic microstructures

    SciTech Connect

    Bilderback, D.H.; Lairson, B.M.; Barbee, T.W. Jr.; Ice, G.E.; Sparks, C.J. Jr.

    1982-01-01

    Layered Synthetic Microstructures (LSMs) show great promise as focusing, high-throughput, hard x-ray monochromators. Experimental reflectivity vs. energy curves have been obtained on carbon-tungsten and carbon-molybdenum LSMs of up to 260 layers in thickness. Reflectivities for three flat LSMs with different bandpasses were 70% with ..delta..E/E = 5.4%, 66% with ..delta..E/E = 1.4%, and 19% with ..delta..E/E = 0.6%. A new generation of variable bandwidth optics using two successive LSMs is proposed. The first element will be an LSM deposited on a substrate that can be water cooled as it intercepts direct radiation from a storage ring. It can be bent for vertical focusing. The bandpass can be adjusted by choosing interchangeable first elements from an assortment of LSM's with different bandpasses (for example, ..delta..E/E = 0.005, 0.01, 0.02, 0.05, 0.1). The second LSM will consist of a multilayered structure with a 10% bandpass built onto a flexible substrate that can be bent for sagittal focusing. The result will be double focusing optics with an adjustable energy bandpass that are tunable from 5 to 30 keV.

  20. Performance characteristics of HBC stripper foils irradiated by 650 keV H- and high intensity DC ion beams

    NASA Astrophysics Data System (ADS)

    Sugai, I.; Takagi, A.; Takeda, Y.; Irie, Y.; Oyaizu, M.; Kawakami, H.

    2014-06-01

    Newly developed Hybrid type Boron mixed Carbon (HBC) stripper foils are extensively used not only for the RCS of J-PARC and PSR of LANL, but also for other low energy, high intensity proton accelerators in medical applications. We had before tested HBC stripper foils with 3.2 MeV Ne+ and DC heavy ion beams. In order to further understand characteristics of HBC stripper foils, we measured the following parameters using the KEK-650 keV H- and light ion Cockcroft Walton DC accelerator: foil lifetime, thickness reduction, uniformity before and after beam irradiation, and foil deformation. Energy deposition in the present experiment was adjusted to a similar level to that of the HBC foil used in the RCS of J-PARC’. In addition, to understand the reason why the HBC stripper foils have high durability against high intensity beam irradiation, we investigated various physical properties, and compared them between the HBC foils and other tested carbon stripper foils. The sizes of the carbon particles in the HBC foil were found to play a vital role in the lifetime.

  1. Search for 14.4 keV solar axions from M1 transition of 57Fe with CUORE crystals

    NASA Astrophysics Data System (ADS)

    CUORE Collaboration

    2013-05-01

    We report the results of a search for axions from the 14.4 keV M1 transition from 57Fe in the core of the sun using the axio-electric effect in TeO2 bolometers. The detectors are 5 × 5 × 5 cm3 crystals operated at about 10 mK in a facility used to test bolometers for the CUORE experiment at the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 43.65 kgṡd of data was made using a newly developed low energy trigger which was optimized to reduce the energy threshold of the detector. An upper limit of 0.58 cṡkg-1ṡd-1 is established at 95% C.L., which translates into lower bounds fA >= 3.12 × 105 GeV 95% C.L. (DFSZ model) and fA >= 2.41 × 104 GeV 95% C.L. (KSVZ model) on the Peccei-Quinn symmetry-breaking scale, for a value of S = 0.5 of the flavor-singlet axial vector matrix element. These bounds can be expressed in terms of axion masses as mA <= 19.2 eV and mA <= 250 eV at 95% C.L. in the DFSZ and KSVZ models respectively. Bounds are given also for the interval 0.35 <= S <= 0.55.

  2. Neutron cross sections of sup 122 Te, sup 123 Te, and sup 124 Te between 1 and 60 keV

    SciTech Connect

    Xia, Y.; Gerstenhoefer, T.W.; Jaag, S.; Kaeppeler, F.; Wisshak, K. )

    1992-05-01

    The currently favored {ital s} process scenario of helium shell burning in low mass stars involves a range of thermal energies from {ital kT}=12 to 25 keV with most of the neutron exposure taking place at low temperatures. Therefore, differential cross sections are required down to the region of resolved resonances for the reliable determination of the Maxwellian-averaged cross sections typical of the stellar plasma. This work deals with the neutron capture cross sections of the important {ital s} only isotopes {sup 122}Te, {sup 123}Te, and {sup 124}Te, which were measured between 1 and 60 keV neutron energy with a setup of Moxon-Rae detectors. The systematic uncertainties achieved in this experiment are {similar to}5%, but statistical uncertainties are smaller than 2%. In addition to the Moxon-Rae detectors, the setup includes a {sup 6}Li glass detector which could be used to determine the total neutron cross sections simultaneously. These results represent the first set of experimental data in this energy range.

  3. Investigation on gamma-ray position sensitivity at 662 keV in a spectroscopic 3' x 3' LaBr3:Ce scintillator

    NASA Astrophysics Data System (ADS)

    Giaz, A.; Camera, F.; Birocchi, F.; Blasi, N.; Boiano, C.; Brambilla, S.; Coelli, S.; Fiorini, C.; Marone, A.; Million, B.; Riboldi, S.; Wieland, O.

    2015-02-01

    The position sensitivity of a thick, cylindrical and continuous 3" x 3" (7.62 cm x 7.62 cm) LaBr3:Ce crystal was studied using a 1 mm collimated beam of 662 keV gamma rays from a 400 MBq intense 137Cs source and a spectroscopic photomultiplier (PMT) (HAMAMATSU R6233-100SEL). The PMT entrance window was covered by black absorber except for a small window 1 cm x 1 cm wide. A complete scan of the detector over a 0.5 cm step grid was performed for three positions of the 1 cm x 1 cm window. For each configuration the energy spectrum was measured and the peak centroid, the FWHM, the area and peak asymmetry of the 662 keV gamma transition were analyzed. The data show that, even in a 3" thick LaBr3:Ce crystal with diffusive surfaces the position of the full energy peak centroid depends on the source position. We verified that, on average, the position of the full energy peak centroids measured in the three 1 cm x 1 cm window configurations is sufficient for the correct identification of the collimated gamma source position.

  4. Multi-Kev X-Ray Emission from High-Z Gas Targets Fielded at Omega and NIF

    NASA Astrophysics Data System (ADS)

    May, Mark; Fournier, Kevin; Colvin, Jeff; Kane, Jave

    2010-11-01

    We report on the measured X-ray flux from gas-filled targets shot at both the OMEGA and NIF laser facilities. The OMEGA targets were 1.8 mm long, 1.95 mm in diameter Be cans filled with either a 50:50 Ar:Xe mixture, pure Ar, pure Kr or pure Xe at ˜ 1 atm. The OMEGA experiments heated the gas with 20 kJ of 3φ (˜350 nm) laser energy delivered in a 1 ns square pulse. The NIF targets were thin walled (25 μm), 4 mm long, 4 mm inner-diameter epoxy pipes filled with 1.2 atm of a 65:35 Ar:Xe mixture. The NIF experiments heated these targets with 350 kJ of 3φ (˜350 nm) laser energy delivered in a 5 ns square pulse at up to 75 TW of laser power. The emitted X-ray flux was monitored with the X-ray diode based DANTE instruments in the sub-keV range. Two-dimensional X-ray images (for energies 3-5 keV) of the targets were recorded with gated X-ray detectors. The X-ray spectra were recorded with the HENWAY crystal spectrometer at OMEGA. The results from both experiments will be compared. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. WE-E-18A-05: Bremsstrahlung of Laser-Plasma Interaction at KeV Temperature: Forward Dose and Attenuation Factors

    SciTech Connect

    Saez-Beltran, M; Fernandez Gonzalez, F

    2014-06-15

    Purpose: To obtain an analytical empirical formula for the photon dose source term in forward direction from bremsstrahlung generated from laser-plasma accelerated electron beams in aluminum solid targets, with electron-plasma temperatures in the 10–100 keV energy range, and to calculate transmission factors for iron, aluminum, methacrylate, lead and concrete and air, materials most commonly found in vacuum chamber labs. Methods: Bremsstrahlung fluence is calculated from the convolution of thin-target bremsstrahlung spectrum for monoenergetic electrons and the relativistic Maxwell-Juettner energy distribution for the electron-plasma. Unattenuatted dose in tissue is calculated by integrating the photon spectrum with the mass-energy absorption coefficient. For the attenuated dose, energy dependent absorption coefficient, build-up factors and finite shielding correction factors were also taken into account. For the source term we use a modified formula from Hayashi et al., and we fitted the proportionality constant from experiments with the aid of the previously calculated transmission factors. Results: The forward dose has a quadratic dependence on electron-plasma temperature: 1 joule of effective laser energy transferred to the electrons at 1 m in vacuum yields 0,72 Sv per MeV squared of electron-plasma temperature. Air strongly filters the softer part of the photon spectrum and reduce the dose to one tenth in the first centimeter. Exponential higher energy tail of maxwellian spectrum contributes mainly to the transmitted dose. Conclusion: A simple formula for forward photon dose from keV range temperature plasma is obtained, similar to those found in kilovoltage x-rays but with higher dose per dissipated electron energy, due to thin target and absence of filtration.

  6. The 0.3-30 keV Spectra of Powerful Starburst Galaxies: NuSTAR and Chandra Observations of NGC 3256 and NGC 3310

    NASA Astrophysics Data System (ADS)

    Lehmer, B. D.; Tyler, J. B.; Hornschemeier, A. E.; Wik, D. R.; Yukita, M.; Antoniou, V.; Boggs, S.; Christensen, F. E.; Craig, W. W.; Hailey, C. J.; Harrison, F. A.; Maccarone, T. J.; Ptak, A.; Stern, D.; Zezas, A.; Zhang, W. W.

    2015-06-01

    We present nearly simultaneous Chandra and NuSTAR observations of two actively star-forming galaxies within 50 Mpc: NGC 3256 and NGC 3310. Both galaxies are significantly detected by both Chandra and NuSTAR, which together provide the first-ever spectra of these two galaxies spanning 0.3-30 keV. The X-ray emission from both galaxies is spatially resolved by Chandra; we find that hot gas dominates the E < 1-3 keV emission while ultraluminous X-ray sources (ULXs) provide majority contributions to the emission at E > 1-3 keV. The NuSTAR galaxy-wide spectra of both galaxies follow steep power-law distributions with Γ ≈ 2.6 at E > 5-7 keV. Using new and archival Chandra data, we search for signatures of heavily obscured or low luminosity active galactic nuclei (AGNs). We find that both NGC 3256 and NGC 3310 have X-ray detected sources coincident with nuclear regions; however, the steep NuSTAR spectra of both galaxies restricts these sources to be either low luminosity AGNs (L2-10 keV/LEdd ≲ 10-5) or non-AGNs in nature (e.g., ULXs or crowded X-ray sources that reach L2-10 keV ˜ 1040 erg s-1 cannot be ruled out). Combining our constraints on the 0.3-30 keV spectra of NGC 3256 and NGC 3310 with equivalent measurements for nearby star-forming galaxies M83 and NGC 253, we analyze the star formation rate (SFR) normalized spectra of these starburst galaxies. The spectra of all four galaxies show sharply declining power-law slopes at energies above 3-6 keV primarily due to ULX populations. Our observations therefore constrain the average spectral shape of galaxy-wide populations of luminous accreting binaries (i.e., ULXs). Interestingly, despite a completely different galaxy sample selection, emphasizing here a range of SFRs and stellar masses, these properties are similar to those of super-Eddington accreting ULXs that have been studied individually in a targeted NuSTAR ULX program. We also find that NGC 3310 exhibits a factor of ≈3-10 elevation of X-ray emission over

  7. Decline of the 2-10 keV Emission from Eta Carinae

    NASA Technical Reports Server (NTRS)

    Liburd, Jamar; Corcoran, Michael F.; Hamaguchi, Kenji; Gull, Theodore R.; Madura, Thomas; Teodoro, Mairan; Moffat, Anthony; Richardson, Noel; Russell, Chris; Pollock, Andrew; Owocki, Stan

    2014-01-01

    Analysis of Eta Car's X-ray spectrum in the 2-10 keV band using processed data from the X-ray Telescope on Swift reveals a peak flux on July 16, 2014 of 0.046 photons s(exp -1) cm(exp -2) (3.37+/-0.15×10(exp -10) ergs s(exp -1) cm(exp -2). This flux is similar to the previous maximum flux seen by the XRT, 3.53+/-0.13×10(exp -10) ergs s(exp -1) cm(exp -2) (0.049 photons s(exp -1) cm(exp -2), ATEL #6298). Since this peak on July 16, the most recent Swift XRT quicklook data show a drop in flux. On July 20, 2014 the XRT flux as seen in the quicklook data was 0.011 photons s(exp -1) cm(exp -2) (8.3+/-0.5×10(exp -11) ergs s(exp -1) cm(exp -2)). This most likely indicates that the 2-10 keV flux is in its declining phase as Eta Car approaches its deep X-ray minimum stage (Hamaguchi et al., 2014, ApJ, 784, 125) associated with periastron passage of the 2024-day binary orbit. The column density derived from analysis of the July 20 XRT quicklook data is 7.2×10(exp 22) cm(exp -2). This is consistent with the column density seen near the same orbital phase in 2003 (7.7×10(exp 22) cm(exp -2), Hamaguchi et al., 2007, ApJ, 663, 522). Eta Car's deep X-ray minimum phase is expected to begin on July 30, 2014. Weekly Swift/XRT observations of Eta Car in the 2-10 keV band are planned throughout the X-ray minimum.

  8. Dark matter inelastic up-scattering with the interstellar plasma: A new source of x-ray lines, including at 3.5 keV

    NASA Astrophysics Data System (ADS)

    D'Eramo, Francesco; Hambleton, Kevin; Profumo, Stefano; Stefaniak, Tim

    2016-05-01

    We explore the phenomenology of a class of models where the dark matter particle can inelastically up-scatter to a heavier excited state via off-diagonal dipolar interactions with the interstellar plasma (gas or free electrons). The heavier particle then rapidly decays back to the dark matter particle plus a quasimonochromatic photon. For the process to occur at appreciable rates, the mass splitting between the heavier state and the dark matter must be comparable to, or smaller than, the kinetic energy of particles in the plasma. As a result, the predicted photon line falls in the soft x-ray range, or, potentially, at arbitrarily lower energies. We explore experimental constraints from cosmology and particle physics, and present accurate calculations of the dark matter thermal relic density and of the flux of monochromatic x rays from thermal plasma excitation. We find that the model provides a natural explanation for the observed 3.5 keV line from clusters of galaxies and from the Galactic center, and is consistent with null detections of the line from dwarf galaxies. The unique line shape, which will be resolved by future observations with the Hitomi (formerly Astro-H) satellite, and the predicted unique morphology and target-temperature dependence will enable easy discrimination of this class of models versus other scenarios for the generation of the 3.5 keV line or of any other unidentified line across the electromagnetic spectrum.

  9. Validation of modelled imaging plates sensitivity to 1-100 keV x-rays and spatial resolution characterisation for diagnostics for the "PETawatt Aquitaine Laser"

    NASA Astrophysics Data System (ADS)

    Boutoux, G.; Batani, D.; Burgy, F.; Ducret, J.-E.; Forestier-Colleoni, P.; Hulin, S.; Rabhi, N.; Duval, A.; Lecherbourg, L.; Reverdin, C.; Jakubowska, K.; Szabo, C. I.; Bastiani-Ceccotti, S.; Consoli, F.; Curcio, A.; De Angelis, R.; Ingenito, F.; Baggio, J.; Raffestin, D.

    2016-04-01

    Thanks to their high dynamic range and ability to withstand electromagnetic pulse, imaging plates (IPs) are commonly used as passive detectors in laser-plasma experiments. In the framework of the development of the diagnostics for the Petawatt Aquitaine Laser facility, we present an absolute calibration and spatial resolution study of five different available types of IP (namely, MS-SR-TR-MP-ND) performed by using laser-induced K-shell X-rays emitted by a solid silver target irradiated by the laser ECLIPSE at CEntre Lasers Intenses et Applications. In addition, IP sensitivity measurements were performed with a 160 kV X-ray generator at CEA DAM DIF, where the absolute response of IP SR and TR has been calibrated to X-rays in the energy range 8-75 keV with uncertainties of about 15%. Finally, the response functions have been modeled in Monte Carlo GEANT4 simulations in order to reproduce experimental data. Simulations enable extrapolation of the IP response functions to photon energies from 1 keV to 1 GeV, of interest, e.g., for laser-driven radiography.

  10. Validation of modelled imaging plates sensitivity to 1-100 keV x-rays and spatial resolution characterisation for diagnostics for the "PETawatt Aquitaine Laser".

    PubMed

    Boutoux, G; Batani, D; Burgy, F; Ducret, J-E; Forestier-Colleoni, P; Hulin, S; Rabhi, N; Duval, A; Lecherbourg, L; Reverdin, C; Jakubowska, K; Szabo, C I; Bastiani-Ceccotti, S; Consoli, F; Curcio, A; De Angelis, R; Ingenito, F; Baggio, J; Raffestin, D

    2016-04-01

    Thanks to their high dynamic range and ability to withstand electromagnetic pulse, imaging plates (IPs) are commonly used as passive detectors in laser-plasma experiments. In the framework of the development of the diagnostics for the Petawatt Aquitaine Laser facility, we present an absolute calibration and spatial resolution study of five different available types of IP (namely, MS-SR-TR-MP-ND) performed by using laser-induced K-shell X-rays emitted by a solid silver target irradiated by the laser ECLIPSE at CEntre Lasers Intenses et Applications. In addition, IP sensitivity measurements were performed with a 160 kV X-ray generator at CEA DAM DIF, where the absolute response of IP SR and TR has been calibrated to X-rays in the energy range 8-75 keV with uncertainties of about 15%. Finally, the response functions have been modeled in Monte Carlo GEANT4 simulations in order to reproduce experimental data. Simulations enable extrapolation of the IP response functions to photon energies from 1 keV to 1 GeV, of interest, e.g., for laser-driven radiography. PMID:27131655

  11. SIGNIFICANT X-RAY LINE EMISSION IN THE 5-6 keV BAND OF NGC 4051

    SciTech Connect

    Turner, T. J.; Miller, L.; Reeves, J. N.; Lobban, A.; Braito, V.; Kraemer, S. B.; Crenshaw, D. M.

    2010-03-20

    A Suzaku X-ray observation of NGC 4051 taken during 2005 November reveals line emission at 5.44 keV in the rest frame of the galaxy which does not have an obvious origin in known rest-frame atomic transitions. The improvement to the fit statistic when this line is accounted for establishes its reality at >99.9% confidence: we have also verified that the line is detected in the three X-ray Imaging Spectrometer units independently. Comparison between the data and Monte Carlo simulations shows that the probability of the line being a statistical fluctuation is p < 3.3 x 10{sup -4}. Consideration of three independent line detections in Suzaku data taken at different epochs yields a probability p < 3 x 10{sup -11} and thus conclusively demonstrates that it cannot be a statistical fluctuation in the data. The new line and a strong component of Fe Kalpha emission from neutral material are prominent when the source flux is low, during 2005. Spectra from 2008 show evidence for a line consistent with having the same flux and energy as that observed during 2005, but inconsistent with having a constant equivalent width against the observed continuum. The stability of the line flux and energy suggests that it may not arise in transient hotspots, as has been suggested for similar lines in other sources, but could arise from a special location in the reprocessor, such as the inner edge of the accretion disk. Alternatively, the line energy may be explained by spallation of Fe into Cr, as discussed in a companion paper.

  12. Comparative Dosimetric Estimates of a 25 keV Electron Micro-beam with three Monte Carlo Codes

    SciTech Connect

    Mainardi, Enrico; Donahue, Richard J.; Blakely, Eleanor A.

    2002-09-11

    The calculations presented compare the different performances of the three Monte Carlo codes PENELOPE-1999, MCNP-4C and PITS, for the evaluation of Dose profiles from a 25 keV electron micro-beam traversing individual cells. The overall model of a cell is a water cylinder equivalent for the three codes but with a different internal scoring geometry: hollow cylinders for PENELOPE and MCNP, whereas spheres are used for the PITS code. A cylindrical cell geometry with scoring volumes with the shape of hollow cylinders was initially selected for PENELOPE and MCNP because of its superior simulation of the actual shape and dimensions of a cell and for its improved computer-time efficiency if compared to spherical internal volumes. Some of the transfer points and energy transfer that constitute a radiation track may actually fall in the space between spheres, that would be outside the spherical scoring volume. This internal geometry, along with the PENELOPE algorithm, drastically reduced the computer time when using this code if comparing with event-by-event Monte Carlo codes like PITS. This preliminary work has been important to address dosimetric estimates at low electron energies. It demonstrates that codes like PENELOPE can be used for Dose evaluation, even with such small geometries and energies involved, which are far below the normal use for which the code was created. Further work (initiated in Summer 2002) is still needed however, to create a user-code for PENELOPE that allows uniform comparison of exact cell geometries, integral volumes and also microdosimetric scoring quantities, a field where track-structure codes like PITS, written for this purpose, are believed to be superior.

  13. NuSTAR AND CHANDRA INSIGHT INTO THE NATURE OF THE 3-40 keV NUCLEAR EMISSION IN NGC 253

    SciTech Connect

    Lehmer, B. D.; Wik, D. R.; Hornschemeier, A. E.; Ptak, A.; Leyder, J.-C.; Venters, T.; Zhang, W. W.; Antoniou, V.; Argo, M. K.; Bechtol, K.; Boggs, S.; Craig, W. W.; Krivonos, R.; Christensen, F. E.; Hailey, C. J.; Harrison, F. A.; Maccarone, T. J.; Stern, D.; Zezas, A.

    2013-07-10

    We present results from three nearly simultaneous Nuclear Spectroscopic Telescope Array (NuSTAR) and Chandra monitoring observations between 2012 September 2 and 2012 November 16 of the local star-forming galaxy NGC 253. The 3-40 keV intensity of the inner {approx}20 arcsec ({approx}400 pc) nuclear region, as measured by NuSTAR, varied by a factor of {approx}2 across the three monitoring observations. The Chandra data reveal that the nuclear region contains three bright X-ray sources, including a luminous (L{sub 2-10{sub keV}} {approx} few Multiplication-Sign 10{sup 39} erg s{sup -1}) point source located {approx}1 arcsec from the dynamical center of the galaxy (within the 3{sigma} positional uncertainty of the dynamical center); this source drives the overall variability of the nuclear region at energies {approx}>3 keV. We make use of the variability to measure the spectra of this single hard X-ray source when it was in bright states. The spectra are well described by an absorbed (N{sub H} Almost-Equal-To 1.6 Multiplication-Sign 10{sup 23} cm{sup -2}) broken power-law model with spectral slopes and break energies that are typical of ultraluminous X-ray sources (ULXs), but not active galactic nuclei (AGNs). A previous Chandra observation in 2003 showed a hard X-ray point source of similar luminosity to the 2012 source that was also near the dynamical center ({theta} Almost-Equal-To 0.4 arcsec); however, this source was offset from the 2012 source position by Almost-Equal-To 1 arcsec. We show that the probability of the 2003 and 2012 hard X-ray sources being unrelated is >>99.99% based on the Chandra spatial localizations. Interestingly, the Chandra spectrum of the 2003 source (3-8 keV) is shallower in slope than that of the 2012 hard X-ray source. Its proximity to the dynamical center and harder Chandra spectrum indicate that the 2003 source is a better AGN candidate than any of the sources detected in our 2012 campaign; however, we were unable to rule out a ULX

  14. On the vectorial photoelectric effect at 2.69 keV

    NASA Technical Reports Server (NTRS)

    Shaw, P. S.; Hanany, S.; Liu, Y.; Church, E. D.; Fleischman, J.; Kaaret, P.; Novick, R.; Santangelo, A.

    1991-01-01

    Recent experiments conducted to study the vectorial photoelectric effect with CsI, Al2O3 and Si photocathodes at 2.69 keV indicate null results. Detailed analysis shows that previously measured modulation can be well explained by geometrical misalignment and a combination of the asymmetric shape of the incident X-ray beam and a small detection area of the photoelectron detector. After the elimination of the sources of spurious modulation, we observed a modulation factor of less than 3 percent for a grazing incidence angle as small as 5 deg. There is no observable difference in the pulse height distribution between s and p states.

  15. Construction of low current 30 keV proton accelerator for detection efficiency studies

    NASA Astrophysics Data System (ADS)

    Salas Bacci, Americo; Baessler, Stefan; Ross, Aaron; Roane, Nicholas; Whitaker, C. J.

    2013-10-01

    We have constructed a small ion source and proton accelerator at UVA. This accelerator is needed for the characterization of the detection efficiency of a large area, thick, 127-hexagonal segmented Silicon detector for the neutron beta decay ``Nab'' experiment that will be carried out at SNS, Oak Ridge National Laboratory in search of physics beyond the standard model. We will present the design, simulations, operation, and detection of 30 keV H+ and H2+, as well as our efforts to stabilize and correlate both ion currents.

  16. A 17 keV neutrino and large magnetic moment solution of the solar neutrino puzzle

    NASA Astrophysics Data System (ADS)

    Akhmedov, E. Kh.; Senjanovic, G.; Tao, Zhijian; Berezhiani, Z. G.

    1992-08-01

    Zee-type models with Majorons naturally incorporate the 17 keV neutrino but in their minimal version fail to simultaneously solve the solar neutrino puzzle. If there is a sterile neutrino state, a particularly simple solution is found to the solar neutrino problem, which besides nu(sub 17) predicts a light Zeldovich-Konopinski-Mahmoud neutrino nu(sub light) = nu(sub e) + nu(sub mu)(sup c) with a magnetic moment being easily as large as 10(exp -11)(mu)(sub B) through the Barr-Freire-Zee mechanism.

  17. 17 keV neutrino and large magnetic moment solution of the solar neutrino puzzle

    NASA Astrophysics Data System (ADS)

    Akhmedov, Eugeni Kh.; Berezhiani, Zurab G.; Senjanović, Goran; Tao, Zhijian

    1993-01-01

    Zee-type models with majorons naturally incorporate the 17 keV neutrino but in their minimal version fail to simultaneously solve the solar neutrino puzzle. If there is a sterile neutrino state, we find a particularly simple solution to the solar neutrino problem, which besides ν17 predicts a light Zeldovich-Konopinski-Mahmoud neutrino νlight = νe + νcμ with a magnetic moment being easily as large as 10 -11μB through the Barr-Freire-Zee mechanism.

  18. Microchannel plate pinhole camera for 20 to 100 keV x-ray imaging

    SciTech Connect

    Wang, C.L.; Leipelt, G.R.; Nilson, D.G.

    1984-10-03

    We present the design and construction of a sensitive pinhole camera for imaging suprathermal x-rays. Our device is a pinhole camera consisting of four filtered pinholes and microchannel plate electron multiplier for x-ray detection and signal amplification. We report successful imaging of 20, 45, 70, and 100 keV x-ray emissions from the fusion targets at our Novette laser facility. Such imaging reveals features of the transport of hot electrons and provides views deep inside the target.

  19. Bent-crystal Laue spectrograph for measuring x-ray spectra (15keV)

    SciTech Connect

    Failor, B. H.; Wong, S.; Riordan, J. C.; Hudson, L. T.; O'Brien, C. M.; Seltzer, S. M.; Seiler, S.; Pressley, L.; Lojewski, D. Y.

    2006-10-15

    A bent-crystal Laue {l_brace}or Cauchois [J. Phys. Radium 3, 320 (1932)] geometry{r_brace} spectrograph is a good compromise between sensitivity and spectral resolution for measuring x-ray spectra (15keV) from large area x-ray sources because source-size spectral broadening is mitigated. We have designed, built, and tested such a spectrograph for measuring the spectra from electron-beam x-ray sources with diameters as large as 30 cm. The same spectrograph geometry has also been used to diagnose (with higher spectral resolution) smaller sources, such as x-ray tubes for mammography and laser-driven inertial fusion targets. We review our spectrograph design and describe the performance of different components. We have compared the reflectivity and spectral resolution of LiF, and Ge diffracting crystals. We have also measured the differences in sensitivity and spectral resolution using different x-ray to light converters (plastic scintillator, CsI, and Gd{sub 2}O{sub 2}S) fiber optically coupled to an intensified charge-coupled device camera. We have also coupled scintillating fibers to photomultiplier tubes to obtain temporal records for discrete energy channels.

  20. Angle-resolved Auger study of 10-keV Ar+-ion-induced Si LMM atomic lines

    NASA Astrophysics Data System (ADS)

    Bonanno, A.; Xu, F.; Camarca, M.; Siciliano, R.; Oliva, A.

    1990-06-01

    We present a detailed, angle-resolved Si L-shell Auger study by bombarding a single-crystalline Si sample with 10-keV Ar+ ions. We have observed a new atomic line at kinetic energy of ~99 eV which is tentatively assigned to an Auger transition involving two 2p holes in Si+. The existence of two atomic peaks at 61.36 and 91.1 eV has also been clearly confirmed. Our Auger spectra show well-split Doppler peaks for the principal Si0 and Si+ atomic lines and a strong dependence of the shift amplitude on both incidence and detection angles. Successful computer fitting of the angular dependence of Doppler shift has been achieved by using a simple binary-collision model with the Molière approximation to the Thomas-Fermi screening potential. These results suggest that the first violent Ar-Si asymmetric collisions contribute remarkably to the Si 2p-vacancy creation process and are responsible for the ejection of energetic Si(*) particles which is highly directional. The critical minimum Ar-Si approach distance for Si 2p-hole excitation is 0.355 Å, in very good agreement with the value predicted by molecular-orbital theory.

  1. Effect on number albedo values for 662 keV photons from radiation shielding materials stratified with lead

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, A.; Sinha, A. K.

    1988-07-01

    Albedo measurements for backscattered gamma rays from semi-infinite scatterers have suitable applications in the design of gamma ray shields particularly in nuclear reactor and accelerator shields and in many other nuclear installations. The insertion of lead slabs into stratified combination with other shielding materials has been found to increase the shielding property appreciably. The stratified slabs of alternating heterogeneous layers have been found in this investigation to have a virtual homogeneous property with a definite effective atomic number. The purpose of the present investigation is to find out the extent to which the shielding property increases in binary configuration with lead and to investigate into the dependence of the saturation thickness of the shielding media on the effective atomic number of each configuration. The indigeneously designed Uniform Sensitivity Photon Counter used in this investigation has an edge over all previous methods of experimental measurements that it is independent of response correction. The number albedo values as well as angular distribution of backscattered photons for iron, aluminium and concrete stratified with lead slabs at 662 keV energy have been reported here.

  2. Bent-crystal Laue spectrograph for measuring x-ray spectra (15keV)

    NASA Astrophysics Data System (ADS)

    Failor, B. H.; Wong, S.; Riordan, J. C.; Hudson, L. T.; O'Brien, C. M.; Seltzer, S. M.; Seiler, S.; Pressley, L.; Lojewski, D. Y.

    2006-10-01

    A bent-crystal Laue {or Cauchois [J. Phys. Radium 3, 320 (1932)] geometry} spectrograph is a good compromise between sensitivity and spectral resolution for measuring x-ray spectra (15keV) from large area x-ray sources because source-size spectral broadening is mitigated. We have designed, built, and tested such a spectrograph for measuring the spectra from electron-beam x-ray sources with diameters as large as 30cm. The same spectrograph geometry has also been used to diagnose (with higher spectral resolution) smaller sources, such as x-ray tubes for mammography and laser-driven inertial fusion targets. We review our spectrograph design and describe the performance of different components. We have compared the reflectivity and spectral resolution of LiF, and Ge diffracting crystals. We have also measured the differences in sensitivity and spectral resolution using different x-ray to light converters (plastic scintillator, CsI, and Gd2O2S) fiber optically coupled to an intensified charge-coupled device camera. We have also coupled scintillating fibers to photomultiplier tubes to obtain temporal records for discrete energy channels.

  3. Cross-field diffusion of energetic (100 keV to 2 MeV) protons in interplanetary space

    SciTech Connect

    Costa Jr, Edio da; Tsurutani, Bruce T.; Alves, Maria Virgínia; Echer, Ezequiel; Lakhina, Gurbax S. E-mail: costajr.e@gmail.com

    2013-12-01

    Magnetic field magnitude decreases (MDs) are observed in several regions of the interplanetary medium. In this paper, we characterize MDs observed by the Ulysses spacecraft instrumentation over the solar south pole by using magnetic field data to obtain the empirical size, magnetic field MD, and frequency of occurrence distribution functions. The interaction of energetic (100 keV to 2 MeV) protons with these MDs is investigated. Charged particle and MD interactions can be described by a geometrical model allowing the calculation of the guiding center shift after each interaction. Using the distribution functions for the MD characteristics, Monte Carlo simulations are used to obtain the cross-field diffusion coefficients as a function of particle kinetic energy. It is found that the protons under consideration cross-field diffuse at a rate of up to ≈11% of the Bohm rate. The same method used in this paper can be applied to other space regions where MDs are observed, once their local features are well known.

  4. Contribution of polarization bremsstrahlung to the total continuum radiation spectra of Xe and Kr using 25 keV electrons

    NASA Astrophysics Data System (ADS)

    Portillo, Salvador; Quarles, C. A.

    1999-10-01

    Recent theoretical calculations of polarization bremsstrahlung (PB)footnote A.V. Korol, J.Phys. B 30, 1997, L115-L121 suggest that this process leads to an increase in the total continuum radiation spectrum specifically more so at energies below the absorption edges of the target atom. Earlier work by the authors on thin film targetsfootnote Quarles, App. of Acc. in Phys. and Tech., 1998, 174-177 suggested that it was not possible to ascertain the PB contribution due to screening arising from multiple atom interactions. Present work aims to eliminate this interaction by focusing on gas targets. We have also attempted to minimize the background from elastically scattered electrons as well as devise a better model for the absorption due to the Kapton window and to the detector itself. We present data and the analysis of a possible PB contribution to the total bremsstrahlung spectrum for 25 keV electrons on Xe and Kr. Present analysis shows that the addition of PB leads to an improved fit for the Xe but not for the Kr.

  5. The angular distribution of solar wind ˜20-200 keV superhalo electrons at quiet times

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Wang, Linghua; Li, Gang; He, Jiansen; Salem, Chadi S.; Tu, Chuanyi; Wimmer-Schweingruber, Robert F.; Bale, Stuart D.

    2016-03-01

    We present a comprehensive study of the angular distribution of ˜20-200 keV superhalo electrons measured at 1 AU by the WIND 3DP instrument during quiet times from 1995 January through 2005 December. According to the interplanetary magnetic field, we re-bin the observed electron pitch angle distributions to obtain the differential flux, Jout (Jin), of electrons traveling outward from (inward toward) the Sun, and define the anisotropy of superhalo electrons as A =2/(Jo u t-Ji n) Jo u t+Ji n at a given energy. We found that for out in ˜96% of the selected quiet-time samples, superhalo electrons have isotropic angular distributions, while for ˜3% (˜1%) of quiet-time samples, superhalo electrons are outward-anisotropic (inward-anisotropic). All three groups of angular distributions show no correlation with the local solar wind plasma, interplanetary magnetic field and turbulence. Furthermore, the superhalo electron spectral index shows no correlation with the spectral index of local solar wind turbulence. These quiet-time superhalo electrons may be accelerated by nonthermal processes related to the solar wind source and strongly scattered/ reflected in the interplanetary medium, or could be formed due to the electron acceleration through the interplanetary medium.

  6. The 3H(d,γ)5He Reaction for Ec.m. ≤ 300 keV

    NASA Astrophysics Data System (ADS)

    Parker, C. E.; Brune, C. R.; Massey, T. N.; O'Donnell, J. E.; Richard, A. L.; Sayre, D. B.

    2016-03-01

    The 3H(d, γ)5He reaction has been measured using a 500-keV pulsed deuteron beam incident on a stopping titanium tritide target at Ohio University's Edwards Accelerator Laboratory. The time-of-flight (TOF) technique has been used to distinguish the γ-rays from neutrons detected in the bismuth germinate (BGO) γ-ray detector. A stilbene scintillator and an NE-213 scintillator have been used to detect the neutrons from the 3H(d, n)4He reaction using both the pulse-shape discrimination and TOF techniques. A newly-designed target holder with a silicon surface barrier detector to simultaneously measure α-particles to normalize the neutron count was incorporated for subsequent measurements. The γ-rays have been measured at laboratory angles of 0°, 45°, 90°, and 135°. Information about the γ-ray energy distribution for the unbound ground state and first excited state of 5He can be obtained experimentally by comparing the BGO data to Monte Carlo simulations. The 3H(d, γ)/3H(d, n) branching ratio has also been determined.

  7. Formation of carbon nanoclusters by implantation of keV carbon ions in fused silica followed by thermal annealing

    NASA Astrophysics Data System (ADS)

    Olivero, P.; Peng, J. L.; Liu, A.; Reichart, P.; McCallum, J. C.; Sze, J. Y.; Lau, S. P.; Tay, B. K.; Kalish, R.; Dhar, S.; Feldman, Leonard; Jamieson, David N.; Prawer, Steven

    2005-02-01

    In the last decade, the synthesis and characterization of nanometer sized carbon clusters have attracted growing interest within the scientific community. This is due to both scientific interest in the process of diamond nucleation and growth, and to the promising technological applications in nanoelectronics and quantum communications and computing. Our research group has demonstrated that MeV carbon ion implantation in fused silica followed by thermal annealing in the presence of hydrogen leads to the formation of nanocrystalline diamond, with cluster size ranging from 5 to 40 nm. In the present paper, we report the synthesis of carbon nanoclusters by the implantation into fused silica of keV carbon ions using the Plasma Immersion Ion Implantation (PIII) technique, followed by thermal annealing in forming gas (4% 2H in Ar). The present study is aimed at evaluating this implantation technique that has the advantage of allowing high fluence-rates on large substrates. The carbon nanostructures have been characterized with optical absorption and Raman spectroscopies, cross sectional Transmission Electron Microscopy (TEM), and Parallel Electron Energy Loss Spectroscopy (PEELS). Nuclear Reaction Analysis (NRA) has been employed to evaluate the deuterium incorporation during the annealing process, as a key mechanism to stabilize the formation of the clusters.

  8. 60 keV Ar⁺-ion induced modification of microstructural, compositional, and vibrational properties of InSb

    SciTech Connect

    Datta, D. P.; Garg, S. K.; Som, T.; Satpati, B.; Kanjilal, A.; Dhara, S.; Kanjilal, D.

    2014-10-14

    Room temperature irradiation of InSb(111) by 60 keV Ar⁺-ions at normal (0°) and oblique (60°) angles of incidence led to the formation of nanoporous structure in the high fluence regime of 1×10¹⁷ to 3×10¹⁸ ions cm⁻². While a porous layer comprising of a network of interconnected nanofibers was generated by normal ion incidence, evolution of plate-like structures was observed for obliquely incident ions. Systematic studies of composition and structure using energy dispersive x-ray spectroscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, Raman mapping, grazing incidence x-ray diffraction, and cross-sectional transmission electron microscopy revealed a high degree of oxidation of the ion-induced microstructures with the presence of In₂O₃ and Sb₂O₃ phases and presence of nanocrystallites within the nanoporous structures. The observed structural evolution was understood in terms of processes driven by ion-induced defect accumulation within InSb.

  9. Detailed Tabulation of Atomic Form Factors, Photoelectric Absorption and Scattering Cross Section, and Mass Attenuation Coefficients in the Vicinity of Absorption Edges in the Soft X-Ray (Z=30-36, Z=60-89, E=0.1 keV-10 keV), Addressing Convergence Issues of Earlier Work

    NASA Astrophysics Data System (ADS)

    Chantler, C. T.

    2000-07-01

    Reliable knowledge of the complex x-ray form factor [Re(f ) and f″] and the photoelectric attenuation coefficient (σPE) is required for crystallography, medical diagnosis, radiation safety, and XAFS studies. Discrepancies between currently used theoretical approaches of 200% exist for numerous elements from 1 to 3 keV x-ray energies. The key discrepancies are due to the smoothing of edge structure, the use of nonrelativistic wave functions, and the lack of appropriate convergence of wave functions. This paper addresses these key discrepancies and derives new theoretical results of substantially higher accuracy in near-edge soft x-ray regions. The high-energy limitations of the current approach are also illustrated. The energy range covered is 0.1 to 10 keV. The associated figures and tabulation demonstrate the current comparison with alternate theory and with available experimental data. In general, experimental data are not sufficiently accurate to establish the errors and inadequacies of theory at this level. However, the best experimental data and the observed experimental structure as a function of energy are strong indicators of the validity of the current approach. New developments in experimental measurement hold great promise in making critical comparisons with theory in the near future.

  10. Precise Determination of the Intensity of 226Ra Alpha Decay to the 186 keV Excited State

    SciTech Connect

    S.P. LaMont; R.J. Gehrke; S.E. Glover; R.H. Filby

    2001-04-01

    There is a significant discrepancy in the reported values for the emission probability of the 186 keV gamma-ray resulting from the alpha decay of 226 Ra to 186 keV excited state of 222 Rn. Published values fall in the range of 3.28 to 3.59 gamma-rays per 100 alpha-decays. An interesting observation is that the lower value, 3.28, is based on measuring the 186 keV gamma-ray intensity relative to the 226 Ra alpha-branch to the 186 keV level. The higher values, which are close to 3.59, are based on measuring the gamma-ray intensity from mass standards of 226 Ra that are traceable to the mass standards prepared by HÓNIGSCHMID in the early 1930''s. This discrepancy was resolved in this work by carefully measuring the 226 Ra alpha-branch intensities, then applying the theoretical E2 multipolarity internal conversion coefficient of 0.692±0.007 to calculate the 186 keV gamma-ray emission probability. The measured value for the alpha branch to the 186 keV excited state was (6.16±0.03)%, which gives a 186 keV gamma-ray emission probability of (3.64±0.04)%. This value is in excellent agreement with the most recently reported 186 keV gamma-ray emission probabilities determined using 226 Ra mass standards.

  11. Estimates of the Compton backscattering feature at approximately 150 keV in the Crab Nebula pulsar

    NASA Astrophysics Data System (ADS)

    Bednarek, W.; Cremonesi, O.; Treves, A.

    1994-04-01

    The Compton backscattering feature at approximately 150 keV from the Crab Nebula pulsar is evaluated in a picture where the 440 keV emission is interpreted as due to positron annihilation in the pulsar crust. Monte Carlo simulations indicate a broad feature the intensity of which is expected in the range 10-5 - 10-4 ph/sq cm/s. The possibility of detection of the feature is discussed.

  12. Influence of a keV sterile neutrino on neutrinoless double beta decay: How things changed in recent years

    NASA Astrophysics Data System (ADS)

    Merle, Alexander; Niro, Viviana

    2013-12-01

    Earlier studies of the influence of dark matter keV sterile neutrinos on neutrinoless double beta decay concluded that there is no significant modification of the decay rate. These studies have focused only on a mass of the keV sterile neutrino above 2 and 4 keV, respectively, as motivated by certain production mechanisms. On the other hand, alternative production mechanisms have been proposed, which relax the lower limit for the mass, and new experimental data are available, too. For this reason, an updated study is timely and worthwhile. We focus on the most recent data, i.e., the newest Chandra and XMM-Newton observational bounds on the x-ray line originating from radiative keV sterile neutrino decay, as well as the new measurement of the previously unknown leptonic mixing angle θ13. While the previous works might have been a little short-sighted, the new observational bounds do indeed render any influences of keV sterile neutrinos on neutrinoless double beta decay small. This conclusion even holds in case not all the dark matter is made up of keV sterile neutrinos.

  13. Estimation of keV submicron ion beam width using a knife-edge method

    NASA Astrophysics Data System (ADS)

    Ishii, Yasuyuki; Isoya, Akira; Kojima, Takuji; Arakawa, Kazuo

    2003-11-01

    A beam width measurement system has been developed for keV submicron ion beams of 0.1 μm or less in width assuming a round shape beam. The system enables to measure beam current change as a function of knife-edge position by cutting a beam focusing point (beam spot) with the sharp edge within a spatial resolution of 0.02 μm. The width of 30 keV order submicron H + ion beam was estimated by fitting current change curves based on three different ion density models: uniform, flat-top and Gaussian. Among these models, the flat-top model provide the most reasonable beam width of 0.56 μm interpreting contribution of halo around the beam spot to beam width estimation. The beam width measurement system with the high spatial resolution and the data analysis based on the flat-top ion density model should contribute to accelerate developments of submicron ion beam production technologies.

  14. Performance improvement of keV Neutrons-based PGNAA setups.

    PubMed

    Naqvi, A A; Abdelmonem, M S; Al-Misned, Ghada; Al-Ghamdi, Hanan

    2006-12-01

    The performance of keV neutrons based Prompt Gamma Ray Neutron Activation Analysis (PGNAA) setups have been observed to improve by enclosing its neutron source inside the moderator. The keV neutrons were produced via (7)Li(p,n) reaction and (3)H(p,n) reactions. For the two PGNAA setups, the maximum intensity of the prompt gamma-ray yield was observed for a 5cm long moderator with the neutron source positioned at a distance of 0.5cm from the moderator-end facing the sample. Due to enclosing the source inside the moderator, the prompt gamma-ray yield from the (7)Li(p,n) reaction and (3)H(p,n) reaction based PGNAA setups have increased by a factor of three as compared to that achieved from these setups with the source outside the moderator. This study provides a theoretical basis for the measurement of performance of (7)Li(p,n) reaction and the (3)H(p,n) reaction based PGNAA setups. PMID:16837206

  15. Magnetic moment of the 2083 keV level of 140Ce

    NASA Astrophysics Data System (ADS)

    Ohkubo, Y.; Taniguchi, A.; Xu, Q.; Tanigaki, M.; Shimizu, N.; Otsuka, T.

    2013-04-01

    For the magnetic moment of the 2083 keV level of 140Ce, there are four published data, all obtained by applying an external magnetic field of less than 5 T to a liquid sample containing 140La using the time-differential perturbed angular correlation (TDPAC) technique. Although these four values are consistent within two times their uncertainties (2σ), the range of values in 2σ extends from μ=+3.0 to +5.2 (in units of nuclear magneton, μN). This time, the TDPAC technique was successfully applied to the 2083 keV level of 140Ce implanted in an Fe foil. The magnetic moment of this level was determined to be μ=+4.00(20)μN, employing the known hyperfine field at 141Ce in Fe, -41(2) T, which agrees very well with one of the values, μ=+4.06(15)μN. The present value is compared with two shell-model calculations.

  16. Radiation damage studies on STAR250 CMOS sensor at 300 keV for electron microscopy

    NASA Astrophysics Data System (ADS)

    Faruqi, A. R.; Henderson, R.; Holmes, J.

    2006-09-01

    There is a pressing need for better electronic detectors to replace film for recording high-resolution images using electron cryomicroscopy. Our previous work has shown that direct electron detection in CMOS sensors is promising in terms of resolution and efficiency at 120 keV [A.R. Faruqi, R. Henderson, M. Prydderch, R. Turchetta, P. Allport, A. Evans, Nucl. Instr. and Meth. 546 (2005) 170], but in addition, the detectors must not be damaged by the electron irradiation. We now present new measurements on the radiation tolerance of a 25 μm pitch CMOS active-pixel sensor, the STAR250, which was designed by FillFactory using radiation-hard technology for space applications. Our tests on the STAR250 aimed to establish the imaging performance at 300 keV following irradiation. The residual contrast, measured on shadow images of a 300 mesh grid, was >80% after corrections for increased dark current, following irradiation with up to 5×10 7 electrons/pixel (equivalent to 80,000 electron/μm 2). A CMOS sensor with this degree of radiation tolerance would survive a year of normal usage for low-dose electron cryomicroscopy, which is a very useful advance.

  17. The repetitive flaking of inconel 625 by 100 keV helium ion bombardment

    NASA Astrophysics Data System (ADS)

    Whitton, J. L.; Chen, Hao Ming; Littmark, U.; Emmoth, B.

    1981-05-01

    Repetitive flaking of Inconel 625 occurs with ion bombardment doses of than 10 18 100 keV helium ions cm -2, with up to 39 exfoliations being observed after bombardment with 3 × 10 19 ions cm -2. The thickness of the flakes, measured by scanning electron microscopy, is some 30% greater than when measured by Rutherford backscattering (RBS) of 1.8 MeV helium ions. These RBS measurements compare well with the thickness of the remaining layers in the resultant craters and to the most probable range of the 100 keV helium. The area of the flakes is dictated by the grain boundaries, and when one flake is ejected, the adjacent grains are prevented from doing so since there now exists an escape route for the injected helium. A strong dose rate dependence is observed; decreasing the beam current from 640 μA cm -2 to 64 μA cm -2 results in a factor 20 fewer flakes being exfoliated (for the same total dose of 3 × 10 19 ions cm -2). Successive flakes decrease in area, suggesting that eventually a cratered, but stable, surface will result with the only erosion being by the much less effective mechanism of sputtering.

  18. Improving accuracy and reliability of 186-keV measurements for unattended enrichment monitoring

    SciTech Connect

    Ianakiev, Kiril D; Boyer, Brian D; Swinhoe, Martyn T; Moss, Calvin E; Goda, Joetta M; Favalli, Andrea; Lombardi, Marcie; Paffett, Mark T; Hill, Thomas R; MacArthur, Duncan W; Smith, Morag K

    2010-04-13

    Improving the quality of safeguards measurements at Gas Centrifuge Enrichment Plants (GCEPs), whilst reducing the inspection effort, is an important objective given the number of existing and new plants that need to be safeguarded. A useful tool in many safeguards approaches is the on-line monitoring of enrichment in process pipes. One aspect of this measurement is a simple, reliable and precise passive measurement of the 186-keV line from {sup 235}U. (The other information required is the amount of gas in the pipe. This can be obtained by transmission measurements or pressure measurements). In this paper we describe our research efforts towards such a passive measurement system. The system includes redundant measurements of the 186-keV line from the gas and separately from the wall deposits. The design also includes measures to reduce the effect of the potentially important background. Such an approach would practically eliminate false alarms and can maintain the operation of the system even with a hardware malfunction in one of the channels. The work involves Monte Carlo modeling and the construction of a proof-of-principle prototype. We will carry out experimental tests with UF{sub 6} gas in pipes with and without deposits in order to demonstrate the deposit correction.

  19. Stimulated Raman scattering in hydrogen by ultrashort laser pulse in the keV regime

    NASA Astrophysics Data System (ADS)

    Bachau, H.; Dondera, M.

    2016-04-01

    This letter addresses the problem of stimulated Raman excitation of a hydrogen atom submitted to an ultrashort and intense laser pulse in the keV regime. The pulse central frequency ω of 55 a.u. (about 1.5 keV) is in the weakly relativistic regime, ω ≤ c/a0 (c is the speed of light in vacuum and a 0 the Bohr radius) and the pulse duration is τ ≈ 18.85 a.u. (about 456 attoseconds). We solve the corresponding time-dependent Schrödinger equation (TDSE) using a spectral approach, retardation (or nondipole) effects are included up to O(1/c) , breaking the conservation of the magnetic quantum number m and forcing the resolution of the TDSE in a three-dimensional space. Due to the laser bandwidth, which is of the order of the ionization potential of hydrogen, stimulated Raman scattering populates nlm excited states (n and l are the principal and azimuthal quantum numbers, respectively). The populations of these excited states are calculated and analyzed in terms of l and m quantum numbers, this showing the contributions of the retardation effects and their relative importance.

  20. Cross calibration of new x-ray films against direct exposure film from 1 to 8 keV using the X-pinch x-ray source

    SciTech Connect

    Chandler, K.M.; Pikuz, S.A.; Shelkovenko, T.A.; Mitchell, M.D.; Hammer, D.A.; Knauer, J.P.

    2005-11-15

    A cross calibration of readily available x-ray sensitive films has been carried out against the calibrated direct exposure film (DEF) which is no longer being manufactured by Kodak. Four-wire X pinches made from various metal wires were used as x-ray sources for this purpose. Tests were carried out for the Kodak films Biomax MS, Biomax XAR, M100, Technical Pan, and T-Max over the energy range of 1-8 keV (12.4-1.5 A wavelength). The same hand-development procedures as described by Henke et al. [J. Opt. Soc. Am. B 3, 1540 (1986)] were followed for all films in every test. Sensitivity curves as a function of wavelength for these films relative DEF are presented. These relative calibrations show that Biomax MS is likely to be the best replacement film for DEF for most purposes over the energy range tested here.