Science.gov

Sample records for 100-nr-2 apatite treatability

  1. 100-NR-2 Apatite Treatability Test: Fall 2010 Tracer Infiltration Test (White Paper)

    SciTech Connect

    Vermeul, Vincent R.; Fritz, Brad G.; Fruchter, Jonathan S.; Greenwood, William J.; Johnson, Timothy C.; Horner, Jacob A.; Strickland, Christopher E.; Szecsody, James E.; Williams, Mark D.

    2011-04-14

    change and the associated change in moisture content so that 4D images of moisture content change can be generated. Results from this field test will be available for any future Ca-citrate-PO4 amendment infiltration tests, which would be designed to evaluate the efficacy of using near surface application of amendments to form apatite mineral phases in the upper portion of the zone of water table fluctuation.

  2. 100-NR-2 Apatite Treatability Test: High-Concentration Calcium-Citrate-Phosphate Solution Injection for In Situ Strontium-90 Immobilization

    SciTech Connect

    Vermeul, Vincent R.; Fritz, Brad G.; Fruchter, Jonathan S.; Szecsody, James E.; Williams, Mark D.

    2010-09-01

    Following an evaluation of potential strontium-90 (90Sr) treatment technologies and their applicability under 100-NR-2 hydrogeologic conditions, the U.S. Department of Energy (DOE), Fluor Hanford, Inc. (now CH2M Hill Plateau Remediation Company [CHPRC]), Pacific Northwest National Laboratory, and the Washington State Department of Ecology agreed that the long-term strategy for groundwater remediation at the 100-N Area should include apatite as the primary treatment technology. This agreement was based on results from an evaluation of remedial alternatives that identified the apatite permeable reactive barrier (PRB) technology as the approach showing the greatest promise for reducing 90Sr flux to the Columbia River at a reasonable cost. This letter report documents work completed to date on development of a high-concentration amendment formulation and initial field-scale testing of this amendment solution.

  3. Interim Report: 100-NR-2 Apatite Treatability Test: Low Concentration Calcium Citrate-Phosphate Solution Injection for In Situ Strontium-90 Immobilization

    SciTech Connect

    Williams, Mark D.; Fritz, Brad G.; Mendoza, Donaldo P.; Rockhold, Mark L.; Thorne, Paul D.; Xie, YuLong; Bjornstad, Bruce N.; Mackley, Rob D.; Newcomer, Darrell R.; Szecsody, James E.; Vermeul, Vincent R.

    2008-07-11

    Following an evaluation of potential Sr-90 treatment technologies and their applicability under 100-NR-2 hydrogeologic conditions, U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory, and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at 100-N Area will include apatite sequestration as the primary treatment, followed by a secondary treatment if necessary (most likely phytoremediation). Since then, the agencies have worked together to agree on which apatite sequestration technology has the greatest chance of reducing Sr-90 flux to the river at a reasonable cost. In July 2005, aqueous injection, (i.e., the introduction of apatite-forming chemicals into the subsurface) was endorsed as the interim remedy and selected for field testing. Studies are in progress to assess the efficacy of in situ apatite formation by aqueous solution injection to address both the vadose zone and the shallow aquifer along the 300 ft of shoreline where Sr-90 concentrations are highest. This report describes the field testing of the shallow aquifer treatment.

  4. Pacific Northwest National Laboratory Apatite Investigation at the 100-NR-2 Quality Assurance Project Plan

    SciTech Connect

    Fix, N. J.

    2008-03-28

    This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by staff working on the 100-NR-2 Apatite Project. The U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory, and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at 100-N would include apatite sequestration as the primary treatment, followed by a secondary treatment. The scope of this project covers the technical support needed before, during, and after treatment of the targeted subsurface environment using a new high-concentration formulation.

  5. PNNL Apatite Investigation at 100-NR-2 Quality Assurance Project Plan

    SciTech Connect

    Fix, N. J.

    2009-04-02

    In 2004, the U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory (PNNL), and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at the 100-N Area would include apatite sequestration as the primary treatment, followed by a secondary treatment if necessary. Since then, the agencies have worked together to agree on which apatite sequestration technology has the greatest chance of reducing strontium-90 flux to the Columbia River. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by staff working on the PNNL Apatite Investigation at 100-NR-2 Project. The plan is designed to be used exclusively by project staff.

  6. FIELD TEST INSTRUCTION 100-NR-2 OPERABLE UNIT DESIGN OPTIMIZATION STUDY FOR SEQUESTRATION OF SR-90 SATURATED ZONE APATITE PERMEABLE REACTIVE BARRIER EXTENSION

    SciTech Connect

    BOWLES NA

    2010-10-06

    The objective of this field test instruction is to provide technical guidance for aqueous injection emplacement of an extension apatite permeable reactive barrier (PRE) for the sequestration of strontium-90 (Sr-90) using a high concentration amendment formulation. These field activities will be conducted according to the guidelines established in DOE/RL-2010-29, 100-NR-2 Design Optimization Study, hereafter referred to as the DOS. The DOS supports the Federal Facility Agreement Consent Order (EPA et al., 1989), Milestone M-16-06-01, and 'Complete Construction of a Permeable Reactive Barrier at 100-N.' Injections of apatite precursor chemicals will occur at an equal distance intervals on each end of the existing PRE to extend the PRB from the existing 91 m (300 ft) to at least 274 m (900 ft). Field testing at the 100-N Area Apatite Treatability Test Site, as depicted on Figure 1, shows that the barrier is categorized by two general hydrologic conceptual models based on overall well capacity and contrast between the Hanford and Ringold hydraulic conductivities. The upstream portion of the original barrier, shown on Figure 1, is characterized by relatively low overall well specific capacity. This is estimated from well development data and a lower contrast in hydraulic conductivity between the Hanford formation and Ringold Formations. Comparison of test results from these two locations indicate that permeability contrast between the Hanford formation and Ringold Formation is significantly less over the upstream one-third of the barrier. The estimated hydraulic conductivity for the Hanford formation and Ringold Formation over the upstream portion of the barrier based on observations during emplacement of the existing 91 m (300 ft) PRB is approximately 12 and 10 m/day (39 and 32 ft/day), respectively (PNNL-17429). However, these estimates should be used as a rough guideline only, as significant variability in hydraulic conductivity is likely to be observed in the

  7. 100-NR-2 Apatite Treatability Test: An update on Barrier Performance

    SciTech Connect

    Fritz, Brad G.; Vermeul, Vincent R.; Fruchter, Jonathan S.; Szecsody, James E.; Williams, Mark D.

    2011-05-01

    This report updates a previous report covering the performance of a permeable reactive barrier installed at 100N. In this report we re-evaluate the results after having an additional year of performance monitoring data to incorporate.

  8. Hanford Apatite Treatability Test Report Errata: Apatite Mass Loading Calculation

    SciTech Connect

    Szecsody, James E.; Vermeul, Vincent R.; Williams, Mark D.; Truex, Michael J.

    2014-05-19

    The objective of this errata report is to document an error in the apatite loading (i.e., treatment capacity) estimate reported in previous apatite treatability test reports and provide additional calculation details for estimating apatite loading and barrier longevity. The apatite treatability test final report (PNNL-19572; Vermeul et al. 2010) documents the results of the first field-scale evaluation of the injectable apatite PRB technology. The apatite loading value in units of milligram-apatite per gram-sediment is incorrect in this and some other previous reports. The apatite loading in units of milligram phosphate per gram-sediment, however, is correct, and this is the unit used for comparison to field core sample measurements.

  9. Project Work Plan 100-N Area Strontium-90 Treatability Demonstration Project: Phytoremediation Along the 100-N Columbia River Riparian Zone

    SciTech Connect

    Ainsworth, Calvin C.

    2006-04-30

    The 100-N Area Innovative Treatment and Remediation Demonstration (ITRD) identified phyto¬remediation as a potential technology both for the removal of 90Sr from the soil of the riparian zone and as a filter for groundwater along the Columbia River. Recent greenhouse and growth chamber studies have demonstrated the viability of phytoextraction to remove 90Sr from this area’s soil/water; in conjunction with monitored natural attenuation and an apatite barrier the process would make an effective treatment for remediation of the 100-N Area 90Sr plume. All activities associated with the 100-NR-1 and 100-NR-2 Operable Units of the Hanford 100-N Area have had, and continue to have, significant regulatory and stakeholder participation. Beginning in 1998 with the ITRD process, presentations to the ITRD TAG were heavily attended by EPA, Washington State Department of Ecology, and stakeholders. In addition, three workshops have been held to receive regulatory and stakeholder feedback on monitored natural attenuation, the apatite barrier, and phytoremediation; these were held in Richland in August 2003, December 2004, and August 2005. The apatite injection treatability test plan (DOE 2005) describes phytoremediation as a technology to be evaluated during the March 2008 evaluation milestone as described in the Tri-Party Agreement change request (M-16-06-01 Change Control Form). If, during this evaluation milestone, phytoremediation is favorably evaluated it would be incorporated into the treatability test plan. The phytoremediation treatability test described in this proposal is strongly supported by the Washington State Department of Ecology.

  10. Annual Summary Report Calendar Year 2000 for the 100-HR-3, 100-KR-4, and 100-NR-2 Operable Units and Pump-and-Treat Operations

    SciTech Connect

    G. B. Mitchem

    2001-08-22

    This annual progress and performance evaluation report discusses the groundwater remedial actions in the 100 Area, including the interim actions at the 100-HR-3 and 100-KR-4 Operable Units, and also discusses the expedited response action in the 100-NR-2 operable unit.

  11. Treatable Dementias

    PubMed Central

    Mahler, Michael E.; Cummings, Jeffrey L.; Benson, D. Frank

    1987-01-01

    Dementia is an acquired impairment of intellect produced by brain dysfunction. In the past, dementia was regarded as inevitably chronic, progressive and irreversible. More recently dementia has been viewed as a clinical syndrome that may be produced by both irreversible and reversible conditions. Recognition of the presence of a dementia syndrome should be followed by an evaluation for potentially treatable causes of the intellectual deterioration. Dementia treatment includes therapy for reversible or curable dementias and nonspecific interventions that may improve the condition of patients with progressive dementia syndromes. PMID:3617715

  12. Polysomatic apatites.

    PubMed

    Baikie, Tom; Pramana, Stevin S; Ferraris, Cristiano; Huang, Yizhong; Kendrick, Emma; Knight, Kevin S; Ahmad, Zahara; White, T J

    2010-02-01

    Certain complex structures are logically regarded as intergrowths of chemically or topologically discrete modules. When the proportions of these components vary systematically a polysomatic series is created, whose construction provides a basis for understanding defects, symmetry alternation and trends in physical properties. Here, we describe the polysomatic family A(5N)B(3N)O(9N + 6)X(Ndelta) (2 < or = N < or = infinity) that is built by condensing N apatite modules (A(5)B(3)O(18)X(delta)) in configurations to create B(n)O(3n + 1) (1 < or = n < or = infinity) tetrahedral chains. Hydroxyapatite [Ca(10)(PO(4))(6)(OH)(2)] typifies a widely studied polysome where N = 2 and the tetrahedra are isolated in A(10)(BO(4))(6)X(2) compounds, but N = 3 A(15)(B(2)O(7))(3)(BO(4))(3)X(3) (ganomalite) and N = 4 A(20)(B(2)O(7))(6)X(4) (nasonite) are also known, with the X site untenanted or partially occupied as required for charge balance. The apatite modules, while topologically identical, are often compositionally or symmetrically distinct, and an infinite number of polysomes is feasible, generally with the restriction being that an A:B = 5:3 cation ratio be maintained. The end-members are the N = 2 polysome with all tetrahedra separated, and N = infinity, in which the hypothetical compound A(5)B(3)O(9)X contains infinite, corner-connected tetrahedral strings. The principal characteristics of a polysome are summarized using the nomenclature apatite-(A B X)-NS, where A/B/X are the most abundant species in these sites, N is the number of modules in the crystallographic repeat, and S is the symmetry symbol (usually H, T, M or A). This article examines the state-of-the-art in polysomatic apatite synthesis and crystallochemical design. It also presents X-ray and neutron powder diffraction investigations for several polysome chemical series and examines the prevalence of stacking disorder by electron microscopy. These insights into the structure-building principles of apatite

  13. TREATABILITY DATABASE DESCRIPTION

    EPA Science Inventory

    The Drinking Water Treatability Database (TDB) presents referenced information on the control of contaminants in drinking water. It allows drinking water utilities, first responders to spills or emergencies, treatment process designers, research organizations, academics, regulato...

  14. Soil washing treatability study

    SciTech Connect

    Krstich, M.

    1995-12-01

    Soil washing was identified as a viable treatment process option for remediating soil at the FEMP Environmental Management Project (FEMP). Little information relative to the specific application and potential effectiveness of the soil washing process exists that applies to the types of soil at the FEMP. To properly evaluate this process option in conjunction with the ongoing FEMP Remedial Investigation/Feasibility Study (RI/FS), a treatability testing program was necessary to provide a foundation for a detailed technical evaluation of the viability of the process. In August 1991, efforts were initiated to develop a work plan and experimental design for investigating the effectiveness of soil washing on FEMP soil. In August 1992, the final Treatability Study Work Plan for Operable Unit 5: Soil Washing (DOE 1992) was issued. This document shall be referenced throughout the remainder of this report as the Treatability Study Work Plan (TSWP). The purpose of this treatability study was to generate data to support initial screening and the detailed analysis of alternatives for the Operable Unit 5 FS.

  15. The lunar apatite paradox.

    PubMed

    Boyce, J W; Tomlinson, S M; McCubbin, F M; Greenwood, J P; Treiman, A H

    2014-04-25

    Recent discoveries of water-rich lunar apatite are more consistent with the hydrous magmas of Earth than the otherwise volatile-depleted rocks of the Moon. Paradoxically, this requires H-rich minerals to form in rocks that are otherwise nearly anhydrous. We modeled existing data from the literature, finding that nominally anhydrous minerals do not sufficiently fractionate H from F and Cl to generate H-rich apatite. Hydrous apatites are explained as the products of apatite-induced low magmatic fluorine, which increases the H/F ratio in melt and apatite. Mare basalts may contain hydrogen-rich apatite, but lunar magmas were most likely poor in hydrogen, in agreement with the volatile depletion that is both observed in lunar rocks and required for canonical giant-impact models of the formation of the Moon. PMID:24652938

  16. 100-N Area Strontium-90 Treatability Demonstration Project: Phytoextraction Along the 100-N Columbia River Riparian Zone – Field Treatability Study

    SciTech Connect

    Fellows, Robert J.; Fruchter, Jonathan S.; Driver, Crystal J.; Ainsworth, Calvin C.

    2010-01-11

    Strontium-90 (90Sr) is present both in the aquifer near the river and in the vadose and riparian zones of the river’s shore at 100-NR-2. Phytoextraction of 90Sr is being considered as a potential remediation system along the riparian zone of the Columbia River. Phytoextraction would employ coyote willow (Salix exigua). Past studies have shown that willow roots share uptake mechanisms for Sr with Ca, a plant macronutrient as well as no discrimination between Sr and 90Sr. Willow 90Sr concentration ratios [CR’s; (pCi 90Sr/g dry wt. of new growth tissue)/(pCi 90Sr/g soil porewater)] were consistently greater than 65 with three-quarters of the assimilated label partitioned into the above ground shoot. Insect herbivore experiments also demonstrated no significant potential for bioaccumulation or food chain transfer from their natural activities. The objectives of this field study were three-fold: (1) to demonstrate that a viable, “managed” plot of coyote willows can be established on the shoreline of the Columbia River that would survive the same microenvironment to be encountered at the 100-NR-2 shoreline; (2) to show through engineered barriers that large and small animal herbivores can be prevented from feeding on these plants; and (3) to show that once established, the plants will provide sufficient biomass annually to support the phytoextraction technology. A field treatability demonstration plot was established on the Columbia River shoreline alongside the 100-K West water intake at the end of January 2007. The plot was delimited by a 3.05 m high chain-link fence and was approximately 10 x 25 m in size. A layer of fine mesh metal small animal screening was placed around the plot at the base of the fencing to a depth of 45 cm. A total of sixty plants were placed in six slightly staggered rows with 1-m spacing between plants. The actual plot size was 0.00461 hectare (ha). At the time of planting (March 12, 2007), the plot was located about 10 m from the

  17. TREATABILITY MANUAL. VOLUME V: SUMMARY

    EPA Science Inventory

    The Treatability Manual presents in five volumes an extensive survey of the effectiveness of various water pollution treatment processes when applied to particular industrial effluents. This volume summarizes volumes one through four and outlines their potential utility to Nation...

  18. Interim Report: Uranium Stabilization Through Polyphosphate Injection - 300 Area Uranium Plume Treatability Demonstration Project

    SciTech Connect

    Wellman, Dawn M.; Pierce, Eric M.; Richards, Emily L.; Butler, Bart C.; Parker, Kent E.; Glovack, Julia N.; Burton, Sarah D.; Baum, Steven R.; Clayton, Eric T.; Rodriguez, Elsa A.

    2007-07-31

    This report presents results from bench-scale treatability studies conducted under site-specific conditions to optimize the polyphosphate amendment for implementation of a field-scale technology demonstration to treat aqueous uranium within the 300 Area aquifer of the Hanford site. The general treatability testing approach consists of conducting studies with site sediment and under site conditions, in order to develop an effective chemical formulation for the polyphosphate amendments and evaluate the transport properties of these amendments under site conditions. Phosphorus-31 (31P) NMR was utilized to determine the effects of Hanford groundwater and sediment on the degradation of inorganic phosphates. Static batch tests were conducted to optimize the composition of the polyphosphate formulation for the precipitation of apatite and autunite, as well as to quantify the kinetics, loading and stability of apatite as a long-term sorbent for uranium. Dynamic column tests were used to further optimize the polyphosphate formulation for emplacement within the subsurface and the formation of autunite and apatite. In addition, dynamic testing quantified the stability of autunite and apatite under relevant site conditions. Results of this investigation provide valuable information for designing a full-scale remediation of uranium in the 300 aquifer.

  19. TREATABILITY STUDIES FOR WOOD PRESERVING SITES

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA), National Risk Management Research Laboratory (NRMRL), Site Management Support Branch, conducted a comprehensive treatability project for wood preserving sites in 1995 and 1996. This is a compilation report on the treatability studi...

  20. Challenges Associated with Apatite Remediation of Uranium in the 300 Area Aquifer

    SciTech Connect

    Wellman, Dawn M.; Fruchter, Jonathan S.; Vermeul, Vincent R.; Williams, Mark D.

    2008-05-01

    Sequestration of uranium as insoluble phosphate phases appears to be a promising alternative for treating the uranium-contaminated groundwater at the Hanford 300 Area. The proposed approach involves both the direct formation of autunite by the application of a polyphosphate mixture, as well as the formation of apatite in the aquifer as a continuing source of phosphate for long-term treatment of uranium. After a series of bench-scale tests, a field treatability test was conducted in a well at the 300 Area. The objective of the treatability test was to evaluate the efficacy of using polyphosphate injections to treat uranium-contaminated groundwater in situ. A test site consisting of an injection well and 15 monitoring wells was installed in the 300 Area near the process trenches that had previously received uranium-bearing effluents. The results indicated that while the direct formation of autunite appears to have been successful, the outcome of the apatite formation of the test was more limited. Two separate overarching issues impact the efficacy of apatite remediation for uranium sequestration within the 300 Area: 1) the efficacy of apatite for sequestering uranium under the present geochemical and hydrodynamic conditions, and 2) the formation and emplacement of apatite via polyphosphate technology. This paper summarizes these issues.

  1. Drinking Water Treatability Database (Database)

    EPA Science Inventory

    The drinking Water Treatability Database (TDB) will provide data taken from the literature on the control of contaminants in drinking water, and will be housed on an interactive, publicly-available USEPA web site. It can be used for identifying effective treatment processes, rec...

  2. Making chromosome abnormalities treatable conditions.

    PubMed

    Cody, Jannine DeMars; Hale, Daniel Esten

    2015-09-01

    Individuals affected by the classic chromosome deletion syndromes which were first identified at the beginning of the genetic age, are now positioned to benefit from genomic advances. This issue highlights five of these conditions (4p-, 5p-, 11q-, 18p-, and 18q-). It focuses on the increased in understanding of the molecular underpinnings and envisions how these can be transformed into effective treatments. While it is scientifically exciting to see the phenotypic manifestations of hemizygosity being increasingly understood at the molecular and cellular level, it is even more amazing to consider that we are now on the road to making chromosome abnormalities treatable conditions. PMID:26351122

  3. Treatability Test Plan for 300 Area Uranium Stabilization through Polyphosphate Injection

    SciTech Connect

    Vermeul, Vincent R.; Williams, Mark D.; Fritz, Brad G.; Mackley, Rob D.; Mendoza, Donaldo P.; Newcomer, Darrell R.; Rockhold, Mark L.; Williams, Bruce A.; Wellman, Dawn M.

    2007-06-01

    The U.S. Department of Energy has initiated a study into possible options for stabilizing uranium at the 300 Area using polyphosphate injection. As part of this effort, PNNL will perform bench- and field-scale treatability testing designed to evaluate the efficacy of using polyphosphate injections to reduced uranium concentrations in the groundwater to meet drinking water standards (30 ug/L) in situ. This technology works by forming phosphate minerals (autunite and apatite) in the aquifer that directly sequester the existing aqueous uranium in autunite minerals and precipitates apatite minerals for sorption and long term treatment of uranium migrating into the treatment zone, thus reducing current and future aqueous uranium concentrations. Polyphosphate injection was selected for testing based on technology screening as part of the 300-FF-5 Phase III Feasibility Study for treatment of uranium in the 300-Area.

  4. TREATABILITY MANUAL. VOLUME IV: COST ESTIMATING

    EPA Science Inventory

    The objective of the treatability program are: To provide readily accessible data and information on treatability of industrial and municipal waste streams for use by NPDES permit writers, enforcement personnel, and by industrial or municipal permit holders; To provide a basis fo...

  5. DOE Waste Treatability Group Guidance

    SciTech Connect

    Kirkpatrick, T.D.

    1995-01-01

    This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the sole basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level.

  6. [How Treatable is Vascular Dementia?].

    PubMed

    Mori, Etsuro

    2016-04-01

    Vascular dementia is an umbrella term, encompassing the pathological changes in the brain due to cerebrovascular disease that result in dementia. Vascular dementia is the second most common form of dementia, after Alzheimer's disease. In this paper, I outline the concept of vascular dementia, the key aspects of the disease that are yet to be clarified, and the current status of clinical trials. Assessing these factors, I discuss how treatable vascular dementia presently is. Use of the term'vascular dementia'is riddled with uncertainties regarding disease classification, and non-standardized diagnostic criteria. There are difficulties in determining the exact relationship between cerebrovascular pathology and cognitive impairment. The comorbid effects of Alzheimer's pathology in some individuals also present an obstacle to reliable clinical diagnosis, and hinder research into effective management approaches. Vascular dementia is preventable and treatable, as there are established primary and secondary prevention measures for the causative cerebrovascular diseases, such as vascular risk factor intervention, antiplatelet therapy, and anticoagulation, amongst others. However, unlike Alzheimer's disease, there are no established symptomatic treatments for vascular dementia. Clinical trials of cholinesterase inhibitors and memantine indicate that they produce small cognitive benefits in patients with vascular dementia, though the exact clinical significance of these is uncertain. Data are insufficient to support the widespread use of these drugs in vascular dementia. Rehabilitation and physical and cognitive exercise may be beneficial, but evidence of cognitive benefit and relief of neuropsychiatric symptoms due to exercise is lacking. PMID:27056862

  7. LABORATORY SCALE STEAM INJECTION TREATABILITY STUDIES

    EPA Science Inventory

    Laboratory scale steam injection treatability studies were first developed at The University of California-Berkeley. A comparable testing facility has been developed at USEPA's Robert S. Kerr Environmental Research Center. Experience has already shown that many volatile organic...

  8. 118-B-1 excavation treatability test plan

    SciTech Connect

    Not Available

    1994-07-01

    The Hanford 118-B-1 Burial Ground Treatability Study has been required by milestone change request {number_sign}M-15-93-04, dated September 30, 1993. The change request requires that a treatability test be conducted at the 100-B Area to obtain additional engineering information for remedial design of burial grounds receiving waste from 100 Area removal actions. This treatability study has two purposes: (1) to support development of the Proposed Plan (PP) and Record of Decision (ROD), which will identify the approach to be used for burial ground remediation, and (2) to provide specific engineering information for receiving waste generated from the 100 Area removal actions. Data generated from this test also will provide critical performance and cost information necessary for remedy evaluation in the detailed analysis of alternatives during preparation of the focused feasibility study (FFS). This treatability testing supports the following 100 Area alternatives: (1) excavation and disposal, and (2) excavation, sorting, (treatment), and disposal.

  9. GUIDE FOR CONDUCTING TREATABILITY STUDIES UNDER CERCLA

    EPA Science Inventory

    Systematically conducted, well-documented treatability studies are an important component of the removal process, remedial investigation/ feasibility study (RI/FS) process and the remedial design/remedial action (RD/RA) process under the Comprehensive Environmental Response...

  10. DEEP VADOSE ZONE TREATABILITY TEST PLAN

    SciTech Connect

    GB CHRONISTER; MJ TRUEX

    2009-07-02

    {sm_bullet} Treatability test plan published in 2008 {sm_bullet} Outlines technology treatability activities for evaluating application of in situ technologies and surface barriers to deep vadose zone contamination (technetium and uranium) {sm_bullet} Key elements - Desiccation testing - Testing of gas-delivered reactants for in situ treatment of uranium - Evaluating surface barrier application to deep vadose zone - Evaluating in situ grouting and soil flushing

  11. 100 area excavation treatability test plan

    SciTech Connect

    Not Available

    1993-05-01

    This test plan documents the requirements for a treatability study on field radionuclide analysis and dust control techniques. These systems will be used during remedial actions involving excavation. The data from this treatability study will be used to support the feasibility study (FS) process. Development and screening of remedial alternatives for the 100 Area, using existing data, have been completed and are documented in the 100 Area Feasibility Study, Phases 1 and 2 (DOE-RL 1992a). Based on the results of the FS, the Treatability Study Program Plan (DOE-RL 1992b) identifies and prioritizes treatability studies for the 100 Area. The data from the treatability study program support future focused FS, interim remedial measures (IRM) selection, operable unit final remedy selection, remedial design, and remedial actions. Excavation is one of the high-priority, near-term, treatability study needs identified in the program plan (DOE-RL 1992b). Excavation of contaminated soils and buried solid wastes is included in several of the alternatives identified in the 100 Area FS. Although a common activity, excavation has only been used occasionally at the Hanford Site for waste removal applications.

  12. Evaporative oxidation treatability test report

    SciTech Connect

    1995-04-01

    In 1992, Congress passed the Federal Facilities Compliance Act that requires the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with the Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). In response to the need for mixed-waste treatment capacity where available off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed wastes with treatment options and develop a strategy for treatment of its mixed wastes. DOE-AL manages operations at nine sites with mixed-waste inventories. The Treatment Selection Team determined a need to develop mobile treatment capacity to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste not only must address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. On the basis of recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (GJPO) are evaporative oxidation, thermal desorption, and treated wastewater evaporation. Rust Geotech, the DOE-GJPO prime contractor, was assigned to design and fabricate mobile treatment units (MTUs) for these three technologies and to deliver the MTUs to selected DOE-AL sites. To conduct treatability tests at the GJPO, Rust leased a pilot-scale evaporative oxidation unit from the Clemson Technical Center (CTC), Anderson, South Carolina. The purpose of this report is to document the findings and results of tests performed using this equipment.

  13. In-Situ Uranium Stabilization Through Polyphosphate Injection: Pilot-Scale Treatability Test at the 300 Area, Hanford Site - 8187

    SciTech Connect

    Vermeul, Vince R.; Fruchter, Jonathan S.; Fritz, Brad G.; Mackley, Rob D.; Wellman, Dawn M.; Williams, Mark D.

    2008-06-02

    This paper describes the pilot-scale treatability test that was conducted to evaluate the efficacy of using a polyphosphate injection approach to treat uranium-contaminated groundwater in situ within the 300 Area aquifer at the Hanford Site in Richland, Washington. Primary test objectives were to assess 1) direct treatment of available uranium contributing to the groundwater plume through precipitation of the uranyl phosphate mineral autunite, and 2) emplacement of secondary-treatment capacity via precipitation of the calcium phosphate mineral apatite, which acts as a long-term sorbent for uranium.

  14. TREATABILITY DATABASE FOR DRINKING WATER CHEMICALS (CCL)

    EPA Science Inventory

    The Treatability Data Base will assemble referenced data on the control of contaminants in drinking water. It will be an interactive data base, housed in an EPA, web-accessible site. It may be used for many purposes, including: identifying an effective treatment process or a se...

  15. THE DRINKING WATER TREATABILITY DATABASE (Slides)

    EPA Science Inventory

    The Drinking Water Treatability Database (TDB) assembles referenced data on the control of contaminants in drinking water, housed on an interactive, publicly-available, USEPA web site (www.epa.gov/tdb). The TDB is of use to drinking water utilities, treatment process design engin...

  16. THE DRINKING WATER TREATABILITY DATABASE (Conference Paper)

    EPA Science Inventory

    The Drinking Water Treatability Database (TDB) assembles referenced data on the control of contaminants in drinking water, housed on an interactive, publicly-available, USEPA web site (www.epa.gov/tdb). The TDB is of use to drinking water utilities, treatment process design engin...

  17. SUPERFUND TREATABILITY CLEARINGHOUSE: COMPOSITING OF EXPLOSIVES

    EPA Science Inventory

    This treatability study was conducted by Atlantic Research Corporation for the U.S. Army Toxic and Hazardous Material Agency. The objective of this bench-scale study was to determine the extent to which TNT and RDX concentrations were reduced by composting for a six week peri...

  18. Factors controlling sulfur concentrations in volcanic apatite

    USGS Publications Warehouse

    Peng, G.; Luhr, J.F.; McGee, J.J.

    1997-01-01

    Apatite crystals from two types of samples were analyzed by electron microprobe for 15 major and trace elements: (1) apatite in H2O- and S-saturated experimental charges of the 1982 El Chicho??n trachyandesite and (2) apatite in volcanic rocks erupted from 20 volcanoes. The SO3 contents of the experimental apatite increase with increasing oxygen fugacity (fo2), from ???0.04 wt% in reduced charges buffered by fayalite-magnetite-quartz (FMQ), to 1.0-2.6 wt% in oxidized charges buffered by manganosite-hausmanite (MNH) or magnetite-hematite (MTH). The SO3 contents of MNH- and MTH-buffered apatite also generally increase with increasing pressure from 2 to 4 kbar and decreasing temperature from 950 to 800??C. The partition coefficient for SO3 between apatite and oxidized melt increases with decreasing temperature but appears to be independent of pressure. Apatites in volcanic rocks show a wide range of SO3 contents (<0.04 to 0.63 wt%). Our sample set includes one group known to contain primary anhydrite and a second group inferred to have been free of primary anhydrite. No systematic differences in apatite S contents are observed between these two groups. Our study was initiated to define the factors controlling S contents in apatite and to evaluate the hypothesis that high S contents in apatite could be characteristic of S-rich anhydrite-bearing magmas such as those erupted from El Chicho??n in 1982 and Pinatubo in 1991. This hypothesis is shown to be invalid, probably chiefly a consequence of the slow intra-crystaline diffusion that limits re-equilibration between early formed apatite and the evolving silicate melt. Contributing factors include early crystallization of most apatite over a relatively small temperature interval, common late-stage magmatic enrichment of S, progressive oxidation during magmatic evolution, and strong controls on S contents in apatite exerted fo2, temperature, and pressure.

  19. 118-B-1 excavation treatability test procedures

    SciTech Connect

    Frain, J.M.

    1994-08-01

    This treatability study has two purposes: to support development of the approach to be used for burial ground remediation, and to provide specific engineering information for the design of burial grounds receiving waste generated from the 100 Area removal actions. Data generated from this test will also provide performance and cost information necessary for detailed analysis of alternatives for burial ground remediation. Further details on the test requirements, milestones and data quality objectives are described in detail in the 118-B-1 Excavation Treatability Test Plan (DOE/RL-94-43). These working procedures are intended for use by field personnel to implement the requirements of the milestone. A copy of the detailed Test Plan will be kept on file at the on-site field support trailer, and will be available for review by field personnel.

  20. Informatics guided Search for Magnetic Apatites

    NASA Astrophysics Data System (ADS)

    Balachandran, Prasanna V.; Lookman, Turab

    2015-03-01

    Materials with apatite crystal structure have applications ranging from biomaterials to electrolytes for solid oxide fuel cells. Their chemical flexibility and structural diversity provide a fertile ground to tune functionalities as potential candidates for many applications. However, magnetic apatites are rare. In this work, we use machine learning methods to rapidly screen a vast chemical space and identify novel apatite compositions with magnetic ions. We first construct a database of known materials from surveying the experimental literature. We then augment the database with features that capture the trends in geometry and bonding characteristics of apatites. Supervised classification learning form the basis of our machine learning approach through which we uncover design rules that enable prediction of potentially stable magnetic apatite compositions, prior to experimental synthesis. Finally, we validate our predictions using density functional theory calculations.

  1. An Injectable Apatite Permeable Reactive Barrier for In Situ 90Sr Immobilization

    SciTech Connect

    Vermeul, Vincent R.; Szecsody, James E.; Fritz, Brad G.; Williams, Mark D.; Moore, Robert C.; Fruchter, Jonathan S.

    2014-04-16

    An injectable permeable reactive barrier (PRB) technology was developed to sequester 90Sr in groundwater through the in situ formation of calcium-phosphate mineral phases, specifically apatite that incorporates 90Sr into the chemical structure. An integrated, multi-scale development and testing approach was used that included laboratory bench-scale experiments, an initial pilot-scale field test, and the emplacement and evaluation of a 300-ft-long treatability-test-scale PRB. Standard groundwater wells were used for emplacement of the treatment zone, allowing treatment of contaminants too deep below ground surface for trench-and-fill type PRB technologies. The apatite amendment formulation uses two separate precursor solutions, one containing a Ca-citrate complex and the other a Na-phosphate solution, to form apatite precipitate in situ. Citrate is needed to keep calcium in solution long enough to achieve a more uniform and areally extensive distribution of precipitate formation. In the summer of 2008, the apatite PRB technology was applied as a 91-m (300-ft) -long permeable reactive barrier on the downgradient edge of a 90Sr plume beneath the Hanford Site in Washington State. The technology was deployed to reduce 90Sr flux discharging to the Columbia River. Performance assessment monitoring data collected to date indicate the barrier is meeting performance objectives. The average reduction in 90Sr concentrations at four downgradient compliance monitoring locations was 95% relative to the high end of the baseline range approximately 1 year after treatment, and continues to meet remedial objectives more than 4 years after treatment.

  2. U-Pb Ages of Lunar Apatites

    NASA Technical Reports Server (NTRS)

    Vaughan, J.; Nemchin, A. A.; Pidgeon, R. T.; Meyer, Charles

    2006-01-01

    Apatite is one of the minerals that is rarely utilized in U-Pb geochronology, compared to some other U-rich accessory phases. Relatively low U concentration, commonly high proportion of common Pb and low closure temperature of U-Pb system of apatite inhibit its application as geochronological tool when other minerals such as zircon are widely available. However, zircon appear to be restricted to certain type of lunar rocks, carrying so called KREEP signature, whereas apatite (and whitlockite) is a common accessory mineral in the lunar samples. Therefore, utilizing apatite for lunar chronology may increase the pool of rocks that are available for U-Pb dating. The low stability of U-Pb systematics of apatite may also result in the resetting of the system during meteoritic bombardment, in which case apatite may provide an additional tool for the study of the impact history of the Moon. In order to investigate these possibilities, we have analysed apatites and zircons from two breccia samples collected during the Apollo 14 mission. Both samples were collected within the Fra Mauro formation, which is interpreted as a material ejected during the impact that formed the Imbrium Basin.

  3. Cyanide analyses for risk and treatability assessments

    SciTech Connect

    MacFarlane, I.D.; Elseroad, H.J.; Pergrin, D.E.; Logan, C.M.

    1994-12-31

    Cyanide, an EPA priority pollutant and target analyte, is typically measured as total. However, cyanide complexation, information which is not acquired through total cyanide analysis, is often a driver of cyanide toxicity and treatability. A case study of a former manufacture gas plant (MGP) is used to demonstrate the usability of various cyanide analytical methods for risk and treatability assessments. Several analytical methods, including cyanide amenable to chlorination and weak acid dissociable cyanide help test the degree of cyanide complexation. Generally, free or uncomplexed cyanide is more biologically available, toxic, and reactive than complexed cyanide. Extensive site testing has shown that free and weakly dissociable cyanide composes only a small fraction of total cyanide as would be expected from the literature, and that risk assessment will be more realistic considering cyanide form. Likewise, aqueous treatment for cyanide can be properly tested if cyanide form is accounted for. Weak acid dissociable cyanide analyses proved to be the most reliable (and potentially acceptable) cyanide method, as well as represent the most toxic and reactive cyanide forms.

  4. Apatite-Melt Partitioning at 1 Bar: An Assessment of Apatite-Melt Exchange Equilibria Resulting from Non-Ideal Mixing of F and Cl in Apatite

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Ustunisik, G.; Vander Kaaden, K. E.

    2016-01-01

    The mineral apatite [Ca5(PO4)3(F,Cl,OH)] is present in a wide range of planetary materials. Due to the presence of volatiles within its crystal structure (X-site), many recent studies have attempted to use apatite to constrain the volatile contents of planetary magmas and mantle sources. In order to use the volatile contents of apatite to precisely determine the abundances of volatiles in coexisting silicate melt or fluids, thermodynamic models for the apatite solid solution and for the apatite components in multi-component silicate melts and fluids are required. Although some thermodynamic models for apatite have been developed, they are incomplete. Furthermore, no mixing model is available for all of the apatite components in silicate melts or fluids, especially for F and Cl components. Several experimental studies have investigated the apatite-melt and apatite-fluid partitioning behavior of F, Cl, and OH in terrestrial and planetary systems, which have determined that apatite-melt partitioning of volatiles are best described as exchange equilibria similar to Fe-Mg partitioning between olivine and silicate melt. However, McCubbin et al. recently reported that the exchange coefficients may vary in portions of apatite compositional space where F, Cl, and OH do not mix ideally in apatite. In particular, solution calorimetry data of apatite compositions along the F-Cl join exhibit substantial excess enthalpies of mixing. In the present study, we conducted apatite-melt partitioning experiments in evacuated, sealed silica-glass tubes at approximately 1 bar and 950-1050 degrees Centigrade on a synthetic Martian basalt composition equivalent to the basaltic shergottite Queen Alexandria Range (QUE) 94201. These experiments were conducted dry, at low pressure, to assess the effects of temperature and apatite composition on the partitioning behavior of F and Cl between apatite and basaltic melt along the F-Cl apatite binary join, where there is non-ideal mixing of F and Cl

  5. Water-mediated structuring of bone apatite.

    PubMed

    Wang, Yan; Von Euw, Stanislas; Fernandes, Francisco M; Cassaignon, Sophie; Selmane, Mohamed; Laurent, Guillaume; Pehau-Arnaudet, Gérard; Coelho, Cristina; Bonhomme-Coury, Laure; Giraud-Guille, Marie-Madeleine; Babonneau, Florence; Azaïs, Thierry; Nassif, Nadine

    2013-12-01

    It is well known that organic molecules from the vertebrate extracellular matrix of calcifying tissues are essential in structuring the apatite mineral. Here, we show that water also plays a structuring role. By using solid-state nuclear magnetic resonance, wide-angle X-ray scattering and cryogenic transmission electron microscopy to characterize the structure and organization of crystalline and biomimetic apatite nanoparticles as well as intact bone samples, we demonstrate that water orients apatite crystals through an amorphous calcium phosphate-like layer that coats the crystalline core of bone apatite. This disordered layer is reminiscent of those found around the crystalline core of calcified biominerals in various natural composite materials in vivo. This work provides an extended local model of bone biomineralization. PMID:24193662

  6. A Systematic Description of Apatite Frameworks

    NASA Astrophysics Data System (ADS)

    White, T.

    2006-05-01

    Apatites of various chemistries are potentially important in chemical synthesis, clean energy and environmental remediation. The so-called 'lacunary' apatites are prospective fuel cell electrolytes, while silver analogues are potential photocatalysts, and radiation resistant silicate apatites can retain nuclear wastes. Although apatites have one-dimensional channels, as distinct from the three-dimensional channels in classic zeolites, they do display several zeolitic features including: a framework which can be tuned to accommodate different tunnel contents; an ability to accept large cations of different valance through the introduction of framework counter ions; and reversible ion exchange for some anions and cations. Most recently, it has been recognized, in both natural and synthetic materials, that intergrowth of tunnels of different size at the nanoscale is possible, a feature with important technology performance implications. This paper describes a new approach for the structural derivation of apatites from an idealized prototype that correlates chemistry and tunnel geometry, and in so doing, permits the design of new apatites and prediction of their properties.

  7. In Situ Vitrification Treatability Study Work Plan

    SciTech Connect

    Charboneau, B.L.; Landon, J.L.

    1989-03-01

    The Buried Waste Program was established in October, 1987 to accelerate the studies needed to develop a recommended long-term management plan for the buried mixed waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The In Situ Vitrification Project is being conducted in a Comprehensive Environmental Response, Compensation, and Liability Act Feasibility Study format to identify methods for the long-term management of the mixed waste buried. This In Situ Vitrification Treatability Study Work Plan gives a brief description of the site, work breakdown structure, and project organization: the in situ vitrification technology; the purpose of the tests and demonstrations; and the equipment and materials required for the tests and demonstration. 5 refs., 6 figs., 3 tabs.

  8. Apatite Formation: Why It May Not Work as Planned, and How to Conclusively Identify Apatite Compounds

    PubMed Central

    2013-01-01

    Calcium phosphate apatites are inorganic compounds encountered in many different mineralized tissues. Bone mineral, for example, is constituted of nanocrystalline nonstoichiometric apatite, and the production of “analogs” through a variety of methods is frequently reported. In another context, the ability of solid surfaces to favor the nucleation and growth of “bone-like” apatite upon immersion in supersaturated fluids such as SFB is commonly used as one evaluation index of the “bioactivity” of such surfaces. Yet, the compounds or deposits obtained are not always thoroughly characterized, and their apatitic nature is sometimes not firmly assessed by appropriate physicochemical analyses. Of particular importance are the “actual” conditions in which the precipitation takes place. The precipitation of a white solid does not automatically indicate the formation of a “bone-like carbonate apatite layer” as is sometimes too hastily concluded: “all that glitters is not gold.” The identification of an apatite phase should be carefully demonstrated by appropriate characterization, preferably using complementary techniques. This review considers the fundamentals of calcium phosphate apatite characterization discussing several techniques: electron microscopy/EDX, XRD, FTIR/Raman spectroscopies, chemical analyses, and solid state NMR. It also underlines frequent problems that should be kept in mind when making “bone-like apatites.” PMID:23984373

  9. SOIL WASHING TREATABILITY TESTS FOR PESTICIDE- CONTAMINATED SOIL

    EPA Science Inventory

    The 1987 Sand Creek Operable Unit 5 record of decision (ROD) identified soil washing as the selected technology to remediate soils contaminated with high levels of organochlorine pesticides, herbicides, and metals. Initial treatability tests conducted to assess the applicability...

  10. EPA's Drinking Water Treatability Database and Treatment Cost Models

    EPA Science Inventory

    USEPA Drinking Water Treatability Database and Drinking Water Treatment Cost Models are valuable tools for determining the effectiveness and cost of treatment for contaminants of emerging concern. The models will be introduced, explained, and demonstrated.

  11. TREATABILITY STUDIES OF PESTICIDE MANUFACTURING WASTEWATERS: ETHYLENEBISDITHIOCARBAMATE FUNGICIDES

    EPA Science Inventory

    The report gives results of laboratory and pilot studies on the biological treatability of wastewaters from the manufacture of ethylenebisdithiocarbamate (EBDC) fungicide. At concentration levels representative of EBDC production units and total plant wastewaters discharged to pu...

  12. Treatability Test Plan for an In Situ Biostimulation Reducing Barrier

    SciTech Connect

    Truex, Michael J.; Vermeul, Vince R.; Long, Philip E.; Brockman, Fred J.; Oostrom, Mart; Hubbard, Susan; Borden, Robert C.; Fruchter, Jonathan S.

    2007-07-21

    This treatability test plan supports a new, integrated strategy to accelerate cleanup of chromium in the Hanford 100 Areas. This plan includes performing a field-scale treatability test for bioreduction of chromate, nitrate, and dissolved oxygen. In addition to remediating a portion of the plume and demonstrating reduction of electron acceptors in the plume, the data from this test will be valuable for designing a full-scale bioremediation system to apply at this and other chromium plumes at Hanford.

  13. The volatile content of Vesta: Clues from apatite in eucrites

    NASA Astrophysics Data System (ADS)

    Sarafian, Adam Robert; Roden, Michael F.; PatiñO-Douce, Alberto E.

    2013-11-01

    Apatite was analyzed by electron microprobe in 3 cumulate and 10 basaltic eucrites. Eucritic apatite is fluorine-rich with minor chlorine and hydroxyl (calculated by difference). We confirmed the hydroxyl content by measuring hydroxyl directly in apatites from three representative eucrites using secondary ionization mass spectroscopy. Overall, most eucritic apatites resemble fluorine-rich lunar mare apatites, but intriguing OH- and Cl-rich apatites suggest a role for water and/or hydrothermal fluids in the Vestan interior or on other related differentiated asteroids. Most late-stage apatite found in mesostasis has little hydroxyl or chlorine and is thought to have crystallized from a degassed magma; however, several apatites exhibit atypical compositions and/or textural characteristics. For example, the isotopically anomalous basaltic eucrite Pasamonte has apatite in the mesostasis with significant OH. Apatites in Juvinas also have significant OH and occur as veinlets crosscutting silicates. Euhedral apatites in the Moore County cumulate eucrite occur as inclusions in pyroxene and are also hydroxyl-rich (0.62 wt% OH). The OH was confirmed by SIMS analysis and this apatite clearly points to the presence of water, at least locally, in the Vestan interior. Portions of Elephant Moraine (EET) 90020 have large and abundant apatites, which may be the product of apatite accumulation in a zone of melt-rock reaction. Relatively chlorine-rich apatites occur in basaltic eucrite Graves Nunataks (GRA) 98098 (approximately 1 wt% Cl). Particularly striking is the compositional similarity between apatite in GRA 98098 and apatites in lunar KREEP, which may indicate the presence of residual magmas from an asteroid-wide magma ocean on Vesta.

  14. Ultrastructural analyses of nanoscale apatite biomimetically grown on organic template

    PubMed Central

    Hong, S.I.; Lee, K.H.; Outslay, M.E.; Kohn, D.H.

    2009-01-01

    The ultrastructure of nanoscale apatite biomimetically formed on an organic template from a supersaturated mineralizing solution was studied to examine the morphological and crystalline arrangement of mineral apatites. Needle-shaped apatite crystal plates with a size distribution of ~100 to ~1000 nm and the long axis parallel to the c axis ([002]) were randomly distributed in the mineral films. Between these randomly distributed needle-shaped apatite crystals, amorphous phases and apatite crystals (~20–40 nm) with the normal of the grains quasi-perpendicular to the c axis were observed. These observations suggest that the apatite film is an interwoven structure of amorphous phases and apatite crystals with various orientations. The mechanisms underlying the shape of the crystalline apatite plate and aggregated apatite nodules are discussed from an energy-barrier point of view. The plate or needle-shaped apatite is favored in single-crystalline form, whereas the granular nodules are favored in the polycrystalline apatite aggregate. The similarity in shape in both single-crystalline needle-shaped apatite and polycrystalline granular apatite over a wide range of sizes is explained by the principle of similitude, in which the growth and shape are determined by the forces acting upon the surface area and the volume. PMID:19763228

  15. Calibration for Infrared Measurements of Water in Apatite

    NASA Astrophysics Data System (ADS)

    Wang, K. L.; Xu, Z.; Zhang, Y.

    2010-03-01

    We report a study on calibration of infrared (IR) method to determine water concentration in apatite using the elastic recoil detection (ERD) method. The calibration will allow us to constrain water content in lunar and martian apatites using IR spectra.

  16. In-Situ Uranium Stabilization Through Polyphosphate Injection: Pilot-Scale Treatability Test at the 300 Area, Hanford Site

    SciTech Connect

    Vermeul, V.R.; Fruchter, J.S.; Fritz, B.G.; Mackley, R.D.; Wellman, D.M.; Williams, M.D.

    2008-07-01

    This paper describes the pilot-scale treatability test that was conducted to evaluate the efficacy of using a polyphosphate injection approach to treat uranium-contaminated groundwater in situ within the 300 Area aquifer at the Hanford Site in Richland, Washington. Primary test objectives were to assess 1) direct treatment of available uranium contributing to the groundwater plume through precipitation of the uranyl-phosphate mineral autunite, and 2) emplacement of secondary-treatment capacity via precipitation of the calcium-phosphate mineral apatite, which acts as a long-term sorbent for uranium. Based on an injection design analysis that incorporated results from both bench-scale testing and site-specific characterization activities, a three-phase injection approach was selected for field-scale testing. This approach consisted of 1) an initial polyphosphate injection to facilitate direct treatment of aqueous uranium in the pore space, 2) a second phase consisting of a calcium chloride injection to provide an available calcium source for the creation of apatite, and 3) a subsequent polyphosphate injection to supply a phosphate source for the formation of apatite. The total-solution volume injected during this field test was approximately 3.8 million L (1 million gal). Results from this investigation will be used to identify implementation challenges and investigate the technology's ability to meet remedial objectives. In addition, data from this test will provide valuable information for designing a full-scale remedial action for uranium in groundwater beneath the 300 Area of the Hanford Site, and a detailed understanding of the fundamental underpinnings necessary to evaluate the efficacy and potential for utilization of the polyphosphate technology at other sites with varying geochemical and hydrodynamic conditions. (authors)

  17. IN SITU LEAD IMMOBILIZATION BY APATITE

    EPA Science Inventory

    Lead contamination is of environmental concern due to its effect on human health. he purpose of this study was to develop a technology to immobilize Pb in situ in contaminated soils and wastes using apatite. ydroxyapatite [Ca10(PO4)6(OH)2]was reacted with aqueous Pb, resinexchang...

  18. IN SITU LEAD IMMOBILIZATION BY APATITE

    EPA Science Inventory

    Lead contamination is of environmental concern due to its effect on human health. The purpose of this study was to develop a technology to immobilize Pb in situ in contaminated soils and wastes using apatite. Hydroxyapatite [Ca10(PO4)6(O...

  19. 100 Area groundwater biodenitrification bench-scale treatability study procedures

    SciTech Connect

    Peyton, B.M.; Martin, K.R.

    1993-05-01

    This document describes the methodologies and procedures for conducting the bench-scale biodenitrification treatability tests at Pacific Northwest Laboratory{sup a} (PNL). Biodenitrification is the biological conversion of nitrate and nitrite to gaseous nitrogen. The tests will use statistically designed batch studies to determine if biodenitrification can reduce residual nitrate concentrations to 45 mg/L, the current maximum contaminant level (MCL). These tests will be carried out in anaerobic flasks with a carbon source added to demonstrate nitrate removal. At the pilot scale, an incremental amount of additional carbon will be required to remove the small amount of oxygen present in the incoming groundwater. These tests will be conducted under the guidance of Westinghouse Hanford Company (WHC) and the 100-HR-3 Groundwater Treatability Test Plan (DOE/RL-92-73) and the Treatability Study Program Plan (DOE/RL-92-48) using groundwater from 100-HR-3. In addition to the procedures, requirements for safety, quality assurance, reporting, and schedule are given. Appendices include analytical procedures, a Quality Assurance Project Plan, a Health and Safety Plan, and Applicable Material Data Safety Sheets. The procedures contained herein are designed specifically for the 100-HR-3 Groundwater Treatability Test Plan, and while the author believes that the methods described herein are scientifically valid, the procedures should not be construed or mistaken to be generally applicable to any other treatability study.

  20. Can Polyphosphate Biochemistry Affect Biological Apatite Saturation?

    NASA Astrophysics Data System (ADS)

    Omelon, S. J.; Matsuura, N.; Gorelikov, I.; Wynnyckyj, C.; Grynpas, M. D.

    2010-12-01

    Phosphorus (P) is an important and limiting element for life. One strategy for storing ortho phosphates (Pi) is polymerization. Polymerized Pi's (polyphosphates: (PO3-)n: polyPs) serve as a Pi bank, as well as a catiion chelator, energy source, & regulator of responses to stresses in the stationary phase of culture growth and development1. PolyP biochemistry has been investigated in yeasts, bacteria & plants2. Bigeochemical cycling of P includes the condensation of Pi into pyro (P2O7-4), & polyPs, & the release of Pi from these compounds by the hydrolytic degradation of Pi from phosphomonoester bonds. Alkaline phosphatase (ALP) is one of the predominate enzymes for regenerating Pi in aquatic systems3, & it cleaves Pi from polyPs. ALP is also the enzyme associated with apatite biomineralization in vertebrates4. PolyP was proposed to be the ALP substrate in bone mineralization5. Where calcium ions are plentiful in many aquatic environments, there is no requirement for aquatic life to generate Ca-stores. However, terrestrial vertebrates benefit from a bioavailable Ca-store such as apatite. The Pi storage strategy of polymerizing PO4-3 into polyPs dovetails well with Ca-banking, as polyPs sequester Ca, forming a neutral calcium polyphosphate (Ca-polyP: (Ca(PO3)2)n) complex. This neutral complex represents a high total [Ca+2] & [PO4-3], without the threat of inadvertent apatite precipitation, as the free [Ca+2] & [PO4-3], and therefore apatite saturation, are zero. Recent identification of polyP in regions of bone resorption & calcifying cartilage5 suggests that vertebrates may use polyP chemistry to bank Ca+2 and PO4-3. In vitro experiments with nanoparticulate Ca-polyP & ALP were undertaken to determine if carbonated apatite could precipitate from 1M Ca-polyP in Pi-free “physiological fluid” (0.1 M NaCl, 2 mM Ca+2, 0.8 mM Mg+2, pH ~8.0 ±0.5, 37 °C), as this is estimated to generate the [Ca+2] & [PO4-3] required to form the apatite content of bone tissue

  1. Waste treatability guidance program. User`s guide. Revision 0

    SciTech Connect

    Toth, C.

    1995-12-21

    DOE sites across the country generate and manage radioactive, hazardous, mixed, and sanitary wastes. It is necessary for each site to find the technologies and associated capacities required to manage its waste. One role of DOE HQ Office of Environmental Restoration and Waste Management is to facilitate the integration of the site- specific plans into coherent national plans. DOE has developed a standard methodology for defining and categorizing waste streams into treatability groups based on characteristic parameters that influence waste management technology needs. This Waste Treatability Guidance Program automates the Guidance Document for the categorization of waste information into treatability groups; this application provides a consistent implementation of the methodology across the National TRU Program. This User`s Guide provides instructions on how to use the program, including installations instructions and program operation. This document satisfies the requirements of the Software Quality Assurance Plan.

  2. GUIDE FOR CONDUCTING TREATABILITY STUDIES UNDER CERCLA: SOLVENT EXTRACTION QUICK REFERENCE FACT SHEET

    EPA Science Inventory

    Systematically conducted, well-documented treatability studies are an important component of remedy evaluation and selection under the Superfund Program. his fact sheet focuses on solvent extraction treatability studies, and is highly abridged version of the guide which bears the...

  3. GUIDE FOR CONDUCTING TREATABILITY STUDIES UNDER CERCLA: CHEMICAL DEHALOGENATION (QUICK REFERENCE FACT SHEET)

    EPA Science Inventory

    Systematically conducted, well-documented treatability studies are an important component of remedy evaluation and selection under the Superfund program. his manual focuses on chemical dehalogenation treatability studies conducted in support of remedy selection that is conducted ...

  4. Sulfur evolution of the 1991 Pinatubo magmas based on apatite

    NASA Astrophysics Data System (ADS)

    Van Hoose, Ashley E.; Streck, Martin J.; Pallister, John S.; Wälle, Markus

    2013-05-01

    Using electron microprobe (EMP) and laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to collect major and rare-earth elements (REE), respectively, from apatites from the 1991 Mt. Pinatubo juvenile eruption products, we have determined that two statistically distinct populations of apatite exist. One population crystallized from the juvenile basaltic melt (basalt apatites) and the other population crystallized from the main dacitic magma body (silicic apatites). Both populations contain high-S apatites (> 0.7 wt.% SO3). Apatite has previously been shown to be a potential monitor for magmatic sulfur contents via numerous proposed coupled substitutions of P5 + for S6 +. However, simple apatite/melt partitioning cannot account for high-S silicic apatites, which grew from a silicic melt with an apparent maximum S concentration of ~ 80 ppm. Disparate apatite morphology (i.e. skeletal and acicular for basalt apatites and euhedral for silicic apatites) as well as compositional evidence reveal that high-S silicic apatites were not inherited from the juvenile basalt during mingling/mixing prior to eruption. Sulfur gain from neighboring anhydrite phenocrysts can also be ruled-out as a source of high sulfur. EMP sulfur mapping of silicic apatites shows highly irregular patterns of sulfur enrichment that do not correspond with adjacent anhydrite and can be found within apatites hosted by other minerals (e.g. hornblende and Fe-Ti oxides). With these data in mind, we propose high-S silicic apatites from Pinatubo and other sulfur-rich systems achieved elevated sulfur concentrations during high sulfur fluxing events that originated from underplated basalt during degassing of a SO2-rich fluid phase. That basalts were indeed sulfur rich and oxidized is here indicated by high S contents of apatites growing in basalt. The predominant location of S-rich areas of silicic apatite is crystal interiors of apatite inclusions in other mineral phases, while large apatite

  5. Knowing hypertension and diabetes: Conditions of treatability in Uganda.

    PubMed

    Whyte, Susan Reynolds

    2016-05-01

    In Uganda, hypertension and diabetes have only recently been included in the health policy agenda. As they become treatable disorders, they take on more distinct contours in people's minds. This article relates knowledge about these two conditions to health institutions and technology for diagnosing and treating them. The response to the AIDS epidemic in Uganda provides an important context for, and contrast with, the emergence of hypertension and diabetes as social phenomena. Ethnographic fieldwork shows the interplay between experience of these conditions and the political economy of treatability. PMID:26233676

  6. Treatability Test Plan for an In Situ Biostimulation Reducing Barrier

    SciTech Connect

    Truex, Michael J.; Vermeul, Vince R.; Long, Philip E.; Brockman, Fred J.; Oostrom, Mart; Hubbard, Susan; Borden, Robert C.; Fruchter, Jonathan S.

    2007-10-26

    This treatability test plan supports a new, integrated strategy to accelerate cleanup of chromium in the 100 Areas at the Hanford Site. This plan includes performing a field-scale treatability test for bioreduction of chromate, nitrate, and dissolved oxygen. In addition to remediating a portion of the plume and demonstrating reduction of electron acceptors in the plume, the data from this test will be valuable for designing a full-scale bioremediation system to apply at this and other chromium plumes at the Hanford Site.

  7. Lunar apatite with terrestrial volatile abundances.

    PubMed

    Boyce, Jeremy W; Liu, Yang; Rossman, George R; Guan, Yunbin; Eiler, John M; Stolper, Edward M; Taylor, Lawrence A

    2010-07-22

    The Moon is thought to be depleted relative to the Earth in volatile elements such as H, Cl and the alkalis. Nevertheless, evidence for lunar explosive volcanism has been used to infer that some lunar magmas exsolved a CO-rich and CO(2)-rich vapour phase before or during eruption. Although there is also evidence for other volatile species on glass spherules, until recently there had been no unambiguous reports of indigenous H in lunar rocks. Here we report quantitative ion microprobe measurements of late-stage apatite from lunar basalt 14053 that document concentrations of H, Cl and S that are indistinguishable from apatites in common terrestrial igneous rocks. These volatile contents could reflect post-magmatic metamorphic volatile addition or growth from a late-stage, interstitial, sulphide-saturated melt that contained approximately 1,600 parts per million H(2)O and approximately 3,500 parts per million Cl. Both metamorphic and igneous models of apatite formation suggest a volatile inventory for at least some lunar materials that is similar to comparable terrestrial materials. One possible implication is that portions of the lunar mantle or crust are more volatile-rich than previously thought. PMID:20651686

  8. TREATABILITY POTENTIAL FOR EPA LISTED HAZARDOUS WASTES IN SOIL

    EPA Science Inventory

    This study developed comprehensive screening data on the treatability in soil of: (a) specific listed hazardous organic chemicals, and (b) waste sludge from explosives production (K044) and related chemicals. Laboratory experiments were conducted using two soil types, an acidic s...

  9. LOSS OF ORGANIC CHEMICALS IN SOIL: PURE COMPOUND TREATABILITY STUDIES

    EPA Science Inventory

    Comprehensive screening data on the treatability of 32 organic chemicals in soil were developed. Of the evaluated chemicals, 22 were phenolic compounds. Aerobic batch laboratory microcosm experiments were conducted using two soils: an acidic clay soil with <1% organic matter and ...

  10. The expanded amelogenin polyproline region preferentially binds to apatite versus carbonate and promotes apatite crystal elongation

    PubMed Central

    Gopinathan, Gokul; Jin, Tianquan; Liu, Min; Li, Steve; Atsawasuwan, Phimon; Galang, Maria-Therese; Allen, Michael; Luan, Xianghong; Diekwisch, Thomas G. H.

    2014-01-01

    The transition from invertebrate calcium carbonate-based calcite and aragonite exo- and endoskeletons to the calcium phosphate-based vertebrate backbones and jaws composed of microscopic hydroxyapatite crystals is one of the great revolutions in the evolution of terrestrial organisms. To identify potential factors that might have played a role in such a transition, three key domains of the vertebrate tooth enamel protein amelogenin were probed for calcium mineral/protein interactions and their ability to promote calcium phosphate and calcium carbonate crystal growth. Under calcium phosphate crystal growth conditions, only the carboxy-terminus augmented polyproline repeat peptide, but not the N-terminal peptide nor the polyproline repeat peptide alone, promoted the formation of thin and parallel crystallites resembling those of bone and initial enamel. In contrast, under calcium carbonate crystal growth conditions, all three amelogenin-derived polypeptides caused calcium carbonate to form fused crystalline conglomerates. When examined for long-term crystal growth, polyproline repeat peptides of increasing length promoted the growth of shorter calcium carbonate crystals with broader basis, contrary to the positive correlation between polyproline repeat element length and apatite mineralization published earlier. To determine whether the positive correlation between polyproline repeat element length and apatite crystal growth versus the inverse correlation between polyproline repeat length and calcium carbonate crystal growth were related to the binding affinity of the polyproline domain to either apatite or carbonate, a parallel series of calcium carbonate and calcium phosphate/apatite protein binding studies was conducted. These studies demonstrated a remarkable binding affinity between the augmented amelogenin polyproline repeat region and calcium phosphates, and almost no binding to calcium carbonates. In contrast, the amelogenin N-terminus bound to both carbonate

  11. Chitosan/apatite composite beads prepared by in situ generation of apatite or Si-apatite nanocrystals.

    PubMed

    Davidenko, Natalia; Carrodeguas, Raúl G; Peniche, Carlos; Solís, Yaimara; Cameron, Ruth E

    2010-02-01

    The objective of this work was to develop nanocrystalline apatite (Ap) dispersed in a chitosan (CHI) matrix as a material for applications in bone tissue engineering. CHI/Ap composites of different weight ratios (20/80, 50/50 and 80/20) and with CHI of different molecular weights were prepared by a biomimetic stepwise route. Firstly, CaHPO(4).2H(2)O (DCPD) crystals were precipitated from Ca(CH(3)COO)(2) and NaHPO(4) in the bulk CHI solution, followed by the formation of CHI/DCPD beads by coacervation. The beads were treated with Na(3)PO(4)/Na(5)P(3)O(10) solution (pH 12-13) to crosslink the CHI and to hydrolyse the DCPD to nanocrystalline Ap. This new experimental procedure ensured that complete conversion of DCPD into sodium-substituted apatite was achieved without appreciable increases in its crystallinity and particle size. In addition, composites with silicon-doped Ap were prepared by substituting Na(3)PO(4) by Na(2)SiO(3) in the crosslinking/hydrolysis step. Characterization of the resultant composites by scanning electron microscopy, X-ray powder diffraction (XRD), thermal analysis and Fourier transform infrared spectroscopy confirmed the formation, within the CHI matrix, of nanoparticles of sodium- and carbonate-substituted hydroxyapatite [Ca(10-x)Na(x)(PO(4))(6-x)(CO(3))(x)(OH)(2)] with diameters less than 20nm. Relatively good correspondence was shown between the experimentally determined inorganic content and that expected theoretically. Structural data obtained from its XRD patterns revealed a decrease in both crystal domain size and cell parameters of Ap formed in situ with increasing CHI content. It was found that the molecular weight of CHI and silicate doping both affected the nucleation and growth of apatite nanocrystallites. These effects are discussed in detail. PMID:19632363

  12. Distribution of halogens during fluid-mediated apatite replacement

    NASA Astrophysics Data System (ADS)

    Kusebauch, Christof; John, Timm; Whitehouse, Martin J.

    2016-04-01

    Apatite (Ca5(PO4)3(F,Cl,OH)) is one the most abundant halogen containing minerals in the crust. It is present in many different rock types and stable up to P-T conditions of the mantle. Although probably not relevant for the halogen budget of the mantle, apatite is potentially a carrier phase of halogens into the mantle via subduction processes and therefore important for the global halogen cycle. Different partitioning behavior of the halogens between apatite and melt/fluids causes fractionation of these elements. In hydrothermal environments apatite reacts via a coupled dissolution-reprecipitation process that leads to apatite halogen compositions which are in (local) equilibrium with the hydrothermal fluid. This behavior enables apatite to be used as fluid probe and as a tool for tracking fluid evolution during fluid-rock interaction. Here, we present a combined experimental and field related study focused on replacement of apatite under hydrothermal conditions, to investigate the partitioning of halogens between apatite and fluids. Experiments were conducted in a cold seal pressure apparatus at 0.2 GPa and temperatures ranging from 400-700°C using halogen bearing solutions of different composition (KOH, NaF, NaCl, NaBr, NaI) to promote the replacement of Cl-apatite. The halogen composition of reacted apatite was analyzed by electron microprobe (EMPA) and secondary ion mass spectrometry (SIMS). The data was used to calculate partition coefficients of halogens between fluid and apatite. Our new partitioning data show that fluorine is the most compatible halogen followed by chlorine, bromine and iodine. Comparison between partition coefficients of the apatite-fluid system and coefficients derived in the apatite-melt system reveals values for F that are one to two orders of magnitude higher. In contrast, Cl and Br show a similar partition behavior in fluid and melt systems. Consequently, apatite that formed by fluid-rock interaction will fractionate F from Cl more

  13. Hanford Site Annual Treatability Studies Report, Calendar Year 2002

    SciTech Connect

    Grohs, Eugene L.

    2003-02-28

    This report provides information required to be reported annually by the Washington Administrative Code (WAC) 173-303-071 (3)(r)(ii)(F) and (3)(s)(ix) on the treatability studies conducted on the Hanford Site in 2002. These studies were conducted as required by WAC 173-303-071, “Excluded Categories of Waste,” sections (3)(r) and (s). Unless otherwise noted, the waste samples were provided by and the treatability studies were performed for the U.S. Department of Energy, Richland Operations Office, P.O. Box 550, Richland, Washington 99352. The U.S. Environmental Protection Agency identification number for these studies is WA7890008967.

  14. Treatability of manganese by sodium silicate and chlorine

    SciTech Connect

    Robinson, F.B.; Ronk, S.K. )

    1987-11-01

    Manganese sequestering by nearly simultaneous additions of sodium silicate and sodium hypochlorite was studied in laboratory-prepared waters. Under conditions of near-neutral pH and 150-250 mg/liter of alkalinity as CaCO{sub 3}, 1-2 mg manganese/liter could be sequestered for up to one day. Less effective manganese treatability was found at pH 8 than at pH 7. Additionally, at pH 7 the best results were obtained when neither silicate nor hypochlorite was added because of the slow manganese oxidation rate by oxygen alone. Aging of diluted stock silicate solutions prior to dosing also resulted in poor treatment; the presence of background silica increased the treatment effectiveness only slightly. Overall, manganese was less treatable by this method than iron under the same treatment conditions.

  15. Rare earth elements materials production from apatite ores

    NASA Astrophysics Data System (ADS)

    Anufrieva, A. V.; Andrienko, O. S.; Buynovskiy, A. S.; Makaseev, Y. N.; Mazov, I. N.; Nefedov, R. A.; Sachkov, V. I.; Stepanova, O. B.; Valkov, A. V.

    2016-01-01

    The paper deals with the study of processing apatite ores with nitric acid and extraction of the rare earth elements. The rare earth elements can be successfully separated and recovered by extraction from the nitrate- phosphate solution, being an tributyl phosphate as extraction agent. The developed scheme of the processing apatite concentrate provides obtaining rare earth concentrates with high qualitative characteristics.

  16. Psychiatric manifestations of treatable hereditary metabolic disorders in adults

    PubMed Central

    2014-01-01

    Detecting psychiatric disorders of secondary origin is a crucial concern for the psychiatrist. But how can this reliably be done among a large number of conditions, most of which have a very low prevalence? Metabolic screening undertaken in a population of subjects with psychosis demonstrated the presence of treatable metabolic disorders in a significant number of cases. The nature of the symptoms that should alert the clinician is also a fundamental issue and is not limited to psychosis. Hereditary metabolic disorders (HMD) are a rare but important cause of psychiatric disorders in adolescents and adults, the signs of which may remain isolated for years before other more specific organic signs appear. HMDs that present purely with psychiatric symptoms are very difficult to diagnose due to low awareness of these rare diseases among psychiatrists. However, it is important to identify HMDs in order to refer patients to specialist centres for appropriate management, disease-specific treatment and possible prevention of irreversible physical and neurological complications. Genetic counselling can also be provided. This review focuses on three HMD categories: acute, treatable HMDs (urea cycle abnormalities, remethylation disorders, acute intermittent porphyria); chronic, treatable HMDs (Wilson’s disease, Niemann-Pick disease type C, homocystinuria due to cystathionine beta-synthase deficiency, cerebrotendinous xanthomatosis); and chronic HMDs that are difficult to treat (lysosomal storage diseases, X-linked adrenoleukodystrophy, creatine deficiency syndrome). We also propose an algorithm for the diagnosis of HMDs in patients with psychiatric symptoms. PMID:25478001

  17. Strongly bound citrate stabilizes the apatite nanocrystals in bone

    SciTech Connect

    Hu, Y.-Y.; Rawal, A.; Schmidt-Rohr, K.

    2010-10-12

    Nanocrystals of apatitic calcium phosphate impart the organic-inorganic nanocomposite in bone with favorable mechanical properties. So far, the factors preventing crystal growth beyond the favorable thickness of ca. 3 nm have not been identified. Here we show that the apatite surfaces are studded with strongly bound citrate molecules, whose signals have been identified unambiguously by multinuclear magnetic resonance (NMR) analysis. NMR reveals that bound citrate accounts for 5.5 wt% of the organic matter in bone and covers apatite at a density of about 1 molecule per (2 nm){sup 2}, with its three carboxylate groups at distances of 0.3 to 0.45 nm from the apatite surface. Bound citrate is highly conserved, being found in fish, avian, and mammalian bone, which indicates its critical role in interfering with crystal thickening and stabilizing the apatite nanocrystals in bone

  18. Apatite as a Tool for Tracking Magmatic CO2 Contents

    NASA Astrophysics Data System (ADS)

    Riker, J.; Humphreys, M.; Brooker, R. A.

    2014-12-01

    CO2 plays a fundamental role in the evolution of magmatic and volcanic systems, but its low solubility in silicate melts means that direct records of magmatic CO2 concentrations remain elusive. The phosphate mineral apatite is unique among igneous minerals in its capacity to accommodate all major magmatic volatiles (H2O, F, Cl, CO2 and S). Although interest in apatite as a tool for tracking magmatic volatile contents (namely H2O, F, and Cl) has increased in recent years, its potential as a record of magmatic CO2contents remains untapped. We present the results of high-temperature, high-pressure experiments investigating the partitioning behaviour of CO2 between apatite and basaltic melt. Experiments were run in piston cylinder apparatus at 1 GPa and 1250 °C, with a slow initial cooling ramp employed to facilitate crystal growth. Each charge contained the starting basaltic powder doped with Ca-phosphate and variable proportions of H2O, CO2, and F. Run products are glass-rich charges containing 15-25 vol% large, euhedral apatite crystals (± cpx and minor biotite). Experimental apatites and glasses have been characterised by BSE imaging, electron microprobe, and ion microprobe. Apatites range in composition from near-endmember fluorapatite (3.0 wt% F), to near-endmember hydroxyapatite (1.7 wt% H2O), to carbon-rich apatite containing up to 1.6 wt% CO2. Apatite compositions are stoichiometric if all anions (F-, OH-, and CO32—) lie in the channel site, suggesting an "A-type" substitution under these conditions (i.e. CO32— + [] = 2X—, where X is another channel anion and [] is a vacancy; e.g. Fleet et al. 2004). Importantly, CO2 partitions readily into apatite at all fluid compositions considered here. CO2 is also more compatible in apatite than water at our run conditions, with calculated H2O-CO2 exchange coefficients close to or greater than 1. Our results indicate that when channel ions are primarily occupied by H2O and CO2 (i.e. F- and Cl-poor magmatic systems

  19. Production of spherical apatite powders—the first step for optimized thermal-sprayed apatite coatings

    NASA Astrophysics Data System (ADS)

    Lugscheider, E.; Knepper, M.; Gross, K. A.

    1992-09-01

    Regardless of the thermal spraying system, a coating can only be as good as the quality of the input powders. Powder quality in turn is dependent on the manufacturing process and conditions. Thus, it is possible to alter characteristics such as morphology, porosity, phase composition, and the mechanical strength of the individual particles. This article looks at powder agglomerations using the spray drying technique. Two different spray drying configurations were used to produce spherical apatite powders. Apatite powders could be produced with variable densities. Rotary-atomized powders possessed internal porosity as well as open porosity. More applicable for thermal spraying are the nozzle-atomized powders, which are more dense. The particle size range produced is dependent on the many parameters in the spray drying process. Hydroxyapatite is more sensitive than fluorapatite to alterations in process conditions. The powders produced were clean, free of other phases, and possessed good flowability for thermal spraying purposes.

  20. Guide for conducting treatability studies under CERCLA: Solvent extraction quick reference fact sheet

    SciTech Connect

    Rawe, J.

    1992-08-01

    Systematically conducted, well-documented treatability studies are an important component of remedy evaluation and selection under the Superfund Program. This fact sheet focuses on solvent extraction treatability studies, and is a highly abridged version of the guide which bears the same title. This fact sheet presents an abbreviated guide for designing and implementing solvent extraction treatability studies. The fact sheet presents a description of and discusses the applicability and limitations of solvent extraction technologies and defines the prescreening and field measurement data needed to determine if treatability testing is required.

  1. The treatable intellectual disability APP www.treatable-id.org: A digital tool to enhance diagnosis & care for rare diseases

    PubMed Central

    2012-01-01

    Background Intellectual disability (ID) is a devastating and frequent condition, affecting 2-3% of the population worldwide. Early recognition of treatable underlying conditions drastically improves health outcomes and decreases burdens to patients, families and society. Our systematic literature review identified 81 such inborn errors of metabolism, which present with ID as a prominent feature and are amenable to causal therapy. The WebAPP translates this knowledge of rare diseases into a diagnostic tool and information portal. Methods & results Freely available as a WebAPP via http://www.treatable-id.org and end 2012 via the APP store, this diagnostic tool is designed for all specialists evaluating children with global delay / ID and laboratory scientists. Information on the 81 diseases is presented in different ways with search functions: 15 biochemical categories, neurologic and non-neurologic signs & symptoms, diagnostic investigations (metabolic screening tests in blood and urine identify 65% of all IEM), therapies & effects on primary (IQ/developmental quotient) and secondary outcomes, and available evidence For each rare condition a ‘disease page’ serves as an information portal with online access to specific genetics, biochemistry, phenotype, diagnostic tests and therapeutic options. As new knowledge and evidence is gained from expert input and PubMed searches this tool will be continually updated. The WebAPP is an integral part of a protocol prioritizing treatability in the work-up of every child with global delay / ID. A 3-year funded study will enable an evaluation of its effectiveness. Conclusions For rare diseases, a field for which financial and scientific resources are particularly scarce, knowledge translation challenges are abundant. With this WebAPP technology is capitalized to raise awareness for rare treatable diseases and their common presenting clinical feature of ID, with the potential to improve health outcomes. This innovative digital

  2. Neutron Diffraction Studies of Carbonate Apatite

    NASA Astrophysics Data System (ADS)

    Moghaddam, Hadi Y.; Leventouri, Theodora; Chakoumakos, Bryan C.

    1998-11-01

    Moghaddam H.Y., Leventouri Th.* (Dept. of Physics & Alloy Research Center, Florida Atlantic Univ.) Chakoumakos B.C. (Solid State Division, Oak Ridge National Lab.**,kou@ornl.gov) We report Rietveld structural refinements of neutron diffraction data of a highly crystalline, single-phase natural carbonate apatite,(francolite of Epirus, Greece), in order to elucidate the details of carbonate substitution in the apatites. The composition is Ca9.56Na0.38Mg0.08(PO4)4.82(CO3)0.946(SO4)0.2F2.34, as determined by electron microprobe analysis. We report refinements of data for the native francolite as a function of temperature between 296K and 10K after the material had been heated at 750 °C to drive off adsorbed water and CO2. The neutron diffractioii@data were collected using a wavelength 1.0912 A on the HB4 high resolution powder diffractometer at the High Flux Isotope Reactor at Oak Ridge National Laboratory. Analysis of the temperature dependence of the anisotropic displacement parameters can reveal the contribution from the temperature independent static positional disorder. Difference displacement parameters evaluated along various bonding directions are being used to describe the mechanics and dynamics of the carbonate for phosphate substitution.*Supported by a SURA-ORNL Summer Cooperative Research Program 1998.**Supported by the Division of Materials Sciences,U.S. D.O.E. (contract DE-AC05-96OR22464 with Lockheed Martin Energy Research Corporation).

  3. Immobilization of uranium in contaminated soil by natural apatite addition

    SciTech Connect

    Mrdakovic Popic, Jelena; Stojanovic, Mirjana; Milosevic, Sinisa; Iles, Deana; Zildzovic, Snezana

    2007-07-01

    Available in abstract form only. Full text of publication follows: The goal of this study was to evaluate the effectiveness of Serbian natural mineral apatite as soil additive for reducing the migration of uranium from contaminated sediments. In laboratory study we investigated the sorption properties of domestic apatite upon different experimental conditions, such as pH, adsorbent mass, reaction period, concentration of P{sub 2}O{sub 5} in apatite, solid/liquid ratio. In second part of study, we did the quantification of uranium in soil samples, taken from uranium mine site 'Kalna', by sequential extraction method. The same procedure was, also, used for uranium determination in contaminated soil samples after apatite addition, in order to determine the changes in U distribution in soil fraction. The obtained results showed the significant level of immobilization (96.7%) upon certain conditions. Increase of %P{sub 2}O{sub 5} in apatite and process of mechano-chemical activation led to increase of immobilization capacity from 17.50% till 91.64%. The best results for uranium binding were obtained at pH 5.5 and reaction period 60 days (98.04%) The sequential extraction showed the presence of uranium (48.2%) in potentially available soil fractions, but with the apatite addition uranium content in these fractions decreased (30.64%), what is considering environmental aspect significant fact. In situ immobilization of radionuclide using inexpensive sequestering agents, such as apatite, is very adequate for big contaminated areas of soil with low level of contamination. This investigation study on natural apatite from deposit 'Lisina' Serbia was the first one of this type in our country. Key words: apatite, uranium, immobilization, soil, contamination. (authors)

  4. UV photofunctionalization promotes nano-biomimetic apatite deposition on titanium

    PubMed Central

    Saita, Makiko; Ikeda, Takayuki; Yamada, Masahiro; Kimoto, Katsuhiko; Lee, Masaichi Chang-Il; Ogawa, Takahiro

    2016-01-01

    Background Although biomimetic apatite coating is a promising way to provide titanium with osteoconductivity, the efficiency and quality of deposition is often poor. Most titanium implants have microscale surface morphology, and an addition of nanoscale features while preserving the micromorphology may provide further biological benefit. Here, we examined the effect of ultraviolet (UV) light treatment of titanium, or photofunctionalization, on the efficacy of biomimetic apatite deposition on titanium and its biological capability. Methods and results Micro-roughed titanium disks were prepared by acid-etching with sulfuric acid. Micro-roughened disks with or without photofunctionalization (20-minute exposure to UV light) were immersed in simulated body fluid (SBF) for 1 or 5 days. Photofunctionalized titanium disks were superhydrophilic and did not form surface air bubbles when immersed in SBF, whereas non-photofunctionalized disks were hydrophobic and largely covered with air bubbles during immersion. An apatite-related signal was observed by X-ray diffraction on photofunctionalized titanium after 1 day of SBF immersion, which was equivalent to the one observed after 5 days of immersion of control titanium. Scanning electron microscopy revealed nodular apatite deposition in the valleys and at the inclines of micro-roughened structures without affecting the existing micro-configuration. Micro-roughened titanium and apatite-deposited titanium surfaces had similar roughness values. The attachment, spreading, settling, proliferation, and alkaline phosphate activity of bone marrow-derived osteoblasts were promoted on apatite-coated titanium with photofunctionalization. Conclusion UV-photofunctionalization of titanium enabled faster deposition of nanoscale biomimetic apatite, resulting in the improved biological capability compared to the similarly prepared apatite-deposited titanium without photofunctionalization. Photofunctionalization-assisted biomimetic apatite

  5. [Treatable Dementia due to Vitamin B12 and Folate Deficiency].

    PubMed

    Yoshizawa, Toshihiro

    2016-04-01

    Vitamin deficiency is one of the major causes of treatable dementia. Specifically, patients suffering from dementia frequentry display low serum levels of vitamin B(12). There is a close metabolic interaction between folate and vitamin B(12). Folate deficiency causes various neuropsychiatric symptoms, which resemble those observed in vitamin B(12) deficiency. This review summarizes, the basic pathophysiology of vitamin B(12) and folate deficiency, its clinical diagnosis, associated neuropsychiatric symptoms such as subacute combined degeneration and dementia, and epidemiological studies of cognitive decline and brain atrophy. PMID:27056859

  6. Miscellaneous chemical basin treatability study: an analysis of passive soil vapor extraction wells (PSVE)

    SciTech Connect

    Riha, B.; Rossabi, J.

    1997-12-01

    A passive soil vapor extraction (PSVE) treatability study at the Miscellaneous Chemical Basin (MCB) of the Savannah River Site (SRS) has been progressing since September 1996. The results to date on the treatability study of the PSVE system indicate that the technology is performing well.

  7. Process and equipment development for hot isostatic pressing treatability study

    SciTech Connect

    Bateman, Ken; Wahlquist, Dennis; Malewitz, Tim

    2015-03-01

    Battelle Energy Alliance (BEA), LLC, has developed processes and equipment for a pilot-scale hot isostatic pressing (HIP) treatability study to stabilize and volume reduce radioactive calcine stored at Idaho National Laboratory (INL). In 2009, the U. S. Department of Energy signed a Record of Decision with the state of Idaho selecting HIP technology as the method to treat 5,800 yd^3 (4,400 m^3) of granular zirconia and alumina calcine produced between 1953 and 1992 as a waste byproduct of spent nuclear fuel reprocessing. Since the 1990s, a variety of radioactive and hazardous waste forms have been remotely treated using HIP within INL hot cells. To execute the remote process at INL, waste is loaded into a stainless-steel or aluminum can, which is evacuated, sealed, and placed into a HIP furnace. The HIP simultaneously heats and pressurizes the waste, reducing its volume and increasing its durability. Two 1 gal cans of calcine waste currently stored in a shielded cask were identified as candidate materials for a treatability study involving the HIP process. Equipment and materials for cask-handling and calcine transfer into INL hot cells, as well as remotely operated equipment for waste can opening, particle sizing, material blending, and HIP can loading have been designed and successfully tested. These results demonstrate BEA’s readiness for treatment of INL calcine.

  8. Hydrated lime for metals immobilization and explosives transformation: Treatability study.

    PubMed

    Martin, W Andy; Larson, S L; Nestler, C C; Fabian, G; O'Connor, G; Felt, D R

    2012-05-15

    Fragmentation grenades contain Composition B (RDX and TNT) within a steel shell casing. There is the potential for off-site migration of high explosives and metals from hand grenade training ranges by transport in surface water and subsurface transport in leachate. This treatability study used bench-scale columns and mesocosm-scale laboratory lysimeters to investigate the potential of hydrated lime as a soil amendment for in situ remediation of explosives and metals stabilization in hand grenade range soils. Compared to the unamended soil there was a 26-92% reduction of RDX in the leachate and runoff water from the lime treated soils and a 66-83% reduction of zinc in the leachate and runoff water samples; where the hand grenade range metals of concern were zinc, iron, and manganese. The amended soil was maintained at the target pH of greater than 10.5 for optimum explosives decomposition. The treatability study indicated a high potential of success for scale-up to an in situ field study. PMID:22445717

  9. Hanford 100-D Area Biostimulation Treatability Test Results

    SciTech Connect

    Truex, Michael J.; Vermeul, Vincent R.; Fritz, Brad G.; Mackley, Rob D.; Mendoza, Donaldo P.; Elmore, Rebecca P.; Mitroshkov, Alexandre V.; Sklarew, Deborah S.; Johnson, Christian D.; Oostrom, Martinus; Newcomer, Darrell R.; Brockman, Fred J.; Bilskis, Christina L.; Hubbard, Susan S.; Peterson, John E.; Williams, Kenneth H.; Gasperikova, E.; Ajo-Franklin, J.

    2009-09-30

    Pacific Northwest National Laboratory conducted a treatability test designed to demonstrate that in situ biostimulation can be applied to help meet cleanup goals in the Hanford Site 100-D Area. In situ biostimulation has been extensively researched and applied for aquifer remediation over the last 20 years for various contaminants. In situ biostimulation, in the context of this project, is the process of amending an aquifer with a substrate that induces growth and/or activity of indigenous bacteria for the purpose of inducing a desired reaction. For application at the 100-D Area, the purpose of biostimulation is to induce reduction of chromate, nitrate, and oxygen to remove these compounds from the groundwater. The in situ biostimulation technology is intended to provide supplemental treatment upgradient of the In Situ Redox Manipulation (ISRM) barrier previously installed in the Hanford 100-D Area and thereby increase the longevity of the ISRM barrier. Substrates for the treatability test were selected to provide information about two general approaches for establishing and maintaining an in situ permeable reactive barrier based on biological reactions, i.e., a biobarrier. These approaches included 1) use of a soluble (miscible) substrate that is relatively easy to distribute over a large areal extent, is inexpensive, and is expected to have moderate longevity; and 2) use of an immiscible substrate that can be distributed over a reasonable areal extent at a moderate cost and is expected to have increased longevity.

  10. Insight into Biological Apatite: Physiochemical Properties and Preparation Approaches

    PubMed Central

    Liu, Quan; Matinlinna, Jukka Pekka; Chen, Zhuofan; Pan, Haobo

    2013-01-01

    Biological apatite is an inorganic calcium phosphate salt in apatite form and nano size with a biological derivation. It is also the main inorganic component of biological hard tissues such as bones and teeth of vertebrates. Consequently, biological apatite has a wide application in dentistry and orthopedics by using as dental fillers and bone substitutes for bone reconstruction and regeneration. Given this, it is of great significance to obtain a comprehensive understanding of its physiochemical and biological properties. However, upon the previous studies, inconsistent and inadequate data of such basic properties as the morphology, crystal size, chemical compositions, and solubility of biological apatite were reported. This may be ascribed to the differences in the source of raw materials that biological apatite are made from, as well as the effect of the preparation approaches. Hence, this paper is to provide some insights rather than a thorough review of the physiochemical properties as well as the advantages and drawbacks of various preparation methods of biological apatite. PMID:24078928

  11. Apatite mineralization in elasmobranch skeletons via a polyphosphate intermediate

    NASA Astrophysics Data System (ADS)

    Omelon, Sidney; Lacroix, Nicolas; Lildhar, Levannia; Variola, Fabio; Dean, Mason

    2014-05-01

    All vertebrate skeletons are stiffened with apatite, a calcium phosphate mineral. Control of apatite mineralization is essential to the growth and repair of the biology of these skeletons, ensuring that apatite is deposited in the correct tissue location at the desired time. The mechanism of this biochemical control remains debated, but must involve increasing the localized apatite saturation state. It was theorized in 1923 that alkaline phosphatase (ALP) activity provides this control mechanism by increasing the inorganic phosphate (Pi) concentration via dephosphorylation of phosphorylated molecules. The ALP substrate for biological apatite is not known. We propose that polyphosphates (polyPs) produced by mitochondria may be the substrate for biological apatite formation by ALP activity. PolyPs (PO3-)n, also known as condensed phosphates, represent a concentrated, bioavailable Pi-storage strategy. Mitochondria import Pi and synthesize phosphate polymers through an unknown biochemical mechanism. When chelated with calcium and/or other cations, the effective P-concentration of these neutrally charged, amorphous, polyP species can be very high (~ 0.5 M), without inducing phosphate mineral crystallization. This P-concentration in the low Pi-concentration biological environment offers a method of concentrating P well above an apatite supersaturation required for nucleation. Bone is the most studied mineralized skeletal tissue. However, locating and analyzing active mineralizing areas is challenging. We studied calcified cartilage skeletons of elasmobranch fishes (sharks, stingrays and relatives) to analyse the phosphate chemistry in this continually mineralizing skeleton. Although the majority of the elasmobranch skeleton is unmineralized cartilage, it is wrapped in an outer layer of mineralized tissue comprised of small tiles called tesserae. These calcified tesserae continually grow through the formation of new mineral on their borders. Co-localization of ALP and

  12. Transformation of apatite phosphorus and non-apatite inorganic phosphorus during incineration of sewage sludge.

    PubMed

    Li, Rundong; Zhang, Ziheng; Li, Yanlong; Teng, Wenchao; Wang, Weiyun; Yang, Tianhua

    2015-12-01

    The recovery of phosphorus from incinerated sewage sludge ash (SSA) is assumed to be economical. Transformation from non-apatite inorganic phosphorus (NAIP) to apatite phosphorus (AP), which has a higher bioavailability and more extensive industrial applications, was studied at 750-950°C by sewage sludge incineration and model compound incineration with a calcium oxide (CaO) additive. Thermogravimetric differential scanning calorimetry analysis and X-ray diffraction measurements were used to analyze the reactions between NAIP with CaO and crystallized phases in SSA. High temperatures stimulated the volatilization of NAIP instead of AP. Sewage sludge incineration with CaO transformed NAIP into AP, and the percentage of AP from the total phosphorus reached 99% at 950°C. Aluminum phosphate reacted with CaO, forming Ca2P2O7 and Ca3(PO4)2 at 750-950°C. Reactions between iron phosphate and CaO occurred at lower temperatures, forming Ca(PO3)2 before reaching 850°C. PMID:26113414

  13. Treatability study of pesticide-based industrial wastewater.

    PubMed

    Shah, Kinnari; Chauhan, L I; Galgale, A D

    2012-10-01

    This paper finds out appropriate treatment methods for wastewater of an Organophosphorus viz, chloropyrifos pesticide manufacturing industry. The characterization of wastewater generated during trial production of chloropyrifos was carried out. Based on the characterization of wastewater, various treatability studies were conducted. The most desirable results were obtained with treatment scheme employing acidification, chlorination with NaOCl, suspended growth biological treatment, chemical precipitation for phosphorous removal and activated carbon treatment. Acidification of wastewater helps in by-product recovery as well as reduction in COD upto 36.26%. Chlorination followed by biological treatment was found to be effective to reduce the COD level by 62.06%. To comply with permissible limits prescribed by Effluent Channel Project Ltd.(ECPL)* and Gujarat Pollution Control Board (GPCB) for discharge of industrial effluent into channel, further treatment in the form of chemical precipitation (for phosphorous removal) and granular activated carbon is suggested. PMID:25151721

  14. Apatite accumulation enhances the mechanical property of anammox granules.

    PubMed

    Lin, Y M; Lotti, T; Sharma, P K; van Loosdrecht, M C M

    2013-09-01

    The strength of granular sludge is essential for the mechanical stability of the granules. Inorganic precipitants form a major factor influencing the strength of the granules. To check the possibility of apatite accumulation in anammox granules, and study its contribution to the mechanical strength of granules, anammox granular sludge was collected from Dokhaven municipal wastewater treatment plant, the Netherlands. Mineral precipitation inside the granules was visualized by micro-computed tomography, and apatite was identified by electron probe microanalysis and X-ray powder diffraction. The mechanical strength of anammox granules was measured by a low load compression tester. The contribution of apatite to the mechanical strength was evaluated by the generalized Maxwell model. Ca-PO4 minerals are reported to accumulate in anammox granules. A transformation of Ca-PO4 happens, and apatite is the final stable form. The accumulation of apatite increases the mechanical strength of anammox granules. A fast method to monitor and evaluate the accumulation of minerals in anammox granules was proposed. PMID:23764605

  15. Tissue response of apatite-filled resin cement and titanium-reinforced apatite dental implants in dogs.

    PubMed

    Ogiso, M; Tabata, T; Nakabayashi, N; Yamashita, Y; Borgese, D

    1993-01-01

    Abutment and root portion divided two-piece dental implants were designed to modify the one-piece dense hydroxyapatite (D-HAP) implant. The initial placement of the root portion endosseously ensured an aseptic environment and physical stability for the implant during the bone healing period. The outer D-HAP shell of the root portion was fortified by an inner titanium cylinder and cemented with an adhesive resin cement containing 4-methacryloyoxyethyl trimellitate anhydride (4-META) and reinforced by fine apatite filler. Upon attaining integration of the bone and implant, the abutment was screwed and fixed into the screw hole of the root portion. The tissue response of both the apatite-filled resin cement and root portion of the two-piece implant was studied by animal canine experiments. Light and electron microscopic examination of specimens taken from experimental animal tissue showed bone contacted directly not only the exposed apatite filler at the surface of the apatite-filled resin cement, but also the resin portion. These findings of direct bone contact suggested that the tissue response of apatite-filled resin cement was approximately similar to the usual D-HAP. Because most of the surface of the outer D-HAP shell of the root portion came in contact with bone, it prevented the deposition of contamination on the D-HAP surface during the manufacturing procedures of the root portion. PMID:10148567

  16. Tetracycline-loaded biomimetic apatite: an adsorption study.

    PubMed

    Cazalbou, Sophie; Bertrand, Ghislaine; Drouet, Christophe

    2015-02-19

    Biomimetic apatites are appealing compounds for the elaboration of bioactive bone-repair scaffolds due to their intrinsic similarity to bone mineral. Bone surgeries are however often heavy procedures, and the infiltration of pathogens may not be totally avoided. To prevent their development, systemic antibiotic prophylaxis is widespread but does not specifically target surgical sites and involves doses not always optimized. A relevant alternative is a preliminary functionalization by an infection-fighting agent. In this work, we investigated from a physicochemical viewpoint the association of a wide-spectrum antibiotic, tetracycline (TC), and a biomimetic nanocrystalline apatite previously characterized. TC adsorption kinetics and isotherm were thoroughly explored. Kinetic data were fitted to various models (pseudo-first-order, pseudo-second-order, general kinetic model of order n, Elovich, double-exponential, and purely diffusive models). The best fit was found for a double-exponential kinetic model or with a decimal reaction order of 1.4, highlighting a complex process with such TC molecules which do not expose high-affinity end groups for the surface of apatite. The adsorption isotherm was perfectly fitted to the Sips (Langmuir-Freundlich) model, while other models failed to describe it, and the Sips exponent greater than unity (1.08) suggested a joint impact of surface heterogeneity and positive cooperativity between adsorbed molecules. Finally, preliminary insights on TC release from pelletized nanocrystalline apatite, in aqueous medium and neutral pH, were obtained using a recirculation cell, indicating a release profile mainly following a Higuchi-like diffusion-limited rate. This work is intended to shed more light on the interaction between polar molecules not exhibiting high-affinity end groups and biomimetic apatites and is a starting point in view of the elaboration of biomimetic apatite-based bone scaffolds functionalized with polar organic drugs for a

  17. Characterization, physicochemical properties and biocompatibility of La-incorporated apatites.

    PubMed

    Guo, D G; Wang, A H; Han, Y; Xu, K W

    2009-11-01

    In this study, the physicochemical properties and biocompatibilities of La-containing apatites were intensively investigated together with their characterizations in terms of composition, structure, valent state and morphology using X-ray diffraction, Fourier-transform infrared spectra, X-ray photoelectron spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy, respectively. The results indicate that the La(3+) ion can be incorporated into the crystal lattice of hydroxyapatite resulting in the production of La-incorporated apatites (La(x)Ca(10-x)(PO(4))(6)(OH)(2+x-2y)O(y square y-x) (x> or =0.5, y<1+x/2) or La(x)Ca(10-x)(PO(4))(6)O(y square y-x) (0.5apatites. In contrast to La-free apatite, La-incorporated apatites possess a series of attractive properties, including higher thermal stability, higher flexural strength, lower dissolution rate, larger alkaline phosphatase activity, preferable osteoblast morphology and comparable cytotoxicity. In particular, the sintered La-incorporated apatite block achieves a maximal flexure strength of 66.69+/-0.98 MPa at 5% La content (confidence coefficient 0.95), increased 320% in comparison with the La-free apatite. The present study suggests that the La-incorporated apatite possesses application potential in developing a new type of bioactive coating material for metal implants and also as a promising La carrier for further exploring the beneficial functions of La in the human body. PMID:19477306

  18. Calibration for Infrared Measurements of OH in Apatite

    NASA Astrophysics Data System (ADS)

    Wang, K. L.; Naab, F.; Zhang, Y.

    2010-12-01

    Apatite is a common accessory mineral, and OH in apatite can indicate the fluid conditions of crystal formation. Previously, water (OH) concentration in apatite has often been estimated through electron microprobe analyses combined with mineral stoichiometry. However, the detection limit, precision, and accuracy of this method are not high. In this work, we calibrated the infrared spectroscopy (IR) method for measurement of OH concentration in apatite by using elastic recoil detection (ERD) analysis to obtain the absolute OH concentration. Large apatite wafers were cut perpendicular to the c-axis of each crystal and doubly polished. ERD measurements were carried out in the Michigan Ion Beam Laboratory at the University of Michigan to determine the hydrogen concentration in each sample. Each ERD spectrum was fitted and a hydrogen standard was used to quantify the hydrogen concentrations. Polarized transmission IR was used on apatite sections that were cut parallel to the c-axis, and doubly polished. IR measurements were made for E-vector parallel to the c-axis. Because the OH peak is intense, very thin samples must be used to avoid absorbance saturation; the thinnest sample (corresponding to the highest OH content) used was 17 µm thick. Four different apatite crystals were successfully analyzed using both the IR and ERD methods. Two were from Durango, Mexico; one from Imilchil, High Atlas Mountains, Morocco; and one from an unknown locality, purchased online from gem dealers. The OH peak near 3550 cm-1 was a relatively simple peak in all four samples. Therefore peak height was used for the absorbance value, A. Using the Beer-Lambert Law, a calibration line was established (R2= 0.95, for IR aperture of 50 µm x 50 µm) where the weight % of H2O is 0.013 times A/d, where d is the thickness in mm. The detection limit of H2O concentration in apatite by IR approaches ppm level for 0.1 mm wafers, the precision is better than 1% relative (depending on H2O content), and

  19. Composition dependent thermal annealing behaviour of ion tracks in apatite

    NASA Astrophysics Data System (ADS)

    Nadzri, A.; Schauries, D.; Mota-Santiago, P.; Muradoglu, S.; Trautmann, C.; Gleadow, A. J. W.; Hawley, A.; Kluth, P.

    2016-07-01

    Natural apatite samples with different F/Cl content from a variety of geological locations (Durango, Mexico; Mud Tank, Australia; and Snarum, Norway) were irradiated with swift heavy ions to simulate fission tracks. The annealing kinetics of the resulting ion tracks was investigated using synchrotron-based small-angle X-ray scattering (SAXS) combined with ex situ annealing. The activation energies for track recrystallization were extracted and consistent with previous studies using track-etching, tracks in the chlorine-rich Snarum apatite are more resistant to annealing than in the other compositions.

  20. LOGAN WASH FIELD TREATABILITY STUDIES OF WASTEWATERS FROM OIL SHALE RETORTING PROCESSES

    EPA Science Inventory

    Treatability studies were conducted on retort water and gas condensate wastewater from modified in-situ oil shale retorts to evaluate the effectiveness of selected treatment technologies for removing organic and inorganic contaminants. At retorts operated by Occidental Oil Shale,...

  1. TOXICITY TREATABILITY OF IRON AND STEEL PLANT WASTEWATERS: A RESOURCE DOCUMENT

    EPA Science Inventory

    The report gives results of an assessment of the toxicity treatability of wastewaters from eight steelmaking subcategories, all considered assessable under the somewhat low production levels of the study period. Tests were conducted using prescribed procedures for conventional wa...

  2. SUMMARY PLAN FOR BENCH-SCALE REFORMER AND PRODUCT TESTING TREATABILITY STUDIES USING HANFORD TANK WASTE

    SciTech Connect

    ROBBINS RA

    2011-02-11

    This paper describes the sample selection, sample preparation, environmental, and regulatory considerations for shipment of Hanford radioactive waste samples for treatability studies of the FBSR process at the Savannah River National Laboratory and the Pacific Northwest National Laboratory.

  3. EPA’s Drinking Water Treatability Database: A Tool for All Drinking Water Professionals

    EPA Science Inventory

    The Drinking Water Treatability Database (TDB) is being developed by the USEPA Office of Research and Development to allow drinking water professionals and others to access referenced information gathered from thousands of literature sources and assembled on one site. Currently, ...

  4. GUIDE FOR CONDUCTING TREATABILITY STUDIES UNDER CERCLA: THERMAL DESORPTION - INTERIM GUIDANCE

    EPA Science Inventory

    Systematically conducted, well-documented treatability studies are an important component of the remedial investigation/feasibility study (RI/FS) process and the remedial design remedial action (RD/RA) process under the Comprehensive Environmental Response, Compensation, and Liab...

  5. GUIDE FOR CONDUCTING TREATABILITY STUDIES UNDER CERCLA: AEROBIC BIODEGRADATION REMEDY SCREENING

    EPA Science Inventory

    Systematically conducted, well-documented treatability studies are an important component of the remedial investigation/feasibility study (KU FS) process and the remedial design/remedial action (RD/RA) process under the Comprehensive Environmental Response, Compensation, and L...

  6. Carbon and oxygen isotopes in apatite CO/sub 2/ and co-existing calcite

    SciTech Connect

    Kolodny, Y.; Kaplan, I. R.

    1981-04-01

    Carbon and oxygen isotopes were analyzed in carbonate apatite CO/sub 2/ and in co-existing calcite. Both C and O in apatite CO/sub 2/ are enriched in the respective light isotopes relative to calcite. These results confirm the proposition that carbonate is part of the apatite structure.

  7. Treatability study Number PDC-1-O-T. Final report

    SciTech Connect

    1998-04-22

    Los Alamos National Laboratory provided treatability study samples from four waste streams, designated Stream {number_sign}1, Stream {number_sign}3, Stream {number_sign}6, and Stream {number_sign}7. Stream {number_sign}1 consisted of one 55-gallon drum of personal protective equipment (PPE), rags, and neutralizing agent (bicarbonate) generated during the cleanup of a sodium dichromate solution spill. Stream {number_sign}3 was one 55-gallon drum of paper, rags, lab utensils, tools, and tape from the decontamination of a glovebox. The sample of Stream {number_sign}6 was packaged in three 30-gallon drums and a 100 ft{sup 3} wooden box. It consisted of plastic sheeting, PPE, and paper generated from the cleanup of mock explosive (barium nitrate) from depleted uranium parts. Stream {number_sign}7 was scrap metal (copper, stainless and carbon steel joined with silver solder) from the disassembly of gas manifolds. The objective of the treatability study is to determine: (1) whether the Perma-Fix stabilization/solidification process can treat the waste sample to meet Land Disposal Restrictions and the Waste Acceptance Criteria for LANL Technical Area 54, Area G, and (2) optimum loading and resulting weight and volume of finished waste form. The stabilized waste was mixed into grout that had been poured into a lined drum. After each original container of waste was processed, the liner was closed and a new liner was placed in the same drum on top of the previous closed liner. This allowed an overall reduction in waste volume but kept waste segregated to minimize the amount of rework in case analytical results indicated any batch did not meet treatment standards. Samples of treated waste from each waste stream were analyzed by Perma-Fix Analytical Services to get a preliminary approximation of TCLP metals. Splits of these samples were sent to American Environmental Network`s mixed waste analytical lab in Cary, NC for confirmation analysis. Results were all below applicable

  8. Ultrastructural observation of single-crystal apatite fibres.

    PubMed

    Aizawa, Mamoru; Porter, Alexandra E; Best, Serena M; Bonfield, William

    2005-06-01

    Hydroxyapatite (HAp) has been widely used as a biomaterial for substituting human hard tissues such as bone. By altering the morphology of HAp crystals, novel properties may be produced by controlling the orientation of the crystal planes. Apatite fibres were successfully synthesized by precipitation from aqueous solutions containing Ca(NO(3))(2), (NH(4))(2)HPO(4), urea and HNO(3). The products were composed of carbonate-containing apatite fibres with preferred orientation along the {h00} planes. Examination of individual fibres using transmission electron microscopy showed that the as-synthesized apatite fibres were highly strained single crystals with the c-axis orientation parallel to the long axis of the fibre. The crushed fibres consisted of domains that were preferentially oriented with the c-axis parallel to the long axis of the fibres. When the apatite fibres were heated to 800, 1000 and 1200 degrees C for 1h, the domains were removed and grain boundaries, dislocations and voids were formed. PMID:15621231

  9. Apatite as a paleohydrothermal fluid recorder in Carlin-type gold deposits

    NASA Astrophysics Data System (ADS)

    Barker, S. L.; Hickey, K. A.; Dipple, G. M.; Layne, G.

    2009-05-01

    Apatite is a common accessory mineral in most rocks. A variety of trace elements can be substituted into apatite, meaning that apatite has the potential to record changes in the chemistry of ore-forming hydrothermal fluids. This study focuses on variations in apatite texture and chemistry around the world-class Carlin-type Au deposits of NE Nevada. These deposits are characterized by cryptic alteration of calcareous and siliciclastic sedimentary rocks induced by acidic, low-temperature (150-220 °C) ore fluids. A large database of apatite fission track (AFT) samples collected from NE Nevada (Hickey, unpublished data) is being used to examine relationships between apatite fission track ages, textural zonation within apatite crystals and apatite trace element composition. AFT data from "background" samples collected away from hydrothermal mineralization and Cenozoic igneous stocks reveal that regional uplift occurred in the Cretaceous at ~70-60 Ma. In comparison, AFT data from samples around gold mineralization reveal an Eocene heating event, interpreted as the result of hydrothermal reheating by the Carlin Au-forming system (Cline et al., 2005). Optical cathodoluminescence observations reveal that some apatite from Au-bearing material (Eocene AFT age) has embayed cores, and at least four generations of overgrowths (typically ˜10 μm wide overgrowths), which may also be embayed. In comparison, apatite from hydrothermally altered, but unmineralized, material has a single overgrowth generation. 'Background' apatites do not have significant overgrowths. Current research is characterizing the trace element composition of apatite cores and overgrowths via SIMS. We propose that apatite textures and trace element composition record hydrothermal fluid interactions. Applications include using apatite to detect the signature of hydrothermal fluids in rocks cryptically altered by low-temperature hydrothermal systems, or detecting mineralization by examining detrital apatites

  10. Apatite: a new redox proxy for silicic magmas?

    NASA Astrophysics Data System (ADS)

    Miles, Andrew; Graham, Colin; Hawkesworth, Chris; Gillespie, Martin; Bromiley, Geoff; Hinton, Richard

    2015-04-01

    The oxidation states of magmas provide valuable information about the release and speciation of volatile elements during volcanic eruptions, metallogenesis, source rock compositions, open system magmatic processes, tectonic settings and potentially titanium (Ti) activity in chemical systems used for Ti-dependent geothermometers and geobarometers. In this presentation we explore the use of Mn in apatite as an oxybarometer in intermediate and silicic igneous rocks. Increased Mn concentrations in apatite in granitic rocks from the zoned Criffell granitic pluton (southern Scotland) correlate with decreasing Fe2O3 (Fe3+) and Mn in the whole-rock and likely reflect increased Mn2+/Mn3+and greater compatibility of Mn2+ relative to Mn3+ in apatite under reduced conditions. Fe3+/Fe2+ ratios in biotites have previously been used to calculate oxygen fugacities (fO2) in the outer zone granodiorites and inner zone granites where redox conditions have been shown to change from close to the magnetite-hematite buffer to close to the nickel-nickel oxide buffer respectively[1]. This trend is apparent in apatite Mn concentrations from a range of intermediate to silicic volcanic rocks that exhibit varying redox states and are shown to vary linearly and negatively with log fO2, such that logfO2=-0.0022(±0.0003)Mn(ppm)-9.75(±0.46) Variations in the Mn concentration of apatites appear to be largely independent of differences in the Mn concentration of the melt. Apatite Mn concentrations may therefore provide an independent oxybarometer that is amenable to experimental calibration, with major relevance to studies on detrital mineral suites, particularly those containing a record of early Earth redox conditions, and on the climatic impact of historic volcanic eruptions[2]. [1] Stephens, W. E., Whitley, J. E., Thirlwall, M. F. and Halliday, A. N. (1985) The Criffell zoned pluton: correlated behaviour of rare earth element abundances with isotopic systems. Contributions to Mineralogy and

  11. [Treatable neurometabolic diseases. Association with schizophrenia spectrum disorders].

    PubMed

    Bonnot, Olivier; Herrera, Paula; Kuster, Alice

    2015-09-01

    Schizophrenia spectrum disorders are presented on 1% of subjects over general population. Organic pathologies prevalence in schizophrenia spectrum patients is not well determined, and it is probably underestimated. In the present update review, we are going to highlight seven treatable neurometabolic diseases (NMD) associated to sub-clinic neurological symptoms. It is not infrequent to witness the absence of any clinical neurological signs going along with the NMD. Psychiatric symptoms may be the only clinical alarm that can guide physicians to an acute diagnosis. This is why it is a challenging pathology, defying our clinical accuracy as psychiatrist or any other practitioners confronted to this population. Hereby we are going to expose a literature review and comprehensive tables in order to present in a glance the essential clinical features of disorders of homocysteine metabolism, urea cycle disorders, Niemann-Pick disease type C, acute porphyria, cerebrotendinous-xanthomatosis. These conditions are sensible to major improvement strongly correlated to the accuracy of diagnosis. Literature analysis led us to propose a comprehensive list of atypical psychiatric symptoms including highly predominant visual hallucinations, compared to auditory ones, as well as confusion, catatonia or progressive cognitive decline. We highlight the importance of considering antipsychotic treatment resistance as a crucial sign leading to suspect an organic factor beneath the psychiatric features. PMID:26248708

  12. [Episacral lipoma: a treatable cause of low back pain].

    PubMed

    Erdem, Hatice Rana; Nacır, Barış; Özeri, Zuhal; Karagöz, Aynur

    2013-01-01

    Episacral lipoma is a small, tender subcutaneous nodule primarily occurring over the posterior iliac crest. Episacral lipoma is a significant and treatable cause of acute and chronic low back pain. Episacral lipoma occurs as a result of tears in the thoracodorsal fascia and subsequent herniation of a portion of the underlying dorsal fat pad through the tear. This clinical entity is common, and recognition is simple. The presence of a painful nodule with disappearance of pain after injection with anaesthetic, is diagnostic. Medication and physical therapy may not be effective. Local injection of the nodule with a solution of anaesthetic and steroid is effective in treating the episacral lipoma. Here we describe 2 patients with painful nodules over the posterior iliac crest. One patient complained of severe lower back pain radiating to the left lower extremity and this patient subsequently underwent disc operation. The other patient had been treated for greater trochanteric pain syndrome. In both patients, symptoms appeared to be relieved by local injection of anaesthetic and steroid. Episacral lipoma should be considered during diagnostic workup and in differential diagnosis of acute and chronic low back pain. PMID:23720083

  13. Treatability study for the stabilization of chromium contaminated waste

    SciTech Connect

    McGahan, J.F.; Martin, D.

    1994-12-31

    A process has been developed which immobilizes chromium in calcined uranyl nitrate mixed waste, resulting in a waste form disposable as radioactive, non hazardous waste. A prime contractor at the Idaho National Engineering Laboratory generates a radioactive waste contaminated with chromium. During handling, the waste becomes contaminated at a concentration sufficiently high to cause the waste to exceed the EPA`s Toxicity Characteristic Leaching Procedure (TCLP) leachable limit for chromium. A treatability test program was instigated to define the optimum conditions for the chemical reduction pretreatment step necessary for the stabilization of the contaminated waste. Sodium dithionite was determined to be the reducing agent of choice. A dithionite demand experiment was run to determine optimum dithionite dose. This dose, plus 67 percent excess, was added to each sample. Four different stabilization systems, at three different dosage levels, were investigated. The best performing reagent system was chosen for scale-up and more stringent performance testing. In one of the tested reagent systems, Portland cement sodium silicate and dithionite, all of the samples exhibited TCLP extract concentrations for chromium well below the regulatory limit. Portland cement/blast furnace slag blend had one passing sample, and for cement/fly ash and cement alone none of the samples had passing values for leachable chromium. The samples scaled-up passed the performance criteria and the process which is currently undergoing implementation at INEL has successfully converted mixed waste into radioactive waste for disposal.

  14. Firm contracts for treatability tests on contaminated soils

    SciTech Connect

    Not Available

    1989-08-01

    Geosafe Corporation, a Pacific Northwest-headquartered hazardous waste remediation company, announced that is has successfully completed treatability testing of contaminated soils under contract with Woodward Clyde Consultants of Denver, Colorado, the prime contractor for a major hazardous waste site in the Western United States. The tests are being conducted at the University of Washington with Geosafe's specially-designed test equipment. The recently concluded testing confirms the ability of Geosafe's patented in situ vitrification (ISV) technology to treat soils containing a variety of organic and inorganic contaminants. ISV, for which Geosafe has worldwide rights, is the only technology available today that will fully comply with the Superfund Amendments and Reauthorization Act. The ability of ISV to treat mixtures of organic, inorganic and radioactive wastes in situ, in a single process, offers distinct advantages over excavation, transportation and incineration. During the ISV process, organic contaminants are pyrolized and the inorganics present are chemically incorporated into the molten soil which, when cooled, resembles naturally-occurring obsidian.

  15. Solidifications/stabilization treatability study of a mixed waste sludge

    SciTech Connect

    Spence, R.D.; Stine, E.F.

    1996-03-01

    The Department of Energy Oak Ridge Operations Office signed a Federal Facility Compliance Agreement with the US Environmental Protection Agency Region IV regarding mixed wastes from the Oak Ridge Reservation (ORR) subject to the land disposal restriction provisions of the Resource Conservation and Recovery Act (RCRA). This agreement required treatability studies of solidification/stabilization (S/S) on mixed wastes from the ORR. This paper reports the results of the cementitious S/S studies conducted on a waste water treatment sludge generated from biodenitrification and heavy metals precipitation. For the cementitious waste forms, the additives tested were Portland cement, ground granulated blast furnace slag, Class F fly ash, and perlite. The properties measured on the treated waste were density, free-standing liquid, unconfined compressive strength, and TCLP performance. Spiking up to 10,000, 10,000, and 4,400 mg/kg of nickel, lead, and cadmium, respectively, was conducted to test waste composition variability and the stabilization limitations of the binding agents. The results indicated that nickel, lead and cadmium were stabilized fairly well in the high pH hydroxide-carbonate- ``bug bones`` sludge, but also clearly confirmed the established stabilization potential of cementitious S/S for these RCRA metals.

  16. SUPERFUND TREATABILITY CLEARINGHOUSE: BENGART AND MEMEL (BENCH-SCALE), GULFPORT (BENCH AND PILOT-SCALE), MONTANA POLE (BENCH-SCALE), AND WESTERN PROCESSING (BENCH-SCALE) TREATABILITY STUDIES

    EPA Science Inventory

    This document presents summary data on the results of various treatability studies (bench and pilot scale), conducted at three different sites where soils were contaminated with dioxins or PCBs. The synopsis is meant to show rough performance levels under a variety of differen...

  17. SUPERFUND TREATABILITY CLEARINGHOUSE: ABSTRACT ON-SITE INCINERATION TESTING OF SHIRCO INFRARED SYSTEMS PORTABLE DEMONSTRATION UNIT-CONTAMINATED SOILS TREATABILITY STUDY

    EPA Science Inventory

    In August of 1986, Shirco was contracted by Dekonta GmbH, a Vest German hazardous waste treatment company, to perform treatability studies at one of the largest dioxin-contaminated sites in the world. The Shirco Infrared process was selected by Dekonta after a two year stud...

  18. Dependence of ion concentration in simulated body fluid on apatite precipitation on titania surface

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Akira; Nakano, Masayuki; Hieda, Junko; Ohtake, Naoto; Akasaka, Hiroki

    2015-08-01

    Titanium and its alloys are used as biomaterials, because of their high biocompatibility. Apatite precipitates on a titania surface in vivo, and living bone and titanium alloy are coupled through the thin apatite layer. The initial precipitation behavior of apatite on titania in simulated body fluid (SBF) solutions was evaluated and the effect of inorganic ions in the SBF was investigated. Measurement using the SPR phenomenon was used to evaluate the initial apatite precipitation. An SBF containing approximately equal ion concentrations to those in blood plasma was added to a titania surface and the SPR profile was obtained, from which the initial apatite precipitation rate was found to be 1.14 nm/h. Furthermore, the relationship between the inorganic concentration and the precipitation rate was determined for SBFs with different Na+ and Ca2+ concentrations. Apatite precipitation did not occur in the SBF with a low Na+ concentration, whereas the initial apatite precipitation rate in the SBF that did not contain Ca2+ was 0.32 nm/h. According to these results, Ca2+ has little effect on the initial apatite precipitation. In the initial reaction of apatite precipitation, sodium titanate is formed by the absorption of Na+. Next, calcium titanate precipitates upon the substitution of Na+ with Ca2+. Finally, Na+, phosphate ions and hydroxyl ions are attracted to the surface and apatite is formed. Thus, the rate-limiting factor in the initial nucleation of apatite is the Na+ concentration.

  19. Treatability of chromite ore processing waste by leaching.

    PubMed

    Unlü, K; Haskök, S

    2001-06-01

    Developing treatment and disposal strategies and health-based clean-up standards for chromium containing wastes continues to be an important environmental regulatory issue because of the opposing solubility and toxicity characteristics of chromium species under diverse environmental conditions. In this study, leaching characteristics of total Cr and Cr(VI) were investigated using laboratory column studies. The data obtained from the experimental studies were analysed to assess the treatability of chromite ore processing waste (COPW) by leaching and to identify the leaching strategies that enhance mass removal rates of chromium species. COPW used for laboratory soil column studies was obtained from an industrial plant producing sodium chromate in Mersin, Turkey. Laboratory investigations involved chemical characterisation of waste material and column studies. For waste characterisation, U.S. EPA toxicity characterisation leaching procedure (TCLP) was performed on COPW to determine the concentrations of metal species in the TCLP extract. For column studies, various laboratory columns containing plain COPW material, 1:1 COPW/reducing agent (elemental iron or manure) mixture and different type soils (sand, loam and clay) overlain by COPW were subjected to leaching tests using acidic, neutral and alkaline influent water to determine Cr mass leaching efficiencies. Based on the TCLP analyses, COPW is classified as hazardous waste. As a result of comparing the leaching efficiency data from twelve leaching columns, the maximum removal of total Cr was achieved by leaching COPW/manure mixture using acidic (pH 4.78) influent water. The highest Cr(VI) leaching efficiency was achieved in the columns of plain COPW and COPW/manure mixture using highly alkaline (pH 12.0) influent water. The least effective leaching efficiency for both total Cr and Cr (VI) was obtained by leaching plain COPW with neutral (pH 7.0) influent water. Land-disposal of the treated COPW material by mixing

  20. Consideration of grain packing in granular iron treatability studies.

    PubMed

    Firdous, R; Devlin, J F

    2014-08-01

    Commercial granular iron (GI) is light steel that is used in Permeable Reactive Barriers (PRBs). Investigations into the reactivity of GI have focused on its chemical nature and relatively little direct work has been done to account for the effects of grain shape and packing. Both of these factors are expected to influence available grain surface area, which is known to correlate to reactivity. Commercial granular iron grains are platy and therefore pack in preferential orientations that could affect solution access to the surface. Three packing variations were investigated using Connelly Iron and trichloroethylene (TCE). Experimental kinetic data showed reaction rates 2-4 times higher when grains were packed with long axes preferentially parallel to flow (VP) compared to packings with long axes preferentially perpendicular to flow (HP) or randomly arranged (RP). The variations were found to be explainable by variations in reactive sorption capacities, i.e., sorption to sites where chemical transformations took place. The possibility that the different reactive sorption capacities were related to physical pore-scale differences was assessed by conducting an image analysis of the pore structure of sectioned columns. The analyses suggested that pore-scale factors - in particular the grain surface availability, reflected in the sorption capacity terms of the kinetic model used - could only account for a fraction of the observed reactivity differences between packing types. It is concluded that packing does affect observable reaction rates but that micro-scale features on the grain surfaces, rather than the pore scale characteristics, account for most of the apparent reactivity differences. This result suggests that treatability tests should consider the packing of columns carefully if they are to mimic field performance of PRBs to the greatest extent possible. PMID:25005796

  1. Laser-SNMS analysis of apatite formation in vitro

    NASA Astrophysics Data System (ADS)

    Dambach, S.; Fartmann, M.; Kriegeskotte, C.; Brüning, C.; Wiesmann, H. P.; Lipinsky, D.; Arlinghaus, H. F.

    2004-06-01

    We have applied nonresonant laser secondary neutral mass spectrometry (Laser-SNMS) to examine different states of biomineralization in vitro. Primary osteoblast-like cells derived from bovine metacarpals were cultured for 5 weeks on clean smooth silicon substrates. For mass spectrometric investigations, the cells and newly formed mineral were cryofixed, freeze-fractured, and freeze-dried. The results indicate that in the vicinity of single osteoblasts, extracellular enrichment of potassium typically occurs during the initial stages of mineralization. Potassium may interact with matrix macromolecules and prevent an uncontrolled apatite deposition. However, apatite biomineral formation is correlated with a potassium release. In conclusion, potassium seems to be involved in the process of extracellular matrix biomineralization.

  2. Thermodynamic Mixing Behavior Of F-OH Apatite Crystalline Solutions

    NASA Astrophysics Data System (ADS)

    Hovis, G. L.

    2011-12-01

    It is important to establish a thermodynamic data base for accessory minerals and mineral series that are useful in determining fluid composition during petrologic processes. As a starting point for apatite-system thermodynamics, Hovis and Harlov (2010, American Mineralogist 95, 946-952) reported enthalpies of mixing for a F-Cl apatite series. Harlov synthesized all such crystalline solutions at the GFZ-Potsdam using a slow-cooled molten-flux method. In order to expand thermodynamic characterization of the F-Cl-OH apatite system, a new study has been initiated along the F-OH apatite binary. Synthesis of this new series made use of National Institute of Standards and Technology (NIST) 2910a hydroxylapatite, a standard reference material made at NIST "by solution reaction of calcium hydroxide with phosphoric acid." Synthesis efforts at Lafayette College have been successful in producing fluorapatite through ion exchange between hydroxylapatite 2910a and fluorite. In these experiments, a thin layer of hydroxylapatite powder was placed on a polished CaF2 disc (obtained from a supplier of high-purity crystals for spectroscopy), pressed firmly against the disc, then annealed at 750 °C (1 bar) for three days. Longer annealing times did not produce further change in unit-cell dimensions of the resulting fluorapatite, but it is uncertain at this time whether this procedure produces a pure-F end member (chemical analyses to be performed in the near future). It is clear from the unit-cell dimensions, however, that the newly synthesized apatite contains a high percentage of fluorine, probably greater than 90 mol % F. Intermediate compositions for a F-OH apatite series were made by combining 2910a hydroxylapatite powder with the newly synthesized fluorapatite in various proportions, then conducting chemical homogenization experiments at 750 °C on each mixture. X-ray powder diffraction data indicated that these experiments were successful in producing chemically homogeneous

  3. The biomimetic apatite-cefalotin coatings on modified titanium.

    PubMed

    Kang, Min-Kyung; Lee, Sang-Bae; Moon, Seung-Kyun; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2012-02-01

    Dental implant failure often occurs due to oral bacterial infection. The aim of this study was to demonstrate that antibiotic efficacy could be enhanced with modified titanium. First, the titanium was modified by anodization and heat-treatment. Then, a biomimetic coating process was completed in two steps. Surface characterization was performed with scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. Release of antibiotic was evaluated by UV/VIS spectrometry, and the antibacterial effect was evaluated on Streptococcus mutans. After the second coating step, we observed a thick homogeneous apatite layer that contained the antibiotic, cefalotin. The titanium formed a rutile phase after the heat treatment, and a carbonated apatite phase appeared after biomimetic coating. We found that the modified titanium increased the loading of cefalotin onto the hydroxyapatite coated surface. The results suggested that modified titanium coated with a cefalotin using biomimetic coating method might be useful for preventing local post-surgical implant infections. PMID:22277612

  4. Synthesis and characterization of strontium-lanthanum apatites

    SciTech Connect

    Boughzala, K.; Salem, E. Ben; Chrifa, A. Ben; Gaudin, E.; Bouzouita, K. . E-mail: khaled.bouzouita@ipeim.rnu.tn

    2007-07-03

    Two series of strontium-lanthanum apatites, Sr{sub 10-x}La {sub x}(PO{sub 4}){sub 6-x}(SiO{sub 4}) {sub x}F{sub 2} and Sr{sub 10-x}La {sub x}(PO{sub 4}){sub 6-x}(SiO{sub 4}) {sub x}O with 0 {<=} x {<=} 6, were synthesized by solid state reaction in the temperature range of 1200-1400 deg. C. The obtained materials were characterized by powder X-ray diffraction, infrared absorption spectroscopy and solid {sup 31}P Nuclear Magnetic Resonance. Pure solid solutions were obtained within a limited range of unsubstituted phosphate and silicate apatites. A variation of the lattice parameters was observed, with an increase of a and a decrease of c parameters, related to the radius of the corresponding substituted ions.

  5. Situ formation of apatite for sequestering radionuclides and heavy metals

    DOEpatents

    Moore, Robert C.

    2003-07-15

    Methods for in situ formation in soil of a permeable reactive barrier or zone comprising a phosphate precipitate, such as apatite or hydroxyapatite, which is capable of selectively trapping and removing radionuclides and heavy metal contaminants from the soil, while allowing water or other compounds to pass through. A preparation of a phosphate reagent and a chelated calcium reagent is mixed aboveground and injected into the soil. Subsequently, the chelated calcium reagent biodegrades and slowly releases free calcium. The free calcium reacts with the phosphate reagent to form a phosphate precipitate. Under the proper chemical conditions, apatite or hydroxyapatite can form. Radionuclide and heavy metal contaminants, including lead, strontium, lanthanides, and uranium are then selectively sequestered by sorbing them onto the phosphate precipitate. A reducing agent can be added for reduction and selective sequestration of technetium or selenium contaminants.

  6. Apatite fission-track thermochronology of the Pennsylvania Appalachian Basin

    NASA Astrophysics Data System (ADS)

    Roden, Mary K.; Miller, Donald S.

    1989-09-01

    Thirty-four apatite fission-track apparent ages and twenty-four track length distributions for ash bed samples from the Valley and Ridge Province and Upper Devonian to Upper Pennsylvania sedimentary samples from the Allegheny Front and Allegheny Plateau of Pennsylvania suggest that these regions represent different thermal (uplift) regimes as well as different structural provinces. The Valley and Ridge Province Tioga and Kalkberg ash bed samples yield apatite fission-track apparent ages and track length distributions that indicate early post-Alleghanian (285-270 Ma) cooling and unroofing that began at ˜250 Ma. Assuming a geothermal gradient of 25°C km -1, a burial depth of at least 3.4 km can be estimated for all the Pennsylvania samples. At the Allegheny structural front and on the western Allegheny Plateau, the apatite fission-track apparent ages (<150 Ma) and track length measurements indicate a Late Jurassic-Early Cretaceous thermal event for these samples possibly resulting from a higher geothermal gradient coinciding with kimberlite intrusion at this time along the Greene-Potter Fault Zone. In northeast Pennsylvania on the Allegheny Plateau, the Upper Paleozoic sedimentary samples yield apatite fission-track apparent ages ≤180 Ma. Narrow track length distributions with long mean lengths (13-14 μm) and small standard deviations (1.3 μm) suggest rapid cooling from temperatures >110°C during the Middle Jurassic-Early Cretaceous for this part of Pennsylvania. This is consistent with the suggested uplift history of the Catskill Mountain region in adjacent New York State.

  7. Materials testing for in situ stabilization treatability study of INEEL mixed wastes soils

    SciTech Connect

    Heiser, J.; Fuhrmann, M.

    1997-09-01

    This report describes the contaminant-specific materials testing phase of the In Situ Stabilization Comprehensive Environment Response, Compensation, and Liability Act (CERCLA) Treatability Study (TS). The purpose of materials testing is to measure the effectiveness of grouting agents to stabilize Idaho National Engineering and Environmental Laboratory (INEEL) Acid Pit soils and select a grout material for use in the Cold Test Demonstration and Acid Pit Stabilization Treatability Study within the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC). Test results will assist the selecting a grout material for the follow-on demonstrations described in Test Plan for the Cold Test Demonstration and Acid Pit Stabilization Phases of the In Situ Stabilization Treatability Study at the Radioactive Waste Management Complex.

  8. Characterization of apatite formed on alkaline-heat-treated Ti.

    PubMed

    Chosa, N; Taira, M; Saitoh, S; Sato, N; Araki, Y

    2004-06-01

    Alkaline-heat-treated titanium self-forms an apatite surface layer in vivo. The aim of the present study was to materialistically characterize the surface of alkaline-heat-treated titanium immersed in simulated body fluid (AHS-TI) and to examine the differentiation behavior of osteoblasts on AHS-TI. SEM, thin-film XRD, FTIR, and XPS analyses revealed that AHS-TI contained a 1.0- micro m-thick, low-crystalline, and [002] direction-oriented carbonate apatite surface. Human osteoblast-like SaOS-2 cells were cultured on polystyrene, titanium, and AHS-TI, and RT-PCR analyses of osteogenic differentiation-related mRNAs were conducted. On AHS-TI, the expression of bone sialoprotein mRNA was up-regulated as compared with that on polystyrene and titanium (p < 0.05). On AHS-TI, the expression of osteopontin and osteocalcin mRNAs was up-regulated as compared with that on polystyrene (p<0.05). The results indicate that the apatite was bone-like and accelerated the osteogenic differentiation of SaOS-2, suggesting that alkaline-heat treatment might facilitate better integration of titanium implants with bone. PMID:15153453

  9. Citrate occurs widely in healthy and pathological apatitic biomineral: mineralized articular cartilage, and intimal atherosclerotic plaque and apatitic kidney stones.

    PubMed

    Reid, David G; Duer, Melinda J; Jackson, Graham E; Murray, Rachel C; Rodgers, Allen L; Shanahan, Catherine M

    2013-09-01

    There is continuing debate about whether abundant citrate plays an active role in biomineralization of bone. Using solid state NMR dipolar dephasing, we examined another normally mineralized hard tissue, mineralized articular cartilage, as well as biocalcifications arising in pathological conditions, mineralized intimal atherosclerotic vascular plaque, and apatitic uroliths (urinary stones). Residual nondephasing ¹³C NMR signal at 76 ppm in the spectra of mineralized cartilage and vascular plaque indicates that a quaternary carbon atom resonates at this frequency, consistent with the presence of citrate. The presence, and as yet unproven possible mechanistic involvement, of citrate in tissue mineralization extends the compositional, structural, biogenetic, and cytological similarities between these tissues and bone itself. Out of 10 apatitic kidney stones, five contained NMR-detectable citrate. Finding citrate in a high proportion of uroliths may be significant in view of the use of citrate in urolithiasis therapy and prophylaxis. Citrate may be essential for normal biomineralization (e.g., of cartilage), play a modulatory role in vascular calcification which could be a target for therapeutic intervention, and drive the formation of apatitic rather than other calcific uroliths, including more therapeutically intractable forms of calcium phosphate. PMID:23780351

  10. Partition coefficients of Hf, Zr, and REE between zircon, apatite, and liquid

    USGS Publications Warehouse

    Fujimaki, H.

    1986-01-01

    Concentration ratios of Hf, Zr, and REE between zircon, apatite, and liquid were determined for three igneous compositions: two andesites and a diorite. The concentration ratios of these elements between zircon and corresponding liquid can approximate the partition coefficient. Although the concentration ratios between apatite and andesite groundmass can be considered as partition coefficients, those for the apatite in the diorite may deviate from the partition coefficients. The HREE partition coefficients between zircon and liquid are very large (100 for Er to 500 for Lu), and the Hf partition coefficient is even larger. The REE partition coefficients between apatite and liquid are convex upward, and large (D=10-100), whereas the Hf and Zr partition coefficients are less than 1. The large differences between partition coefficients of Lu and Hf for zircon-liquid and for apatite-liquid are confirmed. These partition coefficients are useful for petrogenetic models involving zircon and apatite. ?? 1986 Springer-Verlag.

  11. Potential routes to carbon inclusion in apatite minerals: a DFT study

    NASA Astrophysics Data System (ADS)

    Rabone, J. A. L.; de Leeuw, N. H.

    2007-09-01

    We have conducted a computational study to investigate a number of possible routes for the incorporation of carbon into apatites. Using density functional theory (DFT) we have calculated geometry optimised structures for fluor- and hydroxy-apatites with and without various substitutions. We have studied several different carbonate substitutions, pure carbonate and pure formate apatites, neutral carbon atoms occupying interstices, and carbon dioxide and acetylene absorbed in oxyapatite.

  12. [Age and gender changes of apatites from human hard tooth tissues].

    PubMed

    Pikhur, O L; Ryzhak, G A; Iordanishvili, A K; Iankovskiĭ, V V; D'iakonov, M M

    2014-01-01

    Apatites of hard tissues of teeth of persons of different sex and age were studied in detail. It is shown that the crystal structure of apatites depends on changes in the composition of the enamel that happen during a person's life. Limits of the variations of the crystal lattice parameters of the enamel apatites connected with the complicate processes of de- and remineralization have been determined. On the basis of the identified correlations between chemical composition, crystal lattice parameters and age of patients, the complicated interrelated isomorphic replacements occurring in the crystal structure of apatites of hard tooth tissues during aging were analysed. PMID:25946859

  13. Lu-Hf and PbSL geochronology of apatites from Proterozoic terranes: A first look at Lu-Hf isotopic closure in metamorphic apatite

    NASA Astrophysics Data System (ADS)

    Barfod, Gry Hoffmann; Krogstad, Eirik Jens; Frei, Robert; Albarède, Francis

    2005-04-01

    The mineral apatite is characterized by elevated and highly variable Lu/Hf ratios that, in some cases, allow for single-crystal dating by the Lu-Hf isotopic system. Apatites from the Adirondack Lowlands and Otter Lake area in the Grenville Province, and from the Black Hills, South Dakota, yield Lu-Hf ages that are consistently older than their respective Pb step leaching ages. Isotopic closure for the Lu-Hf system, therefore, occurs before U-Pb system closure in this mineral. In the Adirondack Lowlands, where H 2O activity was low, Lu-Hf systematics of cm-sized apatite crystals remained undisturbed during upper amphibolite facies metamorphism (˜700 to 675 °C) at 1170-1130 Ma. The relatively old Lu-Hf ages of 1270 and 1230 Ma observed for these apatites correlate with decreasing crystal size. In contrast, apatite from the fluid-rich Otter Lake area and Black Hills yields unrealistically low apparent Lu-Hf closure temperatures, implying that in these apatites, fluids facilitated late exchange. The Lu-Hf ages for the metamorphic apatites were thus controlled either by the prevailing temperature and grain size, or by fluid activity.

  14. BIOLOGICAL TREATABILITY OF KRW ENERGY SYSTEMS GASIFIER PDU (PROCESS DEVELOPMENT UNIT) WASTEWATERS

    EPA Science Inventory

    The report gives results of bench-scale biological treatability tests with wastewaters produced from the KRW Energy Systems gasifier process development unit (KRW-PDU). Goals of the tests were to assess the biotreatability of these aqueous wastes and to develop data for correlati...

  15. Innovative Approach for Development of Drinking Water Research Data in the EPA Treatability Database

    EPA Science Inventory

    In recent years, funding for development of the TDB has been limited due to Federal budget constraints. As a result, EPA adopted an innovative approach to continue the development of new contaminants and maintenance of treatability information on over 60 existing drinking water ...

  16. SUPERFUND TREATABILITY CLEARINGHOUSE: TRIAL BURN TEST REPORT, PART 1 - DATA SUMMARIES

    EPA Science Inventory

    This treatability study summary reports on the results of a trial burn of pesticide-contaminated soil from the Aberdeen, NC Superfund site. The trial burn using the Vesta mobile rotary kiln incinerator was designed to demonstrate that this system can destroy the pestici...

  17. SUPERFUND TREATABILITY CLEARINGHOUSE: EXTRACTIVE METHODS FOR SOIL DECONTAMINATION, A GENERAL SURVEY AND REVIEW OPERATIONAL TREATMENT INSTALLATIONS

    EPA Science Inventory

    The treatability study report provides a general overview of soil decontamination by extraction and reports on the field application of three specific different soil washing/solvent extraction systems. Each system is similar in design and removed contaminants from soil includ...

  18. SUPERFUND TREATABILITY CLEARINGHOUSE: INPUT/OUTPUT DATA FOR SEVERAL TREATMENT TECHNOLOGIES

    EPA Science Inventory

    This treatability study is a pilot-scale evaluation of a thin-film evaporator (TFE) for volatile organics (VO) removal from oily sludges such as refinery sludges. TFEs were studied to evaluate their use to remove and recover VO from these sludges prior to land treatment. This w...

  19. In-Situ Chemical Reduction and Oxidation of VOCs in Groundwater: Groundwater Treatability Studies

    NASA Technical Reports Server (NTRS)

    Keith, Amy; Glasgow, Jason; McCaleh, Rececca C. (Technical Monitor)

    2001-01-01

    This paper presents NASA Marshall Space Flight Center's treatability studies for volatile organic compounds in groundwater. In-Situ groundwater treatment technologies include: 1) Chemical Reduction(Ferox); 2) Chemical Oxidation (Fenton Reagents, Permanganate, and Persulfate); and 3) Thermal (Dynamic Underground Stripping, Six-Phase Heating). This paper is presented in viewgraph form.

  20. GUIDE FOR CONDUCTING TREATABILITY STUDIES UNDER CERCLA: SOLVENT EXTRACTION - INTERIM GUIDANCE

    EPA Science Inventory

    Systematically conducted, well-documented treatability studies are an important component of the remedial investigation/feasibility study (RI/FS) process and the remedial design/remedial action (RD/RA) process under the Comprehensive Environmental Response, Compensation and Liabi...

  1. GUIDE TO CONDUCTING TREATABILITY STUDIES UNDER CERCLA: SOIL WASHING - INTERIM GUIDANCE

    EPA Science Inventory

    Systematically conducted, well-documented treatability studies are an important component of the remedial investigation/feasibility study (RI/FS) process and the remedial design/remedial action (RD/RA) process under the Comprehensive Environmental Response, Compensation, and Liab...

  2. Innovative Approach for Development of Drinking Water Research Data in the EPA Treatability Database - abstract

    EPA Science Inventory

    In recent years, funding for development of the TDB has been limited due to Federal budget constraints. As a result, EPA adopted an innovative approach to continue the development of new contaminants and maintenance of treatability information on over 60 existing drinking water ...

  3. SUPERFUND TREATABILITY CLEARINGHOUSE: CERCLA BDAT SARM PREPARATION AND RESULTS OF PHYSICAL SOILS WASHING EXPERIMENTS (FINAL REPORT)

    EPA Science Inventory

    This study reports on the results of work preparing 30,000 Ibs of SARM or synthetic analytical reference matrix, a surrogate Superfund soil containing a vide range of contaminants. It also reports the results ©f bench scale treatability experiments designed to simulate the EP...

  4. Crystal Chemistry of Th in Apatite: Geochemistry and Environmental Implications

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Rakovan, J.; Elzinga, E.; Pan, Y.; Hughes, J.

    2006-05-01

    Understanding the crystal chemistry of nuclear waste forms is critical to proper evaluation of their potential use and stability. Because of apatite's ability to incorporate rare earth elements and actinides, there is great interest in it as a solid nuclear waste form and an engineered contaminant barrier. However, the crystal chemistry of actinides in the apatite structure is still poorly understood. Through the complementary use of single crystal X-ray diffraction and X-ray absorption spectroscopy, we present here the first direct results on the site occupancy of thorium in apatite structure and the structural distortion created by its substitution. Single crystal X-ray diffraction data were used to refine the structure and site occupancies of a synthetic fluorapatite with approximately 2 wt% Th in the structure. The structure refinements of three separate crystals with R = 0.0167-0.0217 indicate that Th substitutes almost extensively into the Ca2 site. The value of ThCa(2)/ThCa(1), calculated per individual site to account for the different multiplicity of the two Ca sites, is 6.5. X-ray absorption spectroscopy was used to probe the local structure of Th in this synthetic fluorapatite (single crystal form), as well as Th in a natural fluorapatite (powder form) from Mineville, NY with the Th concentration of approximately 2000 ppm. The results from extend X-ray absorption fine structure (EXAFS) also indicate that Th partitions into the Ca2 site and yields Th specific bond distances which are not obtainable from single crystal X-ray diffraction.

  5. Thermal expansion of solid solutions in apatite binary systems

    SciTech Connect

    Knyazev, Alexander V.; Bulanov, Evgeny N. Korokin, Vitaly Zh.

    2015-01-15

    Graphical abstract: Thermal dependencies of volume thermal expansion parameter for with thermal expansion diagrams for Pb{sub 5}(PO{sub 4}){sub 3}F{sub x}Cl{sub 1−x}. - Highlights: • Solid solutions in three apatitic binary systems were investigated via HT-XRD. • Thermal expansion coefficients of solid solutions in the systems were calculated. • Features of the thermal deformation of the apatites were described. • Termoroentgenography is a sensitive method for the investigation of isomorphism. - Abstract: High-temperature insitu X-ray diffraction was used to investigate isomorphism and the thermal expansion of apatite-structured compounds in three binary systems in the entire temperature range of the existence of its hexagonal modifications. Most of the studied compounds are highly expandable (α{sub l} > 8 × 10{sup 6} (K{sup −1})). In Pb{sub 5}(PO{sub 4}){sub 3}F–Pb{sub 5}(PO{sub 4}){sub 3}Cl system, volume thermal expansion coefficient is independence from the composition at 573 K. In Pb{sub 5}(PO{sub 4}){sub 3}Cl–Pb{sub 5}(VO{sub 4}){sub 3}Cl, the compound with equimolar ratio of substituted atoms has constant volume thermal expansion coefficient in temperature range 298–973 K. Ca{sub 5}(PO{sub 4}){sub 3}Cl–Pb{sub 5}(PO{sub 4}){sub 3}Cl system is characterized by the most thermal sensitive composition, in which there is an equal ratio of isomorphic substituted atoms.

  6. Developing biogeochemical tracers of apatite weathering by ectomycorrhizal fungi

    NASA Astrophysics Data System (ADS)

    Vadeboncoeur, M. A.; Bryce, J. G.; Hobbie, E. A.; Meana-Prado, M. F.; Blichert-Toft, J.

    2012-12-01

    Chronic acid deposition has depleted calcium (Ca) from many New England forest soils, and intensive harvesting may reduce phosphorus (P) available to future rotations. Thin glacial till soils contain trace amounts of apatite, a primary calcium phosphate mineral, which may be an important long-term source of both P and Ca to ecosystems. The extent to which ECM fungi enhance the weathering rate of primary minerals in soil which contain growth-limiting nutrients remains poorly quantified, in part due to biogeochemical tracers which are subsequently masked by within-plant fractionation. Rare earth elements (REEs) and Pb isotope ratios show some potential for revealing differences in soil apatite weathering rates across forest stands and silvicultural treatments. To test the utility of these tracers, we grew birch seedlings semi-hydroponically under controlled P-limited conditions, supplemented with mesh bags containing granite chips. Our experimental design included nonmycorrhizal (NM) as well as ectomycorrhizal cultures (Cortinarius or Leccinum). Resulting mycorrhizal roots and leachates of granite chips were analyzed for these tracers. REE concentrations in roots were greatly elevated in treatments with granite relative to those without granite, demonstrating uptake of apatite weathering products. Roots with different mycorrhizal fungi accumulated similar concentrations of REEs and were generally elevated compared to the NM cultures. Ammonium chloride leaches of granite chips grown in contact with mycorrhizal hyphae show elevated REE concentrations and significantly radiogenic Pb isotope signatures relative to bulk rock, also supporting enhanced apatite dissolution. Our results in culture are consistent with data from field-collected sporocarps from hardwood stands in the Bartlett Experimental Forest in New Hampshire, in which Cortinarius sporocarp Pb isotope ratios were more radiogenic than those of other ectomycorrhizal sporocarps. Taken together, the experimental

  7. H-Isotopic Composition of Apatite in Northwest Africa 7034

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Barnes, J. J.; Santos, A. R.; Boyce, J. W.; Anand, M.; Franchi, I. A.; Agee, C. B.

    2016-01-01

    Northwest Africa (NWA) 7034 and its pairings comprise a regolith breccia with a basaltic bulk composition [1] that yields a better match than any other martian meteorite to estimates of Mars' bulk crust composition [1]. Given the similarities between NWA 7034 and the martian crust, NWA 7034 may represent an important sample for constraining the crustal composition of components that cannot be measured directly by remote sensing. In the present study, we seek to constrain the H isotopic composition of the martian crust using Cl-rich apatite in NWA 7034.

  8. Pilot-scale treatability test plan for the 200-UP-1 groundwater Operable Unit

    SciTech Connect

    Wittreich, C.D.

    1994-05-01

    This document presents the treatability test plan for pilot-scale pump and treat testing at the 200-UP-1 Operable Unit. This treatability test plan has been prepared in response to an agreement between the US Department of Energy, the US Environmental Protection Agency, and the Washington State Department of Ecology, as documented in Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1989a) Change Control Form M-13-93-03 (Ecology et al. 1994). The agreement also requires that, following completion of the activities described in this test plan, a 200-UP-1 Operable Unit interim remedial measure (IRM) proposed plan be developed for use in preparing an interim action record of decision (ROD). The IRM Proposed Plan will be supported by the results of the testing described in this treatability test plan, as well as by other 200-UP-1 Operable Unit activities (e.g., limited field investigation, development of a qualitative risk assessment). Once issued, the interim action ROD will specify the interim action for groundwater contamination at the 200-UP-1 Operable Unit. The approach discussed in this treatability test plan is to conduct a pilot-scale pump and treat test for the contaminant plume associated with the 200-UP-1 Operable Unit. Primary contaminants of concern are uranium and technetium-99; the secondary contaminant of concern is nitrate. The pilot-scale treatability testing presented in this test plan has as its primary purpose to assess the performance of aboveground treatment systems with respect to the ability to remove the primary contaminants in groundwater withdrawn from the contaminant plume.

  9. Commercial treatability study capabilities for application to the US Department of Energy`s anticipated mixed waste streams. Revision 1

    SciTech Connect

    1996-09-01

    US DOE mixed low-level and mixed transuranic waste inventory was estimated at 181,000 cubic meters (about 2,000 waste streams). Treatability studies may be used as part of DOE`s mixed waste management program. Commercial treatability study suppliers have been identified that either have current capability in their own facilities or have access to licensed facilities. Numerous federal and state regulations, as well as DOE Order 5820.2A, impact the performance of treatability studies. Generators, transporters, and treatability study facilities are subject to regulation. From a mixed- waste standpoint, a key requirement is that the treatability study facility must have an NRC or state license that allows it to possess radioactive materials. From a RCRA perspective, the facility must support treatability study activities with the applicable plans, reports, and documentation. If PCBs are present in the waste, TSCA will also be an issue. CERCLA requirements may apply, and both DOE and NRC regulations will impact the transportation of DOE mixed waste to an off-site treatment facility. DOE waste managers will need to be cognizant of all applicable regulations as mixed-waste treatability study programs are initiated.

  10. In vitro apatite formation on polyamide containing carboxyl groups modified with silanol groups.

    PubMed

    Kawai, Takahiro; Ohtsuki, Chikara; Kamitakahara, Masanobu; Hosoya, Kayo; Tanihara, Masao; Miyazaki, Toshiki; Sakaguchi, Yoshimitsu; Konagaya, Shigeji

    2007-06-01

    Modification of organic polymer with silanol groups in combination with calcium salts enables the polymer to show bioactivity, that is, the polymer forms apatite on its surface after exposure to body environment. However, how modification with silanol groups influences ability of apatite formation on the polymer substrate and adhesive strength between polymer and apatite is not yet known. In the present study, polyamide containing carboxyl groups was modified with different amounts of silanol groups, and its apatite-forming ability in 1.5SBF, which contained ion concentrations 1.5 times those of simulated body fluid (SBF), was examined. The rate of apatite formation increased with increasing content of silanol groups in the polyamide films. This may be attributed to enhancement of dipole interactions. A tendency for the adhesive strength of the apatite layer on the polyamide film to be decreased with increasing content of silanol groups was observed. This may be attributed to swelling in 1.5SBF and having a high degree of shrinkage after drying. These findings clearly show that modification of organic polymers with the functional groups induces apatite deposition, and also determines the adhesive strength of the apatite layer to the organic substrates. PMID:17243002

  11. TREATMENT OF ACID MINE DRAINAGE USING FISHBONE APATITE IITM

    SciTech Connect

    Neal A. Yancey

    2006-10-01

    ABSTRACT. In 2000, a reactive barrier was installed on the East Fork of Ninemile Creek near Wallace, Idaho to treat acid mine discharge. The barrier was filled with fishbone derived Apatite IITM to remove the contaminants of concern (Zn, Pb, and Cd) and raise the pH of the acidic mine discharge. Metal removal has been achieved by a combination of chemical, biological, and physical precipitation. Flow for the water ranges from 5 to 35 gallons per minute. The water is successfully being treated, but the system experienced varying degrees of plugging. In 2002, gravel was mixed with the Apatite IITM to help control plugging. In 2003 the Idaho National Laboratory was ask to provide technical support to the Coeur d’Alene Basin Commission to help identify a remedy to the plugging issue. Air sparging was employed to treat the plugging issues. Plastic packing rings were added in the fall of 2005, which have increased the void space in the media and increased flows during the 10 months of operation since the improvements were made.

  12. Crystal growth of apatite by replacement of an aragonite precursor

    NASA Astrophysics Data System (ADS)

    Kasioptas, Argyrios; Geisler, Thorsten; Putnis, Christine V.; Perdikouri, Christina; Putnis, Andrew

    2010-08-01

    The replacement of aragonite by apatite is a process that occurs naturally during diagenesis, chemical weathering and natural hydrothermal reactions and is artificially promoted in medical sciences for use of the product material as a bone implant. We have investigated the mechanism and the kinetics of this replacement by using biogenic aragonite (cuttlebone of the Sepia officinalis) as a starting material and reacting it with di-ammonium hydrogen phosphate solution. Isothermal experiments were carried out over a range of temperatures up to 190 °C. Quantification of each solid phase, for different reaction times, was obtained by the Rietveld analysis of powder X-ray diffraction patterns. An empirical activation energy was calculated by using two different approaches to analyze the data. Scanning electron microscopy showed that the fine structure of the cuttlebone was perfectly retained even after aragonite had been completely converted to apatite. We present a detailed investigation of the kinetics of a reaction that involves interaction of a solid phase with an aqueous fluid and leads to a pseudomorphic replacement of the initial solid phase by a new, chemically different, phase. This replacement process is described in terms of an interface-coupled dissolution-reprecipitation mechanism.

  13. Self Attenuation of Gamma Rays in Titanite, Zircon and Apatite

    NASA Astrophysics Data System (ADS)

    Walsh, C. N.; Baskaran, M.; Brownlee, S. J.; Eakin, M.

    2013-12-01

    Several of the gamma-emitting U-Th series, cosmogenic and anthropogenic radionuclides (210Pb, 234Th, 226Ra, 228Ra, 7Be, 137Cs, etc) have been widely utilized as tracers and chronometers in environmental studies. Precise measurements of these nuclides using gamma-ray spectrometry in environmental matrices require that the proper correction factors for self- and external-absorption be applied. In this study, we examine factors associated with absorption and self attenuation of gamma-rays of 210Pb (46.5 keV), 234Th (63 keV), 226Ra (via 214Pb and 214Bi, 351.9 and 609 keV) and 228Ra (via 228Ac, 338.3 and 911.2 keV) using a well-type germanium gamma-ray detector. Samples of three naturally occurring minerals (titanite, apatite and zircon) were separated into 5 size fractions (<63 μm, 63-125 μm, 125-250 μm, 250-500 μm, and >500 μm) and analyzed for 210Pb, 234Th, 226Ra, and 228Ra. We also analyzed two synthetic silica standards (RGU-1, RGTH-1) that have a relatively uniform grain size of 63 μm. These minerals were chosen based on their varying chemical compositions and densities. Chosen samples are of an age that isotopes of 238U and 232Th are expected to be in secular equilibrium with their daughter products. However, the measured activity ratios between members of the family vary widely. In the case of titanite, the 210Pb/226Ra ratios in 5 size fractions varied between 0.44×0.03 and 0.53×0.03, while in apatite it varied between 0.54×0.03 and 0.67×0.04, without applying any self- and external-absorption correction factors. Using the attenuation coefficients of constituent elements at different energies, we estimate the attenuation coefficient for each of these 4 minerals and determine the self- and external-absorption correction factors. The self- and external-absorption corrected activities agree with the expected activities in these minerals. Our data suggests that variations in the activity levels are dependent on chemical composition, density, and grain

  14. Endogenous Lunar Volatiles: Insights into the Abundances of Volatiles in the Moon from Lunar Apatite

    NASA Technical Reports Server (NTRS)

    McCubbin, Francis

    2016-01-01

    At the time of publication of New Views of the Moon, it was thought that the Moon was bone dry with less than about 1 ppb H2O. However in 2007, initial reports at the 38th Lunar and Planetary Science Conference speculated that H-species were present in both apatites and pyroclastic volcanic lunar glasses. These early reports were later confirmed through peer-review, which motivated many subsequent studies on magmatic volatiles in and on the Moon within the last decade. Some of these studies have cast into question the post-Apollo view of lunar formation, the distribution and sources of volatiles in the Earth-Moon system, and the thermal and magmatic evolution of the Moon. The mineral apatite has been one of the pillars of this new field of study, and it will be the primary focus of this abstract. Although apatite has been used both to understand the abundances of volatiles in lunar systems as well as the isotopic compositions of those volatiles, the focus here will be on the abundances of F, Cl, and H2O. This work demonstrates the utility of apatite in advancing our understanding of lunar volatiles, hence apatite should be among the topics covered in the endogenous lunar volatile chapter in NVM II. Truncated ternary plot of apatite X-site occupancy (mol%) from highlands apatite and mare basalt apatite plotted on the relative volatile abundance diagram from. The solid black lines delineate fields of relative abundances of F, Cl, and H2O (on a weight basis) in the melt from which the apatite crystallized. The diagram was constructed using available apatite/melt partitioning data for fluorine, chlorine, and hydroxyl.

  15. Apatite precipitation on a novel fast-setting calcium silicate cement containing fluoride

    PubMed Central

    Ranjkesh, Bahram; Chevallier, Jacques; Salehi, Hamideh; Cuisinier, Frédéric; Isidor, Flemming; Løvschall, Henrik

    2016-01-01

    Abstract Aim: Calcium silicate cements are widely used in endodontics. Novel fast-setting calcium silicate cement with fluoride (Protooth) has been developed for potential applications in teeth crowns including cavity lining and cementation. Objective: To evaluate the surface apatite-forming ability of Protooth compositions as a function of fluoride content and immersion time in phosphate-buffered saline (PBS). Material and methods: Three cement compositions were tested: Protooth (3.5% fluoride and 10% radiocontrast), ultrafast Protooth (3.5% fluoride and 20% radiocontrast), and high fluoride Protooth (15% fluoride and 25% radiocontrast). Powders were cap-mixed with liquid, filled to the molds and immersed in PBS. Scanning electron microscopy, energy dispersive X-ray analysis, and Raman spectroscopy were used to characterize the precipitations morphology and composition after 1, 7, 28, and 56 days. Apatite/belite Raman peak height indicated the apatite thickness. Results: Spherical calcium phosphate precipitations with acicular crystallites were formed after 1-day immersion in PBS and Raman spectra disclosed the phosphate band at 965 cm−1, supporting the apatite formation over Protooth compositions. The apatite deposition continued and more voluminous precipitations were observed after 56 days over the surface of all cements. Raman bands suggested the formation of β-type carbonated apatite over Protooth compositions. High fluoride Protooth showed the most compact deposition with significantly higher apatite/belite ratio compared to Protooth and ultrafast Protooth after 28 and 56 days. Conclusions: Calcium phosphate precipitations (apatite) were formed over Protooth compositions after immersion in PBS with increasing apatite formation as a function of time. High fluoride Protooth exhibited thicker apatite deposition. PMID:27335901

  16. Incorporation of iodine into apatite structure: a crystal chemistry approach using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Wang, Jianwei

    2015-06-01

    Materials with apatite crystal structure provide a great potential for incorporating the long-lived radioactive iodine isotope (129I) in the form of iodide (I-) from nuclear waste streams. Because of its durability and potentially high iodine content, the apatite waste form can reduce iodine release rate and minimize the waste volume. Crystal structure and composition of apatite was investigated for iodide incorporation into the channel of the structure using Artificial Neural Network. A total of 86 experimentally determined apatite crystal structures of different compositions were compiled from literature, and 46 of them were used to train the networks and 42 were used to test the performance of the trained networks. The results show that the performances of the networks are satisfactory for predictions of unit cell parameters a and c and channel size of the structure. The trained and tested networks were then used to predict unknown compositions of apatite that incorporates iodide. With a crystal chemistry consideration, chemical compositions that lead to matching the size of the structural channel to the size of iodide were then predicted to be able to incorporate iodide in the structural channel. The calculations suggest that combinations of A site cations of Ag+, K+, Sr2+, Pb2+, Ba2+, and Cs+, and X site cations, mostly formed tetrahedron, of Mn5+, As5+, Cr5+, V5+, Mo5+, Si4+, Ge4+, and Re7+ are possible apatite compositions that are able to incorporate iodide. The charge balance of different apatite compositions can be achieved by multiple substitutions at a single site or coupled substitutions at both A and X sites. The results give important clues for designing experiments to synthesize new apatite compositions and also provide a fundamental understanding how iodide is incorporated in the apatite structure. This understanding can provide important insights for apatite waste forms design by optimizing the chemical composition and synthesis procedure.

  17. Pilot-scale treatability test plan for the 200-BP-5 operable unit

    SciTech Connect

    Not Available

    1994-08-01

    This document presents the treatability test plan for pilot-scale pump and treat testing at the 200-BP-5 Operable Unit. This treatability test plan has been prepared in response to an agreement between the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA), and the State of Washington Department of Ecology (Ecology), as documented in Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et al. 1989a) Change Control Form M-13-93-03 (Ecology et al. 1994) and a recent 200 NPL Agreement Change Control Form (Appendix A). The agreement also requires that, following completion of the activities described in this test plan, a 200-BP-5 Operable Unit Interim Remedial Measure (IRM) Proposed Plan be developed for use in preparing an Interim Action Record of Decision (ROD). The IRM Proposed Plan will be supported by the results of this treatability test plan, as well as by other 200-BP-5 Operable Unit activities (e.g., development of a qualitative risk assessment). Once issued, the Interim Action ROD will specify the interim action(s) for groundwater contamination at the 200-BP-5 Operable Unit. The treatability test approach is to conduct a pilot-scale pump and treat test for each of the two contaminant plumes associated with the 200-BP-5 Operable Unit. Primary contaminants of concern are {sup 99}Tc and {sup 60}Co for underwater affected by past discharges to the 216-BY Cribs, and {sup 90}Sr, {sup 239/240}Pu, and Cs for groundwater affected by past discharges to the 216-B-5 Reverse Well. The purpose of the pilot-scale treatability testing presented in this testplan is to provide the data basis for preparing an IRM Proposed Plan. To achieve this objective, treatability testing must: Assess the performance of groundwater pumping with respect to the ability to extract a significant amount of the primary contaminant mass present in the two contaminant plumes.

  18. Effects of the method of apatite seed crystals addition on setting reaction of α-tricalcium phosphate based apatite cement.

    PubMed

    Tsuru, Kanji; Ruslin; Maruta, Michito; Matsuya, Shigeki; Ishikawa, Kunio

    2015-10-01

    Appropriate setting time is an important parameter that determines the effectiveness of apatite cement (AC) for clinical application, given the issues of crystalline inflammatory response phenomena if AC fails to set. To this end, the present study analyzes the effects of the method of apatite seed crystals addition on the setting reaction of α-tricalcium phosphate (α-TCP) based AC. Two ACs, both consisting of α-TCP and calcium deficient hydroxyapatite (cdHAp), were analyzed in this study. In one AC, cdHAp was added externally to α-TCP and this AC was abbreviated as AC(EA). In the other AC, α-TCP was partially hydrolyzed to form cdHAp on the surface of α-TCP. This AC was referred to as AC(PH). Results indicate a decrease in the setting time of both ACs with the addition of cdHAp. Among them, for the given amount of added cdHAp, AC(PH) showed relatively shorter setting time than AC(EA). Besides, the mechanical strength of the set AC(PH) was also higher than that of set AC(EA). These properties of AC(PH) were attributed to the predominant crystal growth of cdHAp in the vicinity of the α-TCP particle surface. Accordingly, it can be concluded that the partial hydrolysis of α-TCP may be a better approach to add low crystalline cdHAp onto α-TCP based AC. PMID:26411440

  19. SUPERFUND TREATABILITY CLEARINGHOUSE: FINAL REPORT: DEVELOPMENT OF OPTIMUM TREATMENT SYSTEM FOR WASTEWATER LAGOONS PHASE II - SOLVENT EXTRACTION LABORATORY TESTING

    EPA Science Inventory

    The U.S. Army surveyed innovative treatment techniques for restoration of hazardous waste lagoons and selected solvent extraction as cost-effective restoration for further study. This treatability study focuses on treatment of organic (explosive) contaminated lagoon sediments w...

  20. Distribution of halogens between fluid and apatite during fluid-mediated replacement processes

    NASA Astrophysics Data System (ADS)

    Kusebauch, Christof; John, Timm; Whitehouse, Martin J.; Klemme, Stephan; Putnis, Andrew

    2015-12-01

    Apatite (Ca5(PO4)3(OH, F, Cl)) is one of the main host of halogens in magmatic and metamorphic rocks and plays a unique role during fluid-rock interaction as it incorporates halogens (i.e. F, Cl, Br, I) and OH from hydrothermal fluids to form a ternary solid solution of the endmembers F-apatite, Cl-apatite and OH-apatite. Here, we present an experimental study to investigate the processes during interaction of Cl-apatite with different aqueous solutions (KOH, NaCl, NaF of different concentration also doped with NaBr, NaI) at crustal conditions (400-700 °C and 0.2 GPa) leading to the formation of new apatite. We use the experimental results to calculate partition coefficients of halogens between apatite and fluid. Due to a coupled dissolution-reprecipitation mechanism new apatite is always formed as a pseudomorphic replacement of Cl-apatite. Additionally, some experiments produce new apatite also as an epitaxial overgrowth. The composition of new apatite is mainly governed by complex characteristics of the fluid phase from which it is precipitating and depends on composition of the fluid, temperature and fluid to mineral ratio. Furthermore, replaced apatite shows a compositional zonation, which is attributed to a compositional evolution of the coexisting fluid in local equilibrium with the newly formed apatite. Apatite/fluid partition coefficients for F depend on the concentration of F in the fluid and increase from 75 at high concentrations (460 μg/g F) to 300 at low concentrations (46 μg/g F) indicating a high compatibility of F in apatite. A correlation of Cl-concentration in apatite with Cl- concentration of fluid is not observed for experiments with highly saline solutions, composition of new apatite is rather governed by OH- concentration of the hydrothermal fluid. Low partition coefficients were measured for the larger halogens Br and I and vary between 0.7 * 10-3-152 * 10-3 for Br and 0.3 * 10-3-17 * 10-3 for I, respectively. Br seems to have D values of

  1. F-Cl-OH partitioning between biotite and apatite

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Sverjensky, Dimitri A.

    1992-09-01

    An assessment of F-C1-OH partitioning between natural apatite and biotite in a variety of rocks was used to evaluate reciprocal (Mg, Fe 2+, Al VI) (F, Cl, OH) mixing properties for biotite according to the reciprocal salt solution model of WOOD and NICHOLLS (1978). Ideal mixing of F-C1-OH and Fe-Mg-Al VI in the hydroxyl and octahedral sites is assumed for biotites with dilute Cl concentrations. The reciprocal interaction parameters, in terms of Gibbs free energies, for the reactions KMg3[ AlSi3O10]( OH) 2 + KFe3[ AlSi3O10]( F) 2 = KMg3[ AlSi3O10]( F) 2 + KFe3[ AlSi3O10]( OH) 2 Phl Fann Fphl Ann and KMg3[ AlSi3O10]( Cl) 2 + KFe3[ AlSi3O10]( OH) 2 = KMg3[ AlSi3O10]( OH) 2 + KFe3[ AlSi3O10] ( Cl) 2 Clphl Ann Phl Clann are about -10 kcal/mol and -4.5 kcal/mol, respectively. These mixing properties are consistent with standard state thermodynamic properties for F and Cl endmember phases from ZHU and SVERJENSKY (1991). The approach of studying F-C1-OH partitioning between biotite and apatite permits distinguishing the reciprocal effects from the effects of temperature, pressure, and fluid composition. The resultant mixing properties are consistent with observations both in hydrothermal experiments and in natural mineral assemblages. The mixing properties presented in this study enable us now to predict F and Cl concentrations of hydrothermal fluids from the measured F and Cl concentrations in biotite with variable Fe-Mg-Al VI proportions. A case study of the Santa Rita porphyry copper deposits, New Mexico, shows that hydrothermal fluids responsible for the phyllic alteration had a salinity about 3 molal Cl -, in agreement with fluid inclusion studies. Our internally consistent standard thermodynamic properties and solid solution models also lead to recalibration of the apatite-biotite geothermometer. The revised geothermometer predicts temperatures that agree with those estimated from other independent geothermometers. The large reciprocal effects in biotite also point

  2. Treatability studies for uranium and plutonium contaminated soils using physical separation methods. Environmental Assessment

    SciTech Connect

    1992-07-01

    The Nevada Field Office of the Department of Energy (DOE/NV) has stated in the Environmental Restoration and Waste Management (ERWM) Site Specific Plan for the Nevada Test Site (NTS) that DOE/NV is committed to achieving compliance with all applicable environmental laws, regulations, guidelines, and agreements covering operations at the NTS. The primary DOE/NV objective identified by the Site-Specific Plan is to comply with all laws and regulations aimed at protecting human health and the environment. These include Nevada statutes and regulations which may be applicable, including federally delegated authorities. This environmental assessment discusses limited bench-scale soil treatability testing of physical processes for decontamination of plutonium- and uranium-contaminated soil. The proposed location of these studies would be the Treatability Testing Facility (TTF), Building 3124 at Test Cell ``All in Area 25 of the NTS.

  3. Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs).

    PubMed

    Ren, Lijiao; Siegert, Michael; Ivanov, Ivan; Pisciotta, John M; Logan, Bruce E

    2013-05-01

    High-throughput microbial electrolysis cells (MECs) were used to perform treatability studies on many different refinery wastewater samples all having appreciably different characteristics, which resulted in large differences in current generation. A de-oiled refinery wastewater sample from one site (DOW1) produced the best results, with 2.1±0.2 A/m(2) (maximum current density), 79% chemical oxygen demand removal, and 82% headspace biological oxygen demand removal. These results were similar to those obtained using domestic wastewater. Two other de-oiled refinery wastewater samples also showed good performance, with a de-oiled oily sewer sample producing less current. A stabilization lagoon sample and a stripped sour wastewater sample failed to produce appreciable current. Electricity production, organics removal, and startup time were improved when the anode was first acclimated to domestic wastewater. These results show mini-MECs are an effective method for evaluating treatability of different wastewaters. PMID:23567698

  4. 300-FF-1 operable unit remedial investigation phase II report: Physical separation of soils treatability study

    SciTech Connect

    Not Available

    1994-04-01

    This report describes the approach and results of physical separations treatability tests conducted at the Hanford Site in the North Process Pond of the 300-FF-1 Operable Unit. Physical separation of soils was identified as a remediation alternative due to the potential to significantly reduce the amount of contaminated soils prior to disposal. Tests were conducted using a system developed at Hanford consisting of modified EPA equipment integrated with screens, hoppers, conveyors, tanks, and pumps from the Hanford Site. The treatability tests discussed in this report consisted of four parts, in which an estimated 84 tons of soil was processed: (1) a pre-test run to set up the system and adjust system parameters for soils to be processed; (2) a baseline run to establish the performance of the system - Test No. 1; (3) a final run in which the system was modified as a result of findings from the baseline run - Test No. 2; and (4) water treatment.

  5. Metallurgical Laboratory Treatability Study: An Analysis of Passive Soil Vapor Extraction Wells - June 2000 Update

    SciTech Connect

    Riha, B.D.

    2001-01-29

    The passive soil vapor extraction (PSVE) system at the MetLab of the Savannah River Site has been operating since May 1998. The results to date on the treatability study indicate the technology is performing well. Well concentrations are decreasing and contour maps of the vadose zone soil gas plume show a decrease in the extent of the plume. In the 2 years of operation approximately 270 pounds of chlorinated organic contaminants have been removed by natural barometric pumping of wells fitted with BaroBall valves (low pressure check valves). The PSVE system is performing well in a cost-effective manner. It is recommended that this system be allowed to continue operating to complete the remediation and to continue monitoring activities to verify and monitor the anticipated contaminant removal rates. The treatability study should be considered successfully completed and the remediation should be considered in full operation.

  6. Calcium Solubility In Zeolite Synthetic-Apatite Mixtures

    NASA Technical Reports Server (NTRS)

    Beiersdorfer, R.; Ming, D. W.

    1999-01-01

    Life support systems at a lunar or martian outpost will require the ability to produce food growing in 1) treated lunar or martian regolith; 2) a synthetic soil, or 3) some combination of both. Zeoponic soil, composed of NH4 (-) and K-exchanged clinoptilolite (Cp) and synthetic apatite (Ap), can provide slow-release fertilization via dissolution and ion-exchange. Equilibrium studies indicate that KNH4, P, and Mg are available to plants at sufficient levels, however, Ca is deficient. Ca availability can be increased by adding a second Ca-bearing mineral: calcite (Cal); dolomite (Dol); or wollastonite (Wol). Additions of Cal, Dol, and Wol systematically change the concentrations of Ca and P in solution. Cal has the greatest effect, Dol the least, and Wol is intermediate.

  7. Magnetic apatite for structural insights on the plasma membrane

    NASA Astrophysics Data System (ADS)

    Stanca, Sarmiza E.; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang

    2015-01-01

    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  8. Apatite as probe for the halogen composition of metamorphic fluids (Bamble Sector, SE Norway)

    NASA Astrophysics Data System (ADS)

    Kusebauch, Christof; John, Timm; Whitehouse, Martin J.; Engvik, Ane K.

    2015-10-01

    Halogen composition of replaced apatite formed during a regional metasomatic event (Bamble Sector, SE Norway) reveals information about the composition and evolution of the hydrothermal fluid. Infiltration and pervasive fluid flow of highly saline fluids into gabbroic bodies lead to scapolitization and amphibolitization, where magmatic Cl-rich apatite reacts with the hydrothermal fluid to form OH- and/or F-rich apatite. Apatite from highly altered samples adjacent to the shear zone has highest F (up to 15,000 µg/g) and lowest Br (4-25 µg/g) concentrations, whereas apatite from least altered samples has very low F (30-200 µg/g) and high Br (30-85 µg/g). In addition, individual replaced apatite grains show a zonation in F with high concentrations along rims and cracks and low F in core regions. Iodine concentrations remain rather constant as low values of 0.18-0.70 µg/g. We interpret all observed compositional features of replaced apatite to be the result of a continuous evolution of the fluid during fluid-rock interaction. Due to its high compatibility, F from the infiltrating fluid is incorporated early into recrystallized apatite (close to shear zone and rims of individual apatite grains). In contrast, Br as an incompatible halogen becomes enriched in the fluid and is highest in the most evolved fluid. Using experimental partition data between replaced apatite and fluid, we calculated F concentrations of the evolving fluid to decrease from 60 to <1 µg/g and Br to increase from ~1200 to ~5000 µg/g; I concentrations of the fluid are constant in the order of 370 µg/g. Although Cl is expected to show a similar behavior as Br, replaced apatite has constant Cl concentrations throughout the alteration sequence (~1 wt.%), which is likely the result of a rather constant Cl activity in the fluid. Chlorine stable isotope values of individual apatite grains are heterogeneous and range from -1.2 to +3.7 ‰. High δ 37Cl values are generally correlated with OH

  9. Single-crystal apatite nanowires sheathed in graphitic shells: synthesis, characterization, and application.

    PubMed

    Jeong, Namjo; Cha, Misun; Park, Yun Chang; Lee, Kyung Mee; Lee, Jae Hyup; Park, Byong Chon; Lee, Junghoon

    2013-07-23

    Vertically aligned one-dimensional hybrid structures, which are composed of apatite and graphitic structures, can be beneficial for orthopedic applications. However, they are difficult to generate using the current method. Here, we report the first synthesis of a single-crystal apatite nanowire encapsulated in graphitic shells by a one-step chemical vapor deposition. Incipient nucleation of apatite and its subsequent transformation to an oriented crystal are directed by derived gaseous phosphorine. Longitudinal growth of the oriented apatite crystal is achieved by a vapor-solid growth mechanism, whereas lateral growth is suppressed by the graphitic layers formed through arrangement of the derived aromatic hydrocarbon molecules. We show that this unusual combination of the apatite crystal and the graphitic shells can lead to an excellent osteogenic differentiation and bony fusion through a programmed smart behavior. For instance, the graphitic shells are degraded after the initial cell growth promoted by the graphitic nanostructures, and the cells continue proliferation on the bare apatite nanowires. Furthermore, a bending experiment indicates that such core-shell nanowires exhibited a superior bending stiffness compared to single-crystal apatite nanowires without graphitic shells. The results suggest a new strategy and direction for bone grafting materials with a highly controllable morphology and material conditions that can best stimulate bone cell differentiation and growth. PMID:23755838

  10. Apatite-coated three-dimensional fibrous scaffolds and their osteoblast response.

    PubMed

    Tang, Yanwei; Zhao, Yan; Wong, Cynthia S; Wang, Xungai; Lin, Tong

    2013-03-01

    Apatite was applied onto the fiber surface of an interbonded three-dimensional polycaprolactone fibrous scaffold through a vacuum nitrogen plasma pretreatment followed by immersion in a simulated body fluid. The plasma pretreatment improved the wettability and accelerated apatite deposition on the fiber surface. The apatite coating was proven to be biocompatible to fibroblast cells without any cytotoxicity. Two osteoblast cell lines, human fetal osteoblast cells (hFOB1.19) and human osteosarcoma cells (Saos-2), were used for evaluating the cell response of the fibrous matrices. The apatite coating showed enhanced cell attachment for both hFOB1.19 and Saos-2 cells. In comparison to the uncoated fibrous scaffolds, the apatite-coated fibrous matrix had an improved hFOB1.19 cell proliferation for at least 2 weeks. Enhanced cell differentiation was also observed on the apatite-coated fibrous matrix primarily on the third, 10th, and 14th days of culture. Saos-2 cells showed improved proliferation in the apatite-coated matrix mainly on days 3 and 14, but the differentiation was increased only on the third day of culture. PMID:22941867

  11. Treatability studies for polyethylene encapsulation of INEL low-level mixed wastes. Final report

    SciTech Connect

    Lageraaen, P.R.; Patel, B.R.; Kalb, P.D.; Adams, J.W.

    1995-10-01

    Treatability studies for polyethylene encapsulation of Idaho National Engineering Laboratory (INEL) low-level mixed wastes were conducted at Brookhaven National Laboratory. The treatability work, which included thermal screening and/or processibility testing, was performed on priority candidate wastes identified by INEL to determine the applicability of polyethylene encapsulation for the solidification and stabilization of these mixed wastes. The candidate wastes selected for this preliminary study were Eutectic Salts, Ion Exchange Resins, Activated Carbons, Freon Contaminated Rags, TAN TURCO Decon 4502, ICPP Sodium Bearing Liquid Waste, and HTRE-3 Acid Spill Clean-up. Thermal screening was conducted for some of these wastes to determine the thermal stability of the wastes under expected pretreatment and processing conditions. Processibility testing to determine whether the wastes were amenable to extrusion processing included monitoring feed consistency, extruder output consistency, waste production homogeneity, and waste form performance. Processing parameters were not optimized within the scope of this study. However, based on the treatability results, polyethylene encapsulation does appear applicable as a primary or secondary treatment for most of these wastes.

  12. TREATABILITY TEST PLAN FOR DEEP VADOSE ZONE REMEDIATION AT THE HANFORD SITE CENTRAL PLATEAU

    SciTech Connect

    PETERSEN SW; MORSE JG; TRUEX MJ; LAST GV

    2007-11-29

    A treatability test plan has been prepared to address options for remediating portions of the deep vadose zone beneath a portion of the U.S. Department of Energy's (DOE's) Hanford Site. The vadose zone is the region of the subsurface that extends from the ground surface to the water table. The overriding objective of the treatability test plan is to recommend specific remediation technologies and laboratory and field tests to support the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 and Resource Conservation and Recovery Act of 1976 remedial decision-making process in the Central Plateau of the Hanford Site. Most of the technologies considered involve removing water from the vadose zone or immobilizing the contaminants to reduce the risk of contaminating groundwater. A multi-element approach to initial treatability testing is recommended, with the goal of providing the information needed to evaluate candidate technologies. The proposed tests focus on mitigating two contaminants--uranium and technetium. Specific technologies are recommended for testing at areas that may affect groundwater in the future, but a strategy to test other technologies is also presented.

  13. Treatability Test Plan for Deep Vadose Zone Remediation at the Hanford Site's Central Plateau

    SciTech Connect

    Petersen, S.W.; Morse, J.G.; Truex, M.J.; Last, G.V.

    2008-07-01

    A treatability test plan has been prepared to address options for remediating portions of the deep vadose zone beneath the U.S. Department of Energy's (DOE's) Hanford Site. The vadose zone is the region of the subsurface that extends from the ground surface to the water table. The overriding objective of the treatability test plan is to recommend specific remediation technologies and laboratory and field tests to support the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 and Resource Conservation and Recovery Act of 1976 remedial decision-making process in the Central Plateau of the Hanford Site. Most of the technologies considered involve removing water from the vadose zone or immobilizing the contaminants to reduce the risk of contaminating groundwater. A multi-element approach to initial treatability testing is recommended, with the goal of providing the information needed to evaluate candidate technologies. The proposed tests focus on mitigating two contaminants - uranium and technetium. Specific technologies are recommended for testing at areas that may affect groundwater in the future, but a strategy to test other technologies is also presented. (authors)

  14. Experimental Plan: Uranium Stabilization Through Polyphosphate Injection 300 Area Uranium Plume Treatability Demonstration Project

    SciTech Connect

    Wellman, Dawn M.; Fruchter, Jonathan S.; Vermeul, Vince R.

    2006-09-20

    This Test Plan describes a laboratory-testing program to be performed at Pacific Northwest National Laboratory (PNNL) in support of the 300-FF-5 Feasibility Study (FS). The objective of the proposed treatability test is to evaluate the efficacy of using polyphosphate injections to treat uranium contaminated groundwater in situ. This study will be used to: (1) Develop implementation cost estimates; (2) Identify implementation challenges; and (3) Investigate the technology's ability to meet remedial objectives These activities will be conducted in parallel with a limited field investigation, which is currently underway to more accurately define the vertical extent of uranium in the vadose zone, and in the capillary fringe zone laterally throughout the plume. The treatability test will establish the viability of the method and, along with characterization data from the limited field investigation, will provide the means for determining how best to implement the technology in the field. By conducting the treatability work in parallel with the ongoing Limited Field Investigation, the resulting Feasibility Study (FS) will provide proven, site-specific information for evaluating polyphosphate addition and selecting a suitable remediation strategy for the uranium plume within the FS time frame at an overall cost savings.

  15. Operable Unit 7-13/14 in situ thermal desorption treatability study work plan

    SciTech Connect

    Shaw, P.; Nickelson, D.; Hyde, R.

    1999-05-01

    This Work Plan provides technical details for conducting a treatability study that will evaluate the application of in situ thermal desorption (ISTD) to landfill waste at the Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). ISTD is a form of thermally enhanced vapor vacuum extraction that heats contaminated soil and waste underground to raise its temperature and thereby vaporize and destroy most organics. An aboveground vapor vacuum collection and treatment system then destroys or absorbs the remaining organics and vents carbon dioxide and water to the atmosphere. The technology is a byproduct of an advanced oil-well thermal extraction program. The purpose of the ISTD treatability study is to fill performance-based data gaps relative to off-gas system performance, administrative feasibility, effects of the treatment on radioactive contaminants, worker safety during mobilization and demobilization, and effects of landfill type waste on the process (time to remediate, subsidence potential, underground fires, etc.). By performing this treatability study, uncertainties associated with ISTD as a selected remedy will be reduced, providing a better foundation of remedial recommendations and ultimate selection of remedial actions for the SDA.

  16. Semiempirical electronic structure calculation on Ca and Pb apatites

    NASA Astrophysics Data System (ADS)

    Matos, Maria; Terra, Joice; Ellis, D. E.

    A systematic study is made on the electronic structure of stoichiometric calcium and lead apatites, using the tight binding extended Hückel method (eHT). The aim is to investigate the applicability of the semiempirical theory to study this family of compounds. A10(BO4)6X2 (A = Ca, Pb) apatites, differing by substitutions in the BO4 tetrahedral unit (B = P, As, and V) and X-channel ion (X = OH, Cl), are considered. The calculations show that eHT is suitable to describe basic properties especially concerning trends with atomic substitution and geometry changes. Band structure, Mulliken charge distribution, and bond orders are in good agreement with results of ab initio density functional theory (DFT) found in the literature. Large variations in the optical gap due to vanadium and lead substitutions are newly found. Changes in the anion X-channel affect the optical gap, which is in close agreement with DFT results. Analysis involving subnets are performed to determine the role of halogenic orbitals in the electronic structure of chloroapatites, showing evidence of covalent Cl bonding. It was also found that Pb=OH bonding in hydroxy-vanadinite Pb10(VO4)6(OH)2, recently synthesized, is weaker than that of Ca=OH in vanadate Ca10(VO4)6(OH)2. Arsenium is found to be more weakely bound to the O-tetrahedron than phosphorous, although Ca=O bond is increased with the substitution. We investigate, in addition, the electronic structure of a model system Ca10(AsO4)6(OH)2, obtained from direct As substitution in the vanadate Ca10(VO4)6(OH)2.

  17. Adsorption of nucleotides on biomimetic apatite: The case of adenosine 5‧ monophosphate (AMP)

    NASA Astrophysics Data System (ADS)

    Hammami, K.; Feki, H. El; Marsan, O.; Drouet, C.

    2015-10-01

    This work investigates the interaction between the nucleotide adenosine 5‧ monophosphate molecule (AMP) and a biomimetic nanocrystalline carbonated apatite as a model for bone mineral. The analogy of the apatite phase used in this work with biological apatite was first pointed out by complementary techniques. AMP adsorption isotherms were then investigated. Obtained data were fitted to a Sips isotherm with an exponent greater than one suggesting positive cooperativity among adsorbed molecules. The data were compared to a previous study relative to the adsorption of another nucleotide, cytidine monophosphate (CMP) onto a similar substrate, evidencing some effect of the chemical nature of the nucleic base. An enhanced adsorption was observed under acidic (pH 6) conditions as opposed to pH 7.4, which parallels the case of DNA adsorption on biomimetic apatite. An estimated standard Gibbs free energy associated to the adsorption process (ΔG°ads ≅ -22 kJ/mol) intermediate between "physisorption" and "chemisorption" was found. The analysis of the solids after adsorption pointed to the preservation of the main characteristics of the apatite substrate but shifts or enhancements of Raman bands attributed to AMP showed the existence of chemical interactions involving both the phosphate and adenine parts of AMP. This contribution adds to the works conducted in view of better understanding the interaction of DNA/RNA and their constitutive nucleotides and the surface of biomimetic apatites. It could prove helpful in disciplines such as bone diagenesis (DNA/apatite interface in aged bones) or nanomedicine (setup of DNA- or RNA-loaded apatite systems). Also, the adsorption of nucleic acids on minerals like apatites could have played a role in the preservation of such biomolecules in the varying conditions known to exist at the origin of life on Earth, underlining the importance of dedicated adsorption studies.

  18. Biomimetic magnesium-carbonate-apatite nanocrystals endowed with strontium ions as anti-osteoporotic trigger.

    PubMed

    Iafisco, Michele; Ruffini, Andrea; Adamiano, Alessio; Sprio, Simone; Tampieri, Anna

    2014-02-01

    The present work investigates the preparation of biomimetic nanocrystalline apatites co-substituted with Mg, CO3 and Sr to be used as starting materials for the development of nanostructured bio-devices for regeneration of osteoporotic bone. Biological-like amounts of Mg and CO3 ions were inserted in the apatite structure to mimic the composition of bone apatite, whereas the addition of increasing quantities of Sr ions, from 0 up to 12 wt.%, as anti-osteoporotic agent, was evaluated. The chemical-physical features, the morphology, the degradation rates, the ion release kinetics as well as the in vitro bioactivity of the as-prepared apatites were fully evaluated. The results indicated that the incorporation of 12 wt.% of Sr can be viewed as a threshold for the structural stability of Mg-CO3-apatite. Indeed, incorporation of lower quantity of Sr did not induce considerable variations in the chemical structure of Mg-CO3-apatite, while when the Sr doping extent reached 12 wt.%, a dramatically destabilizing effect was detected on the crystal structure thus yielding alteration of the symmetry and distortion of the PO4. As a consequence, this apatite exhibited the fastest degradation kinetic and the highest amount of Sr ions released when tested in physiological conditions. In this respect, the surface crystallization of new calcium phosphate phase when immersed in physiological-like solution occurred by different mechanisms and extents due to the different structural chemistry of the variously doped apatites. Nevertheless, all the apatites synthesized in this work exhibited in vitro bioactivity demonstrating their potential use to develop biomedical devices with anti-osteoporotic functionality. PMID:24411371

  19. Remediation of copper contaminated soil by using different particle sizes of apatite: a field experiment.

    PubMed

    Xing, Jinfeng; Hu, Tiantian; Cang, Long; Zhou, Dongmei

    2016-01-01

    The particle size of apatite is one of the critical factors that influence the adsorption of heavy metals on apatite in the remediation of heavy metal contaminated soils using apatite. However, little research has been done evaluating the impact of different particle sizes of apatite on immobilization remediation of heavy metal polluted soils in field. In this study, the adsorption isothermal experiments of copper on three kinds of apatite was tested, and the field experiment by using different particle sizes apatite [nano-hydroxyapatite (NAP), micro-hydroxyapatite (MAP), ordinary particle apatite (OAP)] at a same dosage of 25.8 t/ha (1.16 %, W/W) was also conducted. Ryegrass was chosen as the test plant. The ryegrass biomass, the copper contents in ryegrass and the copper fractionations in soil were determined after field experiments. Results of adsorption experiments showed that the adsorption amounts of copper on OAP was the lowest among different particles. The adsorption amounts of copper on MAP was higher than NAP at high copper equilibrium concentration (>1 mmol L(-1)), an opposite trend was obtained at low copper concentration (<1 mmol L(-1)). In the field experiment, we found that the application of different apatites could effectively increase the soil pH, decrease the available copper concentration in soil, provide more nutrient phosphate and promote the growth of ryegrass. The ryegrass biomass and the copper accumulation in ryegrass were the highest in MAP among all treatments. The effective order of apatite in phytoremediation of copper contaminated field soil was MAP > NAP > OAP, which was attributed to the high adsorption capacity of copper and the strong releasing of phosphate by MAP. PMID:27512641

  20. [Comparative studies on the material performances of natural bone-like apatite from different bone sources].

    PubMed

    Fan, Xiaoxia; Ren, Haohao; Chen, Shutian; Wang, Guangni; Deng, Tianyu; Chen, Xingtao; Yan, Yonggang

    2014-04-01

    The compressive strength of the original bone tissue was tested, based on the raw human thigh bone, bovine bone, pig bone and goat bone. The four different bone-like apatites were prepared by calcining the raw bones at 800 degrees C for 8 hours to remove organic components. The comparison of composition and structure of bone-like apatite from different bone sources was carried out with a composition and structure test. The results indicated that the compressive strength of goat bone was similar to that of human thigh bone, reached (135.00 +/- 7.84) MPa; Infrared spectrum (IR), X-ray diffraction (XRD) analysis results showed that the bone-like apatite from goat bone was much closer to the structure and phase composition of bone-like apatite of human bones. Inductively Coupled Plasma (ICP) test results showed that the content of trace elements of bone-like apatite from goat bone was closer to that of apatite of human bone. Energy Dispersive Spectrometer (EDS) results showed that the Ca/P value of bone-like apatite from goat bone was also close to that of human bone, ranged to 1.73 +/- 0.033. Scanning electron microscopy (SEM) patterns indicated that the macrographs of the apatite from human bone and that of goat bone were much similar to each other. Considering all the results above, it could be concluded that the goat bone-like apatite is much similar to that of human bone. It can be used as a potential natural bioceramic material in terms of material properties. PMID:25039141

  1. Synthesis, characterization and electrical properties of a lead sodium vanadate apatite

    SciTech Connect

    Chakroun-Ouadhour, E.; Ternane, R. Hassen-Chehimi, D. Ben; Trabelsi-Ayadi, M.

    2008-08-04

    The lacunary lead sodium vanadate apatite Pb{sub 8}Na{sub 2}(VO{sub 4}){sub 6} was synthesized by the solid-state reaction method. The compound was characterized by X-ray powder diffraction, infrared (IR) absorption spectroscopy and Raman scattering spectroscopy. By comparing the effect of vanadate and phosphate ions on electrical properties, it was concluded that Pb{sub 8}Na{sub 2}(VO{sub 4}){sub 6} apatite is better conductor than Pb{sub 8}Na{sub 2}(PO{sub 4}){sub 6} apatite.

  2. Exploiting radiation damage control on apatite (U Th)/He dates in cratonic regions

    NASA Astrophysics Data System (ADS)

    Flowers, Rebecca M.

    2009-01-01

    Apatites from four pairs of samples of Precambrian basement from the western Canadian shield were analyzed by (U-Th)/He thermochronometry to test for the influence of radiation damage on apatite (U-Th)/He dates in this cratonic region. Recent studies have demonstrated that the accumulation of radiation damage increases the apatite He retentivity, so that apatites with a span of effective U concentrations, eU, that experienced the same thermal history may be characterized by a range of closure temperatures. In this investigation, each sample pair consisted of a mafic dike cross-cutting felsic gneisses from a single outcrop or nearby outcrops that contained apatites with a span of eU. The apatites yielded (U-Th)/He dates from 846 to 123 Ma, and were positively correlated with eU within each sample pair. These results can be explained using a model that tracks the evolution of He mobility in response to the accumulation of radiation damage. When coupled with regional geological constraints, the data appear to require partial to complete He loss due to burial and reheating in Phanerozoic time. New apatite fission- track dates and length data were obtained for five of these samples. The apatite fission- track dates are Proterozoic regardless of apatite eU. Thermal history simulations indicate that the apatite fission-track data are compatible with the (U-Th)/He results, although the thermal histories are not identical in detail and the fission-track results alone do not require Phanerozoic heating. Together the data are consistent with burial of this region by ≥ 1 km of Phanerozoic strata that were subsequently denuded, thus pointing toward significant Phanerozoic deposition in the North American cratonic interior hundreds of kilometers east of where previously documented. The results suggest that exploiting radiation damage control on apatite (U-Th)/He dates through investigation of surface sample apatites with a span of closure temperatures can impose tighter

  3. Quantification of octacalcium phosphate, authigenic apatite and detrital apatite in coastal sediments using differential dissolution and standard addition

    NASA Astrophysics Data System (ADS)

    Oxmann, J. F.; Schwendenmann, L.

    2014-06-01

    Knowledge of calcium phosphate (Ca-P) solubility is crucial for understanding temporal and spatial variations of phosphorus (P) concentrations in water bodies and sedimentary reservoirs. In situ relationships between liquid- and solid-phase levels cannot be fully explained by dissolved analytes alone and need to be verified by determining particular sediment P species. Lack of quantification methods for these species limits the knowledge of the P cycle. To address this issue, we (i) optimized a specifically developed conversion-extraction (CONVEX) method for P species quantification using standard additions, and (ii) simultaneously determined solubilities of Ca-P standards by measuring their pH-dependent contents in the sediment matrix. Ca-P minerals including various carbonate fluorapatite (CFAP) specimens from different localities, fluorapatite (FAP), fish bone apatite, synthetic hydroxylapatite (HAP) and octacalcium phosphate (OCP) were characterized by XRD, Raman, FTIR and elemental analysis. Sediment samples were incubated with and without these reference minerals and then sequentially extracted to quantify Ca-P species by their differential dissolution at pH values between 3 and 8. The quantification of solid-phase phosphates at varying pH revealed solubilities in the following order: OCP > HAP > CFAP (4.5% CO3) > CFAP (3.4% CO3) > CFAP (2.2% CO3) > FAP. Thus, CFAP was less soluble in sediment than HAP, and CFAP solubility increased with carbonate content. Unspiked sediment analyses together with standard addition analyses indicated consistent differential dissolution of natural sediment species vs. added reference species and therefore verified the applicability of the CONVEX method in separately determining the most prevalent Ca-P minerals. We found surprisingly high OCP contents in the coastal sediments analyzed, which supports the hypothesis of apatite formation by an OCP precursor mechanism.

  4. Using Oxygen Isotopes in Fish Scale Apatite to Reconstruct Past Temperatures and Water Isotope Ratios

    NASA Astrophysics Data System (ADS)

    Lambert, T. D.; Paytan, A.

    2009-12-01

    Oxygen isotope ratios (δ18O) of apatite phosphate in fish bones and teeth vary according to the temperature and δ18O of water during formation. Since isotope ratios in apatite are often well preserved over geologic timescales, fish bones and teeth have been used to determine past environmental conditions. Fish scales offer several advantages over bones and teeth: they are relatively common in certain sedimentary basins, and they are more easily identified to species level. Analysis of paired bone and scale samples will be presented. The data indicate that fish scale apatite similarly records environmental conditions during growth. Thus δ18O of apatite phosphate in fish scales may provide useful paleoecological information and also indicate past environmental conditions.

  5. Dissolution mechanism of calcium apatites in acids: A review of literature

    PubMed Central

    Dorozhkin, Sergey V

    2012-01-01

    Eight dissolution models of calcium apatites (both fluorapatite and hydroxyapatite) in acids were drawn from the published literature, analyzed and discussed. Major limitations and drawbacks of the models were conversed in details. The models were shown to deal with different aspects of apatite dissolution phenomenon and none of them was able to describe the dissolution process in general. Therefore, an attempt to combine the findings obtained by different researchers was performed which resulted in creation of the general description of apatite dissolution in acids. For this purpose, eight dissolution models were assumed to complement each other and provide the correct description of the specific aspects of apatite dissolution. The general description considers all possible dissolution stages involved and points out to some missing and unclear phenomena to be experimentally studied and verified in future. This creates a new methodological approach to investigate reaction mechanisms based on sets of affine data, obtained by various research groups under dissimilar experimental conditions. PMID:25237611

  6. In Situ Formation of Calcium Apatite in Soil for Sequestering Contaminants in Soil and Groundwater

    SciTech Connect

    Moore, Robert; Szecsody, Jim; Thompson, Mike

    2015-10-20

    A new method for in situ formation of a calcium apatite permeable reactive barrier that is a groundbreaking technology for containing radioactive/heavy metal contaminants threatening groundwater supplies.

  7. Fluoride enhances transfection activity of carbonate apatite by increasing cytoplasmic stability of plasmid DNA

    SciTech Connect

    Chowdhury, E.H.

    2011-06-17

    Highlights: {yields} Cytoplasmic stability of plasmid DNA is enhanced by fluoride incorporation into carbonate apatite carrier. {yields} Fluoridated carbonate apatite promotes a robust increase in transgene expression. {yields} Controlled dissolution of fluoridated carbonate apatite in endosomal acidic environment might buffer the endosomes and prevent degradation of the released DNA. -- Abstract: Intracellular delivery of a functional gene or a nucleic acid sequence to specifically knockdown a harmful gene is a potential approach to precisely treat a critical human disease. The intensive efforts in the last few decades led to the development of a number of viral and non-viral synthetic vectors. However, an ideal delivery tool in terms of the safety and efficacy has yet to be established. Recently, we have developed pH-sensing inorganic nanocrystals of carbonate apatite for efficient and cell-targeted delivery of gene and gene-silencing RNA. Here we show that addition of very low level of fluoride to the particle-forming medium facilitates a robust increase in transgene expression following post-incubation of the particles with HeLa cells. Confocal microscopic observation and Southern blotting prove the cytoplasmic existence of plasmid DNA delivered by likely formed fluoridated carbonate apatite particles while degradation of plasmid DNA presumably by cytoplasmic nucleases was noticed following delivery with apatite particles alone. The beneficial role of fluoride in enhancing carbonate apatite-mediated gene expression might be due to the buffering potential of generated fluoridated apatite in endosomal acidic environment, thereby increasing the half-life of delivered plasmid DNA.

  8. Chitosan reinforced apatite-wollastonite coating by electrophoretic deposition on titanium implants.

    PubMed

    Sharma, Smriti; Soni, Vivek P; Bellare, Jayesh R

    2009-07-01

    A novel bioactive porous apatite-wollastonite/chitosan composite coating was prepared by electrophoretic deposition. The influence of synthesis parameters like pH of suspension and current density was studied and optimized. X-ray diffraction confirmed crystalline phase of apatite-wollastonite in powder as well as composite coating with coat crystallinity of 65%. Scanning electron microscope showed that the porosity had interconnections with good homogeneity between the phases. The addition of chitosan increased the adhesive strength of the composite coating. Young's modulus of the coating was found to be 9.23 GPa. One of our key findings was sheet-like apatite growth unlike ball-like growth found in bioceramics. Role of chitosan was studied in apatite growth mechanism in simulated body fluid. In presence of chitosan, dense negatively charged surface with homogenous nucleation was the primary factor for sheet-like evolution of apatite layer. The results suggest that incorporation of chitosan with apatite-wollastonite in composite coating could provide excellent in vitro bioactivity with enhanced mechanical properties. PMID:19253015

  9. The lanthanides and yttrium in minerals of the apatite group; a review

    USGS Publications Warehouse

    Fleischer, Michael; Altschuler, Z.S.

    1982-01-01

    More than 1000 analyses have been tabulated of the distribution of the lanthanides and yttrium in minerals of the apatite group, recalculated to atomic percentages. Average compositions have been calculated for apatites from 14 types of rocks. These show a progressive change of composition from apatites of granitic pegmatites, highest in the heavy lanthanides and yttrium, to those from alkalic pegmatites, highest in the light lanthanides and lowest in yttrium. This progression is clearly shown in plots of S (= at % La+Ce+Pr) vs the ratio La/Nd and of S vs the ratio 100Y/(Y+Ln), where Ln is the sum of the lanthanides. Apatites of sedimentary phosphorites occupy a special position, being relatively depleted in Ce and relatively enriched in yttrium and the heavy lanthanides, consequences of deposition from sea water. Apatites associated with iron ores are close in composition to apatites of carbonatites, alkalic ultramafic, and ultramafic rocks, being enriched in the light lanthanides and depleted in the heavy lanthanides. Their compositions do not support the hypothesis of Parak that the Kiruna-type ores are of sedimentary origin. Table 9 and Figures 1-3 show the dependence of lanthanide distribution on the nature of the host rock. Although a given analysis of the lanthanides does not unequivocally permit certain identification of the host rock, it can indicate a choice of highly probable host rocks.

  10. Combined apatite fission track and U-Pb dating by LA-ICPMS

    NASA Astrophysics Data System (ADS)

    Chew, D. M.; Donelick, R. A.

    2012-04-01

    Apatite is a common accessory mineral in igneous, metamorphic and clastic sedimentary rocks. It is a nearly ubiquitous accessory phase in igneous rocks, is common in metamorphic rocks of pelitic, carbonate, basaltic, and ultramafic composition and is virtually ubiquitous in clastic sedimentary rocks. In contrast to the polycyclic behavior of the stable heavy mineral zircon, apatite is unstable in acidic groundwaters and has limited mechanical stability in sedimentary transport systems. Apatite has many potential applications in provenance studies, particularly as it likely represents first-cycle detritus. Fission track and U-Pb dating are very powerful techniques in apatite provenance studies. They yield complementary information, with the apatite fission-track system yielding low-temperature exhumation ages and the U-Pb system yielding high-temperature cooling ages which constrain the timing of apatite crystallization. This study focuses on integrating apatite fission track and U-Pb dating by the LA-ICPMS method. Our approach is intentionally broad in scope, and is applicable to any quadrupole or rapid-scanning magnetic-sector LA-ICPMS system. Calculating uranium concentrations in fission-track dating by LA-ICPMS increases the speed of analysis and sample throughput compared to the conventional external detector method and avoids the need for neutron irradiation (Hasebe et al., 2004). LA-ICPMS-based uranium measurements in apatite are measured relative to an internal concentration standard (typically 43Ca). Ca in apatite is not always stochiometric as minor cations (Mn2+, Sr2+, Ba2+ and Fe2+) and REE can substitute with Ca2+. These substitutions must be quantified by multi-elemental LA-ICPMS analyses. Such data are also useful for discriminating between different apatite populations in sedimentary or volcaniclastic rocks based on their trace-element chemistry. Low U, Th and radiogenic Pb concentrations, elevated common Pb / radiogenic Pb ratios and U-Pb elemental

  11. Final waste forms project: Performance criteria for phase I treatability studies

    SciTech Connect

    Gilliam, T.M.; Hutchins, D.A.; Chodak, P. III

    1994-06-01

    This document defines the product performance criteria to be used in Phase I of the Final Waste Forms Project. In Phase I, treatability studies will be performed to provide {open_quotes}proof-of-principle{close_quotes} data to establish the viability of stabilization/solidification (S/S) technologies. This information is required by March 1995. In Phase II, further treatability studies, some at the pilot scale, will be performed to provide sufficient data to allow treatment alternatives identified in Phase I to be more fully developed and evaluated, as well as to reduce performance uncertainties for those methods chosen to treat a specific waste. Three main factors influence the development and selection of an optimum waste form formulation and hence affect selection of performance criteria. These factors are regulatory, process-specific, and site-specific waste form standards or requirements. Clearly, the optimum waste form formulation will require consideration of performance criteria constraints from each of the three categories. Phase I will focus only on the regulatory criteria. These criteria may be considered the minimum criteria for an acceptable waste form. In other words, a S/S technology is considered viable only if it meet applicable regulatory criteria. The criteria to be utilized in the Phase I treatability studies were primarily taken from Environmental Protection Agency regulations addressed in 40 CFR 260 through 265 and 268; and Nuclear Regulatory Commission regulations addressed in 10 CFR 61. Thus the majority of the identified criteria are independent of waste form matrix composition (i.e., applicable to cement, glass, organic binders etc.).

  12. Treatability of organic matter derived from surface and subsurface waters of drinking water catchments.

    PubMed

    Awad, John; van Leeuwen, John; Liffner, Joel; Chow, Christopher; Drikas, Mary

    2016-02-01

    The treatability of NOM present in runoff and subsurface waters from discrete zero-order catchments (ZOCs) with three land management practices (Australian native vegetation, pine plantation, grasslands) on varying soil textures of a closed drinking water reservoir-catchment was investigated. Subsurface water samples were collected by lysimeters and shallow piezometers and surface waters by installation of barriers that diverted waters to collection devices. For small sample volumes collected, a 'micro' jar testing procedure was developed to assess the treatability of organics by enhanced coagulation using alum, under standardised conditions. DOM present in water samples was quantified by measurement of DOC and UV absorbance (at 254 nm) and characterized using these and F-EEM. The mean alum dose rate (mg alum per mg DOC removed or Al/DOC) was found to be lower for DOM from sandy soil ZOCs (21.1 ± 11.0 Al/DOC) than from clayey soil ZOCs (38.6 ± 27.7 Al/DOC). ZOCs with Pinus radiata had prominent litter layers (6.3 ± 2.6 cm), and despite differences in soil textures showed similarity in DOM character in subsurface waters, and in alum dose rates (22.2 ± 5.5 Al/DOC). For sandy soil ZOCs, the lowest alum dose rates (16.5 ± 10.6 Al/DOC) were for waters from native vegetation catchment while, for clayey soil ZOCs, waters from pine vegetation had the lowest alum dose rates (23.0 ± 5.0 Al/DOC). Where ZOCs have a prominent O horizon, soil minerals had no apparent influence on the treatability of DOM. PMID:26461444

  13. Demonstration testing and evaluation of in situ soil heating. Treatability study work plan, Revision 1

    SciTech Connect

    Sresty, G.C.

    1994-07-07

    A Treatability Study planned for the demonstration of the in situ electromagnetic (EM) heating process to remove organic solvents is described in this Work Plan. The treatability study will be conducted by heating subsurface vadose-zone soils in an organic plume adjacent to the Classified Burial Ground K-1070-D located at K-25 Site, Oak Ridge. The test is scheduled to start during the fourth quarter of FY94 and will be completed during the first quarter of FY95. The EM heating process for soil decontamination is based on volumetric heating technologies developed during the `70s for the recovery of fuels from shale and tar sands by IIT Research Institute (IITRI) under a co-operative program with the US Department of Energy (DOE). Additional modifications of the technology developed during the mid `80s are currently used for the production of heavy oil and waste treatment. Over the last nine years, a number of Government agencies (EPA, Army, AF, and DOE) and industries sponsored further development and testing of the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site under the proposed treatability study. Most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 to 95 C. The efficiency of the treatment will be determined by comparing the concentration of contaminants in soil samples. Samples will be obtained before and after the demonstration for a measurement of the concentration of contaminants of concern.

  14. Treatability studies of alternative wastewaters for Metal Finishing Effluent Treatment Facility

    SciTech Connect

    Wittry, D.M.; Martin, H.L.

    1994-06-01

    The 300-M Area Liquid Effluent Treatment Facility (LETF) of the Savannah River Site (SRS) is an end-of-pipe industrial wastewater treatment facility that uses precipitation and filtration, which is the EPA Best Available Technology economically achievable for a Metal Finishing and Aluminum Form Industries. Upon the completion of stored waste treatment, the LETF will be shut down, because production of nuclear materials for reactors stopped at the end of the Cold War. The economic use of the LETF for the treatment of alternative wastewater streams is being evaluated through laboratory bench-scale treatability studies.

  15. Borehole Data Package for Nine CY 2006 Polyphosphate Treatability Testing Wells, 300-FF-5 Operable Unit, Hanford Site, Washington

    SciTech Connect

    Williams, Bruce A.

    2007-04-12

    Nine new CERCLA groundwater monitoring wells were installed in the 300-FF-5 Operable Unit in calendar year 2006 to fulfill commitments for the EM-20 funded polyphosphate treatability test. Nine new performance monitoring wells were drilled into the uppermost unconfined aquifer, to the Hanford formation - Ringold Formation contact boundary, and completed within the permeable Hanford fm. unit 1 gravel-dominated sequence. The overall objective of the polyphosphate treatability test is to evaluate the efficacy of using polyphosphate injections to treat 300 Area uranium contaminated groundwater in situ. The objective of this work was to install the performance monitoring network surrounding the existing treatability injection well C5000 (399-1-23) in support of the implementation of a field scale demonstration of the polyphosphate technology.

  16. Adsorption and release of amino acids mixture onto apatitic calcium phosphates analogous to bone mineral

    NASA Astrophysics Data System (ADS)

    El Rhilassi, A.; Mourabet, M.; El Boujaady, H.; Bennani-Ziatni, M.; Hamri, R. El; Taitai, A.

    2012-10-01

    Study focused on the interaction of adsorbate with poorly crystalline apatitic calcium phosphates analogous to bone mineral. Calcium phosphates prepared in water-ethanol medium at physiological temperature (37 °C) and neutral pH, their Ca/P ratio was between 1.33 and 1.67. Adsorbate used in this paper takes the mixture form of two essential amino acids L-lysine and DL-leucine which have respectively a character hydrophilic and hydrophobic. Adsorption and release are investigated experimentally; they are dependent on the phosphate type and on the nature of adsorbate L-lysine, DL-leucine and their mixture. Adsorption of mixture of amino acids on the apatitic calcium phosphates is influenced by the competition between the two amino acids: L-lysine and DL-leucine which exist in the medium reaction. The adsorption kinetics is very fast while the release kinetics is slow. The chemical composition of apatite has an influence on both adsorption and release. The interactions adsorbate-adsorbent are electrostatic type. Adsorption and release reactions of the amino acid mixture are explained by the existence of the hydrated surface layer of calcium phosphate apatite. The charged sbnd COOsbnd and sbnd NH3+ of adsorbates are the strongest groups that interact with the surface of apatites, the adsorption is mainly due to the electrostatic interaction between the groups sbnd COOsbnd of amino acids and calcium Ca2+ ions of the apatite. Comparative study of interactions between adsorbates (L-lysine, DL-leucine and their mixture) and apatitic calcium phosphates is carried out in vitro by using UV-vis and infrared spectroscopy IR techniques.

  17. Interrogating the Effects of Radiation Damage Annealing on Helium Diffusion Kinetics in Apatite

    NASA Astrophysics Data System (ADS)

    Willett, C. D.; Fox, M.; Shuster, D. L.

    2015-12-01

    Apatite (U-Th)/He thermochronology is commonly used to study landscape evolution and potential links between climate, erosion and tectonics. The technique relies on a quantitative understanding of (i) helium diffusion kinetics in apatite, (ii) an evolving 4He concentration, (iii) accumulating damage to the crystal lattice caused by radioactive decay[1], and (iv) the thermal annealing of such damage[2],[3], which are each functions of both time and temperature. Uncertainty in existing models of helium diffusion kinetics has resulted in conflicting conclusions, especially in settings involving burial heating through geologic time. The effects of alpha recoil damage annealing are currently assumed to follow the kinetics of fission track annealing (e.g., reference [3]), although this assumption is difficult to fully validate. Here, we present results of modeling exercises and a suite of experiments designed to interrogate the effects of damage annealing on He diffusivity in apatite that are independent of empirical calibrations of fission track annealing. We use the existing experimental results for Durango apatite[2] to develop and calibrate a new function that predicts the effects of annealing temperature and duration on measured diffusivity. We also present a suite of experiments conducted on apatite from Sierra Nevada, CA granite to establish whether apatites with different chemical compositions have the same behavior as Durango apatite. Crystals were heated under vacuum to temperatures between 250 and 500°C for 1, 10, or 100 hours. The samples were then irradiated with ~220 MeV protons to produce spallogenic 3He, the diffusant then used in step-heating diffusion experiments. We compare the results of these experiments and model calibrations to existing models. Citations: [1]Shuster, D., Flowers R., and Farley K., (2006), EPSL 249(3-4), 148-161; [2]Shuster, D. and Farley, K., (2009), GCA 73 (1), 6183-6196; [3]Flowers, R., Ketcham, R., Shuster, D. and Farley, K

  18. Treatability of TCE-contaminated clay soils at the Rinsewater Impoundment, Michoud Assembly Facility

    SciTech Connect

    Lucero, A.J.; Gilbert, V.P.; Hewitt, J.D.; Koran, L.J. Jr.; Jennings, H.L.; Donaldson, T.L.; West, O.R.; Cline, S.R.; Marshall, D.S.

    1995-02-01

    The Oak Ridge National Laboratory has conducted treatability studies on clay soils taken from the Rinsewater Impoundment at the National Aeronautics and Space Administration Michoud Assembly Facility. The soils are contaminated with up to 3000 mg/kg of trichloroethylene and cis-1,2-dichloroethylene, less than 10 mg/kg of trans-1,2-DCE, and less than 10 mg/kg of vinyl chloride. The goal of the study described in this report was to identify and test in situ technologies and/or develop a modified treatment regime to remove or destroy volatile organic compounds from the contaminated clay soils. Much of the work was based upon previous experience with mixed-region vapor stepping and mixed-region peroxidation. Laboratory treatments were performed on intact soil cores that were taken from contaminated areas at the Rinsewater Impoundment at MAF. Treatability studies were conducted on soil that was close to in situ conditions in terms of soil structure and contaminant concentrations.

  19. Decomposition of PCBs in oils using gamma radiolysis: A treatability study. Final report

    SciTech Connect

    Mincher, B.J.; Arbon, R.E.

    1996-04-01

    This report presents the results of a treatability study of radiologically and PCB contaminated waste hydraulic oils at the Idaho National Engineering Laboratory (INEL). The goal of the study was to demonstrate that PCBs could be selectively removed from the contaminated oils. The PCBs were selectively decomposed in an in-situ fashion via gamma-ray radiolysis. The gamma-ray source was spent nuclear fuel at the Advanced Test Reactor (ATR) canal at the Test Reactor Area (TRA), of the INEL. Exposure to gamma-rays does not induce radioactivity in the exposed solutions. The treatability study was the culmination of five years of research concerning PCB radiolysis conducted at INEL which investigated the mechanism and kinetics of the reaction in several solvents. The major findings of this research are summarized here. Based upon these findings three INEL waste streams were selected for testing of the process. The Environmental Protection Agency (EPA) treatment standard of 2 mg/kg was successfully achieved in all waste streams. The interference of contaminants other than PCBs is discussed.

  20. Aerobic treatability of waste effluent from the leather finishing industry. Master's thesis

    SciTech Connect

    Vinger, J.A.

    1993-12-01

    The Seton Company supplies finished leather products exclusively for the automotive industry. In the process of finishing leather, two types of wastewaters are generated. The majority of the wastewater is composed of water-based paint residuals while the remainder is composed of solvent-based coating residuals. Aerobic treatability studies were conducted using water-based and solvent-based waste recirculatory waters from the Seton Company's Saxton, Pennsylvania processing plant. The specific objective was to determine the potential for using aerobic biological processes to biodegrade the industry's wastes and determine the potential for joint treatment at the local publicly owned treatment works (POTW). This study was accomplished in two phases. Phase I was conducted during the Spring Semester 1993 and consisted of aerobic respirometer tests of the raw wastes and mass balance analysis. The results of Phase I were published in a report to the Seton Company as Environmental Resources Research Institute project number 92C.II40R-1. Phase II was conducted during the Summer Semester 1993 and consisted of bench-scale reactor tests and additional aerobic respirometer tests. The aerobic respirometer batch tests and bench-scale reactor tests were used to assess the treatability of solvent-based and water-based wastewaters and determine the degree of biodegradability of the wastewaters. Mass balance calculations were made using measured characteristics.

  1. Characterization and photocatalytic treatability of red water from Brazilian TNT industry.

    PubMed

    Ludwichk, Raquel; Helferich, Oliver Karil; Kist, Cristiane Patrícia; Lopes, Aline Chitto; Cavasotto, Thiago; Silva, Davi Costa; Barreto-Rodrigues, Marcio

    2015-08-15

    The current study aims to characterize and evaluate the photocatalytic treatability of the "red water" effluent from a Brazilian TNT production industry. Analyses were performed using physical, chemical, spectroscopic and chromatographic assays, which demonstrated that the effluent presented a significant pollution potential, mainly due to COD, BOD, solids and to the high concentration of nitroaromatic compounds such as 1,3,5-trinitrobenzene, 1-methyl-2,4-dinitrobenzene, 2-methyl-1,3-dinitrobenzene, 2,4,6-trinitrotoluene-3,5-dinitro-p-toluidine and 2-methyl-3,5-dinitro-benzoamine. By a modified sol-gel and a dip-coating technique, it was possible to obtain a TiO2 film on borosilicate glass substrate which functional composition and microstructure were characterized by infrared spectroscopy and scanning electron microscopy. The evaluation of the photocatalytic treatability using borosilicate-glass-TiO2 demonstrated high degradation efficiency. In this context, a reduction of 32 and 100% for COD and nitroaromatic compounds, respectively, was observed. Although the proposed photocatalytic process has found difficulties in reducing the content of organic matter and effluent color in the red water, its potential for degrading refractory chemical compounds such as the nitroaromatic ones enables it to be used as tertiary treatment. PMID:25827271

  2. Analytically oriented psychotherapy in schizotypal and borderline patients: at the border of treatability.

    PubMed Central

    Stone, M. H.

    1985-01-01

    Analytically oriented psychotherapy (AOP) has been considered the treatment of choice for borderline patients and a useful technique in the treatment of schizotypal patients. There are many exceptions, however, in addition to a number of borderline and schizotypal patients who are just barely amenable to this modality: they are at the border of treatability by AOP. Limitations relating to time, cost, and the availability of therapists trained in this discipline render it important to delineate the factors which conduce either to the success or failure of AOP. From the author's clinical impressions about borderline and schizotypal patients at the border of treatability by AOP, a number of such factors emerge. On the positive side: likeableness, autoplastic defenses, high motivation, psychological-mindedness, genuine concern, good moral sense, self-discipline, and low impulsivity. Negative factors include, beside the opposites to the aforementioned, vengefulness and parental abusiveness or exploitation. A scale for measuring the balance between these positive and negative factors is proposed. Its use may, it is hoped, improve forecast, during initial consultation, as to which borderline and schizotypal patients will respond favorably to AOP. PMID:4049910

  3. TREATABILITY TEST REPORT FOR THE REMOVAL OF CHROMIUM FROM GROUNDWATER AT 100-D AREA USING ELECTROCOAGULATION

    SciTech Connect

    PETERSEN SW

    2009-09-24

    The U.S. Department of Energy (DOE) has committed to accelerate cleanup of contaminated groundwater along the Columbia River. The current treatment approach was driven by a series of Interim Action Records of Decision (IAROD) issued in the mid-1990s. Part of the approach for acceleration involves increasing the rate of groundwater extraction for the chromium plume north of the 100-D Reactor and injecting the treated water in strategic locations to hydraulically direct contaminated groundwater toward the extraction wells. The current treatment system uses ion exchange for Cr(VI) removal, with off-site regeneration of the ion exchange resins. Higher flow rates will increase the cost and frequency of ion exchange resin regeneration; therefore, alternative technologies are being considered for treatment at high flow rates. One of these technologies, electrocoagulation (EC), was evaluated through a pilot-scale treatability test. The primary purpose of the treatability study was to determine the effectiveness of Cr(VI) removal and the robustness/implementability of an EC system. Secondary purposes of the study were to gather information about derivative wastes and to obtain data applicable to scaling the process from the treatability scale to full-scale. The treatability study work plan identified a performance objective and four operational objectives. The performance objective for the treatability study was to determine the efficiency (effectiveness) of hexavalent chromium removal from the groundwater, with a desired concentration of {le} 20 micrograms per liter ({micro}g/L) Cr(VI) in the effluent prior to re-injection. Influent and effluent total chromium and hexavalent chromium data were collected using a field test kit for multiple samples per week, and from off-site laboratory analysis of samples collected approximately monthly. These data met all data quality requirements. Two of three effluent chromium samples analyzed in the off-site (that is, fixed) laboratory

  4. Magnetite-apatite mineralization in Khanlogh iron deposit, northwest of Neyshaboor, NE Iran

    NASA Astrophysics Data System (ADS)

    Najafzadeh Tehrani, Parvin; Asghar Calagari, Ali; Velasco Roldan, Francisco; Simmonds, Vartan; Siahcheshm, Kamal

    2016-04-01

    Khanlogh iron deposit lies on Sabzehvar-Ghoochan Cenozoic magmatic belt in northwest of Neyshaboor, NE Iran. The lithologic units in this area include a series of sub-volcanic intrusive rocks like diorite porphyry, quartz-diorite porphyry, and micro-granodiorite of Oligocene age. Mineralization in this area occurred as veins, dissemination, and open space filling in brecciated zones within the host sub-volcanic intrusive bodies. Three distinct types of mineral associations can be distinguished, (1) diopside-magnetite, (2) magnetite-apatite, and (3) apatite-calcite. Microscopic examinations along with SEM and EPMA studies demonstrated that magnetite is the most common ore mineral occurring as solitary crystals. The euhedral magnetite crystals are accompanied by lamellar destabilized ilmenite and granular fluorapatite in magnetite-apatite ores. The results of EPMA revealed that the lamellar ilmenite, relative to host magnetite crystal, is notably enriched in MgO and MnO (average of 3.3 and 2.6 wt%, respectively; n=5), whereas magnetite is slighter enriched in Ti (TiO2 around 1.8 wt%) being average of MgO, MnO and V2O3 of 0.6wt%, 0.2wt%, and 0.6 wt% (respectively; n=20). Minerals such as chlorapatite, calcite, and chalcedony are also present in the magnetite-apatite ores. The samples from apatite-calcite ores contain coarse crystals of apatite and rhomboedral calcite. The plot of the EPMA data of Khanlogh iron ore samples on diagram of TiO2-V2O5 (Hou et al, 2011) illustrated that the data points lies between the well-known Kiruna and El Laco (Chile) iron deposits. The magnetite crystals in the sub-volcanic host rocks were possibly formed by immiscible iron oxide fluids during magmatic stage. However, the magnetite and apatite existing in the veins and breccia zones may have developed by high temperature hydrothermal fluids. Studies done by Purtov and Kotelnikova (1993) proved that the proportion of Ti in magnetite is related to fluoride complex in the hydrothermal

  5. Apatite formation behaviour during metasomatism in the Bathtub Intrusion (Babbitt deposit, Duluth Complex, USA)

    NASA Astrophysics Data System (ADS)

    Raič, Sara; Mogessie, Aberra; Krenn, Kurt; Hauzenberger, Christoph A.; Tropper, Peter

    2016-04-01

    The mineralized troctolitic Bathtub intrusion (Duluth Complex, NE-Minnesota) is known for its famous Cu-Ni-Sulfide±PGM Babbitt deposit, where platinum group minerals (PGMs) are either hosted by primary magmatic sulfides (base metal sulfides) or associated with hydrothermally altered portions. This secondary generation of PGMs is present in alteration patches and suggests the involvement of hydrothermal fluids in the mobilization of platinum-group elements (PGEs). Accessory fluorapatite in these samples reveals besides H2O- and CO2-rich primary fluid inclusions, textural and compositional variations that also record magmatic and metasomatic events. Based on detailed back-scattered electron imaging (BSE) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS), a primary magmatic origin is reflected by homogeneous or zoned grains, where zoning patterns are either concentric or oscillatory, with respect to LREE. Late magmatic to hydrothermal processes are indicated by grains with bright LREE-enriched rims or conversion textures with REE-enriched patches in the interior of the apatite. A metasomatic formation of monazite from apatite is documented by the presence of monazite inclusions in apatite and newly grown monazite at altered apatite rims. They formed by the release of REEs from the apatite during a fluid-induced alteration, based on the coupled substitution Ca2+ + P5+ = REE3+ + Si4+ (Rønsbo 1989; Rønsbo 2008). Samples with monazite inclusions in apatite further display occurrences of PGMs associated with hydrothermal alteration patches (chlorite + amphibole). The presence of H2O- and CO2-rich fluid inclusions in apatite, the metasomatically induced monazite growth, as well as the occurrence of PGMs in hydrothermally alteration zones, also suggest the involvement of aqueous chloride complexes in a H2O dominated fluid in the transportation of LREE and redistribution of the second generation of PGEs. Rønsbo, J.G. (1989): Coupled substitutions

  6. Enzyme-functionalized biomimetic apatites: concept and perspectives in view of innovative medical approaches.

    PubMed

    Weber, Christina G; Mueller, Michaela; Vandecandelaere, Nicolas; Trick, Iris; Burger-Kentischer, Anke; Maucher, Tanja; Drouet, Christophe

    2014-03-01

    Biomimetic nanocrystalline calcium-deficient apatite compounds are particularly attractive for the setup of bioactive bone-repair scaffolds due to their high similarity to bone mineral in terms of chemical composition, structural and substructural features. As such, along with the increasingly appealing development of moderate temperature engineered routes for sample processing, they have widened the armamentarium of orthopedic and maxillofacial surgeons in the field of bone tissue engineering. This was made possible by exploiting the exceptional surface reactivity of biomimetic apatite nanocrystals, capable of easily exchanging ions or adsorbing (bio)molecules, thus leading to highly-versatile drug delivery systems. In this contribution we focus on the preparation of hybrid materials combining biomimetic nanocrystalline apatites and enzymes (lysozyme and subtilisin). This paper reports physico-chemical data as well as cytotoxicity evaluations towards Cal-72 osteoblast-like cells and finally antimicrobial assessments towards selected strains of interest in bone surgery. Biomimetic apatite/enzyme hybrids could be prepared in varying buffers. They were found to be non-cytotoxic toward osteoblastic cells and the enzymes retained their biological activity (e.g. bond cleavage or antibacterial properties) despite the immobilization and drying processes. Release properties were also examined. Beyond these illustrative examples, the concept of biomimetic apatites functionalized with enzymes is thus shown to be useable in practice, e.g. for antimicrobial purposes, thus widening possible therapeutic perspectives. PMID:24258399

  7. Bioactive bredigite coating with improved bonding strength, rapid apatite mineralization and excellent cytocompatibility.

    PubMed

    Yi, Deliang; Wu, Chengtie; Ma, Bing; Ji, Heng; Zheng, Xuebin; Chang, Jiang

    2014-05-01

    Previous studies have shown that bredigite (Ca7MgSi4O16) bioceramics possessed excellent biocompatibility, apatite-mineralization ability and mechanical properties. In this paper, the bredigite coating on Ti-6Al-4 V substrate was prepared by plasma spraying technique. The main compositions of the coating were bredigite crystal phase with small parts of amorphous phases. The bonding strength of the coating to Ti-6Al-4 V substrate reached 49.8 MPa, which was significantly higher than that of hydroxyapatite coating and other silicate-based bioceramic coatings prepared by same method. After immersed in simulated body fluid for 2 days, a distinct apatite layer was deposited on the surface of bredigite coating, indicating that the prepared bredigite coating has excellent apatite-mineralization ability. The prepared bredigite coating supported the attachment and proliferation of rabbit bone marrow stem cells. The proliferation level of bone marrow stem cells was significantly higher than that on the hydroxyapatite coating. Our further study showed that the released SiO4 (4-) and Mg(2+) ions from bredigite coating as well as the formed nano-apatite layer on the coating surface might mainly contribute to the improvement of cell proliferation. The results indicated that the bredigite coating may be applied on orthopedic implants due to its excellent bonding strength, apatite mineralization and cytocompatibility. PMID:24131918

  8. Oleate adsorption at an apatite surface studied by ex-situ FTIR internal reflection spectroscopy

    SciTech Connect

    Lu, Y.; Drelich, J.; Miller, J.D.

    1998-06-15

    Oleate adsorption at an apatite surface was investigated by ex-situ Fourier transform infrared internal reflection spectroscopy (FTIR/IRS). Adsorption isotherms have been determined using an apatite internal reflection element (IRE) and it has been found that pH has a significant influence on oleate adsorption by apatite. At pH 8.0 and 20 C, oleate adsorption density increases monotonically as equilibrium oleate concentration increases from 5 {times} 10{sup {minus}6} to 1 {times} 10{sup {minus}3} M. These results are in contrast to the results at pH 9.5 and 20 C in which case the adsorption density is limited to that corresponding to approximately monolayer coverage. Oleate adsorption by apatite was compared to oleate adsorption by fluorite and calcite and the different adsorption behavior at these three mineral surfaces is attributed to the differences in the densities of surface calcium sites and to the differences in the solubilities of these minerals. Contact angles have been measured at the apatite IRE surface and it has been demonstrated that both the amount and the nature of the adsorbed species influence the hydrophobic state of the surface.

  9. Apatite-forming ability of a zirconia/alumina nano-composite induced by chemical treatment.

    PubMed

    Uchida, Masaki; Kim, Hyun-Min; Kokubo, Tadashi; Nawa, Masahiro; Asano, Taiyo; Tanaka, Kenji; Nakamura, Takashi

    2002-05-01

    Induction of an apatite-forming ability on a nano-composite of a ceria-stabilized tetragonal zirconia polycrystals (Ce-TZP) and alumina (Al2O3) polycrystals via chemical treatment with aqueous solutions of H3PO4, H2SO4, HCl, or NaOH has been investigated. The Ce-TZP/Al2O3 composite is attractive as a load-bearing bone substitute because of its mechanical properties. The chemical treatments produced Zr-OH surface functional groups, which are known to be effective for apatite nucleation in a body environment. The composite, after chemical treatment, was shown to form a bonelike apatite layer when immersed in a simulated body fluid containing ion concentrations nearly equal to those in human blood plasma. This implies that it may form apatite in the living body and bond to living bone through the apatite layer. This type of bioactive Ce-TZP/Al2O3 composite is therefore expected to be useful as a bone substitute, even under load-bearing conditions. PMID:11857434

  10. Fabrication and apatite inducing ability of different porous titania structures by PEO treatment.

    PubMed

    Rao, X; Chu, C L; Sun, Q; Zheng, Y Y

    2016-09-01

    Plasma electrolytic oxidation (PEO) was employed to grow different porous titania structures on Ti6Al4V alloy (TC4) substrate using various parameters. It was found that the PEO voltage and working frequency could affect the morphology, the pore size, the pore density, the thickness and the phase composition of titania structures. Thereafter, three typical porous titania structures with nanosize pores, microsize pores and microsize grooves were respectively selected to estimate their bioactivity using SBF immersion test. After soaking at different durations (3-28d), the surface morphology, the chemical composition as well as the phase structure of deposited apatite layers on porous titania were evaluated using SEM, EDS, and XRD. The formation of various biomimetic apatite layers indicated the different influence due to the characteristics of porous titania structures. The porous titania structure with nanosize pores could induce a fast apatite growth at the early immersion stage (~7d), while the one with microsize pores exhibited the best apatite inducing ability at long term immersion (~28d). Based on the experimental results, the formation mechanism of biomimetic apatite affected by the pore structure of titania was discussed as well. PMID:27207066

  11. Enamel-like apatite crown covering amorphous mineral in a crayfish mandible.

    PubMed

    Bentov, Shmuel; Zaslansky, Paul; Al-Sawalmih, Ali; Masic, Admir; Fratzl, Peter; Sagi, Amir; Berman, Amir; Aichmayer, Barbara

    2012-01-01

    Carbonated hydroxyapatite is the mineral found in vertebrate bones and teeth, whereas invertebrates utilize calcium carbonate in their mineralized organs. In particular, stable amorphous calcium carbonate is found in many crustaceans. Here we report on an unusual, crystalline enamel-like apatite layer found in the mandibles of the arthropod Cherax quadricarinatus (freshwater crayfish). Despite their very different thermodynamic stabilities, amorphous calcium carbonate, amorphous calcium phosphate, calcite and fluorapatite coexist in well-defined functional layers in close proximity within the mandible. The softer amorphous minerals are found primarily in the bulk of the mandible whereas apatite, the harder and less soluble mineral, forms a wear-resistant, enamel-like coating of the molar tooth. Our findings suggest a unique case of convergent evolution, where similar functional challenges of mastication led to independent developments of structurally and mechanically similar, apatite-based layers in the teeth of genetically remote phyla: vertebrates and crustaceans. PMID:22588301

  12. Enamel-like apatite crown covering amorphous mineral in a crayfish mandible

    PubMed Central

    Bentov, Shmuel; Zaslansky, Paul; Al-Sawalmih, Ali; Masic, Admir; Fratzl, Peter; Sagi, Amir; Berman, Amir; Aichmayer, Barbara

    2012-01-01

    Carbonated hydroxyapatite is the mineral found in vertebrate bones and teeth, whereas invertebrates utilize calcium carbonate in their mineralized organs. In particular, stable amorphous calcium carbonate is found in many crustaceans. Here we report on an unusual, crystalline enamel-like apatite layer found in the mandibles of the arthropod Cherax quadricarinatus (freshwater crayfish). Despite their very different thermodynamic stabilities, amorphous calcium carbonate, amorphous calcium phosphate, calcite and fluorapatite coexist in well-defined functional layers in close proximity within the mandible. The softer amorphous minerals are found primarily in the bulk of the mandible whereas apatite, the harder and less soluble mineral, forms a wear-resistant, enamel-like coating of the molar tooth. Our findings suggest a unique case of convergent evolution, where similar functional challenges of mastication led to independent developments of structurally and mechanically similar, apatite-based layers in the teeth of genetically remote phyla: vertebrates and crustaceans. PMID:22588301

  13. Échange terres rares légères Ca dans l'apatite

    NASA Astrophysics Data System (ADS)

    Iqdari, Abderrahmane; Velde, Bruce; Benalioulhaj, Noureddine; Dujon, Saint-Clair; El Yamine, Nacer

    2003-04-01

    Diffusion experiments were carried out on natural apatite crystals that were immersed in molten light rare earth element (REE) chloride salt at temperatures between 900 and 1150 °C for periods up to 35 days. Electron microprobe analysis of the crystals showed that light REEs replaced Ca according to electronic balance, i.e. 2 REE3+ for 3 Ca2+. These diffusion profiles indicate that a maximum amount of substitution in the structure occurs when two of the ten Ca ions in apatite are replaced by the REE diffusing elements. Anisotropic diffusion is observed between a and c crystallographic directions. Comparison of maximum distance indicates that the larger ions move more easily in the apatite structure. We conclude that the light REEs diffuse within the channel structures of the mineral, and that this diffusion is controlled by the substitution type of elements in the calcium sites. To cite this article: A. Iqdari et al., C. R. Geoscience 335 (2003).

  14. Apatite (U-Th)/He thermochronology dataset interpretation: New insights from physical point of view

    NASA Astrophysics Data System (ADS)

    Gautheron, Cécile; Mbongo-Djimbi, Duval; Gerin, Chloé; Roques, Jérôme; Bachelet, Cyril; Oliviero, Erwan; Tassan-Got, Laurent

    2015-04-01

    The apatite (U-Th)/He (AHe) system has rapidly become a very popular thermochronometer to constrain burial and exhumation phases in a variety of geological contexts. However, the interpretation of AHe data depends on a precise knowledge of He diffusion in apatite. Several studies suggest that radiation damage generated by U and Th decay can create traps for He atoms, increasing He retention for irradiated minerals. The radiation damage also anneals with temperature and the amount of damage in an apatite crystal is at any time a balance between production and annealing, controlled by U-Th concentration, grain chemistry and thermal history (Flowers et al., 2009; Gautheron et al., 2009; 2013). However the models are not well constrained and do not fully explain the mechanism of He retention. In order to have a deeper insight on this issue, multidisciplinary studies on apatite combining diffusion experiments by Elastic Recoil Diffusion Analysis (ERDA) with a multi-scale theoretical diffusion calculation based on Density Functional Theory (DFT) and Kinetic Monte Carlo were performed. ERDA experiments were conducted on different macro-crystals, and we probed the shape of a He profile implanted into a planar and polished surface of the crystal. The helium profile evolves with temperature and allows quantifying the He diffusivity and damage impact. Additionally, DFT calculations of a damage-free crystal of apatite with different F and Cl compositions, in similar proportion as natural ones, have been run to find the favored paths of a helium atom between interstitial sites, leading to a computation of the activation energy and the diffusion coefficient. We show that damage free apatite crystals are characterized by low retention behavior and closure temperature range from 33-36°C for pure F-apatite to higher value for Cl riche apatite (up to 12°C higher), for typical grain size and cooling rate (Mbongo-Djimbi et al., in review). Using ERDA and DFT approaches, we

  15. Revised phosphate-water fractionation equation reassessing paleotemperatures derived from biogenic apatite

    NASA Astrophysics Data System (ADS)

    Pucéat, E.; Joachimski, M. M.; Bouilloux, A.; Monna, F.; Bonin, A.; Motreuil, S.; Morinière, P.; Hénard, S.; Mourin, J.; Dera, G.; Quesne, D.

    2010-09-01

    Oxygen isotopes of biogenic apatite have been widely used to reassess anomalous temperatures inferred from oxygen isotope ratios of ancient biogenic calcite, more prone to diagenetic alteration. However, recent studies have highlighted that oxygen isotope ratios of biogenic apatite differ dependent on used analytical techniques. This questions the applicability of the phosphate-water fractionation equations established over 25 years ago using earlier analytical techniques to more recently acquired data. In this work we present a new phosphate-water oxygen isotope fractionation equation based on oxygen isotopes determined on fish raised in aquariums at controlled temperature and with monitored water oxygen isotope composition. The new equation reveals a similar slope, but an offset of about + 2‰ to the earlier published equations. This work has major implications for paleoclimatic reconstructions using oxygen isotopes of biogenic apatite since calculated temperatures have been underestimated by about 4 to 8 °C depending on applied techniques and standardization of the analyses.

  16. Characterization of a calcium phospho-silicated apatite with iron oxide inclusions

    NASA Astrophysics Data System (ADS)

    Desport, Barthélémy; Carpena, Joëlle; Lacout, Jean-Louis; Borschneck, Daniel; Gattacceca, Jérôme

    2011-02-01

    An iron oxide containing calcium phosphate-silicate hydroxyapatite was synthesized by calcination at 900 °C of a sample obtained by precipitation in basic aqueous solution of Ca, P, Si, Fe and Mg containing acidic solution made from dissolution of natural minerals. XRD and FTIR were used for crystallographic characterization of the main apatitic phase. Its composition was determined using ICP-AES. EDX coupled with SEM and TEM evidenced the heterogeneity of this compound and the existence of iron-magnesium oxide. Magnetic analyses highlighted that this phase was non-stoichiometric magnesioferrite (Mg 1.2Fe 1.8O 3.9) spherical nanoparticles. Those analyses also put into evidence the role of calcination in synthesis. Carbonates detected by FTIR and estimated by SEM-EDX in non-calcinated sample were removed from apatitic structure, and crystallization of apatite was enhanced during heating. Moreover, there was phase segregation that led to magnesioferrite formation.

  17. SUPERFUND TREATABILITY CLEARINGHOUSE: SUMMARY REPORT ON THE FIELD INVESTIGATION OF THE SAPP BATTERY SITE JACKSON COUNTY, FLORIDA

    EPA Science Inventory

    This treatability study presents the results of field investigations at the Sapp Battery site in Florida, an abandoned battery recycling operation. The site is estimated to contain 14,300 cubic yards of soils with lead levels in excess of 1,000 ppm. The soils in the immediate v...

  18. SUPERFUND TREATABILITY CLEARINGHOUSE: TECHNOLOGY DEMONSTRATION OF A THERMAL DESORPTION/UV PHOTOLYSIS PROCESS FOR DECONTAMINATING SOILS CONTAINING HERBICIDE ORANGE

    EPA Science Inventory

    This treatability study report presents the results of laboratory and field tests on the effectiveness of a new decontamination process for soils containing 2,4-D/2,4,5-T and traces of dioxin. The process employs three operations, thermal desorption, condensation and absorp...

  19. SUPERFUND TREATABILITY CLEARINGHOUSE: BDAT INCINERATION OF CERCLA SARMS AT THE JOHN ZINK COMPANY TEST FACILITY (FINAL PROJECT REPORT)

    EPA Science Inventory

    This report presents the results of a treatability study of rotary kiln incineration of a synthetic "Superfund soil" bearing a wide range of chemical contaminants typically occurring at Superfund sites. This surrogate soil is referred to as a synthetic analytical reference ...

  20. In situ vitrification demonstration at Pit 1, Oak Ridge National Laboratory. Volume 1: Results of treatability study

    SciTech Connect

    Spalding, B.P.; Naney, M.T.; Cline, S.R.; Bogle, M.A.; Tixier, J.S.

    1997-12-01

    A treatability study was initiated in October 1993 to apply in situ vitrification (ISV) to at least two segments of Oak Ridge National Laboratory (ORNL) seepage Pit 1 by the end of fiscal year (FY) 1995. This treatability study was later extended to include all of Pit 1 and was performed to support a possible Interim Record of Decision or removal action for closure of one or more of the seepage pits and trenches beginning as early as FY 1997. This treatability study was carried out to establish the field-scale technical performance of ISV for (1) attaining the required depth, nominally 15 ft, to incorporate source contamination within and beneath the pits; (2) demonstrating field capability for the overlap of melt settings which will be necessary to achieve fused, melted segments of the source contamination; (3) demonstrating off-gas handling technology for accommodating and minimizing the volatilization of {sup 137}Cs; (4) demonstrating adequate site characterization techniques to predict ISV melting kinetics, processing temperatures, and product durability; and (5) promoting public acceptance of ISV technology by demonstrating its safety, implementability, site impacts, and air emissions and by coordinating the treatability study within the regulatory closure process. In April 1996 an expulsion of an estimated 10% of the 196 Mg (216 tons) melt body occurred resulting in significant damage to ISV equipment and, ultimately, led to an indefinite suspension of further ISV operations at Pit 1. This report summarizes the technical accomplishments and status of the project in fulfilling these objectives through September 1997.

  1. Treatability Test Report: Characterization of Vadose Zone Carbon Tetrachloride Source Strength Using Tomographic Methods at the 216-Z-9 Site

    SciTech Connect

    Truex, Michael J.; Carroll, Kenneth C.; Rohay, Virginia J.; Mackley, Rob D.; Parker, Kyle R.

    2012-09-28

    A treatability test was conducted in 2011 at the 216-Z-9 Trench to evaluate methods for collecting characterization information that supports refined assessment of SVE performance goals based on impact to groundwater. The characterization information can also provide input to operational strategies for continued SVE operation and decisions regarding closure of the SVE system or transition to other remedies, if necessary.

  2. EVALUATION OF CONTAMINANT LEACHABILITY FACTORS BY COMPARISON OF TREATABILITY STUDY DATA FOR MULTIPLE SOLIDIFIED/STABILIZED MATERIALS

    EPA Science Inventory

    Solidification/stabilization (S/S) technology is widely used in the treatment of hazardous waste and contaminated soil in the US. In a project sponsored by the US Navy and the USEPA, treatability test data were compiled into a data base listing contaminant concentration and matri...

  3. Preliminary Apatite Fission Track Thermochronology of Wrangel Island, Arctic Russia

    NASA Astrophysics Data System (ADS)

    Dumitru, T. A.; Miller, E. L.

    2010-12-01

    Wrangel Island is part of a regional structural high that forms the continuation of the offshore Herald Arch and Chukchi Platform of Alaska. It is flanked on the north by the deep North Chukchi Basin, which in addition to Paleozoic strata, is inferred to contain up to 12 km of Beaufortian and Brookian (Late Jurassic to Tertiary) sediments (Dinkelman et al., 2008). To the south, ~E-W trending faults bound the Longa Basin that separates Wrangel from mainland Chukotka. This basin lies along strike of the early Tertiary Hope Basin in the Alaskan offshore. Wrangel Island itself exposes a broad, doubly-plunging anticlinorium-like structure cored by Neoproterozoic basement and flanked by Paleozoic shelf successions and a thick section of Triassic turbidites, representing about 5-7 km of structural section. The structural geology of Wrangel Island has been interpreted to represent a north-vergent Mesozoic fold and thrust belt linked by seismic reflection to the Herald Arch and then to the Lisburne Hills and the Brooks Range foreland fold and thrust belt (e.g. Kos’ko et al., 1993). However, deformation differs considerably from typical foreland fold-thrust structures of the Brooks Range as it is penetrative, involves large strains, and occurred under greenschist facies metamorphic conditions. Parts of the sequence exhibit mylonitic fabrics. Apatite fission track thermochronology of rocks from Wrangel Island can establishes the age of cooling to temperatures below ~ 100° C, providing temporal constraints on the uplift and erosional history of rocks that form this regional structural high. We analyzed seven fission track samples from a 9-km long N-S transect along the Kishchnikov River, from Triassic strata on the southern flank of the anticlinal structure to Devonian(?)-Mississippian feldspathic grits, conglomerates, and underlying Neoproterozoic igneous basement rocks in its core. All samples yielded statistically indistinguishable fission track ages averaging about 95

  4. TREATABILITY STUDIES USED TO TEST FOR EXOTHERMIC REACTIONS OF PLUTONIUM DECONTAMINATION CHEMICALS

    SciTech Connect

    EWALT, J.R.

    2005-06-06

    Fluor Hanford is decommissioning the Plutonium Finishing Plant (PFP) at the Hanford site in Eastern Washington. Aggressive chemicals are commonly used to remove transuranic contaminants from process equipment to allow disposal as low level waste. Chemicals being considered for decontamination of gloveboxes in PFP include cerium(IV) nitrate in a nitric acid solution, and proprietary commercial solutions that include acids, degreasers, and sequestering agents. Fluor's decontamination procedure involves application of chemical solutions as a spray on the contaminated surfaces, followed by a wipe-down with rags. This process effectively transfers the transuranic materials to the decontamination liquids, which are then absorbed by rags and packaged for disposal as TRU waste. Concerns regarding the safety of this procedure developed following a fire at Rocky Flats in 2003. The fire occurred in a glovebox that had been treated with cerium nitrate, which is one of the decontamination chemicals that Fluor Hanford has proposed to use. The investigation of the event was hampered by the copious use of chemicals and water to extinguish the fire, and was not conclusive regarding the cause. However, the reviewers noted that rags were found in the glovebox, suggesting that the combination of rags and chemicals may have contributed to the fire. With that uncertainty, Fluor began an investigation into the potential for fire when using the chemicals and materials in the decontamination process. The focus of this work has been to develop a disposal strategy that will provide a chemically stable waste form at expected Hanford waste storage temperatures. Treatability tests under CERCLA were used to assess the use of certain chemicals and wipes during the decontamination process. Chemicals being considered for decontamination of gloveboxes at PFP include cerium (IV) nitrate in a nitric acid solution, and proprietary commercial solutions as RadPro{trademark} that include acids, degreasers

  5. Differential fluorescence EEMs can be used to assess treatability of DOM during drinking water production

    NASA Astrophysics Data System (ADS)

    Lavonen, Elin; Kothawala, Dolly; Tranvik, Lars; Köhler, Stephan

    2014-05-01

    Fluorescence spectroscopy has been widely used to characterize fluorescent dissolved organic matter (FDOM) in various waters including during drinking water production. Commonly used techniques for data treatment include peak picking, indexes calculated from 2D emission spectra and modelling of fluorescence components using parallel factor analysis (PARAFAC). However, peak picking and indexes only use limited information from the fluorescence EEMs and PARAFAC requires a larger dataset and experience to perform. Because DOM is a major issue in drinking water production, and personnel at water treatment plants usually have limited time for advanced analysis we have developed a simple way of assessing the treatability of DOM in different waters using differential fluorescence. With this approach the removed fraction of FDOM is calculated from samples taken before and after a particular treatment process and the percentage of removed material assessed. Samples have been collected from four large water treatment plants in Sweden and analyzed for 3Dfluorescence, absorbance and DOC. The selective removal of DOM during e.g. flocculation and slow sand filtration as well as differences in experienced treatability between the treatment plants was described with differential fluorescence. Chemical flocculation is selective towards FDOM with red-shifted emission across the entire EEM. Red-shift has earlier been connected to condensation (i.e. decrease in H/C) and positively correlated to molecular size indicating that larger, humified molecules are being preferentially removed. During the biological process of slow sand filtration compounds with blue-shifted emission are targeted demonstrating selective removal of more freshly produced, microbial material. Disinfection with UV/NH2Cl and NaOCl was found to only target material with protein-like fluorescence suggesting that FDOM of this nature could be responsible for unwanted consumption of disinfection agent. Targeted removal

  6. Adsorption of nucleotides on biomimetic apatite: The case of adenosine 5‧ triphosphate (ATP)

    NASA Astrophysics Data System (ADS)

    Hammami, Khaled; El-Feki, Hafed; Marsan, Olivier; Drouet, Christophe

    2016-01-01

    ATP is a well-known energy supplier in cells. The idea to associate ATP to pharmaceutical formulations/biotechnological devices to promote cells activity by potentially modulating their microenvironment thus appears as an appealing novel approach. Since biomimetic nanocrystalline apatites have shown great promise for biomedical applications (bone regeneration, cells diagnostics/therapeutics, …), thanks to a high surface reactivity and an intrinsically high biocompatibility, the present contribution was aimed at exploring ATP/apatite interactions. ATP adsorption on a synthetic carbonated nanocrystalline apatite preliminarily characterized (by XRD, FTIR, Raman, TG-DTA and SEM-EDX) was investigated in detail, pointing out a good agreement with Sips isothermal features. Adsorption characteristics were compared to those previously obtained on monophosphate nucleotides (AMP, CMP), unveiling some specificities. ATP was found to adsorb effectively onto biomimetic apatite: despite smaller values of the affinity constant KS and the exponential factor m, larger adsorbed amounts were reached for ATP as compared to AMP for any given concentration in solution. m < 1 suggests that the ATP/apatite adsorption process is mostly guided by direct surface bonding rather than through stabilizing intermolecular interactions. Although standard ΔGads ° was estimated to only -4 kJ/mol, the large value of Nmax led to significantly negative effective ΔGads values down to -33 kJ/mol, reflecting the spontaneous character of adsorption process. Vibrational spectroscopy data (FTIR and Raman) pointed out spectral modifications upon adsorption, confirming chemical-like interactions where both the triphosphate group of ATP and its nucleic base were involved. The present study is intended to serve as a basis for future research works involving ATP and apatite nanocrystals/nanoparticles in view of biomedical applications (e.g. bone tissue engineering, intracellular drug delivery, …).

  7. Green apatites: hydride ions, electrons and their interconversion in the crystallographic channel.

    PubMed

    Hayashi, Katsuro; Hosono, Hideo

    2016-03-01

    Hydride (H(-)) ions and electrons in channel sites of the lattice of calcium phosphate apatites are characterized. Solid-state chemical reduction using TiH2 is effective for doping of H(-) ions into apatites. Irradiation of the H(-) ion-doped apatite with ultraviolet (UV) light induces green coloration. Electron paramagnetic resonance (EPR) reveals that this colour centre is attributed to electrons captured at a vacant anion site in the crystallographic channel, forming F(+) centres. Transient H(0) atoms are detected at low temperatures by EPR. The concentration of UV-induced electrons in the apatite at room temperature decays according to second-order kinetics because of the chemical reactions involving two electrons; overall, electron generation and thermal decay can be described as: H(-) + O(2-) ↔ 2e(-) + OH(-). (1)H magic angle spinning nuclear magnetic resonance spectroscopy is used to identify H(-) ions in the apatite, which are characterized by a chemical shift of +3.4 ppm. Various types of O-H groups including OH(-) ions in the channel and protons bound to phosphate groups are concurrently formed, and are identified by considering the relationship between the O-H stretching frequency and the (1)H chemical shift. The complementary results obtained by EPR and NMR reveal that the H(-) ions and transient H(0) atoms are located at the centre of Ca3 triangles in the apatite, while the electrons are located in the centre of Ca6 octahedra. These findings provide an effective approach for identifying new classes of mixed-oxide-hydride or -electride crystals. PMID:26928237

  8. Adsorption of nucleotides on biomimetic apatite: The case of cytidine 5' monophosphate (CMP).

    PubMed

    Choimet, Maëla; Tourrette, Audrey; Drouet, Christophe

    2015-10-15

    The chemical interaction between DNA macromolecules and hard tissues in vertebrate is of foremost importance in paleogenetics, as bones and teeth represent a major substrate for the genetic material after cell death. Recently, the empirical hypothesis of DNA "protection" over time thanks to its adsorption on hard tissues was revisited from a physico-chemical viewpoint. In particular, the existence of a strong interaction between phosphate groups of DNA backbone and the surface of apatite nanocrystals (mimicking bone/dentin mineral) was evidenced on an experimental basis. In the field of nanomedicine, DNA or RNA can be used for gene transport into cells, and apatite nanocarriers then appear promising. In order to shed some more light on interactions between DNA molecules and apatite, the present study focuses on the adsorption of a "model" nucleotide, cytidine 5' monophosphate (CMP), on a carbonated biomimetic apatite sample. The follow-up of CMP kinetics of adsorption pointed out the rapidity of interaction with stabilization reached within few minutes. The adsorption isotherm could be realistically fitted to the Sips model (Langmuir-Freundlich) suggesting the influence of surface heterogeneities and adsorption cooperativity in the adsorption process. The desorption study pointed out the reversible character of CMP adsorption on biomimetic apatite. This contribution is intended to prove helpful in view of better apprehending the molecular interaction of DNA fragments and apatite compounds, independently of the application domain, such as bone diagenesis or nanomedicine. This study may also appear informative for researchers interested in the origins of life on Earth and the occurrence and behavior of primitive biomolecules. PMID:26117294

  9. Theoretical stability assessment of uranyl phosphates and apatites: selection of amendments for in situ remediation of uranium.

    PubMed

    Raicevic, S; Wright, J V; Veljkovic, V; Conca, J L

    2006-02-15

    Addition of an amendment or reagent to soil/sediment is a technique that can decrease mobility and reduce bioavailability of uranium (U) and other heavy metals in the contaminated site. According to data from literature and results obtained in field studies, the general mineral class of apatites was selected as a most promising amendment for in situ immobilization/remediation of U. In this work we presented theoretical assessment of stability of U(VI) in four apatite systems (hydroxyapatite (HAP), North Carolina Apatite (NCA), Lisina Apatite (LA), and Apatite II) in order to determine an optimal apatite soil amendment which could be used for in situ remediation of uranium. In this analysis we used a theoretical criterion which is based on calculation of the ion-ion interaction potential, representing the main term of the cohesive energy of the matrix/pollutant system. The presented results of this analysis indicate (i) that the mechanism of immobilization of U by natural apatites depends on their chemical composition and (ii) that all analyzed apatites represent, from the point of view of stability, promising materials which could be used in field remediation of U-contaminated sites. PMID:15885755

  10. Mineralogy and geochemistry of Fe-Ti oxide and apatite (nelsonite) deposits and evaluation of the liquid immiscibility hypothesis.

    USGS Publications Warehouse

    Kolker, A.

    1982-01-01

    The modal mineralogy for 32 Fe-Ti oxides and apatites supports the 2:1 oxide:apatite ratio for these samples from New York, Quebec, Norway and Sweden. Accessory minerals include: biotite, clinoamphibole, spinel, zircon and sulphides, oxygen fugacities range from 10-11 to 10-20, and T 600o to 1000oC. - K.A.R.

  11. Insights into the behaviour of S, F, and Cl at Santiaguito Volcano, Guatemala, from apatite and glass

    NASA Astrophysics Data System (ADS)

    Scott, Jeannie A. J.; Humphreys, Madeleine C. S.; Mather, Tamsin A.; Pyle, David M.; Stock, Michael J.

    2015-09-01

    The mineral apatite can incorporate all of the major magmatic volatile species into its structure. Where melt inclusions are not available, magmatic apatite may therefore represent an opportunity to quantify volatile concentrations in the pre-eruptive melt. We analysed apatites and matrix glasses from andesites and dacites erupted from Santiaguito Volcano, Guatemala, between the 1920s and 2002. X-ray mapping shows complex zoning of sulphur in the apatite grains, but typically with sulphur-rich cores and sulphur-poor rims. Apatite microphenocrysts are enriched in F and depleted in Cl relative to inclusions. Matrix glasses are dacite to rhyolite and contain low F but up to 2400 ppm Cl. Overall, the data are consistent with progressive depletion of Cl in the most evolved melts due to crystallisation and degassing. In the absence of pristine melt inclusions, we used apatite, together with published partitioning data, to reconstruct the likely volatile contents of the pre-eruptive melt, and hence estimate long-term average gas emissions of SO2, HF and HCl for the ongoing eruption. The data indicate time-averaged SO2 emissions of up to 157 tonnes/day, HCl of 74-1382 tonnes/day and up to 196 tonnes/day HF. Apatite may provide a useful measure of long-term volatile emissions at volcanoes where direct emissions measurements are unavailable, or for comparison with intermittent gas sampling methods. However, significant uncertainty remains regarding volatile distribution coefficients for apatite, and their variations with temperature and pressure.

  12. In vitro apatite formation on organic polymers modified with a silane coupling reagent

    PubMed Central

    Shirosaki, Yuki; Kubo, Masaaki; Takashima, Seisuke; Tsuru, Kanji; Hayakawa, Satoshi; Osaka, Akiyoshi

    2005-01-01

    γ-Methacryloxypropyltrimethoxysilane (γ-MPS) was grafted to high-density polyethylene, polyamide and silicone rubber substrates by the emulsion polymerization procedure in order to provide these organic polymers with in vitro apatite-forming ability. The contact angles towards distilled water of the γ-MPS-grafted specimens were lower than those of the original organic polymer specimens, indicating that the grafted substrates were more hydrophilic. The in vitro apatite formation in a simulated body fluid (Kokubo solution) was confirmed for several of the γ-MPS-grafted specimens. PMID:16849191

  13. Growth of apatite on chitosan-multiwall carbon nanotube composite membranes

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Yao, Zhiwen; Tang, Changyu; Darvell, B. W.; Zhang, Hualin; Pan, Lingzhan; Liu, Jingsong; Chen, Zhiqing

    2009-07-01

    Bioactive membranes for guided tissue regeneration would be of value for periodontal therapy. Chitosan-multiwall carbon nanotube (CS-MWNT) composites were treated to deposit nanoscopic apatite for MWNT proportions of 0-4 mass%. Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, and X-ray diffraction were used for characterization. Apatite was formed on the CS-MWNT composites at low MWNT concentrations, but the dispersion of the MWNT affects the crystallite size and the Ca/P molar ratio of the composite. The smallest crystallite size was 9 nm at 1 mass% MWNT.

  14. Apatite: A New Tool For Understanding The Temporal Variability Of Magmatic Volatile Contents

    NASA Astrophysics Data System (ADS)

    Stock, M. J.; Humphreys, M.; Smith, V.; Pyle, D. M.; Isaia, R.

    2015-12-01

    The apatite crystal structure is capable of incorporating H2O, F and Cl, as well as trace CO2 and sulphur. These can be related to parental magma compositions through application of a series of pressure and temperature-dependent exchange reactions (Piccoli and Candela, 1994), permitting apatite crystals to preserve a record of all major volatile species in the melt. Furthermore, due to the general incompatibility of P in other rock-forming minerals, apatite is ubiquitous in igneous systems and often begins crystallising early, such that apatite inclusions within phenocrysts record melt volatile contents throughout magmatic differentiation. In this work, we compare the compositions of apatite inclusions and microphenocrysts with pyroxene-hosted melt inclusions from the Astroni 1 eruption of Campi Flegrei, Italy. These data are coupled with magmatic differentiation models (Gualda et al., 2012), experimental volatile solubility data (Webster et al., 2014) and thermodynamic models of apatite compositional variations (Piccoli and Candela, 1994) to determine a time-series of magmatic volatile evolution in the build-up to eruption. We find that apatite halogen/OH ratios decreased through magmatic differentiation, while melt inclusion F and Cl concentrations increased. Melt inclusion H2O contents are constant at ~2.5 wt%. These data are best explained by volatile-undersaturated differentiation over most of the crystallisation history of the Astroni 1 melt, with melt inclusion H2O contents reset during ascent, due to rapid H diffusion through the phenocryst hosts (Woods et al., 2000). Given the rapid diffusivity of volatiles in apatite (Brenan, 1993), preservation of undersaturated compositions in microphenocrysts suggests that saturation was only achieved a few days to months before eruption and that it may have been the transition into a volatile-saturated state that ultimately triggered eruption. Piccoli and Candela, 1994. Am. J. of Sc., 294, 92-135. Gualda et al., 2012

  15. Bench- and pilot-scale thermal desorption treatability studies on pesticide-contaminated soils from Rocky Mountain Arsenal

    SciTech Connect

    Swanstrom, C.P.; Besmer, M.

    1995-03-09

    Thermal desorption is being considered as a potential remediation technology for pesticide-contaminated soils at the Rocky Mountain Arsenal (RMA) in Denver, Colorado. From 1988 through 1992, numerous laboratory- and bench-scale indirect-heated thermal desorption (IHTD) treatability studies have been performed on various soil medium groups from the arsenal. RMA has contracted Argonne National Laboratory to conduct a pilot-scale direct-fired thermal desorption (DFTD) treatability study on pesticide-contaminated RMA soil. The purpose of this treatability study is to evaluate the overall effectiveness of the DFTD technology on contaminated RMA soils and to provide data upon which future conceptual design assumptions and cost estimates for a full-scale system can be made. The equipment used in the DFTD treatability study is of large enough scale to provide good full-scale design parameters and operating conditions. The study will also provide valuable-emissions and materials-handling data. Specifically this program will determine if DFTD can achieve reductions in soil contamination below the RMA preliminary remediation goals (PRGs), define system operating conditions for achieving the PRGs, and determine the fate of arsenic and other hazardous metals at these operating conditions. This paper intends to compare existing data from a bench-scale IHTD treatability study using equipment operated in the batch mode to new data from a pilot-scale DFTD operated in a parallel-flow continuous mode. Delays due to materials-handling problems and permit issues have delayed the start of the pilot-scale DFTD testing. The first pilot-scale test is scheduled for the flat week in January 1995. The available data will be presented March 9, 1995, at the Seventh Annual Gulf Coast Environmental Conference in Houston, Texas.

  16. AMPD2 Regulates GTP Synthesis and is Mutated in a Potentially-Treatable Neurodegenerative Brainstem Disorder

    PubMed Central

    Akizu, Naiara; Cantagrel, Vincent; Schroth, Jana; Cai, Na; Vaux, Keith; McCloskey, Douglas; Naviaux, Robert K.; Vleet, Jeremy Van; Fenstermaker, Ali G.; Silhavy, Jennifer L.; Scheliga, Judith S.; Toyama, Keiko; Morisaki, Hiroko; Sonmez, Fatma Mujgan; Celep, Figen; Oraby, Azza; Zaki, Maha S.; Al-Baradie, Raidah; Faqeih, Eissa; Saleh, Mohammad; Spencer, Emily; Rosti, Rasim Ozgur; Scott, Eric; Nickerson, Elizabeth; Gabriel, Stacey; Morisaki, Takayuki; Holmes, Edward W.; Gleeson, Joseph G.

    2013-01-01

    Purine biosynthesis and metabolism, conserved in all living organisms, is essential for cellular energy homeostasis and nucleic acids synthesis. The de novo synthesis of purine precursors is under tight negative feedback regulation mediated by adenosine and guanine nucleotides. We describe a new distinct early-onset neurodegenerative condition resulting from mutations in the adenosine monophosphate deaminase 2 gene (AMPD2). Patients have characteristic brain imaging features of pontocerebellar hypoplasia (PCH), due to loss of brainstem and cerebellar parenchyma. We found that AMPD2 plays an evolutionary conserved role in the maintenance of cellular guanine nucleotide pools by regulating the feedback inhibition of adenosine derivatives on de novo purine synthesis. AMPD2 deficiency results in defective GTP-dependent initiation of protein translation, which can be rescued by administration of purine precursors. These data suggest AMPD2-related PCH as a new, potentially treatable early-onset neurodegenerative disease. PMID:23911318

  17. Treatability study for removal of leachable mercury in crushed fluorescent lamps

    SciTech Connect

    Bostick, W.D.; Beck, D.E.; Bowser, K.T.

    1996-02-01

    Nonserviceable fluorescent lamps removed from radiological control areas at the Oak Ridge Department of Energy facilities have been crushed and are currently managed as mixed waste (hazardous and radiologically contaminated). We present proposed treatment flowsheets and supporting treatability study data for conditioning this solid waste residue so that it can qualify for disposal in a sanitary landfill. Mercury in spent fluorescent lamps occurs primarily as condensate on high-surface-area phosphor material. It can be solubilized with excess oxidants (e.g., hypochlorite solution) and stabilized by complexation with halide ions. Soluble mercury in dechlorinated saline solution is effectively removed by cementation with zero-valent iron in the form of steel wool. In packed column dynamic flow testing, soluble mercury was reduced to mercury metal and insoluble calomel, loading > 1.2 g of mercury per grain of steel wool before an appreciable breakthrough of soluble mercury in the effluent.

  18. A treatable metabolic cause of encephalopathy: cobalamin C deficiency in an 8-year-old male.

    PubMed

    Krueger, Jena M; Piantino, Juan; Smith, Craig M; Angle, Brad; Venkatesan, Charu; Wainwright, Mark S

    2015-01-01

    Neurologic regression in a previously healthy child may be caused by metabolic or neurodegenerative disorders, many of which have no definitive treatment. We report a case of a previously healthy 8-year-old boy who presented with a month-long history of waxing and waning encephalopathy and acute regression, followed by seizures. Evaluation for a metabolic disorder revealed methylmalonic acidemia and hyperhomocysteinemia of the cobalamin C type due to a single, presumed homozygous pathogenic c.394 C>T mutation in the MMACHC gene. With the appropriate diet restrictions and vitamin replacement, he improved significantly and returned to his premorbid level of behavior. This case illustrates an unusual presentation of a treatable metabolic disorder and highlights the need to consider cobalamin defects in the differential diagnosis of healthy children with neurologic regression. PMID:25511120

  19. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results

    SciTech Connect

    Truex, Michael J.; Oostrom, Martinus; Strickland, Christopher E.; Johnson, Timothy C.; Johnson, Christian D.; Clayton, Ray E.; Chronister, Glen B.

    2013-09-01

    A field test of desiccation is being conducted as an element of the deep vadose zone treatability test program. Desiccation technology relies on removal of water from a portion of the subsurface such that the resultant low moisture conditions inhibit downward movement of water and dissolved contaminants. Previously, a field test report (Truex et al. 2012a) was prepared describing the active desiccation portion of the test and initial post-desiccation monitoring data. Additional monitoring data have been collected at the field test site during the post-desiccation period and is reported herein along with interpretation with respect to desiccation performance. This is an interim report including about 2 years of post-desiccation monitoring data.

  20. Biodegradability oriented treatability studies on high strength segregated wastewater of a woolen textile dyeing plant.

    PubMed

    Baban, Ahmet; Yediler, Ayfer; Ciliz, NilgunKiran; Kettrup, Antonius

    2004-11-01

    Textile dyeing and finishing industry involves considerable amount of water usage as well as polluted and highly colored wastewater discharges. Biological treatability by means of mineralization, nitrification and denitrification of high strength woolen textile dye bathes, first- and second-rinses is presented. COD fractionation study was carried out and kinetic parameters were determined. Biodegradability of organic compounds in highly loaded composite wastewater after segregation and the effluent of applied biological treatment of high strength composite wastewater were measured by determining oxygen consumption rates. The results were used in terms of assessing an alternative method for inert COD fractionation. The study implied that about 80% soluble COD, 50% color and 75% toxicity reduction were possible by single sludge biological processes. Sixteen per cent of total COD was found to be initially inert. Inert fraction was increased to 22% by production of soluble and particulate microbial products through biological treatment. PMID:15488936

  1. Two Unusual but Treatable Causes of Refractory Ascites After Liver Transplantation.

    PubMed

    Novelli, P M; Shields, J; Krishnamurthy, V; Cho, K

    2015-12-01

    Refractory ascites (RA) is thought to complicate the postoperative course of 5-7% (Nishida et al. in Am J Transplant. 6: 140-149, 2006; Gotthardt et al. in Ann Transplant. 18: 378-383, 2013) of liver transplant recipients. RA after liver transplantation is often a frustrating diagnostic dilemma with few good management options unless an obvious mechanical factor is identified. Supportive therapies often fail until a treatable precipitating cause is identified and removed. We describe two patients who developed RA following liver transplantation for primary sclerosing cholangitis, and hepatitis C and alcoholic liver disease, respectively. The cause for RA was hyperkinetic portal hypertension secondary to splenomegaly in the first case and a pancreatic AVM in the 2nd case. After failure of other interventions, surgical splenectomy resulted in immediate and durable resolution of the previously intractable ascites. PMID:26017456

  2. Gunite and Associated Tanks Treatability Study Equipment Testing at the Tanks Technology Cold Test Facility

    SciTech Connect

    Burks, BL

    2001-02-27

    This report provides a summary of the cold tests performed on the equipment to be used in the Gunite and Associated Tanks Treatability Study. The testing was performed from June 1996 to May 1997 at the Tanks Technology Cold Test Facility located at the 7600 complex at Oak Ridge National Laboratory. Testing of specific equipment grouped into the following sections: (1) Modified Light-Duty Utility Arm Testing, (2) Remotely Operated Vehicle Testing, (3) Waste Dislodging and Conveyance System and Balance of Plant Equipment Testing, (4) Camera and Lighting System Testing, and (5) Characterization End-Effector Testing. Each section contains descriptions of a series of tests that summarize the test objectives, testing performed, and test results. General conclusions from the testing are also provided.

  3. Treatability Testing of an In Situ Biostimulation Barrier for Nitrate and Chromium Treatment - 9126

    SciTech Connect

    Truex, Michael J.; Vermeul, Vincent R.; Fruchter, Jonathan S.

    2008-11-14

    An ongoing treatability test is evaluating in situ biostimulation at the 100-D Area of the Hanford Site in Richland, Washington. This test is part of a strategy to couple multiple technologies to accelerate cleanup of hexavalent-chromium contaminated groundwater discharging into the Columbia River. A permeable chemical reducing barrier was previously applied as the primary treatment to prevent the chromium plume from reaching the river at concentrations that exceed regulatory standards. In situ biostimulation is intended to provide supplemental treatment upgradient of this chemical treatment barrier by reducing the concentration of the primary oxidizing species in groundwater (i.e., nitrate and dissolved oxygen) and chromium, thereby increasing the longevity of the chemical barrier and helping to diminish the chromium plume.

  4. 3-phosphoglycerate dehydrogenase deficiency: a case report of a treatable cause of seizures.

    PubMed

    Coşkun, Turgay; Aydin, Halil Ibrahim; Kiliç, Mustafa; Dursun, Ali; Haliloğlu, Göknur; Topaloğlu, Haluk; Karli-Oğuz, Kader; de Koning, Tom J

    2009-01-01

    Serine deficiency disorders are a new group of neurometabolic diseases resulting from a deficiency in one of the three enzymes in the biosynthetic pathway of L-serine. Deficiency of the enzyme 3-phosphoglycerate dehydrogenase (3-PGDH), which catalyzes the first step in the biosynthetic pathway, leads to congenital microcephaly, severe psychomotor retardation, and intractable seizures. We report a 4 1/2-year-old boy who presented with congenital microcephaly, psychomotor retardation, hypertonia, strabismus, and drug-resistant seizures due to 3-PGDH deficiency. His seizures responded to L-serine and glycine supplementation only. This potentially treatable disease should be borne in mind in patients with congenital microcephaly, psychomotor retardation and seizures. A timely diagnosis based on the detection of low cerebrospinal fluid levels of L-serine and glycine is expected to further increase the success of L-serine and glycine supplementation in these patients. PMID:20196394

  5. Normal-pressure hydrocephalus and the saga of the treatable dementias

    SciTech Connect

    Friedland, R.P. )

    1989-11-10

    A case study of a 74-year-old woman is presented which illustrates the difficulty of understanding dementing illnesses. A diagnosis of normal-pressure hydrocephalus (NPH) was made because of the development of abnormal gait, with urinary incontinence and severe, diffuse, white matter lesions on the MRI scan. Computed tomographic, MRI scans and positron emission tomographic images of glucose use are presented. The treatable dementias are a large, multifaceted group of illnesses, of which NPH is one. The author proposes a new term for this disorder commonly known as NPH because the problem with the term normal-pressure hydrocephalus is that the cerebrospinal fluid pressure is not always normal in the disease.

  6. Apatite deposition and collagen coating effects in Ti-Al-V and Ti-Al-Nb alloys

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Hong, S. I.

    2014-12-01

    The biomimetic deposition rate of apatite for Ti-6Al-4V was found to be greater than that for Ti-6Al-7Nb in regular 1 × Modified SBF. The coating of collagen was found to enhance the biomimetic deposition of apatite on Ti-6Al-4V and Ti-6Al-7Nb. The nucleation and growth of the apatite deposition layer was faster on collagen coated Ti alloys. An interesting observation is that the granular structure became less clear and the nodular boundary became obscure in apatite deposited on the collagen-coated Ti alloys. The ill-defined granular structure may be associated with the presence of more amorphous calcium phosphate. The morphology of apatite nodules was found to be modified by collagen coating and collagen addition.

  7. 100-D Area In Situ Redox Treatability Test for Chromate-Contaminated Groundwater

    SciTech Connect

    Williams, Mark D.; Vermeul, Vincent R.; Szecsody, James E.; Fruchter, Jonathan S.

    2000-10-12

    A treatability test was conducted for the In Situ Redox Manipulation (ISRM) technology at the 100 D Area of the U. S. Department of Energy's Hanford Site. The target contaminant was dissolved chromate in groundwater. The ISRM technology creates a permeable subsurface treatment zone to reduce mobile chromate in groundwater to an insoluble form. The ISRM permeable treatment zone is created by reducing ferric iron to ferrous iron within the aquifer sediments, which is accomplished by injecting aqueous sodium dithionite into the aquifer and then withdrawing the reaction products. The goal of the treatability test was to create a linear ISRM barrier by injecting sodium dithionite into five wells. Well installation and site characterization activities began in spring 1997; the first dithionite injection took place in September 1997. The results of this first injection were monitored through the spring of 1998. The remaining four dithionite injections were carried out in May through July of 1998.These five injections created a reduced zone in the Hanford unconfined aquifer approximately 150 feet in length (perpendicular to groundwater flow) and 50 feet wide. The reduced zone extended over the thickness of the unconfined zone. Analysis of post-emplacement groundwater samples showed concentrations of chromate, in the reduced zone decreased from approximately 1.0 mg/L before the tests to below analytical detection limits (<0.007 mg/L). Chromate concentrations also declined in downgradient monitoring wells to as low as 0.020 mg/L. These data, in addition to results from pre-test reducible iron characterization, indicate the barrier should be effective for 20 to 25 years. The 100-D Area ISRM barrier is being expanded to a length of up to 2,300 ft to capture a larger portion of the chromate plume.

  8. Treatability test plan for the 200-BP-1 prototype surface barrier

    SciTech Connect

    Not Available

    1993-06-01

    The US Department of Energy (DOE), Hanford Site, in Washington State is organized into numerically designated operational areas including the 100, 200, 300, 400, 600, and 1100 Areas. The US Environmental Protection Agency (EPA), in November of 1989, included the 200 Areas of the Hanford Site on the National Priority List (NPL) under the Comprehensive Environmental Response, compensation, and Liability Act of 1980 (CERCLA). The 200 Area is divided into operable units based on waste disposal information, location, facility, type, and other characteristics. The 200-BP-1 operable unit is one specific site located within the 200 East Area. Inclusion on the NPL initiated the remedial investigation (RI) process for characterizing the nature and extent of contamination and assessing risks to human health and the environment at the 200-BP-1 operable unit. In March of 1990, a remedial investigation/feasibility study (RI/FS) work plan for the 200-BP-1 operable unit was issued (DOE-RL 1990a). The work plan outlined the first phase of site characterization activities, which were completed in March of 1993 with the issuance of Phase I Remedial Investigation Report for the 200-BP-1 Operable Unit (DOE-RL 1993, Draft A). Remedial action objectives outlined in the RI report suggest that a likely remedial action at the 200-BP-1 operable unit could involve the use of a surface barrier. To further evaluate this technology, additional performance and constructability data are needed to implement this remedial action. This test plan describes the general methodology for conducting a prototype barrier treatability study. The objectives of this treatability study are to determine overall performance and constructability data on an actual waste site in conjunction with the Hanford Site Barrier Development Program.

  9. Characteristics and treatability of oil-bearing wastes from aluminum alloy machining operations.

    PubMed

    Chen, Luke; Hsieh, Chueh-Chen; Wetherbee, John; Yang, Chen-Lu

    2008-04-15

    Enomoto Industry Co., exclusively uses water-based cutting fluids in its aluminum alloy machining operations. Since the cost of disposal can be much greater than the cost of purchase, the treatability of spent cutting fluids is becoming a major criterion for cutting fluid selection. Samples were collected from the machining lines at Enomoto's facility to determine their characteristics and evaluate their treatability with centrifugation, chemical coagulation and electrochemical coagulation. As expected, oil and grease (O&G) and total suspended solids (TSS) are the main reasons that spent cutting fluids are prohibited from being discharged into local swage systems. The average O&G found in the spent cutting fluids is 87,354 mg/L with TSS of more than 70,000 mg/L. Both O&G and TSS are the major contributors to the high turbidity of these waste effluents. A centrifuge with a relative centrifugal force of 1318 x g, was able to reduce 60% of the turbidity. By adding the coagulant aluminum chloride, the oil-water emulsion was destabilized, and the turbidity was reduced from 3249 Formazin Attenuation Units (FAU) to around 314 FAU. With freshly generated aluminum ions in the spent cutting fluid, the electrochemical process destabilized the oil-water emulsion system. The coalesced oil droplets were adsorbed onto the highly dispersed aluminum coagulant. The oil-rich sludge that was generated in the operation was then floated to the surface, forming a blanket that was removed by skimming. The electrochemical treatment was able to reduce the turbidity to less than 14 FAU, which is the detection limit of the Hach DR/4000 UV-vis spectrophotometer. PMID:17850956

  10. Impact of apatite chemical composition on (U-Th)/He thermochronometry: An atomistic point of view

    NASA Astrophysics Data System (ADS)

    Mbongo Djimbi, Duval; Gautheron, Cécile; Roques, Jérôme; Tassan-Got, Laurent; Gerin, Chloé; Simoni, Eric

    2015-10-01

    The quantification of the different parameters influencing He diffusion in apatite is an important issue for the interpretation of (U-Th)/He thermochronometric ages. Key issues include understanding the role of chemical composition and the mechanism modifying diffusivity by radiation damage, both requiring a realistic description at the atomic level. In this contribution, we restrict ourselves on the influence of the chemical composition especially on the effect of Cl-atoms on the He diffusion in the damage-free apatite crystal. For this purpose, a multi-scale theoretical diffusion study has been conducted using periodic Density Functional Theory calculations for two different apatite compositions (pure fluorine apatite and apatite with one chlorine and 3 fluorine atoms per cell called Cl0.25-apatite) representative of damage-free crystals. Different He insertion sites and diffusion pathways are first investigated. The Density Functional Theory approach coupled to the Nudged Elastic Band method is used to determine the energy barriers between the insertion sites. A statistical method, based on Transition State Theory, is used to compute the jump rate between sites and the different results are used as output for a 3D random walk simulation, which determines the diffusion trajectories and the diffusion coefficients. The calculated diffusion coefficients for pure F-apatite exhibit a slightly anisotropic behavior with an activation energy Ea = 95.5 kJ/mol and a frequency factor D0 = 1.9 × 10-3 cm2/s along the c axis; Ea = 106.1 kJ/mol and D0 = 4.1 × 10-3 cm2/s in the plane orthogonal to c. Closure temperatures for a 60 μm grain radius and 10 °C/Ma cooling rate range from 33 to 36 °C and depend on crystal geometry for a given grain size. Surprisingly, even though He diffusion is strongly blocked across the Cl atoms in Cl0.25-apatite, where Ea is significantly higher (166.7 kJ/mol), He atoms can still diffuse along the c axis through workaround pathways. Closure