Science.gov

Sample records for 111in-labeled monoclonal antibody

  1. Preoperative clinical radioimmunodetection of pancreatic cancer by 111 In-labeled chimeric monoclonal antibody Nd2.

    PubMed

    Sawada, T; Nishihara, T; Yamamoto, A; Teraoka, H; Yamashita, Y; Okamura, T; Ochi, H; Ho, J J; Kim, Y S; Hirakawa, K

    1999-10-01

    The present study was carried out with the purpose of evaluating the clinical usefulness of radioimmunodetection (RAID) with 111In-labeled murine/human chimeric monoclonal antibody, Nd2 (c-Nd2) in patients with pancreatic cancer. Nineteen patients suspected to have pancreatic cancer were administered intravenously 74 MBq/2 mg 111In-labeled c-Nd2 in 100 ml of saline containing 2% albumin over 30 min. A scintigram was obtained on the 3rd day after infusion by using single photon emission computed tomography (SPECT) imaging. Of the 14 patients finally diagnosed as having pancreatic cancer on the basis of surgical specimens or progress of disease, specific focal uptake at the site of the tumor was detected in 12 (true positive cases), representing a sensitivity of 85.7% (12/14), and liver metastasis was found in one case with metastasis. Of the 5 patients diagnosed with tumor-forming pancreatitis (TFP), 4 patients demonstrated true negative imaging, but one patient whose tumor demonstrated interesting findings in histology and immunostaining, showed false positive imaging. Of patients investigated for human anti-chimeric antibody (HACA) response, none showed HACA response, and no allergic reaction was seen in any of the patients administered c-Nd2. These results suggest that RAID with 11In-labeled c-Nd2 is useful for differential preoperative diagnosis between invasive pancreatic cancer and TFP. PMID:10595748

  2. Stability, characterization, and kinetics of /sup 111/In-labeled monoclonal antitumor antibodies in normal animals and nude mouse-human tumor models

    SciTech Connect

    Halpern, S.E.; Hagan, P.L.; Garver, P.R.; Koziol, J.A.; Chen, A.W.; Frincke, J.M.; Bartholomew, R.M.; David, G.S.; Adams, T.H.

    1983-11-01

    Monoclonal antibodies (MoAbs) against carcinoembryonic antigen were successfully radiolabeled with /sup 111/In, and the radiopharmaceutical was characterized in vitro and in normal and tumor-bearing mice. The /sup 111/In-MoAb proved to be stable in vitro and in vivo under normal conditions, although instability could be induced in vitro with large quantities of iron-free transferrin. Animal distribution studies with /sup 111/In-MoAb demonstrated tumor localization superior to /sup 67/Ga and pharmacokinetics that were highly similar to those of endogenously labeled /sup 75/Se-MoAb. The /sup 111/In-MoAb followed first-order kinetics and fit a two-compartmental model when studied in nude mice bearing human colon tumors known to express carcinoembryonic antigen. Significant quantities of radiolabel appeared in tissues other than tumor, with liver and skin having the highest concentrations. Sufficient tumor/background ratios were formed for scanning purposes. The data indicate that /sup 111/In-MoAb may prove to be effective as a radiopharmaceutical for tumor imaging.

  3. Hyperthermia enhances localization of sup 111 In-labeled hapten to bifunctional antibody in human colon tumor xenografts

    SciTech Connect

    Gridley, D.S.; Ewart, K.L.; Cao, J.D.; Stickney, D.R. )

    1991-03-01

    A unique bifunctional antibody (BFA) delivery system was examined for radiolocalization and distribution following hyperthermia (41.5 degrees C, 45 min) of T380h human colon tumor xenografts. The BFA is an F(ab')2 fragment made by combining two murine monoclonal antibodies with different specificities, one directed against carcinoembryonic antigen (monoclonal antibody CEM 231) and the other (monoclonal antibody CHA 255) against a hapten found on a derivative of 111In-labeled benzyl-EDTA (EOTUBE). This BFA is known as CEM/CHA. The CEM/CHA accumulates in carcinoembryonic antigen-expressing tissue and clears from normal tissues prior to administration of the radiolabeled hapten. T380h tumor chunks were injected s.c. into 31 nude mice. Two weeks later mean tumor volume was 352 mm3 and the animals were assigned to one of four groups: (a) CEM/CHA + hyperthermia + 111In-EOTUBE; (b) CHA 255 F(ab')2 + hyperthermia + 111In-EOTUBE, and (c and d) treated in the same manner as a and b, respectively, but without heat. The CEM/CHA, CHA 255 F(ab')2, and 111In-labeled hapten were injected i.p. at 14 micrograms, 7 micrograms, and 140-200 microCi/mouse, respectively. The hyperthermia was administered 22-24 h after BFA and the radiolabeled hapten was injected 2 h later. Twenty-four h thereafter, the animals were euthanized for testing. A significantly greater percentage of injected radioactivity localized within heated compared to unheated tumors in mice given CEM/CHA and 111In-EOTUBE (7.39%/g tumor and 4.46%/tumor versus 2.72%/g tumor and 1.44%/tumor, respectively). The percentage of kidney activity in mice given CHA 255 F(ab')2 fragments and heat was 57% lower than in the nonheated group when expressed on a per g basis (12.73 and 22.20%, respectively). Microautoradiography showed greater radiolocalization in heated tumors than in nonheated control tumors of comparable size.

  4. Monoclonal Antibodies.

    ERIC Educational Resources Information Center

    Killington, R. A.; Powell, K. L.

    1984-01-01

    Monoclonal antibodies have provided an exciting addition to the "armory" of the molecular biologist and immunologist. This article discusses briefly the concept of, techniques available for, production of, and possible uses of monoclonal antibodies. (Author)

  5. Monoclonal antibodies.

    PubMed

    2009-01-01

    The ability to produce and exploit monoclonal antibodies (mAbs) has revolutionized many areas of biological sciences. The unique property of an mAb is that it is a single species of immunoglobulin (IG) molecule. This means that the specificity of the interaction of the paratopes on the IG, with the epitopes on an antigenic target, is the same on every molecule. This property can be used to great benefit in immunoassays to provide tests of defined specificity and sensitivity, which improve the possibilities of standardization. The performance of assays can often be determined relating the actual weight of antibody (hence the number of molecules) to the activity. Often the production of an mAb against a specific epitope is the only way that biological entities can be differentiated. This chapter outlines the areas involving the development of assays based on mAbs. The problems involved address include the physical aspects of mAbs and how they may affect assay design and also the implications of results based on monospecific reagents. Often these are not fully understood, leading to assays that are less than satisfactory, which does not justify the relatively high cost of preparing and screening of mAbs. There are many textbooks and reviews dealing with the preparation of mAbs, the principles involved, and various purification and manipulative methods for the preparation of fragments and conjugation. There has been little general information attempting to summarize the best approaches to assay design using mAbs. Much time can be wasted through bad planning, and this is particularly relevant to mAbs. A proper understanding of some basic principles is essential. It is beyond the scope of this chapter to discuss all aspects, but major areas are highlighted. PMID:19219589

  6. Relationship between in vitro binding activity and in vivo tumor accumulation of radiolabeled monoclonal antibodies

    SciTech Connect

    Sakahara, H.; Endo, K.; Koizumi, M.; Nakashima, T.; Kunimatsu, M.; Watanabe, Y.; Kawamura, Y.; Nakamura, T.; Tanaka, H.; Kotoura, Y.

    1988-02-01

    The relationship between in vitro cell binding and in vivo tumor accumulation of radiolabeled antibodies was studied using /sup 125/I- and /sup 111/In-labeled monoclonal antibodies to human osteosarcoma, and a human osteosarcoma xenograft (KT005) in nude mice. Three monoclonal antibodies--OST6, OST7, and OST15--raised against human osteosarcoma recognize the same antigen molecule. Although the binding of both /sup 125/I- and /sup 111/In-labeled OST6 to KT005 cells was higher than that of radiolabeled OST7 in vitro, /sup 125/I-labeled OST6 showed a faster clearance from the circulation and a lower accumulation in the transplanted tumor than /sup 125/I-labeled OST7. In contrast to the radioiodinated antibodies, the in vivo tumor accumulation of /sup 111/In-labeled OST6 was higher, although not significantly, than that of /sup 111/In-labeled OST7. OST15 showed the lowest binding in vitro, and its in vivo tumor localization was also lower than the others. The discrepancy in tumor uptake between OST6 and OST7 labeled with either /sup 125/I or /sup 111/In may have been a result of differing blood clearance. These results suggest that binding studies can be used to exclude from in vivo use those antibodies which show very poor binding in vitro, while in vivo serum clearance may be a better test for choosing antibodies with similar binding.

  7. Pharmacokinetics of internally labeled monoclonal antibodies as a gold standard: comparison of biodistribution of /sup 75/Se-, /sup 111/In-, and /sup 125/I-labeled monoclonal antibodies in osteogenic sarcoma xenografts in nude mice

    SciTech Connect

    Koizumi, M.; Endo, K.; Watanabe, Y.; Saga, T.; Sakahara, H.; Konishi, J.; Yamamuro, T.; Toyama, S.

    1989-04-01

    In order to know the true biodistribution of anti-tumor monoclonal antibodies, three monoclonal antibodies (OST6, OST7, and OST15) against human osteosarcoma and control antibody were internally labeled with 75Se by incubating (75Se)methionine and hybridoma cells. 75Se-labeled monoclonal antibodies were evaluated both in vitro and in vivo using the human osteogenic sarcoma cell line KT005, and the results were compared with those of 125I- and 111In-labeled antibodies. 75Se-, 125I- and 111In-labeled monoclonal antibodies had identical binding activities to KT005 cells, and the immunoreactivity was in the decreasing order of OST6, OST7, and OST15. On the contrary, in vivo tumor uptake (% injected dose/g) of 75Se- and 125I-labeled antibodies assessed using nude mice bearing human osteosarcoma KT005 was in the order of OST7, OST6, and OST15. In the case of 111In, the order was OST6, OST7, and OST15. High liver uptake was similarly seen with 75Se- and 111In-labeled antibodies, whereas 125I-labeled antibodies showed the lowest tumor and liver uptake. These data indicate that tumor targeting of antibody conjugates are not always predictable from cell binding studies due to the difference of blood clearance of labeled antibodies. Furthermore, biodistribution of both 111In- and 125I-labeled antibodies are not identical with internally labeled antibody. Admitting that internally labeled antibody is a ''gold standard'' of biodistribution of monoclonal antibody, high liver uptake of 111In-radiolabeled antibodies may be inherent to antibodies. Little, if any, increase in tumor-to-normal tissue ratios of antibody conjugates will be expected compared to those of 111In-labeled antibodies if stably coupled conjugates are administered i.v.

  8. Therapeutic Recombinant Monoclonal Antibodies

    ERIC Educational Resources Information Center

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  9. Radioimmunodetection in rhabdo- and leiomyosarcoma with sup 111 In-anti-myosin monoclonal antibody complex

    SciTech Connect

    Planting, A.; Verweij, J.; Cox, P.; Pillay, M.; Stoter, G. )

    1990-02-01

    In patients with rhabdo- and leiomyosarcoma a radioimmunodiagnostic study was performed with {sup 111}In labeled F(ab) fragments of a monoclonal antibody against myosin. Eight patients with rhabdomyosarcoma and 18 patients with leiomyosarcoma were studied. Scanning was performed at 4, 24, and 48 h after administration of 74 MBeq of the antibody complex. A high uptake with a tumor:background ratio of 10:1 was observed in several patients with rhabdomyosarcoma but the results were less accurate in leiomyosarcoma.

  10. Monoclonal antibody "gold rush".

    PubMed

    Maggon, Krishan

    2007-01-01

    The market, sales and regulatory approval of new human medicines, during the past few years, indicates increasing number and share of new biologics and emergence of new multibillion dollar molecules. The global sale of monoclonal antibodies in 2006 were $20.6 billion. Remicade had annual sales gain of $1 billion during the past 3 years and five brands had similar increase in 2006. Rituxan with 2006 sales of $4.7 billion was the best selling monoclonal antibody and biological product and the 6th among the top selling medicinal brand. It may be the first biologic and monoclonal antibody to reach $10 billion annual sales in the near future. The strong demand from cancer and arthritis patients has surpassed almost all commercial market research reports and sales forecast. Seven monoclonal antibody brands in 2006 had sales exceeding $1 billion. Humanized or fully human monoclonal antibodies with low immunogenicity, enhanced antigen binding and reduced cellular toxicity provide better clinical efficacy. The higher technical and clinical success rate, overcoming of technical hurdles in large scale manufacturing, low cost of market entry and IND filing, use of fully human and humanized monoclonal antibodies has attracted funds and resources towards R&D. Review of industry research pipeline and sales data during the past 3 years indicate a real paradigm shift in industrial R&D from pharmaceutical to biologics and monoclonal antibodies. The antibody bandwagon has been joined by 200 companies with hundreds of new projects and targets and has attracted billions of dollars in R&D investment, acquisitions and licensing deals leading to the current Monoclonal Antibody Gold Rush. PMID:17691940

  11. Monoclonal antibodies and cancer therapy

    SciTech Connect

    Reisfeld, R.A.; Sell, S.

    1985-01-01

    These proceedings collect papers on the subject of monoclonal antibodies. Topics include: Monoclonal antibody, biochemical effects and cancer therapeutic potential of tunicamycin, use of monoclonal antibodies for detection of lymph node metastases, active specific immunotherapy, and applications of monoclonal antibodies to investigations of growth factors.

  12. Monoclonal Antibodies against Pectin

    PubMed Central

    Liners, Françoise; Letesson, Jean-Jacques; Didembourg, Christian; Van Cutsem, Pierre

    1989-01-01

    Monoclonal antibodies have been produced that recognize a conformation of homopolygalacturonic acid (pectic acid) induced by an optimum concentration of calcium and sodium of about 1 and 150 millinormal, respectively. The epitope recognized is probably part of the dimers of pectin chains associated according to the `egg box' model. Images Figure 2 PMID:16667195

  13. Monoclonal antibodies to gonadotropin subunits

    SciTech Connect

    Ehrlich, P.H.; Moyle, W.R.; Canfield, R.E.

    1985-01-01

    The production of monoclonal antibodies to peptide hormones, with their unifocal binding sites, can provide tools for understanding hormone structure and function. The paper focuses on techniques that are important for the study of monoclonal antibodies to chorionic gonadotropin (hCG), including hybridoma production, methods of screening for desired clones, properties of the monoclonal antibodies, effect of antibodies on hormone-receptor interaction, inhibition of binding of radiolabeled hCG, inhibition of hCG induced steroidogenesis, determination of relative orientation of epitopes, and synergistic actions of monoclonal antibodies to hCG.

  14. [Targeted therapy by monoclonal antibodies].

    PubMed

    Ohnuma, Kei; Morimoto, Chikao

    2010-10-01

    Human monoclonal antibodies are virtually indispensable for immunotherapy of cancer, infectious diseases, autoimmune diseases, or organ transplantation. The hybridoma technique, developed by Georges Köhler and César Milstein in 1975, has been shown to be most and highly producible method for generating murine monoclonal antibodies. However, poor results were obtained when it was administered in human bodies. With development of biotechnology, human monoclonal antibodies have been manufactured with higher efficiency. A major hindrance of producing therapeutic human monoclonal antibodies is the lack of an appropriate strategy for determining and selecting the antibodies that would be effective in vivo. In this review, we give an overview of the present techniques on therapeutic monoclonal antibodies. PMID:20954327

  15. Radioimmunodetection in rhabdo- and leiomyosarcoma with 111In-anti-myosin monoclonal antibody complex.

    PubMed

    Planting, A; Verweij, J; Cox, P; Pillay, M; Stoter, G

    1990-02-01

    In patients with rhabdo- and leiomyosarcoma a radioimmunodiagnostic study was performed with 111In labeled F(ab) fragments of a monoclonal antibody against myosin. Eight patients with rhabdomyosarcoma and 18 patients with leiomyosarcoma were studied. Scanning was performed at 4, 24, and 48 h after administration of 74 MBeq of the antibody complex. A high uptake with a tumor:background ratio of 10:1 was observed in several patients with rhabdomyosarcoma but the results were less accurate in leiomyosarcoma. PMID:2297748

  16. Production of monoclonal antibodies.

    PubMed

    Freysd'ottir, J

    2000-01-01

    The discovery of monoclonal antibodies (mAbs) produced by "hybridoma technology" by George Köhler and Cesar Milstein in 1975 has had a great impact both on basic biological research and on clinical medicine. However, this impact was not immediately recognized. It took around 10 years to appreciate the importance of using these mAbs in various fields of science other than immunology, such as cell biology, biochemistry, microbiology, virology, para-sitology, physiology, genetics, and molecular biology; and also in areas of clinical medicine, such as pathology, hematology, oncology, and infectious disease. The contribution of mAbs to science and clinical medicine was recognized in 1984 by the award of the Nobel Prize for Medicine to Köhler and Milstein. PMID:21337095

  17. Monoclonal antibodies in myeloma.

    PubMed

    Sondergeld, Pia; van de Donk, Niels W C J; Richardson, Paul G; Plesner, Torben

    2015-09-01

    The development of monoclonal antibodies (mAbs) for the treatment of disease goes back to the vision of Paul Ehrlich in the late 19th century; however, the first successful treatment with a mAb was not until 1982, in a lymphoma patient. In multiple myeloma, mAbs are a very recent and exciting addition to the therapeutic armamentarium. The incorporation of mAbs into current treatment strategies is hoped to enable more effective and targeted treatment, resulting in improved outcomes for patients. A number of targets have been identified, including molecules on the surface of the myeloma cell and components of the bone marrow microenvironment. Our review focuses on a small number of promising mAbs directed against molecules on the surface of myeloma cells, including CS1 (elotuzumab), CD38 (daratumumab, SAR650984, MOR03087), CD56 (lorvotuzumab mertansine), and CD138/syndecan-1 (BT062/indatuximab ravtansine). PMID:26452191

  18. Antibodies and Selection of Monoclonal Antibodies.

    PubMed

    Hanack, Katja; Messerschmidt, Katrin; Listek, Martin

    2016-01-01

    Monoclonal antibodies are universal binding molecules with a high specificity for their target and are indispensable tools in research, diagnostics and therapy. The biotechnological generation of monoclonal antibodies was enabled by the hybridoma technology published in 1975 by Köhler and Milstein. Today monoclonal antibodies are used in a variety of applications as flow cytometry, magnetic cell sorting, immunoassays or therapeutic approaches. First step of the generation process is the immunization of the organism with appropriate antigen. After a positive immune response the spleen cells are isolated and fused with myeloma cells in order to generate stable, long-living antibody-producing cell lines - hybridoma cells. In the subsequent identification step the culture supernatants of all hybridoma cells are screened weekly for the production of the antibody of interest. Hybridoma cells producing the antibody of interest are cloned by limited dilution till a monoclonal hybridoma is found. This is a very time-consuming and laborious process and therefore different selection strategies were developed since 1975 in order to facilitate the generation of monoclonal antibodies. Apart from common automation of pipetting processes and ELISA testing there are some promising approaches to select the right monoclonal antibody very early in the process to reduce time and effort of the generation. In this chapter different selection strategies for antibody-producing hybridoma cells are presented and analysed regarding to their benefits compared to conventional limited dilution technology. PMID:27236550

  19. Monoclonal antibodies and neuroblastoma

    SciTech Connect

    Miraldi, F. )

    1989-10-01

    Several antineuroblastoma monoclonal antibodies (MoAbs) have been described and two have been used in radioimmunoimaging and radioimmunotherapy in patients. MoAb 3F8 is a murine IgG3 antibody specific for the ganglioside GD2. Radioiodine-labeled 3F8 has been shown to specifically target human neuroblastoma in patients, and radioimmunoimaging with this agent has provided consistently high uptakes with tumor-to-background ratios of greater than or equal to 10:1. Radioimmunotherapy has been attempted with both MoAb 3F8 and MoAb UJ13A, and although encouraging results have been obtained, dosimetry data and tissue dose response information for these agents is lacking, which impedes the development of such therapy. 124I, a positron emitter, can be used with 3F8 in positron emission tomography (PET) scanning to provide dosimetry information for radioimmunotherapy. The tumor radiation dose response from radiolabeled MoAb also can be followed with PET images with fluorodeoxyglucose (FDG) scanning of neuroblastoma tumors. Results to date indicate that radioimmunoimaging has clinical use in the diagnosis of neuroblastoma and the potential for radioimmunotherapy for this cancer remains high.48 references.

  20. The therapeutic monoclonal antibody market

    PubMed Central

    Ecker, Dawn M; Jones, Susan Dana; Levine, Howard L

    2015-01-01

    Since the commercialization of the first therapeutic monoclonal antibody product in 1986, this class of biopharmaceutical products has grown significantly so that, as of November 10, 2014, forty-seven monoclonal antibody products have been approved in the US or Europe for the treatment of a variety of diseases, and many of these products have also been approved for other global markets. At the current approval rate of ∼ four new products per year, ∼70 monoclonal antibody products will be on the market by 2020, and combined world-wide sales will be nearly $125 billion. PMID:25529996

  1. In vitro and in vivo properties of human/mouse chimeric monoclonal antibody specific for common acute lymphocytic leukemia antigen

    SciTech Connect

    Saga, T.; Endo, K.; Koizumi, M.; Kawamura, Y.; Watanabe, Y.; Konishi, J.; Ueda, R.; Nishimura, Y.; Yokoyama, M.; Watanabe, T. )

    1990-06-01

    A human/mouse chimeric monoclonal antibody specific for a common acute lymphocytic leukemia antigen was efficiently obtained by ligating human heavy-chain enhancer element to the chimeric heavy- and light-chain genes. Cell binding and competitive inhibition assays of both radioiodine and indium-111- (111In) labeled chimeric antibodies demonstrated in vitro immunoreactivity identical with that of the parental murine monoclonal antibodies. The biodistribution of the radiolabeled chimeric antibody in tumor-bearing nude mice was similar to that of the parental murine antibody. Tumor accumulation of radioiodinated parental and chimeric antibodies was lower than that of {sup 111}In-labeled antibodies, probably because of dehalogenation of the radioiodinated antibodies. Indium-111-labeled chimeric antibody clearly visualized xenografted tumor. These results suggest that a human/mouse chimeric antibody can be labeled with {sup 111}In and radioiodine without the loss of its immunoreactivity, and that chimeric antibody localizes in vivo in the same way as the parental murine antibody.

  2. Immunotoxicity of monoclonal antibodies

    PubMed Central

    2009-01-01

    Monoclonal antibodies (mAbs) are large molecules intended to bind to specific targets often expressed on the immune system, and to treat various immunopathological conditions. Therefore, mAbs can be considered to have a high potential for immunotoxicity, which is reflected in the clinical experience accumulated on mAbs-induced adverse effects related to immunosuppression, immunostimulation and hypersensitivity (immunogenicity). So far, non clinical immunotoxicity studies have been inadequate to address all safety issues in relation to the possible immunotoxicity of mAbs, because they are fraught with limitations and pitfalls primarily related to the lack of relevant animal species. In addition, clinical studies rarely include validated end-points dedicated to the prediction of immunotoxicity. With the ongoing development of mAbs as novel therapeutic strategies for a wide variety of diseases, efforts should be paid to improve our understanding of mAbs-induced immunotoxic effects and design dedicated strategies to assess their immunological safety, both non clinically and clinically. PMID:20061816

  3. Use of galactosylated-streptavidin as a clearing agent with 111In-labeled, biotinylated antibodies to enhance tumor/non-tumor localization ratios.

    PubMed

    Govindan, Serengulam V; Griffiths, Gary L; Michel, Rosana B; Andrews, Philip M; Goldenberg, David M; Mattes, M Jules

    2002-06-01

    Optimal tumor imaging using radiolabeled antibodies (Abs) depends on obtaining the highest possible tumor/non-tumor localization ratios. To increase this ratio, in a mouse xenograft model system, we induced rapid blood clearance of the Ab after extensive penetration of a solid tumor, at 24 hr after Ab injection. By using galactosylated streptavidin (gal-SA) as a clearing agent for biotinylated Abs, and by using an 111In-DTPA (diethylenetriaminepentaacetic acid) label, clearance was directed to hepatocytes (as opposed to Kupffer cells), and the radiolabel was excreted by the hepatocytes into bile, thereby reducing accumulation in the liver. In this study, we directly compared this approach with the use of 99mTc-F(ab)2 fragments, using the same Ab to carcinoembryonic antigen (CEA), with a colon carcinoma xenograft. The gal-SA clearance method produced substantially higher tumor/non-tumor localization ratios for all tissues except the liver, and even for the liver the disadvantage of the gal-SA clearance method was small. We also tested the gal-SA clearance method with a xenograft model of human B-cell lymphoma, using anti-CD22. High tumor/non-tumor ratios were obtained, as previously described with carcinomas of the lung and colon. Therefore, this approach appears to be a generally applicable strategy to obtain relatively high tumor/non-tumor ratios. PMID:12136523

  4. Uses of monoclonal antibody 8H9

    DOEpatents

    Cheung, Nai-Kong V.

    2013-04-09

    This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also provides an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides different uses of the monoclonal antibody 8H9 or its derivative.

  5. Uses of monoclonal antibody 8H9

    DOEpatents

    Cheung, Nai-Kong V.

    2010-06-22

    This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also provides an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides different uses of the monoclonal antibody 8H9 or its derivative.

  6. [Monoclonal antibody for cancer treatment].

    PubMed

    Achiwa, Hiroyuki; Sato, Shigeki; Ueda, Ryuzo

    2002-04-01

    Antibodies have for many decades been viewed as ideal molecules for cancer therapy. Although promising from the start, it has taken much of more than two decades to reach the level of clinical application. Genetic engineering of antibodies; that is novel technologies for chimeric or humanizing monoclonal antibodies, has greatly advanced their utility in molecular targeting therapies, and in the past four years some therapeutic monoclonal antibodies for hematologic malignancies and solid tumors, such as Rituximab for B-cell lymphoma and Trastuzumab for metastatic breast cancer, have provided sufficient efficacy and safety to support regulatory approval from the U.S. Food and Drug Administration. They were subsequently approved by the Japanese Ministry of Health, Labour and Welfare in 2001. Many molecular biological and immunological studies have revealed the targeting properties of the host immune system and the biological mechanism of cancer cells for a more specific anticancer effect. Many clinical trials of monoclonal antibodies as a single agent, or in combination protocol with current standard chemotherapy or immunoconjugates have shown promise in the treatment of specific diseases. Furthermore, novel antibody designs and improved understanding of the mode of action of current antibodies lend great hope to the future of this therapeutic approach. The accumulating results from many basic, clinical and translational studies may lead to more individualized therapeutic strategies using these agent directed at specific genetic and immunologic targets. PMID:11977531

  7. Localization and visualization of pulmonary emboli with radiolabeled fibrin-specific monoclonal antibody

    SciTech Connect

    Kanke, M.; Matsueda, G.R.; Strauss, H.W.; Yasuda, T.; Liau, C.S.; Khaw, B.A. )

    1991-06-01

    Indium-111-labeled monoclonal antibody 64C5 specific for the beta-chain of fibrin monomer was used to image canine (n = 6) experimental pulmonary emboli (at least one barium-thrombin and one copper-coil induced clot per dog). Uptake of {sup 111}In-64C5 and 125I-control-DIG26-11 were compared in 10 clots (7 barium-thrombin and 3 copper-coil) identified in the lungs. There was no difference in the blood clearance of {sup 111}In-64C5 and 125I-DIG26-11. Uptake of {sup 111}In-64C5 (0.183 {plus minus} 0.105, mean %ID/g) was greater than 125I-DIG26-11 (0.024 {plus minus} 0.025) in pulmonary clots (p less than 0.001). Mean thrombus to blood ratios at 24 hr were 6.78:1 for 64C5 and 0.57:1 for DIG26-11. The clots visualized in vivo were larger (0.315 {plus minus} 0.381 g) than clots not visualized (0.089 {plus minus} 0.098). Negative images were recorded in three dogs with pulmonary emboli, injected with {sup 111}In-labeled control monoclonal antibody 3H3. These data suggest that {sup 111}In-labeled antifibrin can detect large pulmonary emboli in vivo.

  8. Detection of Campylobacter species using monoclonal antibodies

    NASA Astrophysics Data System (ADS)

    Young, Colin R.; Lee, Alice; Stanker, Larry H.

    1999-01-01

    A panel of species specific monoclonal antibodies were raised to Campylobacter coli, Campylobacter jejuni and Campylobacter lari. The isotypes, and cross-reactivity profiles of each monoclonal antibody against an extensive panel of micro- organisms, were determined.

  9. Monoclonal Antibodies for Cancer Immunotherapy

    PubMed Central

    Weiner, Louis M.; Dhodapkar, Madhav V.; Ferrone, Soldano

    2008-01-01

    Monoclonal antibodies have emerged as effective therapeutic agents for many human malignancies. However, the ability of antibodies to initiate tumor antigen-specific immune responses has not received as much attention as other mechanisms of antibody action. Here we describe the rationale and evidence for developing anti-cancer antibodies that can stimulate host tumor antigen-specific immune responses. This may be accomplished by inducing antibody-dependent cellular cytotoxicity, by promoting antibody-targeted cross-presentation of tumor antigens or by triggering the idiotypic network. Future treatment modifications or combinations should be able to prolong, amplify and shape these immune responses to increase the clinical benefits of antibody therapy of human cancer. PMID:19304016

  10. A monoclonal antibody against leptin.

    PubMed

    Mahmoudian, Jafar; Jeddi-Tehrani, Mahmood; Bayat, Ali Ahmad; Mahmoudi, Ahmad Reza; Vojgani, Yasaman; Tavangar, Banafsheh; Hadavi, Reza; Zarei, Saeed

    2012-10-01

    Leptin is an important protein that regulates energy storage and homeostasis in humans and animals. Leptin deficiency results in various abnormalities such as diabetes, obesity, and infertility. Producing a high affinity monoclonal antibody against human leptin provides an important tool to monitor and trace leptin function in different biological fluids. In this study, recombinant human leptin was conjugated to KLH and injected into mice. After immunization, mouse myeloma SP2/0 cells were fused with murine splenocytes followed by selection of antibody-producing hybridoma cells. After screening of different hybridoma colonies by ELISA, a high affinity antibody was selected and purified by affinity chromatography. The affinity constant of the antibody was measured by ELISA. Western blot, immunocytochemistry, and flow cytometry experiments were used to characterize the antibody. The anti-leptin antibody had a high affinity (around 1.13 × 10(-9) M) for its antigen. The saturation of the antibody with leptin (20 moles leptin per 1 mole antibody) in Western blot analysis proved that the antibody had specific binding to its antigen. Immunocytochemistry and flow cytometry on JEG-3 (human placental choriocarcinoma cell) cells revealed that the anti-leptin antibody recognized intracellular leptin. In conclusion, we report here the production and characterization of a murine anti-leptin antibody with high affinity for human leptin. PMID:23098305

  11. Advances in monoclonal antibody application in myocarditis*

    PubMed Central

    Han, Li-na; He, Shuang; Wang, Yu-tang; Yang, Li-ming; Liu, Si-yu; Zhang, Ting

    2013-01-01

    Monoclonal antibodies have become a part of daily preparation technologies in many laboratories. Attempts have been made to apply monoclonal antibodies to open a new train of thought for clinical treatments of autoimmune diseases, inflammatory diseases, cancer, and other immune-associated diseases. This paper is a prospective review to anticipate that monoclonal antibody application in the treatment of myocarditis, an inflammatory disease of the heart, could be a novel approach in the future. In order to better understand the current state of the art in monoclonal antibody techniques and advance applications in myocarditis, we, through a significant amount of literature research both domestic and abroad, developed a systematic elaboration of monoclonal antibodies, pathogenesis of myocarditis, and application of monoclonal antibodies in myocarditis. This paper presents review of the literature of some therapeutic aspects of monoclonal antibodies in myocarditis and dilated cardiomyopathy to demonstrate the advance of monoclonal antibody application in myocarditis and a strong anticipation that monoclonal antibody application may supply an effective therapeutic approach to relieve the severity of myocarditis in the future. Under conventional therapy, myocarditis is typically associated with congestive heart failure as a progressive outcome, indicating the need for alternative therapeutic strategies to improve long-term results. Reviewing some therapeutic aspects of monoclonal antibodies in myocarditis, we recently found that monoclonal antibodies with high purity and strong specificity can accurately act on target and achieve definite progress in the treatment of viral myocarditis in rat model and may meet the need above. However, several issues remain. The technology on how to make a higher homologous and weak immunogenic humanized or human source antibody and the treatment mechanism of monoclonal antibodies may provide solutions for these open issues. If we are to

  12. Effect of metabolism on retention of indium-111-labeled monoclonal antibody in liver and blood

    SciTech Connect

    Kinuyfa, S.; Jeong, J.M.; Garmestani, K.

    1994-11-01

    The effect of a chelator structure on the metabolic fate of the {sup 111}In-labeled monoclonal antibody (Mab) T101 was investigated in normal Balb/c mice to assess the importance of this chemical parameter in the reduction of the background radioactivity in blood and liver. Mab T101 was conjugated with either 2-(p-isothiocyanatobenzyl)-6-methyl-diethylaminetriaminepentaacetic acid (DTPA) (1B4M), 2-(p-isothiocyanatobenzyl) cyclohexyl-DTPA (CHX-B) or cyclic DTPA dianhydride (cDTPA) and then radiolabeled with {sup 111}In-labeled T101 conjugates and sacrificed in groups of five up to 5 days postinjection for comparative biodistribution studies and analyses of liver, blood and urine samples for radioindium products. The biodistribution of {sup 111}In-1B4M-T101 and {sup 111}In-CHX-B-T101 were similar to each other but significantly different from that of {sup 111}In-cDTPA-T101, particularly in the blood and liver. Size-exclusion high-performance liquid chromatography indicated that the concentration of the intact {sup 111}In-immunoglobulin (Ig)G in liver decreased with similar rates for the three conjugates. Meanwhile, the concentration of a small DTPA-like metabolite in liver increased to a different peak value (4.6% 1D/g for the cDTPA conjugate and 1.6% lD/g for the 1B4M and CHX-B conjugates) approximately at 24 hr and maintained a steady-state concentration up to 5 days. The thiourea linkage between T101 and the {sup 111}In-labeled chelates and a higher complex stability and higher lipophilicity of {sup 111}In-1B4M and {sup 111}In-CHX-B appear to be responsible for lower liver and higher blood radioactivity for the 1B4M and CHX conjugates. 31 refs., 3 figs., 1 tab.

  13. Natural monoclonal antibodies and cancer.

    PubMed

    Vollmers, Peter H; Brändlein, Stephanie

    2008-06-01

    Immunity is responsible for recognition and elimination of infectious particles and for removal of cellular waste, modified self structures and transformed cells. Innate or natural immunity acts as a first line defense and is also the link to acquired immunity and memory. By using the human hybridoma technology, a series of monoclonal antibodies and several new tumor-specific targets could be identified. A striking phenomenon of immunity against malignant cells is that all so far isolated tumor-specific antibodies were germ-line coded natural IgM antibodies. And neither in animals nor in humans affinity-maturated tumor-specific IgG antibodies have been detected so far. These IgM's preferentially bind to carbohydrate epitopes on post-transcriptionally modified surface receptors, which are recently patented and preferentially remove malignant cells by inducing apoptosis to avoid inflammatory processes. Our "biology-" or "function-driven" method represents a unique yet powerful approach compared to the typical approaches on screening compounds or antibodies against non-validated targets (mostly differentially expressed). Moreover, the approach creates a competitive patenting strategy of creating proprietary antibodies and validated targets at the same time, which has the potential of further streamlining the discovery of new cancer therapies. PMID:18537750

  14. Monoclonal antibody purification with hydroxyapatite.

    PubMed

    Gagnon, Pete

    2009-06-01

    Hydroxyapatite (HA) has been used for IgG purification since its introduction in the 1950s. Applications expanded to include IgA and IgM in the 1980s, along with elucidation of its primary binding mechanisms and the development of ceramic HA media. With the advent of recombinant monoclonal antibodies, HA was demonstrated to be effective for removal of antibody aggregates, as well as host cell proteins and leached protein A. HA's inherent abilities have been enhanced by the development of elution strategies that permit differential control of its primary binding mechanisms: calcium metal affinity and phosphoryl cation exchange. These strategies support reduction of antibody aggregate content from greater than 60% to less than 0.1%, in conjunction with enhanced removal of DNA, endotoxin, and virus. HA also has a history of discriminating various immunological constructs on the basis of differences in their variable regions, or discriminating Fab fragments from Fc contaminants in papain digests of purified monoclonal IgG. Continuing development of novel elution strategies, alternative forms of HA, and application of robotic high throughput screening systems promise to expand HA's utility in the field. PMID:19491046

  15. Monoclonal Antibodies for Lipid Management.

    PubMed

    Feinstein, Matthew J; Lloyd-Jones, Donald M

    2016-07-01

    In recent years, biochemical and genetic studies have identified proprotein convertase subtilisin/kexin type 9 (PCSK9) as a major mediator of low-density lipoprotein cholesterol (LDL-c) levels and thereby a potential novel target for reducing risk of coronary heart disease (CHD). These observations led to the development of PCSK9 inhibitors, which lower LDL-c levels more than any other non-invasive lipid-lowering therapy presently available. The PCSK9 inhibitors furthest along in clinical trials are subcutaneously injected monoclonal antibodies. These PCSK9 inhibitors have demonstrated LDL-c-lowering efficacy with acceptable safety in phase III clinical trials and may offer a useful therapy in addition to maximally tolerated HMG-CoA reductase inhibitors (statins) in certain patient groups. Longer-term data are required to ensure sustained efficacy and safety of this new class of medications. This review provides an overview of the biology, genetics, development, and clinical trials of monoclonal antibodies designed to inhibit PCSK9. PMID:27221501

  16. Uses of monoclonal antibody 8H9

    DOEpatents

    Cheung, Nai-Kong V

    2013-08-06

    This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also provides an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides a method of inhibiting the growth of tumor cells comprising contacting said tumor cells with an appropriate amount of monoclonal antibody 8H9 or a derivative thereof.

  17. Uses of monoclonal antibody 8H9

    DOEpatents

    Cheung, Nai-Kong V.

    2010-06-15

    This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also provides an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides a method of inhibiting the growth of tumor cells comprising contacting said tumor cells with an appropriate amount of monoclonal antibody 8H9 or a derivative thereof.

  18. Monoclonal antibodies against Vibrio cholerae lipopolysaccharide.

    PubMed Central

    Gustafsson, B; Rosén, A; Holme, T

    1982-01-01

    A cell line producing monoclonal antibodies directed against the core region of Vibrio cholerae lipopolysaccharide has been established. These antibodies were inhibited by lipopolysaccharide preparations of both O-group 1 vibrios and some non-O-group 1 vibrios as detected in enzyme-linked immunosorbent assay-inhibition experiments. Coagglutination experiments with monoclonal and polyclonal antibodies adsorbed to protein A-carrying staphylococci were performed. All V. cholerae strains tested, regardless of serotype, were agglutinated when mixed with staphylococci coated with the monoclonal antibodies, whereas staphylococci coated with group-specific (O1) polyclonal antibodies only agglutinated with O-group 1 vibrios. Images PMID:6183214

  19. Improved monoclonal antibodies to halodeoxyuridine

    DOEpatents

    Vanderlaan, M.; Dolbeare, F.A.; Gray, J.W.; Thomas, C.B.

    1983-10-18

    The development, method of production, characterization and methods of use of two hybridomas, CIdU-1 (ATCC Accession No. HB-8321) and CIdU-2 (ATCC Accession No. HB-8320), are described. These secrete IgG/sub 1/(K) immunoglobulins that react with halodeoxyuridine (HdU or halodU) such as bromo, chloro, fluoro and iodo deoxyuridine (BrdU, CldU, FdU and IdU), whether these are free in solution or incorporated into single stranded DNA in whole cells. The antibodies do not react with naturally occurring free nucleic acids or with deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) polymers. These antibodies are suitable for use in enzyme immunoassays for free CldU, FdU, IdU and BrdU and for detecting cells with these nucleotides incorporated into them. The monoclonal antibodies are useful in the detection of the sensitivity of tumor cells to specific chemotherapeutic agents, in the measurement of the rate of cellular DNA synthesis, in the measurement of the rate of proliferation of normal and malignant cells and in the detection of HPRT deficiency in cells. 1 tab.

  20. Monoclonal antibodies that detect live salmonellae.

    PubMed Central

    Torensma, R; Visser, M J; Aarsman, C J; Poppelier, M J; van Beurden, R; Fluit, A C; Verhoef, J

    1992-01-01

    Nine immunoglobulin G and nine immunoglobulin M murine monoclonal antibody-producing hybridomas reactive with live Salmonella bacteria were obtained from several fusions of immune spleen cells and Sp2/0 myeloma cells. The antibodies were selected by the magnetic immunoluminescence assay. The monoclonal antibodies were reactive with serogroups A, B, C1, C2, D, E, and K and Salmonella choleraesuis subsp. diarizonae. Each monoclonal antibody proved to be reactive with a distinct serotype. Clinical isolates belonging to these Salmonella serogroups could be detected. Reactivity with non-Salmonella bacteria proved to be minor. Images PMID:1476430

  1. Monoclonal Antibodies for the Treatment of Cancer

    PubMed Central

    Shuptrine, Casey; Surana, Rishi; Weiner, Louis M.

    2012-01-01

    Over the past decade, the clinical utility of monoclonal antibodies has been realized and antibodies are now a mainstay for the treatment of cancer. Antibodies have the unique capacity to target and kill tumor cells while simultaneously activating immune effectors to kill tumor cells through the complement cascade or antibody-dependent cellular cytotoxicity (ADCC). This multifaceted mechanism of action combined with target specificity underlies the capacity of antibodies to elicit anti-tumor responses while minimizing the frequency and magnitude of adverse events. This review will focus on mechanisms of action, clinical applications and putative mechanisms of resistance to monoclonal antibody therapy in the context of cancer. PMID:22245472

  2. Production of monoclonal antibodies against avidin.

    PubMed

    Ashorn, R; Ashorn, P; Kulomaa, M; Tuohimaa, P; Krohn, K

    1985-01-01

    Monoclonal antibodies of the IgG1 subclass were generated against chicken avidin. These antibodies were shown to be as sensitive as polyclonal antiserum in detecting avidin by radioimmunoassay (RIA) and enzyme linked immunosorbent assay (ELISA) methods. Furthermore, the monoclonal antibodies were considerably more specific. Our results with a monoclonal anti-avidin RIA support previous findings that in inflammatory conditions avidin is synthesized also in other organs than the oviduct, although in the liver a major part of the activity detected by polyclonal anti-avidin RIA or biotin-bentonite assay was not due to avidin. PMID:4053566

  3. Monoclonal antibodies in the treatment of cancer

    SciTech Connect

    Dillman, R.O.

    1984-01-01

    Potential uses of monoclonal antibodies in anti-cancer treatment include passive serotherapy, radioisotope conjugates, toxin-linked conjugates, and chemotherapy-monoclonal antibody conjugates. The bases for these applications have been founded in research with heterologous antisera, and in some cases with monoclonal antibodies in animal tumor models. Human trials with passive serotherapy have already begun in both hematopoietic and solid tumor malignancies. Promising results have been reported in cutaneous T cell lymphoma with anti-T cell monoclonal antibody, and in nodular lymphoma with anti-idiotype monoclonal antibody. Radioisotope conjugate work appears promising for imaging in both animals and humans, and this work will lay the foundation for possible therapeutic application of radio-immunotherapy. Toxin-linked conjugates are promising in vitro and may have application in autologous bone marrow transplantation. Research with chemotherapy conjugates is also underway. Preliminary results suggest that murine monoclonal antibodies will be well tolerated clinically except in the setting of circulating cells which bear the target antigen, where rapid infusions may be associated with intolerable side effects. In certain diseases, production of endogenous anti-mouse antibodies may also limit application. Advances in the technology for human-human hybridoma production may help solve some of these problems. 132 references.

  4. Preparation of astatine-labeled monoclonal antibodies

    SciTech Connect

    Milesz, S.; Norseev, Yu.V.; Szucs, Z. |

    1995-07-01

    In the cationic state astatine forms a stable complex with diethylenetriaminepentaacetic acid. Thanks to this complex, astatine can be bound to monoclonal antibodies of the RYa{sub 1} type. The most favorable conditions for preparing astatine-labeled antibodies are established. The chromatographic analysis and electromigration experiments showed that astatine is firmly linked to a biomolecule in vitro and it did not escape from labeled monoclonal antibodies even under treatment with such highly effective astatine-complexing agent as thiourea. The immune activity of astatine-labeled antibodies did not change even after 20 h.

  5. Mouse monoclonal antibodies against estrogen receptor.

    PubMed

    De Rosa, Caterina; Rossi, Valentina; Abbondanza, Ciro

    2014-01-01

    The production of monoclonal antibodies, by cloning hybridoma derived from the fusion of myeloma cells and spleen lymphocytes, has allowed to obtain great advances in many fields of biological knowledge. The use of specific antibodies to the estrogen receptor, in fact, has been an invaluable method to bring out its mechanisms of action and its effects, both genomic and extra-genomic. Here we describe, step by step, the production of monoclonal antibodies, starting from protocol for antigen preparation to the selection of antibody-secreting hybridoma. PMID:25182770

  6. Monoclonal Antibody That Defines Human Myoepithelium

    NASA Astrophysics Data System (ADS)

    Dairkee, Shahnaz Hashmi; Blayney, Carlene; Smith, Helene S.; Hackett, Adeline J.

    1985-11-01

    We have isolated a mouse monoclonal antibody that, upon immunohistochemical localization in frozen sections, displays specificity for human myoepithelial cells in the resting mammary gland, sweat glands, and salivary glands. Furthermore, this antibody was strongly and homogeneously reactive with frozen sections of 3 of 60 breast carcinoma specimens. Using immunolocalization techniques in conjunction with polyacrylamide gel electrophoresis, we have determined that the reactivity of this monoclonal antibody is directed toward a 51,000-dalton keratin polypeptide. The potential uses of this antibody in the prognosis of human mammary carcinoma and in understanding the role of the myoepithelium in development and differentiation are discussed.

  7. Polyclonal and monoclonal antibodies in clinic.

    PubMed

    Wootla, Bharath; Denic, Aleksandar; Rodriguez, Moses

    2014-01-01

    Immunoglobulins (Ig) or antibodies are heavy plasma proteins, with sugar chains added to amino-acid residues by N-linked glycosylation and occasionally by O-linked glycosylation. The versatility of antibodies is demonstrated by the various functions that they mediate such as neutralization, agglutination, fixation with activation of complement and activation of effector cells. Naturally occurring antibodies protect the organism against harmful pathogens, viruses and infections. In addition, almost any organic chemical induces antibody production of antibodies that would bind specifically to the chemical. These antibodies are often produced from multiple B cell clones and referred to as polyclonal antibodies. In recent years, scientists have exploited the highly evolved machinery of the immune system to produce structurally and functionally complex molecules such as antibodies from a single B clone, heralding the era of monoclonal antibodies. Most of the antibodies currently in the clinic, target components of the immune system, are not curative and seek to alleviate symptoms rather than cure disease. Our group used a novel strategy to identify reparative human monoclonal antibodies distinct from conventional antibodies. In this chapter, we discuss the therapeutic relevance of both polyclonal and monoclonal antibodies in clinic. PMID:24037837

  8. Trends in Malignant Glioma Monoclonal Antibody Therapy

    PubMed Central

    Chekhonin, Ivan; Gurina, Olga

    2015-01-01

    Although new passive and active immunotherapy methods are emerging, unconjugated monoclonal antibodies remain the only kind of biological preparations approved for high-grade glioma therapy in clinical practice. In this review, we combine clinical and experimental data discussion. As antiangiogenic therapy is the standard of care for recurrent glioblastoma multiforme (GBM), we analyze major clinical trials and possible therapeutic combinations of bevacizumab, the most common monoclonal antibody to vascular endothelial growth factor (VEGF). Another humanized antibody to gain recognition in GBM is epidermal growth factor (EGFR) antagonist nimotuzumab. Other antigens (VEGF receptor, platelet-derived growth factor receptor, hepatocyte growth factor and c-Met system) showed significance in gliomas and were used to create monoclonal antibodies applied in different malignant tumors. We assess the role of genetic markers (isocitrate dehydrogenase, O6-methylguanine-DNA methyltransnsferase) in GBM treatment outcome prediction. Besides antibodies studied in clinical trials, we focus on perspective targets and briefly list other means of passive immunotherapy.

  9. Internalization and re-expression of antigens of human melanoma cells following exposure to monoclonal antibody

    SciTech Connect

    Wang, B.S.; Lumanglas, A.L.; Silva, J.; Ruszala-Mallon, V.; Durr, F.E.

    1987-04-15

    Modulation of the surface membrane of human Sk-Mel-28 melanoma cells by monoclonal antibody (MoAb) 96.5 recognizing p97 determinants was examined using direct radioimmunoassay and indirect fluorescent antibody-staining techniques. It was determined that the majority of /sup 111/In-labeled antibody that remained associated with cells after a 24-hr incubation at 37 degrees C had been internalized because MoAb 96.5 was no longer visible on the cell surface. A second treatment of these cells with the same antibody 24 hr later not only increased the cell-associated radioactivity, reflecting an increase of total antibody bound, but also rendered these cells membrane immunofluorescent again, indicating the re-expression of surface antigens. Autoradiographs of the electrophoretically analyzed membrane components of Sk-Mel-28 cells further demonstrated the appearance of newly synthesized 97-kDa proteins that were immunoprecipitable with MoAb 96.5. Taken together, the present findings suggest that p97 antigens undergo endocytosis in Sk-Mel-28 cells following exposure to MoAb 96.5. However, the same antigens were regenerated and expressed on the cell surface within a period of 24 hr. The re-expression of tumor cell surface antigen following initial internalization of the MoAb-antigen complex may have implications for diagnosis and therapy.

  10. Cold denaturation of monoclonal antibodies

    PubMed Central

    Lazar, Kristi L; Patapoff, Thomas W

    2010-01-01

    The susceptibility of monoclonal antibodies (mAbs) to undergo cold denaturation remains unexplored. In this study, the phenomenon of cold denaturation was investigated for a mAb, mAb1, through thermodynamic and spectroscopic analyses. tryptophan fluorescence and circular dichroism (CD) spectra were recorded for the guanidine hydrochloride (GuHCl)-induced unfolding of mAb1 at pH 6.3 at temperatures ranging from −5 to 50°C. A three-state unfolding model incorporating the linear extrapolation method was fit to the fluorescence data to obtain an apparent free energy of unfolding, ΔGu, at each temperature. CD studies revealed that mAb1 exhibited polyproline II helical structure at low temperatures and at high GuHCl concentrations. the Gibbs-Helmholtz expression fit to the ΔGu versus temperature data from fluorescence gave a ΔCp of 8.0 kcal mol−1 K−1, a maximum apparent stability of 23.7 kcal mol−1 at 18°C, and an apparent cold denaturation temperature (TCD) of −23°C. ΔGu values for another mAb (mAb2) with a similar framework exhibited less stability at low temperatures, suggesting a depressed protein stability curve and a higher relative TCD. Direct experimental evidence of the susceptibility of mAb1 and mAb2 to undergo cold denaturation in the absence of denaturant was confirmed at pH 2.5. thus, mAbs have a potential to undergo cold denaturation at storage temperatures near −20°C (pH 6.3), and this potential needs to be evaluated independently for individual mAbs. PMID:20093856

  11. Monoclonal Antibody Therapy for Advanced Neuroblastoma

    Cancer.gov

    NCI is sponsoring two clinical trials of a monoclonal antibody called ch14.18, in combination with other drugs, to see if the antibody may be helpful for children or young adults (up to age 21) with relapsed or refractory neuroblastoma.

  12. Monoclonal antibodies in acute lymphoblastic leukemia

    PubMed Central

    O’Brien, Susan; Ravandi, Farhad; Kantarjian, Hagop

    2015-01-01

    With modern intensive combination polychemotherapy, the complete response (CR) rate in adults with acute lymphoblastic leukemia (ALL) is 80% to 90%, and the cure rate is 40% to 50%. Hence, there is a need to develop effective salvage therapies and combine novel agents with standard effective chemotherapy. ALL leukemic cells express several surface antigens amenable to target therapies, including CD20, CD22, and CD19. Monoclonal antibodies target these leukemic surface antigens selectively and minimize off-target toxicity. When added to frontline chemotherapy, rituximab, an antibody directed against CD20, increases cure rates of adults with Burkitt leukemia from 40% to 80% and those with pre-B ALL from 35% to 50%. Inotuzumab ozogamicin, a CD22 monoclonal antibody bound to calicheamicin, has resulted in marrow CR rates of 55% and a median survival of 6 to 7 months when given to patients with refractory-relapsed ALL. Blinatumomab, a biallelic T cell engaging the CD3-CD19 monoclonal antibody, also resulted in overall response rates of 40% to 50% and a median survival of 6.5 months in a similar refractory-relapsed population. Other promising monoclonal antibodies targeting CD20 (ofatumumab and obinutuzumab) or CD19 or CD20 and bound to different cytotoxins or immunotoxins are under development. Combined modalities of chemotherapy and the novel monoclonal antibodies are under investigation. PMID:25999456

  13. Production of Monoclonal Antibody against Human Nestin.

    PubMed

    Hadavi, Reza; Zarnani, Amir Hassan; Ahmadvand, Negah; Mahmoudi, Ahmad Reza; Bayat, Ali Ahmad; Mahmoudian, Jafar; Sadeghi, Mohammad-Reza; Soltanghoraee, Haleh; Akhondi, Mohammad Mehdi; Tarahomi, Majid; Jeddi-Tehrani, Mahmood; Rabbani, Hodjattallah

    2010-04-01

    We have employed a peptide-based antibody generation protocol for producing antibody against human nestin. Using a 12-mer synthetic peptide from repetitive region of human nestin protein devoid of any N- or O-glyco-sylation sequences, we generated a mouse monoclonal antibody capable of recognizing human, mouse, bovine, and rat nestin. A wide variety of nestin proteins ranging from 140-250 kDa was detected by this antibody. This antibody is highly specific and functional in applications such as ELISA, flow cytometry, immunocytochemistry, and Western blot assays. PMID:23407796

  14. Production of Monoclonal Antibody against Human Nestin

    PubMed Central

    Hadavi, Reza; Zarnani, Amir Hassan; Ahmadvand, Negah; Mahmoudi, Ahmad Reza; Bayat, Ali Ahmad; Mahmoudian, Jafar; Sadeghi, Mohammad-Reza; Soltanghoraee, Haleh; Akhondi, Mohammad Mehdi; Tarahomi, Majid; Jeddi-Tehrani, Mahmood; Rabbani, Hodjattallah

    2010-01-01

    We have employed a peptide-based antibody generation protocol for producing antibody against human nestin. Using a 12-mer synthetic peptide from repetitive region of human nestin protein devoid of any N- or O-glyco-sylation sequences, we generated a mouse monoclonal antibody capable of recognizing human, mouse, bovine, and rat nestin. A wide variety of nestin proteins ranging from 140–250 kDa was detected by this antibody. This antibody is highly specific and functional in applications such as ELISA, flow cytometry, immunocytochemistry, and Western blot assays. PMID:23407796

  15. 5th Annual Monoclonal Antibodies Conference

    PubMed Central

    2009-01-01

    The conference, which was organized by Visiongain and held at the BSG Conference Center in London, provided an excellent opportunity for participants to exchange views on the development, production and marketing of therapeutic antibodies, and discuss the current business environment. The conference included numerous interactive panel and group discussions on topics such as isotyping for therapeutic antibodies (panel chair: Nick Pullen, Pfizer), prospects for fully human monoclonal antibodies (chair: Christian Rohlff, Oxford BioTherapeutics), perspectives on antibody manufacturing and development (chair: Bo Kara, Avecia), market impact and post-marketing issues (chair: Keith Rodgers, Bodiam Consulting) and angiogenesis inhibitors (chair: David Blakey, AstraZeneca). PMID:20073132

  16. [Current situations and the future prospect of monoclonal antibody products].

    PubMed

    Yamaguchi, Teruhide

    2014-01-01

    Monoclonal antibody products and monoclonal antibody-based biopharmaceuticals have shown considerable effectiveness in the treatment for variety of diseases; cancer, auto-immune/auto-inflammation diseases and so on. Significant advance in monoclonal antibody products for cancer treatments was made with antibody-drug conjugates (ADC), and antibodies for blockade of immune checkpoints. Already 3 ADCs and 2 anti-immune-checkpoint antibodies products have been approved, and these monoclonal antibody-related product pipelines reach over 30. On the other hand, EU approved first monoclonal-antibody biosimilar, RemsimaTM (infliximab), suggesting that other monoclonal-antibody biosmilars will follow to the market. In this paper, several new issues about monoclonal antibody products will be discussed. PMID:25707201

  17. Radioimmunodetection of cancer with monoclonal antibodies: current status, problems, and future directions

    SciTech Connect

    Murray, J.L.; Unger, M.W.

    1988-01-01

    Early studies of immunoscintography with affinity-purified /sup 131/I-labeled polyclonal antibodies reactive against oncofetal antigens such as carcinoembryonic antigen (CEA) were moderately successful in detecting metastatic colorectal carcinoma. However, because of low tumor to background ratios of isotope, background subtraction techniques using /sup 99/Tc-labeled albumin were required to visualize small lesions. Antisera were often of low titer and lacked specificity. These problems could be overcome for the most part following the development of highly specific monoclonal antibodies (MoAb) against a variety of tumor-associated antigens. A number of clinical trials using /sup 131/I- or /sup 111/In-labeled MoAb to image tumors have demonstrated successful localization without the use of subtraction techniques. Variables limiting the usefulness of murine MoAb for diagnosis have included increased localization in liver and spleen, tumor vascularity and heterogeneity of antigen expression, and development of human antimurine globulins. Methods to overcome some of these problems are discussed. Radiolabeled MoAb appear useful as an adjunct to conventional diagnostic techniques both as a means to predict which antibodies might be useful for treatment and, in select patients, as a basis for treatment decisions. 163 references.

  18. Lung is the target organ for a monoclonal antibody to angiotensin-converting enzyme

    SciTech Connect

    Danilov, S.M.; Muzykantov, V.R.; Martynov, A.V.; Atochina, E.N.; Sakharov, I.Yu.; Trakht, I.N.; Smirnov, V.N. )

    1991-01-01

    125I-labeled mouse monoclonal antibody (MoAb) to human angiotensin-converting enzyme (ACE), termed 9B9 and cross-reacting with rat and monkey ACE, when injected into the circulation, accumulates in the lung in up to 10 to 20 greater concentrations than in other organs and blood. That 111In-labeled MoAb 9B9 also accumulates in the lungs of both rats and monkeys very selectively, was clearly revealed by gamma-scintigraphy. Unlike polyclonal anti-ACE antibodies that induce an immunodependent lethal reaction when administered intravenously, MoAb 9B9 was well tolerated by rats even at very high doses (up to 300 mg/kg/body weight). At the same time, the administration of this antibody (which does not inhibit the catalytic activity of ACE) resulted in both a 3-fold decrease of the lung ACE activity and an increase in the activity of serum ACE. The highly organ-specific, nondamaging accumulation of the MoAb 9B9 makes it a promising vector for targeted drug delivery to the lung, for modeling of lung pathology, and for gamma-scintigraphic visualization of the lung vascular bed. We also suggest that MoAb 9B9 accumulation in the lung may serve as a highly sensitive marker of lung vessel damage upon various lung pathology.

  19. Radioimmunoimaging of lung vessels: An approach using indium-111-labeled monoclonal antibody to angiotensin-converting enzyme

    SciTech Connect

    Danilov, S.M.; Martynov, A.V.; Klibanov, A.L.; Slinkin, M.A.; Sakharov, I.Yu.; Malov, A.G.; Sergienko, V.B.; Vedernikov, A.Yu.; Muzykantov, V.R.; Torchilin, V.P.

    1989-10-01

    A murine monoclonal antibody against human angiotensin-converting enzyme was radiolabeled with {sup 111}In via diethylenetriaminepentaacetic acid without substantial loss of antigen-binding capacity. This monoclonal antibody designated 9B9 cross-reacted with rat and monkey angiotensin-converting enzyme. Indium-111-labeled 9B9 selectively accumulated 10-20 times greater in the lung than in blood or other organs following intravenous administration in rats. Kinetics of lung accumulation and blood clearance were studied for {sup 111}In-9B9-antibody and compared to that of {sup 125}I-labeled 9B9 in rat. Highly specific accumulation of {sup 111}In-9B9-antibody in the lung of Macaca Rhesus monkeys after intravenous injection was monitored by gamma-imaging. Images of {sup 111}In-labeled antibody 9B9 biodistribution in monkey lung noticeably differ from the images of biodistribution of {sup 99m}Tc-labeled albumin microspheres. This difference may provide information concerning the state of the endothelium of lung capillaries, which is different from the blood flow characteristics determined with routine microsphere technique.

  20. 90Y-Labeled Anti-ROBO1 Monoclonal Antibody Exhibits Antitumor Activity against Small Cell Lung Cancer Xenografts

    PubMed Central

    Fujiwara, Kentaro; Koyama, Keitaro; Suga, Kosuke; Ikemura, Masako; Saito, Yasutaka; Hino, Akihiro; Iwanari, Hiroko; Kusano-Arai, Osamu; Mitsui, Kenichi; Kasahara, Hiroyuki; Fukayama, Masashi; Kodama, Tatsuhiko; Hamakubo, Takao; Momose, Toshimitsu

    2015-01-01

    Introduction ROBO1 is a membrane protein that contributes to tumor metastasis and angiogenesis. We previously reported that 90Y-labeled anti-ROBO1 monoclonal antibody (90Y-anti-ROBO1 IgG) showed an antitumor effect against ROBO1-positive tumors. In this study, we performed a biodistribution study and radioimmunotherapy (RIT) against ROBO1-positive small cell lung cancer (SCLC) models. Methods For the biodistribution study, 111In-labeled anti-ROBO1 monoclonal antibody (111In-anti-ROBO1 IgG) was injected into ROBO1-positive SCLC xenograft mice via the tail vein. To evaluate antitumor effects, an RIT study was performed, and SCLC xenograft mice were treated with 90Y-anti-ROBO1 IgG. Tumor volume and body weight were periodically measured throughout the experiments. The tumors and organs of mice were then collected, and a pathological analysis was carried out. Results As a result of the biodistribution study, we observed tumor uptake of 111In-anti-ROBO1 IgG. The liver, kidney, spleen, and lung showed comparably high accumulation of 111In-labeled anti-ROBO1. In the RIT study, 90Y-anti-ROBO1 IgG significantly reduced tumor volume compared with baseline. Pathological analyses of tumors revealed coagulation necrosis and fatal degeneration of tumor cells, significant reduction in the number of Ki-67-positive cells, and an increase in the number of apoptotic cells. A transient reduction of hematopoietic cells was observed in the spleen, sternum, and femur. Conclusions These results suggest that RIT with 90Y-anti-ROBO1 IgG is a promising treatment for ROBO1-positive SCLC. PMID:26017283

  1. Monoclonal antibody technologies and rapid detection assays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel methodologies and screening strategies will be outlined on the use of hybridoma technology for the selection of antigen specific monoclonal antibodies. The development of immunoassays used for diagnostic detection of prions and bacterial toxins will be discussed and examples provided demonstr...

  2. Monoclonal antibodies against chicken interleukin-6

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monoclonal antibodies (mAb) were produced against a recombinant (r) chicken interleukin-6 (IL-6). Eight mAbs that were produced were tested for isotype; ability to inhibit recombinant forms of chicken (ch), human (h) and murine (m) IL-6; and recognition of rchIL-6 by Western immunoblotting. The mA...

  3. Monoclonal antibodies reactive with chicken interleukin-17

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In our previous study chicken interleukin -17 (chIL-17) gene was cloned from the expressed sequence tag (EST) cDNA library and initially analyzed. To further investigate biological properties of chicken IL-17, six monoclonal antibodies (mAbs) against bacterially expressed protein were produced and c...

  4. Effect of tumor mass and antigenic nature on the biodistribution of labeled monoclonal antibodies in mice

    SciTech Connect

    Watanabe, Y.; Endo, K.; Koizumi, M.; Kawamura, Y.; Saga, T.; Sakahara, H.; Kuroki, M.; Matsuoka, Y.; Konishi, J.

    1989-06-01

    The effect of tumor mass and antigenic nature on the biodistribution of 111In- and 125I-labeled monoclonal antibodies (MoAbs) was studied using F(ab')2 fragments of three representative anti-tumor MoAbs and SW1116 human colorectal carcinoma grown in nude mice. The 19-9, F33-104 anti-CEA, and 17-1A MoAbs showed specific binding to SW1116 cells. The former two MoAbs recognize circulating CA 19-9 with molecular weights of more than 5,000,000 and CEA of Mr 170,000-180,000, respectively, whereas 17-1A reacts with a nonshedding antigen. Both percentage injected dose per gram tumor and tumor-to-blood ratios were inversely proportional to the tumor mass in nude mice administered 111In- and 125I-labeled 19-9, but liver uptake increased as tumor size increased. Analysis of serum samples and tumor homogenates demonstrated the presence of a high-molecular-weight species, probably due to the antibody binding to CA 19-9. In the case of 111In-labeled anti-CEA MoAb, tumor uptake also decreased and liver uptake increased with tumor size, but this effect was less obvious than that of 19-9. In contrast, tumor and liver uptake of 125I-labeled anti-CEA MoAb, 111In- and 125I-labeled 17-1A and control antibodies were independent of tumor mass. The absolute tumor uptake and tumor-to-blood ratios of all 125I-labeled antibodies were lower than those of the 111In-labeled ones. And the effect of tumor mass was also weaker with 125I-labeled antibodies, probably due to in vivo dehalogenation. These results indicate that the effect of tumor size on the incorporation of labeled MoAb into tumors is dependent on the antigenic nature to be targeted and/or radionuclides used for labeling and that high concentrations of circulating high molecular weight antigens may limit in vivo use of MoAb conjugates.

  5. Generation of a monoclonal antibody against Mycoplasma spp. following accidental contamination during production of a monoclonal antibody against Lawsonia intracellularis.

    PubMed

    Hwang, Jeong-Min; Lee, Ji-Hye; Yeh, Jung-Yong

    2012-03-01

    This report describes Mycoplasma contamination of Lawsonia intracellularis cultures that led to the unintended acquisition of a monoclonal antibody against Mycoplasma spp. during the attempted generation of a monoclonal antibody against L. intracellularis. PMID:22247145

  6. Phase Separation in Solutions of Monoclonal Antibodies

    NASA Astrophysics Data System (ADS)

    Benedek, George; Wang, Ying; Lomakin, Aleksey; Latypov, Ramil

    2012-02-01

    We report the observation of liquid-liquid phase separation (LLPS) in a solution of humanized monoclonal antibodies, IgG2, and the effects of human serum albumin, a major blood protein, on this phase separation. We find a significant reduction of phase separation temperature in the presence of albumin, and a preferential partitioning of the albumin into the antibody-rich phase. We provide a general thermodynamic analysis of the antibody-albumin mixture phase diagram and relate its features to the magnitude of the effective inter-protein interactions. Our analysis suggests that additives (HSA in this report), which have moderate attraction with antibody molecules, may be used to forestall undesirable protein condensation in antibody solutions. Our findings are relevant to understanding the stability of pharmaceutical solutions of antibodies and the mechanisms of cryoglobulinemia.

  7. Effects of radiolabelled monoclonal antibody infusion on blood leukocytes in cancer patients

    SciTech Connect

    Gridley, D.S.; Slater, J.M.; Stickney, D.R. )

    1990-01-01

    This study was undertaken to investigate the effects of a single infusion of radiolabelled murine monoclonal antibody (MAb) on peripheral blood leukocytes in cancer patients. Eleven patients with disseminated colon cancer, malignant melanoma, or lung adenocarcinoma were infused with 111In-labelled anti-ZCE 025, anti-p97 type 96.5c, or LA 20207 MAb, respectively. Blood samples were obtained before infusion, immediately after infusion (1 hr), and at 4 and 7 days postinfusion. Flow cytometry analysis of CD3+, CD4+, CD8+, CD16+, and CD19+ lymphocytes showed increasing CD4:CD8 ratios in seven patients after infusion. This phenomenon was not restricted to antibody subclass or to type of cancer. Two of the remaining patients exhibited a marked post-infusion increase in CD8+ cells. In all three patients with malignant melanoma, decreasing levels of CD16+ lymphocytes were noted after infusion and natural killer cell cytotoxicity showed fluctuations which paralleled the changes in the CD16+ subpopulation. Oxygen radical production by phagocytic cells was markedly affected in three subjects. These results suggest that a single infusion of radiolabelled murine MAb may alter the balance of critical lymphocyte subpopulations and modulate other leukocyte responses in cancer patients.

  8. Chemoenzymatic Glyco-engineering of Monoclonal Antibodies.

    PubMed

    Giddens, John P; Wang, Lai-Xi

    2015-01-01

    Monoclonal antibodies (mAbs) are an important class of therapeutic glycoproteins widely used for the treatment of cancer, inflammation, and infectious diseases. Compelling data have shown that the presence and fine structures of the conserved N-glycans at the Fc domain can profoundly affect the effector functions of antibodies. However, mAbs are usually produced as mixtures of Fc glycoforms and the control of glycosylation to a favorable, homogeneous status in various host expression systems is still a challenging task. In this chapter, we describe a detailed procedure of chemoenzymatic glyco-engineering of monoclonal antibodies, using rituximab (a therapeutic monoclonal antibody) as a model system. The protocol includes the deglycosylation of a mAb by an endoglycosidase (such as wild type EndoS) to remove the heterogeneous Fc N-glycans, leaving only the innermost GlcNAc or the core-fucosylated GlcNAc at the glycosylation site. Then the deglycosylated IgG serves as an acceptor for an endoglycosidase-catalyzed transglycosylation to add a desired N-glycan to the GlcNAc acceptor to reconstitute a defined, homogeneous natural glycoform of IgG, using a glycosynthase mutant as the enzyme and activated glycan oxazoline as the donor substrate. A semi-synthesis of sialylated and asialylated biantennary N-glycan oxazolines is also described. This detailed procedure can be used for the Fc glycosylation remodeling of other mAbs to provide homogeneous Fc glycoforms for various applications. PMID:26082235

  9. SPECT assay of radiolabeled monoclonal antibodies

    SciTech Connect

    Jaszczak, R.J.

    1992-02-01

    The accurate determination of the biodistribution of radiolabeled monoclonal antibodies (MoAbs) is important for calculation of dosimetry and evaluation of pharmacokinetic variables such as antibody dose and route of administration. The hypothesis of this application is that the biodistribution of radiolabeled monoclonal antibodies (MoAbs) can be quantitatively determined using single photon emission computed tomography (SPECT). The major thrusts during the third year include the continued development and evaluation of improved 3D SPECT acquisition and reconstruction approaches to improve quantitative imaging of radiolabeled monoclonal antibodies (MoAbs), and the implementation and evaluation of algorithms to register serial SPECT image data sets, or to register 3D SPECT images with 3D image data sets acquired from positron emission tomography (PEI) and magnetic resonance images (MRI). The research has involved the investigation of statistical models and iterative reconstruction algorithms that accurately account for the physical characteristics of the SPECT acquisition system. It is our belief that SPECT quantification can be improved by accurately modeling the physical processes such as attenuation, scatter, geometric collimator response, and other factors that affect the measured projection data.

  10. Monoclonal antibodies: the promise and the reality.

    PubMed

    Coons, T

    1995-01-01

    Monoclonal antibodies, or "MoAbs," have revolutionized clinical approaches to diagnostic imaging and therapy of many diseases. The use of MoAbs for diagnosing and treating cancer has been especially promising. However, the full potential of these "magic bullets" has yet to be realized. This article examines the current and potential uses of MoAbs, describes problems with the technology and looks at potential solutions. Along with descriptions of how MoAbs are made and prepared for use in the clinic, the article provides examples of the ways in which MoAbs can be used to complement and expand the information obtained from standard diagnostic imaging modalities. Specific examples of the use of monoclonal antibodies for treating cancer and other diseases also are provided. PMID:7491408

  11. Next generation and biosimilar monoclonal antibodies

    PubMed Central

    2011-01-01

    The Next Generation and Biosimilar Monoclonal Antibodies: Essential Considerations Towards Regulatory Acceptance in Europe workshop, organized by the European Centre of Regulatory Affairs Freiburg (EUCRAF), was held February 3–4, 2011 in Freiburg, Germany. The workshop attracted over 100 attendees from 15 countries, including regulators from 11 agencies, who interacted over the course of two days. The speakers presented their authoritative views on monoclonal antibodies (mAbs) as attractive targets for development, the experience to date with the regulatory process for biosimilar medicinal products, the European Medicines Agency draft guideline on biosimilar mAbs, as well as key elements in the development of mAbs. Participants engaged in many lively discussions, and much speculation on the nature of the quality, non-clinical and clinical requirements for authorization of biosimilar mAbs. PMID:21487235

  12. Innovative Monoclonal Antibody Therapies in Multiple Sclerosis

    PubMed Central

    Kieseier, Bernd C.

    2008-01-01

    The recent years have witnessed great efforts in establishing new therapeutic options for multiple sclerosis (MS), especially for relapsing–remitting disease courses. In particular, the application of monoclonal antibodies provide innovative approaches allowing for blocking or depleting specific molecular targets, which are of interest in the pathogenesis of MS. While natalizumab received approval by the US Food and Drug Administration and the European Medicines Agency in 2006 as the first monoclonal antibody in MS therapy, rituximab, alemtuzumab, and daclizumab were successfully tested for relapsing-remitting MS in small cohorts in the meantime. Here, we review the data available from these recent phase II trials and at the same time critically discuss possible pitfalls which may be relevant for clinical practice. The results of these studies may not only broaden our therapeutic options in the near future, but also provide new insights into disease pathogenesis. PMID:21180564

  13. Recent developments in monoclonal antibody radiolabeling techniques

    SciTech Connect

    Srivastava, S.C.; Mease, R.C.

    1989-01-01

    Monoclonal antibodies (MAbs) have shown the potential to serve as selective carriers of radionuclides to specific in vivo antigens. Accordingly, there has been an intense surge of research activity in an effort to develop and evaluate MAb-based radiopharmaceuticals for tumor imaging (radioimmunoscintigraphy) and therapy (radioimmunotherapy), as well as for diagnosing nonmalignant diseases. A number of problems have recently been identified, related to the MAbs themselves and to radiolabeling techniques, that comprise both the selectivity and the specificity of the in vivo distribution of radiolabeled MAbs. This paper will address some of these issues and primarily discuss recent developments in the techniques for radiolabeling monoclonal antibodies that may help resolve problems related to the poor in vivo stability of the radiolabel and may thus produce improved biodistribution. Even though many issues are identical with therapeutic radionuclides, the discussion will focus mainly on radioimmunoscintigraphic labels. 78 refs., 6 tabs.

  14. Clinical parameters related to optimal tumor localization of indium-111-labeled mouse antimelanoma monoclonal antibody ZME-018

    SciTech Connect

    Murray, J.L.; Rosenblum, M.G.; Lamki, L.; Glenn, H.J.; Krizan, Z.; Hersh, E.M.; Plager, C.E.; Bartholomew, R.M.; Unger, M.W.; Carlo, D.J.

    1987-01-01

    Radioimmunolocalization of an /sup 111/In-labeled mouse antimelanoma monoclonal antibody (MoAb), ZME-018, was examined in 21 patients with metastatic malignant melanoma. Each patient received a single. i.v. infusion of MoAb at concentrations ranging from 1 mg to 20 mg, coupled to 5 mCi /sup 111/In by the chelating agent DPTA. No toxicity was observed in any patient. Total-body and regions of interest scans performed at 4, 24, and 72 hr following MoAb administration revealed uptake in 63 out of 105 previously diagnosed metastases for an overall sensitivity of 60%. Uptake was consistently observed in liver/spleen, and less frequently in bowel, testes, axillae and bone. Sensitivity of detection increased significantly at doses of MoAb above 2.5 mg, with 74% of lesions imaging at 20 mg/5 mCi compared with 29% at 2.5 mg/5 mCi (p less than 0.005). A significant correlation was observed between tumor uptake of /sup 111/In-MoAb conjugate and increasing tumor size. Soft-tissue lesions such as skin and lymph node metastases were imaged to a greater extent (76%) than visceral metastases (19%). In five of six patients, biopsies obtained from 3 days to 14 days after MoAb administration showed antibody present on tumor cells as demonstrated by flow cytometry and/or radioimmunoassay. Human anti-murine immunoglobulin responses were observed in seven of 17 patients studied. Mean plasma clearance of ZME-018 was prolonged with a T1/2 of 24.7 hr and increased slightly with increasing MoAb dose. Urinary excretion of /sup 111/In averaged 12.4% of the injected dose over 48 hours. Radioimmunolocalization of melanoma with /sup 111/In-labeled ZME-018 appears feasible. The sensitivity of the technique was related to dose, tumor size, and disease site.

  15. Enhancement of monoclonal antibody binding to melanoma with single dose radiation or hyperthermia

    SciTech Connect

    Stickney, D.R.; Gridley, D.S.; Kirk, G.A.; Slater, J.M.

    1987-01-01

    We undertook this study to determine whether radiation (10 Gray, single dose) or water bath hyperthermia (41 degrees C, 45 min) could enhance binding of /sup 111/In-labeled anti-p97a monoclonal antibody (MAb) to human melanoma tumors transplanted subcutaneously into nude mice. Sixty animals were given injections of 1-2 X 10(7) Brown C5513 melanoma cells. At 1-2 weeks postinjection, two-thirds of the mice were treated (one-third served as controls). Within 3 hours after treatment, each animal was given iv 2 muCi /sup 111/In-anti-p97a MAb. At 24 and 48 hours thereafter, whole-body scans were done with the use of a MaxiCamera 300 A/M unit, and the ratio of activity at the tumor and liver was determined. Some animals were kept for 7 days posttreatment, whereas others were taken after the 48-hour scan for determination of biodistribution of the radiolabeled complex. Enhancement of MAb binding was demonstrated by either modality, although enhancement was more consistent with radiation. The therapeutic efficacy of MAb may be enhanced with increased binding of radioactive MAb complexes through single dose radiation or hyperthermia.

  16. Monoclonal antibodies specific for sickle cell hemoglobin

    SciTech Connect

    Jensen, R.H.; Vanderlaan, M.; Grabske, R.J.; Branscomb, E.W.; Bigbee, W.L.; Stanker, L.H.

    1985-01-01

    Two mouse hybridoma cell lines were isolated which produce monoclonal antibodies that bind hemoglobin S. The mice were immunized with peptide-protein conjugates to stimulate a response to the amino terminal peptide of the beta chain of hemoglobin S, where the single amino acid difference between A and S occurs. Immunocharacterization of the antibodies shows that they bind specifically to the immunogen peptide and to hemoglobin S. The specificity for S is high enough that one AS cell in a mixture with a million AA cells is labeled by antibody, and such cells can be analyzed by flow cytometry. Immunoblotting of electrophoretic gels allows definitive identification of hemoglobin S as compared with other hemoglobins with similar electrophoretic mobility. 12 references, 4 figures.

  17. Monoclonal antibodies and method for detecting dioxins and dibenzofurans

    DOEpatents

    Vanderlaan, Martin; Stanker, Larry H.; Watkins, Bruce E.; Bailey, Nina R.

    1989-01-01

    Compositions of matter are described which include five monoclonal antibodies that react with dioxins and dibenzofurans, and the five hybridomas that produce these monoclonal antibodies. In addition, a method for the use of these antibodies in a sensitive immunoassay for dioxins and dibenzofurans is given, which permits detection of these pollutants in samples at concentrations in the range of a few parts per billion.

  18. Imaging with indium111-labeled anticarcinoembryonic antigen monoclonal antibody ZCE-025 of recurrent colorectal or carcinoembryonic antigen-producing cancer in patients with rising serum carcinoembryonic antigen levels and occult metastases

    SciTech Connect

    Patt, Y.Z.; Lamki, L.M.; Shanken, J.; Jessup, J.M.; Charnsangavej, C.; Ajani, J.A.; Levin, B.; Merchant, B.; Halverson, C.; Murray, J.L. )

    1990-07-01

    We tested whether nuclear imaging with indium111 (111In)-labeled murine monoclonal (MoAb) anticarcinoembryonic antigen (anti-CEA) ZCE-025 antibody could detect recurrent disease in patients with a rising serum CEA level but negative findings for computed tomographic (CT) scans of the abdomen and pelvis, chest radiograph, and colonoscopy or barium enema. Twenty patients with a history of completely resected CEA-producing adenocarcinoma and a rising serum CEA level were given an intravenous infusion of 2 mg of 111In-labeled ZCE-025 mixed with 38 mg of unlabeled ZCE-025. Planar and single-photon emission CT (SPECT) scans were acquired at 72 and 144 hours, and in 19 of the 20 patients these were positive. Of those 19, 13 underwent exploratory surgery, and cancer was found in 10, and two had a diagnostic biopsy, which confirmed cancer. Three patients who had negative laparotomies and all four patients who did not undergo surgery or biopsy were followed radiologically. In all seven, cancer was subsequently detected at the sites suggested by the ZCE-025 scan. Thus, tumor was confirmed in all 19 patients with positive scans. Five of 13 patients who were explored benefited from the study and the exploratory laparotomy, as disease was entirely resected in four or was subjected to definitive radiation therapy to the pelvis in the fifth. In two additional patients who were not explored, MoAb imaging resulted in definitive therapy to regionally confined recurrent disease. 111In-labeled anti-CEA MoAb ZCE-025 scanning in patients with rising CEA successfully imaged metastatic colorectal cancer that eluded detection by other methods and affected the care given to some. These results suggest an important role for 111In-labeled ZCE-025 scanning among patients with rising CEA and otherwise occult metastatic cancer.

  19. Labeling of monoclonal antibodies with radionuclides

    SciTech Connect

    Bhargava, K.K.; Acharya, S.A. )

    1989-07-01

    Antibodies, specifically monoclonal antibodies, are potentially very useful and powerful carriers of therapeutic agents to target tissues and diagnostic agents. The loading or charging of antibodies with agents, especially radiotracers, is reviewed here. The choice of radioisotope for immunodetection and/or immunotherapy is based on its availability, half-life, nature of the radiation emitted, and the metabolic pathways of the radionuclide in the body. Most important of all are the derivatization techniques available for labeling the antibody with the given radionuclide. Isotopes of iodine and divalent metal ions are the most commonly used radionuclides. Antibodies labeled with iodine at tyrosine residues are metabolized rapidly in vivo. This leads to the incorporation of metabolized radioactive iodine into various tissues, mainly the thyroid gland and stomach, and to the accumulation of high levels of circulating iodine in the blood, which masks tumor uptake considerably. To overcome these limitations, the use of iodohippurate as an iodine-anchoring molecule to the protein should be considered. When divalent or multivalent metal ions are used as the preferred radionuclide, bifunctional chelating reagents such as EDTA or DTPA are first coupled to the protein or antibody. These chelating molecules are attached to the protein by formation of an isopeptide linkage between the carboxylate of the chelating reagent and the amino group of the protein. Several procedures are available to generate the isopeptide linkage. When the anchoring of the chelating agent through isopeptide linkage results in the inactivation of the antibody, periodate oxidation of the carbohydrate moiety of the antibody, followed by reductive coupling of chelator, could be considered as an alternative. There is still a need for better, simpler, and more direct methods for labeling antibodies with radionuclides. 78 references.

  20. Taxonomic investigation of Legionella pneumophila using monoclonal antibodies.

    PubMed

    Brindle, R J; Bryant, T N; Draper, P W

    1989-03-01

    A panel of 19 monoclonal antibodies was used to produce patterns of immunofluorescent staining of 468 isolates of Legionella pneumophila. Twelve monoclonal antibodies were selected that divided L. pneumophila into 17 phenons which, in the majority of cases, conform to serogroup divisions. These phenons are more easily defined than the present serogroups, and isolates can be placed in them with little ambiguity. The standardized set of monoclonal antibodies was also used to define the subgroups of serogroup 1. PMID:2654183

  1. The Role of Monoclonal Antibodies in the Management of Leukemia

    PubMed Central

    Al-Ameri, Ali; Cherry, Mohamad; Al-Kali, Aref; Ferrajoli, Alessandra

    2010-01-01

    This article will review the monoclonal antibodies more commonly used in leukemias. In the last three decades, scientists have made considerable progress understanding the structure and the functions of various surface antigens, such as CD20, CD33. The introduction of rituximab, an anti CD20 monoclonal antibody, had a great impact in the treatment of lymphoproliferative disorders. Gemtuzumab, an anti CD 33 conjugated monoclonal antibody has activity in acute mylegenous leukemia (AML). As this field is undergoing a rapid growth, the years will see an increasing use of monoclonal antibodies in hematological malignancies.

  2. A novel monoclonal antibody specific for cocaine.

    PubMed

    Nakayama, Hiroshi; Kenjyou, Noriko; Shigetoh, Nobuyuki

    2013-08-01

    Detection systems for the illegal drug cocaine need to have a high sensitivity and specificity for cocaine and to be relatively easy to use. In the current study, a monoclonal antibody (MAb) with a high specificity for cocaine was produced. Enzyme-linked immunosorbent assay and fluorescence quenching immunoassay were used to screen the hybridomas. The MAb S27Y (IgG1) was shown to be sensitive and specific for cocaine and quenched fluorescence. Thus, S27Y has the potential to be used in screening assays for the rapid and sensitive detection of cocaine. PMID:23909419

  3. Anaphylaxis to chemotherapy and monoclonal antibodies.

    PubMed

    Castells, Mariana C

    2015-05-01

    Hypersensitivity reactions are increasingly prevalent, although underrecognized and underreported. Platins induce immunoglobulin E-mediated sensitization; taxenes and some monoclonal antibodies can induce reactions at first exposure. Severe hypersensitivity can preclude first-line therapy. Tryptase level at the time of a reaction is a useful diagnostic tool. Skin testing provides a specific diagnosis. Newer tests are promising diagnostic tools to help identify patients at risk before first exposure. Safe management includes rapid drug desensitization. This review provides information regarding the scope of hypersensitivity and anaphylactic reactions induced by chemotherapy and biological drugs, as well as diagnosis, management, and treatment options. PMID:25841555

  4. Monoclonal antibody disulfide reduction during manufacturing

    PubMed Central

    Hutterer, Katariina M.; Hong, Robert W.; Lull, Jonathon; Zhao, Xiaoyang; Wang, Tian; Pei, Rex; Le, M. Eleanor; Borisov, Oleg; Piper, Rob; Liu, Yaoqing Diana; Petty, Krista; Apostol, Izydor; Flynn, Gregory C.

    2013-01-01

    Manufacturing-induced disulfide reduction has recently been reported for monoclonal human immunoglobulin gamma (IgG) antibodies, a widely used modality in the biopharmaceutical industry. This effect has been tied to components of the intracellular thioredoxin reduction system that are released upon cell breakage. Here, we describe the effect of process parameters and intrinsic molecule properties on the extent of reduction. Material taken from cell cultures at the end of production displayed large variations in the extent of antibody reduction between different products, including no reduction, when subjected to the same reduction-promoting harvest conditions. Additionally, in a reconstituted model in which process variables could be isolated from product properties, we found that antibody reduction was dependent on the cell line (clone) and cell culture process. A bench-scale model using a thioredoxin/thioredoxin reductase regeneration system revealed that reduction susceptibility depended on not only antibody class but also light chain type; the model further demonstrates that the trend in reducibility was identical to DTT reduction sensitivity following the order IgG1λ > IgG1κ > IgG2λ > IgG2κ. Thus, both product attributes and process parameters contribute to the extent of antibody reduction during production. PMID:23751615

  5. Monoclonal antibodies to Pseudomonas aeruginosa ferripyochelin-binding protein.

    PubMed Central

    Sokol, P A; Woods, D E

    1986-01-01

    Hybridomas secreting specific monoclonal antibodies against the Pseudomonas aeruginosa ferripyochelin-binding protein (FBP) were isolated. These monoclonal antibodies reacted with FBP in immunoblots of outer membrane preparations from all serotypes of P. aeruginosa. Two of the monoclonal antibodies also reacted with FBP in strains of P. putida, P. fluorescens, and P. stutzeri. These antibodies did not react with outer membranes of P. cepacia, "P. multivorans," P. maltophilia, or other gram-negative organisms. The monoclonal antibodies were opsonophagocytic and blocked the binding of [59Fe]ferripyochelin to isolated outer membranes of strain PAO. By indirect immunofluorescence techniques, the monoclonal antibodies were used to demonstrate that FBP is present on the cell surface of P. aeruginosa cells grown in low-iron but not high-iron medium. These observations were confirmed by using 125I in surface-labeling techniques. Images PMID:3091506

  6. Kinetics of intralymphatically delivered monoclonal antibodies

    SciTech Connect

    Wahl, R.L.; Geatti, O.; Liebert, M.; Beers, B.; Jackson, G.; Laino, L.; Kronberg, S.; Wilson, B.S.; Beierwaltes, W.H.

    1985-05-01

    Radiolabeled monoclonal antibody (MoAb) administration subcutaneously (sq), so that preferential uptake is to the lymphatics, holds significant promise for the detection of lymph node metastases. Only limited information is available about clearance rates of intralymphatically administered MoAbs. I-131 labeled intact IgG (225.28S), F(ab's)2 (225.28S) or IgM (FT162) were administered sq to anesthetized Balb/C mice. Eight mice were studied with each MoAb, 4 with a foot-pad injection, 4 with an anterior abdominal injection. Gamma camera images were collected into a computer, over the first 6 hrs after injection with the animals anesthetized and immobile. Animals were then allowed to move about freely. Additional images were then acquired out to 48 hrs. Regions of interest wre selected over the injection site and the kinetics of antibody egress determined. Clearance rates from local sq injection sites are influenced by motion and somewhat by location. The class and fragment status of the MoAb appear relatively less important in determining clearance rates from sq injections than they are in determining whole-body clearance after iv injections. Additional studies using Fab fragments and additional monoclonals will be useful in extending these observations.

  7. Production of monoclonal antibodies against canine leukocytes.

    PubMed

    Aguiar, Paulo Henrique Palis; Borges dos Santos, Roberto Robson; Lima, Carla Andrade; Rios de Sousa Gomes, Hilton; Larangeira, Daniela Farias; Santos, Patrícia Meira; Barrouin-Melo, Stella Maria; Conrado dos-Santos, Washington Luis; Pontes-de-Carvalho, Lain

    2004-04-01

    A panel of anti-canine leukocyte monoclonal antibodies (MAbs) was produced by immunizing BALB/c mice with canine peripheral blood mononuclear cells (PBMC), either resting or stimulated with concanavalin A (ConA). Three out of 28 clones-IH1, AB6, and HG6-screened by ELISA and producing antibody with the highest specificity for canine cell immunostaining, were subjected to three subsequent subcloning steps by limiting dilution, and selected for further characterization. These MAbs belonged to IgG1 (HG6 and IH1) and IgG2a (AB6) isotypes. The distribution of cell populations expressing the antigen recognized by the antibodies was identified by indirect immunoflorescence on canine PBMC and on tissue sections of lymph node, spleen, liver and skin. The possible crossreactivity with human PBMC was also examined in immunocytochemistry. One of the antibodies specifically recognized macrophages. The MAbs presented here can be foreseen as possible valuable diagnostic and research tools to study immune functions in dogs. PMID:15165486

  8. A Monoclonal Antibody Toolkit for C. elegans

    PubMed Central

    Hadwiger, Gayla; Dour, Scott; Arur, Swathi; Fox, Paul; Nonet, Michael L.

    2010-01-01

    Background Antibodies are critical tools in many avenues of biological research. Though antibodies can be produced in the research laboratory setting, most research labs working with vertebrates avail themselves of the wide array of commercially available reagents. By contrast, few such reagents are available for work with model organisms. Methodology/Principal Findings We report the production of monoclonal antibodies directed against a wide range of proteins that label specific subcellular and cellular components, and macromolecular complexes. Antibodies were made to synaptobrevin (SNB-1), a component of synaptic vesicles; to Rim (UNC-10), a protein localized to synaptic active zones; to transforming acidic coiled-coil protein (TAC-1), a component of centrosomes; to CENP-C (HCP-4), which in worms labels the entire length of their holocentric chromosomes; to ORC2 (ORC-2), a subunit of the DNA origin replication complex; to the nucleolar phosphoprotein NOPP140 (DAO-5); to the nuclear envelope protein lamin (LMN-1); to EHD1 (RME-1) a marker for recycling endosomes; to caveolin (CAV-1), a marker for caveolae; to the cytochrome P450 (CYP-33E1), a resident of the endoplasmic reticulum; to β-1,3-glucuronyltransferase (SQV-8) that labels the Golgi; to a chaperonin (HSP-60) targeted to mitochondria; to LAMP (LMP-1), a resident protein of lysosomes; to the alpha subunit of the 20S subcomplex (PAS-7) of the 26S proteasome; to dynamin (DYN-1) and to the α-subunit of the adaptor complex 2 (APA-2) as markers for sites of clathrin-mediated endocytosis; to the MAGUK, protein disks large (DLG-1) and cadherin (HMR-1), both of which label adherens junctions; to a cytoskeletal linker of the ezrin-radixin-moesin family (ERM-1), which localized to apical membranes; to an ERBIN family protein (LET-413) which localizes to the basolateral membrane of epithelial cells and to an adhesion molecule (SAX-7) which localizes to the plasma membrane at cell-cell contacts. In addition to working

  9. Characterization of Tritrichomonas foetus antigens by use of monoclonal antibodies.

    PubMed Central

    Hodgson, J L; Jones, D W; Widders, P R; Corbeil, L B

    1990-01-01

    The specificity for and function of monoclonal antibodies against Tritrichomonas foetus were characterized. Four monoclonal antibodies generated by immunization of mice with live T. foetus were selected on the basis of enzyme-linked immunosorbent assay reactions. The approximate molecular masses of the predominant proteins were determined by Western blotting (immunoblotting). Monoclonal antibody TF3.8 recognized a predominant band at approximately 155 kilodaltons, whereas TF3.2 reacted with several bands. Monoclonal antibodies TF1.17 and TF1.15 recognized broad bands between 45 and 75 kilodaltons. The first two antibodies (TF3.8 and TF3.2) did not react with the surface of T. foetus, as determined by live-cell immunofluorescence, agglutination, and immobilization, whereas two other monoclonal antibodies (TF1.17 and TF1.15) did react with surface epitopes, as determined by these criteria. The latter two monoclonal antibodies also mediated complement-dependent killing of T. foetus and prevented of adherence of organisms to bovine vaginal epithelial cells. One antibody, TF1.15, also killed in the absence of complement. Since these functions are in vitro correlates of protection, the antigens recognized by these monoclonal antibodies may induce protective immunity. Images PMID:2201645

  10. A new tool for monoclonal antibody analysis

    PubMed Central

    An, Yan; Zhang, Ying; Mueller, Hans-Martin; Shameem, Mohammed; Chen, Xiaoyu

    2014-01-01

    Monoclonal antibody (mAb) products are extraordinarily heterogeneous due to the presence of a variety of enzymatic and chemical modifications, such as deamidation, isomerization, oxidation, glycosylation, glycation, and terminal cyclization. The modifications in different domains of the antibody molecule can result in different biological consequences. Therefore, characterization and routine monitoring of domain-specific modifications are essential to ensure the quality of the therapeutic antibody products. For this purpose, a rapid and informative methodology was developed to examine the heterogeneity of individual domains in mAb products. A recently discovered endopeptidase, IdeS, cleaves heavy chains below the hinge region, producing F(ab')2 and Fc fragments. Following reduction of disulfide bonds, three antibody domains (LC, Fd, and Fc/2) can be released for further characterization. Subsequent analyses by liquid chromatography/mass spectrometry, capillary isoelectric focusing, and glycan mapping enable domain-specific profiling of oxidation, charge heterogeneity, and glycoform distribution. When coupled with reversed phase chromatography, the unique chromatographic profile of each molecule offers a simple strategy for an identity test, which is an important formal test for biopharmaceutical quality control purposes. This methodology is demonstrated for a number of IgGs of different subclasses (IgG1, IgG2, IgG4), as well as an Fc fusion protein. The presented technique provides a convenient platform approach for scientific and formal therapeutic mAb product characterization. It can also be applied in regulated drug substance batch release and stability testing of antibody and Fc fusion protein products, in particular for identity and routine monitoring of domain-specific modifications. PMID:24927271

  11. Detection of enterovirus 70 with monoclonal antibodies.

    PubMed

    Anderson, L J; Hatch, M H; Flemister, M R; Marchetti, G E

    1984-09-01

    To improve the ability to identify enterovirus-70 (EV-70) from patients with acute hemorrhagic conjunctivitis, we developed four monoclonal antibodies (MAbs) to EV-70. We reacted the four MAbs against nine previously characterized strains of EV-70 and heterologous viruses by virus neutralization, indirect immunofluorescence, and enzyme-linked immunosorbent assay (ELISA). Two of the MAbs neutralized all nine strains of EV-70 and none of the other enterovirus types tested. Two of the MAbs gave a positive reaction with all nine strains by indirect immunofluorescence, and three reacted with all nine strains by ELISA. None of the MAbs gave a positive reaction with heterologous viruses, including those associated with eye disease, by indirect immunofluorescence or ELISA. The two neutralizing MAbs failed to give a positive reaction with some of the strains of EV-70 by indirect immunofluorescence and ELISA, yet they neutralized these viruses. By ELISA with a polyclonal serum as capture antibody and a mixture of MAbs as detector antibody, we were able to detect from 10(2.2) to 10(5.8) 50% tissue culture infective doses of virus and to type lyophilized isolates of EV-70 sent from Taiwan from which we could not recover infectious virus. By choosing the appropriate MAb, or mixture of MAbs, we could construct a test which had the type specificity and strain sensitivity needed to type isolates of EV-70. PMID:6092426

  12. Detection of enterovirus 70 with monoclonal antibodies.

    PubMed Central

    Anderson, L J; Hatch, M H; Flemister, M R; Marchetti, G E

    1984-01-01

    To improve the ability to identify enterovirus-70 (EV-70) from patients with acute hemorrhagic conjunctivitis, we developed four monoclonal antibodies (MAbs) to EV-70. We reacted the four MAbs against nine previously characterized strains of EV-70 and heterologous viruses by virus neutralization, indirect immunofluorescence, and enzyme-linked immunosorbent assay (ELISA). Two of the MAbs neutralized all nine strains of EV-70 and none of the other enterovirus types tested. Two of the MAbs gave a positive reaction with all nine strains by indirect immunofluorescence, and three reacted with all nine strains by ELISA. None of the MAbs gave a positive reaction with heterologous viruses, including those associated with eye disease, by indirect immunofluorescence or ELISA. The two neutralizing MAbs failed to give a positive reaction with some of the strains of EV-70 by indirect immunofluorescence and ELISA, yet they neutralized these viruses. By ELISA with a polyclonal serum as capture antibody and a mixture of MAbs as detector antibody, we were able to detect from 10(2.2) to 10(5.8) 50% tissue culture infective doses of virus and to type lyophilized isolates of EV-70 sent from Taiwan from which we could not recover infectious virus. By choosing the appropriate MAb, or mixture of MAbs, we could construct a test which had the type specificity and strain sensitivity needed to type isolates of EV-70. PMID:6092426

  13. Monoclonal antibodies based on hybridoma technology.

    PubMed

    Yagami, Hisanori; Kato, Hiroshi; Tsumoto, Kanta; Tomita, Masahiro

    2013-03-01

    Based on the size and scope of the present global market for medicine, monoclonal antibodies (mAbs) have a very promising future, with applications for cancers through autoimmune ailments to infectious disease. Since mAbs recognize only their target antigens and not other unrelated proteins, pinpoint medical treatment is possible. Global demand is dramatically expanding. Hybridoma technology, which allows production of mAbs directed against antigens of interest is therefore privileged. However, there are some pivotal points for further development to generate therapeutic antibodies. One is selective generation of human mAbs. Employment of transgenic mice producing human antibodies would overcome this problem. Another focus is recognition sites and conformational epitopes in antigens may be just as important as linear epitopes, especially when membrane proteins such as receptors are targeted. Recognition of intact structures is of critical importance for medical purposes. In this review, we describe patent related information for therapeutic mAbs based on hybridoma technology and also discuss new advances in hybridoma technology that facilitate selective production of stereospecific mAbs. PMID:24237029

  14. Building better monoclonal antibody-based therapeutics

    PubMed Central

    Weiner, George J.

    2015-01-01

    For 20 years, monoclonal antibodies (mAbs) have been a standard component of cancer therapy, yet there is still much room for improvement. Efforts continue to build better cancer therapeutics based on mAbs. Anti-cancer mAbs function via a variety of mechanisms including directly targeting the malignant cells, modifying the host response to the malignant cells, delivering cytotoxic moieties to the malignant cells or retargeting cellular immunity towards the malignant cells. Characteristics of mAbs that affect their efficacy include antigen specificity, overall structure, affinity for the target antigen and how a mAb component is incorporated into a construct that can trigger target cell death. This article reviews the various approaches to using mAb-based therapeutics to treat cancer, the strategies used to take advantage of the unique potential of each approach, and provides examples of current mAb-based treatments. PMID:25998715

  15. SPECT assay of radiolabeled monoclonal antibodies

    SciTech Connect

    Jaszczak, R.J.

    1992-02-01

    The long-term goal of this research project is to develop methods to improve the utility of single photon emission computed tomography (SPECI) to quantify the biodistribution of monoclonal antibodies (MoAbs) labeled with clinically relevant radionuclides ({sup 123}I, {sup 131}I, and {sup 111}In) and with another radionuclide,{sup 211}At, recently used in therapy. We describe here our progress in developing quantitative SPECT methodology for {sup 111}In and {sup 123}I. We have focused our recent research thrusts on the following aspects of SPECT: (1) The development of improved SPECT hardware, such as improved acquisition geometries. (2) The development of better reconstruction methods that provide accurate compensation for the physical factors that affect SPECT quantification. (3) The application of carefully designed simulations and experiments to validate our hardware and software approaches.

  16. The birth pangs of monoclonal antibody therapeutics

    PubMed Central

    2012-01-01

    This paper examines the development and termination of nebacumab (Centoxin®), a human IgM monoclonal antibody (mAb) drug frequently cited as one of the notable failures of the early biopharmaceutical industry. The non-approval of Centoxin in the United States in 1992 generated major concerns at the time about the future viability of any mAb therapeutics. For Centocor, the biotechnology company that developed Centoxin, the drug posed formidable challenges in terms of safety, clinical efficacy, patient selection, the overall economic costs of health care, as well as financial backing. Indeed, Centocor's development of the drug brought it to the brink of bankruptcy. This article shows how many of the experiences learned with Centoxin paved the way for the current successes in therapeutic mAb development. PMID:22531443

  17. Monoclonal antibodies in treatment of multiple sclerosis

    PubMed Central

    Rommer, P S; Dudesek, A; Stüve, O; Zettl, UK

    2014-01-01

    Monoclonal antibodies (mAbs) are used as therapeutics in a number of disciplines in medicine, such as oncology, rheumatology, gastroenterology, dermatology and transplant rejection prevention. Since the introduction and reintroduction of the anti-alpha4-integrin mAb natalizumab in 2004 and 2006, mAbs have gained relevance in the treatment of multiple sclerosis (MS). At present, numerous mAbs have been tested in clinical trials in relapsing–remitting MS, and in progressive forms of MS. One of the agents that might soon be approved for very active forms of relapsing–remitting MS is alemtuzumab, a humanized mAb against CD52. This review provides insights into clinical studies with the mAbs natalizumab, alemtuzumab, daclizumab, rituximab, ocrelizumab and ofatumumab. PMID:24001305

  18. Monitoring therapeutic monoclonal antibodies in brain tumor

    PubMed Central

    Ait-Belkacem, Rima; Berenguer, Caroline; Villard, Claude; Ouafik, L’Houcine; Figarella-Branger, Dominique; Beck, Alain; Chinot, Olivier; Lafitte, Daniel

    2014-01-01

    Bevacizumab induces normalization of abnormal blood vessels, making them less leaky. By binding to vascular endothelial growth factor, it indirectly attacks the vascular tumor mass. The optimal delivery of targeted therapies including monoclonal antibodies or anti-angiogenesis drugs to the target tissue highly depends on the blood-brain barrier permeability. It is therefore critical to investigate how drugs effectively reach the tumor. In situ investigation of drug distribution could provide a better understanding of pharmacological agent action and optimize chemotherapies for solid tumors. We developed an imaging method coupled to protein identification using matrix-assisted laser desorption/ionization mass spectrometry. This approach monitored bevacizumab distribution within the brain structures, and especially within the tumor, without any labeling. PMID:25484065

  19. A humanized monoclonal antibody targeting Staphylococcus aureus.

    PubMed

    Patti, Joseph M

    2004-12-01

    This current presentation describes the in vitro and in vivo characterization of Aurexis (tefibazumab), a humanized monoclonal antibody that exhibits a high affinity and specificity and for the Staphylococcus aureus MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules) protein ClfA. Aurexis inhibited ClfA binding to human fibrinogen, and enhanced the opsonophagocytic uptake of ClfA-coated beads. Preclinical in vivo testing revealed that a single administration of Aurexis significantly protected against an IV challenge with a methicillin resistant S. aureus (MRSA) strain in murine septicemia and rabbit infective endocarditis (IE) models. Safety and pharmacokinetic data from a 19-patient phase I study support continued evaluation of Aurexis in phase II studies. PMID:15576200

  20. The mechanism of hepatic uptake of a radiolabelled monoclonal antibody.

    PubMed

    Boyle, C C; Paine, A J; Mather, S J

    1992-04-01

    Clinical and experimental scintigraphic studies have found that radiolabelled antibodies are not only taken up by tumour(s) but also by normal liver. The accumulation of radionuclides in this organ poses a major problem to the use of radiolabelled antibodies as diagnostic and therapeutic tools. In an attempt to understand the mechanism of hepatic uptake and clearance of radiolabelled antibodies, the intrahepatic biodistribution of an 111In-labelled MAb (HMFG1), was determined following i.v. administration to normal male rats. Two hours after administration the liver contained 15% of the injected dose, with most of the remaining radioactivity in the blood. The hepatic burden of the 111In MAb remained constant over the next 72 hr in the face of decreasing blood levels of radioactivity as well as its urinary and faecal excretion. At 2 and 72 hr after injection, 50% and 10% respectively of the hepatic radiolabel was due to blood borne antibody. Following a collagenase-cell isolation procedure, only 23% of the amount remaining in the liver at 2 hr was found to be cell-associated; 66% was lost during the cell isolation and purification procedure. Cellular uptake increased with time so that, by 72 hr after administration, 58% was cell-associated and 29% freely removable. At all timepoints, the parenchymal cells contained more activity than non-parenchymal cells. No evidence of antibody-receptor interactions could be obtained either in vivo or in cultures of hepatic parenchymal and non-parenchymal cells. Our data suggest that the bulk of the hepatic burden of 111In MAb results from extravascular pooling of the antibody. PMID:1555890

  1. Drug Development of Therapeutic Monoclonal Antibodies.

    PubMed

    Mould, Diane R; Meibohm, Bernd

    2016-08-01

    Monoclonal antibodies (MAbs) have become a substantial part of many pharmaceutical company portfolios. However, the development process of MAbs for clinical use is quite different than for small-molecule drugs. MAb development programs require careful interdisciplinary evaluations to ensure the pharmacology of both the MAb and the target antigen are well-understood. Selection of appropriate preclinical species must be carefully considered and the potential development of anti-drug antibodies (ADA) during these early studies can limit the value and complicate the performance and possible duration of preclinical studies. In human studies, many of the typical pharmacology studies such as renal or hepatic impairment evaluations may not be needed but the pharmacokinetics and pharmacodynamics of these agents is complex, often necessitating more comprehensive evaluation of clinical data and more complex bioanalytical assays than might be used for small molecules. This paper outlines concerns and strategies for development of MAbs from the early in vitro assessments needed through preclinical and clinical development. This review focuses on how to develop, submit, and comply with regulatory requirements for MAb therapeutics. PMID:27342605

  2. Monoclonal antibody therapy for Junin virus infection.

    PubMed

    Zeitlin, Larry; Geisbert, Joan B; Deer, Daniel J; Fenton, Karla A; Bohorov, Ognian; Bohorova, Natasha; Goodman, Charles; Kim, Do; Hiatt, Andrew; Pauly, Michael H; Velasco, Jesus; Whaley, Kevin J; Altmann, Friedrich; Gruber, Clemens; Steinkellner, Herta; Honko, Anna N; Kuehne, Ana I; Aman, M Javad; Sahandi, Sara; Enterlein, Sven; Zhan, Xiaoguo; Enria, Delia; Geisbert, Thomas W

    2016-04-19

    Countermeasures against potential biothreat agents remain important to US Homeland Security, and many of these pharmaceuticals could have dual use in the improvement of global public health. Junin virus, the causative agent of Argentine hemorrhagic fever (AHF), is an arenavirus identified as a category A high-priority agent. There are no Food and Drug Administration (FDA) approved drugs available for preventing or treating AHF, and the current treatment option is limited to administration of immune plasma. Whereas immune plasma demonstrates the feasibility of passive immunotherapy, it is limited in quantity, variable in quality, and poses safety risks such as transmission of transfusion-borne diseases. In an effort to develop a monoclonal antibody (mAb)-based alternative to plasma, three previously described neutralizing murine mAbs were expressed as mouse-human chimeric antibodies and evaluated in the guinea pig model of AHF. These mAbs provided 100% protection against lethal challenge when administered 2 d after infection (dpi), and one of them (J199) was capable of providing 100% protection when treatment was initiated 6 dpi and 92% protection when initiated 7 dpi. The efficacy of J199 is superior to that previously described for all other evaluated drugs, and its high potency suggests that mAbs like J199 offer an economical alternative to immune plasma and an effective dual use (bioterrorism/public health) therapeutic. PMID:27044104

  3. Monoclonal antibody therapy for Junin virus infection

    PubMed Central

    Zeitlin, Larry; Geisbert, Joan B.; Deer, Daniel J.; Fenton, Karla A.; Bohorov, Ognian; Bohorova, Natasha; Goodman, Charles; Kim, Do; Hiatt, Andrew; Pauly, Michael H.; Velasco, Jesus; Whaley, Kevin J.; Altmann, Friedrich; Gruber, Clemens; Steinkellner, Herta; Honko, Anna N.; Kuehne, Ana I.; Aman, M. Javad; Sahandi, Sara; Enterlein, Sven; Zhan, Xiaoguo; Enria, Delia; Geisbert, Thomas W.

    2016-01-01

    Countermeasures against potential biothreat agents remain important to US Homeland Security, and many of these pharmaceuticals could have dual use in the improvement of global public health. Junin virus, the causative agent of Argentine hemorrhagic fever (AHF), is an arenavirus identified as a category A high-priority agent. There are no Food and Drug Administration (FDA) approved drugs available for preventing or treating AHF, and the current treatment option is limited to administration of immune plasma. Whereas immune plasma demonstrates the feasibility of passive immunotherapy, it is limited in quantity, variable in quality, and poses safety risks such as transmission of transfusion-borne diseases. In an effort to develop a monoclonal antibody (mAb)-based alternative to plasma, three previously described neutralizing murine mAbs were expressed as mouse-human chimeric antibodies and evaluated in the guinea pig model of AHF. These mAbs provided 100% protection against lethal challenge when administered 2 d after infection (dpi), and one of them (J199) was capable of providing 100% protection when treatment was initiated 6 dpi and 92% protection when initiated 7 dpi. The efficacy of J199 is superior to that previously described for all other evaluated drugs, and its high potency suggests that mAbs like J199 offer an economical alternative to immune plasma and an effective dual use (bioterrorism/public health) therapeutic. PMID:27044104

  4. Licensed monoclonal antibodies and associated challenges.

    PubMed

    Khan, Amjad Hayat; Sadroddiny, Esmaeil

    2015-12-23

    Monoclonal antibodies (mAbs) are the leading class of targeted therapeutics and remarkably effective in addressing autoimmune diseases, inflammations, infections, and various types of cancer. Several mAbs approved by US food and drug administration (FDA), are available on the market and a number are pending for approval. Luckily, FDA approved mAbs have played a pivotal role in the treatment and prevention of lethal diseases. However, claiming that licensed mAbs are 100% safe is still debatable, because infections, malignancies, anaphylactoid, and anaphylactic reactions are the more frequently associated adverse events. To evaluate benefit to risk ratio of mAbs, it is important for the clinical research staff or physicians to monitor and follow-up the patients who are receiving mAbs dozes. It is recommended that patients, physicians, biopharmaceutical companies, and researchers should keep in touch to highlight and resolve antibody-based adverse events. In this review we underscore the associated challenges of mAbs, approved by FDA from 2007-2014. PMID:27472864

  5. Immunospecific saturable clearance mechanisms for indium-111-labeled anti-melanoma monoclonal antibody 96. 5 in humans

    SciTech Connect

    Murray, J.L.; Lamki, L.M.; Shanken, L.J.; Blake, M.E.; Plager, C.E.; Benjamin, R.S.; Schweighardt, S.; Unger, M.W.; Rosenblum, M.G.

    1988-08-01

    Liver uptake of 111In-labeled monoclonal antibodies (MoAb) remains a significant problem in radioimaging studies to date. To determine if the observed liver uptake of an 111In-labeled anti-melanoma antibody 96.5 (111In-96.5) was dependent on the presence of hepatic antigen or on recognition of circulating murine antibody, escalating doses of an unlabeled nonimmunoreactive MoAb (NIR-MoAb) were administered to 18 patients with metastatic malignant melanoma either 1 or 24 h prior to an infusion of 1 mg of 111In-96.5. The number of metastases imaged, pharmacokinetics, and the ratio of radioactivity (expressed as average counts/pixel) in liver (L), spleen (S), bone (B), and kidney (K) compared to blood pool (heart = H) were examined. Results were prospectively compared with data from six patients who received immunoreactive unlabeled 96.5 prior to 111In-96.5. Increasing dose or changes in the preinfusion time of NIR-MoAb had no significant effect on the biodistribution of 111In-96.5. In contrast, patients who received unlabeled, immunoreactive 96.5 prior to 111In-96.5 infusion demonstrated a significant drop (P less than 0.001) in the liver/heart ratio of radioactivity (2.81 +/- 0.35 (SEM)) compared to patients receiving the identical dose of NIR-MoAb (10.35 +/- 1.33). Significant decreases in spleen/heart and bone/heart ratios were also observed. Pharmacokinetic studies showed that the volume of distribution (Vd) and the plasma t1/2 both decreased when 96.5 was administered compared to NIR-MoAb. In addition, a 4-fold increase in concentration X time was obtained after 96.5 antibody was administered compared to NIR-MoAb. More metastases were imaged in patients receiving preinfusions of 96.5 (23 of 28) than in patients receiving NIR-MoAb (10 of 18; P less than 0.05).

  6. Sub-Nanogram Detection of RDX Explosive by Monoclonal Antibodies.

    PubMed

    Ulaeto, David O; Hutchinson, Alistair P; Nicklin, Stephen

    2015-08-01

    Polyclonal and monoclonal antibodies were raised to protein carrier molecules haptenized with RDX, a major component of many plastic explosives including Semtex. Sera from immunized mice detected RDX protein conjugates in standard ELISA. Clonally purified monoclonal antibodies had detection limits in the sub-ng/mL range for underivatized RDX in competition ELISA. The monoclonal antibodies are not dependent on the presence of taggants added during the manufacturing process, and are likely to have utility in the detection of any explosive containing RDX, or RDX contamination of environmental sites. PMID:26252765

  7. Sub-Nanogram Detection of RDX Explosive by Monoclonal Antibodies

    PubMed Central

    Hutchinson, Alistair P.; Nicklin, Stephen

    2015-01-01

    Polyclonal and monoclonal antibodies were raised to protein carrier molecules haptenized with RDX, a major component of many plastic explosives including Semtex. Sera from immunized mice detected RDX protein conjugates in standard ELISA. Clonally purified monoclonal antibodies had detection limits in the sub-ng/mL range for underivatized RDX in competition ELISA. The monoclonal antibodies are not dependent on the presence of taggants added during the manufacturing process, and are likely to have utility in the detection of any explosive containing RDX, or RDX contamination of environmental sites. PMID:26252765

  8. Development of 111In-labeled porphyrins for SPECT imaging

    PubMed Central

    Sadeghi, Shaghayegh; Mirzaei, Mohammad; Rahimi, Mohammad; Jalilian, Amir R.

    2014-01-01

    Objective(s): The aim of this research was the development of 111In-labeled porphyrins as possible radiopharmaceuticals for the imaging of tumors. Methods: Ligands, 5, 10, 15, 20-tetrakis (3, 5-dihydroxyphenyl) porphyrin) (TDHPP), 5, 10, 15, 20-tetrakis (4-hydroxyphenyl) porphyrin (THPP) and 5, 10, 15, 20-tetrakis (3,4-dimethoxyphenyl) porphyrin) (TDMPP) were labeled with 111InCl3 (produced from proton bombardment of natCd target) in 60 min at 80 ºC. Quality control of labeled compounds was performed via RTLC and HPLC followed by stability studies in final formulation and presence of human serum at 37 ºC for 48 h as well as partition coefficient determination. The biodistribution studies performed using tissue dissection and SPECT imaging up to 24h. Results: The complexes were prepared with more than 99% radiochemical purity (HPLC and RTLC) and high stability to 48 h. Partition coefficients (calculated as log P) for 111In-TDHPP, 111In-THPP and 111In-TDMPP were 0.88, 0.8 and 1.63 respectively. Conclusion: Due to urinary excretion with fast clearance for 111In-TDMPP, this complex is probably a suitable candidate for considering as a possible tumor imaging agent. PMID:27408865

  9. Monoclonal antibody specific for a pigmentation associated antigen

    SciTech Connect

    Thomson, T.M.; Mattes, M.J.; Old, L.J.; Lloyd, K.O

    1989-01-17

    Monoclonal antibody TA99, which specifically binds to a pigmentation associated antigen present on melanoma cells is described. Additionally, the hybridoma cell line deposited with the ATCC under Accession Number HB 8704 from which the antibody is derived, as well as methods for using the antibody are described.

  10. Monoclonal Antibodies Targeting Tumor Growth | NCI Technology Transfer Center | TTC

    Cancer.gov

    The NCI Nanobiology Program, Protein Interaction Group is seeking parties to license or co-develop, evaluate, or commercialize monoclonal antibodies against the insulin-like growth factor for the treatment of cancer.

  11. Monoclonal Antibody Purification (Nicotiana benthamiana Plants)

    PubMed Central

    Husk, Adam; Hamorsky, Krystal Teasley; Matoba, Nobuyuki

    2016-01-01

    Plant-based expression systems provide an alternative biomanufacturing platform for recombinant proteins (Matoba et al., 2011). In particular, plant virus-based vectors can overexpress proteins within days in the leaf tissue of Nicotiana benthamiana (N. benthamiana). To overcome the issues of genetic instability and limited infectivity of recombinant viruses, Agrobacterium-mediated delivery of “deconstructed” virus vectors has become the mainstay for the production of large and/or multicomponent proteins, such as immunoglobulin (Ig)G monoclonal antibodies (mAbs). Here, we describe a method of producing human IgG mAbs in N. benthamiana using the tobamoviral replicon vector magnICON®. The vector can express up to a few hundred mg of a mAb per kg of leaf material in 7 days. A representative case for the broadly neutralizing anti-HIV and anti-influenza mAbs, VRC01 and CR6261 respectively, is shown (Hamorsky et al., 2013). Leaf tissue is homogenized and the extract is clarified by filtration and centrifugation. The mAb is purified by fast protein liquid chromatography (FPLC) using Protein A affinity and Phenyl HP hydrophobic interection resins.

  12. [Monoclonal antibodies from neurological and neuropsychological perspective].

    PubMed

    Piusińska-Macoch, Renata

    2013-05-01

    The role of monoclonal antibodies and other proinflammatory cytokines in the regulatory processes of the central and peripheral nervous system is not yet fully understood. Clinical studies show that they are involved in the pathogenesis of Alzheimer's disease, Parkinson's disease or other neurodegenerative disabilities with cognitive impairments. Genetic basis of these disorders is still in research. In the past few years it has been shown that increased levels of TNF-alpha and IL-6 in plasma play role in patients with ischemic stroke in the acute phase as well as transient ischemic episodes. Also the negative impact of TNF-alpha has been demonstrated on neck and coronary vessels, including the composition of plaques in the carotid arteries. A few reports indicate the involvement of tumor necrosis factor in such complex processes such as emotions, behavior or personality. Recent studies point to the important role of proinflammatory cytokines in the pathogenesis of sleep disorders such as narcolepsy, cataplexy and sleep paralysis. TNF-alpha can also activate nociceptive pathways, causing the intensity of neuropathic pain. However discloses asymmetric subtypes share TNF-1, TNF-2 in the induction and the maintenance of pain. The phenomenon of complex neurohormonal control mechanism support the proinflammatory cytokines is not fully understood and needs further empirical verification. PMID:23894773

  13. Technological progresses in monoclonal antibody production systems.

    PubMed

    Rodrigues, Maria Elisa; Costa, Ana Rita; Henriques, Mariana; Azeredo, Joana; Oliveira, Rosário

    2010-01-01

    Monoclonal antibodies (mAbs) have become vitally important to modern medicine and are currently one of the major biopharmaceutical products in development. However, the high clinical dose requirements of mAbs demand a greater biomanufacturing capacity, leading to the development of new technologies for their large-scale production, with mammalian cell culture dominating the scenario. Although some companies have tried to meet these demands by creating bioreactors of increased capacity, the optimization of cell culture productivity in normal bioreactors appears as a better strategy. This review describes the main technological progresses made with this intent, presenting the advantages and limitations of each production system, as well as suggestions for improvements. New and upgraded bioreactors have emerged both for adherent and suspension cell culture, with disposable reactors attracting increased interest in the last years. Furthermore, the strategies and technologies used to control culture parameters are in constant evolution, aiming at the on-line multiparameter monitoring and considering now parameters not seen as relevant for process optimization in the past. All progresses being made have as primary goal the development of highly productive and economic mAb manufacturing processes that will allow the rapid introduction of the product in the biopharmaceutical market at more accessible prices. PMID:20043321

  14. Preparation of Monoclonal Antibodies Against Bovine Haptoglobin

    PubMed Central

    Wang, Caihong; Gu, Cheng; Guo, Donghua; Gao, Jing; Li, Chunqiu; Liu, Na; Geng, Yufei; Su, Mingjun; Wang, Xinyu

    2014-01-01

    Female, 8-week-old BALB/c mice were immunized with purified recombinant proteins of the predicted immunodominant region of bovine haptoglobin (pirBoHp). Two monoclonal antibodies (MAbs), named 1B3 and 6D6, were prepared by conventional B lymphocyte hybridoma technique. Titers of ascitic fluid and cell culture supernatant of MAb 1B3 were 1:9.6×108 and 1:8.2×104, respectively, and that of MAb 6D6 were 1:4.4×105 and 1:1.0×104, respectively. The subtype of MAbs 1B3 and 6D6 was IgG1κ. In Western blot analysis, MAbs 1B3 and 6D6 could recognize the α-chain of native BoHp from plasma of dairy cows. These data indicated that MAbs 1B3 and 6D6 have a potential use for developing diagnostic reagents of BoHp. PMID:25358005

  15. Therapeutic Monoclonal Antibodies and Fragments: Bevacizumab.

    PubMed

    Klein, Ainat; Loewenstein, Anat

    2016-01-01

    Bevacizumab (Avastin) is a recombinant humanized monoclonal immunoglobulin antibody that has two antigen-binding domains and blocks all active forms of vascular endothelial growth factor-A. It was originally designed and is still in use as antitumor agent (for colorectal and non-small cell lung cancers). Besides inhibiting vessel growth and neovascularization, the drug promotes the regression of existing microvessels and induces 'normalization' of surviving mature vasculature, stabilizes vessels and prevents leakage. Its molecular weight is 149 kDa and its estimated terminal half-life is approximately 20 days for both men and women. The effectiveness and safety of bevacizumab was proven in retrospective and prospective controlled clinical trials for the treatment of neovascular age-related macular degeneration, neovascularization in proliferative diabetic retinopathy, diabetic macular edema, retinal vein occlusion and retinopathy of prematurity, especially for zone I. Uncontrolled trials have shown its effectiveness in various other conditions as myopic and uveitic choroidal neovascularization and neovascular glaucoma. There are no absolute contraindications to intravitreal injection though it is recommended to withhold treatment in patients who have recently suffered from a cardiovascular or cerebrovascular event and during pregnancy. Ocular complications from intravitreal use are usually mild and transient (corneal abrasion, chemosis, subconjunctival hemorrhage and vitreous hemorrhage). Bacterial endophthalmitis is rare (about 0.1%). New or progressive subretinal hemorrhages, tears of the retinal pigment epithelium and an increased incidence of geographic atrophy have also been reported. PMID:26502311

  16. Monoclonal antibodies against plant cell wall polysaccharides

    SciTech Connect

    Hahn, M.G.; Bucheli, E.; Darvill, A.; Albersheim, P. )

    1989-04-01

    Monoclonal antibodies (McAbs) are useful tools to probe the structure of plant cell wall polysaccharides and to localize these polysaccharides in plant cells and tissues. Murine McAbs were generated against the pectic polysaccharide, rhamnogalacturonan I (RG-I), isolated from suspension-cultured sycamore cells. The McAbs that were obtained were grouped into three classes based upon their reactivities with a variety of plant polysaccharides and membrane glycoproteins. Eleven McAbs (Class I) recognize epitope(s) that appear to be immunodominant and are found in RG-I from sycamore and maize, citrus pectin, polygalacturonic acid, and membrane glycoproteins from suspension-cultured cells of sycamore, maize, tobacco, parsley, and soybean. A second group of five McAbs (Class II) recognize epitope(s) present in sycamore RG-I, but do not bind to any of the other polysaccharides or glycoproteins recognized by Class I. Lastly, one McAb (Class III) reacts with sycamore RG-I, sycamore and tamarind xyloglucan, and sycamore and rice glucuronoarabinoxylan, but does not bind to maize RG-I, polygalacturonic acid or the plant membrane glycoproteins recognized by Class I. McAbs in Classes II and III are likely to be useful in studies of the structure, biosynthesis and localization of plant cell wall polysaccharides.

  17. Murine monoclonal antibodies specific for virulent Treponema pallidum (Nichols).

    PubMed Central

    Robertson, S M; Kettman, J R; Miller, J N; Norgard, M V

    1982-01-01

    Murine anti-Treponema pallidum (Nichols) lymphocyte hybridoma cell lines secreting monoclonal antibodies against a variety of treponemal antigens have been generated. Hybridomas isolated were of three major types: those that were directed specifically against T. pallidum antigens, those that were directed against treponemal group antigens (as evidenced by their cross-reactivity with T. phagedenis biotype Reiter antigens), and those that cross-reacted with both treponemal as well as rabbit host testicular tissue antigens. The majority (31 of 39 clones) of these anti-T. pallidum hybridomas, which produced monoclonal antibodies of mouse isotypes immunoglobulin G1 (IgG1), IgG2a, IgG2b, IgG3 or IgM, were directed specifically against T. pallidum and not other treponemal or rabbit antigens tested by radioimmunoassay. Four of these T. pallidum-specific hybridomas secreted monoclonal antibodies with greater binding affinity for "aged" rather than freshly isolated intact T. pallidum cells, suggesting a possible specificity for "unmasked" surface antigens of T. pallidum. Six anti-T. pallidum hybridomas produced complement-fixing monoclonal antibodies (IgG2a, IgG2b, or IgM) that were capable of immobilizing virulent treponemes in the T. pallidum immobilization (TPI) test; these may represent biologically active monoclonal antibodies against treponemal surface antigens. Three other hybridomas secreted monoclonal antibodies which bound to both T. pallidum and T. phagedenis biotype Reiter antigens, thus demonstrating a possible specificity for treponemal group antigens. Five hybridoma cell lines were also isolated which produced IgM monoclonal antibodies that cross-reacted with all treponemal and rabbit host testicular tissue antigens employed in the radioimmunoassays. This report describes the construction and characteristics of these hybridoma cell lines. The potential applications of the anti-T. pallidum monoclonal antibodies are discussed. PMID:7047388

  18. Considerations for the development of therapeutic monoclonal antibodies.

    PubMed

    Swann, Patrick G; Tolnay, Mate; Muthukkumar, Subramanian; Shapiro, Marjorie A; Rellahan, Barbara L; Clouse, Kathleen A

    2008-08-01

    An increasing number of Investigational New Drug (IND) applications for therapeutic monoclonal antibodies (mAbs) have been submitted to US FDA over the past several years. Monoclonal antibodies and related products are under development for a wide range of indications. In addition, the diversity of antibody-related products is increasing including IgG2/IgG4 subclasses and engineered Fc regions to enhance or reduce antibody effector functionality. Recent findings highlight the need to more fully characterize these products and their activity. Advances in product characterization tools, immunogenicity assessments, and other bioanalytical assays can be used to better understand product performance and facilitate development. PMID:18586093

  19. Monoclonal antibodies: new agents for cancer detection and targeted therapy

    SciTech Connect

    Baldwin, R.W.; Byers, V.S. )

    1991-01-01

    Antibodies directed against markers on cancer cells are gaining in importance for the purpose of targeting diagnostic and therapeutic agents. In the past, this approach has had very limited success principally because the classical methods for producing antibodies from blood serum of animals immunized with cancer cells or extracts were unsatisfactory. The situation has changed dramatically since 1975 following the design of procedures for 'immortalizing' antibody-producing cells (lymphocytes) by fusing them with cultured myeloma cells to form hybridomas which continuously secrete antibodies. Since these hybridomas produce antibodies coded for by a single antibody-producing cell, the antibodies are called monoclonal. Building on these advances in biomedical research, it is now possible to reproducibly manufacture monoclonal antibodies on a scale suitable for use in cancer detection and therapy.

  20. Boronated monoclonal antibody conjugates for neutron capture therapy

    SciTech Connect

    Borg, D.C.; Elmore, J.J. Jr.; Ferrone, S.

    1986-01-01

    This paper describes the effectiveness of /sup 10/B-labeled monoclonal antibodies against Colo-38 human melanoma in vitro. The authors obtained high boron to antibody ratios while maintaining antibody activity by using dextran intermediate carriers to link /sup 10/B to the antibody. They developed a double cell quasi-competitive binding bioassay to minimize the effects of nonspecific binding of boronated complexes to cells. 1 fig., 2 tabs.

  1. Characterization and utilization of a monoclonal antibody against pancreatic carcinoma

    SciTech Connect

    Kurtzman, S.H.; Sindelar, W.F.; Atcher, R.W.; Mitchell, J.B.; DeGraff, W.G.; Gamson, J.; Russo, A.; Friedman, A.M.; Hines, J.J.

    1994-10-01

    A monoclonal antibody was produced against a human pancreatic adenocarcinoma line and was found to react with several different human carcinomas by immunoperoxidase staining of fixed tissues. The original cells used to generate the monoclonal antibody were treated with detergent to lyse the cell membrane. A membrane associated protein of molecular weight 35kD was isolated from this detergent lysed preparation and found to be recognized by the monoclonal antibody. The binding constant of the antigen antibody reaction on the cells is 5 x 10{sup {minus}5}. It was further determined that there are 700,000 binding sites per cell. Kinetics of the antigen-antibody reaction under several conditions were also explored.

  2. Scintigraphic detection of overexpressed c-erbB-2 protooncogene products by a class-switched murine anti-c-erbB-2 protein monoclonal antibody

    SciTech Connect

    Saga, T.; Endo, K.; Akiyama, T.; Sakahara, H.; Koizumi, M.; Watanabe, Y.; Nakai, T.; Hosono, M.; Yamamoto, T.; Toyoshima, K. )

    1991-02-01

    Class-switched monoclonal antibody SV2-61r recognized the extracellular domain of c-erbB-2 protooncogene products separate from the epidermal growth factor receptor. We studied the potential of SV2-61r for evaluating the amplification of c-erbB-2 protooncogene on cancer cells, which has been reported to have prognostic value in adenocarcinoma patients. Radiolabeled SV2-61r specifically bound to various adenocarcinoma cells in addition to c-erbB-2-transfected NIH-3T3 cells (A4) with the affinity constant of 4.4 x 10(8) M-1. SV2-61r injected i.v. localized well to A4 cells xenografted in nude mice. Tumor uptake and localization index of radioiodinated SV2-61r were lower than those of 111In-labeled SV2-61r, probably due to the internalization and dehalogenation of formed antibody-antigen complexes. Biodistribution and specificity of targeting were assessed by comparison among three cells, A4, lung cancer SBC-3 (c-erbB-2 weakly positive) and B-lymphoblastoid Manca cells (c-erbB-2 negative). Tumor:blood ratios, obtained 48 h after injection, were 5.63, 1.45, and 0.68, respectively, indicating the potential of 111In-labeled SV2-61r for evaluating the amplification of c-erbB-2 protooncogene on cancer cells. Because of its close relationship with carcinogenesis and the uniform expression, c-erbB-2 protooncogene products seem to be the optimal target of imaging and therapy of adenocarcinoma patients.

  3. Palladium-109 labeled anti-melanoma monoclonal antibodies

    DOEpatents

    Srivastava, S.C.; Fawwaz, R.A.; Ferrone, S.

    1984-04-30

    The invention consists of new monoclonal antibodies labelled with Palladium 109, a beta-emitting radionuclide, the method of preparing this material, and its use in the radiotherapy of melanoma. The antibodies are chelate-conjugated and demonstrate a high uptake in melanomas. (ACR)

  4. A perspective of monoclonal antibodies: Past, present, and future

    SciTech Connect

    DeLand, F.H. )

    1989-07-01

    In 1975, the development of the technique to produce monoclonal antibodies revolutionized the approach to cancer detection and therapy. Hundreds of monoclonal antibodies to the epitopes of tumor cells have been produced, providing more specific tools for probing the cellular elements of cancer. At the same time, these tools have disclosed greater complexity in the character of these cells and stimulated further investigation. Although there are antibodies to specific epitopes of neoplastic cells, this purity has not provided the improved detection and therapy of cancer first expected. Technical manipulations have provided limited improvement in results, but more sophisticated techniques, such as biologic response modifiers, may be required to attain clinical results that can be universally applied. The intense research in monoclonal antibodies and their application does offer promise that the goal of improved cancer detection and therapy will be forthcoming. 58 references.

  5. Complete De Novo Assembly of Monoclonal Antibody Sequences.

    PubMed

    Tran, Ngoc Hieu; Rahman, M Ziaur; He, Lin; Xin, Lei; Shan, Baozhen; Li, Ming

    2016-01-01

    De novo protein sequencing is one of the key problems in mass spectrometry-based proteomics, especially for novel proteins such as monoclonal antibodies for which genome information is often limited or not available. However, due to limitations in peptides fragmentation and coverage, as well as ambiguities in spectra interpretation, complete de novo assembly of unknown protein sequences still remains challenging. To address this problem, we propose an integrated system, ALPS, which for the first time can automatically assemble full-length monoclonal antibody sequences. Our system integrates de novo sequencing peptides, their quality scores and error-correction information from databases into a weighted de Bruijn graph to assemble protein sequences. We evaluated ALPS performance on two antibody data sets, each including a heavy chain and a light chain. The results show that ALPS was able to assemble three complete monoclonal antibody sequences of length 216-441 AA, at 100% coverage, and 96.64-100% accuracy. PMID:27562653

  6. Complete De Novo Assembly of Monoclonal Antibody Sequences

    PubMed Central

    Tran, Ngoc Hieu; Rahman, M. Ziaur; He, Lin; Xin, Lei; Shan, Baozhen; Li, Ming

    2016-01-01

    De novo protein sequencing is one of the key problems in mass spectrometry-based proteomics, especially for novel proteins such as monoclonal antibodies for which genome information is often limited or not available. However, due to limitations in peptides fragmentation and coverage, as well as ambiguities in spectra interpretation, complete de novo assembly of unknown protein sequences still remains challenging. To address this problem, we propose an integrated system, ALPS, which for the first time can automatically assemble full-length monoclonal antibody sequences. Our system integrates de novo sequencing peptides, their quality scores and error-correction information from databases into a weighted de Bruijn graph to assemble protein sequences. We evaluated ALPS performance on two antibody data sets, each including a heavy chain and a light chain. The results show that ALPS was able to assemble three complete monoclonal antibody sequences of length 216–441 AA, at 100% coverage, and 96.64–100% accuracy. PMID:27562653

  7. 90Y-labeled monoclonal antibodies for cancer therapy.

    PubMed

    Washburn, L C; Hwa Sun, T T; Crook, J E; Byrd, B L; Carlton, J E; Hung, Y W; Steplewski, Z S

    1986-01-01

    Monoclonal antibody 17-1A, which has specificity for colorectal carcinoma, was labeled with 90Y (10-20% radiolabeling yield). Tissue distribution studies in tumor-bearing nude mice were carried out. 90Y-labeled 17-1A showed good uptake in the SW 948 colon carcinoma cell line. However, 90Y-labeled A5C3, a monoclonal antihepatitis virus antibody studied as a control, showed similar uptake in this tumor. Neither antibody was taken up well by a WM-9 melanoma. It is believed that the loss of specificity observed is due to the low specific activity of the 90Y-labeled monoclonal antibody preparations used. This hypothesis is supported by radioimmunoassay data. PMID:3793501

  8. Coarse grained modeling of transport properties in monoclonal antibody solution

    NASA Astrophysics Data System (ADS)

    Swan, James; Wang, Gang

    Monoclonal antibodies and their derivatives represent the fastest growing segment of the bio pharmaceutical industry. For many applications such as novel cancer therapies, high concentration, sub-cutaneous injections of these protein solutions are desired. However, depending on the peptide sequence within the antibody, such high concentration formulations can be too viscous to inject via human derived force alone. Understanding how heterogenous charge distribution and hydrophobicity within the antibodies leads to high viscosities is crucial to their future application. In this talk, we explore a coarse grained computational model of therapeutically relevant monoclonal antibodies that accounts for electrostatic, dispersion and hydrodynamic interactions between suspended antibodies to predict assembly and transport properties in concentrated antibody solutions. We explain the high viscosities observed in many experimental studies of the same biologics.

  9. Polymorphism of normal factor IX detected by mouse monoclonal antibodies.

    PubMed Central

    Wallmark, A; Ljung, R; Nilsson, I M; Holmberg, L; Hedner, U; Lindvall, M; Sjögren, H O

    1985-01-01

    Hemophilia B is an X-chromosomal recessive disease due to deficiency of coagulation factor IX. Three monoclonal antibodies against factor IX were prepared and used to develop immunoradiometric assays (IRMAs) of factor IX antigen (IX-Ag). IX-Ag was measured in 65 normal individuals with one IRMA based on polyclonal anti-IX antibodies and two IRMAs based on three monoclonal anti-IX antibodies. One of the monoclonal antibodies differed in specificity since it neutralized less than 50% of the clotting activity of factor IX (IX-C), whereas the other two monoclonal antibodies neutralized 80-95%. When the former antibody was used as the solid phase in IRMA, two groups of normal individuals were distinguished: group A with measurable IX-Ag, and group B without demonstrable IX-Ag. There were no differences between the groups either in IX-C or in IX-Ag measured with polyclonal antibodies. A subgroup comprising only women could be distinguished in group A, in whom intermediate IX-Ag concentrations were found. Family studies showed the group B variant of normal factor IX to be transmitted according to the pattern of X-linked recessive inheritance. The allelic frequency of group A was 0.66, and that of group B was 0.34. PMID:3873655

  10. Improved iodine radiolabels for monoclonal antibody therapy.

    PubMed

    Stein, Rhona; Govindan, Serengulam V; Mattes, M Jules; Chen, Susan; Reed, Linda; Newsome, Guy; McBride, Bill J; Griffiths, Gary L; Hansen, Hans J; Goldenberg, David M

    2003-01-01

    A major disadvantage of (131)iodine (I)-labeled monoclonal antibodies (MAbs) for radioimmunotherapy has been the rapid diffusion of iodotyrosine from target cells after internalization and catabolism of the radioiodinated MAbs. We recently reported that a radioiodinated, diethylenetriaminepentaacetic acid-appended peptide, designated immunomedics' residualizing peptide 1 (IMP-R1), was a residualizing iodine label that overcame many of the limitations that had impeded the development of residualizing iodine for clinical use. To determine the factors governing the therapeutic index of the labeled MAb, as well as the factors required for production of radioiodinated MAb in high yield and with high specific activity, variations in the peptide structure of IMP-R1 were evaluated. A series of radioiodinated, diethylenetriaminepentaacetic acid-appended peptide moieties (IMP-R1 through IMP-R8) that differed in overall hydrophilicity and charge were compared. Radioiodinations of the peptides followed by conjugations to disulfide-reduced RS7 (an anti-epithelial glycoprotein-1 MAb) furnished radioimmunoconjugates in good overall incorporations, with immunoreactivities comparable to that of directly radioiodinated RS7. Specific activities of up to 8 mCi/mg and yields > 80% have been achieved. In vitro processing experiments showed marked increases in radioiodine retention with all of the adducts; radioiodine retention at 45 h was up to 86% greater in cells than with directly iodinated RS7. Each of the (125)I-peptide-RS7 conjugates was compared with (131)I-RS7 (labeled by the chloramine-T method) in paired-label biodistribution studies in nude mice bearing human lung tumor xenografts. All of the residualizing substrates exhibited significantly enhanced retention in tumor in comparison to directly radioiodinated RS7, but the nontarget uptakes differed significantly among the residualizing labels. The best labels were IMP-R4 and IMP-R8, showing superior tumor-to-non-tumor ratios

  11. Veterinary sources of nonrodent monoclonal antibodies: interspecific and intraspecific hybridomas.

    PubMed

    Groves, D J; Morris, B A

    2000-06-01

    The generation of monoclonal antibodies from species other than rats and mice has developed slowly over the last 20 years. The advent of antibody engineering and realization of the advantages of nonmurine antibodies, in terms of their superior affinities and specificities, and their potential as components of human and veterinary therapeutics has increased their relevance recently. There have been significant advances in the development of myeloma and heteromyeloma fusion partners. This is an opportune moment to consolidate experiences of MAb production across the range of species of veterinary interest and place it into context with other developments in the field of monoclonal antibodies. The background to the development of antibodies from species other than the mouse is discussed. The species and antigens used to date are reviewed, as are the methods and results reported. A suggested protocol is provided for first attempts to exploit the huge potential of this aspect of hybridoma technology and suggestions are made for its further expansion. PMID:10952409

  12. Choriocarcinoma: blocking factor and monoclonal antibody iodine 131 imaging

    SciTech Connect

    Pattillo, R.A.; Khazaeli, M.B.; Ruckert, A.C.; Hussa, R.O.; Collier, B.D.; Beierwaltes, W.; Mattingly, R.F.

    1984-04-01

    Postoperative iodine 131 monoclonal antibody localization in metastatic choriocarcinoma was accomplished in this study. The monoclonal antibody was prepared to male choriocarcinoma which cross reacted with gestational choriocarcinoma. The antibody was raised against whole choriocarcinoma cells and human chorionic gonadotropin (hCG) cross reactivity was excluded. The purified antibody was iodinated with /sup 131/I and successfully imaged BeWo choriocarcinoma transplanted in nude mice; however, imaging of choriocarcinoma in a patient was verified only after resection. It is our belief that failure to sufficiently concentrate the antibody in the tumor before operation was due to blocking factor in the serum of the patient. Blocking factor and hCG dropped postoperatively. Blocking factor activity in 15 patients with metastatic trophoblastic disease was monitored and, like hCG, was found to be a sensitive indicator of the presence of disease. Its efficacy may be in the small number of patients without hCG but with persistent disease.

  13. Evaluation of primary lung cancer with indium 111 anti-carcinoembryonic antigen (type ZCE-025) monoclonal antibody scintigraphy

    SciTech Connect

    Krishnamurthy, S.; Morris, J.F.; Antonovic, R.; Ahmed, A.; Galey, W.T.; Duncan, C.; Krishnamurthy, G.T. )

    1990-02-01

    A study was undertaken to test whether indium 111 (111In)-labeled anti-carcinoembryonic antigen (CEA) (type ZCE 025) monoclonal intact antibody (MoAb) would concentrate in primary lung cancer enabling its detection and localization by scintigraphy. The scintigraphic results were correlated with chest radiograph, computed tomograph (CT), bronchoscopy, surgical resection, and tumor CEA analysis. Twenty adult male patients with clinical suspicion of primary lung cancer were studied. Each subject was infused with 4 to 5 mCi of 111In anti-CEA ZCE 025 MoAb, and planar and tomographic scintiphotos were obtained on days 3 and 6 or 7 postinfusion. The scintigraphy was true-positive in 12 of 16 patients with primary lung cancer, eight of nine patients with squamous cell carcinoma, and four of seven with adenocarcinoma; it was true-negative in three of four patients with benign lung disease with an overall accuracy of 75%. In seven patients with confirmed primary lung cancer, but with negative bronchoscopic findings, the scintigraphy was true-positive in four. In 11 patients with definitely positive or suspicious malignancy by bronchoscopy the monoclonal scintigraphy was positive in eight. In true-positive cases, the location and size of the lesion by 111In anti-CEA ZCE 025 MoAb imaging correlated well with CT findings and also tumor mass at surgery. Only one of 12 tumors stained positive for CEA had serum CEA levels greater than 10 ng/ml, indicating nonleakage of the tumor antigen into general circulation in early lung cancer. It is concluded that 111In anti-CEA ZCE 025 MoAb planar and tomographic imaging shows potential to serve as a noninvasive diagnostic test in the evaluation of primary lung cancer. The lung lesion is likely to be malignant if it concentrates 111In anti-CEA ZCE 025 MoAb and benign if it does not.

  14. Preparation and identification of anti-rabies virus monoclonal antibodies.

    PubMed

    Wang, Wen-juan; Li, Xiong; Wang, Li-hua; Shan, Hu; Cao, Lei; Yu, Peng-cheng; Tang, Qing; Liang, Guo-dong

    2012-06-01

    To provide a foundation for the development of rapid and specific methods for the diagnosis of rabies virus infection, anti-rabies virus monoclonal antibodies were prepared and rabies virus nucleoprotein and human rabies virus vaccine strain (PV strain) were used as immunogens to immunize 6-8 week old female BALB/c mice. Spleen cells and SP2/0 myeloma cells were fused according to conventional methods: the monoclonal cell strains obtained were selected using the indirect immunofluorescence test; this was followed by preparation of monoclonal antibody ascitic fluid; and finally, systematic identification of subclass, specificity and sensitivity was carried out. Two high potency and specific monoclonal antibodies against rabies virus were obtained and named 3B12 and 4A12, with ascitic fluid titers of 1:8000 and 1:10000, respectively. Both belonged to the IgG2a subclass. These strains secrete potent, stable and specific anti-rabies virus monoclonal antibodies, which makes them well suited for the development of rabies diagnosis reagents. PMID:22684471

  15. Monoclonal antibodies and Fc fragments for treating solid tumors.

    PubMed

    Eisenbeis, Andrea M; Grau, Stefan J

    2012-01-01

    Advances in biotechnology, better understanding of pathophysiological processes, as well as the identification of an increasing number of molecular markers have facilitated the use of monoclonal antibodies and Fc fragments in various fields in medicine. In this context, a rapidly growing number of these substances have also emerged in the field of oncology. This review will summarize the currently approved monoclonal antibodies used for the treatment of solid tumors with a focus on their clinical application, biological background, and currently ongoing trials. PMID:22291463

  16. Monoclonal antibodies and Fc fragments for treating solid tumors

    PubMed Central

    Eisenbeis, Andrea M; Grau, Stefan J

    2012-01-01

    Advances in biotechnology, better understanding of pathophysiological processes, as well as the identification of an increasing number of molecular markers have facilitated the use of monoclonal antibodies and Fc fragments in various fields in medicine. In this context, a rapidly growing number of these substances have also emerged in the field of oncology. This review will summarize the currently approved monoclonal antibodies used for the treatment of solid tumors with a focus on their clinical application, biological background, and currently ongoing trials. PMID:22291463

  17. Identification of mutant monoclonal antibodies with increased antigen binding.

    PubMed Central

    Pollock, R R; French, D L; Gefter, M L; Scharff, M D

    1988-01-01

    Sib selection and an ELISA have been used to isolate hybridoma subclones producing mutant antibodies that bind antigen better than the parental monoclonal antibody. Such mutants arise spontaneously in culture at frequencies of 2.5-5 X 10(-5). The sequences of the heavy and light chain variable regions of the mutant antibodies are identical to that of the parent and the Ka values of the mutants and the parent are the same. The increase in binding is associated with abnormalities of the constant region polypeptide and probably reflect changes in avidity of these antibodies. Images PMID:3267219

  18. MONOCLONAL ANTIBODIES IDENTIFY CONSERVED EPITOPES ON THE POLYHEDRIN OF 'HELIOTHIS ZEA' NUCLEAR POLYHEDROSIS VIRUS

    EPA Science Inventory

    Recent advances in monoclonal antibody techniques have provided an opportunity to simplify the procedures of serological identification of microorganisms. Because monoclonal antibodies are raised against individual antigenic determinants (epitopes), they can be used to screen wit...

  19. Monoclonal Antibodies Attached to Carbon Nanotube Transistors for Paclitaxel Detection

    NASA Astrophysics Data System (ADS)

    Lee, Wonbae; Lau, Calvin; Richardson, Mark; Rajapakse, Arith; Weiss, Gregory; Collins, Philip; UCI, Molecular Biology; Biochemistry Collaboration; UCI, Departments of Physics; Astronomy Collaboration

    Paclitaxel is a naturally-occurring pharmaceutical used in numerous cancer treatments, despite its toxic side effects. Partial inhibition of this toxicity has been demonstrated using weakly interacting monoclonal antibodies (3C6 and 8A10), but accurate monitoring of antibody and paclitaxel concentrations remains challenging. Here, single-molecule studies of the kinetics of antibody-paclitaxel interactions have been performed using single-walled carbon nanotube field-effect transistors. The devices were sensitized with single antibody attachments to record the single-molecule binding dynamics of paclitaxel. This label-free technique recorded a range of dynamic interactions between the antibody and paclitaxel, and it provided sensitive paclitaxel detection for pM to nM concentrations. Measurements with two different antibodies suggest ways of extending this working range and uncovering the mechanistic differences among different antibodies.

  20. Targeted therapeutics for severe refractory asthma: monoclonal antibodies.

    PubMed

    Grainge, Christopher L; Maltby, Steven; Gibson, Peter G; Wark, Peter A B; McDonald, Vanessa M

    2016-07-01

    Severe asthma is a complex multifactorial disease that requires specialist multidisciplinary input for optimal clinical outcomes. Following multidimensional assessment for optimisation of current therapy, self-management skills and comorbidities, all patients should be accurately phenotyped. Only after this assessment has been completed should new monoclonal antibody therapies be considered. In this review, we summarise the new antibody approaches targeting identified pathological pathways in severe refractory asthma. PMID:27018798

  1. Generation of monoclonal antibodies to recombinant vascular endothelial growth factor.

    PubMed

    Shein, S A; Gurina, O I; Leopol'd, A V; Baklaushev, V P; Korchagina, A A; Grinenko, N F; Ivanova, N V; Volgina, N E; Ryabukhin, I A; Chekhonin, V P

    2012-05-01

    Female BALB/c mice were subcutaneously immunized with recombinant VEGF-164. After 3 immunization cycles, splenic B cells from immunized mouse were fused with immortalized myeloma culture SP2/0-Ag14 cells. Screening of hybrid cells producing anti-VEGF antibodies was performed by ELISA and immunocytochemical analysis on cultured C6 glioma cells. Subsequent cloning yielded hybridoma stably expressing monoclonal anti-VEGF antibodies recognizing recombinant and native VEGF. PMID:22808513

  2. Mechanisms of monoclonal antibody stabilization and release from silk biomaterials

    PubMed Central

    Guziewicz, Nicholas A.; Massetti, Andrew J.; Perez-Ramirez, Bernardo J.; Kaplan, David L.

    2013-01-01

    The availability of stabilization and sustained delivery systems for antibody therapeutics remains a major clinical challenge, despite the growing development of antibodies for a wide range of therapeutic applications due to their specificity and efficacy. A mechanistic understanding of protein-matrix interactions is critical for the development of such systems and is currently lacking as a mode to guide the field. We report mechanistic insight to address this need by using well-defined matrices based on silk gels, in combination with a monoclonal antibody. Variables including antibody loading, matrix density, charge interactions, hydrophobicity and water access were assessed to clarify mechanisms involved in the release of antibody from the biomaterial matrix. The results indicate that antibody release is primarily governed by hydrophobic interactions and hydration resistance, which are controlled by silk matrix chemistry, peptide domain distribution and protein density. Secondary ionic repulsions are also critical in antibody stabilization and release. Matrix modification by free methionine incorporation was found to be an effective strategy for mitigating encapsulation induced antibody oxidation. Additionally, these studies highlight a characterization approach to improve the understanding and development of other protein sustained delivery systems, with broad applicability to the rapidly developing monoclonal antibody field. PMID:23859659

  3. Identification of two antigenic determinants in pseudomurein by monoclonal antibodies

    SciTech Connect

    Conway de Macario, E.; Macario, A.J.L.; Kandler, O.; Wolin, M.J.

    1982-01-01

    Pseudomurein is a unique peptidoglycan found only in the wall of methanogenic bacteria (MB) of the family Methanobacteriaceae. Although its chemical composition has recently been determined, its immunologic properties have not been elucidated. Methanobacteriaceae elicit antibodies in rabbits and mice. The authors have produced monoclonal antibodies against the bacteria. Antigenic determinants on the MB's surface were resolved with the monoclonal antibodies by means of inhibition-blocking procedures combined with immunoenzymatic assays devised for the structural analysis of bacterial antigens. One monoclonal antibody against Methanobrevibacter arboriphilus DHl recognized a determinant involving the ..gamma..-Glu-Ala end of the pseudomurein peptide. A second antibody did not react with the above determinant but with another involving N-acetylglucosamine. The latter antibody reacted with the immunizing MB, i.e. Methanobacterium thermoautotrophicum ..delta..H and with another strain of this species, GGl, but it did not react with the rest of the pseudomurein-containing bacteria. The data show that pseudomurein possess at least two different determinants, one in the C-terminus of the peptide moiety and the other in the backbone structure and indicate that the spatial arrangement of the peptidoglycan components is distinctive for the species examined and plays a role in antigenicity.

  4. Humanization of a chicken anti-IL-12 monoclonal antibody.

    PubMed

    Tsurushita, Naoya; Park, Minha; Pakabunto, Kanokwan; Ong, Kelly; Avdalovic, Anamarija; Fu, Helen; Jia, Audrey; Vásquez, Max; Kumar, Shankar

    2004-12-01

    Chicken anti-IL-12 monoclonal antibodies were isolated by phage display using spleen cells from a chicken immunized with human and mouse IL-12 as a source for library construction. One of the chicken monoclonal antibodies, DD2, exhibited binding to both human and mouse IL-12 in the single-chain Fv form and also after conversion to chicken-human chimeric IgG1/lambda antibody. The chicken DD2 variable regions were humanized by transferring their CDRs and several framework amino acids onto human acceptor variable regions. In the Vlambda, six chicken framework amino acids were identified to be important for the conformation of the CDR structure by computer modeling and therefore were retained in the humanized form; likewise, five chicken amino acids in the VH framework regions were retained in the humanized VH. The affinities of humanized DD2 IgG1/lambda to human and mouse IL-12 measured by competitive binding were nearly identical to those of chicken-human chimeric DD2 IgG1/lambda. This work demonstrates that humanization of chicken monoclonal antibodies assisted by computer modeling is possible, leading to a new way to generate therapeutic humanized antibodies against antigens to which the rodent immune system may fail to efficiently raise high affinity antibodies. PMID:15627607

  5. Bacterial surface antigens defined by monoclonal antibodies: the methanogens

    SciTech Connect

    Conway de Macario, E.; Macario, A.J.L.; Magarinos, M.C.; Jovell, R.J.; Kandler, O.

    1982-01-01

    The methanogens (MB) are unique microbes of great evolutionary interest with applications in biotechnology-bioengineerings and are important in digestive processes. Their cell-wall composition is distinctively different from that of Eubacteria, e.g. the Methanobacteriaceae possess the peptidoglycan pseudomurein rather than murein. The range of cell-wall compositions among MB and their evolutionary and functional significance is not well known. The authors undertook a systematic study of the MB's surface structure using monoclonal antibodies through the following steps: (1) generation of hybridomas that produce antibody to several MB from 3 of their 4 families; (2) development of immunoenzymatic assays for MB's antigens and antibodies; (3) determination of the fine specificity of monoclonal antibodies by inhibition-blocking tests using cell-wall extracts and compounds of known structure; thus a set of monoclonal probes of predetermined specificity was assembled; and (4) resolution of surface determinants of MB representative of the Methanobacteriaceae using the monoclonal probes. Specific markers of MB strains were characterized. Two epitopes were identified within the pseudomurein molecule.

  6. Development and evaluation of monoclonal antibodies for paxilline

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Paxilline (PAX) is a tremorgenic mycotoxin that has been found in perennial ryegrass infected with Acremonium lolii. To facilitate screening for this toxin, four murine monoclonal antibodies (mAbs) were developed. In competitive indirect enzyme-linked immunosorbent assays (CI-ELISAs) the concentrati...

  7. Indium-111 labeled anti-melanoma monoclonal antibodies

    DOEpatents

    Srivastava, S.C.; Fawwaz, R.A.; Ferrone, S.

    1984-04-30

    A monoclonal antibody to a high molecular weight melanoma-associated antigen was chelated and radiolabeled with indium-111. This material shows high affinity for melanoma and thus can be used in the detection, localization and imaging of melanoma. 1 figure.

  8. Characterization of monoclonal antibodies produced against Avian metapneumovirus Sybtype C

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monoclonal antibodies (MAbs) were prepared against avian metapneumovirus (aMPV) subtype C (aMPV/Minnesota/turkey/1a/97). Six MAbs were selected based on ELISA activities and characterized by isotyping, neutralization test, Western blot analysis, and immunohistochemistry (IHC) assay. The results show...

  9. 78 FR 7438 - Prospective Grant of Exclusive License: Development of Human Monoclonal Antibodies Against DR4

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Human Monoclonal Antibodies Against DR4 AGENCY: National Institutes of Health, Public Health Service... Monoclonal Antibodies Against DR4'' (HHS Ref. No. E-158-2010/0) to Customized Biosciences, Inc., which is... relates to the development of two human monoclonal antibodies (mAbs) that bind to death receptor 4...

  10. Monoclonal antibodies produced by muscle after plasmid injection and electroporation.

    PubMed

    Tjelle, Torunn Elisabeth; Corthay, Alexandre; Lunde, Elin; Sandlie, Inger; Michaelsen, Terje E; Mathiesen, Iacob; Bogen, Bjarne

    2004-03-01

    Antibodies are useful for the treatment of a variety of diseases. We here demonstrate that mouse muscle produced monoclonal antibodies (mAb) after a single injection of immunoglobulin genes as plasmid DNA. In vivo electroporation of muscle greatly enhanced antibody production. For chimeric antibodies, levels of 50-200 ng mAb/ml serum were obtained but levels declined after 7-14 days due to an immune response against the xenogeneic parts of the antibody. By contrast, fully mouse antibodies persisted in serum for at least 7 months. mAb produced by the muscle had correct structure, specificity, and biological effector functions. The findings were extended to a larger animal, the sheep, in which mAb serum levels of 30-50 ng/ml were obtained. Sustained levels of serum mAb, induced by single injection of Ig genes and electroporation of muscle cells, may offer significant advantages in the treatment of human diseases. PMID:15006599

  11. Nucleotide sequences of five anti-lysozyme monoclonal antibodies.

    PubMed Central

    Darsley, M J; Rees, A R

    1985-01-01

    The nucleotide sequences of the heavy and light chain immunoglobulin mRNAs derived from five hybridomas (Gloop 1-5) secreting IgGs specific for the loop region of hen egg lysozyme were determined. These monoclonal antibodies recognise three distinct but overlapping epitopes within the loop region. The sequences of two pairs of antibodies with indistinguishable fine specificities were similar in both chains whereas the sequences of antibodies of non-identical specificities were very different. It is proposed that the D-segments expressed in two of the antibodies (Gloop3 and Gloop4) are the products of one, or perhaps two, previously unidentified germ line D-genes. Gloop1 and Gloop2 use a D-segment previously identified in antibodies specific for the hapten 2-phenyloxazolone; however it is recombined in a different reading frame in the anti-lysozyme antibodies, producing a different amino acid sequence. PMID:2410256

  12. Initial Characterization of Monoclonal Antibodies against Human Monocytes

    NASA Astrophysics Data System (ADS)

    Ugolini, Valentina; Nunez, Gabriel; Smith, R. Graham; Stastny, Peter; Capra, J. Donald

    1980-11-01

    Three monoclonal antibodies against human monocytes have been produced by somatic cell fusion. Extensive specificity analysis suggests that these antibodies react with most if not all human peripheral blood monocytes and not with highly purified T or B cells. Initial chemical characterization of the monocyte antigen recognized by two of these antibodies is presented. The molecule is a single polypeptide chain with an apparent molecular weight of 200,000. These reagents should prove useful in the clinical definition of disorders of monocyte differentiation, in studies of monocyte function, and in the elucidation of the genetics and structure of monocyte cell surface antigens.

  13. Monoclonal Antibody Cross-Reactions between Drosophila and Human Brain

    NASA Astrophysics Data System (ADS)

    Miller, Carol A.; Benzer, Seymour

    1983-12-01

    A panel of 146 monoclonal antibodies (MAbs), obtained with Drosophila melanogaster tissue as primary immunogen, was tested for cross-reactivity with the human central nervous system. Sites examined included spinal cord, cerebellum, hippocampus, and optic nerve. Nonnervous tissues tested were liver and lymph node. Approximately half of the antibodies reacted with one or more sites in the human central nervous system, identifying regional, cell class, and subcellular antigens. Some recognized neuronal, glial, or axonal subsets. Immunoblot analysis revealed that some antibodies reacted with similar antigen patterns in both species.

  14. Monkey-derived monoclonal antibodies against Plasmodium falciparum.

    PubMed Central

    Stanley, H A; Reese, R T

    1985-01-01

    A system has been developed that allows efficient production of monkey monoclonal antibodies from owl monkeys. Splenocytes or peripheral blood lymphocytes from monkeys immune to the human malarial parasite, Plasmodium falciparum, were fused with P3X63 Ag8.653 mouse myelomas. The resulting hybridomas were screened by an indirect fluorescent antibody test for the production of monkey monoclonal antibodies (mAb) reactive with P. falciparum. Most of the mAb reacted with the P. falciparum merozoites and immunoprecipitated a parasite-derived glycoprotein having a relative molecular weight of 185,000. These mAb gave a minimum of five different immunoprecipitation patterns, thus demonstrating that a large number of polypeptides obtained when parasitized erythrocytes are solubilized share epitopes with this large glycoprotein. In addition, mAb were obtained that reacted with antigens associated with the infected erythrocyte membrane. One of these mAb bound a Mr 95,000 antigen. Images PMID:3898084

  15. Monoclonal antibodies to the alternative oxidase of higher plant mitochondria

    SciTech Connect

    Elthon, T.E.; Nickels, R.L.; McIntosh, L. )

    1989-04-01

    The higher plant mitochondrial electron transport chain contains, in addition to the cytochrome chain which terminates with cytochrome oxidase, an alternative pathway that terminates with an alternative oxidase. The alternative oxidase of Sauromatum guttatum Schott has recently been identified as a cluster of proteins with apparent M{sub r} of 37, 36, and 35 kilodaltons (kD). Monoclonal antibodies have now been prepared to these proteins and designated as AOA (binding all three proteins of the alternative oxidase cluster), AOU (binding the upper or 37 kD protein), and AOL (binding the lower or 36 and 35 kD proteins). All three antibodies bind to their respective alternative oxidase proteins whether the proteins are in their native or denatured states. AOA and AOU inhibit alternative oxidase activity around 49%, whereas AOL inhibits activity only 14%. When coupled individually to Sepharose 4B, all three monoclonal resins were capable of retaining the entire cluster of alternative oxidase proteins, suggesting that these proteins are physically associated in some manner. The monoclonals were capable of binding similar mitochondrial proteins in a number of thermogenic and nonthermogenic species, indicating that they will be useful in characterizing and purifying the alternative oxidase of different systems. The ability of the monoclonal-Sepharose 4B resins to retain the cluster of previously identified alternative oxidase proteins, along with the inhibition of alternative oxidase activity by these monoclonals, supports the role of these proteins in constituting the alternative oxidase.

  16. Monoclonal IgA Antibodies for Aflatoxin Immunoassays.

    PubMed

    Ertekin, Özlem; Pirinçci, Şerife Şeyda; Öztürk, Selma

    2016-01-01

    Antibody based techniques are widely used for the detection of aflatoxins which are potent toxins with a high rate of occurrence in many crops. We developed a murine monoclonal antibody of immunoglobulin A (IgA) isotype with a strong binding affinity to aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2) and aflatoxin M1 (AFM1). The antibody was effectively used in immunoaffinity column (IAC) and ELISA kit development. The performance of the IACs was compatible with AOAC performance standards for affinity columns (Test Method: AOAC 991.31). The total binding capacity of the IACs containing our antibody was 111 ng, 70 ng, 114 ng and 73 ng for AFB1, AFB2, and AFG1 andAFG2, respectively. Furthermore, the recovery rates of 5 ng of each AF derivative loaded to the IACs were determined as 104.9%, 82.4%, 85.5% and 70.7% for AFB1, AFB2, AFG1 and AFG2, respectively. As for the ELISA kit developed using non-oriented, purified IgA antibody, we observed a detection range of 2-50 µg/L with 40 min total test time. The monoclonal antibody developed in this research is hitherto the first presentation of quadruple antigen binding IgA monoclonal antibodies in mycotoxin analysis and also the first study of their utilization in ELISA and IACs. IgA antibodies are valuable alternatives for immunoassay development, in terms of both sensitivity and ease of preparation, since they do not require any orientation effort. PMID:27187470

  17. Monoclonal IgA Antibodies for Aflatoxin Immunoassays

    PubMed Central

    Ertekin, Özlem; Pirinçci, Şerife Şeyda; Öztürk, Selma

    2016-01-01

    Antibody based techniques are widely used for the detection of aflatoxins which are potent toxins with a high rate of occurrence in many crops. We developed a murine monoclonal antibody of immunoglobulin A (IgA) isotype with a strong binding affinity to aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2) and aflatoxin M1 (AFM1). The antibody was effectively used in immunoaffinity column (IAC) and ELISA kit development. The performance of the IACs was compatible with AOAC performance standards for affinity columns (Test Method: AOAC 991.31). The total binding capacity of the IACs containing our antibody was 111 ng, 70 ng, 114 ng and 73 ng for AFB1, AFB2, and AFG1 andAFG2, respectively. Furthermore, the recovery rates of 5 ng of each AF derivative loaded to the IACs were determined as 104.9%, 82.4%, 85.5% and 70.7% for AFB1, AFB2, AFG1 and AFG2, respectively. As for the ELISA kit developed using non-oriented, purified IgA antibody, we observed a detection range of 2–50 µg/L with 40 min total test time. The monoclonal antibody developed in this research is hitherto the first presentation of quadruple antigen binding IgA monoclonal antibodies in mycotoxin analysis and also the first study of their utilization in ELISA and IACs. IgA antibodies are valuable alternatives for immunoassay development, in terms of both sensitivity and ease of preparation, since they do not require any orientation effort. PMID:27187470

  18. Treatment of leukemia with radiolabeled monoclonal antibodies.

    PubMed

    Sgouros, G; Scheinberg, D A

    1993-01-01

    In contrast to radioimmunotherapy of solid disease, wherein the primary obstacle to success is access of radiolabeled antibody to antigen-positive cells, in the treatment of leukemia delivering a lethal absorbed dose to the isolated cell appears to be the primary obstacle. The isolated cell is defined as one that is exposed only to self-irradiation (from internalized or surface-bound radiolabeled antibody) and to irradiation from free antibody in the blood. It is isolated in the sense that the particulate (beta, electron, alpha) emissions from its nearest neighboring antigen-positive cell do not contribute to its absorbed dose. Disease in the bone marrow and other tissues, since it is confined to a smaller volume, is more easily eradicated because the absorbed dose to a given cell nucleus is enhanced by emissions from adjacent cells (a smaller fraction of the emission energy is 'wasted'). The optimization simulations presented above for the M195 antibody suggest that the optimum dose of antibody that should be administered is that required to yield a concentration within the distribution volume of the antibody that is approximately equal to the concentration of antigen sites as determined by the tumor burden. Although not specifically considered in the modeling example presented above, antibody internalization and catabolism may be expected to play an important role in radioimmunotherapy treatment planning of leukemia. Depending upon the kinetics of internalization and catabolism, the absorbed dose to the red marrow and to antigen-positive cells may be reduced considerably, since catabolism, assuming that it is followed by rapid extrusion of the radioactive label, would decrease the cells' exposure time considerably. The recently demonstrated effectiveness of radioimmunotherapy in certain cases of B-cell lymphoma and in reducing tumor burden in acute myelogenous leukemia suggests that radioimmunotherapy is beginning to fulfill the promise held when it was initially

  19. Cysteinylation of a monoclonal antibody leads to its inactivation.

    PubMed

    McSherry, Troy; McSherry, Jennifer; Ozaeta, Panfilo; Longenecker, Kenton; Ramsay, Carol; Fishpaugh, Jeffrey; Allen, Steven

    2016-01-01

    Post-translational modifications can have a signification effect on antibody stability. A comprehensive approach is often required to best understand the underlying reasons the modification affects the antibody's potency or aggregation state. Monoclonal antibody 001 displayed significant variation in terms of potency, as defined by surface plasmon resonance testing (Biacore), from lot to lot independent of any observable aggregation or degradation, suggesting that a post-translational modification could be driving this variability. Analysis of different antibody lots using analytical hydrophobic interaction chromatography (HIC) uncovered multiple peaks of varying size. Electrospray ionization mass spectrometry (ESI-MS) indicated that the antibody contained a cysteinylation post-translational modification in complementarity-determining region (CDR) 3 of the antibody light chain. Fractionation of the antibody by HIC followed by ESI-MS and Biacore showed that the different peaks were antibody containing zero, one, or two cysteinylation modifications, and that the modification interferes with the ability of the modified antibody arm to bind antigen. Molecular modeling of the modified region shows that this oxidation of an unpaired cysteine in the antibody CDR would block a potential antigen binding pocket, suggesting an inhibition mechanism. PMID:27050640

  20. The Use of Monoclonal Antibodies in Human Prion Disease

    NASA Astrophysics Data System (ADS)

    Bodemer, Walter

    Detection of PrP and its pathological isoform(s) is the key to understanding the etiology and pathogenesis of transmissible spongiform encephalopathy. There is ample evidence that PrP isoforms constitute a major component of an unknown and perhaps unconventional infectious agent. An etiological relationship between human and zoonotic transmissible spongiform encephalopathies may be revealed with monoclonal antibodies. Knowledge of the conformational transition rendering a nonpathogenic, almost ubiquitous cellular protein into a pathogenic one is crucial to defining pathomechanisms. The stepwise or even continuous formation of pathogenic molecules can be monitored. Any improvement in the early diagnosis could help to conceive new therapeutic measures which are not currently available. Determination of PrP isoforms in tissue, cells, or body fluids may be of prognostic value. Many experimental approaches in molecular medicine and molecular biology of the prion protein already rely on monoclonal antibodies. Recombinant antibodies such as the single-chain Fv may soon replace traditional hybridoma techniques. Binding affinity can easily be manipulated by a number of techniques, including in vitro mutagenesis - a step which could never be carried out using the traditional hybridoma technology. Monoclonal antibodies are and will remain an essential support for ongoing research on the prion protein in general and on the unconventional infectious prions.

  1. Molecular specificities of monoclonal antibodies directed against virulent Treponema pallidum.

    PubMed Central

    Marchitto, K S; Selland-Grossling, C K; Norgard, M V

    1986-01-01

    Radioimmunoprecipitation (RIP) and Western blot analyses with specific anti-Treponema pallidum subsp. pallidum monoclonal antibodies were used to identify antigens with apparent masses of 102, 84, 54, 53, 52, 47, 32, 29, and 24 kilodaltons (kDa). Cross-reactivity of these antibodies with T. pallidum subsp. pertenue antigens and lack of cross-reactivity with T. phagedenis biotype Reiter, T. vincentii, T. refringens, T. scoliodontum, and T. denticola were also demonstrated by RIP and Western blot analyses. Reactivities in the T. pallidum immobilization test, along with the RIP of lactoperoxidase-catalyzed iodination products, suggested that the identified antigens were surface associated. The abundance and surface association of the 47- and 84-kDa antigens were supported by reactivity in the microhemagglutination test for T. pallidum and by strong reactivity of monoclonal antibodies upon indirect immunofluorescence assays with rabbit-cultivated T. pallidum subsp. pallidum, respectively, but not with T. phagedenis biotype Reiter. Anti-47-kDa and anti-84-kDa monoclonal antibodies were also reactive in indirect immunofluorescence assays using treponemes found in dark-field-positive smears of human genital ulcers. Images PMID:3510168

  2. sup 111 In-labeled nonspecific immunoglobulin scanning in the detection of focal infection

    SciTech Connect

    Rubin, R.H.; Fischman, A.J.; Callahan, R.J.; Khaw, B.A.; Keech, F.; Ahmad, M.; Wilkinson, R.; Strauss, H.W. )

    1989-10-05

    We performed radionuclide scanning after the intravenous injection of human IgG labeled with indium-111 in 128 patients with suspected focal sites of inflammation. Localization of 111In-labeled IgG correlated with clinical findings in 51 infected patients (21 with abdominal or pelvic infections, 11 with intravascular infections, 7 with pulmonary infections, and 12 with skeletal infections). Infecting organisms included gram-positive bacteria, gram-negative bacteria, Pneumocystis carinii, Mycoplasma pneumoniae, and Candida albicans. No focal localization of 111In-labeled IgG was observed in 63 patients without infection. There were five false negative results, and nine results were unusable. Serial scans were carried out in eight patients: continued localization correctly predicted relapse in six, and the absence of localization indicated resolution in two. To determine whether 111In-labeled IgG localization was specific for inflammation, we studied 16 patients with cancer. Focal localization occurred in 13 of these patients (5 with melanomas, 5 with gynecologic cancers, and 1 each with lymphoma, prostate cancer, and malignant fibrous histiocytoma). No localization was seen in patients with renal or colon cancer or metastatic medullary carcinoma of the thyroid. We conclude that 111In-labeled IgG imaging is effective for the detection of focal infection and that serial scans may be useful in assessing therapeutic efficacy. This technique may also be helpful in the evaluation of certain cancers.

  3. Current status of cancer immunodetection with radiolabeled human monoclonal antibodies.

    PubMed

    De Jager, R; Abdel-Nabi, H; Serafini, A; Pecking, A; Klein, J L; Hanna, M G

    1993-04-01

    The use of radiolabeled murine monoclonal antibodies (MoAbs) for cancer immunodetection has been limited by the development of human antimouse antibodies (HAMA). Human monoclonal antibodies do not elicit a significant human antihuman (HAHA) response. The generation and production of human monoclonal antibodies met with technical difficulties that resulted in delaying their clinical testing. Human monoclonal antibodies of all isotypes have been obtained. Most were immunoglobulin (Ig) M directed against intracellular antigens. Two antibodies, 16.88 (IgM) and 88BV59 (IgG3k), recognize different epitopes on a tumor-associated antigen, CTA 16.88, homologous to cytokeratins 8, 18, and 19. CTA 16.88 is expressed by most epithelial-derived tumors including carcinomas of the colon, pancreas, breast, ovary, and lung. The in vivo targeting by these antibodies is related to their localization in nonnecrotic areas of tumors. Repeated administration of 16.88 over 5 weeks to a cumulative dose of 1,000 mg did not elicit a HAHA response. Two of 53 patients developed a low titer of HAHA 1 to 3 months after a single administration of 88BV59. Planar imaging of colorectal cancer with Iodine-131 (131I)-16.88 was positive in two studies in 9 of 12 and 16 of 20 patients preselected by immunohistochemistry. Tumors less than 2 cm in diameter are usually not detected. The lack of immunogenicity and long tumor residence time (average = 17 days) makes 16.88 a good candidate for therapy. Radioimmunlymphoscintigraphy with indium-111 (111In)-LiLo-16.88 administered by an intramammary route was used in the presurgical staging of primary breast cancer. The negative predictive value of lymph node metastases for tumors less than 3 cm was 90.5%. Planar and single photon emission computed tomography imaging of colorectal carcinoma with technetium-99m (99mTc) 88BV59 was compared with computed tomography (CT) scan in 36 surgical patients. The antibody scan was more sensitive than the CT scan in detecting

  4. Human antiglioma monoclonal antibodies from patients with astrocytic tumors.

    PubMed

    Dan, M D; Schlachta, C M; Guy, J; McKenzie, R G; Dorscheid, D R; Sandor, V A; Villemure, J G; Price, G B

    1992-04-01

    The current management of malignant gliomas is unsatisfactory compared to that of other solid tumors; the expected median survival period is less than 1 year with the patient undergoing conventional surgery, radiotherapy, and chemotherapy treatment. Immunological reagents could be a useful adjunct. Human monoclonal antibodies derived from patients with astrocytic tumors might recognize subtle antigenic specificities that would differ from those recognized by xenogeneic (murine) systems. Five hybridomas, designated as BT27/1A2, BT27/2A3, BT32/A6, BT34/A5, and BT54/B8, were produced from the fusion of peripheral blood lymphocytes of four patients with astrocytic tumors to the human myeloma-like cell line TM-H2-SP2. This cell line has a 46, XX karyotype and is negative for hypoxanthine guanine phosphoribosyltransferase. All five human monoclonal antibodies produced 2.4 to 44 micrograms/ml of immunoglobulin M, had a similar but not identical pattern of reactivity against a panel of human tumor cell lines, and failed to react with normal human astrocytes. Labeling of four neuroectodermal tumor explant cultures by BT27/2A3 was demonstrated by flow cytometry. Karyotyping of three of the five hybridomas demonstrated that two were pseudodiploid (2-3n) and one hypodiploid (less than 2n). The monoclonality of the hybridomas was evaluated by Southern blot analysis of JH gene rearrangements, revealing two types of rearrangements for each hybridoma, both consistent with monoclonality. Preliminary antigen characterization indicated that at least four of the five human monoclonal antibodies were directed to cell-surface glycolipids. PMID:1545260

  5. Monoclonal Antibody Drugs for Systemic Lupus Erythematosus.

    PubMed

    Kamenarska, Zornitsa G; Hristova, Maria H; Vinkov, Anton I; Dourmishev, Lyubomir A

    2015-01-01

    Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease which engages most of the immune cells in its development. Various studies concerning the application of antibodies against TNF-α, BlyS, CD20, CD22, IL-6R and complement factors in treatment of SLE have been recently conducted and in spite of the good results reported by some of them, no definite conclusion on their risk-benefit profile can be drawn. The current review summarizes the results obtained in the field and reveals the perspectives for the development of new and more effective strategies for SLE treatment in combination with other immunomodulating drugs. PMID:26933777

  6. Biosimilar monoclonal antibodies in lymphoma: a critical appraisal.

    PubMed

    Rioufol, Catherine; Salles, Gilles

    2015-05-01

    Rituximab, an anti-CD20 monoclonal antibody, revolutionized the treatment of lymphoma. Although newer generation anti-CD20 monoclonal antibodies are being examined, patent expiries and patient demand have fueled the development of rituximab biosimilars. The development of such agents is both an important and difficult undertaking. By definition, although they aim to have safety and efficacy comparable with their reference agents, biosimilars are not exact replicas of those agents, and small changes in nonclinical and preclinical properties may ultimately affect in vivo activity. Consideration must be given to the complex mechanisms of action, sensitive patient populations that may be treated, and appropriate clinical trial endpoints. Furthermore, extrapolation of indications is multifaceted, deserving close examination. This review represents a critical look at biosimilars in lymphoma and their safety, efficacy and long-term effects on patient outcomes. PMID:25818308

  7. Immunohistochemical identification of cytotoxic lymphocytes using human perforin monoclonal antibody.

    PubMed Central

    Hameed, A.; Olsen, K. J.; Cheng, L.; Fox, W. M.; Hruban, R. H.; Podack, E. R.

    1992-01-01

    Perforin is a potent cytolytic pore-forming protein expressed in cytoplasmic granules of cytotoxic T lymphocytes and natural killer cells. A new monoclonal antibody raised against human perforin was used to detect both in vitro and in vivo perforin expression in cytotoxic cells. Immunohistochemical analysis of human peripheral blood mononuclear cells cultured in recombinant interleukin-2 (rIL-2) showed strong granular cytoplasmic staining of the IL-2 activated cytotoxic cells. Fresh-frozen tissue sections from patients with heart allograft rejection were also stained. Strong granular cytoplasmic staining of the mononuclear inflammatory infiltrate characteristic for perforin in cardiac allograft rejection was observed. The detection and quantitative analysis of perforin-associated cytotoxic cells by the human anti-perforin monoclonal antibody will help to evaluate the significance of these functionally distinct cytotoxic cells in human tissue. Images Figure 1 PMID:1374586

  8. Adverse Events of Monoclonal Antibodies Used for Cancer Therapy

    PubMed Central

    Guan, Mei; Zhou, Yan-Ping; Sun, Jin-Lu; Chen, Shu-Chang

    2015-01-01

    In 1997, the first monoclonal antibody (MoAb), the chimeric anti-CD20 molecule rituximab, was approved by the US Food and Drug administration for use in cancer patients. Since then, the panel of MoAbs that are approved by international regulatory agencies for the treatment of hematopoietic and solid malignancies has continued to expand, currently encompassing a stunning amount of 20 distinct molecules for 11 targets. We provide a brief scientific background on the use of MoAbs in cancer therapy, review all types of monoclonal antibodies-related adverse events (e.g., allergy, immune-related adverse events, cardiovascular adverse events, and pulmonary adverse events), and discuss the mechanism and treatment of adverse events. PMID:26075239

  9. [Increases in pharmaceutical expenditures of PHI by monoclonal antibodies].

    PubMed

    Wild, F

    2013-06-01

    The dynamics of one of the most innovative segments of health care and its impact on pharmaceutical expenditure of private health insurance (PHI) is examined on the basis of drug prescription data from private health insurance companies. The study shows that the increase in pharmaceutical expenditure can be explained partly by the new treatment possibilities available with monoclonal antibodies. The per capita expenditure on drugs with monoclonal antibodies increased by 255% from 2006 to 2010 in private health insurance, while the corresponding expenditure of all pharmaceuticals has risen by only 19% in the same period. In the coming years, growth on this scale will be a challenge for all payers in the health system. PMID:23926705

  10. Adverse events of monoclonal antibodies used for cancer therapy.

    PubMed

    Guan, Mei; Zhou, Yan-Ping; Sun, Jin-Lu; Chen, Shu-Chang

    2015-01-01

    In 1997, the first monoclonal antibody (MoAb), the chimeric anti-CD20 molecule rituximab, was approved by the US Food and Drug administration for use in cancer patients. Since then, the panel of MoAbs that are approved by international regulatory agencies for the treatment of hematopoietic and solid malignancies has continued to expand, currently encompassing a stunning amount of 20 distinct molecules for 11 targets. We provide a brief scientific background on the use of MoAbs in cancer therapy, review all types of monoclonal antibodies-related adverse events (e.g., allergy, immune-related adverse events, cardiovascular adverse events, and pulmonary adverse events), and discuss the mechanism and treatment of adverse events. PMID:26075239

  11. Human tumor antigens identified with monoclonal antibodies

    SciTech Connect

    AlSedairy, S.T.

    1987-01-01

    MoAbLc1 (IgM) and MoAbLc2 (IgG/sub 2a/) were produced against human lung carcinoma cell line (ChaGo). Lc1 recognizes a approx. = 330-kd/approx. = 310-kd glycoprotein complexes, and Lc2 recognizes a approx. = 60-kd/approx. = 47-kd protein complex. With a panel of cell lines of different tissue origin, Lc1 showed a more restricted reactivity to ChaGo; it cross-reacted with another lung carcinoma cell line (SK-Lc-2) and two breast carcinoma cell lines, but failed to react with cell lines of fetal lung, of colon, esophageal, prostate, stomach, and ovarian carcinomas, of B and T lymphoblastoid cells, neuroblastomas, glioblastoma, astrocytoma, and human peripheral blood lymphocytes. New and improved methods were developed for the production of indium-111-labeled MoAbs for tumor imaging. To facilitate the application of bicyclic anhydride diethylenetriaminepentaacetic acid (BADTPA) to In-111 labeling of antibodies, we have modified the original method by using C-14-labeled BADTPA, which allows precise quantitation of DTPA molecules incorporated. A new heterobifunctional reagent, 2,6-dioxo-N-(carboxyl)morpholine (DCM) was synthesized for chelating In-111 to MoAbs, and demonstrated higher retention of immunoreactivity of the labeled antibody.

  12. Monoclonal antibodies to the two most basic papaya proteinases.

    PubMed

    Goodenough, P W; Kilshaw, P J; McEwan, F; Owen, A J

    1986-08-01

    The proteinases from Carica papaya include papain, isoenzymes of chymopapain and two proteinases A and B distinguished by their unusually high pI. The identity of one of the most basic proteinases has been questioned. The present report describes the preparation and characterisation of two monoclonal antibodies that react specifically with papaya proteinases A and B respectively and a third that identifies a common structural feature found in papain and proteinase A. PMID:3545314

  13. Monoclonal antibodies directed against surface molecules of multicell spheroids

    NASA Technical Reports Server (NTRS)

    Martinez, Andrew O.

    1993-01-01

    The objective of this project is to generate a library of monoclonal antibodies (MAbs) to surface molecules of mammalian tumor and transformed cells grown as multicell spheroids (MCS). These MCS are highly organized, three dimensional multicellular structures which exhibit many characteristics of in vivo organized tissues not found in conventional monolayer or suspension culture; therefore, MCS make better in vitro model systems to study the interactions of mammalian cells. Additionally, they provide a functional assay for surface adhesion molecules.

  14. Positron emission tomographic imaging of tumors using monoclonal antibodies

    SciTech Connect

    Zalutsky, M.R.

    1992-08-01

    This research project is developing methods for utilizing positron emission tomography (PET) to increase the clinical potential of radiolabeled monoclonal antibodies (MAbs). This report describes the development of methods for labeling MAbs and their fragments with positron-emitting halogen nuclides, fluorine-18 and iodine-124. These nulides were selected because of the widespread availability of F-18 and because of our extensive experience in the development of new protein radiohalogenation methods.

  15. Production of Monoclonal Antibodies in Plants for Cancer Immunotherapy

    PubMed Central

    Moussavou, Ghislain; Ko, Kisung; Lee, Jeong-Hwan; Choo, Young-Kug

    2015-01-01

    Plants are considered as an alternative platform for recombinant monoclonal antibody (mAb) production due to the improvement and diversification of transgenic techniques. The diversity of plant species offers a multitude of possibilities for the valorization of genetic resources. Moreover, plants can be propagated indefinitely, providing cheap biomass production on a large scale in controlled conditions. Thus, recent studies have shown the successful development of plant systems for the production of mAbs for cancer immunotherapy. However, their several limitations have to be resolved for efficient antibody production in plants. PMID:26550566

  16. Current status of tumor imaging with monoclonal antibodies.

    PubMed

    Blend, M J

    1991-12-01

    Although the full potential of MoAb imaging has yet to be realized, technologic advances continue with great intensity at a number of academic and industrial research institutions. Continuous production of MoAbs will eventually yield a variety of highly specific antibodies and novel approaches for improving cancer detection. As new diagnostic and therapeutic methods continue to be developed, MoAbs will begin to play a major role as targeted carriers, provided adequate funding from industry and government can be readily obtained. At present, the future of monoclonal antibodies in diagnosis and therapy for cancer patients appears promising. PMID:1790666

  17. Monoclonal antibodies for medical oncology: a few critical perspectives.

    PubMed

    Belda-Iniesta, Cristóbal; Ibáñez de Cáceres, Inmaculada; de Castro, Javier

    2011-02-01

    Incorporation of antibodies as weapons for cancer therapy has meant a turning point in the survival, clinical and radiological response of many oncology patients. These drugs are effective, well designed missiles that either alone or in combination with chemotherapy are unavoidable weapons for breast, lung and colon cancer as well as for haematological tumours. In addition, incoming monoclonal antibodies (mAbs) and folder-like proteins will be incorporated into clinical practice in the near future. This review aims to discuss a few imminent indications of current mAbs that are used for solid tumours and to briefly introduce future mAbs to the reader. PMID:21324795

  18. Recovery and purification process development for monoclonal antibody production

    PubMed Central

    Ma, Junfen; Winter, Charles; Bayer, Robert

    2010-01-01

    Hundreds of therapeutic monoclonal antibodies (mAbs) are currently in development, and many companies have multiple antibodies in their pipelines. Current methodology used in recovery processes for these molecules are reviewed here. Basic unit operations such as harvest, Protein A affinity chromatography and additional polishing steps are surveyed. Alternative processes such as flocculation, precipitation and membrane chromatography are discussed. We also cover platform approaches to purification methods development, use of high throughput screening methods, and offer a view on future developments in purification methodology as applied to mAbs. PMID:20647768

  19. Characterization of rabbit cells by monoclonal and polyclonal antibodies.

    PubMed Central

    Ponsard, D C; Cinader, B; Chou, C T; Dubiski, S

    1986-01-01

    Reagents for the identification of rabbit cell markers have been developed at a relatively slow rate. In this paper, rabbit cells are being characterized by polyclonal antibodies against a T-cell antigen (RTLA), a B-cell antigen (RABELA) and an analogue of murine Ia antigen. A number of monoclonal antibodies, specific for lymphocytes and/or bone marrow and/or polymorphonuclear leucocytes, have been used for the analysis of cells with identifiable membrane antigens. Populations that have cells with two of the above antigens in the membranes were identified. To these ends, complement-mediated cell kill by antisera alone and in mixtures was employed. PMID:3489667

  20. [Continuous perfusion culture hybridoma cells for production of monoclonal antibody].

    PubMed

    Mi, Li; Li, Ling; Feng, Qiang; Yu, Xiao-Ling; Chen, Zhi-Nan

    2002-05-01

    Hybridoma cells were cultured by continuous perfusion in Fibra-Cel of 5L packed-bed bioreactor for 22 days in low serum or serum-free media. The corresponded amino acids were fed and serum concentration was decreased by analyzing glucose concentration, oxygen uptake rate, secretary antibody amount and amino acids concentration in culture supernatant. Comparing with continuous perfusion culture that amino acids were not fed, antibody amount of production was increased about 2-3 times. The inoculated cell density was 2.5 x 10(5) cells/mL, while the final cell density was 8.79 x 10(8) cells/mL. Antibody production was reached 295 mg/L/d at average level, and the highest level was reached 532 mg/L/d. These results provided a primary mode of enlarge culture for monoclonal antibody industralization. PMID:12192875

  1. Monoclonal Antibodies to Shigella Lipopolysaccharide Are Useful for Vaccine Production.

    PubMed

    Lin, Jisheng; Smith, Mark A; Benjamin, William H; Kaminski, Robert W; Wenzel, Heather; Nahm, Moon H

    2016-08-01

    There is a significant need for an effective multivalent Shigella vaccine that targets the most prevalent serotypes. Most Shigella vaccines under development utilize serotype-specific lipopolysaccharides (LPSs) as a major component based on protection and epidemiological data. As vaccine formulations advance from monovalent to multivalent, assays and reagents need to be developed to accurately and reproducibly quantitate the amount of LPSs from multiple serotypes in the final product. To facilitate this effort, we produced 36 hybridomas that secrete monoclonal antibodies (MAbs) against the O antigen on the LPS from Shigella flexneri 2a, Shigella flexneri 3a, and Shigella sonnei We used six of these monoclonal antibodies for an inhibition enzyme-linked immunosorbent assay (iELISA), measuring LPSs with high sensitivity and specificity. It was also demonstrated that the Shigella serotype-specific MAbs were useful for bacterial surface staining detected by flow cytometry. These MAbs are also useful for standardizing the serum bactericidal assay (SBA) for Shigella Functional assays, such as the in vitro bactericidal assay, are necessary for vaccine evaluation and may serve as immunological correlates of immunity. An S. flexneri 2a-specific monoclonal antibody killed S. flexneri 2b isolates, suggesting that S. flexneri 2a LPS may induce cross-protection against S. flexneri 2b. Overall, the Shigella LPS-specific MAbs described have potential utility to the vaccine development community for assessing multivalent vaccine composition and as a reliable control for multiple immunoassays used to assess vaccine potency. PMID:27280622

  2. Antibody-mediated immune suppression is improved when blends of anti-RBC monoclonal antibodies are used in mice.

    PubMed

    Bernardo, Lidice; Amash, Alaa; Marjoram, Danielle; Lazarus, Alan H

    2016-08-25

    Although the prevention of hemolytic disease of the fetus and newborn is highly effective using polyclonal anti-D, a recombinant alternative is long overdue. Unfortunately, anti-D monoclonal antibodies have been, at best, disappointing. To determine the primary attribute defining an optimal antibody, we assessed suppression of murine red blood cell (RBC) immunization by single-monoclonal antibodies vs defined blends of subtype-matched antibodies. Allogeneic RBCs expressing the HOD antigen (hen egg lysozyme [HEL]-ovalbumin-human transmembrane Duffy(b)) were transfused into naïve mice alone or together with selected combinations of HEL-specific antibodies, and the resulting suppressive effect was assessed by evaluating the antibody response. Polyclonal HEL antibodies dramatically inhibited the antibody response to the HOD antigen, whereas single-monoclonal HEL antibodies were less effective despite the use of saturating doses. A blend of monoclonal HEL-specific antibodies reactive with different HEL epitopes significantly increased the suppressive effect, whereas a blend of monoclonal antibodies that block each other's binding to the HEL protein did not increase suppression. In conclusion, these data show that polyclonal antibodies are superior to monoclonal antibodies at suppressing the immune response to the HOD cells, a feature that can be completely recapitulated using monoclonal antibodies to different epitopes. PMID:27330002

  3. Pharmacokinetics of the monoclonal antibody B72. 3 and its fragments labeled with either /sup 125/I or /sup 111/In

    SciTech Connect

    Brown, B.A.; Comeau, R.D.; Jones, P.L.; Liberatore, F.A.; Neacy, W.P.; Sands, H.; Gallagher, B.M.

    1987-02-15

    A comparison of the pharmacokinetics of intact B72.3 (a murine monoclonal antibody specific for human breast and colon carcinoma) with F(ab')2 and Fab fragments labeled with /sup 111/In and /sup 125/I was done in athymic mice bearing target (LS174T) and non-target (HCT-15) tumors. IgG B72.3 labeled with either isotype imaged LS174T. Biodistributions of both labels were similar in all organs except liver. F(ab')2 also imaged the LS174T tumor, while Fab bearing either isotype did not. The blood clearance was Fab greater than F(ab')2 greater than immunoglobulin G B72.3 for both isotopes. /sup 111/In-labeled fragments yielded large accumulations in the kidneys which persisted for 2 days. The different patterns of biodistribution for the various forms of B72.3 labeled with the two isotopes suggest that the most desirable combination of fragment and isotope will depend on the intended use.

  4. Isolation of human monoclonal antibodies from peripheral blood B cells.

    PubMed

    Huang, Jinghe; Doria-Rose, Nicole A; Longo, Nancy S; Laub, Leo; Lin, Chien-Li; Turk, Ellen; Kang, Byong H; Migueles, Stephen A; Bailer, Robert T; Mascola, John R; Connors, Mark

    2013-10-01

    Isolation of monoclonal antibodies is an important technique for understanding the specificities and characteristics of antibodies that underlie the humoral immune response to a given antigen. Here we describe a technique for isolating monoclonal antibodies from human peripheral blood mononuclear cells. The protocol includes strategies for the isolation of switch-memory B cells from peripheral blood, the culture of B cells, the removal of the supernatant for screening and the lysis of B cells in preparation for immunoglobulin heavy-chain and light-chain amplification and cloning. We have observed that the addition of cytokines IL-2, IL-21 and irradiated 3T3-msCD40L feeder cells can successfully stimulate switch-memory B cells to produce high concentrations of IgG in the supernatant. The supernatant may then be screened by appropriate assays for binding or for other functions. This protocol can be completed in 2 weeks. It is adaptable to use in other species and enables the efficient isolation of antibodies with a desired functional characteristic without prior knowledge of specificity. PMID:24030440

  5. Monkey-derived monoclonal antibodies against Plasmodium falciparum

    SciTech Connect

    Stanley, H.A.; Reese, R.T.

    1985-09-01

    A system has been developed that allows efficient production of monkey monoclonal antibodies from owl monkeys. Splenocytes or peripheral blood lymphocytes from monkeys immune to the human malarial parasite, Plasmodium falciparum, were fused with P3X63 Ag8.653 mouse myelomas. The resulting hybridomas were screened by an indirect fluorescent antibody test for the production of monkey monoclonal antibodies (mAb) reactive with P. falciparum. Most of the mAb reacted with the P. falciparum merozoites and immunoprecipitated a parasite-derived glycoprotein having a relative molecular weight of 185,000. These mAb gave a minimum of five different immunoprecipitation patterns, thus demonstrating that a large number of polypeptides obtained when parasitized erythrocytes are solubilized share epitopes with this large glycoprotein. In addition, mAb were obtained that reacted with antigens associated with the infected erythrocyte membrane. One of these mAb bound a M/sub r/ 95,000 antigen. Radioimmunoprecipitation assays using /sup 125/T-antibodies were done.

  6. Efficient generation of monoclonal antibodies from single rhesus macaque antibody secreting cells

    PubMed Central

    Meng, Weixu; Li, Leike; Xiong, Wei; Fan, Xuejun; Deng, Hui; Bett, Andrew J; Chen, Zhifeng; Tang, Aimin; Cox, Kara S; Joyce, Joseph G; Freed, Daniel C; Thoryk, Elizabeth; Fu, Tong-Ming; Casimiro, Danilo R; Zhang, Ningyan; A Vora, Kalpit; An, Zhiqiang

    2015-01-01

    Nonhuman primates (NHPs) are used as a preclinical model for vaccine development, and the antibody profiles to experimental vaccines in NHPs can provide critical information for both vaccine design and translation to clinical efficacy. However, an efficient protocol for generating monoclonal antibodies from single antibody secreting cells of NHPs is currently lacking. In this study we established a robust protocol for cloning immunoglobulin (IG) variable domain genes from single rhesus macaque (Macaca mulatta) antibody secreting cells. A sorting strategy was developed using a panel of molecular markers (CD3, CD19, CD20, surface IgG, intracellular IgG, CD27, Ki67 and CD38) to identify the kinetics of B cell response after vaccination. Specific primers for the rhesus macaque IG genes were designed and validated using cDNA isolated from macaque peripheral blood mononuclear cells. Cloning efficiency was averaged at 90% for variable heavy (VH) and light (VL) domains, and 78.5% of the clones (n = 335) were matched VH and VL pairs. Sequence analysis revealed that diverse IGHV subgroups (for VH) and IGKV and IGLV subgroups (for VL) were represented in the cloned antibodies. The protocol was tested in a study using an experimental dengue vaccine candidate. About 26.6% of the monoclonal antibodies cloned from the vaccinated rhesus macaques react with the dengue vaccine antigens. These results validate the protocol for cloning monoclonal antibodies in response to vaccination from single macaque antibody secreting cells, which have general applicability for determining monoclonal antibody profiles in response to other immunogens or vaccine studies of interest in NHPs. PMID:25996084

  7. Analysis of acetylcholine receptor phosphorylation sites using antibodies to synthetic peptides and monoclonal antibodies.

    PubMed Central

    Safran, A; Neumann, D; Fuchs, S

    1986-01-01

    Three peptides corresponding to residues 354-367, 364-374, 373-387 of the acetylcholine receptor (AChR) delta subunit were synthesized. These peptides represent the proposed phosphorylation sites of the cAMP-dependent protein kinase, the tyrosine-specific protein kinase and the calcium/phospholipid-dependent protein kinase respectively. Using these peptides as substrates for phosphorylation by the catalytic subunit of cAMP-dependent protein kinase it was shown that only peptides 354-367 was phosphorylated whereas the other two were not. These results verify the location of the cAMP-dependent protein kinase phosphorylation site within the AChR delta subunit. Antibodies elicited against these peptides reacted with the delta subunit. The antipeptide antibodies and two monoclonal antibodies (7F2, 5.46) specific for the delta subunit were tested for their binding to non-phosphorylated receptor and to receptor phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. Antibodies to peptide 354-367 were found to react preferentially with non-phosphorylated receptor whereas the two other anti-peptide antibodies bound equally to phosphorylated and non-phosphorylated receptors. Monoclonal antibody 7F2 reacted preferentially with the phosphorylated form of the receptor whereas monoclonal antibody 5.46 did not distinguish between the two forms. Images Fig. 2. Fig. 4. Fig. 5. PMID:3816758

  8. Using monoclonal antibodies to prevent mucosal transmission of epidemic infectious diseases.

    PubMed Central

    Zeitlin, L.; Cone, R. A.; Whaley, K. J.

    1999-01-01

    Passive immunization with antibodies has been shown to prevent a wide variety of diseases. Recent advances in monoclonal antibody technology are enabling the development of new methods for passive immunization of mucosal surfaces. Human monoclonal antibodies, produced rapidly, inexpensively, and in large quantities, may help prevent respiratory, diarrheal, and sexually transmitted diseases on a public health scale. PMID:10081672

  9. [Progress in preparation of small monoclonal antibodies of knock out technique].

    PubMed

    Liu, Jing; Mao, Xin-min; Li, Lin-lin; Li, Xin-xia; Wang, Ye; Lan, Yi

    2015-10-01

    With the application of monoclonal antibody technology more and more widely, its production technology is becoming more and more perfect. Small molecule monoclonal antibody technology is becoming a hot research topic for people. The application of traditional Chinese medicine small molecule monoclonal antibody technology has been more and more widely, the technology for effective Chinese medicine component knockout provide strong technical support. The preparation of monoclonal antibodies and small molecule knockout technology are reviewed in this paper. The preparation of several steps, such as: in the process of preparation of antigen, hapten carrier coupling, coupling ratio determination and identification of artificial antigen and establishment of animal immunization and hybridoma cell lines of monoclonal antibody, the large-scale preparation; small molecule monoclonal antibody on Immune in affinity chromatography column method is discussed in detail. The author believes that this technology will make the traditional Chinese medicine research on a higher level, and improve the level of internationalization of Chinese medicine research. PMID:26975094

  10. Improved tumor localization with increasing dose of indium-111-labeled anti-carcinoembryonic antigen monoclonal antibody ZCE-025 in metastatic colorectal cancer

    SciTech Connect

    Patt, Y.Z.; Lamki, L.M.; Haynie, T.P.; Unger, M.W.; Rosenblum, M.G.; Shirkhoda, A.; Murray, J.L.

    1988-08-01

    Monoclonal antibodies (MoAbs) against carcinoembryonic antigen (CEA) react with human colorectal cancer cells, and when labeled with a gamma-emitting radioisotope, may help to localize known and occult metastatic disease. We tested ZCE-025, a high-affinity immune gamma globulin1 (IgG1) MoAb anti-CEA that does not react with normal granulocyte glycoproteins in a phase I/II trial to determine the reagent's toxicity and its maximum efficacy in detecting metastatic colorectal cancer. Increasing doses of unlabeled ZCE-025 were mixed with 1 mg of Indium-111 (111In)-radiolabeled MoAb and administered intravenously (IV) to 34 patients who had metastatic colorectal cancer. Planar nuclear or single photon emission computed tomographic (SPECT) scans were performed 48 to 72 and 120 to 144 hours later. Total dose of MoAb and scanning sensitivity (number of imaged lesions/number of known lesions) were correlated up to 80 mg. At doses of 2.5 to 20 mg, a mean of 22% of the lesions were imaged; at 40 mg, 77% were imaged (P less than .01). Liver metastases were detected as areas of increased activity (hot) at the 40 mg dose but showed decreased MoAb uptake at lower doses. At the 40 mg dose normal liver parenchymal uptake of the labeled MoAb was lower with respect to blood pool compared with the other doses. At 80 mg, however, sensitivity of detection declined to 21%. One milligram of 111In-labeled ZCE-025 antibody coinfused with 39 mg of unlabeled antibody appeared optimal for detecting metastatic colorectal cancer, particularly in the liver. Although the exact mechanism(s) for this dose effect is currently unknown, a partial blocking effect of unlabeled antibody with a change in MoAb biodistribution may be occurring.

  11. Macaque Monoclonal Antibodies Targeting Novel Conserved Epitopes within Filovirus Glycoprotein

    PubMed Central

    Keck, Zhen-Yong; Enterlein, Sven G.; Howell, Katie A.; Vu, Hong; Shulenin, Sergey; Warfield, Kelly L.; Froude, Jeffrey W.; Araghi, Nazli; Douglas, Robin; Biggins, Julia; Lear-Rooney, Calli M.; Wirchnianski, Ariel S.; Lau, Patrick; Wang, Yong; Herbert, Andrew S.; Dye, John M.; Glass, Pamela J.; Holtsberg, Frederick W.; Foung, Steven K. H.

    2015-01-01

    ABSTRACT Filoviruses cause highly lethal viral hemorrhagic fever in humans and nonhuman primates. Current immunotherapeutic options for filoviruses are mostly specific to Ebola virus (EBOV), although other members of Filoviridae such as Sudan virus (SUDV), Bundibugyo virus (BDBV), and Marburg virus (MARV) have also caused sizeable human outbreaks. Here we report a set of pan-ebolavirus and pan-filovirus monoclonal antibodies (MAbs) derived from cynomolgus macaques immunized repeatedly with a mixture of engineered glycoproteins (GPs) and virus-like particles (VLPs) for three different filovirus species. The antibodies recognize novel neutralizing and nonneutralizing epitopes on the filovirus glycoprotein, including conserved conformational epitopes within the core regions of the GP1 subunit and a novel linear epitope within the glycan cap. We further report the first filovirus antibody binding to a highly conserved epitope within the fusion loop of ebolavirus and marburgvirus species. One of the antibodies binding to the core GP1 region of all ebolavirus species and with lower affinity to MARV GP cross neutralized both SUDV and EBOV, the most divergent ebolavirus species. In a mouse model of EBOV infection, this antibody provided 100% protection when administered in two doses and partial, but significant, protection when given once at the peak of viremia 3 days postinfection. Furthermore, we describe novel cocktails of antibodies with enhanced protective efficacy compared to individual MAbs. In summary, the present work describes multiple novel, cross-reactive filovirus epitopes and innovative combination concepts that challenge the current therapeutic models. IMPORTANCE Filoviruses are among the most deadly human pathogens. The 2014-2015 outbreak of Ebola virus disease (EVD) led to more than 27,000 cases and 11,000 fatalities. While there are five species of Ebolavirus and several strains of marburgvirus, the current immunotherapeutics primarily target Ebola virus

  12. Structural Basis of Human Parechovirus Neutralization by Human Monoclonal Antibodies

    PubMed Central

    Shakeel, Shabih; Westerhuis, Brenda M.; Ora, Ari; Koen, Gerrit; Bakker, Arjen Q.; Claassen, Yvonne; Wagner, Koen; Beaumont, Tim; Wolthers, Katja C.

    2015-01-01

    ABSTRACT Since it was first recognized in 2004 that human parechoviruses (HPeV) are a significant cause of central nervous system and neonatal sepsis, their clinical importance, primarily in children, has started to emerge. Intravenous immunoglobulin treatment is the only treatment available in such life-threatening cases and has given moderate success. Direct inhibition of parechovirus infection using monoclonal antibodies is a potential treatment. We have developed two neutralizing monoclonal antibodies against HPeV1 and HPeV2, namely, AM18 and AM28, which also cross-neutralize other viruses. Here, we present the mapping of their epitopes using peptide scanning, surface plasmon resonance, fluorescence-based thermal shift assays, electron cryomicroscopy, and image reconstruction. We determined by peptide scanning and surface plasmon resonance that AM18 recognizes a linear epitope motif including the arginine-glycine-aspartic acid on the C terminus of capsid protein VP1. This epitope is normally used by the virus to attach to host cell surface integrins during entry and is found in 3 other viruses that AM18 neutralizes. Therefore, AM18 is likely to cause virus neutralization by aggregation and by blocking integrin binding to the capsid. Further, we show by electron cryomicroscopy, three-dimensional reconstruction, and pseudoatomic model fitting that ordered RNA interacts with HPeV1 VP1 and VP3. AM28 recognizes quaternary epitopes on the capsid composed of VP0 and VP3 loops from neighboring pentamers, thereby increasing the RNA accessibility temperature for the virus-AM28 complex compared to the virus alone. Thus, inhibition of RNA uncoating probably contributes to neutralization by AM28. IMPORTANCE Human parechoviruses can cause mild infections to severe diseases in young children, such as neonatal sepsis, encephalitis, and cardiomyopathy. Intravenous immunoglobulin treatment is the only treatment available in such life-threatening cases. In order to develop more

  13. Poliovirus neutralization epitopes: analysis and localization with neutralizing monoclonal antibodies.

    PubMed Central

    Emini, E A; Jameson, B A; Lewis, A J; Larsen, G R; Wimmer, E

    1982-01-01

    Two hybridomas (H3 and D3) secreting monoclonal neutralizing antibody to intact poliovirus type 1 (Mahoney strain) were established. Each antibody bound to a site qualitatively different from that to which the other antibody bound. The H3 site was located on intact virions and, to a lesser extent, on 80S naturally occurring empty capsids and 14S precursor subunits. The D3 site was found only on virions and empty capsids. Neither site was expressed on 80S heat-treated virions. The antibodies did not react with free denatured or undenatured viral structural proteins. Viral variants which were no longer capable of being neutralized by either one or the other antibody were obtained. Such variants arose during normal cell culture passage of wild-type virus and were present in the progeny viral population on the order of 10(-4) variant per wild-type virus PFU. Toluene-2,4-diisocyanate, a heterobifunctional covalent cross-linking reagent, was used to irreversibly bind the F(ab) fragments of the two antibodies to their respective binding sites. In this way, VP1 was identified as the structural protein containing both sites. PMID:6183443

  14. Endotoxin reduction in monoclonal antibody preparations using arginine.

    PubMed

    Ritzén, Ulrika; Rotticci-Mulder, Joke; Strömberg, Patrik; Schmidt, Stefan R

    2007-09-01

    A monoclonal antibody preparation was found to be contaminated with endotoxin. Several commercial endotoxin removal steps were attempted but failed to produce a significant reduction due to the fact that the endotoxin was associated with the antibody. Here, several methods for endotoxin removal based on immobilizing monoclonal antibodies to chromatographic media have been evaluated. A crucial step in this process was to dissociate the endotoxin from the protein surface for subsequent removal. This was accomplished by introducing different buffer additives in the mobile phase. In agreement with previous reports, non-ionic detergents efficiently removed endotoxin, but it was also found that 0.5M arginine performed equally well. Since arginine is a non-toxic common amino acid that can be readily removed, it was selected and successfully used in large-scale experiments. With this method, endotoxin could be reduced to <0.2 EU mg(-1) with recovery of the target protein being >95%. Since this procedure is easily integrated into the existing processes of mAb purification, it offers advantages in speed, cost and effort. PMID:17644450

  15. Immunolocalization of neuroblastoma using radiolabeled monoclonal antibody UJ13A

    SciTech Connect

    Goldman, A.; Vivian, G.; Gordon, I.; Pritchard, J.; Kemshead, J.

    1984-08-01

    The monoclonal antibody UJ13A, raised after immunization of mice with human fetal brain, recognized an antigen expressed on human neuroblastoma cell lines and fresh tumors. Antibody was purified and radiolabeled with iodine isotopes using chloramine-T. In preclinical studies, 125I-labeled UJ13A was injected intravenously into nude mice bearing xenografts of human neuroblastoma. Radiolabeled UJ13A uptake by the tumors was four to 23 times greater than that by blood. In control animals, injected with a similar quantity of a monoclonal antibody known not to bind to neuroblastoma cells in vitro (FD44), there was no selective tumor uptake. Nine patients with histologically confirmed neuroblastoma each received 100 to 300 micrograms UJ13A radiolabeled with 1 to 2.8 mCi 123I or 131I. Sixteen positive sites were visible on gamma scans 1 to 7 days after injection: 15 were primary or secondary tumor sites, and one was a false positive; there were two false negatives. In two of the 15 positive sites, tumor had not been demonstrated by other imaging techniques; these were later confirmed as areas of malignant infiltration. No toxicity was encountered.

  16. Labeling of cerebral amyloid in vivo with a monoclonal antibody.

    PubMed

    Walker, L C; Price, D L; Voytko, M L; Schenk, D B

    1994-07-01

    We assessed the ability of a murine monoclonal antibody to bind selectively to beta-amyloid in the brains of living nonhuman primates. To circumvent the blood-brain barrier, we injected unlabeled antibody 10D5 (murine whole IgG1 and/or Fab fragments) into the cerebrospinal fluid of the cisterna magna in three aged monkeys. A control animal was given an intracisternal injection of nonimmune mouse whole IgG plus Fab. Twenty-four hours later, the animals were perfused and prepared for immunohistochemical detection of bound murine immunoglobulin in brain. All three experimental animals showed selective binding of 10D5 to approximately 5-15% of amyloid deposits in cerebral cortex, primarily near the cortical surface. There was no labeling in the control animal. In vivo-labeled deposits were confirmed to be beta-amyloid by electron microscopy and by in vitro immunohistochemistry in adjacent sections. The animals tolerated the injection well, although some polymorphonuclear leukocytes infiltrated portions of the subarachnoid space and superficial neocortex. These results provide the first demonstration that it may be feasible to selectively direct a tagged monoclonal antibody to beta-amyloid in the brain for therapeutic or diagnostic purposes. With enhancement of labeling efficiency, the method also may be useful for studying the progression of beta-amyloidosis in experimental animals using emission tomography. PMID:8021711

  17. Development and application of a monoclonal antibody against Thiothrix spp.

    PubMed Central

    Brigmon, R L; Bitton, G; Zam, S G; O'Brien, B

    1995-01-01

    Historically, methods used to identify Thiothrix spp. in environmental samples have been inadequate because isolation and identification procedures are time-consuming and often fail to separate Thiothrix spp. from other filamentous microorganisms. We described a monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) procedure which was used to identify Thiothrix spp. in wastewater, artesian springs, groundwater, and underwater subterranean samples. The ELISA utilized monoclonal antibody T3511 to a species-specific carbohydrate epitope of Thiothrix spp. No cross-reactions were observed among non-Thiothrix strains consisting of 12 species and nine genera. In field trials, the ELISA identified 100% of 20 biochemically and cytologically confirmed Thiothrix spp.-containing samples with no false positives. Indirect immunofluorescent microscopy utilizing T3511 was effective for wastewater samples but not for those from natural spring water because of background fluorescence in the latter. In addition, electron micrographs of Thiothrix spp. labeled with T3511-biotin-anti-mouse antibody-gold showed that epitope T3511 was intracellular both in laboratory strains and environmental isolates. The minimum level of detection of the ELISA was 0.10 microgram/ml. PMID:7887596

  18. Comparison of type 2 and type 6 fimbriae of Bordetella pertussis by using agglutinating monoclonal antibodies.

    PubMed

    Li, Z M; Brennan, M J; David, J L; Carter, P H; Cowell, J L; Manclark, C R

    1988-12-01

    Two types of fimbriae have been identified on the pathogenic gram-negative organism Bordetella pertussis. Monoclonal antibodies to these fimbriae were produced to better understand the role of fimbriae as serotype-specific agglutinogens and to investigate the antigenic relationship between these fimbriae. Three monoclonal antibodies were identified that specifically agglutinated B. pertussis cells containing the U.S. Reference Factor 2 agglutinogen, and six monoclonal antibodies were produced that agglutinated only those strains containing the U.S. Reference Factor 6 agglutinogen. Indirect immunofluorescence studies and immunogold electron microscopy demonstrated that these monoclonal antibodies bind to an outer membrane component on serotype-specific strains of B. pertussis. All of the monoclonal antibodies reacted with native or partially assembled type-specific fimbriae but not with monomeric fimbrial subunits as indicated by Western blot (immunoblot) analysis. The fimbrial agglutinogens recognized by the monoclonal antibodies were also uniquely reactive with either U.S. Reference Factor 2 or 6 antiserum (Eldering agglutinogen 2 or 6 polyclonal antiserum) in an indirect ELISA. No cross-reactivity of the monoclonal antibodies with the unrelated fimbriae was observed in any of the comparative immunological studies. Some of the monoclonal antibodies agglutinated certain strains of B. bronchiseptica, suggesting that this closely related species can contain antigenically similar fimbriae. These monoclonal antibodies should prove useful for further structural and functional analysis of Bordetella fimbriae and for studies on the role that these antigens play in prevention of infection and disease. PMID:2903125

  19. Comparison of type 2 and type 6 fimbriae of Bordetella pertussis by using agglutinating monoclonal antibodies.

    PubMed Central

    Li, Z M; Brennan, M J; David, J L; Carter, P H; Cowell, J L; Manclark, C R

    1988-01-01

    Two types of fimbriae have been identified on the pathogenic gram-negative organism Bordetella pertussis. Monoclonal antibodies to these fimbriae were produced to better understand the role of fimbriae as serotype-specific agglutinogens and to investigate the antigenic relationship between these fimbriae. Three monoclonal antibodies were identified that specifically agglutinated B. pertussis cells containing the U.S. Reference Factor 2 agglutinogen, and six monoclonal antibodies were produced that agglutinated only those strains containing the U.S. Reference Factor 6 agglutinogen. Indirect immunofluorescence studies and immunogold electron microscopy demonstrated that these monoclonal antibodies bind to an outer membrane component on serotype-specific strains of B. pertussis. All of the monoclonal antibodies reacted with native or partially assembled type-specific fimbriae but not with monomeric fimbrial subunits as indicated by Western blot (immunoblot) analysis. The fimbrial agglutinogens recognized by the monoclonal antibodies were also uniquely reactive with either U.S. Reference Factor 2 or 6 antiserum (Eldering agglutinogen 2 or 6 polyclonal antiserum) in an indirect ELISA. No cross-reactivity of the monoclonal antibodies with the unrelated fimbriae was observed in any of the comparative immunological studies. Some of the monoclonal antibodies agglutinated certain strains of B. bronchiseptica, suggesting that this closely related species can contain antigenically similar fimbriae. These monoclonal antibodies should prove useful for further structural and functional analysis of Bordetella fimbriae and for studies on the role that these antigens play in prevention of infection and disease. Images PMID:2903125

  20. Characterization of group II avian adenoviruses with a panel of monoclonal antibodies.

    PubMed Central

    van den Hurk, J V; van Drunen Littel-van den Hurk, S

    1988-01-01

    The interaction between a panel of ten monoclonal antibodies and hemorrhagic enteritis virus, a group II avian adenovirus, was determined. The monoclonal antibodies reacted with all nine isolates of group II avian adenoviruses, but not with any of five types of group I avian adenoviruses. All ten monoclonal antibodies recognized antigenic determinants on the hexon protein of hemorrhagic enteritis virus when analyzed by immunoprecipitation and immunoblotting. They reacted only with the native hexon protein and not with protein denatured by sodium dodecyl sulfate or guanidine-HCl/urea treatment combined with reduction and carboxymethylation. Based on the results of competitive binding assays, the panel of monoclonal antibodies could be subdivided into two groups, which recognized different antigenic domains of the hemorrhagic enteritis virus hexon protein. The monoclonal antibodies in group 1 neutralized hemorrhagic enteritis virus infectivity while the monoclonal antibodies of group 2 did not. Group 1 consisted of eight monoclonal antibodies which could be further subdivided into subgroups 1A, 1B, 1C and 1D. The subdivision of the monoclonal antibodies was based on the degree of blocking in the competitive binding assays and differences in their ability to induce enhancement. In general, the monoclonal antibodies had a higher avidity for the virulent isolate of hemorrhagic enteritis virus than for the avirulent hemorrhagic enteritis virus isolate. Images Fig. 1. Fig. 2. Fig. 4. PMID:2461793

  1. Monoclonal antibody that preferentially binds polylysine, polyarginine, and histones and selectively decorates nuclei and chromosomes.

    PubMed Central

    Morgan, J L; Dennis, D D

    1984-01-01

    A monoclonal antibody, designated J-57, selectively and uniformly decorates the interphase nuclei and mitotic chromosomes of a variety of eucaryotic cells as determined by indirect immunofluorescence. As determined by enzyme-linked immunosorbent assay, however, this monoclonal antibody is not monospecific. It reacts weakly with cytochrome c, RNase A, and brain tubulin. By these tests monoclonal antibody J-57 has broad cross-reactivity similar to that of antisera directed against polylysine. The differential reactions of this monoclonal antibody suggest that it may be a useful immunohistochemical probe for nuclei and chromosomes in whole cells. Images PMID:6490815

  2. [Production of the monoclonal antibodies to the rabies virus nucleoprotein].

    PubMed

    Gribencha, S V; Kozlov, A Iu; Kostina, L V; Elakov, A L; Losich, M A; Tsibezov, V V; Zaberezhnyĭ, A D; Aliper, T I

    2013-01-01

    Five hybridomas secreting monoclonal antibodies (MAbs) for the nucleocapsid protein of the rabies virus were obtained through the fusion of the SP2/0 murine myeloma cells with splenocytes of BALB/c mice immunized with fixed rabies virus (CVS strain). All hybridomas secret MAbs of the IgG class that display different specificity to the nucleocapsids of rabies and rabies-related viruses. MAbs 2ell showed the specificity for the prevalent in Russia rabies viruses that are similar to commercially available anti-rabies conjugate. PMID:24640170

  3. Immunosuppression associated with novel chemotherapy agents and monoclonal antibodies.

    PubMed

    Morrison, Vicki A

    2014-11-15

    The introduction of novel agents to the therapeutic armamentarium for oncologic, rheumatologic, and neurologic disorders has resulted in major clinical advances. These agents impact immune function, resulting in a discrete spectrum of infectious complications. Purine analogues and alemtuzumab alter cell-mediated immunity, resulting in opportunistic viral/fungal infections. Herpes zoster incidence increases with bortezomib. Hepatitis B reactivation may occur with rituximab. Cases of progressive multifocal leukoencephalopathy have occurred following monoclonal antibody therapy. Tumor necrosis factor-α inhibitor therapy is complicated by tuberculosis reactivation and fungal infections. We summarize the impact of these therapies on pathogenesis and spectrum of infection complicating their usage. PMID:25352632

  4. Rapid diagnosis of whooping cough using monoclonal antibody.

    PubMed Central

    Boreland, P C; Gillespie, S H; Ashworth, L A

    1988-01-01

    A counterimmunoelectrophoresis (CIE) method for antigen detection using monoclonal antibody was assessed for its ability to aid in the rapid diagnosis of Bordetella pertussis in 59 patients. A positive diagnosis from a combination of results from tests of serum and urine was obtained in 51 (87%) of cases. For sera, CIE had a sensitivity of 85% and a specificity of 94%; for urine samples the sensitivity was 81% and a specificity of 100%. Antigen detection by CIE is simple to perform and yields results on the same day, thus allowing treatment to begin at an early stage. PMID:2898488

  5. Development of monoclonal antibodies in China: overview and prospects.

    PubMed

    Zhang, Mao-Yu; Lu, Jin-Jian; Wang, Liang; Gao, Zi-Chao; Hu, Hao; Ung, Carolina Oi Lam; Wang, Yi-Tao

    2015-01-01

    Monoclonal antibodies (mAbs) have become increasingly important as human therapeutic agents. Yet, current research concentrates on technology itself and pays attention to developed countries. This paper aims to provide a comprehensive review of mAbs development in China through systematic analysis of drug registry, patent applications, clinical trials, academic publication, and ongoing R&D projects. The trends in therapeutic areas and industrialization process are also highlighted. Development and research trends of mAbs are analyzed to provide a future perspective of mAbs as therapeutic agents in China. PMID:25811022

  6. Development of Monoclonal Antibodies in China: Overview and Prospects

    PubMed Central

    Zhang, Mao-Yu; Lu, Jin-Jian; Wang, Liang; Gao, Zi-Chao; Ung, Carolina Oi Lam; Wang, Yi-Tao

    2015-01-01

    Monoclonal antibodies (mAbs) have become increasingly important as human therapeutic agents. Yet, current research concentrates on technology itself and pays attention to developed countries. This paper aims to provide a comprehensive review of mAbs development in China through systematic analysis of drug registry, patent applications, clinical trials, academic publication, and ongoing R&D projects. The trends in therapeutic areas and industrialization process are also highlighted. Development and research trends of mAbs are analyzed to provide a future perspective of mAbs as therapeutic agents in China. PMID:25811022

  7. Positron emission tomographic imaging of tumors using monoclonal antibodies

    SciTech Connect

    Zalutsky, M.R. . Dept. of Radiology)

    1989-12-01

    The overall objective of this research project is to develop methods for utilizing positron emission tomography (PET) to increase the clinical potential of radiolabeled monoclonal antibodies (MAbs). Both diagnostic and therapeutic applications of labeled MAbs could be improved as a result of knowledge obtained through the exploitation of the advantageous imaging characteristics associated with PET. By labeling MAbs with positron-emitting nuclides, it should be possible to quantitate the dynamics of their three-dimensional distribution in vivo. Our long-term goals are to apply this approach. 3 tabs.

  8. Monoclonal antibodies to Nocardia asteroides and Nocardia brasiliensis antigens.

    PubMed Central

    Jiménez, T; Díaz, A M; Zlotnik, H

    1990-01-01

    Nocardia asteroides and Nocardia brasiliensis whole-cell extracts were used as antigens to generate monoclonal antibodies (MAbs). Six stable hybrid cell lines secreting anti-Nocardia spp. MAbs were obtained. These were characterized by enzyme-linked immunosorbent assay, Western blot (immunoblot), and immunofluorescence assay. Although all the MAbs exhibited different degrees of cross-reactivity with N. asteroides and N. brasiliensis antigens as well as with culture-filtrate antigens from Mycobacteria spp., they have the potential for use as reagents in the purification of Nocardia antigens. Images PMID:2405017

  9. Monoclonal Antibodies in Cancer Therapy: Mechanisms, Successes and Limitations

    PubMed Central

    Coulson, A; Levy, A; Gossell-Williams, M

    2014-01-01

    ABSTRACT Rituximab was the first chemotherapeutic monoclonal antibody (CmAb) approved for clinical use in cancer therapeutics in 1997 and has significantly improved the clinical outcomes in non-Hodgkin's lymphoma. Since then, numerous CmAbs have been developed and approved for the treatment of various haematologic and solid human cancers. In this review, the classification, efficacy and significantly reduced toxicity of CmAbs available for use in the United States of America are presented. Finally, the limitations of CmAbs and future considerations are explored. PMID:25803383

  10. Monoclonal Antibody Shows Promise as Potential Therapeutic for MERS | Poster

    Cancer.gov

    A monoclonal antibody has proven effective in preventing Middle Eastern Respiratory Syndrome (MERS) in lab animals, suggesting further development as a potential intervention for the deadly disease in humans, according to new research. MERS is a newly emerged coronavirus first detected in humans in 2012. Most cases have occurred in the Middle East, but the disease has appeared elsewhere. In all, MERS has infected more than 1,700 individuals and killed more than 600, according to the World Health Organization. No vaccines or antiviral therapies currently exist. Several candidate vaccines are being developed, and some have been tested in animal models, a prerequisite to human clinical trials.

  11. Monoclonal antibodies directed against surface molecules of multicell spheroids

    NASA Technical Reports Server (NTRS)

    Martinez, Andrew O.

    1993-01-01

    The objective of this project is to generate a library of monoclonal antibodies (MAb's) to surface molecules involved in the cell-cell interactions of mammalian cells grown as multicell spheroids (MCS). MCS are highly organized 3-dimensional multicellular structures which exhibit many characteristics in vivo tissues not found in conventional monolayer or suspension culture. They also provide a functional assay for surface adhesion molecules. In brief, MCS combine the relevance of organized tissues with the accuracy of in vitro methodology. Further, one can manipulate these MCS experimentally to discern important information about their biology.

  12. Boronated monoclonal antibody conjugates for neutron capture therapy

    SciTech Connect

    Borg, D.C.; Elmore, J.J. Jr.; Ferrone, S.

    1986-01-01

    Monoclonal antibodies (MoAbs) to tumor-associated antigens are attractive for concentrating /sup 10/B in cancer tissue, in part because neutron capture therapy (NCT) is not disadvantaged by the hours to days required to optimize tumor:background concentration ratios of MoAbs or their F(ab')/sub 2/ or Fab fragments. Since direct coupling of /sup 10/B compounds in amounts sufficient for radiotherapy appears to inactivate MoAbs, the authors used dextran intermediate carriers to provide high levels of /sup 10/B per MoAb while modifying fewer amino acid residues.

  13. Therapeutic monoclonal antibodies and derivatives: Historical perspectives and future directions.

    PubMed

    Rodgers, Kyla R; Chou, Richard C

    2016-11-01

    Biologics, both monoclonal antibodies (mAbs) and fusion proteins, have revolutionized the practice of medicine. This year marks the 30th anniversary of the Food and Drug Administration approval of the first mAb for human use. In this review, we examine the biotechnological breakthroughs that spurred the explosive development of the biopharmaceutical mAb industry, as well as how critical lessons learned about human immunology informed the development of improved biologics. We also discuss the most common mechanisms of action of currently approved biologics and the indications for which they have been approved to date. PMID:27460206

  14. Monoclonal antibody-based immunotherapy for multiple myeloma.

    PubMed

    Danylesko, Ivetta; Beider, Katia; Shimoni, Avichai; Nagler, Arnon

    2012-09-01

    Multiple myeloma (MM) is a life-threatening hematological malignancy. High-dose chemotherapy followed by autologous stem cell transplantation is a relatively effective treatment, but disease recurrence remains a major obstacle. Allogeneic transplantation may result in durable responses and cure due to antitumor immunity mediated by donor lymphocytes. However, morbidity and mortality related to graft-versus-host disease remain a challenge. Recent advances in understanding the interaction between the immune system of the patient and the malignant cells are influencing the design of clinically more efficient study protocols for MM. This review will focus on MM antigens and their specific antibodies. These monoclonal antibodies are an attractive therapeutic tool for MM humoral immunotherapy, with most promising preclinical results. PMID:23046236

  15. Internal radiation dosimetry for clinical testing of radiolabeled monoclonal antibodies

    SciTech Connect

    Fisher, D.R.; Durham, J.S.; Hui, T.E.; Hill, R.L.

    1990-11-01

    In gauging the efficacy of radiolabeled monoclonal antibodies in cancer treatment, it is important to know the amount of radiation energy absorbed by tumors and normal tissue per unit administered activity. This paper describes methods for estimating absorbed doses to human tumors and normal tissues, including intraperitoneal tissue surfaces, red marrow, and the intestinal tract from incorporated radionuclides. These methods use the Medical Internal Radiation Dose (MIRD) scheme; however, they also incorporate enhancements designed to solve specific dosimetry problems encountered during clinical studies, such as patient-specific organ masses obtained from computerized tomography (CT) volumetrics, estimates of the dose to tumor masses within normal organs, and multicellular dosimetry for studying dose inhomogeneities in solid tumors. Realistic estimates of absorbed dose are provided within the short time requirements of physicians so that decisions can be made with regard to patient treatment and procurement of radiolabeled antibodies. Some areas in which further research could improve dose assessment are also discussed. 16 refs., 3 figs.

  16. Discovery and characterization of hydroxylysine in recombinant monoclonal antibodies.

    PubMed

    Xie, Qing; Moore, Benjamin; Beardsley, Richard L

    2016-01-01

    Tryptic peptide mapping analysis of a Chinese hamster ovary (CHO)-expressed, recombinant IgG1 monoclonal antibody revealed a previously unreported +16 Da modification. Through a combination of MS(n) experiments, and preparation and analysis of known synthetic peptides, the possibility of a sequence variant (Ala to Ser) was ruled out and the presence of hydroxylysine was confirmed. Post-translational hydroxylation of lysine was found in a consensus sequence (XKG) known to be the site of modification in other proteins such as collagen, and was therefore presumed to result from the activity of the CHO homolog of the lysyl hydroxylase complex. Although this consensus sequence was present in several locations in the antibody sequence, only a single site on the heavy-chain Fab was found to be modified. PMID:26651858

  17. Mass Spectrometry for the Biophysical Characterization of Therapeutic Monoclonal Antibodies

    PubMed Central

    Zhang, Hao; Cui, Weidong; Gross, Michael L.

    2014-01-01

    Monoclonal antibodies (mAbs) are powerful therapeutics, and their characterization has drawn considerable attention and urgency. Unlike small-molecular drugs (150-600 Da) that have rigid structures, mAbs (~150 kDa) are engineered proteins that undergo complicated folding and can exist in a number of low-energy structures, posing a challenge for traditional methods in structural biology. Mass spectrometry (MS)-based biophysical characterization approaches can provide structural information, bringing high sensitivity, fast turnaround, and small sample consumption. This review outlines various MS-based strategies for protein biophysical characterization and then reviews how these strategies provide structural information of mAbs at the protein level (intact or top-down approaches), peptide, and residue level (bottom-up approaches), affording information on higher order structure, aggregation, and the nature of antibody complexes. PMID:24291257

  18. A review of monoclonal antibody therapies in lymphoma.

    PubMed

    Teo, Esmeralda Chi-yuan; Chew, Yveline; Phipps, Colin

    2016-01-01

    Monoclonal antibodies (moAb) represent a novel way of delivering therapy through specific target antigens expressed on lymphoma cells and minimizes the collateral damage that is common with conventional chemotherapy. The paradigm of this approach is the targeting of CD20 by rituximab. Since its FDA approval in 1997, rituximab has become the standard of care in almost every line of therapy in most B-cell lymphomas. This review will briefly highlight some of the key rituximab trials while looking more closely at the evidence that is bringing other antibodies, including next generation anti-CD20 moAbs, and anti-CD30 moAbs, among others to the forefront of lymphoma therapy. PMID:26318093

  19. NCI Requests Targets for Monoclonal Antibody Production and Characterization - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    In an effort to provide well-characterized monoclonal antibodies to the scientific community, NCI's Antibody Characterization Program requests cancer-related protein targets for affinity production and distribution.

  20. Monoclonal antibodies to native noncollagenous bone-specific proteins.

    PubMed Central

    Stenner, D D; Romberg, R W; Tracy, R P; Katzmann, J A; Riggs, B L; Mann, K G

    1984-01-01

    Hybridoma technology was used for preparation of murine monoclonal antibodies of high titer against bone-Gla protein and osteonectin. A procedure of immunization and hybridization similar to that already described [Katzmann, J.A., Nesheim, M.E., Hibbard, L.S. & Mann, K.G. (1981) Proc. Natl. Acad. Sci. USA 78, 162-166; and Foster, W.B., Katzmann, J.A., Miller, R.S., Nesheim, M.E. & Mann, K.G. (1982) Thromb. Res. 28, 649-661] was used. However, in contrast to earlier studies, mice were immunized with an unfractionated protein mixture that had been extracted from bone under nondenaturing conditions. The extract was labeled with 125I by the chloramine-T method. After fusion and initial hybrid growth, screening was accomplished by a solid-phase radioimmunoassay with total 125I-labeled bovine bone protein extract as the tracer. The identities of antibody-bound 125I-labeled proteins were assessed by dissolution of the solid-phase immune complex in NaDodSO4 and subsequent electrophoresis and autoradiography. Clones producing specific antibody to a single protein were selected by limiting dilution. The identity of the proteins against which the specific antibodies were produced was confirmed by immunoprecipitation, electrophoresis, and autoradiography. From two fusions, 30 positive hybrids to bone-Gla protein were identified; 7 of these were subcloned and 1 has been expanded as an ascites tumor. One hybrid population was positive for osteonectin, a Mr 15,000 peptide, and for bone-Gla protein. By limiting dilution, the osteonectin clone was selected and subsequently expanded as an ascites tumor. Titration curves made using the respective 125I-labeled purified proteins show the ascites tumors to be producing antibody of high titer (I50 = 10(-6) for anti-bone-Gla protein and (I50 = 10(-5) for antiosteonectin. Both of the antibovine antibodies are cross-reactive with the corresponding human protein. Immobilized specific anti-bone-Gla protein has been used to isolate human bone

  1. Neutralizing determinants defined by monoclonal antibodies on polypeptides specified by bovine herpesvirus 1.

    PubMed Central

    Collins, J K; Butcher, A C; Riegel, C A; McGrane, V; Blair, C D; Teramoto, Y A; Winston, S

    1984-01-01

    Monoclonal antibodies were used to study neutralizing determinants on polypeptides of bovine herpesvirus 1. Two of three monoclonal antibodies which recognized nonoverlapping epitopes on a glycoprotein of 82,000 daltons were found to neutralize. A second group of monoclonal antibodies that individually precipitated five viral glycopolypeptides ranging in size from 102,000 to 55,000 daltons also neutralized. Two monoclonal antibodies which were the most efficient in neutralization recognized a non-glycosylated protein of 115,000 daltons which was the major polypeptide on the virus. A fourth group of monoclonal antibodies precipitated a non-glycosylated polypeptide of 91,000 daltons and several smaller polypeptides, but these antibodies demonstrated only limited neutralizing activity. Images PMID:6208375

  2. Monoclonal antibody-directed radioimmunoassay of specific cytochromes P-450

    SciTech Connect

    Song, B.J.; Fujino, T.; Park, S.S.; Friedman, F.K.; Gelboin, H.V.

    1984-02-10

    A rapid solid phase radioimmunoassay (RIA) for cytochromes P-450 has been developed utilizing specific monoclonal antibodies to major forms of rat liver cytochrome P-450 that are induced by 3-methylcholanthrene (MC-P-450) and phenobarbital (PB-P-450). Monoclonal antibodies (MAbs) that were endogenously labeled with (/sup 35/S)methionine were used to detect MAb-specific cytochromes P-450 in liver microsomes from untreated rats and rats pretreated with 3-methylcholanthrene (MC) or phenobarbital. The competitive binding assays are rapid and can detect cytochrome P-450 in less than 100 ng of microsomal protein. Tthe RIA was used to examine the distribution of MAb-specific cytochromes P-450 in extrahepatic tissues of MC-treated rats; an approximately 30- to 50-fold greater amount of MC-P-450 in liver relative to lung and kidney was observed, which corresponds well with aryl hydrocarbon hydroxylase activity in these tissues. The inducibility of MAb-specific cytochromes P-450 were observed in MC-treated rats, guinea pigs, and C57BL/6 mice, all highly inducible for aryl hydrocarbon hydroxylase; little increase was observed for the relatively noninducible DBA/2 mouse strain.

  3. Monoclonal Antibodies Directed to Fucoidan Preparations from Brown Algae

    PubMed Central

    Torode, Thomas A.; Marcus, Susan E.; Jam, Murielle; Tonon, Thierry; Blackburn, Richard S.; Hervé, Cécile; Knox, J. Paul

    2015-01-01

    Cell walls of the brown algae contain a diverse range of polysaccharides with useful bioactivities. The precise structures of the sulfated fucan/fucoidan group of polysaccharides and their roles in generating cell wall architectures and cell properties are not known in detail. Four rat monoclonal antibodies, BAM1 to BAM4, directed to sulfated fucan preparations, have been generated and used to dissect the heterogeneity of brown algal cell wall polysaccharides. BAM1 and BAM4, respectively, bind to a non-sulfated epitope and a sulfated epitope present in the sulfated fucan preparations. BAM2 and BAM3 identified additional distinct epitopes present in the fucoidan preparations. All four epitopes, not yet fully characterised, occur widely within the major brown algal taxonomic groups and show divergent distribution patterns in tissues. The analysis of cell wall extractions and fluorescence imaging reveal differences in the occurrence of the BAM1 to BAM4 epitopes in various tissues of Fucus vesiculosus. In Ectocarpus subulatus, a species closely related to the brown algal model Ectocarpus siliculosus, the BAM4 sulfated epitope was modulated in relation to salinity levels. This new set of monoclonal antibodies will be useful for the dissection of the highly complex and yet poorly resolved sulfated polysaccharides in the brown algae in relation to their ecological and economic significance. PMID:25692870

  4. Monoclonal antibodies directed to fucoidan preparations from brown algae.

    PubMed

    Torode, Thomas A; Marcus, Susan E; Jam, Murielle; Tonon, Thierry; Blackburn, Richard S; Hervé, Cécile; Knox, J Paul

    2015-01-01

    Cell walls of the brown algae contain a diverse range of polysaccharides with useful bioactivities. The precise structures of the sulfated fucan/fucoidan group of polysaccharides and their roles in generating cell wall architectures and cell properties are not known in detail. Four rat monoclonal antibodies, BAM1 to BAM4, directed to sulfated fucan preparations, have been generated and used to dissect the heterogeneity of brown algal cell wall polysaccharides. BAM1 and BAM4, respectively, bind to a non-sulfated epitope and a sulfated epitope present in the sulfated fucan preparations. BAM2 and BAM3 identified additional distinct epitopes present in the fucoidan preparations. All four epitopes, not yet fully characterised, occur widely within the major brown algal taxonomic groups and show divergent distribution patterns in tissues. The analysis of cell wall extractions and fluorescence imaging reveal differences in the occurrence of the BAM1 to BAM4 epitopes in various tissues of Fucus vesiculosus. In Ectocarpus subulatus, a species closely related to the brown algal model Ectocarpus siliculosus, the BAM4 sulfated epitope was modulated in relation to salinity levels. This new set of monoclonal antibodies will be useful for the dissection of the highly complex and yet poorly resolved sulfated polysaccharides in the brown algae in relation to their ecological and economic significance. PMID:25692870

  5. Production of a diagnostic monoclonal antibody in perennial alfalfa plants.

    PubMed

    Khoudi, H; Laberge, S; Ferullo, J M; Bazin, R; Darveau, A; Castonguay, Y; Allard, G; Lemieux, R; Vézina, L P

    1999-07-20

    The increasing use of monoclonal antibodies (mAbs) in diagnostic reagents necessitates efficient and cost-effective mAb production methods. In blood banks, one of the most routinely used reagents is the anti-human IgG reagent used for the detection of non-agglutinating antibodies. Here we report the production of a functional, purified anti-human IgG, through the expression of its encoding genes in perennial transgenic alfalfa. Transgenic plants expressing the light- and heavy-chain encoding mRNAs were obtained, and plants from crosses were found to express fully assembled C5-1. The purification procedure yielded mainly the H2L2 form with specificity and affinity identical to those of hybridoma-derived C5-1. The ability to accumulate the antibody was maintained both in parental F1 lines during repeated harvesting and in clonal material; the antibody was stable in the drying hay as in extracts made in pure water. Also, plant and hybridoma-derived C5-1 had similar in vivo half-lives in mice. These results indicate that plant C5-1 could be used in a diagnostic reagent as effectively as hybridoma-derived C5-1, and demonstrates the usefulness of perennial systems for the cost-effective, stable, and reliable production of large amounts of mAbs. PMID:10397849

  6. Examination of HER3 targeting in cancer using monoclonal antibodies.

    PubMed

    Gaborit, Nadège; Abdul-Hai, Ali; Mancini, Maicol; Lindzen, Moshit; Lavi, Sara; Leitner, Orith; Mounier, Lucile; Chentouf, Myriam; Dunoyer, Sai; Ghosh, Manjusha; Larbouret, Christel; Chardès, Thierry; Bazin, Hervé; Pèlegrin, André; Sela, Michael; Yarden, Yosef

    2015-01-20

    The human EGF receptor (HER/EGFR) family of receptor tyrosine kinases serves as a key target for cancer therapy. Specifically, EGFR and HER2 have been repeatedly targeted because of their genetic aberrations in tumors. The therapeutic potential of targeting HER3 has long been underestimated, due to relatively low expression in tumors and impaired kinase activity. Nevertheless, in addition to serving as a dimerization partner of EGFR and HER2, HER3 acts as a key player in tumor cells' ability to acquire resistance to cancer drugs. In this study, we generated several monoclonal antibodies to HER3. Comparisons of their ability to degrade HER3, decrease downstream signaling, and inhibit growth of cultured cells, as well as recruit immune effector cells, selected an antibody that later emerged as the most potent inhibitor of pancreatic cancer cells grown as tumors in animals. Our data predict that anti-HER3 antibodies able to intercept autocrine and stroma-tumor interactions might strongly inhibit tumor growth, in analogy to the mechanism of action of anti-EGFR antibodies routinely used now to treat colorectal cancer patients. PMID:25564668

  7. Examination of HER3 targeting in cancer using monoclonal antibodies

    PubMed Central

    Gaborit, Nadège; Abdul-Hai, Ali; Mancini, Maicol; Lindzen, Moshit; Lavi, Sara; Leitner, Orith; Mounier, Lucile; Chentouf, Myriam; Dunoyer, Sai; Ghosh, Manjusha; Larbouret, Christel; Chardès, Thierry; Bazin, Hervé; Pèlegrin, André; Sela, Michael; Yarden, Yosef

    2015-01-01

    The human EGF receptor (HER/EGFR) family of receptor tyrosine kinases serves as a key target for cancer therapy. Specifically, EGFR and HER2 have been repeatedly targeted because of their genetic aberrations in tumors. The therapeutic potential of targeting HER3 has long been underestimated, due to relatively low expression in tumors and impaired kinase activity. Nevertheless, in addition to serving as a dimerization partner of EGFR and HER2, HER3 acts as a key player in tumor cells’ ability to acquire resistance to cancer drugs. In this study, we generated several monoclonal antibodies to HER3. Comparisons of their ability to degrade HER3, decrease downstream signaling, and inhibit growth of cultured cells, as well as recruit immune effector cells, selected an antibody that later emerged as the most potent inhibitor of pancreatic cancer cells grown as tumors in animals. Our data predict that anti-HER3 antibodies able to intercept autocrine and stroma–tumor interactions might strongly inhibit tumor growth, in analogy to the mechanism of action of anti-EGFR antibodies routinely used now to treat colorectal cancer patients. PMID:25564668

  8. Screening individual hybridomas by microengraving to discover monoclonal antibodies

    PubMed Central

    Ogunniyi, Adebola O; Story, Craig M; Papa, Eliseo; Guillen, Eduardo; Love, J Christopher

    2014-01-01

    The demand for monoclonal antibodies (mAbs) in biomedical research is significant, but the current methodologies used to discover them are both lengthy and costly. Consequently, the diversity of antibodies available for any particular antigen remains limited. Microengraving is a soft lithographic technique that provides a rapid and efficient alternative for discovering new mAbs. This protocol describes how to use microengraving to screen mouse hybridomas to establish new cell lines producing unique mAbs. Single cells from a polyclonal population are isolated into an array of microscale wells (~105 cells per screen). The array is then used to print a protein microarray, where each element contains the antibodies captured from individual wells. The antibodies on the microarray are screened with antigens of interest, and mapped to the corresponding cells, which are then recovered from their microwells by micromanipulation. Screening and retrieval require approximately 1–3 d (9–12 d including the steps for preparing arrays of microwells). PMID:19528952

  9. Screening individual hybridomas by microengraving to discover monoclonal antibodies.

    PubMed

    Ogunniyi, Adebola O; Story, Craig M; Papa, Eliseo; Guillen, Eduardo; Love, J Christopher

    2009-01-01

    The demand for monoclonal antibodies (mAbs) in biomedical research is significant, but the current methodologies used to discover them are both lengthy and costly. Consequently, the diversity of antibodies available for any particular antigen remains limited. Microengraving is a soft lithographic technique that provides a rapid and efficient alternative for discovering new mAbs. This protocol describes how to use microengraving to screen mouse hybridomas to establish new cell lines producing unique mAbs. Single cells from a polyclonal population are isolated into an array of microscale wells (approximately 10(5) cells per screen). The array is then used to print a protein microarray, where each element contains the antibodies captured from individual wells. The antibodies on the microarray are screened with antigens of interest, and mapped to the corresponding cells, which are then recovered from their microwells by micromanipulation. Screening and retrieval require approximately 1-3 d (9-12 d including the steps for preparing arrays of microwells). PMID:19528952

  10. Tau Monoclonal Antibody Generation Based on Humanized Yeast Models

    PubMed Central

    Rosseels, Joëlle; Van den Brande, Jeff; Violet, Marie; Jacobs, Dirk; Grognet, Pierre; Lopez, Juan; Huvent, Isabelle; Caldara, Marina; Swinnen, Erwin; Papegaey, Anthony; Caillierez, Raphaëlle; Buée-Scherrer, Valerie; Engelborghs, Sebastiaan; Lippens, Guy; Colin, Morvane; Buée, Luc; Galas, Marie-Christine; Vanmechelen, Eugeen; Winderickx, Joris

    2015-01-01

    A link between Tau phosphorylation and aggregation has been shown in different models for Alzheimer disease, including yeast. We used human Tau purified from yeast models to generate new monoclonal antibodies, of which three were further characterized. The first antibody, ADx201, binds the Tau proline-rich region independently of the phosphorylation status, whereas the second, ADx215, detects an epitope formed by the Tau N terminus when Tau is not phosphorylated at Tyr18. For the third antibody, ADx210, the binding site could not be determined because its epitope is probably conformational. All three antibodies stained tangle-like structures in different brain sections of THY-Tau22 transgenic mice and Alzheimer patients, and ADx201 and ADx210 also detected neuritic plaques in the cortex of the patient brains. In hippocampal homogenates from THY-Tau22 mice and cortex homogenates obtained from Alzheimer patients, ADx215 consistently stained specific low order Tau oligomers in diseased brain, which in size correspond to Tau dimers. ADx201 and ADx210 additionally reacted to higher order Tau oligomers and presumed prefibrillar structures in the patient samples. Our data further suggest that formation of the low order Tau oligomers marks an early disease stage that is initiated by Tau phosphorylation at N-terminal sites. Formation of higher order oligomers appears to require additional phosphorylation in the C terminus of Tau. When used to assess Tau levels in human cerebrospinal fluid, the antibodies permitted us to discriminate patients with Alzheimer disease or other dementia like vascular dementia, indicative that these antibodies hold promising diagnostic potential. PMID:25540200

  11. Characterization of a monoclonal antibody to thymidine glycol monophosphate

    SciTech Connect

    Chen, B.X.; Hubbard, K.; Ide, H.; Wallace, S.S.; Erlanger, B.F. )

    1990-11-01

    A monoclonal antibody specific for thymine glycol (TG) in irradiated or OsO4-treated DNA was obtained by immunizing with thymidine glycol monophosphate (TMP-glycol) conjugated to bovine serum albumin by a carbodiimide procedure. Screening by dot-immunobinding and enzyme-linked immunosorbant assay (ELISA) procedures gave eight clones that bound OsO4- treated DNA. One of them, 2.6F.6B.6C, an IgG2a kappa, was characterized further. Hapten inhibition studies with OsO4-treated DNA showed that the antibody was specific for TMP-glycol. Among the various inhibitors tested, inhibition was in the order TMP-glycol greater than 5,6-dihydrothymidine phosphate greater than TMP greater than thymidine glycol greater than TG. Inhibition by 5,6-dihydrothymidine, thymidine, thymine, AMP, and CMP was negligible. In OsO4-treated DNA, as few as 0.5 TG per 10,000 bp were detectable by direct ELISA. Inhibition assays could detect as few as 1.5 TG per 10,000 bp. The antibody was equally reactive with native or denatured DNA containing TG. Among the X-irradiated homopolymers dC, dA, dG, and dT, only dT reacted with the antibody. Using an ELISA, the antibody could detect damage in irradiated DNA at the level of 20 Gy. Thus the antibody is of potential use in assays for DNA damage caused by X rays or other agents that damage DNA by free radical interactions.

  12. Polyclonal and monoclonal antibody therapy for experimental Pseudomonas aeruginosa pneumonia.

    PubMed Central

    Pennington, J E; Small, G J; Lostrom, M E; Pier, G B

    1986-01-01

    A human immunoglobulin G preparation, enriched in antibodies to lipopolysaccharide (LPS) Pseudomonas aeruginosa antigens (PA-IGIV) and murine monoclonal antibodies (MAb) to P. aeruginosa Fisher immunotype-1 (IT-1) LPS antigen and outer membrane protein F (porin), were evaluated for therapeutic efficacy in a guinea pig model of P. aeruginosa pneumonia. The concentration of antibodies to IT-1 LPS was 7.6 micrograms/ml in PA-IGIV and 478 micrograms/ml in the IT-1 MAb preparation. No antibody to IT-1 was detected in MAb to porin. For study, animals were infected by intratracheal instillation of IT-1 P. aeruginosa and then treated 2 h later with intravenous infusions of PA-IGIV, IT-1 MAb, or porin MAb. Control groups received intravenous albumin, and routinely died from pneumonia. Both PA-IGIV (500 mg/kg) and IT-1 MAb (greater than or equal to 2.5 mg/kg) treatment resulted in increased survival (P less than 0.01 to 0.001), and also improved intrapulmonary killing of bacteria. Porin MAb failed to protect from fatal pneumonia. IT-1 MAb treatment produced more survivals than did PA-IGIV treatment but only at dosages of MAb resulting in serum antibody concentrations greater than those achieved with PA-IGIV. PA-IGIV and IT-1 MAb demonstrated in vitro and in vivo (posttreatment guinea pig serum) opsonophagocytic activity for the IT-1 challenge strain. However, the polyclonal preparation required complement, whereas the MAb did not. We conclude that passive immunization with polyclonal hyperimmune P. aeruginosa globulin or with MAb to LPS antigens may be useful in the treatment of acute P. aeruginosa pneumonia. The relative efficacies of such preparations may be limited, however, by their type-specific LPS antibody concentrations. PMID:3093385

  13. Structural Characterization of a Monoclonal Antibody-Maytansinoid Immunoconjugate.

    PubMed

    Luo, Quanzhou; Chung, Hyo Helen; Borths, Christopher; Janson, Matthew; Wen, Jie; Joubert, Marisa K; Wypych, Jette

    2016-01-01

    Structural characterization was performed on an antibody-drug conjugate (ADC), composed of an IgG1 monoclonal antibody (mAb), mertansine drug (DM1), and a noncleavable linker. The DM1 molecules were conjugated through nonspecific modification of the mAb at solvent-exposed lysine residues. Due to the nature of the lysine conjugation process, the ADC molecules are heterogeneous, containing a range of species that differ with respect to the number of DM1 per antibody molecule. The DM1 distribution profile of the ADC was characterized by electrospray ionization mass spectrometry (ESI-MS) and capillary isoelectric focusing (cIEF), which showed that 0-8 DM1s were conjugated to an antibody molecule. By taking advantage of the high-quality MS/MS spectra and the accurate mass detection of diagnostic DM1 fragment ions generated from the higher-energy collisional dissociation (HCD) approach, we were able to identify 76 conjugation sites in the ADC, which covered approximately 83% of all the putative conjugation sites. The diagnostic DM1 fragment ions discovered in this study can be readily used for the characterization of other ADCs with maytansinoid derivatives as payload. Differential scanning calorimetric (DSC) analysis of the ADC indicated that the conjugation of DM1 destabilized the C(H)2 domain of the molecule, which is likely due to conjugation of DM1 on lysine residues in the C(H)2 domain. As a result, methionine at position 258 of the heavy chain, which is located in the C(H)2 domain of the antibody, is more susceptible to oxidation in thermally stressed ADC samples when compared to that of the naked antibody. PMID:26629796

  14. Method of rapid production of hybridomas expressing monoclonal antibodies on the cell surface

    DOEpatents

    Meagher, Richard B.; Laterza, Vince

    2006-12-12

    The present invention relates to genetically altered hybridomas, myelomas and B cells. The invention also relates to utilizing genetically altered hybridomas, myelomas and B cells in methods of making monoclonal antibodies. The present invention also provides populations of hybridomas and B cells that can be utilized to make a monoclonal antibody of interest.

  15. Monoclonal antibody typing of Chlamydia psittaci strains derived from avian and mammalian species.

    PubMed Central

    Fukushi, H; Nojiri, K; Hirai, K

    1987-01-01

    A total of 77 Chlamydia psittaci strains of avian, human, and mammalian origin were grouped into four serovars with 11 monoclonal antibodies recognizing the lipopolysaccharide and the major outer membrane protein antigens. The avian and human strains, which were closely related to each other, were distinct from the mammalian strains. Immunological typing of C. psittaci with monoclonal antibodies seems practical. PMID:3667918

  16. Agglutinating monoclonal antibodies that specifically recognize lipooligosaccharide A of Bordetella pertussis.

    PubMed Central

    Li, Z M; Cowell, J L; Brennan, M J; Burns, D L; Manclark, C R

    1988-01-01

    Monoclonal antibodies that specifically agglutinate strains of Bordetella pertussis having serotype 1 agglutinogen were uniquely reactive with the electrophoretically slow-migrating A form of lipooligosaccharide. These monoclonal antibodies should be useful for the structural analysis of B. pertussis lipooligosaccharide and for the establishment of a better-defined serogroup for Bordetella species. Images PMID:2893776

  17. Agglutinating monoclonal antibodies that specifically recognize lipooligosaccharide A of Bordetella pertussis.

    PubMed

    Li, Z M; Cowell, J L; Brennan, M J; Burns, D L; Manclark, C R

    1988-03-01

    Monoclonal antibodies that specifically agglutinate strains of Bordetella pertussis having serotype 1 agglutinogen were uniquely reactive with the electrophoretically slow-migrating A form of lipooligosaccharide. These monoclonal antibodies should be useful for the structural analysis of B. pertussis lipooligosaccharide and for the establishment of a better-defined serogroup for Bordetella species. PMID:2893776

  18. Monoclonal antibodies to cyclodiene insecticides and method for detecting the same

    DOEpatents

    Stanker, L.H.; Vanderlaan, M.; Watkins, B.E.

    1994-08-02

    Methods are described for making specific monoclonal antibodies useful for detection of cyclodienes in foods and environmental samples. Monoclonal antibodies specifically reactive with cyclodienes can detect accumulated pesticides in food, tissue or environmental samples. Extraction and preparation of organic samples for immunoassay in a polar-nonpolar reaction medium permits detection of halogenated organic ring structures at concentrations in samples. 13 figs.

  19. Monoclonal antibodies to cyclodiene insecticides and method for detecting the same

    DOEpatents

    Stanker, Larry H.; Vanderlaan, Martin; Watkins, Bruce E.

    1994-01-01

    Methods are described for making specific monoclonal antibodies useful for detection of cyclodienes in foods and environmental samples. Monoclonal antibodies specifically reactive with cyclodienes can detect accumulated pesticides in food, tissue or environmental samples. Extraction and preparation of organic samples for immunoassay in a polar-nonpolar reaction medium permits detection of halogenated organic ring structures at concentrations in samples.

  20. Development and characterization of mouse monoclonal antibodies specific for chicken interleukin 18

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four mouse monoclonal antibodies (mAbs) which are specific for chicken interleukin 18 (chIL18) were produced and characterized by enzyme-linked immunosorbent assay (ELISA), Western blotting, quantitative real-time PCR and neutralization assays. Monoclonal antibodies specific for chIL18 identified a ...

  1. Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels.

    PubMed

    Wilkinson, Trevor C I

    2016-06-15

    The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed. PMID:27284048

  2. Selection of Ceratitis capitata (Diptera: Tephritidae) Specific Recombinant Monoclonal Phage Display Antibodies for Prey Detection Analysis

    PubMed Central

    Monzó, César; Urbaneja, Alberto; Ximénez-Embún, Miguel; García-Fernández, Julia; García, José Luis; Castañera, Pedro

    2012-01-01

    Several recombinant antibodies against the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), one of the most important pests in agriculture worldwide, were selected for the first time from a commercial phage display library of human scFv antibodies. The specificity and sensitivity of the selected recombinant antibodies were compared with that of a rabbit polyclonal serum raised in parallel using a wide range of arthropod species as controls. The selected recombinant monoclonal antibodies had a similar or greater specificity when compared with classical monoclonal antibodies. The selected recombinant antibodies were successfully used to detect the target antigen in the gut of predators and the scFv antibodies were sequenced and compared. These results demonstrate the potential for recombinant scFv antibodies to be used as an alternative to the classical monoclonal antibodies or even molecular probes in the post-mortem analysis studies of generalist predators. PMID:23272105

  3. Therapy of a murine sarcoma using syngeneic monoclonal antibody

    SciTech Connect

    Kennel, S.J.; Lankford, T.; Flynn, K.M.

    1983-01-01

    Syngeneic monoclonal antibodies (MoAb) to Moloney sarcoma cells were produced by fusion of spleen cells from MSC regressor mice to myeloma SP2/0. MoAb 244-19A, an immunoglobulin G2b, bound to MSC cells and did not bind to two other sarcomas (K-BALB and Ha2), a carcinoma (Line 1), a fibroblast (A31) or a fibroblast infected with C-type virus (A31) or a fibroblast infected with C-type virus (A31-Moloney leukemia virus). In contrast, MoAb 271-1A bound to the MSC and Ha2 sarcoma and line 1 carcinoma as well as to the normal and infected fibroblast cultures. Antibodies were tested for therapeutic effect using three schedules of antibody injection. Injection i.p. of ascites fluid containing 244-19A MoAb given on Days -1, 0, and +1 relative to tumor cell injection increased life span significantly over that of control animals given injections (P3, immunoglobulin G, or MoAb 271-1A) and produced some seven of 19, one of five, and one of five long-term survivors in three separate experiments. Antibody given to animals with established tumors (4 days after implantation) also prolonged life span significantly and produced three of nine long-term survivors. Antibody given to animals with very large tumor burdens (10 days after implantation) did not prolong life span significantly. Optimal dose, schedule, and mechanism studies concerning this therapy are in progress.

  4. Legionella micdadei and Legionella dumoffii monoclonal antibodies for laboratory diagnosis of Legionella infections.

    PubMed Central

    Cercenado, E; Edelstein, P H; Gosting, L H; Sturge, J C

    1987-01-01

    Two different monoclonal antibodies directed against Legionella micdadei and L. dumoffii (Genetic Systems Corp., Seattle, Wash.) were evaluated for their specificity and ability to detect L. micdadei and L. dumoffii in human and animal clinical samples and bacterial isolates in an indirect immunofluorescence assay. All three frozen sputum samples and all three Formalin-fixed sputum and liver samples from patients with culture-documented L. micdadei pneumonia were positive when tested with the L. micdadei monoclonal antibody. A Formalin-preserved lung sample from a patient with culture-documented L. dumoffii pneumonia was positive with its homologous monoclonal antibody. No cross-staining reactions were found with either monoclonal antibody on any of 25 human sputum samples tested from patients without Legionella infections. A total of 66 Legionella strains and 56 non-Legionella strains including 22 Pseudomonas strains and 34 other bacterial strains were studied. No cross-staining reactions were found except in Staphylococcus aureus Cowan 1 ATCC 12598. The lower limit of detection in seeded sputum samples was about 7 X 10(4) cells per ml for both monoclonal antibodies. Lung and tracheal lavage specimens from L. micdadei- or L. dumoffii-infected guinea pigs showed specific staining only with their respective monoclonal antibodies. The monoclonal antibodies stained homologous bacteria slightly less intensely than did the polyclonal antisera, but the signal-to-noise ratio was considerably higher for the monoclonal antibodies. No differences in sensitivity of staining of clinical specimens or bacterial isolates were noted between the monoclonal antibodies and the polyclonal reagents for L. micdadei and L. dumoffii (Centers for Disease Control, Atlanta, Ga., and BioDx, Denville, N.J. These monoclonal antibodies ae sensitive and specific, making them good candidates for laboratory diagnostic purposes. PMID:3320084

  5. Production and characterization of monoclonal antibodies to Newcastle Disease Virus.

    PubMed

    Kumar, G Ravi; Saxena, Shikha; Sahoo, A P; Chaturvedi, Uttara; Kumar, Satish; Santra, Lakshman; Desai, G S; Singh, Lakshyaveer; Tiwari, Ashok K

    2016-03-01

    Newcastle Disease (ND) is one of the major causes of economic loss in the poultry industry. Newcastle Disease Virus (NDV) is a single-stranded, negative-sense enveloped RNA virus (Fam. Paramyxoviridae; Order Mononegavirales). In the present study three monoclonal antibodies (MAbs) were produced by polyethyleneglycol (PEG)-mediated fusion of lymphocytes sensitized to NDV Bareilly strain and myeloma cells. NDV possesses ability to agglutinate erythrocytes of avian species. All the three MAbs designated as 2H7, 3E9 and 3G6 caused hemagglutination inhibition of NDV by specifically binding to NDV. The reactivity for all the 3 MAbs on indirect ELISA was found to be significantly higher than the antibody and antigen controls. On flowcytometry of HeLa cells infected with NDV using the MAbs as primary antibodies, there was a significant difference in the percentage of cells showing positive fluorescence compared to the mock control. One of the MAbs (3E9) was found to react with hemagglutinin-neuraminidase (HN) protein on western blot. PMID:27145631

  6. Removal of drugs from the circulation using immobilized monoclonal antibodies

    SciTech Connect

    Brizgys, M.V.

    1987-01-01

    High-affinity monoclonal antidigoxin antibodies (dig-Ab) were immobilized to a pellicular microbead and characterized in terms of antibody affinity, specificity for other glycosides, and binding capacity. Determination of digoxin binding revealed that the binding capacity decreased to 25% of theoretical capacity. Attempts to improve the binding capacity were ineffective. A guinea pig animal model was developed to determine the efficacy of removing digoxin in vivo from the circulation using an antibody column. Male guinea pigs were hemoperfused with either a dig-Ab or bovine Y-globulin control column 16 h after a single i.v. injection of digoxin. Pre- and postcolumn plasma concentrations were obtained to evaluate the extraction efficiency. Hemoperfusion continued for 3 h at flow rates of 1.0-2.0 mL/min. Bound digoxin was eluted as described earlier and concentrations determined by (/sup 125/I) digoxin RIA. Amounts of digoxin removed represented less than 1% of the total body content. After several studies with the same column, the dig-Ab had lost most of its activity. A freshly prepared dig-Ab column removed approximately 20% of the total body content. Most of the measured constituents of the blood were unaffected by the procedure.

  7. Protective activities in mice of monoclonal antibodies against pertussis toxin.

    PubMed Central

    Sato, H; Sato, Y

    1990-01-01

    Pertussis toxin (PT) protein, which is the most important protective antigen of Bordetella pertussis, has a hexameric structure composed of five subunits, designated S1 through S5. Immunoprotective activity of 20 different mouse monoclonal antibodies (MAbs) against pertussis toxin, 10 anti-S1, 1 anti-S2, 2 anti-S3, 4 anti-S23, and 3 anti-S4 antibodies, were investigated by aerosol and intracerebral challenges with virulent B. pertussis organisms in mice. Four anti-S1, named 1B7, 1D7, 3F11, and 10D6, and three anti-S23 antibodies, named 11E6, 10B5, and 10C9, showed the highest, and almost complete, protectivity against the aerosol challenge. Mouse protectivity against the intracerebral challenge was significant for these four anti-S1 MAbs but not for any of the three anti-S23 MAbs. Four anti-S1 and two anti-S4 MAbs did not protect the mice against either challenge. The other seven MAbs also showed dose-dependent moderate but significant protection against the aerosol challenge. In the aerosol challenge system, bacterial numbers and amounts of PT detected in the lung and the number of peripheral leukocytes were lower in the mice given the protective MAbs. All mice surviving 5 weeks after the infection produced high titers of antibodies against PT, filamentous hemagglutinin (FHA), and agglutinogens from the challenge organisms. A combination of the protective MAbs 1B7 and 11E6 strongly suppressed the disease and mortality of the mice at smaller amounts than with the anti-PT polyclonal antibody. Although combinations of one of the protective MAb and anti-FHA or anti-agglutinogen 2 also showed extremely high mouse protection without development of symptoms of the disease, antibody titers of the survivors against PT, FHA, and agglutinogens were significantly low. The foregoing results suggest that some important protective epitopes should be in S1 and S2 and/or S3, although there are both differences and similarities in the protective roles between anti-S1 and anti-S23

  8. Protective activities in mice of monoclonal antibodies against pertussis toxin.

    PubMed

    Sato, H; Sato, Y

    1990-10-01

    Pertussis toxin (PT) protein, which is the most important protective antigen of Bordetella pertussis, has a hexameric structure composed of five subunits, designated S1 through S5. Immunoprotective activity of 20 different mouse monoclonal antibodies (MAbs) against pertussis toxin, 10 anti-S1, 1 anti-S2, 2 anti-S3, 4 anti-S23, and 3 anti-S4 antibodies, were investigated by aerosol and intracerebral challenges with virulent B. pertussis organisms in mice. Four anti-S1, named 1B7, 1D7, 3F11, and 10D6, and three anti-S23 antibodies, named 11E6, 10B5, and 10C9, showed the highest, and almost complete, protectivity against the aerosol challenge. Mouse protectivity against the intracerebral challenge was significant for these four anti-S1 MAbs but not for any of the three anti-S23 MAbs. Four anti-S1 and two anti-S4 MAbs did not protect the mice against either challenge. The other seven MAbs also showed dose-dependent moderate but significant protection against the aerosol challenge. In the aerosol challenge system, bacterial numbers and amounts of PT detected in the lung and the number of peripheral leukocytes were lower in the mice given the protective MAbs. All mice surviving 5 weeks after the infection produced high titers of antibodies against PT, filamentous hemagglutinin (FHA), and agglutinogens from the challenge organisms. A combination of the protective MAbs 1B7 and 11E6 strongly suppressed the disease and mortality of the mice at smaller amounts than with the anti-PT polyclonal antibody. Although combinations of one of the protective MAb and anti-FHA or anti-agglutinogen 2 also showed extremely high mouse protection without development of symptoms of the disease, antibody titers of the survivors against PT, FHA, and agglutinogens were significantly low. The foregoing results suggest that some important protective epitopes should be in S1 and S2 and/or S3, although there are both differences and similarities in the protective roles between anti-S1 and anti-S23

  9. Potential of palladium-109-labeled antimelanoma monoclonal antibody for tumor therapy

    SciTech Connect

    Fawwaz, R.A.; Wang, T.S.T.; Srivastava, S.C.; Rosen, J.M.; Ferrone, S.; Hardy, M.A.; Alderson, P.O.

    1984-07-01

    Palladium-109, a beta-emitting radionuclide, was chelated to the monoclonal antibody 225.28S to the high molecular weight antigen associated with human melanoma. Injection of the radiolabeled monoclonal antibody into nude mice bearing human melanoma resulted in significant accumulation of the radiolabel in the tumors: 19% injected dose/g; 38:1 and 61:1 tumor-to-blood ratios at 24 and 48 hr, respectively. The localization of the radiolabeled antibody in liver and kidney also was high, but appreciably lower than that achieved in tumor. These results suggest Pd-109-labeled monoclonal antibody to tumor-associated antigens may have potential applications in tumor immunotherapy.

  10. Development of Human Monoclonal Antibodies Against Respiratory Syncytial Virus Using a High Efficiency Human Hybridoma Technique.

    PubMed

    Alvarado, Gabriela; Crowe, James E

    2016-01-01

    Human monoclonal antibodies against RSV have high potential for use as prophylaxis or therapeutic molecules, and they also can be used to define the structure of protective epitopes for rational vaccine design. In the past, however, isolation of human monoclonal antibodies was difficult and inefficient. Here, we describe contemporary methods for activation and proliferation of primary human memory B cells followed by cytofusion to non-secreting myeloma cells by dielectrophoresis to generate human hybridomas secreting RSV-specific monoclonal antibodies. We also provide experimental methods for screening human B cell lines to obtain RSV-specific lines, especially lines secreting neutralizing antibodies. PMID:27464688