Science.gov

Sample records for 100-m meteorological tower

  1. 76 FR 490 - Marking Meteorological Evaluation Towers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ...-2251. FOR FURTHER INFORMATION CONTACT: Sheri Edgett-Barron, Obstruction Evaluation Services, Air... Federal Aviation Administration 14 CFR Part 77 Marking Meteorological Evaluation Towers AGENCY: Federal... to include guidance for Meteorological Evaluation Towers (METs). These towers are erected in...

  2. Meteorological Towers Display for Windows NT

    Energy Science and Technology Software Center (ESTSC)

    1999-05-20

    The Towers Display Program provides a convenient means of graphically depicting current wind speed and direction from a network of meteorological monitoring stations. The program was designed primarily for emergency response applications and, therefore, plots observed wind directions as a transport direction, i.e., the direction toward which the wind would transport a release of an atmospheric contaminant. Tabular summaries of wind speed and direction as well as temperature, relative humidity, and atmospheric turbulence measured atmore » each monitoring station can be displayed. The current implementation of the product at SRS displays data from eight Weather INformation and Display (WIND) System meteorological towers at SRS, meteorological stations established jointly by SRS/WSRC and the Augusta/Richmond County Emergency Management Agency in Augusta, GA, and National Weather Service stations in Augusta, GA. Wind speed and direction are plotted in a Beaufort scale format at the location of the station on a geographic map of the area. A GUI provides for easy specification of a desired date and time for the data to be displayed.« less

  3. Surface and Tower Meteorological Instrumentation at NSA Handbook - January 2006

    SciTech Connect

    MT Ritsche

    2006-01-30

    The Surface and Tower Meteorological Instrumentation at Atqasuk (METTWR2H) uses mainly conventional in situ sensors to measure wind speed, wind direction, air temperature, dew point and humidity mounted on a 10-m tower. It also obtains barometric pressure, visibility, and precipitation data from sensors at or near the base of the tower. In addition, a Chilled Mirror Hygrometer is located at 1 m for comparison purposes. Temperature and relative humidity probes are mounted at 2 m and 5 m on the tower. For more information, see the Surface and Tower Meteorological Instrumentation at Atqasuk Handbook.

  4. Applications of Meteorological Tower Data at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Altino, Karen M.; Barbre, Robert E., Jr.

    2009-01-01

    Members of the National Aeronautics and Space Administration (NASA) design and operation communities rely on meteorological information collected at Kennedy Space Center (KSC), located near Cape Canaveral, Florida, to correctly apply the ambient environment to various tasks. The Natural Environments Branch/EV44, located at Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is responsible for providing its NASA customers with meteorological data using various climatological data sources including balloons, surface stations, aircraft, hindcast models, and meteorological towers. Of the many resources available within the KSC region, meteorological towers are preferred for near-surface applications because they record data at regular, frequent intervals over an extensive period of record at a single location. This paper discusses the uses of data measured at several different meteorological towers for a common period of record and how the data can be applied to various engineering decisions for the new Constellation Program Ares and Orion space vehicles.

  5. 76 FR 36983 - Marking Meteorological Evaluation Towers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... voluntary marking of METs less than 200 feet AGL (76 FR 1326). The FAA agrees that marking these structures... conspicuity of the towers for low level agricultural operations in the vicinity of these towers. FOR FURTHER... operators, associations representing agricultural operators, and state governments concerning the...

  6. 4. SOUTHWEST CORNER OF METEOROLOGICAL TOWER; SOUTH FACE OF SLC3W ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. SOUTHWEST CORNER OF METEOROLOGICAL TOWER; SOUTH FACE OF SLC-3W MST IN BACKGROUND - Vandenberg Air Force Base, Space Launch Complex 3, Meteorological Shed & Tower, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  7. Surface and Tower Meteorological Instrumentation at Atqasuk (METTWR2H) Handbook

    SciTech Connect

    Ritsche, MT

    2006-01-01

    The Atqasuk meteorology station (AMET) uses mainly conventional in situ sensors to measure wind speed, wind direction, air temperature, dew point, and humidity mounted on a 10-m tower. It also obtains barometric pressure, visibility and precipitation data from sensors at or near the base of the tower. In addition, a chilled mirror hygrometer (CMH) is located at 1 m for comparison purposes. Temperature and relative humidity (RH) probes are mounted at 2 m and 5 m on the tower.

  8. BOREAS TF-3 NSA-OBS Tower Flux, Meteorological, and Soil Temperature Data

    NASA Technical Reports Server (NTRS)

    Wofsy, Steven; Sutton, Doug; Goulden, Mike; Hall, Forrest G. (Editor); Huemmrich, Karl (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Tower Flux (BOREAS TF-3) team collected tower flux, surface meteorological, and soil temperature data at the BOREAS Northern Study Area-Old Black Spruce (NSA-OBS) site continuously from the March 1994 through October 1996. The data are available in tabular ASCII files.

  9. Comparison of Second Wind Triton Data with Meteorological Tower Measurements

    SciTech Connect

    Scott, G.; Elliott, D.; Schwartz, M.

    2010-02-01

    With the increased interest in remote sensing of wind information in recent years, it is important to determine the reliability and accuracy of new wind measurement technologies if they are to replace or supplement conventional tower-based measurements. In this study, we present the results of an analysis characterizing the measurement performance of a state-of-the-art SOund Detection And Ranging (sodar) device when compared to a high-quality tower measurement program. Second Wind Inc. (Somerville, MA, USA) provided NREL with more than six months of data from a measurement program conducted near an operating wind farm in western Texas.

  10. 24 M meteorological tower data report period: January--December, 1994

    SciTech Connect

    Freeman, D.; Bowen, J.; Egami, R.

    1997-08-01

    This report was prepared by the Desert Research Institute (DRI) for the U.S. Department of Energy (DOE). It summarizes meteorological data collected at the 24 meter tower at the Nevada Test Site Hazardous Material Spill Center (HAZMAT) located at Frenchman Flat near Mercury, Nevada, approximately 75 miles northwest of Las Vegas, Nevada. The tower was originally installed in July, 1993 to characterize baseline conditions for an EPA sponsored experimental research program at the HAZMAT.

  11. Surface and Tower Meteorological Instrumentation at Barrow (METTWR4H) Handbook

    SciTech Connect

    Ritsche, MT

    2008-04-01

    The Barrow meteorology station (BMET) uses mainly conventional in situ sensors mounted at four different heights (2m, 10m, 20m and 40m) on a 40 m tower to obtain profiles of wind speed, wind direction, air temperature, dew point and humidity. It also obtains barometric pressure, visibility and precipitation data from sensors at the base of the tower. Additionally, a Chilled Mirror Hygrometer and an Ultrasonic wind speed sensor are located near the 2m level for comparison purposes.

  12. 24 m meteorological tower data report period: January through December, 1996

    SciTech Connect

    Freeman, D.; Bowen, J.; Egami, R.; Coulombe, W.; Crow, D.; Cristani, B.; Schmidt, S.

    1997-12-01

    This report was prepared by the Desert Research Institute (DRI) for the US Department of Energy (DOE). It summarizes meteorological data collected at the 24 meter tower at the Nevada Test Site Hazardous Material Spill Center (HAZMAT) located at Frenchman Flat near Mercury, Nevada, approximately 75 miles northwest of Las Vegas, Nevada. The tower was originally installed in July, 1993 to characterize baseline conditions for an EPA sponsored experimental research program at the HAZMAT. This report presents results of the monitoring for January--December, 1996, providing: a status of the measurement systems during the report period and a summary of the meteorological conditions at the HAZMAT during the report period. The scope of the report is limited to summary data analyses and does not include extensive meteorological analysis. The tower was instrumented at 8 levels. Wind speed, wind direction, and temperature were measured at all 8 levels. Relative humidity was measured at 3 levels. Solar and net radiation were measured at 2 meters above the ground. Barometric pressure was measured at the base of the tower and soil temperature was measured near the base of the tower.

  13. 24 m meteorological tower data report period: January through December, 1995

    SciTech Connect

    Freeman, D.; Bowen, J.B.; Egami, R.; Coulombe, W.; Crow, D.; Cristani, B.; Schmidt, S.

    1997-12-01

    This report was prepared by the Desert Research Institute (DRI) for the US Department of Energy (DOE). It summarizes meteorological data collected at the 24 meter tower at the Nevada Test Site Hazardous Material Spill Center (HAZMAT) located at Frenchman Flat near Mercury, Nevada, approximately 75 miles northwest of Las Vegas, Nevada. The tower was originally installed in July, 1993 to characterize baseline conditions for an EPA sponsored experimental research program at the HAZMAT. A previous report reported monitoring results for 1994. This report presents results of the monitoring for January--December, 1995, providing: a status of the measurement systems (including any quality assurance activities) during the report period and a summary of the meteorological conditions at the HAZMAT during the report period. The scope of the report is limited to summary data analyses and does not include extensive meteorological analysis. The tower was instrumented at 8 levels. Wind speed, wind direction, and temperature were measured at all 8 levels. Relative humidity was measured at 3 levels. Solar and net radiation were measured at 2 meters above the ground. Barometric pressure was measured at the base of the tower and soil temperature was measured near the base of the tower.

  14. BOREAS TF-4 SSA-YJP Tower Flux, Meteorological, and Canopy Condition Data

    NASA Technical Reports Server (NTRS)

    Striegl, Robert; Wickland, Kimberly; Hall, Forrest G. (Editor); Huemmrich, Karl (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Tower Flux (BOREAS TF-4) team collected energy, carbon dioxide, and water vapor flux data at the BOREAS Southern Study Area-Young Jack Pine (SSA-YJP) site during the growing season of 1994. In addition, meteorological data were collected both above and within the canopy. The data are available in tabular ASCII files.

  15. A study of air-to-ground sound propagation using an instrumented meteorological tower

    NASA Technical Reports Server (NTRS)

    Kasper, P. K.; Pappa, R. S.; Keefe, L. R.; Sutherland, L. C.

    1975-01-01

    The results of an exploratory NASA study, leading to a better understanding of the effects of meteorological conditions on the propagation of aircraft noise, are reported. The experimental program utilized a known sound source fixed atop an instrumented meteorological tower. The basic experimental scheme consisted of measuring the amplitude of sound radiated toward the ground along a line of microphones fixed to a tower guy wire. Experimental results show the feasibility of this approach in the acquisition of data indicating the variations encountered in the time-averaged and instantaneous amplitudes of propagated sound. The investigation included a consideration of ground reflections, a comparison of measured attenuations with predicted atmospheric absorption losses, and an evaluation of the amplitude fluctuations of recorded sound pressures.

  16. The Quality Control Algorithms Used in the Creation of NASA Kennedy Space Center Lightning Protection System Towers Meteorological Database

    NASA Technical Reports Server (NTRS)

    Orcutt, John M.; Brenton, James C.

    2016-01-01

    An accurate database of meteorological data is essential for designing any aerospace vehicle and for preparing launch commit criteria. Meteorological instrumentation were recently placed on the three Lightning Protection System (LPS) towers at Kennedy Space Center (KSC) launch complex 39B (LC-39B), which provide a unique meteorological dataset existing at the launch complex over an extensive altitude range. Data records of temperature, dew point, relative humidity, wind speed, and wind direction are produced at 40, 78, 116, and 139 m at each tower. The Marshall Space Flight Center Natural Environments Branch (EV44) received an archive that consists of one-minute averaged measurements for the period of record of January 2011 - April 2015. However, before the received database could be used EV44 needed to remove any erroneous data from within the database through a comprehensive quality control (QC) process. The QC process applied to the LPS towers' meteorological data is similar to other QC processes developed by EV44, which were used in the creation of meteorological databases for other towers at KSC. The QC process utilized in this study has been modified specifically for use with the LPS tower database. The QC process first includes a check of each individual sensor. This check includes removing any unrealistic data and checking the temporal consistency of each variable. Next, data from all three sensors at each height are checked against each other, checked against climatology, and checked for sensors that erroneously report a constant value. Then, a vertical consistency check of each variable at each tower is completed. Last, the upwind sensor at each level is selected to minimize the influence of the towers and other structures at LC-39B on the measurements. The selection process for the upwind sensor implemented a study of tower-induced turbulence. This paper describes in detail the QC process, QC results, and the attributes of the LPS towers meteorological

  17. Brief communication "An extreme meteorological event at the ISMAR oceanographic tower"

    NASA Astrophysics Data System (ADS)

    Bastianini, M.; Cavaleri, L.; La Rocca, T.

    2012-02-01

    We report the evidence of a remarkable meteorological event in the Northern Adriatic Sea. Following the irruption of cold northerly air into the previously hot and humid eastern part of the Po valley, a strong instability developed with violent thunderstorms. At the ISMAR oceanographic tower, 15 km off the coast of the Venice lagoon, although no one was on board, the records of 6 July 2008 from the various instruments coherently show the presence of an extreme and short-lived event that we associate either to a water spout or, more likely, to the strong downdraft of a mesoscale convective system

  18. BOREAS TF-2 SSA-OA Tower Flux, Meteorological, and Precipitation Data

    NASA Technical Reports Server (NTRS)

    Neumann, Harold; Mickle, Robert; Staebler, Ralf; Hall, Forrest G. (Editor); Huemmrich, Karl (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Tower Flux-2 (BOREAS TF-2) team collected energy, carbon dioxide, water vapor, and momentum flux data above the canopy and in profiles through the canopy, along with meteorological data at the BOREAS Southern Study Area-Old Aspen (SSA-OA) site. Above-canopy measurements began in early February and ran through mid-September of 1994. Measurements were collected over a longer period of 1994 than most BOREAS flux sites. Daily precipitation data from several gauges were also collected. The data are available in tabular ASCII files.

  19. BOREAS TF-10 NSA-Fen Tower Flux and Meteorological Data

    NASA Technical Reports Server (NTRS)

    McCaughey, J. Harry; Hall, Forrest G. (Editor); Huemmrich, Karl (Editor); Jelinski, Dennis E.

    2000-01-01

    The BOREAS TF-10 team collected tower flux and meteorological data at two sites, a fen and a young jack pine forest, near Thompson, Manitoba, Canada, as part of BOREAS. A preliminary data set was assembled in August 1993 while field testing the instrument packages, and at both sites data were collected from 15-Aug to 31-Aug. The main experimental period was in 1994, when continuous data were collected from 08-Apr to 23-Sep at the fen site. A very limited experiment was run in the spring/ summer of 1995, when the fen site tower was operated from 08-Apr to 14-Jun in support of a hydrology experiment in an adjoining feeder basin. Upon examination of the 1994 data set, it became clear that the behavior of the heat, water, and carbon dioxide fluxes throughout the whole growing season was an important scientific question, and that the 1994 data record was not sufficiently long to capture the character of the seasonal behavior of the fluxes. Thus, the fen site was operated in 1996 in order to collect data from spring melt to autumn freeze-up. Data were collected from 29-Apr to 05-Nov at the fen site. All variables are presented as 30-minute averages. The data are stored in tabular ASCII files.

  20. BOREAS TF-10 NSA-YJP Tower Flux, Meteorological, and Porometry Data

    NASA Technical Reports Server (NTRS)

    McCaughey, J. Harry; Liblik, Laura; Hall, Forrest G. (Editor); Huemmrich, K. (Editor)

    2000-01-01

    The BOREAS TF-10 team collected tower flux and meteorological data at two sites, a fen and a young jack pine forest, near Thompson, Manitoba, Canada, as part of BOREAS. A preliminary data set was assembled in August 1993 while field testing the instrument packages, and at both sites data were collected from 15-Aug to 31-Aug. The main experimental period was in 1994, when continuous data were collected from the young jack pine site from 23-May to 20-Sep. Upon examination of the 1994 data set, it became clear that the behavior of the heat, water, and carbon dioxide fluxes throughout the whole growing season was an important scientific question, and that the 1994 data record was not sufficiently long to capture the character of the seasonal behavior of the fluxes. Thus, the young jack pine site was operated from 08-May to 07-Nov in 1996 in order to collect data from spring melt to autumn freeze-up. All variables are presented as 30-minute averages. Supporting data were also collected to describe the surface#s state and to provide the information, in association with the flux data, to build SVAT models. For the young jack pine site, these supporting data included stomatal conductance measurements. The data are stored in tabular ASCII files.

  1. The Quality Control Algorithms Used in the Process of Creating the NASA Kennedy Space Center Lightning Protection System Towers Meteorological Database

    NASA Technical Reports Server (NTRS)

    Orcutt, John M.; Brenton, James C.

    2016-01-01

    The methodology and the results of the quality control (QC) process of the meteorological data from the Lightning Protection System (LPS) towers located at Kennedy Space Center (KSC) launch complex 39B (LC-39B) are documented in this paper. Meteorological data are used to design a launch vehicle, determine operational constraints, and to apply defined constraints on day-of-launch (DOL). In order to properly accomplish these tasks, a representative climatological database of meteorological records is needed because the database needs to represent the climate the vehicle will encounter. Numerous meteorological measurement towers exist at KSC; however, the engineering tasks need measurements at specific heights, some of which can only be provided by a few towers. Other than the LPS towers, Tower 313 is the only tower that provides observations up to 150 m. This tower is located approximately 3.5 km from LC-39B. In addition, data need to be QC'ed to remove erroneous reports that could pollute the results of an engineering analysis, mislead the development of operational constraints, or provide a false image of the atmosphere at the tower's location.

  2. BOREAS TF-5 SSA-OJP Tower Flux and Meteorological Data

    NASA Technical Reports Server (NTRS)

    Baldocchi, Dennis; Vogel, Christoph; Hall, Forrest G. (Editor); Huemmrich, Karl (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Tower Flux (BOREAS TF-5) team collected tower flux data at the BOREAS Southern Study Area Old Jack Pine (SSA-OJP) site through the growing season of 1994. The data are available in tabular ASCII files.

  3. Legionnaires’ disease from a cooling tower in a community outbreak in Lidköping, Sweden- epidemiological, environmental and microbiological investigation supported by meteorological modelling

    PubMed Central

    2012-01-01

    Background An outbreak of Legionnaires’ Disease took place in the Swedish town Lidköping on Lake Vänern in August 2004 and the number of pneumonia cases at the local hospital increased markedly. As soon as the first patients were diagnosed, health care providers were informed and an outbreak investigation was launched. Methods Classical epidemiological investigation, diagnostic tests, environmental analyses, epidemiological typing and meteorological methods. Results Thirty-two cases were found. The median age was 62 years (range 36 – 88) and 22 (69%) were males. No common indoor exposure was found. Legionella pneumophila serogroup 1 was found at two industries, each with two cooling towers. In one cooling tower exceptionally high concentrations, 1.2 × 109 cfu/L, were found. Smaller amounts were also found in the other tower of the first industry and in one tower of the second plant. Sero- and genotyping of isolated L. pneumophila serogroup 1 from three patients and epidemiologically suspected environmental strains supported the cooling tower with the high concentration as the source. In all, two L. pneumophila strains were isolated from three culture confirmed cases and both these strains were detected in the cooling tower, but one strain in another cooling tower as well. Meteorological modelling demonstrated probable spread from the most suspected cooling tower towards the town centre and the precise location of four cases that were stray visitors to Lidköping. Conclusions Classical epidemiological, environmental and microbiological investigation of an LD outbreak can be supported by meteorological modelling methods. The broad competence and cooperation capabilities in the investigation team from different authorities were of paramount importance in stopping this outbreak. PMID:23171054

  4. BOREAS TF-7 SSA-OBS Tower Flux and Meteorological Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Huemmrich, Karl (Editor); Pattey, Elizabeth; Desjardins, Raymond L.

    2000-01-01

    The BOREAS TF-7 team collected meteorological data as well as energy, carbon dioxide, water vapor, methane, and nitrous oxide flux data at the BOREAS SSA-OBS site. The data were collected from 24-May to 19-Sep-1994. The data are available in tabular ASCII files.

  5. BOREAS TF-1 SSA-OA Tower Flux, Meteorological, and Soil Temperature Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Huemmrich, Karl (Editor); Black, T. Andrew; Chen, Z.; Nesic, Zoran

    2000-01-01

    The BOREAS TF-1 team collected energy, carbon dioxide, and momentum flux data above the canopy along with meteorological and soils data at the BOREAS SSA-OA site from mid-April to the end of the year for 1996. The data are available in tabular ASCII files.

  6. The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols

    NASA Astrophysics Data System (ADS)

    Andreae, M. O.; Acevedo, O. C.; Araùjo, A.; Artaxo, P.; Barbosa, C. G. G.; Barbosa, H. M. J.; Brito, J.; Carbone, S.; Chi, X.; Cintra, B. B. L.; da Silva, N. F.; Dias, N. L.; Dias-Júnior, C. Q.; Ditas, F.; Ditz, R.; Godoi, A. F. L.; Godoi, R. H. M.; Heimann, M.; Hoffmann, T.; Kesselmeier, J.; Könemann, T.; Krüger, M. L.; Lavric, J. V.; Manzi, A. O.; Lopes, A. P.; Martins, D. L.; Mikhailov, E. F.; Moran-Zuloaga, D.; Nelson, B. W.; Nölscher, A. C.; Santos Nogueira, D.; Piedade, M. T. F.; Pöhlker, C.; Pöschl, U.; Quesada, C. A.; Rizzo, L. V.; Ro, C.-U.; Ruckteschler, N.; Sá, L. D. A.; de Oliveira Sá, M.; Sales, C. B.; dos Santos, R. M. N.; Saturno, J.; Schöngart, J.; Sörgel, M.; de Souza, C. M.; de Souza, R. A. F.; Su, H.; Targhetta, N.; Tóta, J.; Trebs, I.; Trumbore, S.; van Eijck, A.; Walter, D.; Wang, Z.; Weber, B.; Williams, J.; Winderlich, J.; Wittmann, F.; Wolff, S.; Yáñez-Serrano, A. M.

    2015-09-01

    The Amazon Basin plays key roles in the carbon and water cycles, climate change, atmospheric chemistry, and biodiversity. It has already been changed significantly by human activities, and more pervasive change is expected to occur in the coming decades. It is therefore essential to establish long-term measurement sites that provide a baseline record of present-day climatic, biogeochemical, and atmospheric conditions and that will be operated over coming decades to monitor change in the Amazon region, as human perturbations increase in the future. The Amazon Tall Tower Observatory (ATTO) has been set up in a pristine rain forest region in the central Amazon Basin, about 150 km northeast of the city of Manaus. Two 80 m towers have been operated at the site since 2012, and a 325 m tower is nearing completion in mid-2015. An ecological survey including a biodiversity assessment has been conducted in the forest region surrounding the site. Measurements of micrometeorological and atmospheric chemical variables were initiated in 2012, and their range has continued to broaden over the last few years. The meteorological and micrometeorological measurements include temperature and wind profiles, precipitation, water and energy fluxes, turbulence components, soil temperature profiles and soil heat fluxes, radiation fluxes, and visibility. A tree has been instrumented to measure stem profiles of temperature, light intensity, and water content in cryptogamic covers. The trace gas measurements comprise continuous monitoring of carbon dioxide, carbon monoxide, methane, and ozone at five to eight different heights, complemented by a variety of additional species measured during intensive campaigns (e.g., VOC, NO, NO2, and OH reactivity). Aerosol optical, microphysical, and chemical measurements are being made above the canopy as well as in the canopy space. They include aerosol light scattering and absorption, fluorescence, number and volume size distributions, chemical

  7. Comparison of Triton SODAR Data to Meteorological Tower Wind Measurement Data in Hebei Province, China

    SciTech Connect

    Yuechun, Y.; Jixue, W.; Hongfang, W.; Guimin, L.; Bolin, Y.; Scott, G.; Elliott, D.; Kline, D.

    2012-01-01

    With the increased interest in remote sensing of wind information in recent years, it is important to determine the reliability and accuracy of new wind measurement technologies if they are to replace or supplement conventional tower-based measurements. In view of this, HydroChina Corporation and the United States National Renewable Energy Laboratory (NREL) conducted a comparative test near a wind farm in Hebei Province, China. We present the results of an analysis characterizing the measurement performance of a state-of-the-art Sound Detection and Ranging (sodar) device when compared to a traditional tower measurement program. NREL performed the initial analysis of a three-month period and sent the results to HydroChina. When another month of data became available, HydroChina and their consultant Beijing Millenium Engineering Software (MLN) repeated NREL's analysis on the complete data set, also adding sensitivity analysis for temperature, humidity, and wind speed (Section 6). This report presents the results of HydroChina's final analysis of the four-month period.

  8. ASCOT meteorological towers

    SciTech Connect

    Ellis, K.P.

    1991-09-01

    During the winter of 1991, LLNL participated in a series of field experiments near the Rocky Flats Plant south of Boulder, Colorado. These experiments were made in conjunction with the winter validation studies being managed by Rocky Flats personnel. This is a review of the tethersonde data taken during the period of January 28, 1991 through February 8, 1991.

  9. The Amazon Tall Tower Observatory (ATTO) in the remote Amazon Basin: overview of first results from ecosystem ecology, meteorology, trace gas, and aerosol measurements

    NASA Astrophysics Data System (ADS)

    Andreae, M. O.; Acevedo, O. C.; Araùjo, A.; Artaxo, P.; Barbosa, C. G. G.; Barbosa, H. M. J.; Brito, J.; Carbone, S.; Chi, X.; Cintra, B. B. L.; da Silva, N. F.; Dias, N. L.; Dias-Júnior, C. Q.; Ditas, F.; Ditz, R.; Godoi, A. F. L.; Godoi, R. H. M.; Heimann, M.; Hoffmann, T.; Kesselmeier, J.; Könemann, T.; Krüger, M. L.; Lavric, J. V.; Manzi, A. O.; Moran-Zuloaga, D.; Nölscher, A. C.; Santos Nogueira, D.; Piedade, M. T. F.; Pöhlker, C.; Pöschl, U.; Rizzo, L. V.; Ro, C.-U.; Ruckteschler, N.; Sá, L. D. A.; Sá, M. D. O.; Sales, C. B.; Santos, R. M. N. D.; Saturno, J.; Schöngart, J.; Sörgel, M.; de Souza, C. M.; de Souza, R. A. F.; Su, H.; Targhetta, N.; Tóta, J.; Trebs, I.; Trumbore, S.; van Eijck, A.; Walter, D.; Wang, Z.; Weber, B.; Williams, J.; Winderlich, J.; Wittmann, F.; Wolff, S.; Yáñez-Serrano, A. M.

    2015-04-01

    The Amazon Basin plays key roles in the carbon and water cycles, climate change, atmospheric chemistry, and biodiversity. It already has been changed significantly by human activities, and more pervasive change is expected to occur in the next decades. It is therefore essential to establish long-term measurement sites that provide a baseline record of present-day climatic, biogeochemical, and atmospheric conditions and that will be operated over coming decades to monitor change in the Amazon region as human perturbations increase in the future. The Amazon Tall Tower Observatory (ATTO) has been set up in a pristine rain forest region in the central Amazon Basin, about 150 km northeast of the city of Manaus. An ecological survey including a biodiversity assessment has been conducted in the forest region surrounding the site. Two 80 m towers have been operated at the site since 2012, and a 325 m tower is nearing completion in mid-2015. Measurements of micrometeorological and atmospheric chemical variables were initiated in 2012, and their range has continued to broaden over the last few years. The meteorological and micrometeorological measurements include temperature and wind profiles, precipitation, water and energy fluxes, turbulence components, soil temperature profiles and soil heat fluxes, radiation fluxes, and visibility. A tree has been instrumented to measure stem profiles of temperature, light intensity, and water content in cryptogamic covers. The trace gas measurements comprise continuous monitoring of carbon dioxide, carbon monoxide, methane, and ozone at 5 to 8 different heights, complemented by a variety of additional species measured during intensive campaigns (e.g., VOC, NO, NO2, and OH reactivity). Aerosol optical, microphysical, and chemical measurements are made above the canopy as well as in the canopy space. They include light scattering and absorption, aerosol fluorescence, number and volume size distributions, chemical composition, cloud

  10. 2. SOUTH FACE OF METEOROLOGICAL SHED (BLDG. 756) WITH METEOROLOGICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SOUTH FACE OF METEOROLOGICAL SHED (BLDG. 756) WITH METEOROLOGICAL DATA ACQUISITION TERMINAL (MDAT) INSIDE BUILDING - Vandenberg Air Force Base, Space Launch Complex 3, Meteorological Shed & Tower, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. Validation of the Institute of Atmospheric Physics emergency response model with the meteorological towers measurements and SF6 diffusion and pool fire experiments

    NASA Astrophysics Data System (ADS)

    An, Junling; Xiang, Weiling; Han, Zhiwei; Xiao, Kaitao; Wang, Zifa; Wang, Xinhua; Wu, Jianbin; Yan, Pingzhong; Li, Jie; Chen, Yong; Li, Jian; Li, Ying

    2013-12-01

    The urban canopy layer parameterization (UCP), a successive bias correction method (SBC), an atmospheric dispersion module for denser-than-air releases, and the emission intensity of chemicals monitored by a Fourier-transform-infrared remote sensor (EM27) were incorporated into the Institute of Atmospheric Physics emergency response model (IAPERM). IAPERM's performance was tested in Beijing using the field data collected from a 325-m meteorological tower and sulfur hexafluoride (SF6) diffusion and pool fire experiments. The results show that the IAPERM simulations of the vertical wind speeds in the urban canopy layer (UCL) with the UCP perform much better than those with the Monin-Obukhov similarity parameterization scheme. The IAPERM forecasts for air temperature and relative humidity are more accurate than those for wind speed and direction, which require correction. When the SBC with the local terrain effect is adopted, the wind speed and direction and the maximum concentrations of black carbon near the ground are well forecasted. IAPERM reproduces the spatial distributions of the SF6 observations more accurately near the release source (≤500 m) than at locations far away from the release source with the use of the observed meteorological parameters. These results suggest that IAPERM could be a promising tool for passive and dense gas diffusion simulations or forecasts.

  12. Radio refractive index in the lowest 100-m layer of the troposphere in Akure, South Western Nigeria

    NASA Astrophysics Data System (ADS)

    Falodun, S. E.; Ajewole, M. O.

    2006-01-01

    The structure of the radio refractive index “in altitudes of” first 100 m of the troposphere is important for the planning and design of microwave communication “links”. For this reason, measurements of atmospheric pressure, temperature, and relative humidity were conducted in Akure “(7.15°N, 5.12°E)” to determine the radio refractive index. “Wireless meteorological sensors were positioned at the ground surface and at 100 m altitude on a 202 m high tower owned by the Nigerian Television Authority (hereafter NTA) which is now idle due to the relocation of the television house”. The measurements were “made” every “30 min” and round the clock. “Statistical” distributions of the refractive index modulus, “its” vertical gradient, and the diurnal and seasonal variations of the refractivity modulus were determined from the measured “data”. The results obtained show that the local climate has an appreciable influence on the radio refractivity. The curve of the seasonal variation of the vertical gradient of the radio refractive modulus has some minima points corresponding to the dry and the rainy seasons in Akure. The results obtained also show that the values of the refractive modulus at the “100 m” altitude were high in the morning and late evening/night hours while they “show” minima during the afternoon hours. Thus, the worst propagation condition obtained for Akure was observed in the afternoon “within” the time window “from 15:00 to 18:00” local time (hereafter LT) during the dry months and from roughly 17:00 to 19:00 LT during the rainy season.

  13. Tower Temperature and Humidity Sensors (TWR) Handbook

    SciTech Connect

    Cook, DR

    2010-02-01

    Three tall towers are installed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility: a 60-meter triangular tower at the Southern Great Plains (SGP) Central Facility (CF), a 21-meter walkup scaffolding tower at the SGP Okmulgee forest site (E21), and a 40-meter triangular tower at the North Slope of Alaska (NSA) Barrow site. The towers are used for meteorological, radiological, and other measurements.

  14. 1. SOUTHWEST CORNER OF METEOROLOGICAL SHED (BLDG. 756) SOUTH FACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SOUTHWEST CORNER OF METEOROLOGICAL SHED (BLDG. 756) SOUTH FACE OF SLC-3W MOBILE SERVICE TOWER IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Meteorological Shed & Tower, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  15. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1994-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode.

  16. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1996-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  17. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1995-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  18. Convection towers

    DOEpatents

    Prueitt, M.L.

    1996-01-16

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water. 6 figs.

  19. Meteorological tower data for the Yucca Alluvial (YA) site and Yucca Ridge (YR) site: Final data report, July 1983-October 1984

    SciTech Connect

    Church, H.W.; Freeman, D.L.; Boro, K.; Egami, R.T.

    1987-11-01

    The purpose of the NNWSI meteorological data collection program was to support environmental evaluations of site suitability for a nuclear waste repository. This is the last of a series of data summaries for the NNWSI Alluvial and Ridge Sites in southern Nevada. 3 refs., 3 figs., 6 tabs.

  20. Testing of 100 mK bolometers for space applications

    NASA Technical Reports Server (NTRS)

    Murray, A. G.; Ade, P. A. R.; Bhatia, R. S.; Griffin, M. J.; Maffei, B.; Nartallo, R.; Beeman, J. W.; Bock, J.; Lange, A.; DelCastillo, H.

    1996-01-01

    Electrical and optical performance data are presented for a prototype 100 mK spider-web bolometer operating under very low photon backgrounds. These data are compared with the bolometer theory and are used to estimate the expected sensitivity of such a detector used for low background space astronomy. The results demonstrate that the sensitivity and speed of response requirements of the bolometer instruments proposed for these missions can be met by 100 mK spider-web bolometers using neutron transmutation doped germanium as the temperature sensitive element.

  1. Convection towers

    DOEpatents

    Prueitt, M.L.

    1994-02-08

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode. 5 figures.

  2. A kinematics analysis of three best 100 m performances ever.

    PubMed

    Krzysztof, Maćkała; Mero, Antti

    2013-03-01

    The purpose of this investigation was to compare and determine the relevance of the morphological characteristics and variability of running speed parameters (stride length and stride frequency) between Usain Bolt's three best 100 m performances. Based on this, an attempt was made to define which factors determine the performance of Usain Bolt's sprint and, therefore, distinguish him from other sprinters. We analyzed the previous world record of 9.69 s set in the 2008 Beijing Olympics, the current record of 9.58 s set in the 2009 Berlin World Championships in Athletics and the O lympic record of 9.63 s set in 2012 London Olympics Games by Usain Bolt. The application of VirtualDub Programme allowed the acquisition of basic kinematical variables such as step length and step frequency parameters of 100 m sprint from video footage provided by NBC TV station, BBC TV station. This data was compared with other data available on the web and data published by the Scientific Research Project Office responsible on behalf of IAAF and the German Athletics Association (DVL). The main hypothesis was that the step length is the main factor that determines running speed in the 10 and 20 m sections of the entire 100 m distance. Bolt's anthropometric advantage (body height, leg length and liner body) is not questionable and it is one of the factors that makes him faster than the rest of the finalists from each three competitions. Additionally, Bolt's 20 cm longer stride shows benefit in the latter part of the race. Despite these factors, he is probably able to strike the ground more forcefully than rest of sprinters, relative to their body mass, therefore, he might maximize his time on the ground and to exert the same force over this period of time. This ability, combined with longer stride allows him to create very high running speed - over 12 m/s (12.05 - 12.34 m/s) in some 10 m sections of his three 100 m performances. These assumption confirmed the application of Ballerieich

  3. Tower Water-Vapor Mixing Ratio

    SciTech Connect

    Guastad, Krista; Riihimaki, Laura; none,

    2013-04-01

    The purpose of the Tower Water-Vapor Mixing Ratio (TWRMR) value-added product (VAP) is to calculate water-vapor mixing ratio at the 25-meter and 60-meter levels of the meteorological tower at the Southern Great Plains (SGP) Central Facility.

  4. Radon data acquisition: An automated system for radon analysis of both ground air and tower air and for the simultaneous logging of meteorological data

    SciTech Connect

    Martins, S.

    1990-10-01

    A system to acquire radon data was developed at Lawrence Livermore National Laboratory (LLNL) to provide information about the effect of weather conditions on the release of radon gas from soils into air. One of the system criteria that drive other design considerations was the need for operation at remote sites where the availability of 120-volt AC power was problematic. As a consequence, all components were selected or designed to run on +12 and/or {minus}12 volts DC. PC-based laptop computers were used for all data acquisition because of their availability, their low power consumption, and the abundance of software written for this platform. The system is comprised of four major sub-systems that are linked by laptop computers: radon-monitor controller, HANDAR 540 data-capture platform, radon-detection units, and barometric pressure unit. Using this system, we successfully collected data at an LLNL field site during 1990. Data from meteorological sensors and radon-concentration profiles from both air and soil were acquired simultaneously and logged on MS-DOS computers for data reduction at a future time. This document describes the functions, hardware, firmware, and software of this system.

  5. Selected Determinants of Acceleration in the 100m Sprint

    PubMed Central

    Maćkała, Krzysztof; Fostiak, Marek; Kowalski, Kacper

    2015-01-01

    The goal of this study was to examine the relationship between kinematics, motor abilities, anthropometric characteristics, and the initial (10 m) and secondary (30 m) acceleration phases of the 100 m sprint among athletes of different sprinting performances. Eleven competitive male sprinters (10.96 s ± 0.36 for 100 with 10.50 s fastest time) and 11 active students (12.20 s ± 0.39 for 100 m with 11.80 s fastest time) volunteered to participate in this study. Sprinting performance (10 m, 30 m, and 100 m from the block start), strength (back squat, back extension), and jumping ability (standing long jump, standing five-jumps, and standing ten-jumps) were tested. An independent t-test for establishing differences between two groups of athletes was used. The Spearman ranking correlation coefficient was computed to verify the association between variables. Additionally, the Ward method of hierarchical cluster analysis was applied. The recorded times of the 10 and 30 m indicated that the strongest correlations were found between a 1-repetition maximum back squat, a standing long jump, standing five jumps, standing ten jumps (r = 0.66, r = 0.72, r = 0.66, and r = 0.72), and speed in the 10 m sprint in competitive athletes. A strong correlation was also found between a 1-repetition maximum back squat and a standing long jump, standing five jumps, and standing ten jumps (r = 0.88, r = 0.87 and r = 0.85), but again only for sprinters. The most important factor for differences in maximum speed development during both the initial and secondary acceleration phase among the two sub-groups was the stride frequency (p<0.01). PMID:25964817

  6. Selected determinants of acceleration in the 100m sprint.

    PubMed

    Maćkała, Krzysztof; Fostiak, Marek; Kowalski, Kacper

    2015-03-29

    The goal of this study was to examine the relationship between kinematics, motor abilities, anthropometric characteristics, and the initial (10 m) and secondary (30 m) acceleration phases of the 100 m sprint among athletes of different sprinting performances. Eleven competitive male sprinters (10.96 s ± 0.36 for 100 with 10.50 s fastest time) and 11 active students (12.20 s ± 0.39 for 100 m with 11.80 s fastest time) volunteered to participate in this study. Sprinting performance (10 m, 30 m, and 100 m from the block start), strength (back squat, back extension), and jumping ability (standing long jump, standing five-jumps, and standing ten-jumps) were tested. An independent t-test for establishing differences between two groups of athletes was used. The Spearman ranking correlation coefficient was computed to verify the association between variables. Additionally, the Ward method of hierarchical cluster analysis was applied. The recorded times of the 10 and 30 m indicated that the strongest correlations were found between a 1-repetition maximum back squat, a standing long jump, standing five jumps, standing ten jumps (r = 0.66, r = 0.72, r = 0.66, and r = 0.72), and speed in the 10 m sprint in competitive athletes. A strong correlation was also found between a 1-repetition maximum back squat and a standing long jump, standing five jumps, and standing ten jumps (r = 0.88, r = 0.87 and r = 0.85), but again only for sprinters. The most important factor for differences in maximum speed development during both the initial and secondary acceleration phase among the two sub-groups was the stride frequency (p<0.01). PMID:25964817

  7. Collapsible Towers

    NASA Technical Reports Server (NTRS)

    1976-01-01

    NASA needed a means of orbiting a large radio telescope antenna. Astro Research Corporation developed a new structure that was strong, lightweight, folded into a small storage space, and could be erected by rotation. Later they adapted it to commercial use. Today the "Astromast" tower consists of tubular aluminum alloy and stainless steel members that deploy into small three-sided bays, each made rigid by six diagonal cables. All joints are flexible to permit folding and unfolding. Tower packs into container 5% of its height, can be erected without tools and is reusable. Tower has won "Design of the Year" award from Machine Design. Variations include portable emergency bridges and commercial scaffolding.

  8. Evaluation of muscle fatigue during 100-m front crawl.

    PubMed

    Stirn, Igor; Jarm, Tomaz; Kapus, Venceslav; Strojnik, Vojko

    2011-01-01

    The aim of this study was to evaluate muscle fatigue in upper body muscles during 100-m all-out front crawl. Surface electromyogram (EMG) was collected from the pectoralis major, latissimus dorsi and triceps brachii muscles of 11 experienced swimmers. Blood lactate concentration level increased to 14.1 ± 2.9 mmol l(-1) 5 min after the swim. The velocity, stroke length and stroke rate calculated based on video analysis decreased by 15.0, 5.8 and 7.4%, respectively, during the swim. EMG amplitude of the triceps and the lower part of the latissimus muscles increased, whilst the mean power frequency (MNF) of all muscles significantly decreased by 20-25%. No significant differences in the relative MNF decrease were observed amongst the muscles; however, the differences in the rate of the MNF decrease between the lower part of the latissimus and the triceps brachii muscles were found (P < 0.05). The time of rest between the muscle activation of the two consecutive arm strokes at the end of swimming was extended (P < 0.05). It was concluded that 100-m all-out crawl induced significant fatigue with no evident differences amongst the analysed muscles. PMID:20824283

  9. Wind Shear Characteristics at Central Plains Tall Towers (presentation)

    SciTech Connect

    Schwartz, M.; Elliott, D.

    2006-06-05

    The objectives of this report are: (1) Analyze wind shear characteristics at tall tower sites for diverse areas in the central plains (Texas to North Dakota)--Turbines hub heights are now 70-100 m above ground and Wind measurements at 70-100+ m have been rare. (2) Present conclusions about wind shear characteristics for prime wind energy development regions.

  10. Rapunzel's Tower

    ERIC Educational Resources Information Center

    Depp, Sheryl

    2007-01-01

    Children's literature often inspires the author's lessons, and reading to her primary students motivates their participation. In this article, the author presents and describes her lesson which is based on the book "Falling for Rapunzel" by Leah Wilcox. Students created a fairy tale tower in this lesson, which took place over three class periods.…

  11. OVERVIEW OF PAMS METEOROLOGICAL MONITORING REQUIREMENTS

    EPA Science Inventory

    The Photochemical Assessment Monitoring Station (PAMS) requires theincorporation of surface and upper air meteorological instrumentation. he platform for the surface instrumentation is a 10 m tower. he variables to be collected include horizontal wind speed, horizontal wind direc...

  12. Applied Meteorology Unit (AMU)

    NASA Technical Reports Server (NTRS)

    Bauman, William; Lambert, Winifred; Wheeler, Mark; Barrett, Joe; Watson, Leela

    2007-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the second quarter of Fiscal Year 2007 (January - March 2007). Tasks reported on are: Obiective Lightning Probability Tool, Peak Wind Tool for General Forecasting, Situational Lightning Climatologies for Central Florida, Anvil Threat Corridor Forecast Tool in AWIPS, Volume Averaqed Heiqht lnteq rated Radar Reflectivity (VAHIRR), Tower Data Skew-t Tool, and Weather Research and Forecastini (WRF) Model Sensitivity Study

  13. Low Frequency Loss in Regional Scale Flux Observations from a Tall Tower

    NASA Astrophysics Data System (ADS)

    Bosveld, F. C.; Schalkwijk, J.; Siebesma, A. P.

    2010-09-01

    Direct measurements of surface fluxes are nowadays often performed with the eddy-correlation technique. The method is well established for observations in the lowest few meters of the atmosphere which gives flux estimates with a footprint of typically 100 m. Models and satellite products often give results on the kilometer scale or larger and benefit for their evaluation from flux estimates with larger horizontal scales. Until now only a limited number of techniques are available for direct flux observation at larger scale, e.g. airborne eddy correlation, tall tower based observations and scintillometers. Elevated observations "see" a larger footprint. We focus on tall tower flux observations. Specific problems arise when estimating surface fluxes from these elevated observations related to storage below the observation level and advection. A third concern and the focus of this presentation is the increase of length scale of the transporting turbulent eddies when going to higher levels in the atmospheric boundary layer and the related issue of low frequency loss. With the Cabauw 200 m meteorological tower in the Netherlands a unique platform is available to perform tall tower flux observations. The tower has been equipped with eddy correlation systems at 5, 60, 100 and 180 m height which measures fluxes of momentum, temperature, humidity and CO2. In addition wind speed, temperature, humidity and CO2 concentration are measured at a number of intermediate levels. This set of instruments has been augmented with an extra large aperture scintillometer which operates at the 60 m level over the 10 km path between a TV-tower and the Cabauw meteorological tower. Typically turbulence flux data is calculated on a 10 to 30 minute time basis. For atmospheric surface layer observation well established similarity relations exist to estimate low-frequency flux contributions. Low frequency contributions above the surface layer are less well established. We have analysed a large

  14. Virtual Tower

    SciTech Connect

    Wayne, R.A.

    1997-08-01

    The primary responsibility of an intrusion detection system (IDS) operator is to monitor the system, assess alarms, and summon and coordinate the response team when a threat is acknowledged. The tools currently provided to the operator are somewhat limited: monitors must be switched, keystrokes must be entered to call up intrusion sensor data, and communication with the response force must be maintained. The Virtual tower is an operator interface assembled from low-cost commercial-off-the-shelf hardware and software; it enables large amounts of data to be displayed in a virtual manner that provides instant recognition for the operator and increases assessment accuracy in alarm annunciator and control systems. This is accomplished by correlating and fusing the data into a 360-degree visual representation that employs color, auxiliary attributes, video, and directional audio to prompt the operator. The Virtual Tower would be a valuable low-cost enhancement to existing systems.

  15. Titan Meteorology

    NASA Astrophysics Data System (ADS)

    Mitchell, Jonathan

    2012-04-01

    Titan’s methane clouds have received much attention since they were first discovered spectroscopically (Griffith et al. 1998). Titan's seasons evolve slowly, and there is growing evidence of a seasonal response in the regions of methane cloud formation (e.g. Rodriguez et al. 2009). A complete, three-dimensional view of Titan’s clouds is possible through the determination of cloud-top heights from Cassini images (e.g., Ádámkovics et al. 2010). Even though Titan’s surface is warmed by very little sunlight, we now know Titan’s methane clouds are convective, evolving through tens of kilometers of altitude on timescales of hours to days with dynamics similar to clouds that appear on Earth (Porco et al. 2005). Cassini ISS has also shown evidence of rain storms on Titan that produce surface accumulation of methane (Turtle et al. 2009). Most recently, Cassini has revealed a 1000-km-scale, arrow-shaped cloud at the equator followed by changes that appear to be evidence of surface precipitation (Turtle et al. 2011b). Individual convective towers simulated with high fidelity indicate that surface convergence of methane humidity and dynamic lifting are required to trigger deep, precipitating convection (e.g. Barth & Rafkin 2010). The global expanses of these cloud outbursts, the evidence for surface precipitation, and the requirement of dynamic convergence and lifting at the surface to trigger deep convection motivate an analysis of storm formation in the context of Titan’s global circulation. I will review our current understanding of Titan’s methane meteorology using Cassini and ground-based observations and, in particular, global circulation model simulations of Titan’s methane cycle. When compared with cloud observations, our simulations indicate an essential role for planetary-scale atmospheric waves in organizing convective storms on large scales (Mitchell et al. 2011). I will end with predictions of Titan’s weather during the upcoming northern

  16. FLORIDA TOWER FOOTPRINT EXPERIMENTS

    SciTech Connect

    WATSON,T.B.; DIETZ, R.N.; WILKE, R.; HENDREY, G.; LEWIN, K.; NAGY, J.; LECLERC, M.

    2007-01-01

    The Florida Footprint experiments were a series of field programs in which perfluorocarbon tracers were released in different configurations centered on a flux tower to generate a data set that can be used to test transport and dispersion models. These models are used to determine the sources of the CO{sub 2} that cause the fluxes measured at eddy covariance towers. Experiments were conducted in a managed slash pine forest, 10 km northeast of Gainesville, Florida, in 2002, 2004, and 2006 and in atmospheric conditions that ranged from well mixed, to very stable, including the transition period between convective conditions at midday to stable conditions after sun set. There were a total of 15 experiments. The characteristics of the PFTs, details of sampling and analysis methods, quality control measures, and analytical statistics including confidence limits are presented. Details of the field programs including tracer release rates, tracer source configurations, and configuration of the samplers are discussed. The result of this experiment is a high quality, well documented tracer and meteorological data set that can be used to improve and validate canopy dispersion models.

  17. 8. SOUTH SIDE OF EAST PHOTO TOWER; ELECTRICAL POWER BOX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. SOUTH SIDE OF EAST PHOTO TOWER; ELECTRICAL POWER BOX ON RIGHT. LEFT TO RIGHT IN BACKGROUND: A STORAGE SHED (BLDG. 776), METEOROLOGICAL TOWER, PYROTECHNIC SHED (BLDG. 757), AND SLC-3W MST. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. Crop suitability monitoring for improved yield estimations with 100m PROBA-V data

    NASA Astrophysics Data System (ADS)

    Özüm Durgun, Yetkin; Gilliams, Sven; Gobin, Anne; Duveiller, Grégory; Djaby, Bakary; Tychon, Bernard

    2015-04-01

    This study has been realised within the framework of a PhD targeting to advance agricultural monitoring with improved yield estimations using SPOT VEGETATION remotely sensed data. For the first research question, the aim was to improve dry matter productivity (DMP) for C3 and C4 plants by adding a water stress factor. Additionally, the relation between the actual crop yield and DMP was studied. One of the limitations was the lack of crop specific maps which leads to the second research question on 'crop suitability monitoring'. The objective of this work is to create a methodological approach based on the spectral and temporal characteristics of PROBA-V images and ancillary data such as meteorology, soil and topographic data to improve the estimation of annual crop yields. The PROBA-V satellite was launched on 6th May 2013, and was designed to bridge the gap in space-borne vegetation measurements between SPOT-VGT (March 1998 - May 2014) and the upcoming Sentinel-3 satellites scheduled for launch in 2015/2016. PROBA -V has products in four spectral bands: BLUE (centred at 0.463 µm), RED (0.655 µm), NIR (0.845 µm), and SWIR (1.600 µm) with a spatial resolution ranging from 1km to 300m. Due to the construction of the sensor, the central camera can provide a 100m data product with a 5 to 8 days revisiting time. Although the 100m data product is still in test phase a methodology for crop suitability monitoring was developed. The multi-spectral composites, NDVI (Normalised Difference Vegetation Index) (NIR_RED/NIR+RED) and NDII (Normalised Difference Infrared Index) (NIR-SWIR/NIR+SWIR) profiles are used in addition to secondary data such as digital elevation data, precipitation, temperature, soil types and administrative boundaries to improve the accuracy of crop yield estimations. The methodology is evaluated on several FP7 SIGMA test sites for the 2014 - 2015 period. Reference data in the form of vector GIS with boundaries and cover type of agricultural fields are

  19. Motivational Meteorology.

    ERIC Educational Resources Information Center

    Benjamin, Lee

    1993-01-01

    Describes an introductory meteorology course for nonacademic high school students. The course is made hands-on by the use of an educational software program offered by Accu-Weather. The program contains a meteorology database and instructional modules. (PR)

  20. Tower Mesonetwork Climatology and Interactive Display Tool

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Bauman, William H., III

    2004-01-01

    Forecasters at the 45th Weather Squadron and Spaceflight Meteorology Group use data from the tower network over the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) to evaluate Launch Commit Criteria, and issue and verify forecasts for ground operations. Systematic biases in these parameters could adversely affect an analysis, forecast, or verification. Also, substantial geographical variations in temperature and wind speed can occur under specific wind directions. To address these concerns, the Applied Meteorology Unit (AMU) developed a climatology of temperatures and winds from the tower network, and identified the geographical variation and significant tower biases. The mesoclimate is largely driven by the complex land-water interfaces across KSC/CCAFS. Towers with close proximity to water typically had much warmer nocturnal temperatures and higher wind speeds throughout the year. The strongest nocturnal wind speeds occurred from October to March whereas the strongest mean daytime wind speeds occurred from February to May. These results of this project can be viewed by forecasters through an interactive graphical user interface developed by the AMU. The web-based interface includes graphical and map displays of mean, standard deviation, bias, and data availability for any combination of towers, variables, months, hours, and wind directions.

  1. Cellular Phone Towers

    MedlinePlus

    ... the call. How are people exposed to the energy from cellular phone towers? As people use cell ... where people can be exposed to them. The energy from a cellular phone tower antenna, like that ...

  2. Laser system emitting 100 mJ in Laguerre-Gaussian modes

    SciTech Connect

    Bagdasarov, V Kh; Garnov, Sergei V; Denisov, N N; Malyutin, A A; Dolgopolov, Yu V; Kopalkin, A V; Starikov, F A

    2009-09-30

    The optical scheme and radiation parameters of a neodymium glass laser system emitting high-power 40-ns pulses in the first-third-order Laguerre-Gaussian modes of energy up to 100 mJ are described. (lasers)

  3. Basque meteorology monthly meteorological bulletins

    NASA Astrophysics Data System (ADS)

    Hernandez, R.; Gaztelumendi, S.; Otxoa de Alda, K.; Egaña, J.; Gelpi, I. R.

    2009-09-01

    In this work we present the monthly meteorological bulletins of the Basque Meteorology Agency (EUSKALMET). This bulletin includes a monthly meteorological summary for Basque Country Area, including some statistical data, graphs and maps for relevant variables, and descriptive test of meteorological situation, including monthly summary and a description for some relevant severe weather cases. An intensive use of Basque Country Automatic Weather Station (AWS) mesonet data is made in its elaboration. The Basque Meteorology Agency has among theirs functions to serve different requests that often include some type of statistical data, the elaboration of monthly bulletins and the meteorological annual bulletin, published by the Direction of Meteorology and Climatology - Department of Transports and Civil Works - Basque Government. For the monthly meteorological summary elaboration, use of data coming from the ten-minutes AWS network available in our territory is made. In this context, ten-minutes data are used for daily and monthly data statistics. Information is presented, for an easy interpretation, using different tabular format and graphics focused on air temperature and precipitation. The monitoring of this last meteorological element is completed with maps of monthly actual precipitation and its anomalies, expressed as the departure from normal precipitation and percent of normal precipitation.

  4. Vertical and Horizontal Jump Tests Are Strongly Associated With Competitive Performance in 100-m Dash Events.

    PubMed

    Loturco, Irineu; Pereira, Lucas A; Cal Abad, Cesar C; DʼAngelo, Ricardo A; Fernandes, Victor; Kitamura, Katia; Kobal, Ronaldo; Nakamura, Fabio Y

    2015-07-01

    Fourteen male elite sprinters performed short-distance sprints and jump tests until 18 days before 100-m dash competitions in track and field to determine if these tests are associated with 100-m sprint times. Testing comprised of squat jumps (SJ), countermovement jumps (CMJ), horizontal jumps (HJ), maximum mean propulsive power relative to body mass in loaded jump squats, and a flying start 50-m sprint. Moderate associations were found between speed tests and competitive 100-m times (r = 0.54, r = 0.61, and r = 0.66 for 10-, 30-, and 50-m, respectively, p ≤ 0.05). In addition, the maximum mean propulsive power relative to body mass was very largely correlated with 100-m sprinting performance (r = 0.75, p < 0.01). The correlations of SJ, CMJ, and HJ with actual 100-m sprinting times amounted to -0.82, -0.85, and -0.81, respectively. Because of their practicality, safeness, and relationship with the actual times obtained by top-level athletes in 100-m dash events, it is highly recommended that SJ, CMJ, and HJ be regularly incorporated into elite sprint-testing routines. PMID:25627643

  5. Ethnicity and spatiotemporal parameters of bilateral and unilateral transtibial amputees in a 100-m sprint.

    PubMed

    Hobara, Hiroaki; Hashizume, Satoru; Kobayashi, Yoshiyuki; Usami, Yuko; Mochimaru, Masaaki

    2016-01-01

    Similar to able-bodied sprinters, most of the medals for the 100-m sprint in past Paralympic Games and IPC Athletics World Championships were dominated by West African (WA) and Caucasian (CC) amputee sprinters, not Asian (AS) sprinters. Although these results indicate differences in sprint performance due to ethnicity, little is known about the ethnicity and spatiotemporal parameters of the 100-m sprint for amputee sprinters. The purpose of this study was to investigate the differences in the spatiotemporal parameters of WA, CC and AS sprinters with bilateral and unilateral transtibial amputations during a 100-m sprint. We analyzed 6 WA, 28 CC, and 10 AS amputee sprinters from publicly available Internet broadcasts. For each sprinter's run, the average speed, average step length, and step frequency were calculated by using the number of steps in conjunction with the official race time. No significant differences were found in the spatiotemporal parameters of the 100-m sprint for the WA and CC groups. On the other hand, the average speed of the AS group was significantly lower because of its shorter step length during the 100-m sprint. The results suggest that WA and CC sprinters would perform similarly during a 100-m sprint, but AS sprinters would not. PMID:27066362

  6. Meteorological Monitoring And Warning Computer Network

    NASA Technical Reports Server (NTRS)

    Evans, Randolph J.; Dianic, Allan V.; Moore, Lien N.

    1996-01-01

    Meteorological monitoring system (MMS) computer network tracks weather conditions and issues warnings when weather hazards are about to occur. Receives data from such meteorological instruments as wind sensors on towers and lightning detectors, and compares data with weather restrictions specified for outdoor activities. If weather violates restriction, network generates audible and visible alarms to alert people involved in activity. Also displays weather and toxic diffusion data and disseminates weather forecasts, advisories, and warnings to workstations.

  7. Meteorology Online.

    ERIC Educational Resources Information Center

    Kahl, Jonathan D. W.

    2001-01-01

    Describes an activity to learn about meteorology and weather using the internet. Discusses the National Weather Service (NWS) internet site www.weather.gov. Students examine maximum and minimum daily temperatures, wind speed, and direction. (SAH)

  8. BOREAS TE-21 Daily Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Kimball, John; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-21 (Terrestrial Ecology) team collected data sets in support of its efforts to characterize and interpret information on the meteorology of boreal forest areas. Daily meteorological data were derived from half-hourly BOREAS tower flux (TF) and Automatic Meteorological Station (AMS) mesonet measurements collected in the Southern and Northern Study Areas (SSA and NSA) for the period of 01 Jan 1994 until 31 Dec 1994. The data were stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  9. BOREAS AFM-6 Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) collected surface meteorological data from 21 May to 20 Sep 1994 near the Southern Study Area-Old Jack Pine (SSA-OJP) tower site. The data are in tabular ASCII files. The surface meteorological data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  10. Delay analysis of networked control systems based on 100 M switched Ethernet.

    PubMed

    Li, Ming

    2014-01-01

    For the delay may degrade the performance of networked control systems, networked control systems based on 100 M switched Ethernet are proposed in this paper. According to the working principle of Ethernet switch, the formulas of the upper bound delay of the single-level switched Ethernet and the multiple-level switched Ethernet are deduced by the timing diagram method, and the values of the upper bound delay are also given. The key factors that influence the upper bound delay of switched Ethernet are analyzed; then, the characteristics of the upper bound delay are presented, which show that the delay induced by the single-level 100 M switched Ethernet has little effect on the performance of control systems, while the delay induced by the multiple-level 100 M switched Ethernet may meet the time requirements of all classes of control systems if the numbers of levels and the numbers of nodes connecting to switches are set properly. Finally, the performance of networked control systems is simulated by TrueTime, and the results further show the feasibility and superiority of 100 M switched Ethernet based networked control systems without modification of the network protocols. PMID:25003152

  11. A 100 m/320 Gbps SDM FSO link with a doublet lens scheme

    NASA Astrophysics Data System (ADS)

    Li, Chung-Yi; Lu, Hai-Han; Lu, Ting-Chien; Wu, Chang-Jen; Chu, Chien-An; Lin, Hung-Hsien; Cheng, Ming-Te

    2016-07-01

    A 100 m/320 Gbps space-division-multiplexing (SDM) free-space optical (FSO) link with a doublet lens scheme is proposed and experimentally demonstrated. The transmission capacity of FSO links is increased significantly by the SDM topology, and the transmission distance of FSO links is greatly extended by the doublet lens scheme. An FSO link of eight channels over a 100 m free-space link with a total transmission rate of 320 Gbps (40 Gbps/λ  ×  8λ  =  320 Gbps) is achieved. With the assistance of a low noise amplifier (LNA) and clock/data recovery (CDR) at the receiving site, a good bit error rate (BER) performance and a clear eye diagram are obtained at 100 m/320 Gbps. The proposed 100 m/320 Gbps SDM FSO link is shown to be a notable option to provide the advantages of long transmission distances and high transmission rates for optical wireless communications.

  12. Millimeter wave reimaging optics for the 100 m Green Bank telescope.

    PubMed

    Dicker, Simon; Devlin, Mark

    2005-10-01

    Large bolometer arrays capable of operating at millimeter wavelengths are being built for astronomical use. For optimal sensitivity, high-quality optics with wide fields of view are needed. We report on the design of reimaging optics for use on the 100-m Green Bank telescope with a 64-element bolometer array. PMID:16231791

  13. Airport Remote Tower Sensor Systems

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Gawdiak, Yuri; Leidichj, Christopher; Papasin, Richard; Tran, Peter B.; Bass, Kevin

    2006-01-01

    Networks of video cameras, meteorological sensors, and ancillary electronic equipment are under development in collaboration among NASA Ames Research Center, the Federal Aviation Administration (FAA), and the National Oceanic Atmospheric Administration (NOAA). These networks are to be established at and near airports to provide real-time information on local weather conditions that affect aircraft approaches and landings. The prototype network is an airport-approach-zone camera system (AAZCS), which has been deployed at San Francisco International Airport (SFO) and San Carlos Airport (SQL). The AAZCS includes remotely controlled color video cameras located on top of SFO and SQL air-traffic control towers. The cameras are controlled by the NOAA Center Weather Service Unit located at the Oakland Air Route Traffic Control Center and are accessible via a secure Web site. The AAZCS cameras can be zoomed and can be panned and tilted to cover a field of view 220 wide. The NOAA observer can see the sky condition as it is changing, thereby making possible a real-time evaluation of the conditions along the approach zones of SFO and SQL. The next-generation network, denoted a remote tower sensor system (RTSS), will soon be deployed at the Half Moon Bay Airport and a version of it will eventually be deployed at Los Angeles International Airport. In addition to remote control of video cameras via secure Web links, the RTSS offers realtime weather observations, remote sensing, portability, and a capability for deployment at remote and uninhabited sites. The RTSS can be used at airports that lack control towers, as well as at major airport hubs, to provide synthetic augmentation of vision for both local and remote operations under what would otherwise be conditions of low or even zero visibility.

  14. 43. TOP OF SOUTHEAST TOWER FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. TOP OF SOUTHEAST TOWER FROM SOUTH TOWER ROOF, LOOKING EAST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  15. 37. NORTH TOWER UPPER ZONE FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. NORTH TOWER UPPER ZONE FROM SOUTH TOWER ROOF, LOOKING NORTH - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  16. 19. NORTH TOWER, PORTE COCHERE & FLAG TOWER, LOOKING SOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. NORTH TOWER, PORTE COCHERE & FLAG TOWER, LOOKING SOUTHWEST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  17. 47. NORTHWEST TOWER FROM SOUTH TOWER ROOF, LOOKING NORTH BY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. NORTHWEST TOWER FROM SOUTH TOWER ROOF, LOOKING NORTH BY NORTHWEST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  18. 36. FLAG TOWER CLOCK ZONE FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. FLAG TOWER CLOCK ZONE FROM SOUTH TOWER ROOF, LOOKING NORTH - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  19. 40. CAMPANILE & SOUTHEAST TOWER FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. CAMPANILE & SOUTHEAST TOWER FROM SOUTH TOWER ROOF, LOOKING EAST BY NORTHEAST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  20. 18. NORTH TOWER, PORTE COCHERE & FLAG TOWER, LOOKING SOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. NORTH TOWER, PORTE COCHERE & FLAG TOWER, LOOKING SOUTHWEST BY WEST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  1. Applied Meteorology Unit (AMU)

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred; Watson, Leela; Wheeler, Mark

    2011-01-01

    The AMU Team began four new tasks in this quarter: (1) began work to improve the AMU-developed tool that provides the launch weather officers information on peak wind speeds that helps them assess their launch commit criteria; (2) began updating lightning climatologies for airfields around central Florida. These climatologies help National Weather Service and Air Force forecasters determine the probability of lightning occurrence at these sites; (3) began a study for the 30th Weather Squadron at Vandenberg Air Force Base in California to determine if precursors can be found in weather observations to help the forecasters determine when they will get strong wind gusts in their northern towers; and (4) began work to update the AMU-developed severe weather tool with more data and possibly improve its performance using a new statistical technique. Include is a section of summaries and detail reporting on the quarterly tasks: (1) Peak Wind Tool for user Meteorological Interactive Data Display System (LCC), Phase IV, (2) Situational Lightning climatologies for Central Florida, Phase V, (3) Vandenberg AFB North Base Wind Study and (4) Upgrade Summer Severe Weather Tool Meteorological Interactive Data Display System (MIDDS).

  2. Confusion at the Tower

    ERIC Educational Resources Information Center

    Li, Loretta F.

    2014-01-01

    This study will explore the omission of the Tower of Babel narrative from middle and secondary school world history, world studies, and world geography textbooks and will consider what might be learned from inclusion of the story in the curriculum. A total of 17 textbooks are analyzed. The Tower of Babel narrative is examined within the context of…

  3. Drop Tower Physics

    ERIC Educational Resources Information Center

    Dittrich, William A.

    2014-01-01

    The drop towers of yesteryear were used to make lead shot for muskets, as described in "The Physics Teacher" in April 2012. However, modern drop towers are essentially elevators designed so that the cable can "break" on demand, creating an environment with microgravity for a short period of time, currently up to nine seconds at…

  4. Wind tower service lift

    DOEpatents

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  5. Efficient Dual Head Nd:YAG 100mJ Oscillator for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Coyle, Donald B.; Stysley, Paul R.; Kay, Richard b.; Poulios, Demetrios

    2007-01-01

    A diode pumped, Nd:YAG laser producing 100 mJ Q-switched pulses and employing a dual-pump head scheme in an unstable resonator configuration is described. Each head contains a side pumped zig-zag slab and four 6-bar QCW 808 nm diodes arrays which are de-rated 23%. Denoting 'z' as the lasing axis, the pump directions were along the x-axis in one head and the y-axis in the other, producing a circularized thermal lens, more typical in laser rod-based cavities. The dual head design's effective thermal lens is now corrected with a proper HR mirror curvature selection. This laser has demonstrated over 100 mJ output with high optical efficiency (24%), good TEM(sub 00) beam quality, and high pointing stability.

  6. Modeling of Women's 100-M Dash World Record: Wind-Aided or Not?

    ERIC Educational Resources Information Center

    Hazelrigg, Conner; Waibel, Bryson; Baker, Blane

    2015-01-01

    On July 16, 1988, Florence Griffith Joyner (FGJ) shattered the women's 100-m dash world record (WR) with a time of 10.49 s, breaking the previous mark by an astonishing 0.27 s. By all accounts FGJ dominated the race that day, securing her place as the premiere female sprinter of that era, and possibly all time. In the aftermath of such an…

  7. Evaluation of the EFCOM SC-100M/120M/125M wireless underwater communicator

    NASA Astrophysics Data System (ADS)

    Middleton, J. R.

    1982-04-01

    In June 1981, the EFCOM SC-100M/120M/125M wireless communications system was evaluated in conjunction with the AGA DIVATOR 324 Full-Face Mask by the Navy Experimental Diving Unit. The purpose was to determine the systems suitability for U.S. Navy use with open-circuit Self-Contained Underwater Breathing Apparatus (SCUBA). The EFCOM system was evaluated for intelligibility, reliability and human engineering.

  8. Automated emergency meteorological response system

    SciTech Connect

    Pepper, D W

    1980-01-01

    A sophisticated emergency response system was developed to aid in the evaluation of accidental releases of hazardous materials from the Savannah River Plant to the environment. A minicomputer system collects and archives data from both onsite meteorological towers and the National Weather Service. In the event of an accidental release, the computer rapidly calculates the trajectory and dispersion of pollutants in the atmosphere. Computer codes have been developed which provide a graphic display of predicted concentration profiles downwind from the source, as functions of time and distance.

  9. Remote Raman Spectroscopic Detection of Inorganic, Organic and Biological Materials to 100 m and More

    NASA Astrophysics Data System (ADS)

    Sharma, Shiv K.; Misra, Anupam K.

    2008-11-01

    We have designed and tested a portable gated-Raman system that is capable of detecting organic and inorganic bulk chemicals over stand-off distances of 100 m and more during day and night time. Utilizing a 532 nm laser pulse (~35 mJ/pulse), Raman spectra of several organic and inorganic compounds have been measured with the portable Raman instrument over a distance of 100 m. Remote Raman spectra, obtained with a very short gate (2 micro second), from a variety of inorganic minerals such as calcite (CaCO3), α-quartz (α-SiO2), barite (BaSO4), and FeSO4.7H2O, and organic compounds such as acetone, methanol, 2-propanol and naphthalene showed all major bands required for unambiguous chemical identification. We also measured the Raman and fluorescence spectra of plant leaves, tomato, and chicken eggshell excited with a 532 nm, 20 Hz pulsed laser and accumulated over 200 laser shots (10-s integration time) at 110 m with good signal-to-noise ratio. The results of these investigations show that remote Raman spectroscopy over a distance of 100 m can be used to identify Raman fingerprints of both inorganic, organic, and some biological compounds on planetary surfaces and could be useful for environmental monitoring.

  10. Drop Tower Physics

    NASA Astrophysics Data System (ADS)

    Dittrich, William A. Toby

    2014-10-01

    The drop towers of yesteryear were used to make lead shot for muskets, as described in The Physics Teacher1 in April 2012. However, modern drop towers are essentially elevators designed so that the cable can "break" on demand, creating an environment with microgravity for a short period of time, currently up to nine seconds at the drop tower in Bremen, Germany. Using these drop towers, one can briefly investigate various physical systems operating in this near zero-g environment. The resulting "Drop Tower Physics" is a new and exciting way to challenge students with a physical example that requires solid knowledge of many basic physics principles, and it forces them to practice the scientific method. The question is, "How would a simple toy, like a pendulum, behave when it is suddenly exposed to a zero-g environment?" The student must then postulate a particular behavior, test the hypothesis against physical principles, and if the hypothesis conforms to these chosen physical laws, the student can formulate a final conclusion. At that point having access to a drop tower is very convenient, in that the student can then experimentally test his or her conclusion. The purpose of this discussion is to explain the response of these physical systems ("toys") when the transition is made to a zero-g environment and to provide video demonstrations of this behavior to support in-class discussions of Drop Tower Physics.

  11. Extensible Wind Towers

    NASA Astrophysics Data System (ADS)

    Sinagra, Marco; Tucciarelli, Tullio

    The diffusion of wind energy generators is restricted by their strong landscape impact. The PERIMA project is about the development of an extensible wind tower able to support a wind machine for several hundred kW at its optimal working height, up to more than 50 m. The wind tower has a telescopic structure, made by several tubes located inside each other with their axis in vertical direction. The lifting force is given by a jack-up system confined inside a shaft, drilled below the ground level. In the retracted tower configuration, at rest, tower tubes are hidden in the foundation of the telescopic structure, located below the ground surface, and the wind machine is the only emerging part of the system. The lifting system is based on a couple of oleodynamic cylinders that jack-up a central tube connected to the top of the tower by a spring, with a diameter smaller than the minimum tower diameter and with a length a bit greater than the length of the extended telescopic structure. The central tube works as plunger and lifts all telescopic elements. The constraint between the telescopic elements is ensured by special parts, which are kept in traction by the force of the spring and provide the resisting moment. The most evident benefit of the proposed system is attained with the use of a two-blade propeller, which can be kept horizontal in the retracted tower configuration.

  12. Wind Shear Characteristics at Central Plains Tall Towers

    SciTech Connect

    Schwartz, M.; Elliott, D.

    2006-01-01

    The object of this study is to analyze wind shear characteristics at tall tower sites in the Central Plains of the United States. The hub heights of modern turbines used for wind farm projects are now 70 meters (m) to 100 m above ground and some advanced turbines under development for deployment during the second half of this decade are rated at 2-5 megawatts of energy generation with rotor diameters near 100 m and hub heights of 100-120 m. These advanced turbines will take advantage of the higher wind speeds aloft to generate more wind energy. Specific knowledge of important wind shear characteristics near and at turbine hub height is needed to optimize turbine design and wind farm layout. Unfortunately, wind speed shear measurements at heights of 80-120 m were virtually nonexistent a few years ago and are still quite uncommon today. The Central Plains is a prime wind energy development region and knowledge about the wind shear characteristics will reduce uncertainty about the resource and enhance wind farm design. Previous analyses of tall tower data (Schwartz and Elliott, 2005) concentrated on data from specific states. The wind energy community has recognized the need to fill the gap of direct wind speed measurements at levels 70 m and higher above the ground. Programs instituted during the last 5 years at the state level and supported by the U.S. Department of Energy's (DOE) State Energy Program initiative have placed anemometers and vanes at several levels on existing tall (70 m+) communication towers. The Central Plains has a fairly high concentration of tall tower sites. The distribution of tall tower sites varies among the states in the Central Plains, because the tall tower program is new and the available state and federal funding to establish tall towers is variable. Our wind resource assessment group at DOE's National Renewable Energy Laboratory (NREL) has obtained much of these necessary measurement data from both individual state sources and regional

  13. Data Assimilation of PROBA-V 100 m and 300 m.

    NASA Astrophysics Data System (ADS)

    Gilliams, S. J. B.; Kempeneers, P.

    2015-12-01

    One of the goals of the FP7 SIGMA projects is the extension of remote sensing time series to better monitor agricultural productivity at global scale. Extending these time series can be seen in differnt ways; on the one hand we are looking at the integration of different existing data sets with equal resolution e.g. SPOT-VGT and PROBA-V 1km resolution, or building new time series for Eta and Soil moisture. on the other hand we are also updating methods to extend existing time series with respect to their resolution and revisting frequency. The research presentend here will focus on the latter, focussing on the integration of PROBA-V 100 and 300m. The PROBA-V microsatellite is designed to offer a global coverage of land surfaces at four spectral bands at a spatial resolution of 300 m and 1 km with a daily revisit for latitudes 75°N to 56°S [1]. Due to the specific design, data can also be acquired at 100 m for a reduced swath, providing partial coverage (global coverage only every 5 days). This study proposes a data assimilation method that combines the 100 m data at the reduced swath with PROBA-V 300 m resolution data at the full swath. The resulting product is a synthetic product at 100 m spatial resolution, with a potential revisit time equal to the 300 m products (S10@300). Here, we concentrate on a ten day composite product (K10@100), to mitigate the effect of clouds. The goal of the proposed method is to produce continuous and cloud free time series of PROBA-V data at 100 m spatial resolution. The S10@300 and S10@100 ten day composits serve as input, with respective spatial resolutions of 300 m and 100 m. Whereas the S10@300 is obtained from all sensors onbaord the PROBA-V platform, the S10@100 is the product from the central viewing sensor only. Due to a combination of the reduced swath and potential cloud cover, the S10@100 is typically sparse (gaps). The data assimilation method follows the approach proposed in that is based on a Kalman filter. It is a

  14. Tower Camera Handbook

    SciTech Connect

    Moudry, D

    2005-01-01

    The tower camera in Barrow provides hourly images of ground surrounding the tower. These images may be used to determine fractional snow cover as winter arrives, for comparison with the albedo that can be calculated from downward-looking radiometers, as well as some indication of present weather. Similarly, during spring time, the camera images show the changes in the ground albedo as the snow melts. The tower images are saved in hourly intervals. In addition, two other cameras, the skydeck camera in Barrow and the piling camera in Atqasuk, show the current conditions at those sites.

  15. DETAIL VIEW OF AERIAL TRAM SUPPORT TOWER SIX WITH TOWERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF AERIAL TRAM SUPPORT TOWER SIX WITH TOWERS SEVEN,EIGHT, NINE, TEN, AND BREAK OVER TOWER IN DISTANCE, LOOKING NORTH. TOWER SIX IS THE LAST BEFORE A DEEP CHASM, AS IS SEEN BY THE DISTANCE BETWEEN TOWERS SIX AND SEVEN. SEE CA-291-48 (CT) FOR IDENTICAL COLOR TRANSPARENCY. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  16. DETAIL VIEW OF AERIAL TRAM SUPPORT TOWER SIX WITH TOWERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF AERIAL TRAM SUPPORT TOWER SIX WITH TOWERS SEVEN, EIGHT, NINE, TEN, AND BREAK OVER TOWER IN DISTANCE, LOOKING NORTH. TOWER SIX IS THE LAST BEFORE A DEEP CHASM, AS IS SEEN BY THE DISTANCE BETWEEN TOWERS SIX AND SEVEN. SEE CA-291-21 FOR IDENTICAL B&W NEGATIVE. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  17. Aquarius: Tower Rollback

    NASA Video Gallery

    The mobile service tower at NASA's Launch Complex-2 at Vandenberg Air Force Base in California is being moved away from the ULA Delta II rocket with the Aquarius/SAC-D spacecraft atop, in preparati...

  18. Drop Tower Workshop

    NASA Technical Reports Server (NTRS)

    Urban, David

    2013-01-01

    Ground based microgravity facilities are an important proving ground for space experiments, ground-based research and space hardware risk mitigation. An overview of existing platforms will be discussed with an emphasis on drop tower capabilities. The potential for extension to partial gravity conditions will be discussed. Input will be solicited from attendees for their potential to use drop towers in the future and the need for enhanced capabilities (e.g. partial gravity)

  19. Normative Spatiotemporal Parameters During 100-m Sprints in Amputee Sprinters Using Running-Specific Prostheses.

    PubMed

    Hobara, Hiroaki; Potthast, Wolfgang; Müller, Ralf; Kobayashi, Yoshiyuki; Heldoorn, Thijs A; Mochimaru, Masaaki

    2016-02-01

    The aim of this study was to develop a normative sample of step frequency and step length during maximal sprinting in amputee sprinters. We analyzed elite-level 100-m races of 255 amputees and 93 able-bodied sprinters, both men and women, from publicly-available Internet broadcasts. For each sprinter's run, the average forward velocity, step frequency, and step length over the 100-m distance were analyzed by using the official record and number of steps in each race. The average forward velocity was greatest in able-bodied sprinters (10.04 ± 0.17 m/s), followed by bilateral transtibial (8.77 ± 0.27 m/s), unilateral transtibial (8.65 ± 0.30 m/s), and transfemoral amputee sprinters (7.65 ± 0.38 m/s) in men. Differences in velocity among 4 groups were associated with step length (able-bodied vs transtibial amputees) or both step frequency and step length (able-bodied vs transfemoral amputees). Although we also found that the velocity was greatest in able-bodied sprinters (9.10 ± 0.14 m/s), followed by unilateral transtibial (7.08 ± 0.26 m/s), bilateral transtibial (7.06 ± 0.48 m/s), and transfemoral amputee sprinters (5.92 ± 0.33 m/s) in women, the differences in the velocity among the groups were associated with both step frequency and step length. Current results suggest that spatiotemporal parameters during a 100-m race of amputee sprinters is varied by amputation levels and sex. PMID:26251966

  20. A 2 MeV, 100 mA electron accelerator for a small laboratory environment

    NASA Astrophysics Data System (ADS)

    Clayton, C. E.; Marsh, K. A.

    1993-03-01

    A small, high performance electron linear accelerator is described. It is a modified version of a commercially available portable x-ray source. The 9.3 GHz rf linac and beamline deliver a 3 ns train of approximately 15 ps pulses with a peak current, limited by beam loading of the rf structure, of more than 100 mA and a beam energy of around 2 MeV with a 5% full width at half maximum energy spread. The beam emittance is 6π mm mrad and the final spot size is 250 μm diam for f/10 focusing.

  1. WRF-NMM Mesoscale Weather Forecast Model and CALMET Meteorological Preprocessor Wind Simulations over the Mountaneous Region

    NASA Astrophysics Data System (ADS)

    Radonjic, Zivorad; Telenta, Bosko; Chambers, Doug, ,, Dr.; Janjic, Zavisa, ,, Dr.

    2010-05-01

    An advanced mesoscale WRF- NMM (Weather Research and Forecasting - Nonhydrostatic Mesoscale Model), was used in this application. The model was performed on a fine scale resolution (3 by 3 km) over large modelling domain ~ 300 by 300 km for one year of data (2004). Based on this resolution the areas with elevated wind speeds are determined. Each area identified with high wind speeds is processed with the U.S. EPA's meteorological preprocessor CALMET (part of the CALMET/CALPUFF long range regulatory system) with a fine resolution of 100 by 100 m to capture dynamic effects over the mountain region. Some limited data were available for validation. The application of the CALMET preprocessor demonstrated kinematic effects that result in increaed wind speeds above the mountains. This effect was confirmed by the measeurments with the sonic anemometers mounted on a TV tower in the study area. In addition, it was concluded that in the ridged terrain, the standard power low profile is not applicable. In addition, the WRF-NMM was tested in the same application on the resolution of 100 by 100m. The model simulation was limited for one month, because of the computer time requirement. Although of limited duration, this test suggests that WRF-NMM can be applied directly, without re-processing the data through the CALMET.

  2. Radon tower measurements in a Spanish coastal site for Lagrangian particle dispersion model inter-comparison and performance assessment at the mesoscale

    NASA Astrophysics Data System (ADS)

    Vargas, Arturo; Arnold, Delia; Ángel Hernández-Ceballos, Miguel; Adame, José Antonio; Morton, Don; Grossi, Claudia; Schicker, Irene; de la Morena, Benito; Bolivar, Juan Pedro; Gil, Manuel

    2013-04-01

    In the framework of the spanish research project "Development and validation of advanced atmospheric dispersion models for their application in radiological emergency systems" (ref:CGL2008-00473) /CLI, the "El Arenosillo" tower, belonging to the National Institute for Aerospace Technology (INTA) was equiped with radon monitors and, since 2011, is providing reliable and high quality measurements of Rn-222 air concentrations on an hourly basis at two elevations, namely 10 and 100 m above ground level. This radionuclide data is accompanied by continuous meteorological data including temperature, humidity, pressure and wind speed / direction. The location of the station, at the very edge of the Southern Europe, exposed to continental (rural, industrial and urban), marine and Saharan air masses, together with the Rn-222 and meteorological measurements, make it particularly attractive to study the transport phenomena and the performance of meteorological and transport models at all scales, as well as to carry out studies on the vertical structure of the atmosphere in a coastal site. In this context, two intensive measurement campaigns, including radio soundings, were performed during October 2011 and May 2012, allowing the comparison and a better understanding of the Rn-222 measurements under different meteorological conditions. This work will present a first evaluation of the two campaigns at the INTA station, analyzing the evolution of Rn-222 concentration data and the results of the meteorological numerical modelling of those episodes using the Weather Research and Forecasting (WRF) model with different parameterizations. Finally, the atmospheric dispersion model inter-comparison (HYSPLIT-WRF and FLEXPART-WRF) with Rn-222 as a tracer is performed.

  3. 9.58 and 10.49: nearing the citius end for 100 m?

    PubMed

    Haugen, Thomas; Tønnessen, Espen; Seiler, Stephen

    2015-03-01

    Human upper performance limits in the 100-m sprint remain the subject of much debate. The aim of this commentary is to highlight the vulnerabilities of prognoses from historical trends by shedding light on the mechanical and physiological limitations associated with human sprint performance. Several conditions work against the athlete with increasing sprint velocity; air resistance and braking impulse in each stride increase while ground-contact time typically decreases with increasing running velocity. Moreover, muscle-force production declines with increasing speed of contraction. Individual stature (leg length) strongly limits stride length such that conditioning of senior sprinters with optimized technique mainly must be targeted to enhance stride frequency. More muscle mass means more power and thereby greater ground-reaction forces in sprinting. However, as the athlete gets heavier, the energy cost of accelerating that mass also increases. This probably explains why body-mass index among world-class sprinters shows low variability and averages 23.7±1.5 and 20.4±1.4 for male and female sprinters, respectively. Performance development of world-class athletes indicates that ~8% improvement from the age of 18 represents the current maximum trainability of sprint performance. However, drug abuse is a huge confounding factor associated with such analyses, and available evidence suggests that we are already very close to "the citius end" of 100-m sprint performance. PMID:25229725

  4. Modeling of Women's 100-m Dash World Record: Wind-Aided or Not?

    NASA Astrophysics Data System (ADS)

    Hazelrigg, Conner; Waibel, Bryson; Baker, Blane

    2015-11-01

    On July 16, 1988, Florence Griffith Joyner (FGJ) shattered the women's 100-m dash world record (WR) with a time of 10.49 s, breaking the previous mark by an astonishing 0.27 s. By all accounts FGJ dominated the race that day, securing her place as the premiere female sprinter of that era, and possibly all time. In the aftermath of such an extraordinary performance, track officials immediately assumed that her posted time was wind aided—that is, attained under tailwind conditions beyond the legal limit of 2.0 m/s for world records. However, wind-measuring devices at the track site showed zero wind conditions during her WR performance. Before and during FGJ's race, other wind-measuring devices indicated speeds exceeding 4.0 m/s at the site of the triple jump runway, located on the same field as the running track. Video clips of flags placed near the starting line of FGJ's race also revealed tailwind conditions. Using available data from that era, the study here incorporates modeling techniques to compute velocity and position as functions of time for no wind and tailwind conditions. Modeling under no wind conditions produces a 100-m time of 10.70 s, a performance clearly attainable by FGJ during this stage of her sprinting career. Incorporating tailwinds of 4.0 m/s into the computations reduces this time by approximately 0.20 s, in close agreement with FGJ's record-breaking performance. These results strongly suggest that tailwinds of order 4 m/s were present during FGJ's world record race even though wind-measuring devices at the track site did not register these speeds. In spite of such strong evidence to support a wind-aided race on July 16, 1988, FGJ remains one of the top female sprinters in history and would likely hold the WR even today, given that she attained a non-wind-aided 100-m time of 10.61 s on the day following her WR performance.

  5. BOREAS TF-2 SSA-OA Tethersonde Meteorological and Ozone Data

    NASA Technical Reports Server (NTRS)

    Arnold, A. James; Mickle, Robert E.; Hall, Forrest G. (Editor); Huemmrich, Karl (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Tower Flux-2 (BOREAS TF-2) team collected meteorological and ozone measurements from instruments mounted below a tethered balloon. These data were collected at the Southern Study Area Old Aspen (SSA-OA) site to extend meteorological and ozone measurements made from the flux tower to heights of 300 m. The tethersonde operated during the fall of 1993 and the spring, summer, and fall of 1994. The data are available in tabular ASCII files.

  6. On the performance of Usain Bolt in the 100 m sprint

    NASA Astrophysics Data System (ADS)

    Hernández Gómez, J. J.; Marquina, V.; Gómez, R. W.

    2013-09-01

    Many university texts on mechanics consider the effect of air drag force, using the slowing down of a parachute as an example. Very few discuss what happens when the drag force is proportional to both u and u2. In this paper we deal with a real problem to illustrate the effect of both terms on the speed of a runner: a theoretical model of the world-record 100 m sprint of Usain Bolt during the 2009 World Championships in Berlin is developed, assuming a drag force proportional to u and to u2. The resulting equation of motion is solved and fitted to the experimental data obtained from the International Association of Athletics Federations, which recorded Bolt's position with a laser velocity guard device. It is worth noting that our model works only for short sprints.

  7. Towards a 100mA Superconducting RF Photoinjector for BERLinPro

    SciTech Connect

    Neumann, Axel; Anders, W; Burrill, Andrew; Jankowiak, Andreas; Kamps, T; Knobloch, Jens; Kugeler, Oliver; Lauinger, P; Matveenko, A N; Schmeisser, M; Volker, J; Ciovati, Gianluigi; Kneisel, Peter; Nietubyc, R; Schubert, S G; Smedley, John; Sekutowicz, Jacek; Volkov, V; Will, I; Zaplatin, Evgeny

    2013-09-01

    For BERLinPro, a 100 mA CW-driven SRF energy recovery linac demonstrator facility, HZB needs to develop a photo-injector superconducting cavity which delivers a at least 1mm*mr emittance beam at high average current. To address these challenges of producing a high peak brightness beam at high repetition rate, at first HZB tested a fully superconducting injector with a lead cathode*,followed now by the design of a SC cavity allowing operation up to 4 mA using CW-modified TTF-III couplers and inserting a normal conducting high quantum efficiency cathode using the HZDR-style insert scheme. This talk will present the latest results and an overview of the measurements with the lead cathode cavity and will describe the design and optimization process, the first production results of the current design and an outlook to the further development steps towards the full power version.

  8. A Compact Instrument for Remote Raman and Fluorescence Measurements to a Radial Distance of 100 m

    NASA Technical Reports Server (NTRS)

    Sharma, S. K.; Misra, A. K.; Lucey, P. g.; McKay, C. P.

    2005-01-01

    Compact remote spectroscopic instruments that could provide detailed information about mineralogy, organic and biomaterials on a planetary surface over a relatively large area are desirable for NASA s planetary exploration program. Ability to explore a large area on the planetary surfaces as well as in impact craters from a fixed location of a rover or lander will enhance the probability of selecting target rocks of high scientific contents as well as desirable sites in search of organic compounds and biomarkers on Mars and other planetary bodies. We have developed a combined remote inelastic scattering (Raman) and laser-induced fluorescence emission (LIFE) compact instrument capable of providing accurate information about minerals, organic and biogenic materials to a radial distance of 100 m. Here we present the Raman and LIFE (R-LIFE) data set.

  9. 69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER UNDER CONSTRUCTION. (DATE UNKNOWN). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  10. DETAIL VIEW OF AERIAL TRAM SUPPORT TOWER TWO, WITH TOWERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF AERIAL TRAM SUPPORT TOWER TWO, WITH TOWERS THREE,FOUR, FIVE AND SIX IN DISTANCE, LOOKING NORTHEAST. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  11. 8. GENERAL VIEW OF TOWER 32, LEFT, AND TOWER 31, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. GENERAL VIEW OF TOWER 32, LEFT, AND TOWER 31, RIGHT. VIEW LOOKING NORTH SHOWING AERIAL WIRE DESIGN WITH VERTICAL 'TOP HAT' WIRES IN CENTER. - Chollas Heights Naval Radio Transmitting Facility, 6410 Zero Road, San Diego, San Diego County, CA

  12. 3. VIEW NORTHWEST, height finder radar towers, and radar tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW NORTHWEST, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  13. 46. OCTAGONAL & WEST TOWERS FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. OCTAGONAL & WEST TOWERS FROM SOUTH TOWER ROOF, LOOKING NORTHWEST, WITH WEST WING ROOF - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  14. 42. SOUTHEAST TOWER & EAST WING ROOF FROM SOUTH TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. SOUTHEAST TOWER & EAST WING ROOF FROM SOUTH TOWER ROOF, LOOKING EAST BY NORTHEAST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  15. 41. SOUTHEAST TOWER & EAST WING FROM SOUTH TOWER ROOF, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. SOUTHEAST TOWER & EAST WING FROM SOUTH TOWER ROOF, LOOKING EAST BY NORTHEAST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  16. View of the north tower porte cochere and flag tower, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the north tower porte cochere and flag tower, looking southwest (duplicate of HABS No. DC-141-19) - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  17. 45. OCTAGONAL, WEST & NORTHWEST TOWERS FROM SOUTH TOWER ROOF, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. OCTAGONAL, WEST & NORTHWEST TOWERS FROM SOUTH TOWER ROOF, LOOKING WEST BY NORTHWEST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  18. Tall tower or mountain top measurements?

    NASA Astrophysics Data System (ADS)

    Bamberger, Ines; Eugster, Werner; Oney, Brian; Brunner, Dominik; Leuenberger, Markus; Schanda, Rüdiger; Henne, Stephan; Buchmann, Nina

    2014-05-01

    greenhouse gas fluxes at a regional scale in order to achieve a better understanding about CO2 and CH4 fluxes and their response to climate. We will present first direct comparisons of measurements obtained from continuously calibrated laser absorption spectrometers to quantify the atmospheric concentrations of carbon-dioxide and methane, but also from meteorological sensors and turbulence measurements. Data from the sensors at the two stations will be used to address the following question: can a mountain top station provide similar quality of data and spatial representativeness as a tall tower for the investigation of atmospheric patterns of greenhouse gases at diurnal to seasonal scale?

  19. Solar power towers

    SciTech Connect

    Not Available

    1998-04-01

    The high desert near Barstow, California, has witnessed the development of this country`s first two solar power towers. Solar One operated successfully from 1982 to 1988 and proved that power towers work efficiently to produce utility-scale power from sunlight. Solar Two was connected to the utility grid in 1996 and is operating today. Like its predecessor, Solar Two is rated at 10 megawatts. An upgrade of the Solar One plant, Solar Two demonstrates how solar energy can be stored in the form of heat in molten salt for power generation on demand. The experience gained with these two pilot power towers has established a foundation on which industry can develop its first commercial plants. These systems produce electricity on a large scale. They are unique among solar technologies because they can store energy efficiently and cost effectively. They can operate whenever the customer needs power, even after dark or during cloudy weather.

  20. Legionella in cooling towers.

    PubMed

    Witherell, L E; Novick, L F; Stone, K M; Duncan, R W; Orciari, L A; Kappel, S J; Jillson, D A

    1986-01-01

    Legionellosis (Legionnaires' disease and Pontiac fever) outbreaks have been associated with aerosols ejected from contaminated cooling towers--wet-type heat rejection units (WTHRUs) used to dissipate unwanted heat into the atmosphere. The Vermont Department of Health undertook a program to inventory, inspect, and sample all WTHRUs in Vermont from April 1981 to April 1982. All WTHRUs were sampled for Legionella pneumophila and data were obtained for location, design, construction, and operating characteristics. Of the 184 WTHRUs operating, statistical analyses were performed on those 130 which were sampled for L. pneumophila only once during the study period. Of these, 11 (8.5%) were positive for L. pneumophila. Sources of makeup water and period of operation had significant association with the recovery of L. pneumophila. Five out of 92 towers (5.4%) utilizing surface water sources for cooling were positive for L. pneumophila, in contrast to 6 positive towers of the 38 units (15.8%) which obtained makeup water from ground water sources (p = .054 by chi-square test). Nearly 15% of the 54 units which operated throughout the year were positive, compared to less than 4% of the 76 towers operating seasonally (p = .03 by chi-square test). The mean pH of the cooling water in units where L. pneumophila was recovered (8.3) was significantly higher than the mean pH of 7.9 in units testing negative (p less than .05 by t-test). In addition, the mean log-transformed turbidity of positive towers, 0.03 nephelometric units (ntu), was significantly lower than the mean of log turbidity of negative towers, 0.69 ntu (p less than .02 by t-test). PMID:10281778

  1. THE TOWER HOUSE, LOOKING WEST. The tower house provided a ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    THE TOWER HOUSE, LOOKING WEST. The tower house provided a water tank on the second floor that gravity fed water to the Kineth house and farm buildings. The one-story addition to the west of the tower provided workshop space. The hog shed is seen on the left of the image and the concrete foundation of the upright silo is in the foreground on the right. - Kineth Farm, Tower House, 19162 State Route 20, Coupeville, Island County, WA

  2. Solar thermal power towers

    NASA Astrophysics Data System (ADS)

    Kreith, F.; Meyer, R. T.

    1984-07-01

    The solar thermal central receiver technology, known as solar power towers, is rapidly evolving to a state of near-term energy availability for electrical power generation and industrial process heat applications. The systems consist of field arrays of heliostat reflectors, a central receiver boiler, short term thermal storage devices, and either turbine-generators or heat exchangers. Fluid temperatures up to 550 C are currently achievable, and technology developments are underway to reach 1100 C. Six solar power towers are now under construction or in test operation in five countries around the world.

  3. 5. VIEW EAST, height finder radar towers, radar tower (unknown ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW EAST, height finder radar towers, radar tower (unknown function), prime search radar tower, operations building, and central heating plant - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  4. Evaporation Tower With Prill Nozzles

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1984-01-01

    Tower more efficient than conventional evaporation equipment. Liquids such as milk and fruit juice concentrated by passing them through tiny nozzle to form droplets, then allowing droplets to fall through evacuated tower with cooled walls.

  5. Meteorological satellites

    NASA Astrophysics Data System (ADS)

    1981-10-01

    Meteor-2 (second generation meteorological satellite) and an experimental satellite on which instruments are being tested and modified for the requirements of hydrometeorology and a determination of natural resources are presently operational in the U.S.S.R. Television devices with a 1-10 km terrain image resolution operating in the visible and infrared region are used to determine the space system, velocity and direction of cloud movements and provide information about the snow and ice cover, cyclones, storms, vortices in the atmosphere, and velocity and direction of wind. Images with a 50-1000 m resolution make possible geological and hydrological surveys, an evaluation of the state of vegetation and crops, detection of forest fires, determination of pollution of the atmosphere and sea and determination of optimal fishing regions in the ocean. Measurement of the intensity of atmospheric radiation in narrow infrared regions and very high frequencies allows remote evaluation of the temperature and humidity distribution in the vertical cross section of the Earth's atmosphere.

  6. Ivory Basements and Ivory Towers

    ERIC Educational Resources Information Center

    Fitzgerald, Tanya

    2012-01-01

    The metaphors of the ivory tower and ivory basement are used in this chapter to reflect how many women understand and experience the academy. The ivory tower signifies a place that is protected, a place of privilege and authority and a place removed from the outside world (and consequently the rigours of the market place). The ivory tower, by…

  7. The Ivory Tower Revisited

    ERIC Educational Resources Information Center

    Chantler, Abigail

    2016-01-01

    The corollary of the concept of the "ivory tower", as reflected in the writings of Plato and Newman amongst others, was, paradoxically, the vital importance of the university for wider society. Nevertheless from the mid-twentieth century, the esteem in which a "liberal" university education was held was diminished by rising…

  8. Cell Towers and Songbirds

    ERIC Educational Resources Information Center

    Klosterman, Michelle; Mesa, Jennifer; Milton, Katie

    2009-01-01

    This article describes how our common addiction to cell phones was used to launch a discussion about their use, impacts on the environment, and connections to issues of civic concern. By encouraging middle school science students to adopt the perspectives of special-interest groups debating communication tower restrictions designed to protect…

  9. COOLING TOWER PLUME MODEL

    EPA Science Inventory

    A review of recently reported cooling tower plume models yields none that is universally accepted. The entrainment and drag mechanisms and the effect of moisture on the plume trajectory are phenomena which are treated differently by various investigators. In order to better under...

  10. Talking Towers, Making Withs.

    ERIC Educational Resources Information Center

    Lemke, J. L.

    The notion of a linguistic "register" is useful in posing questions about how the ways language is used differ from one kind of human activity to another. This paper analyzes a videotaped segment of male grade 4/5 students (n=3) who are talking as they work to build a tower from plastic drinking straws and pins. Discussion of the analysis…

  11. A Meso-Climatology Study of the High-Resolution Tower Network Over the Florida Spaceport

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Bauman, William H., III

    2004-01-01

    Forecasters at the US Air Force 45th Weather Squadron (45 WS) use wind and temperature data from the tower network over the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) to evaluate Launch Commit Criteria and to issue and verify temperature and wind advisories, watches, and warnings for ground operations. The Spaceflight Meteorology Group at the Johnson Space Center in Houston, TX also uses these data when issuing forecasts for shuttle landings at the KSC Shuttle Landing Facility. Systematic biases in these parameters at any of the towers could adversely affect an analysis, forecast, or verification for all of these operations. In addition, substantial geographical variations in temperature and wind speed can occur under specific wind directions. Therefore, the Applied Meteorology Unit (AMU), operated by ENSCO Inc., was tasked to develop a monthly and hourly climatology of temperatures and winds from the tower network, and identify the geographical variation, tower biases, and the magnitude of those biases. This paper presents a sub-set of results from a nine-year climatology of the KSC/CCAFS tower network, highlighting the geographical variations based on location, month, times of day, and specific wind direction regime. Section 2 provides a description of the tower mesonetwork and instrumentation characteristics. Section 3 presents the methodology used to construct the tower climatology including QC methods and data processing. The results of the tower climatology are presented in Section 4 and Section 5 summarizes the paper.

  12. Identification and Attribution of Global Wind Speed Trends at 100m

    NASA Astrophysics Data System (ADS)

    McGraw, Zachary; Smith, Ronald; Storelvmo, Trude

    2016-04-01

    Recent studies have found evidence that global climate change significantly alters the strength of large-scale wind patterns. Any enduring trends over large regions are potentially of value to understand due to their implications for the wind energy industry. In this study we identify and evaluate global wind speed trends at the wind turbine hub height (~100m) through the use of CMIP5 models, standard reanalyses (ERA-Interim, NCEP2) and a uniquely high-resolution analysis dataset (Vestas Mesoscale Library). By analyzing how wind speeds change across the globe throughout the period 1900-2100 (with emphasis on the satellite era, 1979-2014), we assess the significance of multi-decadal wind speed trends in the context of natural spatial and temporal variability. Our results show substantial differences in regional trends between different datasets though several regions including the Southern Hemisphere mid-latitudes and the Caribbean show consistently substantial changing wind speeds during the satellite era. Wind speed trends tend to diminish over large time scales and follow spatial patterns that link multi-decadal trends to the evolving behaviors of internal variability modes, especially those of ENSO and the Southern Annular Mode (SAM).

  13. Homologous Deformation of the Effelsberg 100-m Telescope Determined with a Total Station

    NASA Technical Reports Server (NTRS)

    Nothnagel, Axel; Pietzner, Judith; Eling, Christian; Hering, Claudia

    2010-01-01

    Due to gravitation the main reflector of the Effelsberg 100-m telescope of the Max Planck Institute for Radio Astronomy is deformed whenever it is tilted from zenith to arbitrary elevation angles. However, the resulting shape always is a paraboloid again, though with different parameters, a phenomenon which is called homologous deformation. In summer 2008, we have carried out measurements with a total station to determine the magnitude of these deformations in order to evaluate existing assumptions provided by the manufacturer from the telescope's design phase. The measurements are based on a newly developed approach with a Leica TCRP 1201 total station mounted head down near the subreflector. Mini-retro-reflectors are placed at various locations on the paraboloid itself and on the subreflector support structure. The results indicate that the measurement setup is suitable for the purpose and provides the information needed for a determination of elevation dependent delay corrections. The focal length changes only by about 8 mm when the telescope is tilted from 90. to 7.5. elevation angle.

  14. Meteorological analysis for Fenton Hill, 1979

    SciTech Connect

    Barr, S.; Wilson, S.K.

    1981-01-01

    Three years of meteorological data have been collected at the Fenton Hill site to establish a local climatic baseline, transport and diffusion climatology, and an initial site for an eventual Valles Caldera meteorological network. Tower-based wind and temperature data at 15 m above ground were supplemented during 1979 with precipitation, humidity and pressure measurements, and a limited program of upper winds. Preliminary analysis of the data has been made to identify major topographic and meteorological driving forces affecting the local climatic variations on diurnal and seasonal time scales. The site is quite high and exposed enough tht external influences such as gradient wind flow and thunderstorms tend to dominate over purely local driving forces in determining climate. Locally generated wind circulations are identifiable at night but tend to be weak and sporadic. The presence of topographic obstacles on the 10- to 100-km scale is observed in the winds.

  15. Evaluation of prototype 100mK bolometric detector for Planck Surveyor

    NASA Astrophysics Data System (ADS)

    Sudiwala, R. V.; Maffei, B.; Griffin, M. J.; Haynes, C. V.; Ade, P. A. R.; Bhatia, R. S.; Turner, A. D.; Bock, J. J.; Lange, A. E.; Beeman, J. W.

    2000-04-01

    The High-Frequency Instrument (HFI) for the Planck Surveyor mission will measure anisotropies of the Cosmic Microwave Background (CMB) down to scales of 6 arcmin and to an accuracy of /ΔT/T=2×10-6. Channels ranging in frequency from 100 to 857GHz will use 100mK spider web bolometer detectors with NTD Ge thermistors. The detectors must be photon noise limited and fast enough to preserve signal information at the 1r.p.m. scan rate of the satellite. The prime low-frequency CMB channels at 143 and 217GHz are the most technically demanding owing to the lower background limited NEPs. For the 143GHz channel the requirements are that the time constant /τ<5.7 ms and the NEPbol <1.53×10-17 WHz-1/2 including contribution from amplifier noise. We present here thermal, electrical and optical data on a prototype detector which, although optimised for the 100GHz channel, satisfies most of the requirements of the more demanding 143GHz channel. The measurements are consistent with ideal thermal behaviour of the detector over the appropriate bias and temperature ranges for optimum performance. From optically blanked electrical measurements we determined the dependence of resistance and thermal conductance on temperature over a wide range, 70-200mK. The optical responsivity and NEP were measured under photon background conditions similar to those expected in flight. Measurements of speed of response as a function of bias at different temperatures allowed us to determine the variation of total heat capacity with temperature. Extrapolation of these data show that in principal performance for all the Planck HFI channels can be met.

  16. The Hanford meteorological data collection system and data base

    SciTech Connect

    Andrews, G.L.

    1988-04-01

    The Hanford Meterological Station (HMS) provides meteorological and climatological services to the Department of Energy in Richland and its contractors. On a 24-hour basis, the HMS measures, records, and archives meteorological data collected hourly throughout the year. The current data base consists of five components: wind telemetry stations, doppler acoustic sounders (SODAR), 200-ft towers, 410-ft tower at the HMS, and surface weather observations at the HMS. The wind telemetry station data, 410-ft tower data, and surface weather observation data are archived into yearly ACSII files, and the remaining components are permanently archived in binary from on magnetic tape. The future data base will consist of the same five components, but all components will be permanently archived into yearly ASCII files. Quality assurance computer programs will be written to validate the current data base, and data archival program will be written to improve the archival method that is currently used. 7 refs., 4 figs., 1 tab.

  17. Novel technology for the the Effelsberg 100-m Radio Telescope and MeerKAT

    NASA Astrophysics Data System (ADS)

    Kramer, Michael; Kraus, Alex; Wieching, Gundolf

    2015-08-01

    The 100-m radio telescope of the Max-Planck-Institut für Radioastronomie (MPIfR) is a unique European astronomical facility that combines superb sensitivity and wide frequency coverage (300 MHz - 95 GHz) with distinct versatility, making the telescope not only a cutting edge instrument for front-line research but also a testbed for emerging and future technology.Even more than 40 years old, the telescope has been continuously modernized and is heavily involved in various kinds of astronomical research as stand-alone instrument as well as in several VLBI networks. Currently, a large upgrade of the receiver suite at the telescope is ongoing. Several new, state-of-the-are broad-band receivers have been installed recently or are under constructions. Along with the new receivers, modern digital backends are being designed. We report on the current status of these upgrades by presenting some „highlights" and giving an outlook on the activities planned for the future.The technology developed and tested during these upgrades also finds application in the MeerKAT observatory in South Africa. MeerKAT is a fully funded radio observatory under construction in the Northern Cape of South Africa. When complete, MeerKAT’s 64 13.5-m dishes will form the - by far - most sensitive telescope in the Southern hemisphere, being equivalent to a 110 m dish. Due to the dish design with an offset Gregorian feed it will be 60%more sensitive than large center feed single dishes of comparable size.MPIfR is designing and constructing a 1.75- 3.44 GHz Receiver system for MeerKAT. The receiver will allow observations at a frequency range at currently unavailable sensitivity and spatial resolution in the Southern hemisphere. Combined with its powerful MPIfR Pulsar search backend it is expected to detect more than 1600 normal and 270 millisecond pulsars. In addition MeerKat will open up science that stays for its own but also prepares future observations with SKA and complements future SKA

  18. Overview of the 100 mA average-current RF photoinjector

    NASA Astrophysics Data System (ADS)

    Nguyen, D. C.; Colestock, P. L.; Kurennoy, S. S.; Rees, D. E.; Regan, A. H.; Russell, S.; Schrage, D. L.; Wood, R. L.; Young, L. M.; Schultheiss, T.; Christina, V.; Cole, M.; Rathke, J.; Shaw, J.; Eddy, C.; Holm, R.; Henry, R.; Yater, J.

    2004-08-01

    High-average-power FELs require high-current, low-emittance and low-energy-spread electron beams. These qualities have been achieved with RF photoinjectors operating at low-duty factors. To date, a high-average-current RF photoinjector operating continuously at 100% duty factor is yet to be demonstrated. The principal challenges of a high-duty-factor normal-conducting RF photoinjector are related to applying a high accelerating gradient continuously, thus generating large ohmic losses in the cavity walls, cooling the injector cavity walls and the high-power RF couplers, and finding a photocathode with reasonable Q.E. that can survive the poor vacuum of the RF photoinjector. We present the preliminary design of a normal-conducting 700 MHz photoinjector with solenoid magnetic fields for emittance compensation. The photoinjector is designed to produce 2.7 MeV electron beams at 3 nC bunch charge and 35 MHz repetition rate (100 mA average current). The photoinjector consists of a 2 {1}/{2}-cell, π-mode, RF cavity with on-axis electric coupling, and a non-resonant vacuum plenum. Heat removal in the resonant cells is achieved via dense arrays of internal cooling passages capable of handling high-velocity water flows. Megawatt RF power is coupled into the injector through two tapered ridge-loaded waveguides. PARMELA simulations show that the 2 {1}/{2}-cell injector can produce a 7 μm emittance directly. Transverse plasma oscillations necessitate additional acceleration and a second solenoid to realign the phase space envelopes of different axial slices at higher energy, resulting in a normalized rms emittance of 6.5 μm and 34 keV rms energy spread. We are developing a novel cesiated p-type GaN photocathode with 7% quantum efficiency at 350 nm and a cesium dispenser to replenish the cathode with cesium through a porous silicon carbide substrate. These performance parameters will be necessary for the design of the 100 kW FEL.

  19. Preliminary Design, Feasibility and Cost Evaluation of 1- to 15-Kilometer Height Steel Towers

    NASA Technical Reports Server (NTRS)

    Shanker, Ajay

    2003-01-01

    Design and construction of tall towers is an on-going research program of NASA. The agency has already done preliminary review in this area and has determined that multi-kilometer height towers are technically and economically feasible. The proposed towers will provide high altitude launch platforms reaching above eighty percent of Earth's atmosphere and provide tremendous gains in the potential energy as well as substantial reduction in aerodynamic drag. NASA has also determined that a 15-KM tower will have many useful applications in: (i)Meteorology,(ii)Oceanography, (iii)Astronomy, (iv)High Altitude Launch, (v)Physics Drop Tower, (vi) Biosphere Research, (vii) Nanotechnology, (viii) Energy/Power, (ix)Broadband Wireless Technology, (x)Space Transportation and (xi)Space Tourism.

  20. The Physics of Shot Towers

    NASA Astrophysics Data System (ADS)

    Lipscombe, Trevor C.; Mungan, Carl E.

    2012-04-01

    In the late 18th and throughout the 19th century, lead shot for muskets was prepared by use of a shot tower. Molten lead was poured from the top of a tower and, during its fall, the drops became spherical under the action of surface tension. In this article, we ask and answer the question: How does the size of the lead shot depend on the height of the tower? In the process, we explain the basic technology underlying an important historical invention (the shot tower) and use simple physics (Newtonian mechanics and the thermodynamic laws of cooling) to model its operation.

  1. Towers of hybrid mesons

    SciTech Connect

    Semay, Claude; Buisseret, Fabien; Silvestre-Brac, Bernard

    2009-05-01

    A hybrid meson is a quark-antiquark pair in which, contrary to ordinary mesons, the gluon field is in an excited state. In the framework of constituent models, the interaction potential is assumed to be the energy of an excited string. An approximate, but accurate, analytical solution of the Schroedinger equation with such a potential is presented. When applied to hybrid charmonia and bottomonia, towers of states are predicted in which the masses are a linear function of a harmonic oscillator band number for the quark-antiquark pair. Such a formula could be a reliable guide for the experimental detection of heavy hybrid mesons.

  2. 2. Southern Light Tower and Northern Light Tower, view north, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Southern Light Tower and Northern Light Tower, view north, south sides - Kennebec River Light Station, South side of Doubling Point Road, off State Highway 127, 1.8 miles south of U.S. Route 1, Arrowsic, Sagadahoc County, ME

  3. METEOROLOGICAL AND TRANSPORT MODELING

    EPA Science Inventory

    Advanced air quality simulation models, such as CMAQ, as well as other transport and dispersion models, require accurate and detailed meteorology fields. These meteorology fields include primary 3-dimensional dynamical and thermodynamical variables (e.g., winds, temperature, mo...

  4. Meteorological satellite accomplishments

    NASA Technical Reports Server (NTRS)

    Allison, L. J.; Arking, A.; Bandeen, W. R.; Shenk, W. E.; Wexler, R.

    1974-01-01

    The various types of meteorological satellites are enumerated. Vertical sounding, parameter extraction technique, and both macroscale and mesoscale meteorological phenomena are discussed. The heat budget of the earth-atmosphere system is considered, along with ocean surface and hydrology.

  5. Single-transverse-mode near-IR superluminescent diodes with cw output power up to 100 mW

    SciTech Connect

    Andreeva, E V; Il'chenko, S N; Kostin, Yu O; Yakubovich, S D

    2014-10-29

    A series of light-emitting modules based on single-mode quantum-well superluminescent diodes with centre emission wavelengths of about 790, 840, 960 and 1060 nm and a cw output power up to 100 mW in free space is developed. A sufficiently long service life of these devices is demonstrated. (lasers)

  6. Formulation development and evaluation of Diltiazem HCl sustained release matrix tablets using HPMC K4M and K100M.

    PubMed

    Qazi, Faaiza; Shoaib, Muhammad Harris; Yousuf, Rabia Ismail; Qazi, Tanveer Mustafa; Mehmood, Zafar Alam; Hasan, S M Farid

    2013-07-01

    The aim of this study was to develop a sustained release hydrophilic matrix tablet of Diltiazem HCl and evaluates the effect of formulation variables (e.g. lubricant, binder, polymer content and viscosity grades of HPMC) on drug release. Twelve different formulations (F1-F12) were prepared by direct compression. The results of the physical parameters and assay were found to be within the acceptable range. Rate of drug release was found to be slow as the fraction of the polymer was increased from 20-50%. The drug release rate from tablets containing K4M was effectively controlled by increasing the talc concentration, whereas the burst effect was reduced by increasing binder content. The drug release was higher with K4M as compare to K100M. Model-dependent and independent methods were used for data analysis and the best results were observed for K4M in Higuchi (R(2)=0.9903-0.9962) and K100M in Baker and Lonsdale (R(2)=0.9779-0.9941). The release mechanism of all formulations was non-Fickian. F7 (50% K4M, 2% talc, 10% Avicel PH101) and F11 (40% K100M) were very close to targeted release profile. F12 (50% K100M) exhibited highest degree of swelling and lowest erosion. The f1 and f2 test were performed taking F11 as a reference formulation. PMID:23811439

  7. Towers of Gravitational Theories

    NASA Astrophysics Data System (ADS)

    Goldberger, Walter D.; Rothstein, Ira Z.

    In this essay, we introduce a theoretical framework designed to describe black hole dynamics. The difficulties in understanding such dynamics stems from the proliferation of scales involved when one attempts to simultaneously describe all of the relevant dynamical degrees of freedom. These range from the modes that describe the black hole horizon, which are responsible for dissipative effects, to the long wavelength gravitational radiation that drains mechanical energy from macroscopic black hole bound states. We approach the problem from a Wilsonian point of view, by building a tower of theories of gravity each of which is valid at different scales. The methodology leads to multiple new results in diverse topics including phase transitions of Kaluza-Klein black holes and the interactions of spinning black hole in non-relativistic orbits. Moreover, our methods tie together speculative ideas regarding dualities for black hole horizons to real physical measurements in gravitational wave detectors.

  8. Towers of gravitational theories

    NASA Astrophysics Data System (ADS)

    Goldberger, Walter D.; Rothstein, Ira Z.

    2006-11-01

    In this essay we introduce a theoretical framework designed to describe black hole dynamics. The difficulties in understanding such dynamics stems from the proliferation of scales involved when one attempts to simultaneously describe all of the relevant dynamical degrees of freedom. These range from the modes that describe the black hole horizon, which are responsible for dissipative effects, to the long wavelength gravitational radiation that drains mechanical energy from macroscopic black hole bound states. We approach the problem from a Wilsonian point of view, by building a tower of theories of gravity each of which is valid at different scales. The methodology leads to multiple new results in diverse topics including phase transitions of Kaluza-Klein black holes and the interactions of spinning black hole in non-relativistic orbits. Moreover, our methods tie together speculative ideas regarding dualities for black hole horizons to real physical measurements in gravitational wave detectors.

  9. DETECTION OF CENTRIPETAL HEAT-ISLAND CIRCULATIONS FROM TOWER DATA IN ST. LOUIS

    EPA Science Inventory

    Hourly averaged meteorological data gathered by a 25-tower network about St. Louis during 1976 are used in a search for centripetal circulations generated by the urban heat island. Considering data collected when the network resultant speed was less than 1.5 m/s, two data classes...

  10. Front-end of the ILE Project: A design study for a 100 mJ sub-10 fs laser

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Dimitris N.; Ramirez, Patricia; Pellegrina, Alain; Druon, Frédéric; Georges, Patrick; Chen, Xiaowei; Canova, Lorenzo; Malvache, Arnaud; Jullien, Aurélie; Lopez-Martens, Rodrigo

    2010-04-01

    Within the development of the ILE French project aiming on the building of a 10 PW, 150 J/15 fs laser chain (named APOLLON), a design study for a sub-10-fs, 100 mJ pilot laser operating at 800 nm have been conceived. This system is based on a non-collinear optical parametric chirped-pulse amplification (NOPCPA) of the spectrally broadened and compressed pulses of a Ti:Sapphire laser system providing 1.5-mJ, 25-fs, pumped at 515 nm by a high-energy diode-pumped Yb-doped-based laser chain. The envisioned system, based on a novel combined architecture of picosecond and nanosecond NOPCPA stages, will finally deliver carrier envelope phased (CEP) stabilized 1 ns pulses (compressible to less than 10 fs) at 800 nm with 100 mJ energy and at a repetition rate in the range of 10-100 Hz.

  11. Cooling tower windage: a new aspect to environmental assessment

    SciTech Connect

    Taylor, F. G.; Park, S. H.

    1980-01-01

    Results of the several investigations provided quantitative estimates of windage from Oak Ridge Gaseous Diffusion Plant cooling towers. Windage water deposited on the ground has the potential to reach nearby streams through runoff. Windage deposited on moisture depleted soils would not be significant. During winter months at Oak Ridge soils generally have a high moisture content such that windage deposition could be quickly transported as runoff. It is during this time that cooling towers are sometimes operated without fan-induced draft. Since windage water contains the same hexavalent chromium concentration (9 ppM) as the recirculating cooling water system, the runoff stream from the K-892J tower constitues a NPDES violation as an unpermitted discharge. As a long-term abatement strategy, concrete aprons were constructed along each side of new cooling towers at the Paducah, Kentucky Gaseous Diffusion Plant. The maximum distance of windage impact is wind dependent. If apron construction is envisioned as an abatement strategy at Oak Ridge, the maximum distance of impact can be inferred graphically from the several points where windage (fans off) and drift (fans on) loss curves intersect under the different meteorological conditions. Once the hexavalent chromium laden runoff stream reaches Poplar Creek, it is diluted well below the standards for drinking water and poses little potential for biological effects to aquatic systems.

  12. PBF Cooling Tower. Hot deck of Cooling Tower with fan ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower. Hot deck of Cooling Tower with fan motors in place. Fan's propeller blades (not in view) rotate within lower portion of vents. Inlet pipe is a left of view. Contractor's construction buildings in view to right. Photographer: Larry Page. Date: June 30, 1969. INEEL negative no. 69-3781 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  13. The Effects of Different Warm-up Volumes on the 100-m Swimming Performance: A Randomized Crossover Study.

    PubMed

    Neiva, Henrique P; Marques, Mário C; Barbosa, Tiago M; Izquierdo, Mikel; Viana, João L; Teixeira, Ana M; Marinho, Daniel A

    2015-11-01

    The aim of this study was to compare the effect of 3 different warm-up (WU) volumes on 100-m swimming performance. Eleven male swimmers at the national level completed 3 time trials of 100-m freestyle on separate days and after a standard WU, a short WU (SWU), or a long WU (LWU) in a randomized sequence. All of them replicated some usual sets and drills, and the WU totaled 1,200 m, the SWU totaled 600 m, and the LWU totaled 1,800 m. The swimmers were faster after the WU (59.29 seconds; confidence interval [CI] 95%, 57.98-60.61) and after the SWU (59.38 seconds; CI 95%, 57.92-60.84) compared with the LWU (60.18 seconds; CI 95%, 58.53-61.83). The second 50-m lap after the WU was performed with a higher stroke length (effect size [ES] = 0.77), stroke index (ES = 1.26), and propelling efficiency (ES = 0.78) than that after the SWU. Both WU and SWU resulted in higher pretrial values of blood lactate concentrations [La] compared with LWU (ES = 1.58 and 0.74, respectively), and the testosterone:cortisol levels were increased in WU compared with LWU (ES = 0.86). In addition, the trial after WU caused higher [La] (ES ≥ 0.68) and testosterone:cortisol values compared with the LWU (ES = 0.93). These results suggest that an LWU could impair 100-m freestyle performance. The swimmers showed higher efficiency during the race after a 1200-m WU, suggesting a favorable situation. It highlighted the importance of the [La] and hormonal responses to each particular WU, possibly influencing performance and biomechanical responses during a 100-m race. PMID:26506059

  14. Critical point wetting drop tower experiment

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.

    1990-01-01

    The 100 m Drop Tower at NASA-Marshall was used to provide the step change in acceleration from 1.0 to 0.0005 g. An inter-fluid meniscus oscillates vertically within a cylindrical container when suddenly released from earth's gravity and taken into a microgravity environment. Oscillations damp out from energy dissipative mechanisms such as viscosity and interfacial friction. Damping of the oscillations by the later mechanism is affected by the nature of the interfacial junction between the fluid-fluid interface and the container wall. In earlier stages of the project, the meniscus shape which developed during microgravity conditions was applied to evaluations of wetting phenomena near the critical temperature. Variations in equilibrium contact angle against the container wall were expected to occur under critical wetting conditions. However, it became apparent that the meaningful phenomenon was the damping of interfacial oscillations. This latter concept makes up the bulk of this report. Perfluoromethyl cyclohexane and isopropanol in glass were the materials used for the experiment. The wetting condition of the fluids against the wall changes at the critical wetting transition temperature. This change in wetting causes a change in the damping characteristics of the interfacial excursions during oscillation and no measurable change in contact angle. The effect of contact line friction measured above and below the wetting transition temperature was to increase the period of vertical oscillation for the vapor-liquid interface when below the wetting transition temperature.

  15. You're a What?: Tower Technician

    ERIC Educational Resources Information Center

    Vilorio, Dennis

    2012-01-01

    In this article, the author talks about the role and functions of a tower technician. A tower technician climbs up the face of telecommunications towers to remove, install, test, maintain, and repair a variety of equipment--from antennas to light bulbs. Tower technicians also build shelters and radiofrequency shields for electronic equipment, lay…

  16. Ozonation of cooling tower waters

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.; French, K. R.; Howe, R. D. (Inventor)

    1979-01-01

    Continuous ozone injection into water circulating between a cooling tower and heat exchanger with heavy scale deposits inhibits formation of further deposits, promotes flaking of existing deposits, inhibits chemical corrosion and controls algae and bacteria.

  17. The Physics of Shot Towers

    ERIC Educational Resources Information Center

    Lipscombe, Trevor C.; Mungan, Carl E.

    2012-01-01

    In the late 18th and throughout the 19th century, lead shot for muskets was prepared by use of a shot tower. Molten lead was poured from the top of a tower and, during its fall, the drops became spherical under the action of surface tension. In this article, we ask and answer the question: "How does the size of the lead shot depend on the height…

  18. Meteorological Monitoring Program

    SciTech Connect

    Hancock, H.A. Jr.; Parker, M.J.; Addis, R.P.

    1994-09-01

    The purpose of this technical report is to provide a comprehensive, detailed overview of the meteorological monitoring program at the Savannah River Site (SRS) near Aiken, South Carolina. The principle function of the program is to provide current, accurate meteorological data as input for calculating the transport and diffusion of any unplanned release of an atmospheric pollutant. The report is recommended for meteorologists, technicians, or any personnel who require an in-depth understanding of the meteorological monitoring program.

  19. Design of a complex terrain meteorological monitoring program for real-time air quality modeling analysis

    SciTech Connect

    Militana, L.M.; Karpovich, R.; Cimorelli, A.; Scire, J.S.

    1998-12-31

    A multi-station meteorological monitoring program has been designed and developed for a complex terrain air quality modeling study. The purpose of the program is to collect representative on site data as input to complex terrain air quality models and to predict in real-time the potential air quality impact of a rotary kiln incinerator The program is a state-of the science design using the best science air quality dispersion models (CALMET/CALPUFF) and meteorological monitoring equipment (RASS/SODAR Systems monostatic and phased array and multiple towers). The real-time meteorological monitoring program consisted of two monitoring stations using meteorological towers and Doppler SODAR and phased array RASS systems to determine the temperature and wind profile of the atmospheric boundary layer. The primary station were located adjacent to the site and consisted of a 150 ft meteorological tower and RASS/SODAR system. The secondary station was located approximately 1,600 meters northeast of the site and consisted of a 10 meter tower and a SODAR system. These monitoring stations provided 15-minute values of wind speed, wind direction, ambient temperature, and thermal and mechanical turbulence measurements for use in a complex terrain air quality modeling study and a real-time modeling system.

  20. A central tower solar test facility /RM/CTSTF/

    NASA Astrophysics Data System (ADS)

    Bevilacqua, S.; Gislon, R.

    The considered facility is intended for the conduction of test work in connection with studies of receivers, thermodynamic cycles, heliostats, components, and subassemblies. Major components of the test facility include a mirror field with a reflecting surface of 800 sq m, a 40 m tower, an electronic control system, a data-acquisition system, and a meteorological station. A preliminary experimental program is discussed, taking into account investigations related to facility characterization, an evaluation of advanced low-cost heliostats, materials and components tests, high-concentration photovoltaic experiments, and a study of advanced solar thermal cycles.

  1. Deployable tensegrity towers

    NASA Astrophysics Data System (ADS)

    Pinaud, Jean-Paul

    The design of a complete tensegrity system involves the analysis of static equilibria, the mechanical properties of the configuration, the deployment of the structure, and the regulation and dynamics of the system. This dissertation will explore these steps for two different types of structures. The first structure is the traditional Snelson Tower, where struts are disjointed, and is referred to as a Class 1 tensegrity. The second structure of interest is referred to as a Class 2 structure, where two struts come in contact at a joint. The first part of the thesis involves the dynamics of these tensegrity structures. Two complete nonlinear formulations for the dynamics of tensegrity systems are derived. In addition, a general formulation for the statics for an arbitrary tensegrity structure resulted from one of the dynamic formulations and is presented with symmetric and nonsymmetric tensegrity configurations. The second part of the thesis involves statics. The analysis of static equilibria and the implementation of this analysis into an open loop control law that will deploy the tensegrity structures along an equilibrium manifold are derived. The analysis of small stable tensegrity units allow for a modular design, where a collection of these units can be assembled into a larger structure that obeys the same control laws for deployment concepts. In addition, a loaded structure is analyzed to determine the optimal number of units required to obtain a minimal mass configuration. The third part of the thesis involves laboratory hardware that demonstrates the practical use of the methodology presented. A Class 2 symmetric structure is constructed, deployed, and stowed using the analysis from part two. In addition, the static equilibria of a Class 1 structure is computed to obtain nonsymmetric reconfigurations. The final part of the thesis involves the attenuation of white noise disturbances acting on nodes of both structures. The structures are simulated using linear

  2. Aircraft- and tower-based fluxes of carbon dioxide, latent, and sensible heat

    NASA Technical Reports Server (NTRS)

    Desjardins, R. L.; Hart, R. L.; Macpherson, J. I.; Schuepp, P. H.; Verma, S. B.

    1992-01-01

    Fluxes of carbon dioxide, water vapor, and sensible heat obtained over a grassland ecosystem, during the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), using an aircraft- and two tower-based systems are compared for several days in 1987 and in 1989. The tower-based cospectral estimates of CO2, sensible heat, water vapor, and momentum, expressed as a function of wavenumber K times sampling height z, are relatively similar to the aircraft-based estimates for K x z greater than 0.1. A measurable contribution to the fluxes is observed by tower-based systems at K x z less than 0.01 but not by the aircraft-based system operating at an altitude of approximately 100 m over a 15 x 15 km area. Using all available simultaneous aircraft and tower data, flux estimates by both systems were shown to be highly correlated. As expected from the spatial variations of the greenness index, surface extrapolation of airborne flux estimates tended to lie between those of the two tower sites. The average fluxes obtained, on July 11, 1987, and August 4, 1989, by flying a grid pattern over the FIFE site agreed with the two tower data sets for CO2, but sensible and latent heat were smaller than those obtained by the tower-based systems. However, in general, except for a small underestimation due to the long wavelength contributions and due to flux divergence with height, the differences between the aircraft- and tower-based surface estimates of fluxes appear to be mainly attributable to differences in footprint, that is, differences in the area contributing to the surface flux estimates.

  3. Optical sampling of the flux tower footprint

    NASA Astrophysics Data System (ADS)

    Gamon, J. A.

    2015-03-01

    The purpose of this review is to address the reasons and methods for conducting optical remote sensing within the flux tower footprint. Fundamental principles and conclusions gleaned from over two decades of proximal remote sensing at flux tower sites are reviewed. An organizing framework is the light-use efficiency (LUE) model, both because it is widely used, and because it provides a useful theoretical construct for integrating optical remote sensing with flux measurements. Multiple ways of driving this model, ranging from meteorological measurements to remote sensing, have emerged in recent years, making it a convenient conceptual framework for comparative experimental studies. New interpretations of established optical sampling methods, including the Photochemical Reflectance Index (PRI) and Solar-Induced Fluorescence (SIF), are discussed within the context of the LUE model. Multi-scale analysis across temporal and spatial axes is a central theme, because such scaling can provide links between ecophysiological mechanisms detectable at the level of individual organisms and broad patterns emerging at larger scales, enabling evaluation of emergent properties and extrapolation to the flux footprint and beyond. Proper analysis of sampling scale requires an awareness of sampling context that is often essential to the proper interpretation of optical signals. Additionally, the concept of optical types, vegetation exhibiting contrasting optical behavior in time and space, is explored as a way to frame our understanding of the controls on surface-atmosphere fluxes. Complementary NDVI and PRI patterns across ecosystems are offered as an example of this hypothesis, with the LUE model and light-response curve providing an integrating framework. We conclude that experimental approaches allowing systematic exploration of plant optical behavior in the context of the flux tower network provides a unique way to improve our understanding of environmental constraints and

  4. Towers for Offshore Wind Turbines

    NASA Astrophysics Data System (ADS)

    Kurian, V. J.; Narayanan, S. P.; Ganapathy, C.

    2010-06-01

    Increasing energy demand coupled with pollution free production of energy has found a viable solution in wind energy. Land based windmills have been utilized for power generation for more than two thousand years. In modern times wind generated power has become popular in many countries. Offshore wind turbines are being used in a number of countries to tap the energy from wind over the oceans and convert to electric energy. The advantages of offshore wind turbines as compared to land are that offshore winds flow at higher speed than onshore winds and the more available space. In some land based settings, for better efficiency, turbines are separated as much as 10 rotor diameters from each other. In offshore applications where only two wind directions are likely to predominate, the distances between the turbines arranged in a line can be shortened to as little as two or four rotor diameters. Today, more than a dozen offshore European wind facilities with turbine ratings of 450 kw to 3.6 MW exist offshore in very shallow waters of 5 to 12 m. Compared to onshore wind turbines, offshore wind turbines are bigger and the tower height in offshore are in the range of 60 to 80 m. The water depths in oceans where offshore turbines can be located are within 30 m. However as the distance from land increases, the costs of building and maintaining the turbines and transmitting the power back to shore also increase sharply. The objective of this paper is to review the parameters of design for the maximum efficiency of offshore wind turbines and to develop types offshore towers to support the wind turbines. The methodology of design of offshore towers to support the wind turbine would be given and the environmental loads for the design of the towers would be calculated for specific cases. The marine corrosion on the towers and the methods to control the corrosion also would be briefly presented. As the wind speeds tend to increase with distance from the shore, turbines build father

  5. Long-range high-speed visible light communication system over 100-m outdoor transmission utilizing receiver diversity technology

    NASA Astrophysics Data System (ADS)

    Wang, Yiguang; Huang, Xingxing; Shi, Jianyang; Wang, Yuan-quan; Chi, Nan

    2016-05-01

    Visible light communication (VLC) has no doubt become a promising candidate for future wireless communications due to the increasing trends in the usage of light-emitting diodes (LEDs). In addition to indoor high-speed wireless access and positioning applications, VLC usage in outdoor scenarios, such as vehicle networks and intelligent transportation systems, are also attracting significant interest. However, the complex outdoor environment and ambient noise are the key challenges for long-range high-speed VLC outdoor applications. To improve system performance and transmission distance, we propose to use receiver diversity technology in an outdoor VLC system. Maximal ratio combining-based receiver diversity technology is utilized in two receivers to achieve the maximal signal-to-noise ratio. A 400-Mb/s VLC transmission using a phosphor-based white LED and a 1-Gb/s wavelength division multiplexing VLC transmission using a red-green-blue LED are both successfully achieved over a 100-m outdoor distance with the bit error rate below the 7% forward error correction limit of 3.8×10-3. To the best of our knowledge, this is the highest data rate at 100-m outdoor VLC transmission ever achieved. The experimental results clearly prove the benefit and feasibility of receiver diversity technology for long-range high-speed outdoor VLC systems.

  6. GLD100: The near-global lunar 100 m raster DTM from LROC WAC stereo image data

    NASA Astrophysics Data System (ADS)

    Scholten, F.; Oberst, J.; Matz, K.-D.; Roatsch, T.; Wählisch, M.; Speyerer, E. J.; Robinson, M. S.

    2012-03-01

    We derived near-global lunar topography from stereo image data acquired by the Wide-angle Camera (WAC) of the Lunar Reconnaissance Orbiter Camera (LROC) system. From polar orbit tracks, the LROC WAC provides image data with a mean ground resolution at nadir of 75 m/pixel with substantial cross-track stereo overlap. WAC stereo images from the one-year nominal mission and the first months of the science mission phase are combined to produce a near-global digital terrain model (DTM) with a pixel spacing of 100 m, the Global Lunar DTM 100 m, or “GLD100.” It covers 79°S to 79°N latitudes, 98.2% of the entire lunar surface. We compare the GLD100 with results from previous stereo and altimetry-based products, particularly with the Lunar Orbiter Laser Altimeter (LOLA) altimetry, which is the current topographic reference for the Moon. We describe typical characteristics of the GLD100 and, based upon the comparison to the LOLA data set, assess its vertical and lateral resolution and accuracy. We conclude that the introduced first version of the stereo-based GLD100 is a valuable topographic representation of the lunar surface, complementary to the LOLA altimetry data set. Further improvements can be expected from continuative investigations.

  7. Tower-supported solar-energy collector

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1977-01-01

    Multiple-collector tower system supports three receiver/concentrators that absorb solar energy reflected from surrounding field of heliostats. System overcomes disadvantages of tower-supported collectors. Booms can be lowered during heavy winds to protect arms and collectors.

  8. Development of a 100 mJ, 5 Hz, flashlamp-pumped, Cr,Tm:YAG coherent lidar transmitter

    NASA Technical Reports Server (NTRS)

    Henderson, S.; Johnson, S.

    1993-01-01

    A contract to develop a 100 mJ, 5 Hz, flashlamp-pumped Cr,Tm:YAG coherent lidar transmitter has been awarded to Coherent Technologies, Inc. (CTI). The lidar transmitter will operate at an eyesafe wavelength of 2.01 microns. The development complements work being performed under an SBIR Phase II with Electro-Optics Technology (EOT). EOT is developing continuous wave, low and medium power Tm:YAG oscillators of a unique design. One of the low power oscillators will be used as the injection seeder/local oscillator in the CIT lidar transmitter. The lidar transmitter will require the addition of a receiver section. Once completed, the lidar will be used in atmospheric performance studies, allowing comparison with that of the more mature CO2 lidar technology. The focus of current research and plans for next year are presented.

  9. Fully automated 1.5 MHz FDML laser with more than 100mW output power at 1310 nm

    NASA Astrophysics Data System (ADS)

    Wieser, Wolfgang; Klein, Thomas; Draxinger, Wolfgang; Huber, Robert

    2015-07-01

    While FDML lasers with MHz sweep speeds have been presented five years ago, these devices have required manual control for startup and operation. Here, we present a fully self-starting and continuously regulated FDML laser with a sweep rate of 1.5 MHz. The laser operates over a sweep range of 115 nm centered at 1315 nm, and provides very high average output power of more than 100 mW. We characterize the laser performance, roll-off, coherence length and investigate the wavelength and phase stability of the laser output under changing environmental conditions. The high output power allows optical coherence tomography (OCT) imaging with an OCT sensitivity of 108 dB at 1.5 MHz.

  10. Measuring the Solar Magnetic Field with STEREO A Radio Transmissions: Faraday Rotation Observations using the 100m Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Kobelski, A.; Jensen, E.; Wexler, D.; Heiles, C.; Kepley, A.; Kuiper, T.; Bisi, M.

    2016-04-01

    The STEREO mission spacecraft recently passed through superior conjunction, providing an opportunity to probe the solar corona using radio transmissions. Strong magnetic field and dense plasma environment induce Faraday rotation of the linearly polarized fraction of the spacecraft radio carrier signal. Variations in the Faraday rotation signify changes in magnetic field components and plasma parameters, and thus can be used to gain understanding processes of the quiescent sun as well as active outbursts including coronal mass ejections. Our 2015 observing campaign resulted in a series of measurements over several months with the 100m Green Bank Telescope (GBT) to investigate the coronal Faraday rotation at various radial distances. These observations reveal notable fluctuations in the Faraday rotation of the signal in the deep corona, and should yield unique insights into coronal magnetohydrodynamics down to a 1.5 solar radius line-of-sight solar elongation.

  11. Single-Dish Radio Polarimetry in the F-GAMMA Program with the Effelsberg 100-m Radio Telescope

    NASA Astrophysics Data System (ADS)

    Beuchert, Tobias; Kadler, Matthias; Wilms, Jörn; Angelakis, Emmanouil; Fuhrmann, Lars; Myserlis, Ioannis; Nestoras, Ioannis; Kraus, Alex; Bach, Uwe; Ros, Eduardo; Grossberger, Christoph; Schulz, Robert

    2013-12-01

    Studying the variability of polarized AGN jet emission in the radio band is crucial for understanding the dynamics of moving shocks as well as the structure of the underlying magnetic field. The 100-m Effelsberg Telescope is a high-quality instrument for studying the long-term variability of both total and polarized intensity as well as the electric-vector position angle. Since 2007, the F-GAMMA program has been monitoring the linear polarized emission of roughly 60 blazars at 11 frequencies between 2.7 and 43 GHz. Here, we describe the calibration of the polarimetric data at 5 and 10 GHz and the resulting F-GAMMA full-Stokes light curves for the exemplary case of the radio galaxy 3C 111.

  12. Wave Meteorology and Soaring

    NASA Technical Reports Server (NTRS)

    Wiley, Scott

    2008-01-01

    This viewgraph document reviews some mountain wave turbulence and operational hazards while soaring. Maps, photographs, and satellite images of the meteorological phenomena are included. Additionally, photographs of aircraft that sustained mountain wave damage are provided.

  13. Lasting Impressions in Meteorology.

    ERIC Educational Resources Information Center

    Herold, James M.

    1992-01-01

    Describes activities integrating science and art education in which students examine slides of impressionist paintings or photographs of meteorological phenomena to determine the weather conditions depicted and to make and defend weather predictions. Includes a reproducible worksheet. (MDH)

  14. VO2 Kinetics in All-out Arm Stroke, Leg Kick and Whole Stroke Front Crawl 100-m Swimming.

    PubMed

    Rodríguez, F A; Lätt, E; Jürimäe, J; Maestu, J; Purge, P; Rämson, R; Haljaste, K; Keskinen, K L; Jürimäe, T

    2016-03-01

    The VO2 response to extreme-intensity exercise and its relationship with sports performance are largely unexplored. This study investigated the pulmonary VO2 kinetics during all-out 100-m front crawl whole stroke swimming (S), arm stroke (A) and leg kick (L). 26 male and 10 female competitive swimmers performed an all-out S trial followed by A and L of equal duration in random order. Breath-by-breath VO2 was measured using a snorkel attached to a portable gas analyzer. Mean (±SD) primary component parameters and peak blood lactate (Lapeak) during S, A, and L were, respectively: time delay (s), 14.2 ± 4.7, 14.3 ± 4.5, 15.6 ± 5.1; amplitude (ml·kg(-1)·min(-1)), 46.8 ± 6.1, 37.3 ± 6.9, 41.0 ± 4.7; time constant (τ, s): 9.2 ± 3.2, 12.4 ± 4.7, 10.1 ± 3.2; Lapeak (mmol·l(-1)), 6.8 ± 3.1, 6.3 ± 2.5, 7.9 ± 2.8. During A and L respectively, 80% and 87% of amplitude in S was reached, whereas A+L were 68% greater than in S. 100-m performance was associated to shorter cardiodynamic phase and greater VO2 amplitude and Lapeak (accounting up to 61% of performance variance), but not to τ. We conclude that (i) VO2 gain was proportional to exercise intensity and muscle mass involved, (ii) kicking is metabolically less efficient, and (iii) the main limiting factor of peak VO2 appears to be O2 delivery and not muscle extraction. PMID:26575404

  15. Climate and meteorology

    SciTech Connect

    Hoitink, D.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the significant activities conducted in 1994 to monitor the meteorology and climatology of the site. Meteorological measurements are taken to support Hanford Site emergency preparedness and response, Hanford Site operations, and atmospheric dispersion calculations. Climatological data are collected to help plan weather-dependent activities and are used as a resource to assess the environmental effects of Hanford Site operations.

  16. Meteorological image processing applications

    NASA Technical Reports Server (NTRS)

    Bracken, P. A.; Dalton, J. T.; Hasler, A. F.; Adler, R. F.

    1979-01-01

    Meteorologists at NASA's Goddard Space Flight Center are conducting an extensive program of research in weather and climate related phenomena. This paper focuses on meteorological image processing applications directed toward gaining a detailed understanding of severe weather phenomena. In addition, the paper discusses the ground data handling and image processing systems used at the Goddard Space Flight Center to support severe weather research activities and describes three specific meteorological studies which utilized these facilities.

  17. Meteorology for public

    NASA Astrophysics Data System (ADS)

    Špoler Čanić, Kornelija; Rasol, Dubravka; Milković, Janja

    2013-04-01

    The Meteorological and Hydrological Service in Croatia (MHSC) is, as a public service, open to and concentrated on public. The organization of visits to the MHSC for groups started in 1986. The GLOBE program in Croatia started in 1995 and after that interest for the group tours at the MHSC has increased. The majority of visitors are school and kindergarten children, students and groups of teachers. For each group tour we try to prepare the content that is suitable for the age and interest of a group. Majority of groups prefer to visit the meteorological station where they can see meteorological instruments and learn how they work. It is organized as a little workshop, where visitors can ask questions and discuss with a guide not only about the meteorological measurements but also about weather and climate phenomena they are interested in. Undoubtedly the highlight of a visit is the forecaster's room where visitors can talk to the forecasters (whom they can also see giving a weather forecast on the national TV station) and learn how weather forecasts are made. Sometimes we offer to visitors to make some meteorological experiments but that is still not in a regular program of the group tours due to the lack of performing space. Therefore we give them the instructions for making instruments and simulations of meteorological phenomena from household items. Visits guides are meteorologists with profound experience in the popularization of science.

  18. 29 CFR 1926.1435 - Tower cranes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Tower cranes. 1926.1435 Section 1926.1435 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Cranes and Derricks in Construction § 1926.1435 Tower cranes. (a) This section contains supplemental requirements for tower cranes; all sections of...

  19. 29 CFR 1926.1435 - Tower cranes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Tower cranes. 1926.1435 Section 1926.1435 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Cranes and Derricks in Construction § 1926.1435 Tower cranes. (a) This section contains supplemental requirements for tower cranes; all sections of...

  20. Cooling tower hardware corrosion studies

    SciTech Connect

    Blue, S.C.

    1983-01-31

    The data presented in this report are interim results of a continuing investigation into the corrosion resistance of metals in the environment of a large cooling tower. Some of the significant observations are as follows: the corrosion of susceptible metals occurs most rapidly in the warm fog conditions between the deck and mist filters; the application of stainless steel must be made on the basis of alloy chemistry and processing history. Some corrosion resistant alloys may develop cracking problems after improper heat treating or welding; combinations of aluminum bronze, stainless steel, and silicon bronze hardware were not susceptible to galvanic corrosion; the service life of structural steel is extended by coal tar epoxy coatings; aluminum coatings appear to protect structural steel on the tower deck and below the distribution nozzles. The corrosion of cooling tower hardware can be easily controlled through the use of 316 stainless steel and silicon bronze. The use of other materials which exhibit general resistance should be specified only after they have been tested in the form of structural assemblies such as weldments and bolted joints in each of the different tower zones.

  1. Compendium of meteorological data for the Titan 3C (AF-777) launch in May 1975

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Adelfang, S. I.; Goldford, A. I.

    1976-01-01

    Meteorological data for the 26-hour period prior to launch are recorded. Data were collected in support of the NASA rocket exhaust effluent prediction and monitoring program. Soundings were made approximately every 2 hours from T-14 hours to T-O; therefore, high temporal resolution is provided. All supporting data, such as synoptic charts and wind tower data, are also included.

  2. Real time quality control of meteorological data used in SRP's emergency response system

    SciTech Connect

    Pendergast, M.M.

    1980-05-01

    The Savannah River Laboratory's WIND minicomputer system allows quick and accurate assessment of an accidental release at the Savannah River Plant using data from eight meteorological towers. The accuracy of the assessment is largely determined by the accuracy of the meteorological data; therefore quality control is important in an emergency response system. Real-time quality control of this data will be added to the WIND system to automatically identify inaccurate data. Currently, the system averages the measurements from the towers to minimize the influence of inaccurate data being used in calculations. The computer code used in the real-time quality control has been previously used to identify inaccurate measurements from the archived tower data.

  3. How errors on meteorological variables impact simulated ecosystem fluxes: a case study for six French sites

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Ciais, P.; Peylin, P.; Viovy, N.; Longdoz, B.; Bonnefond, J. M.; Rambal, S.; Klumpp, K.; Olioso, A.; Cellier, P.; Maignan, F.; Eglin, T.; Calvet, J. C.

    2011-03-01

    We analyze how biases of meteorological drivers impact the calculation of ecosystem CO2, water and energy fluxes by models. To do so, we drive the same ecosystem model by meteorology from gridded products and by ''true" meteorology from local observation at eddy-covariance flux sites. The study is focused on six flux tower sites in France spanning across a 7-14 °C and 600-1040 mm yr-1 climate gradient, with forest, grassland and cropland ecosystems. We evaluate the results of the ORCHIDEE process-based model driven by four different meteorological models against the same model driven by site-observed meteorology. The evaluation is decomposed into characteristic time scales. The main result is that there are significant differences between meteorological models and local tower meteorology. The seasonal cycle of air temperature, humidity and shortwave downward radiation is reproduced correctly by all meteorological models (average R2=0.90). At sites located near the coast and influenced by sea-breeze, or located in altitude, the misfit of meteorological drivers from gridded dataproducts and tower meteorology is the largest. We show that day-to-day variations in weather are not completely well reproduced by meteorological models, with R2 between modeled grid point and measured local meteorology going from 0.35 (REMO model) to 0.70 (SAFRAN model). The bias of meteorological models impacts the flux simulation by ORCHIDEE, and thus would have an effect on regional and global budgets. The forcing error defined by the simulated flux difference resulting from prescribing modeled instead than observed local meteorology drivers to ORCHIDEE is quantified for the six studied sites and different time scales. The magnitude of this forcing error is compared to that of the model error defined as the modeled-minus-observed flux, thus containing uncertain parameterizations, parameter values, and initialization. The forcing error is the largest on a daily time scale, for which it is

  4. Hydrogen Storage in Wind Turbine Towers

    SciTech Connect

    Kottenstette, R.; Cotrell, J.

    2003-09-01

    Low-cost hydrogen storage is recognized as a cornerstone of a renewables-hydrogen economy. Modern utility-scale wind turbine towers are typically conical steel structures that, in addition to supporting the rotor, could be used to store hydrogen. This study has three objectives: (1) Identify the paramount considerations associated with using a wind turbine tower for hydrogen storage; (2)Propose and analyze a cost-effective design for a hydrogen-storing tower; and (3) Compare the cost of storage in hydrogen towers to the cost of storage in conventional pressure vessels. The paramount considerations associated with a hydrogen tower are corrosion (in the form of hydrogen embrittlement) and structural failure (through bursting or fatigue life degradation). Although hydrogen embrittlement (HE) requires more research, it does not appear to prohibit the use of turbine towers for hydrogen storage. Furthermore, the structural modifications required to store hydrogen in a tower are not cost prohibitive.

  5. Observations of free-free and anomalous microwave emission from LDN 1622 with the 100 m Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Harper, S. E.; Dickinson, C.; Cleary, K.

    2015-11-01

    LDN 1622 has previously been identified as a possible strong source of dust-correlated anomalous microwave emission (AME). Previous observations were limited by resolution meaning that the radio emission could not be compared with current generation high-resolution infrared data from Herschel, Spitzer or Wide-field Infrared Sky Explorer. This paper presents arcminute resolution mapping observations of LDN 1622 at 4.85 and 13.7 GHz using the 100 m Robert C. Byrd Green Bank Telescope. The 4.85 GHz map reveals a corona of free-free emission enclosing LDN 1622 that traces the photodissociation region of the cloud. The brightest peaks of the 4.85 GHz map are found to be within ≈10 per cent agreement with the expected free-free predicted by Southern H-Alpha Sky Survey Atlas H α data of LDN 1622. At 13.7 GHz, the AME flux density was found to be 7.0 ± 1.4 mJy and evidence is presented for a rising spectrum between 13.7 and 31 GHz. The spinning dust model of AME is found to naturally account for the flux seen at 13.7 GHz. Correlations between the diffuse 13.7 GHz emission and the diffuse mid-infrared emission are used to further demonstrate that the emission originating from LDN 1622 at 13.7 GHz is described by the spinning dust model.

  6. A ~100 mHz QPO in the X-ray emission from IGR J17361-4441

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Papitto, A.; Ferrigno, C.; Belloni, T. M.

    2014-10-01

    IGR J17361-4441 was discovered by INTEGRAL undergoing its first detectable X-ray outburst in 2011 and was initially classified as an accreting X-ray binary in the globular cluster NGC 6388. A reanalysis of the outburst data collected with INTEGRAL and Swift suggested that the enhanced X-ray emission from IGR J17361-4441 could have been caused by a rare tidal disruption event of a terrestrial-icy planet by a white dwarf. In this letter we report on the analysis of XMM-Newton data collected in 2011 during the outburst from IGR J17361-4441. Our analysis revealed the presence of a 100 mHz quasi-periodic oscillation in the X-ray emission from the source and confirmed the presence of a soft thermal component (kT~0.08 keV) in its spectrum. We discuss these findings in the context of the different possibilities proposed to explain the nature of IGR J17361-4441.

  7. Physical Characteristics and Processes of 100-m-scale raised-rim depressions (RRD's) on Earth: application to Mars

    NASA Astrophysics Data System (ADS)

    Burr, D. M.; Bruno, B.; Jaeger, W. L.; Lanagan, P. D.; Miyamoto, H.; Soare, R.; Wan Bun Tseung, J.

    2005-12-01

    100-m-scale raised-rim depressions (RRD's) of various origins are found on both Earth and Mars. We define RRD's morphologically, as circular, elongate, or irregularly shaped forms having raised rims encircling lower elevation terrain. Terrestrial RRD's include phreatomagmatic cones, basaltic ring structures, collapsing or collapsed pingos, rimmed kettle holes, and mud volcanoes. Terrestrial experience commonly guides extra-terrestrial investigations, so these terrestrial types of RRD's are also the types that have been commonly hypothesized for RRD's on Mars, although other origins (e.g., secondary impacts onto deflating surfaces) are also likely on Mars. Identifying the origins of Martian RRD's is useful because different types of RRD's imply different geological processes (and therefore have different astrobiological connotations). Being of a similar shape and size in plan view, different types of RRD's are often difficult to classify remotely. However, each of these types of RRD's has specific geomorphic characteristics that can be remotely assessed. Based on terrestrial studies, we present guidelines of a scale applicable to new current and near-future spacecraft data to aid in identifying various types of RRD's on Mars. This presentation will entail discussion of selected types of RRD's, including their geneses, morphologic characteristics, distributions, and common geological associations. The RRD's are grouped according to primary origin, ie., volcanic, sedimentologic, and other. In summary, we present some guidelines for classifying RRD's on Mars.

  8. Performance and energy costs associated with scaling infrared heater arrays for warming field plots from 1 to 100 m

    SciTech Connect

    Kimball B. A.; Lewin K.; Conley, M. M.

    2012-04-01

    To study the likely effects of global warming on open-field vegetation, hexagonal arrays of infrared heaters are currently being used for low-stature (<1 m) plants in small ({le}3 m) plots. To address larger ecosystem scales, herein we show that excellent uniformity of the warming can be achieved using nested hexagonal and rectangular arrays. Energy costs depend on the overall efficiency (useable infrared energy on the plot per electrical energy in), which varies with the radiometric efficiency (infrared radiation out per electrical energy in) of the individual heaters and with the geometric efficiency (fraction of thermal radiation that falls on useable plot area) associated with the arrangement of the heaters in an array. Overall efficiency would be about 26% at 4 ms{sup -1} wind speed for a single hexagonal array over a 3-m-diameter plot and 67% for a 199-hexagon honeycomb array over a 100-m-diameter plot, thereby resulting in an economy of scale.

  9. Daytime rapid detection of minerals and organics from 50 and 100 m distances using a remote Raman system

    NASA Astrophysics Data System (ADS)

    Misra, Anupam K.; Sharma, Shiv K.; Lucey, Paul G.; Lentz, Rachel C. F.; Chio, Chi Hong

    2007-09-01

    We have developed a remote Raman system, using an 8-in telescope and a 532-nm pulse laser (20 Hz and 20 mJ/pulse), which is capable of operating in daylight. From distances of 50 and 100 m and with an integration time of just 1 second (equivalent to 20 laser pulses at 20 Hz), good quality Raman spectra with high signal-to-noise ratios were readily obtained. The Raman system was also tested using only single-laser-pulse excitation (8 ns pulse width) with an integration time of 2 μs. The spectra obtained from single-laser-pulse excitation also show clear Raman features and can be used for rapid, unambiguous identification of various chemical substances. We successfully identified a number of substances, including organic chemicals (acetone, naphthalene, nitro-methane, nitro-benzene and cyclohexane); inorganic chemicals and minerals (nitric acids, sulfuric acid, potassium perchlorate, gypsum, ammonium nitrate, epsomite, melanterite, calcite and sulfur); and amino acids. The remote Raman system has a range of applications, such as environmental monitoring (e.g., detection of hazardous chemicals and chemical spills from a safe distance in real time) or homeland security (e.g., rapid identification of chemicals on a conveyor belt or from a fast-moving object).

  10. Applied Meteorology Unit (AMU)

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Wheeler, Mark

    2010-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the first quarter of Fiscal Year 2010 (October - December 2009). A detailed project schedule is included in the Appendix. Included tasks are: (1) Peak Wind Tool for User Launch Commit Criteria (LCC), (2) Objective Lightning Probability Tool, Phase III, (3) Peak Wind Tool for General Forecasting, Phase II, (4) Upgrade Summer Severe Weather Tool in Meteorological Interactive Data Display System (MIDDS), (5) Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) Update and Maintainability, (5) Verify 12-km resolution North American Model (MesoNAM) Performance, and (5) Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) Graphical User Interface.

  11. Transport and Meteorological Analysis

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry B.; Legg, Marion J.

    2002-01-01

    The objectives of this work are twofold. First, to provide real-time meteorological satellite guidance to airborne field missions for NASA's Upper Atmosphere Research Program, the Global Tropospheric Experiment, and the Atmospheric Effects of Aviation Project. Extensive meteorological satellite datasets were provided for use by the mission scientist and by the science team. These same data were then archived for postdeployment data analysis by the science team. Second, to provide scientific analysis of the data from the airborne field missions supported. The results of these analyses were made public through peer-reviewed publications.

  12. Airport Remote Tower Sensor Systems

    NASA Technical Reports Server (NTRS)

    Papasin, Richard; Gawdiak, Yuri; Maluf, David A.; Leidich, Christopher; Tran, Peter B.

    2001-01-01

    Remote Tower Sensor Systems (RTSS) are proof-of-concept prototypes being developed by NASA/Ames Research Center (NASA/ARC) with collaboration with the FAA (Federal Aviation Administration) and NOAA (National Oceanic Atmospheric Administration). RTSS began with the deployment of an Airport Approach Zone Camera System that includes real-time weather observations at San Francisco International Airport. The goal of this research is to develop, deploy, and demonstrate remotely operated cameras and sensors at several major airport hubs and un-towered airports. RTSS can provide real-time weather observations of airport approach zone. RTSS will integrate and test airport sensor packages that will allow remote access to realtime airport conditions and aircraft status.

  13. Ozone Treatment For Cooling Towers

    NASA Technical Reports Server (NTRS)

    Blackwelder, Rick; Baldwin, Leroy V.; Feeney, Ellen S.

    1990-01-01

    Report presents results of study of cooling tower in which water treated with ozone instead of usual chemical agents. Bacteria and scale reduced without pollution and at low cost. Operating and maintenance costs with treatment about 30 percent of those of treatment by other chemicals. Corrosion rates no greater than with other chemicals. Advantage of ozone, even though poisonous, quickly detected by smell in very low concentrations.

  14. 2004 Savannah River Cooling Tower Collection (U)

    SciTech Connect

    Garrett, Alfred; Parker, Matthew J.; Villa-Aleman, E.

    2005-05-01

    The Savannah River National Laboratory (SRNL) collected ground truth in and around the Savannah River Site (SRS) F-Area cooling tower during the spring and summer of 2004. The ground truth data consisted of air temperatures and humidity inside and around the cooling tower, wind speed and direction, cooling water temperatures entering; inside adn leaving the cooling tower, cooling tower fan exhaust velocities and thermal images taken from helicopters. The F-Area cooling tower had six cells, some of which were operated with fans off during long periods of the collection. The operating status (fan on or off) for each of the six cells was derived from operations logbooks and added to the collection database. SRNL collected the F-Area cooling tower data to produce a database suitable for validation of a cooling tower model used by one of SRNL's customer agencies. SRNL considers the data to be accurate enough for use in a model validation effort. Also, the thermal images of the cooling tower decks and throats combined with the temperature measurements inside the tower provide valuable information about the appearance of cooling towers as a function of fan operating status and time of day.

  15. Computer Exercises in Meteorology.

    ERIC Educational Resources Information Center

    Trapasso, L. Michael; Conner, Glen; Stallins, Keith

    Beginning with Western Kentucky University's (Bowling Green) fall 1999 semester, exercises required for the geography and meteorology course used computers for learning. This course enrolls about 250 students per year, most of whom choose it to fulfill a general education requirement. Of the 185 geography majors, it is required for those who…

  16. General aviation's meteorological requirements

    NASA Technical Reports Server (NTRS)

    Newton, D.

    1985-01-01

    Communication of weather theory and information about weather service products to pilots in an accurate and comprehensible manner is essential to flying safety in general. Probably no one needs weather knowledge more than the people who fly through it. The specific subject of this overview is General Aviation's Meteorological Requirements.

  17. Meteorology: Project Earth Science.

    ERIC Educational Resources Information Center

    Smith, P. Sean; Ford, Brent A.

    This document on meteorology is one of a four-volume series of Project Earth Science that includes exemplary hands-on science and reading materials for use in the classroom. This book is divided into three sections: activities, readings, and appendix. The activities are constructed around three basic concept divisions. First, students investigate…

  18. 'Towers in the Tempest' Computer Animation Submission

    NASA Technical Reports Server (NTRS)

    Shirah, Greg

    2008-01-01

    The following describes a computer animation that has been submitted to the ACM/SIGGRAPH 2008 computer graphics conference: 'Towers in the Tempest' clearly communicates recent scientific research into how hurricanes intensify. This intensification can be caused by a phenomenon called a 'hot tower.' For the first time, research meteorologists have run complex atmospheric simulations at a very fine temporal resolution of 3 minutes. Combining this simulation data with satellite observations enables detailed study of 'hot towers.' The science of 'hot towers' is described using: satellite observation data, conceptual illustrations, and a volumetric atmospheric simulation data. The movie starts by showing a 'hot tower' observed by NASA's Tropical Rainfall Measuring Mission (TRMM) spacecraft's three dimensional precipitation radar data of Hurricane Bonnie. Next, the dynamics of a hurricane and the formation of 'hot towers' are briefly explained using conceptual illustrations. Finally, volumetric cloud, wind, and vorticity data from a supercomputer simulation of Hurricane Bonnie are shown using volume techniques such as ray marching.

  19. Meteorological Observations for Renewable Energy Applications at Site 300

    SciTech Connect

    Wharton, S; Alai, M; Myers, K

    2011-10-26

    In early October 2010, two Laser and Detection Ranging (LIDAR) units (LIDAR-96 and LIDAR-97), a 3 m tall flux tower, and a 3 m tall meteorological tower were installed in the northern section of Site 300 (Figure 1) as a first step in development of a renewable energy testbed facility. This section of the SMS project is aimed at supporting that effort with continuous maintenance of atmospheric monitoring instruments capable of measuring vertical profiles of wind speed and wind direction at heights encountered by future wind power turbines. In addition, fluxes of energy are monitored to estimate atmospheric mixing and its effects on wind flow properties at turbine rotor disk heights. Together, these measurements are critical for providing an accurate wind resource characterization and for validating LLNL atmospheric prediction codes for future renewable energy projects at Site 300. Accurate, high-resolution meteorological measurements of wind flow in the planetary boundary layer (PBL) and surface-atmosphere energy exchange are required for understanding the properties and quality of available wind power at Site 300. Wind speeds at heights found in a typical wind turbine rotor disk ({approx} 40-140 m) are driven by the synergistic impacts of atmospheric stability, orography, and land-surface characteristics on the mean wind flow in the PBL and related turbulence structures. This section of the report details the maintenance and labor required in FY11 to optimize the meteorological instruments and ensure high accuracy of their measurements. A detailed look at the observations from FY11 is also presented. This portion of the project met the following milestones: Milestone 1: successful maintenance and data collection of LIDAR and flux tower instruments; Milestone 2: successful installation of solar power for the LIDAR units; and Milestone 3: successful implementation of remote data transmission for the LIDAR units.

  20. 1. Light tower/keeper's house and abandoned light tower, view northwest, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Light tower/keeper's house and abandoned light tower, view northwest, south southeast and east northeast sides - Matinicus Rock Light Station, Matinicus Island, on Matinicus Rock, Matinicus, Knox County, ME

  1. 2. Abandoned light tower and keeper's house/light tower, view southeast, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Abandoned light tower and keeper's house/light tower, view southeast, north northwest and west southwest sides - Matinicus Rock Light Station, Matinicus Island, on Matinicus Rock, Matinicus, Knox County, ME

  2. Vortex-augmented cooling tower - windmill combination

    DOEpatents

    McAllister, J.E. Jr.

    1982-09-02

    A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passage to provide power as a by-product.

  3. Multifrequency Analysis of Intraday Variability in Quasars and BL Lacs II: First results from the Effelsberg 100-m radiotelescope.

    NASA Astrophysics Data System (ADS)

    Cimò, G.; Fuhmann, L.; Krichbaum, T.; Kraus, A.; Witzel, A.

    Variability of flat-spectrum quasars on timescales of weeks to years is a useful instrument to study the inner regions of these objects. Variability on shorter timescales, less than one day (Intraday Variability, IDV), was discovered in the middle of the eighties (Witzel et al. 1986, Heeschen et al. 1987). It was found (Quirrenbach et al. 1992) that about 30% of compact flat-spectrum objects show such intraday variability (IDV). The observed rapid variations imply, via the light travel time argument, a very small source size and a very high apparent brightness temperature (up to 1021K, if we consider this variations source intrinsic). In order to explain the apparent violation of the inverse-Compton limit three different scenarios have been proposed: refractive interstellar scattering, source intrinsic processes and an intrinsic violation of this limit. The sizes of intraday variable sources at cm-wavelength are typically smaller than the scattering size set by the ISM in our galaxy, hence IDV sources should show refractive scattering effects (e.g.. 0917+62: Rickett et al. 1995). We present total intensity and polarization data obtained with the Effelsberg 100-m radiotelescope at 2.8, 6 and 11cm during a broad band observing campaign (involving numerous other observatories around the world; see the Fuhrmann's contribution about Westerbork data) carried out in March 2000. We briefly describe the observations and the data reduction procedure pointing on the analysis of the results by presenting structure functions and power spectra from these data. Additionally we show a first comparison of the Effelsberg observations with the data at 3mm coming from Pico Veleta (30m telescope) and optical measurements carried out with the Calar Alto 2.2m telescope, which were also involved in this campaign. Broad band correlations could help to discriminate among the causes of the IDV phenomenon. In fact at mm-wavelength the variability should be free from interstellar scattering

  4. Relations between surface conductance and spectral vegetation indices at intermediate (100 m2 to 15 km2) length scales

    NASA Astrophysics Data System (ADS)

    Sellers, Piers J.; Heiser, Mark D.; Hall, Forrest G.

    1992-11-01

    The theoretical analysis of Sellers et al. (1992) indicates that the relative response of the unstressed canopy conductance (g*c) to changes in incident (nonsaturating) PAR flux (F0) should be proportional to some spectral vegetation indices (SVI), specifically the simple ratio (SR) vegetation index, for vegetation covers of similar physiology and physiognomy; or ∇F ≡ (∂g*c/∂F0) ∝ SR. This relationship was tested using the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) flux station data set (g*c) and the FIFE Landsat thematic mapper image data (SVI). The flux station data were used to invert a soil-plant-atmosphere model (the simple biosphere model (SiB) of Sellers et al., 1986) to derive estimates of g*c separate from the soil evaporation contribution and corrected for the "stress" effects of vapor pressure deficit and soil moisture deficit. The Landsat imagery was sampled to produce SR vegetation index values for small areas (90 × 90 m) centered on each flux station. The derived ∇F and SR values were found to be near-linearly related on a site-by-site basis. Differences between sites are thought to be related to the fractional cover of C3 versus C4 vegetation so that ∇S,F ≡ (∂∇F/∂(SR)) ∝ V3, where V3 is the fractional cover of C3 vegetation. The above equations form the basis for a simple biophysically based model of canopy-scale conductance. The model was applied on the flux station scale (100 m)2 and was also used to calculate fluxes for the entire FIFE site (15 × 15 km)2; the latter results were compared with airborne flux measurements. It is demonstrated that because the proposed relationship between ∇F and SR is near-linear, the calculation of evapotranspiration rates for large areas using this model is effectively scale-invariant.

  5. Optical design of airport control tower cabs.

    PubMed

    Carman, P D; Budde, H W

    1980-02-15

    A study has been made of optical aspects of airport control towers as part of a planned general optimization of control towers by Transport Canada. Problems found were reflections, glare, visual obstructions, identification of distant objects, and excessive solar heat. The study makes recommendations on cab shape, tower height, glazing, shades, sunglasses, binoculars, and internal lighting. Proper choice of cab shape (e.g., 30 degrees window inclination and 12-28 sides) provided effective control of reflections. Some plastic shades werefound to increase the risk of eye damage. Two tower cabs incorporating the recommendations have been built and were found to be satisfactory. PMID:20216882

  6. Optimal Inflatable Space Towers of High Height

    NASA Astrophysics Data System (ADS)

    Bolonkin, Alexander

    2002-01-01

    Author provides theory and computations for building inflatable space towers up to a hundred km in height. These towers can be used for tourism; scientific observation of space, earth's surface, weather, top atmosphere, as well as for radio, television, and communication transmissions. These towers can also be used to launch space ships and Earth satellites. These projects are not expensive and do not require rockets. They require thin strong films composed from artificial fibers and fabricated by current industry. Towers can be built using present technology. Towers can be used (for tourism, communication, etc.) during the construction process and provide self-financing for further construction. The tower design does not require work at high altitudes; all construction can be done at the earth's surface. The transport system for this tower consists a small engine (used only for friction compensation) located at the earth's surface. The tower is separated into sections and has special protection mechanism in case of a damage. Problems involving security, control, repair, and stability of the proposed towers are addressed in subsequent publications. The author is prepared to discuss these and other problems with serious organizations desiring to research and develop these projects.

  7. Optimal inflatable space towers of high height

    NASA Astrophysics Data System (ADS)

    Bolonkin, A.

    Author suggested, developed theory, and computed some projects of an optimal inflatable space tower of the heights some hundreds km. These towers can be used for tourism, scientist observation of space, Earth surface, Earth weather, Earth top atmosphere, and for radio, TV, communication transmissions. These towers can be used for launching of the space ships and Earth s atellites. The computed projects not expensive, do not request rockets. They need only in thin strong films composed from the artificial fibers and fabricated by a current industry. Towers can be built by a current technology. Towers can be explored (for tourism, communication, etc.) in a time of the construction process and give a profit, self- financing for further constriction. They can permanent increase their height. The tower design does not request a work at the high altitudes. All construction works will be making at the Earth surface. Author suggests the transport system for this tower of a high capability, which does not request a power energy issue. The small engine (only for a friction compensation) is located at the Earth surface. The tower is separated on sections and has a special protection of a case of a damage. It is considered also the problems of security, control, repair, etc. of the suggested towers. The author has also solved additional problems, which appear in these projects and which can look as difficult for the given proposal and current technology. The author is prepared to discuss the problems with serious organizations, which want to research and develop these projects.

  8. Survey: National Meteorological Center

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The National Meteorological Center (NMC) is comprised of three operational divisions (Development, Automation, and Forecast) and an Administrative Division. The Development Division develops and implements mathematical models for forecasting the weather. The Automation Division provides the software and processing services to accommodate the models used in daily forecasts. The Forecasting Division applies a combination of numerical and manual techniques to produce analyses and prognoses up to 120 hr into the future. This guidance material is combined with severe storm information from the National Hurricane Center and the National Severe Storms Forecasting Center to develop locally tailored forecasts by the Weather Service Forecast Offices and, in turn, by the local Weather Service Offices. A very general flow of this information is shown. A more detailed illustration of data flow into, within, and from the NMC is given. The interrelations are depicted between the various meteorological organizations and activities.

  9. Drop Tower and Aircraft Capabilities

    NASA Technical Reports Server (NTRS)

    Urban, David L.

    2015-01-01

    This presentation is a brief introduction to existing capabilities in drop towers and low-gravity aircraft that will be presented as part of a Symposium: Microgravity Platforms Other Than the ISS, From Users to Suppliers which will be a half day program to bring together the international community of gravity-dependent scientists, program officials and technologists with the suppliers of low gravity platforms (current and future) to focus on the future requirements and use of platforms other than the International Space Station (ISS).

  10. European Sail Tower SPS concept

    NASA Astrophysics Data System (ADS)

    Seboldt, W.; Klimke, M.; Leipold, M.; Hanowski, N.

    2001-03-01

    Based on a DLR-study in 1998/99 on behalf of ESA/ESTEC called "System Concepts, Architectures and Technologies for Space Exploration and Utilization (SE&U)" a new design for an Earth-orbiting Solar Power Satellite (SPS) has been developed. The design is called "European Sail Tower SPS" and consists mainly of deployable sail-like structures derived from the ongoing DLR/ESA solar sail technology development activity. Such a SPS satellite features an extremely light-weight and large tower-like orbital system and could supply Europe with significant amounts of electrical power generated by photovoltaic cells and subsequently transmitted to Earth via microwaves. In order to build up the sail tower, 60 units - each consisting of a pair of square-shaped sails - are moved from LEO to GEO with electric propulsion and successively assembled in GEO robotically on a central strut. Each single sail has dimensions of 150m × 150 m and is automatically deployed, using four diagonal light-weight carbon fiber (CFRP) booms which are initially rolled up on a central hub. The electric thrusters for the transport to GEO could also be used for orbit and attitude control of the assembled tower which has a total length of about 15 km and would be mainly gravity gradient stabilized. Employing thin film solar cell technology, each sail is used as a solar array and produces an electric power in orbit of about 3.7 MW e. A microwave antenna with a diameter of 1 km transmits the power to a 10 km rectenna on the ground. The total mass of this 450 MW SPS is about 2100 tons. First estimates indicate that the costs for one kWh delivered in this way could compete with present day energy costs, if launch costs would decrease by two orders of magnitude. Furthermore, mass production and large numbers of installed SPS systems must be assumed in order to lower significantly the production costs and to reduce the influence of the expensive technology development. The paper presents the technical concept

  11. Vega balloon meteorological measurements

    NASA Technical Reports Server (NTRS)

    Crisp, D.; Ingersoll, A. P.; Hildebrand, C. E.; Preston, R. A.

    1990-01-01

    The Vega balloons obtained in situ measurements of pressure, temperature, vertical winds, cloud density, ambient illumination, and the frequency of lightning during their flights in the Venus middle cloud layer. The Vega measurements were used to develop a comprehensive description of the meteorology of the Venus middle cloud layer. The Vega measurements provide the following picture: large horizontal temperature gradients near the equator, vigorous convection, and weather conditions that can change dramatically on time scales as short as one hour.

  12. Meteorological Annual Report for 1997

    SciTech Connect

    Hunter, C.H.

    1998-12-17

    An analysis of meteorological data collected at the Savannah River Site (SRS) in 1997 shows that overall weather conditions for the year were relatively cool and wet. The average temperature for 1997 was 63.7 degree F which is about 1 degree F below the annual average for the 30-year period 1968-97. June 1997 had the lowest average temperature of any June in the 34 years for which temperature records are available at SRS ; moreover, the average temperature for the summer months (June, July, and August) was the third lowest for any summer on record. Conversely, the average temperature for March 1997 was the highest for any March in the 34-year record. Temperature extremes for 1997 ranged from a minimum of 18.6 degree F on January 18 to a maximum of 99.1 degree F on August 15.Wet weather during the last three months of the year was due to the development of a strong El Nino event (NOAA, 1998). Total rainfall for December 1997, 10.19 inches, was the highest for a December in the 46 year period of record for precipitation. Monthly rainfall was above average each month except March, May, and August. The greatest 24-hour rainfall during the year was 2.82 inches on December 24. Daily rainfall in excess of 2 inches occurred on April 28, June 28, and September 25. No snow was recorded.The annual average wind speed at the Central Climatology meteorology tower near N Area was 5.8 mph which is very nearly equal to the average wind speed at that station for the 7-year period 1991-97. The 1997 data also showed a slightly higher frequency of west to northwest winds and a slightly lower frequency of northeast winds than was observed in the 5-year period 1992-96. A winter storm which developed over the Mid-Atlantic States March 30-31 produced the most notable period of sustained strong winds. Daily and 15-minute average wind speeds of 15.3 miles per hour (mph) and 25.1 mph, respectively, were recorded at Central Climatology.Monthly average relative humidity for the year was lowest

  13. Women in Meteorology.

    NASA Astrophysics Data System (ADS)

    Lemone, Margaret A.; Waukau, Patricia L.

    1982-11-01

    The names of 927 women who are or have been active in meteorology or closely related fields have been obtained from various sources. Of these women, at least 500 are presently active. An estimated 4-5% of the total number of Ph.D.s in meteorology are awarded to women. About 10% of those receiving B.S. and M.S. degrees are women.The work patterns, accomplishments, and salaries of employed women meteorologists have been summarized from 330 responses to questionnaires, as functions of age, family status, part- or full-time working status, and employing institutions. It was found that women meteorologists holding Ph.D.s are more likely than their male counterparts to be employed by universities. As increasing number of women were employed in operational meteorology, although few of them were married and fewer still responsible for children. Several women were employed by private industry and some had advanced into managerial positions, although at the present time, such positions remain out of the reach of most women.The subjective and objective effects of several gender-related factors have been summarized from the comments and responses to the questionnaires. The primary obstacles to advancement were found to be part-time work and the responsibility for children. Part-time work was found to have a clearly negative effect on salary increase as a function of age. prejudicated discrimination and rules negatively affecting women remain important, especially to the older women, and affirmative action programs are generally seen as beneficial.Surprisingly, in contrast to the experience of women in other fields of science, women Ph.D.s in meteorology earn salaries comparable of their employment in government or large corporations and universities where there are strong affirmative action programs and above-average salaries. Based on the responses to the questionnaire, the small size of the meteorological community is also a factor, enabling women to become recognized

  14. Extreme Meteorological Parameters During Space Shuttle Pad Exposure Periods

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; Overbey, B. Glenn

    2004-01-01

    During the 113 missions of the Space Transportation System (STS), the Space Shuttle fleet has been exposed to the elements on the launch pad for a total of 4195 days. This paper provides a summary of the historical record of the meteorological extremes encountered by the Space Shuttle fleet during the pad exposure period. Parameters included are temperature, dew point, relative humidity, wind speed, sea level pressure and precipitation. All the data presented are archived by the Marshall Space Flight Center Environments Group, and were obtained from a combination of surface observations and meteorological towers at Kennedy Space Center (KSC), Florida. Data are provided from the first launch of the STS in 1981 through the launch of STS-107 in 2003.

  15. Applied Meteorology Unit (AMU)

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred; Watson, Leela; Wheeler, Mark

    2011-01-01

    This Quarter's Highlights incllude: completion of the second phase of verifying the performance of the MesoNAM weather model at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). (1) The data was delivered to the 45th Weather Squadron (45 WS) and the final report was distributed (2) Staff completed modifying and updating lightning c1imatologies for KSC/CCAFS and other airfields around central Florida. We delivered the tool to the National Weather Service in Melbourne and 45 WS and distributed the final report (3) Staff completed modifying the AMU peak wind tool by analyzing wind tower data to determine peak wind behavior during times of onshore and offshore flow. This was delivered the to the 45 WS and distributed the final report.

  16. Combined-cycle power tower

    SciTech Connect

    Bohn, M S; Williams, T A; Price, H W

    1994-10-01

    This paper evaluates a new power tower concept that offers significant benefits for commercialization of power tower technology. The concept uses a molten nitrate salt centralreceiver plant to supply heat, in the form of combustion air preheat, to a conventional combined-cycle power plant. The evaluation focused on first commercial plants, examined three plant capacities (31, 100, and 300 MWe), and compared these plants with a solar-only 100-MWe plant and with gas-only combined-cycle plants in the same three capacities. Results of the analysis point to several benefits relative to the solar-only plant including low energy cost for first plants, low capital cost for first plants, reduced risk with respect to business uncertainties, and the potential for new markets. In addition, the concept appears to have minimal technology development requirements. Significantly, the results show that it is possible to build a first plant with this concept that can compete with existing gas-only combined-cycle plants.

  17. APPROACH BRIDGE PORTION OF VALVE TOWER FOOT BRIDGE, AS SEEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    APPROACH BRIDGE PORTION OF VALVE TOWER FOOT BRIDGE, AS SEEN FROM BELOW, SHOWING VALVE TOWER TO RIGHT. VIEW FACING NORTH - Schofield Barracks Military Reservation, Ku Tree Reservoir, Valve Tower Foot Bridge, Kalakoa Stream, East Range, Wahiawa, Honolulu County, HI

  18. 98. SOUTH FRONT OF MODEL. FREESTANDING TOWER TOP AT RIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    98. SOUTH FRONT OF MODEL. FREESTANDING TOWER TOP AT RIGHT REPRESENTED ALTERNATE PROPOSAL FOR NORTH TOWER TO MATCH FLAG TOWER - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  19. Wind turbine tower for storing hydrogen and energy

    DOEpatents

    Fingersh, Lee Jay

    2008-12-30

    A wind turbine tower assembly for storing compressed gas such as hydrogen. The tower assembly includes a wind turbine having a rotor, a generator driven by the rotor, and a nacelle housing the generator. The tower assembly includes a foundation and a tubular tower with one end mounted to the foundation and another end attached to the nacelle. The tower includes an in-tower storage configured for storing a pressurized gas and defined at least in part by inner surfaces of the tower wall. In one embodiment, the tower wall is steel and has a circular cross section. The in-tower storage may be defined by first and second end caps welded to the inner surface of the tower wall or by an end cap near the top of the tower and by a sealing element attached to the tower wall adjacent the foundation, with the sealing element abutting the foundation.

  20. 153. Copy of Louis Rosenberg Etching (original in the Tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    153. Copy of Louis Rosenberg Etching (original in the Tower City Development Office, Cleveland, Ohio) TERMINAL TOWER UNDER CONSTRUCTION, PUBLIC SQUARE ELEVATION, VIEW NORTHWEST TO SOUTHEAST - Terminal Tower Building, Cleveland Union Terminal, 50 Public Square, Cleveland, Cuyahoga County, OH

  1. 158. Copy of Louis Rosenberg Etching (original in the Tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    158. Copy of Louis Rosenberg Etching (original in the Tower City Development Office) TERMINAL TOWER UNDER CONSTRUCTION, PUBLIC SQUARE FACADE, VIEW WEST TO EAST - Terminal Tower Building, Cleveland Union Terminal, 50 Public Square, Cleveland, Cuyahoga County, OH

  2. DETAIL OF VALVE TOWER SHOWING SLUICE GATE ON EAST SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF VALVE TOWER SHOWING SLUICE GATE ON EAST SIDE OF TOWER. VIEW FACING WEST - Schofield Barracks Military Reservation, Ku Tree Reservoir, Valve Tower, Kalakoa Stream, East Range, Wahiawa, Honolulu County, HI

  3. COKE QUENCH TOWER EMISSION TESTING PROGRAM

    EPA Science Inventory

    The report gives results of a field study to further define quench tower organic emissions, the character and magnitude of which are virtually unknown. (Limited testing in 1976 indicated that a large quantity of organic material was emitted from quench towers, but these data were...

  4. Carbon Nanotube Tower-Based Supercapacitor

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya (Inventor)

    2012-01-01

    A supercapacitor system, including (i) first and second, spaced apart planar collectors, (ii) first and second arrays of multi-wall carbon nanotube (MWCNT) towers or single wall carbon nanotube (SWCNT) towers, serving as electrodes, that extend between the first and second collectors where the nanotube towers are grown directly on the collector surfaces without deposition of a catalyst and without deposition of a binder material on the collector surfaces, and (iii) a porous separator module having a transverse area that is substantially the same as the transverse area of at least one electrode, where (iv) at least one nanotube tower is functionalized to permit or encourage the tower to behave as a hydrophilic structure, with increased surface wettability.

  5. Performance specification for control tower display systems

    NASA Astrophysics Data System (ADS)

    Aleva, Denise L.; Meyer, Frederick M.

    2003-09-01

    Personnel in airport control towers monitor and direct the takeoff of outgoing aircraft, landing of incoming aircraft and all movements of aircraft on the ground. Although the primary source of information for the Local Controller, Assistant Local Controller and the Ground Controller is the real world viewed through the windows of the control tower, electronic displays are also used to provide situation awareness. Due to the criticality of the work to be performed by the controllers and the rather unique environment of the air traffic control tower, display hardware standards, which have been developed for general use, are not directly applicable. The Federal Aviation Administration (FAA) requested assistance of Air Force Research Laboratory Human Effectiveness Directorate in producing a document which can be adopted as a Tower Display Standard usable by display engineers, human factors practitioners and system integrators. Particular emphasis was placed on human factors issues applicable to the control tower environment and controller task demands.

  6. Flux Sampling Errors for Aircraft and Towers

    NASA Technical Reports Server (NTRS)

    Mahrt, Larry

    1998-01-01

    Various errors and influences leading to differences between tower- and aircraft-measured fluxes are surveyed. This survey is motivated by reports in the literature that aircraft fluxes are sometimes smaller than tower-measured fluxes. Both tower and aircraft flux errors are larger with surface heterogeneity due to several independent effects. Surface heterogeneity may cause tower flux errors to increase with decreasing wind speed. Techniques to assess flux sampling error are reviewed. Such error estimates suffer various degrees of inapplicability in real geophysical time series due to nonstationarity of tower time series (or inhomogeneity of aircraft data). A new measure for nonstationarity is developed that eliminates assumptions on the form of the nonstationarity inherent in previous methods. When this nonstationarity measure becomes large, the surface energy imbalance increases sharply. Finally, strategies for obtaining adequate flux sampling using repeated aircraft passes and grid patterns are outlined.

  7. VALVE TOWER FROM HIGH GROUND NEAR APPROACH BRIDGE. VIEW FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VALVE TOWER FROM HIGH GROUND NEAR APPROACH BRIDGE. VIEW FACING NORTHEAST - Schofield Barracks Military Reservation, Ku Tree Reservoir, Valve Tower, Kalakoa Stream, East Range, Wahiawa, Honolulu County, HI

  8. Applied Meteorology Unit (AMU)

    NASA Technical Reports Server (NTRS)

    Bauman, William H., Jr.; Crawford, Winifred; Short, David; Barrett, Joe; Watson, Leela

    2008-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the second quarter of Fiscal Year 2008 (January - March 2008). Projects described are: (1) Peak Wind Tool for User Launch Commit Criteria (LCC), (2) Peak Wind Tool for General Forecasting, (3) Situational Lightning Climatologies for Central Florida. Phase III, (4) Volume Averaged Height Integrated Radar Reflectivity (VAHIRR), (5) Impact of Local Sensors, (6) Radar Scan Strategies for the PAFB WSR-74C Replacement and (7) WRF Wind Sensitivity Study at Edwards Air Force Base.

  9. Mapping the Martian Meteorology

    NASA Technical Reports Server (NTRS)

    Allison, M.; Ross, J. D.; Solomon, N.

    1999-01-01

    The Mars-adapted version of the NASA/GISS general circulation model (GCM) has been applied to the hourly/daily simulation of the planet's meteorology over several seasonal orbits. The current running version of the model includes a diurnal solar cycle, CO2 sublimation, and a mature parameterization of upper level wave drag with a vertical domain extending from the surface up to the 6microb level. The benchmark simulations provide a four-dimensional archive for the comparative evaluation of various schemes for the retrieval of winds from anticipated polar orbiter measurements of temperatures by the Pressure Modulator Infrared Radiometer. Additional information is contained in the original extended abstract.

  10. Mapping the Martian Meteorology

    NASA Technical Reports Server (NTRS)

    Allison, Michael; Ross, J. D.; Soloman, N.

    1999-01-01

    The Mars-adapted version of the NASA/GISS general circulation model (GCM) has been applied to the hourly/daily simulation of the planet's meteorology over several seasonal orbits. The current running version of the model includes a diurnal solar cycle, CO2 sublimation, and a mature parameterization of upper level wave drag with a vertical domain extending from the surface up to the 6 micro b level. The benchmark simulations provide a four-dimensional archive for the comparative evaluation of various schemes for the retrieval of winds from anticipated polar orbiter measurements of temperatures by the Pressure Modulator Infrared Radiometer.

  11. Arctic hydrology and meteorology

    SciTech Connect

    Kane, D.L.

    1990-01-01

    During 1990, we have continued our meteorological and hydrologic data collection in support of our process-oriented research. The six years of data collected to data is unique in its scope and continuity in a North Hemisphere Arctic setting. This valuable data base has allowed us to further our understanding of the interconnections and interactions between the atmosphere/hydrosphere/biosphere/lithosphere. The increased understanding of the heat and mass transfer processes has allowed us to increase our model-oriented research efforts.

  12. Meteorological conditions along airways

    NASA Technical Reports Server (NTRS)

    Gregg, W R

    1927-01-01

    This report is an attempt to show the kind of meteorological information that is needed, and is in part available, for the purpose of determining operating conditions along airways. In general, the same factors affect these operating conditions along all airways though in varying degree, depending upon their topographic, geographic, and other characteristics; but in order to bring out as clearly as possible the nature of the data available, a specific example is taken, that of the Chicago-Dallas airway on which regular flying begins this year (1926).

  13. Agricultural Meteorology in China.

    NASA Astrophysics Data System (ADS)

    Rosenberg, Norman J.

    1982-03-01

    During nearly five weeks in China (May-June 1981), the author visited scientific institutions and experiment stations engaged in agricultural meterology and climatology research and teaching. The facilities, studies, and research programs at each institution are described and the scientific work in these fields is evaluated. Agricultural meteorology and climatology are faced with some unique problems and opportunities in China and progress in these fields may be of critical importance to that nation in coming years. The author includes culinary notes and comments on protocol in China.

  14. Augmented Reality Tower Technology Assessment

    NASA Technical Reports Server (NTRS)

    Reisman, Ronald J.; Brown, David M.

    2009-01-01

    Augmented Reality technology may help improve Air Traffic Control Tower efficiency and safety during low-visibility conditions. This paper presents the assessments of five off-duty controllers who shadow-controlled' with an augmented reality prototype in their own facility. Initial studies indicated unanimous agreement that this technology is potentially beneficial, though the prototype used in the study was not adequate for operational use. Some controllers agreed that augmented reality technology improved situational awareness, had potential to benefit clearance, control, and coordination tasks and duties and could be very useful for acquiring aircraft and weather information, particularly aircraft location, heading, and identification. The strongest objections to the prototype used in this study were directed at aircraft registration errors, unacceptable optical transparency, insufficient display performance in sunlight, inadequate representation of the static environment and insufficient symbology.

  15. Kinetic Space Towers and Launchers

    NASA Astrophysics Data System (ADS)

    Bolonkin, A.

    The paper discusses a new revolutionary method for access to outer space. A cable stands up vertically and pulls up its payload to space with a maximum force determined by its strength. From the ground the cable is allowed to rise up to the required altitude. After this, one can climb to an altitude by this cable or deliver to altitude a required load. The paper shows this is possible and does not infringe on the law of gravity. The article contains the theory of the method and the computations for four projects for towers that are 4, 75, 225 and 160,000 km in height. The first three projects use conventional artificial fiber widely produced by current industry, while the fourth project uses nanotubes made in scientific laboratories. The paper also shows in a fifth project how this idea can be used to launch a load at high altitude.

  16. Meteorological annual report for 1995 at the Savannah River Site

    SciTech Connect

    Hunter, C.H.; Tatum, C.P.

    1996-12-01

    The Environmental Technology Section (ETS) of the Savannah River Technology Center (SRTC) collects, archives, and analyzes basic meteorological data supporting a variety of activities at SRS. These activities include the design, construction, and operation of nuclear and non-nuclear facilities, emergency response, environmental compliance, resource management, and environmental research. This report contains tabular and graphical summaries of data collected during 1995 for temperature, precipitation, relative humidity, wind, barometric pressure, and solar radiation. Most of these data were collected at the central Climatology Facility. Summaries of temperature and relative humidity were generated with data from the lowest level of measurement at the Central Climatology Site tower (13 feet above ground). (Relative humidity is calculated from measurements of dew-point temperature.) Wind speed summaries were generated with data from the second measurement level (58 feet above ground). Wind speed measurements from this level are believed to best represent open, well-exposed areas of the Site. Precipitation summaries were based on data from the Building 773-A site since quality control algorithms for the central Climatology Facility rain gauge data were not finalized at the time this report was prepared. This report also contains seasonal and annual summaries of joint occurrence frequencies for selected wind speed categories by 22.5 degree wind direction sector (i.e., wind roses). Wind rose summaries are provided for the 200-foot level of the Central Climatology tower and for each of the eight 200-foot area towers.

  17. Meteorological Instruction Software

    NASA Technical Reports Server (NTRS)

    1990-01-01

    At Florida State University and the Naval Postgraduate School, meteorology students have the opportunity to apply theoretical studies to current weather phenomena, even prepare forecasts and see how their predictions stand up utilizing GEMPAK. GEMPAK can display data quickly in both conventional and non-traditional ways, allowing students to view multiple perspectives of the complex three-dimensional atmospheric structure. With GEMPAK, mathematical equations come alive as students do homework and laboratory assignments on the weather events happening around them. Since GEMPAK provides data on a 'today' basis, each homework assignment is new. At the Naval Postgraduate School, students are now using electronically-managed environmental data in the classroom. The School's Departments of Meteorology and Oceanography have developed the Interactive Digital Environment Analysis (IDEA) Laboratory. GEMPAK is the IDEA Lab's general purpose display package; the IDEA image processing package is a modified version of NASA's Device Management System. Bringing the graphic and image processing packages together is NASA's product, the Transportable Application Executive (TAE).

  18. Meteorological Sensor Calibration Facility

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.

    1988-01-01

    The meteorological sensor calibration facility is designed to test and assess radiosonde measurement quality through actual flights in the atmosphere. United States radiosonde temperature measurements are deficient in that they require correction for errors introduced by long- and short-wave radiation. The effect of not applying corrections results in a large bias between day time and night time measurements. This day/night bias has serious implications for users of radiosonde data, of which NASA is one. The derivation of corrections for the U.S. radiosonde is quite important. Determination of corrections depends on solving the heat transfer equation of the thermistor using laboratory measurements of the emissivity and absorptivity of the thermistor coating. The U.S. radiosonde observations from the World Meteorological Organization International Radiosonde Intercomparison were used as the data base to test whether the day/night height bias can be removed. Twenty-five noon time and 26 night time observations were used. Corrected temperatures were used to calculate new geopotentials. Day/night bias in the geopotentials decreased significantly when corrections were introduced. Some testing of thermal lag attendant with the standard carbon hygristor took place. Two radiosondes with small bead thermistors imbedded in the hygristor were flown. Detailed analysis was not accomplished; however, cursory examination of the data showed that the hygristor is at a higher temperature than the external thermistor indicates.

  19. Assessing the environmental health relevance of cooling towers--a systematic review of legionellosis outbreaks.

    PubMed

    Walser, Sandra M; Gerstner, Doris G; Brenner, Bernhard; Höller, Christiane; Liebl, Bernhard; Herr, Caroline E W

    2014-03-01

    Bioaerosols from cooling towers are often suspected to cause community-acquired legionellosis outbreaks. Although Legionella infections can mostly be assigned to the emission sources, uncertainty exists about the release and distribution into the air, the occurrence of the respirable virulent form and the level of the infective concentration. Our study aimed to evaluate studies on legionellosis outbreaks attributed to cooling towers published within the last 11 years by means of a systematic review of the literature. 19 legionellosis outbreaks were identified affecting 12 countries. Recurring events were observed in Spain and Great Britain. In total, 1609 confirmed cases of legionellosis and a case-fatality rate of approximately 6% were reported. Duration of outbreaks was 65 days on average. For diagnosis the urinary antigen test was mainly used. Age, smoking, male sex and underlying diseases (diabetes, immunodeficiency) could be confirmed as risk factors. Smoking and underlying diseases were the most frequent risk factors associated with legionellosis in 11 and 10 of the 19 studies, respectively. The meteorological conditions varied strongly. Several studies reported a temporal association of outbreaks with inadequate maintenance of the cooling systems. A match of clinical and environmental isolates by serotyping and/or molecular subtyping could be confirmed in 84% of outbreaks. Legionella-contaminated cooling towers as environmental trigger, in particular in the neighbourhood of susceptible individuals, can cause severe health problems and even death. To prevent and control Legionella contamination of cooling towers, maintenance actions should focus on low-emission cleaning procedures of cooling towers combined with control measurements of water and air samples. Procedures allowing rapid detection and risk assessment in the case of outbreaks are essential for adequate public health measures. Systematic registration of cooling towers will facilitate the

  20. Blasting response of the Eiffel Tower

    NASA Astrophysics Data System (ADS)

    Horlyck, Lachlan; Hayes, Kieran; Caetano, Ryan; Tahmasebinia, Faham; Ansourian, Peter; Alonso-Marroquin, Fernando

    2016-08-01

    A finite element model of the Eiffel Tower was constructed using Strand7 software. The model replicates the existing tower, with dimensions justified through the use of original design drawings. A static and dynamic analysis was conducted to determine the actions of the tower under permanent, imposed and wind loadings, as well as under blast pressure loads and earthquake loads due to an explosion. It was observed that the tower utilises the full axial capacity of individual members by acting as a `truss of trusses'. As such, permanent and imposed loads are efficiently transferred to the primary columns through compression, while wind loads induce tensile forces in the windward legs and compressive forces in the leeward. Under blast loading, the tower experienced both ground vibrations and blast pressures. Ground vibrations induced a negligibly small earthquake loading into the structure which was ignored in subsequent analyses. The blast pressure was significant, and a dynamic analysis of this revealed that further research is required into the damping qualities of the structure due to soil and mechanical properties. In the worst case scenario, the blast was assumed to completely destroy several members in the adjacent leg. Despite this weakened condition, it was observed that the tower would still be able to sustain static loads, at least for enough time for occupant evacuation. Further, an optimised design revealed the structure was structurally sound under a 46% reduction of the metal tower's mass.

  1. FINAL REPORT: EDDY-COVARIANCE FLUX TOWER AND TRACER TECHNOLOGY SUPPORT FOR THE UNIVERSITY OF GEORGIA PROPOSAL: FROM TOWER TO PIXEL: INTEGRATION OF PATCH-SIZE NEE USING EXPERIMENTAL MODELING FOOTPRINT ANALYSIS.

    SciTech Connect

    LEWIN,K.F.; NAGY, J.; WATSON, T.B.

    2007-09-01

    Brookhaven National Laboratory has been funded since October of 2000 to provide assistance to the University of Georgia in conducting footprint analyses of individual towers based on meteorology and trace gas measurements. Brookhaven researchers conducted air flow measurements using perfluorocarbon tracers and meteorological instrumentation for three experimental campaigns at an AmeriFlux research site maintained by Dr. Monique Leclerc near Gainesville, FL. In addition, BNL provided assistance with remote data collection and distribution from remote field sites operated by Dr. John Hom of the US Forest Service in the Pine Barrens of New Jersey and at FACE research sites in North Carolina and Wisconsin.

  2. Martian Meteorological Lander

    NASA Astrophysics Data System (ADS)

    Vorontsov, V.; Pichkhadze, K.; Polyakov, A.

    2002-01-01

    Martian meteorological lander (MML) is dedicated for landing onto the Mars surface with the purpose to carry on the monitoring of Mars atmosphere condition at a landing point during one Martian year. MML is supposed to become the basic element of a global net of meteorological mini stations and will permit to observe the dynamics of Martian atmosphere parameters changes during a long time duration. The main scientific tasks of MML are as follows: -study of vertical structure of Mars atmosphere during MML descending; -meteorological observations on Mars surface during one Martian year. One of the essential factor influencing to the lander design is descent trajectory design. During the preliminary phase of development five (5) options of MML were considered. In our opinion, these variants provide the accomplishment of the above-mentioned tasks with a high effectiveness. Joined into the first group, variants with parachute system and with Inflatable Air Brakes+Inflatable Airbag are similar in arranging of pre-landing braking stage and completely analogous in landing by means of airbags. The usage of additional Inflatable Braking Unit (IBU) in the second variant does not affect the procedure of braking - decreasing of velocity by the moment of touching the surface due to decreasing of ballistic parameter Px. A distinctive feature of MML development variants of other three concepts is the presence of Inflatable Braking Unit (IBU) in their configurations (IBU is rigidly joined with landing module up to the moment of its touching the surface). Besides, in variant with the tore-shaped IBU it acts as a shock- absorbing unit. In two options, Inflatable Braking Shock-Absorbing Unit (IBSAU) (or IBU) releases the surface module after its landing at the moment of IBSAU (or IBU) elastic recoil. Variants of this concept are equal in terms of mass (approximately 15 kg). For variants of concepts with IBU the landing velocity is up to50-70 m/s. Stations of last three options are

  3. Bracknell Meteorological Office

    NASA Technical Reports Server (NTRS)

    Flood, Colin R.

    1988-01-01

    The Bracknell (U.K.) Meteorological Office runs a global weather model twice a day, providing the following data: surface and radiosonde; aircraft reports; and satellite soundings and wind. A human forecast is made every six hours. The model runs on a 150 km grid with 15 levels, and takes about four minutes on a Cyber-205. The standard output from the global products are wind, temperature, height, tropopause, and maximum wind. Various experiments have been conducted to see if short-range forecasters could improve on the upper-wind forecasts over the numerical model; the numerical model remains of paramount importance. Small-scale models are being run in the U.S. and the U.K. A fine-mesh model covers Europe and the Atlantic. A mesoscale model is under development. A great deal of verification work is done to see how good the models are.

  4. Antarctic Meteorology and Climatology

    NASA Astrophysics Data System (ADS)

    King, J. C.; Turner, J.

    1997-07-01

    This book is a comprehensive survey of the climatology and meteorology of Antarctica. The first section of the book reviews the methods by which we can observe the Antarctic atmosphere and presents a synthesis of climatological measurements. In the second section, the authors consider the processes that maintain the observed climate, from large-scale atmospheric circulation to small-scale processes. The final section reviews our current knowledge of the variability of Antarctic climate and the possible effects of "greenhouse" warming. The authors stress links among the Antarctic atmosphere, other elements of the Antarctic climate system (oceans, sea ice and ice sheets), and the global climate system. This volume will be of greatest interest to meteorologists and climatologists with a specialized interest in Antarctica, but it will also appeal to researchers in Antarctic glaciology, oceanography and biology. Graduates and undergraduates studying physical geography, and the earth, atmospheric and environmental sciences will find much useful background material in the book.

  5. Meteorology as an infratechnology

    NASA Astrophysics Data System (ADS)

    Williams, G. A.; Smith, L. A.

    2003-04-01

    From an economists perspective, meteorology is an underpinning or infratechnology in the sense that in general it does not of its own accord lead to actual products. Its value added comes from the application of its results to the activities of other forms of economic and technological activity. This contribution discusses both the potential applications of meteorology as an ininfratechnology, and quantifying its socio-economic impact. Large economic and social benefits are both likely in theory and can be identified in practice. Case studies of particular weather dependent industries or particular episodes are suggested, based on the methodology developed by NIST to analyze the social impact of technological innovation in US industries (see www.nist.gov/director/planning/strategicplanning.htm ). Infratechnologies can provide economic benefits in the support of markets. Incomplete information is a major cause of market failure because it inhibits the proper design of contracts. The performance of markets in general can be influenced by strategies adopted by different firms within a market to regulate the performance of others especially suppliers or purchasers. This contribution will focus on benefits to society from mechanisms which enhance and enforce mitigating actions. When the market mechanism fails, who might social benefits be gained, for example, by widening the scope of authorities to ensure that those who could have taken mitigating action, given prior warning, cover the costs. This goes beyond the design and implementation of civil responses to severe weather warnings to include the design of legislative recourse in the event of negligence given prior knowledge, or the modification of insurance contracts. The aim here, for example, would be to avoid the loss of an oil tanker in heavy seas at a location where a high probability of heavy seas had been forecast for some time.

  6. A comment on towers for windmills. [structural and economic criteria

    NASA Technical Reports Server (NTRS)

    Budgen, H. P.

    1973-01-01

    Design considerations for windmill tower structures include the effects of normal wind forces on the rotor and on the tower. Circular tabular or masonry towers present a relatively simple aerodynamic solution. Economic factors establish the tubular tower as superior for small and medium sized windmills. Concrete and standard concrete block designs are cheaper than refabricated steel structures that have to be freighted.

  7. 5. View of south tower, facing northnortheast from south bank ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of south tower, facing north-northeast from south bank of the Columbia River. Center tower and north tower in background, lower right. - Pasco-Kennewick Transmission Line, Columbia River Crossing Towers, Columbia Drive & Gum Street, Kennewick, Benton County, WA

  8. Using ozone to treat cooling tower water

    SciTech Connect

    Webster, L.

    1995-07-01

    Ozone is a controversial but promising alternative to chemicals for treating water in cooling towers. A powerful disinfectant, ozone can prevent biofouling of heat exchange surfaces, and may mitigate scale and corrosion. Ozone treatment of cooling towers can cut costs for energy, water, sewage, and regulatory compliance. Ozone treatment is an electrotechnology, but ozone equipment represents only a small electric load. Although ozone has provided excellent results in some cooling tower applications, its effectiveness has not been proven conclusively. Less than 1,000 cooling towers use ozone water treatment in the United States. Acceptance of this technology is increasing, however, as indicated by its use by such large firms as IBM, AT and T, DuPont, and Xerox, and by its adoption by some chemical water treatment suppliers. The energy efficiency implications of ozone treatment are being researched. Southern California Edison found that in some systems, ozone treatment improved chiller efficiency up to 20 percent due to cleaner heat exchange surfaces.

  9. Critical point wetting drop tower experiment

    NASA Technical Reports Server (NTRS)

    Kaukler, W. F.; Tcherneshoff, L. M.; Straits, S. R.

    1984-01-01

    Preliminary results for the Critical Point Wetting CPW Drop Tower Experiment are produced with immiscible systems. Much of the observed phenomena conformed to the anticipated behavior. More drops will be needed to test the CPW theory with these immiscible systems.

  10. Rebuild cooling tower after partial collapse

    SciTech Connect

    Michell, F.L.; Demjanenko, W.

    1995-07-01

    When this tower suddenly went down, it forced the associated powerplant out of service. To restore operation required a quick assessment of the damage and fast action to reconstruct the tower. The partial collapse and prompt rebuild of a cooling tower at Columbus Southern Co`s Conesville station Unit 4 is a story of what can go wrong and what can be done to set matters right -- in a hurry. The utility is one of seven operating companies in American Electric Power Co`s system. Unit 4 is jointly owned with Cincinnati Gas and Electric Co and Dayton Power and Light Co. The 780-MW coal-fired unit`s closed-loop cooling-water system is served by two double-flow, seven-cell, mechanical-draft cooling towers (4A and 4B). The design basis calls for operating all 14 cells to maintain full load in the summer months.