Modernization and Activation of the NASA Ames 11- by 11-Foot Transonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Kmak, Frank J.
2000-01-01
The Unitary Plan Wind Tunnel (UPWT) was modernized to improve performance, capability, productivity, and reliability. Automation systems were installed in all three UPWT tunnel legs and the Auxiliaries facility. Major improvements were made to the four control rooms, model support systems, main drive motors, and main drive speed control. Pressure vessel repairs and refurbishment to the electrical distribution system were also completed. Significant changes were made to improve test section flow quality in the 11-by 11-Foot Transonic leg. After the completion of the construction phase of the project, acceptance and checkout testing was performed to demonstrate the capabilities of the modernized facility. A pneumatic test of the tunnel circuit was performed to verify the structural integrity of the pressure vessel before wind-on operations. Test section turbulence, flow angularity, and acoustic parameters were measured throughout the tunnel envelope to determine the effects of the tunnel flow quality improvements. The new control system processes were thoroughly checked during wind-off and wind-on operations. Manual subsystem modes and automated supervisory modes of tunnel operation were validated. The aerodynamic and structural performance of both the new composite compressor rotor blades and the old aluminum rotor blades was measured. The entire subsonic and supersonic envelope of the 11-by 11-Foot Transonic leg was defined up to the maximum total pressure.
Flow Quality Measurements in the NASA Ames Upgraded 11-by 11-Foot Transonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Amaya, Max A.; Murthy, Sreedhara V.; George, M. W. (Technical Monitor)
2000-01-01
Among the many upgrades designed and implemented in the NASA Ames 11-by 11-Foot Transonic Wind Tunnel over the past few years, several directly affect flow quality in the test section: a turbulence reduction system with a honeycomb and two screens, a flow smoothing system in the back leg diffusers, an improved drive motor control system, and a full replacement set of composite blades for the compressor. Prior to the shut-down of the tunnel for construction activities, an 8-foot span rake populated with flow instrumentation was traversed in the test section to fully document the flow quality and establish a baseline against which the upgrades could be characterized. A similar set of measurements was performed during the recent integrated system test trials, but the scope was somewhat limited in accordance with the primary objective of such tests, namely to return the tunnel to a fully operational status. These measurements clearly revealed substantial improvements in flow angularity and significant reductions in turbulence level for both full-span and semi-span testing configurations, thus making the flow quality of the tunnel one of the best among existing transonic facilities.
Revalidation of the NASA Ames 11-by 11-Foot Transonic Wind Tunnel with a Commercial Airplane Model
NASA Technical Reports Server (NTRS)
Kmak, Frank J.; Hudgins, M.; Hergert, D.; George, Michael W. (Technical Monitor)
2001-01-01
The 11-By 11-Foot Transonic leg of the Unitary Plan Wind Tunnel (UPWT) was modernized to improve tunnel performance, capability, productivity, and reliability. Wind tunnel tests to demonstrate the readiness of the tunnel for a return to production operations included an Integrated Systems Test (IST), calibration tests, and airplane validation tests. One of the two validation tests was a 0.037-scale Boeing 777 model that was previously tested in the 11-By 11-Foot tunnel in 1991. The objective of the validation tests was to compare pre-modernization and post-modernization results from the same airplane model in order to substantiate the operational readiness of the facility. Evaluation of within-test, test-to-test, and tunnel-to-tunnel data repeatability were made to study the effects of the tunnel modifications. Tunnel productivity was also evaluated to determine the readiness of the facility for production operations. The operation of the facility, including model installation, tunnel operations, and the performance of tunnel systems, was observed and facility deficiency findings generated. The data repeatability studies and tunnel-to-tunnel comparisons demonstrated outstanding data repeatability and a high overall level of data quality. Despite some operational and facility problems, the validation test was successful in demonstrating the readiness of the facility to perform production airplane wind tunnel%, tests.
NASA Technical Reports Server (NTRS)
Matyk, G.; Kobayashi, Y.
1977-01-01
The boundary layer and crossflow characteristics of 2- by 2-foot and 11- by 11-foot transonic wind-tunnel wall configurations have been studied for Mach numbers ranging from 0.5 to 1.2 and for various crossflow to free stream unit mass flow ratios. For the 2- by 2-ft and 11- by 11-ft wall configurations, these ratios ranged from 0 to 0.12 and from 0 to 0.07, respectively. Most notably, for both wall configurations, the pressure-drop coefficient across the wall was nonlinear with mass flow and invariant with Mach number.
NASA Technical Reports Server (NTRS)
Nichols, M. E.
1974-01-01
A wind tunnel test of an 0.030 scale model of the Rockwell International Configuration 140A/B Space Shuttle Vehicle Orbiter were conducted in the Ames Research Center 11- by 11-Foot Transonic Wind Tunnel. This part (part A) of test series 0A53 was conducted at Mach numbers of 0.6, 0.8, 0.9, 1.05, and 1.20, and at Reynolds numbers from 1.8 x to 6.5 million per foot. The objective of this test was to establish and verify longitudinal and lateral-directional aerodynamic performance, stability, and control characteristics for the Configuration 140A/B SSV Orbiter. Reynolds number studies were performed for certain nominal control-settings. An alternate leading-edge wing configuration and sealed elevon-split arrangement were tested. Bodyflap, elevon, speedbrake, and rudder hinge moments were measured in addition to standard six-component forces and moments and base pressure data. Furthermore, six-component force and moment data were measured for the vertical tail assembly.
Adjoint Method and Predictive Control for 1-D Flow in NASA Ames 11-Foot Transonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Ardema, Mark
2006-01-01
This paper describes a modeling method and a new optimal control approach to investigate a Mach number control problem for the NASA Ames 11-Foot Transonic Wind Tunnel. The flow in the wind tunnel is modeled by the 1-D unsteady Euler equations whose boundary conditions prescribe a controlling action by a compressor. The boundary control inputs to the compressor are in turn controlled by a drive motor system and an inlet guide vane system whose dynamics are modeled by ordinary differential equations. The resulting Euler equations are thus coupled to the ordinary differential equations via the boundary conditions. Optimality conditions are established by an adjoint method and are used to develop a model predictive linear-quadratic optimal control for regulating the Mach number due to a test model disturbance during a continuous pitch
High angle canard missile test in the Ames 11-foot transonic wind tunnel
NASA Technical Reports Server (NTRS)
Schwind, R. G.
1978-01-01
Four blunted ogive-cylinder missile models with a length-to-diameter ratio of 10.4 were tested at transonic speeds and large angles of attack. The configurations are: body, body with tail panels, body with canards, and body with canards and tails. Forces and moments from the entire model and each of the eight fins were measured over the pitch range of 20 deg to 50 deg and 0 deg to 45 deg roll. Canard deflection angles between 0 deg and 15 deg were tested. Exploratory vapor screen flow visualization testing was also performed. Sample force and moment data are reported along with observations from the vapor screen tests.
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert; Boone, Alan R.
2003-01-01
Data from the test of a large semispan model was used to perform a direct validation of a wall interference correction system for a transonic slotted wall wind tunnel. At first, different sets of uncorrected aerodynamic coefficients were generated by physically changing the boundary condition of the test section walls. Then, wall interference corrections were computed and applied to all data points. Finally, an interpolation of the corrected aerodynamic coefficients was performed. This interpolation made sure that the corrected Mach number of a given run would be constant. Overall, the agreement between corresponding interpolated lift, drag, and pitching moment coefficient sets was very good. Buoyancy corrections were also investigated. These studies showed that the accuracy goal of one drag count may only be achieved if reliable estimates of the wall interference induced buoyancy correction are available during a test.
NASA Technical Reports Server (NTRS)
Allen, C. Q.; Schwind, R. G.; Malcolm, G. N.
1978-01-01
Blunted ogive cylinder missile models with a length-to-diameter ratio of 10.4 were tested at transonic speeds and large angles of attack in an 11 foot transonic wind tunnel. The configurations are: body, body with tail panels, body with canards, and body with canards and tails. Forces and moments from the entire model and each of the eight fins were measured over the pitch range of 20 deg to 50 deg, and roll angles of 0 deg to 45 deg and canard deflection angles between 0 deg and 15 deg. The Reynolds number ranged from 3.9 x 10 to the 6th power per meter. Large side forces and yawing moments were observed for some of the test cases involving a symmetric geometry.
11 Foot Unitary Plan Tunnel Facility Optical Improvement Large Window Analysis
NASA Technical Reports Server (NTRS)
Hawke, Veronica M.
2015-01-01
The test section of the 11 by 11-foot Unitary Plan Transonic Wind Tunnel (11-foot UPWT) may receive an upgrade of larger optical windows on both the North and South sides. These new larger windows will provide better access for optical imaging of test article flow phenomena including surface and off body flow characteristics. The installation of these new larger windows will likely produce a change to the aerodynamic characteristics of the flow in the Test Section. In an effort understand the effect of this change, a computational model was employed to predict the flows through the slotted walls, in the test section and around the model before and after the tunnel modification. This report documents the solid CAD model that was created and the inviscid computational analysis that was completed as a preliminary estimate of the effect of the changes.
NASA Technical Reports Server (NTRS)
Nichols, M. E.
1976-01-01
The results are documented of jet plume effects wind tunnel test of the 0.020-scale 88-OTS launch configuration space shuttle vehicle model in the 11 x 11 foot leg of the NASA/Ames Research Center Unitary Plan Wind Tunnel. This test involved cold gas main propulsion system (MPS) and solid rocket motor (SRB) plume simulations at Mach numbers from 0.6 to 1.4. Integrated vehicle surface pressure distributions, elevon and rudder hinge moments, and wing and vertical tail root bending and torsional moments due to MPS and SRB plume interactions were determined. Nozzle power conditions were controlled per pretest nozzle calibrations. Model angle of attack was varied from -4 deg to +4 deg; model angle of sideslip was varied from -4 deg to +4 deg. Reynolds number was varied for certain test conditions and configurations, with the nominal freestream total pressure being 14.69 psia. Plotted force and pressure data are presented.
NASA Technical Reports Server (NTRS)
Nichols, M. E.
1975-01-01
Results are presented of jet plume effects test IA19 using a vehicle 5 configuration integrated space shuttle vehicle 0.02-scale model in the NASA/Ames Research Center 11 x 11-foot leg of the unitary plan wind tunnel. The jet plume power effects on the integrated vehicle static pressure distribution were determined along with elevon, main propulsion system nozzle, and solid rocket booster nozzle effectiveness and elevon hinge moments.
NASA Technical Reports Server (NTRS)
Hawthorne, P. J.
1976-01-01
Data obtained in wind tunnel test OA148 are presented. The objectives of the test series were to: (1) obtain pressure distributions, forces and moments over the vehicle 5 orbiter in the thermal area energy management (TAEM) and approach phases of flight; (2) obtain elevon and rudder hinge moments in the TAEM and approach phases of flight; (3) obtain body flap and elevon loads for verification of loads balancing with integrated pressure distributions; and (4) obtain pressure distributions near the short OMS pods in the high subsonic, transonic and low supersonic Mach number regimes.
NASA Technical Reports Server (NTRS)
Hawthorne, P. J.
1976-01-01
Data obtained in a wind tunnel test were examined to: (1) obtain pressure distributions, forces and moments over the vehicle 5 Orbiter in the terminal area energy management (TAEM) and approach phases of flight; (2) obtain elevon and rudder hinge moments in the TAEM and approach phases of flight; (3) obtain body flap and elevon loads for verification of loads balancing with integrated pressure distributions; and (4) obtain pressure distributions near the short OMS pods in the high subsonic, transonic and low supersonic Mach number regimes. Testing was conducted over a Mach number range from 0.6 to 1.4 with Reynolds number variations from 7.57 x 1 million to 2.74 x 1 million per foot. Model angle of attack was varied from -4 to 16 degrees and angles of sideslip ranged from -8 to 8 degrees.
NASA Technical Reports Server (NTRS)
Hawthorne, P. J.
1976-01-01
Data obtained in wind tunnel tests are presented. The objectives of the tests were to: (1) obtain pressure distributions, forces and moments over the vehicle 5 Orbiter in the terminal area energy management (TAEM) and approach phases of flight; (2) obtain elevon and rudder hinge moments in the TAEM and approach phases of flight; (3) obtain body flap and elevon loads for verification of loads balancing with integrated pressure distributions; and (4) obtain pressure distributions near the short OMS pods in the high subsonic, transonic and low supersonic Mach number regimes. Testing was conducted over a Mach number range from 0.6 to 1.4 with Reynolds number variations from 4.57 million to 2.74 million per foot. Model angle-of-attack was varied from -4 to 16 degrees and angles of side slip ranged from -8 to 8 degrees.
Investigation of Seal-to-Floor Effects on Semi-Span Transonic Models
NASA Technical Reports Server (NTRS)
Sleppy, Mark A.; Engel, Eric A.; Watson, Kevin T.; Atler, Douglas M.
2009-01-01
In an effort to achieve the maximum possible Reynolds number (Re) when conducting production testing for flight loads aerodynamic databases, it has been the preferred practice of The Boeing Company / Commercial Airplanes (BCA) -- Loads and Dynamics Group since the early 1990's to test large scale semi-span models in the 11- By 11-Foot Transonic Wind Tunnel (TWT) leg of the Unitary Plan Wind Tunnel (UPWT) at the NASA Ames Research Center (ARC). There are many problems related to testing large scale semi-span models of high aspect ratio flexible transport wings, such as; floor boundary layer effects, wing spanwise wall effects, solid blockage buoyancy effects, floor mechanical interference effects, airflow under the model effects, or tunnel flow gradient effects. For most of these issues, BCA has developed and implemented either standard testing methods or numerical correction schemes and these will not be discussed in this document. Other researchers have reported on semi-span transonic testing correction issues, however most of the reported research has been for low Mach testing. Some of the reports for low Mach testing address the difficult problem of preventing undesirable airflow under a semi-span model while ensuring unrestricted main balance functionality, however, for transonic models this issue has gone unresolved. BCA has been cognizant for sometime that there are marked differences in wing pressure distributions from semi-span transonic model testing than from full model or flight testing. It has been suspected that these differences are at least in part due to airflow under the model. Previous efforts by BCA to address this issue have proven to be ineffective or inconclusive and in one situation resulted in broken hardware. This paper reports on a Boeing-NASA collaborative investigation based on a series of small tests conducted between June 2006 and November 2007 in the 11 by 11 foot Transonic Wind Tunnel at NASA Ames on three large commercial jet
Transonic aerodynamic characteristics of a wing/body combination incorporating jet flaps
NASA Technical Reports Server (NTRS)
Holmberg, J. L.
1975-01-01
A 0.25-scale semispan wing/body model with two types of jet flaps was tested in the Ames 11- by 11-Foot Transonic Wind Tunnel. The objective of that testing was to measure the static aerodynamic forces and moments and wing pressure distributions on six configurations differentiated by wing camber, jet flap type, and jet flap angle. Maximum thrust coefficients were limited to 0.12. Angle of attack was varied from -4 deg to 15 deg for Mach numbers between 0.6 and 0.95 at a constant unit Reynolds number of 18.0 million/m (5.5 million/ft). More refined designs and considerably more testing will be required to establish the practicability of the total-exhausting jet flap concept.
Transonic wind tunnel test of a 14 percent thick oblique wing
NASA Technical Reports Server (NTRS)
Kennelly, Robert A., Jr.; Kroo, Ilan M.; Strong, James M.; Carmichael, Ralph L.
1990-01-01
An experimental investigation was conducted at the ARC 11- by 11-Foot Transonic Wind Tunnel as part of the Oblique Wing Research Aircraft Program to study the aerodynamic performance and stability characteristics of a 0.087-scale model of an F-8 airplane fitted with an oblique wing designed by Rockwell International. The 10.3 aspect ratio, straight-tapered wing of 0.14 thickness/chord ratio was tested at two different mounting heights above the fuselage. Additional tests were conducted to assess low-speed behavior with and without flaps, aileron effectiveness at representative flight conditions, and transonic drag divergence with 0 degree wing sweep. Longitudinal stability data were obtained at sweep angles of 0, 30, 45, 60, and 65 degrees, at Mach numbers ranging from 0.25 to 1.40. Test Reynolds numbers varied from 3.2 to 6.6 x 10 exp 6/ft. and angle of attack ranged from -5 to +18 degrees. Most data were taken at zero sideslip, but a few runs were at sideslip angles of +/- 5 degrees. The raised wing position proved detrimental overall, although side force and yawing moment were reduced at some conditions. Maximum lift coefficient with the flaps deflected was found to fall short of the value predicted in the preliminary design document. The performance and trim characteristics of the present wing are generally inferior to those obtained for a previously tested wing designed at ARC.
Hybrid laminar flow control experiments in the NASA - Ames, 11-foot tunnel
NASA Technical Reports Server (NTRS)
Saric, William S.
1995-01-01
It was proposed to design and conduct experiments in the NASA-Ames Research Center, 11-foot wind tunnel, that would assess the role of freestream turbulence and surface roughness on swept-wing transition to turbulence. The work was to be a cooperative effort that had direct application to hybrid laminar flow control (HLFC) airfoils. The first part of the proposed work, initiated in FY92 and continued into FY93, concentrated on the design of such an experiment whose results may be compared with results obtained in other wind-tunnel facilities. At the same time, concurrent work in the Arizona State University (ASU) Unsteady Wind Tunnel would be conducted on the effects of surface roughness. The second part of the work, which was to be initiated in FY94, would have consisted of experiments conducted in both the 11-foot tunnel at NASA-Ames and the ASU Unsteady Wind Tunnel. However, this work was not continued. This report summarizes the experimental design considerations and some preliminary experiments that made up the first part of the work.
NASA Technical Reports Server (NTRS)
Bauer, F.; Garabedian, P.; Korn, D.
1980-01-01
Program aids in design of shockless airfoils, assists development of fuel-conserving, supercritical wings. Algorithm calculates approximate airfoil shape given prescribed pressure distribution. This allows design of families of transonic airfoils for use in aircraft wings or turbine and compressor blades. Program is written in FORTRAN IV for batch execution on CDC-6000.
Transonic swirling nozzle flow
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Pawlas, Gary E.
1991-01-01
A numerical model of viscous transonic swirling flow in axisymmetric nozzles is developed. MacCormack's implicit Gauss-Seidel method is applied to the thin-layer Navier-Stokes equations in transformed coordinates. Numerical results are compared with experimental data to validate the method. The effect of swirl and viscosity on nozzle performance are demonstrated by examining wall pressures, Mach contours, and integral parameters.
Transonic Flow Past Cone Cylinders
NASA Technical Reports Server (NTRS)
Solomon, George E
1955-01-01
Experimental results are presented for transonic flow post cone-cylinder, axially symmetric bodies. The drag coefficient and surface Mach number are studied as the free-stream Mach number is varied and, wherever possible, the experimental results are compared with theoretical predictions. Interferometric results for several typical flow configurations are shown and an example of shock-free supersonic-to-subsonic compression is experimentally demonstrated. The theoretical problem of transonic flow past finite cones is discussed briefly and an approximate solution of the axially symmetric transonic equations, valid for a semi-infinite cone, is presented.
NASA Technical Reports Server (NTRS)
Agopian, K. G.
1974-01-01
The problem of inviscid, steady transonic conical flow, formulated in terms of the small disturbance theory, is studied. The small disturbance equation and similarity rules are presented, and a boundary value problem is formulated for the case of a supersonic freestream Mach number. The equation for the perturbation potential is solved numerically using an elliptic finite difference system. The difference equations are solved with a point relaxation algorithm that is also capable of capturing the shock wave during the iteration procedure by using the boundary conditions at the shock. Numerical calculations, for shock location, pressure distribution and drag coefficient, are presented for a family of nonlifting conical wings. The theory of slender wings is also presented and analytical results for pressure and drag coefficients are obtained.
Transonic airframe propulsion integration
NASA Technical Reports Server (NTRS)
Coltrin, Robert E.; Sanders, Bobby W.; Bencze, Daniel P.
1992-01-01
This chart shows the time line for HSR propulsion/airframe integration program. HSR Phase 1 efforts are underway in both propulsion and aerodynamics. The propulsion efforts focus on cycles, inlets combustors and nozzles that will be required to reduce nitrogen oxide (NOX) at cruise and noise at takeoff and landing to acceptable levels. The aerodynamic efforts concentrate on concepts that will reduce sonic booms and increase the lift/drag (L/D) ratio for the aircraft. The Phase 2 critical propulsion component technology program will focus on large scale demonstrators of the inlet, fan, combustor, and nozzle. The hardware developed here will feed into the propulsion system program which will demonstrate overall system technology readiness, particularly in the takeoff and supersonic cruise speed ranges. The Phase 2 aerodynamic performance and vehicle integration program will provide a validated data base for advanced airframe/control/integration concepts over the full HSR speed range. The results of this program will also feed into the propulsion system demonstration program, particularly in the critical transonic arena.
Jump conditions in transonic equilibria
Guazzotto, L.; Betti, R.; Jardin, S. C.
2013-04-15
In the present paper, the numerical calculation of transonic equilibria, first introduced with the FLOW code in Guazzotto et al.[Phys. Plasmas 11, 604 (2004)], is critically reviewed. In particular, the necessity and effect of imposing explicit jump conditions at the transonic discontinuity are investigated. It is found that 'standard' (low-{beta}, large aspect ratio) transonic equilibria satisfy the correct jump condition with very good approximation even if the jump condition is not explicitly imposed. On the other hand, it is also found that high-{beta}, low aspect ratio equilibria require the correct jump condition to be explicitly imposed. Various numerical approaches are described to modify FLOW to include the jump condition. It is proved that the new methods converge to the correct solution even in extreme cases of very large {beta}, while they agree with the results obtained with the old implementation of FLOW in lower-{beta} equilibria.
Design considerations of the national transonic facility
NASA Technical Reports Server (NTRS)
Baals, D. D.
1976-01-01
The inability of existing wind tunnels to provide aerodynamic test data at transonic speeds and flight Reynolds numbers was examined. The proposed transonic facility is a high Reynolds number transonic wind tunnel designed to meet the research and development needs of industry, and the scientific community. The facility employs the cryogenic approach to achieve high transonic Reynolds numbers at acceptable model loads and tunnel power. By using temperature as a test variable, a unique capability to separate scale effects from model aeroelastic effects is provided. The performance envelope of the facility is shown to provide a ten fold increase in transonic Reynolds number capability compared to currently available facilities.
Design optimization of transonic airfoils
NASA Technical Reports Server (NTRS)
Joh, C.-Y.; Grossman, B.; Haftka, R. T.
1991-01-01
Numerical optimization procedures were considered for the design of airfoils in transonic flow based on the transonic small disturbance (TSD) and Euler equations. A sequential approximation optimization technique was implemented with an accurate approximation of the wave drag based on the Nixon's coordinate straining approach. A modification of the Euler surface boundary conditions was implemented in order to efficiently compute design sensitivities without remeshing the grid. Two effective design procedures producing converged designs in approximately 10 global iterations were developed: interchanging the role of the objective function and constraint and the direct lift maximization with move limits which were fixed absolute values of the design variables.
Flow Quality Survey of the NASA Ames 11-by 11-Ft Transonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Amaya, Max A.
2011-01-01
New baseline turbulence levels have been measured using a new CTA and new hot-wire sensors. Levels remain the same as measured in 1999. Data and methodology documented (almost). New baseline acoustics levels have been measured up to Mach 1.35. -Levels are higher than reported in 1999. -Data and methodology documented (almost). Application of fairings to the strut trailing edge showed up to a 10% reduction in the tunnel background noise. Data analysis and documentation for publishing is ongoing.
TAIR: A transonic airfoil analysis computer code
NASA Technical Reports Server (NTRS)
Dougherty, F. C.; Holst, T. L.; Grundy, K. L.; Thomas, S. D.
1981-01-01
The operation of the TAIR (Transonic AIRfoil) computer code, which uses a fast, fully implicit algorithm to solve the conservative full-potential equation for transonic flow fields about arbitrary airfoils, is described on two levels of sophistication: simplified operation and detailed operation. The program organization and theory are elaborated to simplify modification of TAIR for new applications. Examples with input and output are given for a wide range of cases, including incompressible, subcritical compressible, and transonic calculations.
Semidirect computations for transonic flow
NASA Technical Reports Server (NTRS)
Swisshelm, J. M.; Adamczyk, J. J.
1983-01-01
A semidirect method, driven by a Poisson solver, was developed for inviscid transonic flow computations. It is an extension of a recently introduced algorithm for solving subsonic rotational flows. Shocks are captured by implementing a form of artificial compressibility. Nonisentropic cases are computed using a shock tracking procedure coupled with the Rankine-Hugoniot relationships. Results are presented for both subsonic and transonic flows. For the test geometry, an unstaggered cascade of 20 percent thick circular arc airfoils at zero angle of attack, shocks are crisply resolved in supercritical situations and the algorithm converges rapidly. In addition, the convergence rate appears to be nearly independent of the entropy and vorticity production at the shock.
Transonic CFD applications at Boeing
NASA Technical Reports Server (NTRS)
Tinoco, E. N.
1989-01-01
The use of computational methods for three dimensional transonic flow design and analysis at the Boeing Company is presented. A range of computational tools consisting of production tools for every day use by project engineers, expert user tools for special applications by computational researchers, and an emerging tool which may see considerable use in the near future are described. These methods include full potential and Euler solvers, some coupled to three dimensional boundary layer analysis methods, for transonic flow analysis about nacelle, wing-body, wing-body-strut-nacelle, and complete aircraft configurations. As the examples presented show, such a toolbox of codes is necessary for the variety of applications typical of an industrial environment. Such a toolbox of codes makes possible aerodynamic advances not previously achievable in a timely manner, if at all.
National Transonic Facility Characterization Status
NASA Technical Reports Server (NTRS)
Bobbitt, C., Jr.; Everhart, J.; Foster, J.; Hill, J.; McHatton, R.; Tomek, W.
2000-01-01
This paper describes the current status of the characterization of the National Transonic Facility. The background and strategy for the tunnel characterization, as well as the current status of the four main areas of the characterization (tunnel calibration, flow quality characterization, data quality assurance, and support of the implementation of wall interference corrections) are presented. The target accuracy requirements for tunnel characterization measurements are given, followed by a comparison of the measured tunnel flow quality to these requirements based on current available information. The paper concludes with a summary of which requirements are being met, what areas need improvement, and what additional information is required in follow-on characterization studies.
Calculation of transonic aileron buzz
NASA Technical Reports Server (NTRS)
Steger, J. L.; Bailey, H. E.
1979-01-01
An implicit finite-difference computer code that uses a two-layer algebraic eddy viscosity model and exact geometric specification of the airfoil has been used to simulate transonic aileron buzz. The calculated results, which were performed on both the Illiac IV parallel computer processor and the Control Data 7600 computer, are in essential agreement with the original expository wind-tunnel data taken in the Ames 16-Foot Wind Tunnel just after World War II. These results and a description of the pertinent numerical techniques are included.
Euler solvers for transonic applications
NASA Technical Reports Server (NTRS)
Vanleer, Bram
1989-01-01
The 1980s may well be called the Euler era of applied aerodynamics. Computer codes based on discrete approximations of the Euler equations are now routinely used to obtain solutions of transonic flow problems in which the effects of entropy and vorticity production are significant. Such codes can even predict separation from a sharp edge, owing to the inclusion of artificial dissipation, intended to lend numerical stability to the calculation but at the same time enforcing the Kutta condition. One effect not correctly predictable by Euler codes is the separation from a smooth surface, and neither is viscous drag; for these some form of the Navier-Stokes equation is needed. It, therefore, comes as no surprise to observe that the Navier-Stokes has already begun before Euler solutions were fully exploited. Moreover, most numerical developments for the Euler equations are now constrained by the requirement that the techniques introduced, notably artificial dissipation, must not interfere with the new physics added when going from an Euler to a full Navier-Stokes approximation. In order to appreciate the contributions of Euler solvers to the understanding of transonic aerodynamics, it is useful to review the components of these computational tools. Space discretization, time- or pseudo-time marching and boundary procedures, the essential constituents are discussed. The subject of grid generation and grid adaptation to the solution are touched upon only where relevant. A list of unanswered questions and an outlook for the future are covered.
Numerical computation of aeroelastically corrected transonic loads
NASA Technical Reports Server (NTRS)
Chipman, R.; Waters, C.; Mackenzie, D.
1979-01-01
A numerical scheme is presented for the computation of transonic aerodynamic loads on flexible wings. The method consists of iteratively applying the loads computed by a 3D transonic aerodynamics code to a structural model to obtain elastic twist, and then recomputing the loads. Because this iteration is performed concurrently with the iterations performed in computing the aerodynamics, flexible loads are obtained in roughly the same amount of computing time as required to obtain rigid loads. Applications of this method to a flexible supercritical transonic transport wing are presented and compared with model test data.
Transonic interactions of unsteady vortical flows
NASA Technical Reports Server (NTRS)
Mccroskey, W. J.; Srinivasan, G. R.
1984-01-01
Unsteady interactions of strong concentrated vortices, distributed gusts, and sharp-edged gusts with stationary airfoils were analyzed in two-dimensional transonic flow. A simple and efficient method for introducing such vortical disturbances was implemented in numerical codes that range from inviscid transonic small disturbance to thin-layer Navier Stokes. The numerical results demonstrate the large distortions in the overall flow field and in the surface air loads that are produced by various vortical interactions. The results of the different codes are in excellent qualitative agreement, but, as might expected, the transonic small-disturbance calculations are deficient in the important region near the leading edge.
Simulation Of Unsteady, Inviscid, Rotational, Transonic Flow
NASA Technical Reports Server (NTRS)
Damodaran, Murali
1992-01-01
Report describes numerical simulation of two-dimensional, unsteady, inviscid rotational, transonic flow about rigid airfoil in such motions as pitching or plunging oscillations. Study demonstrates potential utility of computation in analyses of aeroelasticity of airfoils.
Computed Flows In A Transonic Turbine
NASA Technical Reports Server (NTRS)
Rangwalla, A. A.; Madavan, N. K.; Johnson, P. D.
1993-01-01
Report presents computational study of flow in first stage of three alternative versions of proposed transonic turbine. Study demonstrates application of computational fluid dynamics to predict performance and analyze effects of changes in designs of these advanced machines.
Recent advances in transonic computational aeroelasticity
NASA Technical Reports Server (NTRS)
Batina, John T.; Bennett, Robert M.; Seidel, David A.; Cunningham, Herbert J.; Bland, Samuel R.
1988-01-01
A transonic unsteady aerodynamic and aeroelasticity code called CAP-TSD was developed for application to realistic aircraft configurations. The code permits the calculation of steady and unsteady flows about complete aircraft configurations for aeroelastic analysis in the flutter critical transonic speed range. The CAP-TSD code uses a time accurate approximate factorization algorithm for solution of the unsteady transonic small disturbance potential equation. An overview is given of the CAP-TSD code development effort and results are presented which demonstrate various capabilities of the code. Calculations are presented for several configurations including the General Dynamics 1/9 scale F-16 aircraft model and the ONERA M6 wing. Calculations are also presented from a flutter analysis of a 45 deg sweptback wing which agrees well with the experimental data. Descriptions are presented of the CAP-TSD code and algorithm details along with results and comparisons which demonstrate these recent developments in transonic computational aeroelasticity.
Inviscid transonic flow computations with shock fitting
NASA Technical Reports Server (NTRS)
Yu, N. J.; Seebass, A. R.
1975-01-01
First-and second-order numerical procedures are presented for calculating two-dimensional transonic flows that treat shock waves as discontinuities. Their application to a simple but nontrivial problem for which there are limited theoretical results is discussed.
Transonic airfoil design using Cartesian coordinates
NASA Technical Reports Server (NTRS)
Carlson, L. A.
1976-01-01
A numerical technique for designing transonic airfoils having a prescribed pressure distribution (the inverse problem) is presented. The method employs the basic features of Jameson's iterative solution for the full potential equation, except that inverse boundary conditions and Cartesian coordinates are used. The method is a direct-inverse approach that controls trailing-edge closure. Examples show the application of the method to design aft-cambered and other airfoils specifically for transonic flight.
A model for transonic plasma flow
Guazzotto, Luca; Hameiri, Eliezer
2014-02-15
A linear, two-dimensional model of a transonic plasma flow in equilibrium is constructed and given an explicit solution in the form of a complex Laplace integral. The solution indicates that the transonic state can be solved as an elliptic boundary value problem, as is done in the numerical code FLOW [Guazzotto et al., Phys. Plasmas 11, 604 (2004)]. Moreover, the presence of a hyperbolic region does not necessarily imply the presence of a discontinuity or any other singularity of the solution.
Transonic rotor noise: Theoretical and experimental comparisons
NASA Technical Reports Server (NTRS)
Schmitz, F. H.; Yu, Y. H.
1980-01-01
Two complementary methods of describing the high speed rotor noise problem are discussed. The first method uses the second order transonic potential equation to define and characterize the nature of the aerodynamic and acoustic fields and to explain the appearance of radiating shock waves. The second employs the Ffowcs Williams and Hawkings equation to successfully calculate the acoustic far field. Good agreement between theoretical and experimental waveforms is shown for transonic hover tip Mach numbers from 0.8 to 0.9.
Calculations Of Transonic Flow About A Wing
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Gundy, Karen L.; Flores, Jolen; Chaderjian, Neal; Kaynak, Univer; Thomas, Scott D.
1988-01-01
Report describes calculations of transonic airflows about wing in wind tunnel. Basic equations of flow used in study are Reynolds-averaged Navier-Stokes equations in strong conservation-law form. Equations of flow incorporated into finite-difference computer code called TNS (Transonic Navier-Stokes). Computational grid generated by solution of partial differential equations yielding smooth meshes conforming to surfaces of wing and wind tunnel.
Study of design and analysis methods for transonic flow
NASA Technical Reports Server (NTRS)
Murman, E. M.
1977-01-01
An airfoil design program and a boundary layer analysis were developed. Boundary conditions were derived for ventilated transonic wind tunnels and performing transonic windtunnel wall calculations. A computational procedure for rotational transonic flow in engine inlet throats was formulated. Results and conclusions are summarized.
Experience with transonic unsteady aerodynamic calculations
NASA Technical Reports Server (NTRS)
Edwards, J. W.; Bland, S. R.; Seidel, D. A.
1984-01-01
Comparisons of calculated and experimental transonic unsteady pressures and airloads for four of the AGARD Two Dimensional Aeroelastic Configurations and for a rectangular supercritical wing are presented. The two dimensional computer code, XTRAN2L, implementing the transonic small perturbation equation was used to obtain results for: (1) pitching oscillations of the NACA 64A010A; NLR 7301 and NACA 0012 airfoils; (2) flap oscillations for the NACA 64A006 and NRL 7301 airfoils; and (3) transient ramping motions for the NACA 0012 airfoils. Results from the three dimensional code XTRAN3S are compared with data from a rectangular supercritical wing oscillating in pitch. These cases illustrate the conditions under which the transonic inviscid small perturbation equation provides reasonable predictions.
Turbulence and modeling in transonic flow
NASA Technical Reports Server (NTRS)
Rubesin, Morris W.; Viegas, John R.
1989-01-01
A review is made of the performance of a variety of turbulence models in the evaluation of a particular well documented transonic flow. This is done to supplement a previous attempt to calibrate and verify transonic airfoil codes by including many more turbulence models than used in the earlier work and applying the calculations to an experiment that did not suffer from uncertainties in angle of attack and was free of wind tunnel interference. It is found from this work, as well as in the earlier study, that the Johnson-King turbulence model is superior for transonic flows over simple aerodynamic surfaces, including moderate separation. It is also shown that some field equation models with wall function boundary conditions can be competitive with it.
Transonic wing analysis using advanced computational methods
NASA Technical Reports Server (NTRS)
Henne, P. A.; Hicks, R. M.
1978-01-01
This paper discusses the application of three-dimensional computational transonic flow methods to several different types of transport wing designs. The purpose of these applications is to evaluate the basic accuracy and limitations associated with such numerical methods. The use of such computational methods for practical engineering problems can only be justified after favorable evaluations are completed. The paper summarizes a study of both the small-disturbance and the full potential technique for computing three-dimensional transonic flows. Computed three-dimensional results are compared to both experimental measurements and theoretical results. Comparisons are made not only of pressure distributions but also of lift and drag forces. Transonic drag rise characteristics are compared. Three-dimensional pressure distributions and aerodynamic forces, computed from the full potential solution, compare reasonably well with experimental results for a wide range of configurations and flow conditions.
Inverse transonic airfoil design including viscous interaction
NASA Technical Reports Server (NTRS)
Carlson, L. A.
1976-01-01
A numerical technique was developed for the analysis of specified transonic airfoils or for the design of airfoils having a prescribed pressure distribution, including the effect of weak viscous interaction. The method uses the full potential equation, a stretched Cartesian coordinate system, and the Nash-MacDonald turbulent boundary layer method. Comparisons with experimental data for typical transonic airfoils show excellent agreement. An example shows the application of the method to design a thick aft-cambered airfoil, and the effects of viscous interaction on its performance are discussed.
A vapor generator for transonic flow visualization
NASA Technical Reports Server (NTRS)
Bruce, Robert A.; Hess, Robert W.; Rivera, Jose A., Jr.
1989-01-01
A vapor generator was developed for use in the NASA Langley Transonic Dynamics Tunnel (TDT). Propylene glycol was used as the vapor material. The vapor generator system was evaluated in a laboratory setting and then used in the TDT as part of a laser light sheet flow visualization system. The vapor generator provided satisfactory seeding of the air flow with visible condensate particles, smoke, for tests ranging from low subsonic through transonic speeds for tunnel total pressures from atmospheric pressure down to less than 0.1 atmospheric pressure.
The transonic Reynolds number problem. [limitations of transonic aerodynamic test facilities
NASA Technical Reports Server (NTRS)
Jones, J. L.
1977-01-01
Problems in modeling the complex interacting flow fields in the transonic speed regime are reviewed. The limitations of wind tunnel test capabilities are identified, and options for resolving the deficiency are examined. The evolution of the National Transonic Facility, and the various needs for research investigations to be done there are discussed. The relative priorities that should be given within and across subdisciplines for guidance in planning for the most effective use of the facility are considered.
Calibration of transonic and supersonic wind tunnels
NASA Technical Reports Server (NTRS)
Reed, T. D.; Pope, T. C.; Cooksey, J. M.
1977-01-01
State-of-the art instrumentation and procedures for calibrating transonic (0.6 less than M less than 1.4) and supersonic (M less than or equal to 3.5) wind tunnels were reviewed and evaluated. Major emphasis was given to transonic tunnels. Continuous, blowdown and intermittent tunnels were considered. The required measurements of pressure, temperature, flow angularity, noise and humidity were discussed, and the effects of measurement uncertainties were summarized. A comprehensive review of instrumentation currently used to calibrate empty tunnel flow conditions was included. The recent results of relevant research are noted and recommendations for achieving improved data accuracy are made where appropriate. It is concluded, for general testing purposes, that satisfactory calibration measurements can be achieved in both transonic and supersonic tunnels. The goal of calibrating transonic tunnels to within 0.001 in centerline Mach number appears to be feasible with existing instrumentation, provided correct calibration procedures are carefully followed. A comparable accuracy can be achieved off-centerline with carefully designed, conventional probes, except near Mach 1. In the range 0.95 less than M less than 1.05, the laser Doppler velocimeter appears to offer the most promise for improved calibration accuracy off-centerline.
Some iterative schemes for transonic potential flows
NASA Technical Reports Server (NTRS)
Wong, Y. S.; Hafez, M. M.
1985-01-01
The minimal residual (MR) method for the numerical solution of transonic potential flows is closely related to the conjugate gradient method, which has found widespread use in the solution of large sparse, symmetric, and positive-definite linear equations. The primary advantage of the MR method is its applicability to both symmetric and nonsymmetric matrices.
Transonic Symposium: Theory, Application, and Experiment, volume 1, part 2
NASA Technical Reports Server (NTRS)
Foughner, Jerome T., Jr. (Compiler)
1989-01-01
In order to assess the state of the art in transonic flow disciplines and to glimpse at future directions, NASA-Langley held a Transonic Symposium. Emphasis was placed on steady, three dimensional external, transonic flow and its simulation, both numerically and experimentally. The symposium included technical sessions on wind tunnel and flight experiments; computational fluid dynamic applications; inviscid methods and grid generation; viscous methods and boundary layer stability; and wind tunnel techniques and wall interference. This, being volume 1, is unclassified.
Transonic Symposium: Theory, Application and Experiment, volume 2
NASA Technical Reports Server (NTRS)
Foughner, Jerome T., Jr. (Compiler)
1989-01-01
Papers presented at the Transonic Symposium are compiled. The following subject areas are covered: National Transonic Facility status; transonic aerodynamics of slender wing-body configuration; laminar flow flight experiments; laminar flow wind tunnel experiments; computational support of X-29A flight experiment; transition location on a clean-up glove installed on a F-14 aircraft; and design studies for a laminar glove for the X-29 aircraft.
Transonic turbine blade cascade testing facility
NASA Technical Reports Server (NTRS)
Verhoff, Vincent G.; Camperchioli, William P.; Lopez, Isaac
1992-01-01
NASA LeRC has designed and constructed a new state-of-the-art test facility. This facility, the Transonic Turbine Blade Cascade, is used to evaluate the aerodynamics and heat transfer characteristics of blade geometries for future turbine applications. The facility's capabilities make it unique: no other facility of its kind can combine the high degree of airflow turning, infinitely adjustable incidence angle, and high transonic flow rates. The facility air supply and exhaust pressures are controllable to 16.5 psia and 2 psia, respectively. The inlet air temperatures are at ambient conditions. The facility is equipped with a programmable logic controller with a capacity of 128 input/output channels. The data acquisition system is capable of scanning up to 1750 channels per sec. This paper discusses in detail the capabilities of the facility, overall facility design, instrumentation used in the facility, and the data acquisition system. Actual research data is not discussed.
Kuechemann Carrots for transonic drag reduction.
NASA Astrophysics Data System (ADS)
Bechert, D. W.; Hage, W.; Stanewsky, E.
1999-11-01
Wave drag reduction bodies on the suction side of transonic wings are investigated. Following the original invention by O. Frenzl (1942), subsequently, such bodies have been suggested by Kuechemann and Whitcomb. These devices have been used sucessfully on various TUPOLEV aircraft and on the CONVAIR 990 airliner. New transonic wind tunnel data from an unswept wing with an array of Kuechemann Carrots are presented (airfoil: CAST 10/DOA-2). In a certain parameter range (M= 0.765-0.86) the measurements exhibit a significant reduction of the shock strength on a wing between the Kuechemann Carrots. This entails a dramatic reduction of drag, in a certain Mach number and angular regime up to 50-60%.
Viscous Transonic Airfoil Workshop compendium of results
NASA Technical Reports Server (NTRS)
Holst, Terry L.
1987-01-01
Results from the Viscous Transonic Airfoil Workshop held at the AIAA 25th Aerospace Sciences Meeting at Reno, NV in January 1987, are compared with each other and with experimental data. Test cases used in this workshop include attached and separated transonic flows for three different airfoils: the NACA 0012 airfoil, the RAE 2822 airfoil, and the Jones airfoil. A total of 23 sets of numerical results from 15 different author groups are included. The numerical methods used vary widely and include: 16 Navier-Stokes methods, 2 Euler/boundary-layer methods, and 5 full-potential/boundary-layer methods. The results indicate a high degree of sophistication among the numerical methods with generally good agreement between the various computed and experimental results for attached or moderately-separated cases. The agreement for cases with larger separation is only fair and suggests additional work is required in this area.
Analysis of a theoretically optimized transonic airfoil
NASA Technical Reports Server (NTRS)
Lores, M. E.; Burdges, K. P.; Shrewsbury, G. D.
1978-01-01
Numerical optimization was used in conjunction with an inviscid, full potential equation, transonic flow analysis computer code to design an upper surface contour for a conventional airfoil to improve its supercritical performance. The modified airfoil was tested in a compressible flow wind tunnel. The modified airfoil's performance was evaluated by comparison with test data for the baseline airfoil and for an airfoil developed by optimization of leading edge of the baseline airfoil. While the leading edge modification performed as expected, the upper surface re-design did not produce all of the expected performance improvements. Theoretical solutions computed using a full potential, transonic airfoil code corrected for viscosity were compared to experimental data for the baseline airfoil and the upper surface modification. These correlations showed that the theory predicted the aerodynamics of the baseline airfoil fairly well, but failed to accurately compute drag characteristics for the upper surface modification.
Buffet test in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.; Hergert, Dennis W.; Butler, Thomas W.; Herring, Fred M.
1992-01-01
A buffet test of a commercial transport model was accomplished in the National Transonic Facility at the NASA Langley Research Center. This aeroelastic test was unprecedented for this wind tunnel and posed a high risk to the facility. This paper presents the test results from a structural dynamics and aeroelastic response point of view and describes the activities required for the safety analysis and risk assessment. The test was conducted in the same manner as a flutter test and employed onboard dynamic instrumentation, real time dynamic data monitoring, automatic, and manual tunnel interlock systems for protecting the model. The procedures and test techniques employed for this test are expected to serve as the basis for future aeroelastic testing in the National Transonic Facility. This test program was a cooperative effort between the Boeing Commercial Airplane Company and the NASA Langley Research Center.
Vector processor algorithms for transonic flow calculations
NASA Technical Reports Server (NTRS)
South, J. C., Jr.; Keller, J. D.; Hafez, M. M.
1979-01-01
This paper discusses a number of algorithms for solving the transonic full-potential equation in conservative form on a vector computer, such as the CDC STAR-100 or the CRAY-1. Recent research with the 'artificial density' method for transonics has led to development of some new iteration schemes which take advantage of vector-computer architecture without suffering significant loss of convergence rate. Several of these more promising schemes are described and 2-D and 3-D results are shown comparing the computational rates on the STAR and CRAY vector computers, and the CYBER-175 serial computer. Schemes included are: (1) Checkerboard SOR, (2) Checkerboard Leapfrog, (3) odd-even vertical line SOR, and (4) odd-even horizontal line SOR.
Transonic and supersonic ground effect aerodynamics
NASA Astrophysics Data System (ADS)
Doig, G.
2014-08-01
A review of recent and historical work in the field of transonic and supersonic ground effect aerodynamics has been conducted, focussing on applied research on wings and aircraft, present and future ground transportation, projectiles, rocket sleds and other related bodies which travel in close ground proximity in the compressible regime. Methods for ground testing are described and evaluated, noting that wind tunnel testing is best performed with a symmetry model in the absence of a moving ground; sled or rail testing is ultimately preferable, though considerably more expensive. Findings are reported on shock-related ground influence on aerodynamic forces and moments in and accelerating through the transonic regime - where force reversals and the early onset of local supersonic flow is prevalent - as well as more predictable behaviours in fully supersonic to hypersonic ground effect flows.
Flow instabilities in transonic small disturbance theory
NASA Technical Reports Server (NTRS)
Williams, M. H.; Bland, S. R.; Edwards, J. W.
1985-01-01
The dynamics of unsteady transonic small disturbance flows about two-dimensional airfoils is examined, with emphasis on the behavior in the region where the steady state flow is nonunique. It is shown that nonuniqueness results from an extremely long time scale instability which occurs in a finite Mach number and angle of attack range. The similarity scaling rules for the instability are presented and the possibility of similar behavior in the Euler equations is discussed.
Magnus effects on spinning transonic missiles
NASA Technical Reports Server (NTRS)
Seginer, A.; Rosenwasser, I.
1983-01-01
Magnus forces and moments were measured on a basic-finner model spinning in transonic flow. Spin was induced by canted fins or by full-span or semi-span, outboard and inboard roll controls. Magnus force and moment reversals were caused by Mach number, reduced spin rate, and angle of attack variations. Magnus center of pressure was found to be independent of the angle of attack but varied with the Mach number and model configuration or reduced spin rate.
Recent Enhancements to the National Transonic Facility
NASA Technical Reports Server (NTRS)
Kilgore, W. A.; Balakrishna, S.; Bobbitt, C. W.; Underwood, P.
2003-01-01
The National Transonic Facility continues to make enhancements to provide quality data in a safe, efficient and cost effective method for aerodynamic ground testing. Recent enhancements discussed in this paper include the restoration of reliability and improved performance of the heat exchanger systems resulting in the expansion of the NTF air operations envelope. Additionally, results are presented from a continued effort to reduce model dynamics through the use of a new stiffer balance and sting
Recent Enhancements to the National Transonic Facility
NASA Technical Reports Server (NTRS)
Kilgore, W. A.; Balakrishna, S.; Bobbitt, C. W.; Underwood, P.
2003-01-01
The National Transonic Facility continues to make enhancements to provide quality data in a safe, efficient and cost effective method for aerodynamic ground testing. Recent enhancements discussed in this paper include the restoration of reliability and improved performance of the heat exchanger systems resulting in the expansion of the NTF air operations envelope. Additionally, results are presented from a continued effort to reduce model dynamics through the use of a new stiffer balance and sting.
Transonic airfoil and axial flow rotary machine
Nagai, Naonori; Iwatani, Junji
2015-09-01
Sectional profiles close to a tip 124 and a part between a midportion 125 and a hub 123 are shifted to the upstream of an operating fluid flow in a sweep direction. Accordingly, an S shape is formed in which the tip 124 and the part between the midportion 125 and the hub 123 protrude. As a result, it is possible reduce various losses due to shook, waves, thereby forming a transonic airfoil having an excellent aerodynamic characteristic.
Studying Transonic Gases With a Hydraulic Analog
NASA Technical Reports Server (NTRS)
Wagner, W.; Lepore, F.
1986-01-01
Water table for hydraulic-flow research yields valuable information about gas flow at transonic speeds. Used to study fuel and oxidizer flow in high-pressure rocket engines. Method applied to gas flows in such equipment as furnaces, nozzles, and chemical lasers. Especially suitable when wall contours nonuniform, discontinuous, or unusually shaped. Wall shapes changed quickly for study and evaluated on spot. Method used instead of computer simulation when computer models unavailable, inaccurate, or costly to run.
Transonic cryogenic test section for the Goettingen tube facility
NASA Technical Reports Server (NTRS)
Hornung, H.; Hefer, G.; Krogmann, P.; Stanewsky, E.
1983-01-01
The design of modern aircraft requires the solution of problems related to transonic flow at high Reynolds numbers. To investigate these problems experimentally, it is proposed to extend the Ludwieg tube facility by adding a transonic cryogenic test section. After stating the requirements for such a test section, the technical concept is briefly explained and a preliminary estimate of the costs is given.
ATRAN3S: An unsteady transonic code for clean wings
NASA Technical Reports Server (NTRS)
Guruswamy, G. P.; Goorjian, P. M.; Merritt, F. J.
1985-01-01
The development and applications of the unsteady transonic code ATRAN3S for clean wings are discussed. Explanations of the unsteady, transonic small-disturbance aerodynamic equations that are used and their solution procedures are discussed. A detailed user's guide, along with input and output for a sample case, is given.
Transonic potential flow in hyperbolic nozzles
NASA Technical Reports Server (NTRS)
Park, M.; Caughey, D. A.
1986-01-01
The full potential equation for the classical problem of transonic flow through a hyperbolic nozzle (with or without a shock wave) is solved in conservation form using the finite volume method of Jameson and Caughey (1977). Either a firstor a second-order numerical viscosity is added in the direction of the flow, explicitly, in conservation form. A multigrid alternating direction implicit method is used to solve the difference equations, and the results obtained are compared with analytical and numerical results from previous researches.
Buffet test in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.; Hergert, Dennis W.; Butler, Thomas W.; Herring, Fred M.
1992-01-01
A buffet test of a commercial transport model was accomplished in the National Transonic Facility at the NASA Langley Research Center. This aeroelastic test was unprecedented for this wind tunnel and posed a high risk for the facility. Presented here are the test results from a structural dynamics and aeroelastic response point of view. The activities required for the safety analysis and risk assessment are described. The test was conducted in the same manner as a flutter test and employed on-board dynamic instrumentation, real time dynamic data monitoring, and automatic and manual tunnel interlock systems for protecting the model.
Computational methods for unsteady transonic flows
NASA Technical Reports Server (NTRS)
Edwards, John W.; Thomas, James L.
1987-01-01
Computational methods for unsteady transonic flows are surveyed with emphasis upon applications to aeroelastic analysis and flutter prediction. Computational difficulty is discussed with respect to type of unsteady flow; attached, mixed (attached/separated) and separated. Significant early computations of shock motions, aileron buzz and periodic oscillations are discussed. The maturation of computational methods towards the capability of treating complete vehicles with reasonable computational resources is noted and a survey of recent comparisons with experimental results is compiled. The importance of mixed attached and separated flow modeling for aeroelastic analysis is discussed and recent calculations of periodic aerodynamic oscillations for an 18 percent thick circular arc airfoil are given.
Computational methods for unsteady transonic flows
NASA Technical Reports Server (NTRS)
Edwards, John W.; Thomas, J. L.
1987-01-01
Computational methods for unsteady transonic flows are surveyed with emphasis on prediction. Computational difficulty is discussed with respect to type of unsteady flow; attached, mixed (attached/separated) and separated. Significant early computations of shock motions, aileron buzz and periodic oscillations are discussed. The maturation of computational methods towards the capability of treating complete vehicles with reasonable computational resources is noted and a survey of recent comparisons with experimental results is compiled. The importance of mixed attached and separated flow modeling for aeroelastic analysis is discussed, and recent calculations of periodic aerodynamic oscillations for an 18 percent thick circular arc airfoil are given.
Numerical simulation of small perturbation transonic flows
NASA Technical Reports Server (NTRS)
Seebass, A. R.; Yu, N. J.
1976-01-01
The results of a systematic study of small perturbation transonic flows are presented. Both the flow over thin airfoils and the flow over wedges were investigated. Various numerical schemes were employed in the study. The prime goal of the research was to determine the efficiency of various numerical procedures by accurately evaluating the wave drag, both by computing the pressure integral around the body and by integrating the momentum loss across the shock. Numerical errors involved in the computations that affect the accuracy of drag evaluations were analyzed. The factors that effect numerical stability and the rate of convergence of the iterative schemes were also systematically studied.
0.3 Meter Transonic Cryogenic Tunnel
NASA Technical Reports Server (NTRS)
1985-01-01
Full Description: The Langley 0.3-Meter Transonic Cryogenic tunnel (0.3-m TCT) is used for testing two-dimensional airfoil sections and other models at high Reynolds numbers. The tunnel can operate continuously over a range of Mach numbers from about 0.1 to above 1.2, with a stagnation pressure from 14.7 to 88.0 psia (1 to 6 atmospheres) and a stagnation temperature from -320F to 130F (78 K to 328 K). This results in a maximum Reynolds number capability in excess of 100 x 106 per foot. The adaptive walls, floor, and ceiling in the 13-in. by 13-in. (33-cm by 33-cm) test section can be moved to the free-stream streamline shape, eliminating or reducing the wall effects on the model. The combination of flight Reynolds numbers capability and minimal wall interference makes the 0.3-m TCT a powerful tool for aeronautical research at transonic speeds. The Mach number, pressure, temperature, and adaptive wall shape are automatically controlled. The test section has computer-controlled angle of attack and traversing wake survey-probe systems. The facility has been modified to also use alternate test media--a heavy gas (sulfur hexafluoride, SF6), or air, both with a newly installed heat exchanger.
Geometrical acoustics and transonic helicopter sound
NASA Technical Reports Server (NTRS)
Isom, Morris; Purcell, Timothy W.; Strawn, Roger C.
1987-01-01
A new method is presented for predicting the impulsive noise generated by a transonic rotor blade. The method is a combined approach involving computational fluid dynamics and geometrical acoustics. A full-potential finite-difference method is used to obtain the pressure field close to the blade. A Kirchhoff integral formulation is then used to extend these finite-difference results into the far field. This Kirchhoff formula is based on geometrical acoustics approximations. It requires initial data across a plane at the sonic radius in a blade-fixed coordinate system. This data is provided by the finite-difference solution. Acoustic pressure predictions show good agreement with hover experimental data for cases with hover tip Mach numbers of 0.88 through 0.96. The cases above 0.92 tip Mach number are dominated by non-linear transonic effects seen as strong shocks on and off the blade tip. This paper gives the first successful predictions of far-field acoustic pressures for high-speed impulsive noise over a range of Mach numbers after delocalization.
High-transonic-speed transport aircraft study
NASA Technical Reports Server (NTRS)
Kulfan, R. M.
1974-01-01
An initial design study of high-transonic-speed transport aircraft has been completed. Five different design concepts were developed. These included fixed swept wing, variable-sweep wing, delta wing, double-fuselage yawed-wing, and single-fuselage yawed-wing aircraft. The boomless supersonic design objectives of range = 5560 km (3000 nmi), payload = 18,143 kg (40,000 lb), Mach = 1.2, and FAR Part 36 aircraft noise levels were achieved by the single-fuselage yawed-wing configuration with a gross weight of 211,828 kg (467,000 lb). A noise level of 15 EPNdB below FAR Part 36 requirements was obtained with a gross weight increase to 226,796 kg (500,000 lb). The off-design subsonic range capability for this configuration exceeded the Mach 1.2 design range by more than 20%. Although wing aeroelastic divergence was a primary design consideration for the yawed-wing concepts, the graphite-epoxy wings of this study were designed by critical gust and maneuver loads rather than by divergence requirements. The transonic nacelle drag is shown to be very sensitive to the nacelle installation. A six-degree-of-freedom dynamic stability analysis indicated that the control coordination and stability augmentation system would require more development than for a symmetrical airplane but is entirely feasible. A three-plane development plan is recommended to establish the full potential of the yawed-wing concept.
Numerical calculations of two dimensional, unsteady transonic flows with circulation
NASA Technical Reports Server (NTRS)
Beam, R. M.; Warming, R. F.
1974-01-01
The feasibility of obtaining two-dimensional, unsteady transonic aerodynamic data by numerically integrating the Euler equations is investigated. An explicit, third-order-accurate, noncentered, finite-difference scheme is used to compute unsteady flows about airfoils. Solutions for lifting and nonlifting airfoils are presented and compared with subsonic linear theory. The applicability and efficiency of the numerical indicial function method are outlined. Numerically computed subsonic and transonic oscillatory aerodynamic coefficients are presented and compared with those obtained from subsonic linear theory and transonic wind-tunnel data.
Computational, unsteady transonic aerodynamics and aeroelasticity about airfoils and wings
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Guruswamy, Guru P.
1987-01-01
Research in the area of computational, unsteady transonic flows about airfoils and wings, including aeroelastic effects is reviewed. In the last decade, there have been extensive developments in computational methods in response to the need for computer codes with which to study fundamental aerodynamic and aeroelastic problems in the critical transonic regime. For example, large commercial aircraft cruise most effectively in the transonic flight regime and computational fluid dynamics (CDF) provides a new tool, which can be used in combination with test facilities to reduce the costs, time, and risks of aircraft development.
Transonic separated solutions for an augmentor-wing
NASA Technical Reports Server (NTRS)
Flores, J.; Van Dalsem, W. R.
1985-01-01
The viscous transonic flow about a multielement airfoil (augmentor-wing) is simulated by coupling full-potential and direct/inverse differential boundary-layer algorithms. Solutions have been obtained for a variety of conditions and are in fair agreement with available experimental data. Typical results from this transonic augmentor-wing code (TAUG-V) require approximately three minutes of CRAY-XMP CPU time. Since this viscous transonic code accounts for most of the important flow physics, yet is still economical, it is a practical tool for the design aerodynamicist.
Wing analysis using a transonic potential flow computational method
NASA Technical Reports Server (NTRS)
Henne, P. A.; Hicks, R. M.
1978-01-01
The ability of the method to compute wing transonic performance was determined by comparing computed results with both experimental data and results computed by other theoretical procedures. Both pressure distributions and aerodynamic forces were evaluated. Comparisons indicated that the method is a significant improvement in transonic wing analysis capability. In particular, the computational method generally calculated the correct development of three-dimensional pressure distributions from subcritical to transonic conditions. Complicated, multiple shocked flows observed experimentally were reproduced computationally. The ability to identify the effects of design modifications was demonstrated both in terms of pressure distributions and shock drag characteristics.
Analysis of viscous transonic flow over airfoil sections
NASA Technical Reports Server (NTRS)
Huff, Dennis L.; Wu, Jiunn-Chi; Sankar, L. N.
1987-01-01
A full Navier-Stokes solver has been used to model transonic flow over three airfoil sections. The method uses a two-dimensional, implicit, conservative finite difference scheme for solving the compressible Navier-Stokes equations. Results are presented as prescribed for the Viscous Transonic Airfoil Workshop to be held at the AIAA 25th Aerospace Sciences Meeting. The NACA 0012, RAE 2822 and Jones airfoils have been investigated for both attached and separated transonic flows. Predictions for pressure distributions, loads, skin friction coefficients, boundary layer displacement thickness and velocity profiles are included and compared with experimental data when possible. Overall, the results are in good agreement with experimental data.
NASA Technical Reports Server (NTRS)
Chaparro, Daniel; Fujiwara, Gustavo E. C.; Ting, Eric; Nguyen, Nhan
2016-01-01
The need to rapidly scan large design spaces during conceptual design calls for computationally inexpensive tools such as the vortex lattice method (VLM). Although some VLM tools, such as Vorview have been extended to model fully-supersonic flow, VLM solutions are typically limited to inviscid, subcritical flow regimes. Many transport aircraft operate at transonic speeds, which limits the applicability of VLM for such applications. This paper presents a novel approach to correct three-dimensional VLM through coupling of two-dimensional transonic small disturbance (TSD) solutions along the span of an aircraft wing in order to accurately predict transonic aerodynamic loading and wave drag for transport aircraft. The approach is extended to predict flow separation and capture the attenuation of aerodynamic forces due to boundary layer viscosity by coupling the TSD solver with an integral boundary layer (IBL) model. The modeling framework is applied to the NASA General Transport Model (GTM) integrated with a novel control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF).
Techniques for correcting approximate finite difference solutions. [considering transonic flow
NASA Technical Reports Server (NTRS)
Nixon, D.
1978-01-01
A method of correcting finite-difference solutions for the effect of truncation error or the use of an approximate basic equation is presented. Applications to transonic flow problems are described and examples are given.
Unsteady transonic flow calculations for interfering lifting surface configurations
NASA Technical Reports Server (NTRS)
Batina, J. T.
1985-01-01
Unsteady transonic flow calculations are presented for aerodynamically interfering lifting surface configurations. Calculations are performed by extending the XTRAN3S (Version 1.5) unsteady transonic small-disturbance code to allow the treatment of an additional lifting surface. The research was conducted as a first-step toward developing the capability to treat a complete flight vehicle. Grid generation procedures for swept tapered interfering lifting surface applications of XTRAN3S are described. Transonic calculations are presented for wing-tail and canard-wing configurations for several values of mean angle of attack. The effects of aerodynamic interference on transonic steady pressure distributions and steady and oscillatory spanwise lift distributions are demonstrated. Results due to wing, tail, or canard pitching motions are presented and discussed in detail.
Design optimization of axisymmetric bodies in nonuniform transonic flow
NASA Technical Reports Server (NTRS)
Lan, C. Edward
1989-01-01
An inviscid transonic code capable of designing an axisymmetric body in a uniform or nonuniform flow was developed. The design was achieved by direct optimiation by coupling an analysis code with an optimizer. Design examples were provided for axisymmetric bodies with fineness ratios of 8.33 and 5 at different Mach numbers. It was shown that by reducing the nose radius and increasing the afterbody thickness of initial shapes obtained from symmetric NACA four-digit airfoil contours, wave drag could be reduced by 29 percent for a body of fineness ratio 8.33 in a nonuniform transonic flow of M = 0.98 to 0.995. The reduction was 41 percent for a body of fineness ratio 5 in a uniform transonic flow of M = 0.925 and 65 percent for the same body but in a nonuniform transonic flow of M = 0.90 to 0.95.
Active Suppression of the Transonic Flutter Using Sliding Mode Control
NASA Astrophysics Data System (ADS)
Degaki, Takanori; Suzuki, Shinji
This paper describes two-dimensional active flutter suppression to cope with the transonic dip using the sliding mode control. The airfoil model has plunge and pitch degrees of freedom with leading and trailing edge control surfaces. The aerodynamic forces acting on the airfoil, lift and pitching moment, are calculated by solving Euler's equations using computational fluid dynamics. At a specific altitude, flutter occurs between Mach number of 0.7 and 0.88, which corresponds to the transonic dip. The sliding mode control makes the airfoil to be stable all through the Mach number including the transonic dip. The sliding mode controller gives wider flutter margin than a linear quadratic regulator. These characteristics indicate that the sliding mode control is useful for active flutter suppression in the transonic flight.
2. VIEW SOUTH OF TRANSONIC WIND TUNNEL BUILDING AND SUPERSONIC ...
2. VIEW SOUTH OF TRANSONIC WIND TUNNEL BUILDING AND SUPERSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
1. VIEW SOUTHWEST OF SUBSONIC WIND TUNNEL BUILDING AND TRANSONIC ...
1. VIEW SOUTHWEST OF SUBSONIC WIND TUNNEL BUILDING AND TRANSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
7. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC ...
7. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
5. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC ...
5. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
4. VIEW NORTHWEST OF SUPERSONIC WIND TUNNEL BUILDING TO TRANSONIC ...
4. VIEW NORTHWEST OF SUPERSONIC WIND TUNNEL BUILDING TO TRANSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
3. VIEW SOUTHEAST OF TRANSONIC WIND TUNNEL BUILDING TO SUBSONIC ...
3. VIEW SOUTHEAST OF TRANSONIC WIND TUNNEL BUILDING TO SUBSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
TAIR- TRANSONIC AIRFOIL ANALYSIS COMPUTER CODE
NASA Technical Reports Server (NTRS)
Dougherty, F. C.
1994-01-01
The Transonic Airfoil analysis computer code, TAIR, was developed to employ a fast, fully implicit algorithm to solve the conservative full-potential equation for the steady transonic flow field about an arbitrary airfoil immersed in a subsonic free stream. The full-potential formulation is considered exact under the assumptions of irrotational, isentropic, and inviscid flow. These assumptions are valid for a wide range of practical transonic flows typical of modern aircraft cruise conditions. The primary features of TAIR include: a new fully implicit iteration scheme which is typically many times faster than classical successive line overrelaxation algorithms; a new, reliable artifical density spatial differencing scheme treating the conservative form of the full-potential equation; and a numerical mapping procedure capable of generating curvilinear, body-fitted finite-difference grids about arbitrary airfoil geometries. Three aspects emphasized during the development of the TAIR code were reliability, simplicity, and speed. The reliability of TAIR comes from two sources: the new algorithm employed and the implementation of effective convergence monitoring logic. TAIR achieves ease of use by employing a "default mode" that greatly simplifies code operation, especially by inexperienced users, and many useful options including: several airfoil-geometry input options, flexible user controls over program output, and a multiple solution capability. The speed of the TAIR code is attributed to the new algorithm and the manner in which it has been implemented. Input to the TAIR program consists of airfoil coordinates, aerodynamic and flow-field convergence parameters, and geometric and grid convergence parameters. The airfoil coordinates for many airfoil shapes can be generated in TAIR from just a few input parameters. Most of the other input parameters have default values which allow the user to run an analysis in the default mode by specifing only a few input parameters
Transonic Unsteady Aerodynamics and Aeroelasticity 1987, part 1
NASA Technical Reports Server (NTRS)
Bland, Samuel R. (Compiler)
1989-01-01
Computational fluid dynamics methods have been widely accepted for transonic aeroelastic analysis. Previously, calculations with the TSD methods were used for 2-D airfoils, but now the TSD methods are applied to the aeroelastic analysis of the complete aircraft. The Symposium papers are grouped into five subject areas, two of which are covered in this part: (1) Transonic Small Disturbance (TSD) theory for complete aircraft configurations; and (2) Full potential and Euler equation methods.
Separated transonic airfoil flow calculations with a nonequilibrium turbulence model
NASA Technical Reports Server (NTRS)
King, L. S.; Johnson, D. A.
1985-01-01
Navier-Stokes transonic airfoil calculations based on a recently developed nonequilibrium, turbulence closure model are presented for a supercritical airfoil section at transonic cruise conditions and for a conventional airfoil section at shock-induced stall conditions. Comparisons with experimental data are presented which show that this nonequilibrium closure model performs significantly better than the popular Baldwin-Lomax and Cebeci-Smith equilibrium algebraic models when there is boundary-layer separation that results from the inviscid-viscous interactions.
Transonic Wing Shape Optimization Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)
2002-01-01
A method for aerodynamic shape optimization based on a genetic algorithm approach is demonstrated. The algorithm is coupled with a transonic full potential flow solver and is used to optimize the flow about transonic wings including multi-objective solutions that lead to the generation of pareto fronts. The results indicate that the genetic algorithm is easy to implement, flexible in application and extremely reliable.
Mach number effects on transonic aeroelastic forces and flutter characteristics
NASA Technical Reports Server (NTRS)
Mohr, Ross W.; Batina, John T.; Yang, Henry T. Y.
1988-01-01
Transonic aeroelastic stability analysis and flutter calculations are presented for a generic transport-type wing based on the use of the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) finite-difference code. The CAP-TSD code was recently developed for transonic unsteady aerodynamic and aeroelastic analysis of complete aircraft configurations. A binary aeroelastic system consisting of simple bending and torsion modes was used to study aeroelastic behavior at transonic speeds. Generalized aerodynamic forces are presented for a wide range of Mach number and reduced frequency. Aeroelastic characteristics are presented for variations in freestream Mach number, mass ratio, and bending-torsion frequency ratio. Flutter boundaries are presented which have two transonic dips in flutter speed. The first dip is the usual transonic dip involving a bending-dominated flutter mode. The second dip is characterized by a single degree-of-freedom torsion oscillation. These aeroelastic results are physically interpreted and shown to be related to the steady state shock location and changes in generalized aerodynamic forces due to freestream Mach number.
Flutter Analysis of a Transonic Fan
NASA Technical Reports Server (NTRS)
Srivastava, R.; Bakhle, M. A.; Keith, T. G., Jr.; Stefko, G. L.
2002-01-01
This paper describes the calculation of flutter stability characteristics for a transonic forward swept fan configuration using a viscous aeroelastic analysis program. Unsteady Navier-Stokes equations are solved on a dynamically deforming, body fitted, grid to obtain the aeroelastic characteristics using the energy exchange method. The non-zero inter-blade phase angle is modeled using phase-lagged boundary conditions. Results obtained show good correlation with measurements. It is found that the location of shock and variation of shock strength strongly influenced stability. Also, outboard stations primarily contributed to stability characteristics. Results demonstrate that changes in blade shape impact the calculated aerodynamic damping, indicating importance of using accurate blade operating shape under centrifugal and steady aerodynamic loading for flutter prediction. It was found that the calculated aerodynamic damping was relatively insensitive to variation in natural frequency.
The National Transonic Facility: A Research Retrospective
NASA Technical Reports Server (NTRS)
Wahls, R. A.
2001-01-01
An overview of the National Transonic Facility (NTF) from a research utilization perspective is provided. The facility was born in the 1970s from an internationally recognized need for a high Reynolds number test capability based on previous experiences with preflight predictions of aerodynamic characteristics and an anticipated need in support of research and development for future aerospace vehicle systems. Selection of the cryogenic concept to meet the need, unique capabilities of the facility, and the eventual research utilization of the facility are discussed. The primary purpose of the paper is to expose the range of investigations that have used the NTF since being declared operational in late 1984; limited research results are included, though many more can be found in the references.
Analysis of three-dimensional transonic compressors
NASA Technical Reports Server (NTRS)
Bourgeade, A.
1984-01-01
A method for computing the three-dimensional transonic flow around the blades of a compressor or of a propeller is given. The method is based on the use of the velocity potential, on the hypothesis that the flow is inviscid, irrotational and isentropic. The equation of the potential is solved in a transformed space such that the surface of the blade is mapped into a plane where the periodicity is implicit. This equation is in a nonconservative form and is solved with the help of a finite difference method using artificial time. A computer code is provided and some sample results are given in order to demonstrate the influence of three-dimensional effects and the blade's rotation.
Transonic Blunt Body Aerodynamic Coefficients Computation
NASA Astrophysics Data System (ADS)
Sancho, Jorge; Vargas, M.; Gonzalez, Ezequiel; Rodriguez, Manuel
2011-05-01
In the framework of EXPERT (European Experimental Re-entry Test-bed) accurate transonic aerodynamic coefficients are of paramount importance for the correct trajectory assessment and parachute deployment. A combined CFD (Computational Fluid Dynamics) modelling and experimental campaign strategy was selected to obtain accurate coefficients. A preliminary set of coefficients were obtained by CFD Euler inviscid computation. Then experimental campaign was performed at DNW facilities at NLR. A profound review of the CFD modelling was done lighten up by WTT results, aimed to obtain reliable values of the coefficients in the future (specially the pitching moment). Study includes different turbulence modelling and mesh sensitivity analysis. Comparison with the WTT results is explored, and lessons learnt are collected.
Design of a transonically profiled wing
NASA Technical Reports Server (NTRS)
Kiekebusch, B.
1978-01-01
The application of well known design concepts with the combined use of thick transonic profiles to aircraft wing design was investigated. Optimization in terms of weight and operational costs was emphasized. It is shown that the usual design criteria and concepts are too restricted and do not sufficiently represent the physical processes over the wing. Suggestions are made for improving this situation, and a design example given. Compared with a wing design according to previously used criteria, the new design is found to be superior in the most important functions. It is concluded that an isobar concept adjusted to the planform in conjunction with an 'organically' designed wing will lead to the weight optimum solutions of wing profiles.
Transonic Flow Computations Using Nonlinear Potential Methods
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Kwak, Dochan (Technical Monitor)
2000-01-01
This presentation describes the state of transonic flow simulation using nonlinear potential methods for external aerodynamic applications. The presentation begins with a review of the various potential equation forms (with emphasis on the full potential equation) and includes a discussion of pertinent mathematical characteristics and all derivation assumptions. Impact of the derivation assumptions on simulation accuracy, especially with respect to shock wave capture, is discussed. Key characteristics of all numerical algorithm types used for solving nonlinear potential equations, including steady, unsteady, space marching, and design methods, are described. Both spatial discretization and iteration scheme characteristics are examined. Numerical results for various aerodynamic applications are included throughout the presentation to highlight key discussion points. The presentation ends with concluding remarks and recommendations for future work. Overall. nonlinear potential solvers are efficient, highly developed and routinely used in the aerodynamic design environment for cruise conditions. Published by Elsevier Science Ltd. All rights reserved.
Demonstration of PIV in a Transonic Compressor
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1997-01-01
Particle Imaging Velocimetry (PIV) is a powerful measurement technique which can be used as an alternative or complementary approach to Laser Doppler Velocimetry (LDV) in a wide range of research applications. PIV data are measured simultaneously at multiple points in space, which enables the investigation of the non-stationary spatial structures typically encountered in turbomachinery. Many of the same issues encountered in the application of LDV techniques to rotating machinery apply in the application of PIV. Preliminary results from the successful application of the standard 2-D PIV technique to a transonic axial compressor are presented. The lessons learned from the application of the 2-D PIV technique will serve as the basis for applying 3-component PIV techniques to turbomachinery.
A transonic rectangular grid embedded panel method
NASA Technical Reports Server (NTRS)
Johnson, F. T.; Bussoletti, J. E.; James, R. M.; Young, D. P.; Woo, A. C.
1982-01-01
A method is presented that has the potential for solving transonic flow problems about the same complex aircraft configurations currently being analyzed by subsonic panel methods. This method does not require the generation of surface fitted grids. Instead it uses rectangular grids and subgrids together with embedded surface panels on which boundary conditions are imposed. Both the Euler and full potential equations are considered. The method of least squares is used to reduce the solution of these equations to the solution of a sequence of Poisson problems. The Poisson problems are solved using fast Fourier transforms and panel influence coefficient techniques. The overall method is still in its infancy but some two dimensional results are shown illustrating various key features.
Nonclassical aileron buzz in transonic flow
NASA Technical Reports Server (NTRS)
Bendiksen, Oddvar O.
1993-01-01
A computational study of inviscid, transonic aileron and trailing-edge buzz instabilities is presented. A mixed Eulerian-Lagrangian formulation is used to model the fluid-structure system and to obtain a system of space-discretized equations that is time-marched to simulate the aeroelastic behavior of the wing-aileron system. Results obtained suggest that shock-induced separation may not be an essential driving force behind all buzz phenomena. Several examples are shown where the shock motion interacts with the aileron motion to extract energy from the flow. If the trailing-edge region is sufficiently flexible and the shocks are at the trailing edge, a trailing-edge buzz instability appears possible.
Transonic flow visualization using holographic interferometry
NASA Technical Reports Server (NTRS)
Bryanston-Cross, Peter J.
1987-01-01
An account is made of some of the applications of holographic interferometry to the visualization of transonic flows. In the case of the compressor shock visualization, the method is used regularly and has moved from being a research department invention to a design test tool. With the implementation of automatic processing and simple digitization systems, holographic vibrational analysis has also moved into routine nondestructive testing. The code verification interferograms were instructive, but the main turbomachinery interest is now in 3 dimensional flows. A major data interpretation effort will be required to compute tomographically the 3 dimensional flow around the leading or the trailing edges of a rotating blade row. The bolt on approach shows the potential application to current unsteady flows of interest. In particular that of the rotor passing and vortex interaction effects is experienced by the new generation of unducted fans. The turbocharger tests presents a new area for the application of holography.
NASA Technical Reports Server (NTRS)
Paryz, Roman W.
2014-01-01
Several upgrade projects have been completed at the NASA Langley Research Center National Transonic Facility over the last 1.5 years in an effort defined as STARBUKS - Subsonic Transonic Applied Refinements By Using Key Strategies. This multi-year effort was undertaken to improve NTF's overall capabilities by addressing Accuracy and Validation, Productivity, and Reliability areas at the NTF. This presentation will give a brief synopsis of each of these efforts.
1. VIEW LOOKING SOUTHEAST AT EXTERIOR OF 8FOOT TRANSONIC PRESSURE ...
1. VIEW LOOKING SOUTHEAST AT EXTERIOR OF 8-FOOT TRANSONIC PRESSURE TUNNEL. NOTE EXPANSION RINGS. - NASA Langley Research Center, 8-Foot Transonic Pressure Tunnel, 640 Thornell Avenue, Hampton, Hampton, VA
2. VIEW LOOKING EASTNORTHEAST AT EXTERIOR OF 8FOOT TRANSONIC PRESSURE ...
2. VIEW LOOKING EAST-NORTHEAST AT EXTERIOR OF 8-FOOT TRANSONIC PRESSURE TUNNEL (BUILDING 640). NOTE NACA LOGO OVER DOORWAY. - NASA Langley Research Center, 8-Foot Transonic Pressure Tunnel, 640 Thornell Avenue, Hampton, Hampton, VA
5. VIEW LOOKING NORTH AT 8FOOT TRANSONIC PRESSURE TUNNEL PLENUM ...
5. VIEW LOOKING NORTH AT 8-FOOT TRANSONIC PRESSURE TUNNEL PLENUM FLOOR AREA. NOTE SCHLIEREN OPTICAL SYSTEM ON STRUCTURE AT RIGHT CENTER. - NASA Langley Research Center, 8-Foot Transonic Pressure Tunnel, 640 Thornell Avenue, Hampton, Hampton, VA
Unsteady wake measurements of an oscillating flap at transonic speeds
NASA Technical Reports Server (NTRS)
Bodapati, S.; Lee, C.-S.
1984-01-01
The steady and unsteady wake profiles of an airfoil with an oscillating flap were measured at nominal free stream Mach number of 0.8 in the NASA Ames 11 x 11-foot wind tunnel. The instantaneous wake velocity and pressure profiles at four axial locations are presented up to one chord length from the trailing edge. Both fundamental harmonic frequency and typical time history data are presented to observe the effects of airfoil incidence and flap angle. The drag coefficient obtained from the wake pressure measurements is compared with that obtained from the airfoil pressure distribution.
NASA Technical Reports Server (NTRS)
Tanaka, K.; Hirose, H.
1986-01-01
The development of transonic aerodynamic computation methods and specific examples, as well as examples of three-dimensional transonic computation in design, are discussed. The case of the transonic transport and the case of the small transport are analyzed. Requirements for programs of the future are itemized.
Investigations for Supersonic Transports at Transonic and Supersonic Conditions
NASA Technical Reports Server (NTRS)
Rivers, S. Melissa B.; Owens, Lewis R.; Wahls, Richard A.
2007-01-01
Several computational studies were conducted as part of NASA s High Speed Research Program. Results of turbulence model comparisons from two studies on supersonic transport configurations performed during the NASA High-Speed Research program are given. The effects of grid topology and the representation of the actual wind tunnel model geometry are also investigated. Results are presented for both transonic conditions at Mach 0.90 and supersonic conditions at Mach 2.48. A feature of these two studies was the availability of higher Reynolds number wind tunnel data with which to compare the computational results. The transonic wind tunnel data was obtained in the National Transonic Facility at NASA Langley, and the supersonic data was obtained in the Boeing Polysonic Wind Tunnel. The computational data was acquired using a state of the art Navier-Stokes flow solver with a wide range of turbulence models implemented. The results show that the computed forces compare reasonably well with the experimental data, with the Baldwin-Lomax with Degani-Schiff modifications and the Baldwin-Barth models showing the best agreement for the transonic conditions and the Spalart-Allmaras model showing the best agreement for the supersonic conditions. The transonic results were more sensitive to the choice of turbulence model than were the supersonic results.
Transonic airfoil design for helicopter rotor applications
NASA Technical Reports Server (NTRS)
Hassan, Ahmed A.; Jackson, B.
1989-01-01
Despite the fact that the flow over a rotor blade is strongly influenced by locally three-dimensional and unsteady effects, practical experience has always demonstrated that substantial improvements in the aerodynamic performance can be gained by improving the steady two-dimensional charateristics of the airfoil(s) employed. The two phenomena known to have great impact on the overall rotor performance are: (1) retreating blade stall with the associated large pressure drag, and (2) compressibility effects on the advancing blade leading to shock formation and the associated wave drag and boundary-layer separation losses. It was concluded that: optimization routines are a powerful tool for finding solutions to multiple design point problems; the optimization process must be guided by the judicious choice of geometric and aerodynamic constraints; optimization routines should be appropriately coupled to viscous, not inviscid, transonic flow solvers; hybrid design procedures in conjunction with optimization routines represent the most efficient approach for rotor airfroil design; unsteady effects resulting in the delay of lift and moment stall should be modeled using simple empirical relations; and inflight optimization of aerodynamic loads (e.g., use of variable rate blowing, flaps, etc.) can satisfy any number of requirements at design and off-design conditions.
Subsonic-transonic stall flutter study
NASA Technical Reports Server (NTRS)
Stardter, H.
1979-01-01
The objective of the Subsonic/Transonic Stall Flutter Program was to obtain detailed measurements of both the steady and unsteady flow field surrounding a rotor and the mechanical state of the rotor while it was operating in both steady and flutter modes to provide a basis for future analysis and for development of theories describing the flutter phenomenon. The program revealed that while all blades flutter at the same frequency, they do not flutter at the same amplitude, and their interblade phase angles are not equal. Such a pattern represents the superposition of a number of rotating nodal diameter patterns, each characterized by a different amplitude and different phase indexing, but each rotating at a speed that results in the same flutter frequency as seen in the rotor system. Review of the steady pressure contours indicated that flutter may alter the blade passage pressure distribution. The unsteady pressure amplitude contour maps reveal regions of high unsteady pressure amplitudes near the leading edge, lower amplitudes near the trailing.
Applications of a transonic wing design method
NASA Technical Reports Server (NTRS)
Campbell, Richard L.; Smith, Leigh A.
1989-01-01
A method for designing wings and airfoils at transonic speeds using a predictor/corrector approach was developed. The procedure iterates between an aerodynamic code, which predicts the flow about a given geometry, and the design module, which compares the calculated and target pressure distributions and modifies the geometry using an algorithm that relates differences in pressure to a change in surface curvature. The modular nature of the design method makes it relatively simple to couple it to any analysis method. The iterative approach allows the design process and aerodynamic analysis to converge in parallel, significantly reducing the time required to reach a final design. Viscous and static aeroelastic effects can also be accounted for during the design or as a post-design correction. Results from several pilot design codes indicated that the method accurately reproduced pressure distributions as well as the coordinates of a given airfoil or wing by modifying an initial contour. The codes were applied to supercritical as well as conventional airfoils, forward- and aft-swept transport wings, and moderate-to-highly swept fighter wings. The design method was found to be robust and efficient, even for cases having fairly strong shocks.
Flow Control in a Transonic Diffuser
NASA Astrophysics Data System (ADS)
Gartner, Jeremy; Amitay, Michael
2014-11-01
In some airplanes such as fighter jets and UAV, short inlet ducts replace the more conventional ducts due to their shorter length. However, these ducts are associated with low length-to-diameter ratio and low aspect ratio and, thus, experience massive separation and the presence of secondary flow structures. These flow phenomena are undesirable as they lead to pressure losses and distortion at the Aerodynamic Interface Plane (AIP), where the engine face is located. It causes the engine to perform with a lower efficiency as it would with a straight duct diffuser. Different flow control techniques were studied on the short inlet duct, with the goal to reattach the flow and minimize the distortions at the AIP. Due to the complex interaction between the separation and the secondary flow structures, the necessity to understand the flow mechanisms, and how to control them at a more fundamental level, a new transonic diffuser with an upper ramp and a straight floor was designed and built. The objective of this project is to explore the effectiveness of different flow control techniques in a high subsonic (up to Mach 0.8) diffuser, so that the quasi two-dimensional separation and the formation of secondary flow structure can be isolated using a canonical flow field. Supported by Northrop Grumman.
Computation of Transonic Flows Using Potential Methods
NASA Technical Reports Server (NTRS)
Hoist, Terry L.; Kwak, Dochan (Technical Monitor)
1997-01-01
The proposed paper will describe the state of the art associated with numerical solution of the full or exact velocity potential equation for solving transonic, external-aerodynamic flows. The presentation will begin with a review of the literature emphasizing research activities of the past decade. Next, the various forms of the full or exact velocity potential equation, the equation's corresponding mathematical characteristics, and the derivation assumptions will be presented and described in detail. Impact of the derivation assumptions on simulation accuracy, especially with respect to shock wave capture, will be presented and discussed relative to the more complete Euler or Navier-Stokes formulations. The technical presentation will continue with a description of recently developed full potential numerical approach characteristics. This description will include governing equation nondimensionalization, physical-to-computational-domain mapping procedures, a limited description of grid generation requirements, the spatial discretization scheme, numerical implementation of boundary conditions, and the iteration scheme. The next portion of the presentation will present and discuss numerical results for several two- and three-dimensional aerodynamic applications. Included in the results section will be a discussion and demonstration of a typical grid refinement analysis for determining spatial convergence of the numerical solution and level of solution accuracy. Computer timings for a variety of full potential applications will be compared and contrasted with similar results for the Euler equation formulation. Finally. the presentation will end with concluding remarks and recommendations for future work.
Nonlinear Green's function method for unsteady transonic flows
NASA Technical Reports Server (NTRS)
Tseng, K.; Morino, L.
1982-01-01
Advantages to employing Green's function in describing unsteady three-dimensional transonic flows are explored. The development of the function for application to linear subsonic and supersonic unsteady aerodynamics is reviewed. It is shown that unique solutions are possible for external flows, with all functional expressions being defined in Prandtl-Glauert space. The development of methods of using the Green's function for transonic flows is traced, noting the necessity of including the effects of significant nonlinear terms. The steady-state problem is considered to demonstrate the shock-capturing ability of the method and the usefulness of the function in the incompressible, subsonic, transonic, and supersonic areas of potential unsteady three-dimensional flows around complex configurations. Computational time is asserted to be an order of magnitude less than with finite difference methods.
Method to predict external store carriage characteristics at transonic speeds
NASA Technical Reports Server (NTRS)
Rosen, Bruce S.
1988-01-01
Development of a computational method for prediction of external store carriage characteristics at transonic speeds is described. The geometric flexibility required for treatment of pylon-mounted stores is achieved by computing finite difference solutions on a five-level embedded grid arrangement. A completely automated grid generation procedure facilitates applications. Store modeling capability consists of bodies of revolution with multiple fore and aft fins. A body-conforming grid improves the accuracy of the computed store body flow field. A nonlinear relaxation scheme developed specifically for modified transonic small disturbance flow equations enhances the method's numerical stability and accuracy. As a result, treatment of lower aspect ratio, more highly swept and tapered wings is possible. A limited supersonic freestream capability is also provided. Pressure, load distribution, and force/moment correlations show good agreement with experimental data for several test cases. A detailed computer program description for the Transonic Store Carriage Loads Prediction (TSCLP) Code is included.
Transonic flow control by means of local energy deposition
NASA Astrophysics Data System (ADS)
Aul'Chenko, S. M.; Zamuraev, V. P.; Kalinina, A. P.
2011-11-01
Experimental data for the feasibility of transonic flow control by means of energy deposition are generalized. Energy supplied to the immediate vicinity of a body in stream before a compression shock is found to result in the nonlinear interaction of introduced disturbances with the shock and the surface in zones extended along the surface. A new, explosive gasdynamic mechanism behind the shift of the compression shock is discovered. It is shown that the nonlinear character of the interaction may considerably decrease the wave resistance of, e.g., transonic airfoils. It is found that energy supply from without stabilizes a transonic flow about an airfoil—the effect similar to the Khristianovich stabilization effect. The dependence of the energy deposition optimal frequency on the energy source parameters and Mach number of the incoming flow at which the resistance drops to the greatest extent is obtained. The influence of the real thermodynamic properties and viscosity of air is studied.
Solution of steady and unsteady transonic-vortex flows using Euler and full-potential equations
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Chuang, Andrew H.; Hu, Hong
1989-01-01
Two methods are presented for inviscid transonic flows: unsteady Euler equations in a rotating frame of reference for transonic-vortex flows and integral solution of full-potential equation with and without embedded Euler domains for transonic airfoil flows. The computational results covered: steady and unsteady conical vortex flows; 3-D steady transonic vortex flow; and transonic airfoil flows. The results are in good agreement with other computational results and experimental data. The rotating frame of reference solution is potentially efficient as compared with the space fixed reference formulation with dynamic gridding. The integral equation solution with embedded Euler domain is computationally efficient and as accurate as the Euler equations.
Users Guide for the National Transonic Facility Research Data System
NASA Technical Reports Server (NTRS)
Foster, Jean M.; Adcock, Jerry B.
1996-01-01
The National Transonic Facility is a complex cryogenic wind tunnel facility. This report briefly describes the facility, the data systems, and the instrumentation used to acquire research data. The computational methods and equations are discussed in detail and many references are listed for those who need additional technical information. This report is intended to be a user's guide, not a programmer's guide; therefore, the data reduction code itself is not documented. The purpose of this report is to assist personnel involved in conducting a test in the National Transonic Facility.
Contributions of Transonic Dynamics Tunnel Testing to Airplane Flutter Clearance
NASA Technical Reports Server (NTRS)
Rivera, Jose A.; Florance, James R.
2000-01-01
The Transonic Dynamics Tunnel (TDT) became in operational in 1960, and since that time has achieved the status of the world's premier wind tunnel for testing large in aeroelastically scaled models at transonic speeds. The facility has many features that contribute to its uniqueness for aeroelastic testing. This paper will briefly describe these capabilities and features, and their relevance to aeroelastic testing. Contributions to specific airplane configurations and highlights from the flutter tests performed in the TDT aimed at investigating the aeroelastic characteristics of these configurations are presented.
Numerical studies of transverse curvature effects on transonic flow stability
NASA Technical Reports Server (NTRS)
Macaraeg, M. G.; Daudpota, Q. I.
1992-01-01
A numerical study of transverse curvature effects on compressible flow temporal stability for transonic to low supersonic Mach numbers is presented for axisymmetric modes. The mean flows studied include a similar boundary-layer profile and a nonsimilar axisymmetric boundary-layer solution. The effect of neglecting curvature in the mean flow produces only small quantitative changes in the disturbance growth rate. For transonic Mach numbers (1-1.4) and aerodynamically relevant Reynolds numbers (5000-10,000 based on displacement thickness), the maximum growth rate is found to increase with curvature - the maximum occurring at a nondimensional radius (based on displacement thickness) between 30 and 100.
Implicit, nonswitching, vector-oriented algorithm for steady transonic flow
NASA Technical Reports Server (NTRS)
Lottati, I.
1983-01-01
A rapid computation of a sequence of transonic flow solutions has to be performed in many areas of aerodynamic technology. The employment of low-cost vector array processors makes the conduction of such calculations economically feasible. However, for a full utilization of the new hardware, the developed algorithms must take advantage of the special characteristics of the vector array processor. The present investigation has the objective to develop an efficient algorithm for solving transonic flow problems governed by mixed partial differential equations on an array processor.
National Transonic Facility: A review of the operational plan
NASA Technical Reports Server (NTRS)
Liepmann, H. W.; Black, R. E.; Dietz, R. O.; Kirchner, M. E.; Sears, W. R.
1980-01-01
The proposed National Transonic Facility (NTF) operational plan is reviewed. The NTF will provide an aerodynamic test capability significantly exceeding that of other transonic regime wind tunnels now available. A limited number of academic research program that might use the NTF are suggested. It is concluded that the NTF operational plan is useful for management, technical, instrumentation, and model building techniques available in the specialized field of aerodynamic analysis and simulation. It is also suggested that NASA hold an annual conference to discuss wind tunnel research results and to report on developments that will further improve the utilization and cost effectiveness of the NTF and other wind tunnels.
Slender body theory and Space Shuttle transonic aerodynamics
NASA Technical Reports Server (NTRS)
Malmuth, N. D.; Wu, C. C.; Cole, J. D.
1985-01-01
A computational implementation of transonic slender body theory and the equivalence rule has been utilized to study transonic flow field around the Space Shuttle Orbiter. The far field is described by a nonlinear axisymmetric Karman-Guderley model and the near field by a cross flow Laplace equation boundary value problem. The latter is treated using a source panel method. Preliminary comparisons with experiments give encouraging indications that the model can be useful for quick turnaround estimates. Areas of refinement to obtain more accurate predictions are discussed.
Recent Enhancements to the National Transonic Facility (Mixed Mode Operations)
NASA Technical Reports Server (NTRS)
Kilgore, W. Allen; Chan, David; Balakrishna, S.; Wahls, Richard A.
2006-01-01
The U.S. National Transonic Facility continues to make enhancements to provide quality data in a safe, efficient and cost effective method for aerodynamic ground testing. Recent enhancements discussed in this paper include the development of a Mixed-mode of operations that combine Air-mode operations with Nitrogen-mode operations. This implementation and operational results of this new Mixed-mode expands the ambient temperature transonic region of testing beyond the Air-mode limitations at a significantly reduced cost over Nitrogen Mode operation.
Issac, Jason Cherian ses in transonic flow
NASA Technical Reports Server (NTRS)
Issac, Jason Cherion; Kapania, Rakesh K.
1993-01-01
Flutter analysis of a two degree of freedom airfoil in compressible flow is performed using a state-space representation of the unsteady aerodynamic behavior. Indicial response functions are used to represent the normal force and moment response of the airfoil. The structural equations of motion of the airfoil with bending and torsional degrees of freedom are coupled to the unsteady air loads and the aeroelastic system so modelled is solved as an eigenvalue problem to determine the stability. The aeroelastic equations are also directly integrated with respect to time and the time-domain results compared with the results from the eigenanalysis. A good agreement is obtained. The derivatives of the flutter speed obtained from the eigenanalysis are calculated with respect to the mass and stiffness parameters by both analytical and finite-difference methods for various transonic Mach numbers. The experience gained from the two degree of freedom model is applied to study the sensitivity of the flutter response of a wing with respect to various shape parameters. The parameters being considered are as follows: (1) aspect ratio; (2) surface area of the wing; (3) taper ratio; and (4) sweep. The wing deflections are represented by Chebyshev polynomials. The compressible aerodynamic state-space model used for the airfoil section is extended to represent the unsteady aerodynamic forces on a generally laminated tapered skewed wing. The aeroelastic equations are solved as an eigenvalue problem to determine the flutter speed of the wing. The derivatives of the flutter speed with respect to the shape parameters are calculated by both analytical and finite difference methods.
ACT Missile Model In Langley 16 Foot Transonic Tunnel
NASA Technical Reports Server (NTRS)
1994-01-01
The photograph shows a 15-percent scale model of the ACT advanced missile concept in the Langley 16-Foot Transonic Tunnel. The model featured independently controlled reaction jets near the nose and the tail of the model. Aerodynamic control was provided by four fins that were located near the tail.
Computed Aeroelastic Motions Of Wings In Transonic Flows
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Obayashi, Shigeru
1995-01-01
Report describes computational simulations of aeroelastic motions of delta and swept wings in transonic flows. Study directed toward understanding aerodynamic behavior and enhancing maneuverability of fighter airplanes equipped with such wings. Also has implications for gas pumps and turbines, in which flows near tips of vanes and blades reach supersonic speeds.
Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix
NASA Technical Reports Server (NTRS)
Li, Wesley Waisang; Pak, Chan-Gi
2010-01-01
A technique for approximating the modal aerodynamic influence coefficients [AIC] matrices by using basis functions has been developed and validated. An application of the resulting approximated modal AIC matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO(TradeMark) flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing [ATW] 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle
Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix
NASA Technical Reports Server (NTRS)
Li, Wesley W.; Pak, Chan-gi
2011-01-01
A technique for approximating the modal aerodynamic influence coefficients matrices by using basis functions has been developed and validated. An application of the resulting approximated modal aerodynamic influence coefficients matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic, and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle.
Unsteady transonic algorithm improvements for realistic aircraft applications
NASA Technical Reports Server (NTRS)
Batina, John T.
1987-01-01
Improvements to a time-accurate approximate factorization (AF) algorithm were implemented for steady and unsteady transonic analysis of realistic aircraft configurations. These algorithm improvements were made to the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code developed at the Langley Research Center. The code permits the aeroelastic analysis of complete aircraft in the flutter critical transonic speed range. The AF algorithm of the CAP-TSD code solves the unsteady transonic small-disturbance equation. The algorithm improvements include: an Engquist-Osher (E-O) type-dependent switch to more accurately and efficiently treat regions of supersonic flow; extension of the E-O switch for second-order spatial accuracy in these regions; nonreflecting far field boundary conditions for more accurate unsteady applications; and several modifications which accelerate convergence to steady-state. Calculations are presented for several configurations including the General Dynamics one-ninth scale F-16C aircraft model to evaluate the algorithm modifications. The modifications have significantly improved the stability of the AF algorithm and hence the reliability of the CAP-TSD code in general.
Intermittent Flow Regimes in a Transonic Fan Airfoil Cascade
NASA Technical Reports Server (NTRS)
Lepicovsky, J.; McFarland, E. R.; Chima, R. V.; Capece, V. R.; Hayden, J.
2002-01-01
A study was conducted in the NASA Glenn Research Center linear cascade on the intermittent flow on the suction surface of an airfoil section from the tip region of a modern low aspect ratio fan blade. Experimental results revealed that, at a large incidence angle, a range of transonic inlet Mach numbers exist where the leading-edge shock-wave pattern was unstable. Flush mounted high frequency response pressure transducers indicated large local jumps in the pressure in the leading edge area, which generates large intermittent loading on the blade leading edge. These measurements suggest that for an inlet Mach number between 0.9 and 1.0 the flow is bi-stable, randomly switching between subsonic and supersonic flows. Hence, it appears that the change in overall flow conditions in the transonic region is based on the frequency of switching between two stable flow states rather than on the continuous increase of the flow velocity. To date, this flow behavior has only been observed in a linear transonic cascade. Further research is necessary to confirm this phenomenon occurs in actual transonic fans and is not the byproduct of an endwall restricted linear cascade.
Transonic Shock Problem for the Euler System in a Nozzle
NASA Astrophysics Data System (ADS)
Xin, Zhouping; Yan, Wei; Yin, Huicheng
2009-10-01
In this paper, we study the well-posedness problem on transonic shocks for steady ideal compressible flows through a two-dimensional slowly varying nozzle with an appropriately given pressure at the exit of the nozzle. This is motivated by the following transonic phenomena in a de Laval nozzle. Given an appropriately large receiver pressure P r , if the upstream flow remains supersonic behind the throat of the nozzle, then at a certain place in the diverging part of the nozzle, a shock front intervenes and the flow is compressed and slowed down to subsonic speed, and the position and the strength of the shock front are automatically adjusted so that the end pressure at exit becomes P r , as clearly stated by Courant and Friedrichs [Supersonic flow and shock waves, Interscience Publishers, New York, 1948 (see section 143 and 147)]. The transonic shock front is a free boundary dividing two regions of C 2,α flow in the nozzle. The full Euler system is hyperbolic upstream where the flow is supersonic, and coupled hyperbolic-elliptic in the downstream region Ω+ of the nozzle where the flow is subsonic. Based on Bernoulli’s law, we can reformulate the problem by decomposing the 3 × 3 Euler system into a weakly coupled second order elliptic equation for the density ρ with mixed boundary conditions, a 2 × 2 first order system on u 2 with a value given at a point, and an algebraic equation on ( ρ, u 1, u 2) along a streamline. In terms of this reformulation, we can show the uniqueness of such a transonic shock solution if it exists and the shock front goes through a fixed point. Furthermore, we prove that there is no such transonic shock solution for a class of nozzles with some large pressure given at the exit.
NASA Technical Reports Server (NTRS)
Gillins, R. L.
1975-01-01
Results of tests conducted on an 0.030-scale launch configuration model of the space shuttle vehicle 140A/B in the NASA/ARC 11-foot unitary plan wind tunnel are presented. Aerodynamic loads data were obtained at Mach numbers from 0.6 to 1.4. Surface pressure distributions were obtained simultaneously with six-component stability and control force data on the complete launch configuration. The configuration consisted of the orbiter, an external tank, two solid rocket boosters, and associated intercomponent attach hardware. Angles of attack and sideslip from -10 degrees to +10 degrees were investigated.
Shelton, M.L.; Gregory, B.A. ); Doughty, R.L.; Kiss, T.; Moses, H.L. . Mechanical Engineering Dept.)
1993-07-01
In aircraft engine design (and in other applications), small improvements in turbine efficiency may be significant. Since analytical tools for predicting transonic turbine losses are still being developed, experimental efforts are required to evaluate various designs, calibrate design methods, and validate CFD analysis tools. However, these experimental efforts must be very accurate to measure the performance differences to the levels required by the highly competitive aircraft engine market. Due to the sensitivity of transonic and supersonic flow fields, it is often difficult to obtain the desired level of accuracy. In this paper, a statistical approach is applied to the experimental evaluation of transonic turbine airfoils in the VPI and SU transonic cascade facility in order to quantify the differences between three different transonic turbine airfoils. This study determines whether the measured performance differences between the three different airfoils are statistically significant. This study also assesses the degree of confidence in the transonic cascade testing process at VPI and SU.
Report of the panel on dynamics and aeroelasticity. [transonic tunnel capabilities
NASA Technical Reports Server (NTRS)
Houbolt, J.
1977-01-01
Model scaling for flutter analysis is reviewed. Characteristics of the Langley Transonic Dynamics Tunnel (TDT) are described and several features are recommended for inclusion in the National Transonic Facility. Problem areas suggested for the NTF include: Reynolds number effects on control surface unsteady aerodynamics; effects of Reynolds number on buffet onset and loads; transonic unsteady aerodynamics; and Reynolds number effects on flutter characteristics of wing planforms and airfoils.
NASA Technical Reports Server (NTRS)
Ballhaus, W. F.; Jameson, A.; Albert, J.
1977-01-01
Implicit approximate-factorization algorithms (AF) are developed for the solution of steady-state transonic flow problems. The performance of the AF solution method is evaluated relative to that of the standard solution method for transonic flow problems, successive line over-relaxation (SLOR). Both methods are applied to the solution of the nonlinear, two-dimensional transonic small-disturbance equation. Results indicate that the AF method requires substantially less computer time than SLOR to solve the nonlinear finite-difference matrix equation for a transonic flow field. This increase in computational efficiency is achieved with no appreciable increase in computer storage or coding complexity.
Emerging technology for transonic wind-tunnel-wall interference assessment and corrections
NASA Technical Reports Server (NTRS)
Newman, P. A.; Kemp, W. B., Jr.; Garriz, J. A.
1988-01-01
Several nonlinear transonic codes and a panel method code for wind tunnel/wall interference assessment and correction (WIAC) studies are reviewed. Contrasts between two- and three-dimensional transonic testing factors which affect WIAC procedures are illustrated with airfoil data from the NASA/Langley 0.3-meter transonic cyrogenic tunnel and Pathfinder I data. Also, three-dimensional transonic WIAC results for Mach number and angle-of-attack corrections to data from a relatively large 20 deg swept semispan wing in the solid wall NASA/Ames high Reynolds number Channel I are verified by three-dimensional thin-layer Navier-Stokes free-air solutions.
A linearized Euler analysis of unsteady transonic flows in turbomachinery
Hall, K.C.; Clark, W.S.; Lorence, C.B. . Dept. of Mechanical Engineering and Materials Science)
1994-07-01
A computational method for efficiently predicting unsteady transonic flows in two- and three-dimensional cascades is presented. The unsteady flow is modeled using a linearized Euler analysis whereby the unsteady flow field is decomposed into a nonlinear mean flow plus a linear harmonically varying unsteady flow. The equations that govern the perturbation flow, the linearized Euler equations, are linear variable coefficient equations. For transonic flows containing shocks, shock capturing is used to model the shock impulse (the unsteady load due to the harmonic motion of the shock). A conservative Lax-Wendroff scheme is used to obtain a set of linearized finite volume equations that describe the harmonic small disturbance behavior of the flow. Conditions under which such a discretization will correctly predict the shock impulse are investigated. Computational results are presented that demonstrate the accuracy and efficiency of the present method as well as the essential role of unsteady shock impulse loads on the flutter stability of fans.
Reynolds Number Effects on a Supersonic Transport at Transonic Conditions
NASA Technical Reports Server (NTRS)
Wahls, R. N.; Owens, L. R.; Rivers, S. M. B.
2001-01-01
A High Speed Civil Transport configuration was tested in the National Transonic Facility at the NASA Langley Research Center as part of NASA's High Speed Research Program. The primary purposes of the tests were to assess Reynolds number scale effects and the high Reynolds number aerodynamic characteristics of a realistic, second generation supersonic transport while providing data for the assessment of computational methods. The tests included longitudinal and lateral/directional studies at low speed high-lift and transonic conditions across a range of Reynolds numbers from that available in conventional wind tunnels to near flight conditions. Results are presented which focus on both the Reynolds number and static aeroelastic sensitivities of longitudinal characteristics at Mach 0.90 for a configuration without an empennage.
A finite-difference method for transonic airfoil design.
NASA Technical Reports Server (NTRS)
Steger, J. L.; Klineberg, J. M.
1972-01-01
This paper describes an inverse method for designing transonic airfoil sections or for modifying existing profiles. Mixed finite-difference procedures are applied to the equations of transonic small disturbance theory to determine the airfoil shape corresponding to a given surface pressure distribution. The equations are solved for the velocity components in the physical domain and flows with embedded shock waves can be calculated. To facilitate airfoil design, the method allows alternating between inverse and direct calculations to obtain a profile shape that satisfies given geometric constraints. Examples are shown of the application of the technique to improve the performance of several lifting airfoil sections. The extension of the method to three dimensions for designing supercritical wings is also indicated.
National Transonic Facility model and model support vibration problems
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.; Popernack, Thomas G., Jr.; Gloss, Blair B.
1990-01-01
Vibrations of models and model support system were encountered during testing in the National Transonic Facility. Model support system yaw plane vibrations have resulted in model strain gage balance design load limits being reached. These high levels of vibrations resulted in limited aerodynamic testing for several wind tunnel models. The yaw vibration problem was the subject of an intensive experimental and analytical investigation which identified the primary source of the yaw excitation and resulted in attenuation of the yaw oscillations to acceptable levels. This paper presents the principal results of analyses and experimental investigation of the yaw plane vibration problems. Also, an overview of plans for development and installation of a permanent model system dynamic and aeroelastic response measurement and monitoring system for the National Transonic Facility is presented.
Three-dimensional shock structure in a transonic flutter cascade
NASA Technical Reports Server (NTRS)
Boldman, D. R.; Buggele, A. E.; Decker, A. J.
1982-01-01
Rapid double-pulse holography was employed to obtain detailed, two-dimensional images of the shock forming during simulated flutter in a transonic flowfield. The experiment comprised a linear cascade of airfoils externally oscillated in torsion and viewed tangentially at the shock surface. Three biconvex airfoils were subjected to harmonic pitching motion about the midchord axis at a frequency of 0.53 while immersed in a Mach 0.81 flow. Failure to produce observable shocks led to use of choked flow with a Mach number near one, of which 50 holograms were taken. The images revealed a narrow shock surface with a spanwise variation in the shock properties. The method is concluded to be useful for examining transonic flowfield shocks in the presence of airfoil flutter.
Assessment of the National Transonic Facility for Laminar Flow Testing
NASA Technical Reports Server (NTRS)
Crouch, Jeffrey D.; Sutanto, Mary I.; Witkowski, David P.; Watkins, A. Neal; Rivers, Melissa B.; Campbell, Richard L.
2010-01-01
A transonic wing, designed to accentuate key transition physics, is tested at cryogenic conditions at the National Transonic Facility at NASA Langley. The collaborative test between Boeing and NASA is aimed at assessing the facility for high-Reynolds number testing of configurations with significant regions of laminar flow. The test shows a unit Reynolds number upper limit of 26 M/ft for achieving natural transition. At higher Reynolds numbers turbulent wedges emanating from the leading edge bypass the natural transition process and destroy the laminar flow. At lower Reynolds numbers, the transition location is well correlated with the Tollmien-Schlichting-wave N-factor. The low-Reynolds number results suggest that the flow quality is acceptable for laminar flow testing if the loss of laminar flow due to bypass transition can be avoided.
The transonic multi-foil Augmentor-Wing
NASA Technical Reports Server (NTRS)
Farbridge, J. E.; Smith, R. C.
1977-01-01
The paper describes the development of a transonic blown multi-foil Augmentor-Wing airfoil section that has a thickness/chord (t/c) value of 0.18. In comparison with an unblown single-foil supercritical section of the same overall t/c the new multi-foil section is characterized by an increased drag rise Mach number, increased buffet boundaries, and a reduction in 'effective' drag due to blowing. Potential advantages of the Augmentor-Wing are considered and the testing of three high-speed models in a trisonic pressurized wind tunnel (possessing a two-dimensional transonic insert) is discussed. The data indicate that a very thick wing is feasible since separations toward the rear of the main foil can be controlled both by shroud location and augmentor blowing.
Experimental transonic flutter characteristics of supersonic cruise configurations
NASA Technical Reports Server (NTRS)
Durham, Michael H.; Cole, Stanley R.; Cazier, F. W., Jr.; Keller, Donald F.; Parker, Ellen C.; Wilkie, W. Keats
1990-01-01
The flutter characteristics of a generic arrow-wing supersonic transport configuration are studied. The wing configuration has a 3 percent biconvex airfoil and a leading-edge sweep of 73 deg out to a cranked tip with a 60 deg leading-edge sweep. The ground vibration tests and flutter test procedure are described. The effects of flutter on engine nacelles, fuel loading, wing-mounted vertical fin, wing angle-of-attack, and wing tip mass and stiffness distributions are analyzed. The data reveal that engine nacelles reduce the transonic flutter dynamic pressure by 25-30 percent; fuel loadings decrease dynamic pressures by 25 percent; 4-6 deg wing angles-of-attack cause steep transonic boundaries; and 5-10 percent changes in flutter dynamic pressures are the result of the wing-mounted vertical fin and wing-tip mass and stiffness distributions.
Geared-elevator flutter study. [transonic flutter characteristics of empennage
NASA Technical Reports Server (NTRS)
Ruhlin, C. L.; Doggett, R. V., Jr.; Gregory, R. A.
1976-01-01
The paper describes an experimental and analytical study of the transonic flutter characteristics of an empennage flutter model having an all-movable horizontal tail with a geared elevator. Two configurations were flutter tested: one with a geared elevator and one with a locked elevator with the model cantilever-mounted on a sting in the wind tunnel. The geared-elevator configuration fluttered experimentally at about 20% higher dynamic pressures than the locked-elevator configuration. The experimental flutter boundary was nearly flat at transonic speeds for both configurations. It was found that an analysis which treated the elevator as a discrete surface predicted flutter dynamic pressure levels better than analyses which treated the stabilizer and elevator as a warped surface. Warped-surface methods, however, predicted more closely the experimental flutter frequencies and Mach number trends.
Recent developments in finite element analysis for transonic airfoils
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Murman, E. M.
1979-01-01
The prediction of aerodynamic forces in the transonic regime generally requires a flow field calculation to solve the governing non-linear mixed elliptic-hyperbolic partial differential equations. Finite difference techniques were developed to the point that design and analysis application are routine, and continual improvements are being made by various research groups. The principal limitation in extending finite difference methods to complex three-dimensional geometries is the construction of a suitable mesh system. Finite element techniques are attractive since their application to other problems have permitted irregular mesh elements to be employed. The purpose of this paper is to review the recent developments in the application of finite element methods to transonic flow problems and to report some recent results.
Transonic wind-tunnel tests of a lifting parachute model
NASA Technical Reports Server (NTRS)
Foughner, J. T., Jr.; Reed, J. F.; Wynne, E. C.
1976-01-01
Wind-tunnel tests have been made in the Langley transonic dynamics tunnel on a 0.25-scale model of Sandia Laboratories' 3.96-meter (13-foot), slanted ribbon design, lifting parachute. The lifting parachute is the first stage of a proposed two-stage payload delivery system. The lifting parachute model was attached to a forebody representing the payload. The forebody was designed and installed in the test section in a manner which allowed rotational freedom about the pitch and yaw axes. Values of parachute axial force coefficient, rolling moment coefficient, and payload trim angles in pitch and yaw are presented through the transonic speed range. Data are presented for the parachute in both the reefed and full open conditions. Time history records of lifting parachute deployment and disreefing tests are included.
A tomographic technique for aerodynamics at transonic speeds
NASA Technical Reports Server (NTRS)
Lee, G.
1985-01-01
Computer aided tomography (CAT) provides a means of noninvasively measuring the air density distribution around an aerodynamic model. This technique is global in that a large portion of the flow field can be measured. A test of the applicability of CAT to transonic velocities was studied. A hemispherical-nose cylinder afterbody model was tested at a Mach number of 0.8 with a new laser holographic interferometer at the 2- by 2-Foot Transonic Wind Tunnel. Holograms of the flow field were taken and were reconstructed into interferograms. The fringe distribution (a measure of the local densities) was digitized for subsequent data reduction. A computer program based on the Fourier-transform technique was developed to convert the fringe distribution into three-dimensional densities around the model. Theoretical aerodynamic densities were calculated for evaluating and assessing the accuracy of the data obtained from the tomographic method.
Initial Assesment of Space Launch System Transonic Unsteady Pressure Environment
NASA Technical Reports Server (NTRS)
Sekula, Martin K.; Piatak, David J.; Rausch, Russ D.; Florance, James R.; Ramey, James M.
2015-01-01
A series of wind tunnel tests were conducted at the NASA Langley Research Center Transonic Dynamics Tunnel to assess the transonic buffet environment for the Space Launch System (SLS) launch vehicle. An initial test, conducted in 2012, indicated an elevated buffet environment prompting a second test to provide further insight into the buffet phenomena and assess potential solutions to reduce the response levels of these environments. During the course of the test program, eight variants of the SLS-10000 configuration were examined. The effect of these configuration variants on the coefficient of the root-mean-square fluctuation of pressure about the mean as a function of test condition indicates that the maximum fluctuating pressure levels are extremely sensitive to the geometry of the forward attachment of the solid rocket boosters (SRBs) to the SLS Core. The addition of flow fences or changes to the SRB nose cone geometry can alleviate the unsteady pressure environment.
Shockless design and analysis of transonic blade shapes
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.; Sobieczky, H.
1981-01-01
A fast computer program was developed to eliminate the shocks by slightly altering portions of the contour of a given airfoil in the cascade. The program can be used in two basic modes: (1) An analysis for steady, transonic, potential flow through a given planar cascade of airfoils and (2) a design for converting a given cascade into a shockless transonic cascade. The design mode can automatically be followed by the analysis mode, which confirms that the flow field is shock free. The program generates its own multilevel boundary conforming computational grids and solves a full potential equation in a fully conservative form. The shockless design is performed by implementing Sobieczky's fictitious-gas elliptic continuation concept.
Prediction of unsteady transonic flow around missile configurations
NASA Technical Reports Server (NTRS)
Nixon, D.; Reisenthel, P. H.; Torres, T. O.; Klopfer, G. H.
1990-01-01
This paper describes the preliminary development of a method for predicting the unsteady transonic flow around missiles at transonic and supersonic speeds, with the final goal of developing a computer code for use in aeroelastic calculations or during maneuvers. The basic equations derived for this method are an extension of those derived by Klopfer and Nixon (1989) for steady flow and are a subset of the Euler equations. In this approach, the five Euler equations are reduced to an equation similar to the three-dimensional unsteady potential equation, and a two-dimensional Poisson equation. In addition, one of the equations in this method is almost identical to the potential equation for which there are well tested computer codes, allowing the development of a prediction method based in part on proved technology.
A parametric study of transonic blade-vortex interaction noise
NASA Technical Reports Server (NTRS)
Lyrintzis, A. S.
1991-01-01
Several parameters of transonic blade-vortex interactions (BVI) are being studied and some ideas for noise reduction are introduced and tested using numerical simulation. The model used is the two-dimensional high frequency transonic small disturbance equation with regions of distributed vorticity (VTRAN2 code). The far-field noise signals are obtained by using the Kirchhoff method with extends the numerical 2-D near-field aerodynamic results to the linear acoustic 3-D far-field. The BVI noise mechanisms are explained and the effects of vortex type and strength, and angle of attack are studied. Particularly, airfoil shape modifications which lead to noise reduction are investigated. The results presented are expected to be helpful for better understanding of the nature of the BVI noise and better blade design.
Convergence acceleration and shock fitting for transonic aerodynamics computations
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Cheng, H. K.
1975-01-01
Two problems in computational fluid dynamics are studied in the context of transonic small-disturbance theory - namely, (1) how to speed up the convergence for currently available iterative procedures, and (2) how a shock-fitting method may be adapted to existing relaxation procedures with minimal alterations in computer programming and storage requirements. The paper contributes to a clarification of error analyses for sequence transformations based on the power method (including also the nonlinear transforms of Aitken, Shanks, and Wilkinson), and to developing a cyclic iterative procedure applying the transformations. Examples testing the procedure for a model Dirichlet problem and for a transonic airfoil problem show that savings in computer time by a factor of three to five are generally possible, depending on accuracy requirements and the particular iterative procedure used.-
Unsteady transonic potential flow over a flexible fuselage
NASA Technical Reports Server (NTRS)
Gibbons, Michael D.
1993-01-01
A flexible fuselage capability has been developed and implemented within version 1.2 of the CAP-TSD code. The capability required adding time dependent terms to the fuselage surface boundary conditions and the fuselage surface pressure coefficient. The new capability will allow modeling the effect of a flexible fuselage on the aeroelastic stability of complex configurations. To assess the flexible fuselage capability several steady and unsteady calculations have been performed for slender fuselages with circular cross-sections. Steady surface pressures are compared with experiment at transonic flight conditions. Unsteady cross-sectional lift is compared with other analytical results at a low subsonic speed and a transonic case has been computed. The comparisons demonstrate the accuracy of the flexible fuselage modifications.
Analysis of transonic flow about lifting wing-body configurations
NASA Technical Reports Server (NTRS)
Barnwell, R. W.
1975-01-01
An analytical solution was obtained for the perturbation velocity potential for transonic flow about lifting wing-body configurations with order-one span-length ratios and small reduced-span-length ratios and equivalent-thickness-length ratios. The analysis is performed with the method of matched asymptotic expansions. The angles of attack which are considered are small but are large enough to insure that the effects of lift in the region far from the configuration are either dominant or comparable with the effects of thickness. The modification to the equivalence rule which accounts for these lift effects is determined. An analysis of transonic flow about lifting wings with large aspect ratios is also presented.
Transonic Flows of Bethe-Zel'dovich-Thompson Fluids
NASA Astrophysics Data System (ADS)
Cramer, Mark; Andreyev, Aleksandr
2013-11-01
We examine steady transonic flows of Bethe-Zel'dovich-Thompson (BZT) fluids over thin turbine blades or airfoils. BZT fluids are ordinary fluids having a region of negative fundamental derivative over a finite range of pressures and temperatures in the single phase regime. We present the transonic small disturbance equation, shock jump conditions, and shock existence conditions capable of capturing the qualitative behavior of BZT fluids. The flux function is seen to be quartic in the pressure or density perturbation rather than the quadratic (convex) flux function of the perfect gas theory. We show how this nonconvex flux function can be used to predict and explain the complex flows possible. Numerical solutions using a successive line relaxation (SLR) scheme are presented. New results of interest include shock-splitting, collisions between expansion and compression shocks, two compressive bow shocks in supersonic flows, and the observation of as many as three normal stern shocks following an oblique trailing edge shock.
Design of transonic airfoil sections using a similarity theory
NASA Technical Reports Server (NTRS)
Nixon, D.
1978-01-01
A study of the available methods for transonic airfoil and wing design indicates that the most powerful technique is the numerical optimization procedure. However, the computer time for this method is relatively large because of the amount of computation required in the searches during optimization. The optimization method requires that base and calibration solutions be computed to determine a minimum drag direction. The design space is then computationally searched in this direction; it is these searches that dominate the computation time. A recent similarity theory allows certain transonic flows to be calculated rapidly from the base and calibration solutions. In this paper the application of the similarity theory to design problems is examined with the object of at least partially eliminating the costly searches of the design optimization method. An example of an airfoil design is presented.
Validation of Blockage Interference Corrections in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Walker, Eric L.
2007-01-01
A validation test has recently been constructed for wall interference methods as applied to the National Transonic Facility (NTF). The goal of this study was to begin to address the uncertainty of wall-induced-blockage interference corrections, which will make it possible to address the overall quality of data generated by the facility. The validation test itself is not specific to any particular modeling. For this present effort, the Transonic Wall Interference Correction System (TWICS) as implemented at the NTF is the mathematical model being tested. TWICS uses linear, potential boundary conditions that must first be calibrated. These boundary conditions include three different classical, linear. homogeneous forms that have been historically used to approximate the physical behavior of longitudinally slotted test section walls. Results of the application of the calibrated wall boundary conditions are discussed in the context of the validation test.
Studies in a transonic rotor aerodynamics and noise facility
NASA Technical Reports Server (NTRS)
Wright, S. E.; Lee, D. J.; Crosby, W.
1984-01-01
The design, construction and testing of a transonic rotor aerodynamics and noise facility was undertaken, using a rotating arm blade element support technique. This approach provides a research capability intermediate between that of a stationary element in a moving flow and that of a complete rotating blade system, and permits the acoustic properties of blade tip elements to be studied in isolation. This approach is an inexpensive means of obtaining data at high subsonic and transonic tip speeds on the effect of variations in tip geometry. The facility may be suitable for research on broad band noise and discrete noise in addition to high-speed noise. Initial tests were conducted over the Mach number range 0.3 to 0.93 and confirmed the adequacy of the acoustic treatment used in the facility to avoid reflection from the enclosure.
A computational design method for transonic turbomachinery cascades
NASA Technical Reports Server (NTRS)
Sobieczky, H.; Dulikravich, D. S.
1982-01-01
This paper describes a systematical computational procedure to find configuration changes necessary to modify the resulting flow past turbomachinery cascades, channels and nozzles, to be shock-free at prescribed transonic operating conditions. The method is based on a finite area transonic analysis technique and the fictitious gas approach. This design scheme has two major areas of application. First, it can be used for design of supercritical cascades, with applications mainly in compressor blade design. Second, it provides subsonic inlet shapes including sonic surfaces with suitable initial data for the design of supersonic (accelerated) exits, like nozzles and turbine cascade shapes. This fast, accurate and economical method with a proven potential for applications to three-dimensional flows is illustrated by some design examples.
Numerical studies of unsteady transonic flow over an oscillating airfoil
NASA Technical Reports Server (NTRS)
Chyu, W. J.; Davis, S. S.
1984-01-01
A finite-difference solution to the Navier-Stokes equations combined with a time-varying grid-generation technique was used to compute unsteady transonic flow over an oscillating airfoil. These computations were compared with experimental data (obtained at Ames Research Center) which form part of the AGARD standard configuration for aeroelastic analysis. A variety of approximations to the full Navier-Stokes equations was used to determine the effect of frequency, shock-wave motion, flow separation, and airfoil geometry on unsteady pressures and overall air loads. Good agreement is shown between experiment and theory with the limiting factor being the lack of a reliable turbulence model for high-Reynolds-number, unsteady transonic flows.
Space Shuttle Model In The 16 Foot Transonic Tunnel
NASA Technical Reports Server (NTRS)
1978-01-01
What may appear at first glance to be a swimming shark is a wind tunnel model of the Space Shuttle Orbiter, being tested at NASA's Langley Research Center in Hampton,VA. The Orbiter model is 5.5 feet long (1/20th of the real Orbiter's length) and has remotely operated control surfaces. Inside Langley's 16 foot Transonic Wind Tunnel, the model simulated Orbiter re-entry into the Earth's atmosphere, when it must fly through the transonic speed range (the range that crosses the sound barrier). Information on Orbiter stability and control, collected and analyzed during the tests, were integrated with other data to become part of computerized flight simulation programs.
Laser velocimetry applied to transonic and supersonic aerodynamics
NASA Technical Reports Server (NTRS)
Johnson, D. A.; Bachalo, W. D.; Moddaress, D.
1976-01-01
Measurements obtained with laser velocimetry in a Mach 2.9 separated turbulent boundary layer and in the transonic flow past a two-dimensional airfoil section are presented and compared to data realized by conventional techniques. Agreement in mean velocities was realized where the pressure measurements could be considered reliable; however, in regions of instantaneous reverse velocities, the laser results were found to be consistent with the physics of the flow whereas the pressure data were not. Streamwise turbulence intensities are also presented. In the transonic airfoil study, velocity measurements obtained immediately outside the upper surface boundary layer of a 6-inch chord NACA 64A010 airfoil are compared to edge velocities inferred from surface pressure measurements. For free-stream Mach numbers of 0.6 and 0.8, the agreement in results was very good. "Dual scatter" optical arrangements in conjunction with a single particle, counter-type signal processor were employed in these investigations.
National Transonic Facility Fan Blade prepreg material characterization tests
NASA Technical Reports Server (NTRS)
Klich, P. J.; Richards, W. H.; Ahl, E. L., Jr.
1981-01-01
The test program for the basic prepreg materials used in process development work and planned fabrication of the national transonic facility fan blade is presented. The basic prepreg materials and the design laminate are characterized at 89 K, room temperature, and 366 K. Characterization tests, test equipment, and test data are discussed. Material tests results in the warp direction are given for tensile, compressive, fatigue (tension-tension), interlaminar shear and thermal expansion.
Some examples of unsteady transonic flows over airfoils
NASA Technical Reports Server (NTRS)
Ballhaus, W. F.; Magnus, R.; Yoshihara, H.
1975-01-01
A finite difference flutter analysis is presented for the NACA 64A-410 airfoil at M equals 0.72, where the incidence is abruptly changed from 2 to 4 degrees. The effect of gust loads is studied, and the unsteady flow adjusting process is displayed. The semi-implicit procedure of Ballhaus and Lomax (1974) is used to solve the small disturbance transonic potential equation. The physical aspects of the results, rather than the numerical details, are emphasized.
Preliminary calibration and test results from the National Transonic Facility
NASA Technical Reports Server (NTRS)
Mckinney, Linwood W.; Fuller, Dennis E.
1986-01-01
The National Transonic Facility (NTF) was operated to design condition of 120 million Reynolds number at a Mach number of 1.0. All systems were checked out except plenum isolation valves; modifications are being made to heaters on the actuators. Initial steady-state calibration indicates excellent steady flow characteristics. The first test of the Pathfinder 1 model indicated significant Reynolds number effects. Some effect of temperature on instrumentation were obtained. The cause of these effects is being evaluated.
Spectral multigrid methods with applications to transonic potential flow
NASA Technical Reports Server (NTRS)
Streett, C. L.; Zang, T. A.; Hussaini, M. Y.
1983-01-01
Spectral multigrid methods are demonstrated to be a competitive technique for solving the transonic potential flow equation. The spectral discretization, the relaxation scheme, and the multigrid techniques are described in detail. Significant departures from current approaches are first illustrated on several linear problems. The principal applications and examples, however, are for compressible potential flow. These examples include the relatively challenging case of supercritical flow over a lifting airfoil.
Spectral multigrid methods with applications to transonic potential flow
NASA Technical Reports Server (NTRS)
Streett, C. L.; Zang, T. A.; Hussaini, M. Y.
1985-01-01
Spectral multigrid methods are demonstrated to be a competitive technique for solving the transonic potential flow equation. The spectral discretization, the relaxation scheme, and the multigrid techniques are described in detail. Significant departures from current approaches are first illustrated on several linear problems. The principal applications and examples, however, are for compressible potential flow. These examples include the relatively challenging case of supercritical flow over a lifting airfoil.
Calculation of transonic flows using an extended integral equation method
NASA Technical Reports Server (NTRS)
Nixon, D.
1976-01-01
An extended integral equation method for transonic flows is developed. In the extended integral equation method velocities in the flow field are calculated in addition to values on the aerofoil surface, in contrast with the less accurate 'standard' integral equation method in which only surface velocities are calculated. The results obtained for aerofoils in subcritical flow and in supercritical flow when shock waves are present compare satisfactorily with the results of recent finite difference methods.
Cryogenic Balance Technology at the National Transonic Facility
NASA Technical Reports Server (NTRS)
Parker, P. A.
2001-01-01
This paper provides an overview of force measurement at the National Transonic Facility (NTF). The NTF has unique force measurement requirements that dictate an integration of all aspects of balance design, production, and calibration. An overview of current force measurement capabilities is provided along with new balance development efforts. Research activities in the areas of thermal compensation and balance calibration are presented. Also, areas of future research are detailed.
Multiple Solutions of Transonic Flow over NACA0012 Airfoil
NASA Astrophysics Data System (ADS)
Xiong, Juntao; Liu, Ya; Liu, Feng; Luo, Shijun; Zhao, Zijie; Ren, Xudong; Gao, Chao
2012-11-01
Multiple solutions of the small-disturbance potential equation and full potential equation were known for the NACA0012 airfoil in a certain range of transonic Mach numbers and at zero angle of attack. However the multiple solutions for this airfoil were not observed using Euler or Navier-Stokes equations under the above flow conditions. In the present work, both the Unsteady Reynolds-Averaged Navier-Stokes (URANS) computations and transonic wind tunnel experiments are performed under certain Reynolds numbers to further study the problem. The results of the two methods reveal that buffet appears in a narrow Mach number range where the potential flow methods predict multiple solutions. Boundary layer displacement thickness computed from URANS at the same flow condition is used to modify the geometry of the airfoil. Euler equations are then solved for the modified geometry. The results show that the addition of the boundary layer displacement thickness creates multiple solutions for the NACA0012 airfoil. Global linear stability analysis is also performed on the original and the modified airfoils. This shows a close relationship between the viscous unsteady shock buffet phenomenon of transonic airfoil flow and the existence of multiple solutions of the external inviscid flow. Postdoctoral Research Assistant.
Unsteady transonic flow calculations for wing-fuselage configurations
NASA Technical Reports Server (NTRS)
Batina, J. T.
1986-01-01
Unsteady transonic flow calculations are presented for wing-fuselage configurations. Calculations are performed by extending the XTRAN3S unsteady transonic small-disturbance code to allow the treatment of a fuselage. Details of the XTRAN3S fuselage modeling are discussed in the context of the small-disturbance equation. Transonic calculations are presented for three wing-fuselage configurations with leading edge sweep angles ranging from 0 deg to 46.76 deg. Simple bending and torsion modal oscillations of the wing are calculated. Sectional lift and moment coefficients for the wing-alone and wing-fuselage cases are compared and the effects of fuselage aerodynamic interference on the unsteady wing loading are revealed. Tabulated generalized aerodynamic forces used in flutter analyses, indicate small changes in the real in-phase component and as much as a 30% change in the imaginary component when the fuselage is included in the calculation. These changes result in a 2 to 5% increase in total magnitude and a several degree increase in phase.
Fourier time spectral method for subsonic and transonic flows
NASA Astrophysics Data System (ADS)
Zhan, Lei; Liu, Feng; Papamoschou, Dimitri
2016-06-01
The time accuracy of the exponentially accurate Fourier time spectral method (TSM) is examined and compared with a conventional 2nd-order backward difference formula (BDF) method for periodic unsteady flows. In particular, detailed error analysis based on numerical computations is performed on the accuracy of resolving the local pressure coefficient and global integrated force coefficients for smooth subsonic and non-smooth transonic flows with moving shock waves on a pitching airfoil. For smooth subsonic flows, the Fourier TSM method offers a significant accuracy advantage over the BDF method for the prediction of both the local pressure coefficient and integrated force coefficients. For transonic flows where the motion of the discontinuous shock wave contributes significant higher-order harmonic contents to the local pressure fluctuations, a sufficient number of modes must be included before the Fourier TSM provides an advantage over the BDF method. The Fourier TSM, however, still offers better accuracy than the BDF method for integrated force coefficients even for transonic flows. A problem of non-symmetric solutions for symmetric periodic flows due to the use of odd numbers of intervals is uncovered and analyzed. A frequency-searching method is proposed for problems where the frequency is not known a priori. The method is tested on the vortex shedding problem of the flow over a circular cylinder.
MAVRIC Flutter Model Transonic Limit Cycle Oscillation Test
NASA Technical Reports Server (NTRS)
Edwards, John W.; Schuster, David M.; Spain, Charles V.; Keller, Donald F.; Moses, Robert W.
2001-01-01
The Models for Aeroelastic Validation Research Involving Computation semi-span wind-tunnel model (MAVRIC-I), a business jet wing-fuselage flutter model, was tested in NASA Langley's Transonic Dynamics Tunnel with the goal of obtaining experimental data suitable for Computational Aeroelasticity code validation at transonic separation onset conditions. This research model is notable for its inexpensive construction and instrumentation installation procedures. Unsteady pressures and wing responses were obtained for three wingtip configurations of clean, tipstore, and winglet. Traditional flutter boundaries were measured over the range of M = 0.6 to 0.9 and maps of Limit Cycle Oscillation (LCO) behavior were made in the range of M = 0.85 to 0.95. Effects of dynamic pressure and angle-of-attack were measured. Testing in both R134a heavy gas and air provided unique data on Reynolds number, transition effects, and the effect of speed of sound on LCO behavior. The data set provides excellent code validation test cases for the important class of flow conditions involving shock-induced transonic flow separation onset at low wing angles, including LCO behavior.
MAVRIC Flutter Model Transonic Limit Cycle Oscillation Test
NASA Technical Reports Server (NTRS)
Edwards, John W.; Schuster, David M.; Spain, Charles V.; Keller, Donald F.; Moses, Robert W.
2001-01-01
The Models for Aeroelastic Validation Research Involving Computation semi-span wind-tunnel model (MAVRIC-I), a business jet wing-fuselage flutter model, was tested in NASA Langley's Transonic Dynamics Tunnel with the goal of obtaining experimental data suitable for Computational Aeroelasticity code validation at transonic separation onset conditions. This research model is notable for its inexpensive construction and instrumentation installation procedures. Unsteady pressures and wing responses were obtained for three wingtip configurations clean, tipstore, and winglet. Traditional flutter boundaries were measured over the range of M = 0.6 to 0.9 and maps of Limit Cycle Oscillation (LCO) behavior were made in the range of M = 0.85 to 0.95. Effects of dynamic pressure and angle-of-attack were measured. Testing in both R134a heavy gas and air provided unique data on Reynolds number, transition effects, and the effect of speed of sound on LCO behavior. The data set provides excellent code validation test cases for the important class of flow conditions involving shock-induced transonic flow separation onset at low wing angles, including Limit Cycle Oscillation behavior.
Fourier time spectral method for subsonic and transonic flows
NASA Astrophysics Data System (ADS)
Zhan, Lei; Liu, Feng; Papamoschou, Dimitri
2016-01-01
The time accuracy of the exponentially accurate Fourier time spectral method (TSM) is examined and compared with a conventional 2nd-order backward difference formula (BDF) method for periodic unsteady flows. In particular, detailed error analysis based on numerical computations is performed on the accuracy of resolving the local pressure coefficient and global integrated force coefficients for smooth subsonic and non-smooth transonic flows with moving shock waves on a pitching airfoil. For smooth subsonic flows, the Fourier TSM method offers a significant accuracy advantage over the BDF method for the prediction of both the local pressure coefficient and integrated force coefficients. For transonic flows where the motion of the discontinuous shock wave contributes significant higher-order harmonic contents to the local pressure fluctuations, a sufficient number of modes must be included before the Fourier TSM provides an advantage over the BDF method. The Fourier TSM, however, still offers better accuracy than the BDF method for integrated force coefficients even for transonic flows. A problem of non-symmetric solutions for symmetric periodic flows due to the use of odd numbers of intervals is uncovered and analyzed. A frequency-searching method is proposed for problems where the frequency is not known a priori. The method is tested on the vortex shedding problem of the flow over a circular cylinder.
Transonic flows of dense gases over finite wings
NASA Astrophysics Data System (ADS)
Cinnella, P.
2008-04-01
Transonic inviscid flows of dense gases of the Bethe-Zel'dovich-Thompson (BZT) type over finite wings are numerically investigated. BZT gases are fluids of the retrograde type (i.e., that superheat when expanded), which exhibit a region of negative values of the fundamental derivative of gas dynamics Γ. As a consequence, they display, in the transonic and supersonic regime, nonclassical gas dynamic behaviors, such as rarefaction shock waves and mixed shock/fan waves. The peculiar properties of BZT fluids have received increased interest in recent years because of their possible application in energy-conversion cycles. The present research aims at providing insight about the transonic aerodynamics of BZT fluids past finite wings, roughly representative of isolated turbine blades with infinite tip leakage. This represents an important step toward the design of advanced turbine blades by using organic working fluids. An investigation of the flow patterns and aerodynamic performance for several choices of the upstream thermodynamic conditions is provided, and the advantages of using BZT working fluids instead of classical ones are discussed.
A numerical study of flutter in a transonic fan
Isomura, K.; Giles, M.B.
1998-07-01
The bending mode flutter of a modern transonic fan has been studied using a quasi-three-dimensional viscous unsteady CFD code. The type of flutter in this research is that of a highly loaded blade with a tip relative Mach number just above unity, commonly referred to as transonic stall flutter. This type of flutter is often encountered in modern wide chord fans without a part span shroud. The CFD simulation uses an upwinding scheme with Roe`s third-order flux differencing, and Johnson and King`s turbulence model with the later modification due to Johnson and Coakley. A dynamic transition point model is developed using the e{double_prime} method and Schubauer and Klebanoff`s experimental data. The calculations of the flow in this fan reveal that the source of the flutter of 1H1 transonic fan is an oscillation of the passage shock, rather than a stall. As the blade loading increases, the passage shock moves forward. Just before the passage shock unstarts, the stability of the passage shock decreases, and a small blade vibration causes the shock to oscillate with a large amplitude between unstarted and started positions. The dominant component of the blade excitation force is due to the foot of the oscillating passage shock on the blade pressure surface.
Parametric Evaluation of Thin, Transonic Circulation-Control Airfoils
NASA Technical Reports Server (NTRS)
Schlecht, Robin; Anders, Scott
2007-01-01
Wind-tunnel tests were conducted in the NASA Langley Transonic Dynamics Tunnel on a 6 percent-thick, elliptical circulation-control airfoil with upper-surface and lower-surface blowing capability. Results for elliptical Coanda trailing-edge geometries, biconvex Coanda trailing-edge geometries, and leading-edge geometries are reported. Results are presented at subsonic and transonic Mach numbers of 0.3 and 0.8, respectively. When considering one fixed trailing-edge geometry, for both the subsonic and transonic conditions it was found that the [3.0:1] ratio elliptical Coanda surface with the most rounded leading-edge [03] performed favorably and was determined to be the best compromise between comparable configurations that took advantage of the Coanda effect. This configuration generated a maximum. (Delta)C(sub 1) = 0.625 at a C(sub mu) = 0.06 at M = 0.3, alpha = 6deg. This same configuration generated a maximum (Delta)C(sub 1) = 0.275 at a C(sub mu) = 0.0085 at M = 0.8, alpha = 3deg.
Transonic flow past a wedge profile with detached bow wave
NASA Technical Reports Server (NTRS)
Vincenti, Walter G; Wagoner, Cleo B
1952-01-01
A theoretical study has been made of the aerodynamic characteristics at zero angle of attack of a thin, doubly symmetrical double-wedge profile in the range of supersonic flight speed in which the bow wave is detached. The analysis utilizes the equations of the transonic small-disturbance theory and involves no assumptions beyond those implicit in this theory. The mixed flow about the front half of the profile is calculated by relaxation solution of boundary conditions along the shock polar and sonic line. The purely subsonic flow about the rear of the profile is found by means of the method of characteristics specialized to the transonic small-disturbance theory. Complete calculations were made for four values of the transonic similarity parameter. These were found sufficient to bridge the gap between the previous results of Guderley and Yoshihara at a Mach number of 1 and the results which are readily obtained when the bow wave is attached and the flow is completely supersonic.
4. VIEW LOOKING NORTHNORTHEAST AT TEST SECTION OF 8FOOT TRANSONIC ...
4. VIEW LOOKING NORTH-NORTHEAST AT TEST SECTION OF 8-FOOT TRANSONIC PRESSURE TUNNEL SHOWING ACCESS PORT TO TEST SECTION (RIGHT) AND PLENUM SURROUNDING AREA. - NASA Langley Research Center, 8-Foot Transonic Pressure Tunnel, 640 Thornell Avenue, Hampton, Hampton, VA
Design features and operational characteristics of the Langley pilot transonic cryogenic tunnel
NASA Technical Reports Server (NTRS)
Kilgore, R. A.
1974-01-01
A fan-driven transonic cryogenic tunnel was designed, and its purging, cooldown, and warmup times were determined satisfactory. Cooling with liquid nitrogen is at the power levels required for transonic testing. Good temperature distributions are obtained by using a simple nitrogen injection system.
On the application of transonic similarity rules to wings of finite span
NASA Technical Reports Server (NTRS)
Spreiter, John R
1953-01-01
The transonic aerodynamic characteristics of wings of finite span are discussed from the point of view of a unified small perturbation theory for subsonic, transonic, and supersonic flows about thin wings. This approach avoids certain ambiguities which appear if one studies transonic flows by means of equations derived under the more restrictive assumption that the local velocities are everywhere close to sonic velocity. The relation between the two methods of analysis of transonic flow is examined, the similarity rules and known solutions of transonic flow theory are reviewed, and the asymptotic behavior of the lift, drag, and pitching-moment characteristics of wings of large and small aspect ratio is discussed. It is shown that certain methods of data presentation are advantageous for the effective display of these characteristics.
NASA Technical Reports Server (NTRS)
Yates, E. C., Jr.; Wynne, E. C.; Farmer, M. G.; Desmarais, R. N.
1981-01-01
Use of a supercritical airfoil can adversely affect wing flutter speeds in the transonic range. As adequate theories for three dimensional unsteady transonic flow are not yet available, the modified strip analysis was used to predict the transonic flutter boundary for the supercritical wing. The steady state spanwise distributions of section lift curve slope and aerodynamic center, required as input for the flutter calculations, were obtained from pressure distributions. The calculated flutter boundary is in agreement with experiment in the subsonic range. In the transonic range, a transonic bucket is calculated which closely resembles the experimental one with regard to both shape and depth, but it occurs at about 0.04 Mach number lower than the experimental one.
NASA Technical Reports Server (NTRS)
Sewall, W. G.
1982-01-01
A transonic similarity rule which accounts for the effects of attached sidewall boundary layers is presented and evaluated by comparison with the characteristics of airfoils tested in a two dimensional transonic tunnel with different sidewall boundary layer thicknesses. The rule appears valid provided the sidewall boundary layer both remains attached in the vicinity of the model and occupies a small enough fraction of the tunnel width to preserve sufficient two dimensionality in the tunnel.
Adjoint-based airfoil shape optimization in transonic flow
NASA Astrophysics Data System (ADS)
Gramanzini, Joe-Ray
The primary focus of this work is efficient aerodynamic shape optimization in transonic flow. Adjoint-based optimization techniques are employed on airfoil sections and evaluated in terms of computational accuracy as well as efficiency. This study examines two test cases proposed by the AIAA Aerodynamic Design Optimization Discussion Group. The first is a two-dimensional, transonic, inviscid, non-lifting optimization of a Modified-NACA 0012 airfoil. The second is a two-dimensional, transonic, viscous optimization problem using a RAE 2822 airfoil. The FUN3D CFD code of NASA Langley Research Center is used as the ow solver for the gradient-based optimization cases. Two shape parameterization techniques are employed to study their effect and the number of design variables on the final optimized shape: Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD) and the BandAids free-form deformation technique. For the two airfoil cases, angle of attack is treated as a global design variable. The thickness and camber distributions are the local design variables for MASSOUD, and selected airfoil surface grid points are the local design variables for BandAids. Using the MASSOUD technique, a drag reduction of 72.14% is achieved for the NACA 0012 case, reducing the total number of drag counts from 473.91 to 130.59. Employing the BandAids technique yields a 78.67% drag reduction, from 473.91 to 99.98. The RAE 2822 case exhibited a drag reduction from 217.79 to 132.79 counts, a 39.05% decrease using BandAids.
A transonic-small-disturbance wing design methodology
NASA Technical Reports Server (NTRS)
Phillips, Pamela S.; Waggoner, Edgar G.; Campbell, Richard L.
1988-01-01
An automated transonic design code has been developed which modifies an initial airfoil or wing in order to generate a specified pressure distribution. The design method uses an iterative approach that alternates between a potential-flow analysis and a design algorithm that relates changes in surface pressure to changes in geometry. The analysis code solves an extended small-disturbance potential-flow equation and can model a fuselage, pylons, nacelles, and a winglet in addition to the wing. A two-dimensional option is available for airfoil analysis and design. Several two- and three-dimensional test cases illustrate the capabilities of the design code.
Initial research program for the National Transonic Facility
NASA Technical Reports Server (NTRS)
Gloss, B. B.
1984-01-01
The construction and checkout of the National Transonic Facility (NTF) have been completed, and detailed calibration is now in progress. The initial NTF research program covers a wide range of study areas falling into three major elements: (1) the assessment of Reynolds number sensitivities for a broad range of configurations and flow phenomena; (2) validation of the ability of NTF to simulate full-scale aerodynamics; and (3) the development of test techniques for improved test simulations in existing wind tunnels. This paper, therefore, is a status report on these various elements of the initial NTF research program.
A hybrid algorithm for transonic airfoil and wing design
NASA Technical Reports Server (NTRS)
Campbell, Richard L.; Smith, Leigh A.
1987-01-01
The present method for the design of transonic airfoils and wings employs a predictor/corrector approach in which an analysis code calculates the flowfield for an initial geometry, then modifies it on the basis of the difference between calculated and target pressures. This allows the design method to be straightforwardly coupled with any existing analysis code, as presently undertaken with several two- and three-dimensional potential flow codes. The results obtained indicate that the method is robust and accurate, even in the cases of airfoils with strongly supercritical flow and shocks. The design codes are noted to require computational resources typical of current pure-inverse methods.
An inverse method with regularity condition for transonic airfoil design
NASA Technical Reports Server (NTRS)
Zhu, Ziqiang; Xia, Zhixun; Wu, Liyi
1991-01-01
It is known from Lighthill's exact solution of the incompressible inverse problem that in the inverse design problem, the surface pressure distribution and the free stream speed cannot both be prescribed independently. This implies the existence of a constraint on the prescribed pressure distribution. The same constraint exists at compressible speeds. Presented here is an inverse design method for transonic airfoils. In this method, the target pressure distribution contains a free parameter that is adjusted during the computation to satisfy the regularity condition. Some design results are presented in order to demonstrate the capabilities of the method.
Refined numerical solution of the transonic flow past a wedge
NASA Technical Reports Server (NTRS)
Liang, S.-M.; Fung, K.-Y.
1985-01-01
A numerical procedure combining the ideas of solving a modified difference equation and of adaptive mesh refinement is introduced. The numerical solution on a fixed grid is improved by using better approximations of the truncation error computed from local subdomain grid refinements. This technique is used to obtain refined solutions of steady, inviscid, transonic flow past a wedge. The effects of truncation error on the pressure distribution, wave drag, sonic line, and shock position are investigated. By comparing the pressure drag on the wedge and wave drag due to the shocks, a supersonic-to-supersonic shock originating from the wedge shoulder is confirmed.
Interaction of multiple supersonic jets with a transonic flow field
NASA Technical Reports Server (NTRS)
Seginer, A.; Manela, J.
1983-01-01
The influence of multiple high pressure, supersonic, radial or tangential jets, that are injected from the circumference of the base plane of an axisymmetric body, on its longitudinal aerodynamic coefficients in transonic flow is studied experimentally. The interaction of the jets with the body flow field increases the pressures on the forebody, thus altering its lift and static stability characteristics. It is shown that, within the range of parameters studied. This interaction has a stabilizing effect on the body. The contribution to lift and stability is significant at small angles of attack and decreases nonlinearly at higher angles when the crossflow mechanism becomes dominant.
Aeroelastic Tailoring of Transport Wings Including Transonic Flutter Constraints
NASA Technical Reports Server (NTRS)
Stanford, Bret K.; Wieseman, Carol D.; Jutte, Christine V.
2015-01-01
Several minimum-mass optimization problems are solved to evaluate the effectiveness of a variety of novel tailoring schemes for subsonic transport wings. Aeroelastic stress and panel buckling constraints are imposed across several trimmed static maneuver loads, in addition to a transonic flutter margin constraint, captured with aerodynamic influence coefficient-based tools. Tailoring with metallic thickness variations, functionally graded materials, balanced or unbalanced composite laminates, curvilinear tow steering, and distributed trailing edge control effectors are all found to provide reductions in structural wing mass with varying degrees of success. The question as to whether this wing mass reduction will offset the increased manufacturing cost is left unresolved for each case.
Viscous transonic flow computation over Space Shuttle configuration
NASA Technical Reports Server (NTRS)
Fujii, K.; Kutler, P.
1984-01-01
A thin-layer Navier-Stokes code capable of predicting steady-state viscous flows is applied to the transonic flow over a Space Shuttle configuration. The code is written in the generalized coordinate system, and the grid-generation code of Fujii (1983) is used for the discretization of the flow field. The flow-field computation is done using the CRAY 1S computer at NASA Ames. The computed result is physically reasonable, even though no experimental data is available for the comparison purpose.
Fast Euler solver for transonic airfoils. I - Theory. II - Applications
NASA Technical Reports Server (NTRS)
Dadone, Andrea; Moretti, Gino
1988-01-01
Equations written in terms of generalized Riemann variables are presently integrated by inverting six bidiagonal matrices and two tridiagonal matrices, using an implicit Euler solver that is based on the lambda-formulation. The solution is found on a C-grid whose boundaries are very close to the airfoil. The fast solver is then applied to the computation of several flowfields on a NACA 0012 airfoil at various Mach number and alpha values, yielding results that are primarily concerned with transonic flows. The effects of grid fineness and boundary distances are analyzed; the code is found to be robust and accurate, as well as fast.
Numerical calculation of transonic flow about slender bodies of revolution
NASA Technical Reports Server (NTRS)
Bailey, F. R.
1971-01-01
A relaxation method is described for the numerical solution of the transonic small disturbance equation for flow about a slender body of revolution. Results for parabolic arc bodies, both with and without an attached sting, are compared with wind-tunnel measurements for a free-stream Mach number range from 0.90 to 1.20. The method is also used to show the effects of wind-tunnel wall interference by including boundary conditions representing porous-wall and open-jet wind-tunnel test sections.
Transonic wall interference effects on bodies of revolution.
NASA Technical Reports Server (NTRS)
Couch, L. M.
1972-01-01
Efforts to develop a near sonic transport have placed renewed emphasis on obtaining accurate aerodynamic force and pressure data in the near sonic speed range. Comparison of wind-tunnel and flight data obtained for a blunt-nose body of revolution showed significant discrepancies in drag levels near Mach 1 - apparently due to wind-tunnel wall interference. Subsequent tests of geometrically similar bodies of revolution showed that increasing the model-to-test-section blockage ratio from 0.00017 to 0.0043 resulted in altered drag curve shapes, delayed drag divergence, and 'transonic creep' from subsonic drag levels due to increased wall interference.
Operational manual for two-dimensional transonic code TSFOIL
NASA Technical Reports Server (NTRS)
Stahara, S. S.
1978-01-01
This code solves the two-dimensional, transonic, small-disturbance equations for flow past lifting airfoils in both free air and various wind-tunnel environments by using a variant of the finite-difference method. A description of the theoretical and numerical basis of the code is provided, together with complete operating instructions and sample cases for the general user. In addition, a programmer's manual is also presented to assist the user interested in modifying the code. Included in the programmer's manual are a dictionary of subroutine variables in common and a detailed description of each subroutine.
An analysis method for two-dimensional transonic viscous flow
NASA Technical Reports Server (NTRS)
Bavitz, P. C.
1975-01-01
A method for the approximate calculation of transonic flow over airfoils, including shock waves and viscous effects, is described. Numerical solutions are obtained by use of a computer program which is discussed in the appendix. The importance of including the boundary layer in the analysis is clearly demonstrated, as well as the need to improve on existing procedures near the trailing edge. Comparisons between calculations and experimental data are presented for both conventional and supercritical airfoils, emphasis being on the surface pressure distribution, and good agreement is indicated.
Finite element analysis of periodic transonic flow problems
NASA Technical Reports Server (NTRS)
Fix, G. J.
1978-01-01
Flow about an oscillating thin airfoil in a transonic stream was considered. It was assumed that the flow field can be decomposed into a mean flow plus a periodic perturbation. On the surface of the airfoil the usual Neumman conditions are imposed. Two computer programs were written, both using linear basis functions over triangles for the finite element space. The first program uses a banded Gaussian elimination solver to solve the matrix problem, while the second uses an iterative technique, namely SOR. The only results obtained are for an oscillating flat plate.
Transonic Turbulent Flow Predictions With Two-Equation Turbulence Models
NASA Technical Reports Server (NTRS)
Liou, William W.; Shih, Tsan-Hsing
1996-01-01
Solutions of the Favre-averaged Navier-Stokes equations for two well-documented transonic turbulent flows are compared in detail with existing experimental data. While the boundary layer in the first case remains attached, a region of extensive flow separation has been observed in the second case. Two recently developed k-epsilon, two-equation, eddy-viscosity models are used to model the turbulence field. These models satisfy the realizability constraints of the Reynolds stresses. Comparisons with the measurements are made for the wall pressure distribution, the mean streamwise velocity profiles, and turbulent quantities. Reasonably good agreement is obtained with the experimental data.
Aerodynamic optimum design of transonic turbine cascades using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Li, Jun; Feng, Zhenping; Chang, Jianzhong; Shen, Zuda
1997-06-01
This paper presents an aerodynamic optimum design method for transonic turbine cascades based on the Genetic Algorithms coupled to the inviscid flow Euler solver and the boundary-layer calculation. The Genetic Algorithms control the evolution of a population of cascades towards an optimum design. The fitness value of each string is evaluated using the flow solver. The design procedure has been developed and the behavior of the genetic algorithms has been tested. The objective functions of the design examples are the minimum mean-square deviation between the aimed pressure and computed pressure and the minimum amount of user expertise.
Evaluation of flow field approximations for transonic compressor stages
Dorney, D.J.; Sharma, O.P.
1997-07-01
The flow through gas turbine compressors is often characterized by unsteady, transonic, and viscous phenomena. Accurately predicting the behavior of these complex multi-blade-row flows with unsteady rotor-stator interacting Navier-Stokes analyses can require enormous computer resources. In this investigation, several methods for predicting the flow field, losses, and performance quantities associated with axial compressor stages are presented. The methods studied include: (1) the unsteady fully coupled blade row technique, (2) the steady coupled blade row method, (3) the steady single blade row technique, and (4) the loosely coupled blade row method. The analyses have been evaluated in terms of accuracy and efficiency.
Optimum Transonic Airfoils Based on the Euler Equations
NASA Technical Reports Server (NTRS)
Iollo, Angelo; Salas, Manuel, D.
1996-01-01
We solve the problem of determining airfoils that approximate, in a least square sense, given surface pressure distributions in transonic flight regimes. The flow is modeled by means of the Euler equations and the solution procedure is an adjoint- based minimization algorithm that makes use of the inverse Theodorsen transform in order to parameterize the airfoil. Fast convergence to the optimal solution is obtained by means of the pseudo-time method. Results are obtained using three different pressure distributions for several free stream conditions. The airfoils obtained have given a trailing edge angle.
Calculation of unsteady transonic flows using the integral equation method
NASA Technical Reports Server (NTRS)
Nixon, D.
1978-01-01
The basic integral equations for a harmonically oscillating airfoil in a transonic flow with shock waves are derived; the reduced frequency is assumed to be small. The problems associated with shock wave motion are treated using a strained coordinate system. The integral equation is linear and consists of both line integrals and surface integrals over the flow field which are evaluated by quadrature. This leads to a set of linear algebraic equations that can be solved directly. The shock motion is obtained explicitly by enforcing the condition that the flow is continuous except at a shock wave. Results obtained for both lifting and nonlifting oscillatory flows agree satisfactorily with other accurate results.
Langley 16- Ft. Transonic Tunnel Pressure Sensitive Paint System
NASA Technical Reports Server (NTRS)
Sprinkle, Danny R.; Obara, Clifford J.; Amer, Tahani R.; Leighty, Bradley D.; Carmine, Michael T.; Sealey, Bradley S.; Burkett, Cecil G.
2001-01-01
This report describes the NASA Langley 16-Ft. Transonic Tunnel Pressure Sensitive Paint (PSP) System and presents results of a test conducted June 22-23, 2000 in the tunnel to validate the PSP system. The PSP system provides global surface pressure measurements on wind tunnel models. The system was developed and installed by PSP Team personnel of the Instrumentation Systems Development Branch and the Advanced Measurement and Diagnostics Branch. A discussion of the results of the validation test follows a description of the system and a description of the test.
Vectorizable multigrid algorithms for transonic-flow calculations
NASA Technical Reports Server (NTRS)
Melson, N. D.
1986-01-01
The analysis and the incorporation into a multigrid scheme of several vectorizable algorithms are discussed. von Neumann analyses of vertical-line, horizontal-line, and alternating-direction ZEBRA algorithms were performed; and the results were used to predict their multigrid damping rates. The algorithms were then successfully implemented in a transonic conservative full-potential computer program. The convergence acceleration effect of multiple grids is shown, and the convergence rates of the vectorizable algorithms are compared with those of standard successive-line overrelaxation (SLOR) algorithms.
Wind-US Unstructured Flow Solutions for a Transonic Diffuser
NASA Technical Reports Server (NTRS)
Mohler, Stanley R., Jr.
2005-01-01
The Wind-US Computational Fluid Dynamics flow solver computed flow solutions for a transonic diffusing duct. The calculations used an unstructured (hexahedral) grid. The Spalart-Allmaras turbulence model was used. Static pressures along the upper and lower wall agreed well with experiment, as did velocity profiles. The effect of the smoothing input parameters on convergence and solution accuracy was investigated. The meaning and proper use of these parameters are discussed for the benefit of Wind-US users. Finally, the unstructured solver is compared to the structured solver in terms of run times and solution accuracy.
Subsonic/transonic stall flutter investigation of a rotating rig
NASA Technical Reports Server (NTRS)
Jutras, R. R.; Fost, R. B.; Chi, R. M.; Beacher, B. F.
1981-01-01
Stall flutter is investigated by obtaining detailed quantitative steady and aerodynamic and aeromechanical measurements in a typical fan rotor. The experimental investigation is made with a 31.3 percent scale model of the Quiet Engine Program Fan C rotor system. Both subsonic/transonic (torsional mode) flutter and supersonic (flexural) flutter are investigated. Extensive steady and unsteady data on the blade deformations and aerodynamic properties surrounding the rotor are acquired while operating in both the steady and flutter modes. Analysis of this data shows that while there may be more than one traveling wave present during flutter, they are all forward traveling waves.
Unsteady transonic flow analysis for low aspect ratio, pointed wings.
NASA Technical Reports Server (NTRS)
Kimble, K. R.; Ruo, S. Y.; Wu, J. M.; Liu, D. Y.
1973-01-01
Oswatitsch and Keune's parabolic method for steady transonic flow is applied and extended to thin slender wings oscillating in the sonic flow field. The parabolic constant for the wing was determined from the equivalent body of revolution. Laplace transform methods were used to derive the asymptotic equations for pressure coefficient, and the Adams-Sears iterative procedure was employed to solve the equations. A computer program was developed to find the pressure distributions, generalized force coefficients, and stability derivatives for delta, convex, and concave wing planforms.
Shock wave-turbulent boundary layer interactions in transonic flow
NASA Technical Reports Server (NTRS)
Adamson, T. C., Jr.; Messiter, A. F.
1976-01-01
The method of matched asymptotic expansions is used in analyzing the structure of the interaction region formed when a shock wave impinges on a turbulent flat plate boundary layer in transonic flow. Solutions in outer regions, governed by inviscid flow equations, lead to relations for the wall pressure distribution. Solutions in the inner regions, governed by equations in which Reynolds and/or viscous stresses are included, lead to a relation for the wall shear stress. Solutions for the wall pressure distribution are reviewed for both oblique and normal incoming shock waves. Solutions for the wall shear stress are discussed.
Development of a nonlinear unsteady transonic flow theory
NASA Technical Reports Server (NTRS)
Stahara, S. S.; Spreiter, J. R.
1973-01-01
A nonlinear, unsteady, small-disturbance theory capable of predicting inviscid transonic flows about aerodynamic configurations undergoing both rigid body and elastic oscillations was developed. The theory is based on the concept of dividing the flow into steady and unsteady components and then solving, by method of local linearization, the coupled differential equation for unsteady surface pressure distribution. The equations, valid at all frequencies, were derived for two-dimensional flows, numerical results, were obtained for two classses of airfoils and two types of oscillatory motions.
Calculation of unsteady transonic aerodynamics for oscillating wings with thickness
NASA Technical Reports Server (NTRS)
Ruo, S. Y.; Theisen, J. G.
1975-01-01
An analytical approach is presented to account for some of the nonlinear characteristics of the transonic flow equation for finite thickness wings undergoing harmonic oscillation at sonic flight speed in an inviscid, shock-free fluid. The thickness effect is accounted for in the analysis through use of the steady local Mach number distribution over the wing at its mean position by employing the local linearization concept and a coordinate transformation. Computed results are compared with that of the linearized theory and experiments. Based on the local linearization concept, an alternate formulation avoiding the limitations of the coordinate transformation method is presented.
Non-isentropic unsteady transonic small disturbance theory
NASA Technical Reports Server (NTRS)
Fuglsang, D. F.; Williams, M. H.
1985-01-01
Modifications to transonic small disturbance theory (TSD) which more accurately model the Euler equations and seem to remove the problem of nonunique potential flow solutions are presented. The modifications are implemented in the two-dimensional computer code XTRAN2L, and steady and unsteady flow calculations made for the NACA 0012, NLR 7301, and NACA 64A010A airfoils. Comparisons are made with unmodified and modified TSD, Euler, and full potential theories and with experimental data. The modified theory requires only minor coding changes in existing algorithms for calculating small disturbance flows, and results in relatively small increases in computational cost.
Rotor wake characteristics of a transonic axial flow fan
NASA Technical Reports Server (NTRS)
Hathaway, M. D.; Gertz, J.; Epstein, A.; Strazisar, A. J.
1985-01-01
State of the art turbomachinery flow analysis codes are not capable of predicting the viscous flow features within turbomachinery blade wakes. Until efficient 3D viscous flow analysis codes become a reality there is therefore a need for models which can describe the generation and transport of blade wakes and the mixing process within the wake. To address the need for experimental data to support the development of such models, high response pressure measurements and laser anemometer velocity measurements were obtained in the wake of a transonic axial flow fan rotor.
Wadia, A.R. ); Law, C.H. )
1993-04-01
Transonic compressor rotor performance is sensitive to variations in several known design parameters. One such parameter is the chordwise location of maximum thickness. This article reports on the design and experimental evaluation of two versions of a low aspect ratio transonic rotor that had the location of the tip blade section maximum thickness moved forward in two increments from the nominal 70% to 55 and 40% chord length, respectively. The original hub characteristics were preserved and the maximum thickness location was adjusted proportionately along the span. Although designed to satisfy identical design speed requirements, the experimental results reveal significant variation in the performance of the rotors. At design speed, the rotor with its maximum thickness located at 55% chord length attains the highest peak efficiency among the three rotors but has lowest flow rollback relative to the other two versions. To focus on current ruggedization issues for transonic blading (e.g., bird and ice ingestion), detailed comparison of test data and analysis to characterize the aerodynamic flow details responsible for the measured performance differences were confined to the two rotors with the most forward location of maximum thickness. A three-dimensional viscous flow analysis was used to identify the performance-enhancing features of the higher efficiency rotor and to provide guidance in the interpretation of the experimental measurements. The computational results of the viscous analysis show that the difference in performance between the two rotors can be attributed to the higher shock losses that result from the increased leading edge wedge angle as the maximum thickness is moved closer to the leading edge.
NASA Technical Reports Server (NTRS)
Mann, M. J.; Mercer, C. E.
1986-01-01
A transonic computational analysis method and a transonic design procedure have been used to design the wing and the canard of a forward-swept-wing fighter configuration for good transonic maneuver performance. A model of this configuration was tested in the Langley 16-Foot Transonic Tunnel. Oil-flow photographs were obtained to examine the wind flow patterns at Mach numbers from 0.60 to 0.90. The transonic theory gave a reasonably good estimate of the wing pressure distributions at transonic maneuver conditions. Comparison of the forward-swept-wing configuration with an equivalent aft-swept-wing-configuration showed that, at a Mach number of 0.90 and a lift coefficient of 0.9, the two configurations have the same trimmed drag. The forward-swept wing configuration was also found to have trimmed drag levels at transonic maneuver conditions which are comparable to those of the HiMAT (highly maneuverable aircraft technology) configuration and the X-29 forward-swept-wing research configuration. The configuration of this study was also tested with a forebody strake.
NASA Technical Reports Server (NTRS)
Rhodes, D. B.; Jones, S. B.
1982-01-01
Design problems associated with the integration of flow visualization in cryogenic facilities are discussed. The possible effects from the cryogenic environment (i.e., window distortion due to thermal contraction both in the mounts and in the window material itself and turbulence in the flow due to injected LN2) are examined. The flow visualization techniques studied are schlieren, shadowgraph, moire deflectometry, and holographic interferometry. The test beds for this work are a Langley in-house cryogenic test chamber and the 0.3-Meter Transonic Cryogenic Tunnel.
Investigation of Transonic Wake Dynamics for Mechanically Deployable Entry Systems
NASA Technical Reports Server (NTRS)
Stern, Eric; Barnhardt, Michael; Venkatapathy, Ethiraj; Candler, Graham; Prabhu, Dinesh
2012-01-01
A numerical investigation of transonic flow around a mechanically deployable entry system being considered for a robotic mission to Venus has been performed, and preliminary results are reported. The flow around a conceptual representation of the vehicle geometry was simulated at discrete points along a ballistic trajectory using Detached Eddy Simulation (DES). The trajectory points selected span the low supersonic to transonic regimes with freestream Mach numbers from 1:5 to 0:8, and freestream Reynolds numbers (based on diameter) between 2:09 x 10(exp 6) and 2:93 x 10(exp 6). Additionally, the Mach 0:8 case was simulated at angles of attack between 0 and 5 . Static aerodynamic coefficients obtained from the data show qualitative agreement with data from 70deg sphere-cone wind tunnel tests performed for the Viking program. Finally, the effect of choices of models and numerical algorithms is addressed by comparing the DES results to those using a Reynolds Averaged Navier-Stokes (RANS) model, as well as to results using a more dissipative numerical scheme.
Cavity Unsteady-Pressure Measurements at Subsonic and Transonic Speeds
NASA Technical Reports Server (NTRS)
Tracy, Maureen B.; Plentovich, E. B.
1997-01-01
An experimental investigation was conducted in the Langley 8-Foot Transonic Pressure Tunnel to determine the flow characteristics of rectangular cavities with varying relative dimensions at subsonic and transonic speeds. Cavities were tested with width-to-depth ratios of 1, 4, 8, and 16 for length-to-depth ratios l/h of 1 through 17.5. The maximum cavity depth was 2.4 in., and the turbulent boundary layer approaching the cavity was approximately 0.5 in. thick. Unsteady- and mean static-pressure measurements were made at free-stream Mach numbers from 0.20 to 0.95 at a unit Reynolds number per foot of approximately 3 x 10(exp 6); however, only unsteady-pressure results are presented in this paper. Results indicate that as l/h increases, cavity flows changed from resonant to nonresonant with resonant amplitudes decreasing gradually. Resonant spectra are obtained largely in cavities with mean static-pressure distributions characteristic of open and transitional flows. Resonance sometimes occurred for closed flow. Increasing cavity width or decreasing cavity depth while holding l/h fixed had the effect of increasing resonant amplitudes and sometimes induced resonance. The effects due to changes in width are more pronounced. Decreasing Mach number has the effect of broadening the resonances.
Ares Launch Vehicle Transonic Buffet Testing and Analysis Techniques
NASA Technical Reports Server (NTRS)
Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.
2010-01-01
It is necessary to define the launch vehicle buffet loads to ensure that structural components and vehicle subsystems possess adequate strength, stress, and fatigue margins when the vehicle structural dynamic response to buffet forcing functions are considered. In order to obtain these forcing functions, the accepted method is to perform wind-tunnel testing of a rigid model instrumented with hundreds of unsteady pressure transducers designed to measure the buffet environment across the desired frequency range. The buffet wind-tunnel test program for the Ares Crew Launch Vehicle employed 3.5 percent scale rigid models of the Ares I and Ares I-X launch vehicles instrumented with 256 unsteady pressure transducers each. These models were tested at transonic conditions at the Transonic Dynamics Tunnel at NASA Langley Research Center. The ultimate deliverable of the Ares buffet test program are buffet forcing functions (BFFs) derived from integrating the measured fluctuating pressures on the rigid wind-tunnel models. These BFFs are then used as input to a multi-mode structural analysis to determine the vehicle response to buffet and the resulting buffet loads and accelerations. This paper discusses the development of the Ares I and I-X rigid buffet model test programs from the standpoint of model design, instrumentation system design, test implementation, data analysis techniques to yield final products, and presents normalized sectional buffet forcing function root-mean-squared levels.
A short history of the European Transonic Wind Tunnel ETW
NASA Astrophysics Data System (ADS)
Green, John; Quest, Jürgen
2011-07-01
This paper is written as a contribution to the celebration of 50 years of Progress in Aerospace Sciences and of the centenary of the birth of its founder, Dietrich Küchemann. It reviews the evolution of the European Transonic Wind Tunnel, ETW, from early conceptual studies to its entry into service and its current capabilities and achievements. It traces the development, from the earliest days, of experimental aerodynamics and of the basic aerodynamic understanding that gave rise to the main periods of wind tunnel building before and after World War II. By about 1960, this activity appeared to have come to a natural halt. The paper gives an account of the role of Küchemann in arguing the need in 1968 for a further step in wind tunnel capability, to provide transonic testing at high Reynolds numbers. It describes his leading role in gaining acceptance of the concept, formulating the specification and promoting studies of alternative, radical design options for the co-operative European project that became ETW. The progress of ETW through design, construction, commissioning and into full operation is recorded. The paper discusses the many technical innovations that have been introduced in order to meet customer requirements in the challenging field of aerodynamic testing in a cryogenic environment and, finally, looks to the future and the further technical challenges that it holds.
Time-dependent transonic flow solutions for axial turbomachinery
NASA Technical Reports Server (NTRS)
Erdos, J.; Alzner, E.; Kalben, P.; Mcnally, W.; Slutsky, S.
1975-01-01
Three-dimensional unsteady transonic flow through an axial turbomachine stage is described in terms of a pair of two-dimensional formulations pertaining to orthogonal surfaces, namely, a blade-to-blade surface and a hub-to-casing surface. The resulting systems of nonlinear, inviscid, compressible equations of motion are solved by an explicit finite-difference technique. The blade-to-blade program includes the periodic interaction between rotor and stator blade rows. Treatment of the boundary conditions and of the blade slipstream motion by a characteristic type procedure is discussed in detail. Harmonic analysis of the acoustic far field produced by the blade row interaction, including an arbitrary initial transient, is outlined. Results from the blade-to-blade program are compared with experimental measurements of the rotating pressure field at the tip of a high-speed fan. The hub-to-casing program determines circumferentially averaged flow properties on a meridional plane. Blade row interactions are neglected in this formulation, but the force distributions over the entire blade surface for both the rotor and stator are obtained. Results from the hub-to-casing program are compared with a relaxation method solution for a subsonic rotor. Results are also presented for a quiet fan stage which includes transonic flow in both the rotor and stator and a normal shock in the stator.
Numerical optimization design of advanced transonic wing configurations
NASA Technical Reports Server (NTRS)
Cosentino, G. B.; Holst, T. L.
1984-01-01
A computationally efficient and versatile technique for use in the design of advanced transonic wing configurations has been developed. A reliable and fast transonic wing flow-field analysis program, TWING, has been coupled with a modified quasi-Newton method, unconstrained optimization algorithm, QNMDIF, to create a new design tool. Fully three-dimensional wing designs utilizing both specified wing pressure distributions and drag-to-lift ration minimization as design objectives are demonstrated. Because of the high computational efficiency of each of the components of the design code, in particular the vectorization of TWING and the high speed of the Cray X-MP vector computer, the computer time required for a typical wing design is reduced by approximately an order of magnitude over previous methods. In the results presented here, this computed wave drag has been used as the quantity to be optimized (minimized) with great success, yielding wing designs with nearly shock-free (zero wave drag) pressure distributions and very reasonable wing section shapes.
Quasi-normal acoustic oscillations in the transonic Bondi flow
NASA Astrophysics Data System (ADS)
Chaverra, Eliana; Sarbach, Olivier
2016-01-01
We analyze the dynamics of nonspherical acoustic perturbations of the transonic Bondi flow, describing the steady radial accretion of a polytropic perfect fluid into a gravity center. The propagation of such perturbations can be described by a wave equation on the curved effective background geometry determined by the acoustic metric introduced by Unruh in the context of experimental black hole evaporation. We show that for the transonic Bondi flow, Unruh's acoustic metric describes an analogue black hole and that the acoustic perturbations undergo quasi-normal oscillations. The associated quasi-normal frequencies are computed and they are proven to scale like the surface gravity of the acoustic black hole. This provides an explanation for results given in an earlier work, where it was shown that the acoustic perturbations of a relativistic fluid accreted by a nonrotating black hole possess quasi-normal modes, and where it was found empirically that the associated frequencies scaled like the surface gravity of the analogue black hole in the limit where the radius of the sonic horizon is much larger than the Schwarzschild radius.
Upgrades at the NASA Langley Research Center National Transonic Facility
NASA Technical Reports Server (NTRS)
Paryz, Roman W.
2012-01-01
Several projects have been completed or are nearing completion at the NASA Langley Research Center (LaRC) National Transonic Facility (NTF). The addition of a Model Flow-Control/Propulsion Simulation test capability to the NTF provides a unique, transonic, high-Reynolds number test capability that is well suited for research in propulsion airframe integration studies, circulation control high-lift concepts, powered lift, and cruise separation flow control. A 1992 vintage Facility Automation System (FAS) that performs the control functions for tunnel pressure, temperature, Mach number, model position, safety interlock and supervisory controls was replaced using current, commercially available components. This FAS upgrade also involved a design study for the replacement of the facility Mach measurement system and the development of a software-based simulation model of NTF processes and control systems. The FAS upgrades were validated by a post upgrade verification wind tunnel test. The data acquisition system (DAS) upgrade project involves the design, purchase, build, integration, installation and verification of a new DAS by replacing several early 1990's vintage computer systems with state of the art hardware/software. This paper provides an update on the progress made in these efforts. See reference 1.
Transonic aeroelastic analysis of the B-1 wing
NASA Technical Reports Server (NTRS)
Guruswamy, G. P.; Goorjian, P. M.; Ide, H.; Miller, G. D.
1986-01-01
The flow over the B-1 wing is studied computationally, including the aeroelastic response of the wing. Computed results are compared with results from wind tunnel and flight tests for both low- and high-sweep cases, at 25.0 and 67.5 deg, respectively, for selected transonic Mach numbers. The aerodynamic and aeroelastic computations are made by using the transonic unsteady code ATRAN3S. Steady aerodynamic computations compare well with wind tunnel results for the 25.0 deg sweep case and also for small angles of attack at 67.5 deg sweep case. The aeroelastic response results show that the wing is stable at the low-sweep angle for the calculation at the Mach number at which there is a shock wave. In the higher-sweep case, for the higher angle of attack at which oscillations were observed in the flight and wind tunnel tests, the calculations do not show any shock waves. Their absence lends support to the hypothesis that the observed oscillations are due to the presence of leading-edge separation vortices and not to shock wave motion, as was previously proposed.
Transonic aerodynamic and aeroelastic characteristics of a variable sweep wing
NASA Technical Reports Server (NTRS)
Goorjian, P. M.; Guruswamy, G. P.; Ide, H.; Miller, G.
1985-01-01
The flow over the B-1 wing is studied computationally, including the aeroelastic response of the wing. Computed results are compared with results from wind tunnel and flight tests for both low-sweep and high-sweep cases, at 25.0 and 67.5 deg., respectively, for selected transonic Mach numbers. The aerodynamic and aeroelastic computations are made by using the transonic unsteady code ATRAN3S. Steady aerodynamic computations compare well with wind tunnel results for the 25.0 deg sweep case and also for small angles of attack at the 67.5 deg sweep case. The aeroelastic response results show that the wing is stable at the low sweep angle for the calculation at the Mach number at which there is a shock wave. In the higher sweep case, for the higher angle of attack at which oscillations were observed in the flight and wind tunnel tests, the calculations do not show any shock waves. Their absence lends support to the hypothesis that the observed oscillations are due to the presence of leading edge separation vortices and are not due to shock wave motion as was previously proposed.
Transonic aerodynamic and aeroelastic characteristics of a variable sweep wing
NASA Technical Reports Server (NTRS)
Goorjian, P. M.; Guruswamy, G. P.; Ide, H.; Miller, G.
1985-01-01
The flow over the B-1 wing is studied computationally, including the aeroelastic response of the wing. Computed results are compared with results from wind tunnel and flight tests for both low-sweep and high-sweep cases, at 25.0 deg. and 67.5 deg., respectively, for selected transonic Mach numbers. The aerodynamic and aeroelastic computations are made by using the transonic unsteady code ATRAN3S. Steady aerodynamic computations compare well with wind tunnel results for the 25.0 deg. sweep case and also for small angles of attack at the 67.5 deg. sweep case. The aeroelastic response results show that the wing is stable at the low sweep angle for the calculation at the Mach number at which there is a shock wave. In the higher sweep case, for the higher angle of attack at which oscillations were observed in the flight and wind tunnel tests, the calculations do not show any shock waves. Their absence lends support to the hypothesis that the observed oscillations are due to the presence of leading edge separation vortices and are not due to shock wave motion as was previously proposed.
Flow Disturbance Measurements in the National Transonic Facility
NASA Technical Reports Server (NTRS)
King, Rudolph A.; Andino, Marlyn Y.; Melton, Latunia; Eppink, Jenna; Kegerise, Michael A.
2013-01-01
Recent flow measurements have been acquired in the National Transonic Facility to assess the test-section unsteady flow environment. The primary purpose of the test is to determine the feasibility of the facility to conduct laminar-flow-control testing and boundary-layer transition-sensitive testing at flight-relevant operating conditions throughout the transonic Mach number range. The facility can operate in two modes, warm and cryogenic test conditions for testing full and semispan-scaled models. Data were acquired for Mach and unit Reynolds numbers ranging from 0.2 less than or equal to M less than or equal to 0.95 and 3.3 × 10(exp 6) less than Re/m less than 220×10(exp 6) collectively at air and cryogenic conditions. Measurements were made in the test section using a survey rake that was populated with 19 probes. Roll polar data at selected conditions were obtained to look at the uniformity of the flow disturbance field in the test section. Data acquired included mean total temperatures, mean and fluctuating static/total pressures, and mean and fluctuating hot-wire measurements. This paper focuses primarily on the unsteady pressure and hot-wire results. Based on the current measurements and previous data, an assessment was made that the facility may be a suitable facility for ground-based demonstrations of laminar-flow technologies at flight-relevant conditions in the cryogenic mode.
Transonic Drag Prediction Using an Unstructured Multigrid Solver
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.; Levy, David W.
2001-01-01
This paper summarizes the results obtained with the NSU-3D unstructured multigrid solver for the AIAA Drag Prediction Workshop held in Anaheim, CA, June 2001. The test case for the workshop consists of a wing-body configuration at transonic flow conditions. Flow analyses for a complete test matrix of lift coefficient values and Mach numbers at a constant Reynolds number are performed, thus producing a set of drag polars and drag rise curves which are compared with experimental data. Results were obtained independently by both authors using an identical baseline grid and different refined grids. Most cases were run in parallel on commodity cluster-type machines while the largest cases were run on an SGI Origin machine using 128 processors. The objective of this paper is to study the accuracy of the subject unstructured grid solver for predicting drag in the transonic cruise regime, to assess the efficiency of the method in terms of convergence, cpu time, and memory, and to determine the effects of grid resolution on this predictive ability and its computational efficiency. A good predictive ability is demonstrated over a wide range of conditions, although accuracy was found to degrade for cases at higher Mach numbers and lift values where increasing amounts of flow separation occur. The ability to rapidly compute large numbers of cases at varying flow conditions using an unstructured solver on inexpensive clusters of commodity computers is also demonstrated.
Global convergence of inexact Newton methods for transonic flow
NASA Technical Reports Server (NTRS)
Young, David P.; Melvin, Robin G.; Bieterman, Michael B.; Johnson, Forrester T.; Samant, Satish S.
1990-01-01
In computational fluid dynamics, nonlinear differential equations are essential to represent important effects such as shock waves in transonic flow. Discretized versions of these nonlinear equations are solved using iterative methods. In this paper an inexact Newton method using the GMRES algorithm of Saad and Schultz is examined in the context of the full potential equation of aerodynamics. In this setting, reliable and efficient convergence of Newton methods is difficult to achieve. A poor initial solution guess often leads to divergence or very slow convergence. This paper examines several possible solutions to these problems, including a standard local damping strategy for Newton's method and two continuation methods, one of which utilizes interpolation from a coarse grid solution to obtain the initial guess on a finer grid. It is shown that the continuation methods can be used to augment the local damping strategy to achieve convergence for difficult transonic flow problems. These include simple wings with shock waves as well as problems involving engine power effects. These latter cases are modeled using the assumption that each exhaust plume is isentropic but has a different total pressure and/or temperature than the freestream.
Viscous three-dimensional calculations of transonic fan performance
NASA Technical Reports Server (NTRS)
Chima, Rodrick V.
1991-01-01
A 3-D flow analysis code was used to compute the design speed operating line of a transonic fan rotor, and the results were compared with experimental data. The code is an explicit finite difference code with an algebraic turbulence model. The transonic fan, called rotor 67, was tested experimentally at NASA-Lewis with conventional aerodynamic probes and with user anemometry and was included as one of the AGARD test cases for the computation of internal flows. The experimental data are described. Maps of total pressure ratio and adiabatic efficiency versus mass flow were computed and are compared with the experimental maps, with good agreement. Detailed comparisons between calculations and experiment are made at two operating points, one near peak efficiency and the other near stall. Blade-to-blade contour plots are used to show the shock structure. Comparisons of circumferentially integrated flow quantities downstream of the rotor show spanwise distributions of several aerodynamic parameters. Calculated Mach number distributions are compared with laser anemometer data within the blade row and the wake to quantify the accuracy of the calculations. Particle traces are used to show the nature of secondary flow.
Eulerian-Lagrangian Simulations of Transonic Flutter Instabilities
NASA Technical Reports Server (NTRS)
Bendiksen, Oddvar O.
1994-01-01
This paper presents an overview of recent applications of Eulerian-Lagrangian computational schemes in simulating transonic flutter instabilities. This approach, the fluid-structure system is treated as a single continuum dynamics problem, by switching from an Eulerian to a Lagrangian formulation at the fluid-structure boundary. This computational approach effectively eliminates the phase integration errors associated with previous methods, where the fluid and structure are integrated sequentially using different schemes. The formulation is based on Hamilton's Principle in mixed coordinates, and both finite volume and finite element discretization schemes are considered. Results from numerical simulations of transonic flutter instabilities are presented for isolated wings, thin panels, and turbomachinery blades. The results suggest that the method is capable of reproducing the energy exchange between the fluid and the structure with significantly less error than existing methods. Localized flutter modes and panel flutter modes involving traveling waves can also be simulated effectively with no a priori knowledge of the type of instability involved.
Transonic blade-vortex interactions noise: A parametric study
NASA Technical Reports Server (NTRS)
Lyrintzis, A. S.; Xue, Y.
1990-01-01
Transonic Blade-Vortex Interactions (BVI) are simulated numerically and the noise mechanisms are investigated. The 2-D high frequency transonic small disturbance equation is solved numerically (VTRAN2 code). An Alternating Direction Implicit (ADI) scheme with monotone switches is used; viscous effects are included on the boundary and the vortex is simulated by the cloud-in-cell method. The Kirchoff method is used for the extension of the numerical 2-D near field aerodynamic results to the linear acoustic 3-D far field. The viscous effect (shock/boundary layer interaction) on BVI is investigated. The different types of shock motion are identified and compared. Two important disturbances with different directivity exist in the pressure signal and are believed to be related to the fluctuating lift and drag forces. Noise directivity for different cases is shown. The maximum radiation occurs at an angle between 60 and 90 deg below the horizontal for an airfoil fixed coordinate system and depends on the details of the airfoil shape. Different airfoil shapes are studied and classified according to the BVI noise produced.
Transonic analysis and design of axisymmetric bodies in nonuniform flow
NASA Technical Reports Server (NTRS)
Chang, Jen-Fu; Lan, C. Edward
1987-01-01
An inviscid nonuniform axisymmetric transonic code was developed for applications in analysis and design. Propfan slipstream effect on pressure distribution for a body with and without sting was investigated. Results show that nonuniformity causes pressure coefficient to be more negative and shock strength to be stronger and more rearward. Sting attached to a body reduced the pressure peak and moves the rear shock forward. Extent and Mach profile shapes of the nonuniformity region appeared to have little effect on the pressure distribution. Increasing nonuniformity magnitude made pressure coefficient more negative and moved the shock rearward. Design study was conducted with the CONMIN optimizer for an ellipsoid and a body with the NACA-0012 counter. For the ellipsoid, the general trend showed that to reduce the pressure drag, the front portion of the body should be thinner and the contour of the rear portion should be flatter than the ellipsoid. For the design of a body with a sharp trailing edge in transonic flow with an initial shape given by the NACA-0012 contour, the pressure drag was reduced by decreasing the nose radius and increasing the thickness in the aft portion. Drag reduction percentages are given.
Transonic Flow Around Swept Wings: Revisiting Von Karman's Similarity Rule
NASA Astrophysics Data System (ADS)
Kirkman, Jeffrey J.
Modern aircraft are expected to fly faster and more efficiently than their predecessors. To improve aerodynamic efficiency, designers must carefully consider and handle shock wave formation. Presently, many designers utilize computationally heavy optimization methods to design wings. While these methods may work, they do not provide insight. This thesis aims to better understand fundamental methods that govern wing design. In order to further understand the flow in the transonic regime, this work revisits the Transonic Similarity Rule. This rule postulates an equivalent incompressible geometry to any high speed geometry in flight and postulates a "stretching" analogy. This thesis utilizes panel methods and Computational Fluid Dynamics (CFD) to show that the "stretching" analogy is incorrect, but instead the flow is transformed by a nonlinear "scaling" of the flow velocity. This work also presents data to show the discrepancies between many famous authors in deriving the accurate Critical Pressure Coefficient (Cp*) equation for both swept and unswept wing sections. The final work of the thesis aims to identify the correct predictive methods for the Critical Pressure Coefficient.
Laser velocimetry applied to transonic and supersonic aerodynamics
NASA Technical Reports Server (NTRS)
Johnson, D. A.; Bachalo, W. D.; Moddaress, D.
1976-01-01
As a further demonstration of the capabilities of laser velocity in compressible aerodynamics, measurements obtained in a Mach 2.9 separated turbulent boundary layer and in the transonic flow past a two-dimensional airfoil section are presented and compared to data realized by conventional techniques. In the separated-flow study, the comparisons were made against pitot-static pressure data. Agreement in mean velocities was realized where the pressure measurements could be considered reliable; however, in regions of instantaneous reverse velocities, the laser results were found to be consistent with the physics of the flow whereas the pressure data were not. The laser data obtained in regions of extremely high turbulence suggest that velocity biasing does not occur if the particle occurrence rate is low relative to the turbulent fluctuation rate. Streamwise turbulence intensities are also presented. In the transonic airfoil study, velocity measurements obtained immediately outside the upper surface boundary layer of a 6-inch chord MACA 64A010 airfoil are compared to edge velocities inferred from surface pressure measurements. For free-stream Mach numbers of 0.6 and 0.8, the agreement in results was very good. Dual scatter optical arrangements in conjunction with a single particle, counter-type signal processor were employed in these investigations. Half-micron-diameter polystyrene spheres and naturally occurring condensed oil vapor acted as light scatterers in the two respective flows. Bragg-cell frequency shifting was utilized in the separated flow study.
Flow Disturbance Characterization Measurements in the National Transonic Facility
NASA Technical Reports Server (NTRS)
King, Rudolph A.; Andino, Marlyn Y.; Melton, Latunia; Eppink, Jenna; Kegerise, Michael A.; Tsoi, Andrew
2012-01-01
Recent flow measurements have been acquired in the National Transonic Facility (NTF) to assess the unsteady flow environment in the test section. The primary purpose of the test is to determine the feasibility of the NTF to conduct laminar-flow-control testing and boundary-layer transition sensitive testing. The NTF can operate in two modes, warm (air) and cold/cryogenic (nitrogen) test conditions for testing full and semispan scaled models. The warm-air mode enables low to moderately high Reynolds numbers through the use of high tunnel pressure, and the nitrogen mode enables high Reynolds numbers up to flight conditions, depending on aircraft type and size, utilizing high tunnel pressure and cryogenic temperatures. NASA's Environmentally Responsible Aviation (ERA) project is interested in demonstrating different laminar-flow technologies at flight-relevant operating conditions throughout the transonic Mach number range and the NTF is well suited for the initial ground-based demonstrations. Roll polar data at selected test conditions were obtained to look at the uniformity of the flow disturbance field in the test section. Data acquired from the rake probes included mean total temperatures, mean and fluctuating static/total pressures, and mean and fluctuating hot-wire measurements. . Based on the current measurements and previous data, an assessment was made that the NTF is a suitable facility for ground-based demonstrations of laminar-flow technologies at flight-relevant conditions in the cryogenic mode.
Application of a multi-level grid method to transonic flow calculations
NASA Technical Reports Server (NTRS)
South, J. C., Jr.; Brandt, A.
1976-01-01
A multi-level grid method was studied as a possible means of accelerating convergence in relaxation calculations for transonic flows. The method employs a hierarchy of grids, ranging from very coarse to fine. The coarser grids are used to diminish the magnitude of the smooth part of the residuals. The method was applied to the solution of the transonic small disturbance equation for the velocity potential in conservation form. Nonlifting transonic flow past a parabolic arc airfoil is studied with meshes of both constant and variable step size.
A theoretical basis for extending surface-paneling methods to transonic flow
NASA Technical Reports Server (NTRS)
Erickson, L. L.; Strande, S. M.
1985-01-01
The surface integral terms in Green's third identity are often used to solve the Prandtl-Glauert (linear potential-flow) equation with panel methods. This can be done, as in the PAN AIR code, for either subsonic or supersonic flow about complete aircraft. The extension to transonic flow is suggested by the volume integral terms of Green's third identity. The mathematical basis for this extension, without the use of body-fitted grids, is presented. Supercritical transonic results computed from a two-dimensional transonic PAN AIR research code demonstrate the method.