Science.gov

Sample records for 100kw nos terminais

  1. Preliminary design development of 100 KW rotary power transfer device

    NASA Technical Reports Server (NTRS)

    Weinberger, S. M.

    1981-01-01

    Contactless power transfer devices for transferring electrical power across a rotating spacecraft interface were studied. A power level of 100 KW was of primary interest and the study was limited to alternating current devices. Rotary transformers and rotary capacitors together with the required dc to ac power conditioning electronics were examined. Microwave devices were addressed. The rotary transformer with resonant circuit power conditioning was selected as the most feasible approach. The rotary capacitor would be larger while microwave devices would be less efficient. A design analysis was made of a 100 KW, 20 kHz power transfer device consisting of a rotary transformer, power conditioning electronics, drive mechanism and heat rejection system. The size, weight and efficiency of the device were determined. The characteristics of a baseline slip ring were presented. Aspects of testing the 100 KW power transfer device were examined. The power transfer device is a feasible concept which can be implemented using presently available technologies.

  2. Research and development of a 3 MW power plant from the design, development, and demonstration of a 100 KW power system utilizing the direct contact heat exchanger concept for geothermal brine recovery project

    NASA Astrophysics Data System (ADS)

    Huebner, A. W.; Wall, D. A.; Herlacher, T. L.

    1980-09-01

    The design phase for the 100 KW unit consumed the months of May through November 1978, with the final design having a direct contact boiler and condenser, a single-stage radial inflow induction turbine generator using isopentane as the working fluid, and a single cell ejector-type cooling tower. The unit was constructed on two, forty-foot flatbed trailers between the months of October 1978 and June 1979. Systems start-up testing, in-field modifications, unit operation, and performance testing were performed between July and December 1979. AP and L (Arkansas Power and Light) personnel assumed responsibility of the unit at that time and conducted further maintenance, operations, and testing through August 1980.

  3. The NOS Challenge

    ERIC Educational Resources Information Center

    Quigley, Cassie; Buck, Gayle; Akerson, Valarie

    2011-01-01

    "The picture of a scientist is me!" exclaims first grader Kendra during a nature of science (NOS) lesson. She drew a picture of a scientist and explained that she was going to be a scientist when she grew up because she "loved to observe like a scientist." Kendra's experience was a part of a 30-day unit designed specifically for first graders.…

  4. Evaluation of structural issues related to isolation of the 100-KE/100-KW discharge chute

    SciTech Connect

    Winkel, B.V.; Hyde, L.L.

    1995-03-10

    The issue of excessive post-seismic leakage in the discharge chute of the K East and K West fuel storage basins was resolved by designing isolation barriers to maintain basin water levels if the discharge chute should drain. This report addresses the structural issues associated with isolation of the discharge chute. The report demonstrates the structural adequacy of the components associated with chute isolation for normal and seismic loading. Associated issues, such as hardware drop accidents and seismic slosh heights are also addressed.

  5. Wind tunnel measurements of the tower shadow on models of the ERDA/NASA 100 KW wind turbine tower

    NASA Technical Reports Server (NTRS)

    Savino, J. M.; Wagner, L. H.

    1976-01-01

    Detailed wind speed profile measurements were made in the wake of 1/25 scale and 1/48 scale tower models to determine the magnitude of the speed reduction (the tower shadow). The 1/25 scale tower modeled closely the actual wind turbine including the service stairway and the equipment elevator rails on one face. The 1/48 scale model was made of all tubular members. Measurements were made on the 1/25 scale model with and without the stairway and elevator rails, and on the 1/48 all tube model without stairs and rails. The test results show that the stairs and rails were a major source of wind flow blockage. The all tubular 1/48 scale tower was found to offer less resistance to the wind than the 1/25 scale model that contained a large number of square sections. Shadow photos are included to show the extent of the blockage offered to the wind from various directions.

  6. Nitric Oxide Synthase Enzymes in the Airways of Mice Exposed to Ovalbumin: NOS2 Expression Is NOS3 Dependent

    PubMed Central

    Bratt, Jennifer M.; Williams, Keisha; Rabowsky, Michelle F.; Last, Michael S.; Franzi, Lisa M.; Last, Jerold A.; Kenyon, Nicholas J.

    2010-01-01

    Objectives and Design. The function of the airway nitric oxide synthase (NOS) isoforms and the lung cell types responsible for its production are not fully understood. We hypothesized that NO homeostasis in the airway is important to control inflammation, which requires upregulation, of NOS2 protein expression by an NOS3-dependent mechanism. Materials or Subjects. Mice from a C57BL/6 wild-type, NOS1−/−, NOS2−/−, and NOS3−/− genotypes were used. All mice strains were systemically sensitized and exposed to filtered air or ovalbumin (OVA) aerosol for two weeks to create a subchronic model of allergen-induced airway inflammation. Methods. We measured lung function, lung lavage inflammatory and airway epithelial goblet cell count, exhaled NO, nitrate and nitrite concentration, and airway NOS1, NOS2, and NOS3 protein content. Results. Deletion of NOS1 or NOS3 increases NOS2 protein present in the airway epithelium and smooth muscle of air-exposed animals. Exposure to allergen significantly reduced the expression of NOS2 protein in the airway epithelium and smooth muscle of the NOS3−/− strain only. This reduction in NOS2 expression was not due to the replacement of epithelial cells with goblet cells as remaining epithelial cells did not express NOS2. NOS1−/− animals had significantly reduced goblet cell metaplasia compared to C57Bl/6 wt, NOS2−/−, and NOS3−/− allergen-exposed mice. Conclusion. The airway epithelial and smooth muscle cells maintain a stable airway NO concentration under noninflammatory conditions. This “homeostatic” mechanism is unable to distinguish between NOS derived from the different constitutive NOS isoforms. NOS3 is essential for the expression of NOS2 under inflammatory conditions, while NOS1 expression contributes to allergen-induced goblet cell metaplasia. PMID:20953358

  7. On the selectivity of neuronal NOS inhibitors

    PubMed Central

    Pigott, B; Bartus, K; Garthwaite, J

    2013-01-01

    Background and Purpose Isoform-selective inhibitors of NOS enzymes are desirable as research tools and for potential therapeutic purposes. Vinyl-l-N-5-(1-imino-3-butenyl)-l-ornithine (l-VNIO) and Nω-propyl-l-arginine (NPA) purportedly have good selectivity for neuronal over endothelial NOS under cell-free conditions, as does N-[(3-aminomethyl)benzyl]acetamidine (1400W), which is primarily an inducible NOS inhibitor. Although used in numerous investigations in vitro and in vivo, there have been surprisingly few tests of the potency and selectivity of these compounds in cells. This study addresses this deficiency and evaluates the activity of new and potentially better pyrrolidine-based compounds. Experimental Approach The inhibitors were evaluated by measuring their effect on NMDA-evoked cGMP accumulation in rodent hippocampal slices, a response dependent on neuronal NOS, and ACh-evoked cGMP synthesis in aortic rings of the same animals, an endothelial NOS-dependent phenomenon. Key Results l-VNIO, NPA and 1400W inhibited responses in both tissues but all showed less than fivefold higher potency in the hippocampus than in the aorta, implying useless selectivity for neuronal over endothelial NOS at the tissue level. In addition, the inhibitors had a 25-fold lower potency in the hippocampus than reported previously, the IC50 values being approximately 1 μM for l-VNIO and NPA, and 150 μM for 1400W. Pyrrolidine-based inhibitors were similarly weak and nonselective. Conclusion and Implications The results suggest that l-VNIO, NPA and 1400W, as well as the newer pyrrolidine-type inhibitors, cannot be used as neuronal NOS inhibitors in cells without stringent verification. The identification of inhibitors with useable selectivity in cells and tissues remains an important goal. PMID:23072468

  8. Multifaceted NOS Instruction: Contextualizing Nature of Science with Documentary Films

    ERIC Educational Resources Information Center

    Bloom, Mark; Binns, Ian C.; Koehler, Catherine

    2015-01-01

    This research focuses on inservice science teachers' conceptions of nature of science (NOS) before and after a two-week intensive summer professional development (PD). The PD combined traditional explicit NOS instruction, numerous interactive interventions that highlighted NOS aspects, along with documentary films that portrayed NOS in context of…

  9. mNos2 Deletion and Human NOS2 Replacement in Alzheimer Disease Models

    PubMed Central

    Colton, Carol A.; Wilson, Joan G.; Everhart, Angela; Wilcock, Donna M.; Puoliväli, Jukka; Heikkinen, Taneli; Oksman, Juho; Jääskeläinen, Olli; Lehtimäki, Kimmo; Laitinen, Teemu; Vartiainen, Nina; Vitek, Michael P.

    2014-01-01

    Abstract Understanding the pathophysiologic mechanisms underlying Alzheimer disease relies on knowledge of disease onset and the sequence of development of brain pathologies. We present a comprehensive analysis of early and progressive changes in a mouse model that demonstrates a full spectrum of characteristic Alzheimer disease–like pathologies. This model demonstrates an altered immune redox state reminiscent of the human disease and capitalizes on data indicating critical differences between human and mouse immune responses, particularly in nitric oxide levels produced by immune activation of the NOS2 gene. Using the APPSwDI+/+/mNos2−/− (CVN-AD) mouse strain, we show a sequence of pathologic events leading to neurodegeneration,which include pathologically hyperphosphorylated tau in the perforant pathway at 6 weeks of age progressing to insoluble tau, early appearance of β-amyloid peptides in perivascular deposits around blood vessels in brain regions known to be vulnerable to Alzheimer disease, and progression to damage and overt loss in select vulnerable neuronal populations in these regions. The role of species differences between hNOS2 and mNos2 was supported by generating mice in which the human NOS2 gene replaced mNos2. When crossed with CVN-AD mice, pathologic characteristics of this new strain (APPSwDI+/−/HuNOS2tg+/+/mNos2−/−) mimicked the pathologic phenotypes found in the CVN-AD strain. PMID:25003233

  10. mNos2 deletion and human NOS2 replacement in Alzheimer disease models.

    PubMed

    Colton, Carol A; Wilson, Joan G; Everhart, Angela; Wilcock, Donna M; Puoliväli, Jukka; Heikkinen, Taneli; Oksman, Juho; Jääskeläinen, Olli; Lehtimäki, Kimmo; Laitinen, Teemu; Vartiainen, Nina; Vitek, Michael P

    2014-08-01

    Understanding the pathophysiologic mechanisms underlying Alzheimer disease relies on knowledge of disease onset and the sequence of development of brain pathologies. We present a comprehensive analysis of early and progressive changes in a mouse model that demonstrates a full spectrum of characteristic Alzheimer disease-like pathologies. This model demonstrates an altered immune redox state reminiscent of the human disease and capitalizes on data indicating critical differences between human and mouse immune responses, particularly in nitric oxide levels produced by immune activation of the NOS2 gene. Using the APPSwDI(+)/(+)mNos2(-/-) (CVN-AD) mouse strain, we show a sequence of pathologic events leading to neurodegeneration,which include pathologically hyperphosphorylated tau in the perforant pathway at 6 weeks of age progressing to insoluble tau, early appearance of β-amyloid peptides in perivascular deposits around blood vessels in brain regions known to be vulnerable to Alzheimer disease, and progression to damage and overt loss in select vulnerable neuronal populations in these regions. The role of species differences between hNOS2 and mNos2 was supported by generating mice in which the human NOS2 gene replaced mNos2. When crossed with CVN-AD mice, pathologic characteristics of this new strain (APPSwDI(+)/(-)/HuNOS2(tg+)/(+)/mNos2(-/-)) mimicked the pathologic phenotypes found in the CVN-AD strain. PMID:25003233

  11. An evolutionarily ancient NO synthase (NOS) in shrimp.

    PubMed

    Wu, Chun-Hung; Siva, Vinu S; Song, Yen-Ling

    2013-11-01

    Nitric oxide (NO) is a well known essential molecule that is involved in multiple functions such as neuron transduction, cardiac disease, immune responses, etc.; nitric oxide synthase (NOS) is a critical enzyme that catalyzes the synthesis of it. A very few crustacean NOS molecules were biochemically characterized so far. In the present study, we cloned and characterized a NOS cDNA from haemocytes of tiger shrimp (Penaeus monodon) (PmNOS). The full-length of PmNOS cDNA contained 3997 bp, including a 5'UTR of 249 bp, ORF of 3582 bp and a 3'UTR of 166 bp. The putative peptide was 1193 amino acid residues in length, with an estimated molecular weight of 134.7 kDa and pI 6.7. Structurally, PmNOS contained oxygenase and reductase domains at N-terminal and C-terminal, respectively, and connected with a calmodulin binding motif. The deduced amino acid sequence of PmNOS shared 98% identical to the Chinese shrimp (Fenneropenaeus chinensis) NOS. Phylogenetically, PmNOS clustered with invertebrate NOS, but not clustered with iNOS, eNOS or nNOS found in vertebrates. PmNOS mRNA was expressed in many tissues or organs including thoracic and ventral nerves, midgut, gill, eyestalk, haemocytes, subcuticular epithelium and heart, but not found in hepatopancreas, muscle and lymphoid organ. But there was no significant difference in PmNOS mRNA expression after stimulation with LPS either by different concentration or time course or against CpG-ODN 2006. The enzyme activities of rPmNOS or crude homogenates from different tissues were detected, and were shown its highest activity in thoracic and ventral nerves, moderate in midgut and haemocytes but the lowest activity were seen in muscle. The addition of NOS antibody against NADPH binding domain leads to less activity which suggested that NADPH was an essential cofactor for PmNOS catalytic activity. The calcium dependency of PmNOS was ascertained using calmodulin inhibitor, Trifluroperazine. To confirm the population of haemocyte which

  12. 15 CFR Supplement Nos. 3-4 to Part... - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Nos. Supplement Nos. 3-4 to Part 742 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF... CONTROLS Supplement Nos. 3-4 to Part 742...

  13. NOS knockout or inhibition but not disrupting PSD-95-NOS interaction protect against ischemic brain damage.

    PubMed

    Kleinschnitz, Christoph; Mencl, Stine; Kleikers, Pamela Wm; Schuhmann, Michael K; G López, Manuela; Casas, Ana I; Sürün, Bilge; Reif, Andreas; Schmidt, Harald Hhw

    2016-09-01

    Promising results have been reported in preclinical stroke target validation for pharmacological principles that disrupt the N-methyl-D-aspartate receptor-post-synaptic density protein-95-neuronal nitric oxide synthase complex. However, post-synaptic density protein-95 is also coupled to potentially neuroprotective mechanisms. As post-synaptic density protein-95 inhibitors may interfere with potentially neuroprotective mechanisms and sufficient validation has often been an issue in translating basic stroke research, we wanted to close that gap by comparing post-synaptic density protein-95 inhibitors with NOS1(-/-) mice and a NOS inhibitor. We confirm the deleterious role of NOS1 in stroke both in vivo and in vitro, but find three pharmacological post-synaptic density protein-95 inhibitors to be therapeutically ineffective. PMID:27354091

  14. SS focused technology: Gateways and NOS's

    NASA Technical Reports Server (NTRS)

    Hartenstein, R.

    1985-01-01

    The extensions and enhancements of the fiber optic data bus technology supported by the Space Station Focused Technology Program are discussed. This includes the operating software for the network called the Network Operating System (NOS); gateways and bridges for multiple network topologies; and very large scale topology implimentations to shrink the size and power of the Bus Interface Unit (BIU) down to more manageable dimensions. CMOS is being investigated for the lower speed (parallel) logic. Gallium arsendide is being studied for the high speed (serial) logic.

  15. The dual role of iNOS in cancer☆

    PubMed Central

    Vanini, Frederica; Kashfi, Khosrow; Nath, Niharika

    2015-01-01

    Nitric oxide (NO) is one of the 10 smallest molecules found in nature. It is a simple gaseous free radical whose predominant functions is that of a messenger through cGMP. In mammals, NO is synthesized by the enzyme nitric oxide synthase (NOS) of which there are three isoforms. Neuronal (nNOS, NOS1) and endothelial (eNOS, NOS3) are constitutive calcium-dependent forms of the enzyme that regulate neural and vascular function respectively. The third isoform (iNOS, NOS2), is calcium-independent and is inducible. In many tumors, iNOS expression is high, however, the role of iNOS during tumor development is very complex and quite perplexing, with both promoting and inhibiting actions having been described. This review will aim to summarize the dual actions of iNOS-derived NO showing that the microenvironment of the tumor is a contributing factor to these observations and ultimately to cellular outcomes. PMID:26335399

  16. Specifying PDD-NOS: A Comparison of PDD-NOS, Asperger Syndrome, and Autism

    ERIC Educational Resources Information Center

    Walker, Darlene R.; Thompson, Ann; Zwaigenbaum, Lonnie; Goldberg, Jeremy; Bryson, Susan E.; Mahoney, William J.; Strawbridge, Christina P.; Szatmari, Peter

    2004-01-01

    Objective: To describe the clinical characteristics of children given a diagnosis of pervasive developmental disorder-not otherwise specified (PDD-NOS) by expert clinicians and to compare these to the clinical characteristics of children given a diagnosis of autism and Asperger syndrome (AS). Method: Two hundred sixteen children with autism, 33…

  17. A Scallop Nitric Oxide Synthase (NOS) with Structure Similar to Neuronal NOS and Its Involvement in the Immune Defense

    PubMed Central

    Jiang, Qiufen; Zhou, Zhi; Wang, Leilei; Wang, Lingling; Yue, Feng; Wang, Jingjing; Song, Linsheng

    2013-01-01

    Background Nitric oxide synthase (NOS) is responsible for synthesizing nitric oxide (NO) from L-arginine, and involved in multiple physiological functions. However, its immunological role in mollusc was seldom reported. Methodology In the present study, an NOS (CfNOS) gene was identified from the scallop Chlamys farreri encoding a polypeptide of 1486 amino acids. Its amino acid sequence shared 50.0~54.7, 40.7~47.0 and 42.5~44.5% similarities with vertebrate neuronal (n), endothelial (e) and inducible (i) NOSs, respectively. CfNOS contained PDZ, oxygenase and reductase domains, which resembled those in nNOS. The CfNOS mRNA transcripts expressed in all embryos and larvae after the 2-cell embryo stage, and were detectable in all tested tissues with the highest level in the gonad, and with the immune tissues hepatopancreas and haemocytes included. Moreover, the immunoreactive area of CfNOS distributed over the haemocyte cytoplasm and cell membrane. After LPS, β-glucan and PGN stimulation, the expression level of CfNOS mRNA in haemocytes increased significantly at 3 h (4.0-, 4.8- and 2.7-fold, respectively, P < 0.01), and reached the peak at 12 h (15.3- and 27.6-fold for LPS and β-glucan respectively, P < 0.01) and 24 h (17.3-fold for PGN, P < 0.01). In addition, TNF-α also induced the expression of CfNOS, which started to increase at 1 h (5.2-fold, P < 0.05) and peaked at 6 h (19.9-fold, P < 0.01). The catalytic activity of the native CfNOS protein was 30.3 ± 0.3 U mgprot-1, and it decreased significantly after the addition of the selective inhibitors of nNOS and iNOS (26.9 ± 0.4 and 29.3 ± 0.1 U mgprot-1, respectively, P < 0.01). Conclusions These results suggested that CfNOS, with identical structure with nNOS and similar enzymatic characteristics to nNOS and iNOS, played the immunological role of iNOS to be involved in the scallop immune defense against PAMPs and TNF-α. PMID:23922688

  18. Viscum album aqueous extract induces NOS-2 and NOS-3 overexpression in Guinea pig hearts.

    PubMed

    Tenorio-Lopez, Fermin Alejandro; Valle Mondragon, Leonardo Del; Olvera, Gabriela Zarco; Torres Narvaez, Juan Carlos; Pastelin, Gustavo

    2006-11-01

    Viscum album L. aqueous extract, on the Langendorff isolated and perfused heart model, decreases coronary vascular resistance, when compared to control group (36.00 +/- 2.00 vs. 15.80 +/- 1.96 dyn s cm-5). Our data support the fact that this mechanism involves NOS-2 and NOS-3 overexpression (4.65 and 7.89 times over control, respectively), which is correlated with increases in NO (6.24 +/- 2.49 vs. 147.95 +/- 2.79 pmol) and cGMP production (43.94 +/- 2.00 vs. 74.81 +/- 1.96 pmol mg-1 of tissue), compared to control values. Such an effect is antagonized by gadolinium(III) chloride, L-NAME and ODQ. Therefore, coronary vasodilator effect elicited by V. album L. aqueous extract is mediated by the NO/sGC pathway. PMID:17127505

  19. Advancing the perceptions of the nature of science (NOS): integrating teaching the NOS in a science content course

    NASA Astrophysics Data System (ADS)

    Aflalo, Ester

    2014-09-01

    Background:Understanding the nature of science (NOS) has been a key objective in teaching sciences for many years. Despite the importance of this goal it is, until this day, a complex challenge that we are far from achieving. Purpose:The study was conducted in order to further the understanding of the NOS amongst preservice teachers. It explores the effects of another approach to teaching that combines teaching the NOS in a course of scientific content. Sample and Programmed description:109 preservice teachers studied the course on 'Cell Biology' or the course, 'Introduction to Life Sciences', whose teaching model differs. In addition to the usual subject matter the courses included activities to understand some aspects of the NOS, reflective discussions, as well as historical descriptions of the scientific discoveries and developments pertaining to the course matter. Design and methods:The study has characteristics of action research The perceptions of the NOS amongst preservice teachers were examined prior to, and following, the course. The perceptions were examined through 35 closed questions and one open question. Results:The findings show that following the course, some of the concepts of NOS changed. Naïve and conservative acuity developed into more current perceptions towards the NOS. Similarly, there was greater internalization of the meaning of the NOS and the significance of its teaching. Conclusions:The findings of this research discuss evidence of the importance of combining the teaching of the NOS in scientific courses in order to advance scientific literacy.

  20. Face and Emotion Recognition in MCDD versus PDD-NOS

    ERIC Educational Resources Information Center

    Herba, Catherine M.; de Bruin, Esther; Althaus, Monika; Verheij, Fop; Ferdinand, Robert F.

    2008-01-01

    Previous studies indicate that Multiple Complex Developmental Disorder (MCDD) children differ from PDD-NOS and autistic children on a symptom level and on psychophysiological functioning. Children with MCDD (n = 21) and PDD-NOS (n = 62) were compared on two facets of social-cognitive functioning: identification of neutral faces and facial…

  1. 78 FR 32622 - Endangered Species; File Nos. 17557 and 17273

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ... National Oceanic and Atmospheric Administration RIN 0648-XC703 Endangered Species; File Nos. 17557 and... National Ocean Service Marine Forensic Lab (NOS Lab) , 219 Fort Johnson Road, Charleston, SC 29412 (File No... Colligan], 1 Blackburn Drive, Gloucester, MA 01930 (File No. 17273), have applied in due form for...

  2. 15 CFR Supplement Nos. 2-3 to Part... - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Nos. Supplement Nos. 2-3 to Part 716 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS INITIAL AND...

  3. Multiple Complex Developmental Disorder Delineated from PDD-NOS

    ERIC Educational Resources Information Center

    de Bruin, Esther I.; de Nijs, Pieter F. A.; Verheij, Fop; Hartman, Catharina A.; Ferdinand, Robert F.

    2007-01-01

    The objective of this study was to identify behavioral differences between children with multiple complex developmental disorder (MCDD) and those with pervasive developmental disorder-not otherwise specified (PDD-NOS). Twenty-five children (6-12 years) with MCDD and 86 children with PDD-NOS were compared with respect to psychiatric co-morbidity,…

  4. Magnetic circular dichroism spectroscopic characterization of the NOS-like protein from Geobacillus stearothermophilus (gsNOS).

    PubMed

    Kinloch, Ryan D; Sono, Masanori; Sudhamsu, Jawahar; Crane, Brian R; Dawson, John H

    2010-03-01

    Nitric oxide synthase (NOS) catalyzes the NADPH- and O(2)-dependent oxidation of l-arginine (l-Arg) to nitric oxide (NO) and citrulline via an N(G)-hydroxy-l-arginine (NHA) intermediate. Mammalian NOSs have been studied quite extensively; other eukaryotes and some prokaryotes appear to express NOS-like proteins comparable to the oxygenase domain of mammalian NOSs. In this study, a recombinant NOS-like protein from the thermostable bacterium Geobacillus stearothermophilus (gsNOS) has been characterized using magnetic circular dichroism (MCD) and UV-Vis absorption spectroscopic techniques. Spectral comparisons of ligand complexes (with O(2), NO and CO) of substrate-bound (l-Arg or NHA) gsNOS, including the key oxyferrous complex studied at -50 degrees C in cryogenic mixed solvents, with analogous mammalian NOS complexes indicate overall spectroscopic similarities between gsNOS and mammalian NOSs. However, more detailed spectral comparisons reflect subtle structural differences between gsNOS and mammalian NOSs. This may be due to an incomplete tetrahydrobiopterin (BH(4))-binding site and low BH(4)-binding affinity, which may become even lower in the presence of cryosolvent in gsNOS. Although BH(4)-binding may be altered, gsNOS appears to require the pterin for NO production since formation of the stable ferric-NO product complex was only observed when excess BH(4) (>150muM) over gsNOS was present upon single turnover reaction in which O(2) was bubbled into dithionite-reduced NHA-bound protein solution at -35 degrees C or -50 degrees C. PMID:20110129

  5. Vascular nitric oxide: Beyond eNOS.

    PubMed

    Zhao, Yingzi; Vanhoutte, Paul M; Leung, Susan W S

    2015-10-01

    As the first discovered gaseous signaling molecule, nitric oxide (NO) affects a number of cellular processes, including those involving vascular cells. This brief review summarizes the contribution of NO to the regulation of vascular tone and its sources in the blood vessel wall. NO regulates the degree of contraction of vascular smooth muscle cells mainly by stimulating soluble guanylyl cyclase (sGC) to produce cyclic guanosine monophosphate (cGMP), although cGMP-independent signaling [S-nitrosylation of target proteins, activation of sarco/endoplasmic reticulum calcium ATPase (SERCA) or production of cyclic inosine monophosphate (cIMP)] also can be involved. In the blood vessel wall, NO is produced mainly from l-arginine by the enzyme endothelial nitric oxide synthase (eNOS) but it can also be released non-enzymatically from S-nitrosothiols or from nitrate/nitrite. Dysfunction in the production and/or the bioavailability of NO characterizes endothelial dysfunction, which is associated with cardiovascular diseases such as hypertension and atherosclerosis. PMID:26499181

  6. Protein Inhibitor of NOS1 Plays a Central Role in the Regulation of NOS1 Activity in Human Dilated Hearts

    PubMed Central

    Roselló-Lletí, Esther; Tarazón, Estefanía; Ortega, Ana; Gil-Cayuela, Carolina; Carnicer, Ricardo; Lago, Francisca; González-Juanatey, Jose Ramón; Portolés, Manuel; Rivera, Miguel

    2016-01-01

    An essential factor for the production of nitric oxide by nitric oxide synthase 1 (NOS1), major modulator of cardiac function, is the cofactor tetrahydrobiopterin (BH4). BH4 is regulated by GTP cyclohydrolase 1, the rate-limiting enzyme in BH4 biosynthesis which catalyses the formation of dihydroneopterin 3′triphosfate from GTP, producing BH4 after two further steps catalyzed by 6-pyruvoyltetrahydropterin synthase and sepiapterin reductase. However, there are other essential factors involved in the regulation of NOS1 activity, such as protein inhibitor of NOS1 (PIN), calmodulin, heat shock protein 90, and NOS interacting protein. All these molecules have never been analysed in human non-ischemic dilated hearts (DCM). In this study we demonstrated that the upregulation of cardiac NOS1 is not accompanied by increased NOS1 activity in DCM, partly due to the elevated PIN levels and not because of alterations in biopterin biosynthesis. Notably, the PIN concentration was significantly associated with impaired ventricular function, highlighting the importance of this NOS1 activity inhibitor in Ca2+ homeostasis. These results take a central role in the current list of targets for future studies focused on the complex cardiac dysfunction processes through more efficient harnessing of NOS1 signalling. PMID:27481317

  7. Advancing the Perceptions of the Nature of Science (NOS): Integrating Teaching the NOS in a Science Content Course

    ERIC Educational Resources Information Center

    Aflalo, Ester

    2014-01-01

    Background: Understanding the nature of science (NOS) has been a key objective in teaching sciences for many years. Despite the importance of this goal it is, until this day, a complex challenge that we are far from achieving. Purpose: The study was conducted in order to further the understanding of the NOS amongst preservice teachers. It explores…

  8. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling

    PubMed Central

    Förstermann, Ulrich; Li, Huige

    2011-01-01

    Nitric oxide (NO) produced by the endothelium is an important protective molecule in the vasculature. It is generated by the enzyme endothelial NO synthase (eNOS). Similar to all NOS isoforms, functional eNOS transfers electrons from nicotinamide adenine dinucleotide phosphate (NADPH), via the flavins flavin adenine dinucleotide and flavin mononucleotide in the carboxy-terminal reductase domain, to the heme in the amino-terminal oxygenase domain. Here, the substrate L-arginine is oxidized to L-citrulline and NO. Cardiovascular risk factors such as diabetes mellitus, hypertension, hypercholesterolaemia or cigarette smoking reduce bioactive NO. These risk factors lead to an enhanced production of reactive oxygen species (ROS) in the vessel wall. NADPH oxidases represent major sources of this ROS and have been found upregulated in the presence of cardiovascular risk factors. NADPH-oxidase-derived superoxide avidly reacts with eNOS-derived NO to form peroxynitrite (ONOO-). The essential NOS cofactor (6R-)5,6,7,8-tetrahydrobiopterin (BH4) is highly sensitive to oxidation by this ONOO-. In BH4 deficiency, oxygen reduction uncouples from NO synthesis, thereby converting NOS to a superoxide-producing enzyme. Among conventional drugs, compounds interfering with the renin-angiotensin-aldosterone system and statins can reduce vascular oxidative stress and increase bioactive NO. In recent years, we have identified a number of small molecules that have the potential to prevent eNOS uncoupling and, at the same time, enhance eNOS expression. These include the protein kinase C inhibitor midostaurin, the pentacyclic triterpenoids ursolic acid and betulinic acid, the eNOS enhancing compounds AVE9488 and AVE3085, and the polyphenolic phytoalexin trans-resveratrol. Such compounds enhance NO production from eNOS also under pathophysiological conditions and may thus have therapeutic potential. PMID:21198553

  9. Using a Professional Development Program for Enhancing Chilean Biology Teachers' Understanding of Nature of Science (NOS) and Their Perceptions About Using History of Science to Teach NOS

    NASA Astrophysics Data System (ADS)

    Pavez, José M.; Vergara, Claudia A.; Santibañez, David; Cofré, Hernán

    2016-05-01

    A number of authors have recognized the importance of understanding the nature of science (NOS) for scientific literacy. Different instructional strategies such as decontextualized, hands-on inquiry, and history of science (HOS) activities have been proposed for teaching NOS. This article seeks to understand the contribution of HOS in enhancing biology teachers' understanding of NOS, and their perceptions about using HOS to teach NOS. These teachers ( N = 8), enrolled in a professional development program in Chile are, according to the national curriculum, expected to teach NOS, but have no specific NOS and HOS training. Teachers' views of NOS were assessed using the VNOS-D+ questionnaire at the beginning and at the end of two modules about science instruction and NOS. Both the pre- and the post-test were accompanied by interviews, and in the second session we collected information about teachers' perceptions of which interventions had been more significant in changing their views on NOS. Finally, the teachers also had to prepare a lesson plan for teaching NOS that included HOS. Some of the most important study results were: significant improvements were observed in teachers' understanding of NOS, although they assigned different levels of importance to HOS in these improvements; and although the teachers improved their understanding of NOS, most had difficulties in planning lessons about NOS and articulating historical episodes that incorporated NOS. The relationship between teachers' improved understanding of NOS and their instructional NOS skills is also discussed.

  10. NOS-2 Inhibition in Phosgene-Induced Acute Lung Injury

    PubMed Central

    Filipczak, Piotr T.; Senft, Albert P.; Seagrave, JeanClare; Weber, Waylon; Kuehl, Philip J.; Fredenburgh, Laura E.; McDonald, Jacob D.; Baron, Rebecca M.

    2015-01-01

    Phosgene exposure via an industrial or warfare release produces severe acute lung injury (ALI) with high mortality, characterized by massive pulmonary edema, disruption of epithelial tight junctions, surfactant dysfunction, and oxidative stress. There are no targeted treatments for phosgene-induced ALI. Previous studies demonstrated that nitric oxide synthase 2 (NOS-2) is upregulated in the lungs after phosgene exposure; however, the role of NOS-2 in the pathogenesis of phosgene-induced ALI remains unknown. We previously demonstrated that NOS-2 expression in lung epithelium exacerbates inhaled endotoxin-induced ALI in mice, mediated partially through downregulation of surfactant protein B (SP-B) expression. Therefore, we hypothesized that a selective NOS-2 inhibitor delivered to the lung epithelium by inhalation would mitigate phosgene-induced ALI. Inhaled phosgene produced increases in bronchoalveolar lavage fluid protein, histologic lung injury, and lung NOS-2 expression at 24 h. Administration of the selective NOS-2 inhibitor 1400 W via inhalation, but not via systemic delivery, significantly attenuated phosgene-induced ALI and preserved epithelial barrier integrity. Furthermore, aerosolized 1400 W augmented expression of SP-B and prevented downregulation of tight junction protein zonula occludens 1 (ZO-1), both critical for maintenance of normal lung physiology and barrier integrity. We also demonstrate for the first time that NOS-2-derived nitric oxide downregulates the ZO-1 expression at the transcriptional level in human lung epithelial cells, providing a novel target for ameliorating vascular leak in ALI. Our data demonstrate that lung NOS-2 plays a critical role in the development of phosgene-induced ALI and suggest that aerosolized NOS-2 inhibitors offer a novel therapeutic strategy for its treatment. PMID:25870319

  11. The effect of high protein diet and exercise on irisin, eNOS, and iNOS expressions in kidney.

    PubMed

    Tastekin, Ebru; Palabiyik, Orkide; Ulucam, Enis; Uzgur, Selda; Karaca, Aziz; Vardar, Selma Arzu; Yilmaz, Ali; Aydogdu, Nurettin

    2016-08-01

    Long-term effects of high protein diets (HPDs) on kidneys are still not sufficiently studied. Irisin which increases oxygen consumption and thermogenesis in white fat cells was shown in skeletal muscles and many tissues. Nitric oxide synthases (NOS) are a family of enzymes catalyzing the production of nitric oxide (NO) from L-arginine. We aimed to investigate the effects of HPD, irisin and NO expression in kidney and relation of them with exercise and among themselves. Animals were grouped as control, exercise, HPD and exercise combined with HPD (exercise-HPD). Rats were kept on a HPD for 5 weeks and an exercise program was given them as 5 exercise and 2 rest days per week exercising on a treadmill with increasing speed and angle. In our study, while HPD group had similar total antioxidant capacity (TAC) levels with control group, exercise and exercise-HPD groups had lower levels (p < 0.05). Kidneys of exercising rats had no change in irisin or eNOS expression but their iNOS expression had increased (p < 0.001). HPD-E group has not been observed to cause kidney damage and not have a significant effect on rat kidney irisin, eNOS, or iNOS expression. Localization of irisin, eNOS, and iNOS staining in kidney is highly selective and quite clear in this study. Effects of exercise and HPD on kidney should be evaluated with different exercise protocols and contents of the diet. İrisin, eNOS, and iNOS staining localizations should be supported with various research studies. PMID:27277302

  12. Differential roles of iNOS and nNOS at rostral ventrolateral medulla during experimental endotoxemia in the rat.

    PubMed

    Chan, J Y; Wang, S H; Chan, S H

    2001-01-01

    We investigated the differential contribution of inducible and neuronal nitric oxide synthase (iNOS and nNOS) at the rostral ventrolateral medulla (RVLM) to endotoxemia induced by E. coli lipopolysaccharide (LPS). In Sprague-Dawley rats maintained under propofol anesthesia, i.v. administration of LPS (15, 30, or 45 mg/kg) induced a reduction (phase I), followed by an augmentation (phase II) and a secondary decrease (phase III) in the power density of the vasomotor components (0-0.8 Hz) in systemic arterial pressure (SAP) signals. LPS also induced an immediate hypotension, followed by a rebound increase and a secondary decrease in SAP. In addition, the level of iNOS mRNA exhibited a significant surge that began with phase I endotoxemia, reaching progressively its peak at phase III. Discernible down-regulation of nNOS mRNA was not detected until the last phase of endotoxemia. Pretreatment with microinjection of the selective iNOS inhibitor, aminoguanidine (250 pmol), into the bilateral RVLM significantly prolonged phases II and III endotoxemia, blunted the initial and secondary hypotension, and antagonized the upregulation of iNOS mRNA. Similar pretreatment with the selective nNOS inhibitor, 7-nitroindazole (1 pmol), on the other hand, discernibly shortened phase II and prolonged phase III endotoxemia, and induced progressive hypotension by antagonizing the rebound increase in SAP. We conclude that the relative prevalence of functional expression and molecular synthesis of iNOS over nNOS in the RVLM may be a crucial determinant for the reduction or loss in power density of the vasomotor components of SAP signals during experimental endotoxemia. PMID:11198360

  13. Vault Area (original section), east corridor, looking north (Vault Nos. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Vault Area (original section), east corridor, looking north (Vault Nos. 1-9 - Fort McNair, Film Store House, Fort Lesley J. McNair, P Street between Third & Fourth Streets, Southwest, Washington, District of Columbia, DC

  14. 78 FR 50395 - Endangered Species; File Nos. 17557 and 17273

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... INFORMATION: On May 31, 2013, notice was published in the Federal Register (78 FR 32622) that requests for a... Service Marine Forensic Lab (NOS Lab) , 219 Fort Johnson Road, Charleston, SC 29412 (File No. 17557),...

  15. FRONT ELEVATIONS, NOS. 2122 AND 2124 ON THE WEST SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FRONT ELEVATIONS, NOS. 2122 AND 2124 ON THE WEST SIDE OF UBER STREET, LOOKING WEST. - 2100 Block North Uber Street (Houses), East & west sides between Diamond Street & Susquehanna Avenue, Philadelphia, Philadelphia County, PA

  16. FRONT ELEVATIONS, NOS. 2123 AND 2125 ON THE EAST SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FRONT ELEVATIONS, NOS. 2123 AND 2125 ON THE EAST SIDE OF UBER STREET, LOOKING EAST. - 2100 Block North Uber Street (Houses), East & west sides between Diamond Street & Susquehanna Avenue, Philadelphia, Philadelphia County, PA

  17. Los Angeles County Poor Farm, Patient Ward Nos. 210 & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Los Angeles County Poor Farm, Patient Ward Nos. 210 & 211 - Type B Plan, 7601 Imperial Highway; bounded by Esperanza Street, Laurel Street, Flores Street, and Descanso Street, Downey, Los Angeles County, CA

  18. 37. ISLAND PLANT: Nos. 1 AND 2 TWENTYSIX INCH SPECIAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. ISLAND PLANT: Nos. 1 AND 2 TWENTY-SIX INCH SPECIAL HORIZONTAL SAMSON TURBINE (RIVITED CASE) - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  19. 36. ISLAND PLANT: Nos. 1 AND 2 TWENTYSIX INCH HORIZONTAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. ISLAND PLANT: Nos. 1 AND 2 TWENTY-SIX INCH HORIZONTAL SAMSON TURBINES - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  20. Interior of Left Powerhouse showing generator Nos. 14. This view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of Left Powerhouse showing generator Nos. 1-4. This view is from the catwalk at the level of the overhead crane, looking west. - Columbia Basin Project, Grand Coulee Dam Powerplant Complex, Grand Coulee, Grant County, WA

  1. eNOS-uncoupling in age-related erectile dysfunction

    PubMed Central

    Johnson, JM; Bivalacqua, TJ; Lagoda, GA; Burnett, AL; Musicki, B

    2011-01-01

    Aging is associated with ED. Although age-related ED is attributed largely to increased oxidative stress and endothelial dysfunction in the penis, the molecular mechanisms underlying this effect are not fully defined. We evaluated whether endothelial nitric oxide synthase (eNOS) uncoupling in the aged rat penis is a contributing mechanism. Correlatively, we evaluated the effect of replacement with eNOS cofactor tetrahydrobiopterin (BH4) on erectile function in the aged rats. Male Fischer 344 ‘young’ (4-month-old) and ‘aged’ (19-month-old) rats were treated with a BH4 precursor sepiapterin (10 mg/kg intraperitoneally) or vehicle for 4 days. After 1-day washout, erectile function was assessed in response to electrical stimulation of the cavernous nerve. Endothelial dysfunction (eNOS uncoupling) and oxidative stress (thiobarbituric acid reactive substances, TBARS) were measured by conducting western blot in penes samples. Erectile response was significantly reduced in aged rats, whereas eNOS uncoupling and TBARS production were significantly increased in the aged rat penis compared with young rats. Sepiapterin significantly improved erectile response in aged rats and prevented increase in TBARS production, but did not affect eNOS uncoupling in the penis of aged rats. These findings suggest that aging induces eNOS uncoupling in the penis, resulting in increased oxidative stress and ED. PMID:21289638

  2. Muscular nitric oxide synthase (muNOS) and utrophin.

    PubMed

    Chaubourt, Emmanuel; Voisin, Vincent; Fossier, Philippe; Baux, Gérard; Israël, Maurice; De La Porte, Sabine

    2002-01-01

    Duchenne muscular dystrophy (DMD), the severe X-linked recessive disorder which results in progressive muscle degeneration, is due to a lack of dystrophin, a membrane cytoskeletal protein. Three types of treatment are envisaged: pharmacological (glucocorticoid), myoblast transplantation, and gene therapy. An alternative to the pharmacological approach is to compensate for dystrophin loss by the upregulation of another cytoskeletal protein, utrophin. Utrophin and dystrophin are part of a complex of proteins and glycoproteins, which links the basal lamina to the cytoskeleton, thus ensuring the stability of the muscle membrane. One protein of the complex, syntrophin, is associated with a muscular isoform of the neuronal nitric oxide synthase (nNOS). We have demonstrated an overexpression of utrophin, visualised by immunofluorescence and quantified by Western blotting, in normal myotubes and in mdx (the animal model of DMD) myotubes, as in normal (C57) and mdx mice, both treated with nitric oxide (NO) donor or L-arginine, the NOS substrate. There is evidence that utrophin may be capable of performing the same cellular functions as dystrophin and may functionally compensate for its lack. Thus, we propose to use NO donors, as palliative treatment of Duchenne and Becker muscular dystrophies, pending, or in combination with, gene and/or cellular therapy. Discussion has focussed on the various isoforms of NOS that could be implicated in the regeneration process. Dystrophic and healthy muscles respond to treatment, suggesting that although NOS is delocalised in the cytoplasm in the case of DMD, it conserves substantial activity. eNOS present in mitochondria and iNOS present in cytoplasm and the neuromuscular junction could also be activated. Lastly, production of NO by endothelial NOS of the capillaries would also be beneficial through increased supply of metabolites and oxygen to the muscles. PMID:11755782

  3. Pedagogical Reflections by Secondary Science Teachers at Different NOS Implementation Levels

    NASA Astrophysics Data System (ADS)

    Herman, Benjamin C.; Clough, Michael P.; Olson, Joanne K.

    2015-10-01

    This study investigated what 13 secondary science teachers at various nature of science (NOS) instruction implementation levels talked about when they reflected on their teaching. We then determined if differences exist in the quality of those reflections between high, medium, and low NOS implementers. This study sought to answer the following questions: (1) What do teachers talk about when asked general questions about their pedagogy and NOS pedagogy and (2) what qualitative differences, if any, exist within variables across teachers of varying NOS implementation levels? Evidence derived from these teachers' reflections indicated that self-efficacy and perceptions of general importance for NOS instruction were poor indicators of NOS implementation. However, several factors were associated with the extent that these teachers implemented NOS instruction, including the utility value they hold for NOS teaching, considerations of how people learn, understanding of NOS pedagogy, and their ability to accurately and deeply self-reflect about teaching. Notably, those teachers who effectively implemented the NOS at higher levels value NOS instruction for reasons that transcend immediate instructional objectives. That is, they value teaching NOS for achieving compelling ends realized long after formal schooling (e.g., lifelong socioscientific decision-making for civic reasons), and they deeply reflect about how to teach NOS by drawing from research about how people learn. Low NOS implementers' simplistic notions and reflections about teaching and learning appeared to be impeding factors to accurate and consistent NOS implementation. This study has implications for science teacher education efforts that promote NOS instruction.

  4. Expression analysis of NOS family and HSP genes during thermal stress in goat ( Capra hircus)

    NASA Astrophysics Data System (ADS)

    Yadav, Vijay Pratap; Dangi, Satyaveer Singh; Chouhan, Vikrant Singh; Gupta, Mahesh; Dangi, Saroj K.; Singh, Gyanendra; Maurya, Vijay Prakash; Kumar, Puneet; Sarkar, Mihir

    2016-03-01

    Approximately 50 genes other than heat shock protein (HSP) expression changes during thermal stress. These genes like nitric oxide synthase (NOS) need proper attention and investigation to find out their possible role in the adaptation to thermal stress in animals. So, the present study was undertaken to demonstrate the expressions of inducible form type II NOS (iNOS), endothelial type III NOS (eNOS), constitutively expressed enzyme NOS (cNOS), HSP70, and HSP90 in peripheral blood mononuclear cells (PBMCs) during different seasons in Barbari goats. Real-time polymerase chain reaction, western blot, and immunocytochemistry were applied to investigate messenger RNA (mRNA) expression, protein expression, and immunolocalization of examined factors. The mRNA and protein expressions of iNOS, eNOS, cNOS, HSP70, and HSP90 were significantly higher ( P < 0.05) during peak summer, and iNOS and eNOS expressions were also observed to be significantly higher ( P < 0.05) during peak winter season as compared with moderate season. The iNOS, eNOS, cNOS, HSP70, and HSP90 were mainly localized in plasma membrane and cytoplasm of PBMCs. To conclude, data generated in the present study indicate the possible involvement of the NOS family genes in amelioration of thermal stress so as to maintain cellular integrity and homeostasis in goats.

  5. Expression analysis of NOS family and HSP genes during thermal stress in goat (Capra hircus).

    PubMed

    Yadav, Vijay Pratap; Dangi, Satyaveer Singh; Chouhan, Vikrant Singh; Gupta, Mahesh; Dangi, Saroj K; Singh, Gyanendra; Maurya, Vijay Prakash; Kumar, Puneet; Sarkar, Mihir

    2016-03-01

    Approximately 50 genes other than heat shock protein (HSP) expression changes during thermal stress. These genes like nitric oxide synthase (NOS) need proper attention and investigation to find out their possible role in the adaptation to thermal stress in animals. So, the present study was undertaken to demonstrate the expressions of inducible form type II NOS (iNOS), endothelial type III NOS (eNOS), constitutively expressed enzyme NOS (cNOS), HSP70, and HSP90 in peripheral blood mononuclear cells (PBMCs) during different seasons in Barbari goats. Real-time polymerase chain reaction, western blot, and immunocytochemistry were applied to investigate messenger RNA (mRNA) expression, protein expression, and immunolocalization of examined factors. The mRNA and protein expressions of iNOS, eNOS, cNOS, HSP70, and HSP90 were significantly higher (P < 0.05) during peak summer, and iNOS and eNOS expressions were also observed to be significantly higher (P < 0.05) during peak winter season as compared with moderate season. The iNOS, eNOS, cNOS, HSP70, and HSP90 were mainly localized in plasma membrane and cytoplasm of PBMCs. To conclude, data generated in the present study indicate the possible involvement of the NOS family genes in amelioration of thermal stress so as to maintain cellular integrity and homeostasis in goats. PMID:26205811

  6. Melanoma NOS1 expression promotes dysfunctional IFN signaling

    PubMed Central

    Liu, Qiuzhen; Tomei, Sara; Ascierto, Maria Libera; De Giorgi, Valeria; Bedognetti, Davide; Dai, Cuilian; Uccellini, Lorenzo; Spivey, Tara; Pos, Zoltan; Thomas, Jaime; Reinboth, Jennifer; Murtas, Daniela; Zhang, Qianbing; Chouchane, Lotfi; Weiss, Geoffrey R.; Slingluff, Craig L.; Lee, Peter P.; Rosenberg, Steven A.; Alter, Harvey; Yao, Kaitai; Wang, Ena; Marincola, Francesco M.

    2014-01-01

    In multiple forms of cancer, constitutive activation of type I IFN signaling is a critical consequence of immune surveillance against cancer; however, PBMCs isolated from cancer patients exhibit depressed STAT1 phosphorylation in response to IFN-α, suggesting IFN signaling dysfunction. Here, we demonstrated in a coculture system that melanoma cells differentially impairs the IFN-α response in PBMCs and that the inhibitory potential of a particular melanoma cell correlates with NOS1 expression. Comparison of gene transcription and array comparative genomic hybridization (aCGH) between melanoma cells from different patients indicated that suppression of IFN-α signaling correlates with an amplification of the NOS1 locus within segment 12q22-24. Evaluation of NOS1 levels in melanomas and IFN responsiveness of purified PBMCs from patients indicated a negative correlation between NOS1 expression in melanomas and the responsiveness of PBMCs to IFN-α. Furthermore, in an explorative study, NOS1 expression in melanoma metastases was negatively associated with patient response to adoptive T cell therapy. This study provides a link between cancer cell phenotype and IFN signal dysfunction in circulating immune cells. PMID:24691438

  7. Modulating DDAH/NOS Pathway to Discover Vasoprotective Insulin Sensitizers

    PubMed Central

    Lai, Li; Ghebremariam, Yohannes T.

    2016-01-01

    Insulin resistance syndrome (IRS) is a configuration of cardiovascular risk factors involved in the development of metabolic disorders including type 2 diabetes mellitus. In addition to diet, age, socioeconomic, and environmental factors, genetic factors that impair insulin signaling are centrally involved in the development and exacerbation of IRS. Genetic and pharmacological studies have demonstrated that the nitric oxide (NO) synthase (NOS) genes are critically involved in the regulation of insulin-mediated glucose disposal. The generation of NO by the NOS enzymes is known to contribute to vascular homeostasis including insulin-mediated skeletal muscle vasodilation and insulin sensitivity. By contrast, excessive inhibition of NOS enzymes by exogenous or endogenous factors is associated with insulin resistance (IR). Asymmetric dimethylarginine (ADMA) is an endogenous molecule that competitively inhibits all the NOS enzymes and contributes to metabolic perturbations including IR. The concentration of ADMA in plasma and tissue is enzymatically regulated by dimethylarginine dimethylaminohydrolase (DDAH), a widely expressed enzyme in the cardiovascular system. In preclinical studies, overexpression of DDAH has been shown to reduce ADMA levels, improve vascular compliance, and increase insulin sensitivity. This review discusses the feasibility of the NOS/DDAH pathway as a novel target to develop vasoprotective insulin sensitizers. PMID:26770984

  8. Adenoviral gene transfer of endothelial nitric-oxide synthase (eNOS) partially restores normal pulmonary arterial pressure in eNOS-deficient mice

    PubMed Central

    Champion, Hunter C.; Bivalacqua, Trinity J.; Greenberg, Stanley S.; Giles, Thomas D.; Hyman, Albert L.; Kadowitz, Philip J.

    2002-01-01

    It has been shown that mice deficient in the gene coding for endothelial nitric-oxide synthase (eNOS) have increased pulmonary arterial pressure and pulmonary vascular resistance. In the present study, the effect of transfer to the lung of an adenoviral vector encoding the eNOS gene (AdCMVeNOS) on pulmonary arterial pressure and pulmonary vascular resistance was investigated in eNOS-deficient mice. One day after intratracheal administration of AdCMVeNOS to eNOS−/− mice, there was an increase in eNOS protein, cGMP levels, and calcium-dependent conversion of l-arginine to l-citrulline in the lung. The increase in eNOS protein and activity in eNOS−/− mice was associated with a reduction in mean pulmonary arterial pressure and pulmonary vascular resistance when compared with values in eNOS-deficient mice treated with vehicle or a control adenoviral vector coding for β-galactosidase, AdCMVβgal. These data suggest that in vivo gene transfer of eNOS to the lung in eNOS−/− mice can increase eNOS staining, eNOS protein, calcium-dependent NOS activity, and cGMP levels and partially restore pulmonary arterial pressure and pulmonary vascular resistance to near levels measured in eNOS+/+ mice. Thus, the major finding in this study is that in vivo gene transfer of eNOS to the lung in large part corrects a genetic deficiency resulting from eNOS deletion and may be a useful therapeutic intervention for the treatment of pulmonary hypertensive disorders in which eNOS activity is reduced. PMID:12237402

  9. Particle Physics Masterclass as a Context for Learning about NOS

    NASA Astrophysics Data System (ADS)

    Wadness, Michael

    2011-04-01

    This research addresses the question: Do secondary school science students attending the U.S. Particle Physics Masterclass change their view of the nature of science (NOS)? The U.S. Particle Physics Masterclass is a national physics outreach program run by QuarkNet, in which high school physics students gather at a local research institution for one day to learn about particle physics and the scientific enterprise. Student activities include introductory lectures in particle physics, laboratory tours, analysis of actual data from CERN, and the discussion of their findings in a conference-like atmosphere. Although there are a number of outreach programs involving scientists in K-12 education, very few of them have been formally evaluated to determine if they provide adequate learning of NOS. Therefore, the significance of this study is that it investigates the claim that science outreach programs may be designed to address science literacy, specifically as a context for explicit NOS instruction.

  10. Exploring Elementary Science Methods Course Contexts to Improve Preservice Teachers' NOS of Science Conceptions and Understandings of NOS Teaching Strategies

    ERIC Educational Resources Information Center

    Akerson, Valarie L.; Weiland, Ingrid; Rogers, Meredith Park; Pongsanon, Khemmawaddee; Bilican, Kader

    2014-01-01

    We explored adaptations to an elementary science methods course to determine how varied contexts could improve elementary preservice teachers' conceptions of NOS as well as their ideas for teaching NOS to elementary students. The contexts were (a) NOS Theme in which the course focused on the teaching of science through the consistent teaching…

  11. Langley VEDIT for NOS/VE usage manual

    NASA Technical Reports Server (NTRS)

    Heaney, Margaret A.

    1987-01-01

    The use of the VEDIT editor on the CDC Network Operating System/Virtual Environment (NOS/VE) is discussed. The VEDIT, a utility, allows a user to edit files line by line (line mode). How to access and the use of VEDIT are explained. The parameters and the format of the individual commands are defined. Examples are included.

  12. AIRMEN'S BARRACKS (FACILITY Nos. 422, 442, AND 420) IN MIDDLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AIRMEN'S BARRACKS (FACILITY Nos. 422, 442, AND 420) IN MIDDLE DISTANCE, ALSO SHOWING ESCOLTA AVENUE AT RIGHT, LOOKING SOUTHEAST FROM RESERVOIR HILL. (Part 2 of a 3 view panorama; see also CA-2398-4 and CA-2398-6.) - Hamilton Field, East of Nave Drive, Novato, Marin County, CA

  13. 76 FR 80890 - Endangered Species; File Nos. 13599 and 1614

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ...-01, issued on September 20, 2010 (73 FR 78724), authorizes the permit holder to receive, import...-01, (73 FR 25668) issued on April 30, 2008 authorizes the permit holder to collect, receive and... permits: the National Ocean Service Marine Forensic Lab (NOS Lab) , 219 Fort Johnson Road, Charleston,...

  14. Service building. Cross section thru dry dock nos. 4 & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Service building. Cross section thru dry dock nos. 4 & 5 showing service bldg & 20-75-150 ton cranes (dry dock associates, May 23, 1941). In files of Cushman & Wakefield, building no. 501, Philadelphia Naval Business Center. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Service Building, Dry Docks No. 4 & 5, League Island, Philadelphia, Philadelphia County, PA

  15. 77 FR 67631 - Endangered Species; File Nos. 17367 and 17364

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ... species recovery in four facilities in the Southeast Region of the USFWS. Research would include nutrition... National Oceanic and Atmospheric Administration RIN 0648-XC348 Endangered Species; File Nos. 17367 and... of the Endangered Species Act of 1973, as amended (ESA; 16 U.S.C. 1531 et seq.) and the...

  16. 76 FR 15300 - Endangered Species; File Nos. 16266 and 16291

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ... from the NMFS recovery plan outline for this species. The permits would not authorize any takes from... National Oceanic and Atmospheric Administration RIN 0648-XA306 Endangered Species; File Nos. 16266 and... requested under the authority of the Endangered Species Act of 1973, as amended (ESA; 16 U.S.C. 1531 et...

  17. 4. Southwest fronts, dock nos. 491 and 492. Southeast end, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Southwest fronts, dock nos. 491 and 492. Southeast end, dock no. 492. View to north. - Offutt Air Force Base, Looking Glass Airborne Command Post, Nose Docks, On either side of Hangar Access Apron at Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  18. Airfield setting of Facility Nos. 175 and 176, taken from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Airfield setting of Facility Nos. 175 and 176, taken from north end of Ford Island Runway, with landplane hangars on the right - U.S. Naval Base, Pearl Harbor, Landplane Hangar Type, Wasp Boulevard and Gambier Bay Street, Pearl City, Honolulu County, HI

  19. Building Nos. 92, 381, and 392, view into common courtyard ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Building Nos. 92, 381, and 392, view into common courtyard between 92 (right), 391 (center deep), and 392 (left), view facing west-northwest - U.S. Naval Base, Pearl Harbor, Marine Railway No. 1 Accessories House & Apprentice Welding School, Additions, Intersection of Avenue B & Sixth Street, Pearl City, Honolulu County, HI

  20. 15. Dry Dock No. 4. Longitudinal Section. Subdivision Nos. I ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Dry Dock No. 4. Longitudinal Section. Subdivision Nos. I and II (Frederic R. Harris, Inc., January 10, 1941). In Files of Cushman & Wakefield, Building no. 501, Philadelphia Naval Business Center. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Dry Dock No. 4, Broad Street south of Government Avenue, Philadelphia, Philadelphia County, PA

  1. 21. INTERIOR VIEW OF REFINING MILL, SHOWING LOCATIONS OF NOS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. INTERIOR VIEW OF REFINING MILL, SHOWING LOCATIONS OF NOS. 1, 2, AND 3 MILLS, LOOKING SOUTH. SOME OF THE MACHINERY IN THIS SECTION HAS BEEN REMOVED. - Clay Spur Bentonite Plant & Camp, Refining Mill, Clay Spur Siding on Burlington Northern Railroad, Osage, Weston County, WY

  2. Las Rocas Nos Cuentan (Rocks Tell Their Stories)

    ERIC Educational Resources Information Center

    Llerandi-Roman, Pablo A.

    2012-01-01

    Many Earth science lessons today still focus on memorizing the names of rocks and minerals. This led the author to develop a lesson that reveals the fascinating stories told by rocks through the study of their physical properties. He first designed the lesson for Puerto Rican teachers, hence its Spanish title: "Las Rocas Nos Cuentan Su Historia."…

  3. 16. Dry Dock No. 4. Longitudinal Section. Subdivision Nos. III ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Dry Dock No. 4. Longitudinal Section. Subdivision Nos. III and IV (Frederic R. Harris, Inc., January 10, 1941). In Files of Cushman & Wakefield, Building no. 501, Philadelphia Naval Business Center. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Dry Dock No. 4, Broad Street south of Government Avenue, Philadelphia, Philadelphia County, PA

  4. Context view, Building Nos. 2729, with Building No. 28 in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Context view, Building Nos. 27-29, with Building No. 28 in the center, looking west at front of buildings, from a spot south of Building No. 29 - U.S. Veterans Hospital, Jefferson Barracks, Medical Officer in Charge Residence, VA Medical Center, Jefferson Barracks Division 1 Jefferson Barracks Drive, Saint Louis, Independent City, MO

  5. Context view, Building Nos. 2728, looking north from a spot ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Context view, Building Nos. 27-28, looking north from a spot south of Building No. 28 - U.S. Veterans Hospital, Jefferson Barracks, Medical Officer in Charge Residence, VA Medical Center, Jefferson Barracks Division 1 Jefferson Barracks Drive, Saint Louis, Independent City, MO

  6. Tool nos. 277 and 2201, details for bending machine, Johnson ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Tool nos. 277 and 2201, details for bending machine, Johnson Company, Johnstown, Pa. Scale 3 inches - 1 ft, Feb 13th 1893, drawing number 15098. (Photograph of drawing held at the Johnstown Corporation General Office, Johnstown, Pennsylvania) - Johnson Steel Street Rail Company, 525 Central Avenue, Johnstown, Cambria County, PA

  7. Sildenafil Ameliorates Gentamicin-Induced Nephrotoxicity in Rats: Role of iNOS and eNOS

    PubMed Central

    Morsy, Mohamed A.; Ibrahim, Salwa A.; Amin, Entesar F.; Kamel, Maha Y.; Rifaai, Rehab A.; Hassan, Magdy K.

    2014-01-01

    Gentamicin, an aminoglycoside antibiotic, is used for the treatment of serious Gram-negative infections. However, its usefulness is limited by its nephrotoxicity. Sildenafil, a selective phosphodiesterase-5 inhibitor, was reported to prevent or decrease tissue injury. The aim of this study is to evaluate the potential protective effects of sildenafil on gentamicin-induced nephrotoxicity in rats. Male Wistar rats were injected with gentamicin (100 mg/kg/day, i.p.) for 6 days with and without sildenafil. Sildenafil administration resulted in nephroprotective effect in gentamicin-intoxicated rats as it significantly decreased serum creatinine and urea, urinary albumin, and renal malondialdehyde and nitrite/nitrate levels, with a concomitant increase in renal catalase and superoxide dismutase activities compared to gentamicin-treated rats. Moreover, immunohistochemical examination revealed that sildenafil treatment markedly reduced inducible nitric oxide synthase (iNOS) expression, while expression of endothelial nitric oxide synthase (eNOS) was markedly enhanced. The protective effects of sildenafil were verified histopathologically. In conclusion, sildenafil protects rats against gentamicin-induced nephrotoxicity possibly, in part, through its antioxidant activity, inhibition of iNOS expression, and induction of eNOS production. PMID:25120567

  8. Effects of cyclooxygenase inhibitor pretreatment on nitric oxide production, nNOS and iNOS expression in rat cerebellum.

    PubMed

    Di Girolamo, G; Farina, M; Riberio, M L; Ogando, D; Aisemberg, J; de los Santos, A R; Martí, M L; Franchi, A M

    2003-07-01

    1. The therapeutic effect of nonsteroidal anti-inflammatory drugs (NSAIDs) is thought to be due mainly to its inhibition of cyclooxygenase (COX) enzymes, but there is a growing body of research that now demonstrates a variety of NSAIDs effects on cellular signal transduction pathways other than those involving prostaglandins. 2. Nitric oxide (NO) as a free radical and an agent that gives rise to highly toxic oxidants (peroxynitrile, nitric dioxide, nitron ion), becomes a cause of neuronal damage and death in some brain lesions such as Parkinson and Alzheimer disease, and Huntington's chorea. 3. In the present study, the in vivo effect of three NSAIDs (lysine clonixinate (LC), indomethacine (INDO) and meloxicam (MELO)) on NO production and nitric oxide synthase expression in rat cerebellar slices was analysed. Rats were treated with (a) saline, (b) lipopolysaccharide (LPS) (5 mg kg(-1), i.p.), (c) saline in combination with different doses of NSAIDs and (d) LPS in combination with different doses of NSAIDs and then killed 6 h after treatment. 4. NO synthesis, evaluated by Bred and Snyder technique, was increased by LPS. This augmentation was inhibited by coadministration of the three NSAIDs assayed. None of the NSAIDs tested was able to modify control NO synthesis. 5. Expression of iNOS and neural NOS (nNOS) was detected by Western blotting in control and LPS-treated rats. LC and INDO, but not MELO, were able to inhibit the expression of these enzymes. 6. Therefore, reduction of iNOS and nNOS levels in cerebellum may explain, in part, the anti-inflammatory effect of these NSAIDs and may also have importance in the prevention of NO-mediated neuronal injury. PMID:12871835

  9. Effects of cyclooxygenase inhibitor pretreatment on nitric oxide production, nNOS and iNOS expression in rat cerebellum

    PubMed Central

    DiGirolamo, G; Farina, M; Riberio, M L; Ogando, D; Aisemberg, J; de los Santos, A R; Martí, M L; Franchi, A M

    2003-01-01

    The therapeutic effect of nonsteroidal anti-inflammatory drugs (NSAIDs) is thought to be due mainly to its inhibition of cyclooxygenase (COX) enzymes, but there is a growing body of research that now demonstrates a variety of NSAIDs effects on cellular signal transduction pathways other than those involving prostaglandins. Nitric oxide (NO) as a free radical and an agent that gives rise to highly toxic oxidants (peroxynitrile, nitric dioxide, nitron ion), becomes a cause of neuronal damage and death in some brain lesions such as Parkinson and Alzheimer disease, and Huntington's chorea. In the present study, the in vivo effect of three NSAIDs (lysine clonixinate (LC), indomethacine (INDO) and meloxicam (MELO)) on NO production and nitric oxide synthase expression in rat cerebellar slices was analysed. Rats were treated with (a) saline, (b) lipopolysaccharide (LPS) (5 mg kg−1, i.p.), (c) saline in combination with different doses of NSAIDs and (d) LPS in combination with different doses of NSAIDs and then killed 6 h after treatment. NO synthesis, evaluated by Bred and Snyder technique, was increased by LPS. This augmentation was inhibited by coadministration of the three NSAIDs assayed. None of the NSAIDs tested was able to modify control NO synthesis. Expression of iNOS and neural NOS (nNOS) was detected by Western blotting in control and LPS-treated rats. LC and INDO, but not MELO, were able to inhibit the expression of these enzymes. Therefore, reduction of iNOS and nNOS levels in cerebellum may explain, in part, the anti-inflammatory effect of these NSAIDs and may also have importance in the prevention of NO-mediated neuronal injury. PMID:12871835

  10. Contribution of the nos-pdt operon to virulence phenotypes in methicillin-sensitive Staphylococcus aureus.

    PubMed

    Sapp, April M; Mogen, Austin B; Almand, Erin A; Rivera, Frances E; Shaw, Lindsey N; Richardson, Anthony R; Rice, Kelly C

    2014-01-01

    Nitric oxide (NO) is emerging as an important regulator of bacterial stress resistance, biofilm development, and virulence. One potential source of endogenous NO production in the pathogen Staphylococcus aureus is its NO-synthase (saNOS) enzyme, encoded by the nos gene. Although a role for saNOS in oxidative stress resistance, antibiotic resistance, and virulence has been recently-described, insights into the regulation of nos expression and saNOS enzyme activity remain elusive. To this end, transcriptional analysis of the nos gene in S. aureus strain UAMS-1 was performed, which revealed that nos expression increases during low-oxygen growth and is growth-phase dependent. Furthermore, nos is co-transcribed with a downstream gene, designated pdt, which encodes a prephenate dehydratase (PDT) enzyme involved in phenylalanine biosynthesis. Deletion of pdt significantly impaired the ability of UAMS-1 to grow in chemically-defined media lacking phenylalanine, confirming the function of this enzyme. Bioinformatics analysis revealed that the operon organization of nos-pdt appears to be unique to the staphylococci. As described for other S. aureus nos mutants, inactivation of nos in UAMS-1 conferred sensitivity to oxidative stress, while deletion of pdt did not affect this phenotype. The nos mutant also displayed reduced virulence in a murine sepsis infection model, and increased carotenoid pigmentation when cultured on agar plates, both previously-undescribed nos mutant phenotypes. Utilizing the fluorescent stain 4-Amino-5-Methylamino-2',7'-Difluorofluorescein (DAF-FM) diacetate, decreased levels of intracellular NO/reactive nitrogen species (RNS) were detected in the nos mutant on agar plates. These results reinforce the important role of saNOS in S. aureus physiology and virulence, and have identified an in vitro growth condition under which saNOS activity appears to be upregulated. However, the significance of the operon organization of nos-pdt and potential

  11. Contribution of the nos-pdt Operon to Virulence Phenotypes in Methicillin-Sensitive Staphylococcus aureus

    PubMed Central

    Almand, Erin A.; Rivera, Frances E.; Shaw, Lindsey N.; Richardson, Anthony R.; Rice, Kelly C.

    2014-01-01

    Nitric oxide (NO) is emerging as an important regulator of bacterial stress resistance, biofilm development, and virulence. One potential source of endogenous NO production in the pathogen Staphylococcus aureus is its NO-synthase (saNOS) enzyme, encoded by the nos gene. Although a role for saNOS in oxidative stress resistance, antibiotic resistance, and virulence has been recently-described, insights into the regulation of nos expression and saNOS enzyme activity remain elusive. To this end, transcriptional analysis of the nos gene in S. aureus strain UAMS-1 was performed, which revealed that nos expression increases during low-oxygen growth and is growth-phase dependent. Furthermore, nos is co-transcribed with a downstream gene, designated pdt, which encodes a prephenate dehydratase (PDT) enzyme involved in phenylalanine biosynthesis. Deletion of pdt significantly impaired the ability of UAMS-1 to grow in chemically-defined media lacking phenylalanine, confirming the function of this enzyme. Bioinformatics analysis revealed that the operon organization of nos-pdt appears to be unique to the staphylococci. As described for other S. aureus nos mutants, inactivation of nos in UAMS-1 conferred sensitivity to oxidative stress, while deletion of pdt did not affect this phenotype. The nos mutant also displayed reduced virulence in a murine sepsis infection model, and increased carotenoid pigmentation when cultured on agar plates, both previously-undescribed nos mutant phenotypes. Utilizing the fluorescent stain 4-Amino-5-Methylamino-2',7'-Difluorofluorescein (DAF-FM) diacetate, decreased levels of intracellular NO/reactive nitrogen species (RNS) were detected in the nos mutant on agar plates. These results reinforce the important role of saNOS in S. aureus physiology and virulence, and have identified an in vitro growth condition under which saNOS activity appears to be upregulated. However, the significance of the operon organization of nos-pdt and potential

  12. Association of NOS2 and NOS3 gene polymorphisms with susceptibility to type 2 diabetes mellitus and diabetic nephropathy in the Chinese Han population.

    PubMed

    Chen, Feng; Li, Yu-Mei; Yang, Lin-Qing; Zhong, Cai-Gao; Zhuang, Zhi-Xiong

    2016-07-01

    Inducible nitric oxide synthase (NOS2) and endothelial nitric oxide synthase (NOS3) gene play important roles in the susceptibility to type 2 diabetes mellitus (T2DM). The present study aims to detect the potential association of NOS2 and NOS3 gene polymorphisms with the susceptibility toT2DM and diabetic nephropathy (DN) in the Chinese Han population. Four hundred and ninety T2DM patients and 485 healthy controls were enrolled in this case-control study. The genotypes of NOS2 and NOS3 gene polymorphisms were analyzed by the polymerase chain reaction (PCR)-ligase detection reaction (LDR) method. Our data demonstrated that the NOS2 rs2779248 and NOS2 rs1137933 genetic polymorphisms were significantly associated with the increased susceptibility to T2DM in the heterozygote comparison, dominant model, and allele contrast; and NOS3 rs3918188 genetic polymorphism was significantly associated with the increased susceptibility to T2DM in the homozygote comparison and recessive model. The allele-C and genotype-TC of NOS2 rs2779248, allele-A and genotype-GA of NOS2 rs1137933 and genotype-AA of NOS3 rs3918188 genetic polymorphisms might be the risk factors for increasing the susceptibility to T2DM. And a significant haplotype effect of NOS2 rs10459953/C- rs1137933/G- rs2779248/T was found between T2DM cases and controls. Moreover, NOS3 rs1800783 polymorphism was significantly associated with the increased susceptibility to DN in the heterozygote comparison, recessive model and allele contrast. At last, a positive correlation of family history of diabetes with NOS3 rs11771443 polymorphism was found in DN. These preliminary findings indicate that the NOS2 rs2779248, NOS2 rs1137933, and NOS3 rs3918188 genetic polymorphisms are potentially related to the susceptibility to T2DM, and the rs1800783 polymorphism might be considered as genetic risk factors for diabetic nephropathy, and family history of diabetes was closely associated with rs11771443 polymorphism in DN, and the

  13. Oxidative Stress Induced Ventricular Arrhythmia and Impairment of Cardiac Function in Nos1ap Deleted Mice.

    PubMed

    Sugiyama, Koji; Sasano, Tetsuo; Kurokawa, Junko; Takahashi, Kentaro; Okamura, Tadashi; Kato, Norihiro; Isobe, Mitsuaki; Furukawa, Tetsushi

    2016-05-25

    Genome-wide association study has identified that the genetic variations at NOS1AP (neuronal nitric oxide synthase-1 adaptor protein) were associated with QT interval and sudden cardiac death (SCD). However, the mechanism linking a genetic variant of NOS1AP and SCD is poorly understood. We used Nos1ap knockout mice (Nos1ap(-/-)) to determine the involvement of Nos1ap in SCD, paying special attention to oxidative stress.At baseline, a surface electrocardiogram (ECG) and ultrasound echocardiography (UCG) showed no difference between Nos1ap(-/-) and wild-type (WT) mice. Oxidative stress was induced by a single injection of doxorubicin (Dox, 25 mg/kg). After Dox injection, Nos1ap(-/-) showed significantly higher mortality than WT (93.3 versus 16.0% at day 14, P < 0.01). ECG showed significantly longer QTc in Nos1ap(-/-) than WT, and UCG revealed significant reduction of fractional shortening (%FS) only in Nos1ap(-/-) after Dox injection. Spontaneous ventricular tachyarrhythmias were documented by telemetry recording after Dox injection only in Nos1ap(-/-). Ex vivo optical mapping revealed that the action potential duration (APD)90 was prolonged at baseline in Nos1ap(-/-), and administration of Dox lengthened APD90 more in Nos1ap(-/-) than in WT. The expression of Bnp and the H2O2 level were higher in Nos1ap(-/-) after Dox injection. Nos1ap(-/-) showed a reduced amplitude of calcium transient in isolated cardiomyocytes after Dox injection. Administration of the antioxidant N-acetyl-L-cysteine significantly reduced mortality of Nos1ap(-/-) by Dox injection, accompanied by prevention of QT prolongation and a reduction in %FS.Although Nos1ap(-/-) mice have apparently normal hearts, oxidative stress evokes ventricular tachyarrhythmia and heart failure, which may cause sudden cardiac death. PMID:27170476

  14. 38. View of DRS 1, 2, and 3 (structure nos. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. View of DRS 1, 2, and 3 (structure nos. 735, 736, and 737) console fault locator for beam power status, radio frequency (RF) and intermediate frequency (IF) fault conditions, RF switches status and TR status. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  15. Expression, localization, and regulation of NOS in human mast cell lines: effects on leukotriene production.

    PubMed

    Gilchrist, Mark; McCauley, Scott D; Befus, A Dean

    2004-07-15

    Nitric oxide (NO) is a potent radical produced by nitric oxide synthase (NOS) and has pleiotrophic activities in health and disease. As mast cells (MCs) play a central role in both homeostasis and pathology, we investigated NOS expression and NO production in human MC populations. Endothelial NOS (eNOS) was ubiquitously expressed in both human MC lines and skin-derived MCs, while neuronal NOS (nNOS) was variably expressed in the MC populations studied. The inducible (iNOS) isoform was not detected in human MCs. Both growth factor-independent (HMC-1) and -dependent (LAD 2) MC lines showed predominant nuclear eNOS protein localization, with weaker cytoplasmic expression. nNOS showed exclusive cytoplasmic localization in HMC-1. Activation with Ca(2+) ionophore (A23187) or IgE-anti-IgE induced eNOS phosphorylation and translocation to the nucleus and nuclear and cytoplasmic NO formation. eNOS colocalizes with the leukotriene (LT)-initiating enzyme 5-lipoxygenase (5-LO) in the MC nucleus. The NO donor, S-nitrosoglutathione (SNOG), inhibited, whereas the NOS inhibitor, N(G)-nitro-l-arginine methyl ester (L-NAME), potentiated LT release in a dose-dependent manner. Thus, human MC lines produce NO in both cytoplasmic and nuclear compartments, and endogenously produced NO can regulate LT production by MCs. PMID:15044250

  16. 15 CFR Supplement Nos.1-3 to Part 746 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Nos.1 Supplement Nos.1-3 to Part 746 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF... CONTROLS Supplement Nos.1-3 to Part 746...

  17. Growth Hormone Effects in Immune Stress: AKT/eNOS Signaling Module in the Cellular Response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The activation of the constitutive endothelial nitric-oxide synthase (eNOS) and expression of inducible NOS (iNOS) with subsequent nitric oxide production are among the early cellular responses that follow in a systemic exposure of animals to lipopolysaccharide (LPS). Growth hormone (GH) has been sh...

  18. 49 CFR 173.187 - Pyrophoric solids, metals or alloys, n.o.s.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Pyrophoric solids, metals or alloys, n.o.s. 173... Class 1 and Class 7 § 173.187 Pyrophoric solids, metals or alloys, n.o.s. Packagings for pyrophoric solids, metals, or alloys, n.o.s. must conform to the requirements of part 178 of this subchapter at...

  19. High Rates of Psychiatric Co-Morbidity in PDD-NOS

    ERIC Educational Resources Information Center

    de Bruin, Esther I.; Ferdinand, Robert F.; Meester, Sjifra; de Nijs, Pieter F. A.; Verheij, Fop

    2007-01-01

    Rates of co-morbid psychiatric conditions in children with Pervasive Developmental Disorder-Not Otherwise Specified (PDD-NOS) are hardly available, although these conditions are often considered as more responsive to treatment than the core symptoms of PDD-NOS. Ninety-four children with PDD-NOS, aged 6-12 years were included. The DISC-IV-P was…

  20. Relationship Between Soil Type and N2O Reductase Genotype (nosZ) of Indigenous Soybean Bradyrhizobia: nosZ-minus Populations are Dominant in Andosols

    PubMed Central

    Shiina, Yoko; Itakura, Manabu; Choi, Hyunseok; Saeki, Yuichi; Hayatsu, Masahito; Minamisawa, Kiwamu

    2014-01-01

    Bradyrhizobium japonicum strains that have the nosZ gene, which encodes N2O reductase, are able to mitigate N2O emissions from soils (15). To examine the distribution of nosZ genotypes among Japanese indigenous soybean bradyrhizobia, we isolated bradyrhizobia from the root nodules of soybean plants inoculated with 32 different soils and analyzed their nosZ and nodC genotypes. The 1556 resultant isolates were classified into the nosZ+/nodC+ genotype (855 isolates) and nosZ−/nodC+ genotype (701 isolates). The 11 soil samples in which nosZ− isolates significantly dominated (P < 0.05; the χ2 test) were all Andosols (a volcanic ash soil prevalent in agricultural fields in Japan), whereas the 17 soil samples in which nosZ+ isolates significantly dominated were mainly alluvial soils (non-volcanic ash soils). This result was supported by a principal component analysis of environmental factors: the dominance of the nosZ− genotype was positively correlated with total N, total C, and the phosphate absorption coefficient in the soils, which are soil properties typical of Andosols. Internal transcribed spacer sequencing of representative isolates showed that the nosZ+ and nosZ− isolates of B. japonicum fell mainly into the USDA110 (BJ1) and USDA6 (BJ2) groups, respectively. These results demonstrated that the group lacking nosZ was dominant in Andosols, which can be a target soil type for an N2O mitigation strategy in soybean fields. We herein discussed how the nosZ genotypes of soybean bradyrhizobia depended on soil types in terms of N2O respiration selection and genomic determinants for soil adaptation. PMID:25476067

  1. Exercise does not activate the β3 adrenergic receptor-eNOS pathway, but reduces inducible NOS expression to protect the heart of obese diabetic mice.

    PubMed

    Kleindienst, Adrien; Battault, Sylvain; Belaidi, Elise; Tanguy, Stephane; Rosselin, Marie; Boulghobra, Doria; Meyer, Gregory; Gayrard, Sandrine; Walther, Guillaume; Geny, Bernard; Durand, Gregory; Cazorla, Olivier; Reboul, Cyril

    2016-07-01

    Obesity and diabetes are associated with higher cardiac vulnerability to ischemia-reperfusion (IR). The cardioprotective effect of regular exercise has been attributed to β3-adrenergic receptor (β3AR) stimulation and increased endothelial nitric oxide synthase (eNOS) activation. Here, we evaluated the role of the β3AR-eNOS pathway and NOS isoforms in exercise-induced cardioprotection of C57Bl6 mice fed with high fat and sucrose diet (HFS) for 12 weeks and subjected or not to exercise training during the last 4 weeks (HFS-Ex). HFS animals were more sensitive to in vivo and ex vivo IR injuries than control (normal diet) and HFS-Ex mice. Cardioprotection in HFS-Ex mice was not associated with increased myocardial eNOS activation and NO metabolites storage, possibly due to the β3AR-eNOS pathway functional loss in their heart. Indeed, a selective β3AR agonist (BRL37344) increased eNOS activation and had a protective effect against IR in control, but not in HFS hearts. Moreover, iNOS expression, nitro-oxidative stress (protein s-nitrosylation and nitrotyrosination) and ROS production during early reperfusion were increased in HFS, but not in control mice. Exercise normalized iNOS level and reduced protein s-nitrosylation, nitrotyrosination and ROS production in HFS-Ex hearts during early reperfusion. The iNOS inhibitor 1400 W reduced in vivo infarct size in HFS mice to control levels, supporting the potential role of iNOS normalization in the cardioprotective effects of exercise training in HFS-Ex mice. Although the β3AR-eNOS pathway is defective in the heart of HFS mice, regular exercise can protect their heart against IR by reducing iNOS expression and nitro-oxidative stress. PMID:27164904

  2. Relationship between soil type and N₂O reductase genotype (nosZ) of indigenous soybean bradyrhizobia: nosZ-minus populations are dominant in Andosols.

    PubMed

    Shiina, Yoko; Itakura, Manabu; Choi, Hyunseok; Saeki, Yuichi; Hayatsu, Masahito; Minamisawa, Kiwamu

    2014-01-01

    Bradyrhizobium japonicum strains that have the nosZ gene, which encodes N2O reductase, are able to mitigate N2O emissions from soils (15). To examine the distribution of nosZ genotypes among Japanese indigenous soybean bradyrhizobia, we isolated bradyrhizobia from the root nodules of soybean plants inoculated with 32 different soils and analyzed their nosZ and nodC genotypes. The 1556 resultant isolates were classified into the nosZ+/nodC+ genotype (855 isolates) and nosZ-/nodC+ genotype (701 isolates). The 11 soil samples in which nosZ- isolates significantly dominated (P < 0.05; the χ(2) test) were all Andosols (a volcanic ash soil prevalent in agricultural fields in Japan), whereas the 17 soil samples in which nosZ+ isolates significantly dominated were mainly alluvial soils (non-volcanic ash soils). This result was supported by a principal component analysis of environmental factors: the dominance of the nosZ- genotype was positively correlated with total N, total C, and the phosphate absorption coefficient in the soils, which are soil properties typical of Andosols. Internal transcribed spacer sequencing of representative isolates showed that the nosZ+ and nosZ- isolates of B. japonicum fell mainly into the USDA110 (BJ1) and USDA6 (BJ2) groups, respectively. These results demonstrated that the group lacking nosZ was dominant in Andosols, which can be a target soil type for an N2O mitigation strategy in soybean fields. We herein discussed how the nosZ genotypes of soybean bradyrhizobia depended on soil types in terms of N2O respiration selection and genomic determinants for soil adaptation. PMID:25476067

  3. Stromal cell–derived factor 2 is critical for Hsp90-dependent eNOS activation

    PubMed Central

    Siragusa, Mauro; Fröhlich, Florian; Park, Eon Joo; Schleicher, Michael; Walther, Tobias C.; Sessa, William C.

    2016-01-01

    Endothelial nitric oxide synthase (eNOS) catalyzes the conversion of l-arginine and molecular oxygen into l-citrulline and nitric oxide (NO), a gaseous second messenger that influences cardiovascular physiology and disease. Several mechanisms regulate eNOS activity and function, including phosphorylation at Ser and Thr residues and protein-protein interactions. Combining a tandem affinity purification approach and mass spectrometry, we identified stromal cell–derived factor 2 (SDF2) as a component of the eNOS macromolecular complex in endothelial cells. SDF2 knockdown impaired agonist-stimulated NO synthesis and decreased the phosphorylation of eNOS at Ser1177, a key event required for maximal activation of eNOS. Conversely, SDF2 overexpression dose-dependently increased NO synthesis through a mechanism involving Akt and calcium (induced with ionomycin), which increased the phosphorylation of Ser1177 in eNOS. NO synthesis by iNOS (inducible NOS) and nNOS (neuronal NOS) was also enhanced upon SDF2 overexpression. We found that SDF2 was a client protein of the chaperone protein Hsp90, interacting preferentially with the M domain of Hsp90, which is the same domain that binds to eNOS. In endothelial cells exposed to vascular endothelial growth factor (VEGF), SDF2 was required for the binding of Hsp90 and calmodulin to eNOS, resulting in eNOS phosphorylation and activation. Thus, our data describe a function for SDF2 as a component of the Hsp90-eNOS complex that is critical for signal transduction in endothelial cells. PMID:26286023

  4. Isolation and chromosomal localization of the human endothelial nitric oxide synthase (NOS3) gene

    SciTech Connect

    Robinson, L.J.; Michel, T.; Weremowicz, S.; Morton, C.C. )

    1994-01-15

    Endothelial NOS activity is a major determinant of vascular tone and blood pressure, and in several important (and sometimes hereditary) disease states, such as hypertension, diabetes, and atherosclerosis, the endothelial NO signaling system appears to be abnormal. To explore the relationship of the endothelial NOS activity, the authors isolated the human gene encoding the endothelial NOS. Genomic clones containing the 5[prime] end of this gene were identified in a human genomic library by applying a polymerase chain reaction (PCR)-based approach. Identification of the human gene for endothelial NOS (NOS3) was confirmed by nucleotide sequence analysis of the first coding exon, which was found to be identical to its cognate cDNA. The NOS3 gene spans at least 20 kb and appears to contain multiple introns. The transcription start site and promoter region of the NOS3 gene were identified by primer extension and ribonuclease protection assays. Sequencing of the putative promoter revealed consensus sequences for the shear stress-response element, as well as cytokine-responsive cis regulatory sequences, both possible important to the roles played by NOS3 in the normal and the diseased cardiovascular system. The authors also mapped the chromosomal location of the NOS3 gene. First, a chromosomal panel of human-rodent somatic cell hybrids was screened using PCR with oligonucleotide primers derived from the NOS3 genomic clone. The specificity of the amplified PCR product was confirmed by human and hamster genomic DNA controls, as well as by Southern blot analysis, using the NOS3 cDNA as probe. Definitive chromosomal assignment of the NOS3 gene to human chromosome 7 was based upon 0% discordancy; fluorescence in situ hybridization sublocalized the NOS3 gene to 7q36. The identification and characterization of the NOS3 gene may lead to further insights into heritable disease states associated with this gene product. 41 refs., 3 figs., 1 tab.

  5. Using a Professional Development Program for Enhancing Chilean Biology Teachers' Understanding of Nature of Science (NOS) and Their Perceptions about Using History of Science to Teach NOS

    ERIC Educational Resources Information Center

    Pavez, José M.; Vergara, Claudia A.; Santibañez, David; Cofré, Hernán

    2016-01-01

    A number of authors have recognized the importance of understanding the nature of science (NOS) for scientific literacy. Different instructional strategies such as decontextualized, hands-on inquiry, and history of science (HOS) activities have been proposed for teaching NOS. This article seeks to understand the contribution of HOS in enhancing…

  6. 102. Interior view of utilidor passageway link between building nos. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    102. Interior view of utilidor passageway link between building nos. 101 and 102 showing waveguides on left and cable tray system on right sides. Note fire suppression water supply piping (upper center). Small maintenance 3-wheel vehicle at center (Note: similar vehicles still in use in 2001.) Official photograph BMEWS Project by Hansen, Photographic Services, Riverton, NJ, BMEWS, clear as negative no. A-101123. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  7. 10. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/14, Rev. B. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. B; Date: 21 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  8. 14. "TEST STANDS NOS. 11, 13, & 15; MISCELLANEOUS DETAILS." ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. "TEST STANDS NOS. 1-1, 1-3, & 1-5; MISCELLANEOUS DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/22, Rev. D. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04-353 Eng. 177, Rev. D, no change; Date: 17 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  9. 16. "TEST STANDS NOS. 11, 13, & 15; STRUCTURAL STEEL; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. "TEST STANDS NOS. 1-1, 1-3, & 1-5; STRUCTURAL STEEL; ELEVATIONS AND SECTIONS." Specifications No. ENG 04353-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/35, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04-353 Eng. 177, Rev. A; Date: 29 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  10. 11. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/15, Rev. E. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. E; Date: 21 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  11. 12. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-06; no sheet number within title block. D.O. SERIES 1109/16, Rev. E. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. E; Date: 26 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  12. 9. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. ENG 04-35350-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/13. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, no change; Date: 17 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  13. 15. "TEST STANDS NOS. 11, 13, & 15; STRUCTURAL STEEL; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. "TEST STANDS NOS. 1-1, 1-3, & 1-5; STRUCTURAL STEEL; PLAN & DETAILS." Specifications No. ENG 04-353-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/34, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. A, no change; Date: 21 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  14. 13. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/18, Rev. D. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. D, no change; Date: 18 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  15. The return of the Scarlet Pimpernel: cobalamin in inflammation II - cobalamins can both selectively promote all three nitric oxide synthases (NOS), particularly iNOS and eNOS, and, as needed, selectively inhibit iNOS and nNOS.

    PubMed

    Wheatley, Carmen

    2007-09-01

    The up-regulation of transcobalamins [hitherto posited as indicating a central need for cobalamin (Cbl) in inflammation], whose expression, like inducible nitric oxide synthase (iNOS), is Sp1- and interferondependent, together with increased intracellular formation of glutathionylcobalamin (GSCbl), adenosylcobalamin (AdoCbl), methylcobalamin (MeCbl), may be essential for the timely promotion and later selective inhibition of iNOS and concordant regulation of endothelial and neuronal NOS (eNOS/nNOS.) Cbl may ensure controlled high output of nitric oxide (NO) and its safe deployment, because: (1) Cbl is ultimately responsible for the synthesis or availability of the NOS substrates and cofactors heme, arginine, BH(4) flavin adenine dinucleotide/flavin mononucleotide (FAD/FMN) and NADPH, via the far-reaching effects of the two Cbl coenzymes, methionine synthase (MS) and methylmalonyl CoA mutase (MCoAM) in, or on, the folate, glutathione, tricarboxylic acid (TCA) and urea cycles, oxidative phosphorylation, glycolysis and the pentose phosphate pathway. Deficiency of any of theNOS substrates and cofactors results in 'uncoupled' NOS reactions, decreasedNO production and increased or excessive O(2) (-), H(2)O(2), ONOO(-) and other reactive oxygen species (ROS), reactive nitric oxide species (RNIS) leading to pathology. (2) Cbl is also the overlooked ultimate determinant of positive glutathione status, which favours the formation of more benign NO species, s-nitrosothiols, the predominant form in which NO is safely deployed. Cbl status may consequently act as a 'back-up disc' that ensures the active status of antioxidant systems, as well as reversing and modulating the effects of nitrosylation in cell signal transduction.New evidence shows that GSCbl can significantly promote iNOS/ eNOS NO synthesis in the early stages of inflammation, thus lowering high levels of tumour necrosis factor-a that normally result in pathology, while existing evidence shows that in extreme

  16. The return of the Scarlet Pimpernel: cobalamin in inflammation II — cobalamins can both selectively promote all three nitric oxide synthases (NOS), particularly iNOS and eNOS, and, as needed, selectively inhibit iNOS and nNOS

    PubMed Central

    Wheatley, Carmen

    2007-01-01

    The up-regulation of transcobalamins [hitherto posited as indicating a central need for cobalamin (Cbl) in inflammation], whose expression, like inducible nitric oxide synthase (iNOS), is Sp1- and interferondependent, together with increased intracellular formation of glutathionylcobalamin (GSCbl), adenosylcobalamin (AdoCbl), methylcobalamin (MeCbl), may be essential for the timely promotion and later selective inhibition of iNOS and concordant regulation of endothelial and neuronal NOS (eNOS/nNOS.) Cbl may ensure controlled high output of nitric oxide (NO) and its safe deployment, because: (1) Cbl is ultimately responsible for the synthesis or availability of the NOS substrates and cofactors heme, arginine, BH4 flavin adenine dinucleotide/flavin mononucleotide (FAD/FMN) and NADPH, via the far-reaching effects of the two Cbl coenzymes, methionine synthase (MS) and methylmalonyl CoA mutase (MCoAM) in, or on, the folate, glutathione, tricarboxylic acid (TCA) and urea cycles, oxidative phosphorylation, glycolysis and the pentose phosphate pathway. Deficiency of any of theNOS substrates and cofactors results in ‘uncoupled’ NOS reactions, decreasedNO production and increased or excessive O2−, H2O2, ONOO− and other reactive oxygen species (ROS), reactive nitric oxide species (RNIS) leading to pathology. (2) Cbl is also the overlooked ultimate determinant of positive glutathione status, which favours the formation of more benign NO species, s-nitrosothiols, the predominant form in which NO is safely deployed. Cbl status may consequently act as a ‘back-up disc’ that ensures the active status of antioxidant systems, as well as reversing and modulating the effects of nitrosylation in cell signal transduction.New evidence shows that GSCbl can significantly promote iNOS/ eNOS NO synthesis in the early stages of inflammation, thus lowering high levels of tumour necrosis factor-a that normally result in pathology, while existing evidence shows that in extreme

  17. Reversal of SIN-1-induced eNOS dysfunction by the spin trap, DMPO, in bovine aortic endothelial cells via eNOS phosphorylation

    PubMed Central

    Das, Amlan; Gopalakrishnan, Bhavani; Druhan, Lawrence J; Wang, Tse-Yao; De Pascali, Francesco; Rockenbauer, Antal; Racoma, Ira; Varadharaj, Saradhadevi; Zweier, Jay L; Cardounel, Arturo J; Villamena, Frederick A

    2014-01-01

    Background and Purpose Nitric oxide (NO) derived from eNOS is mostly responsible for the maintenance of vascular homeostasis and its decreased bioavailability is characteristic of reactive oxygen species (ROS)-induced endothelial dysfunction (ED). Because 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), a commonly used spin trap, can control intracellular nitroso-redox balance by scavenging ROS and donating NO, it was employed as a cardioprotective agent against ED but the mechanism of its protection is still not clear. This study elucidated the mechanism of protection by DMPO against SIN-1-induced oxidative injury to bovine aortic endothelial cells (BAEC). Experimental Approach BAEC were treated with SIN-1, as a source of peroxynitrite anion (ONOO−), and then incubated with DMPO. Cytotoxicity following SIN-1 alone and cytoprotection by adding DMPO was assessed by MTT assay. Levels of ROS and NO generation from HEK293 cells transfected with wild-type and mutant eNOS cDNAs, tetrahydrobiopterin bioavailability, eNOS activity, eNOS and Akt kinase phosphorylation were measured. Key Results Post-treatment of cells with DMPO attenuated SIN-1-mediated cytotoxicity and ROS generation, restoration of NO levels via increased in eNOS activity and phospho-eNOS levels. Treatment with DMPO alone significantly increased NO levels and induced phosphorylation of eNOS Ser1179 via Akt kinase. Transfection studies with wild-type and mutant human eNOS confirmed the dual role of eNOS as a producer of superoxide anion (O2−) with SIN-1 treatment, and a producer of NO in the presence of DMPO. Conclusion and Implications Post-treatment with DMPO of oxidatively challenged cells reversed eNOS dysfunction and could have pharmacological implications in the treatment of cardiovascular diseases. PMID:24405159

  18. iNOS signaling interacts with COX-2 pathway in colonic fibroblasts.

    PubMed

    Zhu, Yingting; Zhu, Min; Lance, Peter

    2012-10-01

    COX-2 and iNOS are two major inflammatory mediators implicated in colorectal inflammation and cancer. Previously, the role of colorectal fibroblasts involved in regulation of COX-2 and iNOS expression was largely ignored. In addition, the combined interaction of COX-2 and iNOS signalings and their significance in the progression of colorectal inflammation and cancer within the fibroblasts have received little investigation. To address those issues, we investigated the role of colonic fibroblasts in the regulation of COX-2 and iNOS gene expression, and explored possible mechanisms of interaction between COX-2 and iNOS signalings using a colonic CCD-18Co fibroblast line and LPS, a potential stimulator of COX-2 and iNOS. Our results clearly demonstrated that LPS activated COX-2 gene expression and enhanced PGE(2) production, stimulated iNOS gene expression and promoted NO production in the fibroblasts. Interestingly, activation of COX-2 signaling by LPS was not involved in activation of iNOS signaling, while activation of iNOS signaling by LPS contributed in part to activation of COX-2 signaling. Further analysis indicated that PKC plays a major role in the activation and interaction of COX-2 and iNOS signalings induced by LPS in the fibroblasts. PMID:22683859

  19. Generation of a cre recombinase-conditional Nos1ap over-expression transgenic mouse

    PubMed Central

    Auer, Dallas R.; Sysa-Shah, Polina; Bedja, Djahida; Simmers, Jessica L.; Pak, Evgenia; Dutra, Amalia; Cohn, Ronald; Gabrielson, Kathleen L.

    2016-01-01

    Polymorphic non-coding variants at the NOS1AP locus have been associated with the common cardiac, metabolic and neurological traits and diseases. Although, in vitro gene targeting-based cellular and biochemical studies have shed some light on NOS1AP function in cardiac and neuronal tissue, to enhance our understanding of NOS1AP function in mammalian physiology and disease, we report the generation of cre recombinase-conditional Nos1ap over-expression transgenic mice (Nos1apTg). Conditional transgenic mice were generated by the pronuclear injection method and three independent, single-site, multiple copies integration event-based founder lines were selected. For heart-restricted over-expression, Nos1apTg mice were crossed with Mlc2v-cre and Nos1ap transcript over-expression was observed in left ventricles from Nos1apTg; Mlc2v-cre F1 mice. We believe that with the potential of conditional over-expression, Nos1apTg mice will be a useful resource in studying NOS1AP function in various tissues under physiological and disease states. PMID:24563304

  20. Galilean-invariant Nosé-Hoover-type thermostats.

    PubMed

    Pieprzyk, S; Heyes, D M; Maćkowiak, Sz; Brańka, A C

    2015-03-01

    A new pairwise Nosé-Hoover type thermostat for molecular dynamics (MD) simulations which is similar in construction to the pair-velocity thermostat of Allen and Schmid, [Mol. Simul. 33, 21 (2007)] (AS) but is based on the configurational thermostat is proposed and tested. Both thermostats generate the canonical velocity distribution, are Galilean invariant, and conserve linear and angular momentum. The unique feature of the pairwise thermostats is an unconditional conservation of the total angular momentum, which is important for thermalizing isolated systems and those nonequilibrium bulk systems manifesting local rotating currents. These thermostats were benchmarked against the corresponding Nosé-Hoover (NH) and Braga-Travis prescriptions, being based on the kinetic and configurational definitions of temperature, respectively. Some differences between the shear-rate-dependent shear viscosity from Sllod nonequilibrium MD are observed at high shear rates using the different thermostats. The thermostats based on the configurational temperature produced very similar monotically decaying shear viscosity (shear thinning) with increasing shear rate, while the NH method showed discontinuous shear thinning into a string phase, and the AS method produced a continuous increase of viscosity (shear thickening), after a shear thinning region at lower shear rates. Both pairwise additive thermostats are neither purely kinetic nor configurational in definition, and possible directions for further improvement in certain aspects are discussed. PMID:25871251

  1. Galilean-invariant Nosé-Hoover-type thermostats

    NASA Astrophysics Data System (ADS)

    Pieprzyk, S.; Heyes, D. M.; Maćkowiak, Sz.; Brańka, A. C.

    2015-03-01

    A new pairwise Nosé-Hoover type thermostat for molecular dynamics (MD) simulations which is similar in construction to the pair-velocity thermostat of Allen and Schmid, [Mol. Simul. 33, 21 (2007), 10.1080/08927020601052856] (AS) but is based on the configurational thermostat is proposed and tested. Both thermostats generate the canonical velocity distribution, are Galilean invariant, and conserve linear and angular momentum. The unique feature of the pairwise thermostats is an unconditional conservation of the total angular momentum, which is important for thermalizing isolated systems and those nonequilibrium bulk systems manifesting local rotating currents. These thermostats were benchmarked against the corresponding Nosé-Hoover (NH) and Braga-Travis prescriptions, being based on the kinetic and configurational definitions of temperature, respectively. Some differences between the shear-rate-dependent shear viscosity from Sllod nonequilibrium MD are observed at high shear rates using the different thermostats. The thermostats based on the configurational temperature produced very similar monotically decaying shear viscosity (shear thinning) with increasing shear rate, while the NH method showed discontinuous shear thinning into a string phase, and the AS method produced a continuous increase of viscosity (shear thickening), after a shear thinning region at lower shear rates. Both pairwise additive thermostats are neither purely kinetic nor configurational in definition, and possible directions for further improvement in certain aspects are discussed.

  2. Coupled Nosé-Hoover lattice: A set of the Nosé-Hoover equations with different temperatures

    NASA Astrophysics Data System (ADS)

    Fukuda, Ikuo

    2016-07-01

    A simple scheme was presented to couple any number of the Nosé-Hoover equations with different heat-bath temperatures. In general, several practical procedures can be considered to realize such a coupling, where the system is under nonequilibrium. However, the current scheme provides an equilibrium distribution, namely, a smooth invariant measure for the present system. This is attained by a very simple idea, that is, a force scaling. The current scheme realizes coupled differential equations, analogous to coupled maps. Its theoretical possibilities, mathematical framework, and practical utilities are discussed. Numerical validations applying the method to a simple two-oscillator system are provided.

  3. Expression of Inducible Nitric Oxide Synthase (iNOS) in Microglia of the Developing Quail Retina

    PubMed Central

    Sierra, Ana; Navascués, Julio; Cuadros, Miguel A.; Calvente, Ruth; Martín-Oliva, David; Ferrer-Martín, Rosa M.; Martín-Estebané, María; Carrasco, María-Carmen; Marín-Teva, José L.

    2014-01-01

    Inducible nitric oxide synthase (iNOS), which produce large amounts of nitric oxide (NO), is induced in macrophages and microglia in response to inflammatory mediators such as LPS and cytokines. Although iNOS is mainly expressed by microglia that become activated in different pathological and experimental situations, it was recently reported that undifferentiated amoeboid microglia can also express iNOS during normal development. The aim of this study was to investigate the pattern of iNOS expression in microglial cells during normal development and after their activation with LPS by using the quail retina as model. iNOS expression was analyzed by iNOS immunolabeling, western-blot, and RT-PCR. NO production was determined by using DAR-4M AM, a reliable fluorescent indicator of subcellular NO production by iNOS. Embryonic, postnatal, and adult in situ quail retinas were used to analyze the pattern of iNOS expression in microglial cells during normal development. iNOS expression and NO production in LPS-treated microglial cells were investigated by an in vitro approach based on organotypic cultures of E8 retinas, in which microglial cell behavior is similar to that of the in situ retina, as previously demonstrated in our laboratory. We show here that amoeboid microglia in the quail retina express iNOS during normal development. This expression is stronger in microglial cells migrating tangentially in the vitreal part of the retina and is downregulated, albeit maintained, when microglia differentiate and become ramified. LPS treatment of retina explants also induces changes in the morphology of amoeboid microglia compatible with their activation, increasing their lysosomal compartment and upregulating iNOS expression with a concomitant production of NO. Taken together, our findings demonstrate that immature microglial cells express iNOS during normal development, suggesting a certain degree of activation. Furthermore, LPS treatment induces overactivation of amoeboid

  4. 75 FR 32516 - Virginia Electric and Power Company; North Anna Power Station, Unit Nos. 1 and 2; Surry Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... and Power Company; North Anna Power Station, Unit Nos. 1 and 2; Surry Power Station, Unit Nos.1 and 2... Station, Unit Nos. 1 and 2 (NAPS) and Surry Power Station, Unit Nos. 1 and 2 (SPS) located in Lake Anna... National Aeronautics and Space Administration and Interek, that the equipment will continue to provide...

  5. eNOS and iNOS trigger apoptosis in the brains of sheep and goats naturally infected with the border disease virus.

    PubMed

    Dincel, Gungor Cagdas; Kul, Oguz

    2015-10-01

    In this study, apoptotic and anti-apoptotic mechanisms and if present, which pathway to trigger the apoptosis in the brains of Border Disease Virus (BDV) infected lambs (n=10) and goat kids (n=5) were investigated. Briefly, apoptotic (caspase 3, caspase 9) and anti-apoptotic markers (Bcl-2), cytokine response (TNF-α, INF-γ), reactive gliosis and myelin loss were examined. eNOS, iNOS, caspase 9, caspase 3 and GFAP expressions were higher in BDV infected tissues compared to control animals (6 kids and 6 lambs) (p<0.05). Double immunoperoxidase test revealed that TUNEL positive apoptotic cells showed significant association with increased eNOS-iNOS and iNOS-BDV expressions. However, no significant differences were found for TNFR1, TNF-α and INF-γ expressions in BD (p>0.05). There was a positive correlation between the intensity of myelin loss, GFAP activity and severity of infection. Inconclusion, as a novel finding, it is established that eNOS and iNOS overexpressions are co-associated with apoptosis in BDV infected neurons and neuroglia. The results also strongly suggested that BDV infected apoptotic cells mainly prefer the intrinsic pathway that might be most likely related to increased nitric oxide levels. PMID:25882134

  6. Sympathetic activation increases NO release from eNOS but neither eNOS nor nNOS play an essential role in exercise hyperemia in the human forearm

    PubMed Central

    Shabeeh, Husain; Seddon, Michael; Brett, Sally; Melikian, Narbeh; Casadei, Barbara; Shah, Ajay M.

    2013-01-01

    Nitric oxide (NO) release from endothelial NO synthase (eNOS) and/or neuronal NO synthase (nNOS) could be modulated by sympathetic nerve activity and contribute to increased blood flow after exercise. We examined the effects of brachial-arterial infusion of the nNOS selective inhibitor S-methyl-l-thiocitrulline (SMTC) and the nonselective NOS inhibitor NG-monomethyl-l-arginine (l-NMMA) on forearm arm blood flow at rest, during sympathetic activation by lower body negative pressure, and during lower body negative pressure immediately after handgrip exercise. Reduction in forearm blood flow by lower body negative pressure during infusion of SMTC was not significantly different from that during vehicle (−28.5 ± 4.02 vs. −34.1 ± 2.96%, respectively; P = 0.32; n = 8). However, l-NMMA augmented the reduction in forearm blood flow by lower body negative pressure (−44.2 ± 3.53 vs. −23.4 ± 5.71%; n = 8; P < 0.01). When lower body negative pressure was continued after handgrip exercise, there was no significant effect of either l-NMMA or SMTC on forearm blood flow immediately after low-intensity exercise (P = 0.91 and P = 0.44 for l-NMMA vs. saline and SMTC vs. saline, respectively; each n = 10) or high-intensity exercise (P = 0.46 and P = 0.68 for l-NMMA vs. saline and SMTC vs. saline, respectively; each n = 10). These results suggest that sympathetic activation increases NO release from eNOS, attenuating vasoconstriction. Dysfunction of eNOS could augment vasoconstrictor and blood pressure responses to sympathetic activation. However, neither eNOS nor nNOS plays an essential role in postexercise hyperaemia, even in the presence of increased sympathetic activation. PMID:23436331

  7. Rapid NOS-1-derived nitric oxide and peroxynitrite formation act as signaling agents for inducible NOS-2 expression in vascular smooth muscle cells.

    PubMed

    Scheschowitsch, Karin; de Moraes, João Alfredo; Sordi, Regina; Barja-Fidalgo, Christina; Assreuy, Jamil

    2015-10-01

    Septic vascular dysfunction is characterized by hypotension and hyporeactivity to vasoconstrictors and nitric oxide (NO), reactive oxygen species and peroxynitrite have a prominent role in this condition. However, the mechanism whereby the vascular dysfunction is initiated is poorly understood. Based on previous studies of our group and the literature,we hypothesize that constitutive nitric oxide synthases (c-NOS) and peroxynitrite may play a role in the development of septic vascular dysfunction. Bacterial lipopolysaccharide (LPS) and interferon-γ (IFN) were used to stimulate rat aorta smooth muscle cells (A7r5) and rat aorta slices. This stimulation led to a rapid (within minutes) production of NO and superoxide anion, which led to peroxynitrite formation. When this rapid initial burst was reduced, through the inhibition of c-NOS and NADPH oxidases (NOX) or the scavenging of NO and superoxide the NF-κB activation, NOS-2 expression and nitrite production were significantly attenuated. Although vascular smooth muscle cells express both c-NOS isoforms, gene knockdown revealed that only NOS-1-dependent NO and peroxynitrite formation are important for the later NOS-2 expression. Similar findings were obtained by knockdown NOX-1 gene, one source of superoxide for peroxynitrite formation. Taking together, we show that smooth muscle cell activation by LPS/IFN leads to a rapid formation of NOS-1-derived NO and NOX-1-derived superoxide, forming peroxynitrite; and that this species act as a trigger for NOS-2 expression through NF-κB activation. Therefore, our findings suggest a critical role for NOS-1 and NOX-1 in the initiation of the vascular dysfunction associated with sepsis and septic shock. PMID:26253183

  8. Genetic Deletion of NOS3 Increases Lethal Cardiac Dysfunction Following Mouse Cardiac Arrest

    PubMed Central

    Beiser, David G.; Orbelyan, Gerasim A.; Inouye, Brendan T.; Costakis, James G.; Hamann, Kimm J.; McNally, Elizabeth M.; Hoek, Terry L. Vanden

    2010-01-01

    Study Aims Cardiac arrest mortality is significantly affected by failure to obtain return of spontaneous circulation (ROSC) despite cardiopulmonary resuscitation (CPR). Severe myocardial dysfunction and cardiovascular collapse further affects mortality within hours of initial ROSC. Recent work suggests that enhancement of nitric oxide (NO) signaling within minutes of CPR can improve myocardial function and survival. We studied the role of NO signaling on cardiovascular outcomes following cardiac arrest and resuscitation using endothelial NO synthase knockout (NOS3-/-) mice. Methods Adult female wild-type (WT) and NOS3-/- mice were anesthetized, intubated, and instrumented with left-ventricular pressure-volume catheters. Cardiac arrest was induced with intravenous potassium chloride. CPR was performed after 8 min of untreated arrest. ROSC rate, cardiac function, whole-blood nitrosylhemoglobin (HbNO) concentrations, heart NOS3 content and phosphorylation (p-NOS3), cyclic guanosine monophosphate (cGMP), and phospho-troponin I (p-TnI) were measured. Results Despite equal quality CPR, NOS3-/- mice displayed lower rates of ROSC compared to WT (47.6% [10/21] vs. 82.4% [14/17], p<0.005). Among ROSC animals, NOS3-/- versus WT mice exhibited increased left-ventricular dysfunction and 120 min mortality. Prior to ROSC, myocardial effectors of NO signaling including cGMP and p-TnI were decreased in NOS3-/- vs. WT mice (p<0.05). Following ROSC in WT mice, significant NOS3-dependent increases in circulating HbNO were seen by 120 min. Significant increases in cardiac p-NOS3 occurred between end-arrest and 15 min post-ROSC, while total NOS3 content was increased by 120 min post-ROSC (p<0.05). Conclusions Genetic deletion of NOS3 decreases ROSC rate and worsens post-ROSC left-ventricular function. Poor cardiovascular outcomes are associated with differences in NOS3-dependent myocardial cGMP signaling and circulating NO metabolites. PMID:20951489

  9. Acute inhibition of myoglobin impairs contractility and energy state of iNOS-overexpressing hearts.

    PubMed

    Wunderlich, Carsten; Flögel, Ulrich; Gödecke, Axel; Heger, Jacqueline; Schrader, Jürgen

    2003-06-27

    Elevated cardiac levels of nitric oxide (NO) generated by inducible nitric oxide synthase (iNOS) have been implicated in the development of heart failure. The surprisingly benign phenotype of recently generated mice with cardiac-specific iNOS overexpression (TGiNOS) provided the rationale to investigate whether NO scavenging by oxymyoglobin (MbO2) yielding nitrate and metmyoglobin (metMb) is involved in preservation of myocardial function in TGiNOS mice. 1H nuclear magnetic resonance (NMR) spectroscopy was used to monitor changes of cardiac myoglobin (Mb) metabolism in isolated hearts of wild-type (WT) and TGiNOS mice. NO formation by iNOS resulted in a significant decrease of the MbO2 signal and a concomitantly emerging metMb signal in spectra of TGiNOS hearts only (DeltaMbO2: -46.3+/-38.4 micromol/kg, DeltametMb: +41.4+/-17.6 micromol/kg, n=6; P<0.05) leaving contractility and energetics unaffected. Inhibition of the Mb-mediated NO degradation by carbon monoxide (20%) led to a deterioration of myocardial contractility in TGiNOS hearts (left ventricular developed pressure: 78.2+/-8.2% versus 96.7+/-4.6% of baseline, n=6; P<0.005), which was associated with a profound pertubation of cardiac energy state as assessed by 31P NMR spectroscopy (eg, phosphocreatine: 13.3+/-1.3 mmol/L (TGiNOS) versus 15.9+/-0.7 mmol/L (WT), n=6; P<0.005). These alterations could be fully antagonized by the NOS inhibitor S-ethylisothiourea. Our findings demonstrate that myoglobin serves as an important cytoplasmic buffer of iNOS-derived NO, which determines the functional consequences of iNOS overexpression. PMID:12775582

  10. NOS3 protects against systemic inflammation and myocardial dysfunction in murine polymicrobial sepsis

    PubMed Central

    Bougaki, Masahiko; Searles, Robert J.; Kida, Kotaro; De Yu, Jia; Buys, Emmanuel S.; Ichinose, Fumito

    2013-01-01

    Nitric oxide (NO) has been implicated in the pathogenesis of septic shock. However, the role of NO synthase 3 (NOS3) during sepsis remains incompletely understood. Here, we examined impact of NOS3 deficiency on systemic inflammation and myocardial dysfunction during peritonitis-induced polymicrobial sepsis. Severe polymicrobial sepsis was induced by colon ascendens stent peritonitis (CASP) in wild-type (WT) and NOS3-deficient (NOS3KO) mice. NOS3KO mice exhibited shorter survival time than did WT mice after CASP. NOS3 deficiency worsened systemic inflammation assessed by the expression of inflammatory cytokines in the lung, liver, and heart. CASP markedly increased the number of leukocyte infiltrating the liver and heart in NOS3KO but not in WT mice. The exaggerated systemic inflammation in septic NOS3KO mice was associated with more marked myocardial dysfunction than in WT mice 22h after CASP. The detrimental effects of NOS3-deficiency on myocardial function after CASP appear to be caused by impaired Ca2+ handling of cardiomyocytes. The impaired Ca2+ handling of cardiomyocytes isolated from NOS3KO mice subjected to CASP was associated with depressed mitochondrial ATP production, a determinant of the Ca2+ cycling capacity of sarcoplasmic reticulum (SR) Ca2+-ATPase. The NOS3-deficiency-induced impairment of the ability of mitochondria to produce ATP after CASP was at least in part attributable to reduction in mitochondrial respiratory chain complex I activity. These observations suggest that NOS3 protects against systemic inflammation and myocardial dysfunction after peritonitis-induced polymicrobial sepsis in mice. PMID:19997049

  11. Common polymorphisms in nitric oxide synthase (NOS) genes influence quality of aging and longevity in humans.

    PubMed

    Montesanto, Alberto; Crocco, Paolina; Tallaro, Federica; Pisani, Francesca; Mazzei, Bruno; Mari, Vincenzo; Corsonello, Andrea; Lattanzio, Fabrizia; Passarino, Giuseppe; Rose, Giuseppina

    2013-04-01

    Nitric oxide (NO) triggers multiple signal transduction pathways and contributes to the control of numerous cellular functions. Previous studies have shown in model organisms that the alteration of NO production has important effects on aging and lifespan. We studied in a large sample (763 subjects, age range 19-107 years) the variability of the three human genes (NOS1, -2, -3) coding for the three isoforms of the NADPH-dependent enzymes named NO synthases (NOS) which are responsible of NO synthesis. We have then verified if the variability of these genes is associated with longevity, and with a number of geriatric parameters. We found that gene variation of NOS1 and NOS2 was associated with longevity. In addition NOS1 rs1879417 was also found to be associated with a lower cognitive performance, while NOS2 rs2297518 polymorphism showed to be associated with physical performance. Moreover, SNPs in the NOS1 and NOS3 genes were respectively associated with the presence of depression symptoms and disability, two of the main factors affecting quality of life in older individuals. On the whole, our study shows that genetic variability of NOS genes has an effect on common age related phenotypes and longevity in humans as well as previously reported for model organisms. PMID:23572278

  12. Correlation between hippocampal levels of neural, epithelial and inducible NOS and spatial learning skills in rats.

    PubMed

    Gökçek-Saraç, Çiğdem; Karakurt, Serdar; Adalı, Orhan; Jakubowska-Doğru, Ewa

    2012-12-01

    In the present study, to better understand the role of different nitric oxide synthase (NOS) isoforms in hippocampus-dependent forms of learning, we examined the expression of neural, endothelial, and inducible NOS in the hippocampus of young-adult rats classified as "poor" and "good" learners on the basis of their performance in the partially baited 12-arm radial maze. Taking into consideration strain-dependent differences in learning skills and NOS expression, experiments were performed on two different lines of laboratory rats: the inbred Wistar (W) and the outcrossed Wistar/Spraque-Dawley (W/S) line. The hippocampal levels of NOS proteins were assessed by Western Blotting. In the present study, genetically more homogenous W rats showed a slower rate of learning compared to the genetically less homogenous outcrossed W/S rats. The deficient performance in the W rat group compared to outcrossed W/S rats, and in "poor" learners of both groups compared to "good" learners was due to a higher percentage of reference memory errors. The overall NOS levels were significantly higher in W group compared to outcrossed W/S rats. In both rat lines, the rate of learning positively correlated with hippocampal levels of nNOS and negatively correlated with iNOS levels. Hippocampal eNOS levels correlated negatively with animals' performance but only in the W rats. These results suggest that all 3 NOS isoforms are implemented but play different roles in neural signaling. PMID:22909987

  13. NOS1 induces NADPH oxidases and impairs contraction kinetics in aged murine ventricular myocytes.

    PubMed

    Villmow, Marten; Klöckner, Udo; Heymes, Christophe; Gekle, Michael; Rueckschloss, Uwe

    2015-09-01

    Nitric oxide (NO) modulates calcium transients and contraction of cardiomyocytes. However, it is largely unknown whether NO contributes also to alterations in the contractile function of cardiomyocytes during aging. Therefore, we analyzed the putative role of nitric oxide synthases and NO for the age-related alterations of cardiomyocyte contraction. We used C57BL/6 mice, nitric oxide synthase 1 (NOS1)-deficient mice (NOS1(-/-)) and mice with cardiomyocyte-specific NOS1-overexpression to analyze contractions, calcium transients (Indo-1 fluorescence), acto-myosin ATPase activity (malachite green assay), NADPH oxidase activity (lucigenin chemiluminescence) of isolated ventricular myocytes and cardiac gene expression (Western blots, qPCR). In C57BL/6 mice, cardiac expression of NOS1 was upregulated by aging. Since we found a negative regulation of NOS1 expression by cAMP in isolated cardiomyocytes, we suggest that reduced efficacy of β-adrenergic signaling that is evident in aged hearts promotes upregulation of NOS1. Shortening and relengthening of cardiomyocytes from aged C57BL/6 mice were decelerated, but were normalized by pharmacological inhibition of NOS1/NO. Cardiomyocytes from NOS1(-/-) mice displayed no age-related changes in contraction, calcium transients or acto-myosin ATPase activity. Aging increased cardiac expression of NADPH oxidase subunits NOX2 and NOX4 in C57BL/6 mice, but not in NOS1(-/-) mice. Similarly, cardiac expression of NOX2 and NOX4 was upregulated in a murine model with cardiomyocyte-specific overexpression of NOS1. We conclude that age-dependently upregulated NOS1, putatively via reduced efficacy of β-adrenergic signaling, induces NADPH oxidases. By increasing nitrosative and oxidative stress, both enzyme systems act synergistically to decelerate contraction of aged cardiomyocytes. PMID:26173391

  14. Citrulline immunohistochemistry for demonstration of NOS activity in vivo and in vitro.

    PubMed

    Keilhoff, G; Reiser, M; Stanarius, A; Aoki, E; Wolf, G

    2000-08-01

    Nitric oxide (NO), a biomolecule with major cytotoxic potency, is generated by NO synthases (NOS) utilizing l-arginine as substrate and citrulline is formed as a "side product." In brain tissue, citrulline is considered to be produced exclusively by NOS, due to the incomplete urea cycle in the brain. We aimed to characterize NOS activity by citrulline immunostaining in different cell types of the brain under in situ conditions and in slice and culture experiments. NOS-positive neurons and activated microglial cells were the most prominent citrulline-positive structures. Lack of citrulline immunoreaction in neurons of nNOS knockout mice emphasizes the dependency of citrulline positivity on NOS activity, and likewise there was no citrulline staining after application of the NOS inhibitors 7-nitroindazole and NIL. Interestingly, only a portion of NOS-containing neurons costained for citrulline. The inhibition of argininosuccinate synthetase by alpha-methyl-dl-aspartate increased the number of citrulline-positive cells, apparently due to reduction of the turnover rate of citrulline. Cells positive for NOS but negative for citrulline may indicate that the enzyme is either not activated or inhibited by cellular control mechanisms. The fact that not all citrulline-positive cells were NOS positive may be explained by an insufficient detection sensitivity or by disparate sites of citrulline production and recycling. The present results show that citrulline immunocytochemistry offers a viable and convenient means for studying NOS activity at the single-cell level to elicit its posttranslational control under physiological and pathophysiological conditions. PMID:10944418

  15. Arginase inhibition restores NOS coupling and reverses endothelial dysfunction and vascular stiffness in old rats

    PubMed Central

    Kim, Jae Hyung; Bugaj, Lukasz J.; Oh, Young Jun; Bivalacqua, Trinity J.; Ryoo, Sungwoo; Soucy, Kevin G.; Santhanam, Lakshmi; Webb, Alanah; Camara, Andre; Sikka, Gautam; Nyhan, Daniel; Shoukas, Artin A.; Ilies, Monica; Christianson, David W.; Champion, Hunter C.

    2009-01-01

    There is increasing evidence that upregulation of arginase contributes to impaired endothelial function in aging. In this study, we demonstrate that arginase upregulation leads to endothelial nitric oxide synthase (eNOS) uncoupling and that in vivo chronic inhibition of arginase restores nitroso-redox balance, improves endothelial function, and increases vascular compliance in old rats. Arginase activity in old rats was significantly increased compared with that shown in young rats. Old rats had significantly lower nitric oxide (NO) and higher superoxide (O2−) production than young. Acute inhibition of both NOS, with NG-nitro-l-arginine methyl ester, and arginase, with 2(S)-amino- 6-boronohexanoic acid (ABH), significantly reduced O2− production in old rats but not in young. In addition, the ratio of eNOS dimer to monomer in old rats was significantly decreased compared with that shown in young rats. These results suggest that eNOS was uncoupled in old rats. Although the expression of arginase 1 and eNOS was similar in young and old rats, inducible NOS (iNOS) was significantly upregulated. Furthermore, S-nitrosylation of arginase 1 was significantly elevated in old rats. These findings support our previously published finding that iNOS nitrosylates and activates arginase 1 (Santhanam et al., Circ Res 101: 692–702, 2007). Chronic arginase inhibition in old rats preserved eNOS dimer-to-monomer ratio and significantly reduced O2− production and enhanced endothelial-dependent vasorelaxation to ACh. In addition, ABH significantly reduced vascular stiffness in old rats. These data indicate that iNOS-dependent S-nitrosylation of arginase 1 and the increase in arginase activity lead to eNOS uncoupling, contributing to the nitroso-redox imbalance, endothelial dysfunction, and vascular stiffness observed in vascular aging. We suggest that arginase is a viable target for therapy in age-dependent vascular stiffness. PMID:19661445

  16. Arginase inhibition restores NOS coupling and reverses endothelial dysfunction and vascular stiffness in old rats.

    PubMed

    Kim, Jae Hyung; Bugaj, Lukasz J; Oh, Young Jun; Bivalacqua, Trinity J; Ryoo, Sungwoo; Soucy, Kevin G; Santhanam, Lakshmi; Webb, Alanah; Camara, Andre; Sikka, Gautam; Nyhan, Daniel; Shoukas, Artin A; Ilies, Monica; Christianson, David W; Champion, Hunter C; Berkowitz, Dan E

    2009-10-01

    There is increasing evidence that upregulation of arginase contributes to impaired endothelial function in aging. In this study, we demonstrate that arginase upregulation leads to endothelial nitric oxide synthase (eNOS) uncoupling and that in vivo chronic inhibition of arginase restores nitroso-redox balance, improves endothelial function, and increases vascular compliance in old rats. Arginase activity in old rats was significantly increased compared with that shown in young rats. Old rats had significantly lower nitric oxide (NO) and higher superoxide (O2(-)) production than young. Acute inhibition of both NOS, with N(G)-nitro-l-arginine methyl ester, and arginase, with 2S-amino- 6-boronohexanoic acid (ABH), significantly reduced O2(-) production in old rats but not in young. In addition, the ratio of eNOS dimer to monomer in old rats was significantly decreased compared with that shown in young rats. These results suggest that eNOS was uncoupled in old rats. Although the expression of arginase 1 and eNOS was similar in young and old rats, inducible NOS (iNOS) was significantly upregulated. Furthermore, S-nitrosylation of arginase 1 was significantly elevated in old rats. These findings support our previously published finding that iNOS nitrosylates and activates arginase 1 (Santhanam et al., Circ Res 101: 692-702, 2007). Chronic arginase inhibition in old rats preserved eNOS dimer-to-monomer ratio and significantly reduced O2(-) production and enhanced endothelial-dependent vasorelaxation to ACh. In addition, ABH significantly reduced vascular stiffness in old rats. These data indicate that iNOS-dependent S-nitrosylation of arginase 1 and the increase in arginase activity lead to eNOS uncoupling, contributing to the nitroso-redox imbalance, endothelial dysfunction, and vascular stiffness observed in vascular aging. We suggest that arginase is a viable target for therapy in age-dependent vascular stiffness. PMID:19661445

  17. Hyperglycemia induces iNOS gene expression and consequent nitrosative stress via JNK activation

    PubMed Central

    YANG, Peixin; CAO, Yuanning; LI, Hua

    2010-01-01

    Objective Maternal diabetes adversely impacts embryonic development. We test the hypothesis that hyperglycemia-induced JNK1/2 activation mediates iNOS induction. Study Design Levels of iNOS mRNA and nitrosylated protein were determined in cultured C57BL/6J conceptuses exposed to hyperglycemia (300 mg/dl glucose) and C57BL/6J embryos exposed to streptozotocin-induced diabetes. iNOS-luciferase activity and endogenous reactive nitrogen species were determined in transfected PYS-2 (mouse teratocarcinoma) cells exposed to hyperglycemia (450 mg/dl glucose). Results Hyperglycemia increased iNOS mRNA and SP600125, a potent JNK1/2 inhibitor, abolished this effect. Hyperglycemia increased iNOS-luciferase activities and SP600125 blocked this effect. Diabetes increased iNOS mRNA and jnk2 gene deletion abrogated this effect. Correlated with iNOS gene induction, both hyperglycemia in vitro and diabetes in vivo enhanced the production of reactive nitrogen species and increased protein nitrosylation. jnk2 gene deletion blocked diabetes-induced protein nitrosylation. Conclusion JNK1/2 activation mediates hyperglycemia-induced iNOS gene expression and consequent nitrosative stress in diabetic embryopathy. PMID:20541731

  18. NOS3 polymorphisms, cigarette smoking, and cardiovascular disease risk: The Atherosclerosis Risk in Communities study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endothelial nitric oxide synthase (NOS3) activity and cigarette smoking significantly influence endothelial function. We sought to determine whether cigarette smoking modified the association between NOS3 polymorphisms and risk of coronary heart disease or stroke. All 1085 incident coronary heart di...

  19. Teachers' Longitudinal NOS Understanding after Having Completed a Science Teacher Education Program

    ERIC Educational Resources Information Center

    Herman, Benjamin C.; Clough, Michael P.

    2016-01-01

    The study reported here investigated experienced teachers' views on several nature of science (NOS) issues 2 to 5 years after they completed a demanding secondary science teacher education program in which the NOS was an extensive and recurring component. Both quantitative and qualitative data were collected and analyzed to determine study…

  20. 49 CFR 173.335 - Chemical under pressure n.o.s.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Chemical under pressure n.o.s. 173.335 Section 173....o.s. (a) General requirements. A cylinder filled with a chemical under pressure must be offered for... transporting chemical under pressure n.o.s. is 5 years....

  1. 49 CFR 173.335 - Chemical under pressure n.o.s.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Chemical under pressure n.o.s. 173.335 Section 173....o.s. (a) General requirements. A cylinder filled with a chemical under pressure must be offered for... transporting chemical under pressure n.o.s. is 5 years....

  2. S-glutathionylation uncouples eNOS and regulates its cellular and vascular function

    PubMed Central

    Chen, Chun-An; Wang, Tse-Yao; Varadharaj, Saradhadevi; Reyes, Levy A.; Hemann, Craig; Hassan Talukder, M. A.; Chen, Yeong-Renn; Druhan, Lawrence J.; Zweier, Jay L.

    2012-01-01

    Endothelial nitric oxide synthase (eNOS) is critical in the regulation of vascular function, and can generate both nitric oxide (NO) and superoxide (O2•−), which are key mediators of cellular signalling. In the presence of Ca2+/calmodulin, eNOS produces NO, endothelial-derived relaxing factor, from L-arginine (L-Arg) by means of electron transfer from NADPH through a flavin containing reductase domain to oxygen bound at the haem of an oxygenase domain, which also contains binding sites for tetrahydrobiopterin (BH4) and L-Arg1–3. In the absence of BH4, NO synthesis is abrogated and instead O2•− is generated4–7. While NOS dysfunction occurs in diseases with redox stress, BH4 repletion only partly restores NOS activity and NOS-dependent vasodilation7. This suggests that there is an as yet unidentified redox-regulated mechanism controlling NOS function. Protein thiols can undergo S-glutathionylation, a reversible protein modification involved in cellular signalling and adaptation8,9. Under oxidative stress, S-glutathionylation occurs through thiol–disulphide exchange with oxidized glutathione or reaction of oxidant-induced protein thiyl radicals with reduced glutathione10,11. Cysteine residues are critical for the maintenance of eNOS function12,13; we therefore speculated that oxidative stress could alter eNOS activity through S-glutathionylation. Here we show that S-glutathionylation of eNOS reversibly decreases NOS activity with an increase in O2•− generation primarily from the reductase, in which two highly conserved cysteine residues are identified as sites of S-glutathionylation and found to be critical for redox-regulation of eNOS function. We show that eNOS S-glutathionylation in endothelial cells, with loss of NO and gain of O2•− generation, is associated with impaired endothelium-dependent vasodilation. In hypertensive vessels, eNOS S-glutathionylation is increased with impaired endothelium-dependent vasodilation that is restored by thiol

  3. Redox-stable cyclic peptide inhibitors of the SPSB2-iNOS interaction.

    PubMed

    Yap, Beow Keat; Harjani, Jitendra R; Leung, Eleanor W W; Nicholson, Sandra E; Scanlon, Martin J; Chalmers, David K; Thompson, Philip E; Baell, Jonathan B; Norton, Raymond S

    2016-03-01

    SPSB2 mediates the proteasomal degradation of iNOS. Inhibitors of SPSB2-iNOS interaction are expected to prolong iNOS lifetime and thereby enhance killing of persistent pathogens. Here, we describe the synthesis and characterization of two redox-stable cyclized peptides containing the DINNN motif required for SPSB2 binding. Both analogues bind with low nanomolar affinity to the iNOS binding site on SPSB, as determined by SPR and (19)F NMR, and efficiently displace full-length iNOS from binding to SPSB2 in macrophage cell lysates. These peptides provide a foundation for future development of redox-stable, potent ligands for SPSB proteins as a potential novel class of anti-infectives. PMID:26921848

  4. Lymphocytes and not IFNγ mediate expression of iNOS by intestinal epithelium in murine cryptosporidiosis

    PubMed Central

    Nordone, S.K.; Gookin, J.L.

    2013-01-01

    We hypothesized that unrecognized differences in epithelial expression of inducible nitric oxide synthase (iNOS), resulting from engineered immunodeficiency, could explain the contradictory findings of prior studies regarding the importance of nitric oxide (NO) in murine models of C. parvum infection. Severe combined immunodeficient mice (SCID) failed to constitutively or inducibly express epithelial iNOS or increase NO synthesis in response to C. parvum infection. In contrast, mice lacking IFNγ alone induced both epithelial iNOS expression and NO synthesis in response to infection. Accordingly, lymphocytes mediate epithelial expression of iNOS and NO synthesis independent of IFNγ in response to C. parvum infection. These findings in large part explain the contradictory conclusions of prior studies regarding the role of iNOS in C. parvum infection. PMID:20352449

  5. [Research Progress of NOS3 Participation in Regulatory Mechanisms of Cardiovascular Diseases].

    PubMed

    Sun, Ting; Chi, Qingjia; Wang, Guixue

    2016-02-01

    Cardiovascular disease has been a major threat to human's health and lives for many years. It is of great importance to explore the mechanisms and develop strategies to prevent the pathogenesis. Generally, cardiovascular disease is associated with endothelial dysfunction, which is closely related to the nitric oxide (NO)-mediated vasodilatation. The release of NO is regulated by NOS3 gene in mammals' vascular system. A great deal of evidences have shown that the polymorphism and epigenetic of NOS3 gene play vital roles in the pathological process of cardiovascular disease. To gain insights into the role of NOS3 in the cardiovascular diseases, we reviewed the molecular mechanisms underlying the development of cardiovascular diseases in this paper, including the uncoupling of NOS3 protein, epigenetic and polymorphism of NOS3 gene. The review can also offer possible strategies to prevent and treat cardiovascular diseases. PMID:27382763

  6. Reduced iNOS expression in adenoids from children with otitis media with effusion.

    PubMed

    Granath, Anna; Norrby-Teglund, Anna; Uddman, Rolf; Cardell, Lars-Olaf

    2010-12-01

    Nitric oxide (NO) is a key mediator in the local immune response of human airways. Inducible NO-synthases (iNOS), and endothelial NO-synthases (eNOS) are two enzymes known to regulate its production. The role of NO in middle ear disease is not fully known. Previous studies suggest that NO might have a dual role, both promoting and suppressing middle ear inflammation. The aim of the present study was to compare the eNOS and iNOS expression in adenoids obtained from children with otitis media with effusion (OME) with the expression seen in adenoids derived from children without middle ear disease. In addition, the expression of IL-1β and TNF-α were analyzed, because of their role in the iNOS-induction pathway. The iNOS and eNOS expression were analyzed with real-time PCR in 8 OME and 11 control adenoids. The corresponding proteins were demonstrated by immunohistochemical staining of adenoid tissue. A Luminex(®) assay was performed to analyze IL-1β and TNF-α in nasopharyngeal secretion in 10 OME and 8 controls, and immunohistochemistry was performed on adenoid tissue and imprints from the adenoid surface. Children with OME exhibited lower levels of iNOS than controls without middle ear disease. No such difference was seen for eNOS. The corresponding proteins were found mainly in conjunction with surface epithelium. No significant changes were seen among the cytokines tested. The present results indicate that local induction of iNOS in adenoids might be of importance for preventing development of OME. PMID:21073541

  7. Endothelial nitric oxide synthase (NOS) deficiency affects energy metabolism pattern in murine oxidative skeletal muscle.

    PubMed Central

    Momken, Iman; Fortin, Dominique; Serrurier, Bernard; Bigard, Xavier; Ventura-Clapier, Renée; Veksler, Vladimir

    2002-01-01

    Oxidative capacity of muscles correlates with capillary density and with microcirculation, which in turn depend on various regulatory factors, including NO generated by endothelial nitric oxide synthase (eNOS). To determine the role of eNOS in patterns of regulation of energy metabolism in various muscles, we studied mitochondrial respiration in situ in saponin-permeabilized fibres as well as the energy metabolism enzyme profile in the cardiac, soleus (oxidative) and gastrocnemius (glycolytic) muscles isolated from mice lacking eNOS (eNOS(-/-)). In soleus muscle, the absence of eNOS induced a marked decrease in both basal mitochondrial respiration without ADP (-32%; P <0.05) and maximal respiration in the presence of ADP (-29%; P <0.05). Furthermore, the eNOS(-/-) soleus muscle showed a decrease in total creatine kinase (-29%; P <0.05), citrate synthase (-31%; P <0.01), adenylate kinase (-27%; P <0.05), glyceraldehyde-3-phosphate dehydrogenase (-43%; P <0.01) and pyruvate kinase (-26%; P <0.05) activities. The percentage of myosin heavy chains I (slow isoform) was significantly increased from 24.3+/-1.5% in control to 30.1+/-1.1% in eNOS(-/-) soleus muscle ( P <0.05) at the expense of a slight non-significant decrease in the three other (fast) isoforms. Besides, eNOS(-/-) soleus showed a 28% loss of weight. Interestingly, we did not find differences in any parameters in cardiac and gastrocnemius muscles compared with respective controls. These results show that eNOS knockout has an important effect on muscle oxidative capacity as well on the activities of energy metabolism enzymes in oxidative (soleus) muscle. The absence of such effects in cardiac and glycolytic (gastrocnemius) muscle suggests a specific role for eNOS-produced NO in oxidative skeletal muscle. PMID:12123418

  8. NASA Operational Simulator for Small Satellites (NOS3)

    NASA Technical Reports Server (NTRS)

    Zemerick, Scott

    2015-01-01

    The Simulation-to-Flight 1 (STF-1) CubeSat mission aims to demonstrate how legacy simulation technologies may be adapted for flexible and effective use on missions using the CubeSat platform. These technologies, named NASA Operational Simulator (NOS), have demonstrated significant value on several missions such as James Webb Space Telescope, Global Precipitation Measurement, Juno, and Deep Space Climate Observatory in the areas of software development, mission operationstraining, verification and validation (VV), test procedure development and software systems check-out. STF-1 will demonstrate a highly portable simulation and test platform that allows seamless transition of mission development artifacts to flight products. This environment will decrease development time of future CubeSat missions by lessening the dependency on hardware resources. In addition, through a partnership between NASA GSFC, the West Virginia Space Grant Consortium and West Virginia University, the STF-1 CubeSat will hosts payloads for three secondary objectives that aim to advance engineering and physical-science research in the areas of navigation systems of small satellites, provide useful data for understanding magnetosphere-ionosphere coupling and space weather, and verify the performance and durability of III-V Nitride-based materials.

  9. PERSPECTIVE VIEW, CORNER UNIT AND REPRESENTATIVE INTERIOR HOUSE (NOS. 1921 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PERSPECTIVE VIEW, CORNER UNIT AND REPRESENTATIVE INTERIOR HOUSE (NOS. 1921 AND 1923). THE TWO ATTACHED STRUCTURES WERE ONCE PART OF AN EIGHT-UNIT ROW EXTENDING FOR ONE-HALF A BLOCK ON THE NORTH SIDE OF DIAMOND STREET WEST FROM NINETEENTH STREET. THIS DEVELOPMENT LIKELY ALSO INCLUDED FOUR DWELLINGS IMMEDIATELY BEHIND THESE HOUSES TO THE NORTH, FRONTING ON NINETEENTH STREET. A NOTICE FROM THE MAY 28, 1890 ISSUE OF PHILADELPHIA REAL ESTATE RECORD AND BUILDERS’ GUIDE ANNOUNCED THE DEVELOPMENT’S ANTICIPATED CONSTRUCTION BY PROLIFIC LOCAL REAL ESTATE AGENT/BUILDER THOMAS H. PARKS, WHO LIVED ONLY ONE BLOCK AWAY AT THE CORNER OF GRATZ AND DIAMOND STREETS (IN NO. 1821, NOW LOST). THOMAS PARKS HAD USED ARCHITECT ANGUS S. WADE FOR THE 1800 BLOCK OF DIAMOND STREET, BUT IT APPEARS THAT HE MAY HAVE EMPLOYED ANOTHER OF POPULAR ARCHITECT WILLIS G. HALE’S PROTÉGÉS, ROBERT W. MARPLE, FOR THIS BLOCK, AT LEAST FOR THE SUPERINTENDENCE OF ITS CONSTRUCTION. THE HOUSES’ EBULLIENCE AND EXOTICISM SUGGESTS HALE’S WORK OR THAT OF HISO FFICE; THEY BEAR NOTABLE SIMILARITY TO HOUSES DESIGNED BY HALE A YEAR EARLIER IN THE 1800 BLOCK OF W. GIRARD AVENUE. SEE HABS PA-6677 FOR MORE ON THOMAS PARKS AND THE 1800 BLOCK OF DIAMOND STREET, AND HABS PA-6678, FOR ADDITIONAL INFORMATION ABOUT WILLIS HALE AND THE 1800 BLOCK OF W. GIRARD AVENUE. - 1900 Block Diamond Street (Houses), Northwest corner of Diamond & Uber Streets, Philadelphia, Philadelphia County, PA

  10. Modulation of Heme/Substrate Binding Cleft of Neuronal Nitric-oxide Synthase (nNOS) Regulates Binding of Hsp90 and Hsp70 Proteins and nNOS Ubiquitination*

    PubMed Central

    Peng, Hwei-Ming; Morishima, Yoshihiro; Pratt, William B.; Osawa, Yoichi

    2012-01-01

    Like other nitric-oxide synthase (NOS) enzymes, neuronal NOS (nNOS) turnover and activity are regulated by the Hsp90/Hsp70-based chaperone machinery, which regulates signaling proteins by modulating ligand binding clefts (Pratt, W. B., Morishima, Y., and Osawa, Y. (2008) J. Biol. Chem. 283, 22885–22889). We have previously shown that nNOS turnover is due to Hsp70/CHIP-dependent ubiquitination and proteasomal degradation. In this work, we use an intracellular cross-linking approach to study both chaperone binding and nNOS ubiquitination in intact HEK293 cells. Treatment of cells with NG-nitro-l-arginine, a slowly reversible competitive inhibitor that stabilizes nNOS, decreases both nNOS ubiquitination and binding of Hsp90, Hsp70, and CHIP. Treatment with the calcium ionophore A23187, which increases Ca2+-calmodulin binding to nNOS, increases nNOS ubiquitination and binding of Hsp90, Hsp70, and CHIP in a manner that is specific for changes in the heme/substrate binding cleft. Both Hsp90 and Hsp70 are bound to the expressed nNOS oxygenase domain, which contains the heme/substrate binding cleft, but not to the reductase domain, and binding is increased to an expressed fragment containing both the oxygenase domain and the calmodulin binding site. Overexpression of Hsp70 promotes nNOS ubiquitination and decreases nNOS protein, and overexpression of Hsp90 inhibits nNOS ubiquitination and increases nNOS protein, showing the opposing effects of the two chaperones as they participate in nNOS quality control in the cell. These observations support the notion that changes in the state of the heme/substrate binding cleft affect chaperone binding and thus nNOS ubiquitination. PMID:22128174

  11. Identification and molecular characterization of nitric oxide synthase (NOS) gene in the intertidal copepod Tigriopus japonicus.

    PubMed

    Jeong, Chang-Bum; Kang, Hye-Min; Seo, Jung Soo; Park, Heum Gi; Rhee, Jae-Sung; Lee, Jae-Seong

    2016-02-10

    In copepods, no information has been reported on the structure or molecular characterization of the nitric oxide synthase (NOS) gene. In the intertidal copepod Tigriopus japonicus, we identified a NOS gene that is involved in immune responses of vertebrates and invertebrates. In silico analyses revealed that nitric oxide (NO) synthase domains, such as the oxygenase and reductase domains, are highly conserved in the T. japonicus NOS gene. The T. japonicus NOS gene was highly transcribed in the nauplii stages, implying that it plays a role in protecting the host during the early developmental stages. To examine the involvement of the T. japonicus NOS gene in the innate immune response, the copepods were exposed to lipopolysaccharide (LPS) and two Vibrio sp. After exposure to different concentrations of LPS and Vibrio sp., T. japonicus NOS transcription was significantly increased over time in a dose-dependent manner, and the NO/nitrite concentration increased as well. Taken together, our findings suggest that T. japonicus NOS transcription is induced in response to an immune challenge as part of the conserved innate immunity. PMID:26611530

  12. NOS1AP O-GlcNAc Modification Involved in Neuron Apoptosis Induced by Excitotoxicity.

    PubMed

    Zhu, Liang; Tao, Tao; Zhang, Dongmei; Liu, Xiaojuan; Ke, Kaifu; Shen, Aiguo

    2015-01-01

    O-Linked N-acetylglucosamine, or O-GlcNAc, is a dynamic post-translational modification that cycles on and off serine and threonine residues of nucleocytoplasmic and mitochondrial proteins. In addition to cancer and inflammation diseases, O-GlcNAc modification appears to play a critical role during cell apoptosis and stress response, although the precise mechanisms are still not very clear. Here we found that nitric oxide synthase adaptor (NOS1AP), which plays an important part in glutamate-induced neuronal apoptosis, carries the modification of O-GlcNAc. Mass spectrometry analysis identified Ser47, Ser183, Ser204, Ser269, Ser271 as O-GlcNAc sites. Higher O-GlcNAc of NOS1AP was detected during glutamate-induced neuronal apoptosis. Furthermore, with O-GlcNAc sites of NOS1AP mutated, the interaction of NOS1AP and neuronal nitric oxide syntheses (nNOS) decreases. Finally, during glutamate-induced neuronal apoptosis, decreasing the O-GlcNAc modification of NOS1AP results in more severe neuronal apoptosis. All these results suggest that O-GlcNAc modification of NOS1AP exerts protective effects during glutamate-induced neuronal apoptosis. PMID:26197318

  13. Diversity of nitrous oxide reductase (nosZ) genes in continental shelf sediments

    SciTech Connect

    Scala, D.J.; Kerkhof, L.J.

    1999-04-01

    Diversity of the nitrous oxide reductase (nosZ) gene was examined in sediments obtained from the Atlantic Ocean and Pacific Ocean continental shelves. Approximately 1,100 bp of the nosZ gene were amplified via PCR, using nosZ gene-specific primers. Thirty-seven unique copies of the nosZ gene from these marine environments were characterized, increasing the nosZ sequence database fourfold. The average DNA similarity for comparisons between all 49 variants of the nosZ gene was 64% {+-} 10%. Alignment of the derived amino acid sequences confirmed the conservation of important structural motifs. A highly conserved region is proposed as the copper binding, catalytic site (Cu{sub z}) of the mature protein. Phylogenetic analysis demonstrated three major clusters of nosZ genes, with little overlap between environmental and culture-based groups. Finally, the two non-culture-based gene clusters generally corresponded to sampling location, implying that denitrifier communities may be restricted geographically.

  14. Effect of long-term piceatannol treatment on eNOS levels in cultured endothelial cells.

    PubMed

    Kinoshita, Yosuke; Kawakami, Shinpei; Yanae, Koji; Sano, Shoko; Uchida, Hiroko; Inagaki, Hiroyuki; Ito, Tatsuhiko

    2013-01-18

    Piceatannol (3, 3', 4, 5'-tetrahydroxy-trans-stilbene) is a naturally occurring phytochemical found in passion fruit (Passiflora edulis) seeds. Previously, we demonstrated that piceatannol has acute vasorelaxant effects in rat thoracic aorta. It was suggested that endothelial NO synthase (eNOS) might be involved in piceatannol-induced acute vasorelaxation. Here, we investigated the expression of eNOS in EA.hy926 human umbilical vein cells after long-term treatment with piceatannol, and compared this effect with that of resveratrol, an analog of piceatannol. Long-term treatment with piceatannol up-regulated eNOS mRNA expression and increased eNOS protein expression in a dose-dependent manner. Moreover, piceatannol increased the levels of phosphorylated eNOS. Treatment with resveratrol also increased eNOS expression, but to a lesser degree than piceatannol. These findings indicate that piceatannol may improve vascular function by up-regulating eNOS expression. PMID:23246837

  15. Gene Deletion of nos2 Protects Against Manganese-Induced Neurological Dysfunction in Juvenile Mice

    PubMed Central

    Streifel, Karin M.; Moreno, Julie A.; Hanneman, William H.; Legare, Marie E.; Tjalkens, Ronald B.

    2012-01-01

    The mechanisms underlying cognitive and neurobehavioral abnormalities associated with childhood exposure to manganese (Mn) are not well understood but may be influenced by neuroinflammatory activation of microglia and astrocytes that results in nitrosative stress due to expression of inducible nitric oxide synthase (iNOS/NOS2). We therefore postulated that gene deletion of NOS2 would protect against the neurotoxic effects of Mn in vivo and in vitro. Juvenile NOS2 knockout (NOS2−/−) mice were orally exposed to 50 mg/kg of MnCl2 by intragastric gavage from days 21 to 34 postnatal. Results indicate that NOS2−/− mice exposed to Mn were protected against neurobehavioral alterations, despite histopathological activation of astrocytes and microglia in Mn-treated mice in both genotypes. NOS2−/− mice had decreased Mn-induced formation of 3-nitrotyrosine protein adducts within neurons in the basal ganglia that correlated with protection against Mn-induced neurobehavioral defects. Primary striatal astrocytes from wildtype mice caused apoptosis in cocultured striatal neurons following treatment with MnCl2 and tumor necrosis factor-α, whereas NOS2−/− astrocytes failed to cause any increase in markers of apoptosis in striatal neurons. Additionally, scavenging nitric oxide (NO) with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) prevented the ability of Mn- and cytokine-treated wildtype astrocytes to cause apoptosis in cocultured striatal neurons. These data demonstrate that NO plays a crucial role in Mn-induced neurological dysfunction in juvenile mice and that NOS2 expression in activated glia is an important mediator of neuroinflammatory injury during Mn exposure. PMID:22174044

  16. Smooth muscle NOS, colocalized with caveolin-1, modulates contraction in mouse small intestine

    PubMed Central

    El-Yazbi, Ahmed F; Cho, Woo Jung; Cena, Jonathan; Schulz, Richard; Daniel, Edwin E

    2008-01-01

    Neuronal nitric oxide synthase (nNOS) in myenteric neurons is activated during peristalsis to produce nitric oxide which relaxes intestinal smooth muscle. A putative nNOS is also found in the membrane of intestinal smooth muscle cells in mouse and dog. In this study we studied the possible functions of this nNOS expressed in mouse small intestinal smooth muscle colocalized with caveolin-1(Cav-1). Cav-1 knockout mice lacked nNOS in smooth muscle and provided control tissues. 60 mM KCl was used to increase intracellular [Ca2+] through L-type Ca2+ channel opening and stimulate smooth muscle NOS activity in intestinal tissue segments. An additional contractile response to LNNA (100 μM, NOS inhibitor) was observed in KCl-contracted tissues from control mice and was almost absent in tissues from Cav-1 knockout mice. Disruption of caveolae with 40 mM methyl-β cyclodextrin in tissues from control mice led to the loss of Cav-1 and nNOS immunoreactivity from smooth muscle as shown by immunohistochemistry and a reduction in the response of these tissues to N-ω-nitro-L-arginine (LNNA). Reconstitution of membrane cholesterol using water soluble cholesterol in the depleted segments restored the immunoreactivity and the response to LNNA added after KCl. Nicardipine (1 μM) blocked the responses to KCl and LNNA confirming the role of L-type Ca2+ channels. ODQ (1 μM, soluble guanylate cyclase inhibitor) had the same effect as inhibition of NOS following KCl. We conclude that the activation of nNOS, localized in smooth muscle caveolae, by calcium entering through L-type calcium channels triggers nitric oxide production which modulates muscle contraction by a cGMP-dependent mechanism. PMID:18400048

  17. Control of Food Intake and Energy Expenditure by Nos1 Neurons of the Paraventricular Hypothalamus

    PubMed Central

    Sutton, Amy K.; Pei, Hongjuan; Burnett, Korri H.; Myers, Martin G.; Rhodes, Christopher J.

    2014-01-01

    The paraventricular nucleus of the hypothalamus (PVH) contains a heterogeneous cluster of Sim1-expressing cell types that comprise a major autonomic output nucleus and play critical roles in the control of food intake and energy homeostasis. The roles of specific PVH neuronal subtypes in energy balance have yet to be defined, however. The PVH contains nitric oxide synthase-1 (Nos1)-expressing (Nos1PVH) neurons of unknown function; these represent a subset of the larger population of Sim1-expressing PVH (Sim1PVH) neurons. To determine the role of Nos1PVH neurons in energy balance, we used Cre-dependent viral vectors to both map their efferent projections and test their functional output in mice. Here we show that Nos1PVH neurons project to hindbrain and spinal cord regions important for food intake and energy expenditure control. Moreover, pharmacogenetic activation of Nos1PVH neurons suppresses feeding to a similar extent as Sim1PVH neurons, and increases energy expenditure and activity. Furthermore, we found that oxytocin-expressing PVH neurons (OXTPVH) are a subset of Nos1PVH neurons. OXTPVH cells project to preganglionic, sympathetic neurons in the thoracic spinal cord and increase energy expenditure upon activation, though not to the same extent as Nos1PVH neurons; their activation fails to alter feeding, however. Thus, Nos1PVH neurons promote negative energy balance through changes in feeding and energy expenditure, whereas OXTPVH neurons regulate energy expenditure alone, suggesting a crucial role for non-OXT Nos1PVH neurons in feeding regulation. PMID:25392498

  18. 76 FR 39910 - Nine Mile Point Nuclear Station, LLC; Nine Mile Point Nuclear Station, Unit Nos. 1 and 2; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... accordance with the NRC E-Filing rule (72 FR 49139, August 28, 2007). The E-Filing process requires... COMMISSION Nine Mile Point Nuclear Station, LLC; Nine Mile Point Nuclear Station, Unit Nos. 1 and 2; Notice... Nos. DPR-63 and NPF-69 for the Nine Mile Point Nuclear Station, Unit Nos. 1 and 2 (NMP),...

  19. 75 FR 13600 - Virginia Electric and Power Company, North Anna Power Station, Unit Nos. 1 and 2, Surry Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... COMMISSION [Docket Nos. 50-338 and 50-339, Docket Nos. 50-280 and 50-281, NRC- 2010-0116] Virginia Electric... ``a'' for Facility Operating License Nos. NPF-4, NPF-7, DPR-32, and DPR-37 issued to Virginia Electric... adverse effect on the probability of an accident occurring. The details of the staff's safety...

  20. 75 FR 76495 - Virginia Electric and Power Company North Anna Power Station, Unit Nos. 1 and 2 Surry Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... COMMISSION [Docket Nos. 50-338 and 50-339; Docket Nos. 50-280 and 50-281; NRC- 2010-0376] Virginia Electric... License Nos. DPR-32 and DPR-37, issued to Virginia Electric and Power Company (the licensee), for... adverse effect on the probability of an accident occurring. The proposed action would not result in...

  1. Red wine extract decreases pro-inflammatory markers, nuclear factor-κB and inducible NOS, in experimental metabolic syndrome.

    PubMed

    Janega, Pavol; Klimentová, Jana; Barta, Andrej; Kovácsová, Mária; Vranková, Stanislava; Cebová, Martina; Čierna, Zuzana; Matúsková, Zuzana; Jakovljevic, Vladimir; Pechánová, Olga

    2014-09-01

    We aimed to analyse the effects of alcohol-free Alibernet red wine extract (AWE) on nitric oxide synthase (NOS) activity and pro-inflammatory markers such as nuclear factor-κB (NFκB) and inducible NOS (iNOS) protein expression in experimental metabolic syndrome. Young 6 week-old male Wistar Kyoto (WKY) and obese, spontaneously hypertensive rats (SHR/N-cp) were divided into control groups and groups treated with AWE (24.2 mg per kg per day) for 3 weeks (n = 6 in each group). Total NOS activity and endothelial NOS (eNOS), iNOS and NFκB (p65) protein expressions were determined in the heart left ventricle and aorta by Western blot and immunohistochemical analysis. All parameters investigated significantly increased in the aorta of SHR/N-cp rats. Pro-inflammatory markers such as NFκB and iNOS were increased in the left ventricle as well. AWE treatment did not affect total NOS activity and eNOS expression in the aorta; however, it was able to decrease NFκB and iNOS protein expression in both the left ventricle and aorta. In conclusion, in the cardiovascular system, Alibernet red wine extract decreased NFκB and iNOS protein expressions elevated as a consequence of developed metabolic syndrome. This effect may represent one of the protective, anti-inflammatory properties of Alibernet red wine polyphenols on cardiovascular risk factors related to metabolic syndrome. PMID:25051230

  2. 75 FR 75706 - Dresden Nuclear Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Unit Nos. 1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ... Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Unit Nos. 1 and 2; Notice of... Nuclear Power Station, Units 2 and 3, respectively, located in Grundy County, Illinois, and to Renewed Facility Operating License Nos. DPR-29 and DPR-30 for Quad Cities Nuclear Power Station, Unit Nos. 1 and...

  3. 75 FR 66802 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Regulatory Commission (the Commission) has granted the request of Calvert Cliffs Nuclear Power Plant, LLC... Operating License Nos. DPR-53 and DPR-69 for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and...

  4. Nox2-dependent glutathionylation of endothelial NOS leads to uncoupled superoxide production and endothelial barrier dysfunction in acute lung injury

    PubMed Central

    Wu, Feng; Szczepaniak, William S.; Shiva, Sruti; Liu, Huanbo; Wang, Yinna; Wang, Ling; Wang, Ying; Kelley, Eric E.; Chen, Alex F.; Gladwin, Mark T.

    2014-01-01

    Microvascular barrier integrity is dependent on bioavailable nitric oxide (NO) produced locally by endothelial NO synthase (eNOS). Under conditions of limited substrate or cofactor availability or by enzymatic modification, eNOS may become uncoupled, producing superoxide in lieu of NO. This study was designed to investigate how eNOS-dependent superoxide production contributes to endothelial barrier dysfunction in inflammatory lung injury and its regulation. C57BL/6J mice were challenged with intratracheal LPS. Bronchoalveolar lavage fluid was analyzed for protein accumulation, and lung tissue homogenate was assayed for endothelial NOS content and function. Human lung microvascular endothelial cell (HLMVEC) monolayers were exposed to LPS in vitro, and barrier integrity and superoxide production were measured. Biopterin species were quantified, and coimmunoprecipitation (Co-IP) assays were performed to identify protein interactions with eNOS that putatively drive uncoupling. Mice exposed to LPS demonstrated eNOS-dependent increased alveolar permeability without evidence for altered canonical NO signaling. LPS-induced superoxide production and permeability in HLMVEC were inhibited by the NOS inhibitor nitro-l-arginine methyl ester, eNOS-targeted siRNA, the eNOS cofactor tetrahydrobiopterin, and superoxide dismutase. Co-IP indicated that LPS stimulated the association of eNOS with NADPH oxidase 2 (Nox2), which correlated with augmented eNOS S-glutathionylation both in vitro and in vivo. In vitro, Nox2-specific inhibition prevented LPS-induced eNOS modification and increases in both superoxide production and permeability. These data indicate that eNOS uncoupling contributes to superoxide production and barrier dysfunction in the lung microvasculature after exposure to LPS. Furthermore, the results implicate Nox2-mediated eNOS-S-glutathionylation as a mechanism underlying LPS-induced eNOS uncoupling in the lung microvasculature. PMID:25326583

  5. 78 FR 39018 - Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating Unit Nos. 2 and 3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating Unit Nos. 2 and 3 AGENCY: Nuclear Regulatory Commission. ACTION: Supplement to Final Supplement 38 to the Generic...

  6. Myoglobin protects the heart from inducible nitric-oxide synthase (iNOS)-mediated nitrosative stress.

    PubMed

    Gödecke, Axel; Molojavyi, Andre; Heger, Jacqueline; Flögel, Ulrich; Ding, Zhaoping; Jacoby, Christoph; Schrader, Jürgen

    2003-06-13

    The role of inducible nitric-oxide synthase (iNOS) in the pathogenesis of heart failure is still a matter of controversy. In contrast to early reports favoring a contribution of iNOS because of the negative inotropic and apoptotic potential of NO, more recent clinical and experimental data question a causative role. Here we report that transgenic mice with cardiac specific iNOS-overexpression and concomitant myoglobin-deficiency (tg-iNOS+/myo-/-) develop signs of heart failure with cardiac hypertrophy, ventricular dilatation, and interstitial fibrosis. In addition, reactivation of the fetal gene expression program typical for heart failure occurs. The structural and molecular changes are accompanied by functional depression such as reduced contractility, ejection fraction, and cardiac energetics. Our findings indicate that excessive cardiac NO formation can cause heart failure; however, under normal circumstances myoglobin constitutes the important barrier that efficiently protects the heart from nitrosative stress. PMID:12665503

  7. 5. Walled courtyard with basketball hoop between Buildings Nos. 9944B ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Walled courtyard with basketball hoop between Buildings Nos. 9944-B (left) and 9945-B (right). - Madigan Hospital, Detention Wards, Bounded by Wilson & McKinley Avenues & Garfield & Lincoln Streets, Tacoma, Pierce County, WA

  8. Nitrous oxide reductase (nosZ) gene fragments differ between native and cultivated Michigan soils.

    PubMed

    Stres, Blaz; Mahne, Ivan; Avgustin, Gorazd; Tiedje, James M

    2004-01-01

    The effect of standard agricultural management on the genetic heterogeneity of nitrous oxide reductase (nosZ) fragments from denitrifying prokaryotes in native and cultivated soil was explored. Thirty-six soil cores were composited from each of the two soil management conditions. nosZ gene fragments were amplified from triplicate samples, and PCR products were cloned and screened by restriction fragment length polymorphism (RFLP). The total nosZ RFLP profiles increased in similarity with soil sample size until triplicate 3-g samples produced visually identical RFLP profiles for each treatment. Large differences in total nosZ profiles were observed between the native and cultivated soils. The fragments representing major groups of clones encountered at least twice and four randomly selected clones with unique RFLP patterns were sequenced to verify nosZ identity. The sequence diversity of nosZ clones from the cultivated field was higher, and only eight patterns were found in clone libraries from both soils among the 182 distinct nosZ RFLP patterns identified from the two soils. A group of clones that comprised 32% of all clones dominated the gene library of native soil, whereas many minor groups were observed in the gene library of cultivated soil. The 95% confidence intervals of the Chao1 nonparametric richness estimator for nosZ RFLP data did not overlap, indicating that the levels of species richness are significantly different in the two soils, the cultivated soil having higher diversity. Phylogenetic analysis of deduced amino acid sequences grouped the majority of nosZ clones into an interleaved Michigan soil cluster whose cultured members are alpha-Proteobacteria. Only four nosZ sequences from cultivated soil and one from the native soil were related to sequences found in gamma-Proteobacteria. Sequences from the native field formed a distinct, closely related cluster (D(mean) = 0.16) containing 91.6% of the native clones. Clones from the cultivated field were

  9. DELETION OF iNOS PROVIDES CARDIOPROTECTION IN MICE WITH 2-KIDNEY, 1-CLIP HYPERTENSION

    PubMed Central

    Sun, Ying; Carretero, Oscar A.; Xu, Jiang; Rhaleb, Nour-Eddine; Yang, James J.; Pagano, Patrick J.; Yang, Xiao-Ping

    2009-01-01

    Inducible nitric oxide synthase (iNOS) has been implicated in the pathogenesis of hypertension and target organ damage. We hypothesized that induction of iNOS contributes to left ventricular (LV) hypertrophy and dysfunction in mice with 2-kidney, 1-clip hypertension (2K1C). Deletion of iNOS diminishes oxidative stress, thereby attenuating LV hypertrophy and enhancing cardiac performance. 2K1C was induced in mice lacking iNOS (iNOS−/−) and wild-type controls (WT, C57BL/6J). Sham-clipped mice served as controls. Systolic blood pressure (SBP) was measured weekly by tail cuff. Left ventricular (LV) ejection fraction (EF, by echocardiography) and cardiac response (dP/dtmax, dP/dt/ip and dP/dtmin) to isoproterenol (ISO: 50 ng/mouse, i.v.) were studied at the end of the experiment. 4-hydroxy-2-nonenal (4-HNE, a byproduct of lipid peroxidation and an indicator of oxidative stress) was measured by immunohistochemical staining. Nox2, eNOS and iNOS protein expression were determined by Western blot. We found that SBP, LV weight (LVW), myocyte cross-sectional area (MCSA), interstitial collagen fraction (ICF), EF and cardiac response to ISO did not differ between strains with sham clipping. 2K1C increased SBP, LVW, MCSA and ICF similarly in both strains. However, in iNOS−/− dP/dtmax, dP/dt/ip and dP/dtmin markedly increased in response to ISO, associated with decreased cardiac 4-HNE expression and urinary nitrate/nitrite. We concluded that deletion of iNOS does not seem to play a significant role in preventing 2K1C-induced hypertension and cardiac hypertrophy; however, it does enhance preservation of cardiac function, probably due to reduction of iNOS-induced oxidative stress. PMID:19001185

  10. Development of nNOS-positive neurons in the rat sensory ganglia after capsaicin treatment.

    PubMed

    Masliukov, Petr M; Moiseev, Konstantin Y; Korzina, Marina B; Porseva, Valentina V

    2015-08-27

    To gain a better understanding of the neuroplasticity of afferent neurons during postnatal ontogenesis, the distribution of neuronal nitric oxide synthase (nNOS) immunoreactivity was studied in the nodose ganglion (NG) and Th2 and L4 dorsal root ganglia (DRG) from vehicle-treated and capsaicin-treated female Wistar rats at different ages (10-day-old, 20-day-old, 30-day-old, and two-month-old). The percentage of nNOS-immunoreactive (IR) neurons decreased after capsaicin treatment in all studied ganglia in first 20 days of life, from 55.4% to 36.9% in the Th2 DRG, from 54.6% to 26.1% in the L4 DRG and from 37.1% to 15.0% in the NG. However, in the NG, the proportion of nNOS-IR neurons increased after day 20, from 11.8% to 23.9%. In the sensory ganglia of all studied rats, a high proportion of nNOS-IR neurons bound isolectin B4. Approximately 90% of the sensory nNOS-IR neurons bound to IB4 in the DRG and approximately 80% in the NG in capsaicin-treated and vehicle-treated rats. In 10-day-old rats, a large number of nNOS-IR neurons also expressed TrkA, and the proportion of nNOS(+)/TrkA(+) neurons was larger in the capsaicin-treated rats compared with the vehicle-treated animals. During development, the percentage of nNOS(+)/TrkA(+) cells decreased in the first month of life in both groups. The information provided here will also serve as a basis for future studies investigating mechanisms of sensory neuron development. PMID:26054303

  11. 48 CFR Appendix to Part 6101 - Form Nos. 1-5

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... ER05JY07.002 ER05JY07.003 Form 4, Government Certificate of Finality. ER05JY07.004 Form 5, Appellant... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Form Nos. 1-5 Appendix to... ADMINISTRATION CONTRACT DISPUTE CASES Pt. 6101, App. Appendix to Part 6101—Form Nos. 1-5 Form 1, GSA Form...

  12. Mechanism for dynamic regulation of iNOS expression after UVB-irradiation.

    PubMed

    Lu, Wei; Wu, Shiyong

    2013-08-01

    Ultraviolet B (UVB) induces an immediate activation of cNOSs, which contributes to the early release of nitric oxide after irradiation. UVB also induces the expression of iNOS, which peaks at both the mRNA and protein level near 24 h post-irradiation. The induced expression of iNOS contributes largely to the late elevation of nitric oxide after UVB irradiation. However, the regulation of iNOS expression in the early stages of UVB irradiation is not well studied. We previously reported that the UVB-induced early release of nitric oxide leads to the activation of PERK and GCN2, which phosphorylate the alpha-subunit of eIF2 and inhibit protein synthesis. In this report, we demonstrate that eIF2 phosphorylation plays a critical role in regulation of iNOS expression in the early-phase (with in 12 h) of UVB irradiation. Our data shows that with an increased phosphorylation of eIF2, the iNOS protein expression was reduced even though the iNOS mRNA expression was linearly increased in HaCaT and MEF cells after UVB irradiation. The UVB-induced dynamic up- and down-regulation of iNOS expression was almost completely lost in MEF(A/A) cells, which contain a nonphosphorylatable S51A mutation on eIF2. Our results suggest that the UVB-induced eIF2 phosphorylation does not only regulate iNOS expression at the translational level, but at the transcriptional level as well. PMID:22430947

  13. Activation of Endothelial Nitric Oxide (eNOS) Occurs through Different Membrane Domains in Endothelial Cells

    PubMed Central

    Tran, Jason; Magenau, Astrid; Rodriguez, Macarena; Rentero, Carles; Royo, Teresa; Enrich, Carlos; Thomas, Shane R.; Grewal, Thomas; Gaus, Katharina

    2016-01-01

    Endothelial cells respond to a large range of stimuli including circulating lipoproteins, growth factors and changes in haemodynamic mechanical forces to regulate the activity of endothelial nitric oxide synthase (eNOS) and maintain blood pressure. While many signalling pathways have been mapped, the identities of membrane domains through which these signals are transmitted are less well characterized. Here, we manipulated bovine aortic endothelial cells (BAEC) with cholesterol and the oxysterol 7-ketocholesterol (7KC). Using a range of microscopy techniques including confocal, 2-photon, super-resolution and electron microscopy, we found that sterol enrichment had differential effects on eNOS and caveolin-1 (Cav1) colocalisation, membrane order of the plasma membrane, caveolae numbers and Cav1 clustering. We found a correlation between cholesterol-induced condensation of the plasma membrane and enhanced high density lipoprotein (HDL)-induced eNOS activity and phosphorylation suggesting that cholesterol domains, but not individual caveolae, mediate HDL stimulation of eNOS. Vascular endothelial growth factor (VEGF)-induced and shear stress-induced eNOS activity was relatively independent of membrane order and may be predominantly controlled by the number of caveolae on the cell surface. Taken together, our data suggest that signals that activate and phosphorylate eNOS are transmitted through distinct membrane domains in endothelial cells. PMID:26977592

  14. Converging evidence for an impact of a functional NOS gene variation on anxiety-related processes.

    PubMed

    Kuhn, Manuel; Haaker, Jan; Glotzbach-Schoon, Evelyn; Schümann, Dirk; Andreatta, Marta; Mechias, Marie-Luise; Raczka, Karolina; Gartmann, Nina; Büchel, Christian; Mühlberger, Andreas; Pauli, Paul; Reif, Andreas; Kalisch, Raffael; Lonsdorf, Tina B

    2016-05-01

    Being a complex phenotype with substantial heritability, anxiety and related phenotypes are characterized by a complex polygenic basis. Thereby, one candidate pathway is neuronal nitric oxide (NO) signaling, and accordingly, rodent studies have identified NO synthase (NOS-I), encoded by NOS1, as a strong molecular candidate for modulating anxiety and hippocampus-dependent learning processes. Using a multi-dimensional and -methodological replication approach, we investigated the impact of a functional promoter polymorphism (NOS1-ex1f-VNTR) on human anxiety-related phenotypes in a total of 1019 healthy controls in five different studies. Homozygous carriers of the NOS1-ex1f short-allele displayed enhanced trait anxiety, worrying and depression scores. Furthermore, short-allele carriers were characterized by increased anxious apprehension during contextual fear conditioning. While autonomous measures (fear-potentiated startle) provided only suggestive evidence for a modulatory role of NOS1-ex1f-VNTR on (contextual) fear conditioning processes, neural activation at the amygdala/anterior hippocampus junction was significantly increased in short-allele carriers during context conditioning. Notably, this could not be attributed to morphological differences. In accordance with data from a plethora of rodent studies, we here provide converging evidence from behavioral, subjective, psychophysiological and neuroimaging studies in large human cohorts that NOS-I plays an important role in anxious apprehension but provide only limited evidence for a role in (contextual) fear conditioning. PMID:26746182

  15. Fenofibrate activates AMPK and increases eNOS phosphorylation in HUVEC

    SciTech Connect

    Murakami, Hisashi; Murakami, Ryuichiro . E-mail: ryuichi@med.nagoya-u.ac.jp; Kambe, Fukushi; Cao, Xia; Takahashi, Ryotaro; Asai, Toru; Hirai, Toshihisa; Numaguchi, Yasushi; Okumura, Kenji; Seo, Hisao; Murohara, Toyoaki

    2006-03-24

    Fenofibrate improves endothelial function by lipid-lowering and anti-inflammatory effects. Additionally, fenofibrate has been demonstrated to upregulate endothelial nitric oxide synthase (eNOS). AMP-activated protein kinase (AMPK) has been reported to phosphorylate eNOS at Ser-1177 and stimulate vascular endothelium-derived nitric oxide (NO) production. We report here that fenofibrate activates AMPK and increases eNOS phosphorylation and NO production in human umbilical vein endothelial cells (HUVEC). Incubation of HUVEC with fenofibrate increased the phosphorylation of AMPK and acetyl-CoA carboxylase. Fenofibrate simultaneously increased eNOS phosphorylation and NO production. Inhibitors of protein kinase A and phosphatidylinositol 3-kinase failed to suppress the fenofibrate-induced eNOS phosphorylation. Neither bezafibrate nor WY-14643 activated AMPK in HUVEC. Furthermore, fenofibrate activated AMPK without requiring any transcriptional activities. These results indicate that fenofibrate stimulates eNOS phosphorylation and NO production through AMPK activation, which is suggested to be a novel characteristic of this agonist and unrelated to its effects on peroxisome proliferator-activated receptor {alpha}.

  16. The Complex Role of iNOS in Acutely-Rejecting Cardiac Transplants

    PubMed Central

    Pieper, Galen M.; Roza, Allan M.

    2008-01-01

    This review summarizes the evidence for a detrimental role of nitric oxide (NO) derived from inducible NO synthase (iNOS) and/or reactive nitrogen species such as peroxynitrite in acutely-rejecting cardiac transplants. In chronic cardiac transplant rejection, iNOS may have an opposing beneficial component. The purpose of this review is primarily to address issues related to acute rejection which is a recognized risk factor for chronic rejection. The evidence for a detrimental role is based upon strategies involving non-selective NOS inhibitors, NO neutralizers, selective iNOS inhibitors and iNOS gene deletion in rodent models of cardiac rejection. The review is discussed in the context of the impact on various components including graft survival, histological rejection and cardiac function which may contribute in toto to the process of graft rejection. Possible limitations of each strategy are discussed in order to understand better the variance in published findings including issues related to the potential importance of cell localization of iNOS expression. Finally, the concept of a dual role of NO and its down-stream product, peroxynitrite, in rejection vs. immune regulation is discussed. PMID:18291116

  17. Vanadyl sulfate inhibits NO production via threonine phosphorylation of eNOS.

    PubMed Central

    Li, Zhuowei; Carter, Jacqueline D; Dailey, Lisa A; Huang, Yuh-Chin T

    2004-01-01

    Exposure to excessive vanadium occurs in some occupations and with consumption of some dietary regimens for weight reduction and body building. Because vanadium is vasoactive, individuals exposed to excessive vanadium may develop adverse vascular effects. We have previously shown that vanadyl sulfate causes acute pulmonary vasoconstriction, which could be attributed in part to inhibition of nitric oxide production. In the present study we investigated whether NO inhibition was related to phosphorylation of endothelial nitric oxide synthase (eNOS). VOSO4 produced dose-dependent constriction of pulmonary arteries in isolated perfused lungs and pulmonary arterial rings and a right shift of the acetylcholine-dependent vasorelaxation curve. VOSO4 inhibited constitutive as well as A23187-stimulated NO production. Constitutive NO inhibition was accompanied by increased Thr495 (threonine at codon 495) phosphorylation of eNOS, which would inhibit eNOS activity. Thr495 phosphorylation of eNOS and inhibition of NO were partially reversed by pretreatment with calphostin C, a protein kinase C (PKC) inhibitor. There were no changes in Ser1177 (serine at codon 1177) or tyrosine phosphorylation of eNOS. These results indicate that VOSO4 induced acute pulmonary vasoconstriction that was mediated in part by the inhibition of endothelial NO production via PKC-dependent phosphorylation of Thr495 of eNOS. Exposure to excessive vanadium may contribute to pulmonary vascular diseases. PMID:14754574

  18. Disrupted NOS signaling in lymphatic endothelial cells exposed to chronically increased pulmonary lymph flow.

    PubMed

    Datar, Sanjeev A; Gong, Wenhui; He, Youping; Johengen, Michael; Kameny, Rebecca J; Raff, Gary W; Maltepe, Emin; Oishi, Peter E; Fineman, Jeffrey R

    2016-07-01

    Associated abnormalities of the lymphatic circulation are well described in congenital heart disease. However, their mechanisms remain poorly elucidated. Using a clinically relevant ovine model of a congenital cardiac defect with chronically increased pulmonary blood flow (shunt), we previously demonstrated that exposure to chronically elevated pulmonary lymph flow is associated with: 1) decreased bioavailable nitric oxide (NO) in pulmonary lymph; and 2) attenuated endothelium-dependent relaxation of thoracic duct rings, suggesting disrupted lymphatic endothelial NO signaling in shunt lambs. To further elucidate the mechanisms responsible for this altered NO signaling, primary lymphatic endothelial cells (LECs) were isolated from the efferent lymphatic of the caudal mediastinal node in 4-wk-old control and shunt lambs. We found that shunt LECs (n = 3) had decreased bioavailable NO and decreased endothelial nitric oxide synthase (eNOS) mRNA and protein expression compared with control LECs (n = 3). eNOS activity was also low in shunt LECs, but, interestingly, inducible nitric oxide synthase (iNOS) expression and activity were increased in shunt LECs, as were total cellular nitration, including eNOS-specific nitration, and accumulation of reactive oxygen species (ROS). Pharmacological inhibition of iNOS reduced ROS in shunt LECs to levels measured in control LECs. These data support the conclusion that NOS signaling is disrupted in the lymphatic endothelium of lambs exposed to chronically increased pulmonary blood and lymph flow and may contribute to decreased pulmonary lymphatic bioavailable NO. PMID:27199125

  19. Intraesophageal manganese superoxide dismutase-plasmid liposomes ameliorates novel total-body and thoracic radiation sensitivity of NOS1-/- mice.

    PubMed

    Rajagopalan, Malolan S; Stone, Brandon; Rwigema, Jean-Claude; Salimi, Umar; Epperly, Michael W; Goff, Julie; Franicola, Darcy; Dixon, Tracy; Cao, Shaonan; Zhang, Xichen; Buchholz, Bettina M; Bauer, Anthony J; Choi, Serah; Bakkenist, Christopher; Wang, Hong; Greenberger, Joel S

    2010-09-01

    The effect of deletion of the nitric oxide synthase 1 gene (NOS1(-/-)) on radiosensitivity was determined. In vitro, long-term cultures of bone marrow stromal cells derived from NOS1(-/-) were more radioresistant than cells from C57BL/6NHsd (wild-type), NOS2(-/-) or NOS3(-/-) mice. Mice from each strain received 20 Gy thoracic irradiation or 9.5 Gy total-body irradiation (TBI), and NOS1(-/-) mice were more sensitive to both. To determine the etiology of radiosensitivity, studies of histopathology, lower esophageal contractility, gastrointestinal transit, blood counts, electrolytes and inflammatory markers were performed; no significant differences between irradiated NOS1(-/-) and control mice were found. Video camera surveillance revealed the cause of death in NOS1(-/-) mice to be grand mal seizures; control mice died with fatigue and listlessness associated with low blood counts after TBI. NOS1(-/-) mice were not sensitive to brain-only irradiation. MnSOD-PL therapy delivered to the esophagus of wild-type and NOS1(-/-) mice resulted in equivalent biochemical levels in both; however, in NOS1(-/-) mice, MnSOD-PL significantly increased survival after both thoracic and total-body irradiation. The mechanism of radiosensitivity of NOS1(-/-) mice and its reversal by MnSOD-PL may be related to the developmental esophageal enteric neuronal innervation abnormalities described in these mice. PMID:20726721

  20. NITRIC OXIDE PRODUCTION AND iNOS mRNA EXPRESSION IN IFN-8-STIMULATED CHICKEN MACROPHAGES TRANSFECTED WITH iNOS siRNAs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Utilizing RNA interference technology with siRNA in the HD-11 macrophage cell line, we determined how the knock-down of the iNOS (inducible nitric oxide synthase) gene affected IFN-' induced macrophage production of nitric oxide (NO) and mRNA expression of genes involved in this biological pathway i...

  1. Nitrotyrosinylation, Remodeling and Endothelial-Myocyte Uncoupling in iNOS, Cystathionine Beta Synthase (CBS) Knockouts and iNOS/CBS Double Knockout Mice

    PubMed Central

    Kundu, Soumi; Kumar, Munish; Sen, Utpal; Mishra, Paras K.; Tyagi, Neetu; Metreveli, Naira; Lominadze, David; Rodriguez, Walter; Tyagi, Suresh C.

    2009-01-01

    Increased levels of homocysteine (Hcy), recognized as hyperhomocysteinemia (HHcy), were associated with cardiovascular diseases. There was controversy regarding the detrimental versus cardio protective role of inducible nitric oxide synthase (iNOS) in ischemic heart disease. The aim of this study was to test the hypothesis that the Hcy generated nitrotyrosine by inducing the endothelial nitric oxide synthase, causing endothelial-myocyte (E–M) coupling. To differentiate the role of iNOS versus constitutive nitric oxide synthase (eNOS and nNOS) in Hcy-mediated nitrotyrosine generation and matrix remodeling in cardiac dysfunction, left ventricular (LV) tissue was analyzed from cystathionine beta synthase (CBS) heterozygote knockout, iNOS homozygote knockout, CBS−/+/iNOS−/− double knockout, and wild-type (WT) mice. The levels of nitrotyrosine, MMP-2 and -9 (zymographic analysis), and fibrosis (by trichrome stain) were measured. The endothelial-myocyte function was determined in cardiac rings. In CBS−/+ mice, homocysteine was elevated and in iNOS−/− mice, nitric oxide was significantly reduced. The nitrotyrosine and matrix metalloproteinase-9 (MMP-9) levels were elevated in double knockout and CBS−/+ as compared to WT mice. Although MMP-2 levels were similar in CBS−/+, iNOS−/−, and CBS−/+/iNOS−/−, the levels were three- to fourfold higher than WT. The levels of collagen were similar in CBS−/+ and iNOS−/−, but they were threefold higher than WT. Interesting, the levels of collagen increased sixfold in double knockouts, compared to WT, suggesting synergism between high Hcy and lack of iNOS. Left ventricular hypertrophy was exaggerated in the iNOS−/− and double knockout, and mildly increased in the CBS−/+, compared to WT mice. The endothelial-dependent relaxation was attenuated to the same extent in the CBS−/+ and iNOS−/−, compared to WT, but it was robustly blunted in double knockouts. The results concluded that homocysteine

  2. Influence of coronary artery diameter on eNOS protein content

    NASA Technical Reports Server (NTRS)

    Laughlin, M. H.; Turk, J. R.; Schrage, W. G.; Woodman, C. R.; Price, E. M.

    2003-01-01

    The purpose of this study was to test the hypothesis that the content of endothelial nitric oxide synthase (eNOS) protein (eNOS protein/g total artery protein) increases with decreasing artery diameter in the coronary arterial tree. Content of eNOS protein was determined in porcine coronary arteries with immunoblot analysis. Arteries were isolated in six size categories from each heart: large arteries [301- to 2,500-microm internal diameter (ID)], small arteries (201- to 300-microm ID), resistance arteries (151- to 200-microm ID), large arterioles (101- to 150-microm ID), intermediate arterioles (51- to 100-microm ID), and small arterioles(<50-microm ID). To obtain sufficient protein for analysis from small- and intermediate-sized arterioles, five to seven arterioles 1-2 mm in length were pooled into one sample for each animal. Results establish that the number of smooth muscle cells per endothelial cell decreases from a number of 10 to 15 in large coronary arteries to 1 in the smallest arterioles. Immunohistochemistry revealed that eNOS is located only in endothelial cells in all sizes of coronary artery and in coronary capillaries. Contrary to our hypothesis, eNOS protein content did not increase with decreasing size of coronary artery. Indeed, the smallest coronary arterioles had less eNOS protein per gram of total protein than the large coronary arteries. These results indicate that eNOS protein content is greater in the endothelial cells of conduit arteries, resistance arteries, and large arterioles than in small coronary arterioles.

  3. Striatal NOS1 has dimorphic expression and activity under stress and nicotine sensitization.

    PubMed

    Díaz, David; Murias, Azucena Rodrigo; Ávila-Zarza, Carmelo Antonio; Muñoz-Castañeda, Rodrigo; Aijón, José; Alonso, José Ramón; Weruaga, Eduardo

    2015-10-01

    Nicotine exerts its addictive influence through the meso-cortico-limbic reward system, where the striatum is essential. Nicotine addiction involves different neurotransmitters, nitric oxide (NO) being especially important, since it triggers the release of the others by positive feedback. In the nervous system, NO is mainly produced by nitric oxide synthase 1 (NOS1). However, other subtypes of synthases can also synthesize NO, and little is known about the specific role of each isoform in the process of addiction. In parallel, NOS activity and nicotine addiction are also affected by stress and sexual dimorphism. To determine the specific role of this enzyme, we analyzed both NOS expression and NO synthesis in the striatum of wild-type and NOS1-knocked out (KO) mice of both sexes in situations of nicotine sensitization and stress. Our results demonstrated differences between the caudate-putamen (CP) and nucleus accumbens (NA). With respect to NOS1 expression, the CP is a dimorphic region (27.5% lower cell density in males), but with a stable production of NO, exclusively due to this isoform. Thus, the nitrergic system of CP may not be involved in stress or nicotine addiction. Conversely, the NA is much more variable and strongly involved in both situations: its NO synthesis displays dimorphic variations at both basal (68.5% reduction in females) and stress levels (65.9% reduction in males), which disappear when nicotine is infused. Thus, the KO animals showed an increase in NO production (21.7%) in the NA, probably by NOS3, in an attempt to compensate the lack of NOS1. PMID:26235957

  4. Hindlimb unweighting decreases endothelium-dependent dilation and eNOS expression in soleus not gastrocnemius

    NASA Technical Reports Server (NTRS)

    Woodman, C. R.; Schrage, W. G.; Rush, J. W.; Ray, C. A.; Price, E. M.; Hasser, E. M.; Laughlin, M. H.

    2001-01-01

    We tested the hypothesis that hindlimb unweighting (HLU) decreases endothelium-dependent vasodilation and expression of endothelial nitric oxide synthase (eNOS) and superoxide dismutase-1 (SOD-1) in arteries of skeletal muscle with reduced blood flow during HLU. Sprague-Dawley rats (300-350 g) were exposed to HLU (n = 15) or control (n = 15) conditions for 14 days. ACh-induced dilation was assessed in muscle with reduced [soleus (Sol)] or unchanged [gastrocnemius (Gast)] blood flow during HLU. eNOS and SOD-1 expression were measured in feed arteries (FA) and in first-order (1A), second-order (2A), and third-order (3A) arterioles. Dilation to infusion of ACh in vivo was blunted in Sol but not Gast. In arteries of Sol muscle, HLU decreased eNOS mRNA and protein content. eNOS mRNA content was significantly less in Sol FA (35%), 1A arterioles (25%) and 2A arterioles (18%). eNOS protein content was less in Sol FA (64%) and 1A arterioles (65%) from HLU rats. In arteries of Gast, HLU did not decrease eNOS mRNA or protein. SOD-1 mRNA expression was less in Sol 2A arterioles (31%) and 3A arterioles (29%) of HLU rats. SOD-1 protein content was less in Sol FA (67%) but not arterioles. SOD-1 mRNA and protein content were not decreased in arteries from Gast. These data indicate that HLU decreases endothelium-dependent vasodilation, eNOS expression, and SOD-1 expression primarily in arteries of Sol muscle where blood flow is reduced during HLU.

  5. Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95.

    PubMed

    Zhou, Li; Li, Fei; Xu, Hai-Bing; Luo, Chun-Xia; Wu, Hai-Yin; Zhu, Ming-Mei; Lu, Wei; Ji, Xing; Zhou, Qi-Gang; Zhu, Dong-Ya

    2010-12-01

    Stroke is a major public health problem leading to high rates of death and disability in adults. Excessive stimulation of N-methyl-D-aspartate receptors (NMDARs) and the resulting neuronal nitric oxide synthase (nNOS) activation are crucial for neuronal injury after stroke insult. However, directly inhibiting NMDARs or nNOS can cause severe side effects because they have key physiological functions in the CNS. Here we show that cerebral ischemia induces the interaction of nNOS with postsynaptic density protein-95 (PSD-95). Disrupting nNOS-PSD-95 interaction via overexpressing the N-terminal amino acid residues 1-133 of nNOS (nNOS-N(1-133)) prevented glutamate-induced excitotoxicity and cerebral ischemic damage. Given the mechanism of nNOS-PSD-95 interaction, we developed a series of compounds and discovered a small-molecular inhibitor of the nNOS-PSD-95 interaction, ZL006. This drug blocked the ischemia-induced nNOS-PSD-95 association selectively, had potent neuroprotective activity in vitro and ameliorated focal cerebral ischemic damage in mice and rats subjected to middle cerebral artery occlusion (MCAO) and reperfusion. Moreover, it readily crossed the blood-brain barrier, did not inhibit NMDAR function, catalytic activity of nNOS or spatial memory, and had no effect on aggressive behaviors. Thus, this new drug may serve as a treatment for stroke, perhaps without major side effects. PMID:21102461

  6. Activation of eNOS in endothelial cells exposed to ionizing radiation involves components of the DNA damage response pathway

    SciTech Connect

    Nagane, Masaki; Yasui, Hironobu; Sakai, Yuri; Yamamori, Tohru; Niwa, Koichi; Hattori, Yuichi; Kondo, Takashi; Inanami, Osamu

    2015-01-02

    Highlights: • eNOS activity is increased in BAECs exposed to X-rays. • ATM is involved in this increased eNOS activity. • HSP90 modulates the radiation-induced activation of ATM and eNOS. - Abstract: In this study, the involvement of ataxia telangiectasia mutated (ATM) kinase and heat shock protein 90 (HSP90) in endothelial nitric oxide synthase (eNOS) activation was investigated in X-irradiated bovine aortic endothelial cells. The activity of nitric oxide synthase (NOS) and the phosphorylation of serine 1179 of eNOS (eNOS-Ser1179) were significantly increased in irradiated cells. The radiation-induced increases in NOS activity and eNOS-Ser1179 phosphorylation levels were significantly reduced by treatment with either an ATM inhibitor (Ku-60019) or an HSP90 inhibitor (geldanamycin). Geldanamycin was furthermore found to suppress the radiation-induced phosphorylation of ATM-Ser1181. Our results indicate that the radiation-induced eNOS activation in bovine aortic endothelial cells is regulated by ATM and HSP90.

  7. Partial restoration of cardiac function with ΔPDZ nNOS in aged mdx model of Duchenne cardiomyopathy

    PubMed Central

    Lai, Yi; Zhao, Junling; Yue, Yongping; Wasala, Nalinda B.; Duan, Dongsheng

    2014-01-01

    Transgenic gene deletion/over-expression studies have established the cardioprotective role of neuronal nitric oxide synthase (nNOS). However, it remains unclear whether nNOS-mediated heart protection can be translated to gene therapy. In this study, we generated an adeno-associated virus (AAV) nNOS vector and tested its therapeutic efficacy in the aged mdx model of Duchenne cardiomyopathy. A PDZ domain-deleted nNOS gene (ΔPDZ nNOS) was packaged into tyrosine mutant AAV-9 and delivered to the heart of ∼14-month-old female mdx mice, a phenotypic model of Duchenne cardiomyopathy. Seven months later, we observed robust nNOS expression in the myocardium. Supra-physiological ΔPDZ nNOS expression significantly reduced myocardial fibrosis, inflammation and apoptosis. Importantly, electrocardiography and left ventricular hemodynamics were significantly improved in treated mice. Additional studies revealed increased phosphorylation of phospholamban and p70S6K. Collectively, we have demonstrated the therapeutic efficacy of the AAV ΔPDZ nNOS vector in a symptomatic Duchenne cardiomyopathy model. Our results suggest that the cardioprotective role of ΔPDZ nNOS is likely through reduced apoptosis, enhanced phospholamban phosphorylation and improved Akt/mTOR/p70S6K signaling. Our study has opened the door to treat Duchenne cardiomyopathy with ΔPDZ nNOS gene transfer. PMID:24463882

  8. Outcome after BCG treatment for urinary bladder cancer may be influenced by polymorphisms in the NOS2 and NOS3 genes☆

    PubMed Central

    Ryk, Charlotta; Koskela, Lotta Renström; Thiel, Tomas; Wiklund, N. Peter; Steineck, Gunnar; Schumacher, Martin C.; de Verdier, Petra J.

    2015-01-01

    Purpose Bacillus Calmette-Guérin (BCG)-treatment is an established treatment for bladder cancer, but its mechanisms of action are not fully understood. High-risk non-muscle invasive bladder-cancer (NMIBC)-patients failing to respond to BCG-treatment have worse prognosis than those undergoing immediate radical cystectomy and identification of patients at risk for BCG-failure is of high priority. Several studies indicate a role for nitric oxide (NO) in the cytotoxic effect that BCG exerts on bladder cancer cells. In this study we investigated whether NO-synthase (NOS)-gene polymorphisms, NOS2-promoter microsatellite (CCTTT)n, and the NOS3-polymorphisms-786T>C (rs2070744) and Glu298Asp (rs1799983), can serve as possible molecular markers for outcome after BCG-treatment for NMIBC. Materials and methods All NMIBC-patients from a well-characterized population based cohort were analyzed (n=88). Polymorphism data were combined with information from 15-years of clinical follow-up. The effect of BCG-treatment on cancer-specific death (CSD), recurrence and progression in patients with varying NOS-genotypes were studied using Cox proportional hazard-models and log rank tests. Results BCG-treatment resulted in significantly better survival in patients without (Log rank: p=0.006; HR: 0.12, p=0.048), but not in patients with a long version ((CCTTT)n ≧13 repeats) of the NOS2-promoter microsatellite. The NOS3-rs2070744(TT) and rs1799983(GG)-genotypes showed decreased risk for CSD (Log rank(TT): p=0.001; Log rank(GG): p=0.010, HR(GG): 0.16, p=0.030) and progression (Log rank(TT): p<0.001, HR(TT): 0.05, p=0.005; Log rank(GG): p<0.001, HR(GG): 0.10, p=0.003) after BCG-therapy compared to the other genotypes. There was also a reduction in recurrence in BCG-treated patients that was mostly genotype independent. Analysis of combined genotypes identified a subgroup of 30% of the BCG-treated patients that did not benefit from BCG-treatment. Conclusions Our results suggest that the

  9. Extensive ethnogenomic diversity of endothelial nitric oxide synthase (eNOS) polymorphisms.

    PubMed

    Thomas, Bolaji N; Thakur, Tanya J; Yi, Li; Guindo, Aldiouma; Diallo, Dapa A; Ott, Jurg

    2013-01-01

    Nitric oxide (NO) is highly reactive, produced in endothelial cells by endothelial NO synthase (eNOS) and has been implicated in sickle cell pathophysiology. We evaluated the distribution of functionally significant eNOS variants (the T786C variant in the promoter region, the Glu298Asp variant in exon 7, and the variable number of tandem repeats (VNTR) in intron 4) in Africans, African Americans and Caucasians. The C-786 variant was more common in Caucasians than in Africans and African Americans. Consistent with other findings, the Asp-298 variant had the highest frequency in Caucasians followed by African Americans, but was completely absent in Africans. The very rare intron 4 allele, eNOS 4c, was found in some Africans and African Americans, but not in Caucasians. eNOS 4d allele was present in 2 Africans. These findings suggest a consistent and widespread genomic diversity in the distribution of eNOS variants in Africans, comparative to African Americans and Caucasians. PMID:23400313

  10. Innervation of vasculature and microvasculature of the human vagina by NOS and neuropeptide-containing nerves.

    PubMed Central

    Hoyle, C H; Stones, R W; Robson, T; Whitley, K; Burnstock, G

    1996-01-01

    The aims of the present study were to determine whether nerves that contain nitric oxide synthase (NOS), calcitonin gene-related peptide (CGRP) or substance P (SP) are present in the human vagina and, if so, to determine the pattern of innervation relative to that of other neurotransmitters, particularly vasoactive intestinal polypeptide (VIP) and neuropeptide Y (NPY). Surgical specimens of vaginal tissue (n = 10) from pre- and postmenopausal women were fixed and processed for immunohistochemistry of peptides and NOS and for histochemistry of NADPH-diaphorase. SP-immunoreactive nerves were very sparse, being absent from 9 of the 10 tissue samples. For other peptides and NOS, the innervation of the deep arteries and veins was greater than that of blood vessels in the propria. Capillaries in the epithelial papillae also appeared to be innervated by nerves containing NOS, CGRP, NPY and VIP. Beneath the epithelium nerve fibres formed a subepithelial plexus; no nerve cell bodies were seen. The relative density of innervation by immunoreactive fibres was PGP-9.5 > NPY > VIP >> NOS > CGRP > SP. These results imply that nerves that utilise nitric oxide or NPY, VIP or CGRP as a neurotransmitter may play a role in controlling blood flow and capillary permeability in the human vagina. The origin and function of all these nerves is discussed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8763480

  11. L-theanine promotes nitric oxide production in endothelial cells through eNOS phosphorylation.

    PubMed

    Siamwala, Jamila H; Dias, Paul M; Majumder, Syamantak; Joshi, Manoj K; Sinkar, Vilas P; Banerjee, Gautam; Chatterjee, Suvro

    2013-03-01

    Consumption of tea (Camellia sinensis) improves vascular function and is linked to lowering the risk of cardiovascular disease. Endothelial nitric oxide is the key regulator of vascular functions in endothelium. In this study, we establish that l-theanine, a non-protein amino-acid found in tea, promotes nitric oxide (NO) production in endothelial cells. l-theanine potentiated NO production in endothelial cells was evaluated using Griess reaction, NO sensitive electrode and a NO specific fluorescent probe (4-amino-5-methylamino-2',7'-difluororescein diacetate). l-Theanine induced NO production was partially attenuated in presence of l-NAME or l-NIO and completely abolished using eNOS siRNA. eNOS activation was Ca(2+) and Akt independent, as assessed by fluo-4AM and immunoblotting experiments, respectively and was associated with phosphorylation of eNOS Ser 1177. eNOS phosphorylation was inhibited in the presence of ERK1/2 inhibitor, PD-98059 and partially inhibited by PI3K inhibitor, LY-294002 and Wortmanin suggesting PI3K-ERK1/2 dependent pathway. Increased NO production was associated with vasodilation in ex ovo (chorioallantoic membrane) model. These results demonstrated that l-theanine administration in vitro activated ERK/eNOS resulting in enhanced NO production and thereby vasodilation in the artery. The results of our experiments are suggestive of l-theanine mediated vascular health benefits of tea. PMID:22819553

  12. Extensive Ethnogenomic Diversity of Endothelial Nitric Oxide Synthase (eNOS) Polymorphisms

    PubMed Central

    Thomas, Bolaji N.; Thakur, Tanya J.; Yi, Li; Guindo, Aldiouma; Diallo, Dapa A.; Ott, Jurg

    2013-01-01

    Nitric oxide (NO) is highly reactive, produced in endothelial cells by endothelial NO synthase (eNOS) and has been implicated in sickle cell pathophysiology. We evaluated the distribution of functionally significant eNOS variants (the T786C variant in the promoter region, the Glu298Asp variant in exon 7, and the variable number of tandem repeats (VNTR) in intron 4) in Africans, African Americans and Caucasians. The C-786 variant was more common in Caucasians than in Africans and African Americans. Consistent with other findings, the Asp-298 variant had the highest frequency in Caucasians followed by African Americans, but was completely absent in Africans. The very rare intron 4 allele, eNOS 4c, was found in some Africans and African Americans, but not in Caucasians. eNOS 4d allele was present in 2 Africans. These findings suggest a consistent and widespread genomic diversity in the distribution of eNOS variants in Africans, comparative to African Americans and Caucasians. PMID:23400313

  13. iNOS Activity Modulates Inflammation, Angiogenesis, and Tissue Fibrosis in Polyether-Polyurethane Synthetic Implants

    PubMed Central

    Cassini-Vieira, Puebla; Araújo, Fernanda Assis; da Costa Dias, Filipi Leles; Russo, Remo Castro; Andrade, Silvia Passos; Teixeira, Mauro Martins; Barcelos, Luciola Silva

    2015-01-01

    There is considerable interest in implantation techniques and scaffolds for tissue engineering and, for safety and biocompatibility reasons, inflammation, angiogenesis, and fibrosis need to be determined. The contribution of inducible nitric oxide synthase (iNOS) in the regulation of the foreign body reaction induced by subcutaneous implantation of a synthetic matrix was never investigated. Here, we examined the role of iNOS in angiogenesis, inflammation, and collagen deposition induced by polyether-polyurethane synthetic implants, using mice with targeted disruption of the iNOS gene (iNOS−/−) and wild-type (WT) mice. The hemoglobin content and number of vessels were decreased in the implants of iNOS−/− mice compared to WT mice 14 days after implantation. VEGF levels were also reduced in the implants of iNOS−/− mice. In contrast, the iNOS−/− implants exhibited an increased neutrophil and macrophage infiltration. However, no alterations were observed in levels of CXCL1 and CCL2, chemokines related to neutrophil and macrophage migration, respectively. Furthermore, the implants of iNOS−/− mice showed boosted collagen deposition. These data suggest that iNOS activity controls inflammation, angiogenesis, and fibrogenesis in polyether-polyurethane synthetic implants and that lack of iNOS expression increases foreign body reaction to implants in mice. PMID:26106257

  14. Impact of historical science short stories on students' attitudes and NOS understanding

    NASA Astrophysics Data System (ADS)

    Hall, Garrett

    This study examines the impact of historical short stories on upper and lower level high school chemistry students in the second semester of a two-semester course at a large Midwestern suburban school. Research focused on improved understanding of six fundamental nature of science (NOS) concepts made explicit in the stories, recollection of historical examples from the stories that supported student NOS thinking; student attitudes toward historical stories in comparison to traditional textbook readings as well as student attitudes regarding scientists and the development of science ideas. Data collection included surveys over six NOS concepts, attitudes towards science and reading, and semi-structured interviews. Analysis of the data collected in this study indicated significant increases in understanding for three of the six NOS concepts within the upper-level students and one of the six concepts for lower level students. Students were able to draw upon examples from the stories to defend their NOS views but did so more frequently when responding verbally in comparison to written responses on the surveys. The analysis also showed that students in both levels would rather utilize historical short stories over a traditional textbook and found value in learning about scientists and how scientific ideas are developed.

  15. TNFα reduces eNOS activity in endothelial cells through serine 116 phosphorylation and Pin1 binding: Confirmation of a direct, inhibitory interaction of Pin1 with eNOS.

    PubMed

    Kennard, Simone; Ruan, Ling; Buffett, Ryan J; Fulton, David; Venema, Richard C

    2016-06-01

    Production of NO by the endothelial nitric oxide synthase (eNOS) has a major role in blood pressure control and suppression of atherosclerosis. In a previous study, we presented evidence implicating the Pin1 prolyl isomerase in negative modulation of eNOS activity in bovine aortic endothelial cells (BAECs). Pin1 recognizes phosphoserine/phosphothreonine-proline motifs in target proteins and catalyzes prolyl isomerization at the peptide bond. In the present study, we show, first, with purified proteins, that Pin1 binds to eNOS directly via the Pin1 WW domain. Binding is enhanced by mimicking phosphorylation of eNOS at S116. Interaction of Pin1 with eNOS markedly reduces eNOS enzymatic activity. Second, in BAECs, we show that TNFα induces ERK 1/2-mediated S116 phosphorylation of eNOS, accompanied by Pin1 binding. TNFα treatment of BAECs results in a reduction in NO release from the cells in a manner that depends on the activities of both Pin1 and ERK 1/2. Evidence is also presented that this mechanism of eNOS regulation cannot occur in rat and mouse cells because there is no proline residue in the mouse and rat amino acid sequences adjacent to the putative phosphorylation site. Moreover, we find that phosphorylation of this site is not detectable in mouse eNOS. PMID:27073025

  16. Integrating nature of science instruction into a physical science content course for preservice elementary teachers: NOS views of teaching assistants

    NASA Astrophysics Data System (ADS)

    Hanuscin, Deborah L.; Akerson, Valarie L.; Phillipson-Mower, Teddie

    2006-09-01

    Teacher education programs have met with limited success in improving teachers' understanding of the nature of science (NOS). Research suggests that such efforts could be enhanced by addressing NOS in preservice teachers' science courses. We planned NOS instruction in a physical science content course for preservice elementary teachers. Our first concern was the NOS views of the instructors for the course, which included undergraduate teaching assistants (UTAs). We examined the NOS views of nine UTAs, and the impact of job-embedded professional development on their views. Although initially UTAs held a number of views inconsistent with science education reforms, four modes of explicit-and-reflective interventions, including analysis of NOS views of preservice teachers, resulted in favorable changes in UTAs' views.

  17. Tryptophan Lyase (NosL): Mechanistic Insights from Substrate Analogues and Mutagenesis.

    PubMed

    Bhandari, Dhananjay M; Xu, Hui; Nicolet, Yvain; Fontecilla-Camps, Juan C; Begley, Tadhg P

    2015-08-11

    NosL is a member of a family of radical S-adenosylmethionine enzymes that catalyze the cleavage of the Cα-Cβ bond of aromatic amino acids. In this paper, we describe a set of experiments with substrate analogues and mutants for probing the early steps of the NosL mechanism. We provide biochemical evidence in support of the structural studies showing that the 5'-deoxyadenosyl radical abstracts a hydrogen atom from the amino group of tryptophan. We demonstrate that d-tryptophan is a substrate for NosL but shows relaxed regio control of the first β-scission reaction. Mutagenesis studies confirm that Arg323 is important for controlling the regiochemistry of the β-scission reaction and that Ser340 binds the substrate by hydrogen bonding to the indolic N1 atom. PMID:26204056

  18. 78 FR 72929 - Notice of Availability of the Proposed Notice of Sale (NOS) for Eastern Gulf of Mexico Planning...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-04

    ...BOEM announces the availability of the Proposed NOS for proposed EPA Sale 225. This Notice is published pursuant to 30 CFR 556.29(c) as a matter of information to the public. With regard to oil and gas leasing on the OCS, the Secretary of the Interior, pursuant to section 19 of the OCS Lands Act, provides affected States the opportunity to review the Proposed NOS. The Proposed NOS sets forth......

  19. Two functionally distinct pools of eNOS in endothelium are facilitated by myoendothelial junction lipid composition.

    PubMed

    Biwer, Lauren A; Taddeo, Evan P; Kenwood, Brandon M; Hoehn, Kyle L; Straub, Adam C; Isakson, Brant E

    2016-07-01

    In resistance arteries, endothelial cells (EC) make contact with smooth muscle cells (SMC), forming myoendothelial junctions (MEJ). Endothelial nitric oxide synthase (eNOS) is present in the luminal side of the EC (apical EC) and the basal side of the EC (MEJ). To test if these eNOS pools acted in sync or separately, we co-cultured ECs and SMCs, then stimulated SMCs with phenylephrine (PE). Adrenergic activation causes inositol [1,4,5] triphosphate (IP3) to move from SMC to EC through gap junctions at the MEJ. PE increases MEJ eNOS phosphorylation (eNOS-P) at S1177, but not in EC. Conversely, we used bradykinin (BK) to increase EC calcium; this increased EC eNOS-P but did not affect MEJ eNOS-P. Inhibiting gap junctions abrogated the MEJ eNOS-P after PE, but had no effect on BK eNOS-P. Differential lipid composition between apical EC and MEJ may account for the compartmentalized eNOS-P response. Indeed, DAG and phosphatidylserine are both enriched in MEJ. These lipids are cofactors for PKC activity, which was significantly increased at the MEJ after PE. Because PKC activity also relies on endoplasmic reticulum (ER) calcium release, we used thapsigargin and xestospongin C, BAPTA, and PKC inhibitors, which caused significant decreases in MEJ eNOS-P after PE. Functionally, BK inhibited leukocyte adhesion and PE caused an increase in SMC cGMP. We hypothesize that local lipid composition of the MEJ primes PKC and eNOS-P for stimulation by PE, allowing for compartmentalized function of eNOS in the blood vessel wall. PMID:27106139

  20. Dynamin-2 is a novel NOS1β interacting protein and negative regulator in the collecting duct.

    PubMed

    Hyndman, Kelly A; Arguello, Alexandra M; Morsing, Sofia K H; Pollock, Jennifer S

    2016-04-01

    Nitric oxide synthase 1 (NOS1)-derived nitric oxide (NO) production in collecting ducts is critical for maintaining fluid-electrolyte balance. Rat collecting ducts express both the full-length NOS1α and its truncated variant NOS1β, while NOS1β predominates in mouse collecting ducts. We reported that dynamin-2 (DNM2), a protein involved in excising vesicles from the plasma membrane, and NOS1α form a protein-protein interaction that promotes NO production in rat collecting ducts. NOS1β was found to be highly expressed in human renal cortical/medullary samples; hence, we tested the hypothesis that DNM2 is a positive regulator of NOS1β-derived NO production. COS7 and mouse inner medullary collecting duct-3 (mIMCD3) cells were transfected with NOS1β and/or DNM2. Coimmunoprecipitation experiments show that NOS1β and DNM2 formed a protein-protein interaction. DNM2 overexpression decreased nitrite production (index of NO) in both COS7 and mIMCD-3 cells by 50-75%. mIMCD-3 cells treated with a panel of dynamin inhibitors or DNM2 siRNA displayed increased nitrite production. To elucidate the physiological significance of IMCD DNM2/NOS1β regulation in vivo, flox control and CDNOS1 knockout mice were placed on a high-salt diet, and freshly isolated IMCDs were treated acutely with a dynamin inhibitor. Dynamin inhibition increased nitrite production by IMCDs from flox mice. This response was blunted (but not abolished) in collecting duct-specific NOS1 knockout mice, suggesting that DNM2 also negatively regulates NOS3 in the mouse IMCD. We conclude that DNM2 is a novel negative regulator of NO production in mouse collecting ducts. We propose that DNM2 acts as a "break" to prevent excess or potentially toxic NO levels under high-salt conditions. PMID:26791826

  1. Detecting Nitrous Oxide Reductase (nosZ) Genes in Soil Metagenomes: Method Development and Implications for the Nitrogen Cycle

    PubMed Central

    Orellana, L. H.; Rodriguez-R, L. M.; Higgins, S.; Chee-Sanford, J. C.; Sanford, R. A.; Ritalahti, K. M.; Löffler, F. E.

    2014-01-01

    ABSTRACT Microbial activities in soils, such as (incomplete) denitrification, represent major sources of nitrous oxide (N2O), a potent greenhouse gas. The key enzyme for mitigating N2O emissions is NosZ, which catalyzes N2O reduction to N2. We recently described “atypical” functional NosZ proteins encoded by both denitrifiers and nondenitrifiers, which were missed in previous environmental surveys (R. A. Sanford et al., Proc. Natl. Acad. Sci. U. S. A. 109:19709–19714, 2012, doi:10.1073/pnas.1211238109). Here, we analyzed the abundance and diversity of both nosZ types in whole-genome shotgun metagenomes from sandy and silty loam agricultural soils that typify the U.S. Midwest corn belt. First, different search algorithms and parameters for detecting nosZ metagenomic reads were evaluated based on in silico-generated (mock) metagenomes. Using the derived cutoffs, 71 distinct alleles (95% amino acid identity level) encoding typical or atypical NosZ proteins were detected in both soil types. Remarkably, more than 70% of the total nosZ reads in both soils were classified as atypical, emphasizing that prior surveys underestimated nosZ abundance. Approximately 15% of the total nosZ reads were taxonomically related to Anaeromyxobacter, which was the most abundant genus encoding atypical NosZ-type proteins in both soil types. Further analyses revealed that atypical nosZ genes outnumbered typical nosZ genes in most publicly available soil metagenomes, underscoring their potential role in mediating N2O consumption in soils. Therefore, this study provides a bioinformatics strategy to reliably detect target genes in complex short-read metagenomes and suggests that the analysis of both typical and atypical nosZ sequences is required to understand and predict N2O flux in soils. PMID:24895307

  2. Light responses and morphology of bNOS-immunoreactive neurons in the mouse retina

    PubMed Central

    Pang, Ji-Jie; Gao, Fan; Wu, Samuel M.

    2010-01-01

    Nitric oxide (NO), produced by NO synthase (NOS), modulates the function of all retinal neurons and ocular blood vessels and participates in the pathogenesis of ocular diseases. To further understand the regulation of ocular NO release, we systematically studied the morphology, topography and light responses of NOS-containing amacrine cells (NOACs) in dark-adapted mouse retina. Immunohistological staining for neuronal NOS (bNOS), combined with retrograde labeling of ganglion cells (GCs) with Neurobiotin (NB, a gap junction permeable dye) and Lucifer yellow (LY, a less permeable dye), was used to identify NOACs. The light responses of ACs were recorded under whole-cell voltage clamp conditions and cell morphology was examined with a confocal microscope. We found that in dark-adapted conditions bNOS-immunoreactivity (IR) was present primarily in the inner nuclear layer and the ganglion cell layer. bNOS-IR somas were negative for LY, thus they were identified as ACs; nearly 6 % of the cells were labeled by NB but not by LY, indicating that they were dye-coupled with GCs. Three morphological subtypes of NOACs (NI, NII and displaced) were identified. The cell density, inter-cellular distance and the distribution of NOACs were studied in whole retinas. Light evoked depolarizing highly sensitive ON-OFF responses in NI cells and less sensitive OFF responses in NII cells. Frequent (1 to 2 Hz) or abrupt change of light-intensity evoked larger peak responses. The possibility for light to modify NO release from NOACs is discussed. PMID:20503422

  3. Ischemic preconditioning protects the brain against injury via inhibiting CaMKII-nNOS signaling pathway.

    PubMed

    Wang, Mei; Qi, Da-Shi; Zhou, Cui; Han, Dong; Li, Pei-Pei; Zhang, Fang; Zhou, Xiao-Yan; Han, Meng; Di, Jie-Hui; Ye, Jun-Song; Yu, Hong-Min; Song, Yuan-Jian; Zhang, Guang-Yi

    2016-03-01

    Although studies have shown that cerebral ischemic preconditioning (IPC) can ameliorate ischemia/reperfusion (I/R) induced brain damage, but its precise mechanisms remain unknown. Therefore, the aim of this study was to investigate the neuroprotective mechanisms of IPC against ischemic brain damage induced by cerebral I/R and to explore whether the Calcium/calmodulin-dependent protein kinase II (CaMKII)-mediated up-regulation of nNOS ser847-phosphorylation signaling pathway contributed to the protection provided by IPC. Transient global brain ischemia was induced by 4-vessel occlusion in adult male Sprague-Dawley rats. The rats were pretreated with 3min of IPC alone or KN62 (selective antagonist of CaMKII) treatment before IPC, after reperfusion for 3 days, 6min ischemia was induced. Cresyl violet staining was used to examine the survival of hippocampal CA1 pyramidal neurons. Immunoblotting was performed to measure the phosphorylation of CaMKII, nNOS, c-Jun and the expression of FasL. Immunoprecipitation was used to examine the binding between PSD95 and nNOS. The results showed that IPC could significantly protect neurons against cerebral I/R injury, furthermore, the combination of PSD95 and nNOS was increased, coinstantaneously the phosphorylation of CaMKII and nNOS (ser847) were up-regulated, however the activation of c-Jun and FasL were reduced. Conversely, KN62 treatment before IPC reversed all these effects of IPC. Taken together, the results suggest that IPC could diminish ischemic brain injury through CaMKII-mediated up-regulation of nNOS ser847-phosphorylation signaling pathway. PMID:26794251

  4. Relationship of bovine NOS2 gene polymorphisms to the risk of bovine tuberculosis in Holstein cattle

    PubMed Central

    CHENG, Yafen; HUANG, ChenShen; TSAI, Hsiang-Jung

    2015-01-01

    Many studies suggest significant genetic variation in the resistance of cattle and humans to infection with Mycobacterium bovis, the causative agent of zoonotic tuberculosis. The inducible nitric oxide synthase (iNOS which is encoded by the NOS2 gene) plays a key role in the immunological control of a broad spectrum of infectious agents. This study aimed to investigate the influence of genetic variations in the promoter of the NOS2 gene on bovine tuberculosis (bTB) susceptibility. In this study, the NOS2 genes of 74 bTB-infected Holstein cows and 90 healthy controls were genotyped using PCR followed by nucleotide sequencing. Polymorphisms at rs207692718, rs109279434, rs209895548, rs385993919, rs433717754, rs383366213, rs466730386, rs715225976, rs525673647, rs720757654 and g.19958101T>G in the promoter region of the NOS2 gene were detected. The g.19958101T>G SNP produced two different conformation patterns (TT and TG) and the TG genotype was over-represented in the bTB group (20.27%) compared with the control group (2.22%). The TG genotype frequency of the g.19958101T>G variant was significantly higher in bTB cattle than in healthy controls (OR, 11.19; 95% CI, 2.47–50.73; P=0.0002). The G allele of the g.19958101T>G polymorphism was more frequent in bTB group when compared to control group (10.14% versus 1.11%). Furthermore, the G allele was a risk factor for bTB susceptibility (OR, 10.04; 95% CI, 2.26–44.65; P=0.0002). In conclusion, the g.19958101T>G polymorphism of the NOS2 gene may contribute to the susceptibility of Holstein cattle to bTB. PMID:26468216

  5. Physiological stress increases renal injury in eNOS-knockout mice.

    PubMed

    Pointer, Mildred A; Daumerie, Geraldine; Bridges, LaKessha; Yancey, Sadiqa; Howard, Kelly; Davis, Wendell; Huang, Paul; Loscalzo, Joseph

    2012-03-01

    African Americans have a fourfold greater likelihood of developing end-stage renal disease (ESRD) compared with Caucasians. It has been proposed that the increased prevalence may be explained by non-traditional factors such as environmental stress and psychosocial factors. In this study, we used infrequent running to exhaustion as a physiological stressor to mimic real life experiences, such walking up stairs when an elevator is malfunctioning or running to catch a bus, to study its effect on renal injury in a hypertensive mouse model (endothelial nitric oxide synthase-deficient mice; eNOS(-/-)). This model has previously been shown to have renal injury comparable to that observed in African Americans. The effect of physiological stress on renal injury was examined in the setting of low (0.12%), control (0.45%) and high (8%) dietary salt. Following bouts of physiological stress, eNOS(-/-) mice had significantly greater interstitial inflammation compared with unstressed eNOS(-/-) mice (two-way analysis of variance (2-ANOVA), Holm-Sidak; P<0.01). Interestingly, eNOS(-/-) mice on a high-salt diet had greater interstitial inflammation compared with similarly stressed eNOS(-/-) mice on a low- or control-salt diet (2-ANOVA, Holm-Sidak; P<0.03). These effects of stress were independent of systolic blood pressure (141±7, 143±4, and 158±8 vs. 141±4, 138±5, 150±4 mm Hg; end of study vs. baseline, respectively). There was no significant effect of stress or dietary salt on renal injury in control wild-type mice (eNOS(+)/(+)). These data demonstrate that physiological stress exacerbates the renal injury associated with hypertension and that high-salt compounds this effect of stress. These results provide support for the idea that psychosocial and environmental factors contribute to the increased prevalence of ESRD in hypertensive African Americans. PMID:22170389

  6. Inducible nitric oxide synthase (iNOS) regulatory region variation in non-human primates

    PubMed Central

    Roodgar, Morteza; Ross, Cody T.; Kenyon, Nicholas J.; Marcelino, Gretchen; Smith, David Glenn

    2015-01-01

    Inducible nitric oxide synthase (iNOS) is an enzyme that plays a key role in intracellular immune response against respiratory infections. Since various species of nonhuman primates exhibit different levels of susceptibility to infectious respiratory diseases, and since variation in regulatory regions of genes is thought to play a key role in expression levels of genes, two candidate regulatory regions of iNOS were mapped, sequenced, and compared across five species of nonhuman primates: African green monkeys (chlorocebus sabeus), pig-tailed macaques (Macaca mulatta), cynomolgus macaques (Macaca fascicularis), Indian rhesus macaques (Macaca mulatta), and Chinese rhesus macaques (M. mulatta). In addition, we conducted an in silico analysis of the transcription factor binding sites associated with genetic variation in these two candidate regulatory regions across species. We found that only one of the two candidate regions showed strong evidence of involvement in iNOS regulation. Specifically, we found evidence of 13 conserved binding site candidates linked to iNOS regulation: AP-1, C/EBPB, CREB, GATA-1, GATA-3, NF-AT, NF-AT5, NF-κB, KLF4, Oct-1, PEA3, SMAD3, and TCF11. Additionally, we found evidence of interspecies variation in binding sites for several regulatory elements linked to iNOS (GATA-3, GATA-4, KLF6, SRF, STAT-1, STAT-3, OLF-1 and HIF-1) across species, especially in African green monkeys relative to other species. Given the key role of iNOS in respiratory immune response, the findings of this study might help guide the direction of future studies aimed to uncover the molecular mechanisms underlying the increased susceptibility of African green monkeys to several viral and bacterial respiratory infections. PMID:25675838

  7. Changes in eNOS phosphorylation contribute to increased arteriolar NO release during juvenile growth

    PubMed Central

    Kang, Lori S.; Nurkiewicz, Timothy R.; Wu, Guoyao

    2012-01-01

    Nitric oxide (NO) mediates a major portion of arteriolar endothelium-dependent dilation in adults, but indirect evidence has suggested that NO contributes minimally to these responses in the young. Isolated segments of arterioles were studied in vitro to verify this age-related increase in NO release and investigate the mechanism by which it occurs. Directly measured NO release induced by ACh or the Ca2+ ionophore A-23187 was five- to sixfold higher in gracilis muscle arterioles from 42- to 46-day-old (juvenile) rats than in those from 25- to 28-day-old (weanling) rats. There were no differences between groups in arteriolar endothelial NO synthase (eNOS) expression or tetrahydrobiopterin levels, and arteriolar l-arginine levels were lower in juvenile vessels than in weanling vessels (104 ± 6 vs.126 ± 3 pmol/mg). In contrast, agonist-induced eNOS Thr495 dephosphorylation and eNOS Ser1177 phosphorylation (events required for maximal activity) were up to 30% and 65% greater, respectively, in juvenile vessels. Juvenile vessels did not show increased expression of enzymes that mediate these events [protein phosphatases 1 and 2A and PKA and PKB (Akt)] or heat shock protein 90, which facilitates Ser1177 phosphorylation. However, agonist-induced colocalization of heat shock protein 90 with eNOS was 34–66% greater in juvenile vessels than in weanling vessels, and abolition of this difference with geldanamycin also abolished the difference in Ser1177 phosphorylation between groups. These findings suggest that growth-related increases in arteriolar NO bioavailability may be due at least partially to changes in the regulation of eNOS phosphorylation and increased signaling activity, with no change in the abundance of eNOS signaling proteins. PMID:22140037

  8. NOS1-derived nitric oxide promotes NF-κB transcriptional activity through inhibition of suppressor of cytokine signaling-1

    PubMed Central

    Baig, Mirza Saqib; Zaichick, Sofia V.; Mao, Mao; de Abreu, Andre L.; Bakhshi, Farnaz R.; Hart, Peter C.; Saqib, Uzma; Deng, Jing; Chatterjee, Saurabh; Block, Michelle L.; Vogel, Stephen M.; Malik, Asrar B.; Consolaro, Marcia E.L.; Christman, John W.; Minshall, Richard D.

    2015-01-01

    The NF-κB pathway is central to the regulation of inflammation. Here, we demonstrate that the low-output nitric oxide (NO) synthase 1 (NOS1 or nNOS) plays a critical role in the inflammatory response by promoting the activity of NF-κB. Specifically, NOS1-derived NO production in macrophages leads to proteolysis of suppressor of cytokine signaling 1 (SOCS1), alleviating its repression of NF-κB transcriptional activity. As a result, NOS1−/− mice demonstrate reduced cytokine production, lung injury, and mortality when subjected to two different models of sepsis. Isolated NOS1−/− macrophages demonstrate similar defects in proinflammatory transcription on challenge with Gram-negative bacterial LPS. Consistently, we found that activated NOS1−/− macrophages contain increased SOCS1 protein and decreased levels of p65 protein compared with wild-type cells. NOS1-dependent S-nitrosation of SOCS1 impairs its binding to p65 and targets SOCS1 for proteolysis. Treatment of NOS1−/− cells with exogenous NO rescues both SOCS1 degradation and stabilization of p65 protein. Point mutation analysis demonstrated that both Cys147 and Cys179 on SOCS1 are required for its NO-dependent degradation. These findings demonstrate a fundamental role for NOS1-derived NO in regulating TLR4-mediated inflammatory gene transcription, as well as the intensity and duration of the resulting host immune response. PMID:26324446

  9. Antioxidant diet and sex interact to regulate NOS isoform expression and glomerular mesangium proliferation in Zucker diabetic rat kidney.

    PubMed

    Slyvka, Yuriy; Malgor, Ramiro; Inman, Sharon R; Ding, Julia; Heh, Victor; Nowak, Felicia V

    2016-03-01

    Oxidative stress contributes substantially to the pathophysiology of diabetic nephropathy (DN). Consumption of an antioxidant-fortified (AO) diet from an early age prevents or delays later development of DN in the Zucker rat female with type 2 diabetes. We hypothesize this is due to effects on mesangial matrix and renal nitric oxide synthase (NOS) distribution and to sex-specific differences in NOS responses in the diabetic kidney. Total glomerular tuft area (GTA) and PAS-positive tuft area (PTA), endothelial (e), neuronal (n) and inducible (i) NOS were quantified in males and females on AO or regular (REG) diet at 6 and 20 weeks of age. eNOS was observed in glomeruli and tubules. nNOS predominantly localized to tubular epithelium in both cortex and medulla. iNOS was expressed in proximal and distal tubules and collecting ducts. Sex, diabetes duration and AO diet affected the distribution of the three isoforms. GTA and PTA increased with duration of hyperglycemia and showed a negative correlation with renal levels of all NOS isoforms. AO diet in both genders was associated with less PAS-positive staining and less mesangial expansion than the REG diet, an early increase in cortical iNOS in males, and sex-specific changes in cortical eNOS at 20 weeks. These effects of AO diet may contribute to sex-specific preservation of renal function in females. PMID:26797190

  10. Non-viral eNOS gene delivery and transfection with stents for the treatment of restenosis

    PubMed Central

    2010-01-01

    Background In this study, we have examined local non-viral gene delivery, transfection, and therapeutic efficacy of endothelial nitric oxide synthase (eNOS) encoding plasmid DNA administered using coated stents in a rabbit iliac artery restenosis model. Methods Lipopolyplexes (LPPs) with eNOS expressing plasmid DNA were immobilized on stainless steel stents using poly(D,L-lactide-co-glycolide) (PLGA) and type B gelatin coatings. The gene-eluting stents were implanted bilaterally in the denuded iliac arteries and eNOS transfection and therapeutic efficacy were examined 14 days after implantation. Results The results show that non-viral lipopolyplex-coated stents can efficiently tranfect eNOS locally in the arterial lumen assessed by PCR and ELISA. Human eNOS ELISA levels were significantly raised 24 hours after transfection compared to controls (125 pg eNOS compared to <50 pg for all controls including naked DNA). Local eNOS production suppressed smooth muscle cell proliferation and promoted re-endothelialization of the artery showing a significant reduction in restenosis of 1.75 neointima/media ratio for stents with lipoplexes encoding eNOS compared with 2.3 neointima/media ratio for stents with lipoplexes encosing an empty vector. Conclusions These results support the hypothesis that a potent non-viral gene vector encoding for eNOS coated onto a stent can inhibit restenosis through inhibition of smooth muscle cell growth and promotion of a healthy endothelium. PMID:20875110

  11. A vast amount of various invariant tori in the Nosé-Hoover oscillator

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Xiao-Song

    2015-12-01

    This letter restudies the Nosé-Hoover oscillator. Some new averagely conservative regions are found, each of which is filled with different sequences of nested tori with various knot types. Especially, the dynamical behaviors near the border of "chaotic region" and conservative regions are studied showing that there exist more complicated and thinner invariant tori around the boundaries of conservative regions bounded by tori. Our results suggest an infinite number of island chains in a "chaotic sea" for the Nosé-Hoover oscillator.

  12. A vast amount of various invariant tori in the Nosé-Hoover oscillator

    SciTech Connect

    Wang, Lei; Yang, Xiao-Song

    2015-12-15

    This letter restudies the Nosé-Hoover oscillator. Some new averagely conservative regions are found, each of which is filled with different sequences of nested tori with various knot types. Especially, the dynamical behaviors near the border of “chaotic region” and conservative regions are studied showing that there exist more complicated and thinner invariant tori around the boundaries of conservative regions bounded by tori. Our results suggest an infinite number of island chains in a “chaotic sea” for the Nosé-Hoover oscillator.

  13. Small molecule inhibitors of PSD95-nNOS protein-protein interactions as novel analgesics.

    PubMed

    Lee, Wan-Hung; Xu, Zhili; Ashpole, Nicole M; Hudmon, Andy; Kulkarni, Pushkar M; Thakur, Ganesh A; Lai, Yvonne Y; Hohmann, Andrea G

    2015-10-01

    Aberrant increases in NMDA receptor (NMDAR) signaling contributes to central nervous system sensitization and chronic pain by activating neuronal nitric oxide synthase (nNOS) and generating nitric oxide (NO). Because the scaffolding protein postsynaptic density 95kDA (PSD95) tethers nNOS to NMDARs, the PSD95-nNOS complex represents a therapeutic target. Small molecule inhibitors IC87201 (EC5O: 23.94 μM) and ZL006 (EC50: 12.88 μM) directly inhibited binding of purified PSD95 and nNOS proteins in AlphaScreen without altering binding of PSD95 to ErbB4. Both PSD95-nNOS inhibitors suppressed glutamate-induced cell death with efficacy comparable to MK-801. IC87201 and ZL006 preferentially suppressed phase 2A pain behavior in the formalin test and suppressed allodynia induced by intraplantar complete Freund's adjuvant administration. IC87201 and ZL006 suppressed mechanical and cold allodynia induced by the chemotherapeutic agent paclitaxel (ED50s: 2.47 and 0.93 mg/kg i.p. for IC87201 and ZL006, respectively). Efficacy of PSD95-nNOS disruptors was similar to MK-801. Motor ataxic effects were induced by MK-801 but not by ZL006 or IC87201. Finally, MK-801 produced hyperalgesia in the tail-flick test whereas IC87201 and ZL006 did not alter basal nociceptive thresholds. Our studies establish the utility of using AlphaScreen and purified protein pairs to establish and quantify disruption of protein-protein interactions. Our results demonstrate previously unrecognized antinociceptive efficacy of ZL006 and establish, using two small molecules, a broad application for PSD95-nNOS inhibitors in treating neuropathic and inflammatory pain. Collectively, our results demonstrate that disrupting PSD95-nNOS protein-protein interactions is effective in attenuating pathological pain without producing unwanted side effects (i.e. motor ataxia) associated with NMDAR antagonists. PMID:26071110

  14. Catalytic Promiscuity of the Radical S-adenosyl-L-methionine Enzyme NosL

    PubMed Central

    Ding, Wei; Ji, Xinjian; Li, Yongzhen; Zhang, Qi

    2016-01-01

    Catalytic promiscuity plays a key role in enzyme evolution and the acquisition of novel biological functions. Because of the high reactivity of radical species, in our view enzymes involving radical-mediated mechanisms could intrinsically be more prone to catalytic promiscuity. This mini-review summarizes the recent advances in the study of NosL, a radical S-adenosyl-L-methionine (SAM)-dependent L-tryptophan (L-Trp) lyase. We demonstrate here the interesting chemistry and remarkable catalytic promiscuity of NosL, and attempt to highlight the high evolvability of radical SAM enzymes and the potential to engineer these enzymes for novel and improved activities. PMID:27446906

  15. Tetrahydrobiopterin (BH4), a cofactor for nNOS, restores gastric emptying and nNOS expression in female diabetic rats.

    PubMed

    Gangula, Pandu R R; Mukhopadhyay, Sutapa; Ravella, Kalpana; Cai, Shijie; Channon, Keith M; Garfield, Robert E; Pasricha, Pankaj J

    2010-05-01

    Gastroparesis is a debilitating disease predominantly affecting young women. Recently, dysregulation of neuronal nitric oxide synthase (nNOS) in myenteric plexus neurons has been implicated for delayed solid gastric emptying/gastroparesis in diabetic patients. In this study, we have explored the role of tetrahydrobiopterin (BH4), a major cofactor for nNOS activity and NO synthesis in diabetic gastroparesis. Diabetes was induced with single injection of streptozotocin (55 mg/kg body wt, ip) in female rats, with experiments performed on week 3 or 9 following induction, with or without 3-wk BH4 supplementation. Gastric pyloric BH4 levels were significantly decreased in diabetic female rats compared with control (18.6 +/- 1.45 vs. 31.0 +/- 2.31 pmol/mg protein). In vitro studies showed that 2,4-diamino-6-hydroxypyrimidine (DAHP), an inhibitor of BH4 synthesis, significantly decreased gastric NO release and nitrergic relaxation. Three-week dietary supplementation of BH4 either from day 1 or week 6 significantly attenuated diabetes-induced delayed gastric emptying for solids (3 wk: BH4, 67 +/- 6.7 vs. diabetic, 36.05 +/- 7.09; 9 wk: BH4, 57 +/- 8.45 vs. diabetic, 33 +/- 9.91) and diabetes-induced reduction in pyloric nNOS-alpha protein expression in female rats. Supplementation of BH4 significantly restored gastric nNOS-alpha dimerization in 9-wk-old diabetic female rats. In addition, BH4 treatment reversed (17.23 +/- 5.81 vs. 42.0 +/- 2.70 mmHg x s) the diabetes-induced changes in intragastric pressures (IGP) and gastric pyloric nitrergic relaxation (-0.62 +/- 0.01 vs. -0.22 +/- 0.07). BH4 deficiency plays a critical role in diabetes-induced alterations including delayed solid gastric emptying, increased IGP, reduced pyloric nitrergic relaxation, and nNOS-alpha expression in female rats. Supplementation of BH4 accelerates gastric emptying by restoring nitrergic system in diabetic female rats. Therefore, BH4 supplementation is a potential therapeutic option for female

  16. Identification of a negative response element in the human inducible nitric-oxide synthase (hiNOS) promoter: The role of NF-κB-repressing factor (NRF) in basal repression of the hiNOS gene

    PubMed Central

    Feng, Xuesheng; Guo, Zhong; Nourbakhsh, Mahtab; Hauser, Hansjorg; Ganster, Ray; Shao, Lifang; Geller, David A.

    2002-01-01

    Although nuclear factor (NF)-κB plays a central role in mediating cytokine-stimulated human inducible nitric-oxide synthase (hiNOS) gene transcription, very little is known about the factors involved in silencing of the hiNOS promoter. NF-κB-repressing factor (NRF) interacts with a specific negative regulatory element (NRE) to mediate transcriptional repression of certain NF-κB responsive genes. By sequence comparison with the IFN-β and IL-8 promoters, we identified an NRE in the hiNOS promoter located at −6.7 kb upstream. In A549 and HeLa human cells, constitutive NRF mRNA expression is detected by RT-PCR. Gel shift assay showed constitutive NRF binding to the hiNOS NRE. Mutation of the −6.7-kb NRE site in the hiNOS promoter resulted in loss of NRF binding and increased basal but not cytokine-stimulated hiNOS transcription in promoter transfection experiments. Interestingly, overexpression of NRF suppressed both basal and cytokine-induced hiNOS promoter activity that depended on an intact cis-acting NRE motif. By using stably transformed HeLa cells with the tetracycline on/off expression system, reduction of cellular NRF by expressing antisense NRF increased basal iNOS promoter activity and resulted in constitutive iNOS mRNA expression. These data demonstrate that the transacting NRF protein is involved in constitutive silencing of the hiNOS gene by binding to a cis-acting NRE upstream in the hiNOS promoter. PMID:12381793

  17. Carbon monoxide increases inducible NOS expression that mediates CO-induced myocardial damage during ischemia-reperfusion.

    PubMed

    Meyer, Grégory; André, Lucas; Kleindienst, Adrien; Singh, François; Tanguy, Stéphane; Richard, Sylvain; Obert, Philippe; Boucher, François; Jover, Bernard; Cazorla, Olivier; Reboul, Cyril

    2015-04-01

    We investigated the role of inducible nitric oxide (NO) synthase (iNOS) on ischemic myocardial damage in rats exposed to daily low nontoxic levels of carbon monoxide (CO). CO is a ubiquitous environmental pollutant that impacts on mortality and morbidity from cardiovascular diseases. We have previously shown that CO exposure aggravates myocardial ischemia-reperfusion (I/R) injury partly because of increased oxidative stress. Nevertheless, cellular mechanisms underlying cardiac CO toxicity remain hypothetical. Wistar rats were exposed to simulated urban CO pollution for 4 wk. First, the effects of CO exposure on NO production and NO synthase (NOS) expression were evaluated. Myocardial I/R was performed on isolated perfused hearts in the presence or absence of S-methyl-isothiourea (1 μM), a NOS inhibitor highly specific for iNOS. Finally, Ca(2+) handling was evaluated in isolated myocytes before and after an anoxia-reoxygenation performed with or without S-methyl-isothiourea or N-acetylcystein (20 μM), a nonspecific antioxidant. Our main results revealed that 1) CO exposure altered the pattern of NOS expression, which is characterized by increased neuronal NOS and iNOS expression; 2) cardiac NO production increased in CO rats because of its overexpression of iNOS; and 3) the use of a specific inhibitor of iNOS reduced myocardial hypersensitivity to I/R (infarct size, 29 vs. 51% of risk zone) in CO rat hearts. These last results are explained by the deleterious effects of NO and reactive oxygen species overproduction by iNOS on diastolic Ca(2+) overload and myofilaments Ca(2+) sensitivity. In conclusion, this study highlights the involvement of iNOS overexpression in the pathogenesis of simulated urban CO air pollution exposure. PMID:25595132

  18. Angiotensin II-mediated posttranslational modification of nNOS in the PVN of rats with CHF: role for PIN

    PubMed Central

    Sharma, Neeru M.; Llewellyn, Tamra L.; Zheng, Hong

    2013-01-01

    An increased sympathetic drive is an adverse characteristic in chronic heart failure (CHF). The protein expression of neuronal nitric oxide synthase (nNOS)- and hence nitric oxide (NO)-mediated sympathoinhibition is reduced in the paraventricular nucleus (PVN) of rats with CHF. However, the molecular mechanism(s) of nNOS downregulation remain(s) unclear. The aim of the study was to reveal the underlying molecular mechanism for the downregulation of nNOS in the PVN of CHF rats. Sprague-Dawley rats with CHF (6–8 wk after coronary artery ligation) demonstrated decreased nNOS dimer/monomer ratio (42%), with a concomitant increase in the expression of PIN (a protein inhibitor of nNOS known to dissociate nNOS dimers into monomers) by 47% in the PVN. Similarly, PIN expression is increased in a neuronal cell line (NG108) treated with angiotensin II (ANG II). Furthermore, there is an increased accumulation of high-molecular-weight nNOS-ubiquitin (nNOS-Ub) conjugates in the PVN of CHF rats (29%). ANG II treatment in NG108 cells in the presence of a proteasome inhibitor, lactacystin, also leads to a 69% increase in accumulation of nNOS-Ub conjugates immunoprecipitated by an antiubiquitin antibody. There is an ANG II-driven, PIN-mediated decrease in the dimeric catalytically active nNOS in the PVN, due to ubiquitin-dependent proteolytic degradation in CHF. Our results show a novel intermediary mechanism that leads to decreased levels of active nNOS in the PVN, involved in subsequent reduction in sympathoinhibition during CHF, offering a new target for the treatment of CHF and other cardiovascular diseases. PMID:23832698

  19. Ezetimibe potently reduces vascular inflammation and arteriosclerosis in eNOS deficient ApoE ko mice

    PubMed Central

    Kuhlencordt, Peter J.; Padmapriya, P.; Rützel, S.; Schödel, J.; Hu, K.; Schäfer, A.; Huang, P.L.; Ertl, G.; Bauersachs, J.

    2013-01-01

    Objective Hypercholesterolemia is associated with decreased vascular nitric oxide bioavailability and deletion of endothelial nitric oxide synthase (eNOS) markedly accelerates atherosclerosis development in apolipoprotein E knockout (apoE ko) mice. The current study tests whether atheroprotection provided by a lipid lowering therapy with Ezetimibe depends on eNOS. Methods/Results ApoE ko and apoE/eNOS double ko (dko) mice received a high fat diet with or without 0.05% Ezetimibe. Ezetimibe significantly reduced plasma cholesterol concentrations and atherogenic lipoproteins in both genotypes to a similar extent. Moreover, the drug reduced vascular inflammation, as it significantly reduced Vascular Cell Adhesion Molecule-1 (VCAM-1) expression and vascular CD14 expression, a marker for mononuclear cell infiltration, in both genotypes. Neither NOS protein expression nor vascular reactivity of aortic rings were changed in apoE ko mice following Ezetimibe treatment. Significant lesion reduction was seen in Ezetimibe treated male and female apoE ko and apoE/eNOS dko animals (p≤0.05). Interestingly, the drug mediated additional atheroprotection in male apoE ko, compared to male eNOS dko mice, suggesting that lipid lowering does provide additional eNOS dependent atheroprotection in this experimental group. Conclusion Lipid lowering with Ezetimibe potently reduces atherosclerosis and vascular inflammation independent of eNOS. Moreover, Ezetimibe did not exert any effects on eNOS protein expression or enzyme activity. However, additional atheroprotection by Ezetimibe was observed in eNOS competent apoE ko mice, suggesting that some of the drug's antiatherosclerotic effects are mediated by the eNOS pathway. PMID:18479686

  20. Consistency of the Health of the Nation Outcome Scales (HoNOS) at inpatient-to-community transition

    PubMed Central

    Harvey, Richard; Phung, Dinh; Venkatesh, Svetha; Connor, Jason P

    2016-01-01

    Objectives The Health of the Nation Outcome Scales (HoNOS) are mandated outcome-measures in many mental-health jurisdictions. When HoNOS are used in different care settings, it is important to assess if setting specific bias exists. This article examines the consistency of HoNOS in a sample of psychiatric patients transitioned from acute inpatient care and community centres. Setting A regional mental health service with both acute and community facilities. Participants 111 psychiatric patients were transferred from inpatient care to community care from 2012 to 2014. Their HoNOS scores were extracted from a clinical database; Each inpatient-discharge assessment was followed by a community-intake assessment, with the median period between assessments being 4 days (range 0–14). Assessor experience and professional background were recorded. Primary and secondary outcome measures The difference of HoNOS at inpatient-discharge and community-intake were assessed with Pearson correlation, Cohen's κ and effect size. Results Inpatient-discharge HoNOS was on average lower than community-intake HoNOS. The average HoNOS was 8.05 at discharge (median 7, range 1–22), and 12.16 at intake (median 12, range 1–25), an average increase of 4.11 (SD 6.97). Pearson correlation between two total scores was 0.073 (95% CI −0.095 to 0.238) and Cohen's κ was 0.02 (95% CI −0.02 to 0.06). Differences did not appear to depend on assessor experience or professional background. Conclusions Systematic change in the HoNOS occurs at inpatient-to-community transition. Some caution should be exercised in making direct comparisons between inpatient HoNOS and community HoNOS scores. PMID:27121703

  1. Reliability and Validity of the HoNOS-LD and HoNOS in a Sample of Individuals with Mild to Borderline Intellectual Disability and Severe Emotional and Behavior Disorders

    ERIC Educational Resources Information Center

    Tenneij, Nienke; Didden, Robert; Veltkamp, Eline; Koot, Hans M.

    2009-01-01

    In this study, psychometric properties of the Health of the Nation Outcome scales (HoNOS) and Health of the Nation Outcome Scales for People with Learning Disabilities (HoNOS-LD) were investigated in a sample (n = 79) of (young) adults with mild to borderline intellectual disability (ID) and severe behavior and mental health problems who were…

  2. Muscle fatigue, nNOS and muscle fiber atrophy in limb girdle muscular dystrophy.

    PubMed

    Angelini, Corrado; Tasca, Elisabetta; Nascimbeni, Anna Chiara; Fanin, Marina

    2014-12-01

    Muscle fatigability and atrophy are frequent clinical signs in limb girdle muscular dystrophy (LGMD), but their pathogenetic mechanisms are still poorly understood. We review a series of different factors that may be connected in causing fatigue and atrophy, particularly considering the role of neuronal nitric oxide synthase (nNOS) and additional factors such as gender in different forms of LGMD (both recessive and dominant) underlying different pathogenetic mechanisms. In sarcoglycanopathies, the sarcolemmal nNOS reactivity varied from absent to reduced, depending on the residual level of sarcoglycan complex: in cases with complete sarcoglycan complex deficiency (mostly in beta-sarcoglycanopathy), the sarcolemmal nNOS reaction was absent and it was always associated with early severe clinical phenotype and cardiomyopathy. Calpainopathy, dysferlinopathy, and caveolinopathy present gradual onset of fatigability and had normal sarcolemmal nNOS reactivity. Notably, as compared with caveolinopathy and sarcoglycanopathies, calpainopathy and dysferlinopathy showed a higher degree of muscle fiber atrophy. Males with calpainopathy and dysferlinopathy showed significantly higher fiber atrophy than control males, whereas female patients have similar values than female controls, suggesting a gender difference in muscle fiber atrophy with a relative protection in females. In female patients, the smaller initial muscle fiber size associated to endocrine factors and less physical effort might attenuate gender-specific muscle loss and atrophy. PMID:25873780

  3. 6. PART 3 OF 3 PART PANORAMA WITH NOS. CA265J4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. PART 3 OF 3 PART PANORAMA WITH NOS. CA-265-J-4 AND CA-265-J-5 OF FIGUEROA STREET AND LOS ANGELES RIVER VIADUCTS. NOTE ARROYO SECO CHANNEL ENTERING LOS ANGELES RIVER UNDER RAILROAD TRESTLE AT RIGHT. LOOKING 268°W. - Arroyo Seco Parkway, Figueroa Street Viaduct, Spanning Los Angeles River, Los Angeles, Los Angeles County, CA

  4. 4. PART 1 OF 3 PART PANORAMA WITH NOS. CA265J5 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. PART 1 OF 3 PART PANORAMA WITH NOS. CA-265-J-5 AND CA-265-J-6 OF FIGUEROA STREET AND LOS ANGELES RIVER VIADUCTS. NOTE TUNNEL NO.1 NORTH PORTAL AT LEFT REAR. LOOKING 268°W. - Arroyo Seco Parkway, Figueroa Street Viaduct, Spanning Los Angeles River, Los Angeles, Los Angeles County, CA

  5. Recapitulating the History of Sickle-Cell Anemia Research: Improving Students' NOS Views Explicitly and Reflectively

    ERIC Educational Resources Information Center

    Howe, Eric Michael; Rudge, David Wyss

    2005-01-01

    This paper provides an argument in favor of a specific pedagogical method of using the history of science to help students develop more informed views about nature of science (NOS) issues. The paper describes a series of lesson plans devoted to encouraging students to engage, "unbeknownst to them", in similar reasoning that led scientists to…

  6. Burkholderia pseudomallei rpoS mediates iNOS suppression in human hepatocyte (HC04) cells.

    PubMed

    Sanongkiet, Sucharat; Ponnikorn, Saranyoo; Udomsangpetch, Rachanee; Tungpradabkul, Sumalee

    2016-08-01

    Burkholderia pseudomallei is an intracellular Gram-negative bacterial pathogen and the causative agent of melioidosis, a widespread disease in Southeast Asia. Reactive nitrogen, in an intermediate form of nitric oxide (NO), is one of the first lines of defense used by host cells to eliminate intracellular pathogens, through the stimulation of inducible nitric oxide synthase (iNOS). Studies in phagocytotic cells have shown that the iNOS response is muted in B. pseudomallei infection, and implicated the rpoS sigma factor as a key regulatory factor mediating suppression. The liver is a main visceral organ affected by B. pseudomallei, and there is little knowledge about the interaction of liver cells and B. pseudomallei This study investigated the induction of iNOS, as well as autophagic flux and light-chain 3 (LC3) localization in human liver (HC04) cells in response to infection with B. pseudomallei and its rpoS deficient mutant. Results showed that the rpoS mutant was unable to suppress iNOS induction and that the mutant showed less induction of autophagy and lower co-localization with LC3, and this was coupled with a lower intracellular growth rate. Combining these results suggest that B. pseudomallei rpoS is an important factor in establishing infection in liver cells. PMID:27324398

  7. Spanish Students' Conceptions about NOS and STS Issues: A Diagnostic Study

    ERIC Educational Resources Information Center

    Vázquez-Alonso, Ángel; García-Carmona, Antonio; Manassero-Mas, María Antonia; Bennàssar-Roig, Antoni

    2014-01-01

    Spanish students' beliefs on themes of Science-Technology-Society (STS) and nature of science (NOS) are assessed. The sample consisted of 1050 science and non-science students who had concluded their pre-university education (18-19 years old). Each participant anonymously answered 30 items drawn from the Questionnaire of Opinions on Science,…

  8. 75 FR 39707 - Application Nos. and Proposed Exemptions; D-11489, Morgan Stanley & Co., Incorporated; L-11609...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employee Benefits Security Administration Application Nos. and Proposed Exemptions; D-11489, Morgan Stanley & Co., Incorporated; L-11609, The Finishing Trades Institute of the Mid-Atlantic Region (the Plan) et al....

  9. Using Video Modeling to Teach Children with PDD-NOS to Respond to Facial Expressions

    ERIC Educational Resources Information Center

    Axe, Judah B.; Evans, Christine J.

    2012-01-01

    Children with autism spectrum disorders often exhibit delays in responding to facial expressions, and few studies have examined teaching responding to subtle facial expressions to this population. We used video modeling to train 3 participants with PDD-NOS (age 5) to respond to eight facial expressions: approval, bored, calming, disapproval,…

  10. Antioxidative effects of cinnamomi cortex: A potential role of iNOS and COX-II

    PubMed Central

    Chung, Jin-Won; Kim, Jeong-Jun; Kim, Sung-Jin

    2011-01-01

    Background: Cinnamomi cortex has wide varieties of pharmacological actions such as anti-inflammatory action, anti-platelet aggregation, and improving blood circulation. In this study, we tested to determine whether the Cinnamomi cortex extract has antioxidant activities. Materials and Methods: Antioxidative actions were explored by measuring free radical scavenging activity, NO levels, and reducing power. The mechanism of antioxidative action of Cinnamomi cortex was determined by measuring iNOS and COX-II expression in lipopolysaccharide (LPS) stimulated Raw cells. Results: Seventy percent methanolic extract of Cinnamomi cortex exerted significant 1,1-diphenyl--2--picrylhydrazyl (DPPH) free radicals and NO scavenging activities in a dose-dependent manner. More strikingly, the Cinnamomi cortex extract exerted dramatic reducing power activity (13-fold over control). Production of iNOS induced by LPS was significantly inhibited by the Cinnamomi cortex extract, suggesting that it inhibits NO production by suppressing iNOS expression. Additionally, COX-2 induced by LPS was dramatically inhibited by the Cinnamomi cortex extract. Conclusion: These results suggest that 70% methanolic extract of Cinnamomi cortex exerts significant antioxidant activity via inhibiting iNOS and COX-II induction. PMID:22262934

  11. The role of nNOS and PGC-1α in skeletal muscle cells.

    PubMed

    Baldelli, Sara; Lettieri Barbato, Daniele; Tatulli, Giuseppe; Aquilano, Katia; Ciriolo, Maria Rosa

    2014-11-15

    Neuronal nitric oxide synthase (nNOS) and peroxisome proliferator activated receptor γ co-activator 1α (PGC-1α) are two fundamental factors involved in the regulation of skeletal muscle cell metabolism. nNOS exists as several alternatively spliced variants, each having a specific pattern of subcellular localisation. Nitric oxide (NO) functions as a second messenger in signal transduction pathways that lead to the expression of metabolic genes involved in oxidative metabolism, vasodilatation and skeletal muscle contraction. PGC-1α is a transcriptional coactivator and represents a master regulator of mitochondrial biogenesis by promoting the transcription of mitochondrial genes. PGC-1α can be induced during physical exercise, and it plays a key role in coordinating the oxidation of intracellular fatty acids with mitochondrial remodelling. Several lines of evidence demonstrate that NO could act as a key regulator of PGC-1α expression; however, the link between nNOS and PGC-1α in skeletal muscle remains only poorly understood. In this Commentary, we review important metabolic pathways that are governed by nNOS and PGC-1α, and aim to highlight how they might intersect and cooperatively regulate skeletal muscle mitochondrial and lipid energetic metabolism and contraction. PMID:25217629

  12. ASK1 Inhibitor Halts Progression of Diabetic Nephropathy in Nos3-Deficient Mice.

    PubMed

    Tesch, Greg H; Ma, Frank Y; Han, Yingjie; Liles, John T; Breckenridge, David G; Nikolic-Paterson, David J

    2015-11-01

    p38 mitogen-activated protein kinase (MAPK) signaling promotes diabetic kidney injury. Apoptosis signal-regulating kinase (ASK)1 is one of the upstream kinases in the p38 MAPK-signaling pathway, which is activated by inflammation and oxidative stress, suggesting a possible role for ASK1 in diabetic nephropathy. In this study, we examined whether a selective ASK1 inhibitor can prevent the induction and progression of diabetic nephropathy in mice. Diabetes was induced in hypertensive endothelial nitric oxide synthase (Nos3)-deficient mice by five low-dose streptozotocin (STZ) injections. Groups of diabetic Nos3(-/-) mice received ASK1 inhibitor (GS-444217 delivered in chow) as an early intervention (2-8 weeks after STZ) or late intervention (weeks 8-15 after STZ). Control diabetic and nondiabetic Nos3(-/-) mice received normal chow. Treatment with GS-444217 abrogated p38 MAPK activation in diabetic kidneys but had no effect upon hypertension in Nos3(-/-) mice. Early intervention with GS-444217 significantly inhibited diabetic glomerulosclerosis and reduced renal dysfunction but had no effect on the development of albuminuria. Late intervention with GS-444217 improved renal function and halted the progression of glomerulosclerosis, renal inflammation, and tubular injury despite having no effect on established albuminuria. In conclusion, this study identifies ASK1 as a new therapeutic target in diabetic nephropathy to reduce renal inflammation and fibrosis independent of blood pressure control. PMID:26180085

  13. Effects of PRRSV infection on TLR-dependent induction of NOS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inducible nitric oxide synthase (iNOS) is an important effector enzyme in the macrophage arsenal against pathogens. This enzyme is produced in response to bacterial cell wall components such as lipopolysaccharide (LPS) and dsRNA--a by-product of viral replication, binding to Toll-like receptors (TL...

  14. A Socioscientific Curriculum Facilitating the Development of Distal and Proximal NOS Conceptualizations

    ERIC Educational Resources Information Center

    Schalk, Kelly A.

    2012-01-01

    This study reports the effects of an innovative introductory microbiology course for undergraduates that used a socioscientific issues (SSI)-based curriculum. The study illustrates how an SSI-based intervention provides learners with pragmatic opportunities for cultivating their scientific literacy subsuming the nature of science (NOS). Empirical…

  15. Burkholderia pseudomallei rpoS mediates iNOS suppression in human hepatocyte (HC04) cells

    PubMed Central

    Sanongkiet, Sucharat; Ponnikorn, Saranyoo; Udomsangpetch, Rachanee; Tungpradabkul, Sumalee

    2016-01-01

    Burkholderia pseudomallei is an intracellular Gram-negative bacterial pathogen and the causative agent of melioidosis, a widespread disease in Southeast Asia. Reactive nitrogen, in an intermediate form of nitric oxide (NO), is one of the first lines of defense used by host cells to eliminate intracellular pathogens, through the stimulation of inducible nitric oxide synthase (iNOS). Studies in phagocytotic cells have shown that the iNOS response is muted in B. pseudomallei infection, and implicated the rpoS sigma factor as a key regulatory factor mediating suppression. The liver is a main visceral organ affected by B. pseudomallei, and there is little knowledge about the interaction of liver cells and B. pseudomallei. This study investigated the induction of iNOS, as well as autophagic flux and light-chain 3 (LC3) localization in human liver (HC04) cells in response to infection with B. pseudomallei and its rpoS deficient mutant. Results showed that the rpoS mutant was unable to suppress iNOS induction and that the mutant showed less induction of autophagy and lower co-localization with LC3, and this was coupled with a lower intracellular growth rate. Combining these results suggest that B. pseudomallei rpoS is an important factor in establishing infection in liver cells. PMID:27324398

  16. Fluorination Effects on NOS Inhibitory Activity of Pyrazoles Related to Curcumin.

    PubMed

    Nieto, Carla I; Cabildo, María Pilar; Cornago, María Pilar; Sanz, Dionisia; Claramunt, Rosa M; Torralba, María Carmen; Torres, María Rosario; Elguero, José; García, José A; López, Ana; Acuña-Castroviejo, Darío

    2015-01-01

    A series of new (E)-3(5)-[β-(aryl)-ethenyl]-5(3)-phenyl-1H-pyrazoles bearing fluorine atoms at different positions of the aryl group have been synthesized starting from the corresponding β-diketones. All compounds have been characterized by elemental analysis, DSC as well as NMR (¹H, (13)C, (19)F and (15)N) spectroscopy in solution and in solid state. Three structures have been solved by X-ray diffraction analysis, confirming the tautomeric forms detected by solid state NMR. The in vitro study of their inhibitory potency and selectivity on the activity of nNOS and eNOS (calcium-calmodulin dependent) as well as iNOS (calcium-calmodulin independent) isoenzymes is presented. A qualitative structure-activity analysis allowed the establishment of a correlation between the presence/ absence of different substituents with the inhibition data proving that fluorine groups enhance the biological activity. (E)-3(5)-[β-(3-Fluoro-4-hydroxyphenyl)-ethenyl]-5(3)-phenyl-1H-pyrazole (13), is the best inhibitor of iNOS, being also more selective towards the other two isoforms. PMID:26343623

  17. Nafamostat mesilate promotes endothelium-dependent vasorelaxation via the Akt-eNOS dependent pathway.

    PubMed

    Choi, Sujeong; Kwon, Hyon-Jo; Song, Hee-Jung; Choi, Si Wan; Nagar, Harsha; Piao, Shuyu; Jung, Saet-Byel; Jeon, Byeong Hwa; Kim, Dong Woon; Kim, Cuk-Seong

    2016-09-01

    Nafamostat mesilate (NM), a synthetic serine protease inhibitor, has anticoagulant and anti-inflammatory properties. The intracellular mediator and external anti-inflammatory external signal in the vascular wall have been reported to protect endothelial cells, in part due to nitric oxide (NO) production. This study was designed to examine whether NM exhibit endothelium dependent vascular relaxation through Akt/endothelial nitric oxide synthase (eNOS) activation and generation of NO. NM enhanced Akt/eNOS phosphorylation and NO production in a dose- and time-dependent manner in human umbilical vein endothelial cells (HUVECs) and aorta tissues obtained from rats treated with various concentrations of NM. NM concomitantly decreased arginase activity, which could increase the available arginine substrate for NO production. Moreover, we investigated whether NM increased NO bioavailability and decreased aortic relaxation response to an eNOS inhibitor in the aorta. These results suggest that NM increases NO generation via the Akt/eNOS signaling pathway, leading to endothelium-dependent vascular relaxation. Therefore, the vasorelaxing action of NM may contribute to the regulation of cardiovascular function. PMID:27610041

  18. Nafamostat mesilate promotes endothelium-dependent vasorelaxation via the Akt-eNOS dependent pathway

    PubMed Central

    Choi, Sujeong; Kwon, Hyon-Jo; Song, Hee-Jung; Choi, Si Wan; Nagar, Harsha; Piao, Shuyu; Jung, Saet-byel; Jeon, Byeong Hwa

    2016-01-01

    Nafamostat mesilate (NM), a synthetic serine protease inhibitor, has anticoagulant and anti-inflammatory properties. The intracellular mediator and external anti-inflammatory external signal in the vascular wall have been reported to protect endothelial cells, in part due to nitric oxide (NO) production. This study was designed to examine whether NM exhibit endothelium dependent vascular relaxation through Akt/endothelial nitric oxide synthase (eNOS) activation and generation of NO. NM enhanced Akt/eNOS phosphorylation and NO production in a dose- and time-dependent manner in human umbilical vein endothelial cells (HUVECs) and aorta tissues obtained from rats treated with various concentrations of NM. NM concomitantly decreased arginase activity, which could increase the available arginine substrate for NO production. Moreover, we investigated whether NM increased NO bioavailability and decreased aortic relaxation response to an eNOS inhibitor in the aorta. These results suggest that NM increases NO generation via the Akt/eNOS signaling pathway, leading to endothelium-dependent vascular relaxation. Therefore, the vasorelaxing action of NM may contribute to the regulation of cardiovascular function. PMID:27610041

  19. 32. LOOKING NORTHEAST DOWN WALKWAY CONNECTING BUILDING NO.S 271, 271G, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. LOOKING NORTHEAST DOWN WALKWAY CONNECTING BUILDING NO.S 271, 271-G, 271-I, 271-L, 271-K, ETC. MIRRORS IN UPPER RIGHT PERMIT WORKERS TO SEE AROUND CORNER TO CORRIDOR LEADING TO BUILDING NO. 271-H (LEAD AZIDE PREPARATION BUILDING). - Picatinny Arsenal, 200 Area, Shell Component Loading, State Route 15 near I-80, Dover, Morris County, NJ

  20. Selective iNOS inhibition is superior to norepinephrine in the treatment of rat endotoxic shock.

    PubMed

    Rosselet, A; Feihl, F; Markert, M; Gnaegi, A; Perret, C; Liaudet, L

    1998-01-01

    S-methyl-isothiourea (SMT) is a potent inhibitor of NO synthase (NOS) with relative selectivity towards the inducible isoform (iNOS). We compared SMT and norepinephrine for the treatment of experimental endotoxic shock. Anesthetized rats challenged intravenously with lipopolysaccharide (LPS), 10 mg/kg, were treated after 1 h with a 4-h infusion of norepinephrine (titrated to maintain blood pressure within baseline values), SMT at low dose (0.1 mg x kg-1 x h-1), or at high dose (1 mg x kg-1 x h-1), or an equivalent volume of saline (2 ml x kg-1 x h-1). In saline-treated animals, LPS increased plasma nitrate and produced hypotension, low cardiac output (CO), lactic acidosis, and signs of liver and kidney dysfunction. Norepinephrine maintained blood pressure (BP) and reduced the fall in CO, without affecting lactic acidosis, organ dysfunction, and nitrate accumulation. The latter was dose-dependently blunted by SMT. Treatment with this agent prevented hypotension, through systemic vasoconstriction with the high dose and a maintained CO with the low dose. Low, but not high, dose SMT blunted lactic acidosis. Both doses reduced the signs of renal, but not liver, dysfunction. In additional studies, we obtained evidence that, in contrast with the high dose, SMT at low dose did not interfere with the function of constitutive NOS. These findings suggest a potential advantage of selective iNOS inhibition over standard adrenergic support in the therapy of septic shock. PMID:9445295

  1. Preservice Elementary Science Teachers' Connections among Aspects of NOS: Toward a Consistent, Overarching Framework

    ERIC Educational Resources Information Center

    Ozgelen, Sinan; Hanuscin, Deborah L.; Yilmaz-Tuzun, Ozgul

    2013-01-01

    This study examined the connections elementary preservice science teachers made among various aspects of nature of science (NOS). Totally, 45 preservice science teachers who were enrolled in the Laboratory Application in Science II course participated in the study. The course provided meaningful and practical inquiry-based experiences, as well as…

  2. Association between Experienced Teachers' NOS Implementation and Reform-Based Practices

    ERIC Educational Resources Information Center

    Herman, Benjamin C.; Clough, Michael P.; Olson, Joanne K.

    2013-01-01

    The assertion that general reform-based science teaching practices (GRBSTPs) can facilitate nature of science (NOS) instruction has been mentioned in the literature, but rigorous and transparent empirical substantiation for this claim has not been made. This investigation empirically demonstrates an association between thirteen experienced…

  3. Enhancing Students' NOS Views and Science Knowledge Using Facebook-Based Scientific News

    ERIC Educational Resources Information Center

    Huang, Hsi-Yu; Wu, Hui-Ling; She, Hsiao-Ching; Lin, Yu-Ren

    2014-01-01

    This study investigated how the different discussion approaches in Facebook influenced students' scientific knowledge acquisition and the nature of science (NOS) views. Two eighth- and two ninth-grade classes in a Taiwanese junior high school participated in the study. In two of the classes students engaged in synchronous discussion, and in…

  4. 13. LONGITUDINAL VIEW OF THE SIX TURBINEGENERATOR UNITS (NO.'S 15 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. LONGITUDINAL VIEW OF THE SIX TURBINE-GENERATOR UNITS (NO.'S 1-5 ARE ORIGINAL). TURBINE-GENERATOR NO.1 IS IN THE FOREGROUND, LOOKING WEST. - Washington Water Power Company Post Falls Power Plant, Middle Channel Powerhouse & Dam, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  5. 30. BUILDING NO.S 271K AND 271L, VIEW LOOKING SOUTH AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. BUILDING NO.S 271-K AND 271-L, VIEW LOOKING SOUTH AT BACK OF BUILDING NO. 271-L (LEFT), 271-K (MIDDLE) AND ROOF OF BUILDING NO. 271-I (VISIBLE OVER WALKWAY ON RIGHT). - Picatinny Arsenal, 200 Area, Shell Component Loading, State Route 15 near I-80, Dover, Morris County, NJ

  6. Impairments in Fear Conditioning in Mice Lacking the nNOS Gene

    ERIC Educational Resources Information Center

    Kelley, Jonathan B.; Balda, Mara A.; Anderson, Karen L.; Itzhak, Yossef

    2009-01-01

    The fear conditioning paradigm is used to investigate the roles of various genes, neurotransmitters, and substrates in the formation of fear learning related to contextual and auditory cues. In the brain, nitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS) functions as a retrograde neuronal messenger that facilitates synaptic…

  7. Upregulated iNOS and oxidative damage to the cochlear stria vascularis due to noise stress.

    PubMed

    Shi, Xiaorui; Nuttall, Alfred L

    2003-03-28

    Our previous work has revealed increased nitric oxide (NO) production in the cochlear perilymph following noise stress. However, it is not clear if the increase of NO is related to iNOS and whether NO-related oxidative stress can cause vascular tissue damage. In this study, iNOS immunoreactivity, NO production, and reactive oxygen species (ROS) in the lateral wall were examined in normal mice and compared with similar animals exposed to 120 dBA broadband noise, 3 h/day, for 2 consecutive days. In the normal animals, iNOS expression was not observed in the vascular endothelium of the stria vascularis and only weak iNOS immunoactivity was detected in the marginal cells. However, expression of iNOS in the wall of the blood vessels of stria vascularis and marginal cells was observed after loud sound stress (LSS). Relatively low levels of NO production and low ROS activity were detected in the stria vascularis in the unstimulated condition. In contrast, NO production was increased and ROS activity was elevated in the stria vascularis after LSS. These changes were attenuated by the iNOS inhibitor, GW 274150. To explore whether noise induces apoptotic processes in the stria vascularis, we examined morphological changes in endothelial- and marginal-cells. In vitro, annexin-V phosphatidylserine (PS) (to label and detect early evidence of apoptosis) was combined with propidium iodide (PI) (to probe plasma membrane integrity). PI alone was used in fixed tissues to detect later stage apoptotic cells by morphology of the nuclei. Following LSS, PS was expressed on cell surfaces of endothelial cells of blood vessels and marginal cells of the stria vascularis. Later stage apoptosis, characterized by irregular nuclei and condensation of nuclei, was also observed in these cells. The data indicate that increased iNOS expression and production of both NO and ROS following noise stress may lead to marginal cell pathology, and the dysfunction of cochlear microcirculation by inducing

  8. NOS Inhibition Modulates Immune Polarization and Improves Radiation-Induced Tumor Growth Delay.

    PubMed

    Ridnour, Lisa A; Cheng, Robert Y S; Weiss, Jonathan M; Kaur, Sukhbir; Soto-Pantoja, David R; Basudhar, Debashree; Heinecke, Julie L; Stewart, C Andrew; DeGraff, William; Sowers, Anastasia L; Thetford, Angela; Kesarwala, Aparna H; Roberts, David D; Young, Howard A; Mitchell, James B; Trinchieri, Giorgio; Wiltrout, Robert H; Wink, David A

    2015-07-15

    Nitric oxide synthases (NOS) are important mediators of progrowth signaling in tumor cells, as they regulate angiogenesis, immune response, and immune-mediated wound healing. Ionizing radiation (IR) is also an immune modulator and inducer of wound response. We hypothesized that radiation therapeutic efficacy could be improved by targeting NOS following tumor irradiation. Herein, we show enhanced radiation-induced (10 Gy) tumor growth delay in a syngeneic model (C3H) but not immunosuppressed (Nu/Nu) squamous cell carcinoma tumor-bearing mice treated post-IR with the constitutive NOS inhibitor N(G)-nitro-l-arginine methyl ester (L-NAME). These results suggest a requirement of T cells for improved radiation tumor response. In support of this observation, tumor irradiation induced a rapid increase in the immunosuppressive Th2 cytokine IL10, which was abated by post-IR administration of L-NAME. In vivo suppression of IL10 using an antisense IL10 morpholino also extended the tumor growth delay induced by radiation in a manner similar to L-NAME. Further examination of this mechanism in cultured Jurkat T cells revealed L-NAME suppression of IR-induced IL10 expression, which reaccumulated in the presence of exogenous NO donor. In addition to L-NAME, the guanylyl cyclase inhibitors ODQ and thrombospondin-1 also abated IR-induced IL10 expression in Jurkat T cells and ANA-1 macrophages, which further suggests that the immunosuppressive effects involve eNOS. Moreover, cytotoxic Th1 cytokines, including IL2, IL12p40, and IFNγ, as well as activated CD8(+) T cells were elevated in tumors receiving post-IR L-NAME. Together, these results suggest that post-IR NOS inhibition improves radiation tumor response via Th1 immune polarization within the tumor microenvironment. PMID:25990221

  9. Spinal Neuronal NOS Signaling Contributes to Morphine Cardioprotection in Ischemia Reperfusion Injury in Rats.

    PubMed

    Jiang, Lingling; Hu, Jun; He, Shufang; Zhang, Li; Zhang, Ye

    2016-09-01

    Morphine has been widely used as rescue treatment for heart attack and failure in humans for many decades. Relatively little has been known about the role of spinal opioid receptors in morphine cardioprotection. Recent studies have shown that intrathecal injection of morphine can reduce the heart injury caused by ischemia (I)/reperfusion (R) in rats. However, the molecular and cellular mechanisms underlying intrathecal morphine cardioprotection has not been determined. Here, we report that intrathecal morphine postconditioning (IMPOC) rescued mean artery pressure (MAP) and reduced myocardial injury in I/R. Pretreatment with either naloxone (NAL), a selective mu-opioid receptor antagonist, or nitric oxide synthase (NOS) inhibitors via intrathecal delivery completely abolished IMPOC cardioprotection, suggesting that the spinal mu-opioid receptor and its downstream NOS signaling pathway are involved in the mechanism of the morphine-induced effect. Consistent with this, IMPOC significantly enhanced spinal neural NOS phosphorylation, nitric oxide, and cGMP content in a similar time course. Intrathecal application of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a specific inhibitor of guanylate cyclase, completely ablated IMPOC-induced enhancement of cardioprotection and spinal cGMP content. IMPOC rescue of MAP and ischemic injury is correlated with IMPOC enhancement of NOS signaling. Collectively, these findings strengthen the concept of spinal mu-opioid receptors as a therapeutic target that mediates morphine-induced cardioprotection. We also provide evidence suggesting that the activation of spinal NOS signaling is essential for morphine cardioprotection. PMID:27358482

  10. Ablation of eNOS does not promote adipose tissue inflammation.

    PubMed

    Jurrissen, Thomas J; Sheldon, Ryan D; Gastecki, Michelle L; Woodford, Makenzie L; Zidon, Terese M; Rector, R Scott; Vieira-Potter, Victoria J; Padilla, Jaume

    2016-04-15

    Adipose tissue (AT) inflammation is a hallmark characteristic of obesity and an important determinant of insulin resistance and cardiovascular disease; therefore, a better understanding of factors regulating AT inflammation is critical. It is well established that reduced vascular endothelial nitric oxide (NO) bioavailability promotes arterial inflammation; however, the role of NO in modulating inflammation in AT remains disputed. In the present study, 10-wk-old C57BL6 wild-type and endothelial nitric oxide synthase (eNOS) knockout male mice were randomized to either a control diet (10% kcal from fat) or a Western diet (44.9% kcal from fat, 17% sucrose, and 1% cholesterol) for 18 wk (n= 7 or 8/group). In wild-type mice, Western diet-induced obesity led to increased visceral white AT expression of inflammatory genes (e.g., MCP1, TNF-α, and CCL5 mRNAs) and markers of macrophage infiltration (e.g., CD68, ITGAM, EMR1, CD11C mRNAs, and Mac-2 protein), as well as reduced markers of mitochondrial content (e.g., OXPHOS complex I and IV protein). Unexpectedly, these effects of Western diet on visceral white AT were not accompanied by decreases in eNOS phosphorylation at Ser-1177 or increases in eNOS phosphorylation at Thr-495. Also counter to expectations, eNOS knockout mice, independent of the diet, were leaner and did not exhibit greater white or brown AT inflammation compared with wild-type mice. Collectively, these findings do not support the hypothesis that reduced NO production from eNOS contributes to obesity-related AT inflammation. PMID:26864812

  11. Neuronal NOS and cyclooxygenase-2 contribute to DNA damage in a mouse model of Parkinson disease.

    PubMed

    Hoang, Tuan; Choi, Dong-Kug; Nagai, Makiko; Wu, Du-Chu; Nagata, Tetsuya; Prou, Delphine; Wilson, Glenn L; Vila, Miquel; Jackson-Lewis, Vernice; Dawson, Valina L; Dawson, Ted M; Chesselet, Marie-Françoise; Przedborski, Serge

    2009-10-01

    DNA damage is a proposed pathogenic factor in neurodegenerative disorders such as Parkinson disease. To probe the underpinning mechanism of such neuronal perturbation, we sought to produce an experimental model of DNA damage. We thus first assessed DNA damage by in situ nick translation and emulsion autoradiography in the mouse brain after administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 4 x 20 mg/kg, ip, every 2 h), a neurotoxin known to produce a model of Parkinson disease. Here we show that DNA strand breaks occur in vivo in this mouse model of Parkinson disease with kinetics and a topography that parallel the degeneration of substantia nigra neurons, as assessed by FluoroJade labeling. Previously, nitric oxide synthase and cyclooxygenase-2 (Cox-2) were found to modulate MPTP-induced dopaminergic neuronal death. We thus assessed the contribution of these enzymes to DNA damage in mice lacking neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS), or Cox-2. We found that the lack of Cox-2 and nNOS activities but not of iNOS activity attenuated MPTP-related DNA damage. We also found that not only nuclear, but also mitochondrial, DNA is a target for the MPTP insult. These results suggest that the loss of genomic integrity can be triggered by the concerted actions of nNOS and Cox-2 and provide further support to the view that DNA damage may contribute to the neurodegenerative process in Parkinson disease. PMID:19616617

  12. 78 FR 49305 - Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... COMMISSION Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Unit Nos. 1 and 2; Application... Operating Reactor Licensing, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission... Nuclear Power Plant, Unit Nos. 1 and 2, respectively, located in Somervell County, Texas. The...

  13. Human Ischemic Cardiomyopathy Shows Cardiac Nos1 Translocation and its Increased Levels are Related to Left Ventricular Performance

    PubMed Central

    Roselló-Lletí, Esther; Carnicer, Ricardo; Tarazón, Estefanía; Ortega, Ana; Gil-Cayuela, Carolina; Lago, Francisca; González-Juanatey, Jose Ramón; Portolés, Manuel; Rivera, Miguel

    2016-01-01

    The role of nitric oxide synthase 1 (NOS1) as a major modulator of cardiac function has been extensively studied in experimental models; however, its role in human ischemic cardiomyopathy (ICM) has never been analysed. Thus, the objectives of this work are to study NOS1 and NOS-related counterparts involved in regulating physiological function of myocyte, to analyze NOS1 localisation, activity, dimerisation, and its relationship with systolic function in ICM. The study has been carried out on left ventricular tissue obtained from explanted human hearts. Here we demonstrate that the upregulation of cardiac NOS1 is not accompanied by an increase in NOS activity, due in part to the alterations found in molecules involved in the regulation of its activity. We observed partial translocation of NOS1 to the sarcolemma in ischemic hearts, and a direct relationship between its protein levels and systolic ventricular function. Our findings indicate that NOS1 may be significant in the pathophysiology of human ischemic heart disease with a preservative role in maintaining myocardial homeostasis. PMID:27041589

  14. Detecting nitrous oxide reductase (nosZ) genes in soil metagenomes: method development and implications for the nitrogen cycle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incomplete denitrification in soils represents a major source of nitrous oxide (N2O), a potent greenhouse gas. The key enzyme for mitigating N2O emissions is NosZ, which catalyzes N2O reduction to N2 and is generally attributed to denitrifiers. We recently described an “atypical” functional NosZ enz...

  15. 75 FR 58445 - Exelon Generation Company, LLC; Peach Bottom Atomic Power Station Unit Nos. 2 and 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Exelon Generation Company, LLC; Peach Bottom Atomic Power Station Unit Nos. 2 and 3; Environmental... operation of Peach Bottom Atomic Power Station (PBAPS), Unit Nos. 2 and 3, located in York and...

  16. 76 FR 19476 - Exelon Generation Company, LLC, Peach Bottom Atomic Power Station, Unit Nos. 2 and 3; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-07

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Exelon Generation Company, LLC, Peach Bottom Atomic Power Station, Unit Nos. 2 and 3; Exemption 1... Operating License Nos. DPR-44 and DPR-56, which authorizes operation of the Peach Bottom Atomic...

  17. 78 FR 35990 - All Operating Boiling-Water Reactor Licensees With Mark I And Mark II Containments; Docket Nos...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION All Operating Boiling-Water Reactor Licensees With Mark I And Mark II Containments; Docket Nos. (As Shown In Attachment 1), License Nos. (As Shown In Attachment 1), EA-13-109; Order Modifying Licenses With Regard to Reliable Hardened...

  18. 75 FR 17159 - Notice of Availability of the Proposed Notice of Sale (NOS) for Outer Continental Shelf (OCS) Oil...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... Minerals Management Service Notice of Availability of the Proposed Notice of Sale (NOS) for Outer... (GOM) AGENCY: Minerals Management Service, Interior. ACTION: Notice of availability of the proposed NOS... potential bidders may be obtained from the Public Information Unit, Gulf of Mexico Region,...

  19. 76 FR 39908 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... participating under 10 CFR 2.315(c), must be filed in accordance with the NRC E-Filing rule (72 FR 49139, August... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2.... DPR-53 and DPR-69, for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 (CCNPP),...

  20. 75 FR 53984 - Virginia Electric and Power Company North Anna Power Station, Unit Nos. 1 and 2 Surry Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-338 and 50-339, Docket Nos. 50-280 and 50-281, NRC- 2010-0283] Virginia Electric.... DPR-32 and DPR-37, issued to Virginia Electric and Power Company (the licensee), for operation of...

  1. Plac8-dependent and iNOS-dependent mechanisms clear Chlamydia muridarum infections from the genital tract1

    PubMed Central

    Johnson, Raymond M.; Kerr, Micah S.; Slaven, James E.

    2011-01-01

    Chlamydia trachomatis urogenital serovars replicate predominately in genital tract epithelium. This tissue tropism poses a unique challenge for host defense and vaccine development. Studies utilizing the Chlamydia muridarum mouse model have shown that CD4 T cells are critical for clearing genital tract infections. In vitro studies have shown that CD4 T cells terminate infection by up regulating epithelial iNOS transcription and nitric oxide production. However, this mechanism is not critical as iNOS-deficient mice clear infections normally. We recently showed that a subset of Chlamydia-specific CD4 T cell clones could terminate replication in epithelial cells using an iNOS-independent mechanism requiring T cell degranulation. We advance that work using microarrays to compare iNOS-dependent and iNOS-independent CD4 T cell clones. Plac8 was differentially expressed by clones having the iNOS-independent mechanism. Plac8-deficient mice had delayed clearance of infection, and Plac8-deficient mice treated with the iNOS-inhibitor N-monomethyl-L-arginine were largely unable to resolve genital tract infections over 8 weeks. These results demonstrate that there are two independent and redundant T cell mechanisms for clearing C. muridarum genital tract infections; one dependent on iNOS, the other dependent on Plac8. While T cells subsets are routinely defined by cytokine profiles, there may be important subdivisions by effector function, in this case CD4Plac8. PMID:22238459

  2. 76 FR 4391 - Calvert Cliffs Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Calvert Cliffs Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Exemption 1.0 Background Calvert Cliffs Nuclear Power Plant, LLC, the licensee, is the holder of Facility Operating License Nos. DPR-53 and DPR-69...

  3. Exposure to diesel exhaust up-regulates iNOS expression in ApoE knockout mice

    SciTech Connect

    Bai Ni; Kido, Takashi; Kavanagh, Terrance J.; Kaufman, Joel D.; Rosenfeld, Michael E.; Breemen, Cornelis van; Eeden, Stephan F. van

    2011-09-01

    Traffic related particulate matter air pollution is a risk factor for cardiovascular events; however, the biological mechanisms are unclear. We hypothesize that diesel exhaust (DE) inhalation induces up-regulation of inducible nitric oxide synthase (iNOS), which is known to contribute to vascular dysfunction, progression of atherosclerosis and ultimately cardiovascular morbidity and mortality. Methods: ApoE knockout mice (30-week) were exposed to DE (at 200 {mu}g/m{sup 3} of particulate matter) or filtered-air (control) for 7 weeks (6 h/day, 5 days/week). iNOS expression in the blood vessels and heart was evaluated by immunohistochemistry and western blotting analysis. To examine iNOS activity, thoracic aortae were mounted in a wire myograph, and vasoconstriction stimulated by phenylephrine (PE) was measured with and without the presence of the specific inhibitor for iNOS (1400 W). NF-{kappa}B (p65) activity was examined by ELISA. The mRNA expression of iNOS and NF-{kappa}B (p65) was determined by real-time PCR. Results: DE exposure significantly enhanced iNOS expression in the thoracic aorta (4-fold) and heart (1.5 fold). DE exposure significantly attenuated PE-stimulated vasoconstriction by {approx} 20%, which was partly reversed by 1400 W. The mRNA expression of iNOS and NF-{kappa}B was significantly augmented after DE exposure. NF-{kappa}B activity was enhanced 2-fold after DE inhalation, and the augmented NF-{kappa}B activity was positively correlated with iNOS expression (R{sup 2} = 0.5998). Conclusions: We show that exposure to DE increases iNOS expression and activity possibly via NF-{kappa}B-mediated pathway. We suspect that DE exposure-caused up-regulation of iNOS contributes to vascular dysfunction and atherogenesis, which could ultimately lead to urban air pollution-associated cardiovascular morbidity and mortality. - Highlights: > Exposed ApoE knockout mice (30-week) to diesel exhaust (DE) for 7 weeks. > Examine iNOS expression and activity in the

  4. Lymphocytes and not IFN-gamma mediate expression of iNOS by intestinal epithelium in murine cryptosporidiosis.

    PubMed

    Nordone, Shila K; Gookin, Jody L

    2010-05-01

    We hypothesized that unrecognized differences in epithelial expression of inducible nitric oxide synthase (iNOS), resulting from engineered immunodeficiency, could explain the contradictory findings of prior studies regarding the importance of nitric oxide (NO) in murine models of Cryptosporidium parvum infection. Severe combined immunodeficient mice (SCID) failed to constitutively or inducibly express epithelial iNOS or increase NO synthesis in response to C. parvum infection. In contrast, mice lacking IFN-gamma alone induced both epithelial iNOS expression and NO synthesis in response to infection. Accordingly, lymphocytes mediate epithelial expression of iNOS and NO synthesis independent of IFN-gamma in response to C. parvum infection. These findings in large part explain the contradictory conclusions of prior studies regarding the role of iNOS in C. parvum infection. PMID:20352449

  5. PGC-1α ameliorates AngiotensinII-induced eNOS dysfunction in human aortic endothelial cells.

    PubMed

    Li, Jie; Geng, Xiao-Yong; Cong, Xiao-Liang

    2016-08-01

    Increasing evidences support that PGC-1α participates in regulating endothelial homeostasis, in part by mediating endothelial nitric oxide (NO) synthase (eNOS) activity and NO production. However, the molecular mechanisms by which PGC-1α regulates eNOS activity are not completely understood. In the present study, we investigated the effects of PGC-1α on eNOS dysfunction and further explore the underlying mechanisms. The results showed that PGC-1α expression was downregulated after AngiotensinII (AngII) treatment and paralleled with the decreased NO generation in human aortic endothelial cells. Overexpression of PGC-1α with adenovirus or pharmacological agonist ameliorated AngII-induced the decrease of NO generation, evidenced by the restoration of cGMP and nitrite concentration. Rather than affecting eNOS expression and uncoupling, PGC-1α inhibited AngII-induced decrease of eNOS serine 1177 phosphorylation through activation of PI3K/Akt signaling. In addition, PGC-1α overexpression suppressed AngII-induced the increase of PP2A-A/eNOS interaction and PP2A phosphatase activity, with a concomitant decrease in PP2A phosphorylation, leading to eNOS serine 1177 phosphorylation. However, pharmacological inhibition of PI3K/Akt signaling blunted the observed effect of PGC-1α on PP2A activity. Taken together, our findings suggest that PGC-1α overexpression improves AngII-induced eNOS dysfunction and that improved eNOS dysfunction is associated with activated PI3K/Akt pathway, impaired PP2A activity and reduced PP2A-A/eNOS association. These date indicate that forced PGC-1α expression may be a novel therapeutic approach for endothelial dysfunction. PMID:27235860

  6. Exposure to Diesel Exhaust Up-regulates iNOS Expression in ApoE Knockout Mice

    PubMed Central

    Bai, Ni; Kido, Takashi; Kavanagh, Terrance J.; Kaufman, Joel D.; Rosenfeld, Michael E.; van Breemen, Cornelis; van Eeden, Stephan F.

    2012-01-01

    Traffic related particulate matter air pollution is a risk factor for cardiovascular events; however, the biological mechanisms are unclear. We hypothesize that diesel exhaust (DE) inhalation induces up-regulation of inducible nitric oxide synthase (iNOS), which is known to contribute to vascular dysfunction, progression of atherosclerosis and ultimately cardiovascular morbidity and mortality. Methods ApoE knockout mice (30-week) were exposed to DE (at 200µg/m3 of particulate matter) or filtered-air (control) for 7 weeks (6h/day, 5days/week). iNOS expression in the blood vessels and heart was evaluated by immunohistochemistry and western blotting analysis. To examine iNOS activity, thoracic aortae were mounted in a wire myograph, and vasoconstriction stimulated by phenylephrine (PE) was measured with and without the presence of the specific inhibitor for iNOS (1400W). NF-κB (p65) activity was examined by ELISA. The mRNA expression of iNOS and NF-κB (p65) was determined by real-time PCR. Results DE exposure significantly enhanced iNOS expression in the thoracic aorta (4-fold) and heart (1.5 fold). DE exposure significantly attenuated PE-stimulated vasoconstriction by ~20%, which was partly reversed by 1400W. The mRNA expression of iNOS and NF-κB was significantly augmented after DE exposure. NF-κB activity was enhanced 2-fold after DE inhalation, and the augmented NF-κB activity was positively correlated with iNOS expression (R2= 0.5998). Conclusions We show that exposure to DE increases iNOS expression and activity possibly via NF-κB-mediated pathway. We suspect that DE exposure-caused up-regulation of iNOS contributes to vascular dysfunction and atherogenesis, which could ultimately lead to urban air pollution-associated cardiovascular morbidity and mortality. PMID:21722660

  7. Glutathione S-transferase P1 suppresses iNOS protein stability in RAW264.7 macrophage-like cells after LPS stimulation.

    PubMed

    Cao, Xiang; Kong, Xiuqin; Zhou, Yi; Lan, Lei; Luo, Lan; Yin, Zhimin

    2015-01-01

    Glutathione S-transferase P1 (GSTP1) is a ubiquitous expressed protein which plays an important role in the detoxification and xenobiotics metabolism. Previous studies showed that GSTP1 was upregulated by the LPS stimulation in RAW264.7 macrophage-like cells and GSTP1 overexpression downregulated lipopolysaccharide (LPS) induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Here we show that GSTP1 physically associates with the oxygenase domain of iNOS by the G-site domain and decreases the protein level of iNOS dimer. Both overexpression and RNA interference (RNAi) experiments indicate that GSTP1 downregulates iNOS protein level and increases S-nitrosylation and ubiquitination of iNOS. The Y7F mutant type of GSTP1 physically associates with iNOS, but shows no effect on iNOS protein content, iNOS S-nitrosylation, and changes in iNOS from dimer to monomer, suggesting the importance of enzyme activity of GSTP1 in regulating iNOS S-nitrosylation and stability. GSTM1, another member of GSTs shows no significant effect on regulation of iNOS. In conclusion, our study reveals the novel role of GSTP1 in regulation of iNOS by affecting S-nitrosylation, dimerization, and stability, which provides a new insight for analyzing the regulation of iNOS and the anti-inflammatory effects of GSTP1. PMID:26361746

  8. TUMOR NECROSIS FACTOR ALPHA DECREASES NOS3 EXPRESSION PRIMARILY VIA RHO/RHO KINASE IN THE THICK ASCENDING LIMB

    PubMed Central

    Ramseyer, Vanesa; Hong, Nancy; Garvin, Jeffrey L.

    2013-01-01

    Inappropriate Na+ reabsorption by thick ascending limbs (THALs) induces hypertension. Nitric oxide (NO) produced by NO synthase type 3 (NOS3 or eNOS) inhibits NaCl reabsorption by THALs. Tumor necrosis factor alpha (TNF-α) decreases NOS3 expression in endothelial cells and contributes to increases in blood pressure. However, the effects of TNF-α on THAL NOS3 and the signaling cascade are unknown. TNF-α activates several signaling pathways including Rho/Rho kinase (ROCK) which is known to reduce NOS3 expression in endothelial cells. Therefore, we hypothesized that TNF-α decreases NOS3 expression via Rho/ROCK in rat THAL primary cultures. THAL cells were incubated with either vehicle or 1 nmol/L TNF-α for 24 hrs and NOS3 expression was measured by Western blot. TNF-α decreased NOS3 expression by 51±6% (p<0.002) and blunted stimulus-induced NO production. A 10-minutes treatment with TNF-α stimulated RhoA activity by 60±23% (p<0.04). Inhibition of Rho GTPase with 0.05 μg/mL C3 exoenzyme blocked TNF-α-induced reductions in NOS3 expression by 30±8% (p<0.02). Inhibition of ROCK with 10 μmol/L H-1152 blocked TNF-α-induced decreases in NOS3 expression by 66±15 % (p<0.001). Simultaneous inhibition of Rho and ROCK had no additive effect. Myosin light chain kinase, NO, protein kinase C, mitogen-activated kinase kinase, c-Jun amino terminal kinases and Rac-1 were also not involved in TNF-α-induced decreases in NOS3 expression. We conclude that TNF-α decreases NOS3 expression primarily via Rho/ROCK in rat THALs. These data suggest that some of the beneficial effects of ROCK inhibitors in hypertension could be due to the mitigation of TNF-α-induced reduction in NOS3 expression. PMID:22566503

  9. Terlipressin inhibits in vivo aortic iNOS expression induced by lipopolysaccharide in rats with biliary cirrhosis.

    PubMed

    Moreau, Richard; Barrière, Eric; Tazi, Khalid A; Lardeux, Bernard; Dargère, Delphine; Urbanowicz, Waldemar; Poirel, Odile; Chauvelot-Moachon, Laurence; Guimont, Marie-Christine; Bernuau, Dominique; Lebrec, Didier

    2002-11-01

    In cirrhosis, lipopolysaccharide (LPS, a product of Gram-negative bacteria) in the blood may cause septic shock. LPS-elicited induction of arterial inducible nitric oxide synthase (iNOS) results in nitric oxide (NO)-induced vasodilation, which causes arterial hypotension and hyporeactivity to alpha(1)-adrenergic constrictors. In vitro studies have suggested that vasopressin inhibits iNOS expression in cultured vascular smooth muscle cells exposed to LPS. Thus, the aim of this study was to investigate the effects of terlipressin administration (a vasopressin analog) on in vivo LPS-induced aortic iNOS in rats with cirrhosis. LPS (1 mg/kg, intravenously) was administered followed by the intravenous administration of terlipressin (0.05 mg/kg, intravenously) or placebo 1 hour later. Arterial pressure was measured, and contractions to phenylephrine (an alpha(1)-adrenoceptor agonist), iNOS activity, and iNOS expressions (mRNA and protein) were investigated in isolated aortas. LPS-induced arterial hypotension and aortic hyporeactivity to phenylephrine were abolished in rats that received terlipressin. LPS-induced aortic iNOS activity and expression were suppressed in terlipressin-treated rats. In conclusion, in LPS-challenged rats with cirrhosis, terlipressin administration inhibits in vivo LPS-induced aortic iNOS expression. Terlipressin administration may be a novel approach for the treatment of arterial hypotension and hyporeactivity to alpha(1)-adrenergic constrictors in patients with cirrhosis and septic shock. PMID:12395316

  10. Compression ignition sensitivity of NOS-365 under rapid propellant fill conditions

    NASA Technical Reports Server (NTRS)

    Mandzy, J.; Schaefer, K.; Knapton, J. D.; Morrison, W. F.

    1980-01-01

    The ullage compression ignition sensitivity of NOS-365 monopropellant under the pressure condition expected to be found in a medium caliber regenerative liquid propellant gun is evaluated. The results from the rapidly loaded propellant tests performed to date are presented. For this case, the physical state of the propellant is characterized by the presence of turbulence and a finely distributed ullage field. A description of the test fixtures, procedures and results is given. It is argued that the results to date indicate that with relatively simple precautionary measures NOS-365 can be rendered sufficiently immune to the ullage compression ignition mechanism to permit it to be safely used in a regenerative liquid propellant gun.