Science.gov

Sample records for 119m te atoms

  1. Anharmonicity and atomic distribution of SnTe and PbTe thermoelectrics

    DOE PAGESBeta

    Li, C. W.; Ma, J.; Cao, H. B.; May, A. F.; Abernathy, D. L.; Ehlers, G.; Hoffmann, C.; Wang, X.; Hong, T.; Huq, A.; et al

    2014-12-29

    The structure and lattice dynamics of rock-salt thermoelectric materials SnTe and PbTe are investigated with single crystal and powder neutron diffraction, inelastic neutron scattering (INS), and first-principles simulations. Our first-principles calculations of the radial distribution function (RDF) in both SnTe and PbTe show a clear asymmetry in the first nearest-neighbor (1NN) peak, which increases with temperature, in agreement with experimental reports (Ref. 1,2). We show that this peak asymmetry for the 1NN Sn–Te or Pb–Te bond results from large-amplitude anharmonic vibrations (phonons). No atomic off-centering is found in our simulations. In addition, the atomic mean square displacements derived from ourmore » diffraction data reveal stiffer bonding at the anion site, in good agreement with the partial phonon densities of states from INS, and first-principles calculations. In conclusion, these results provide clear evidence for large-amplitude anharmonic phonons associated with the resonant bonding leading to the ferroelectric instability.« less

  2. Anharmonicity and atomic distribution of SnTe and PbTe thermoelectrics

    SciTech Connect

    Li, C. W.; Ma, J.; Cao, H. B.; May, A. F.; Abernathy, D. L.; Ehlers, G.; Hoffmann, C.; Wang, X.; Hong, T.; Huq, A.; Gourdon, O.; Delaire, O.

    2014-12-29

    The structure and lattice dynamics of rock-salt thermoelectric materials SnTe and PbTe are investigated with single crystal and powder neutron diffraction, inelastic neutron scattering (INS), and first-principles simulations. Our first-principles calculations of the radial distribution function (RDF) in both SnTe and PbTe show a clear asymmetry in the first nearest-neighbor (1NN) peak, which increases with temperature, in agreement with experimental reports (Ref. 1,2). We show that this peak asymmetry for the 1NN Sn–Te or Pb–Te bond results from large-amplitude anharmonic vibrations (phonons). No atomic off-centering is found in our simulations. In addition, the atomic mean square displacements derived from our diffraction data reveal stiffer bonding at the anion site, in good agreement with the partial phonon densities of states from INS, and first-principles calculations. In conclusion, these results provide clear evidence for large-amplitude anharmonic phonons associated with the resonant bonding leading to the ferroelectric instability.

  3. Nuclear charge radii of the Te isotopes from muonic atoms

    SciTech Connect

    Shera, E.B.; Hoehn, M.V.; Fricke, G.; Mallot, G.

    1989-01-01

    The muonic atom energies of the 2p-1s and the 3d-2p transitions were measured with a statistical accuracy of better than +- 70 and +- 40 eV, respectively, for /sup 123,124,125,126,128,130/Te. The values for the Barrett equivalent nuclear radii R/sub k//sub ,//sub ..cap alpha../ and for the root-mean-square radii and their differences were calculated first from muonic data alone and second with the addition of published optical data. The latter data provided the radii of /sup 120/Te and /sup 122/Te isotopes, which were not measured by muonic x rays. A combined analysis of the muonic atom and optical isotope shift data yielded high-precision values of the differences in radii ..delta..R/sub k//sub ,//sub ..cap alpha../ (error < +- 0.5 am) and ..delta../sup 1/2/ (error < +- 0.9 am) between the neighboring isotopes. The optical constants for the Te line lambda = 4049 A were determined (including contributions of higher radial moments) to be F = (509 +- 120) mK/fm/sup 2/ and M = -(104 +- 63) x 10/sup 3/ mK. Systematic behavior of the radius differences in neighboring isotopes and isotones of Ba, Xe, Te, and Sn, together with odd-even staggering of the Te isotopes, are discussed in this paper. The ..delta..N = 2 Te isotope shifts between even-A nuclei decrease nearly linearly with increasing N, which can be explained by a successive decreasing deformation in accordance with the observed systematics.

  4. Atomic collisions with 33-TeV lead ions

    SciTech Connect

    Vane, C.R.; Datz, S.; Krause, H.F.

    1996-10-01

    Recent availability of relativistic and ultrarelativistic beams of heavy ions has permitted the first controlled studies of atomic collisions at energies sufficient to measure effects of several new basic phenomena. These include measurements substantiating recently predicted finite nuclear size effects resulting in a reduction in the total electronic energy loss of heavy ions in matter, and measurements of Coulomb collisions in which electrons are excited from the Dirac negative energy continuum. Measurements of total energy loss, free electron-positron pair production, and electron capture from pair production have been recently performed using 33-TeV Pb{sup 82+} ions from the CERN SPS accelerator in Geneva. Results of these studies are presented, along with comparisons with relevant theory.

  5. Ab initio study of molecular and atomic oxygen on GeTe(111) surfaces

    SciTech Connect

    Deringer, Volker L.; Dronskowski, Richard

    2014-11-07

    Oxidation of the phase-change material germanium telluride (GeTe) is an atomic-scale process of fundamental importance, as it is detrimental to the stability of GeTe-based data-storage devices. Here, we present comprehensive density-functional theory simulations of molecular and atomic oxygen in contact with GeTe(111) surfaces. Molecular O{sub 2} is predicted to readily adsorb on the Ge-terminated (111) surface; the pristine Te-terminated counterpart, by contrast, appears quite inert. The coverage-dependent adsorption of O atoms is then investigated, and based on these data, a surface phase diagram for GeTe(111)/O is constructed. These results afford a detailed, atom-resolved picture of the initial surface oxidation of GeTe, and they harmonize well with a previous X-ray photoelectron spectroscopy study on this very topic.

  6. First-principles Study of Atomic Rearrangement in GeTe-S2 bTe3 Superlattice

    NASA Astrophysics Data System (ADS)

    Song, Young-Sun; Jhi, Seung-Hoon; CNPL Team

    GeTe-Sb2Te3 chalcogenide superlattices, known as interfacial phase change memories (iPCMs), have been claimed to outperform Ge-Sb-Te-based phase-change materials. Despite its great potential as next-generation non-volatile memory devices, we still lack clear knowledge of the phase change mechanism. According to a recent work, the phase change processes in iPCMs involve two-step atomic rearrangements of Ge-Te layers, but the detailed interatomic features still remain unresolved. In this work, we studied the nature of atomic layer rearrangements in iPCMs using first-principles calculations and the interatomic potential model. We used the climbing image nudged elastic band (CI-NEB) method to obtain the intermediate structures and energies during the rearrangement processes. Applying a simple interatomic potential model to in-between steps, we investigated the interatomic motion during the phase change process. We found that a few selected atomic pairs determine most the energy barrier and also the response to external pressures.

  7. Local atomic arrangements and lattice distortions in layered Ge-Sb-Te crystal structures

    PubMed Central

    Lotnyk, Andriy; Ross, Ulrich; Bernütz, Sabine; Thelander, Erik; Rauschenbach, Bernd

    2016-01-01

    Insights into the local atomic arrangements of layered Ge-Sb-Te compounds are of particular importance from a fundamental point of view and for data storage applications. In this view, a detailed knowledge of the atomic structure in such alloys is central to understanding the functional properties both in the more commonly utilized amorphous–crystalline transition and in recently proposed interfacial phase change memory based on the transition between two crystalline structures. Aberration-corrected scanning transmission electron microscopy allows direct imaging of local arrangement in the crystalline lattice with atomic resolution. However, due to the non-trivial influence of thermal diffuse scattering on the high-angle scattering signal, a detailed examination of the image contrast requires comparison with theoretical image simulations. This work reveals the local atomic structure of trigonal Ge-Sb-Te thin films by using a combination of direct imaging of the atomic columns and theoretical image simulation approaches. The results show that the thin films are prone to the formation of stacking disorder with individual building blocks of the Ge2Sb2Te5, Ge1Sb2Te4 and Ge3Sb2Te6 crystal structures intercalated within randomly oriented grains. The comparison with image simulations based on various theoretical models reveals intermixed cation layers with pronounced local lattice distortions, exceeding those reported in literature. PMID:27220411

  8. Local atomic arrangements and lattice distortions in layered Ge-Sb-Te crystal structures.

    PubMed

    Lotnyk, Andriy; Ross, Ulrich; Bernütz, Sabine; Thelander, Erik; Rauschenbach, Bernd

    2016-01-01

    Insights into the local atomic arrangements of layered Ge-Sb-Te compounds are of particular importance from a fundamental point of view and for data storage applications. In this view, a detailed knowledge of the atomic structure in such alloys is central to understanding the functional properties both in the more commonly utilized amorphous-crystalline transition and in recently proposed interfacial phase change memory based on the transition between two crystalline structures. Aberration-corrected scanning transmission electron microscopy allows direct imaging of local arrangement in the crystalline lattice with atomic resolution. However, due to the non-trivial influence of thermal diffuse scattering on the high-angle scattering signal, a detailed examination of the image contrast requires comparison with theoretical image simulations. This work reveals the local atomic structure of trigonal Ge-Sb-Te thin films by using a combination of direct imaging of the atomic columns and theoretical image simulation approaches. The results show that the thin films are prone to the formation of stacking disorder with individual building blocks of the Ge2Sb2Te5, Ge1Sb2Te4 and Ge3Sb2Te6 crystal structures intercalated within randomly oriented grains. The comparison with image simulations based on various theoretical models reveals intermixed cation layers with pronounced local lattice distortions, exceeding those reported in literature. PMID:27220411

  9. Local atomic arrangements and lattice distortions in layered Ge-Sb-Te crystal structures

    NASA Astrophysics Data System (ADS)

    Lotnyk, Andriy; Ross, Ulrich; Bernütz, Sabine; Thelander, Erik; Rauschenbach, Bernd

    2016-05-01

    Insights into the local atomic arrangements of layered Ge-Sb-Te compounds are of particular importance from a fundamental point of view and for data storage applications. In this view, a detailed knowledge of the atomic structure in such alloys is central to understanding the functional properties both in the more commonly utilized amorphous–crystalline transition and in recently proposed interfacial phase change memory based on the transition between two crystalline structures. Aberration-corrected scanning transmission electron microscopy allows direct imaging of local arrangement in the crystalline lattice with atomic resolution. However, due to the non-trivial influence of thermal diffuse scattering on the high-angle scattering signal, a detailed examination of the image contrast requires comparison with theoretical image simulations. This work reveals the local atomic structure of trigonal Ge-Sb-Te thin films by using a combination of direct imaging of the atomic columns and theoretical image simulation approaches. The results show that the thin films are prone to the formation of stacking disorder with individual building blocks of the Ge2Sb2Te5, Ge1Sb2Te4 and Ge3Sb2Te6 crystal structures intercalated within randomly oriented grains. The comparison with image simulations based on various theoretical models reveals intermixed cation layers with pronounced local lattice distortions, exceeding those reported in literature.

  10. Nature of atomic bonding and atomic structure in the phase-change Ge2Sb2Te5 glass.

    PubMed

    Xu, M; Cheng, Y Q; Sheng, H W; Ma, E

    2009-11-01

    Using electronic structure calculations, we demonstrate a global valence alternation in the amorphous Ge2Sb2Te5, a prototype phase-change alloy for data storage. The resulting p bonding profoundly influences the local atomic structure, leading to right-angle components similar to those in the crystalline counterpart of this chalcogenide glass. The dominance of p bonding is revealed by (i) distributions of the coordination number (CN) and the bond angle, for truly bonded atoms determined based on the electron localization function, and (ii) a direct evaluation of the p (and s) orbital occupation probability for the CN=3 Ge atoms that form 90 degree bonds with neighbors. PMID:20365937

  11. The role of atomic vacancies on phonon confinement in α-GeTe

    SciTech Connect

    Kalra, Geetanjali; Murugavel, Sevi

    2015-04-15

    Atomic defects and their dynamics play a vital role in controlling the behavior of non-volatile phase change memory materials used in advanced optical storage devices. Synthesis and structural analysis by XRD and Raman spectroscopy on α-GeTe single crystal with different sizes are reported. The spectroscopic measurements on micron and nano sized α-GeTe single crystal reveal the evolution of phonon confinement with crystal sizes of few hundred nanometers. The characteristic vibrational modes of bulk α-GeTe structure are found to downshift and asymmetrically broaden to lower frequency with decreasing the single crystal size. We attribute the observed downshift of Raman lines in α-GeTe is largely due to the presence of high concentration of atomic vacancies. The crystal size and temperature dependent Raman spectra provide explicitly the dynamics of vacancies on optical phonon confinement in α-GeTe structure. Thus, the observed large concentration of vacancies and their size dependency might influence the phase change phenomenon in GeTe based alloys.

  12. Atomic-force microscopy and photoluminescence of nanostructured CdTe

    SciTech Connect

    Babentsov, V.; Sizov, F.; Franc, J.; Luchenko, A.; Svezhentsova, E. Tsybrii, Z.

    2013-09-15

    Low-dimensional CdTe nanorods with a diameter of 10-30 nm and a high aspect ratio that reaches 100 are studied. The nanorods are grown by the physical vapor transport method with the use of Bi precipitates on the substrates. In addition, thin films of closely packed CdTe nanorods with the transverse dimensions {approx}(100-200) nm are grown. Atomic-force microscopy shows that the cross sections of all of the nanorods were hexagonally shaped. By photoluminescence measurements, the inference about the wurtzite structure of CdTe is supported, and the structural quality, electron-phonon coupling, and defects are analyzed. On the basis of recent ab initio calculations, the nature of defects responsible for the formation of deep levels in the CdTe layers and bulk crystals are analyzed.

  13. Electrical characterization of HgTe nanowires using conductive atomic force microscopy

    SciTech Connect

    Gundersen, P.; Kongshaug, K. O.; Selvig, E.; Haakenaasen, R.

    2010-12-01

    Self-organized HgTe nanowires grown by molecular beam epitaxy (MBE) have been characterized using conductive atomic force microscopy. As HgTe will degrade or evaporate at normal baking temperatures for electron beam lithography (EBL) resists, an alternative method was developed. Using low temperature optical lithography processes, large Au contacts were deposited on a sample covered with randomly oriented, lateral HgTe nanowires. Nanowires partly covered by the large electrodes were identified with a scanning electron microscope and then localized in the atomic force microscope (AFM). The conductive tip of the AFM was then used as a movable electrode to measure current-voltage curves at several locations on HgTe nanowires. The measurements revealed that polycrystalline nanowires had diffusive electron transport, with resistivities two orders of magnitude larger than that of an MBE-grown HgTe film. The difference can be explained by scattering at the rough surface walls and at the grain boundaries in the wires. The method can be a solution when EBL is not available or requires too high temperature, or when measurements at several positions along a wire are required.

  14. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe.

    PubMed

    Chang, Kai; Liu, Junwei; Lin, Haicheng; Wang, Na; Zhao, Kun; Zhang, Anmin; Jin, Feng; Zhong, Yong; Hu, Xiaopeng; Duan, Wenhui; Zhang, Qingming; Fu, Liang; Xue, Qi-Kun; Chen, Xi; Ji, Shuai-Hua

    2016-07-15

    Stable ferroelectricity with high transition temperature in nanostructures is needed for miniaturizing ferroelectric devices. Here, we report the discovery of the stable in-plane spontaneous polarization in atomic-thick tin telluride (SnTe), down to a 1-unit cell (UC) limit. The ferroelectric transition temperature T(c) of 1-UC SnTe film is greatly enhanced from the bulk value of 98 kelvin and reaches as high as 270 kelvin. Moreover, 2- to 4-UC SnTe films show robust ferroelectricity at room temperature. The interplay between semiconducting properties and ferroelectricity in this two-dimensional material may enable a wide range of applications in nonvolatile high-density memories, nanosensors, and electronics. PMID:27418506

  15. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe

    NASA Astrophysics Data System (ADS)

    Chang, Kai; Liu, Junwei; Lin, Haicheng; Wang, Na; Zhao, Kun; Zhang, Anmin; Jin, Feng; Zhong, Yong; Hu, Xiaopeng; Duan, Wenhui; Zhang, Qingming; Fu, Liang; Xue, Qi-Kun; Chen, Xi; Ji, Shuai-Hua

    2016-07-01

    Stable ferroelectricity with high transition temperature in nanostructures is needed for miniaturizing ferroelectric devices. Here, we report the discovery of the stable in-plane spontaneous polarization in atomic-thick tin telluride (SnTe), down to a 1–unit cell (UC) limit. The ferroelectric transition temperature Tc of 1-UC SnTe film is greatly enhanced from the bulk value of 98 kelvin and reaches as high as 270 kelvin. Moreover, 2- to 4-UC SnTe films show robust ferroelectricity at room temperature. The interplay between semiconducting properties and ferroelectricity in this two-dimensional material may enable a wide range of applications in nonvolatile high-density memories, nanosensors, and electronics.

  16. Ultrafast optical manipulation of atomic motion in multilayer Ge-Sb-Te phase change materials

    NASA Astrophysics Data System (ADS)

    Makino, K.; Tominaga, J.; Kolobov, A. V.; Fons, P.; Hase, M.

    2013-03-01

    Phase change random access memory devices have evolved dramatically with the recent development of superlattice structure of Ge-Sb-Te material (GST-SL) in terms of its low power consumption. The phase change in GST-SL is mainly characterized by the displacement of Ge atoms. Here we examine a new phase change method, that is the manipulation of Ge-Te bonds using linearly-polarized femtosecond near-infrared optical pulses. As a result, we found that the p-polarized pump pulse is more effective in inducing the reversible and irreversible displacement of Ge atoms along [111] direction in the local structure. This structural change would be induced by the anisotropic carrier-phonon interaction along the [111] direction created by the p-polarized pulse.

  17. States of antimony and tin atoms in lead chalcogenides

    SciTech Connect

    Bordovsky, G. A.; Nemov, S. A.; Marchenko, A. V.; Zaiceva, A. V.; Kozhokar, M. Yu.; Seregin, P. P.

    2011-04-15

    It is shown by Moessbauer spectroscopy of the {sup 119}Sb({sup 119m}Sn) isotope that impurity antimony atoms in PbS, PbSe, and PbTe lattices are distributed between cation and anion sublattices. In n-type samples, the greatest part of antimony is located in the anion sublattice; in hole ones, in the cation sublattice. The tin atoms formed as a result of radioactive decay of {sup 119}Sb (antisite state) are electrically inactive in the anion sub-lattice of PbS and PbSe, while, in the cation sublattice, they form donor U{sup -} centers. Electron exchange between the neutral and doubly ionized tin U{sup -} centers via the allowed band states is observed. The tin atoms formed after radioactive decay of {sup 119}Sb are electrically inactive in the anion and cation sublattices of PbTe.

  18. Low-damage processing of CdTe(110) surfaces using atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Slater, D. A.; Osgood, R. M., Jr.

    1995-07-01

    We present the results of an AES, XPS, and LEED study of the reaction of oxide and contaminant overlayers on the CdTe(110) surface with atomic hydrogen. Exposure of an oxidized surface to a flux of atomic hydrogen produced by ``cracking'' ambient molecular hydrogen on a hot tungsten filament results in a rapid, quantitative removal of the oxide overlayer with substrate temperatures as low as 300 K to produce a stoichiometric surface free of contaminants which has sufficient surface order to produce a sharp (1×1) LEED pattern.

  19. Bandgap modulation in photoexcited topological insulator Bi2Te3 via atomic displacements.

    PubMed

    Hada, Masaki; Norimatsu, Katsura; Tanaka, Sei Ichi; Keskin, Sercan; Tsuruta, Tetsuya; Igarashi, Kyushiro; Ishikawa, Tadahiko; Kayanuma, Yosuke; Miller, R J Dwayne; Onda, Ken; Sasagawa, Takao; Koshihara, Shin-Ya; Nakamura, Kazutaka G

    2016-07-14

    The atomic and electronic dynamics in the topological insulator (TI) Bi2Te3 under strong photoexcitation were characterized with time-resolved electron diffraction and time-resolved mid-infrared spectroscopy. Three-dimensional TIs characterized as bulk insulators with an electronic conduction surface band have shown a variety of exotic responses in terms of electronic transport when observed under conditions of applied pressure, magnetic field, or circularly polarized light. However, the atomic motions and their correlation between electronic systems in TIs under strong photoexcitation have not been explored. The artificial and transient modification of the electronic structures in TIs via photoinduced atomic motions represents a novel mechanism for providing a comparable level of bandgap control. The results of time-domain crystallography indicate that photoexcitation induces two-step atomic motions: first bismuth and then tellurium center-symmetric displacements. These atomic motions in Bi2Te3 trigger 10% bulk bandgap narrowing, which is consistent with the time-resolved mid-infrared spectroscopy results. PMID:27421417

  20. Bandgap modulation in photoexcited topological insulator Bi2Te3 via atomic displacements

    NASA Astrophysics Data System (ADS)

    Hada, Masaki; Norimatsu, Katsura; Tanaka, Sei'ichi; Keskin, Sercan; Tsuruta, Tetsuya; Igarashi, Kyushiro; Ishikawa, Tadahiko; Kayanuma, Yosuke; Miller, R. J. Dwayne; Onda, Ken; Sasagawa, Takao; Koshihara, Shin-ya; Nakamura, Kazutaka G.

    2016-07-01

    The atomic and electronic dynamics in the topological insulator (TI) Bi2Te3 under strong photoexcitation were characterized with time-resolved electron diffraction and time-resolved mid-infrared spectroscopy. Three-dimensional TIs characterized as bulk insulators with an electronic conduction surface band have shown a variety of exotic responses in terms of electronic transport when observed under conditions of applied pressure, magnetic field, or circularly polarized light. However, the atomic motions and their correlation between electronic systems in TIs under strong photoexcitation have not been explored. The artificial and transient modification of the electronic structures in TIs via photoinduced atomic motions represents a novel mechanism for providing a comparable level of bandgap control. The results of time-domain crystallography indicate that photoexcitation induces two-step atomic motions: first bismuth and then tellurium center-symmetric displacements. These atomic motions in Bi2Te3 trigger 10% bulk bandgap narrowing, which is consistent with the time-resolved mid-infrared spectroscopy results.

  1. Passivation of CdZnTe surfaces by oxidation in low energy atomic oxygen

    SciTech Connect

    Chen, H.; Chattopadhyay, K.; Chen, K.; Burger, A.; George, M.A.; Gregory, J.C.; Nag, P.K.; Weimer, J.J.; James, R.B.

    1999-01-01

    A method of surface passivation of Cd{sub 1{minus}x}Zn{sub x}Te (CZT) x-ray and gamma ray detectors has been established by using microwave-assisted atomic oxygen bombardment. Detector performance is significantly enhanced due to the reduction of surface leakage current. CZT samples were exposed to an atomic oxygen environment at the University of Alabama in Huntsville{close_quote}s Thermal Atomic Oxygen Facility. This system generates neutral atomic oxygen species with kinetic energies of 0.1{endash}0.2 eV. The surface chemical composition and its morphology modification due to atomic oxygen exposure were studied by x-ray photoelectron spectroscopy and atomic force microscopy and the results were correlated with current-voltage measurements and with room temperature spectral responses to {sup 133}Ba and {sup 241}Am radiation. A reduction of leakage current by about a factor of 2 is reported, together with significant improvement in the gamma-ray line resolution. {copyright} {ital 1999 American Vacuum Society.}

  2. Thermal stability of atomic layer deposition Al2O3 film on HgCdTe

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Sun, C. H.; Zhang, Y.; Chen, X.; He, K.; Chen, Y. Y.; Ye, Z. H.

    2015-06-01

    Thermal stability of Atomic Layer Deposition Al2O3 film on HgCdTe was investigated by Al2O3 film post-deposition annealing treatment and Metal-Insulator-Semiconductor device low-temperature baking treatment. The effectiveness of Al2O3 film was evaluated by measuring the minority carrier lifetime and capacitance versus voltage characteristics. After annealing treatment, the minority carrier lifetime of the HgCdTe sample presented a slight decrease. Furthermore, the fixed charge density and the slow charge density decreased significantly in the annealed MIS device. After baking treatment, the fixed charge density and the slow charge density of the unannealed and annealed MIS devices decreased and increased, respectively.

  3. Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface

    DOE PAGESBeta

    Sun, Ce; Paulauskas, Tadas; Sen, Fatih G.; Lian, Guoda; Wang, Jinguo; Buurma, Christopher; Chan, Maria K. Y.; Klie, Robert F.; Kim, Moon J.

    2016-06-03

    Extended defects are of considerable importance in determining the electronic properties of semiconductors, especially in photovoltaics (PVs), due to their effects on electron-hole recombination. We employ model systems to study the effects of dislocations in CdTe by constructing grain boundaries using wafer bonding. Atomic-resolution scanning transmission electron microscopy (STEM) of a [1–10]/ (110) 4.8° tilt grain boundary reveals that the interface is composed of three distinct types of Lomer dislocations. Geometrical phase analysis is used to map strain fields, while STEM and density functional theory (DFT) modeling determine the atomic structure at the interface. The electronic structure of the dislocationmore » cores calculated using DFT shows significant mid-gap states and different charge-channeling tendencies. Cl-doping is shown to reduce the midgap states, while maintaining the charge separation effects. In conclusion, this report offers novel avenues for exploring grain boundary effects in CdTe-based solar cells by fabricating controlled bicrystal interfaces and systematic atomic-scale analysis.« less

  4. Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface

    NASA Astrophysics Data System (ADS)

    Sun, Ce; Paulauskas, Tadas; Sen, Fatih G.; Lian, Guoda; Wang, Jinguo; Buurma, Christopher; Chan, Maria K. Y.; Klie, Robert F.; Kim, Moon J.

    2016-06-01

    Extended defects are of considerable importance in determining the electronic properties of semiconductors, especially in photovoltaics (PVs), due to their effects on electron-hole recombination. We employ model systems to study the effects of dislocations in CdTe by constructing grain boundaries using wafer bonding. Atomic-resolution scanning transmission electron microscopy (STEM) of a [1–10]/(110) 4.8° tilt grain boundary reveals that the interface is composed of three distinct types of Lomer dislocations. Geometrical phase analysis is used to map strain fields, while STEM and density functional theory (DFT) modeling determine the atomic structure at the interface. The electronic structure of the dislocation cores calculated using DFT shows significant mid-gap states and different charge-channeling tendencies. Cl-doping is shown to reduce the midgap states, while maintaining the charge separation effects. This report offers novel avenues for exploring grain boundary effects in CdTe-based solar cells by fabricating controlled bicrystal interfaces and systematic atomic-scale analysis.

  5. Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface.

    PubMed

    Sun, Ce; Paulauskas, Tadas; Sen, Fatih G; Lian, Guoda; Wang, Jinguo; Buurma, Christopher; Chan, Maria K Y; Klie, Robert F; Kim, Moon J

    2016-01-01

    Extended defects are of considerable importance in determining the electronic properties of semiconductors, especially in photovoltaics (PVs), due to their effects on electron-hole recombination. We employ model systems to study the effects of dislocations in CdTe by constructing grain boundaries using wafer bonding. Atomic-resolution scanning transmission electron microscopy (STEM) of a [1-10]/(110) 4.8° tilt grain boundary reveals that the interface is composed of three distinct types of Lomer dislocations. Geometrical phase analysis is used to map strain fields, while STEM and density functional theory (DFT) modeling determine the atomic structure at the interface. The electronic structure of the dislocation cores calculated using DFT shows significant mid-gap states and different charge-channeling tendencies. Cl-doping is shown to reduce the midgap states, while maintaining the charge separation effects. This report offers novel avenues for exploring grain boundary effects in CdTe-based solar cells by fabricating controlled bicrystal interfaces and systematic atomic-scale analysis. PMID:27255415

  6. Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface

    PubMed Central

    Sun, Ce; Paulauskas, Tadas; Sen, Fatih G.; Lian, Guoda; Wang, Jinguo; Buurma, Christopher; Chan, Maria K. Y.; Klie, Robert F.; Kim, Moon J.

    2016-01-01

    Extended defects are of considerable importance in determining the electronic properties of semiconductors, especially in photovoltaics (PVs), due to their effects on electron-hole recombination. We employ model systems to study the effects of dislocations in CdTe by constructing grain boundaries using wafer bonding. Atomic-resolution scanning transmission electron microscopy (STEM) of a [1–10]/(110) 4.8° tilt grain boundary reveals that the interface is composed of three distinct types of Lomer dislocations. Geometrical phase analysis is used to map strain fields, while STEM and density functional theory (DFT) modeling determine the atomic structure at the interface. The electronic structure of the dislocation cores calculated using DFT shows significant mid-gap states and different charge-channeling tendencies. Cl-doping is shown to reduce the midgap states, while maintaining the charge separation effects. This report offers novel avenues for exploring grain boundary effects in CdTe-based solar cells by fabricating controlled bicrystal interfaces and systematic atomic-scale analysis. PMID:27255415

  7. Accuracy of existing atomic potentials for the CdTe semiconductor compound

    NASA Astrophysics Data System (ADS)

    Ward, D. K.; Zhou, X. W.; Wong, B. M.; Doty, F. P.; Zimmerman, J. A.

    2011-06-01

    CdTe and CdTe-based Cd1-xZnxTe (CZT) alloys are important semiconductor compounds that are used in a variety of technologies including solar cells, radiation detectors, and medical imaging devices. Performance of such systems, however, is limited due to the propensity of nano- and micro-scale defects that form during crystal growth and manufacturing processes. Molecular dynamics simulations offer an effective approach to study the formation and interaction of atomic scale defects in these crystals, and provide insight on how to minimize their concentrations. The success of such a modeling effort relies on the accuracy and transferability of the underlying interatomic potential used in simulations. Such a potential must not only predict a correct trend of structures and energies of a variety of elemental and compound lattices, defects, and surfaces but also capture correct melting behavior and should be capable of simulating crystalline growth during vapor deposition as these processes sample a variety of local configurations. In this paper, we perform a detailed evaluation of the performance of two literature potentials for CdTe, one having the Stillinger-Weber form and the other possessing the Tersoff form. We examine simulations of structures and the corresponding energies of a variety of elemental and compound lattices, defects, and surfaces compared to those obtained from ab initio calculations and experiments. We also perform melting temperature calculations and vapor deposition simulations. Our calculations show that the Stillinger-Weber parameterization produces the correct lowest energy structure. This potential, however, is not sufficiently transferrable for defect studies. Origins of the problems of these potentials are discussed and insights leading to the development of a more transferrable potential suitable for molecular dynamics simulations of defects in CdTe crystals are provided.

  8. Conductive atomic force microscopy study of local electronic transport in ZnTe thin films

    SciTech Connect

    Kshirsagar, Sachin D.; Krishna, M. Ghanashyam; Tewari, Surya P.

    2013-02-05

    ZnTe thin films obtained by the electron beam evaporation technique were subjected to thermal annealing at 500 Degree-Sign C for 2 hours. The as deposited films were amorphous but transformed to the crystalline state under influence of the thermal treatment. There is increase in optical absorption due to the heat treatment caused by increase in free carrier concentration. Conductive atomic force microscopy shows the presence of electronic inhomogeneities in the films. This is attributed to local compositional variations in the films. I-V analysis in these systems indicates formation of Schottky junction at the metal semiconductor (M-S) interface.

  9. Atomic arrangement at ZnTe/CdSe interfaces determined by high resolution scanning transmission electron microscopy and atom probe tomography

    SciTech Connect

    Bonef, Bastien; Rouvière, Jean-Luc; Jouneau, Pierre-Henri; Bellet-Amalric, Edith; Gérard, Lionel; Mariette, Henri; André, Régis; Bougerol, Catherine; Grenier, Adeline

    2015-02-02

    High resolution scanning transmission electron microscopy and atom probe tomography experiments reveal the presence of an intermediate layer at the interface between two binary compounds with no common atom, namely, ZnTe and CdSe for samples grown by Molecular Beam Epitaxy under standard conditions. This thin transition layer, of the order of 1 to 3 atomic planes, contains typically one monolayer of ZnSe. Even if it occurs at each interface, the direct interface, i.e., ZnTe on CdSe, is sharper than the reverse one, where the ZnSe layer is likely surrounded by alloyed layers. On the other hand, a CdTe-like interface was never observed. This interface knowledge is crucial to properly design superlattices for optoelectronic applications and to master band-gap engineering.

  10. Raman scattering and anomalous Stokes–anti-Stokes ratio in MoTe2 atomic layers

    PubMed Central

    Goldstein, Thomas; Chen, Shao-Yu; Tong, Jiayue; Xiao, Di; Ramasubramaniam, Ashwin; Yan, Jun

    2016-01-01

    Stokes and anti-Stokes Raman scattering are performed on atomic layers of hexagonal molybdenum ditelluride (MoTe2), a prototypical transition metal dichalcogenide (TMDC) semiconductor. The data reveal all six types of zone center optical phonons, along with their corresponding Davydov splittings, which have been challenging to see in other TMDCs. We discover that the anti-Stokes Raman intensity of the low energy layer-breathing mode becomes more intense than the Stokes peak under certain experimental conditions, and find the effect to be tunable by excitation frequency and number of atomic layers. These observations are interpreted as a result of resonance effects arising from the C excitons in the vicinity of the Brillouin zone center in the photon-electron-phonon interaction process. PMID:27324297

  11. Observation of anomalous Stokes versus anti-Stokes ratio in MoTe2 atomic layers

    NASA Astrophysics Data System (ADS)

    Goldstein, Thomas; Chen, Shao-Yu; Xiao, Di; Ramasubramaniam, Ashwin; Yan, Jun

    We grow hexagonal molybdenum ditelluride (MoTe2), a prototypical transition metal dichalcogenide (TMDC) semiconductor, with chemical vapor transport methods and investigate its atomic layers with Stokes and anti-Stokes Raman scattering. We report observation of all six types of zone center optical phonons. Quite remarkably, the anti-Stokes Raman intensity of the low energy layer-breathing mode becomes more intense than the Stokes peak under certain experimental conditions, creating an illusion of 'negative temperature'. This effect is tunable, and can be switched from anti-Stokes enhancement to suppression by varying the excitation wavelength. We interpret this observation to be a result of resonance effects arising from the C excitons in the vicinity of the Brillouin zone center, which are robust even for multiple layers of MoTe2. The intense anti-Stokes Raman scattering provides a cooling channel for the crystal and opens up opportunities for laser cooling of atomically thin TMDC semiconductor devices. Supported by the University of Massachusetts Amherst, the National Science Foundation Center for Hierarchical Manufacturing (CMMI-1025020) and Office of Emerging Frontiers in Research and Innovation (EFRI-1433496).

  12. Interfacial chemistry in a ZnTe/CdSe superlattice studied by atom probe tomography and transmission electron microscopy strain measurements.

    PubMed

    Bonef, B; Haas, B; Rouvière, J-L; André, R; Bougerol, C; Grenier, A; Jouneau, P-H; Zuo, J-M

    2016-05-01

    The atomic scale analysis of a ZnTe/CdSe superlattice grown by molecular beam epitaxy is reported using atom probe tomography and strain measurements from high-resolution scanning transmission electron microscopy images. CdTe interfaces were grown by atomic layer epitaxy to prevent the spontaneous formation of ZnSe bonds. Both interfaces between ZnTe and CdSe are composed of alloyed layers of ZnSe. Pure CdTe interfaces are not observed and Zn atoms are also visible in the CdSe layers. This information is critical to design superlattices with the expected optoelectronic properties. PMID:26748639

  13. Enhanced electron coherence in atomically thin Nb3SiTe6

    NASA Astrophysics Data System (ADS)

    Hu, J.; Liu, X.; Yue, C. L.; Liu, J. Y.; Zhu, H. W.; He, J. B.; Wei, J.; Mao, Z. Q.; Antipina, L. Yu.; Popov, Z. I.; Sorokin, P. B.; Liu, T. J.; Adams, P. W.; Radmanesh, S. M. A.; Spinu, L.; Ji, H.; Natelson, D.

    2015-06-01

    It is now well established that many of the technologically important properties of two-dimensional (2D) materials, such as the extremely high carrier mobility in graphene and the large direct band gaps in MoS2 monolayers, arise from quantum confinement. However, the influence of reduced dimensions on electron-phonon (e-ph) coupling and its attendant dephasing effects in such systems has remained unclear. Although phonon confinement is expected to produce a suppression of e-ph interactions in 2D systems with rigid boundary conditions, experimental verification of this has remained elusive. Here, we show that the e-ph interaction is, indeed, modified by a phonon dimensionality crossover in layered Nb3SiTe6 atomic crystals. When the thickness of the Nb3SiTe6 crystals is reduced below a few unit cells, we observe an unexpected enhancement of the weak-antilocalization signature in magnetotransport. This finding strongly supports the theoretically predicted suppression of e-ph interactions caused by quantum confinement of phonons.

  14. Reduction of surface leakage current by surface passivation of CdZn Te and other materials using hyperthermal oxygen atoms

    DOEpatents

    Hoffbauer, Mark A.; Prettyman, Thomas H.

    2001-01-01

    Reduction of surface leakage current by surface passivation of Cd.sub.1-x Zn.sub.x Te and other materials using hyperthermal oxygen atoms. Surface effects are important in the performance of CdZnTe room-temperature radiation detectors used as spectrometers since the dark current is often dominated by surface leakage. A process using high-kinetic-energy, neutral oxygen atoms (.about.3 eV) to treat the surface of CdZnTe detectors at or near ambient temperatures is described. Improvements in detector performance include significantly reduced leakage current which results in lower detector noise and greater energy resolution for radiation measurements of gamma- and X-rays, thereby increasing the accuracy and sensitivity of measurements of radionuclides having complex gamma-ray spectra, including special nuclear materials.

  15. Atomic scale insight into the amorphous structure of Cu doped GeTe phase-change material

    SciTech Connect

    Zhang, Linchuan; Sa, Baisheng; Zhou, Jian; Sun, Zhimei; Song, Zhitang

    2014-10-21

    GeTe shows promising application as a recording material for phase-change nonvolatile memory due to its fast crystallization speed and extraordinary amorphous stability. To further improve the performance of GeTe, various transition metals, such as copper, have been doped in GeTe in recent works. However, the effect of the doped transition metals on the stability of amorphous GeTe is not known. Here, we shed light on this problem for the system of Cu doped GeTe by means of ab initio molecular dynamics calculations. Our results show that the doped Cu atoms tend to agglomerate in amorphous GeTe. Further, base on analyzing the pair correlation functions, coordination numbers and bond angle distributions, remarkable changes in the local structure of amorphous GeTe induced by Cu are obviously seen. The present work may provide some clues for understanding the effect of early transition metals on the local structure of amorphous phase-change compounds, and hence should be helpful for optimizing the structure and performance of phase-change materials by doping transition metals.

  16. Mechanical and Electrical Properties of CdTe Tetrapods Studied byAtomic Force Microscopy

    SciTech Connect

    Fang, Liang; Park, Jeong Young; Cui, Yi; Alivisatos, Paul; Shcrier, Joshua; Lee, Byounghak; Wang, Lin-Wang; Salmeron, Miquel

    2007-08-30

    The mechanical and electrical properties of CdTe tetrapod-shaped nanocrystals have been studied with atomic force microscopy. Tapping mode images of tetrapods deposited on silicon wafers revealed that they contact the surface with the ends of three arms. The length of these arms was found to be 130 {+-} 10 nm. A large fraction of the tetrapods had a shortened vertical arm as a result of fracture during sample preparation. Fracture also occurs when the applied load is a few nanonewtons. Compression experiments with the AFM tip indicate that tetrapods with the shortened vertical arm deform elastically when the applied force was less than 50 nN. Above 90 nN additional fracture events occurred that further shorted the vertical arm. Loads above 130 nN produced irreversible damage to the other arms as well. Current-voltage characteristics of tetrapods deposited on gold indicated semiconducting behavior with a current gap of {approx}2 eV at low loads (<50 nN) and a narrowing to about 1 eV at loads between 60 and 110 nN. Atomic calculation of the deformation suggests that the ends of the tetrapod arms are stuck during compression so that the deformations are due to bending modes. The reduction of the current gap is due to electrostatic effects, rather than strain deformation effects inside the tetrapod.

  17. Phase-change properties of GeSbTe thin films deposited by plasma-enchanced atomic layer depositon

    NASA Astrophysics Data System (ADS)

    Song, Sannian; Yao, Dongning; Song, Zhitang; Gao, Lina; Zhang, Zhonghua; Li, Le; Shen, Lanlan; Wu, Liangcai; Liu, Bo; Cheng, Yan; Feng, Songlin

    2015-02-01

    Phase-change access memory (PCM) appears to be the strongest candidate for next-generation high-density nonvolatile memory. The fabrication of ultrahigh-density PCM depends heavily on the thin-film growth technique for the phase-changing chalcogenide material. In this study, Ge2Sb2Te5 (GST) and GeSb8Te thin films were deposited by plasma-enhanced atomic layer deposition (ALD) method using Ge [(CH3)2 N]4, Sb [(CH3)2 N]3, Te(C4H9)2 as precursors and plasma-activated H2 gas as reducing agent of the metallorganic precursors. Compared with GST-based device, GeSb8Te-based device exhibits a faster switching speed and reduced reset voltage, which is attributed to the growth-dominated crystallization mechanism of the Sb-rich GeSb8Te films. These results show that ALD is an attractive method for preparation of phase-change materials.

  18. Phase-change properties of GeSbTe thin films deposited by plasma-enchanced atomic layer depositon.

    PubMed

    Song, Sannian; Yao, Dongning; Song, Zhitang; Gao, Lina; Zhang, Zhonghua; Li, Le; Shen, Lanlan; Wu, Liangcai; Liu, Bo; Cheng, Yan; Feng, Songlin

    2015-01-01

    Phase-change access memory (PCM) appears to be the strongest candidate for next-generation high-density nonvolatile memory. The fabrication of ultrahigh-density PCM depends heavily on the thin-film growth technique for the phase-changing chalcogenide material. In this study, Ge2Sb2Te5 (GST) and GeSb8Te thin films were deposited by plasma-enhanced atomic layer deposition (ALD) method using Ge [(CH3)2 N]4, Sb [(CH3)2 N]3, Te(C4H9)2 as precursors and plasma-activated H2 gas as reducing agent of the metallorganic precursors. Compared with GST-based device, GeSb8Te-based device exhibits a faster switching speed and reduced reset voltage, which is attributed to the growth-dominated crystallization mechanism of the Sb-rich GeSb8Te films. These results show that ALD is an attractive method for preparation of phase-change materials. PMID:25852385

  19. Thermoelectric transport and Hall measurements of low defect Sb2Te3 thin films grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Zastrow, S.; Gooth, J.; Boehnert, T.; Heiderich, S.; Toellner, W.; Heimann, S.; Schulz, S.; Nielsch, K.

    2013-03-01

    Sb2Te3 has recently been an object of intensive research since its promising applicability in thermoelectric, in phase-change memory devices and as a topological insulator. In this work, we report highly textured Sb2Te3 thin films, grown by atomic layer deposition on Si/SiO2 wafers based on the reaction of SbCl3 and (Et3Si)2Te. The low deposition temperature at 80 °C allows the pre-patterning of the Sb2Te3 by standard lithography processes. A platform to characterize the Seebeck coefficient S, the electrical conductivity σ as well as the Hall coefficient RH on the same film has been developed. Comparing all temperature-dependent transport properties, three different conductive regions in the temperature range of 50-400 K are found. Room temperature values of S = 146 × 10-6 VK-1, σ = 104 Sm-1 and mobility µ = 270.5 × 10-4 m2 V-1 s-1 are determined. The low carrier concentration in the range of n = 2.4 × 1018 cm-3 at 300 K quantifies the low defect content of the Sb2Te3 thin films.

  20. High Resolution Dopant Profiles Revealed by Atom Probe Tomography and STEM-EBIC for CdTe Based Solar Cells

    SciTech Connect

    Poplawsky, Jonathan D.; Li, Chen; Paudel, Naba; Guo, Wei; Yan, Yanfa; Pennycook, Stephen J.

    2016-01-01

    Segregated elements and their diffusion profiles within grain boundaries and interfaces resulting from post deposition heat treatments are revealed using atom probe tomography (APT), scanning transmission electron microscopy (STEM), and electron beam induced current (EBIC) techniques. The results demonstrate how these techniques complement each other to provide conclusive evidence for locations of space charge regions and mechanisms that create them at the nanoscale. Most importantly, a Cl dopant profile that extends ~5 nm into CdTe grains interfacing the CdS is shown using APT and STEM synergy, which has been shown to push the pn-junction into the CdTe layer indicative of a homojunction (revealed by STEM EBIC). In addition, Cu and Cl concentrations within grain boundaries within several nms and µms from the CdS/CdTe interface are compared, Na segregation of <0.1% is detected, and S variations of ~1–3% are witnessed between CdTe grains close to the CdS/CdTe interface. The segregation and diffusion of these elements directly impacts on the material properties, such as band gap energy and n/p type properties. Optimization of the interfacial and grain boundary doping will lead to higher efficiency solar cells.

  1. High Resolution Dopant Profiles Revealed by Atom Probe Tomography and STEM-EBIC for CdTe Based Solar Cells

    DOE PAGESBeta

    Poplawsky, Jonathan D.; Li, Chen; Paudel, Naba; Guo, Wei; Yan, Yanfa; Pennycook, Stephen J.

    2016-01-01

    Segregated elements and their diffusion profiles within grain boundaries and interfaces resulting from post deposition heat treatments are revealed using atom probe tomography (APT), scanning transmission electron microscopy (STEM), and electron beam induced current (EBIC) techniques. The results demonstrate how these techniques complement each other to provide conclusive evidence for locations of space charge regions and mechanisms that create them at the nanoscale. Most importantly, a Cl dopant profile that extends ~5 nm into CdTe grains interfacing the CdS is shown using APT and STEM synergy, which has been shown to push the pn-junction into the CdTe layer indicative ofmore » a homojunction (revealed by STEM EBIC). In addition, Cu and Cl concentrations within grain boundaries within several nms and µms from the CdS/CdTe interface are compared, Na segregation of <0.1% is detected, and S variations of ~1–3% are witnessed between CdTe grains close to the CdS/CdTe interface. The segregation and diffusion of these elements directly impacts on the material properties, such as band gap energy and n/p type properties. Optimization of the interfacial and grain boundary doping will lead to higher efficiency solar cells.« less

  2. Passivation Effect of Atomic Layer Deposition of Al2O3 Film on HgCdTe Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Ye, Zhen-Hua; Sun, Chang-Hong; Chen, Yi-Yu; Zhang, Tian-Ning; Chen, Xin; Lin, Chun; Ding, Ring-Jun; He, Li

    2016-09-01

    The passivation effect of atomic layer deposition of (ALD) Al2O3 film on a HgCdTe infrared detector was investigated in this work. The passivation effect of Al2O3 film was evaluated by measuring the minority carrier lifetime, capacitance versus voltage ( C- V) characteristics of metal-insulator-semiconductor devices, and resistance versus voltage ( R- V) characteristics of variable-area photodiodes. The minority carrier lifetime, C- V characteristics, and R- V characteristics of HgCdTe devices passivated by ALD Al2O3 film was comparable to those of HgCdTe devices passivated by e-beam evaporation of ZnS/CdTe film. However, the baking stability of devices passivated by Al2O3 film is inferior to that of devices passivated by ZnS/CdTe film. In future work, by optimizing the ALD Al2O3 film growing process and annealing conditions, it may be feasible to achieve both excellent electrical properties and good baking stability.

  3. Passivation Effect of Atomic Layer Deposition of Al2O3 Film on HgCdTe Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Ye, Zhen-Hua; Sun, Chang-Hong; Chen, Yi-Yu; Zhang, Tian-Ning; Chen, Xin; Lin, Chun; Ding, Ring-Jun; He, Li

    2016-06-01

    The passivation effect of atomic layer deposition of (ALD) Al2O3 film on a HgCdTe infrared detector was investigated in this work. The passivation effect of Al2O3 film was evaluated by measuring the minority carrier lifetime, capacitance versus voltage (C-V) characteristics of metal-insulator-semiconductor devices, and resistance versus voltage (R-V) characteristics of variable-area photodiodes. The minority carrier lifetime, C-V characteristics, and R-V characteristics of HgCdTe devices passivated by ALD Al2O3 film was comparable to those of HgCdTe devices passivated by e-beam evaporation of ZnS/CdTe film. However, the baking stability of devices passivated by Al2O3 film is inferior to that of devices passivated by ZnS/CdTe film. In future work, by optimizing the ALD Al2O3 film growing process and annealing conditions, it may be feasible to achieve both excellent electrical properties and good baking stability.

  4. Observation of different reflected high-energy electron diffraction patterns during atomic layer epitaxy growth of CdTe epilayers

    NASA Astrophysics Data System (ADS)

    Faschinger, W.; Juza, P.; Sitter, H.

    1991-12-01

    We present the first RHEED observations during atomic layer epitaxy growth of CdTe on GaAs substrates. The evolution of the RHEED pattern shows that, despite the large lattice mismatch, growth becomes two-dimensional after the deposition of a few monolayers. We observe intensity variations of two RHEED spots under surface resonance conditions and show that this new approach is superior to the observation of the specular spot for the measurement of surface coverages and adsorption kinetics. From the variation of the spot intensities with substrate temperature, we deduce that the Cd and Te surface coverages drop to 0.5 at substrate temperatures higher than 315°C.

  5. Topological transport and atomic tunnelling–clustering dynamics for aged Cu-doped Bi2Te3 crystals

    PubMed Central

    Chen, Taishi; Chen, Qian; Schouteden, Koen; Huang, Wenkai; Wang, Xuefeng; Li, Zhe; Miao, Feng; Wang, Xinran; Li, Zhaoguo; Zhao, Bo; Li, Shaochun; Song, Fengqi; Wang, Jinlan; Wang, Baigeng; Van Haesendonck, Chris; Wang, Guanghou

    2014-01-01

    Enhancing the transport contribution of surface states in topological insulators is vital if they are to be incorporated into practical devices. Such efforts have been limited by the defect behaviour of Bi2Te3 (Se3) topological materials, where the subtle bulk carrier from intrinsic defects is dominant over the surface electrons. Compensating such defect carriers is unexpectedly achieved in (Cu0.1Bi0.9)2Te3.06 crystals. Here we report the suppression of the bulk conductance of the material by four orders of magnitude by intense ageing. The weak antilocalization analysis, Shubnikov–de Haas oscillations and scanning tunnelling spectroscopy corroborate the transport of the topological surface states. Scanning tunnelling microscopy reveals that Cu atoms are initially inside the quintuple layers and migrate to the layer gaps to form Cu clusters during the ageing. In combination with first-principles calculations, an atomic tunnelling–clustering picture across a diffusion barrier of 0.57 eV is proposed. PMID:25247692

  6. Element-resolved atomic structure imaging of rocksalt Ge2Sb2Te5 phase-change material

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Zhang, Wei; Shen, Zhenju; Chen, Yongjin; Li, Jixue; Zhang, Shengbai; Zhang, Ze; Wuttig, Matthias; Mazzarello, Riccardo; Ma, Evan; Han, Xiaodong

    2016-05-01

    Disorder-induced electron localization and metal-insulator transitions (MITs) have been a very active research field starting from the seminal paper by Anderson half a century ago. However, pure Anderson insulators are very difficult to identify due to ubiquitous electron-correlation effects. Recently, an MIT has been observed in electrical transport measurements on the crystalline state of phase-change GeSbTe compounds, which appears to be exclusively disorder driven. Subsequent density functional theory simulations have identified vacancy disorder to localize electrons at the Fermi level. Here, we report a direct atomic scale chemical identification experiment on the rocksalt structure obtained upon crystallization of amorphous Ge2Sb2Te5. Our results confirm the two-sublattice structure resolving the distribution of chemical species and demonstrate the existence of atomic disorder on the Ge/Sb/vacancy sublattice. Moreover, we identify a gradual vacancy ordering process upon further annealing. These findings not only provide a structural underpinning of the observed Anderson localization but also have implications for the development of novel multi-level data storage within the crystalline phases.

  7. Cross-Sectional Conductive Atomic Force Microscopy of CdTe/CdS Solar Cells: Effects of Etching and Back-Contact Processes

    SciTech Connect

    Moutinho, H. R.; Dhere, R. G.; Jiang, C.-S.; Gessert, T.; Duda, A.; Young, M.; Metzger, W. K.; Li, X.; Al-Jassim, M. M.

    2006-01-01

    We investigated the effects of the etching processes using bromine and nitric-phosphoric acid solutions, as well as of Cu, in the bulk electrical conductivity of CdTe/CdS solar cells using conductive atomic force microscopy (C-AFM). Although the etching process can create a conductive layer on the surface of the CdTe, the layer is very shallow. In contrast, the addition of a thin layer of Cu to the surface creates a conductive layer inside the CdTe that is not uniform in depth, is concentrated at grains boundaries, and may short circuit the device if the CdTe is too thin. The etching process facilitates the Cu diffusion and results in thicker conductive layers. The existence of this inhomogeneous conductive layer directly affects the current transport and is probably the reason for needing thick CdTe in these devices.

  8. Cross-Sectional Conductive Atomic Force Microscopy of CdTe/CdS Solar Cells: Effects of Etching and Back-Contact Processes; Preprint

    SciTech Connect

    Moutinho, H. R.; Dhere, R. G.; Jiang, C.-S.; Gessert, T. A.; Duda, A. M.; Young, M.; Metzger, W. K.; Li, X.; Al-Jassim, M. M.

    2006-05-01

    We investigated the effects of the etching processes using bromine and nitric-phosphoric acid solutions, as well as of Cu, in the bulk electrical conductivity of CdTe/CdS solar cells using conductive atomic force microscopy (C-AFM). Although the etching process can create a conductive layer on the surface of the CdTe, the layer is very shallow. In contrast, the addition of a thin layer of Cu to the surface creates a conductive layer inside the CdTe that is not uniform in depth, is concentrated at grains boundaries, and may short circuit the device if the CdTe is too thin. The etching process facilitates the Cu diffusion and results in thicker conductive layers. The existence of this inhomogeneous conductive layer directly affects the current transport and is probably the reason for needing thick CdTe in these devices.

  9. Synthesis of ZnTe dendrites on multi-walled carbon nanotubes/polyimide nanocomposite membrane by electrochemical atomic layer deposition and photoelectrical property research

    SciTech Connect

    Jiang, Yimin; Kou, Huanhuan; Li, Jiajia; Yu, Shengjiao; Du, Yongling; Ye, Weichun; Wang, Chunming

    2012-10-15

    We report on the electrochemical atomic layer deposition (EC-ALD) of ZnTe dendrites on the carboxyl-functionalized multi-walled carbon nanotubes/polyimide (COOH-MWCNTs/PI) membrane. Electrochemical characteristics were studied by cyclic voltammetry (CV) and the deposition of ZnTe dendrites was completed using amperometric method (I-t). The prepared ZnTe dendrites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The growth mechanism of ZnTe dendrites was elucidated to give a deep understanding of crystal growth. The concentration of reagents and deposition cycle had a significant effect on the morphology and structure of deposits. UV-vis transmission study indicated a direct band gap of 2.26 eV. Photoelectrical measurement confirmed the p-type conductivity of ZnTe dendrites, which indicated that the dendritic ZnTe crystals may have potential practical application in optoelectronic devices. - Graphical abstract: Representative SEM images of ZnTe dendrites. (a) Panorama of ZnTe dendrites; (b) a single dendrite. The regular branches appeared like leaves and showed a parallel arrangement layer upon layer between each other. Highlights: Black-Right-Pointing-Pointer ZnTe dendrites were successfully synthesized on CNTs/PI membrane by electrodeposition. Black-Right-Pointing-Pointer The growth mechanism of ZnTe dendritic structures was investigated in detail. Black-Right-Pointing-Pointer The concentration and deposition cycle greatly affected the morphology of ZnTe. Black-Right-Pointing-Pointer OCP and I-t studies showed that ZnTe can be beneficial to photoelectric applications.

  10. Specific features of the electronic, spin, and atomic structures of a topological insulator Bi2Te2.4Se0.6

    NASA Astrophysics Data System (ADS)

    Filyanina, M. V.; Klimovskikh, I. I.; Eremeev, S. V.; Rybkina, A. A.; Rybkin, A. G.; Zhizhin, E. V.; Petukhov, A. E.; Rusinov, I. P.; Kokh, K. A.; Chulkov, E. V.; Tereshchenko, O. E.; Shikin, A. M.

    2016-04-01

    The specific features of the electronic and spin structures of a triple topological insulator Bi2Te2.4Se0.6, which is characterized by high-efficiency thermoelectric properties, have been studied with the use of angular- and spin-resolved photoelectron spectroscopy and compared with theoretical calculations in the framework of the density functional theory. It has been shown that the Fermi level for Bi2Te2.4Se0.6 falls outside the band gap and traverses the topological surface state (the Dirac cone). Theoretical calculations of the electronic structure of the surface have demonstrated that the character of distribution of Se atoms on the Te-Se sublattice practically does not influence the dispersion of the surface topological electronic state. The spin structure of this state is characterized by helical spin polarization. Analysis of the Bi2Te2.4Se0.6 surface by scanning tunnel microscopy has revealed atomic smoothness of the surface of a sample cleaved in an ultrahigh vacuum, with a lattice constant of ~4.23 Å. Stability of the Dirac cone of the Bi2Te2.4Se0.6 compound to deposition of a Pt monolayer on the surface is shown.

  11. Atomic-resolution study of dislocation structures and interfaces in poly-crystalline thin film CdTe using aberration-corrected STEM

    NASA Astrophysics Data System (ADS)

    Paulauskas, Tadas; Colegrove, Eric; Buurma, Chris; Kim, Moon; Klie, Robert

    2014-03-01

    Commercial success of CdTe-based thin film photovoltaic devices stems from its nearly ideal direct band gap which very effectively couples to Sun's light spectrum as well as ease of manufacturing and low cost of these modules. However, to further improve the conversion efficiency beyond 20 percent, it is important to minimize the harmful effects of grain boundaries and lattice defects in CdTe. Direct atomic-scale characterization is needed in order identify the carrier recombination centers. Likewise, it is necessary to confirm that passivants in CdTe, such as Cl, are able to diffuse and bind to the target defects. In this study, we characterize dislocation structures and grain boundaries in poly-crystalline CdTe using aberration-corrected cold-field emission scanning transmission electron microscopy (STEM). The chemical composition of Shockley partial, Frank and Lomer-Cottrell dislocations is examined via atomic column-resolved X-ray energy dispersive (XEDS) and electron energy-loss spectroscopies (EELS). Segregation of Cl towards dislocation cores and grain boundaries is shown in CdCl2 treated samples. We also investigate interfaces in ultra-high-vacuum bonded CdTe bi-crystals with pre-defined misorientation angles which are intended to mimic grain boundaries. Funded by: DOE EERE Sunshot Award EE0005956.

  12. Nanoscale multilevel switching in Ge2Sb2Te5 thin film with conductive atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Fei; Xu, Ling; Chen, Jing; Xu, Jun; Yu, Yao; Ma, Zhongyuan; Chen, Kunji

    2016-01-01

    We demonstrate three-level data storage in amorphous Ge2Sb2Te5 (GST) thin film by conductive atomic force microscopy (C-AFM). Due to the high resolution and current sensitivity of AFM, the electrical properties of GST are investigated in the nanoscale. By applying an electric field between an AFM probe tip and the GST surface, well-resolved threshold switching and memory switching are obtained successively in a current-voltage sweeping. Correspondingly, three states with high, intermediate and low resistances, which are assigned data values ‘0’, ‘1’ and ‘2’ respectively, are observed in an IV-spectrum. The electrical resistance of GST thin film decreases by over two orders of magnitude in both switching processes, which provides a clear contrast to distinguish the three logical states. We also discuss the threshold electrical field of threshold switching in the amorphous GST thin film. Nanoscale conductive marks in the amorphous ON state and crystalline state are successfully fabricated by applying IV-spectra with different voltage ranges on the GST thin films.

  13. Nanoscale multilevel switching in Ge2Sb2Te5 thin film with conductive atomic force microscopy.

    PubMed

    Yang, Fei; Xu, Ling; Chen, Jing; Xu, Jun; Yu, Yao; Ma, Zhongyuan; Chen, Kunji

    2016-01-22

    We demonstrate three-level data storage in amorphous Ge2Sb2Te5 (GST) thin film by conductive atomic force microscopy (C-AFM). Due to the high resolution and current sensitivity of AFM, the electrical properties of GST are investigated in the nanoscale. By applying an electric field between an AFM probe tip and the GST surface, well-resolved threshold switching and memory switching are obtained successively in a current-voltage sweeping. Correspondingly, three states with high, intermediate and low resistances, which are assigned data values '0', '1' and '2' respectively, are observed in an IV-spectrum. The electrical resistance of GST thin film decreases by over two orders of magnitude in both switching processes, which provides a clear contrast to distinguish the three logical states. We also discuss the threshold electrical field of threshold switching in the amorphous GST thin film. Nanoscale conductive marks in the amorphous ON state and crystalline state are successfully fabricated by applying IV-spectra with different voltage ranges on the GST thin films. PMID:26651151

  14. Atomic-resolution characterization of the effects of CdCl{sub 2} treatment on poly-crystalline CdTe thin films

    SciTech Connect

    Paulauskas, T. Buurma, C.; Colegrove, E.; Guo, Z.; Sivananthan, S.; Klie, R. F.

    2014-08-18

    Poly-crystalline CdTe thin films on glass are used in commercial solar-cell superstrate devices. It is well known that post-deposition annealing of the CdTe thin films in a CdCl{sub 2} environment significantly increases the device performance, but a fundamental understanding of the effects of such annealing has not been achieved. In this Letter, we report a change in the stoichiometry across twin boundaries in CdTe and propose that native point defects alone cannot account for this variation. Upon annealing in CdCl{sub 2}, we find that the stoichiometry is restored. Our experimental measurements using atomic-resolution high-angle annular dark field imaging, electron energy-loss spectroscopy, and energy dispersive X-ray spectroscopy in a scanning transmission electron microscope are supported by first-principles density functional theory calculations.

  15. Atomic-resolution characterization of the effects of CdCl2 treatment on poly-crystalline CdTe thin films

    NASA Astrophysics Data System (ADS)

    Paulauskas, T.; Buurma, C.; Colegrove, E.; Guo, Z.; Sivananthan, S.; Chan, M. K. Y.; Klie, R. F.

    2014-08-01

    Poly-crystalline CdTe thin films on glass are used in commercial solar-cell superstrate devices. It is well known that post-deposition annealing of the CdTe thin films in a CdCl2 environment significantly increases the device performance, but a fundamental understanding of the effects of such annealing has not been achieved. In this Letter, we report a change in the stoichiometry across twin boundaries in CdTe and propose that native point defects alone cannot account for this variation. Upon annealing in CdCl2, we find that the stoichiometry is restored. Our experimental measurements using atomic-resolution high-angle annular dark field imaging, electron energy-loss spectroscopy, and energy dispersive X-ray spectroscopy in a scanning transmission electron microscope are supported by first-principles density functional theory calculations.

  16. First-principles study of atomic and electronic structures of 60° perfect and 30°/90° partial glide dislocations in CdTe

    DOE PAGESBeta

    Kweon, Kyoung E.; Aberg, Daniel; Lordi, Vincenzo

    2016-05-16

    The atomic and electronic structures of 60° glide perfect and 30°/90° glide partial dislocations in CdTe are studied using combined semi-empirical and density functional theory calculations. The calculations predict that the dislocation cores tend to undergo significant reconstructions along the dislocation lines from the singly-periodic (SP) structures, yielding either doubly-periodic (DP) ordering by forming a dimer or quadruply-periodic (QP) ordering by alternating a dimer and a missing dimer. Charge modulation along the dislocation line, accompanied by the QP reconstruction for the Cd-/Te-core 60° perfect and 30° partials or the DP reconstruction for the Cd-core 90° partial, results in semiconducting character,more » as opposed to the metallic character of the SP dislocation cores. Dislocation-induced defect states for the 60° Cd-/Te-core are located relatively close to the band edges, whereas the defect states lie in the middle of the band gap for the 30° Cd-/Te-core partial dislocations. In addition to the intracore charge modulation within each QP core, the possibility of intercore charge transfer between two different dislocation cores when they are paired together in the same system is discussed. As a result, the analysis of the electronic structures reveals the potential role of the dislocations on charge transport in CdTe, particularly in terms of charge trapping and recombination.« less

  17. First-principles study of atomic and electronic structures of 60∘ perfect and 30∘/90∘ partial glide dislocations in CdTe

    NASA Astrophysics Data System (ADS)

    Kweon, Kyoung E.; Åberg, Daniel; Lordi, Vincenzo

    2016-05-01

    The atomic and electronic structures of 60∘ glide perfect and 30∘/90∘ glide partial dislocations in CdTe are studied using combined semi-empirical and density functional theory calculations. The calculations predict that the dislocation cores tend to undergo significant reconstructions along the dislocation lines from the singly-periodic (SP) structures, yielding either doubly-periodic (DP) ordering by forming a dimer or quadruply-periodic (QP) ordering by alternating a dimer and a missing dimer. Charge modulation along the dislocation line, accompanied by the QP reconstruction for the Cd-/Te-core 60∘ perfect and 30∘ partials or the DP reconstruction for the Cd-core 90∘ partial, results in semiconducting character, as opposed to the metallic character of the SP dislocation cores. Dislocation-induced defect states for the 60∘ Cd-/Te-core are located relatively close to the band edges, whereas the defect states lie in the middle of the band gap for the 30∘ Cd-/Te-core partial dislocations. In addition to the intracore charge modulation within each QP core, the possibility of intercore charge transfer between two different dislocation cores when they are paired together in the same system is discussed. The analysis of the electronic structures reveals the potential role of the dislocations on charge transport in CdTe, particularly in terms of charge trapping and recombination.

  18. Unusually Slow Electron Cooling to Charge-Transfer State in Gradient CdTeSe Alloy Nanocrystals Mediated through Mn Atom.

    PubMed

    Debnath, Tushar; Maiti, Sourav; Ghosh, Hirendra N

    2016-04-01

    We have synthesized Mn-doped CdTeSe gradient alloy nanocrystals (NCs) by a colloidal synthetic method, and charge carrier dynamics have been revealed through ultrafast transient absorption (TA) spectroscopy. Due to the reactivity difference between Te and Se, a CdTe-rich core and CdSe-rich shell have been formed in the CdTeSe alloy with the formation of a gradient type II core-shell structure. Electron paramagnetic resonance studies suggest Mn atoms are located in the surface of the alloy NCs. Steady-state optical absorption and emission studies suggest formation of a charge-transfer (CT) state in which electrons are localized in a CdSe-rich shell and holes are localized in a CdTe-rich core which appears in the red region of the spectra. Electron transfer in the CT state is found to take place in the Marcus inverted region. To understand charge-transfer dynamics in the CdTeSe alloy NCs and to determine the effect of Mn doping on the alloy, ultrafast transient absorption studies have been carried out. In the case of the undoped alloy, formation of the CT state is found to take place through electron relaxation to the conduction band of the CT state with a time of 600 fs and through hole relaxation (from the CdSe-rich state to the CdTe-rich state) to the valence band of the CT state with a time scale of 1 ps. However, electron relaxation in the presence of Mn dopants takes place initially via an electron transfer to the Mn 3d state (d(5)) followed by transfer from the Mn 3d state (d(6)) to the CT state, which has been found to take place with a >700 ps time scale in addition to the hole relaxation time of 2 ps. Charge recombination time of the CT state is found to be extremely slow in the Mn-doped CdTeSe alloy NCs as compared to the undoped one, where the Mn atom acts as an electron storage center. PMID:27003582

  19. Two-dimensional Mineral [Pb2BiS3 ][AuTe2 ]: High mobility Charge Carriers in Single-atom-thick Layers

    NASA Astrophysics Data System (ADS)

    Fang, Lei; Im, J.; Stoumpos, C.; Shi, F.; Dravid, V.; Leroux, M.; Freeman, A.; Kwok, W.-K.,; Chung, D.-Y.; Kanatzidis, M.

    2015-03-01

    We report that [Pb2BiS3][AuTe2], known as a naturally occurring mineral buckhornite, hosts 2D carriers in single-atom-thick layers. The structure is composed of stacking layers of weakly coupled [Pb2BiS3] and [AuTe2] sheets. The insulating [Pb2BiS3] sheet inhibits interlayer charge hopping and confines the carriers in the basal plane of the single-atom-thick [AuTe2] layer. Magneto-transport measurements and theoretical calculations show a property of multiband semimetal with compensated density of electrons and holes, which exhibit high hole carrier mobility of 1360 cm2/Vs. This material possesses an extremely large anisotropy 104, comparable to benchmark materials graphite. The electronic structure features linear band dispersion at the Fermi level and ultrahigh Fermi velocities of 106 m/s which are virtually identical to that of graphene. The weak interlayer coupling gives rise to the highly cleavable property of single crystal specimens, indicating a prospect for monolayer system. This research was supported by the DoE, BES, under Contract No. DE-AC02-06CH11357, and NUANCE Center at the Northwestern Univeristy.

  20. Two-dimensional mineral [Pb2BiS3][AuTe2]: high-mobility charge carriers in single-atom-thick layers.

    PubMed

    Fang, Lei; Im, Jino; Stoumpos, Constantinos C; Shi, Fengyuan; Dravid, Vinayak; Leroux, Maxime; Freeman, Arthur J; Kwok, Wai-Kwong; Chung, Duck Young; Kanatzidis, Mercouri

    2015-02-18

    Two-dimensional (2D) electronic systems are of wide interest due to their richness in chemical and physical phenomena and potential for technological applications. Here we report that [Pb2BiS3][AuTe2], known as the naturally occurring mineral buckhornite, hosts 2D carriers in single-atom-thick layers. The structure is composed of stacking layers of weakly coupled [Pb2BiS3] and [AuTe2] sheets. The insulating [Pb2BiS3] sheet inhibits interlayer charge hopping and confines the carriers in the basal plane of the single-atom-thick [AuTe2] layer. Magneto-transport measurements on synthesized samples and theoretical calculations show that [Pb2BiS3][AuTe2] is a multiband semimetal with a compensated density of electrons and holes, which exhibits a high hole carrier mobility of ∼1360 cm(2)/(V s). This material possesses an extremely large anisotropy, Γ = ρ(c)/ρ(ab) ≈ 10(4), comparable to those of the benchmark 2D materials graphite and Bi2Sr2CaCu2O(6+δ). The electronic structure features linear band dispersion at the Fermi level and ultrahigh Fermi velocities of 10(6) m/s, which are virtually identical to those of graphene. The weak interlayer coupling gives rise to the highly cleavable property of the single crystal specimens. Our results provide a novel candidate for a monolayer platform to investigate emerging electronic properties. PMID:25612093

  1. NMR and specific heat study of atomic dynamics and spin-orbit behavior in Cu2-xAgyTe

    NASA Astrophysics Data System (ADS)

    Sirusi, Ali A.; Ballikaya, Sedat; Chen, Jing-Han; Uher, Ctirad; Ross, Joseph H., Jr.

    We report studies of Cu2Te and Cu2-xAgyTe, promising candidates for thermoelectric and photovoltaic applications. Cu and Te NMR show that above a well-defined 200 K onset, Cu2Te exhibits Cu-ion hopping, leading to the higher-temperature superionic motion. In Cu1.98Ag0.2Te the onset increases to 250 K. In the low-temperature static phase the properties are nearly identical. Aside from Korringa terms there are large diamagnetic contributions for all nuclei, comparable to those for other systems with very large spin-orbit and/or inverted band configurations. Thus the system may be a topologically interesting system like the similar phase Ag2Te. Results will be compared to DFT calculations of NMR shifts. The low-temperature spectra also indicate two distinct local environments for Cu sites, one corresponding to high symmetry such as characterizes the high-temperature cubic phase, and one with much more asymmetry. In addition, specific heat results are consistent with about 50% of the Cu ions being weakly bound on Einstein-oscillator sites. We tentatively connect these results to reported local inhomogeneity due to vacancy condensation in similar systems.

  2. Self-Driven Photodetector and Ambipolar Transistor in Atomically Thin GaTe-MoS2 p-n vdW Heterostructure.

    PubMed

    Yang, Shengxue; Wang, Cong; Ataca, Can; Li, Yan; Chen, Hui; Cai, Hui; Suslu, Aslihan; Grossman, Jeffrey C; Jiang, Chengbao; Liu, Qian; Tongay, Sefaattin

    2016-02-01

    Heterostructure engineering of atomically thin two-dimensional materials offers an exciting opportunity to fabricate atomically sharp interfaces for highly tunable electronic and optoelectronic devices. Here, we demonstrate abrupt interface between two completely dissimilar material systems, i.e, GaTe-MoS2 p-n heterojunction transistors, where the resulting device possesses unique electronic properties and self-driven photoelectric characteristics. Fabricated heterostructure transistors exhibit forward biased rectifying behavior where the transport is ambipolar with both electron and hole carriers contributing to the overall transport. Under illumination, photoexcited electron-hole pairs are readily separated by large built-in potential formed at the GaTe-MoS2 interface efficiently generating self-driven photocurrent within <10 ms. Overall results suggest that abrupt interfaces between vastly different material systems with different crystal symmetries still allow efficient charge transfer mechanisms at the interface and are attractive for photoswitch, photodetector, and photovoltaic applications because of large built-in potential at the interface. PMID:26796869

  3. Imaging atomic-scale effects of high-energy ion irradiation on superconductivity and vortex pinning in Fe(Se,Te).

    PubMed

    Massee, Freek; Sprau, Peter Oliver; Wang, Yong-Lei; Davis, J C Séamus; Ghigo, Gianluca; Gu, Genda D; Kwok, Wai-Kwong

    2015-05-01

    Maximizing the sustainable supercurrent density, J C, is crucial to high-current applications of superconductivity. To achieve this, preventing dissipative motion of quantized vortices is key. Irradiation of superconductors with high-energy heavy ions can be used to create nanoscale defects that act as deep pinning potentials for vortices. This approach holds unique promise for high-current applications of iron-based superconductors because J C amplification persists to much higher radiation doses than in cuprate superconductors without significantly altering the superconducting critical temperature. However, for these compounds, virtually nothing is known about the atomic-scale interplay of the crystal damage from the high-energy ions, the superconducting order parameter, and the vortex pinning processes. We visualize the atomic-scale effects of irradiating FeSe x Te1-x with 249-MeV Au ions and find two distinct effects: compact nanometer-sized regions of crystal disruption or "columnar defects," plus a higher density of single atomic site "point" defects probably from secondary scattering. We directly show that the superconducting order is virtually annihilated within the former and suppressed by the latter. Simultaneous atomically resolved images of the columnar crystal defects, the superconductivity, and the vortex configurations then reveal how a mixed pinning landscape is created, with the strongest vortex pinning occurring at metallic core columnar defects and secondary pinning at clusters of point-like defects, followed by collective pinning at higher fields. PMID:26601180

  4. Imaging atomic-scale effects of high-energy ion irradiation on superconductivity and vortex pinning in Fe(Se,Te)

    PubMed Central

    Massee, Freek; Sprau, Peter Oliver; Wang, Yong-Lei; Davis, J. C. Séamus; Ghigo, Gianluca; Gu, Genda D.; Kwok, Wai-Kwong

    2015-01-01

    Maximizing the sustainable supercurrent density, JC, is crucial to high-current applications of superconductivity. To achieve this, preventing dissipative motion of quantized vortices is key. Irradiation of superconductors with high-energy heavy ions can be used to create nanoscale defects that act as deep pinning potentials for vortices. This approach holds unique promise for high-current applications of iron-based superconductors because JC amplification persists to much higher radiation doses than in cuprate superconductors without significantly altering the superconducting critical temperature. However, for these compounds, virtually nothing is known about the atomic-scale interplay of the crystal damage from the high-energy ions, the superconducting order parameter, and the vortex pinning processes. We visualize the atomic-scale effects of irradiating FeSexTe1−x with 249-MeV Au ions and find two distinct effects: compact nanometer-sized regions of crystal disruption or “columnar defects,” plus a higher density of single atomic site “point” defects probably from secondary scattering. We directly show that the superconducting order is virtually annihilated within the former and suppressed by the latter. Simultaneous atomically resolved images of the columnar crystal defects, the superconductivity, and the vortex configurations then reveal how a mixed pinning landscape is created, with the strongest vortex pinning occurring at metallic core columnar defects and secondary pinning at clusters of point-like defects, followed by collective pinning at higher fields. PMID:26601180

  5. Performance improvement of phase-change memory cell using AlSb3Te and atomic layer deposition TiO2 buffer layer

    PubMed Central

    2013-01-01

    A phase change memory (PCM) cell with atomic layer deposition titanium dioxide bottom heating layer is investigated. The crystalline titanium dioxide heating layer promotes the temperature rise in the AlSb3Te layer which causes the reduction in the reset voltage compared to a conventional phase change memory cell. The improvement in thermal efficiency of the PCM cell mainly originates from the low thermal conductivity of the crystalline titanium dioxide material. Among the various thicknesses of the TiO2 buffer layer, 4 nm was the most appropriate thickness that maximized the improvement with negligible sacrifice of the other device performances, such as the reset/set resistance ratio, voltage window, and endurance. PMID:23414571

  6. Ultrasound-assisted emulsification solidified floating organic drops microextraction of ultra trace amount of Te (IV) prior to graphite furnace atomic absorption spectrometry determination.

    PubMed

    Fathirad, Fariba; Afzali, Daryoush; Mostafavi, Ali; Ghanbarian, Maryam

    2012-01-15

    In the present study, a new, simple and efficient method for the preconcentration of ultra trace amounts of Te (IV) is developed using ultrasound-assisted emulsification solidified floating organic drops microextraction (USAE-SFODME) before graphite furnace atomic absorption spectrometry determination. In this method, tellurium is extracted into the fine droplets of 1-undecanol after chelate formation with the water soluble ligand, ammonium pyrrolidinedithiocarbamate (APDC). Several factors such as pH, chelating agent amount, type and volume of the extracting solvent, sonication and centrifuging time that influence the extraction and complex formation are optimized. Under the optimum conditions, the calibration graph is linear in the range of 0.01-0.24ngmL(-1) of tellurium in the original solution, with limit of detection of 0.003ngmL(-1). The relative standard deviation (RSD) for seven replicated determinations of tellurium ion at 0.08ngmL(-1) concentration level is calculated as 3.4%. The proposed method was successfully applied to the determination of Te (IV) in a standard soil and several water samples. PMID:22265571

  7. Rectification and tunneling effects enabled by Al{sub 2}O{sub 3} atomic layer deposited on back contact of CdTe solar cells

    SciTech Connect

    Liang, Jun; Lin, Qinxian; Li, Hao; Su, Yantao; Yang, Xiaoyang; Wu, Zhongzhen; Zheng, Jiaxin; Wang, Xinwei; Lin, Yuan; Pan, Feng

    2015-07-06

    Atomic layer deposition (ALD) of Aluminum oxide (Al{sub 2}O{sub 3}) is employed to optimize the back contact of thin film CdTe solar cells. Al{sub 2}O{sub 3} layers with a thickness of 0.5 nm to 5 nm are tested, and an improved efficiency, up to 12.1%, is found with the 1 nm Al{sub 2}O{sub 3} deposition, compared with the efficiency of 10.7% without Al{sub 2}O{sub 3} modification. The performance improvement stems from the surface modification that optimizes the rectification and tunneling of back contact. The current-voltage analysis indicates that the back contact with 1 nm Al{sub 2}O{sub 3} maintains large tunneling leakage current and improves the filled factor of CdTe cells through the rectification effect. XPS and capacitance-voltage electrical measurement analysis show that the ALD-Al{sub 2}O{sub 3} modification layer features a desired low-density of interface state of 8 × 10{sup 10 }cm{sup −2} by estimation.

  8. Rectification and tunneling effects enabled by Al2O3 atomic layer deposited on back contact of CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Liang, Jun; Lin, Qinxian; Li, Hao; Su, Yantao; Yang, Xiaoyang; Wu, Zhongzhen; Zheng, Jiaxin; Wang, Xinwei; Lin, Yuan; Pan, Feng

    2015-07-01

    Atomic layer deposition (ALD) of Aluminum oxide (Al2O3) is employed to optimize the back contact of thin film CdTe solar cells. Al2O3 layers with a thickness of 0.5 nm to 5 nm are tested, and an improved efficiency, up to 12.1%, is found with the 1 nm Al2O3 deposition, compared with the efficiency of 10.7% without Al2O3 modification. The performance improvement stems from the surface modification that optimizes the rectification and tunneling of back contact. The current-voltage analysis indicates that the back contact with 1 nm Al2O3 maintains large tunneling leakage current and improves the filled factor of CdTe cells through the rectification effect. XPS and capacitance-voltage electrical measurement analysis show that the ALD-Al2O3 modification layer features a desired low-density of interface state of 8 × 1010 cm-2 by estimation.

  9. Role of thermal history in atomic dynamics of chalcogenide glass: A case study on Ge20Te80 glass

    NASA Astrophysics Data System (ADS)

    Sharma, Yashika; Kalra, Geetanjali; Murugavel, Sevi

    2016-05-01

    The non-existence of thermodynamic equilibrium in glasses, their thermal history plays a very crucial role in explaining the relaxation behavior in various time scales and its configurational states. More importantly, the associated relaxation behavior is related mainly to the structural phenomenon of the glasses. Here, we report the dependence of quenching rate on the variation of structural units. The local structures of these glasses are monitored by recording the Raman spectroscopy and related to the different configurational states. The observed variations in structural differences are reflected in the measured density of the corresponding glasses. The quenching rate dependent of the relative fractions of edge-shared and corner-shared GeTe4 tetrahedral units are shown to be consistent with the corresponding variations in the measured density values.

  10. Observation of acoustic-phonon-like mode driven by magnetic imbalance between neighboring Fe atoms in Fe1+yTe (y < 0 . 12)

    NASA Astrophysics Data System (ADS)

    Fobes, David; Zaliznyak, Igor; Xu, Zhijun; Gu, Genda; Tranquada, John M.; He, Xu-Gang; Ku, Wei; Garlea, Ovidiu

    2014-03-01

    We have studied the evolution with temperature of the low-energy inelastic spectra of Fe1+yTe (y < 0 . 12), a parent compound of the iron-chalcogenide superconductor family, revealing an acoustic mode at an unexpected position. Recently, we found evidence for the formation of a bond-order wave leading to ferro-orbital order in the monoclinic phase, in part due to the observation of an elastic structural peak at (100) in the low-temperature monoclinic phase [D. Fobes, et al., arXiv:1307.7162]. In the inelastic spectra we observe a sharp acoustic-phonon-like mode dispersing out of the (100) position in the monoclinic phase. Surprisingly, the mode survives in the tetragonal phase, despite the absence of a Bragg peak at (100); such a peak is forbidden by symmetry. LDA calculations suggest this mode could involve significant magnetic scattering. By assuming in-phase virtual displacement of the Fe atoms from their equilibrium position in a frozen phonon calculation, we have found a small but significant imbalance in the magnetic moments between the two Fe atoms within the unit cell, suggesting magnetic contribution to the mode. Work at BNL supported by Office of Basic Energy Sciences, US DOE, under Contract No. DE-AC02-98CH10886. Research conducted at ORNL Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US DOE.

  11. Low power ovonic threshold switching characteristics of thin GeTe{sub 6} films using conductive atomic force microscopy

    SciTech Connect

    Manivannan, Anbarasu E-mail: ranjith@iith.ac.in; Sahu, Smriti; Myana, Santosh Kumar; Miriyala, Kumaraswamy; Ramadurai, Ranjith E-mail: ranjith@iith.ac.in

    2014-12-15

    Minimizing the dimensions of the electrode could directly impact the energy-efficient threshold switching and programming characteristics of phase change memory devices. A ∼12–15 nm AFM probe-tip was employed as one of the electrodes for a systematic study of threshold switching of as-deposited amorphous GeTe{sub 6} thin films. This configuration enables low power threshold switching with an extremely low steady state current in the on state of 6–8 nA. Analysis of over 48 different probe locations on the sample reveals a stable Ovonic threshold switching behavior at threshold voltage, V{sub TH} of 2.4 ± 0.5 V and the off state was retained below a holding voltage, V{sub H} of 0.6 ± 0.1 V. All these probe locations exhibit repeatable on-off transitions for more than 175 pulses at each location. Furthermore, by utilizing longer biasing voltages while scanning, a plausible nano-scale control over the phase change behavior from as-deposited amorphous to crystalline phase was studied.

  12. Influence of copper to indium atomic ratio on the properties of Cu-In-Te based thin-film solar cells prepared by low-temperature co-evaporation

    SciTech Connect

    Mise, Takahiro; Nakada, Tokio

    2012-09-15

    The influence of copper to indium atomic ratio (Cu/In) on the properties of Cu-In-Te based thin films and solar cells was investigated. The films (Cu/In = 0.38-1.17) were grown on both bare and Mo-coated soda-lime glass substrates at 250 Degree-Sign C by single-step co-evaporation using a molecular beam epitaxy system. Highly (112)-oriented CuInTe{sub 2} films were obtained at Cu/In ratios of 0.84-0.99. However, stoichiometric and Cu-rich films showed a poor film structure with high surface roughness. The films consist of polyhedron-shaped grains, which are related to the coexistence of a Cu{sub 2-x}Te phase, and significant evidence for the coexistence of the Cu{sub 2-x}Te phase in the stoichiometric and Cu-rich films is presented. KCN treatment was performed for the films in order to remove the Cu{sub 2-x}Te phase. The stoichiometric CuInTe{sub 2} thin films exhibited a high mobility above 50 cm{sup 2}/V s at room temperature after the KCN treatment. A preliminary solar cell fabricated using a 1.4-{mu}m-thick Cu-poor CuInTe{sub 2} thin film (Cu/In = 0.84, E{sub g} = 0.988 eV) yielded a total-area efficiency of 2.10%. The photovoltaic performance of the cell was improved after long-term ambient aging in dark conditions.

  13. First-principles investigations of the atomic, electronic, and thermoelectric properties of equilibrium and strained Bi2Se3 and Bi2Te3 including van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Sullivan, Michael B.; Quek, Su Ying

    2012-11-01

    Bi2Se3 and Bi2Te3 are layered compounds of technological importance, being excellent thermoelectric materials as well as topological insulators. We report density functional theory calculations of the atomic, electronic, and thermoelectric properties of strained bulk and thin-film Bi2Se3 and Bi2Te3, focusing on an appropriate description of van der Waals (vdW) interactions. The calculations show that the van der Waals density functional (vdW-DF) with Cooper's exchange (vdW-DFC09x) can reproduce closely the experimental interlayer distances in unstrained Bi2Se3 and Bi2Te3. Interestingly, we predict atomic structures that are in much better agreement with the experimentally determined structure from Nakajima than that obtained from Wyckoff, especially for Bi2Se3, where the difference in atomic structures qualitatively changes the electronic band structure. The band structure obtained using the Nakajima structure and the vdW-DFC09x optimized structure are in much better agreement with previous reports of photoemission measurements, than that obtained using the Wyckoff structure. Using vdW-DFC09x to fully optimize atomic structures of bulk and thin-film Bi2Se3 and Bi2Te3 under different in-plane and uniaxial strains, we predict that the electronic bandgap of both the bulk materials and thin films decreases with tensile in-plane strain and increases with compressive in-plane strain. We also predict, using the semiclassical Boltzmann approach, that the magnitude of the n-type Seebeck coefficient of Bi2Te3 can be increased by the compressive in-plane strain while that of Bi2Se3 can be increased with tensile in-plane strain. Further, the in-plane power factor of n-doped Bi2Se3 can be increased with compressive uniaxial strain while that of n-doped Bi2Te3 can be increased by compressive in-plane strain. Strain engineering thus provides a direct method to control the electronic and thermoelectric properties in these thermoelectric topological insulator materials.

  14. Te homogeneous precipitation in Ge dislocation loop vicinity

    NASA Astrophysics Data System (ADS)

    Perrin Toinin, J.; Portavoce, A.; Texier, M.; Bertoglio, M.; Hoummada, K.

    2016-06-01

    High resolution microscopies were used to study the interactions of Te atoms with Ge dislocation loops, after a standard n-type doping process in Ge. Te atoms neither segregate nor precipitate on dislocation loops, but form Te-Ge clusters at the same depth as dislocation loops, in contradiction with usual dopant behavior and thermodynamic expectations. Atomistic kinetic Monte Carlo simulations show that Te atoms are repulsed from dislocation loops due to elastic interactions, promoting homogeneous Te-Ge nucleation between dislocation loops. This phenomenon is enhanced by coulombic interactions between activated Te2+ or Te1+ ions.

  15. Two-electron tin centers arising in glassy chalcogenides of arsenic due to nuclear reactions

    SciTech Connect

    Bordovsky, G. A.; Gladkikh, P. V.; Kozhokar, M. Yu.; Marchenko, A. V.; Seregin, P. P.; Terukov, E. I.

    2010-08-15

    Impurity {sup 119m}Sn atoms arising as a result of radioactive decay of parent {sup 119mm}Sn atoms in the structure of the glasses As{sub 2}S{sub 3}, As{sub 2}Se{sub 3}, and As{sub 2}Te{sub 3} are part of the glass composition in the form of structural units corresponding to tetravalent tin. The impurity {sup 119m}Sn atoms formed as a result of radioactive decay of {sup 119}Sb atoms in the structure of the As{sub 2}S{sub 3} and As{sub 2}Se{sub 3} glasses are localized at the arsenic sites and play the role of two-electron centers with a negative correlation energy. For the As{sub 2}Te{sub 3} glass, similarly formed {sup 119m}Sn atoms are electrically inactive. The greatest part of the daughter {sup 119m}Sn atoms arising after radioactive decay of parent {sup 119m}Te atoms are located at the chalcogen sites and are electrically inactive in the As{sub 2}S{sub 3}, As{sub 2}Se{sub 3}, and As{sub 2}Te{sub 3} glasses. A significant recoil energy of daughter atoms in the case of the {sup 119m}Te radioactive decay brings about the appearance of the {sup 119m}Sn displaced atoms.

  16. 125Te NMR chemical-shift trends in PbTe–GeTe and PbTe–SnTe alloys

    SciTech Connect

    Njegic, Bosiljka; Levin, Evgenii M.; Schmidt-Rohr, Klaus

    2013-10-08

    Complex tellurides, such as doped PbTe, GeTe, and their alloys, are among the best thermoelectric materials. Knowledge of the change in 125Te NMR chemical shift due to bonding to dopant or “solute” atoms is useful for determination of phase composition, peak assignment, and analysis of local bonding. We have measured the 125Te NMR chemical shifts in PbTe-based alloys, Pb1-xGexTe and Pb1-xSnxTe, which have a rocksalt-like structure, and analyzed their trends. For low x, several peaks are resolved in the 22-kHz MAS 125Te NMR spectra. A simple linear trend in chemical shifts with the number of Pb neighbors is observed. No evidence of a proposed ferroelectric displacement of Ge atoms in a cubic PbTe matrix is detected at low Ge concentrations. The observed chemical shift trends are compared with the results of DFT calculations, which confirm the linear dependence on the composition of the first-neighbor shell. The data enable determination of the composition of various phases in multiphase telluride materials. They also provide estimates of the 125Te chemical shifts of GeTe and SnTe (+970 and +400±150 ppm, respectively, from PbTe), which are otherwise difficult to access due to Knight shifts of many hundreds of ppm in neat GeTe and SnTe.

  17. Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures.

    PubMed

    Zhang, Kenan; Zhang, Tianning; Cheng, Guanghui; Li, Tianxin; Wang, Shuxia; Wei, Wei; Zhou, Xiaohao; Yu, Weiwei; Sun, Yan; Wang, Peng; Zhang, Dong; Zeng, Changgan; Wang, Xingjun; Hu, Weida; Fan, Hong Jin; Shen, Guozhen; Chen, Xin; Duan, Xiangfeng; Chang, Kai; Dai, Ning

    2016-03-22

    We demonstrate the type-II staggered band alignment in MoTe2/MoS2 van der Waals (vdW) heterostructures and an interlayer optical transition at ∼1.55 μm. The photoinduced charge separation between the MoTe2/MoS2 vdW heterostructure is verified by Kelvin probe force microscopy (KPFM) under illumination, density function theory (DFT) simulations and photoluminescence (PL) spectroscopy. Photoelectrical measurements of MoTe2/MoS2 vdW heterostructures show a distinct photocurrent response in the infrared regime (1550 nm). The creation of type-II vdW heterostructures with strong interlayer coupling could improve our fundamental understanding of the essential physics behind vdW heterostructures and help the design of next-generation infrared optoelectronics. PMID:26950255

  18. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3.

    PubMed

    Lee, Inhee; Kim, Chung Koo; Lee, Jinho; Billinge, Simon J L; Zhong, Ruidan; Schneeloch, John A; Liu, Tiansheng; Valla, Tonica; Tranquada, John M; Gu, Genda; Davis, J C Séamus

    2015-02-01

    To achieve and use the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TIs), it is necessary to open a "Dirac-mass gap" in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely applied approach. However, it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in the ferromagnetic TI Cr0.08(Bi0.1Sb0.9)1.92Te3. Simultaneous visualization of the Dirac-mass gap Δ(r) reveals its intense disorder, which we demonstrate is directly related to fluctuations in n(r), the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of Δ(r) not inconsistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship [Formula: see text] is confirmed throughout and exhibits an electron-dopant interaction energy J* = 145 meV·nm(2). These observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential. PMID:25605947

  19. Pulsed laser deposited GeTe-rich GeTe-Sb2Te3 thin films

    PubMed Central

    Bouška, M.; Pechev, S.; Simon, Q.; Boidin, R.; Nazabal, V.; Gutwirth, J.; Baudet, E.; Němec, P.

    2016-01-01

    Pulsed laser deposition technique was used for the fabrication of Ge-Te rich GeTe-Sb2Te3 (Ge6Sb2Te9, Ge8Sb2Te11, Ge10Sb2Te13, and Ge12Sb2Te15) amorphous thin films. To evaluate the influence of GeTe content in the deposited films on physico-chemical properties of the GST materials, scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction and reflectometry, atomic force microscopy, Raman scattering spectroscopy, optical reflectivity, and sheet resistance temperature dependences as well as variable angle spectroscopic ellipsometry measurements were used to characterize as-deposited (amorphous) and annealed (crystalline) layers. Upon crystallization, optical functions and electrical resistance of the films change drastically, leading to large optical and electrical contrast between amorphous and crystalline phases. Large changes of optical/electrical properties are accompanied by the variations of thickness, density, and roughness of the films due to crystallization. Reflectivity contrast as high as ~0.21 at 405 nm was calculated for Ge8Sb2Te11, Ge10Sb2Te13, and Ge12Sb2Te15 layers. PMID:27199107

  20. Pulsed laser deposited GeTe-rich GeTe-Sb2Te3 thin films.

    PubMed

    Bouška, M; Pechev, S; Simon, Q; Boidin, R; Nazabal, V; Gutwirth, J; Baudet, E; Němec, P

    2016-01-01

    Pulsed laser deposition technique was used for the fabrication of Ge-Te rich GeTe-Sb2Te3 (Ge6Sb2Te9, Ge8Sb2Te11, Ge10Sb2Te13, and Ge12Sb2Te15) amorphous thin films. To evaluate the influence of GeTe content in the deposited films on physico-chemical properties of the GST materials, scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction and reflectometry, atomic force microscopy, Raman scattering spectroscopy, optical reflectivity, and sheet resistance temperature dependences as well as variable angle spectroscopic ellipsometry measurements were used to characterize as-deposited (amorphous) and annealed (crystalline) layers. Upon crystallization, optical functions and electrical resistance of the films change drastically, leading to large optical and electrical contrast between amorphous and crystalline phases. Large changes of optical/electrical properties are accompanied by the variations of thickness, density, and roughness of the films due to crystallization. Reflectivity contrast as high as ~0.21 at 405 nm was calculated for Ge8Sb2Te11, Ge10Sb2Te13, and Ge12Sb2Te15 layers. PMID:27199107

  1. Pulsed laser deposited GeTe-rich GeTe-Sb2Te3 thin films

    NASA Astrophysics Data System (ADS)

    Bouška, M.; Pechev, S.; Simon, Q.; Boidin, R.; Nazabal, V.; Gutwirth, J.; Baudet, E.; Němec, P.

    2016-05-01

    Pulsed laser deposition technique was used for the fabrication of Ge-Te rich GeTe-Sb2Te3 (Ge6Sb2Te9, Ge8Sb2Te11, Ge10Sb2Te13, and Ge12Sb2Te15) amorphous thin films. To evaluate the influence of GeTe content in the deposited films on physico-chemical properties of the GST materials, scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction and reflectometry, atomic force microscopy, Raman scattering spectroscopy, optical reflectivity, and sheet resistance temperature dependences as well as variable angle spectroscopic ellipsometry measurements were used to characterize as-deposited (amorphous) and annealed (crystalline) layers. Upon crystallization, optical functions and electrical resistance of the films change drastically, leading to large optical and electrical contrast between amorphous and crystalline phases. Large changes of optical/electrical properties are accompanied by the variations of thickness, density, and roughness of the films due to crystallization. Reflectivity contrast as high as ~0.21 at 405 nm was calculated for Ge8Sb2Te11, Ge10Sb2Te13, and Ge12Sb2Te15 layers.

  2. Quantum phase transition in Fe1 +x(Te,Se) induced by Single-atomic Impurities studied by STM/S

    NASA Astrophysics Data System (ADS)

    Yin, J. X.; Wu, Zheng; Huang, Xiong; Ye, Z. Y.; Wu, Rui; Liang, X. J.; Mao, H. Q.; Li, Jian; Ting, C.-S.; Hu, J. P.; Wang, Z. Q.; Hor, P.-H.; Ding, Hong; Pan, S. H.

    Previously we discovered a robust zero-energy bound state at an interstitial Fe impurity (IFIs) in Fe1 +x(Te,Se), which resembles the Majorana mode (Nature Physics 11, 543, (2015)). Here we report our comprehensive study, using scanning tunneling microscopy/spectroscopy technique, of the global effect of IFIs on the ground state of Fe1 +x(Te,Se) over a wide range of IFI concentration x. Our high resolution tunneling spectroscopy and quasi-particle interference data at very low temperature demonstrate that IFIs do not affect the electron pairing strength, while they cause significant dephasing effect, which eventually drives the ground state of the system from strong-coupling-superconductivity to diffusive-Bose-metal.

  3. Atomistic Structure and Nucleation of Nanoprecipitates in Thermoelectric PbTe- AgSbTe Composite

    SciTech Connect

    Ke, Xuezhi; Chen, Changfeng; Yang, Jihui; Wu, Lijun; Zhou, Juan; Li, Qiang; Zhu, Yimei; Kent, Paul R

    2009-01-01

    Many recent advances in thermoelectric (TE) materials are attributed to their nanoscale constituents. Determination of the nanocomposite structures has represented a major experimental and computational challenge and eluded previous attempts. Here we present the first atomically resolved structures of high performance TE material PbTe-AgSbTe2 by transmission electron microscopy imaging and density functional theory calculations. The results establish an accurate structural characterization for PbTe-AgSbTe2 and identify the interplay of electric dipolar interactions and strain fields as the driving mechanism for nanoprecipitate nucleation and aggregation.

  4. Impurity Gettering in (112)B HgCdTe/CdTe/Alternate Substrates

    NASA Astrophysics Data System (ADS)

    Benson, J. D.; Bubulac, L. O.; Lennon, C. M.; Jacobs, R. N.; Smith, P. J.; Markunas, J. K.; Jaime-Vasquez, M.; Almeida, L. A.; Stoltz, A.; Arias, J. A.; Brill, G.; Chen, Y.; Wijewarnasuriya, P. S.; Vilela, M. F.; Peterson, J.; Johnson, S. M.; Lofgreen, D. D.; Rhiger, D.; Patten, E. A.; Bangs, J.

    2013-11-01

    The crystalline structure and impurity profiles of HgCdTe/CdTe/alternate substrate (AS; Si and GaAs are possibilities) and CdTe/AS were analyzed by secondary-ion mass spectrometry, atomic force microscopy, etch pit density analysis, and scanning transmission electron microscopy. Impurities (Li, Na, and K) were shown to getter in as-grown CdTe/Si epilayers at in situ Te-stabilized thermal anneal (~500°C) interfaces. In HgCdTe/CdTe/Si epilayers, indium accumulation was observed at Te-stabilized thermal anneal interfaces. Impurity accumulation was measured at HgCdTe/CdTe and CdTe/ZnTe interfaces. Processing anneals were found to nearly eliminate the gettering effect at the in situ Te-stabilized thermal anneal interfaces. Impurities were found to redistribute to the front HgCdTe/CdTe/Si surface and p- n junction interfaces during annealing steps. We also investigated altering the in situ Te-stabilized thermal anneal process to enhance the gettering effect.

  5. Systematic study of structural, electronic, and optical properties of atomic-scale defects in the two-dimensional transition metal dichalcogenides M X2 (M = Mo , W; X = S , Se, Te)

    NASA Astrophysics Data System (ADS)

    Haldar, Soumyajyoti; Vovusha, Hakkim; Yadav, Manoj Kumar; Eriksson, Olle; Sanyal, Biplab

    2015-12-01

    In this work, we have systematically studied structural, electronic, and magnetic properties of atomic-scale defects in 2D transition metal dichalcogenides M X2 (M = Mo and W; X = S , Se, and Te) by density functional theory. Various types of defects, e.g., X vacancy, X interstitial, M vacancy, M interstitial, and M X and X X double vacancies, have been considered. It has been found that the X interstitial has the lowest formation energy (˜1 eV) for all the systems in the X -rich condition, whereas for the M -rich condition, X vacancy has the lowest formation energy except for M Te2 systems. Both these defects have very high equilibrium defect concentrations at growth temperatures (1000-1200 K) reported in literature. A pair of defects, e.g., two X vacancies or one M and one X vacancies, tend to occupy the nearest possible distance. No trace of magnetism has been found for any one of the defects considered. Apart from X interstitial, all other defects have defect states appearing in the band gap, which can greatly affect the electronic and optical properties of the pristine systems. Our calculated optical properties show that the defect states cause optical transitions at ˜1.0 eV, which can be beneficial for light emitting devices. The results of our systematic study are expected to guide the experimental nanoengineering of defects to achieve suitable properties related to band gap modifications and characterization of defect fingerprints via optical absorption measurements.

  6. Evidences of the existence of SiTe2 crystalline phase and a proposed new Si-Te phase diagram

    NASA Astrophysics Data System (ADS)

    Mishra, R.; Mishra, P. K.; Phapale, S.; Babu, P. D.; Sastry, P. U.; Ravikumar, G.; Yadav, A. K.

    2016-05-01

    The existence of two distinct crystalline phases viz., Si2Te3 and SiTe2, in the Si-Te system is established from differential thermal analysis (DTA) studies. Thermo-gravimetric (TG) data on SiTe2 indicate that the compound decomposes to Si in multiple steps via intermediate Si2Te3 phase. X-ray diffraction (XRD) reveals that SiTe2 crystallizes in P 3 ̅m1 space group with CdI2 trigonal structure, whereas Si2Te3 crystallizes in trigonal structure with space group P 3 ̅1c with varying occupation of octahedral voids. Single Si atoms fill only 1/2 of the octahedral voids in SiTe2 structure whereas in Si2Te3, Si atoms are arranged in pairs occupying 2/3 of the octahedral voids in alternating planes along c-axis. Further, X-ray absorption near edge structure (XANES) and X-ray photoelectron spectroscopy (XPS) confirm the distinctness of the chemical environment in the two crystalline structures confirming the uniqueness of both the phases. DTA results on the two compounds indicate the presence of one crystallographic phase-transition in each of the compound with transition temperatures at 441 °C for Si2Te3 and 392 °C for SiTe2. At the same time both Si2Te3 and SiTe2 undergo peritectic decomposition at 683 °C and 432 °C forming [Si(s)+Te(liq)] and [α-Si2Te3(s)+Te(liq)], respectively. The system revealed eutectic reaction between β-SiTe2 and Te at 398 °C [L=Te+SiTe2]. Consequently, the phase diagram in the Si-Te system has been delineated.

  7. Effective atomic number, energy loss and radiation damage studies in some materials commonly used in nuclear applications for heavy charged particles such as H, C, Mg, Fe, Te, Pb and U

    NASA Astrophysics Data System (ADS)

    Kurudirek, Murat

    2016-05-01

    Commonly used nuclear physics materials such as water, concrete, Pb-glass, paraffin, freon and P 10 gases, some alloys such as brass, bronze, stainless-steel and some scintillators such as anthracene, stilbene and toluene have been investigated with respect to the heavy charged particle interaction as means of projected range and effective atomic number (Zeff) in the energy region 10 keV to 10 MeV. Calculations were performed for heavy ions such as H, C, Mg, Fe, Te, Pb and U. Also, the energy loss and radiation damage were studied using SRIM Monte Carlo code for anthracene for different heavy ions of 100 keV kinetic energy. It has been observed that the variation in Zeff becomes less when the atomic number of the ions increase. Glass-Pb, bronze, brass, stainless-steel and Freon gas were found to vary less than 10% in the energy region 10 keV to 10 MeV. For total proton interaction, discrepancies up to 10% and 18% between two databases namely PSTAR and SRIM were noted in mass stopping power and Zeff of water, respectively. The range calculations resulted with a conclusion that the metal alloys and glass-Pb have lowest values of ranges confirming best shielding against energetic heavy ions whereas freon and P 10 gases have the highest values of ranges in the entire energy region. The simulation results showed that the energy loss (%) to target electrons decreases as the Z of the incident ion increases. Also, it was observed that the radiation damage first increases with Z of the ion and then keeps almost constant for ions with Z≥52.

  8. Thermoelectric properties of p-type PbTe/Ag{sub 2}Te bulk composites by extrinsic phase mixing

    SciTech Connect

    Lee, Min Ho; Rhyee, Jong-Soo

    2015-12-15

    We investigated the thermoelectric properties of PbTe/Ag{sub 2}Te bulk composites, synthesized by hand milling, mixing, and hot press sintering. From x-ray diffraction and energy dispersive x-ray spectroscopy measurements, we observed Ag{sub 2}Te phase separation in the PbTe matrix without Ag atom diffusion. In comparison with previously reported pseudo-binary (PbTe){sub 1−x}(Ag{sub 2}Te){sub x} composites, synthesized by high temperature phase separation, the PbTe/Ag{sub 2}Te bulk composites fabricated with a low temperature phase mixing process give rise to p-type conduction of carriers with significantly decreased electrical conductivity. This indicates that Ag atom diffusion in the PbTe matrix changes the sign of the Seebeck coefficient to n-type and also increases the carrier concentration. Effective p-type doping with low temperature phase separation by mixing and hot press sintering can enhance the thermoelectric performance of PbTe/Ag{sub 2}Te bulk composites, which can be used as a p-type counterpart of n-type (PbTe){sub 1−x}(Ag{sub 2}Te){sub x} bulk composites.

  9. Analysis of Etched CdZnTe Substrates

    NASA Astrophysics Data System (ADS)

    Benson, J. D.; Bubulac, L. O.; Jaime-Vasquez, M.; Lennon, C. M.; Arias, J. M.; Smith, P. J.; Jacobs, R. N.; Markunas, J. K.; Almeida, L. A.; Stoltz, A.; Wijewarnasuriya, P. S.; Peterson, J.; Reddy, M.; Jones, K.; Johnson, S. M.; Lofgreen, D. D.

    2016-06-01

    State-of-the-art as-received (112)B CdZnTe substrates have been examined for surface impurity contamination and polishing residue. Two 4 cm × 4 cm and one 6 cm × 6 cm (112)B state-of-the-art as-received CdZnTe wafers were analyzed. A maximum surface impurity concentration of Al = 1.7 × 1015 atoms cm-2, Si = 3.7 × 1013 atoms cm-2, Cl = 3.12 × 1015 atoms cm-2, S = 1.7 × 1014 atoms cm-2, P = 1.1 × 1014 atoms cm-2, Fe = 1.0 × 1013 atoms cm-2, Br = 1.2 × 1014 atoms cm-2, and Cu = 4 × 1012 atoms cm-2 was observed on the as-received CdZnTe wafers. CdZnTe particulates and residual SiO2 polishing grit were observed on the surface of the as-received (112)B CdZnTe substrates. The polishing grit/CdZnTe particulate density on CdZnTe wafers was observed to vary across a 6 cm × 6 cm wafer from ˜4 × 107 cm-2 to 2.5 × 108 cm-2. The surface impurity and damage layer of the (112)B CdZnTe wafers dictate that a molecular beam epitaxy (MBE) preparation etch is required. The contamination for one 4 cm × 4 cm and one 6 cm × 6 cm CdZnTe wafer after a standard MBE Br:methanol preparation etch procedure was also analyzed. A maximum surface impurity concentration of Al = 2.4 × 1015 atoms cm-2, Si = 4.0 × 1013 atoms cm-2, Cl = 7.5 × 1013 atoms cm-2, S = 4.4 × 1013 atoms cm-2, P = 9.8 × 1013 atoms cm-2, Fe = 1.0 × 1013 atoms cm-2, Br = 2.9 × 1014 atoms cm-2, and Cu = 5.2 × 1012 atoms cm-2 was observed on the MBE preparation-etched CdZnTe wafers. The MBE preparation-etched surface contamination consists of Cd(Zn)Te particles/flakes. No residual SiO2 polishing grit was observed on the (112)B surface.

  10. Analysis of Etched CdZnTe Substrates

    NASA Astrophysics Data System (ADS)

    Benson, J. D.; Bubulac, L. O.; Jaime-Vasquez, M.; Lennon, C. M.; Arias, J. M.; Smith, P. J.; Jacobs, R. N.; Markunas, J. K.; Almeida, L. A.; Stoltz, A.; Wijewarnasuriya, P. S.; Peterson, J.; Reddy, M.; Jones, K.; Johnson, S. M.; Lofgreen, D. D.

    2016-09-01

    State-of-the-art as-received (112)B CdZnTe substrates have been examined for surface impurity contamination and polishing residue. Two 4 cm × 4 cm and one 6 cm × 6 cm (112)B state-of-the-art as-received CdZnTe wafers were analyzed. A maximum surface impurity concentration of Al = 1.7 × 1015 atoms cm-2, Si = 3.7 × 1013 atoms cm-2, Cl = 3.12 × 1015 atoms cm-2, S = 1.7 × 1014 atoms cm-2, P = 1.1 × 1014 atoms cm-2, Fe = 1.0 × 1013 atoms cm-2, Br = 1.2 × 1014 atoms cm-2, and Cu = 4 × 1012 atoms cm-2 was observed on the as-received CdZnTe wafers. CdZnTe particulates and residual SiO2 polishing grit were observed on the surface of the as-received (112)B CdZnTe substrates. The polishing grit/CdZnTe particulate density on CdZnTe wafers was observed to vary across a 6 cm × 6 cm wafer from ˜4 × 107 cm-2 to 2.5 × 108 cm-2. The surface impurity and damage layer of the (112)B CdZnTe wafers dictate that a molecular beam epitaxy (MBE) preparation etch is required. The contamination for one 4 cm × 4 cm and one 6 cm × 6 cm CdZnTe wafer after a standard MBE Br:methanol preparation etch procedure was also analyzed. A maximum surface impurity concentration of Al = 2.4 × 1015 atoms cm-2, Si = 4.0 × 1013 atoms cm-2, Cl = 7.5 × 1013 atoms cm-2, S = 4.4 × 1013 atoms cm-2, P = 9.8 × 1013 atoms cm-2, Fe = 1.0 × 1013 atoms cm-2, Br = 2.9 × 1014 atoms cm-2, and Cu = 5.2 × 1012 atoms cm-2 was observed on the MBE preparation-etched CdZnTe wafers. The MBE preparation-etched surface contamination consists of Cd(Zn)Te particles/flakes. No residual SiO2 polishing grit was observed on the (112)B surface.

  11. The phase evolution mechanism in Fe(Se, Te) system

    NASA Astrophysics Data System (ADS)

    Liu, Jixing; Li, Chengshan; Zhang, Shengnan; Feng, Jianqing; Zhang, Pingxiang; Zhou, Lian

    2016-08-01

    The phase evolution mechanism in Fe(Se, Te) system during sintering was investigated with step-by-step heat treatment process. It was noticed that the diffusion processes between Fe and Se (Te) as well as that between Se and Te were both very important to the formation of superconducting Fe(Se, Te) phase with very uniform chemical composition. During heat treatment, solid solutions of (Se, Te)ss with different chemical composition were formed with the diffusion of Se atoms into Te solids and Te atoms into Se melts, simultaneously. Then with the increasing temperature, Fe atoms diffused into (Se, Te)ss, Fe(Se, Te)2 and Fe(Se, Te) phases were formed in sequence with the increasing Fe content. The chemical composition in melts became more and more uniform with the further increasing of sintering temperature and dwell time. Therefore, it was suggested that in order to achieve Fe(Se, Te) phase with high superconducting properties, it was necessary to enhance the diffusion process during sintering. The critical temperature of the sample, which was sintered at 700 °C for 12 h with slow cooling process and an O2-annealing process for 24 h, was above 14.0 K. This Tc value proved that a good superconducting β phase could be obtained under this sintering condition.

  12. STM/AFM investigations of β-MoTe 2, α-MoTe 2 and WTe 2

    NASA Astrophysics Data System (ADS)

    Hla, S. W.; Marinković, V.; Prodan, A.; Muševič, I.

    1996-05-01

    There is controversy in the literature concerning the correspondence of STM images to the atomic positions on some transition metal layered dichalcogenide surfaces. Although it is difficult to differentiate between metal and chalcogen atoms in these crystals with hexagonal symmetry, like α-MoTe 2, this can be done in cases of β-MoTe 2 and WTe 2 with changed metal-Te distances. Contrary to published STM images of WTe 2 our STM images of β-MoTe 2 show details which resemble the structure of both corrugated topmost Te and metal layers. The d z 2 orbitals of metal atoms protruding vertically upward may provide the tunneling current in this case. The detection of surface or sub-surface atoms depends on the tip electronic condition. The STM results are compared with those from AFM.

  13. Atom formation processes in the presence of ammonium thiocyanate in a thin-wall tungsten tube atomizer for atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Ohta, Kiyohisa; Mizuno, Takayuki

    Processes of atom formation of Ag, Al, As, Bi, Cd, Cr, Fe, Mn, Ni, Pb, Sb, Se, Sn, Sr and Te in the presence of ammonium thiocyanate in a thin-wall tungsten tube atomizer are described. It was found from a thermodynamic approach that AI, Bi, Cd, Cr, Fe, Ni and Te formed complexes with ammonium thiocyanate and are atomized through the sulfides in argon-hydrogen atmosphere. Atom formation processess for the other elements are different.

  14. Te-centric view of the phase change mechanism in Ge-Sb-Te alloys.

    PubMed

    Sen, S; Edwards, T G; Cho, J-Y; Joo, Y-C

    2012-05-11

    The short-range structure of amorphous and fcc Ge1Sb2Te4 and Ge2Sb2Te5 phase-change alloys is investigated using 125Te NMR spectroscopy. Both amorphous and fcc structures consist solely of heteropolar Ge/Sb-Te bonds that may enable rapid displacive phase transformation without the need for extensive atomic rearrangement. The vacancy distribution is random in microcrystalline fcc phases while significant clustering is observed in their nanocrystalline counterparts that may result in the formation of tetrahedrally coordinated Ge atoms in the latter. This structural commonality may further facilitate the kinetics of transformation between amorphous and nanocrystalline fcc phases, a situation relevant for high-density memory storage. PMID:23003059

  15. First-principles simulations of liquid ZnTe

    NASA Astrophysics Data System (ADS)

    Jain, Manish; Godlevsky, Vitaliy V.; Derby, Jeffrey J.; Chelikowsky, James R.

    2002-01-01

    We report the results of ab initio molecular-dynamic simulations of liquid ZnTe near the melting point temperature. In agreement with experiment, we find that l-ZnTe retains its open tetrahedral environment upon melting with a coordination near four. In addition, we find atoms of Te in l-ZnTe often form transitory chains just as in l-CdTe. We compare our calculated structure factor to experiment and also determine the conductivity of the melt. l-ZnTe has a semiconductorlike conductivity similar to CdTe. We also calculate the dynamic properties of the liquid and predict self-diffusion constants of DZn=1.0×10-4 cm2/s and DTe=3.2×10-5 cm2/s.

  16. Structure of amorphous Ge8Sb2Te11 : GeTe-Sb2Te3 alloys and optical storage

    NASA Astrophysics Data System (ADS)

    Akola, J.; Jones, R. O.

    2009-04-01

    The amorphous structure of Ge8Sb2Te11 , an alloy used in the Blu-ray Disc, the de facto successor to digital versatile disk (DVD) optical storage, has been characterized by large-scale (630 atoms, 0.4 ns) density-functional/molecular-dynamics simulations using the new PBEsol approximation for the exchange-correlation energy functional. The geometry and electronic structure agree well with available x-ray diffraction data and photoelectron measurements. The total coordination numbers are Ge: 4.0, Sb: 3.7, and Te: 2.9, and the Ge-Ge partial coordination number is 0.7. Most atoms (particularly Sb) prefer octahedral coordination but 42% of Ge atoms are “tetrahedral.” Structural details, including ring statistics, local coordination, and cavities (12% of total volume), are strikingly similar to those of Ge2Sb2Te5 , which is used in DVD-random access memory. The presence of less than 10% Sb atoms leads to significant changes from GeTe.

  17. Study of the structure and chemical bonding of crystalline Ge4Sb2Te7 using first principle calculations

    NASA Astrophysics Data System (ADS)

    Singh, Janpreet; Singh, Satvinder; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2016-05-01

    The atomic arrangements and chemical bonding of stable Ge4Sb2Te7 (GeTe rich), a phase-change material, have been investigated by means of ab initio total energy calculations. To study the atomic arrangement, GeTe block is considered into -TeSbTeSbTe- block and -Te-Te- layer in the stacking I and II respectively. The stacking I is energetically more stable than the stacking II. The reason for more stability of the stacking I has been explained. The chemical bonding has been studied with the electronic charge density distribution around the atomic bonds. The quantity of electronic charge loosed or gained by atoms has been calculated using the Bader charge analysis. The metallic character has been studied using band structures calculations. The band gap for the stacking I and II is 0.463 and 0.219 eV respectively.

  18. Structure of molten Ga-Te eutectic

    SciTech Connect

    Dutchak, Ya.I.; Mudryi, S.I.; Kozyrenko, V.N.

    1988-02-01

    We have made an x-ray study of the Ga-Te eutectic liquid. The phase diagram shows a series of compounds as well as immiscibility regions for two liquid phases and the eutectic. The compounds GaTe and Ga/sub 2/Te/sub 3/ melt congruently. The phase diagram is complicated, and the phase state varies substantially with the component ratio. The liquid eutectic (87 at. % Te) was examined with a high-temperature diffractometer intended particularly for liquids; Cu K..cap alpha.. radiation was used, which was monochromatized with LiF. An integral Fourier transformation was used to calculate the radial distributions for the atoms and the density; the first were used to derive the most likely shortest interatomic distances, while the second gave the mean coordination numbers.

  19. Electrical properties of PbTe single crystals with excess tellurium

    SciTech Connect

    Bagiyeva, G. Z. Mustafayev, N. B.; Abdinova, G. Dj.; Abdinov, D. Sh.

    2011-11-15

    The effects of excess (up to 0.1 at %) Te atoms and heat treatment at 473 and 573 K for 120 h on the conductivity {sigma}, thermopower {alpha}, and Hall coefficient R of PbTe single crystals are studied. It is shown that excess Te atoms and annealing strongly affect the values and character of the temperature dependences of these parameters and the signs of {alpha} and R at low temperatures, which is caused by the acceptor effect of these atoms and the formation of antisite defects due to localization of Te in vacancies of the lead sublattice upon annealing.

  20. Quantum wells with zincblende MnTe barriers

    NASA Astrophysics Data System (ADS)

    Han, J.; Durbin, S. M.; Gunshor, R. L.; Kobayashi, M.; Menke, D. R.; Pelekanos, N.; Hagerott, M.; Nurmikko, A. V.; Nakamura, Y.; Otsuka, N.

    1991-05-01

    In this paper we describe a series of MnTe/CdTe/MnTe and MnTe/InSb/MnTe single quantum well structures. For the CdTe quantum wells we report the observation of luminescence covering the entire visible range from red to blue; a quantized state in the InSb well is used to implement resonant tunneling. X-ray diffraction and transmission electron microscopy (TEM) were used to evaluate the microstructural quality of the structures. Dark-field TEM showed that, in spite of the 2.3% lattice mismatch, the MnTe layers remained pseudomorphic and dislocation-free. High resolution images (also used to determine dimensional details) indicated that the interfaces were atomically abrupt, and that the CdTe and InSb wells were essentially unstrained in each of the structures; most of the strain was contained in the MnTe barrier layers. Optical properties of the single quantum well structures have been studied using photoluminescence and photoluminescence excitation spectroscopy. Blue luminescence at 2.59 eV ( n = 1 transition) has been observed from a structure with a 10 Å CdTe well. The negative differential resistance observed from MnTe/InSb resonant tunneling structures represents, to our knowledge, the first report of a dimensionally quantized state in InSb.

  1. Formation of large voids in the amorphous phase-change memory Ge2Sb2Te5 alloy.

    PubMed

    Sun, Zhimei; Zhou, Jian; Blomqvist, Andreas; Johansson, Börje; Ahuja, Rajeev

    2009-02-20

    On the basis of ab initio molecular dynamics simulations, large voids mainly surrounded by Te atoms are observed in molten and amorphous Ge2Sb2Te5, which is due to the clustering of two- and threefold coordinated Te atoms. Furthermore, pressure shows a significant effect on the clustering of the under coordinated Te atoms and hence the formation of large voids. The present results demonstrate that both vacancies and Te play an important role in the fast reversible phase transition process. PMID:19257687

  2. Nanoscale morphology of multilayer PbTe/CdTe heterostructures and its effect on photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Karczewski, G.; Szot, M.; Kret, S.; Kowalczyk, L.; Chusnutdinow, S.; Wojtowicz, T.; Schreyeck, S.; Brunner, K.; Schumacher, C.; Molenkamp, L. W.

    2015-03-01

    We study nanoscale morphology of PbTe/CdTe multilayer heterostuctures grown by molecular beam epitaxy on hybrid GaAs/CdTe (100) substrates. Nominally, the structures consist of 25 repetitions of subsequently deposited CdTe and PbTe layers with comparable thicknesses of 21 and 8 nm, respectively. However, the morphology of the resulting structures crucially depends on the growth temperature. The two-dimensional layered, superlattice-like character of the structures remains preserved only when grown at low substrate temperatures, such as 230 °C. The samples grown at the slightly elevated temperature of 270 °C undergo a morphological transformation to structures consisting of CdTe and PbTe pillars and columns oriented perpendicular to the substrate. Although the pillar-like objects are of various shapes and dimensions these structures exhibit exceptionally strong photoluminescence in the near infrared spectral region. At the higher growth temperature of 310 °C, PbTe and CdTe separate completely forming thick layers oriented longitudinally to the substrate plane. The observed topological transformations are driven by thermally activated atomic diffusion in the solid state phase. The solid state phase remains fully coherent during the processes. The observed topological transitions leading to the material separation in PbTe/CdTe system could be regarded as an analog of spinodal decomposition of an immiscible solid state solution and thus they can be qualitatively described by the Cahn-Hillard model as proposed by Groiss et al (2014 APL Mater. 2 012105).

  3. Electronic properties of aluminum/CdZnTe interfaces

    NASA Astrophysics Data System (ADS)

    Bai, Xuxu; Jie, Wanqi; Zha, Gangqiang; Zhang, Wenhua; Zhu, Junfa; Wang, Tao; Qian, Dong; Liu, Ying; Jia, Jinfeng

    2013-05-01

    Understanding complex correlations between the macroscopic device performance and the contact formation on the atomic level in CdZnTe radiation detectors remains an enormous challenge. In this work, an effort towards bridging that macro-nano knowledge gap is made by systematic study of the electronic structures in the interface of Al/CdZnTe(111)A and Al/CdZnTe(111)B with Al coverage from sub-monolayer to multilayers using photoemission spectroscopy. Remarkable difference of the electronic states was found in these two interfaces. A strong interaction between Al and CdZnTe(111)A was observed at room temperature and thick interface layers (>12 nm) formed. In contrast, an intermix layer with a thickness of about one atomic layer (˜0.3 nm) was formed at Al/CdZnTe(111)B interface.

  4. Coherent phonon study of (GeTe)l(Sb2Te3)m interfacial phase change memory materials

    NASA Astrophysics Data System (ADS)

    Makino, Kotaro; Saito, Yuta; Fons, Paul; Kolobov, Alexander V.; Nakano, Takashi; Tominaga, Junji; Hase, Muneaki

    2014-10-01

    The time-resolved reflectivity measurements were carried out on the interfacial phase change memory (iPCM) materials ([(GeTe)2(Sb2Te3)4]8 and [(GeTe)2(Sb2Te3)1]20) as well as conventional Ge2Sb2Te5 alloy at room temperature and above the RESET-SET phase transition temperature. In the high-temperature phase, coherent phonons were clearly observed in the iPCM samples while drastic attenuation of coherent phonons was induced in the alloy. This difference strongly suggests the atomic rearrangement during the phase transition in iPCMs is much smaller than that in the alloy. These results are consistent with the unique phase transition model in which a quasi-one-dimensional displacement of Ge atoms occurs for iPCMs and a conventional amorphous-crystalline phase transition takes place for the alloy.

  5. Polymorphism in Thermoelectric As2Te3.

    PubMed

    Morin, Cedric; Corallini, Serena; Carreaud, Julie; Vaney, Jean-Baptiste; Delaizir, Gaelle; Crivello, Jean-Claude; Lopes, Elsa Branco; Piarristeguy, Andrea; Monnier, Judith; Candolfi, Christophe; Nassif, Vivian; Cuello, Gabriel Julio; Pradel, Annie; Goncalves, Antonio Pereira; Lenoir, Bertrand; Alleno, Eric

    2015-10-19

    Metastable β-As2Te3 (R3̅m, a = 4.047 Å and c = 29.492 Å at 300 K) is isostructural to layered Bi2Te3 and is known for similarly displaying good thermoelectric properties around 400 K. Crystallizing glassy-As2Te3 leads to multiphase samples, while β-As2Te3 could indeed be synthesized with good phase purity (97%) by melt quenching. As expected, β-As2Te3 reconstructively transforms into stable α-As2Te3 (C2/m, a = 14.337 Å, b = 4.015 Å, c = 9.887 Å, and β = 95.06°) at 480 K. This β → α transformation can be seen as the displacement of part of the As atoms from their As2Te3 layers into the van der Waals bonding interspace. Upon cooling, β-As2Te3 displacively transforms in two steps below T(S1) = 205-210 K and T(S2) = 193-197 K into a new β'-As2Te3 allotrope. These reversible and first-order phase transitions give rise to anomalies in the resistance and in the calorimetry measurements. The new monoclinic β'-As2Te3 crystal structure (P2(1)/m, a = 6.982 Å, b = 16.187 Å, c = 10.232 Å, β = 103.46° at 20 K) was solved from Rietveld refinements of X-ray and neutron powder patterns collected at low temperatures. These analyses showed that the distortion undergone by β-As2Te3 is accompanied by a 4-fold modulation along its b axis. In agreement with our experimental results, electronic structure calculations indicate that all three structures are semiconducting with the α-phase being the most stable one and the β'-phase being more stable than the β-phase. These calculations also confirm the occurrence of a van der Waals interspace between covalently bonded As2Te3 layers in all three structures. PMID:26418840

  6. Discovery of new monolayer material Nb3SiTe6

    NASA Astrophysics Data System (ADS)

    Hu, Jin; Liu, Xue; Yue, Chunlei; Mao, Zhiqiang; Wei, Jiang

    2014-03-01

    The discovery of atomically-thin materials, such as graphene and monolayer transition metal dichalcogenides, has ushered in a new era of low-dimensional physics. Due to the quantum confinement effect in reduced dimensionality, the electronic structures of monolayer materials are reconstructed, leading to exotic physical properties such as Dirac fermions in graphene, large direct band gap and valley-spin coupling in MoS2. Recently we prepared a new monolayer form of a complex material Nb3SiTe6. Nb3SiTe6 possesses a tetragonal structure with each Nb-Si lattice sheet sandwiched by two Te layers. The Te-Nb/Si-Te layers are coupled by Van der Waals gap. Similar to MoS2, within Te-Nb/Si-Te layers each Nb forms six bonds with Te atoms, forming trigonal prismatic coordination. We successfully obtained mono-layer Nb3SiTe6 using micro-mechanical exfoliate technique. While bulk Nb3SiTe6 is metallic, the electronic properties of Nb3SiTe6 monolayer are expected to be distinct from those of bulk due to the quantum confinement effect. In this talk, we will report the preparation and electronic properties of Nb3SiTe6 monolayer. This success of preparing Nb3SiTe6 monolayer provides a new playground for studying low dimensional physics and nanotechnology.

  7. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3

    DOE PAGESBeta

    Lee, Inhee; Kim, Chung Koo; Lee, Jinho; Billinge, Simon J. L.; Zhong, Ruidan D.; Schneeloch, John A.; Liu, Tiansheng S.; Valla, Tonica; Tranquada, John M.; Gu, Genda D.; et al

    2015-01-20

    To achieve and use the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TIs), it is necessary to open a “Dirac-mass gap” in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely applied approach. However, it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in themore » ferromagnetic TI Cr₀.₀₈(Bi₀.₁Sb₀.₉)₁.₉₂Te₃. Simultaneous visualization of the Dirac-mass gap Δ(r) reveals its intense disorder, which we demonstrate is directly related to fluctuations in n(r), the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of Δ(r) not inconsistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship Δ(r)∝n(r) is confirmed throughout and exhibits an electron–dopant interaction energy J* = 145 meV·nm². In addition, these observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential.« less

  8. Molecular beam epitaxy and characterizations of PbTe grown on GaAs(211) substrates using CdTe/ZnTe buffers

    NASA Astrophysics Data System (ADS)

    Shu, Tianyu; Lu, Pengqi; Zhang, Bingpo; Wang, Miao; Chen, Lu; Fu, Xiangliang; Xu, Gangyi; Wu, Huizhen

    2015-06-01

    Narrow-gap semiconductor PbTe has exhibited versatility in both mid-infrared optoelelctronics and thermoelectrics. However, the absence of commercially obtainable PbTe crystal substrates limits its wide applications. In this paper, heteroepitaxy of high-quality PbTe crystal on GaAs(211) using CdTe/ZnTe buffers by molecular beam epitaxy is presented for the first time. Optimal growth parameters have been obtained by both in-situ and ex-situ characterizations. In-situ reflection high-energy electron diffraction observed a transition of growth mode from 2D to 3D, which is in agreement with the results of atomic force microscope and scanning electron microscope characterizations. High resolution X-ray diffraction revealed that the growth of PbTe crystal is along [531] direction which is different from the [211] substrate orientation. Multiple phonon modes related to PbTe were observed by Raman scattering while mid-infrared light emission from epitaxial PbTe is observed at a peak of 3.5 μm by photoluminescence. Different from PbTe grown on BaF2(111), n-type conductivity with electron densities of ~5×1017 cm-3 and mobilities of 675 cm2/V s at room temperature and 4300 cm2/V s at 2 K is observed. The high quality PbTe grown on GaAs(211) substrates using CdTe/ZnTe buffers renders promising applications in both optoelectronics and thermoelectrics.

  9. Liquid atomization

    NASA Astrophysics Data System (ADS)

    Bayvel, L.; Orzechowski, Z.

    The present text defines the physical processes of liquid atomization, the primary types of atomizers and their design, and ways of measuring spray characteristics; it also presents experimental investigation results on atomizers and illustrative applications for them. Attention is given to the macrostructural and microstructural parameters of atomized liquids; swirl, pneumatic, and rotary atomizers; and optical drop sizing methods, with emphasis on nonintrusive optical methods.

  10. Reverse Monte Carlo simulation of Se{sub 80}Te{sub 20} and Se{sub 80}Te{sub 15}Sb{sub 5} glasses

    SciTech Connect

    Abdel-Baset, A. M.; Rashad, M.; Moharram, A. H.

    2013-12-16

    Two-dimensional Monte Carlo of the total pair distribution functions g(r) is determined for Se{sub 80}Te{sub 20} and Se{sub 80}Te{sub 15}Sb{sub 5} alloys, and then it used to assemble the three-dimensional atomic configurations using the reverse Monte Carlo simulation. The partial pair distribution functions g{sub ij}(r) indicate that the basic structure unit in the Se{sub 80}Te{sub 15}Sb{sub 5} glass is di-antimony tri-selenide units connected together through Se-Se and Se-Te chain. The structure of Se{sub 80}Te{sub 20} alloys is a chain of Se-Te and Se-Se in addition to some rings of Se atoms.

  11. Theoretical study of intrinsic defects in CdTe

    NASA Astrophysics Data System (ADS)

    Menéndez-Proupin, E.; Orellana, W.

    2016-05-01

    The quantum states and thermodynamical properties of the Cd and Te vacancies in CdTe are studied by first principles calculations. It is shown that the band structure of a cubic 64-atoms supercell with a Te vacancy is dramatically different from the band structure of the perfect crystal, suggesting that it cannot be used as model to calculate isolated defects. This flaw is solved modeling the Te vacancy within a cubic 216-atoms supercell. However, even with this large supercell, the 2— charge state relaxes to an incorrect distorted structure. This distortion is driven by partial filling of the conduction band induced by the k-point sampling. The correct structures and formation energies are obtained by relaxation with restriction of system symmetry, followed by band-filling correction to the energy, or by using a larger supercell that allows sampling the Brillouin zone with a single k-point.

  12. Microstructural Investigation of SexTe100-x Thin Films Deposited on Si(100) Substrates by X-ray Diffractometer and Transmission Electron Microscopy Analysis

    NASA Astrophysics Data System (ADS)

    Kim, Eun Tae; Lee, Jeong Yong; Kim, Yong Tae

    2007-11-01

    The microstructural properties of SexTe100-x (x=16,29,38) thin films are investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. SexTe100-x thin films have a Te hexagonal structure and Te{011} interplanar spacing decreases because some Se atoms occupy Te atomic sites, forming Se helical chains within the Te helical chains. By increasing the Se contents from 16 to 29 at. %, Se5.95Te1.05 monoclinic and Se hexagonal structures coexist in a grain and at 38 at. %, a Se hexagonal structure is observed within the Te hexagonal grain. This means that SexTe100-x thin films maintain the Te hexagonal structure and that phase separation does not occur owing to the short diffusion time.

  13. Na2TeS3, Na2TeSe3-mP24, and Na2TeSe3-mC48: Crystal Structures and Optical and Electrical Properties of Sodium Chalcogenidotellurates(IV).

    PubMed

    Pompe, Constantin; Preitschaft, Christian; Weihrich, Richard; Pfitzner, Arno

    2015-12-01

    Pure samples of Na2TeS3 and Na2TeSe3 were synthesized by the reactions of stoichiometric amounts of the elements Na, Te, and Q (Q = S, Se) in the ratio 2:1:3. Both compounds are highly air- and moisture-sensitive. The crystal structures were determined by single-crystal X-ray diffraction. Yellow Na2TeS3 crystallizes in the space group P21/c. Na2TeSe3 exists in a low-temperature modification (Na2TeSe3-mP24, space group P21/c) and a high-temperature modification (Na2TeSe3-mC48, space group C2/c); both modifications are red. Density functional theory calculations confirmed the coexistence of both modifications of Na2TeSe3 because they are very close in energy (ΔE = 0.18 kJ mol(-1)). To the contrary, hypothetic Na2TeS3-mC48 is significantly less favored (ΔE = 1.8 kJ mol(-1)) than the primitive modification. Na2TeS3 and Na2TeSe3-mP24 are isotypic to Li2TeS3, whereas Na2TeSe3-mC48 crystallizes in its own structure type, which was first described by Eisenmann and Zagler. The title compounds have two common structure motifs. Trigonal TeQ3 pyramids form layers, and the Na atoms are surrounded by a distorted octahedral environment of chalcogen atoms. Raman spectra are dominated by the vibration modes of the TeQ3 units. The activation energies of the total conductivity of the title compounds range between 0.68 eV (Na2TeS3) and 1.1 eV (Na2TeSe3). Direct principal band gaps of 1.20 and 1.72 eV were calculated for Na2TeSe3 and Na2TeS3, respectively. The optical band gaps are in the range from 1.38 eV for Li2TeSe3 to 2.35 eV for Na2TeS3. PMID:26600068

  14. A DETAILED STUDY OF THE MOLECULAR AND ATOMIC GAS TOWARD THE {gamma}-RAY SUPERNOVA REMNANT RX J1713.7-3946: SPATIAL TeV {gamma}-RAY AND INTERSTELLAR MEDIUM GAS CORRESPONDENCE

    SciTech Connect

    Fukui, Y.; Sano, H.; Sato, J.; Torii, K.; Horachi, H.; Hayakawa, T.; Inutsuka, S.; Kawamura, A.; Yamamoto, H.; Okuda, T.; Mizuno, N.; Onishi, T.; McClure-Griffiths, N. M.; Rowell, G.; Inoue, T.; Mizuno, A.; Ogawa, H.

    2012-02-10

    RX J1713.7-3946 is the most remarkable TeV {gamma}-ray supernova remnant (SNR) that emits {gamma}-rays in the highest energy range. We have made a new combined analysis of CO and H I in the SNR and derived the total protons in the interstellar medium (ISM). We have found that the inclusion of the H I gas provides a significantly better spatial match between the TeV {gamma}-rays and ISM protons than the H{sub 2} gas alone. In particular, the southeastern rim of the {gamma}-ray shell has a counterpart only in the H I. The finding shows that the ISM proton distribution is consistent with the hadronic scenario that cosmic-ray (CR) protons react with ISM protons to produce the {gamma}-rays. This provides another step forward for the hadronic origin of the {gamma}-rays by offering one of the necessary conditions missing in the previous hadronic interpretations. We argue that the highly inhomogeneous distribution of the ISM protons is crucial in the origin of the {gamma}-rays. Most of the neutral gas was likely swept up by the stellar wind of an OB star prior to the supernova (SN) explosion to form a low-density cavity and a swept-up dense wall. The cavity explains the low-density site where the diffusive shock acceleration of charged particles takes place with suppressed thermal X-rays, whereas the CR protons can reach the target protons in the wall to produce the {gamma}-rays. The present finding allows us to estimate the total CR proton energy to be {approx}10{sup 48} erg, 0.1% of the total energy of the SN explosion.

  15. APT mass spectrometry and SEM data for CdTe solar cells

    DOE PAGESBeta

    Li, Chen; Paudel, Naba R.; Yan, Yanfa; Pennycook, Stephen J.; Poplawsky, Jonathan D.; Guo, Wei

    2016-03-16

    Atom probe tomography (APT) data acquired from a CAMECA LEAP 4000 XHR for the CdS/CdTe interface for a non-CdCl2 treated CdTe solar cell as well as the mass spectrum of an APT data set including a GB in a CdCl2-treated CdTe solar cell are presented. Scanning electron microscopy (SEM) data showing the evolution of sample preparation for APT and scanning transmission electron microscopy (STEM) electron beam induced current (EBIC) are also presented. As a result, these data show mass spectrometry peak decomposition of Cu and Te within an APT dataset, the CdS/CdTe interface of an untreated CdTe solar cell, preparationmore » of APT needles from the CdS/CdTe interface in superstrate grown CdTe solar cells, and the preparation of a cross-sectional STEM EBIC sample.« less

  16. Optical properties versus growth conditions of CdTe submonolayers inserted in ZnTe quantum wells

    NASA Astrophysics Data System (ADS)

    Calvo, Vincent; Magnea, Noël; Taliercio, Thierry; Lefebvre, Pierre; Allègre, Jacques; Mathieu, Henry

    1998-12-01

    Standard and piezomodulated optical spectroscopy is performed on ZnTe quantum wells embedding integer and fractional monolayers of CdTe. The samples, grown in a molecular-beam-epitaxy setup on the (001) surface of ZnTe substrates, all basically consist of 120-ML-wide ZnTe/(Zn,Mg)Te quantum wells, and some of them contain five equally spaced full or half-monolayers of CdTe, producing monomolecular islands of CdTe ``buried'' in the wide host ZnTe well. The latter behave as efficient recombination centers for excitons. In order to change the size and the configuration of the islands, various growth parameters have been changed between the different samples, e.g., the growth process (molecular-beam epitaxy of binaries or ternaries, or atomic-layer epitaxy) or the temperature. From spectroscopic measurements, the influence of these parameters is analyzed in detail, in terms of the size of the islands and of their in-plane spacing, or of the vertical correlation between these islands. The internal strain state of the CdTe insertions and the overall photoluminescence efficiency are also studied versus growth conditions.

  17. Atomic Disorder in Tetrahedrite

    NASA Astrophysics Data System (ADS)

    Salasin, John Robert; Chakoumakos, Bryan; Rawn, Claudia; May, Andrew; Lara-Curzio, Edgar; McGuire, Michael; Cao, Huibo

    2015-03-01

    Thermoelectrics (TE) are materials which turn heat energy into electrical energy with applications spanning multiple disciplines including space exploration, Peltier cooling, and engine efficiency. Tetrahedrite is a copper sulfosalt with the general formula Cu12-xMx(Sb,As)4S13. Where M denotes a Cu2+ site frequently replaced in natural tetrahedrite with Zn, Fe, Hg, or Mn. It has a cubic structure with an I-43m symmetry, a = 10.4 Å, and only a handful of adjustable parameters. This structural study corroborates theoretical calculations on atomic disorder. Positional disorder of the trigonally coordinated Cu(2) site is suggested from the temperature dependence of the atomic displacement parameters determine from single-crystal x-ray and neutron diffraction. The displacements are extremely anisotropic for Cu(2) with a maximum rms static displacement of ~ 0.25 Å.

  18. Exploration of GaTe for Gamma Detectors

    SciTech Connect

    Conway, A M; Reinhardt, C E; Nikolic, R J; Nelson, A J; Wang, T F; Wu, K J; Payne, S A; Mertiri, A; Pabst, G; Roy, R; Mandal, K C; Bhattacharya, P; Cui, Y; Groza, M; Burger, A

    2007-11-16

    The layered III-VI semiconductor Gallium Telluride has potential for room temperature gamma ray spectroscopy applications due to its band gap of 1.67 eV, and average atomic number of 45:31 (Ga) and 52 (Te). The physical properties of GaTe are highly anisotropic due to covalent bonding within the layer and van der Waals bonding between layers. This work reports the results of surface and bulk processing, surface characterization, and electrical characterization of diodes formed on both the laminar and non-laminar GaTe surfaces. Alpha detection measurements were also performed.

  19. Thermoelectric properties of Tl-doped PbTeSe crystals grown by directional solidification

    NASA Astrophysics Data System (ADS)

    Su, Ching-Hua

    2016-04-01

    Three Tl-doped PbTe and two Tl-doped PbTeSe crystals were grown by vertical un-seeded directional solidification method. Among them, two Tl-doped PbTe ingots, with starting composition of (Pb0.99Tl0.01)Te, were grown under Pb or Te pressure over the melt provided by a Pb or Te reservoir, respectively, whereas another ingot, with starting composition of (Pb0.98Tl0.02)Te, was grown under Te overpressure. Two Tl-doped PbTeSe crystals, with starting composition of (Pb0.98Tl0.02)(Te0.85Se0.15) and (Pb0.96Tl0.04)(Te0.85Se0.15), were grown without any over-pressure. Disk-shaped samples were sliced at different locations along the growth axis and their thermal conductivities were determined from thermal diffusivity, density, and heat capacity measurements. The electrical conductivity and Seebeck coefficient were simultaneously measured as a function of temperature for each disk sample. The Figure of Merit for the thermoelectric application, zT, was calculated from these properties from room temperature to about 640 °C. The Tl-doped PbTeSe samples have the highest zT value of 1.63 at temperature range of 425 to 475 °C, comparing to 1.13 at 410 °C for the Tl-doped PbTe samples. By substituting 15% of the Te atoms in the Tl-doped PbTe by Se atoms, the Figure of Merit of PbTeSe was enhanced by reducing the thermal conductivity about 26% and, at the same time, increasing the electrical conductivity by 43%.

  20. Anisotropic magnetic responses of a 2D-superconducting Bi2Te3/FeTe heterostructure.

    PubMed

    He, Qing Lin; He, Mingquan; Shen, Junying; Lai, Ying Hoi; Liu, Yi; Liu, Hongchao; He, Hongtao; Wang, Gan; Wang, Jiannong; Lortz, Rolf; Sou, Iam Keong

    2015-09-01

    We have investigated the anisotropic magnetic responses of a 2D-superconducting Bi2Te3/FeTe heterostructure. Cross-sectional STEM imaging revealed that the excess Fe atoms in the FeTe layer occupy specific interstitial sites. They were found to show strong anisotropic magnetic responses under a magnetic field either perpendicular or parallel to the sample surface. Under perpendicular magnetic fields within 1000 Oe, conventional paramagnetic Meissner effect, superconducting diamagnetism, and anomalous enhancement of magnetization successively occur as the magnetic field increases. In contrast, under parallel magnetic fields, superconducting diamagnetism was not observed explicitly in the magnetization measurements and the anomalous enhancement of magnetization appears only for fields higher than 1000 Oe. The observed strong magnetic anisotropy provides further evidence that the induced superconductivity at the interface of the Bi2Te3/FeTe heterostucture has a 2D nature. PMID:26252506

  1. Anisotropic magnetic responses of a 2D-superconducting Bi2Te3/FeTe heterostructure

    NASA Astrophysics Data System (ADS)

    He, Qing Lin; He, Mingquan; Shen, Junying; Lai, Ying Hoi; Liu, Yi; Liu, Hongchao; He, Hongtao; Wang, Gan; Wang, Jiannong; Lortz, Rolf; Keong Sou, Iam

    2015-09-01

    We have investigated the anisotropic magnetic responses of a 2D-superconducting Bi2Te3/FeTe heterostructure. Cross-sectional STEM imaging revealed that the excess Fe atoms in the FeTe layer occupy specific interstitial sites. They were found to show strong anisotropic magnetic responses under a magnetic field either perpendicular or parallel to the sample surface. Under perpendicular magnetic fields within 1000 Oe, conventional paramagnetic Meissner effect, superconducting diamagnetism, and anomalous enhancement of magnetization successively occur as the magnetic field increases. In contrast, under parallel magnetic fields, superconducting diamagnetism was not observed explicitly in the magnetization measurements and the anomalous enhancement of magnetization appears only for fields higher than 1000 Oe. The observed strong magnetic anisotropy provides further evidence that the induced superconductivity at the interface of the Bi2Te3/FeTe heterostucture has a 2D nature.

  2. Coexistence of optically active radial and axial CdTe insertions in single ZnTe nanowire.

    PubMed

    Wojnar, P; Płachta, J; Zaleszczyk, W; Kret, S; Sanchez, Ana M; Rudniewski, R; Raczkowska, K; Szymura, M; Karczewski, G; Baczewski, L T; Pietruczik, A; Wojtowicz, T; Kossut, J

    2016-03-14

    We report on the growth, cathodoluminescence and micro-photoluminescence of individual radial and axial CdTe insertions in ZnTe nanowires. In particular, the cathodoluminescence technique is used to determine the position of each emitting object inside the nanowire. It is demonstrated that depending on the CdTe deposition temperature, one can obtain an emission either from axial CdTe insertions only, or from both, radial and axial heterostructures, simultaneously. At 350 °C CdTe grows only axially, whereas at 310 °C and 290 °C, there is also significant deposition on the nanowire sidewalls resulting in radial core/shell heterostructures. The presence of Cd atoms on the sidewalls is confirmed by energy dispersive X-ray spectroscopy. Micro-photoluminescence study reveals a strong linear polarization of the emission from both types of heterostructures in the direction along the nanowire axis. PMID:26903109

  3. Crystal Structure of Te 2O 3F 2

    NASA Astrophysics Data System (ADS)

    Ider, A.; Laval, J. P.; Frit, B.; Carré, J.; Bastide, J. P.

    1996-04-01

    Te2O3F2crystallizes with the triclinic symmetry (space groupP-1) and the unit cell parametersa= 515.3(1) pm,b= 625.7(1) pm,c= 688.8(1) pm, α = 98.71(1)°, β = 110.31(1)°, γ = 92.72(1)°,Z= 2. Its structure was solved and refined toRvaluesR1= 0.024 and wR2= 0.059 on the basis of 699 independent reflections recorded on a single crystal with an automatic four-circle diffractometer. The two Te atoms are, respectively, fourfold and fivefold coordinated and their lone pairEis stereochemically active. The bond valence calculation shows a perfect O/F order. The Te(1)O3FEand Te(2)O4FEpolyhedra form, by sharing O-O edges, bipolyhedral units with a very short Te-Te distance (319 pm). These units, by sharing corners, constitute independent sheets parallel tox0y. All the F atoms are nonbridging and orientated, together with the lone pairsE, toward the interlayer space. The structural relationships with the α-TeO2structure have been evidenced and analyzed.

  4. Coexistence of optically active radial and axial CdTe insertions in single ZnTe nanowire

    NASA Astrophysics Data System (ADS)

    Wojnar, P.; Płachta, J.; Zaleszczyk, W.; Kret, S.; Sanchez, Ana M.; Rudniewski, R.; Raczkowska, K.; Szymura, M.; Karczewski, G.; Baczewski, L. T.; Pietruczik, A.; Wojtowicz, T.; Kossut, J.

    2016-03-01

    We report on the growth, cathodoluminescence and micro-photoluminescence of individual radial and axial CdTe insertions in ZnTe nanowires. In particular, the cathodoluminescence technique is used to determine the position of each emitting object inside the nanowire. It is demonstrated that depending on the CdTe deposition temperature, one can obtain an emission either from axial CdTe insertions only, or from both, radial and axial heterostructures, simultaneously. At 350 °C CdTe grows only axially, whereas at 310 °C and 290 °C, there is also significant deposition on the nanowire sidewalls resulting in radial core/shell heterostructures. The presence of Cd atoms on the sidewalls is confirmed by energy dispersive X-ray spectroscopy. Micro-photoluminescence study reveals a strong linear polarization of the emission from both types of heterostructures in the direction along the nanowire axis.We report on the growth, cathodoluminescence and micro-photoluminescence of individual radial and axial CdTe insertions in ZnTe nanowires. In particular, the cathodoluminescence technique is used to determine the position of each emitting object inside the nanowire. It is demonstrated that depending on the CdTe deposition temperature, one can obtain an emission either from axial CdTe insertions only, or from both, radial and axial heterostructures, simultaneously. At 350 °C CdTe grows only axially, whereas at 310 °C and 290 °C, there is also significant deposition on the nanowire sidewalls resulting in radial core/shell heterostructures. The presence of Cd atoms on the sidewalls is confirmed by energy dispersive X-ray spectroscopy. Micro-photoluminescence study reveals a strong linear polarization of the emission from both types of heterostructures in the direction along the nanowire axis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08806b

  5. Bi 2Te 3-Te nanocomposite formed by epitaxial growth of Bi 2Te 3 sheets on Te rod

    NASA Astrophysics Data System (ADS)

    Deng, Yuan; Cui, Chang-Wei; Zhang, Ni-La; Ji, Tian-Hao; Yang, Qing-Lin; Guo, Lin

    2006-05-01

    Single-crystal Bi 2Te 3-Te nanocomposites with heterostructure were synthesized using a two-step solvothermal process in the presence of ethylenediaminetetraacetic acid disodium salt. The first step is the formation of the Te nanorods and the second step is to grow the Bi 2Te 3 sheets off the Te rods surface to form the Bi 2Te 3-Te nanocomposites. The products were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. We demonstrate a method of an epitaxial growth of Bi 2Te 3 nanosheets perpendicular to the axis of the central Te rod and a formation process of Bi 2Te 3-Te nanocomposites is also proposed.

  6. Thermoelectric properties of Nb3SbxTe7-x compounds

    NASA Technical Reports Server (NTRS)

    Snyder, J.; Wang, S.; Caillat, T.

    2002-01-01

    Niobium antimony telluride, Nb3Sbx,Te7-x, was synthesized and tested for thermoelectric properties in the Thermoelectrics group at the Jet Propulsion Laboratory. The forty atoms per unit cell of Nb3Sb2Te5 and its varied mixture of atoms yield acomplicated structure, suggesting that Nb3Sb2Te5 and related compounds may exhibit low thermal conductivity and hence a higher ZT value. Nb3SbxTe7-x, compounds were synthesized and subsequently analyzed for their Seebeck voltage, heat conduction, and electrical resistivity. Results indicate that Nb3Sb2Te5 is a heavily doped semiconductor whose thermoelectric properties are compromised by compensating n-type and p-type carriers. Attempts to dope in favor of either carrier by varying the Sb:Te ratio yielded samples containing secondary metallic phases that dominated the transport properties of the resulting compounds.

  7. Atomic polarizabilities

    SciTech Connect

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  8. Pseudogap and proximity effect in the Bi2Te3/Fe1+yTe interfacial superconductor.

    PubMed

    He, M Q; Shen, J Y; Petrović, A P; He, Q L; Liu, H C; Zheng, Y; Wong, C H; Chen, Q H; Wang, J N; Law, K T; Sou, I K; Lortz, R

    2016-01-01

    In the interfacial superconductor Bi2Te3/Fe1+yTe, two dimensional superconductivity occurs in direct vicinity to the surface state of a topological insulator. If this state were to become involved in superconductivity, under certain conditions a topological superconducting state could be formed, which is of high interest due to the possibility of creating Majorana fermionic states. We report directional point-contact spectroscopy data on the novel Bi2Te3/Fe1+yTe interfacial superconductor for a Bi2Te3 thickness of 9 quintuple layers, bonded by van der Waals epitaxy to a Fe1+yTe film at an atomically sharp interface. Our data show highly unconventional superconductivity, which appears as complex as in the cuprate high temperature superconductors. A very large superconducting twin-gap structure is replaced by a pseudogap above ~12 K which persists up to 40 K. While the larger gap shows unconventional order parameter symmetry and is attributed to a thin FeTe layer in proximity to the interface, the smaller gap is associated with superconductivity induced via the proximity effect in the topological insulator Bi2Te3. PMID:27587000

  9. Pseudogap and proximity effect in the Bi2Te3/Fe1+yTe interfacial superconductor

    PubMed Central

    He, M. Q.; Shen, J. Y.; Petrović, A. P.; He, Q. L.; Liu, H. C.; Zheng, Y.; Wong, C. H.; Chen, Q. H.; Wang, J. N.; Law, K. T.; Sou, I. K.; Lortz, R.

    2016-01-01

    In the interfacial superconductor Bi2Te3/Fe1+yTe, two dimensional superconductivity occurs in direct vicinity to the surface state of a topological insulator. If this state were to become involved in superconductivity, under certain conditions a topological superconducting state could be formed, which is of high interest due to the possibility of creating Majorana fermionic states. We report directional point-contact spectroscopy data on the novel Bi2Te3/Fe1+yTe interfacial superconductor for a Bi2Te3 thickness of 9 quintuple layers, bonded by van der Waals epitaxy to a Fe1+yTe film at an atomically sharp interface. Our data show highly unconventional superconductivity, which appears as complex as in the cuprate high temperature superconductors. A very large superconducting twin-gap structure is replaced by a pseudogap above ~12 K which persists up to 40 K. While the larger gap shows unconventional order parameter symmetry and is attributed to a thin FeTe layer in proximity to the interface, the smaller gap is associated with superconductivity induced via the proximity effect in the topological insulator Bi2Te3. PMID:27587000

  10. AsTeRICS.

    PubMed

    Drajsajtl, Tomáš; Struk, Petr; Bednárová, Alice

    2013-01-01

    AsTeRICS - "The Assistive Technology Rapid Integration & Construction Set" is a construction set for assistive technologies which can be adapted to the motor abilities of end-users. AsTeRICS allows access to different devices such as PCs, cell phones and smart home devices, with all of them integrated in a platform adapted as much as possible to each user. People with motor disabilities in the upper limbs, with no cognitive impairment, no perceptual limitations (neither visual nor auditory) and with basic skills in using technologies such as PCs, cell phones, electronic agendas, etc. have available a flexible and adaptable technology which enables them to access the Human-Machine-Interfaces (HMI) on the standard desktop and beyond. AsTeRICS provides graphical model design tools, a middleware and hardware support for the creation of tailored AT-solutions involving bioelectric signal acquisition, Brain-/Neural Computer Interfaces, Computer-Vision techniques and standardized actuator and device controls and allows combining several off-the-shelf AT-devices in every desired combination. Novel, end-user ready solutions can be created and adapted via a graphical editor without additional programming efforts. The AsTeRICS open-source framework provides resources for utilization and extension of the system to developers and researches. AsTeRICS was developed by the AsTeRICS project and was partially funded by EC. PMID:23739379

  11. Effects of Surface Composition on CdTe/CdS Device Performance

    SciTech Connect

    Levi, D.; Albin, D.; King, D.

    2000-01-01

    The atomic composition of the back surface of the CdTe layer in a CdTe/CdS photovoltiac (PV) device has a significant influence on the quality of the electrical contact to this layer. This paper reports the results of a systematic study that correlates the composition of the back surface with pre-contact processing and device performance.

  12. Surface energies for molecular beam epitaxy growth of HgTe and CdTe

    NASA Astrophysics Data System (ADS)

    Berding, M. A.; Krishnamurthy, Srinivasan; Sher, A.

    1991-10-01

    We present results for the surface binding energies for HgTe and CdTe that will serve as input for molecular beam epitaxy growth models. We have found that the surface binding energies are surface orientation dependent and are not simply proportional to the number of first-neighbor bonds being made to the underlying layer. Moreover, because of the possibility of charge transfer between cation and anion surface states, one may have large differences between the binding energy for the first and the last atom in a given layer, and these differences will be different for the narrow-gap, less ionic materials than for the wide gap, ionic materials. We also find that the surface states associated with an isolated surface atom or vacancy are extended in materials with small gaps and small effective masses, and thus call into question the modeling of surface binding by simple pair interactions.

  13. The deviation from a stoichiometry and the amphoteric behaviour of Ga in PbTe/Si films

    NASA Astrophysics Data System (ADS)

    Samoylov, A. M.; Belenko, S. V.; Sharov, M. K.; Dolgopolova, E. A.; Zlomanov, V. P.

    2012-07-01

    The experimental results, which have been received during the examination of the crystal structure and electronic properties of PbTe/Si heterostructures doped with Ga by means of two different techniques, are systematised in this study. The first doping procedure is based on the two-zone annealing of previously formed by modified HWE technique PbTe/Si heterostructures in the saturated vapour which corresponds to the three-phase equilibrium L1-GaTe(S)-V in Ga-Te binary system. The second method of preparation of PbTe/Si heterostructures offers the direct one stage synthesis, in which the doping and the layer condensation processes proceed simultaneously. The experimental results clearly demonstrate the different character in the charge carrier densities evolutions with the Ga impurity concentration for PbTe/Si films prepared by these techniques. The measurements of conductivity and Hall coefficient have shown that Ga atoms behave as the donor impurities only in PbTe/Si films with little excess of Te, which were fabricated by vapour phase doping. On the contrary, in PbTe films prepared by a direct one-stage synthesis the character of electrical activity of Ga impurities depends upon both the concentration and the deviation from stoichiometry. It has been found that the Pb1-yGayTe1+δ films with yGa>0.015, which are heterogeneous and consist of two (PbTe+GaTe) or three phases (PbTe+GaTe+Ga2Te3) have the best sensitivity to IR radiation. In the scope of quasi chemical approach it is possible to explain the complicated amphoteric behaviour of Ga atoms by different mechanisms of substitution (GaPb×, GaPb1- and GaPb1+) or implantation (Gai3+) of impurity atoms in the PbTe crystal structure.

  14. Magnetoluminescence of CdTe/MnTe/CdMgTe heterostructures with ultrathin MnTe layers

    SciTech Connect

    Agekyan, V. F.; Holz, P. O.; Karczewski, G.; Katz, V. N.; Moskalenko, E. S.; Serov, A. Yu.; Filosofov, N. G.

    2011-10-15

    CdTe/MnTe/CdMgTe quantum-well structures with one or two monolayers of MnTe inserted at CdTe/CdMgTe interfaces were fabricated. The spectra of the excitonic luminescence from CdTe quantum wells and their variation with temperature indicate that introduction of ultrathin MnTe layers improves the interface quality. The effect of a magnetic field in the Faraday configuration on the spectral position of the exciton-emission peaks indicates that frustration of magnetic moments in one-monolayer MnTe insertions is weaker than in two-monolayer insertions. The effect of a magnetic field on the exciton localization can be explained in terms of the exciton wave-function shrinkage and obstruction of the photoexcited charge-carrier motion in the quantum well.

  15. Atomic supersymmetry

    NASA Technical Reports Server (NTRS)

    Kostelecky, V. Alan

    1993-01-01

    Atomic supersymmetry is a quantum-mechanical supersymmetry connecting the properties of different atoms and ions. A short description of some established results in the subject are provided and a few recent developments are discussed including the extension to parabolic coordinates and the calculation of Stark maps using supersymmetry-based models.

  16. Atomic Calligraphy

    NASA Astrophysics Data System (ADS)

    Imboden, Matthias; Pardo, Flavio; Bolle, Cristian; Han, Han; Tareen, Ammar; Chang, Jackson; Christopher, Jason; Corman, Benjamin; Bishop, David

    2013-03-01

    Here we present a MEMS based method to fabricate devices with a small number of atoms. In standard semiconductor fabrication, a large amount of material is deposited, after which etching removes what is not wanted. This technique breaks down for structures that approach the single atom limit, as it is inconceivable to etch away all but one atom. What is needed is a bottom up method with single or near single atom precision. We demonstrate a MEMS device that enables nanometer position controlled deposition of gold atoms. A digitally driven plate is swept as a flux of gold atoms passes through an aperture. Appling voltages on four comb capacitors connected to the central plate by tethers enable nanometer lateral precision in the xy plane over 15x15 sq. microns. Typical MEMS structures have manufacturing resolutions on the order of a micron. Using a FIB it is possible to mill apertures as small as 10 nm in diameter. Assuming a low incident atomic flux, as well as an integrated MEMS based shutter with microsecond response time, it becomes possible to deposit single atoms. Due to their small size and low power consumption, such nano-printers can be mounted directly in a cryogenic system at ultrahigh vacuum to deposit clean quench condensed metallic structures.

  17. Liquid atomization

    SciTech Connect

    Walzel, P. )

    1993-01-01

    A systematic review of different liquid atomizers is presented, accompanied by a discussion of various mechanisms of droplet formation in a gas atmosphere as a function of the liquid flow-regime and the geometry of the atomizer. Equations are presented for the calculation of the mean droplet-diameter. In many applications, details of the droplet size distribution are, also, important, e.g., approximate values of the breadth of the droplet formation are given. The efficiency of utilization of mechanical energy in droplet formation is indicated for the different types of atomizers. Atomization is used, in particular, for the following purposes: (1) atomization of fuels; (2) making granular products; (3) carrying out mass-transfer operations; and (4) coating of surfaces.

  18. Zn2(TeO3)Br2

    PubMed Central

    Zhang, Dong; Johnsson, Mats

    2008-01-01

    Single crystals of dizinc tellurium dibromide trioxide, Zn2(TeO3)Br2, were synthesized via a transport reaction in sealed evacuated silica tubes. The compound has a layered crystal structure in which the building units are [ZnO4Br] distorted square pyramids, [ZnO2Br2] distorted tetra­hedra, and [TeO3 E] tetra­hedra (E being the 5s 2 lone pair of Te4+) joined through sharing of edges and corners to form layers of no net charge. Bromine atoms and tellurium lone pairs protrude from the surfaces of each layer towards adjacent layers. This new compound Zn2(TeO3)Br2 is isostructural with the synthetic compounds Zn2(TeO3)Cl2, CuZn(TeO3)2, Co2(TeO3)Br2 and the mineral sophiite, Zn2(SeO3)Cl2. PMID:21202162

  19. Masses of Te130 and Xe130 and Double-β-Decay Q Value of Te130

    NASA Astrophysics Data System (ADS)

    Redshaw, Matthew; Mount, Brianna J.; Myers, Edmund G.; Avignone, Frank T., III

    2009-05-01

    The atomic masses of Te130 and Xe130 have been obtained by measuring cyclotron frequency ratios of pairs of triply charged ions simultaneously trapped in a Penning trap. The results, with 1 standard deviation uncertainty, are M(Te130)=129.906222744(16)u and M(Xe130)=129.903509351(15)u. From the mass difference the double-β-decay Q value of Te130 is determined to be Qββ(Te130)=2527.518(13)keV. This is a factor of 150 more precise than the result of the AME2003 [G. Audi , Nucl. Phys. A729, 337 (2003)NUPABL0375-947410.1016/j.nuclphysa.2003.11.003].

  20. Masses of {sup 130}Te and {sup 130}Xe and Double-{beta}-Decay Q Value of {sup 130}Te

    SciTech Connect

    Redshaw, Matthew; Mount, Brianna J.; Myers, Edmund G.; Avignone, Frank T. III

    2009-05-29

    The atomic masses of {sup 130}Te and {sup 130}Xe have been obtained by measuring cyclotron frequency ratios of pairs of triply charged ions simultaneously trapped in a Penning trap. The results, with 1 standard deviation uncertainty, are M({sup 130}Te)=129.906 222 744(16) u and M({sup 130}Xe)=129.903 509 351(15) u. From the mass difference the double-{beta}-decay Q value of {sup 130}Te is determined to be Q{sub {beta}}{sub {beta}}({sup 130}Te)=2527.518(13) keV. This is a factor of 150 more precise than the result of the AME2003 [G. Audi et al., Nucl. Phys. A729, 337 (2003)].

  1. Surface Texture and Crystallinity Variation of ZnTe Epilayers Grown on the Step-Terrace Structure of the Sapphire Substrate

    NASA Astrophysics Data System (ADS)

    Nakasu, Taizo; Kizu, Takeru; Yamashita, Sotaro; Aiba, Takayuki; Hattori, Shota; Sun, Wei-Che; Taguri, Kosuke; Kazami, Fukino; Hashimoto, Yuki; Ozaki, Shun; Kobayashi, Masakazu; Asahi, Toshiaki

    2016-04-01

    ZnTe/sapphire heterostructures were focused, and ZnTe thin films were prepared on highly mismatched sapphire substrates by molecular beam epitaxy. A sapphire substrate possessing an atomically-smooth step-terrace structure was used to improve the crystallinity and morphology of the produced ZnTe film. The growth mode of the ZnTe thin film on a sapphire substrate with an atomically-smooth step-terrace structure was found to shift to a two-dimensional growth mode, and a ZnTe thin film possessing a flat surface was obtained. The crystallographic properties of the ZnTe film suggested that the resulting layer consisted of a single (111)-oriented domain. The photoluminescence property was also improved, and the interface lattice alignment between the ZnTe and sapphire was also affected by the atomically-smooth step-terrace structure.

  2. Effect of the Thermal Conductivity on Resistive Switching in GeTe and Ge2Sb2Te5 Nanowires.

    PubMed

    Park, Sungjin; Park, Dambi; Jeong, Kwangsik; Kim, Taeok; Park, SeungJong; Ahn, Min; Yang, Won Jun; Han, Jeong Hwa; Jeong, Hong Sik; Jeon, Seong Gi; Song, Jae Yong; Cho, Mann-Ho

    2015-10-01

    The thermal conduction characteristics of GeTe and Ge2Sb2Te5(GST) nanowires were investigated using an optical method to determine the local temperature by Raman spectroscopy. Since the localization of surface charge in a single-crystalline nanostructure can enhance charge-phonon scattering, the thermal conductivity value (κ) of single crystalline GeTe and GST nanowires was decreased significantly to 1.44 Wm(-1) K(-1) for GeTe and 1.13 Wm(-1) K(-1) for GST, compared to reported values for polycrystalline structures. The SET-to-RESET state in single-crystalline GeTe and GST nanowires are characteristic of a memory device. Unlike previous reports using GeTe and GST nanowires, the SET-to-RESET characteristics showed a bipolar switching shape and no unipolar switching. In addition, after multiple cycles of operation, a significant change in morphology and composition was observed without any structural phase transition, indicating that atoms migrate toward the cathode or anode, depending on their electronegativities. This change caused by a field effect indicates that the structural phase transition does not occur in the case of GeTe and GST nanowires with a significantly lowered thermal conductivity and stable crystalline structure. Finally, the formation of voids and hillocks as the result of the electromigration critically degrades device reliability. PMID:26369988

  3. Structuring effect of heteroepitaxial CdHgTe/CdZnTe systems under irradiation with silver ions

    NASA Astrophysics Data System (ADS)

    Sizov, F. F.; Savkina, R. K.; Smirnov, A. B.; Udovytska, R. S.; Kladko, V. P.; Gudymenko, A. I.; Safryuk, N. V.; Lytvyn, O. S.

    2014-11-01

    The characteristics of a damaged layer of p-CdxHg1 - xTe/CdZnTe ( x ˜ 0.223) heterostructures after implantation by 100-keV silver ions with the implantation dose Q = 3.0 × 1013 cm-2 have been obtained using X-ray diffraction, atomic force microscopy, and electron microscopy. It has been found that, as a result of the ion implantation and subsequent annealing (75°C), a uniform array of nanostructures is formed on the surface of Hg(Cd)Te/Zn(Cd)Te samples. The X-ray diffraction patterns of the structurized Hg(Cd)Te/Zn(Cd)Te sample indicate the formation of polycrystalline Hg(Cd)Te phases of cubic structure with a composition x ˜ 0.20 and also oxide Ag2O in the subsurface (<100 nm) region of the host material. The observed effects of transformation of the defect-impurity system and structuring of the surface of the heteroepitaxial film of the low-energy-gap semiconductor have been explained using a deformation model.

  4. Atomic layer epitaxy

    NASA Astrophysics Data System (ADS)

    Goodman, Colin H. L.; Pessa, Markus V.

    1986-08-01

    Atomic layer epitaxy (ALE) is not so much a new technique for the preparation of thin films as a novel modification to existing methods of vapor-phase epitaxy, whether physical [e.g., evaporation, at one limit molecular-beam epitaxy (MBE)] or chemical [e.g., chloride epitaxy or metalorganic chemical vapor deposition (MOCVD)]. It is a self-regulatory process which, in its simplest form, produces one complete molecular layer of a compound per operational cycle, with a greater thickness being obtained by repeated cycling. There is no growth rate in ALE as in other crystal growth processes. So far ALE has been applied to rather few materials, but, in principle, it could have a quite general application. It has been used to prepare single-crystal overlayers of CdTe, (Cd,Mn)Te, GaAs and AlAs, a number of polycrystalline films and highly efficient electroluminescent thin-film displays based on ZnS:Mn. It could also offer particular advantages for the preparation of ultrathin films of precisely controlled thickness in the nanometer range and thus may have a special value for growing low-dimensional structures.

  5. The low-symmetry lanthanum(III) oxotellurate(IV), La10Te12O39

    PubMed Central

    Wang, Peng Li; Mozharivskyj, Yurij

    2013-01-01

    Single crystals of deca­lanthanum(III) dodeca­oxotellurate(IV), La10Te12O39, were obtained by reacting La2O3 and TeO2 in a CsCl flux. Its crystal structure can be viewed as a three-dimensional network of corner- and edge-sharing LaO8 polyhedra with TeIV atoms filling the inter­stitial sites. The TeIV atoms with their 5s 2 electron lone pairs distort the LaO8 polyhedra through variable Te—O bonds. Among the six unique Te sites, four of them define empty channels extending parallel to the a axis. The formation of these channels is a result of the stereochemically active electron lone pairs on the TeIV atoms. The atomic arrangement of the Te—O units can be understood on the basis of the valence shell electron pair repulsion (VSEPR) model. A certain degree of disorder is observed in the crystal structure. As a result, one of the five different La sites is split into two positions with an occupancy ratio of 0.875 (2):0.125 (2). Also, one of the oxygen sites is split into two positions in a 0.559 (13):0.441 (13) ratio, and one O site is half-occupied. Such disorder was observed in all measured La10Te12O39 crystals. PMID:23794967

  6. Growth of HgTe nanowires

    NASA Astrophysics Data System (ADS)

    Selvig, E.; Hadzialic, S.; Skauli, T.; Steen, H.; Hansen, V.; Trosdahl-Iversen, L.; van Rheenen, A. D.; Lorentzen, T.; Haakenaasen, R.

    2006-09-01

    HgTe nanowires nucleated by Au particles have been grown on Si and GaAs substrates by molecular beam epitaxy. The wires are polycrystalline. They evolve from crooked to straight during growth and have rounded to rectangular cross-sections. The widths are in the range 20-500 nm, with lengths up to 4 μm. The height of the nanowires is typically less than the width. The nanowires have been characterized by scanning electron microscopy, x-ray photoelectron spectroscopy, transmission electron microscopy and atomic force microscopy. The effects of substrate material, substrate preparation and growth conditions have been investigated.

  7. Acting Atoms.

    ERIC Educational Resources Information Center

    Farin, Susan Archie

    1997-01-01

    Describes a fun game in which students act as electrons, protons, and neutrons. This activity is designed to help students develop a concrete understanding of the abstract concept of atomic structure. (DKM)

  8. Kinetic Atom.

    ERIC Educational Resources Information Center

    Wilson, David B.

    1981-01-01

    Surveys the research of scientists like Joule, Kelvin, Maxwell, Clausius, and Boltzmann as it comments on the basic conceptual issues involved in the development of a more precise kinetic theory and the idea of a kinetic atom. (Author/SK)

  9. Newton's Atom

    NASA Astrophysics Data System (ADS)

    Chaney, Andrea; Espinosa, James; Espinosa, James

    2006-10-01

    At the turn of the twentieth century, physicists and chemists were developing atomic models. Some of the phenomena that they had to explain were the periodic table, the stability of the atom, and the emission spectra. Niels Bohr is known as making the first modern picture that accounted for these. Unknown to much of the physics community is the work of Walter Ritz. His model explained more emission spectra and predates Bohr's work. We will fit several spectra using Ritz's magnetic model for the atom. The problems of stability and chemical periodicity will be shown to be challenges that this model has difficulty solving, but we will present some potentially useful adaptations to the Ritzian atom that can account for them.

  10. Synthesis and physical properties of the new layered ternary tellurides MIrTe 4 ( M = Nb, Ta), and the structure of NbIrTe 4

    NASA Astrophysics Data System (ADS)

    Mar, Arthur; Ibers, James A.

    1992-04-01

    Two new ternary transition-metal chalcogenides, niobium iridium tetratelluride (NbIrTe 4) and tantalum iridium tetratelluride (TaIrTe 4), have been prepared by reaction of the elemental powders at 1000°C. The structure of NbIrTe 4 has been determined by single-crystal X-ray diffraction methods. The compound crystallizes in space group C72 v- Pmn2 1 of the orthorhombic system with four formula units in a cell of dimensions a = 3.768(3), b = 12.486(10), c = 13.077(9) Å at 294 K. NbIrTe 4 is a layered compound with a structure closely related to those of WTe 2 and β-MoTe 2, variants of the CdI 2 structure type. The layers comprise buckled sheets of Te atoms, with the Nb and Ir atoms residing in distorted octahedral sites. Metal-metal bonding appears to be responsible for a close association of the Nb and Ir atoms. From Weissenberg photography, the compound TaIrTe 4 is found to be isostructural to NbIrTe 4, with cell dimensions a = 3.77(3), b = 12.37(6), c = 13.17(3) Å. Electrical resistivity measurements along the a axis of both compounds show that they are metallic: ϱ 298 = 8.1 × 10 -5and 1.2 × 10 -4 Ω cm for NbIrTe 4 and TaIrTe 4, respectively. Magnetic susceptibility measurements indicate essentially temperature-independent Pauli paramagnetism for both compounds: χm = 1.9 × 10 -3 and 8.9 × 10 -4 emu mol -1 for NbIrTe 4 and TaIrTe 4, respectively. The compounds NbIrTe 4 and TaIrTe 4 appear to belong to a larger class of compounds MM'Te 4 with M = Nb, Ta and M' = Ru, Os, Rh, Ir.

  11. Effect of intermixing at CdS/CdTe interface on defect properties

    NASA Astrophysics Data System (ADS)

    Park, Ji-Sang; Yang, Ji-Hui; Barnes, Teresa; Wei, Su-Huai

    2016-07-01

    We investigated the stability and electronic properties of defects in CdTe1-xSx that can be formed at the CdS/CdTe interface. As the anions mix at the interface, the defect properties are significantly affected, especially those defects centered at cation sites like Cd vacancy, VCd, and Te on Cd antisite, TeCd, because the environment surrounding the defect sites can have different configurations. We show that at a given composition, the transition energy levels of VCd and TeCd become close to the valence band maximum when the defect has more S atoms in their local environment, thus improving the device performance. Such beneficial role is also found at the grain boundaries when the Te atom is replaced by S in the Te-Te wrong bonds, reducing the energy of the grain boundary level. On the other hand, the transition levels with respect to the valence band edge of CdTe1-xSx increases with the S concentration as the valence band edge decreases with the S concentration, resulting in the reduced p-type doping efficiency.

  12. Cold Atoms

    NASA Astrophysics Data System (ADS)

    Bellac, Michel Le

    2014-11-01

    This chapter and the following one address collective effects of quantum particles, that is, the effects which are observed when we put together a large number of identical particles, for example, electrons, helium-4 or rubidium-85 atoms. We shall see that quantum particles can be classified into two categories, bosons and fermions, whose collective behavior is radically different. Bosons have a tendency to pile up in the same quantum state, while fermions have a tendency to avoid each other. We say that bosons and fermions obey two different quantum statistics, the Bose-Einstein and the Fermi-Dirac statistics, respectively. Temperature is a collective effect, and in Section 5.1 we shall explain the concept of absolute temperature and its relation to the average kinetic energy of molecules. We shall describe in Section 5.2 how we can cool atoms down thanks to the Doppler effect, and explain how cold atoms can be used to improve the accuracy of atomic clocks by a factor of about 100. The effects of quantum statistics are prominent at low temperatures, and atom cooling will be used to obtain Bose-Einstein condensates at low enough temperatures, when the atoms are bosons.

  13. Local order origin of thermal stability enhancement in amorphous Ag doping GeTe

    SciTech Connect

    Xu, L.; Li, Y.; Yu, N. N.; Zhong, Y. P.; Miao, X. S.

    2015-01-19

    We demonstrate the impacts of Ag doping on the local atomic structure of amorphous GeTe phase-change material. The variations of phonon vibrational modes, boding nature, and atomic structure are shown by Raman, X-ray photoelectron spectroscopy, and ab initio calculation. Combining the experiments and simulations, we observe that the number of Ge atoms in octahedral site decreases and that in tetrahedral site increases. This modification in local order of GeTe originating from the low valence element will affect the crystallization behavior of amorphous GeTe, which is verified by differential scanning calorimetry and transmission electron microscope results. This work not only gives the analysis on the structural change of GeTe with Ag dopants but also provides a method to enhance the thermal stability of amorphous phase-change materials for memory and brain-inspired computing applications.

  14. Spectroscopy in CdTe/MnTe and ZnTe/MnTe single quantum wells; new binary wide gap II VI heterostructures

    NASA Astrophysics Data System (ADS)

    Pelekanos, N.; Fu, Q.; Nurmikko, A. V.; Durbin, S.; Han, J.; Sungki, O.; Menke, D.; Kobayashi, M.; Gunshor, R. L.

    1990-04-01

    With the incorporation of cubic zincblende MnTe, a range of optical studies have been carried out on single quantum wells of ZnTe/MnTe and CdTe/MnTe. By using thin MnTe barrier layers the structures appear to be nearly pseudomorphic and show evidence for good electron-hole confinement.

  15. Several efficiency influencing factors in CdTe/CdS solar cells

    SciTech Connect

    Li, K. |; Feng, Z.C. |; Wee, A.T.S.

    1998-12-31

    Several efficiency influencing factors in MOCVD-grown CdTe/CdS solar cells, including preferential crystal orientation of CdTe layers, CdTe grain size and surface roughness, interfacial mixing, and surface and interface geometrical morphology, are studied. X-ray diffraction (XRD) shows that polycrystalline CdTe/CdS solar cells with higher efficiencies tend to have more (111) planes of CdTe parallel to the macro-surface. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis reveal the relationship between the grain size/surface roughness and cell efficiency. Secondary ion mass spectroscopy (SIMS) and Auger electron spectroscopy (AES) depth profiling show that the interfacial geometrical morphology has a significant influence on the efficiency of CdTe/CdS solar cells. Finally it is shown that interfacial mixing reduces the number of interfacial states and recombination centers and the energy loss due to internal reflectance, enhancing the performance of the solar cells.

  16. Large-Area Synthesis of High-Quality Uniform Few-Layer MoTe2.

    PubMed

    Zhou, Lin; Xu, Kai; Zubair, Ahmad; Liao, Albert D; Fang, Wenjing; Ouyang, Fangping; Lee, Yi-Hsien; Ueno, Keiji; Saito, Riichiro; Palacios, Tomás; Kong, Jing; Dresselhaus, Mildred S

    2015-09-23

    The controlled synthesis of large-area, atomically thin molybdenum ditelluride (MoTe2) crystals is crucial for its various applications based on the attractive properties of this emerging material. In this work, we developed a chemical vapor deposition synthesis to produce large-area, uniform, and highly crystalline few-layer 2H and 1T' MoTe2 films. It was found that these two different phases of MoTe2 can be grown depending on the choice of Mo precursor. Because of the highly crystalline structure, the as-grown few-layer 2H MoTe2 films display electronic properties that are comparable to those of mechanically exfoliated MoTe2 flakes. Our growth method paves the way for the large-scale application of MoTe2 in high-performance nanoelectronics and optoelectronics. PMID:26305492

  17. A high-resolution neutron powder diffraction investigation of galena (PbS) between 10 K and 350 K: no evidence for anomalies in the lattice parameters or atomic displacement parameters in galena or altaite (PbTe) at temperatures corresponding to the saturation of cation disorder

    NASA Astrophysics Data System (ADS)

    Knight, K. S.

    2014-09-01

    The temperature dependences of the unit cell parameter and the atomic displacement parameters (adp) for galena (PbS) have been measured using high resolution neutron powder diffraction in the temperature interval 10-350 K. No evidence has been found for the anomalous behaviour recently reported in a total scattering study of galena, in which the temperature variation of both the unit cell and the adp for lead are reported to undergo a dramatic reduction at a temperature of ~250 K. The linear thermal expansion coefficient calculated from the powder diffraction study is found to be in excellent agreement with literature values over the entire temperature interval studied, and approximately 25% greater at room temperature than that determined by analysis of the pair distribution function (pdf) derived from the total scattering data. This discrepancy is shown to be attributable to a linear, temperature-dependent offset from the published temperatures in the total scattering study, and has arisen from the sample temperature being significantly lower than the experimental set point temperature. Applying this correction to the adps of the lead cation removes the anomalous temperature dependence and shows the pdf results are in agreement with the neutron powder diffraction results. Application of the identical temperature offsets to the results of the pdf analysis of data collected on altaite (PbTe) eliminates the anomalous behaviour in the unit cell and the adp for lead, bringing them in line with literature values. Contrary to the conclusions of the pdf analysis, adps for the lead cation in both galena and altaite can be described in terms of Debye-like behaviour and are consistent with the partial phonon density of states.

  18. A high-resolution neutron powder diffraction investigation of galena (PbS) between 10 K and 350 K: no evidence for anomalies in the lattice parameters or atomic displacement parameters in galena or altaite (PbTe) at temperatures corresponding to the saturation of cation disorder.

    PubMed

    Knight, K S

    2014-09-24

    The temperature dependences of the unit cell parameter and the atomic displacement parameters (adp) for galena (PbS) have been measured using high resolution neutron powder diffraction in the temperature interval 10-350 K. No evidence has been found for the anomalous behaviour recently reported in a total scattering study of galena, in which the temperature variation of both the unit cell and the adp for lead are reported to undergo a dramatic reduction at a temperature of ~250 K. The linear thermal expansion coefficient calculated from the powder diffraction study is found to be in excellent agreement with literature values over the entire temperature interval studied, and approximately 25% greater at room temperature than that determined by analysis of the pair distribution function (pdf) derived from the total scattering data. This discrepancy is shown to be attributable to a linear, temperature-dependent offset from the published temperatures in the total scattering study, and has arisen from the sample temperature being significantly lower than the experimental set point temperature. Applying this correction to the adps of the lead cation removes the anomalous temperature dependence and shows the pdf results are in agreement with the neutron powder diffraction results. Application of the identical temperature offsets to the results of the pdf analysis of data collected on altaite (PbTe) eliminates the anomalous behaviour in the unit cell and the adp for lead, bringing them in line with literature values. Contrary to the conclusions of the pdf analysis, adps for the lead cation in both galena and altaite can be described in terms of Debye-like behaviour and are consistent with the partial phonon density of states. PMID:25185952

  19. Atomic research

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Connatser, Robert; Cothren, Bobby; Johnson, R. B.

    1993-01-01

    Work performed by the University of Alabama in Huntsville's (UAH) Center for Applied Optics (CAO) entitled Atomic Research is documented. Atomic oxygen (AO) effects on materials have long been a critical concern in designing spacecraft to withstand exposure to the Low Earth Orbit (LEO) environment. The objective of this research effort was to provide technical expertise in the design of instrumentation and experimental techniques for analyzing materials exposed to atomic oxygen in accelerated testing at NASA/MSFC. Such testing was required to answer fundamental questions concerning Space Station Freedom (SSF) candidate materials and materials exposed to atomic oxygen aboard the Long-Duration Exposure Facility (LDEF). The primary UAH task was to provide technical design, review, and analysis to MSFC in the development of a state-of-the-art 5eV atomic oxygen beam facility required to simulate the RAM-induced low earth orbit (LEO) AO environment. This development was to be accomplished primarily at NASA/MSFC. In support of this task, contamination effects and ultraviolet (UV) simulation testing was also to be carried out using NASA/MSFC facilities. Any materials analysis of LDEF samples was to be accomplished at UAH.

  20. Actuated atomizer

    NASA Technical Reports Server (NTRS)

    Tilton, Charles (Inventor); Weiler, Jeff (Inventor); Palmer, Randall (Inventor); Appel, Philip (Inventor)

    2008-01-01

    An actuated atomizer is adapted for spray cooling or other applications wherein a well-developed, homogeneous and generally conical spray mist is required. The actuated atomizer includes an outer shell formed by an inner ring; an outer ring; an actuator insert and a cap. A nozzle framework is positioned within the actuator insert. A base of the nozzle framework defines swirl inlets, a swirl chamber and a swirl chamber. A nozzle insert defines a center inlet and feed ports. A spool is positioned within the coil housing, and carries the coil windings having a number of turns calculated to result in a magnetic field of sufficient strength to overcome the bias of the spring. A plunger moves in response to the magnetic field of the windings. A stop prevents the pintle from being withdrawn excessively. A pintle, positioned by the plunger, moves between first and second positions. In the first position, the head of the pintle blocks the discharge passage of the nozzle framework, thereby preventing the atomizer from discharging fluid. In the second position, the pintle is withdrawn from the swirl chamber, allowing the atomizer to release atomized fluid. A spring biases the pintle to block the discharge passage. The strength of the spring is overcome, however, by the magnetic field created by the windings positioned on the spool, which withdraws the plunger into the spool and further compresses the spring.

  1. High-quality CdTe films from nanoparticle precursors

    SciTech Connect

    Schulz, D.L.; Pehnt, M.; Urgiles, E.

    1996-05-01

    In this paper the authors demonstrate that nanoparticulate precursors coupled with spray deposition offers an attractive route into electronic materials with improved smoothness, density, and lower processing temperatures. Employing a metathesis approach, cadmium iodide was reacted with sodium telluride in methanol solvent, resulting in the formation of soluble NaI and insoluble CdTe nanoparticles. After appropriate chemical workup, methanol-capped CdTe colloids were isolated. CdTe thin film formation was achieved by spray depositing the nanoparticle colloids (25-75 {Angstrom} diameter) onto substrates at elevated temperatures (T = 280-440{degrees}C) with no further thermal treatment. These films were characterized by x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Cubic CdTe phase formation was observed by XRD, with a contaminant oxide phase also detected. XPS analysis showed that CdTe films produced by this one-step method contained no Na or C and substantial O. AFM gave CdTe grain sizes of {approx}0.1-0.3 {mu}m for film sprayed at 400{degrees}C. A layer-by-layer film growth mechanism proposed for the one-step spray deposition of nanoparticle precursors will be discussed.

  2. Atom Interferometry

    SciTech Connect

    Kasevich, Mark

    2008-05-08

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton's constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gyroscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be used to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  3. Atom Interferometry

    SciTech Connect

    Mark Kasevich

    2008-05-07

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton’s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  4. Atom Interferometry

    ScienceCinema

    Mark Kasevich

    2010-01-08

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton?s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  5. Influence of Se Substitution in GeTe on Phase and Thermoelectric Properties

    NASA Astrophysics Data System (ADS)

    Yang, L.; Li, J. Q.; Chen, R.; Li, Y.; Liu, F. S.; Ao, W. Q.

    2016-07-01

    Lead-free GeTe compound shows good electrical properties but also high thermal conductivity. GeTe1-x Se x alloys with x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5 have been prepared by conventional melting, quenching, and spark plasma sintering (SPS) techniques to study their phases and thermoelectric properties. Se was chosen as dopant element in GeTe to reduce the thermal conductivity. Experimental results showed that all alloys formed rhombohedral GeTe-based solid solution and minor cubic Ge phase without any phase arising from Se. The alloys retained the p-type conduction of GeTe. Substitution of Se for Te in GeTe increased its electrical resistivity, but increased its Seebeck coefficient and reduced its thermal conductivity significantly. Reduction of the carrier mobility was responsible for the increase of the electrical resistivity and Seebeck coefficient. Enhancement of the phonon scattering on Se solute atoms and minor phase Ge was responsible for the reduction of the thermal conductivity. As a result, the figure of merit ZT of GeTe1-x Se x alloys can be enhanced with proper Se substitution. A maximum ZT value of 1.17 at 773 K was eventually achieved in the GeTe0.7Se0.3 sample, being 26% higher than that of pure GeTe.

  6. Exploring Resonance Levels and Nanostructuring in the PbTe-CdTe System and Enhancement of the Thermoelectric Figure of Merit

    SciTech Connect

    Ahn, Kyunghan; Han, Mi-Kyung; He, Jiaqing; Androulakis, John; Ballikaya, Sedat; Uher, Ctirad; Dravid, Vinayak; Kanatzidis, Mercouri G.

    2010-04-14

    We explored the effect of Cd substitution on the thermoelectric properties of PbTe in an effort to test a theoretical hypothesis that Cd atoms on Pb sites of the rock salt lattice can increase the Seebeck coefficient via the formation of a resonance level in the density of states near the Fermi energy. We find that the solubility of Cd is less than previously reported, and CdTe precipitation occurs to create nanostructuring, which strongly suppresses the lattice thermal conductivity. We present detailed characterization including structural and spectroscopic data, transmission electron microscopy, and thermoelectric transport properties of samples of PbTe-x% CdTe-0.055% PbI2 (x = 1, 3, 5, 7, 10), PbTe-1% CdTe-y% PbI2 (y = 0.03, 0.045, 0.055, 0.08, 0.1, 0.2), PbTe-5% CdTe-y% PbI2 (y = 0.01, 0.03, 0.055, 0.08), and PbTe-1% CdTe-z% Sb (z = 0.3, 0.5, 1, 1.5, 2, 3, 4, 5, 6). All samples follow the Pisarenko relationship, and no enhancement of the Seebeck coefficient was observed that could be attributed to a resonance level or a distortion in the density of states. A maximum ZT of 1.2 at 720 K was achieved for the PbTe-1% CdTe-0.055% PbI2 sample arising from a high power factor of 17 μW/(cm K2) and a very low lattice thermal conductivity of 0.5 W/(m K) at 720 K.

  7. As-Received CdZnTe Substrate Contamination

    NASA Astrophysics Data System (ADS)

    Benson, J. D.; Bubulac, L. O.; Jaime-Vasquez, M.; Lennon, C. M.; Smith, P. J.; Jacobs, R. N.; Markunas, J. K.; Almeida, L. A.; Stoltz, A.; Arias, J. M.; Wijewarnasuriya, P. S.; Peterson, J.; Reddy, M.; Vilela, M. F.; Johnson, S. M.; Lofgreen, D. D.; Yulius, A.; Carmody, M.; Hirsch, R.; Fiala, J.; Motakef, S.

    2015-09-01

    State-of-the-art as-received (112)B CdZnTe substrates were examined for surface impurity contamination, polishing damage, and tellurium precipitates/inclusions. A maximum surface impurity concentration of Al = 7.5 × 1014, Si = 3.7 × 1013, Cl = 3.12 × 1015, S = 1.7 × 1014, P = 7.1 × 1013, Fe = 1.0 × 1013, Br = 1.9 × 1012, and Cu = 4 × 1012 atoms cm-2 was observed on an as-received 6 × 6 cm wafer. As-received CdZnTe substrates have scratches and residual polishing grit on the (112)B surface. Polishing scratches are 0.3 nm in depth and 0.1 μm wide. The polishing grit density was observed to vary from wafer-to-wafer from ˜5 × 106 to 2 × 108 cm-2. Te precipitate/inclusion size and density was determined by near-infrared automated microscopy. A Te precipitate/inclusion diameter histogram was obtained for the near-surface (top ~140 μm) of a 6 × 6 cm substrate. The average areal Te precipitate/inclusion density was observed to be fairly uniform. However, there was a large density of Te precipitates/inclusions with a diameter significantly greater than the mean. Te precipitate/inclusion density >10 μm diameter = 2.8 × 103 cm-3. The large Te precipitates/inclusions are laterally non-uniformly distributed across the wafer.

  8. Phase stability and lattice thermal conductivity reduction in CoSb3 skutterudites, doped with chalcogen atoms

    NASA Astrophysics Data System (ADS)

    Battabyal, M.; Priyadarshini, B.; Pradipkanti, L.; Satapathy, Dillip K.; Gopalan, R.

    2016-07-01

    We report a significant reduction in the lattice thermal conductivity of the CoSb3 skuttertudites, doped with chalcogen atoms. Te/Se chalcogen atoms doped CoSb3 skutterudite samples (Te0.1Co4Sb12, Se0.1Co4Sb12, Te0.05Se0.05Co4Sb12) are processed by ball milling and spark plasma sintering. X-ray diffraction data combined with energy dispersive X-ray spectra indicate the doping of Te/Se chalcogen atoms in the skutterudite. The temperature dependent X-ray diffraction confirms the stability of the Te/Se doped CoSb3 skutterudite phase and absence of any secondary phase in the temperature range starting from 300 K to 773 K. The Raman spectroscopy reveals that different chalcogen dopant atoms cause different resonant optical vibrational modes between the dopant atom and the host CoSb3 skutterudite lattice. These optical vibrational modes do scatter heat carrying acoustic phonons in a different spectral range. It was found that among the Te/Se chalcogen atoms, Te atoms alter the host CoSb3 skutterudite lattice vibrations to a larger extent than Se atoms, and can potentially scatter more Sb related acoustic phonons. The Debye model of lattice thermal conductivity confirms that the resonant phonon scattering has important contributions to the reduction of lattice thermal conductivity in CoSb3 skutterudites doped with Te/Se chalcogen atoms. Lattice thermal conductivity ˜ 0.9 W/mK at 773 K is achieved in Te0.1Co4Sb12 skutterudites, which is the lowest value reported so far in CoSb3 skutterudites, doped with single Te chalcogen atom.

  9. Atomic ordering in cubic bismuth telluride alloy phases at high pressure

    NASA Astrophysics Data System (ADS)

    Loa, I.; Bos, J.-W. G.; Downie, R. A.; Syassen, K.

    2016-06-01

    Pressure-induced transitions from ordered intermetallic phases to substitutional alloys to semi-ordered phases were studied in a series of bismuth tellurides. By using angle-dispersive x-ray diffraction, the compounds Bi4Te5 , BiTe, and Bi2Te were observed to form alloys with the disordered body-centered cubic (bcc) crystal structure upon compression to above 14-19 GPa at room temperature. The BiTe and Bi2Te alloys and the previously discovered high-pressure alloys of Bi2Te3 and Bi4Te3 were all found to show atomic ordering after gentle annealing at very moderate temperatures of ˜100 ∘C . Upon annealing, BiTe transforms from bcc to the B2 (CsCl) crystal-structure type, and the other phases adopt semi-disordered variants thereof, featuring substitutional disorder on one of the two crystallographic sites. The transition pressures and atomic volumes of the alloy phases show systematic variations across the BimTen series including the end members Bi and Te. First-principles calculations were performed to characterize the electronic structure and chemical bonding properties of B2-type BiTe and to identify the driving forces of the ordering transition. The calculated Fermi surface of B2-type BiTe has an intricate structure and is predicted to undergo three topological changes between 20 and 60 GPa.

  10. Electronic structures of HgTe and CdTe surfaces and HgTe/CdTe interfaces

    NASA Technical Reports Server (NTRS)

    Schick, J. T.; Bose, S. M.; Chen, A.-B.

    1989-01-01

    A Green's-function method has been used to study the surface and interface electronic structures of the II-VI compounds HgTe and CdTe. Localized surface and resonance states near the cation-terminated (100) surface of CdTe and the anion-terminated surface of HgTe have been found for the ideal surfaces. The energies and strengths of these surface states are altered by surface perturbations. The bulk states near the surface are drastically modified by the creation of the surface, but the band gaps remain unchanged. Numerical evaluation of the local densities of states at the Gamma and J points shows that, at the (100) interface of HgTe/CdTe, the previously observed surface states are no longer present. However, in the interface region, bulk states of one material penetrate some distance into the other material.

  11. Atomic rivals

    SciTech Connect

    Goldschmidt, B.

    1990-01-01

    This book is a memoir of rivalries among the Allies over the bomb, by a participant and observer. Nuclear proliferation began in the uneasy wartime collaboration of the United States, England, Canada, and Free France to produce the atom bomb. Through the changes of history, a young French chemist had a role in almost every act of this international drama. This memoir is based on Goldschmidt's own recollections, interviews with other leading figures, and 3,000 pages of newly declassified documents in Allied archives. From his own start as Marie Curie's lab assistant, Goldschmidt's career was closely intertwined with Frances complicated rise to membership in the nuclear club. As a refugee from the Nazis, he became part of the wartime nuclear energy project in Canada and found himself the only French scientist to work (although briefly) on the American atom bomb project.

  12. Atomic arias

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2009-01-01

    The American composer John Adams uses opera to dramatize controversial current events. His 1987 work Nixon in China was about the landmark meeting in 1972 between US President Richard Nixon and Chairman Mao Zedong of China; The Death of Klinghoffer (1991) was a musical re-enactment of an incident in 1985 when Palestinian terrorists kidnapped and murdered a wheelchair-bound Jewish tourist on a cruise ship. Adams's latest opera, Doctor Atomic, is also tied to a controversial event: the first atomic-bomb test in Alamogordo, New Mexico, on 16 June 1945. The opera premièred in San Francisco in 2005, had a highly publicized debut at the Metropolitan Opera in New York in 2008, and will have another debut on 25 February - with essentially the same cast - at the English National Opera in London.

  13. Atomic physics

    SciTech Connect

    Livingston, A.E.; Kukla, K.; Cheng, S.

    1995-08-01

    In a collaboration with the Atomic Physics group at Argonne and the University of Toledo, the Atomic Physics group at the University of Notre Dame is measuring the fine structure transition energies in highly-charged lithium-like and helium-like ions using beam-foil spectroscopy. Precise measurements of 2s-2p transition energies in simple (few-electron) atomic systems provide stringent tests of several classes of current atomic- structure calculations. Analyses of measurements in helium-like Ar{sup 16+} have been completed, and the results submitted for publication. A current goal is to measure the 1s2s{sup 3}S{sub 1} - 1s2p{sup 3}P{sub 0} transition wavelength in helium-like Ni{sup 26+}. Measurements of the 1s2s{sup 2}S{sub 1/2} - 1s2p{sup 2}P{sub 1/2,3/2} transition wavelengths in lithium-like Kr{sup 33+} is planned. Wavelength and lifetime measurements in copper-like U{sup 63+} are also expected to be initiated. The group is also participating in measurements of forbidden transitions in helium-like ions. A measurement of the lifetime of the 1s2s{sup 3}S{sub 1} state in Kr{sup 34+} was published recently. In a collaboration including P. Mokler of GSI, Darmstadt, measurements have been made of the spectral distribution of the 2E1 decay continuum in helium-like Kr{sup 34+}. Initial results have been reported and further measurements are planned.

  14. Photoluminescence of Cu-doped CdTe and related stability issues in CdS/CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Grecu, D.; Compaan, A. D.; Young, D.; Jayamaha, U.; Rose, D. H.

    2000-09-01

    We explore Cu electronic states in CdTe using photoluminescence as the main investigative method. Our results are consistent with some Cu atoms occupying substitutional positions on the Cd sublattice and with others forming Frenkel pairs of the type Cui+-VCd- involving an interstitial Cu and a Cd vacancy. In addition, we find that Cu-doped CdTe samples exhibit a significant "aging" behavior, attributable to the instability of Cu acceptor states as verified by our Hall measurements. The aging appears to be reversible by a 150-200 °C anneal. Our results are used to explain efficiency degradation of some CdTe solar-cell devices which use Cu for the formation of a backcontact.

  15. Resonant Levels, Vacancies, and Doping in Bi2Te3, Bi2Te2Se, and Bi2Se3 Tetradymites

    NASA Astrophysics Data System (ADS)

    Wiendlocha, Bartlomiej

    2016-07-01

    The electronic structure of the tetradymites, Bi_2Te_3, Bi_2Te_2Se, and Bi_2Se_3, containing various dopants and vacancies, has been studied using first-principles calculations. We focus on the possibility of formation of resonant levels (RL), confirming the formation of RL by Sn in Bi_2Te_3 and predicting similar behavior of Sn in Bi_2Te_2Se and Bi_2Se_3. Vacancies, which are likely present on chalcogen atom sites in real samples of Bi_2Te_2Se and Bi_2Se_3, are also studied and their charged donor and resonant behavior discussed. Doping of vacancy-containing materials with regular acceptors, such as Ca or Mg, is shown to compensate the donor effect of vacancies, and n-p crossover, while increasing the dopant concentration, is observed. We verify that the RL on Sn is not disturbed by chalcogen vacancies in Bi_2Te_2Se or Bi_2Se_3, and for the Sn-doped materials with Se or Te vacancies, double doping, instead of heavy doping with Sn, is suggested as an effective way of obtaining the resonant level. This should help to avoid smearing of the RL, a possible reason for earlier unsuccessful experimental observation of the influence of the RL on the thermoelectric properties of Sn-doped Bi_2Te_2Se. Finally, we show that Al and Ga are possible new resonant impurities in tetradymites, hoping that this will stimulate further experimental studies.

  16. Resonant Levels, Vacancies, and Doping in Bi2Te3, Bi2Te2Se, and Bi2Se3 Tetradymites

    NASA Astrophysics Data System (ADS)

    Wiendlocha, Bartlomiej

    2016-04-01

    The electronic structure of the tetradymites, Bi_2 Te_3 , Bi_2 Te_2 Se, and Bi_2 Se_3 , containing various dopants and vacancies, has been studied using first-principles calculations. We focus on the possibility of formation of resonant levels (RL), confirming the formation of RL by Sn in Bi_2 Te_3 and predicting similar behavior of Sn in Bi_2 Te_2 Se and Bi_2 Se_3 . Vacancies, which are likely present on chalcogen atom sites in real samples of Bi_2 Te_2 Se and Bi_2 Se_3 , are also studied and their charged donor and resonant behavior discussed. Doping of vacancy-containing materials with regular acceptors, such as Ca or Mg, is shown to compensate the donor effect of vacancies, and n-p crossover, while increasing the dopant concentration, is observed. We verify that the RL on Sn is not disturbed by chalcogen vacancies in Bi_2 Te_2 Se or Bi_2 Se_3 , and for the Sn-doped materials with Se or Te vacancies, double doping, instead of heavy doping with Sn, is suggested as an effective way of obtaining the resonant level. This should help to avoid smearing of the RL, a possible reason for earlier unsuccessful experimental observation of the influence of the RL on the thermoelectric properties of Sn-doped Bi_2 Te_2 Se. Finally, we show that Al and Ga are possible new resonant impurities in tetradymites, hoping that this will stimulate further experimental studies.

  17. Te/C nanocomposites for Li-Te Secondary Batteries

    NASA Astrophysics Data System (ADS)

    Seo, Jeong-Uk; Seong, Gun-Kyu; Park, Cheol-Min

    2015-01-01

    New battery systems having high energy density are actively being researched in order to satisfy the rapidly developing market for longer-lasting mobile electronics and hybrid electric vehicles. Here, we report a new Li-Te secondary battery system with a redox potential of ~1.7 V (vs. Li+/Li) adapted on a Li metal anode and an advanced Te/C nanocomposite cathode. Using a simple concept of transforming TeO2 into nanocrystalline Te by mechanical reduction, we designed an advanced, mechanically reduced Te/C nanocomposite electrode material with high energy density (initial discharge/charge: 1088/740 mA h cm-3), excellent cyclability (ca. 705 mA h cm-3 over 100 cycles), and fast rate capability (ca. 550 mA h cm-3 at 5C rate). The mechanically reduced Te/C nanocomposite electrodes were found to be suitable for use as either the cathode in Li-Te secondary batteries or a high-potential anode in rechargeable Li-ion batteries. We firmly believe that the mechanically reduced Te/C nanocomposite constitutes a breakthrough for the realization and mass production of excellent energy storage systems.

  18. Te/C nanocomposites for Li-Te Secondary Batteries

    PubMed Central

    Seo, Jeong-Uk; Seong, Gun-Kyu; Park, Cheol-Min

    2015-01-01

    New battery systems having high energy density are actively being researched in order to satisfy the rapidly developing market for longer-lasting mobile electronics and hybrid electric vehicles. Here, we report a new Li-Te secondary battery system with a redox potential of ~1.7 V (vs. Li+/Li) adapted on a Li metal anode and an advanced Te/C nanocomposite cathode. Using a simple concept of transforming TeO2 into nanocrystalline Te by mechanical reduction, we designed an advanced, mechanically reduced Te/C nanocomposite electrode material with high energy density (initial discharge/charge: 1088/740 mA h cm−3), excellent cyclability (ca. 705 mA h cm−3 over 100 cycles), and fast rate capability (ca. 550 mA h cm−3 at 5C rate). The mechanically reduced Te/C nanocomposite electrodes were found to be suitable for use as either the cathode in Li-Te secondary batteries or a high-potential anode in rechargeable Li-ion batteries. We firmly believe that the mechanically reduced Te/C nanocomposite constitutes a breakthrough for the realization and mass production of excellent energy storage systems. PMID:25609035

  19. Preparation and structure of BiCrTeO{sub 6}: A new compound in Bi–Cr–Te–O system. Thermal expansion studies of Cr{sub 2}TeO{sub 6}, Bi{sub 2}TeO{sub 6} and BiCrTeO{sub 6}

    SciTech Connect

    Vats, Bal Govind; Phatak, Rohan; Krishnan, K.; Kannan, S.

    2013-09-01

    Graphical abstract: A new compound BiCrTeO{sub 6} in the Bi–Cr–Te–O system was prepared by solid state route and characterized by X-ray diffraction method. The crystal structure of BiCrTeO{sub 6} shows that there is one distinct site for bismuth (Bi) atom (pink color), one chromium rich (Cr/Te = 68/32) (blue/green color), one tellurium rich (Te/Cr = 68/32) sites (green/blue color), and one distinct site for oxygen (O) atom (red color) in the unit cell. All cations in this structure show an octahedral coordination with oxygen atoms at the corners. The thermogram (TG) of the compound in air shows that it is stable up to 1103 K and decomposes thereafter. The thermal expansion behaviour of BiCrTeO{sub 6} was studied using high temperature X-ray diffraction method from room temperature to 923 K under vacuum of 10{sup −8} atmosphere and showed positive thermal expansion with the average volume thermal expansion coefficients of 16.0 × 10{sup −6}/K. - Highlights: • A new compound BiCrTeO{sub 6} in Bi–Cr–Te–O system was prepared and characterized. • The crystal structure of BiCrTeO{sub 6} was determined by Rietveld refinement method. • The structure of BiCrTeO{sub 6} shows an octahedral coordination for all the metal ions. • The thermal expansion behavior of BiCrTeO{sub 6} from room temperature to 923 K showed a positive thermal expansion. • The average volume thermal expansion coefficient for BiCrTeO{sub 6} is 16.0 × 10{sup −6}/K. - Abstract: A new compound BiCrTeO{sub 6} in Bi–Cr–Te–O system was prepared by solid state reaction of Bi{sub 2}O{sub 3}, Cr{sub 2}O{sub 3} and H{sub 6}TeO{sub 6} in oxygen and characterized by X-ray diffraction (XRD) method. It could be indexed on a trigonal lattice, with the space group P-31c, unit cell parameters a = 5.16268(7) Å and c = 9.91861(17) Å. The crystal structure of BiCrTeO{sub 6} was determined by Rietveld refinement method using the powder XRD data. Structure shows that there is one distinct

  20. First principles studies of the stability and Shottky barriers of metal/CdTe(111) interfaces

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Miao, Masoehng; Kioussis, Nicholas; Aqariden, Fikri; Chang, Y.; Grein, Christoph

    CdZnTe and CdTe based semiconductor X-Ray and Gamma-Ray detectors have been intensively studied recently due to their promising potentials for achieving high-resolution, high signal-to-noise ratios and low leakage current, all are desirable features in applications ranging from medical diagnostics to homeland security. Using density functional calculations, we systematically studied the stability, the atomic and electronic structures of the interfaces between CdTe (111) surfaces (Cd- and Te-terminated) and the selected metals (Cu, Al Ni, Pd and Pt). We also calculated the Schottky barrier height (SBH) by aligning the electrostatic potentials in semiconductor and metal regions. Our calculations revealed significant differences between the Cd- and Te- terminated interfaces. While metals tend to deposit directly on reconstructed Te-terminated surfaces, they form a Te-metal alloy layer at the Cd-Terminated metal/CdTe interface. For both Te- and Cd- terminated interfaces, the Schottky barrier heights do not depend much on the choice of metals despite the large variation of the work functions. On the other hand, the interface structure is found to have large effect on the SBH, which is attributed to the metal induced states in the gap.

  1. EDITORIAL: Atomic layer deposition Atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Godlewski, Marek

    2012-07-01

    The growth method of atomic layer deposition (ALD) was introduced in Finland by Suntola under the name of atomic layer epitaxy (ALE). The method was originally used for deposition of thin films of sulphides (ZnS, CaS, SrS) activated with manganese or rare-earth ions. Such films were grown for applications in thin-film electroluminescence (TFEL) displays. The ALE mode of growth was also tested in the case of molecular beam epitaxy. Films grown by ALD are commonly polycrystalline or even amorphous. Thus, the name ALE has been replaced by ALD. In the 80s ALD was developed mostly in Finland and neighboring Baltic countries. Deposition of a range of different materials was demonstrated at that time, including II-VI semiconductors (e.g. CdTe, CdS) and III-V (e.g. GaAs, GaN), with possible applications in e.g. photovoltaics. The number of publications on ALD was slowly increasing, approaching about 100 each year. A real boom in interest came with the development of deposition methods of thin films of high-k dielectrics. This research was motivated by a high leakage current in field-effect transistors with SiO2-based gate dielectrics. In 2007 Intel introduced a new generation of integrated circuits (ICs) with thin films of HfO2 used as gate isolating layers. In these and subsequent ICs, films of HfO2 are deposited by the ALD method. This is due to their unique properties. The introduction of ALD to the electronics industry led to a booming interest in the ALD growth method, with the number of publications increasing rapidly to well above 1000 each year. A number of new applications were proposed, as reflected in this special issue of Semiconductor Science and Technology. The included articles cover a wide range of possible applications—in microelectronics, transparent electronics, optoelectronics, photovoltaics and spintronics. Research papers and reviews on the basics of ALD growth are also included, reflecting a growing interest in precursor chemistry and growth

  2. Thermodynamic and transport properties of Y Te3 , La Te3 , and Ce Te3

    NASA Astrophysics Data System (ADS)

    Ru, N.; Fisher, I. R.

    2006-01-01

    Measurements of heat capacity, susceptibility, and electrical resistivity are presented for single crystals of the charge density wave compounds YTe3 , LaTe3 , and CeTe3 . The materials are metallic to low temperatures, but have a small density of states due to the charge density wave gapping large portions of the Fermi surface. CeTe3 is found to be a weak Kondo lattice, with an antiferromagnetic ground state and TN=2.8K . The electrical resistivity of all three compounds is highly anisotropic, confirming the weak dispersion perpendicular to Te planes predicted by band structure calculations.

  3. Characterization of CdTe, (Cd,Zn)Te, and Cd(Te,Se) single crystals by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Rai, R. S.; Mahajan, S.; McDevitt, S.; Johnson, C. J.

    1991-10-01

    CdTe, (Cd,Zn)Te, and Cd(Te,Se) crystals grown by the Bridgman technique have been characterized by transmission electron microscopy. Results indicate that the Te precipitates are seen in all the crystals, but their density and size are lowest and largest in the case of Cd(Te,Se) crystals. In addition, dislocations, stacking faults, and microtwins are observed in as-grown CdTe, (Cd,Zn)Te, and Cd(Te,Se) crystals. Arguments have been developed to rationalize these observations and their ramifications on crystal perfection are discussed.

  4. Antimony bonding in Ge-Sb-Te phase change materials

    NASA Astrophysics Data System (ADS)

    Bobela, David C.; Taylor, P. Craig; Kuhns, Phillip; Reyes, Arneil; Edwards, Arthur

    2011-01-01

    The amorphous phase in some technologically important Ge-Sb-Te systems is still not well understood despite many models that exist to explain it. Using nuclear magnetic resonance, we demonstrate that Sb bonding in these systems follows the 8-Nrule for chemical bonding in amorphous solids. We find that the Sb atoms preferentially bond to three atoms in a pyramidal configuration analogous to the sites occurring in Sb-S or Sb-Se systems. The data we present should be used as a guide for structural modeling of the amorphous phase.

  5. Optical modeling of graphene contacted CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Aldosari, Marouf; Sohrabpoor, Hamed; Gorji, Nima E.

    2016-04-01

    For the first time, an optical model is applied on CdS/CdTe thin film solar cells with graphene front or back contact. Graphene is highly conductive and is as thin as a single atom which reduces the light reflection and absorption, and thus enhances the light transmission to CdTe layer for a wide range of wavelengths including IR. Graphene as front electrode of CdTe devices led to loss in short circuit current density of 10% ΔJsc ≤ 15% compared to the conventional electrodes of TCO and ITO at CdS thickness of dCdS = 100 nm. In addition, all the multilayer graphene electrodes with 2, 4, and 7 graphene layers led to Jsc ≤ 20 mA/cm2. Therefore, we conclude that a single monolayer graphene with hexagonal carbon network reduces optical losses and enhances the carrier collection measured as Jsc. In another structure design, we applied the optical model to graphene back contacted CdS/CdTe device. This scheme allows double side irradiation of the cell which is expected to enhance the Jsc. We obtained 1 ∼ 6 , 23, and 38 mA/cm2 for back, front and bifacial illumination of graphene contacted CdTe cell with CdS = 100 nm. The bifacial irradiated cell, to be efficient, requires an ultrathin CdTe film with dCdTe ≤ 1 μm. In this case, the junction electric field extends to the back region and collects out the generated carriers efficiently. This was modelled by absorptivity rather than transmission rate and optical losses. Since the literature suggest that ZnO can increase the graphene conductivity and enhance the Jsc, we performed our simulations for a graphene/ZnO electrode (ZnO = 100 nm) instead of a single graphene layer.

  6. Structural evolution of Ga-Ge-Te glasses by combined EXAFS and XPS analysis

    SciTech Connect

    Golovchak, R.; Calvez, L.; Bureau, B.; Jain, H.

    2013-08-07

    The structural evolution of Ga{sub x}Ge{sub y}Te{sub 100−x−y} glasses in the vicinity of GeTe{sub 4}-GaTe{sub 3} pseudo-binary tie-line is determined with high-resolution X-ray photoelectron (XPS) and extended X-ray absorption fine structure (EXAFS) spectroscopies. The analysis of XPS data is complicated by similar electronegativity values for the constituent chemical elements, but then the interpretation is facilitated by information from complementary EXAFS analysis of the structure around each element independently. The results show 4/4/2 coordination for Ga/Ge/Te atoms and absence of Ga(Ge)-Ge(Ga) bonds or extended Te clusters in significant concentrations within the whole range of studied composition. The observed structural features correlate well with the measured basic physical properties of Ga-containing germanium telluride glasses.

  7. Vapor phase epitaxy of CdTe on sapphire and GaAs

    NASA Astrophysics Data System (ADS)

    Kasuga, Masanobu; Futami, Hiroyuki; Iba, Yoshihiro

    1991-12-01

    CdTe films were deposited on three kinds of sapphire substrate and two kinds of GaAs substrate by open tube vapor transport. X-ray Laue diffraction study showed that CdTe(111) film grew on every kind of sapphire substrate used, i.e. on the (0001) basal plane, the (11 overline20)A plane and the (1 overline102)R plane, and that there exist a few degrees of tilt angel between CdTe(111) and the lattice plane of each substrate. The process of making the tilt angle may be explained by the atomistic mismatch model of the Cd and Al arrangement which is projected on the film-substrate interface. On GaAs(100), either CdTe(111) or CdTe(100) was obtained, whereas only a twin crystalline film was obtained on GaAs(111). These results are also consistent with the mismatch model of Cd and Ga atoms.

  8. Atomic Clocks

    NASA Astrophysics Data System (ADS)

    Wynands, Robert

    Time is a strange thing. On the one hand it is arguably the most inaccessible physical phenomenon of all: both in that it is impossible to manipulate or modify—for all we know—and in that even after thousands of years mankind's philosophers still have not found a fully satisfying way to understand it. On the other hand, no other quantity can be measured with greater precision. Today's atomic clocks allow us to reproduce the length of the second as the SI unit of time with an uncertainty of a few parts in 1016—orders of magnitude better than any other quantity. In a sense, one can say [1

  9. Thermodynamic Modeling of the Pt-Te and Pt-Sb-Te Systems

    NASA Astrophysics Data System (ADS)

    Guo, Cuiping; Huang, Liang; Li, Changrong; Shang, Shunli; Du, Zhenmin

    2015-08-01

    The Pt-Te and the Pt-Sb-Te systems are modeled using the calculation of phase diagram (CALPHAD) technique. In the Pt-Te system, the liquid phase is modeled as (Pt, PtTe2, Te) using the associate model, and four intermediates, PtTe2, Pt2Te3, Pt3Te4 and PtTe, are treated as stoichiometric compounds and their enthalpies of formation are obtained by means of first-principles calculations. The solution phases, fcc(Pt) and hex(Te), are described as substitutional solutions. Combined with the thermodynamic models of the liquid phase in the Pt-Sb and Sb-Te systems in the literature, the liquid phase of the Pt-Sb-Te ternary system is modeled as (Pt, Sb, Te, Sb2Te3, PtTe2) also using the associate model. The compounds, PtTe2, Pt2Te3, Pt3Te4 and PtTe in the Pt-Te system and PtSb2, PtSb, Pt3Sb2 and Pt7Sb in the Pt-Sb system are treated as line compounds Pt m (Sb,Te) n in the Pt-Sb-Te system, and the compound Pt5Sb is treated as (Pt,Sb)5(Pt,Sb,Te). A set of self-consistent thermodynamic parameters is obtained. Using these thermodynamic parameters, the experimental Pt-Te phase diagram, the experimental heat capacities of PtTe and PtTe2, the enthalpies of formation from first-principles calculations for PtTe2, Pt2Te3, Pt3Te4, and PtTe, and the ternary isothermal sections at 873 K, 923 K, 1073 K and 1273 K are well reproduced.

  10. Radioisotope Thermoelectric Generators Based on Segmented BiTe/PbTe-BiTe/TAGS/PbSnTe

    NASA Astrophysics Data System (ADS)

    McAlonan, Malachy; Patel, Kalpesh; Cummer, Keith

    2006-01-01

    This paper reports on Phase 1 of a multifaceted effort to develop a more efficient radioisotope thermoelectric generator (RTG) for future NASA missions. The conversion efficiency goal is 10% or higher at a power level of 20 watt or higher. The thermoelectric (T/E) efficiency achievable with present T/E materials is about 8% for favorable temperatures. Thermoelectric converter designs, T/E material properties, and T/E couple thermal and electrical performance were investigated in Phase 1 of this program to find paths to improve conversion efficiency. T/E properties can be improved by optimizing the composition of the materials and by improving the micro structural characteristics such as homogeneity, grain size, and phases present. T/E couple performance can be improved by reducing the electrical and thermal contact resistances of the couple and within the segmented T/E elements. Performance and reliability improvements can be achieved by reducing the thermo-mechanical stresses, improving the quality of the bonds and interfaces, minimizing the number of required bonds, and reducing the degradation rates of both the T/E materials and the bonds. This paper focuses on one portion of the activity, i.e., the design of a small converter. In the converter design effort, a prototypic 20-watt device, suitable for use with a single general-purpose heat source (GPHS), was built using an optimized converter design of segmented thermoelectric elements of heritage composition. The 20-watt prototype achieved the power predicted for the test conditions. The chosen couple design used segmented BiTe/PbTe for the n-type element and BiTe/TAGS/PbSnTe, for the p-type T/E element. Use of the BiTe segment exploits the opportunity of the small RTG to operate at lower heat rejection temperatures and results in much higher conversion efficiency, the main objective of the NASA program. Long term data on similarly segmented couples at Teledyne together with the 20-watt module test results

  11. Crystal orientation mechanism of ZnTe epilayers formed on different orientations of sapphire substrates by molecular beam epitaxy

    SciTech Connect

    Nakasu, T. Yamashita, S.; Aiba, T.; Hattori, S.; Sun, W.; Taguri, K.; Kazami, F.; Kobayashi, M.

    2014-10-28

    The electrooptic effect in ZnTe has recently attracted research attention, and various device structures using ZnTe have been explored. For application to practical terahertz wave detector devices based on ZnTe thin films, sapphire substrates are preferred because they enable the optical path alignment to be simplified. ZnTe/sapphire heterostructures were focused upon, and ZnTe epilayers were prepared on highly mismatched sapphire substrates by molecular beam epitaxy. Epitaxial relationships between the ZnTe thin films and the sapphire substrates with their various orientations were investigated using an X-ray diffraction pole figure method. (0001) c-plane, (1-102) r-plane, (1-100) m-plane, and (11-20) a-plane oriented sapphire substrates were used in this study. The epitaxial relationship between ZnTe and c-plane sapphire was found to be (111) ZnTe//(0001) sapphire with an in-plane orientation relationship of [−211] ZnTe//[1-100] sapphire. It was found that the (211)-plane ZnTe layer was grown on the m-plane of the sapphire substrates, and the (100)-plane ZnTe layer was grown on the r-plane sapphire. When the sapphire substrates were inclined from the c-plane towards the m-axis direction, the orientation of the ZnTe thin films was then tilted from the (111)-plane to the (211)-plane. The c-plane of the sapphire substrates governs the formation of the (111) ZnTe domain and the ZnTe epilayer orientation. These crystallographic features were also related to the atom arrangements of ZnTe and sapphire.

  12. Crystal orientation mechanism of ZnTe epilayers formed on different orientations of sapphire substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Nakasu, T.; Yamashita, S.; Aiba, T.; Hattori, S.; Sun, W.; Taguri, K.; Kazami, F.; Kobayashi, M.

    2014-10-01

    The electrooptic effect in ZnTe has recently attracted research attention, and various device structures using ZnTe have been explored. For application to practical terahertz wave detector devices based on ZnTe thin films, sapphire substrates are preferred because they enable the optical path alignment to be simplified. ZnTe/sapphire heterostructures were focused upon, and ZnTe epilayers were prepared on highly mismatched sapphire substrates by molecular beam epitaxy. Epitaxial relationships between the ZnTe thin films and the sapphire substrates with their various orientations were investigated using an X-ray diffraction pole figure method. (0001) c-plane, (1-102) r-plane, (1-100) m-plane, and (11-20) a-plane oriented sapphire substrates were used in this study. The epitaxial relationship between ZnTe and c-plane sapphire was found to be (111) ZnTe//(0001) sapphire with an in-plane orientation relationship of [-211] ZnTe//[1-100] sapphire. It was found that the (211)-plane ZnTe layer was grown on the m-plane of the sapphire substrates, and the (100)-plane ZnTe layer was grown on the r-plane sapphire. When the sapphire substrates were inclined from the c-plane towards the m-axis direction, the orientation of the ZnTe thin films was then tilted from the (111)-plane to the (211)-plane. The c-plane of the sapphire substrates governs the formation of the (111) ZnTe domain and the ZnTe epilayer orientation. These crystallographic features were also related to the atom arrangements of ZnTe and sapphire.

  13. Rotation sensing with a circular atomic waveguide

    NASA Astrophysics Data System (ADS)

    Zhao, Lian-jie; Yan, Xiao-jun; Zhang, Guo-wan; Zhang, An-ning

    2016-01-01

    The hollow metallic optical fibers not only retain the advantage of flexibility but possess a greater intensity gradient for atomic waveguide. Therefore, based on the vector model of Maxwell's equations, we exactly calculated the intensity distribution of the TE01 mode in a typical metallic fiber, and analyzed the optical potential for 85Rb atom. Most of all, based on a circular atomic waveguide, we creatively proposed a novel measurement scheme for rotation sensing, explained the specific measurement principle, and built a mathematical model for this novel scheme. By measuring the number of atoms in the final states, we could get the rotation rate for this typical rotation system. This novel rotation sensor not only possessed a higher measurement precision, but realized the continuity measurement. It will be widely used in navigation, geophysics and general relativity.

  14. Ab initio investigation of the structural and electronic properties of amorphous HgTe.

    PubMed

    Zhao, Huxian; Chen, Xiaoshuang; Lu, Jianping; Shu, Haibo; Lu, Wei

    2014-01-29

    We present the structure and electronic properties of amorphous mercury telluride obtained from first-principle calculations. The initial configuration of amorphous mercury telluride is created by computation alchemy. According to different exchange–correlation functions in our calculations, we establish two 256-atom models. The topology of both models is analyzed in terms of radial and bond angle distributions. It is found that both the Te and the Hg atoms tend to be fourfold, but with a wrong bond rate of about 10%. The fraction of threefold and fivefold atoms also shows that there are a significant number of dangling and floating bonds in our models. The electronic properties are also obtained. It is indicated that there is a bandgap in amorphous HgTe, in contrast to the zero bandgap for crystalline HgTe. The structures of the band tail and defect states are also discussed. PMID:24592480

  15. Ion-beam treatment to prepare surfaces of p-CdTe films

    DOEpatents

    Gessert, Timothy A.

    2001-01-01

    A method of making a low-resistance electrical contact between a p-CdTe layer and outer contact layers by ion beam processing comprising: a) placing a CdS/CdTe device into a chamber and evacuating the chamber; b) orienting the p-CdTe side of the CdS/CdTe layer so that it faces apparatus capable of generating Ar atoms and ions of preferred energy and directionality; c) introducing Ar and igniting the area of apparatus capable of generating Ar atoms and ions of preferred energy and directionality in a manner so that during ion exposure, the source-to-substrate distance is maintained such that it is less than the mean-free path or diffusion length of the Ar atoms and ions at the vacuum pressure; d) allowing exposure of the p-CdTe side of the device to said ion beam for a period less than about 5 minutes; and e) imparting movement to the substrate to control the real uniformity of the ion-beam exposure on the p-CdTe side of the device.

  16. Diffusion of Cd and Te adatoms on CdTe(111) surfaces: A computational study using density functional theory

    SciTech Connect

    Naderi, Ebadollah; Nanavati, Sachin; Majumder, Chiranjib; Ghaisas, S. V.

    2015-01-15

    CdTe is one of the most promising semiconductor for thin-film based solar cells. Here we report a computational study of Cd and Te adatom diffusion on the CdTe (111) A-type (Cd terminated) and B-type (Te terminated) surfaces and their migration paths. The atomic and electronic structure calculations are performed under the DFT formalism and climbing Nudge Elastic Band (cNEB) method has been applied to evaluate the potential barrier of the Te and Cd diffusion. In general the minimum energy site on the surface is labeled as A{sub a} site. In case of Te and Cd on B-type surface, the sub-surface site (a site just below the top surface) is very close in energy to the A site. This is responsible for the subsurface accumulation of adatoms and therefore, expected to influence the defect formation during growth. The diffusion process of adatoms is considered from A{sub a} (occupied) to A{sub a} (empty) site at the nearest distance. We have explored three possible migration paths for the adatom diffusion. The adatom surface interaction is highly dependent on the type of the surface. Typically, Te interaction with both type (5.2 eV for A-type and 3.8 eV for B-type) is stronger than Cd interactions(2.4 eV for B-type and 0.39 eV for A-type). Cd interaction with the A-type surface is very weak. The distinct behavior of the A-type and B-type surfaces perceived in our study explain the need of maintaining the A-type surface during growth for smooth and stoichiometric growth.

  17. Diffusion of Cd and Te adatoms on CdTe(111) surfaces: A computational study using density functional theory

    NASA Astrophysics Data System (ADS)

    Naderi, Ebadollah; Nanavati, Sachin; Majumder, Chiranjib; Ghaisas, S. V.

    2015-01-01

    CdTe is one of the most promising semiconductor for thin-film based solar cells. Here we report a computational study of Cd and Te adatom diffusion on the CdTe (111) A-type (Cd terminated) and B-type (Te terminated) surfaces and their migration paths. The atomic and electronic structure calculations are performed under the DFT formalism and climbing Nudge Elastic Band (cNEB) method has been applied to evaluate the potential barrier of the Te and Cd diffusion. In general the minimum energy site on the surface is labeled as Aa site. In case of Te and Cd on B-type surface, the sub-surface site (a site just below the top surface) is very close in energy to the A site. This is responsible for the subsurface accumulation of adatoms and therefore, expected to influence the defect formation during growth. The diffusion process of adatoms is considered from Aa (occupied) to Aa (empty) site at the nearest distance. We have explored three possible migration paths for the adatom diffusion. The adatom surface interaction is highly dependent on the type of the surface. Typically, Te interaction with both type (5.2 eV for A-type and 3.8 eV for B-type) is stronger than Cd interactions(2.4 eV for B-type and 0.39 eV for A-type). Cd interaction with the A-type surface is very weak. The distinct behavior of the A-type and B-type surfaces perceived in our study explain the need of maintaining the A-type surface during growth for smooth and stoichiometric growth.

  18. Atom Skimmers and Atom Lasers Utilizing Them

    NASA Technical Reports Server (NTRS)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  19. Viewing minerals, atom by atom

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    With state-of-the-art technology supported by scissors and bungy cords, Earth scientists are beginning to look at mineral surfaces and mineral-fluid interactions on an atomic scale.The instrument that can provide such a detailed view is the scanning tunneling microscope (STM), which made a great theoretical and practical splash when it was introduced in 1981 by Gerd Binnig and Heinrich Rohrer, physicists at IBM's laboratory in Zurich. They won a Nobel Prize in Physics for their work 5 years later.

  20. Atomic magnetometer

    DOEpatents

    Schwindt, Peter; Johnson, Cort N.

    2012-07-03

    An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

  1. Viscosity Relaxation in Molten HgZnTe

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Lehoczky, S. L.; Kim, Yeong Woo; Baird, James K.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Rotating cup measurements of the viscosity of the pseudo-binary melt, HgZnTe have shown that the isothermal liquid with zinc mole fraction 0.16 requires tens of hours of equilibration time before a steady viscous state can be achieved. Over this relaxation period, the viscosity at 790 C increases by a factor of two, while the viscosity at 810 C increases by 40%. Noting that the Group VI elements tend to polymerize when molten, we suggest that the viscosity of the melt is enhanced by the slow formation of Te atom chains. To explain the build-up of linear Te n-mers, we propose a scheme, which contains formation reactions with second order kinetics that increase the molecular weight, and decomposition reactions with first order kinetics that inactivate the chains. The resulting rate equations can be solved for the time dependence of each molecular weight fraction. Using these molecular weight fractions, we calculate the time dependence of the average molecular weight. Using the standard semi-empirical relation between polymer average molecular weight and viscosity, we then calculate the viscosity relaxation curve. By curve fitting, we find that the data imply that the rate constant for n-mer formation is much smaller than the rate constant for n-mer deactivation, suggesting that Te atoms only weakly polymerize in molten HgZnTe. The steady state toward which the melt relaxes occurs as the rate of formation of an n-mer becomes exactly balanced by the sum of the rate for its deactivation and the rate for its polymerization to form an (n+1)-mer.

  2. Nanoscale chemical phase separation in FeTe0.55Se0.45 as seen via scanning tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    He, Xiaobo; Li, Guorong; Zhang, Jiandi; Karki, A. B.; Jin, Rongying; Sales, B. C.; Sefat, A. S.; McGuire, M. A.; Mandrus, D.; Plummer, E. W.

    2011-06-01

    Atomically resolved structural and electronic properties of FeTe1-xSex (x = 0 and 0.45) have been studied with scanning tunneling microscopy/spectroscopy (STM/STS). In contrast to the extreme flatness of the Te-terminated FeTe surface, nanoscale chemical phase separation between Te and Se atoms is unambiguously revealed on the surface of FeTe0.55Se0.45. A statistical counting of the two kinds of atoms has the same ratio as that in the bulk. Remarkably, there is no electronic phase separation seen in the tunneling spectroscopy. This indicates that the optimally doped superconductor is chemically inhomogeneous but electronically homogeneous, in contrast to many correlated electron materials.

  3. Characterization of Highly Efficient CdTe Thin Film Solar Cells by Low-Temperature Photoluminescence

    NASA Astrophysics Data System (ADS)

    Okamoto, Tamotsu; Matsuzaki, Yuichi; Amin, Nowshad; Yamada, Akira; Konagai, Makoto

    1998-07-01

    Highly efficient CdTe thin film solar cells prepared by close-spaced sublimation (CSS) method with a glass/ITO/CdS/CdTe/Cu-doped carbon/Ag structure were characterized by low-temperature photoluminescence (PL) measurement. A broad 1.42 eV band probably due to VCd Cl defect complexes appeared as a result of CdCl2 treatment. CdS/CdTe junction PL revealed that a CdSxTe1-x mixed crystal layer was formed at the CdS/CdTe interface region during the deposition of CdTe by CSS and that CdCl2 treatment promoted the formation of the mixed crystal layer. Furthermore, in the PL spectra of the heat-treated CdTe after screen printing of the Cu-doped carbon electrode, a neutral-acceptor bound exciton (ACu0, X) line at 1.590 eV was observed, suggesting that Cu atoms were incorporated into CdTe as effective acceptors after the heat treatment.

  4. Localization and magnetism of the resonant impurity states in Ti doped PbTe

    SciTech Connect

    Wiendlocha, Bartlomiej

    2014-09-29

    The problem of localization of the resonant impurity states is discussed for an illustrative example of Titanium doped Lead Telluride. Electronic structure of PbTe:Ti is studied using first principles methods, densities of states, and Bloch spectral functions are analyzed. We show that Ti creates resonant states in the conduction band of PbTe, however, spectral functions of the system strongly suggest localization of these states and show poor hybridization with PbTe electronic structure. The contrast between results presented here and previously reported spectral functions for PbTe:Tl correlate very well with the different effect of those impurities on thermopower (S) of PbTe, which is large increase is S for PbTe:Tl and almost no effect on S for PbTe:Ti. Moreover, magnetic properties of the system are studied and formation of magnetic moments on Ti atoms is found, both for ordered (ferromagnetic) and disordered (paramagnetic-like) phases, showing that PbTe:Ti can be a magnetic semiconductor.

  5. Thermal Conductivity and Electrical Resistivity of FeTe1-xSx Sintered Samples

    NASA Astrophysics Data System (ADS)

    Kikegawa, Takako; Sato, Kazuki; Ishikawa, Keisuke

    The temperature dependence of thermal conductivity and the temperature and magnetic field dependence of electrical resistivity have been measured for FeTe1-xSx polycrystalline samples. The samples were prepared by solid state reaction with a three-step procedure. For FeTe0.8S0.2 and FeTe0.7S0.3, zero resistivity due to the superconducting transition was observed not only in oxygen post-annealed samples but also in as-grown ones. These samples include the certain amount of impurities FeTe2 and Fe3O4. The formation of these ion compounds reduces the excess Fe atoms leading to the appearance of the zero resistivity in as-grown samples. Positive magnetoresistivity and/or negative magnetoresistivity, which were extremely small, were observed for FeTe and S-doped samples. The magnetoresistivity curves show B2 dependence. It was observed that the thermal conductivity κ of FeTe exhibits a hump structure below 72 K which corresponds to the crystal structural and magnetic transitions. The enhancement of κ due to the superconducting transition could not be detected for as-grown FeTe0.8S0.2 and FeTe0.7S0.3 because of the absence of the bulk superconductivity in the as-grown samples and the extremely small ratio of the electronic contribution to κ.

  6. Atomic layer epitaxy of II-VI quantum wells and superlattices

    NASA Astrophysics Data System (ADS)

    Faschinger, W.

    1993-01-01

    Atomic Layer Epitaxy (ALE) under ultra high vacuum conditions is a variation of MBE which makes use of a self-regulating growth process, leading to digital growth in steps of monolayers or even fractions of monolayers. We report on fundamental aspects of the ALE growth of tellurides and selenides, and give three examples on the physics of ALE-grown structures: (a) Phonon confinement in CdTe/ZnTe superlattices (b) "Spin Sheet" superlattices of cubic MnTe with CdTe and (c) Luminescence tuning in ultra-thin CdSe quantum wells embedded in ZnSe.

  7. Synthesis, crystal and electronic structure, and physical properties of the new lanthanum copper telluride La{sub 3}Cu{sub 5}Te{sub 7}

    SciTech Connect

    Zelinska, Mariya; Assoud, Abdeljalil; Kleinke, Holger

    2011-03-15

    The new lanthanum copper telluride La{sub 3}Cu{sub 5-x}Te{sub 7} has been obtained by annealing the elements at 1073 K. Single-crystal X-ray diffraction studies revealed that the title compound crystallizes in a new structure type, space group Pnma (no. 62) with lattice dimensions of a=8.2326(3) A, b=25.9466(9) A, c=7.3402(3) A, V=1567.9(1) A{sup 3}, Z=4 for La{sub 3}Cu{sub 4.86(4)}Te{sub 7}. The structure of La{sub 3}Cu{sub 5-x}Te{sub 7} is remarkably complex. The Cu and Te atoms build up a three-dimensional covalent network. The coordination polyhedra include trigonal LaTe{sub 6} prisms, capped trigonal LaTe{sub 7} prisms, CuTe{sub 4} tetrahedra, and CuTe{sub 3} pyramids. All Cu sites exhibit deficiencies of various extents. Electrical property measurements on a sintered pellet of La{sub 3}Cu{sub 4.86}Te{sub 7} indicate that it is a p-type semiconductor in accordance with the electronic structure calculations. -- Graphical abstract: Oligomeric unit comprising interconnected CuTe{sub 3} pyramids and CuTe{sub 4} tetrahedra. Display Omitted Research highlights: {yields} La{sub 3}Cu{sub 5-x}Te{sub 7} adopts a new structure type. {yields} All Cu sites exhibit deficiencies of various extents. {yields} The coordination polyhedra include trigonal LaTe{sub 6} prisms, capped trigonal LaTe{sub 7} prisms, CuTe{sub 4} tetrahedra and CuTe{sub 3} pyramids. {yields} La{sub 3}Cu{sub 5-x}Te{sub 7} is a p-type semiconductor.

  8. IR spectroscopy of lattice vibrations and comparative analysis of the ZnTe/CdTe quantum-dot superlattices on the GaAs substrate and with the ZnTe and CdTe buffer layers

    SciTech Connect

    Kozyrev, S. P.

    2009-07-15

    A comparative analysis of multiperiod ZnTe/CdTe superlattices with the CdTe quantum dots grown by molecular beam epitaxy on the GaAs substrate with the ZnTe and CdTe buffer layers is carried out. The elastic-stress-induced shifts of eigenfrequencies of the modes of the CdTe- and ZnTe-like vibrations of materials forming similar superlattices but grown on different buffer ZnTe and CdTe layers are compared. The conditions of formation of quantum dots in the ZnTe/CdTe superlattices on the ZnTe and CdTe buffer layers differ radically.

  9. Viscosity Relaxation in Molten HgZnTe

    NASA Technical Reports Server (NTRS)

    Baird, James K.

    2002-01-01

    Because of its narrow electronic band-gap, HgZnTe solid solutions have been proposed as effective detectors for infrared radiation. To produce the best single crystals of these materials for this application, knowledge of the phase diagram that governs the freezing of the liquid is essential. Besides the phase diagram, however, some information concerning the thermophysical properties of the melt, such as viscosity, density, specific heat, and enthalpy of mixing, can also be useful. Of these thermophysical properties, the viscosity is perhaps of the most interest scientifically. Measurements using the oscillating cup method have shown that the isothermal melt requires tens of hours of equilibration time before a steady value of the viscosity can be achieved. Over this equilibration time, which depends upon temperature, the viscosity can increase by as much as a factor of two before reaching a steady state. We suggest that this relaxation phenomenon may be due to a slight polymerization of Te atoms in the melt. To account for the time dependence of the viscosity in the HgZnTe melt, we propose that the liquid acts as a solvent that favors the formation of Te atom chains. We suggest that as the melt is cooled from a high temperature to the temperature for measurement of the viscosity, a free radical polymerization of Te atoms begins. To estimate this average molecular weight, we use a simple free radical polymerization mechanism, including a depolymerization step, to calculate the time dependence to the concentration of each Te polymer molecular weight fraction. From these molecular weight fractions, we compute the weight average molecular weight of the distribution. Using the semi-empirical relation between average molecular weight and viscosity, we obtain a formula for the time dependence of the viscosity of the melt. Upon examining this formula, we find that the viscosity achieves a steady value when a balance is achieved between the rate of formation of the chains

  10. A computational ab initio study of surface diffusion of sulfur on the CdTe (111) surface

    NASA Astrophysics Data System (ADS)

    Naderi, Ebadollah; Ghaisas, S. V.

    2016-08-01

    In order to discern the formation of epitaxial growth of CdS shell over CdTe nanocrystals, kinetics related to the initial stages of the growth of CdS on CdTe is investigated using ab-initio methods. We report diffusion of sulfur adatom on the CdTe (111) A-type (Cd-terminated) and B-type (Te-terminated) surfaces within the density functional theory (DFT). The barriers are computed by applying the climbing Nudge Elastic Band (c-NEB) method. From the results surface hopping emerges as the major mode of diffusion. In addition, there is a distinct contribution from kick-out type diffusion in which a CdTe surface atom is kicked out from its position and is replaced by the diffusing sulfur atom. Also, surface vacancy substitution contributes to the concomitant dynamics. There are sites on the B- type surface that are competitively close in terms of the binding energy to the lowest energy site of epitaxy on the surface. The kick-out process is more likely for B-type surface where a Te atom of the surface is displaced by a sulfur adatom. Further, on the B-type surface, subsurface migration of sulfur is indicated. Furthermore, the binding energies of S on CdTe reveal that on the A-type surface, epitaxial sites provide relatively higher binding energies and barriers than on B-type.

  11. Crystal structure of ∼RCu3S3 and ∼RCuTe2 (R=Gd-Lu) compounds

    NASA Astrophysics Data System (ADS)

    Gulay, L. D.; Daszkiewicz, M.; Shemet, V. Ya.

    2012-02-01

    The crystal structures of ternary compounds TbCu3S3, Dy1.06Cu2.84S3 (space group R3¯), Ho0.67Cu2S2 (space group P3¯m1), ErCu3S3 (space group P3¯1c), Yb0.80Cu1.60S2, Lu0.67Cu2S2, TbCuTe2, DyCuTe2, Tm1.07Cu0.78Te2, LuCuTe2 (space group P3¯m1), Gd0.75Cu1.74Te2 (space group P3¯1m) were determined by means of X-ray single crystal diffraction. The S(Te) atoms are stacked in a close packed arrangement with the layers in the sequence AB. The R atoms are distributed over octahedral interstices whereas Cu atoms are located in tetrahedral interstices. Disorder of R and Cu atoms in studied chalcogenides is found. Crystal structure comparison showed that TbCuTe2 and DyCuTe2 crystallize as superstructure 2a×2a×2c to CaAl2Si2 structure type, whereas Gd0.75Cu1.74Te2, ErCu3S3 and TbCu3S3 (Dy1.06Cu2.84S3) have superstructure √3a×√3a×nc with n=1, 2, 3.

  12. Nanoscale Stabilization of New Phases in the PbTe-Sb2Te3 System: PbmSb2nTem+3n Nanocrystals

    SciTech Connect

    Soriano, Ronald B; Arachchige, Indika U; Malliakas, Christos D; Wu, Jinsong; Kanatzidis, Mercouri G

    2012-12-28

    A series of novel rock-salt-type PbmSb2nTem+3n nanocrystals (m = 2, 3, 4, 6, 8, and 10; n = 1 and 2) were successfully prepared using a colloidal synthesis route. These materials are stable only on the nanoscale and have no bulk analogues. Elemental compositions were determined using scanning transmission electron microscopy/energy-dispersive X-ray spectroscopy (STEM/EDS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The nanocrystals exhibit well-defined band energies in the mid-IR region that are nearly independent of their atomic compositions. PbmSb2nTem+3n nanocrystals behave as metastable homogeneous solid solutions at room temperature and tend to phase separate into the respective binary PbTe + Sb2Te3 at 300 °C. Furthermore, pair distribution function (PDF) analysis suggests that the local structure of these PbmSb2nTem+3n nanocrystals is distorted with respect to the rock-salt structure.

  13. Room Temperature Ferroelectricity in Ultrathin SnTe Films

    NASA Astrophysics Data System (ADS)

    Chang, Kai; Liu, Junwei; Lin, Haicheng; Zhao, Kun; Zhong, Yong; Ji, Shuai-Hua; He, Ke; Wang, Lili; Ma, Xucun; Fu, Liang; Chen, Xi; Xue, Qi-Kun

    2015-03-01

    The ultrathin SnTe films with several unit cell thickness grown on graphitized SiC(0001) surface have been studied by the scanning tunneling microscopy and spectroscopy (STM/S). The domain structures, local lattice distortion and the electronic band bending at film edges induced by the in-plane spontaneous polarization along < 110 > have been revealed at atomic scale. The experiments at variant temperature show that the Curie temperature Tc of the one unit cell thick (two atomic layers) SnTe film is as high as 280K, much higher than that of the bulk counterpart (~100K) and the 2-4 unit cell thick films even indicate robust ferroelectricity at room temperature. This Tc enhancement is attributed to the stress-free interface, larger electronic band gap and greatly reduced Sn vacancy concentration in the ultrathin films. The lateral domain size varies from several tens to several hundreds of nanometers, and the spontaneous polarization direction could be modified by STM tip. Those properties of ultrathin SnTe films show the potential application on ferroelectric devices. The work was financially supported by Ministry of Science and Technology of China, National Science Foundation and Ministry of Education of China.

  14. Raman scattering of few-layers MoTe2

    NASA Astrophysics Data System (ADS)

    Grzeszczyk, M.; Gołasa, K.; Zinkiewicz, M.; Nogajewski, K.; Molas, M. R.; Potemski, M.; Wysmołek, A.; Babiński, A.

    2016-06-01

    We report on room-temperature Raman scattering measurements in few-layer crystals of exfoliated molybdenum ditelluride (MoTe2) performed with the use of 632.8 nm (1.96 eV) laser light excitation. In agreement with a recent study reported by Froehlicher et al (2015 Nano Lett. 15 6481) we observe a complex structure of the out-of-plane vibrational modes ({{{A}}}1{{g}}{/{{A}}}1\\prime ), which can be explained in terms of interlayer interactions between single atomic planes of MoTe2. In the case of low-energy shear and breathing modes of rigid interlayer vibrations, it is shown that their energy evolution with the number of layers can be well reproduced within a linear chain model with only the nearest neighbor interaction taken into account. Based on this model the corresponding in-plane and out-of-plane force constants are determined. We also show that the Raman scattering in MoTe2 measured using 514.5 nm (2.41 eV) laser light excitation results in much simpler spectra. We argue that the rich structure of the out-of-plane vibrational modes observed in Raman scattering spectra excited with the use of 632.8 nm laser light results from its resonance with the electronic transition at the M point of the MoTe2 first Brillouin zone.

  15. Hohlraum Te Inferred from Au L-Shell Emission

    NASA Astrophysics Data System (ADS)

    Regan, S. P.; Epstein, R.; Meyerhofer, D. D.; Sangster, T. C.; May, M. J.; Schneider, M. B.; Barrios, M. A.; Moody, J. D.; Baker, K. L.; Berzak Hopkins, L.; Brown, G. V.; Callahan, D.; Doeppner, T.; Fournier, K. B.; Hinkel, D. E.; Jones, O. S.; Kauffman, R.; Khan, S.; Kilkenny, J. D.; Landen, O. L.; Liedahl, D. A.; Nagel, S. R.; Ross, J. S.; Smalyuk, V. A.

    2014-10-01

    Laser-ablation plasmas created at the inner wall of the hohlraum (Au bubble) and at the laser entrance hole (LEH) radiate L-shell emission from Ne-like to Co-like charge states of Au. A 1-D spatially resolved and time-integrated spectrum in the 6- to 16-keV range with E/d E = 100 to 300 is recorded along the axis of the hohlraum. The Au L-shell spectral line shapes of the 2p3 / 2 - 3 s , 2p3 / 2 - 3d5 / 2 , and 2p1 / 2 - 3d3 / 2 transitions are analyzed using an atomic physics code to infer the Te of the radiating plasma. Preliminary results indicate the Au LEH plasma of a near-vacuum hohlraum has an inferred Te of 5 to 6 keV, while a gas-filled hohlraum has a significantly lower Te. A comparison of the Au L-shell spectra and the Te sensitivity will be presented, along with the plan to measure the L-shell emission from the Au bubble. This material is based upon work supported by the Department Of Energy National Nuclear Security Administration under Award Number DE-NA0001944. Part of this work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  16. "Bohr's Atomic Model."

    ERIC Educational Resources Information Center

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  17. Aluminum-Centered Tetrahedron-Octahedron Transition in Advancing Al-Sb-Te Phase Change Properties

    PubMed Central

    Xia, Mengjiao; Ding, Keyuan; Rao, Feng; Li, Xianbin; Wu, Liangcai; Song, Zhitang

    2015-01-01

    Group IIIA elements, Al, Ga, or In, etc., doped Sb-Te materials have proven good phase change properties, especially the superior data retention ability over popular Ge2Sb2Te5, while their phase transition mechanisms are rarely investigated. In this paper, aiming at the phase transition of Al-Sb-Te materials, we reveal a dominant rule of local structure changes around the Al atoms based on ab initio simulations and nuclear magnetic resonance evidences. By comparing the local chemical environments around Al atoms in respective amorphous and crystalline Al-Sb-Te phases, we believe that Al-centered motifs undergo reversible tetrahedron-octahedron reconfigurations in phase transition process. Such Al-centered local structure rearrangements significantly enhance thermal stability of amorphous phase compared to that of undoped Sb-Te materials, and facilitate a low-energy amorphization due to the weak links among Al-centered and Sb-centered octahedrons. Our studies may provide a useful reference to further understand the underlying physics and optimize performances of all IIIA metal doped Sb-Te phase change materials, prompting the development of NOR/NAND Flash-like phase change memory technology. PMID:25709082

  18. Aluminum-centered tetrahedron-octahedron transition in advancing Al-Sb-Te phase change properties.

    PubMed

    Xia, Mengjiao; Ding, Keyuan; Rao, Feng; Li, Xianbin; Wu, Liangcai; Song, Zhitang

    2015-01-01

    Group IIIA elements, Al, Ga, or In, etc., doped Sb-Te materials have proven good phase change properties, especially the superior data retention ability over popular Ge2Sb2Te5, while their phase transition mechanisms are rarely investigated. In this paper, aiming at the phase transition of Al-Sb-Te materials, we reveal a dominant rule of local structure changes around the Al atoms based on ab initio simulations and nuclear magnetic resonance evidences. By comparing the local chemical environments around Al atoms in respective amorphous and crystalline Al-Sb-Te phases, we believe that Al-centered motifs undergo reversible tetrahedron-octahedron reconfigurations in phase transition process. Such Al-centered local structure rearrangements significantly enhance thermal stability of amorphous phase compared to that of undoped Sb-Te materials, and facilitate a low-energy amorphization due to the weak links among Al-centered and Sb-centered octahedrons. Our studies may provide a useful reference to further understand the underlying physics and optimize performances of all IIIA metal doped Sb-Te phase change materials, prompting the development of NOR/NAND Flash-like phase change memory technology. PMID:25709082

  19. Aluminum-Centered Tetrahedron-Octahedron Transition in Advancing Al-Sb-Te Phase Change Properties

    NASA Astrophysics Data System (ADS)

    Xia, Mengjiao; Ding, Keyuan; Rao, Feng; Li, Xianbin; Wu, Liangcai; Song, Zhitang

    2015-02-01

    Group IIIA elements, Al, Ga, or In, etc., doped Sb-Te materials have proven good phase change properties, especially the superior data retention ability over popular Ge2Sb2Te5, while their phase transition mechanisms are rarely investigated. In this paper, aiming at the phase transition of Al-Sb-Te materials, we reveal a dominant rule of local structure changes around the Al atoms based on ab initio simulations and nuclear magnetic resonance evidences. By comparing the local chemical environments around Al atoms in respective amorphous and crystalline Al-Sb-Te phases, we believe that Al-centered motifs undergo reversible tetrahedron-octahedron reconfigurations in phase transition process. Such Al-centered local structure rearrangements significantly enhance thermal stability of amorphous phase compared to that of undoped Sb-Te materials, and facilitate a low-energy amorphization due to the weak links among Al-centered and Sb-centered octahedrons. Our studies may provide a useful reference to further understand the underlying physics and optimize performances of all IIIA metal doped Sb-Te phase change materials, prompting the development of NOR/NAND Flash-like phase change memory technology.

  20. Enhanced thermoelectric performance in Cd doped CuInTe{sub 2} compounds

    SciTech Connect

    Cheng, N.; Liu, R.; Bai, S.; Shi, X. Chen, L.

    2014-04-28

    CuIn{sub 1−x}Cd{sub x}Te{sub 2} materials (x = 0, 0.02, 0.05, and 0.1) are prepared using melting-annealing method and the highly densified bulk samples are obtained through Spark Plasma Sintering. The X-ray diffraction data confirm that nearly pure chalcopyrite structures are obtained in all the samples. Due to the substitution of Cd at In sites, the carrier concentration is greatly increased, leading to much enhanced electrical conductivity and power factor. The single parabolic band model is used to describe the electrical transport properties of CuInTe{sub 2} and the low temperature Hall mobility is also modeled. By combing theoretical model and experiment data, the optimum carrier concentration in CuInTe{sub 2} is proposed to explain the greatly enhanced power factors in the Cd doped CuInTe{sub 2}. In addition, the thermal conductivity is reduced by extra phonon scattering due to the atomic mass and radius fluctuations between Cd and In atoms. The maximum zTs are observed in CuIn{sub 0.98}Cd{sub 0.02}Te{sub 2} and CuIn{sub 0.9}Cd{sub 0.1}Te{sub 2} samples, which are improved by over 100% at room temperature and around 20% at 600 K.

  1. Sb-Te alloy nanostructures produced on a graphite surface by a simple annealing process

    NASA Astrophysics Data System (ADS)

    Kuwahara, Masashi; Uratsuji, Hideaki; Abe, Maho; Sone, Hayato; Hosaka, Sumio; Sakai, Joe; Uehara, Yoichi; Endo, Rie; Tsuruoka, Tohru

    2015-08-01

    We have produced Sb-Te alloy nanostructures from a thin Sb2Te3 layer deposited on a highly oriented pyrolytic graphite substrate using a simple rf-magnetron sputtering and annealing technique. The size, shape, and chemical composition of the structures were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), and energy dispersive X-ray spectrometry (EDX), respectively. The shape of the nanostructures was found to depend on the annealing temperature; nanoparticles appear on the substrate by annealing at 200 °C, while nanoneedles are formed at higher temperatures. Chemical composition analysis has revealed that all the structures were in the composition of Sb:Te = 1:3, Te rich compared to the target composition Sb2Te3, probably due to the higher movability of Te atoms on the substrate compared with Sb. We also tried to observe the production process of nanostructures in situ using SEM. Unfortunately, this was not possible because of evaporation in vacuum, suggesting that the formation of nanostructures is highly sensitive to the ambient pressure.

  2. Theoretical and experimental investigations of the properties of Ge2Sb2Te5 and indium-doped Ge2Sb2Te5 phase change material

    NASA Astrophysics Data System (ADS)

    Singh, Gurinder; Kaura, Aman; Mukul, Monika; Singh, Janpreet; Tripathi, S. K.

    2014-06-01

    We have carried out comprehensive computational and experimental study on the face-centered cubic Ge2Sb2Te5 (GST) and indium (In)-doped GST phase change materials. Structural calculations, total density of states and crystal orbital Hamilton population have been calculated using first-principle calculation. 5 at.% doping of In weakens the Ge-Te, Sb-Te and Te-Te bond lengths. In element substitutes Sb to form In-Te-like structure in the GST system. In-Te has a weaker bond strength compared with the Sb-Te bond. However, both GST and doped alloy remain in rock salt structure. It is more favorable to replace Sb with In than with any other atomic position. X-ray diffraction (XRD) analysis has been carried out on thin film of In-doped GST phase change materials. XRD graph reveals that In-doped phase change materials have rock salt structure with the formation of In2Te3 crystallites in the material. Temperature dependence of impedance spectra has been calculated for thin films of GST and doped material. Thickness of the as-deposited films is calculated from Swanepoel method. Absorption coefficient (α) has been calculated for amorphous and crystalline thin films of the alloys. The optical gap (indirect band gap) energy of the amorphous and crystalline thin films has also been calculated by the equation α hν = β (hν - E_{{g }} )2 . Optical contrast (C) of pure and doped phase change materials have also been calculated. Sufficient optical contrast has been found for pure and doped phase change materials.

  3. Photoluminescence characteristics of ZnTe bulk crystal and ZnTe epilayer grown on GaAs substrate by MOVPE

    NASA Astrophysics Data System (ADS)

    Lü, Hai-Yan; Mu, Qi; Zhang, Lei; Lü, Yuan-Jie; Ji, Zi-Wu; Feng, Zhi-Hong; Xu, Xian-Gang; Guo, Qi-Xin

    2015-12-01

    Excitation power and temperature-dependent photoluminescence (PL) spectra of the ZnTe epilayer grown on (100) GaAs substrate and ZnTe bulk crystal are investigated. The measurement results show that both the structures are of good structural quality due to their sharp bound excitonic emissions and absence of the deep level structural defect-related emissions. Furthermore, in contrast to the ZnTe bulk crystal, although excitonic emissions for the ZnTe epilayer are somewhat weak, perhaps due to As atoms diffusing from the GaAs substrate into the ZnTe epilayer and/or because of the strain-induced degradation of the crystalline quality of the ZnTe epilayer, neither the donor-acceptor pair (DAP) nor conduction band-acceptor (e-A) emissions are observed in the ZnTe epilayer. This indicates that by further optimizing the growth process it is possible to obtain a high-crystalline quality ZnTe heteroepitaxial layer that is comparable to the ZnTe bulk crystal. Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120131110006), the Key Science and Technology Program of Shandong Province, China (Grant No. 2013GGX10221), the Key Laboratory of Functional Crystal Materials and Device (Shandong University, Ministry of Education), China (Grant No. JG1401), the National Natural Science Foundation of China (Grant No. 61306113), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91433112), and the Partnership Project for Fundamental Technology Researches of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

  4. Structural and optical properties of Ge60Te40: experimental and theoretical verification

    NASA Astrophysics Data System (ADS)

    Yi, Xinyu; Wang, Zhanyu; Dong, Fei; Cheng, Shuai; Wang, Jun; Liu, Chaochao; Li, Jing; Wang, Songyou; Yang, Tieying; Su, Wan-Sheng; Chen, Liangyao

    2016-04-01

    The temperature-dependent structural and optical properties of Ge60Te40 during transformation from amorphous to crystalline phases are studied by spectroscopic ellipsometry, grazing incidence x-ray diffraction (GIXRD), x-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM) as well as ab initio molecular dynamics (MD) simulations. Our findings, derived from GIXRD results and dielectric functions, indicate that the crystallization process of Ge60Te40 occurs at ~260 °C and the crystalline phase adopts the rhombohedral GeTe phase along with the cubic Ge phase. Our calculations further indicate that the Ge atoms also prefer to clump together in amorphous Ge60Te40. Such a segregation of Ge leads to a high-temperature phase-change in Ge60Te40 samples. According to the XPS results, the local atomic environment between amorphous and crystalline states gets a little bit of change. And the result of the atomic cluster alignment suggests that both the amorphous and crystalline phases have the rhombohedral local structure.

  5. Optical phonons in PbTe/CdTe multilayer heterostructures

    SciTech Connect

    Novikova, N. N.; Yakovlev, V. A.; Kucherenko, I. V.; Karczewski, G.; Aleshchenko, Yu. A.; Muratov, A. V.; Zavaritskaya, T. N.; Melnik, N. N.

    2015-05-15

    The infrared reflection spectra of PbTe/CdTe multilayer nanostructures grown by molecular-beam epitaxy are measured in the frequency range of 20–5000 cm{sup −1} at room temperature. The thicknesses and high-frequency dielectric constants of the PbTe and CdTe layers and the frequencies of the transverse optical (TO) phonons in these structures are determined from dispersion analysis of the spectra. It is found that the samples under study are characterized by two TO phonon frequencies, equal to 28 and 47 cm{sup −1}. The first frequency is close to that of TO phonons in bulk PbTe, and the second is assigned to the optical mode in structurally distorted interface layers. The Raman-scattering spectra upon excitation with the radiation of an Ar{sup +} laser at 514.5 nm are measured at room and liquid-nitrogen temperatures. The weak line at 106 cm{sup −1} observed in these spectra is attributed to longitudinal optical phonons in the interface layers.

  6. Glass frit nebulizer for atomic spectrometry

    USGS Publications Warehouse

    Layman, L.R.

    1982-01-01

    The nebuilizatlon of sample solutions Is a critical step In most flame or plasma atomic spectrometrlc methods. A novel nebulzatlon technique, based on a porous glass frit, has been Investigated. Basic operating parameters and characteristics have been studied to determine how thte new nebulizer may be applied to atomic spectrometrlc methods. The results of preliminary comparisons with pneumatic nebulizers Indicate several notable differences. The frit nebulizer produces a smaller droplet size distribution and has a higher sample transport efficiency. The mean droplet size te approximately 0.1 ??m, and up to 94% of the sample te converted to usable aerosol. The most significant limitations In the performance of the frit nebulizer are the stow sample equMbratton time and the requirement for wash cycles between samples. Loss of solute by surface adsorption and contamination of samples by leaching from the glass were both found to be limitations only In unusual cases. This nebulizer shows great promise where sample volume te limited or where measurements require long nebullzatlon times.

  7. The Influence of Sn Additions on the Thermoelectric and Transport Properties of FeSb2Te-based Ternary Skutterudites

    NASA Astrophysics Data System (ADS)

    Navrátil, J.; Plecháček, T.; Drašar, Č.; Kucek, V.; Laufek, F.; Černošková, E.; Beneš, L.; Vlček, M.

    2016-06-01

    The influence of Sn additions was studied in a series of samples of a nominal composition FeSb2Te1- x Sn x ( x = 0, 0.05, 0.1, 0.15, 0.2). SnTe compound was primarily identified in the matrix compound of the ternary skutterudite structure in the multiphase composite samples. It was determined that Sn atoms preferentially react with Te atoms which are present in order to form SnTe compound instead of entering the skutterudite structure. A detailed analysis of the composition of the ternary skutterudite matrix compound evoked by the striking similarities of the observed changes between the samples and another two published systems (FeSb2Te1- x Ge x and FeSb2+ x Te1- x ) revealed the crucial role of the Sb/Te ratio as the dominant factor driving the observed changes of the measured properties. The anomalous changes of the measured transport properties values were explained in terms of an effective medium theory for two-phase FeSb2Te-SnTe composites. A maximum value of thermoelectric figure-of-merit, ZT = 0.47 at 673 K, was attained for the sample of a nominal composition FeSb2Te0.85Sn0.15.

  8. Inelastic neutron scattering of the itinerant magnets Cr2Te3 and tr-Cr5Te8

    NASA Astrophysics Data System (ADS)

    Aczel, Adam; Granroth, Garrett; Ghimire, Nirmal; McGuire, Michael; Mandrus, David; Nagler, Steve

    2012-02-01

    Itinerant magnets based on transition metal chalcogenide compounds are of current interest, in part due to their relationship to the parent compounds of Fe-based superconductors. Two particularly interesting systems in this family are the chromium tellurides Cr2Te3 and trigonal (tr) Cr5Te8. These materials crystallize in layered structures with alternating partially and fully-occupied planes of Cr atoms stacked along the c-axis. Magnetization measurements along different crystallographic directions show a net ferromagnetic response and large magnetic anisotropy. In addition, the saturation moments are smaller than predicted by an ionic model; consistent with itinerant behavior. Previous neutron diffraction results for Cr2Te3 revealed an ordered moment of < 0.2 μB in the partially-occupied planes. We examined the magnetic excitations in these materials by powder neutron spectroscopy measurements using the SEQUOIA instrument at the SNS. We find similar moment sizes for the magnetic Cr atoms of both systems. However, despite their similar crystal structures, ordered moment sizes, and chemical compositions, their magnetic excitation spectra are strikingly different. We compare our data to the predictions of various models in an effort to determine the relevant exchange parameters, put constraints on their magnitudes, and understand the differences between the inelastic magnetic spectra. We find that exchange along the c-direction is critical to explain our data.

  9. Exposure of LDEF materials to atomic oxygen: Results of EOIM 3

    NASA Technical Reports Server (NTRS)

    Jaggers, C. H.; Meshishnek, M. J.

    1995-01-01

    The third Effects of Oxygen Atom Interaction with Materials (EOIM 3) experiment flew on STS-46 from July 31 to August 8, 1992. The EOIM-3 sample tray was exposed to the low-earth orbit space environment for 58.55 hours at an altitude of 124 nautical miles resulting in a calculated total atomic oxygen (AO) fluence of 1.99 x 10(exp 20) atoms/sq cm. Five samples previously flown on the Long Duration Exposure Facility (LDEF) Experiment M0003 were included on the Aerospace EOIM 3 experimental tray: (1) Chemglaze A276 white thermal control paint from the LDEF trailing edge (TE); (2) S13GLO white thermal control paint from the LDEF TE; (3) S13GLO from the LDEF leading edge (LE) with a visible contamination layer from the LDEF mission; (4) Z306 black thermal control paint from the LDEF TE with a contamination layer from the LDEF mission; and (5) anodized aluminum from the LDEF TE with a contamination layer from the LDEF mission. The purpose of this experiment was twofold: (l) investigate the response of trailing edge LDEF materials to atomic oxygen exposure, thereby simulating LDEF leading edge phenomena; (2) investigate the response of contaminated LDEF samples to atomic oxygen in attempts to understand LDEF contamination-atomic oxygen interactions. This paper describes the response of these materials to atomic oxygen exposure, and compares the results of the EOIM 3 experiment to the LDEF mission and to ground-based atomic oxygen exposure studies.

  10. Allyl- iso-propyltelluride, a new MOVPE precursor for CdTe, HgTe and (Hg,Cd)Te

    NASA Astrophysics Data System (ADS)

    Hails, Janet E.; Cole-Hamilton, David J.; Stevenson, John; Bell, William

    2000-06-01

    The use of allyl- iso-propyltelluride as the tellurium precursor for the growth of CdTe, HgTe and (Hg,Cd)Te by metal organic vapour-phase epitaxy has been investigated. It has proved to be an efficient source of tellurium with growth rates for HgTe and (Hg,Cd)Te of up to 10 μm h -1 at 300°C. The best CdTe was grown at 4.5 μm h -1 under Me 2Cd-rich conditions at 300°C in the presence of Hg vapour.

  11. Nondestructive Characterization of Residual Threading Dislocation Density in HgCdTe Layers Grown on CdZnTe by Liquid-Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Fourreau, Y.; Pantzas, K.; Patriarche, G.; Destefanis, V.

    2016-05-01

    The performance of mercury cadmium telluride (MCT)-based infrared (IR) focal-plane arrays is closely related to the crystalline perfection of the HgCdTe thin film. In this work, Te-rich, (111)B-oriented HgCdTe epilayers grown by liquid-phase epitaxy on CdZnTe substrates have been studied. Surface atomic steps are shown on as-grown MCT materials using atomic force microscopy (AFM) and white-light interferometry (WLI), suggesting step-flow growth. Locally, quasiperfect surface spirals are also evidenced. A demonstration is given that these spirals are related to the emergence of almost pure screw threading dislocations. A nondestructive and quantitative technique to measure the threading dislocation density is proposed. The technique consists of counting the surface spirals on the as-grown MCT surface from images obtained by either AFM or WLI measurements. The benefits and drawbacks of both destructive—chemical etching of HgCdTe dislocations—and nondestructive surface imaging techniques are compared. The nature of defects is also discussed. Finally, state-of-the-art threading dislocation densities in the low 104 cm-2 range are evidenced by both etch pit density (EPD) and surface imaging measurements.

  12. Nondestructive Characterization of Residual Threading Dislocation Density in HgCdTe Layers Grown on CdZnTe by Liquid-Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Fourreau, Y.; Pantzas, K.; Patriarche, G.; Destefanis, V.

    2016-09-01

    The performance of mercury cadmium telluride (MCT)-based infrared (IR) focal-plane arrays is closely related to the crystalline perfection of the HgCdTe thin film. In this work, Te-rich, (111)B-oriented HgCdTe epilayers grown by liquid-phase epitaxy on CdZnTe substrates have been studied. Surface atomic steps are shown on as-grown MCT materials using atomic force microscopy (AFM) and white-light interferometry (WLI), suggesting step-flow growth. Locally, quasiperfect surface spirals are also evidenced. A demonstration is given that these spirals are related to the emergence of almost pure screw threading dislocations. A nondestructive and quantitative technique to measure the threading dislocation density is proposed. The technique consists of counting the surface spirals on the as-grown MCT surface from images obtained by either AFM or WLI measurements. The benefits and drawbacks of both destructive—chemical etching of HgCdTe dislocations—and nondestructive surface imaging techniques are compared. The nature of defects is also discussed. Finally, state-of-the-art threading dislocation densities in the low 104 cm-2 range are evidenced by both etch pit density (EPD) and surface imaging measurements.

  13. Coherent phonon study of (GeTe){sub l}(Sb{sub 2}Te{sub 3}){sub m} interfacial phase change memory materials

    SciTech Connect

    Makino, Kotaro Saito, Yuta; Fons, Paul; Kolobov, Alexander V.; Nakano, Takashi; Tominaga, Junji; Hase, Muneaki

    2014-10-13

    The time-resolved reflectivity measurements were carried out on the interfacial phase change memory (iPCM) materials ([(GeTe){sub 2}(Sb{sub 2}Te{sub 3}){sub 4}]{sub 8} and [(GeTe){sub 2}(Sb{sub 2}Te{sub 3}){sub 1}]{sub 20}) as well as conventional Ge{sub 2}Sb{sub 2}Te{sub 5} alloy at room temperature and above the RESET-SET phase transition temperature. In the high-temperature phase, coherent phonons were clearly observed in the iPCM samples while drastic attenuation of coherent phonons was induced in the alloy. This difference strongly suggests the atomic rearrangement during the phase transition in iPCMs is much smaller than that in the alloy. These results are consistent with the unique phase transition model in which a quasi-one-dimensional displacement of Ge atoms occurs for iPCMs and a conventional amorphous-crystalline phase transition takes place for the alloy.

  14. Ba{sub 2}TeO: A new layered oxytelluride

    SciTech Connect

    Besara, T.; Ramirez, D.; Sun, J.; Whalen, J.B.; Tokumoto, T.D.; McGill, S.A.; Singh, D.J.; Siegrist, T.

    2015-02-15

    Single crystals of the new semiconducting oxytelluride phase, Ba{sub 2}TeO, were synthesized from barium oxide powder and elemental tellurium in a molten barium metal flux. Ba{sub 2}TeO crystallizes in tetragonal symmetry with space group P4/nmm (#129), a=5.0337(1) Å, c=9.9437(4) Å, Z=2. The crystals were characterized by single crystal x-ray diffraction, heat capacity and optical measurements. The optical measurements along with electronic band structure calculations indicate semiconductor behavior with a band gap of 2.93 eV. Resistivity measurements show that Ba{sub 2}TeO is highly insulating. - Graphical abstract: Starting from a simple stacking of rocksalt layers, the final structure of Ba{sub 2}TeO can be obtained by accommodation of structural strain via atom displacements. Density of states calculations and optical absorbance measurements show that Ba{sub 2}TeO has a band gap of 2.93 eV, indicative of semiconductor behavior. - Highlights: • Single crystal synthesis of a new layered oxytelluride, Ba{sub 2}TeO. • The structure features inverse PbO-type BaO layers and NaCl-type BaTe layers. • Optical absorbance show Ba{sub 2}TeO to be a semiconductor with a 2.93 eV gap. • Density of states indicate a small hybridization between Te 5p and Ba 5d states. • The BaTe (BaO) layers dominate the heat capacity at low (high) temperatures.

  15. Atomic Energy Basics, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    This booklet is part of the "Understanding the Atom Series," though it is a later edition and not included in the original set of 51 booklets. A basic survey of the principles of nuclear energy and most important applications are provided. These major topics are examined: matter has molecules and atoms, the atom has electrons, the nucleus,…

  16. Identification of vacancy-type defects in ZnTe using positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Hamid, A. S.; Shaban, H.; Mansour, B. A.; Uedono, A.

    2005-08-01

    The species of defects in Mg0.5Zn0.5Te, Li-doped and P-doped ZnTe samples were investigated by using positron-based experiments. The positron lifetime experiments along with the atomic superposition (AT-SUP) method were used to predict the positron trapping centers in the samples. The results of lifetime of positron were combined with the 2D angular correlation of annihilation radiation (ACAR) experiments to get information on the electronic structure of these defects. The momentum density distributions permitted the vacancy-type defect to be distinguished in each sample. In addition, the results of the 2D-ACAR experiments disclosed a relaxation of the atoms around the vacancy in the P-doped ZnTe sample.

  17. Crystal growth of Bi2Te3 and noble cleaved (0001) surface properties

    NASA Astrophysics Data System (ADS)

    Atuchin, V. V.; Golyashov, V. A.; Kokh, K. A.; Korolkov, I. V.; Kozhukhov, A. S.; Kruchinin, V. N.; Loshkarev, I. D.; Pokrovsky, L. D.; Prosvirin, I. P.; Romanyuk, K. N.; Tereshchenko, O. E.

    2016-04-01

    A high quality Bi2Te3 crystal has been grown by Bridgman method with the use of rotating heat field. The phase purity and bulk structural quality of the crystal have been verified by XRD analysis and rocking curve observation. The atomically smooth Bi2Te3(0001) surface with an excellent crystallographic quality is formed by cleavage in the air. The chemical and microstructural properties of the surface have been evaluated with RHEED, AFM, STM, SE and XPS. The Bi2Te3(0001) cleaved surface is formed by atomically smooth terraces with the height of the elemental step of ~1.04±0.1 nm, as estimated by AFM. There is no surface oxidation process detected over a month keeping in the air at normal conditions, as shown by comparative core level photoelectron spectroscopy.

  18. Role of chalcogen vapor annealing in inducing bulk superconductivity in Fe1+yTe1-xSex [How does annealing in chalcogen vapor induce superconductivity in Fe1+yTe-xSex?

    DOE PAGESBeta

    Lin, Wenzhi; Ganesh, P.; Gianfrancesco, Anthony; Wang, Jun; Berlijn, Tom; Maier, Thomas A.; Kalinin, Sergei V.; Sales, Brian C.; Pan, Minghu

    2015-02-01

    Recent investigations have shown that Fe1+yTe1-xSex can be made superconducting by annealing it in Se and O vapors. The current lore is that these chalcogen vapors induce superconductivity by removing the magnetic excess Fe atoms. To investigate this phenomenon we performed a combination of magnetic susceptibility, specific heat and transport measurements together with scanning tunneling microscopy and spectroscopy and density functional theory calculations on Fe1+yTe1-xSex treated with Te vapor. We conclude that the main role of the Te vapor is to quench the magnetic moments of the excess Fe atoms by forming FeTem (m ≥ 1) complexes. We show thatmore » the remaining FeTem complexes are still damaging to the superconductivity and therefore that their removal potentially could further improve superconductive properties in these compounds.« less

  19. Interfacial Chemistry and the Performance of Bromine-etched CdZnTe Radiation Detector Devices

    SciTech Connect

    Rouse, Ambrosio A.; Szeles, Csaba; Ndap, Jean-Oliver; Soldner, Steve; Parnham, K B.; Gaspar, Dan J.; Engelhard, Mark H.; Lea, Alan S.; Shutthanandan, V; Thevuthasan, Suntharampillai; Baer, Donald R.

    2002-08-01

    The interfacial chemistry and composition of Pt electrodes sputter deposited on bromine-etched CdZnTe surfaces was studied by XPS, SIMS, AES, NRA and RBS. The interfacial composition of a functioning and a non-functioning CdZnTe detector shows significant differences. The degree of cation out-diffusion into the Pt overlayer and the in-diffusion of Pt into the CdZnTe correlate with the degree of oxidation found at the metal-semiconductor interface. Practically all the oxide present at the interface was found to be TeO{sub 2}. The results suggest that the inter-diffusion of the atoms and associated charges contribute to stoichiometric variations at the metal-semiconductor interface and influence the electrical performance of the devices.

  20. Heteroepitaxy of CdTe(1 1 1)B on Si(1 1 1) : As

    NASA Astrophysics Data System (ADS)

    Schick, H.; Bensing, F.; Hilpert, U.; Richter, U.; Hansen, L.; Wagner, J.; Wagner, V.; Geurts, J.; Waag, A.; Landwehr, G.

    2000-06-01

    In order to improve the structural quality of CdTe/Si composite substrates, we have investigated the MBE growth mechanisms of CdTe(1 1 1) onto planar and vicinal arsenic-passivated Si(1 1 1) surfaces. The films were characterized by in situ RHEED, X-ray diffraction, Raman spectroscopy, photoluminescence, secondary electron microscopy, transmission electron microscopy and atomic force microscopy. Rocking curves had peaks narrower than 100 arcsec at a layer thickness of only 1-2 μm. BeTe buffer layers did not show a dominant effect, whereas the twin content decreased drastically when misoriented substrates were used. Efficient twin suppression can be obtained by realizing an interface step alignment between substrate and epitaxial CdTe film.

  1. Elastic properties of sulphur and selenium doped ternary PbTe alloys by first principles

    SciTech Connect

    Bali, Ashoka Chetty, Raju Mallik, Ramesh Chandra

    2014-04-24

    Lead telluride (PbTe) is an established thermoelectric material which can be alloyed with sulphur and selenium to further enhance the thermoelectric properties. Here, a first principles study of ternary alloys PbS{sub x}Te{sub (1−x)} and PbSe{sub x}Te{sub (1−x)} (0≤x≤1) based on the Virtual Crystal Approximation (VCA) is presented for different ratios of the isoelectronic atoms in each series. Equilibrium lattice parameters and elastic constants have been calculated and compared with the reported data. Anisotropy parameter calculated from the stiffness constants showed a slight improvement in anisotropy of elastic properties of the alloys over undoped PbTe. Furthermore, the alloys satisfied the predicted stability criteria from the elastic constants, showing stable structures, which agreed with the previously reported experimental results.

  2. Nanoscale Superconducting Honeycomb Charge Order in IrTe2.

    PubMed

    Kim, Hyo Sung; Kim, Sooran; Kim, Kyoo; Min, Byung Il; Cho, Yong-Heum; Wang, Lihai; Cheong, Sang-Wook; Yeom, Han Woong

    2016-07-13

    Entanglement of charge orderings and other electronic orders such as superconductivity is in the core of challenging physics issues of complex materials including high temperature superconductivity. Here, we report on the observation of a unique nanometer scale honeycomb charge ordering of the cleaved IrTe2 surface, which hosts a superconducting state. IrTe2 was recently established to exhibit an intriguing cascade of stripe charge orders. The stripe phases coexist with a hexagonal phase, which is formed locally and falls into a superconducting state below 3 K. The atomic and electronic structures of the honeycomb and hexagon pattern of this phase are consistent with the charge order nature, but the superconductivity does not survive on neighboring stripe charge order domains. The present work provides an intriguing physics issue and a new direction of functionalization for two-dimensional materials. PMID:27221583

  3. Nanoscale Superconducting Honeycomb Charge Order in IrTe2

    NASA Astrophysics Data System (ADS)

    Kim, Hyo Sung; Kim, Sooran; Kim, Kyoo; Min, Byung Il; Cho, Yong-Heum; Wang, Lihai; Cheong, Sang-Wook; Yeom, Han Woong

    2016-07-01

    Entanglement of charge orderings and other electronic orders such as superconductivity is in the core of challenging physics issues of complex materials including high temperature superconductivity. Here, we report on the observation of a unique nanometer scale honeycomb charge ordering of the cleaved IrTe2 surface, which hosts a superconducting state. IrTe2 was recently established to exhibit an intriguing cascade of stripe charge orders. The stripe phases coexist with a hexagonal phase, which is formed locally and falls into a superconducting state below 3 K. The atomic and electronic structures of the honeycomb and hexagon pattern of this phase are consistent with the charge order nature but the superconductivity does not survive on neighboring stripe charge order domains. The present work provides an intriguing physics issue and a new direction of functionalization for two dimensional materials.

  4. Determination of iridium in mafic rocks by atomic absorption

    USGS Publications Warehouse

    Grimaldi, F.S.; Schnepfe, M.M.

    1970-01-01

    Iridium is determined in mineralized mafic rocks by atomic absorption after fire-assay concentration into a gold bead. Interelement interferences in the atomic-absorption determination are removed and Ir sensitivity is increased by buffering the solutions with a mixture of copper and sodium sulphates. Substantial amounts of Ag, Al, Au, Bi, Ca, Cd, Co, Cr, Fe, Ho, Hg, K, La, Mg, Mn, Mo, Ni, Pb, Te, Ti, V, Y, Zn and platinum metals can be tolerated in the atomic-absorption determination. The sensitivity and detection limits are 3.2 and 0.25 ppm of Ir, respectively. ?? 1970.

  5. Electronic properties of mixed molybdenum dichalcogenide MoTeSe: LCAO calculations and Compton spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahuja, Ushma; Kumar, Kishor; Joshi, Ritu; Bhavsar, D. N.; Heda, N. L.

    2016-07-01

    We have employed linear combination of atomic orbitals (LCAO) method to compute the Mulliken's population (MP), energy bands, density of states (DOS) and Compton profiles for hexagonal MoTeSe. The density functional theory (DFT) and hybridization of Hartree-Fock with DFT (B3LYP) have been used within the LCAO approximation. Performance of theoretical models has been tested by comparing the theoretical momentum densities with the experimental Compton profile of MoTeSe measured using 137Cs Compton spectrometer. It is seen that the B3LYP prescription gives a better agreement with the experimental data than other DFT based approximations. The energy bands and DOS depict an indirect band gap character in MoTeSe. In addition, a relative nature of bonding in MoTeSe and its isovalent MoTe2 is discussed in terms of equal-valence-electron-density (EVED) profiles. On the basis of EVED profiles it is seen that MoTeSe is more covalent than MoTe2.

  6. TixSb2Te Thin Films for Phase Change Memory Applications

    NASA Astrophysics Data System (ADS)

    Tang, Shi-Yu; Li, Run; Ou, Xin; Xu, Han-Ni; Xia, Yi-Dong; Yin, Jiang; Liu, Zhi-Guo

    2014-07-01

    Sb2Te films with different Ti contents (TixSb2Te) are derived via the target-attachment method by using the magnetron sputtering technique. The effects of the Ti content on the phase change characteristics and the microstructures are investigated by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy and atom force microcopy. Resistance-temperature measurements are carried out to reveal the enhanced crystallization temperature of TixSb2Te films, indicating a better thermal stability in such films. Both the activation energy and the temperature for 10 y data retention increase with increasing the concentration of Ti. It indicates that the crystallization of the amorphous Sb2Te film could be suppressed by the introduction of Ti. The improvement of crystallization temperature and the thermal stability of the amorphous Sb2Te film results from the introduction of Ti in Sb-Te bond that decreases the binding energy of Sb 4d and Te 4d.

  7. Metalorganic vapor phase epitaxy growth of ternary tetradymite Bi2Te3-xSex compounds

    NASA Astrophysics Data System (ADS)

    Kuznetsov, P. I.; Yakushcheva, G. G.; Luzanov, V. A.; Temiryazev, A. G.; Shchamkhalova, B. S.; Jitov, V. A.; Sizov, V. E.

    2015-01-01

    We report on a metal organic vapor epitaxy (MOVPE) of Bi2Te3-xSex films over the entire range of compositions (0 ≤ x ≤ 3) for the first time. The films were grown on Al2O3(0001) substrates at 465 °C using trimethylbismuth (Bi2Me3), diethyltellurium (Et2Te) and diisopropylselenium (iPro2Se) as metalorganic sources. To realize the 2D growth mode and to grow films with flat surfaces and high crystalline quality, a thin ZnTe buffer layer was used. As-grown films were studied using optical and AFM microscopy techniques and X-ray diffraction. It was found that under steady growth conditions the composition of Bi2Te3-xSex films strongly depends on the film thickness. But a high rate of interdiffusion of chalcogens at the growth temperature rapidly leads to a homogeneous composition of the film in the growth direction. Dependence of the intensity of X-ray reflection (0012) on the composition of Bi2Te3-xSex films x has extremes near x=1 (Bi2Te2 Se) and x=2 (Bi2Se2 Te). The AFM micrographs and profiles show large (above 2 μm) triangle-shaped atomically flat terraces with step height of a quintuple layer (0.90 nm) of the tetradymite-type compounds. The electronic properties of the grown films have been characterized via four probe magnetotransport measurements.

  8. Mesityltellurenyl cations stabilized by triphenylpnictogens [MesTe(EPh(3))](+) (E = P, As, Sb).

    PubMed

    Beckmann, Jens; Bolsinger, Jens; Duthie, Andrew; Finke, Pamela; Lork, Enno; Lüdtke, Carsten; Mallow, Ole; Mebs, Stefan

    2012-11-19

    The homoleptic 1:1 Lewis pair (LP) complex [MesTe(TeMes2)]O3SCF3 (1) featuring the cation [MesTe(TeMes2)](+) (1a) was obtained by the reaction of Mes2Te with HO3SCF3. The reaction of 1 with Ph3E (E = P, As, Sb, Bi) proceeded with substitution of Mes2Te and provided the heteroleptic 1:1 LP complexes [MesTe(EPh3)]O3SCF3 (2, E = P; 3, E = As) and [MesTe(SbPh3)][Ph2Sb(O3SCF3)2] (4) featuring the cations [MesTe(EPh3)](+) (2a, E = P; 3a, E = As; 4a, E = Sb) and the anion [Ph2Sb(O3SCF3)2](-) (4b). In the reaction with Ph3Bi, the crude product contained the cation [MesTe(BiPh3)](+) (5a) and the anion [Ph2Bi(O3SCF3)2](-) (5b); however, the heteroleptic 1:1 LP complex [MesTe(BiPh3)][Ph2Bi(O3SCF3)2] (5) could not be isolated because of its limited stability. Instead, fractional crystallization furnished a large amount of Ph2BiO3SCF3 (6), which was also obtained by the reaction of Ph3Bi with HO3SCF3. The formation of the anions 4b and 5b involves a phenyl group migration from Ph3E (E = Sb, Bi) to the MesTe(+) cation and afforded MesTePh as the byproduct, which was identified in the mother liquor. The heteroleptic 1:1 LP complexes 2-4 were also obtained by the one-pot reaction of Mes2Te, Ph3E (E = P, As, Sb) and HO3SCF3. Compounds 1-4 and 6 were investigated by single-crystal X-ray diffraction. The molecular structures of 1a-4a were used for density functional theory calculations at the B3PW91/TZ level of theory and studied using natural bond order (NBO) analyses as well as real-space bonding descriptors derived from an atoms-in-molecules (AIM) analysis of the theoretically obtained electron density. Additionally, the electron localizability indicator (ELI-D) and the delocalization index are derived from the corresponding pair density. PMID:23134409

  9. Role of chalcogen vapor annealing in inducing bulk superconductivity in Fe1 +yTe1 -xSex

    NASA Astrophysics Data System (ADS)

    Lin, Wenzhi; Ganesh, P.; Gianfrancesco, Anthony; Wang, Jun; Berlijn, Tom; Maier, Thomas A.; Kalinin, Sergei V.; Sales, Brian C.; Pan, Minghu

    2015-02-01

    Recent investigations have shown that Fe1 +yTe1 -xSex can be made superconducting by annealing it in Se and O vapors. The current lore is that these chalcogen vapors induce superconductivity by removing the magnetic excess Fe atoms. To investigate this phenomenon, we performed a combination of magnetic susceptibility, specific heat, and transport measurements together with scanning tunneling microscopy and spectroscopy and density functional theory calculations on Fe1 +yTe1 -xSex treated with Te vapor. We conclude that the main role of the Te vapor is to quench the magnetic moments of the excess Fe atoms by forming FeTem (m ≥1 ) complexes. We show that the remaining FeTem complexes are still damaging to the superconductivity and therefore that their removal potentially could further improve superconductive properties in these compounds.

  10. Structural insights into the thermal decomposition sequence of barium tetrahydrogenorthotellurate(VI), Ba[H4TeO6

    NASA Astrophysics Data System (ADS)

    Weil, Matthias; Stöger, Berthold; Gierl-Mayer, Christian; Libowitzky, Eugen

    2016-09-01

    The compounds Ba[H4TeO6] (I), Ba[H2TeO5] (II), Ba[Te2O6(OH)2] (III) and Ba[TeO4] (IV) were prepared by application of a diffusion method (I), under hydrothermal conditions (II and III) and from solid state reactions (IV), respectively. Structure analysis on the basis of single crystal X-ray diffraction data revealed novel structure types for (I), (II) and (III) and isotypism of (IV) with PrSbO4 and LaSbO4. Common feature of the four oxotellurate(VI) structures are [TeO6] octahedra. Whereas in the crystal structure of (I) the octahedral units are isolated, they are condensed into chains via corner-sharing in (II) and via edge-sharing in (III) and (IV). The coordination numbers of the barium cations in the four structures range from seven to ten. Although hydrogen atom positions could not be located for the structures of (I) and (II), short interpolyhedral O···O contacts are evident for strong hydrogen bonding. The temperature behaviour of (I), (II) and (IV) was monitored by simultaneous thermal analysis (STA) measurements and in situ powder X-ray diffraction, revealing the decomposition sequence Ba[H4TeO6] → Ba[H2TeO5] → Ba[TeO4]→ Ba[TeO3] upon heating to temperatures up to 900 °C.

  11. CdTe and ZnTe metal interface formation and Fermi-level pinning

    NASA Technical Reports Server (NTRS)

    Wahi, A. K.; Carey, G. P.; Chiang, T. T.; Lindau, I.; Spicer, W. E.

    1989-01-01

    Interfacial morphology and Fermi-level pinning behavior at the interfaces of Al, Ag, and Pt with UHV-cleaved CdTe and ZnTe are studied using X-ray photoelectron and ultraviolet photoemission spectroscopies. Results are compared to metal/HgCdTe interface formation. For Al/CdTe, a case is found where significantly greater intermixing occurs in CdTe than seen on HgCdTe. The Al/ZnTe interface is also more abrupt than Al/CdTe. Band bending results for interfaces of all three metals with p-CdTe and p-ZnTe are presented and implications for metal/HgZnTe interface formation are considered.

  12. Production of quantum dots by selective interdiffusion in CdTe/CdMgTe quantum wells

    SciTech Connect

    Zaitsev, S. V. Welsch, M. K.; Forchel, A.; Bacher, G.

    2007-11-15

    Individual quantum dots are produced by selective interdiffusion between the barriers and the quantum well layer in a CdTe/CdMgTe heterostructure. The heterostructure, with a SiO{sub 2} mask preliminarily deposited onto the surface, was subjected to short-term annealing for 1 min at the temperature 410 deg. C. The mask contained open apertures with diameter up to 140 nm. The annealing induces diffusion of Mg atoms into the depth of the quantum well. Diffusion is substantially enhanced under the mask. The induced lateral potential, with minimums in the regions of apertures of the mask, stimulates efficient localization of charge carriers that form quasi-zero-dimensional excitons. The study of radiative recombination suggests complete spatial confinement of the excitons. The confinement manifests itself in the observation of a substantially narrowed line of excitonic transitions, as well as in the observation of biexcitons and excited states at high levels of photoexcitation. The characteristic energies of interlevel splitting and the biexciton binding energy show that charge carriers are under the condition of weak confinement in the quantum dots.

  13. BOREAS TE-7 Dendrology Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Varem-Sanders, T. M. L.; Campbell, I. D.

    2000-01-01

    The BOREAS TE-7 team collected data sets in support of its efforts to characterize and interpret information on the sapflow and dendrology of boreal vegetation. This data set contains dendrology measurements, consisting of tree ring width and density taken at several points within each ring,.Measurements were taken near the TE towers at the OJP and OBS sites in NSA. In the SSA, measurements were taken near the TE towers at the MIX, OBS, and OJP sites; at the AIM- 1 3 and BMH-9 sites; and near the TF-YJP site. All data were collected during the summer of 1994. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  14. Strain-engineered diffusive atomic switching in two-dimensional crystals

    PubMed Central

    Kalikka, Janne; Zhou, Xilin; Dilcher, Eric; Wall, Simon; Li, Ju; Simpson, Robert E.

    2016-01-01

    Strain engineering is an emerging route for tuning the bandgap, carrier mobility, chemical reactivity and diffusivity of materials. Here we show how strain can be used to control atomic diffusion in van der Waals heterostructures of two-dimensional (2D) crystals. We use strain to increase the diffusivity of Ge and Te atoms that are confined to 5 Å thick 2D planes within an Sb2Te3–GeTe van der Waals superlattice. The number of quintuple Sb2Te3 2D crystal layers dictates the strain in the GeTe layers and consequently its diffusive atomic disordering. By identifying four critical rules for the superlattice configuration we lay the foundation for a generalizable approach to the design of switchable van der Waals heterostructures. As Sb2Te3–GeTe is a topological insulator, we envision these rules enabling methods to control spin and topological properties of materials in reversible and energy efficient ways. PMID:27329563

  15. Hydrogenation of undoped and nitrogen doped CdTe and ZnSe grown by molecular beam epitaxy

    SciTech Connect

    Hirsch, L.S.; Setzler, S.D.; Ptak, A.J.; Giles, N.C.; Myers, T.H.

    1998-12-31

    Hydrogen incorporation in both undoped and nitrogen-doped CdTe and ZnSe is investigated. Evidence for a strong nitrogen-hydrogen interaction is presented. Preliminary data indicate that the growth of CdTe and ZnSe under an atomic hydrogen flux results in a significant concentration of paramagnetic defects possibly accompanied by enhanced auto-doping from residual impurities.

  16. Structural phase transition in IrTe2: A combined study of optical spectroscopy and band structure calculations

    PubMed Central

    Fang, A. F.; Xu, G.; Dong, T.; Zheng, P.; Wang, N. L.

    2013-01-01

    Ir1−xPtxTe2 is an interesting system showing competing phenomenon between structural instability and superconductivity. Due to the large atomic numbers of Ir and Te, the spin-orbital coupling is expected to be strong in the system which may lead to nonconventional superconductivity. We grew single crystal samples of this system and investigated their electronic properties. In particular, we performed optical spectroscopic measurements, in combination with density function calculations, on the undoped compound IrTe2 in an effort to elucidate the origin of the structural phase transition at 280 K. The measurement revealed a dramatic reconstruction of band structure and a significant reduction of conducting carriers below the phase transition. We elaborate that the transition is not driven by the density wave type instability but caused by the crystal field effect which further splits/separates the energy levels of Te (px, py) and Te pz bands. PMID:23362455

  17. M@TE - Monitoring at TeV Energies

    NASA Astrophysics Data System (ADS)

    Tovmassian, Gagik; Dorner, Daniela; Bretz, Thomas; González, Magdalena; Alfaro, Ruben

    2016-06-01

    A dedicated long-term monitoring programm at TeV energies has been started by the FACT project about four years ago. Being limited to one site, gaps due to the rotation of the Earth remain in the measured light curves. This makes it difficult to study typical variability time scales of few hours to one day. To allow for systematic studies of continuous observations over up to 12 hours, a second telescope is being installed at a site in about six hours distance in longitude. For the M@TE (Monitoring at TeV energies) telescope, a mount from a previous experiment is being refurbished and will be equipped with a new camera. Using silicon based photo sensors like in FACT, an excellent and stable performance will be achieved. M@TE is a joint project of German and Mexican universities which aims at extending the blazar monitoring to so far unexplored time ranges. In the presentation, the status of this emerging project will be reported.

  18. Structural characterization of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} as a function of temperature using neutron powder diffraction and extended X-ray absorption fine structure techniques

    SciTech Connect

    Mansour, A. N.; Wong-Ng, W.; Huang, Q.; Tang, W.; Thompson, A.; Sharp, J.

    2014-08-28

    The structure of Bi{sub 2}Te{sub 3} (Seebeck coefficient Standard Reference Material (SRM™ 3451)) and the related phase Sb{sub 2}Te{sub 3} have been characterized as a function of temperature using the neutron powder diffraction (NPD) and the extended X-ray absorption fine structure (EXAFS) techniques. The neutron structural studies were carried out from 20 K to 300 K for Bi{sub 2}Te{sub 3} and from 10 K to 298 K for Sb{sub 2}Te{sub 3}. The EXAFS technique for studying the local structure of the two compounds was conducted from 19 K to 298 K. Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} are isostructural, with a space group of R3{sup ¯}m. The structure consists of repeated quintuple layers of atoms, Te2-M-Te1-M-Te2 (where M = Bi or Sb) stacking along the c-axis of the unit cell. EXAFS was used to examine the bond distances and static and thermal disorders for the first three shells of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} as a function of temperature. The temperature dependencies of thermal disorders were analyzed using the Debye and Einstein models for lattice vibrations. The Debye and Einstein temperatures for the first two shells of Bi{sub 2}Te{sub 3} are similar to those of Sb{sub 2}Te{sub 3} within the uncertainty in the data. However, the Debye and Einstein temperatures for the third shell of Bi-Bi are significantly lower than those of the third shell of Sb-Sb. The Einstein temperature for the third shell is consistent with a soft phonon mode in both Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3}. The lower Einstein temperature of Bi-Bi relative to Sb-Sb is consistent with the lower value of thermal conductivity of Bi{sub 2}Te{sub 3} relative to Sb{sub 2}Te{sub 3}.

  19. Characterization of CdTe, HgTe, and Hg1-xCdxTe grown by chemical beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wagner, B. K.; Rajavel, D.; Benz, R. G.; Summers, C. J.

    1991-10-01

    Detailed characterization of chemical beam epitaxially (CBE) grown CdTe and Hg1-xCdxTe layers are reported. These characterizations include photoluminescence, infrared transmission, energy dispersive x-ray analysis, and variable temperature (10-300 K) Hall effect and resistivity measurements. The results indicate that high quality HgCdTe layers can be grown by CBE.

  20. Study of adhesion of vertically aligned carbon nanotubes to a substrate by atomic-force microscopy

    NASA Astrophysics Data System (ADS)

    Ageev, O. A.; Blinov, Yu. F.; Il'ina, M. V.; Il'in, O. I.; Smirnov, V. A.; Tsukanova, O. G.

    2016-02-01

    The adhesion to a substrate of vertically aligned carbon nanotubes (VA CNT) produced by plasmaenhanced chemical vapor deposition has been experimentally studied by atomic-force microscopy in the current spectroscopy mode. The longitudinal deformation of VA CNT by applying an external electric field has been simulated. Based on the results, a technique of determining VA CNT adhesion to a substrate has been developed that is used to measure the adhesion strength of connecting VA CNT to a substrate. The adhesion to a substrate of VA CNT 70-120 nm in diameter varies from 0.55 to 1.19 mJ/m2, and the adhesion force from 92.5 to 226.1 nN. When applying a mechanical load, the adhesion strength of the connecting VA CNT to a substrate is 714.1 ± 138.4 MPa, and the corresponding detachment force increases from 1.93 to 10.33 μN with an increase in the VA CNT diameter. As an external electric field is applied, the adhesion strength is almost doubled and is 1.43 ± 0.29 GPa, and the corresponding detachment force is changed from 3.83 to 20.02 μN. The results can be used in the design of technological processes of formation of emission structures, VA CNT-based elements for vacuum microelectronics and micro- and nanosystem engineering, and also the methods of probe nanodiagnostics of VA CNT.

  1. Ultracold-Atom Accelerometers

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1995-01-01

    Proposed class of accelerometers and related motion sensors based on use of ultracold atoms as inertial components of motion transducers. Ultracold atoms supplant spring-and-mass components of older accelerometers. As used here, "ultracold atoms" means atoms with kinetic energies equivalent to temperatures equal to or less than 20 mK. Acclerometers essentially frictionless. Primary advantage high sensitivity.

  2. A monotopic aluminum telluride with an Al=Te double bond stabilized by N-heterocyclic carbenes

    PubMed Central

    Franz, Daniel; Szilvási, Tibor; Irran, Elisabeth; Inoue, Shigeyoshi

    2015-01-01

    Aluminum chalcogenides are mostly encountered in the form of bulk aluminum oxides that are structurally diverse but typically consist of networks with high lattice energy in which the chalcogen atoms bridge the metal centres. This makes their molecular congeners difficult to synthesize because of a pronounced tendency for oligomerization. Here we describe the isolation of the monotopic aluminum chalcogenide (LDipN)AlTe(LEt)2 (LDip=1,3-(2,6-diisopropylphenyl)-imidazolin-2-imine, LEt=1,3-diethyl-4,5-dimethyl-imidazolin-2-ylidene). Unique features of (LDipN)AlTe(LEt)2 are the terminal position of the tellurium atom, the shortest aluminum–tellurium distance hitherto reported for a molecular complex and the highest bond order reported for an interaction between these elements, to the best of our knowledge. At elevated temperature (LDipN)AlTe(LEt)2 equilibrates with dimeric {(LDipN)AlTe(LEt)}2 in which the chalcogen atoms assume their common role as bridges between the metal centres. These findings demonstrate that (LDipN)AlTe(LEt)2 comprises the elusive Al=Te double bond in the form of an N-heterocyclic carbene-stabilized species. PMID:26612781

  3. Experimental Observation of Topological Edge States at the Surface Step Edge of the Topological Insulator ZrTe5

    NASA Astrophysics Data System (ADS)

    Li, Xiang-Bing; Huang, Wen-Kai; Lv, Yang-Yang; Zhang, Kai-Wen; Yang, Chao-Long; Zhang, Bin-Bin; Chen, Y. B.; Yao, Shu-Hua; Zhou, Jian; Lu, Ming-Hui; Sheng, Li; Li, Shao-Chun; Jia, Jin-Feng; Xue, Qi-Kun; Chen, Yan-Feng; Xing, Ding-Yu

    2016-04-01

    We report an atomic-scale characterization of ZrTe5 by using scanning tunneling microscopy. We observe a bulk band gap of ˜80 meV with topological edge states at the step edge and, thus, demonstrate that ZrTe5 is a two-dimensional topological insulator. We also find that an applied magnetic field induces an energetic splitting of the topological edge states, which can be attributed to a strong link between the topological edge states and bulk topology. The relatively large band gap makes ZrTe5 a potential candidate for future fundamental studies and device applications.

  4. ZnTe/MnTe: A new metastable wide gap II VI heterostructure

    NASA Astrophysics Data System (ADS)

    Durbin, S.; Kobayashi, M.; Fu, Qiang; Pelekanos, N.; Gunshor, R. L.; Nurmikko, A. V.

    1990-04-01

    Optical characteristics of a new metastable wide-gap II-VI semiconductor heterostructure ZnTe/MnTe are reported. Single ZnTe/MnTe quantum wells show strong n = 1 exciton resonance manifesting, for example, in pronounced enhancement of the Raman cross-section. Pseudomorphic nature of the structures is inferred from strain induced shifts in the optical phonon spectrum.

  5. Disorder-induced structural transitions in topological insulating Ge-Sb-Te compounds

    NASA Astrophysics Data System (ADS)

    Kim, Jeongwoo; Jhi, Seung-Hoon

    2015-05-01

    The mechanism for the fast switching between amorphous, metastable, and crystalline structures in chalcogenide phase-change materials has been a long-standing puzzle. Based on first-principles calculations, we study the atomic and electronic properties of metastable Ge2Sb2Te5 and investigate the atomic disorder to understand the transition between crystalline hexagonal and cubic structures. In addition, we study the topological insulating property embedded in these compounds and its evolution upon structural changes and atomic disorder. We also discuss the role of the surface-like states arising from the topological insulating property in the metal-insulator transition observed in the hexagonal structure.

  6. Magneto-optical Kerr effect in short-period CdTe/MnTe superlattices

    NASA Astrophysics Data System (ADS)

    Pohlt, M.; Herbst, W.; Pascher, H.; Faschinger, W.; Bauer, G.

    1998-04-01

    Magneto-optical Kerr effect (MOKE) studies of biaxially strained (CdTe)n/(MnTe)n superlattices give evidence of an antiferromagnetic ordering as well as of paramagnetic behavior (bulk MnTe is an antiferromagnet with TN~70 K). With increasing n, paramagnetic behavior becomes dominant in the MOKE signals, apparently caused by the lack of spin ordering at the (CdTe)/(MnTe) interfaces for wider CdTe wells. Apart from the magnetic properties, the MOKE signals also yield information on the electronic interband transitions involving heavy-hole and electron subbands, centered in the CdTe quantum wells.

  7. Neutral atom traps.

    SciTech Connect

    Pack, Michael Vern

    2008-12-01

    This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

  8. Albert TE-1 training airplane

    NASA Technical Reports Server (NTRS)

    1926-01-01

    The TE-1 is designed for the economical training of pilots and is a single seat parasol cantilever monoplane. It is nearly entirely made of wood, using a 40 HP. air-cooled Salmson A.D. 9 engine, and weighs 255 kg empty.

  9. Single-crystal structure study of iron chalcogenides Fe{sub 1+δ}Te{sub 1−x}S{sub x}

    SciTech Connect

    Shchichko, I. O.; Makarova, I. P.; Presnyakov, M. Yu.; Kazakov, S. M.; Antipov, E. V.; Chareev, D. A.; Mitrofanova, E. S.; Mikhutkin, A. A.; Vasil’ev, A. L.

    2015-03-15

    Single crystals of iron chalcogenides Fe{sub 1+δ}Te{sub 1−x}S{sub x} (x = 0, 0.09, and 0.1) were studied by scanning, transmission, and scanning transmission electron microscopy. In addition, a sample with x = 0 was studied by X-ray diffraction. The Te-site disorder observed in Fe{sub 1+δ} samples is, apparently, assigned to the incorporation of superstoichiometric iron Fe2 into the structure. The Fe1 atoms were found to be displaced from their ideal positions, which can only partially be attributed to electro-optical effects. The replacement of Te atoms by S in Fe{sub 1+δ}Te{sub 1−x}S{sub x} crystals gives rise to domains with ordered S atoms in some regions of the single crystal, resulting in the formation of a 2 × 1 or 2 × 2 superstructure.

  10. Study on the nitrogen-doped W-Sb-Te material for phase change memory application

    NASA Astrophysics Data System (ADS)

    Ren, Kun; Xia, Mengjiao; Rao, Feng; Song, Zhitang; Ding, Keyuan; Ji, Xinglong; Wu, Liangcai; Liu, Bo; Feng, Songlin

    2014-04-01

    N doping is proposed to enlarge sensing margin of W0.08(Sb2Te)0.92 based high-temperature phase-change memories (PCMs). The sensing margin is increased from 30 to 5 × 103, with an increase from 145 °C to 158 °C in data retention. The grain size is reduced to 10 nm. The PCM based on N-W0.08(Sb2Te)0.92 shows the fast operation speed of 30 ns and good cycling ability of >103. By X-ray photoelectron spectroscopy and ab initio calculation, the W atoms are suggested to locate in the Sb positions and interstices of the lattice. The W atoms in interstice will bond to N atoms during N doping.

  11. Study of Te Inclusions in CdMnTe Crystals for Nuclear Detector Applications

    SciTech Connect

    Babalola, O.S.; Bolotnikov, A.; Groza, M.; Hossain, A., Egarievwe, S.; James, R.; Burger, A.

    2009-05-08

    The concentration, size and spatial distribution of Te inclusions in the bulk of CdMnTe crystals mined from two batches of ingots were studied. An isolated planar layer decorated with Te inclusions was identified in CdMnTe crystals from the second ingot. The internal electric field of a CMT crystal was probed by infrared (IR) imaging employing Pockels electro-optic effect. The effect of an isolated plane of Te inclusions on the internal electric-field distribution within the CdMnTe crystal was studied. Space charge accumulation around the plane of Te inclusions was observed, which was found to be higher when the detector was reverse-biased. The effects of the plane of Te inclusions on the electric-field distribution within the CdMnTe crystal, and the quality of CdMnTe crystals for nuclear detector applications are discussed.

  12. Study of Te inclusions in CdMnTe crystals for nuclear detector applications

    NASA Astrophysics Data System (ADS)

    Babalola, O. S.; Bolotnikov, A. E.; Groza, M.; Hossain, A.; Egarievwe, S.; James, R. B.; Burger, A.

    2009-07-01

    The concentration, size and spatial distribution of Te inclusions in the bulk of CdMnTe crystals mined from two batches of ingots were studied. An isolated planar layer decorated with Te inclusions was identified in CdMnTe crystals from the second ingot. The internal electric field of a CMT crystal was probed by infrared (IR) imaging employing Pockels electro-optic effect. The effect of an isolated plane of Te inclusions on the internal electric-field distribution within the CdMnTe crystal was studied. Space charge accumulation around the plane of Te inclusions was observed, which was found to be higher when the detector was reverse-biased. The effects of the plane of Te inclusions on the electric-field distribution within the CdMnTe crystal, and the quality of CdMnTe crystals for nuclear detector applications are discussed.

  13. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3

    SciTech Connect

    Lee, Inhee; Kim, Chung Koo; Lee, Jinho; Billinge, Simon J. L.; Zhong, Ruidan D.; Schneeloch, John A.; Liu, Tiansheng S.; Valla, Tonica; Tranquada, John M.; Gu, Genda D.; Davis, J. C. Séamus

    2015-01-20

    To achieve and use the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TIs), it is necessary to open a “Dirac-mass gap” in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely applied approach. However, it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in the ferromagnetic TI Cr₀.₀₈(Bi₀.₁Sb₀.₉)₁.₉₂Te₃. Simultaneous visualization of the Dirac-mass gap Δ(r) reveals its intense disorder, which we demonstrate is directly related to fluctuations in n(r), the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of Δ(r) not inconsistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship Δ(r)∝n(r) is confirmed throughout and exhibits an electron–dopant interaction energy J* = 145 meV·nm². In addition, these observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential.

  14. Reduced leakage currents of CdZnTe radiation detectors with HgTe/HgCdTe superlattice contacts

    NASA Astrophysics Data System (ADS)

    Chang, Y.; Grein, C. H.; Becker, C. R.; Huang, J.; Ghosh, S.; Aqariden, F.; Sivananthan, S.

    2012-10-01

    Room-temperature-operating CdZnTe radiation detectors have high energy resolution, linear energy response and are capable of operating in normal counting and spectroscopic modes, hence are highly desirable for medical diagnosis, nondestructive industrial evaluations, homeland security, counterterrorism inspections and nuclear proliferation detection to ensure national and international nuclear safety. HgTe/HgCdTe superlattices can be designed to selectively transport one carrier species while hindering transport of the other. Specifically, one designs a large carrier effective mass for undesired carriers in the electric field direction, which results in low carrier velocities, and yet a density of states for undesired carrier that is lower than that of a comparable bulk semiconductor, which results in low carrier concentrations, hence a low current density under an electric field. The opposite carrier species can be designed to have a large velocity and high density of states, hence producing a large current density. By employing HgTe/HgCdTe superlattices as contact layers intermediate between CdZnTe absorbers and metal contacts, leakage currents under high electric fields are reduced and improved x-ray and γ-ray detector performance is anticipated. Pixilated CdZnTe radiation detectors arrays were fabricated and characterized to evaluate the effectiveness of HgTe/HgCdTe superlattices in reducing leakage currents. Current-voltage characteristics show that HgTe/HgCdTe superlattice contact layers consistently result in significantly reduced leakage currents relative to detectors with only metal contacts.

  15. Studies of low temperature photoluminescence spectra and excitonic valley polarization in monolayer MoTe2

    NASA Astrophysics Data System (ADS)

    Koirala, Sandhaya; Mouri, Shinichiro; Miyauchi, Yuhei; Matsuda, Kazunari; Kyoto University Team

    Recently, atomically thin layered transition-metal dichalcogenide (TMDs) in the form MX2 (M = Mo, W, X = S, Se, Te) have attracted much interest from the viewpoints of their fundamental physics and potential applications. The characteristic optical features of semiconducting TMDs arise from excitons confined in their atomically thin layers. Molybdenum ditelluride MoTe2 has attracted emerging research interest because of optical gap energy (lowest exciton transition) of 1.09 eV, and large spin-orbit coupling of 250 meV. Temperature-dependent photoluminescence (PL) and polarization-resolved PL measurement were performed for mechanically exfoliated monolayer MoTe2 from 4.4 to 300 K. At a low temperature, the PL spectra from MoTe2 show two sharp peaks for excitons and charged excitons (trions). The systematic temperature-dependent PL measurements revel that the homogeneous linewidth of the exciton peak broadens linearly as the temperature increased due to exciton-acoustic-phonon interactions. From polarization-resolved PL measurements, the valley polarization of above 40 % in the exciton state has been observed at low temperatures. In this meeting, we will discuss about exciton dephasing and valley polarization in monolayer MoTe2.

  16. Studies of Thermal Annealing Effects on CdTe/CdS Heterojunction Photovoltaic Material Using X-ray Fluorescence and Scattering

    NASA Astrophysics Data System (ADS)

    Kao, Y. H.; Soo, Y. L.; Huang, S. W.; Compaan, A.

    1998-03-01

    Angular dependence of x-ray fluorescence (ADXRF) and grazing incidence x-ray scattering (GIXS) techniques have been employed to investigate Te distribution and interfacial roughness in a series of CdTe/CdS heterojunctions prepared by RF sputtering and subjected to thermal annealing at various temperatures ranging from 340^oC to 387^oC. The ratio of Te K_α to Cd K_α fluorescence yield, as well as the interfacial roughness, shows a strong dependence on the annealing temperature. The results indicate that with an increase of the annealing temperature, Te atoms can migrate out of the CdTe layer accompanied by an increase of the interfacial roughness. Implications of these observations on the conversion efficiency of CdTe/CdS solar cells will be discussed.

  17. Partial Pressures of Te2 and Thermodynamic Properties of Ga-Te System

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    The partial pressures of Te2 in equilibrium with Ga(1-x)Te(x) samples were measured by optical absorption technique from 450 to 1100 C for compositions, x, between 0.333 and 0.612. To establish the relationship between the partial pressure of Te, and the measured optical absorbance, the calibration runs of a pure Te sample were also conducted to determine the Beer's Law constants. The partial pressures of Te2 in equilibrium with the GaTe(s) and Ga2Te3(s)compounds, or the so-called three-phase curves, were established. These partial pressure data imply the existence of the Ga3Te4(s) compound. From the partial pressures of Te2 over the Ga-Te melts, partial molar enthalpy and entropy of mixing for Te were derived and they agree reasonable well with the published data. The activities of Te in the Ga-Te melts were also derived from the measured partial pressures of Te2. These data agree well with most of the previous results. The possible reason for the high activity of Te measured for x less than 0.60 is discussed.

  18. Solution Grown Se/Te Nanowires: Nucleation, Evolution, and The Role of Triganol Te seeds

    PubMed Central

    2009-01-01

    We have studied the nucleation and growth of Se–Te nanowires (NWs), with different morphologies, grown by a chemical solution process. Through systematic characterization of the Se–Te NW morphology as a function of the Te nanocrystallines (NCs) precursor, the relative ratio between Se and Te, and the growth time, a number of significant insights into Se–Te NW growth by chemical solution processes have been developed. Specifically, we have found that: (i) the growth of Se–Te NWs can be initiated from either long or short triganol Te nanorods, (ii) the frequency of proximal interactions between nanorod tips and the competition between Se and Te at the end of short Te nanorods results in V-shaped structures of Se–Te NWs, the ratio between Se and Te having great effect on the morphology of Se–Te NWs, (iii) by using long Te nanorods as seeds, Se–Te NWs with straight morphology were obtained. Many of these findings on Se–Te NW growth can be further generalized and provide very useful information for the rational synthesis of group VI based semiconductor NW compounds. PMID:20596351

  19. Absolute Te_2 reference for barium ion at 4554 nm

    NASA Astrophysics Data System (ADS)

    Dutta, Tarun; De Munshi, Debashis; Mukherjee, Manas

    2016-06-01

    Precision atomic spectroscopy is presently the work horse in quantum information technology, metrology, trace analysis and even for fundamental tests in physics. Stable lasers are inherent part of precision spectroscopy which in turn requires absolute wavelength markers suitably placed corresponding to the atomic species being probed. Here we present, new lines of tellurium (Te$_2$) which allows locking of external cavity diode laser (ECDL) for precision spectroscopy of singly charged barium ions. In addition, we have developed an ECDL with over 100 GHz mod-hop-free tuning range using commercially available diode from $\\textit{Nichia}$. These two developments allow nearly drift-free operation of a barium ion trap set-up with one single reference cell thereby reducing the complexity of the experiment.

  20. In-situ crystallization of GeTe\\GaSb phase change memory stacked films

    SciTech Connect

    Velea, A.; Borca, C. N.; Grolimund, D.; Socol, G.; Galca, A. C.; Popescu, M.; Bokhoven, J. A. van

    2014-12-21

    Single and double layer phase change memory structures based on GeTe and GaSb thin films were deposited by pulsed laser deposition (PLD). Their crystallization behavior was studied using in-situ synchrotron techniques. Electrical resistance vs. temperature investigations, using the four points probe method, showed transition temperatures of 138 °C and 198 °C for GeTe and GaSb single films, respectively. It was found that after GeTe crystallization in the stacked films, Ga atoms from the GaSb layer diffused in the vacancies of the GeTe crystalline structure. Therefore, the crystallization temperature of the Sb-rich GaSb layer is decreased by more than 30 °C. Furthermore, at 210 °C, the antimony excess from GaSb films crystallizes as a secondary phase. At higher annealing temperatures, the crystalline Sb phase increased on the expense of GaSb crystalline phase which was reduced. Extended X-ray absorption fine structure (EXAFS) measurements at the Ga and Ge K-edges revealed changes in their local atomic environments as a function of the annealing temperature. Simulations unveil a tetrahedral configuration in the amorphous state and octahedral configuration in the crystalline state for Ge atoms, while Ga is four-fold coordinated in both as-deposited and annealed samples.

  1. Atomic Fuel, Understanding the Atom Series. Revised.

    ERIC Educational Resources Information Center

    Hogerton, John F.

    This publication is part of the "Understanding the Atom" series. Complete sets of the series are available free to teachers, schools, and public librarians who can make them available for reference or use by groups. Among the topics discussed are: What Atomic Fuel Is; The Odyssey of Uranium; Production of Uranium; Fabrication of Reactor Fuel…

  2. Atomic Fisher information versus atomic number

    NASA Astrophysics Data System (ADS)

    Nagy, Á.; Sen, K. D.

    2006-12-01

    It is shown that the Thomas Fermi Fisher information is negative. A slightly more sophisticated model proposed by Gáspár provides a qualitatively correct expression for the Fisher information: Gáspár's Fisher information is proportional to the two-third power of the atomic number. Accurate numerical calculations show an almost linear dependence on the atomic number.

  3. Atomic Particle Detection, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Hellman, Hal

    This booklet is one of the booklets in the "Understanding the Atom Series" published by the U. S. Atomic Energy Commission for high school science teachers and their students. The instruments used to detect both particles and electromagnetic radiation that emerge from the nucleus are described. The counters reviewed include ionization chambers,…

  4. New pathway for the formation of metallic cubic phase Ge-Sb-Te compounds induced by an electric current

    NASA Astrophysics Data System (ADS)

    Park, Yong-Jin; Cho, Ju-Young; Jeong, Min-Woo; Na, Sekwon; Joo, Young-Chang

    2016-02-01

    The novel discovery of a current-induced transition from insulator to metal in the crystalline phase of Ge2Sb2Te5 and GeSb4Te7 have been studied by means of a model using line-patterned samples. The resistivity of cubic phase Ge-Sb-Te compound was reduced by an electrical current (~1 MA/cm2), and the final resistivity was determined based on the stress current density, regardless of the initial resistivity and temperature, which indicates that the conductivity of Ge-Sb-Te compound can be modulated by an electrical current. The minimum resistivity of Ge-Sb-Te materials can be achieved at high kinetic rates by applying an electrical current, and the material properties change from insulating to metallic behavior without a phase transition. The current-induced metal transition is more effective in GeSb4Te7 than Ge2Sb2Te5, which depends on the intrinsic vacancy of materials. Electromigration, which is the migration of atoms induced by a momentum transfer from charge carriers, can easily promote the rearrangement of vacancies in the cubic phase of Ge-Sb-Te compound. This behavior differs significantly from thermal annealing, which accompanies a phase transition to the hexagonal phase. This result suggests a new pathway for modulating the electrical conductivity and material properties of chalcogenide materials by applying an electrical current.

  5. New pathway for the formation of metallic cubic phase Ge-Sb-Te compounds induced by an electric current

    PubMed Central

    Park, Yong-Jin; Cho, Ju-Young; Jeong, Min-Woo; Na, Sekwon; Joo, Young-Chang

    2016-01-01

    The novel discovery of a current-induced transition from insulator to metal in the crystalline phase of Ge2Sb2Te5 and GeSb4Te7 have been studied by means of a model using line-patterned samples. The resistivity of cubic phase Ge-Sb-Te compound was reduced by an electrical current (~1 MA/cm2), and the final resistivity was determined based on the stress current density, regardless of the initial resistivity and temperature, which indicates that the conductivity of Ge-Sb-Te compound can be modulated by an electrical current. The minimum resistivity of Ge-Sb-Te materials can be achieved at high kinetic rates by applying an electrical current, and the material properties change from insulating to metallic behavior without a phase transition. The current-induced metal transition is more effective in GeSb4Te7 than Ge2Sb2Te5, which depends on the intrinsic vacancy of materials. Electromigration, which is the migration of atoms induced by a momentum transfer from charge carriers, can easily promote the rearrangement of vacancies in the cubic phase of Ge-Sb-Te compound. This behavior differs significantly from thermal annealing, which accompanies a phase transition to the hexagonal phase. This result suggests a new pathway for modulating the electrical conductivity and material properties of chalcogenide materials by applying an electrical current. PMID:26902593

  6. New pathway for the formation of metallic cubic phase Ge-Sb-Te compounds induced by an electric current.

    PubMed

    Park, Yong-Jin; Cho, Ju-Young; Jeong, Min-Woo; Na, Sekwon; Joo, Young-Chang

    2016-01-01

    The novel discovery of a current-induced transition from insulator to metal in the crystalline phase of Ge2Sb2Te5 and GeSb4Te7 have been studied by means of a model using line-patterned samples. The resistivity of cubic phase Ge-Sb-Te compound was reduced by an electrical current (~1 MA/cm(2)), and the final resistivity was determined based on the stress current density, regardless of the initial resistivity and temperature, which indicates that the conductivity of Ge-Sb-Te compound can be modulated by an electrical current. The minimum resistivity of Ge-Sb-Te materials can be achieved at high kinetic rates by applying an electrical current, and the material properties change from insulating to metallic behavior without a phase transition. The current-induced metal transition is more effective in GeSb4Te7 than Ge2Sb2Te5, which depends on the intrinsic vacancy of materials. Electromigration, which is the migration of atoms induced by a momentum transfer from charge carriers, can easily promote the rearrangement of vacancies in the cubic phase of Ge-Sb-Te compound. This behavior differs significantly from thermal annealing, which accompanies a phase transition to the hexagonal phase. This result suggests a new pathway for modulating the electrical conductivity and material properties of chalcogenide materials by applying an electrical current. PMID:26902593

  7. Pulsars at TeV

    NASA Astrophysics Data System (ADS)

    Edwards, P.

    1994-04-01

    The atmospheric Cerenkov technique is used to search for emission at energies above several hundred GeV from a variety of objects, including pulsars (see, e.g., reviews by Weekes, 1988, Phys. Rep., 160, 1; Weekes, 1992, Sp. Sci. Rev., 59, 315). Claims for TeV emission (from any source) should be of high significance, show gamma-ray-like properties, and be independently confirmed. By these criteria the Crab nebula is currently the only established pulsar-driven system to be observed at TeV energies (Weekes et al., 1989, Astrophys. J., 342, 379; Vacanti et al., 1991, Astrophys. J., 377, 467; Goret et al., 1993, Astron. Astrophys., 270, 401). The gamma-ray signal is not pulsed at TeV energies, leading to models of synchrotron self-Compton emission from the Crab nebula (e.g., De Jager and Harding, 1992, Astrophys. J., 396, 161), although other models have also been proposed (Kwok et al., 1991, Astrophys. J., 379, 653). While claims exist for TeV emission from, amongst others, the Vela pulsar (e.g., Bhat et al., 1987, Astron. Astrophys., 178, 242, Geminga (Vishwanath et al., 1993, Astron. Astrophys., 267, L5; Bowden et al., 1993, J. Phys. G: Nucl. Part. Phys., 19, L29), and PSR 1509-58 (Nel et al., 1992, Astrophys. TeV sources. *The detection of TeV gamma-rays from millisecond pulsars has been considered recently by Smith (1993, Astrophys. -J., 408, 468).

  8. Theoretical investigation of Sn-doped Ge2Sb2Te5 alloy in crystalline phase

    NASA Astrophysics Data System (ADS)

    Singh, Janpreet; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2015-06-01

    Ge2Sb2Te5 (GST) is technologically important for phase-change random access memory applications. It has been shown that the 2.2 atomic % doping of Sn weakens the Ge-Te bond strength while maintaining the symmetry of stable phase of GST. The influence of Sn doping upon the phase change characteristics of the crystalline GST alloy has been investigated by ab initio calculations. The lattice parameter, average interface distances between two adjacent (111) layers, equilibrium volume, metallic character and electrical resistance has been calculated for the stable phase of GST and Sn-doped GST.

  9. New structural picture of the Ge2Sb2Te5 phase-change alloy.

    PubMed

    Liu, X Q; Li, X B; Zhang, L; Cheng, Y Q; Yan, Z G; Xu, M; Han, X D; Zhang, S B; Zhang, Z; Ma, E

    2011-01-14

    Using electron microscopy and diffraction techniques, as well as first-principles calculations, we demonstrate that as much as 35% of the total Ge atoms in the cubic phase of Ge2Sb2Te5 locate in tetrahedral environments. The Ge-vacancy interactions play a crucial stabilizing role, leading to Ge-vacancy pairs and the sharing of vacancies that clusters tetrahedral Ge into domains. The Ge2Sb2Te5 structure with coexisting octahedral and tetrahedral Ge produces optical and structural properties in good agreement with experimental data and explains the property contrast as well as the rapid transformation in this phase-change alloy. PMID:21405239

  10. Fermi level tuning of topological insulator Bi2(SexTe1-x)3 nanoplates

    NASA Astrophysics Data System (ADS)

    Hao, Guolin; Qi, Xiang; Xue, Lin; Cai, Canying; Li, Jun; Wei, Xiaolin; Zhong, Jianxin

    2013-01-01

    The crystal structures and morphologies of ternary Bi2(SexTe1-x)3 nanoplates have been systematically characterized by employing atomic force microscopy, scanning electron microscopy, high-resolution transmission electron microscopy equipped with the energy dispersive X-ray spectrometer, and the X-ray diffraction. We find that the Bi2(SexTe1-x)3 nanoplates exhibit uniform charge and surface potential distributions. And their Fermi levels can be effectively tuned up to 0.23 eV by varying the selenium/tellurium composition ratios.

  11. Structural Study of Liquid Se-Te Alloys by Neutron Diffraction

    NASA Astrophysics Data System (ADS)

    Takeda, Shin'ichi; Tamaki, Shigeru; Waseda, Yoshio

    1986-12-01

    The neutron diffraction study of liquid Se-Te system has been carried out to reveal the origin of characteristic temperature dependence of various properties related to the structural order in atomic scale. The temperature dependence of measured structural functions of liquid SexTe1-x system could be explained by a gradual transition from two-fold coordinated component (non-metallic) to the three-fold coordinated one (metallic). The partial structure factors of these two-fold and three-fold coordinations are separated with the help of the thermodynamic data. A configurational model satisfying these situations is also presented.

  12. Grain boundary enhanced carrier collection in CdTe solar cells

    SciTech Connect

    Li, Chen; Wu, Yelong; Poplawsky, Jonathan D; Paudel, Naba; Yin, Wanjian; Pennycook, Timothy; Haigh, Sarah; Oxley, Mark P; Lupini, Andrew R; Al-jassim, Mowafak; Pennycook, Stephen J; Yan, Yanfa

    2014-01-01

    The atomic structure and composition of grain boundaries in CdCl2 treated CdTe solar cells have been determined with aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy. A high fraction of Te in the grain boundary regions has been substituted by Cl. Density functional calculations reveal the origin of such segregation levels, and further indicate the GBs are likely inverted to n-type, establishing local P-N junctions, which help to separate electron-hole carriers. The results are in good agreement with electron beam induced current observations of high collection efficiency at grain boundaries.

  13. Graphene/CdTe heterostructure solar cell and its enhancement with photo-induced doping

    SciTech Connect

    Lin, Shisheng Chen, Hongsheng; Li, Xiaoqiang; Zhang, Shengjiao; Wang, Peng; Xu, Zhijuan; Zhong, Huikai; Wu, Zhiqian

    2015-11-09

    We report a type of solar cell based on graphene/CdTe Schottky heterostructure, which can be improved by surface engineering as graphene is atomic thin. By coating a layer of ultrathin CdSe quantum dots onto graphene/CdTe heterostructure, the power conversion efficiency is increased from 2.08% to 3.10%. Photo-induced doping is mainly accounted for this enhancement, as evidenced by field effect transport, Raman, photoluminescence, and quantum efficiency measurements. This work demonstrates a feasible way of improving the performance of graphene/semiconductor heterostructure solar cells by combining one dimensional with two dimensional materials.

  14. Graphene/CdTe heterostructure solar cell and its enhancement with photo-induced doping

    NASA Astrophysics Data System (ADS)

    Lin, Shisheng; Li, Xiaoqiang; Zhang, Shengjiao; Wang, Peng; Xu, Zhijuan; Zhong, Huikai; Wu, Zhiqian; Chen, Hongsheng

    2015-11-01

    We report a type of solar cell based on graphene/CdTe Schottky heterostructure, which can be improved by surface engineering as graphene is atomic thin. By coating a layer of ultrathin CdSe quantum dots onto graphene/CdTe heterostructure, the power conversion efficiency is increased from 2.08% to 3.10%. Photo-induced doping is mainly accounted for this enhancement, as evidenced by field effect transport, Raman, photoluminescence, and quantum efficiency measurements. This work demonstrates a feasible way of improving the performance of graphene/semiconductor heterostructure solar cells by combining one dimensional with two dimensional materials.

  15. Thickness identification of epitaxial Bi2Te3 via optical contrast

    NASA Astrophysics Data System (ADS)

    Vajner, Cooper; Yan, Haoming; Guo, Lingling; Mathews, Melissa; Kuhlman, Michael; Benefield, Shellby; Ulrich, Steven; Zolghadr, Ehsan; Kung, Patrick; Li, Lin; Araujo, Paulo T.; Wang, Hung-Ta

    2016-06-01

    Two-dimensional (2D) nanosheet thickness identification is effective for rapidly determining thickness-dependent properties of 2D materials. Bismuth telluride (Bi2Te3) is a 2D material known for its promising thermoelectric properties and potential dissipationless charge transport in the topological surface states. To date, thickness measurements of Bi2Te3 2D nanosheets are mainly carried out via atomic force microscope or Raman spectroscopy. Here, we investigate a practical, rapid, inexpensive, and non-invasive thickness measurement technique that utilizes the optical contrast of Bi2Te3 2D nanosheets on a mica substrate (i.e., as-grown) and a SiO2/Si substrate (i.e., transferred). The reflected optical intensity and the corresponding contrast are studied as a function of Bi2Te3 thickness, illumination wavelength, and substrate thickness. Disagreement between experimental and calculated optical contrast values is observed, which is ascribed to the thickness-dependent refractive indices of Bi2Te3, mica thickness error, and the deviation from normal light incidence. Despite thin film interference in mica, the monotonic relationship between nanosheet’s contrast and thickness makes mica a better substrate for identifying Bi2Te3 thickness. In addition, a brief recipe is provided for such a thickness identification method to be generally applied in any laboratory.

  16. n-(CdMgTe/CdTe)/(p-(CdTe/ZnCdTe/ZnTe)/p-GaAs heterostructure diode for photosensor applications

    NASA Astrophysics Data System (ADS)

    Yahia, I. S.; AlFaify, S.; Abutalib, M. M.; Chusnutdinow, S.; Wojtowicz, T.; Karczewski, G.; Yakuphanoglu, F.; Al-Bassam, A.; El-Naggar, A. M.; El-Bashir, S. M.

    2016-05-01

    High quality n-(CdMgTe:I/n-CdTe:I)/(p-CdTe:N/p-ZnCdTe:N/p-ZnTe:N)/p-GaAs heterojunction diodes have been fabricated by molecular beam epitaxial growth. The illumination effect on the complex impedance and conductivity of heterostructure diode was investigated. The illumination intensities were taken up to the 200 mW/cm2 with frequency range of 42 Hz to 1 MHz. The observed real and imaginary parts of the complex impedance were strongly dependent on the illumination frequency. The inverse relation was observed between the illumination intensity and the complex impedance. The relaxation mechanism of the diode was analyzed by the Cole-Cole plots. The radius of the Cole-Cole curve decreases with increasing illumination intensity. This suggests a mechanism of illumination dependent on the relaxation process. It is also found that the conductivity increases linearly with increasing the illumination intensity. We can conclude that the new design heterostructure diode in our work is a good candidate in photodetector and optoelectronic applications.

  17. Scanning probe microscopy study of the metal-rich layered chalcogenides TaM{sub 2}Te{sub 2} (M = Co, Ni)

    SciTech Connect

    Neuhausen, J.; Evstaf`iev, V.K.; Block, T.

    1998-12-01

    The compounds TaNi{sub 2}Te{sub 2} and TaCo{sub 2}Te{sub 2} have been examined by scanning tunneling and atomic force microscopy. The title phases crystallize in layered structures with metal slabs sandwiched by tellurium atoms. Scanning probe microscope images of the surfaces of these materials arise from the surface tellurium atoms and--depending on the experimental conditions--can show very different features. The images have been simulated through surface charge densities calculated within the Extended Hueckel and LMTO frameworks.

  18. Aqueous synthesis of ZnTe/dendrimer nanocomposites and their antimicrobial activity: implications in therapeutics

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Ghosh, D.; Bag, P. K.; Bhattacharya, S. C.; Saha, A.

    2011-03-01

    have a good degree of crystallinity with a hexagonal crystal phase. The antibacterial activities of the ZnTe/dendrimer nanocomposites (ZnTe DNCs) as well other semiconductor nanocomposites were evaluated against enteropathogenic bacteria including multi-drug resistant Vibrio cholerae serogroup O1 and enterotoxigenic Escherichia coli (ETEC). ZnTe DNCs had significant antibacterial activity against strains of V. cholerae and ETEC with minimum inhibitory concentrations ranging from 64 to 512 μg ml-1 and minimum bactericidal concentrations ranging from 128 to 1000 μg ml-1. Thus, the observed results suggest that these water-soluble active nanocomposites have potential for the treatment of enteric diseases like diarrhoea and cholera. Electronic supplementary information (ESI) available: Dynamic light scattering, atomic force microscopy and hemolytic activity of the nanocomposites. See DOI: 10.1039/c0nr00610f

  19. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    NASA Astrophysics Data System (ADS)

    Belianinov, Alex; Ganesh, Panchapakesan; Lin, Wenzhi; Sales, Brian C.; Sefat, Athena S.; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V.

    2014-12-01

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1-xSex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.

  20. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    SciTech Connect

    Belianinov, Alex; Panchapakesan, G.; Lin, Wenzhi; Sales, Brian C.; Sefat, Athena Safa; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V.

    2014-12-02

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1 x Sex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.

  1. Determination of tellurium by hydride generation with in situ trapping flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Matusiewicz, Henryk; Krawczyk, Magdalena

    2007-03-01

    The analytical performance of coupled hydride generation — integrated atom trap (HG-IAT) atomizer flame atomic absorption spectrometry (FAAS) system was evaluated for determination of Te in reference material (GBW 07302 Stream Sediment), coal fly ash and garlic. Tellurium, using formation of H 2Te vapors, is atomized in air-acetylene flame-heated IAT. A new design HG-IAT-FAAS hyphenated technique that would exceed the operational capabilities of existing arrangements (a water-cooled single silica tube, double-slotted quartz tube or an "integrated trap") was investigated. An improvement in detection limit was achieved compared with using either of the above atom trapping techniques separately. The concentration detection limit, defined as 3 times the blank standard deviation (3 σ), was 0.9 ng mL - 1 for Te. For a 2 min in situ pre-concentration time (sample volume of 2 mL), sensitivity enhancement compared to flame AAS, was 222 fold, using the hydride generation — atom trapping technique. The sensitivity can be further improved by increasing the collection time. The precision, expressed as RSD, was 7.0% ( n = 6) for Te. The designs studied include slotted tube, single silica tube and integrated atom trap-cooled atom traps. The accuracy of the method was verified using a certified reference material (GBW 07302 Stream Sediment) by aqueous standard calibration curves. The measured Te contents of the reference material was in agreement with the information value. The method was successfully applied to the determination of tellurium in coal fly ash and garlic.

  2. Presenting the Bohr Atom.

    ERIC Educational Resources Information Center

    Haendler, Blanca L.

    1982-01-01

    Discusses the importance of teaching the Bohr atom at both freshman and advanced levels. Focuses on the development of Bohr's ideas, derivation of the energies of the stationary states, and the Bohr atom in the chemistry curriculum. (SK)

  3. The atomic strain tensor

    SciTech Connect

    Mott, P.H.; Argon, A.S. ); Suter, U.W. Massachusetts Institute of Technology, Cambridge, MA )

    1992-07-01

    A definition of the local atomic strain increments in three dimensions and an algorithm for computing them is presented. An arbitrary arrangement of atoms is tessellated in to Delaunay tetrahedra, identifying interstices, and Voronoi polyhedra, identifying atomic domains. The deformation gradient increment tensor for interstitial space is obtained from the displacement increments of the corner atoms of Delaunay tetrahedra. The atomic site strain increment tensor is then obtained by finding the intersection of the Delaunay tetrahedra with the Voronoi polyhedra, accumulating the individual deformation gradient contributions of the intersected Delaunay tetrahedra into the Voronoi polyhedra. An example application is discussed, showing how the atomic strain clarifies the relative local atomic movement for a polymeric glass treated at the atomic level. 6 refs. 10 figs.

  4. Electronic structure of (Ge2Sb2Te5)1-x(In3SbTe2)x investigated by x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Benayad, Anass; Kang, YounSeon; Shin, Hyun-Joon; Kim, Kihong; Suh, Dong-Seok; Kim, KiJoon; Kim, CheolKyu; Lee, Tae-Yon; Noh, Jin-Seo; Lee, JaeCheol; Khang, YoonHo

    2009-08-01

    We have investigated the core levels and the valence band of (Ge2Sb2Te5)1-x(In3Sb1Te2)x quaternary phase system (IGST) by means of x-ray photoelectron spectroscopy. A systematic shift of Sb 3d and Ge 2p core-level peaks toward lower binding energies side was observed with increasing indium amount, whereas the In 3d and Te 3d core peaks showed less change. The Sb 3d and Ge 2p core-level shift is attributed to an increase in the electronic charge of p-electrons dependent of indium amount. The valence band spectra show a distinct change in the sp configuration with indium concentration change. The change in the local bonding as the indium amount increase has a profound impact on both local atomic arrangement and amorphous-to-crystalline transformation temperature. The difference in the photoemission spectra have been discussed according to a simple structural model suggesting that the Na site in IGST can be occupied by Te, Sb, In, and vacancy, whereas in GST it is occupied only by Te.

  5. New μ-SnTe{sub 4} and μ-Sn{sub 2}Te{sub 6} ligands to transition metal: Solvothermal syntheses and characterizations of zinc tellurostannates containing polyamine ligands

    SciTech Connect

    Lu, Jialin; Wang, Fang; Shen, Yali; Tang, Chunying; Zhang, Yong; Jia, Dingxian

    2014-08-15

    Zinc tellurostannates [(Zn(teta)){sub 2}(μ-1κ:2κ-SnTe{sub 4})] (1), [(Zn(teta)){sub 3}(μ{sub 3}-1κ:2κ:3κ-SnTe{sub 4})]I{sub 2} (2), [(Zn(tren)){sub 2}(μ-1κ:2κ-Sn{sub 2}Te{sub 6})] (3), and [Zn(dien){sub 2}]{sub 4}(Sn{sub 2}Te{sub 6}){sub 1.75}(Sn{sub 2}Te{sub 8}){sub 0.25}·dien (4) were prepared by the reactions of Zn, Sn, and Te with iodine ion assistant in teta and dien. The tetrahedral [SnTe{sub 4}]{sup 4−} anion coordinates to two [Zn(teta)]{sup 2+} units as a bidentate μ-1κ:2κ-SnTe{sub 4} ligand to form the neutral complex 1. It coordinates to three [Zn(teta)]{sup 2+} units with a tridentate μ{sub 3}-1κ:2κ:3κ coordination modes, generating a complex cation [(Zn(teta)){sub 3}(μ{sub 3}-1κ:2κ:3κ- SnTe{sub 4})]{sup 2+} in 2. In 3, the [Sn{sub 2}Te{sub 6}]{sup 4−} anion joins two [Zn(tren)]{sup 2+}cations with the trans terminal Te atoms, forming neutral complex 3. The μ-1κ:2κ-SnTe{sub 4}, μ{sub 3}-1κ:2κ:3κ-SnTe{sub 4}, and μ-1κ:2κ-Sn{sub 2}Te{sub 6} ligands to TM centers in 1–3 have not been observed before. Compound 4 contains a normal [Sn{sub 2}Te{sub 6}]{sup 4−} and an abnormal [(Sn{sub 2}Te{sub 6}){sub 0.75}(Sn{sub 2}Te{sub 8}){sub 0.25}]{sup 4−} anions. Compounds 1–4 exhibit narrow band gaps in the range of 1.47–1.98 eV, and a distinct red-shift of the band gaps is observed from 4 to 1−3. - Graphical abstract: Zinc tellurostannates were prepared with iodine ion assistant in polyamines, and first μ-1κ:2κ-SnTe{sub 4}, μ{sub 3}-1κ:2κ:3κ-SnTe{sub 4}, and μ-1κ:2κ-Sn{sub 2}Te{sub 6} ligands TM centers were obtained. - Highlights: • Zinc-tellurostannates were first prepared with iodine ion assistant. • Novel μ-1κ:2κ-SnTe{sub 4}, μ{sub 3}-1κ:2κ:3κ-SnTe{sub 4}, and μ-1κ:2κ-Sn{sub 2}Te{sub 6} ligands were obtained. • The Zinc tellurostannates exhibit optical bandgaps between 1.47 and 1.98 eV.

  6. Effect of Na Incorporation on the Growth and Properties of CdTe/CdS Devices OF CdTe/CdS DEVICES

    SciTech Connect

    Dhere, R.; Ramanathan, K.; Keane, J.; Zhou, J.; Moutinho, H.; Asher, S.; Noufi, R.

    2005-02-01

    Sodium is known to enhance p-type doping in copper indium diselenide (CIS)-based devices fabricated on soda-lime glass substrates, and similar amounts of Na are present in commercial cadmium telluride (CdTe) devices. We present the results on the effects of Na incorporation on the properties of CdTe/CdS solar cells prepared on borosilicate glass substrates. A NaF layer 10 to 30 nm thick was incorporated at either the CdS/CdTe interface or on the CdTe surface, as a source of Na. CdTe layers were deposited by close-spaced sublimation at substrate temperatures from 425 C (LT) to 620 C (HT), followed by heat-treatment in the presence of CdCl2 vapor. Atomic force microscopy analysis showed that the samples with NaF at the CdS/CdTe interface deposited in He ambient have larger grains with a sub-grain structure that disappears after CdCl2 heat treatment accompanied by an increase in grain size. Samples deposited in O2 ambient have smaller grains without a sub-grain structure. For samples with NaF deposited on the CdTe surface, LT samples with CdCl2 heat treatment showed a morphology similar to samples without NaF layers; but samples heat-treated in He ambient at 500 C prior to CdCl2 treatment showed a different microstructure with platelets on the surface.

  7. Atoms in Action

    SciTech Connect

    2009-01-01

    This movie produced with Berkeley Lab's TEAM 0.5 microscope shows the growth of a hole and the atomic edge reconstruction in a graphene sheet. An electron beam focused to a spot on the sheet blows out the exposed carbon atoms to make the hole. The carbon atoms then reposition themselves to find a stable configuration. http://newscenter.lbl.gov/press-releases/2009/03/26/atoms-in-action/

  8. Atomizing nozzle and process

    DOEpatents

    Anderson, Iver E.; Figliola, Richard S.; Molnar, Holly M.

    1993-07-20

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  9. Atomizing nozzle and process

    DOEpatents

    Anderson, Iver E.; Figliola, Richard S.; Molnar, Holly M.

    1992-06-30

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  10. Adaptive atom-optics in atom interferometry

    NASA Astrophysics Data System (ADS)

    Marable, M. L.; Savard, T. A.; Thomas, J. E.

    1997-02-01

    We suggest a general technique for creating virtual atom-optical elements which are adaptive. The shape and position of these elements is determined by the frequency distribution for optical fields which induce transitions in a high gradient potential. This adaptive method is demonstrated in an all-optical atom interferometer, by creating either a variable optical slit or a variable optical grating which is scanned across the atomic spatial patterns to measure the fringes. This method renders mechanical motion of the interferometer elements unnecessary.

  11. Role of the nano amorphous interface in the crystallization of Sb2Te3 towards non-volatile phase change memory: insights from first principles.

    PubMed

    Wang, Xue-Peng; Chen, Nian-Ke; Li, Xian-Bin; Cheng, Yan; Liu, X Q; Xia, Meng-Jiao; Song, Z T; Han, X D; Zhang, S B; Sun, Hong-Bo

    2014-06-14

    The nano amorphous interface is important as it controls the phase transition for data storage. Yet, atomic scale insights into such kinds of systems are still rare. By first-principles calculations, we obtain the atomic interface between amorphous Si and amorphous Sb2Te3, which prevails in the series of Si-Sb-Te phase change materials. This interface model reproduces the experiment-consistent phenomena, i.e. the amorphous stability of Sb2Te3, which defines the data retention in phase change memory, and is greatly enhanced by the nano interface. More importantly, this method offers a direct platform to explore the intrinsic mechanism to understand the material function: (1) by steric effects through the atomic "channel" of the amorphous interface, the arrangement of the Te network is significantly distorted and is separated from the p-orbital bond angle in the conventional phase-change material; and (2) through the electronic "channel" of the amorphous interface, high localized electrons in the form of a lone pair are "projected" to Sb2Te3 from amorphous Si by a proximity effect. These factors set an effective barrier for crystallization and improve the amorphous stability, and thus data retention. The present research and scheme sheds new light on the engineering and manipulation of other key amorphous interfaces, such as Si3N4/Ge2Sb2Te5 and C/Sb2Te3, through first-principles calculations towards non-volatile phase change memory. PMID:24759902

  12. Additional evidence concerning the valence-band offset in HgTe/CdTe

    NASA Astrophysics Data System (ADS)

    Young, P. M.; Ehrenreich, H.

    1991-05-01

    The consistency of large values of the valence-band offset, Λ, in HgTe/CdTe superlattices with magneto-optical experiments is examined in light of data on a 90-Å HgTe/40-Å CdTe superlattice. The data are shown to be consistent with values Λ=400+/-40 meV rather than the much smaller cited values. This analysis, when considered with photoemission experiments, leaves intact the conclusion that HgTe/CdTe superlattices are best explained by a large offset.

  13. Mechanical alloying of BiTe and BiSbTe thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Hasezaki, K.; Nishimura, M.; Umata, M.; Tsukuda, H.; Araoka, M.

    1994-06-01

    Two thermoelectric materials, BiTe and BiSbTe were prepared by mechanical attrition of elemental powders in a rare gas atmosphere. Nearly 20 min were required for the alloying of BiTe, while 10 h were required for BiSbTe. After attrition, the average powder diameter of the BiSbTe alloy was in 1.4 micron, and the impurity content, measured by Inductively Coupled Argon Plasma Emission Spectrophotometer, was less than 0.1 mass%. The MA powders were sintered by a hot pressing technique. Uniform elemental dispersions were measured by EPMA in BiSbTe alloys sintered at 623 K.

  14. Atomic Spectra Database (ASD)

    National Institute of Standards and Technology Data Gateway

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  15. Images of Atoms.

    ERIC Educational Resources Information Center

    Wright, Tony

    2003-01-01

    Recommends using a simple image, such as the fuzzy atom ball to help students develop a useful understanding of the molecular world. Explains that the image helps students easily grasp ideas about atoms and molecules and leads naturally to more advanced ideas of atomic structure, chemical bonding, and quantum physics. (Author/NB)

  16. The Nature of Atoms.

    ERIC Educational Resources Information Center

    Holden, Alan

    This monograph was written for the purpose of presenting physics to college students who are not preparing for careers in physics. It deals with the nature of atoms, and treats the following topics: (1) the atomic hypothesis, (2) the chemical elements, (3) models of an atom, (4) a particle in a one-dimensional well, (5) a particle in a central…

  17. Direct imaging of CdTe(001) surface reconstructions by high-resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Lu, Ping; Smith, David J.

    1991-08-01

    Novel reconstructions of the CdTe(001) surface have been directly observed using high-resolution electron microscopy in the profile-imaging geometry. The CdTe(001) surface, obtained by in situ annealing under ultrahigh vacuum conditions, is found to have a (2 × 1) structure at temperatures of less than about 200° C, but it transforms reversibly into a (3 × 1) structure at temperatures above 200 °C. Structural models for the reconstructions have been proposed and confirmed by extensive computer simulations. The (2 × 1) reconstruction, stabilized by Cd atoms, consists of a {1}/{2} monolayer of Cd vacancies and a large inward relaxation of the remaining surface Cd atoms, similar to the (2 × 1) reconstruction previously proposed for the GaAs(001) surface. The (3 × 1) reconstruction, stabilized by Te atoms, involves formation of surface dimers and the presence of vacancies. In both reconstructions, atomic displacements are observed that extend a few layers into the bulk and serve to reduce the strain energy.

  18. Direct imaging of incommensurate wave pockets in the charge-density-wave state of LaTe2

    NASA Astrophysics Data System (ADS)

    Yang, H. X.; Cai, Y.; Ma, C.; Li, J.; Long, Y. J.; Chen, G. F.; Tian, H. F.; Wei, L. L.; Li, J. Q.

    2016-06-01

    We herein report the study of the atomic structure for a fully incommensurate CDW in LaTe2 using Cs-corrected scanning transmission electron microscopy (STEM). It is directly revealed for the first time that the atomic displacements adopt an incommensurate wave-pocket structure along each Te chain. This pocket structure has a long periodicity determined by the CDW incommensurability. We can use the sinusoidal waves as the first-order approximation to characterize the atomic motions within the pocket pattern, which can yield atomic displacements in good agreement with the theoretical model commonly used for studying CDW. These facts demonstrate that the incommensurate pocket patterns should be an essential structural nature in the CDW states and play a critical role for developing the mechanism of the CDW transitions.

  19. Development of electrodeposited ZnTe layers as window materials in ZnTe/CdTe/CdHgTe multi-layer solar cells

    SciTech Connect

    Islam, A.B.M.O. Chaure, N.B.; Wellings, J.; Tolan, G.; Dharmadasa, I.M.

    2009-02-15

    Zinc telluride (ZnTe) thin films have been deposited on glass/conducting glass substrates using a low-cost electrodeposition method. The resulting films have been characterized using various techniques in order to optimize growth parameters. X-ray diffraction (XRD) has been used to identify the phases present in the films. Photoelectrochemical (PEC) cell and optical absorption measurements have been performed to determine the electrical conductivity type, and the bandgap of the layers, respectively. It has been confirmed by XRD measurement that the deposited layers mainly consist of ZnTe phases. The PEC measurements indicate that the ZnTe layers are p-type in electrical conduction and optical absorption measurements show that their bandgap is in the range 2.10-2.20 eV. p-Type ZnTe window materials have been used in CdTe based solar cell structures, following new designs of graded bandgap multi-layer solar cells. The structures of FTO/ZnTe/CdTe/metal and FTO/ZnTe/CdTe/CdHgTe/metal have been investigated. The results are presented in this paper using observed experimental data.

  20. PbTe and SnTe quantum dot precipitates in a CdTe matrix fabricated by ion implantation

    SciTech Connect

    Kaufmann, E.; Schwarzl, T.; Groiss, H.; Hesser, G.; Schaeffler, F.; Palmetshofer, L.; Springholz, G.; Heiss, W.

    2009-08-15

    We present rock-salt IV-VI semiconductor quantum dots fabricated by implantation of Pb{sup +}, Te{sup +}, or Sn{sup +} ions into epitaxial zinc-blende CdTe layers. PbTe and SnTe nanoprecipitates of high structural quality are formed after implantation by thermal annealing due to the immiscibility of dot and matrix materials. For samples implanted only with Pb{sup +}, intense continuous-wave photoluminescence peaked at 1.6 mum at 300 K is found. In contrast, for PbTe quantum dots fabricated by coimplantation of Pb{sup +} and Te{sup +}, the 300 K emission peak is observed at 2.9 mum, indicating luminescence from much larger dots.

  1. Single atom electrochemical and atomic analytics

    NASA Astrophysics Data System (ADS)

    Vasudevan, Rama

    In the past decade, advances in electron and scanning-probe based microscopies have led to a wealth of imaging and spectroscopic data with atomic resolution, yielding substantial insight into local physics and chemistry in a diverse range of systems such as oxide catalysts, multiferroics, manganites, and 2D materials. However, typical analysis of atomically resolved images is limited, despite the fact that image intensities and distortions of the atoms from their idealized positions contain unique information on the physical and chemical properties inherent to the system. Here, we present approaches to data mine atomically resolved images in oxides, specifically in the hole-doped manganite La5/8Ca3/8MnO3, on epitaxial films studied by in-situ scanning tunnelling microscopy (STM). Through application of bias to the STM tip, atomic-scale electrochemistry is demonstrated on the manganite surface. STM images are then further analyzed through a suite of algorithms including 2D autocorrelations, sliding window Fourier transforms, and others, and can be combined with basic thermodynamic modelling to reveal relevant physical and chemical descriptors including segregation energies, existence and strength of atomic-scale diffusion barriers, surface energies and sub-surface chemical species identification. These approaches promise to provide tremendous insights from atomically resolved functional imaging, can provide relevant thermodynamic parameters, and auger well for use with first-principles calculations to yield quantitative atomic-level chemical identification and structure-property relations. This research was sponsored by the Division of Materials Sciences and Engineering, BES, DOE. Research was conducted at the Center for Nanophase Materials Sciences, which also provided support and is a DOE Office of Science User Facility.

  2. Amorphous-to-crystalline phase transition of (InTe)x(GeTe) thin films

    NASA Astrophysics Data System (ADS)

    Song, Ki-Ho; Beak, Seung-Cheol; Lee, Hyun-Yong

    2010-07-01

    The crystallization speed (v) of the amorphous (InTe)x(GeTe) (x=0.1, 0.3, and 0.5) films and their thermal, optical, and electrical behaviors were investigated by using a nanopulse scanner (wavelength=658 nm, laser beam diameter <2 μm), x-ray diffraction, a four-point probe, and a UV-vis-IR spectrophotometer. These results were compared to the results for a Ge2Sb2Te5 (GST) film, which was comprehensively utilized for phase-change random access memory (PRAM). Both the v—value and the thermal stability of the (InTe)0.1(GeTe) and (InTe)0.3(GeTe) films were enhanced in comparison to the GST film. Contrarily, the v—value of the (InTe)0.5(GeTe) film was so drastically deteriorated that it could not be quantitatively evaluated. This deterioration occurred because the amorphous (InTe)0.5(GeTe) film had relatively high reflectance, resulting in the absorption being too low to cause the crystallization. Conclusively, proper compositional (InTe)x(GeTe) films (e.g., x<0.3) could be good candidates for PRAM application with both high crystallization speed and thermal stability.

  3. Study of Pb-doped Ge2Sb2Te5 in crystalline phase using first principle calculations

    NASA Astrophysics Data System (ADS)

    Singh, Janpreet; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2015-08-01

    To improve the phase change characteristics of Ge2Sb2Te5 (GST), doping is used as one of the effective methods. 4.4 atomic % of Pb doped GST has been studied using first principle calculations. No effect of doping on Te-Ge and Te-Sb bond length has been observed, but the Te-Te bond gets shrink with Pb doping. Due to which the Sb2Te3 segregates as a second phase, with increased doping concentration of Pb in GST alloy. Using such type of calculation, we can calculate the desirable concentration of dopant atoms to prepare the desired material. We can control any segregation in required material with pre-theoretical calculations. The metallic nature of Pd doped GST has been discussed with band structure plots. The metallic character of alloys calculated as in this paper will be helpful to understand the tuning of conductivity of phase change materials, which helps to enhance the phase change properties.

  4. Effect of InP Doping on the Phase Transition of Thin GeSbTe Films

    NASA Astrophysics Data System (ADS)

    Bang, Ki Su; Oh, Yong Jun; Lee, Seung-Yun

    2015-08-01

    We report the crystallization and phase-transition behavior of GeSbTe thin films doped with indium phosphorus (InP). Pure GeSbTe thin films and InP-doped GeSbTe thin films were prepared by use of an rf magnetron sputtering method. After thermal annealing, electrical and optical changes in the thin films were observed. Sheet resistance and reflectance measurements revealed that InP doping suppresses crystallization of GeSbTe. X-ray diffraction analysis confirmed that addition of In and P atoms inhibits the phase transition from face-centered cubic to hexagonal closed-packed. Nucleation of the doped GeSbTe thin films was delayed at an annealing temperature of 100°C; after thermal annealing, neither segregation nor formation of a secondary phase occurred. These results indicate that InP doping improves the amorphous stability of GeSbTe thin films. It is believed this enhanced amorphous stability is a result of the formation of multiple, strong crosslinks by the In and P atoms.

  5. Performance and reproducibility enhancement of HgCdTe molecular beam epitaxy growth on CdZnTe substrates using interfacial HgTe/CdTe superlattice layers

    SciTech Connect

    Chang Yong; Zhao Jun; Abad, Hisham; Grein, Christoph H.; Sivananthan, Sivalingam; Aoki, Toshihiro; Smith, David J.

    2005-03-28

    Interfacial layers including HgTe/CdTe superlattices (SLs) were introduced during the molecular-beam epitaxy growth of HgCdTe on CdZnTe (211)B substrates. Transmission-electron-microscopic observations show that the SLs smooth out the substrates' surface roughness during growth, and can also bend or block threading dislocations in a way that prevents their propagation from the substrate into the functional HgCdTe epilayers. An average etch pit density value in the low-10{sup 5} cm{sup -2} range was reproducibly achieved in long wavelength HgCdTe samples, with the best value being 4x10{sup 4} cm{sup -2}. Photoconductive decay lifetime measurements give values approaching theoretical limits, as determined by the intrinsic radiative and Auger recombination mechanisms. The use of such interfacial layers thus leads to enhanced growth yields and material properties.

  6. Multilevel Atomic Coherent States and Atomic Holomorphic Representation

    NASA Technical Reports Server (NTRS)

    Cao, Chang-Qi; Haake, Fritz

    1996-01-01

    The notion of atomic coherent states is extended to the case of multilevel atom collective. Based on atomic coherent states, a holomorphic representation for atom collective states and operators is defined. An example is given to illustrate its application.

  7. Atomic-absorption determination of rhodium in chromite concentrates

    USGS Publications Warehouse

    Schnepfe, M.M.; Grimaldi, F.S.

    1969-01-01

    Rhodium is determined in chromite concentrates by atomic absorption after concentration either by co-precipitation with tellurium formed by the reduction of tellurite with tin(II) chloride or by fire assay into a gold bead. Interelement interferences in the atomic-absorption determination are removed by buffering the solutions with lanthanum sulphate (lanthanum concentration 1%). Substantial amounts of Ag, Al, Au, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ho, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Te, Ti, V, Y, Zn and platinum metals can be tolerated. A lower limit of approximately 0.07 ppm Rh can be determined in a 3-g sample. ?? 1969.

  8. Determination of palladium and platinum by atomic absorption

    USGS Publications Warehouse

    Schnepfe, M.M.; Grimaldi, F.S.

    1969-01-01

    Palladium and platinum are determined by atomic absorption after fire-assay concentration into a gold bead. The limit of determination is ~0??06 ppm in a 20-g sample. Serious depressive interelement interferences are removed by buffering the solutions with a mixture of cadmium and copper sulphates with cadmium and copper concentrations each at 0??5%. Substantial amounts of Ag, Al, Au, Bi, Ca, Co, Cr, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Te, Ti, V, Y, Zn, and the platinum metals do not interfere in the atomic-absorption determination. ?? 1969.

  9. PAL spectroscopy of rare-earth doped Ga-Ge-Te/Se glasses

    NASA Astrophysics Data System (ADS)

    Shpotyuk, Ya.; Ingram, A.; Shpotyuk, O.

    2016-04-01

    Positron annihilation lifetime (PAL) spectroscopy was applied for the first time to study free-volume void evolution in chalcogenide glasses of Ga-Ge-Te/Se cut-section exemplified by glassy Ga10Ge15Te75 and Ga10Ge15Te72Se3 doped with 500 ppm of Tb3+ or Pr3+. The collected PAL spectra reconstructed within two-state trapping model reveal decaying tendency in positron trapping efficiency in these glasses under rare-earth doping. This effect results in unchanged or slightly increased defect-related lifetimes τ2 at the cost of more strong decrease in I2 intensities, as well as reduced positron trapping rate in defects and fraction of trapped positrons. Observed changes are ascribed to rare-earth activated elimination of intrinsic free volumes associated mainly with negatively-charged states of chalcogen atoms especially those neighboring with Ga-based polyhedrons.

  10. Energy spectrum of charge carriers in Ag{sub 2}Te

    SciTech Connect

    Aliev, F. F. Jafarov, M. B.

    2008-11-15

    On the basis of investigations of the temperature and concentration dependences of kinetic coefficients (the Hall coefficientR, the electrical conductivity {sigma}, and thermopower {alpha}{sub 0}) in n-type Ag{sub 2}Te, it is established that Ag atoms in Ag{sub 2}Te create the shallow donor levels located at a distance of (0.002-7 x 10{sup -5}T) eV from the bottom of the conduction band. It is shown that silver telluride has n-type conductivity starting with the deficiency of Ag {>=} 0.01 at % in the stoichiometric composition, and it is practically impossible to achieve the stoichiometric composition in Ag{sub 2}Te.

  11. Optical Properties and Band Gap of Single- and Few-Layer MoTe2 Crystals

    NASA Astrophysics Data System (ADS)

    Aslan, Ozgur Burak; Ruppert, Claudia; Heinz, Tony

    2015-03-01

    Single- and few-layer crystals of exfoliated MoTe2 have been characterized spectroscopically by photoluminescence, Raman scattering, and optical absorption measurements. We find that MoTe2 in the monolayer limit displays strong photoluminescence. On the basis of complementary optical absorption results, we conclude that monolayer MoTe2 is a direct-gap semiconductor with an optical band gap of 1.10 eV. This new monolayer material extends the spectral range of atomically thin direct-gap materials from the visible to the near-infrared. Supported by the NSF through Grant DMR-1124894 for sample preparation and characterization by the O?ce of Naval Research for analysis. C.R. acknowledges support from the Alexander von Humboldt Foundation.

  12. Grain-boundary-enhanced carrier collection in CdTe solar cells.

    PubMed

    Li, Chen; Wu, Yelong; Poplawsky, Jonathan; Pennycook, Timothy J; Paudel, Naba; Yin, Wanjian; Haigh, Sarah J; Oxley, Mark P; Lupini, Andrew R; Al-Jassim, Mowafak; Pennycook, Stephen J; Yan, Yanfa

    2014-04-18

    When CdTe solar cells are doped with Cl, the grain boundaries no longer act as recombination centers but actively contribute to carrier collection efficiency. The physical origin of this remarkable effect has been determined through a combination of aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, and first-principles theory. Cl substitutes for a large proportion of the Te atoms within a few unit cells of the grain boundaries. Density functional calculations reveal the mechanism, and further indicate the grain boundaries are inverted to n type, establishing local p-n junctions which assist electron-hole pair separation. The mechanism is electrostatic, and hence independent of the geometry of the boundary, thereby explaining the universally high collection efficiency of Cl-doped CdTe solar cells. PMID:24785058

  13. Glass-forming ability of TeO{sub 2} and temperature induced changes on the structure of the glassy, supercooled, and molten states

    SciTech Connect

    Kalampounias, A. G.; Tsilomelekis, G.; Boghosian, S.

    2015-04-21

    Polarized (VV) and depolarized (VH) Raman spectra are obtained for glassy, supercooled, and molten TeO{sub 2} at temperatures up to 1000 K in order to elucidate the temperature evolution of the pertinent structural and vibrational properties. The intrinsic tendency of the system for crystallization is avoided by means of a newly applied protocol, thereby enabling the recording of Raman spectra of pure TeO{sub 2} on going from the molten to the supercooled liquid and to the room temperature glass states. Following an appropriate fitting procedure, the revealed bands are assigned to specific modes of structural polymorphs. A weak polarised band at ∼880 cm{sup −1} is assigned to Te=O terminal stretching in agreement with the literature ab initio molecular orbital calculations. Subtle changes to the relative band intensities within the 550-900 cm{sup −1} stretching region are caused by temperature increase. The network-like structure of the glass/melt is composed by TeO{sub 4} trigonal bipyramid and TeO{sub 3} trigonal pyramid units. With increasing temperature, TeO{sub 4} units convert to TeO{sub 3} units with a concurrent increase in the number of Te=O sites resulting from cleavages within the network structure. The fraction of such terminal oxygen atoms has been directly estimated from the spectroscopic data. The relative populations of the basic building blocks and the average number of O atoms around Te have been estimated for a wide temperature range directly from the Raman spectra, implying a gradual transformation of TeO{sub 4/2} to TeO{sub 2/2}(= O) trigonal pyramid units. The results are discussed in the context of the current phenomenological and theoretical status of the field.

  14. Interlayer coupling mediated by hydrogenic states in CdTe/MnTe superlattices

    NASA Astrophysics Data System (ADS)

    Rusin, Tomasz M.

    1998-07-01

    We discuss a mechanism of exchange coupling between manganese magnetic moments in CdTe/MnTe superlattices. In our model the interaction between localized moments in MnTe barriers is mediated by shallow donor impurities located in nonmagnetic CdTe quantum wells. As a result we obtain a correlation between helical spin arrangements observed experimentally in MnTe barriers. The long-range nature of donor-mediated coupling and its magnitude at large distances suggest that the mechanism may be responsible for a correlation between MnTe helices observed by Nunez et al. [J. Magn. Magn. Mat. 140-144, 633 (1995)] in CdTe/MnTe superlattices.

  15. Magnetic polarons in MnTe layers

    NASA Astrophysics Data System (ADS)

    Schinagl, F.; Bonanni, A.; Holl, S.; Prechtl, G.; Krenn, H.

    1999-06-01

    We investigate the crossover from antiferromagnetic to ferromagnetic behaviour in semimagnetic semiconductor structures. Systems with two dimensional magnetic layers of (1 0 0)-MnTe equispatially inserted four times in a CdTe quantum well, embedded between Cd 0.75Mg 0.25Te barriers are studied in the ideal paramagnetic limit. The interaction between localized magnetic spins and quantum confined electronic states is shown to give rise to the formation of free magnetic polarons.

  16. Silicon waveguide based TE mode converter.

    PubMed

    Zhang, Jing; Liow, Tsung-Yang; Yu, Mingbin; Lo, Guo-Qiang; Kwong, Dim-Lee

    2010-11-22

    A silicon waveguide based TE mode converter was designed for the mode conversion between a horizontal waveguide and vertical waveguide in the two-layer structure waveguide based polarization diversity circuit. The TE mode converter's performance was studied. The polarization mode converter with minimum length of 5 μm was demonstrated to provide the TE mode conversion while maintaining the polarization status. The insertion loss at the transition region was less than 2 dB. PMID:21164874

  17. Recycling of CdTe photovoltaic waste

    DOEpatents

    Goozner, Robert E.; Long, Mark O.; Drinkard, Jr., William F.

    1999-01-01

    A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate and electrolyzing the leachate to separate Cd from Te, wherein the Te is deposits onto a cathode while the Cd remains in solution.

  18. Reaction Mechanism Underlying Atomic Layer Deposition of Antimony Telluride Thin Films.

    PubMed

    Han, Byeol; Kim, Yu-Jin; Park, Jae-Min; Yusup, Luchana L; Ishii, Hana; Lansalot-Matras, Clement; Lee, Won-Jun

    2016-05-01

    The mechanism underlying the deposition of SbTe films by alternating exposures to Sb(NMe2)3 and Te(GeMe3)2 was investigated. Sb(NMe2)3 and Te(GeMe3)2 were selected because they have very high vapor pressure and are free of Si, Cl, and O atoms in the molecules. The mechanism of deposition was proposed by density functional theory (DFT) calculation and was verified by in-situ quartz crystal microbalance (QCM) analysis. DFT calculation expected the ligand-exchange reactions between the Sb and Te precursors to form Me2NGeMe3 as the byproduct. QCM analysis indicated that a single -NMe2 group in Sb(NMe2)3 reacts with -TeGeMe3 on the surface to form an Sb2Te3 film, and that a small fraction of Sb is incorporated into the film by the thermal decomposition of Sb(NMe2)3. The Te(GeMe3)2 molecules were thermally stable up to 120 degrees C, while the Sb(NMe2)3 molecules decomposed at temperatures of 60 degrees C and higher. Sb-rich SbTe films with different Sb contents were prepared by controlling the partial decomposition of Sb(NMe2)3 molecules, which was enhanced by increasing the pulse time of the precursor. PMID:27483847

  19. Hydrothermal synthesis and characterization of two new layered vanadium tellurites Cu(TATP)V{sub 2}TeO{sub 8} and Cu(DPPZ)V{sub 2}Te{sub 2}O{sub 10}

    SciTech Connect

    Han Guangxi; Song Yongjuan; Han Zhengbo

    2009-08-15

    Two new vanadium tellurites, Cu(TATP)V{sub 2}TeO{sub 8}(1) and Cu(DPPZ)V{sub 2}Te{sub 2}O{sub 10}(2), (TATP=1,4,8,9-tetranitrogen-trisphene, DPPZ=dipyridophenazine) have been synthesized under hydrothermal conditions and structurally characterized by elemental analyses, IR, and single-crystal X-ray diffraction. Compound 1 features an interesting two-dimensional layer structure constructed by [V{sub 2}TeO{sub 8}]{sub n} double-chain-like ribbons linked by [Cu(TATP)]{sup 2+} bridges. Compound 2 consists of two types of chiral layers: one left-handed and the other right-handed, which lead to racemic solid-state compound. In each layer, there exist two types of inorganic helical chains (V{sub 4}Te{sub 4}O{sub 8}){sub n} and (Te{sub 2}O{sub 2}){sub n}, with same handedness. Two types of helical chains are linked by mu{sub 3}(O6) atoms to generate a V/Te/O inorganic anionic layer. The [Cu(DPPZ)]{sup 2+} cationic complex fragments are covalently bonded to the layer, projecting below and above the vanadium tellurites layer. - Graphical abstract: The changes of the size of the rigid aromatic chelate ligands may influence the structures of the V-Te-O framework.

  20. Te inclusion-induced electrical field perturbation in CdZnTe single crystals revealed by Kelvin probe force microscopy.

    PubMed

    Gu, Yaxu; Jie, Wanqi; Li, Linglong; Xu, Yadong; Yang, Yaodong; Ren, Jie; Zha, Gangqiang; Wang, Tao; Xu, Lingyan; He, Yihui; Xi, Shouzhi

    2016-09-01

    To understand the effects of tellurium (Te) inclusions on the device performance of CdZnTe radiation detectors, the perturbation of the electrical field in and around Te inclusions was studied in CdZnTe single crystals via Kelvin probe force microscopy (KPFM). Te inclusions were proved to act as lower potential centers with respect to surrounding CdZnTe matrix. Based on the KPFM results, the energy band diagram at the Te/CdZnTe interface was established, and the bias-dependent effects of Te inclusion on carrier transportation is discussed. PMID:27376976

  1. Hot-exciton luminescence in ZnTe/MnTe quantum wells

    NASA Astrophysics Data System (ADS)

    Pelekanos, N.; Ding, J.; Fu, Q.; Nurmikko, A. V.; Durbin, S. M.; Kobayashi, M.; Gunshor, R. L.

    1991-04-01

    Hot-exciton luminescence phenomena are investigated in a ZnTe/MnTe single-quantum-well structure where tunneling through thin MnTe barriers suppresses the formation of thermalized luminescence. The longitudinal-optical-phonon-modulated recombination spectra are excitonic in nature and show strong resonance enhancement at energies that lie within localized states below the n=1 exciton.

  2. Temperature-dependent phase separation during annealing of Ge2Sb2Te5 thin films in vacuum

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Pan, Jisheng; Fang, Lina Wei-Wei; Yeo, Yee-Chia; Foo, Yong Lim; Zhao, Rong; Shi, Luping; Tok, Eng Soon

    2012-06-01

    Thermal stability of 100 nm Ge2Sb2Te5 thin film during annealing from room temperature to 240 °C inside a UHV chamber was studied in situ by X-ray photoelectron spectroscopy (XPS) and ex situ by X-ray diffraction (XRD) and atomic force microscopy (AFM). Ge species are found to diffuse preferentially to the surface when GST film is annealed from 25 °C to 100 °C. This process is accompanied by a change of phase whereby the amorphous film completely becomes face-center-cubic (FCC) phase at 100 °C. From 100 °C to 200 °C, both Sb and Te species are observed to diffuse more to the surface. The FCC phase is partially changed into hexagonal-close-pack (HCP) phase at 200 °C. At 220 °C, FCC phase is completely transformed into HCP phase. Loss of Sb and Te are also detected from the surface and this is attributed to desorption due to their high vapor pressures. At 240 °C, Sb and Te species are found to have desorbed completely from the surface, and leave behind Ge-rich 3D droplets on the surface. The separation of Ge2Sb2Te5 into Sb,Te-rich phase and Ge-rich phase is thus the main mechanism to account for the failure of Ge2Sb2Te5-based phase change memory devices under thermal stress.

  3. Optical and electrical characterizations of highly efficient CdTe thin film solar cells prepared by close-spaced sublimation

    NASA Astrophysics Data System (ADS)

    Okamoto, T.; Yamada, A.; Konagai, M.

    2000-06-01

    The effects of the Cu diffusion on the optical and electrical properties of CdTe thin film solar cells prepared by close-spaced sublimation (CSS) were investigated by capacitance-voltage ( C- V) measurement and low-temperature photoluminescence (PL) measurement. C- V measurement revealed that the net acceptor concentration in the CdTe layer was independent of the heat treatment after screen printing of the Cu-doped graphite electrode for Cu diffusion into the CdTe layer, although it greatly affected the solar cell performance. Furthermore, the depth profile of PL spectrum of CdTe layer implies that the heat treatment for Cu diffusion facilitates the formation of low-resistance contact to CdTe through the formation of a heavily doped (p +) region in the CdTe adjacent to the back electrode, but Cu atoms do not act as effective acceptors in the CdTe layer except the region near the back electrode.

  4. MBE-Grown CdTe Layers on GaAs with In-assisted Thermal Deoxidation

    NASA Astrophysics Data System (ADS)

    Arı, Ozan; Bilgilisoy, Elif; Ozceri, Elif; Selamet, Yusuf

    2016-03-01

    Molecular beam epitaxy (MBE) growth of thin (˜2 μm) CdTe layers characterized by high crystal quality and low defect density on lattice mismatched substrates, such as GaAs and Si, has thus far been difficult to achieve. In this work, we report the effects of in situ thermal deoxidation under In and As4 overpressure prior to the CdTe growth on epiready GaAs(211)B wafers, aiming to enhance CdTe crystal quality. Thermally deoxidized GaAs samples were analyzed using in situ reflection high energy electron diffraction, along with ex situ x-ray photo-electron spectroscopy (XPS) and atomic force microscopy. MBE-grown CdTe layers were characterized using x-ray diffraction (XRD) and Everson-type wet chemical defect decoration etching. We found that In-assisted desorption allowed for easier surface preparation and resulted in a smoother surface compared to As-assisted surface preparation. By applying In-assisted thermal deoxidation to GaAs substrates prior to the CdTe growth, we have obtained single crystal CdTe films with a CdTe(422) XRD rocking curve with a full-width half-maximum value of 130.8 arc-s and etch pit density of 4 × 106 cm-2 for 2.54 μm thickness. We confirmed, by XPS analysis, no In contamination on the thermally deoxidized surface.

  5. Enhanced Thermoelectric Properties of Sn0.8Pb0.2Te Alloy by Mn Substitution

    NASA Astrophysics Data System (ADS)

    Li, J. Q.; Lu, Z. W.; Wang, C. Y.; Li, Y.; Liu, F. S.; Ao, W. Q.

    2016-06-01

    A series of (Sn0.8Pb0.2)1- x Mn x Te alloys with x = 0, 0.03, 0.06, 0.09, 0.12 and 0.15 were prepared by melting, quenching and spark plasma sintering (SPS) techniques to investigate their phases and thermoelectric properties. Mn was used as doped element in Sn0.8Pb0.2Te solid solution to reduce the carrier concentration, enhance the Seebeck coefficient and reduce the thermal conductivity of the material. Experimental results show that the SnTe-based solid solution single phase was formed in the alloys with x = 0 and 0.03. The minor irregular-shaped MnTe2 phase presents in the alloys with x ≥ 0.06, while the minor needle-like MnTe phase appears in the alloys with x ≥ 0.12, together with the SnTe-based solid solution matrix. The lattice parameter a of SnTe-based solid solution decreases nearly linearly as Mn content x increases up to 0.12, but keeps constant as x further increases. All the samples show p-type conduction. Mn doping in Sn0.8Pb0.2Te decreases its carrier concentration and thus increases its Seebeck coefficient. The solute Mn and Pb atoms in the SnTe-based solid solution, and the minor phases MnTe2 and MnTe, enhance the phonon scattering and thus reduce the thermal conductivity. As a result, the figure-of-merit ZT of the (Sn0.8Pb0.2)1- x Mn x Te composites can be enhanced with proper Mn substitution. The maximum ZT of 0.65 was obtained in the sample (Sn0.8Pb0.2)0.88Mn0.12Te at 723 K, which is higher than the 0.29 of its parent alloy Sn0.8Pb0.2Te.

  6. Copper-incorporated mono- and di-TeRu5 metal carbonyl complexes: syntheses, structures, and an unusual skeletal arrangement.

    PubMed

    Shieh, Minghuey; Miu, Chia-Yeh; Hsing, Kai-Jieah; Jang, Li-Fing; Lin, Chien-Nan

    2015-04-14

    Two sandwich-type Cu3Cl- or Cu2{Te2Ru4(CO)10}-bridging di-TeRu5 clusters, [{TeRu5(CO)14}2Cu3Cl](2-) () and [{TeRu5(CO)14}2Cu2{Te2Ru4(CO)10}](4-) (), were obtained from the reaction of [TeRu5(CO)14](2-) with 1 equiv. of [Cu(MeCN)4][BF4] in CH2Cl2 or THF at 0 °C, respectively, depending on the solvents. The chloride-abstracted was structurally characterized to have two TeRu5 cores that were linked by a Cu3Cl moiety with two Cu-Cu bonds. If the reaction was carried out in a molar ratio of 1 : 2 at 0 or 30 °C in CH2Cl2, the structural isomers [TeRu5(μ-CO)2(CO)12(CuMeCN)2] () and [TeRu5(μ-CO)3(CO)11Cu2(MeCN)2] () were produced, respectively, as the major product. Cluster displayed a TeRu5 core with two adjacent Ru3 triangles each capped by a μ3-Cu(MeCN) fragment, while contained a TeRu5 core with one triangle Ru3 plane capped by a Cu2(MeCN)2 fragment with two Cu atoms covalently bonded. Upon heating, the isomerization of into proceeded to undergo an unusual skeletal arrangement of Cu(MeCN) and migration of CO, with the TeRu5 core remaining intact. An electrochemical study revealed that and each exhibited only one oxidation while cluster had two consecutive oxidations, suggesting significant electronic communication between the two TeRu5 metal cores in via the Cu3 moiety. This work describes the facile synthesis of a series of semiconducting Cux-bridging Te-Ru carbonyl clusters, in which the incorporation of the Cux fragments has significantly influenced their resulting structures, rearrangements, and electronic properties, which was further elucidated by DFT calculations. PMID:25757103

  7. Microtubes and corrugations fabricated from strained ZnTe/CdHgTe/HgTe/CdHgTe heterofilms with 2D electron-hole gas in the HgTe quantum well

    NASA Astrophysics Data System (ADS)

    Mutilin, S. V.; Soots, R. A.; Vorob'ev, A. B.; Ikusov, D. G.; Mikhailov, N. N.; Prinz, V. Ya

    2014-07-01

    Variously shaped shells were fabricated from strained ZnTe/CdTe/CdHgTe/HgTe/CdHgTe heterofilms that contained a HgTe quantum well populated simultaneously with electrons and holes. The radius of curvature of formed tubes proved to be 12 µm and the period of corrugations about 20 µm. Such a curvature induces a 1.2% deformation in the HgTe layer sufficient for the occurrence of notable band-edge shifts in this layer and causes a transition of the band structure from a semiconductor to a semi-metal state. Curved HgTe-based films offer potential in studying surfaces where topological insulating states are interfaced with semiconductor states.

  8. The structural and electronic properties of amorphous HgCdTe from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zhao, Huxian; Chen, Xiaoshuang; Lu, Jianping; Shu, Haibo; Lu, Wei

    2014-01-01

    Amorphous mercury cadmium telluride (a-MCT) model structures, with x being 0.125 and 0.25, are obtained from first-principles calculations. We generate initial structures by computation alchemy method. It is found that most atoms in the network of amorphous structures tend to be fourfold and form tetrahedral structures, implying that the chemical ordered continuous random network with some coordination defects is the ideal structure for a-MCT. The electronic structure is also concerned. The gap is found to be 0.30 and 0.26 eV for a-Hg0.875Cd0.125Te and a-Hg0.75Cd0.25Te model structures, independent of the composition. By comparing with the properties of crystalline MCT with the same composition, we observe a blue-shift of energy band gap. The localization of tail states and its atomic origin are also discussed.

  9. Enhanced thermoelectric performance of a quintuple layer of Bi{sub 2}Te{sub 3}

    SciTech Connect

    Zhang, J.; Liu, H. J. Cheng, L.; Wei, J.; Shi, J.; Tang, X. F.; Uher, C.

    2014-07-14

    The electronic structure of a quintuple layer (QL) of Bi{sub 2}Te{sub 3} is calculated using the first-principles pseudopotential method. It is found that the band gap of an isolated QL is considerably larger than that of bulk Bi{sub 2}Te{sub 3}. The electronic transport of the QL is, then, evaluated using the semiclassical Boltzmann theory within the relaxation time approximation. By fitting the energy surface from first-principles calculations, a suitable Morse potential is constructed and used to predicate the lattice thermal conductivity via equilibrium molecular dynamics simulations. By optimizing the carrier concentration of the system, the ZT of Bi{sub 2}Te{sub 3} QL can be enhanced to a relatively high value. Moreover, the ZT value exhibits strong temperature dependence and can reach as high as 2.0 at 800 K. This value can be further increased to 2.2 by the substitution of Bi atoms with Sb atoms, giving nominal formula of (Bi{sub 0.25}Sb{sub 0.75}){sub 2}Te{sub 3}. The significantly enhanced ZT value makes QL a very appealing candidate for thermoelectric applications.

  10. The Origin of Ultralow Thermal Conductivity in InTe: Lone-Pair-Induced Anharmonic Rattling.

    PubMed

    Jana, Manoj K; Pal, Koushik; Waghmare, Umesh V; Biswas, Kanishka

    2016-06-27

    Understanding the origin of intrinsically low thermal conductivity is fundamentally important to the development of high-performance thermoelectric materials, which can convert waste-heat into electricity. Herein, we report an ultralow lattice thermal conductivity (ca. 0.4 W m(-1)  K(-1) ) in mixed valent InTe (that is, In(+) In(3+) Te2 ), which exhibits an intrinsic bonding asymmetry with coexistent covalent and ionic substructures. The phonon dispersion of InTe exhibits, along with low-energy flat branches, weak instabilities associated with the rattling vibrations of In(+) atoms along the columnar ionic substructure. These weakly unstable phonons originate from the 5s(2) lone pair of the In(+) atom and are strongly anharmonic, which scatter the heat-carrying acoustic phonons through strong anharmonic phonon-phonon interactions, as evident in anomalously high mode Grüneisen parameters. A maximum thermoelectric figure of merit (z T) of about 0.9 is achieved at 600 K for the 0.3 mol % In-deficient sample, making InTe a promising material for mid-temperature thermoelectric applications. PMID:26918541

  11. Microstructural magnetic phases in superconducting FeTe0.65Se0.35

    NASA Astrophysics Data System (ADS)

    Wittlin, A.; Aleshkevych, P.; Przybylińska, H.; Gawryluk, D. J.; Dłużewski, P.; Berkowski, M.; Puźniak, R.; Gutowska, M. U.; Wiśniewski, A.

    2012-06-01

    In this paper, we address a number of outstanding issues concerning the nature and the role of magnetic inhomogeneities in the iron chalcogenide system FeTe1-xSex and their correlation with superconductivity in this system. We report morphology of superconducting single crystals of FeTe0.65Se0.35 studied with transmission electron microscopy, high-angle annular dark-field scanning transmission electron microscopy and their magnetic and superconducting properties characterized with magnetization, specific heat and magnetic resonance spectroscopy. Our data demonstrate the presence of nanoscale hexagonal regions coexisting with a tetragonal host lattice, a chemical disorder demonstrating a nonhomogeneous distribution of host atoms in the crystal lattice, as well as iron-deficient bands hundreds of nanometres in length. From the magnetic data and ferromagnetic resonance temperature dependence, we attribute magnetic phases in Fe-Te-Se to Fe3O4 inclusions and to hexagonal symmetry nanoscale regions with a structure of the Fe7Se8 type. Our results suggest that a nonhomogeneous distribution of host atoms might be an intrinsic feature of superconducting Fe-Te-Se chalcogenides and we find a surprising correlation indicating that a faster grown crystal of inferior crystallographic properties is a better superconductor.

  12. First principles studies of the stability and Shottky barriers of metal/CdTe(111) interfaces

    NASA Astrophysics Data System (ADS)

    Dorj, Odkhuu; Miao, M. S.; Kioussis, N.; Tari, S.; Aqariden, F.; Chang, Y.; Grein, C.

    2015-03-01

    CdZnTe and CdTe based semiconductor X-Ray and Gamma-Ray detectors have been intensively studied recently due to their promising potentials for achieving high-resolution, high signal-to-noise ratios and low leakage current, all are desirable features in applications ranging from medical diagnostics to homeland security. Understanding the atomic and electronic structures of the metal/semiconductor interfaces is essential for the further improvements of performance. Using density functional calculations, we systematically studied the stability, the atomic and electronic structures of the interfaces between Cd-terminated CdTe (111) surface and the selected metals. We also calculated the Schottky barrier height (SBH) by aligning the electrostatic potentials in semiconductor and metal regions. Our calculations revealed the importance of intermixing between semiconductor and metal layers and the formation of Te-metal alloys at the interface. The obtained SBH does not depend much on the choice of metals despite the large variation of the work functions. On the other hand, the interface structure is found to have large effect to the SBH, which is attributed to the metal induced states in the gap. The position of such states is insensitive to the metal work functions, as revealed by the analysis of the electronic structures.

  13. Graphite filter atomizer in atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Katskov, Dmitri A.

    2007-09-01

    Graphite filter atomizers (GFA) for electrothermal atomic absorption spectrometry (ETAAS) show substantial advantages over commonly employed electrothermal vaporizers and atomizers, tube and platform furnaces, for direct determination of high and medium volatility elements in matrices associated with strong spectral and chemical interferences. Two factors provide lower limits of detection and shorter determination cycles with the GFA: the vaporization area in the GFA is separated from the absorption volume by a porous graphite partition; the sample is distributed over a large surface of a collector in the vaporization area. These factors convert the GFA into an efficient chemical reactor. The research concerning the GFA concept, technique and analytical methodology, carried out mainly in the author's laboratory in Russia and South Africa, is reviewed. Examples of analytical applications of the GFA in AAS for analysis of organic liquids and slurries, bio-samples and food products are given. Future prospects for the GFA are discussed in connection with analyses by fast multi-element AAS.

  14. Dislocation reduction in HgCdTe grown on CdTe/Si

    NASA Astrophysics Data System (ADS)

    Wijewarnasuriya, Priyalal S.

    2016-05-01

    Bulk-grown CdZnTe (Zn = 3%) substrates are the natural choice for HgCdTe epitaxy since it is lattice matched to long wave LW-HgCdTe alloy. However, lack of large area CdZnTe substrates, high production costs, and more importantly, the difference in thermal expansion coefficients between CdZnTe and silicon Read out Integrated Circuits (ROIC) are some of the inherent drawbacks of CdZnTe substrates. Consequently, Hg1-xCdxTe detectors fabricated on silicon substrates are an attractive alternative. Recent developments in the molecular beam epitaxy (MBE) buffer layer growth technology on Si substrates has revolutionized the HgCdTe research and offered a new dimension to HgCdTe-based IR technology. Si substrates provide advantages in terms of relatively large area (3 to 6-inch diameter is easily obtained) compared to CZT substrate materials, durability during processing, and reliability to thermal cycling. Innovations in Si-based composite substrates made it possible to fabricate very large-format IR arrays that offer higher resolution, low-cost arrays and more dies per wafer. Between Si substrates and HgCdTe has large lattice mismatch of 19%. This leads to dislocation densities of low-107 cm-2 for optimal growth of HgCdTe on silicon-based substrates as compared to the mid-104 cm-2 dislocation density of HgCdTe grown on CdZnTe. This paper present dislocation reduction by two orders of magnitude using thermal cycle anneal under Hg environment on HgCdTe grown on Si substrates and as well as defect reduction in Cd(Se)Te buffer layers grown on Si Substrates.

  15. Response of Cds/CdTe Devices to Te Exposure of Back Contact: Preprint

    SciTech Connect

    Gessert, T. A.; Burst, J. M.; Ma, J.; Wei, S. H.; Kuciauskas, D.; Barnes, T. M.; Duenow, J. N.; Young, M. R.; Rance, W. L.; Li, J. V.; Dippo, P.

    2012-06-01

    Theoretical predictions of thin-film CdS/CdTe photovoltaic (PV) devices have suggested performance may be improved by reducing recombination due to Te-vacancy (VTe) or Te-interstitial (Tei) defects. Although formation of these intrinsic defects is likely influenced by CdTe deposition parameters, it also may be coupled to formation of beneficial cadmium vacancy (VCd) defects. If this is true, reducing potential effects of VTe or Tei may be difficult without also reducing the density of VCd. In contrast, post-deposition processes can sometimes afford a greater degree of defect control. Here we explore a post-deposition process that appears to influence the Te-related defects in polycrystalline CdTe. Specifically, we have exposed the CdTe surface to Te prior to ZnTe:Cu/Ti contact-interface formation with the goal of reducing VTe but without significantly reducing VCd. Initial results show that when this modified contact is used on a CdCl2-treated CdS/CdTe device, significantly poorer device performance results. This suggests two things: First, the amount of free-Te available during contact formation (either from chemical etching or CuTe or ZnTe deposition) may be a more important parameter to device performance than previously appreciated. Second, if processes have been used to reduce the effect of VTe (e.g., oxygen and chlorine additions to the CdTe), adding even a small amount of Te may produce detrimental defects.

  16. Element substitution from substrates in Bi2Se3, Bi2Te3 and Sb2Te3 overlayers deposited by hot wall epitaxy

    NASA Astrophysics Data System (ADS)

    Takagaki, Y.; Jahn, U.; Jenichen, B.; Berlin, K.; Kong, X.; Biermann, K.

    2014-09-01

    In depositing Bi2Se3, Bi2Te3 or Sb2Te3 layers on certain substrates by hot wall epitaxy, the Bi and Sb atoms in the layers are replaced by the atoms supplied from the substrates. We extend our exploration on this substitution phenomenon for a number of combinations of the layer and the substrate to infer the factors that determine the occurrence of the substitution. Using a series of Ga- and In-based III-V substrates, it is evidenced that the group III atoms substitute the group V overlayer atoms when the bonds in the substrates are weak. We demonstrate that Ag triggers the substitution more effectively than Cu as a catalyst. The competition between the catalyst-induced substitutions on ternary alloy substrates shows that the dependence on the bond strength is not as strong as to be exclusive. Additionally, defectiveness around the interface between a semicoherently grown α-In2Se3 layer produced by the substitution and the InAs substrate is demonstrated. The cathodeluminescence properties are also provided focusing on the dependence on the phase of In2Se3.

  17. Advances in atomic physics

    PubMed Central

    El-Sherbini, Tharwat M.

    2013-01-01

    In this review article, important developments in the field of atomic physics are highlighted and linked to research works the author was involved in himself as a leader of the Cairo University – Atomic Physics Group. Starting from the late 1960s – when the author first engaged in research – an overview is provided of the milestones in the fascinating landscape of atomic physics. PMID:26425356

  18. Atomic Oxygen Effects

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K. R.

    2014-01-01

    Atomic oxygen, which is the most predominant species in low Earth orbit, is highly reactive and can break chemical bonds on the surface of a wide variety of materials leading to volatilization or surface oxidation which can result in failure of spacecraft materials and components. This presentation will give an overview of how atomic oxygen reacts with spacecraft materials, results of space exposure testing of a variety of materials, and examples of failures caused by atomic oxygen.

  19. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides.

  20. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides. (auth)

  1. Solar Spectroscopy: Atomic Processes

    NASA Astrophysics Data System (ADS)

    Mason, H.; Murdin, P.

    2000-11-01

    A Greek philosopher called DEMOCRITUS (c. 460-370 BC) first introduced the concept of atoms (which means indivisible). His atoms do not precisely correspond to our atoms of today, which are not indivisible, but made up of a nucleus (protons with positive charge and neutrons which have no charge) and orbiting electrons (with negative charge). Indeed, in the solar atmosphere, the temperature is suc...

  2. Angle-resolved photoemission studies of the CdTe(110) surface

    NASA Astrophysics Data System (ADS)

    Qu, H.; Kanski, J.; Nilsson, P. O.; Karlsson, U. O.

    1991-06-01

    The electronic structure of the CdTe(110) surface has been studied with angle-resolved photoelectron spectroscopy using synchrotron radiation. An empirical tight-binding linar combination of atomic orbitals band structure has been derived, based on normal-emission spectra. Several, previously unreported, surface-related states have been observed in off-normal emission, and their dispersions have been mapped along symmetry directions of the surface Brillouin zone.

  3. Visualization of atom's orbits.

    PubMed

    Kim, Byungwhan

    2014-02-01

    High-resolution imaging techniques have been used to obtain views of internal shapes of single atoms or columns of atoms. This review article focuses on the visualization of internal atomic structures such as the configurations of electron orbits confined to atoms. This is accomplished by applying visualization techniques to the reported images of atoms or molecules as well as static and dynamic ions in a plasma. It was found that the photon and electron energies provide macroscopic and microscopic views of the orbit structures of atoms, respectively. The laser-imaged atoms showed a rugged orbit structure, containing alternating dark and bright orbits believed to be the pathways for an externally supplied laser energy and internally excited electron energy, respectively. By contrast, the atoms taken by the electron microscopy provided a structure of fine electron orbits, systematically formed in increasing order of grayscale representing the energy state of an orbit. This structure was identical to those of the plasma ions. The visualized electronic structures played a critical role in clarifying vague postulates made in the Bohr model. Main features proposed in the atomic model are the dynamic orbits absorbing an externally supplied electromagnetic energy, electron emission from them while accompanying light radiation, and frequency of electron waves not light. The light-accompanying electrons and ionic speckles induced by laser light signify that light is composed of electrons and ions. PMID:24749452

  4. Improved graphite furnace atomizer

    DOEpatents

    Siemer, D.D.

    1983-05-18

    A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

  5. Quantum Anomalous Hall Effect in Hg_1-yMn_yTe Quantum Wells

    SciTech Connect

    Liu, Chao-Xing; Qi, Xiao-Liang; Dai, Xi; Fang, Zhong; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    The quantum Hall effect is usually observed when the two-dimensional electron gas is subjected to an external magnetic field, so that their quantum states form Landau levels. In this work we predict that a new phenomenon, the quantum anomalous Hall effect, can be realized in Hg{sub 1-y}Mn{sub y}Te quantum wells, without the external magnetic field and the associated Landau levels. This effect arises purely from the spin polarization of the Mn atoms, and the quantized Hall conductance is predicted for a range of quantum well thickness and the concentration of the Mn atoms. This effect enables dissipationless charge current in spintronics devices.

  6. Tellurium precipitates in (Cd,Mn)Te:V crystals: Effects of annealing

    SciTech Connect

    Kochanowska,D.; Mycielski, A.; Witkowska-Baran, M.; Szadkowski, A.; Witkowska, B.; Kaliszek, W.; Cui, Y.; James, R. B.

    2008-10-19

    We suggest that (Cd,Mn)Te is a suitable material for fabricating gamma- and X-ray detectors. Our investigations, reported here, are focused on producing high-quality (Cd,Mn)Te crystals with high resistivity (10{sup 9} {Omega}-cm) by the Bridgman method. As-grown, undoped (Cd,Mn)Te crystals are typically p-type, signifying that they contain excess Cd vacancies (acting as acceptors), accumulated during growth. Doping with vanadium atoms, which function as compensating centers, results in a semi-insulating material (Cd,Mn)Te:V. Properly annealing the platelets in cadmium vapors at uniform temperature reduces the number of cadmium vacancies, and lowers the level of the vanadium doping required for compensation. We found that annealing in cadmium vapors not only decreases the concentration of the native cadmium vacancies but also improves the crystal's quality. Infrared observations of the interior of the samples show that annealing in a temperature gradient perpendicular to the platelet has an additional effect, viz., the tellurium precipitates migrate towards the side where the temperature is higher. We demonstrate, with IR pictures of monocrystalline (Cd,Mn)Te:V platelets cut parallel to the (111) crystal planes, the influence on tellurium inclusions and precipitates of various conditions of annealing in cadmium vapors.

  7. High thermal stability Sb3Te-TiN2 material for phase change memory application

    NASA Astrophysics Data System (ADS)

    Ji, Xinglong; Wu, Liangcai; Zhou, Wangyang; Zhu, Min; Rao, Feng; Song, Zhitang; Cao, Liangliang; Feng, Songlin

    2015-01-01

    For phase change memory (PCM) applications, it has been widely accepted that δ phase Sb-Te has fast operation speed and good phase stability. However, the fast growth crystallization mechanism will cause poor amorphous phase stability and overlarge grain size. We introduce TiN2 into δ phase Sb-Te (Sb3Te) to enhance the amorphous thermal stability and refine the grain size. With TiN2 incorporating, the temperature for 10-year data retention increases from 79 °C to 124 °C. And the grain size decreases to dozens of nanometers scale. Based on X-ray photoelectron spectroscopy and transmission electron microscopy results, we knew that nitrogen atoms bond with titanium, forming disorder region at the grain boundary of Sb3Te-TiN2 (STTN). Thus, STTN has a quite different crystallization mechanism from Sb3Te. Furthermore, PCM device based on STTN can realize reversible phase change under 20 ns electrical pulse.

  8. Inherent instability by antibonding coupling in AgSbTe2

    NASA Astrophysics Data System (ADS)

    Shinya, Hikari; Masago, Akira; Fukushima, Tetsuya; Katayama-Yoshida, Hiroshi

    2016-04-01

    In the present paper, an inherent instability in the ternary chalcogenide compound AgSbTe2 is described from the electronic structure viewpoint. Our calculations, which are based on the cluster expansion method, suggest nine stable crystal structures involving the most stable structure with Fd\\bar{3}m symmetry. The effective pair interactions calculated by the generalized perturbation method point out that the stability of these structures originates from the number of linear arrangements of the Ag-Te-Sb atomic bonds. Moreover, it is found that AgSbTe2 has a special electronic structure, where the dominant components of the top of the valence band are the Te-5p antibonding states. Such an antibonding contribution leads to an inherent instability, such that the system spontaneously forms various mutation phases caused by charge-compensated defect complexes. We propose that these mutation phases play an important role in the thermal conductivity and thermoelectric efficiency in AgSbTe2.

  9. Nanoscale Inhomogeneous Superconductivity in Fe(Te1-xSex) Probed by Nanostructure Transport.

    PubMed

    Yue, Chunlei; Hu, Jin; Liu, Xue; Sanchez, Ana M; Mao, Zhiqiang; Wei, Jiang

    2016-01-26

    Among iron-based superconductors, the layered iron chalcogenide Fe(Te1-xSex) is structurally the simplest and has attracted considerable attention. It has been speculated from bulk studies that nanoscale inhomogeneous superconductivity may inherently exist in this system. However, this has not been directly observed from nanoscale transport measurements. In this work, through simple micromechanical exfoliation and high-precision low-energy ion milling thinning, we prepared Fe(Te0.5Se0.5) nanoflakes with various thicknesses and systematically studied the correlation between the thickness and superconducting phase transition. Our result revealed a systematic thickness-dependent evolution of superconducting transition. When the thickness of the Fe(Te0.5Se0.5) flake is reduced to less than the characteristic inhomogeneity length (around 12 nm), both the superconducting current path and the metallicity of the normal state in Fe(Te0.5Se0.5) atomic sheets are suppressed. This observation provides the first transport evidence for the nanoscale inhomogeneous nature of superconductivity in Fe(Te1-xSex). PMID:26691639

  10. Graphite/CdMnTe Schottky diodes and their electrical characteristics

    NASA Astrophysics Data System (ADS)

    Kosyachenko, L. A.; Yatskiv, R.; Yurtsenyuk, N. S.; Maslyanchuk, O. L.; Grym, J.

    2014-01-01

    The first Schottky diodes based on n-CdMnTe crystals with pronounced rectifying properties are investigated. It is shown that the I-V characteristics of the diodes fabricated by printing colloidal graphite can be described by the Sah-Noyce-Shockley theory of generation-recombination in the space charge region. Exponential increase of forward current with voltage is limited by a relatively low barrier height at the graphite/CdMnTe contact (˜ 0.4 eV) and a significant series resistance of the crystal bulk (˜ 106 Ω at room temperature). Tunneling due to high concentration of uncompensated impurities in investigated Cd0.9Mn0.1Te crystals (7 × 1017 cm-3) does not allow increasing the reverse bias voltage to the values needed for the operation of x- and γ-ray detectors. High concentration of uncompensated donors is interpreted by the fact that a certain part of the Mn atoms does not substitute for Cd but plays a role of over-stoichiometric impurities. In the case of the presence of a thin intermediate insulator layer in the graphite/CdMnTe contact, a rapid increase in the current for both polarities of high voltage due to the Frenkel-Poole emission is observed. The obtained results shed light on the problems of technology of growing and post-processing CdMnTe crystals regarded as a prospective material for x- and γ-ray detectors.

  11. Synthesis and characterization of nanocrystalline MoBi2Te5 thin films for photoelectrode applications

    NASA Astrophysics Data System (ADS)

    Salunkhe, M. M.; Kharade, R. R.; Mane, R. M.; Bhosale, P. N.

    2012-10-01

    Molybdenum bismuth telluride thin films have been prepared on clean glass substrate using arrested precipitation technique which is based on self-organized growth process. As deposited MoBi2Te5 thin films were dried in constant temperature oven at 110°C and further characterized for their optical, structural, morphological, compositional, and electrical analysis. Optical absorption spectra recorded in the wavelength range 300-800 nm showed band gap (E g) 1.44 eV. X-ray diffraction pattern and scanning electron microscopic images showed that MoBi2Te5 thin films are granular, nanocrystalline having rhombohedral structure. The compositional analysis showed close agreements in theoretical and experimental atomic percentages of Mo4+, Bi3+, and Te2- suggest that chemical formula MoBi2Te5 assigned to as deposited molybdenum bismuth telluride new material is confirmed. The electrical conductivity and thermoelectric power measurement showed that the films are semiconducting with n-type conduction. The fill factor and conversion efficiency was characterized by photoelectrochemical (PEC) technique. In this article, we report the optostructural, morphological, compositional, and electrical characteristics of nanocrystalline MoBi2Te5 thin films to check its suitability as photoelectrode in PEC cell.

  12. Particulate contacts to Si and CdTe: Al, Ag, Hg-Cu-Te, and Sb-Te

    NASA Astrophysics Data System (ADS)

    Schulz, Douglas L.; Ribelin, Rosine; Curtis, Calvin J.; Ginley, David S.

    1999-03-01

    Our team has been investigating the use of particle-based contacts in both Si and CdTe solar cell technologies. First, in the area of contacts to Si, powders of Al and Ag prepared by an electroexplosion process have been characterized by transmission electron microscopy (TEM), TEM elemental determination X-ray spectroscopy (TEM-EDS), and TEM electron diffraction (TEM-ED). These Al and Ag particles were slurried and tested as contacts to p- and n-type silicon wafers, respectively. Linear current-voltage (I-V) was observed for Ag on n-type Si, indicative of an ohmic contact, whereas the Al on p-type Si sample was non-ideal. A wet-chemical surface treatment was performed on one Al sample and TEM-EDS indicated a substantial decrease in the O contaminant level. The treated Al on p-type Si films exhibited linear I-V after annealing. Second, in the area of contacts to CdTe, particles of Hg-Cu-Te and Sb-Te have been applied as contacts to CdTe/CdS/SnO2 heterostructures prepared by the standard NREL protocol. First, Hg-Cu-Te and Sb-Te were prepared by a metathesis reaction. After CdCl2 treatment and NP etch of the CdTe layer, particle contacts were applied. The Hg-Cu-Te contacted cells exhibited good electrical characteristics, with Voc>810 mV and efficiencies > 11.5% for most cells. Although Voc>800 mV were observed for the Sb-Te contacted cells, efficiencies in these devices were limited to 9.1% presumably by a large series resistance (>20 Ω) observed in all samples.

  13. Effect of annealing temperature on structure and electrical properties of topological insulator Bi2Te3

    NASA Astrophysics Data System (ADS)

    Urkude, R. R.; Palikundwar, U. A.

    2016-05-01

    Bi2Te3 samples were prepared by precipitation method. The samples were annealed in evacuated quartz tubes and were treated at different temperature for different duration of time. Effects of annealing temperature and time on the structure of Bi2Te3 were studied in detail. The Bi2Te3 samples annealed at temperature 300°C and 450°C for 48Hrs, 72Hrs and 96Hrs were selected for the present study. The structure of Bi2Te3 and related phases were investigated by the X-ray powder diffraction technique. Morphology and chemical compositions of the samples were investigated by scanning electron microscope and energy dispersive X-ray spectroscopy respectively. All the samples were indexed in rhombohedral crystal structure, with a space group R-3m. The structure consists of repeated quintuple layers of atoms, Te2-Bi-Te1-Bi-Te2 stacking along the z-axis of the unit cell. Electrical properties of the sample annealed at 300°C for 96Hrs was evaluated by measurements of the electrical resistivity and magnetoresistance. The magnetoresistance data at low temperature (1.5 to 50 K) were analyzed to investigate weak antilocalization (WAL) effect. MR data followed the Hikami-Larkin-Nagaoka (HLN) equation with a fit parameter α close to -1 as expected for topological surface states at 1.5 K, but for other temperatures the small oscillations were observed which may be due to the phenomena like Shubnikov-de Hass effect.

  14. Cyclotron resonance in HgTe/CdTe-based heterostructures in high magnetic fields.

    PubMed

    Zholudev, Maxim S; Ikonnikov, Anton V; Teppe, Frederic; Orlita, Milan; Maremyanin, Kirill V; Spirin, Kirill E; Gavrilenko, Vladimir I; Knap, Wojciech; Dvoretskiy, Sergey A; Mihailov, Nikolay N

    2012-01-01

    : Cyclotron resonance study of HgTe/CdTe-based quantum wells with both inverted and normal band structures in quantizing magnetic fields was performed. In semimetallic HgTe quantum wells with inverted band structure, a hole cyclotron resonance line was observed for the first time. In the samples with normal band structure, interband transitions were observed with wide line width due to quantum well width fluctuations. In all samples, impurity-related magnetoabsorption lines were revealed. The obtained results were interpreted within the Kane 8·8 model, the valence band offset of CdTe and HgTe, and the Kane parameter EP being adjusted. PMID:23013642

  15. Cyclotron resonance in HgTe/CdTe-based heterostructures in high magnetic fields

    PubMed Central

    2012-01-01

    Cyclotron resonance study of HgTe/CdTe-based quantum wells with both inverted and normal band structures in quantizing magnetic fields was performed. In semimetallic HgTe quantum wells with inverted band structure, a hole cyclotron resonance line was observed for the first time. In the samples with normal band structure, interband transitions were observed with wide line width due to quantum well width fluctuations. In all samples, impurity-related magnetoabsorption lines were revealed. The obtained results were interpreted within the Kane 8·8 model, the valence band offset of CdTe and HgTe, and the Kane parameter EP being adjusted. PMID:23013642

  16. Ferromagnetism and topological surface states of manganese doped Bi{sub 2}Te{sub 3}: Insights from density-functional calculations

    SciTech Connect

    Li, Yuanchang; Zou, Xiaolong; Li, Jia; Zhou, Gang

    2014-03-28

    Based on first-principles calculations, the electronic, magnetic, and topological characters of manganese (Mn) doped topological insulator Bi{sub 2}Te{sub 3} were investigated. The Mn substitutionally doped Bi{sub 2}Te{sub 3}, where Mn atoms tend to be uniformly distributed, was shown to be p-type ferromagnetic, arising from hole-mediated Ruderman-Kittel-Kasuya-Yosida interaction. Mn doping leads to an intrinsic band splitting at Γ point, which is substantially different from that of nonmagnetic dopant. The topological surface state of Bi{sub 2}Te{sub 3} is indeed gapped by Mn doping; however, the bulk conductance limits the appearance of an insulating state. Moreover, the n-type doping behavior of Bi{sub 2}Te{sub 3} is derived from Mn entering into the van der Waals gap of Bi{sub 2}Te{sub 3}.

  17. Electronic structure of the CdTe(111) A-(2 × 2) surface

    NASA Astrophysics Data System (ADS)

    Bekenev, V. L.; Zubkova, S. M.

    2015-09-01

    Based on data of scanning tunneling microscopy, ab initio calculations of the electronic structure were performed for the first time for four variants of Cd-terminated polar CdTe(111) A-(2 × 2) surfaces, namely, ideal, relaxed, reconstructed with a Cd vacancy, and reconstructed with the subsequent relaxation. In the approximation of a layered superlattice, the surfaces were simulated by a film with a thickness of 12 atomic layers and a vacuum gap of ˜16 Å. Dangling bonds of Te atoms were closed by adding, on the opposite side of the film, four fictive hydrogen atoms, each having a charge of 0.5 electrons. Ab initio calculations were performed with the QUANTUM ESPRESSO program based on the density functional theory. In each of the variants, the equilibrium coordinates of 16 (15) atoms of cadmium and tellurium of the upper four freestanding layers were determined. It was shown that the relaxation leads to a splitting of layers of both the unreconstructed and reconstructed surfaces. For four variants of the surfaces, the band structures were calculated and analyzed, as well as the total densities of states of the surfaces and densities of states of individual layers. After the relaxation of the reconstructed surface, the upper two atomic layers 11 and 12 changed their places, which can be responsible for the specific features of the surface structure of these layers.

  18. Tellurium antisites in CdZnTe

    NASA Astrophysics Data System (ADS)

    Chu, Muren; Terterian, Sevag; Ting, David; James, Ralph B.; Erickson, Jay C.; Yao, H. Walter; Lam, Terrance T.; Szawlowski, Marek; Szczebiot, Richard W.

    2001-12-01

    The n-type conduction of CdTe and Cd0.96Zn0.04Te crystals grown from melts with excess tellurium indicates that the origin of the donors with an energy level at 0.01 eV below the conduction band are most likely singly ionized tellurium antisites instead of cadmium interstitials. Based on this model, the deep level at 0.75 eV below the conduction band is therefore doubly ionized tellurium antisites. After increasing the zinc content over 7%, CdZnTe turns to p-type. The conduction type variation of CdZnTe crystals as a function of zinc contents is explained by the compensation between the donors of Te-antisites and the acceptors of Cd vacancies. High resitivity Cd0.9Zn0.1Te crystals are produced by compensating the p-type crystals with indium at a low doping level of 1- 5x1015 cm-3. At room temperature, the high yield CdZnTe radiation detectors can resolve the six low energy peaks from the Am241 source, a performance comparable to the best reported CdZnTe detectors.

  19. CdTe devices and method of manufacturing same

    DOEpatents

    Gessert, Timothy A.; Noufi, Rommel; Dhere, Ramesh G.; Albin, David S.; Barnes, Teresa; Burst, James; Duenow, Joel N.; Reese, Matthew

    2015-09-29

    A method of producing polycrystalline CdTe materials and devices that incorporate the polycrystalline CdTe materials are provided. In particular, a method of producing polycrystalline p-doped CdTe thin films for use in CdTe solar cells in which the CdTe thin films possess enhanced acceptor densities and minority carrier lifetimes, resulting in enhanced efficiency of the solar cells containing the CdTe material are provided.

  20. Device Fabrication using Crystalline CdTe and CdTe Ternary Alloys Grown by MBE

    SciTech Connect

    Zaunbrecher, Katherine; Burst, James; Seyedmohammadi, Shahram; Malik, Roger; Li, Jian V.; Gessert, Timothy A.; Barnes, Teresa

    2015-06-14

    We fabricated epitaxial CdTe:In/CdTe:As homojunction and CdZnTe/CdTe and CdMgTe/CdTe heterojunction devices grown on bulk CdTe substrates in order to study the fundamental device physics of CdTe solar cells. Selection of emitter-layer alloys was based on passivation studies using double heterostructures as well as band alignment. Initial results show significant device integration challenges, including low dopant activation, high resistivity substrates and the development of low-resistance contacts. To date, the highest open-circuit voltage is 715 mV in a CdZnTe/CdTe heterojunction following anneal, while the highest fill factor of 52% was attained in an annealed CdTe homojunction. In general, all currentvoltage measurements show high series resistance, capacitancevoltages measurements show variable doping, and quantum efficiency measurements show low collection. Ongoing work includes overcoming the high resistance in these devices and addressing other possible device limitations such as non-optimum junction depth, interface recombination, and reduced bulk lifetime due to structural defects.

  1. Structural and Magnetic Characterization of EuTe/SnTe Superlattices Grown by Molecular Beam Epitaxy

    SciTech Connect

    Diaz, B.; Abramof, E.; Rappl, P. H. O.; Granado, E.; Chitta, V. A.; Henriques, A. B.; Oliveira, N. F. Jr.

    2010-01-04

    Here we investigate the structural and magnetic properties of 24 repetitions EuTe/SnTe superlattices (SLs), with 3 monolayers (ML) EuTe films and SnTe thicknesses between 13 and 36 ML. The SLs were grown by molecular beam epitaxy on 3 {mu}m SnTe buffer layers, grown on top of (111)BaF{sub 2} substrates. High resolution x-ray diffraction measurements indicated that the SLs with thicker SnTe layers have higher structural quality. This is due to the SnTe growth mode on EuTe, which starts in islands and evolves to layer-by-layer. The magnetic diffraction peak observed for the higher quality SLs proved the existence of antiferromagnetic order within the individual EuTe layers. Decreasing the width of the non-magnetic SnTe layers resulted in rougher interfaces, and the fading of the magnetic peak signal. The magnetization versus applied field curves indicated that the magnetic moments of SLs with thinner SnTe layers were also harder to align along the field direction. We interpret our results considering the loss of Eu neighbors, related with the increasing roughness of the SL interfaces.

  2. Rational design and controlled synthesis of Te/Bi2Te3 heterostructure nanostring composites

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhuo; Chen, Hong; Li, Zhiliang; Huang, Ting; Zheng, Shuqi

    2015-07-01

    Te/Bi2Te3 heterostructure nanostring composites composed of several Bi2Te3 nanoplates, which were perpendicularly strung together by Te nanorod, were rationally designed and synthesized via a facile solvothermal method on a large scale. The X-ray diffraction (XRD) characterization demonstrated that the Bi2Te3 nanoplates were rhombohedral phase and the Te nanorods were trigonal phase. The uniform nanostring morphologies were well characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Detailed heterostructures were proved via energy dispersive spectrometer (EDS) and high-resolution transmission electron microscope (HRTEM). The morphology transformation from Bi2Te3 nanoplates to Te/Bi2Te3 heterostructure nanostrings could be controlled by adjusting the ratio of bismuth oxide to tellurium oxide. NaOH, serving as catalytic reduction agent and morphology controlling agent, played an important role in the synthesis of Te/Bi2Te3 heterostructure nanostrings. The reaction mechanism was also proposed to explain the formation process of the composites and the specific function of reagents in this reaction system.

  3. A Simple Sb2Te3 Back-Contact Process for CdTe Solar Cells

    NASA Astrophysics Data System (ADS)

    Siepchen, B.; Späth, B.; Drost, C.; Krishnakumar, V.; Kraft, C.; Winkler, M.; König, J.; Bartholomé, K.; Peng, S.

    2015-10-01

    CdTe solar technology has proved to be a cost-efficient solution for energy production. Formation of the back contact is an important and critical step in preparing high-efficiency, stable CdTe solar cells. In this paper we report a simple CdTe solar cell (Sb2Te3) back contact-formation process. The CdS and CdTe layers were deposited by close-space sublimation. After CdCl2 annealing treatment, the CdTe surface was etched by use of a mixture of nitric and phosphoric acids to obtain a Te-rich surface. Elemental Sb was sputtered on the etched surface and successive post-annealing treatment induced Sb2Te3 alloy formation. Structural characterization by x-ray diffraction analysis confirmed formation of the Sb2Te3 phase. The performance of solar cells with nanoalloyed Sb2Te3 back contacts was comparable with that of reference solar cells prepared with sputtered Sb2Te3 back contact from a compound sputter target.

  4. Preparation and properties of evaporated CdTe films compared with single crystal CdTe

    NASA Astrophysics Data System (ADS)

    Bube, R. H.

    The hot wall vacuum deposition system is discussed and is is good temperature tracking between the furnace core and the CdTe source itself are indicated. Homojunction cells prepared by HWVE deposition of n-CdTe on p-CdTe substrates show no significant change in dark or light properties after open circuit storage for the next 9 months. CdTe single crystal boules were grown with P, As and Cs impurity. For P impurity it appears that the segregation coefficient is close to unity, that the value of hole density is controlled by the P, and that growth with excess Cd gives slightly higher values of hole density than growth with excess Te. CdTe:As crystals appear similar to CdTe:P crystals.

  5. ZnO/ZnSe/ZnTe Heterojunctions for ZnTe-Based Solar Cells

    SciTech Connect

    Wang, W.; Phillips, J. D.; Kim, S. J.; Pan, X.

    2011-04-19

    ZnO and ZnSe are proposed as n-type layers in ZnTe heterojunction diodes to overcome problems associated with the n-type doping of ZnTe. The structural properties and electrical characteristics of ZnO/ZnTe and ZnO/ZnSe/ZnTe heterojunctions grown by molecular beam epitaxy on (001) GaAs substrates are presented. ZnO shows a strong preference for c-plane (0001) orientation resulting in a nonepitaxial relationship and high density of rotational domains for growth on ZnTe (001). ZnSe/ZnTe structures demonstrate a (001) epitaxial relationship with high density of {111} stacking faults originating at the heterojunction interface. ZnO/ZnSe/ZnTe heterojunction diodes show excellent diode rectification and clear photovoltaic response with open-circuit voltage of V{sub OC} = 0.8 V.

  6. Atomic Oxygen Fluence Monitor

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.

    2011-01-01

    This innovation enables a means for actively measuring atomic oxygen fluence (accumulated atoms of atomic oxygen per area) that has impinged upon spacecraft surfaces. Telemetered data from the device provides spacecraft designers, researchers, and mission managers with real-time measurement of atomic oxygen fluence, which is useful for prediction of the durability of spacecraft materials and components. The innovation is a compact fluence measuring device that allows in-space measurement and transmittance of measured atomic oxygen fluence as a function of time based on atomic oxygen erosion yields (the erosion yield of a material is the volume of material that is oxidized per incident oxygen atom) of materials that have been measured in low Earth orbit. It has a linear electrical response to atomic oxygen fluence, and is capable of measuring high atomic oxygen fluences (up to >10(exp 22) atoms/sq cm), which are representative of multi-year low-Earth orbital missions (such as the International Space Station). The durability or remaining structural lifetime of solar arrays that consist of polymer blankets on which the solar cells are attached can be predicted if one knows the atomic oxygen fluence that the solar array blanket has been exposed to. In addition, numerous organizations that launch space experiments into low-Earth orbit want to know the accumulated atomic oxygen fluence that their materials or components have been exposed to. The device is based on the erosion yield of pyrolytic graphite. It uses two 12deg inclined wedges of graphite that are over a grit-blasted fused silica window covering a photodiode. As the wedges erode, a greater area of solar illumination reaches the photodiode. A reference photodiode is also used that receives unobstructed solar illumination and is oriented in the same direction as the pyrolytic graphite covered photodiode. The short-circuit current from the photodiodes is measured and either sent to an onboard data logger, or

  7. Evanescent Wave Atomic Mirror

    NASA Astrophysics Data System (ADS)

    Ghezali, S.; Taleb, A.

    2008-09-01

    A research project at the "Laboratoire d'électronique quantique" consists in a theoretical study of the reflection and diffraction phenomena via an atomic mirror. This poster presents the principle of an atomic mirror. Many groups in the world have constructed this type of atom optics experiments such as in Paris-Orsay-Villetaneuse (France), Stanford-Gaithersburg (USA), Munich-Heidelberg (Germany), etc. A laser beam goes into a prism with an incidence bigger than the critical incidence. It undergoes a total reflection on the plane face of the prism and then exits. The transmitted resulting wave out of the prism is evanescent and repulsive as the frequency detuning of the laser beam compared to the atomic transition δ = ωL-ω0 is positive. The cold atomic sample interacts with this evanescent wave and undergoes one or more elastic bounces by passing into backward points in its trajectory because the atoms' kinetic energy (of the order of the μeV) is less than the maximum of the dipolar potential barrier ℏΩ2/Δ where Ω is the Rabi frequency [1]. In fact, the atoms are cooled and captured in a magneto-optical trap placed at a distance of the order of the cm above the prism surface. The dipolar potential with which interact the slow atoms is obtained for a two level atom in a case of a dipolar electric transition (D2 Rubidium transition at a wavelength of 780nm delivered by a Titane-Saphir laser between a fundamental state Jf = l/2 and an excited state Je = 3/2). This potential is corrected by an attractive Van der Waals term which varies as 1/z3 in the Lennard-Jones approximation (typical atomic distance of the order of λ0/2π where λ0 is the laser wavelength) and in 1/z4 if the distance between the atom and its image in the dielectric is big in front of λ0/2π. This last case is obtained in a quantum electrodynamic calculation by taking into account an orthornormal base [2]. We'll examine the role of spontaneous emission for which the rate is inversely

  8. Modification of band gap in surface layer in Cd 1-xZn xTe by YAG:Nd +3 laser radiation

    NASA Astrophysics Data System (ADS)

    Medvid, Artur; Fedorenko, Leonid L.; Korbutjak, Dmytro V.; Kryluk, Sergiy G.; Yusupov, Mikola M.; Mychko, Aleksandr

    2007-02-01

    A mechanism of formation of graded band-gap based on Thermogradient Effect (TGE) is proposed in Cd 1-xZn xTe at irradiation by second harmonic of a Q-switched YAG:Nd laser. According to the effect, the interstitial atoms of Cd (Cd i) in Cd 1-xZn xTe move along the temperature gradient while the Cd vacancies (V Cd) and Zn atoms - in the opposite direction, into the bulk of the semiconductor where temperature is lower. Photoluminescence (PL) spectra studied at 5 K show that concentration of Zn atoms increases due to aggregation of VCd with Zn after laser irradiation. Formation of a graded band-gap in Cd 1-xZn xTe crystal at irradiation by second harmonica of YAG:Nd laser by is shown to be possible.

  9. CdSxTe1-x Alloying in CdS/CdTe Solar Cells

    SciTech Connect

    Duenow, J. N.; Dhere, R. G.; Moutinho, H. R.; To, B.; Pankow, J. W.; Kuciauskas, D.; Gessert, T. A.

    2011-01-01

    A CdS{sub x}Te{sub 1-x} layer forms by interdiffusion of CdS and CdTe during the fabrication of thin film CdTe photovoltaic (PV) devices. The CdS{sub x}Te{sub 1-x} layer is thought to be important because it relieves strain at the CdS/CdTe interface that would otherwise exist due to the 10% lattice mismatch between these two materials. Our previous work has indicated that the electrical junction is located in this interdiffused CdS{sub x}Te{sub 1-x} region. Further understanding, however, is essential to predict the role of this CdS{sub x}Te{sub 1-x} layer in the operation of CdS/CdTe devices. In this study, CdS{sub x}Te{sub 1-x} alloy films were deposited by radio-frequency magnetron sputtering and coevaporation from CdTe and CdS sources. Both radio-frequency-magnetron-sputtered and coevaporated CdS{sub x}Te{sub 1-x} films of lower S content (x < 0.3) have a cubic zincblende (ZB) structure akin to CdTe, whereas those of higher S content have a hexagonal wurtzite (WZ) structure like that of CdS. Films become less preferentially oriented as a result of a CdCl{sub 2} heat treatment at {approx}400 C for 5 min. Films sputtered in a 1% O{sub 2}/Ar ambient are amorphous as deposited, but show CdTe ZB, CdS WZ, and CdTe oxide phases after a CdCl{sub 2} heat treatment. Films sputtered in O{sub 2} partial pressure have a much wider bandgap than expected. This may be explained by nanocrystalline size effects seen previously for sputtered oxygenated CdS (CdS:O) films.

  10. Comparison between TeV and non-TeV BL Lac Objects

    NASA Astrophysics Data System (ADS)

    Lin, Chao; Fan, Jun-Hui

    2016-07-01

    BL Lacertae objects (BL Lacs) are the dominant population of TeV emitting blazars. In this work, we investigate whether there are any special observational properties associated with TeV sources. To do so, we will compare the observational properties of TeV detected BL Lacs (TeV BLs) with non-TeV detected BL Lac objects (non-TeV BLs). From the 3rd Fermi/LAT source catalog (3FGL), we can obtain 662 BL Lacs, out of which 47 are TeV BLs and 615 are non-TeV BLs. Their multi-wavelength flux densities (F R, F O, F X and F γ), photon spectral indexes (αX ph and αph γ), and effective spectral indexes (αRO and αOX) are compiled from the available literature. Then the luminosities (log vL R, log vL O, log vL X, log vL γ) are calculated. From comparisons, we find that TeV BLs are different from low synchrotron peaked BLs and intermediate synchrotron peaked BLs, but TeV BLs show similar properties to high synchrotron peaked (HSP) BLs. Therefore, we concentrated on a comparison between TeV HSP BLs and non-TeV HSP BLs. Analysis results suggest that TeV HSP BLs and non-TeV HSP BLs exhibit some differences in their αRO and αγ ph, but their other properties are quite similar.

  11. CdSxTe1-x Alloying in CdS/CdTe Solar Cells

    SciTech Connect

    Duenow, J. N.; Dhere, R. G.; Moutinho, H. R.; To, B.; Pankow, J. W.; Kuciauskas, D.; Gessert, T. A.

    2011-05-01

    A CdSxTe1-x layer forms by interdiffusion of CdS and CdTe during the fabrication of thin-film CdTe photovoltaic (PV) devices. The CdSxTe1-x layer is thought to be important because it relieves strain at the CdS/CdTe interface that would otherwise exist due to the 10% lattice mismatch between these two materials. Our previous work [1] has indicated that the electrical junction is located in this interdiffused CdSxTe1-x region. Further understanding, however, is essential to predict the role of this CdSxTe1-x layer in the operation of CdS/CdTe devices. In this study, CdSxTe1-x alloy films were deposited by RF magnetron sputtering and co-evaporation from CdTe and CdS sources. Both radio-frequency-magnetron-sputtered and co-evaporated CdSxTe1-x films of lower S content (x<0.3) have a cubic zincblende (ZB) structure akin to CdTe, while those of higher S content have a hexagonal wurtzite (WZ) structure like that of CdS. Films become less preferentially oriented as a result of a CdCl2 heat treatment at ~400 degrees C for 5 min. Films sputtered in a 1% O2/Ar ambient are amorphous as deposited, but show CdTe ZB, CdS WZ, and CdTe oxide phases after a CdCl2 heat treatment (HT). Films sputtered in O2 partial pressure have a much wider bandgap (BG) than expected. This may be explained by nanocrystalline size effects seen previously [2] for sputtered oxygenated CdS (CdS:O) films.

  12. Modified Embedded Atom Method

    Energy Science and Technology Software Center (ESTSC)

    2012-08-01

    Interatomic force and energy calculation subroutine to be used with the molecular dynamics simulation code LAMMPS (Ref a.). The code evaluated the total energy and atomic forces (energy gradient) according to a cubic spline-based variant (Ref b.) of the Modified Embedded Atom Method (MEAM) with a additional Stillinger-Weber (SW) contribution.

  13. Atomic Scale Plasmonic Switch.

    PubMed

    Emboras, Alexandros; Niegemann, Jens; Ma, Ping; Haffner, Christian; Pedersen, Andreas; Luisier, Mathieu; Hafner, Christian; Schimmel, Thomas; Leuthold, Juerg

    2016-01-13

    The atom sets an ultimate scaling limit to Moore's law in the electronics industry. While electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling, similar to electronics, is only limited by the atom. More precisely, we introduce an electrically controlled plasmonic switch operating at the atomic scale. The switch allows for fast and reproducible switching by means of the relocation of an individual or, at most, a few atoms in a plasmonic cavity. Depending on the location of the atom either of two distinct plasmonic cavity resonance states are supported. Experimental results show reversible digital optical switching with an extinction ratio of 9.2 dB and operation at room temperature up to MHz with femtojoule (fJ) power consumption for a single switch operation. This demonstration of an integrated quantum device allowing to control photons at the atomic level opens intriguing perspectives for a fully integrated and highly scalable chip platform, a platform where optics, electronics, and memory may be controlled at the single-atom level. PMID:26670551

  14. Greek Atomic Theory.

    ERIC Educational Resources Information Center

    Roller, Duane H. D.

    1981-01-01

    Focusing on history of physics, which began about 600 B.C. with the Ionian Greeks and reaching full development within three centuries, suggests that the creation of the concept of the atom is understandable within the context of Greek physical theory; so is the rejection of the atomic theory by the Greek physicists. (Author/SK)

  15. Atomic and Molecular Physics

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand K.

    2005-01-01

    A symposium on atomic and molecular physics was held on November 18, 2005 at Goddard Space Flight Center. There were a number of talks through the day on various topics such as threshold law of ionization, scattering of electrons from atoms and molecules, muonic physics, positron physics, Rydberg states etc. The conference was attended by a number of physicists from all over the world.

  16. When Atoms Want

    ERIC Educational Resources Information Center

    Talanquer, Vicente

    2013-01-01

    Chemistry students and teachers often explain the chemical reactivity of atoms, molecules, and chemical substances in terms of purposes or needs (e.g., atoms want or need to gain, lose, or share electrons in order to become more stable). These teleological explanations seem to have pedagogical value as they help students understand and use…

  17. Neutrino-atom collisions

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2016-05-01

    Neutrino-atom scattering provides a sensitive tool for probing nonstandard interactions of massive neutrinos in laboratory measurements. The ionization channel of this collision process plays an important role in experiments searching for neutrino magnetic moments. We discuss some theoretical aspects of atomic ionization by massive neutrinos. We also outline possible manifestations of neutrino electromagnetic properties in coherent elastic neutrino-nucleus scattering.

  18. Greek atomic theory

    NASA Astrophysics Data System (ADS)

    Roller, Duane H. D.

    1981-03-01

    Physics began about 600 B.C. with the Ionian Greeks and reached full development within three centuries. The creation of the concept of the atom is understandable within the context of Greek physical theory; so is the rejection of the atomic theory by the Greek physicists.

  19. Atomic Power Safety.

    ERIC Educational Resources Information Center

    Hogerton, John F.

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: What is Atomic Power?; What Does Safety Depend On?; Control of Radioactive Material During Operation; Accident Prevention; Containment in the Event of an Accident; Licensing and…

  20. Study of HgCdTe/CdTe interface structure grown by metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ma, Ke J.; Yu, Zhen Z.; Yanh, Jian R.; Shen, Shou Z.; He, Jin; Chen, Wei M.; Song, Xiangyun

    1991-11-01

    The interface of HgCdTe/CdTe thin film growth by MOCVD were investigated by high resolution electron microscope (HREM). It is shown that there is no monolayer abrupt interface between HgCdTe and CdTe films. The interface of HgCdTe/CdTe contains a lot of small and random distributed disorder regions. The disorder areas can be transformed into order one under long time electron beam irradiation.

  1. GW quasiparticle energy study of ternary tetradymite Bi{sub 2}Te{sub 2}Se and Bi{sub 2}Te{sub 2}S thin films

    SciTech Connect

    Shuaibu, Alhassan; Rahman, Md. Mahmudur; Zainuddin, Hishamuddin; Talib, Zainal Abidin; Muhida, Rifki

    2015-04-24

    In this work, we have evaluated the quasiparticle energies of ternary tetradymite Bi{sub 2}Te{sub 2}Se and Bi{sub 2}Te{sub 2}S using first-principles calculation within the G{sub 0}W{sub 0} methods. We have also performed a broad convergence tests in order to investigate the quasiparticle corrections to the structural parameters and to the semi core d electrons in both of the compounds. For each case, we have calculated the many-body corrections within a one-shot GW method of the compounds. Our results have shown that for Bi{sub 2}Te{sub 2}Se the GW corrections increase the band gap to almost 10%, and for specific atomic positions, the band structure shows a close value to the experimental one. For Bi{sub 2}Te{sub 2}S, despite increase in the band gap due to the GW corrections, possibility of bulk resistivity that can be significant for photovoltaic applications was observed.

  2. Phase equilibria in the Bi/sub 2/Se/sub 3/-Bi/sub 2/Te/sub 3/-Te-Se system

    SciTech Connect

    Abrikosov, N.Kh.; Poretskaya, L.V.

    1988-04-01

    The authors studied and constructed the phase diagram of polythermal cuts passing from their ternary delta-solid solution corresponding to the formula Bi/sub 2/Te/sub 2.85/Se/sub 0.15/ to tellurium, a mixture of tellurium and selenium used in the ratio of Te:Se = 1:1, and selenium, by methods of physicochemical analysis for the first time. The parts of the radial cut of the Bi-Te-Se ternary system originating from the angle corresponding to bismuth, within the boundaries of 0-40 atom % Bi, are quasi-binary and of the eutectic type below the temperatures of the end of crystallization. Doping of solid solutions of the Bi/sub 2/Se/sub 3/-Bi/sub 2/Te/sub 3/ system with a chalcogen in a ratio different from the starting melt results in a change in not only the composition of the initially separated delta-solid solutions but also the compositions of the delta- and ..beta..-phases at the end of crystallization.

  3. Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors.

    PubMed

    Baesman, Shaun M; Bullen, Thomas D; Dewald, James; Zhang, Donghui; Curran, Seamus; Islam, Farhana S; Beveridge, Terry J; Oremland, Ronald S

    2007-04-01

    Certain toxic elements support the metabolism of diverse prokaryotes by serving as respiratory electron acceptors for growth. Here, we demonstrate that two anaerobes previously shown to be capable of respiring oxyanions of selenium also achieve growth by reduction of either tellurate [Te(VI)] or tellurite [Te(IV)] to elemental tellurium [Te(0)]. This reduction achieves a sizeable stable-Te-isotopic fractionation (isotopic enrichment factor [epsilon] = -0.4 to -1.0 per ml per atomic mass unit) and results in the formation of unique crystalline Te(0) nanoarchitectures as end products. The Te(0) crystals occur internally within but mainly externally from the cells, and each microorganism forms a distinctly different structure. Those formed by Bacillus selenitireducens initially are nanorods ( approximately 10-nm diameter by 200-nm length), which cluster together, forming larger ( approximately 1,000-nm) rosettes composed of numerous individual shards ( approximately 100-nm width by 1,000-nm length). In contrast, Sulfurospirillum barnesii forms extremely small, irregularly shaped nanospheres (diameter < 50 nm) that coalesce into larger composite aggregates. Energy-dispersive X-ray spectroscopy and selected area electron diffraction indicate that both biominerals are composed entirely of Te and are crystalline, while Raman spectroscopy confirms that they are in the elemental state. These Te biominerals have specific spectral signatures (UV-visible light, Raman) that also provide clues to their internal structures. The use of microorganisms to generate Te nanomaterials may be an alternative for bench-scale syntheses. Additionally, they may also generate products with unique properties unattainable by conventional physical/chemical methods. PMID:17277198

  4. Impact of annealing on the chemical structure and morphology of the thin-film CdTe/ZnO interface

    SciTech Connect

    Horsley, K. Hanks, D. A.; Weir, M. G.; Beal, R. J.; Wilks, R. G.; Blum, M.; Häming, M.; Hofmann, T.; Weinhardt, L.; and others

    2014-07-14

    To enable an understanding and optimization of the optoelectronic behavior of CdTe-ZnO nanocomposites, the morphological and chemical properties of annealed CdTe/ZnO interface structures were studied. For that purpose, CdTe layers of varying thickness (4–24 nm) were sputter-deposited on 100 nm-thick ZnO films on surface-oxidized Si(100) substrates. The morphological and chemical effects of annealing at 525 °C were investigated using X-ray Photoelectron Spectroscopy (XPS), X-ray-excited Auger electron spectroscopy, energy dispersive X-ray spectroscopy, scanning electron microscopy, and atomic force microscopy. We find a decrease of the Cd and Te surface concentration after annealing, parallel to an increase in Zn and O signals. While the as-deposited film surfaces show small grains (100 nm diameter) of CdTe on the ZnO surface, annealing induces a significant growth of these grains and separation into islands (with diameters as large as 1 μm). The compositional change at the surface is more pronounced for Cd than for Te, as evidenced using component peak fitting of the Cd and Te 3d XPS peaks. The modified Auger parameters of Cd and Te are also calculated to further elucidate the local chemical environment before and after annealing. Together, these results suggest the formation of tellurium and cadmium oxide species at the CdTe/ZnO interface upon annealing, which can create a barrier for charge carrier transport, and might allow for a deliberate modification of interface properties with suitably chosen thermal treatment parameters.

  5. Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors

    USGS Publications Warehouse

    Baesman, S.M.; Bullen, T.D.; Dewald, J.; Zhang, Dongxiao; Curran, S.; Islam, F.S.; Beveridge, T.J.; Oremland, R.S.

    2007-01-01

    Certain toxic elements support the metabolism of diverse prokaryotes by serving as respiratory electron acceptors for growth. Here, we demonstrate that two anaerobes previously shown to be capable of respiring oxyanions of selenium also achieve growth by reduction of either tellurate [Te(VI)] or tellurite [Te(IV)] to elemental tellurium [Te(0)]. This reduction achieves a sizeable stable-Te-isotopic fractionation (isotopic enrichment factor [??] = -0.4 to -1.0 per ml per atomic mass unit) and results in the formation of unique crystalline Te(0) nanoarchitectures as end products. The Te(0) crystals occur internally within but mainly externally from the cells, and each microorganism forms a distinctly different structure. Those formed by Bacillus selenitireducens initially are nanorods (???10-nm diameter by 200-nm length), which cluster together, forming larger (???1,000-nm) rosettes composed of numerous individual shards (???100-nm width by 1,000-nm length). In contrast, Sulfurospirillium barnesii forms extremely small, irregularly shaped nanospheres (diameter < 50 nm) that coalesce into larger composite aggregates. Energy-dispersive X-ray spectroscopy and selected area electron diffraction indicate that both biominerals are composed entirely of Te and are crystalline, while Raman spectroscopy confirms that they are in the elemental state. These Te biominerals have specific spectral signatures (UV-visible light, Raman) that also provide clues to their internal structures. The use of microorganisms to generate Te nanomaterials may be an alternative for bench-scale syntheses. Additionally, they may also generate products with unique properties unattainable by conventional physical/chemical methods. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

  6. Laser-Atomic Oscillator

    NASA Astrophysics Data System (ADS)

    Jau, Yuan-Yu; Happer, William

    2008-05-01

    We report a newly developed technique, laser-atomic oscillator, for simultaneously generating stable optical and electrical modulations with a very few components. It requires only a semiconductor laser, a vapor cell, and a few optical components. No photodetector and electronic feedback are needed. In this new system, the ground-state hyperfine coherence of alkali-metal atoms is spontaneously generated. The modulated laser light with a spectrum of a small optical comb is automatically produced, and the spacing between the comb peaks is photonically locked to the hyperfine frequency. The charge carriers in the semiconductor laser are also modulated at the hyperfine frequency. Laser-atomic oscillator is purely optical. Its simple structure allows the system to be very compact. We believe this new technique will bring some advantages in the applications of atomic chronometry, atomic magnetometry, and generation of multi-coherent light.

  7. Moving Single Atoms

    NASA Astrophysics Data System (ADS)

    Stuart, Dustin

    2016-05-01

    Single neutral atoms are promising candidates for qubits, the fundamental unit of quantum information. We have built a set of optical tweezers for trapping and moving single Rubidium atoms. The tweezers are based on a far off-resonant dipole trapping laser focussed to a 1 μm spot with a single aspheric lens. We use a digital micromirror device (DMD) to generate dynamic holograms of the desired arrangement of traps. The DMD has a frame rate of 20 kHz which, when combined with fast algorithms, allows for rapid reconfiguration of the traps. We demonstrate trapping of up to 20 atoms in arbitrary arrangements, and the transport of a single-atom over a distance of 14 μm with continuous laser cooling, and 5 μm without. In the meantime, we are developing high-finesse fibre-tip cavities, which we plan to use to couple pairs of single atoms to form a quantum network.

  8. Coaxial airblast atomizers

    NASA Technical Reports Server (NTRS)

    Hardalupas, Y.; Whitelaw, J. H.

    1993-01-01

    An experimental investigation was performed to quantify the characteristics of the sprays of coaxial injectors with particular emphasis on those aspects relevant to the performance of rocket engines. Measurements for coaxial air blast atomizers were obtained using air to represent the gaseous stream and water to represent the liquid stream. A wide range of flow conditions were examined for sprays with and without swirl for gaseous streams. The parameters varied include Weber number, gas flow rate, liquid flow rate, swirl, and nozzle geometry. Measurements were made with a phase Doppler velocimeter. Major conclusions of the study focused upon droplet size as a function of Weber number, effect of gas flow rate on atomization and spray spread, effect of nozzle geometry on atomization and spread, effect of swirl on atomization, spread, jet recirculation and breakup, and secondary atomization.

  9. Atomic Oxygen Textured Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Hunt, Jason D.; Drobotij, Erin; Cales, Michael R.; Cantrell, Gidget

    1995-01-01

    Atomic oxygen can be used to microscopically alter the surface morphology of polymeric materials in space or in ground laboratory facilities. For polymeric materials whose sole oxidation products are volatile species, directed atomic oxygen reactions produce surfaces of microscopic cones. However, isotropic atomic oxygen exposure results in polymer surfaces covered with lower aspect ratio sharp-edged craters. Isotropic atomic oxygen plasma exposure of polymers typically causes a significant decrease in water contact angle as well as altered coefficient of static friction. Such surface alterations may be of benefit for industrial and biomedical applications. The results of atomic oxygen plasma exposure of thirty-three (33) different polymers are presented, including typical morphology changes, effects on water contact angle, and coefficient of static friction.

  10. BOREAS TE-6 Allometry Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Gower, Stith T.; Vogel, Jason G.

    2000-01-01

    The BOREAS TE-6 team collected several data sets in support of its efforts to characterize and interpret information on the plant biomass, allometry, biometry, sapwood, leaf area index, net primary production, soil temperature, leaf water potential, soil CO2 flux, and multivegetation imagery of boreal vegetation. This data set includes tree measurements conducted on the above-ground biomass of trees in the BOREAS NSA and SSA during the growing seasons of 1994 and 1995 and the derived allometric relationships/equations. The data are stored in ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).

  11. Energy loss rate of a charged particle in HgTe/(HgTe, CdTe) quantum wells

    SciTech Connect

    Chen, Qinjun; Sin Ang, Yee; Wang, Xiaolin; Lewis, R. A.; Zhang, Chao

    2013-11-04

    The energy loss rate (ELR) of a charged particle in a HgTe/(HgTe, CdTe) quantum well is investigated. We consider scattering of a charged particle by the bulk insulating states in this type of topological insulator. It is found that the ELR characteristics due to the intraband excitation have a linear energy dependence while those due to interband excitation depend on the energy exponentially. An interesting quantitative result is that for a large range of the incident energy, the mean inelastic scattering rate is around a few terahertz.

  12. Cyclotron resonance excitation spectroscopy of CdTe and of CdTe/CdZnTe quantum wells

    NASA Astrophysics Data System (ADS)

    Lavigne, B.; Cox, R. T.

    1990-04-01

    Photoconductivity spectra for II-VI semiconductor samples were obtained without any need for electrical contacts by measuring the wavelength dependence of free-carrier cyclotron resonance at 35 GHz. For bulk CdTe, the surprisingly efficient creation of free electrons for h v below the bandgap energy is attributed to exciton-impurity interactions. Auger recombination and inelastic polariton-donor scattering are considered. Preliminary results for CdTe.CdZnTe quantum wells show sharp peaks corresponding to quantized states of free excitons in the well.

  13. Molecular-beam epitaxy growth and in situ arsenic doping of p-on-n HgCdTe heterojunctions

    NASA Astrophysics Data System (ADS)

    Arias, Jose; Zandian, M.; Pasko, J. G.; Shin, S. H.; Bubulac, L. O.; DeWames, R. E.; Tennant, W. E.

    1991-02-01

    In this paper we present, results on the growth of in situ doped p-on-n heterojunctions on HgCdTe epilayers grown on (211)B GaAs substrates by molecular-beam epitaxy (MBE). Long wavelength infrared (LWIR) photodiodes made with these grown junctions are of high performance. The n-type MBE HgCdTe/GaAs alloy epilayer in these structures was grown at Ts=185 °C and it was doped with indium (high 1014 cm-3 range) atoms. This epilayer was directly followed by the growth, at Ts=165 °C, of an arsenic-doped (1017-1018 cm-3 ) HgTe/CdTe superlattice structure which was necessary to incorporate the arsenic atoms as acceptors. After the structure was grown, a Hg annealing step was needed to interdiffuse the superlattice and obtain the arsenic-doped p-type HgCdTe layer above the indium-doped layer. LWIR mesa diodes made with this material have 77 K R0A values of 5×103, 81, 8.5, and 1.1 Ω cm2 for cutoff wavelengths of 8.0, 10.2, 10.8, and 13.5 μm, respectively; the 77 K quantum efficiency values for these diodes were greater than 55%. These recent results represent a significant step toward the demonstration of MBE as a viable growth technique for the in situ fabrication of large area LWIR focal plane arrays.

  14. Raman characterization of a new Te-rich binary compound: CdTe2.

    PubMed

    Rousset, Jean; Rzepka, Edouard; Lincot, Daniel

    2009-04-01

    Structural characterization by Raman spectroscopy of CdTe thin films electrodeposited in acidic conditions is considered in this work. This study focuses on the evolution of material properties as a function of the applied potential and the film thickness, demonstrating the possibility to obtain a new Te-rich compound with a II/VI ratio of 1/2 under specific bath conditions. Raman measurements carried out on etched samples first allow the elimination of the assumption of a mixture of phases CdTe + Te and tend to confirm the formation of the CdTe(2) binary compound. The signature of this phase on the Raman spectrum is the increase of the LO band intensity compared to that obtained for the CdTe. The influence of the laser power is also considered. While no effect is observed on CdTe films, the increase of the incident irradiation power leads to the decomposition of the CdTe(2) compound into two more stable phases namely CdTe and Te. PMID:19253976

  15. Topological insulating in GeTe/Sb2Te3 phase-change superlattice.

    PubMed

    Sa, Baisheng; Zhou, Jian; Sun, Zhimei; Tominaga, Junji; Ahuja, Rajeev

    2012-08-31

    GeTe/Sb2Te3 superlattice phase-change memory devices demonstrated greatly improved performance over that of Ge2Sb2Te5, a prototype record media for phase-change random access memory. In this work, we show that this type of GeTe/Sb2Te3 superlattice exhibits topological insulating behavior on the basis of ab initio calculations. The analysis of the band structures and parities as well as Z2 topological invariants unravels the topological insulating nature in these artificial materials. Furthermore, the topological insulating character remains in the GeTe/Sb2Te3 superlattice under small compressive strains, whereas it is not observed as more Sb2Te3 building blocks introduced in the superlattice. The present results show that multifunctional data storages may be achieved in the GeTe/Sb2Te3 superlattice. Such kinds of artificial materials can be used in phase-change random access memory, spintronics, and quantum computing. PMID:23002870

  16. Calculation of the High-Temperature Point Defects Structure in Te-Rich CdTe

    NASA Astrophysics Data System (ADS)

    Dai, Shujun; Wang, Tao; Liu, Huimin; He, Yihui; Jie, Wanqi

    2016-06-01

    A thermodynamic equilibrium model for CdTe annealed under Te vapor is established, in which possible point defects and a defect reaction existing in undoped and In-doped Te-rich CdTe crystals are taken into consideration. Independent point defects, such as VCd, Cdi, and Tei, as well as defect complexes, namely TeCd-VCd (B complex), {{Te}}_{{Cd}}^{2 + } - {{V}}_{{Cd}}^{2 - } (D complex), {{In}}_{{Cd}}^{ + } - {{V}}_{{Cd}}^{ - } (A-center) and Tei-VCd (TeCd), are discussed based on the defect chemistry theory. More specially, the mass action law and quasi-chemical equations are used to calculate defects concentration and Fermi level in undoped and doped CdTe crystals with different indium concentrations. It is found that the Fermi level is controlled by a {{V}}_{{Cd}}^{2 - } , TeCd, and B/D-complex in undoped crystal. The concentration of VCd drops down in an obvious manner and that of TeCd rises for doped crystal with increasing [In].

  17. A facile method for gold decoration of Te@CdTe nanorods in aqueous solution.

    PubMed

    Shao, Haibao; Wang, Chunlei; Wang, Zhuyuan; Li, Rongqing; Xu, Qinying; Xu, Shuhong; Jiang, Yuan; Sun, Qingfeng; Bo, Fan; Cui, Yiping

    2012-10-01

    Colloidal synthesis of metal-semiconductor hybrid nanostructures is mainly achieved in organic solution. In some applications of hybrid nanoparticles relevant in aqueous media, phase transfer of hydrophobic metal-semiconductor hybrid nanostructures is essential. In this work, we present a simple method for direct synthesis of water-soluble gold (Au) decorated Te@CdTe hybrid nanorods (NRs) at room temperature by using aqueous Te@CdTe NRs as templates, which were preformed by using CdTe nanocrystals (NCs) as precursor in the presence of hydrazine hydrate (N(2)H(4)). Our results showed that NRs were decorated with Au islands both on tips and along the surface of the NRs. The size and density of Au islands can be controlled by varying the amount of Au precursor (mixture of HAuCl(4) and thioglycolic acid (TGA)) and TGA/HAuCl(4) ratio. A possible growth mechanism for the Au decoration of Te@CdTe NRs is concluded as three steps: (1) the formation of AuTe(1.7) via the substitution reaction of Cd(2+) by Au(3+), (2) adsorption of Au-TGA complex onto the preformed AuTe(1.7) anchors and following reduction by CdTe and N(2)H(4), leading to the formation of small Au NCs, (3) Au NCs grow to bigger ones, followed by reduction of more Au precursor by N(2)H(4). PMID:22795043

  18. Synthesis of new Ga{sub 7}Ge{sub 3}Te{sub 11}—One-dimensional phase in Ga–Ge–Te ternary system: Crystal structure and physical properties

    SciTech Connect

    Drasar, Cestmir; Cisarova, Ivana; Kucek, Vladimir; Benes, Ludvik; Prokleska, Jan; Kratochvilova, Marie

    2015-02-15

    Ga{sub 7}Ge{sub 3}Te{sub 11} single crystals were grown using transport in a temperature gradient. The prepared single crystals have a needle-like appearance, 1 to 40 μm in diameter and 2 to 20 mm in length. The Ga{sub 7}Ge{sub 3}Te{sub 11} single crystals were characterized by both single crystalline and powder X-ray diffraction. The structure consists of one-dimensional molecular strings bonded together through tellurium atoms by a weak bond of the van der Waals type. A large unit cell volume indicates the complexity of the structure. The room temperature theoretical density is 5.73 g cm{sup −3}. The compound shows semiconducting properties and possesses peculiar magnetic properties. - Graphical abstract: 1D Ga{sub 7}Ge{sub 3}Te{sub 11} - cross-view of the molecular string. - Highlights: • We prepared and characterized novel compound Ga{sub 7}Ge{sub 3}Te{sub 11}in single crystalline form. • Ga{sub 7}Ge{sub 3}Te{sub 11} is one-dimensional structure; orthorhombic lattice; space group Pnma. • Ga{sub 7}Ge{sub 3}Te{sub 11} is an intrinsic semiconductor; E{sub g}≅0.7 eV. • Ga{sub 7}Ge{sub 3}Te{sub 11} is paramagnetic with an effective magnetic moment of p{sub eff}=0.06 μ{sub B} per atom. • Crossover from para – to diamagnetism is observed in field dependence of susceptibility.

  19. Improve molecular beam epitaxy growth of HgCdTe on CdZnTe (211)B substrates using interfacial layers of HgTe/CdTe superlattices

    SciTech Connect

    Chang Yong; Grein, C. H.; Zhao, J.; Sivanathan, S.; Wang, C. Z.; Aoki, T.; Smith, David J.; Wijewarnasuriya, P. S.; Nathan, V.

    2006-12-01

    HgTe/CdTe superlattices (SLs) have been grown on CdZnTe (211)B substrates as interfacial layers to improve the reproducibility and material properties of epitaxial HgCdTe. The interfacial SL layer is found by transmission electron microscopy to be capable of smoothing out the substrate's surface roughness and to bend or block threading dislocations from propagating from the substrate into the functional HgCdTe epilayers. The best etch pit density values of 4x10{sup 4} cm{sup -2} were achieved in long-wavelength infrared HgCdTe epilayers with such interfacial layers, while typical values were in the low 10{sup 5} cm{sup -2} range. The recombination mechanisms in such layers were dominated by radiative and Auger intrinsic recombination mechanisms, whereas the contributions from the Shockley-Read-Hall mechanism become negligible, which demonstrated that the use of the SL interfacial layers was beneficial for HgCdTe growth using molecular beam epitaxy or MBE.

  20. Cation Exchange Combined with Kirkendall Effect in the Preparation of SnTe/CdTe and CdTe/SnTe Core/Shell Nanocrystals.

    PubMed

    Jang, Youngjin; Yanover, Diana; Čapek, Richard Karel; Shapiro, Arthur; Grumbach, Nathan; Kauffmann, Yaron; Sashchiuk, Aldona; Lifshitz, Efrat

    2016-07-01

    Controlling the synthesis of narrow band gap semiconductor nanocrystals (NCs) with a high-quality surface is of prime importance for scientific and technological interests. This Letter presents facile solution-phase syntheses of SnTe NCs and their corresponding core/shell heterostructures. Here, we synthesized monodisperse and highly crystalline SnTe NCs by employing an inexpensive, nontoxic precursor, SnCl2, the reactivity of which was enhanced by adding a reducing agent, 1,2-hexadecanediol. Moreover, we developed a synthesis procedure for the formation of SnTe-based core/shell NCs by combining the cation exchange and the Kirkendall effect. The cation exchange of Sn(2+) by Cd(2+) at the surface allowed primarily the formation of SnTe/CdTe core/shell NCs. Further continuation of the reaction promoted an intensive diffusion of the Cd(2+) ions, which via the Kirkendall effect led to the formation of the inverted CdTe/SnTe core/shell NCs. PMID:27331900

  1. VCSELs for atomic clocks

    NASA Astrophysics Data System (ADS)

    Serkland, Darwin K.; Peake, Gregory M.; Geib, Kent M.; Lutwak, Robert; Garvey, R. Michael; Varghese, Mathew; Mescher, Mark

    2006-02-01

    The spectroscopic technique of coherent population trapping (CPT) enables an all-optical interrogation of the groundstate hyperfine splitting of cesium (or rubidium), compared to the optical-microwave double resonance technique conventionally employed in atomic frequency standards. All-optical interrogation enables the reduction of the size and power consumption of an atomic clock by two orders of magnitude, and vertical-cavity surface-emitting lasers (VCSELs) are preferred optical sources due to their low power consumption and circular output beam. Several research teams are currently using VCSELs for DARPA's chip-scale atomic clock (CSAC) program with the goal of producing an atomic clock having a volume < 1 cm^3, a power consumption < 30 mW, and an instability (Allan deviation) < 1x10^-11 during a 1-hour averaging interval. This paper describes the VCSEL requirements for CPT-based atomic clocks, which include single mode operation, single polarization operation, modulation bandwidth > 4 GHz, low power consumption (for the CSAC), narrow linewidth, and low relative intensity noise (RIN). A significant manufacturing challenge is to reproducibly obtain the required wavelength at the specified VCSEL operating temperature and drive current. Data are presented that show the advantage of operating at the D1 (rather than D2) resonance of the alkali atoms. Measurements of VCSEL linewidth will be discussed in particular, since atomic clock performance is especially sensitive to this parameter.

  2. Magnetic Field-Dependent Magneto-Optical Kerr Effect in [(GeTe)2(Sb2Te3)1]8 Topological Superlattice

    NASA Astrophysics Data System (ADS)

    Bang, Do; Awano, Hiroyuki; Saito, Yuta; Tominaga, Junji

    2016-05-01

    We studied the magnetic field dependence of magneto-optical Kerr rotation of the [(GeTe)2/(Sb2Te3)1]8 topological superlattice at different temperatures (from 300 K to 440 K). At low temperatures (less than 360 K), the Kerr signal was within noise level. However, large Kerr rotation peaks with a mirror symmetric loop were at high temperatures (higher than 360 K). The temperature dependence of the observed Kerr signal can be attributed to the breaking of spatial inversion symmetry, which induces a narrow gap in surface state bands due to the Ge atomic layer movement-induced phase transition in the superlattice. We found that the resonant field of each Kerr peak gradually decreases with increasing temperature. On the other hand, the phase transition from a high temperature phase to a low temperature one could be controlled by external magnetic fields.

  3. Morphology and Electric Conductance Change Induced by Voltage Pulse Excitation in (GeTe)2/Sb2Te3 Superlattices.

    PubMed

    Bolotov, Leonid; Saito, Yuta; Tada, Tetsuya; Tominaga, Junji

    2016-01-01

    Chalcogenide superlattice (SL) phase-change memory materials are leading candidates for non-volatile, energy-efficient electric memory where the electric conductance switching is caused by the atom repositioning in the constituent layers. Here, we study the time evolution of the electric conductance in [(GeTe)2/(Sb2Te3)1]4 SLs upon the application of an external pulsed electric field by analysing the structural and electrical responses of the SL films with scanning probe microscopy (SPM) and scanning probe lithography (SPL). At a low pulse voltage (1.6-2.3 V), a conductance switching delay of a few seconds was observed in some SL areas, where the switch to the high conductance state (HCS) is accompanied with an SL expansion under the strong electric field of the SPM probe. At a high pulse voltage (2.5-3.0 V), the HCS current was unstable and decayed in a few seconds; this is ascribed to the degradation of the HCS crystal phase under excessive heating. The reversible conductance change under a pulse voltage of opposite polarity emphasised the role of the electric field in the phase-transition mechanism. PMID:27618797

  4. Atom trap trace analysis

    SciTech Connect

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O'Connor, T. P.; Young, L.

    2000-05-25

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications.

  5. Atomic and molecular supernovae

    SciTech Connect

    Liu, W.

    1997-12-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  6. Atomic and molecular supernovae

    NASA Technical Reports Server (NTRS)

    Liu, Weihong

    1997-01-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  7. Atomic mass evaluation

    SciTech Connect

    Wang, M.; Audi, G.; Kondev, F. G.; Xu, X.; Pfeiffer, B.

    2012-11-12

    The atomic masses are important input parameters for nuclear astrophysics calculations. The Atomic Mass Evaluation (AME) is the most reliable source for comprehensive information related to atomic masses. The latest AME was published in 2003. A new version, which will include the impact of a wealth of new, high-precision experimental data, will be published in December 2012. In this paper we will give the current status of AME2012. The mass surface has been changed significantly compared to AME2003, and the impact on astrophysics calculations is discussed.

  8. Trapping deuterium atoms

    SciTech Connect

    Wiederkehr, A. W.; Hogan, S. D.; Lambillotte, B.; Andrist, M.; Schmutz, H.; Agner, J.; Salathe, Y.; Merkt, F.

    2010-02-15

    Cold deuterium atoms in a supersonic beam have been decelerated from an initial velocity of 475 m/s to zero velocity in the laboratory frame using a 24-stage Zeeman decelerator. The atoms have been loaded in a magnetic quadrupole trap at a temperature of {approx}100 mK and an initial density of {approx}10{sup 6} cm{sup -3}. Efficient deceleration was achieved by pulsing the magnetic fields in the decelerator solenoids using irregular sequences of phase angles. Trap loading was optimized by monitoring and suppressing the observed reflection of the atoms by the field gradient of the back solenoid of the trap.

  9. Recycling of CdTe photovoltaic waste

    DOEpatents

    Goozner, Robert E.; Long, Mark O.; Drinkard, Jr., William F.

    1999-04-27

    A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the metals in dilute nitric acid, leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate, adding a calcium containing base to the leachate to precipitate Cd and Te, separating the precipitated Cd and Te from the leachate, and recovering the calcium-containing base.

  10. Recycling of CdTe photovoltaic waste

    DOEpatents

    Goozner, R.E.; Long, M.O.; Drinkard, W.F. Jr.

    1999-04-27

    A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the metals in dilute nitric acid, leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate, adding a calcium containing base to the leachate to precipitate Cd and Te, separating the precipitated Cd and Te from the leachate, and recovering the calcium-containing base. 3 figs.

  11. Low-dimensional Te-based nanostructures.

    PubMed

    Wang, Qisheng; Safdar, Muhammad; Wang, Zhenxing; He, Jun

    2013-07-26

    Low-dimensional Te-based nanomaterials have attracted intense attention in recent years due to their novel physical properties including surface-state effects, photoelectricity, phase changes, and thermoelectricity. The recent development of synthesis methods of low-dimensional Te-based nanostructures is reviewed, such as van der Waals expitaxial growth and template-assisted solution-phase deposition. In addition, the unique properties of these materials, such as tunable surface states, high photoresponsivity, fast phase change, and high thermoelectricity figure of merit, are reviewed. The potential applications of low-dimensional Te-based nanostructures are broad but particularly promising for nanoscale electronic and photoelectronic devices. PMID:24048978

  12. Precisely detecting atomic position of atomic intensity images.

    PubMed

    Wang, Zhijun; Guo, Yaolin; Tang, Sai; Li, Junjie; Wang, Jincheng; Zhou, Yaohe

    2015-03-01

    We proposed a quantitative method to detect atomic position in atomic intensity images from experiments such as high-resolution transmission electron microscopy, atomic force microscopy, and simulation such as phase field crystal modeling. The evaluation of detection accuracy proves the excellent performance of the method. This method provides a chance to precisely determine atomic interactions based on the detected atomic positions from the atomic intensity image, and hence to investigate the related physical, chemical and electrical properties. PMID:25544105

  13. Preparation of Copper Telluride Films by Co-Reduction of Cu(I) and Te(IV) Ions in Choline Chloride: Ethylene Glycol Ionic Liquid

    NASA Astrophysics Data System (ADS)

    Golgovici, Florentina; Catrangiu, Adriana-Simona; Stoian, Andrei Bogdan; Anicai, Liana; Visan, Teodor

    2016-07-01

    Cathodic processes of direct co-reduction of Cu+ and Te4+ ions on Pt electrode at 60°C were investigated using cyclic voltammetry and electrochemical impedance spectroscopy techniques. The ionic liquid as background electrolyte consisted of a mixture of choline chloride and ethylene glycol (ChCl-EG 1:2 mol ratio) in which 5-20 mM CuCl and 8 mM TeO2 were dissolved. The voltammograms exhibited the following successive cathodic processes: Cu2+/Cu+ reduction, Te underpotential deposition, simultaneous deposition of Cu metal and CuTe compound, and deposition of Te-rich CuTe compound at the most negative potentials (from -0.5 V to -0.8 V). Corresponding dissolution or oxidation peaks were recorded on the anodic branch. The voltammetric results were confirmed by electrochemical impedance spectra. Copper telluride films have been synthesized on platinum substrate via potentiostatic electrodeposition at 60°C. It was found from atomic force microscopy that CuTe film samples prepared from ChCl-EG + 5 mM CuCl + 8 mM TeO2 ionic liquid have high growth rates. The x-ray diffraction patterns of the deposited films from ChCl-EG + 10 mM CuCl + 8 mM TeO2 ionic liquid indicated the presence of a Cu2Te phase for film deposited at -0.7 V and a Cu0.656Te0.344 phase for film deposited at -0.6 V.

  14. Preparation of Copper Telluride Films by Co-Reduction of Cu(I) and Te(IV) Ions in Choline Chloride: Ethylene Glycol Ionic Liquid

    NASA Astrophysics Data System (ADS)

    Golgovici, Florentina; Catrangiu, Adriana-Simona; Stoian, Andrei Bogdan; Anicai, Liana; Visan, Teodor

    2016-05-01

    Cathodic processes of direct co-reduction of Cu+ and Te4+ ions on Pt electrode at 60°C were investigated using cyclic voltammetry and electrochemical impedance spectroscopy techniques. The ionic liquid as background electrolyte consisted of a mixture of choline chloride and ethylene glycol (ChCl-EG 1:2 mol ratio) in which 5-20 mM CuCl and 8 mM TeO2 were dissolved. The voltammograms exhibited the following successive cathodic processes: Cu2+/Cu+ reduction, Te underpotential deposition, simultaneous deposition of Cu metal and CuTe compound, and deposition of Te-rich CuTe compound at the most negative potentials (from -0.5 V to -0.8 V). Corresponding dissolution or oxidation peaks were recorded on the anodic branch. The voltammetric results were confirmed by electrochemical impedance spectra. Copper telluride films have been synthesized on platinum substrate via potentiostatic electrodeposition at 60°C. It was found from atomic force microscopy that CuTe film samples prepared from ChCl-EG + 5 mM CuCl + 8 mM TeO2 ionic liquid have high growth rates. The x-ray diffraction patterns of the deposited films from ChCl-EG + 10 mM CuCl + 8 mM TeO2 ionic liquid indicated the presence of a Cu2Te phase for film deposited at -0.7 V and a Cu0.656Te0.344 phase for film deposited at -0.6 V.

  15. Nonlinear terahertz response of HgTe/CdTe quantum wells

    SciTech Connect

    Chen, Qinjun; Sanderson, Matthew; Zhang, Chao

    2015-08-24

    Without breaking the topological order, HgTe/CdTe quantum wells can have two types of bulk band structure: direct gap type (type I) and indirect gap type (type II). We report that the strong nonlinear optical responses exist in both types of bulk states under a moderate electric field in the terahertz regime. Interestingly, for the type II band structure, the third order conductivity changes sign when chemical potentials lies below 10 meV due to the significant response of the hole excitation close to the bottom of conduction band. Negative nonlinear conductivities suggest that HgTe/CdTe quantum wells can find application in the gain medium of a laser for terahertz radiation. The thermal influences on nonlinear optical responses of HgTe/CdTe quantum wells are also studied.

  16. Nonlinear terahertz response of HgTe/CdTe quantum wells

    NASA Astrophysics Data System (ADS)

    Chen, Qinjun; Sanderson, Matthew; Zhang, Chao

    2015-08-01

    Without breaking the topological order, HgTe/CdTe quantum wells can have two types of bulk band structure: direct gap type (type I) and indirect gap type (type II). We report that the strong nonlinear optical responses exist in both types of bulk states under a moderate electric field in the terahertz regime. Interestingly, for the type II band structure, the third order conductivity changes sign when chemical potentials lies below 10 meV due to the significant response of the hole excitation close to the bottom of conduction band. Negative nonlinear conductivities suggest that HgTe/CdTe quantum wells can find application in the gain medium of a laser for terahertz radiation. The thermal influences on nonlinear optical responses of HgTe/CdTe quantum wells are also studied.

  17. High resistivity in undoped CdTe: carrier compensation of Te antisites and Cd vacancies

    NASA Astrophysics Data System (ADS)

    Lindström, A.; Mirbt, S.; Sanyal, B.; Klintenberg, M.

    2016-01-01

    In this paper, we focus on the high resistivity of intentionally undoped CdTe, where the most prevalent defects are Cd vacancies and Te antisites. Our calculated formation energies lead to the conclusion that the Fermi energy of undoped CdTe is at midgap due to carrier compensation of Te antisites and Cd vacancies, which explains the experimentally observed high resistivity. We use density functional theory with the hybrid functional of Heyd, Scuseria and Ernzerhof (HSE06) and show that the proper description of the native defects in general fails using the local density approximation (LDA) instead of HSE06. We conclude that LDA is insufficient to understand the high resistivity of undoped CdTe. We calculate the neutral and double acceptor state of the Te antisite to be intrinsic DX-centers.

  18. Interdiffusion at the Mn-CdTe(110) interface and the formation of metastable ternary semimagnetic semiconductor alloys

    NASA Astrophysics Data System (ADS)

    Wall, A.; Raisanen, A.; Haugstad, G.; Vanzetti, L.; Franciosi, A.

    1991-10-01

    Mn vacuum deposition at room temperature onto CdTe(110) surfaces cleaved in situ yields atomic interdiffusion for metal coverages Θ<=3 Å as a result of a partial Mn-Cd exchange reaction in the interface region. Synchrotron-radiation photoemission measurements show the reaction product to be a Cd1-xMnxTe semimagnetic semiconductor surface alloy. Large values of the average Mn concentration are achieved in such metastable interface reaction product. We use these results to explore the composition dependence of the electronic structure of ternary semimagnetic semiconductors.

  19. Application of bond constraint theory to the switchable optical memory material Ge2Sb2Te5.

    PubMed

    Baker, D A; Paesler, M A; Lucovsky, G; Agarwal, S C; Taylor, P C

    2006-06-30

    A new extended x-ray-absorption fine structure spectroscopy study of local bonding identifies for the first time significant concentrations of Ge-Ge bonds in amorphous Ge2Sb2Te5. The study provides a new understanding of the local molecular structure of this phase-change material. Application of bond constraint theory indicates that the amorphous phase is an ideal network structure in which the average number of constraints per atom equals the network dimensionality. Analysis within this framework imparts new and significant insights concerning the nature of the reversible optically driven amorphous-crystalline phase transition of Ge2Sb2Te5. PMID:16907317

  20. Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe3GeTe2

    NASA Astrophysics Data System (ADS)

    Zhuang, Houlong L.; Kent, P. R. C.; Hennig, Richard G.

    2016-04-01

    Computationally characterizing magnetic properies of novel two-dimensional (2D) materials serves as an important first step of exploring possible applications. Using density-functional theory, we show that single-layer Fe3GeTe2 is a potential 2D material with sufficiently low formation energy to be synthesized by mechanical exfoliation from the bulk phase with a van der Waals layered structure. In addition, we calculated the phonon dispersion demonstrating that single-layer Fe3GeTe2 is dynamically stable. Furthermore, we find that similar to the bulk phase, 2D Fe3GeTe2 exhibits a magnetic moment that originates from a Stoner instability. In contrast to other 2D materials, we find that single-layer Fe3GeTe2 exhibits a significant uniaxial magnetocrystalline anisotropy energy of 920 μ eV per Fe atom originating from spin-orbit coupling. Finally, we show that applying biaxial tensile strains enhances the anisotropy energy, which reveals strong magnetostriction in single-layer Fe3GeTe2 with a sizable magneostrictive coefficient. Our results indicate that single-layer Fe3GeTe2 is potentially useful for magnetic storage applications.

  1. Defect energetics and magnetic properties of 3 d-transition-metal-doped topological crystalline insulator SnTe

    NASA Astrophysics Data System (ADS)

    Wang, Na; Wang, JianFeng; Si, Chen; Gu, Bing-Lin; Duan, WenHui

    2016-08-01

    The introduction of magnetism in SnTe-class topological crystalline insulators is a challenging subject with great importance in the quantum device applications. Based on the first-principles calculations, we have studied the defect energetics and magnetic properties of 3 d transition-metal (TM)-doped SnTe. We find that the doped TM atoms prefer to stay in the neutral states and have comparatively high formation energies, suggesting that the uniform TMdoping in SnTe with a higher concentration will be difficult unless clustering. In the dilute doping regime, all the magnetic TMatoms are in the high-spin states, indicating that the spin splitting energy of 3 d TM is stronger than the crystal splitting energy of the SnTe ligand. Importantly, Mn-doped SnTe has relatively low defect formation energy, largest local magnetic moment, and no defect levels in the bulk gap, suggesting that Mn is a promising magnetic dopant to realize the magnetic order for the theoretically-proposed large-Chern-number quantum anomalous Hall effect (QAHE) in SnTe.

  2. Synthesis of CdSe/ZnS and CdTe/ZnS Quantum Dots: Refined Digestive Ripening

    DOE PAGESBeta

    Cingarapu, Sreeram; Yang, Zhiqiang; Sorensen, Christopher M.; Klabunde, Kenneth J.

    2012-01-01

    We report synthesis of CdSe and CdTe quantum dots (QDs) from the bulk CdSe and CdTe material by evaporation/co-condensation using the solvated metal atom dispersion (SMAD) technique and refined digestive ripening. The outcomes of this new process are (1) the reduction of digestive ripening time by employing ligands (trioctylphosphine oxide (TOPO) and oleylamine (OA)) as capping agent as well as digestive ripening solvent, (2) ability to tune the photoluminescence (PL) from 410 nm to 670 nm, (3) demonstrate the ability of SMAD synthesis technique for other semiconductors (CdTe), (4) direct comparison of CdSe QDs growth with CdTe QDs growth based on digestivemore » ripening times, and (5) enhanced PL quantum yield (QY) of CdSe QDs and CdTe QDs upon covering with a ZnS shell. Further, the merit of this synthesis is the use of bulk CdSe and CdTe as the starting materials, which avoids usage of toxic organometallic compounds, eliminates the hot injection procedure, and size selective precipitation processes. It also allows the possibility of scale up. These QDs were characterized by UV-vis, photoluminescence (PL), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and powder XRD.« less

  3. Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe3GeTe2

    DOE PAGESBeta

    Zhuang, Houlong L.; Kent, P. R. C.; Hennig, Richard G.

    2016-04-06

    Comore » mputationally characterizing magnetic properies of novel two-dimensional (2D) materials serves as an important first step of exploring possible applications. Using density-functional theory, we show that single-layer Fe3GeTe2 is a potential 2D material with sufficiently low formation energy to be synthesized by mechanical exfoliation from the bulk phase with a van der Waals layered structure. In addition, we calculated the phonon dispersion demonstrating that single-layer Fe3GeTe2is dynamically stable. Furthermore, we find that similar to the bulk phase, 2D Fe3GeTe2 exhibits amagnetic moment that originates from a Stoner instability. In contrast to other 2D materials, we find that single-layer Fe3GeTe2 exhibits a significant uniaxial magnetocrystalline anisotropy energy of 920μ eV per Fe atom originating from spin-orbit coupling. In conclusion, we show that applying biaxial tensile strains enhances the anisotropy energy, which reveals strong magnetostriction in single-layer Fe3GeTe2 with a sizable magneostrictive coefficient. Our results indicate that single-layer Fe3GeTe2 is potentially useful for magnetic storage applications.« less

  4. Effects of various deposition times and RF powers on CdTe thin film growth using magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ghorannevis, Z.; Akbarnejad, E.; Ghoranneviss, M.

    2016-09-01

    Cadmium telluride (CdTe) is a p-type II-VI compound semiconductor, which is an active component for producing photovoltaic solar cells in the form of thin films, due to its desirable physical properties. In this study, CdTe film was deposited using the radio frequency (RF) magnetron sputtering system onto a glass substrate. To improve the properties of the CdTe film, effects of two experimental parameters of deposition time and RF power were investigated on the physical properties of the CdTe films. X-ray Diffraction (XRD), atomic force microscopy (AFM) and spectrophotometer were used to study the structural, morphological and optical properties of the CdTe samples grown at different experimental conditions, respectively. Our results suggest that film properties strongly depend on the experimental parameters and by optimizing these parameters, it is possible to tune the desired structural, morphological and optical properties. From XRD data, it is found that increasing the deposition time and RF power leads to increasing the crystallinity as well as the crystal sizes of the grown film, and all the films represent zinc blende cubic structure. Roughness values given from AFM images suggest increasing the roughness of the CdTe films by increasing the RF power and deposition times. Finally, optical investigations reveal increasing the film band gaps by increasing the RF power and the deposition time.

  5. Cd1-xMnxTe ultrasmall quantum dots growth in a silicate glass matrix by the fusion method

    NASA Astrophysics Data System (ADS)

    Dantas, Noelio Oliveira; de Lima Fernandes, Guilherme; Baffa, Oswaldo; Gómez, Jorge Antônio; Almeida Silva, Anielle Christine

    2014-09-01

    In this study, we synthesized Cd1-xMnxTe ultrasmall quantum dots (USQDs) in SiO2-Na2CO3-Al2O3-B2O3 glass system using the fusion method. Growth of these Cd1-xMnxTe USQDs was confirmed by optical absorption, atomic force microscopy (AFM), magnetic force microscopy (MFM), scanning transmission electron microscopy (TEM), and electron paramagnetic resonance (EPR) measurements. The blueshift of absorption transition with increasing manganese concentration gives evidence of incorporation of manganese ions (Mn2+) in CdTe USQDs. AFM, TEM, and MFM confirmed, respectively, the formation of high quality Cd1-xMnxTe USQDs with uniformly distributed size and magnetic phases. Furthermore, EPR spectra showed six lines associated to the S = 5/2 spin half-filled d-state, characteristic of Mn2+, and confirmed that Mn2+ are located in the sites core and surface of the CdTe USQD. Therefore, synthesis of high quality Cd1-xMnxTe USQDs may allow the control of optical and magnetic properties.

  6. Effects of various deposition times and RF powers on CdTe thin film growth using magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ghorannevis, Z.; Akbarnejad, E.; Ghoranneviss, M.

    2016-04-01

    Cadmium telluride (CdTe) is a p-type II-VI compound semiconductor, which is an active component for producing photovoltaic solar cells in the form of thin films, due to its desirable physical properties. In this study, CdTe film was deposited using the radio frequency (RF) magnetron sputtering system onto a glass substrate. To improve the properties of the CdTe film, effects of two experimental parameters of deposition time and RF power were investigated on the physical properties of the CdTe films. X-ray Diffraction (XRD), atomic force microscopy (AFM) and spectrophotometer were used to study the structural, morphological and optical properties of the CdTe samples grown at different experimental conditions, respectively. Our results suggest that film properties strongly depend on the experimental parameters and by optimizing these parameters, it is possible to tune the desired structural, morphological and optical properties. From XRD data, it is found that increasing the deposition time and RF power leads to increasing the crystallinity as well as the crystal sizes of the grown film, and all the films represent zinc blende cubic structure. Roughness values given from AFM images suggest increasing the roughness of the CdTe films by increasing the RF power and deposition times. Finally, optical investigations reveal increasing the film band gaps by increasing the RF power and the deposition time.

  7. Single antiferromagnetic MnTe (sub)monolayers in CdTe/CdMgTe quantum wells

    NASA Astrophysics Data System (ADS)

    Prechtl, G.; Heiss, W.; Mackowski, S.; Bonanni, A.; Karczewski, G.; Sitter, H.; Jantsch, W.

    2000-06-01

    Antiferromagnetic MnTe (sub)monolayers inserted into nonmagnetic CdTe/CdMgTe quantum wells are investigated by magneto-optical spectroscopy. In particular, the Zeeman splitting is determined from polarization dependent photoluminescence excitation experiments. Rapid thermal annealing (RTA) is applied to diffuse Mn out of the (sub)monolayer barriers into the quantum well. The resulting Mn diffusion leads to a substantial increase of the Zeeman splitting. Furthermore, the annealing induced broadening of the MnTe (sub)monolayer barrier in the well is accompanied by a decrease of the barrier height, leading to a blue shift or a red shift of the e1-hh1 transition, depending on the detailed sample structure. A comparison of the observed energy shifts with model calculations allows us to estimate the thickness of the MnTe barriers. These are found to be very close to their nominal values before annealing, regardless of the chosen MnTe band offset and effective masses.

  8. Atomic Chain Electronics

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Saini, Subhash (Technical Monitor)

    1998-01-01

    Adatom chains, precise structures artificially created on an atomically regulated surface, are the smallest possible candidates for future nanoelectronics. Since all the devices are created by combining adatom chains precisely prepared with atomic precision, device characteristics are predictable, and free from deviations due to accidental structural defects. In this atomic dimension, however, an analogy to the current semiconductor devices may not work. For example, Si structures are not always semiconducting. Adatom states do not always localize at the substrate surface when adatoms form chemical bonds to the substrate atoms. Transport properties are often determined for the entire system of the chain and electrodes, and not for chains only. These fundamental issues are discussed, which will be useful for future device considerations.

  9. Conceptual atomism rethought.

    PubMed

    Schneider, Susan

    2010-06-01

    Focusing on Machery's claim that concepts play entirely different roles in philosophy and psychology, I explain how one well-known philosophical theory of concepts, Conceptual Atomism (CA), when properly understood, takes into account both kinds of roles. PMID:20584416

  10. Atomic branching in molecules

    NASA Astrophysics Data System (ADS)

    Estrada, Ernesto; Rodríguez-Velázquez, Juan A.; Randić, Milan

    A graph theoretic measure of extended atomic branching is defined that accounts for the effects of all atoms in the molecule, giving higher weight to the nearest neighbors. It is based on the counting of all substructures in which an atom takes part in a molecule. We prove a theorem that permits the exact calculation of this measure based on the eigenvalues and eigenvectors of the adjacency matrix of the graph representing a molecule. The definition of this measure within the context of the Hückel molecular orbital (HMO) and its calculation for benzenoid hydrocarbons are also studied. We show that the extended atomic branching can be defined using any real symmetric matrix, as well as any Hermitian (self-adjoint) matrix, which permits its calculation in topological, geometrical, and quantum chemical contexts.

  11. Anti-atoms: Gotcha!

    NASA Astrophysics Data System (ADS)

    Surko, Clifford M.

    2011-07-01

    Refined techniques to mix cold antiprotons and positrons in a magnetic bottle show that antihydrogen atoms can be trapped for 15 minutes -- an improvement of four orders of magnitude over previous experiments.

  12. Atomic Bomb Health Benefits

    PubMed Central

    Luckey, T. D.

    2008-01-01

    Media reports of deaths and devastation produced by atomic bombs convinced people around the world that all ionizing radiation is harmful. This concentrated attention on fear of miniscule doses of radiation. Soon the linear no threshold (LNT) paradigm was converted into laws. Scientifically valid information about the health benefits from low dose irradiation was ignored. Here are studies which show increased health in Japanese survivors of atomic bombs. Parameters include decreased mutation, leukemia and solid tissue cancer mortality rates, and increased average lifespan. Each study exhibits a threshold that repudiates the LNT dogma. The average threshold for acute exposures to atomic bombs is about 100 cSv. Conclusions from these studies of atomic bomb survivors are: One burst of low dose irradiation elicits a lifetime of improved health.Improved health from low dose irradiation negates the LNT paradigm.Effective triage should include radiation hormesis for survivor treatment. PMID:19088902

  13. The Atomic Dating Game.

    ERIC Educational Resources Information Center

    Cummo, Evelyn; Matthews, Catherine E.

    2002-01-01

    Presents an activity designed to provide students with opportunities to practice drawing atomic models and discover the logical pairings of whole families on the periodic table. Follows the format of a television game show. (DDR)

  14. The CHIANTI atomic database

    NASA Astrophysics Data System (ADS)

    Young, P. R.; Dere, K. P.; Landi, E.; Del Zanna, G.; Mason, H. E.

    2016-04-01

    The freely available CHIANTI atomic database was first released in 1996 and has had a huge impact on the analysis and modeling of emissions from astrophysical plasmas. It contains data and software for modeling optically thin atom and positive ion emission from low density (≲1013 cm-3) plasmas from x-ray to infrared wavelengths. A key feature is that the data are assessed and regularly updated, with version 8 released in 2015. Atomic data for modeling the emissivities of 246 ions and neutrals are contained in CHIANTI, together with data for deriving the ionization fractions of all elements up to zinc. The different types of atomic data are summarized here and their formats discussed. Statistics on the impact of CHIANTI to the astrophysical community are given and examples of the diverse range of applications are presented.

  15. Atomic & Molecular Interactions

    SciTech Connect

    2002-07-12

    The Gordon Research Conference (GRC) on Atomic & Molecular Interactions was held at Roger Williams University, Bristol, RI. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  16. Atom chip gravimeter

    NASA Astrophysics Data System (ADS)

    Schubert, Christian; Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Ahlers, Holger; Müntinga, Hauke; Matthias, Jonas; Sahelgozin, Maral; Herr, Waldemar; Lämmerzahl, Claus; Ertmer, Wolfgang; Rasel, Ernst

    2016-04-01

    Atom interferometry has developed into a tool for measuring rotations [1], accelerations [2], and testing fundamental physics [3]. Gravimeters based on laser cooled atoms demonstrated residual uncertainties of few microgal [2,4] and were simplified for field applications [5]. Atomic gravimeters rely on the interference of matter waves which are coherently manipulated by laser light fields. The latter can be interpreted as rulers to which the position of the atoms is compared. At three points in time separated by a free evolution, the light fields are pulsed onto the atoms. First, a coherent superposition of two momentum states is produced, then the momentum is inverted, and finally the two trajectories are recombined. Depending on the acceleration the atoms experienced, the number of atoms detected in the output ports will change. Consequently, the acceleration can be determined from the output signal. The laser cooled atoms with microkelvin temperatures used in state-of-the-art gravimeters impose limits on the accuracy [4]. Therefore, ultra-cold atoms generated by Bose-Einstein condensation and delta-kick collimation [6,7] are expected to be the key for further improvements. These sources suffered from a low flux implying an incompatible noise floor, but a competitive performance was demonstrated recently with atom chips [8]. In the compact and robust setup constructed for operation in the drop tower [6] we demonstrated all steps necessary for an atom chip gravimeter with Bose-Einstein condensates in a ground based operation. We will discuss the principle of operation, the current performance, and the perspectives to supersede the state of the art. The authors thank the QUANTUS cooperation for contributions to the drop tower project in the earlier stages. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM

  17. Improved Atomizer Resists Clogging

    NASA Technical Reports Server (NTRS)

    Dea, J. Y.

    1983-01-01

    Improved constant-output atomizer has conical orifice that permits air to sweep out all liquid thoroughly and prevent any buildup of liquid or dissolved solids. Capillary groove guides liquid to gas jet. Simple new design eliminates clogging.

  18. Ferroelectric gate effect in modulation doped CdTe/CdMgTe quantum wells

    SciTech Connect

    Kolkovsky, V.; Wojciechowski, T.; Zaleszczyk, W.; Wiater, M.; Wojtowicz, T.; Karczewski, G.

    2010-01-04

    We show an effective control of the carrier concentration confined in a modulation doped CdTe quantum well caped by a ferroelectric CdZnTe gate. The 2DEG concentration can by permanently changed by changing the direction of the build-in electric field of the ferroelectric CdZnTe gate. The concentration of the 2DEG changes by 30% upon a poling of the gate. The effect is reproducible. It can be employed in non-volatile memories.

  19. Metal atomization spray nozzle

    DOEpatents

    Huxford, Theodore J.

    1993-01-01

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal.

  20. Optical atomic magnetometer

    DOEpatents

    Budker, Dmitry; Higbie, James; Corsini, Eric P

    2013-11-19

    An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.

  1. Atomizing nozzle and method

    SciTech Connect

    Ting, Jason; Anderson, Iver E.; Terpstra, Robert L.

    2000-03-16

    A high pressure close-coupled gas atomizing nozzle includes multiple discrete gas jet discharge orifices having aerodynamically designed convergent-divergent geometry with an first converging section communicated to a gas supply manifold and to a diverging section by a constricted throat section to increase atomizing gas velocity. The gas jet orifices are oriented at gas jet apex angle selected relative to the melt supply tip apex angle to establish a melt aspiration condition at the melt supply tip.

  2. Metal atomization spray nozzle

    DOEpatents

    Huxford, T.J.

    1993-11-16

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

  3. Correctly Expressing Atomic Weights

    NASA Astrophysics Data System (ADS)

    Paolini, Moreno; Cercignani, Giovanni; Bauer, Carlo

    2000-11-01

    Very often, atomic or molecular weights are expressed as dimensionless quantities, but although the historical importance of their definition as "pure numbers" is acknowledged, it is inconsistent with experimental formulas and with the theory of measure in general. Here, we propose on the basis of clear-cut formulas that, contrary to customary statements, atomic and molecular weights should be expressed as dimensional quantities (masses) in which the Dalton (= 1.663 x 10-24 g) is taken as the unit.

  4. Sharing the atom bomb

    SciTech Connect

    Chace, J.

    1996-01-01

    Shaken by the devastation of Hiroshima and Nagasaki and fearful that the American atomic monopoly would spark an arms race, Dean Acheson led a push in 1946 to place the bomb-indeed, all atomic energy-under international control. But as the memories of wartime collaboration faded, relations between the superpowers grew increasingly tense, and the confrontational atmosphere undid his proposal. Had Acheson succeeded, the Cold War might not have been. 2 figs.

  5. Location of H+ sites in the fast proton-conductor (H3O)SbTeO6 pyrochlore.

    PubMed

    Alonso, José Antonio; Turrillas, Xavier

    2005-03-01

    The defect pyrochlore (H3O)SbTeO6 oxide is an excellent proton conductor, showing a conductivity value of 10(-1) S cm(-1) at 30 degrees C under saturated water vapor partial pressure. It can be prepared by ion exchange from KTeSbO6 pyrochlore in sulfuric acid at 453 K for 12 h. The full characterization of the structure of the (H3O)SbTeO6 pyrochlore, including the location of the H3O+ units within the three-dimensional framework, has been carried out by neutron powder diffraction. A first Rietveld refinement of the [SbTeO6]- framework was performed in the Fd3m space group (a= 10.1510(1) A); a difference Fourier map enabled the unambiguous location of the O2 atoms from the H3O+ ions at 32e (x,x,x) positions, and subsequently the H atoms at 96g (x,x,z). The (H3O)SbTeO6 crystal structure is constituted by a network of randomly distributed Sb(V)O6 and Te(VI)O6 octahedra linked by their corners with (Sb,Te)-O1-(Sb,Te) angles of 136.2 degrees. Hydronium ions are located off-center around the large 8a cages of the pyrochlore. The geometry of the (O2)-H3 units is that of an almost regular tetrahedron, with O2 atoms at the center and the three H atoms in three of the vertices; the fourth vertex is supposed to be occupied by the O2 lone pair. The three O2-H bonds have equal distances of 1.020(8)A. The H3O+ units are linked to the O1 framework oxygens by weaker hydrogen bonds, with O1-H bond lengths of 1.649(7) A. The relatively large thermal factors of O2 and H, of 2.5 and 3.7 A2, respectively, suggest that both kinds of atoms are not static at fixed positions but could be dynamically fluctuating between crystallographically equivalent sites. PMID:15726137

  6. Growth and characterization of nonlinear optical telluromolybdate CoTeMoO{sub 6} single crystals

    SciTech Connect

    Mączka, Mirosław; Hermanowicz, Krzysztof; Majchrowski, Andrzej; Kroenke, Łukasz; Pietraszko, Adam; Ptak, Maciej

    2014-12-15

    Nonlinear optical (NLO) crystals CoTeMoO{sub 6} have been grown from high temperature solution by means of spontaneous crystallization. These crystals have been characterized by temperature-dependent X-ray diffraction, infrared and electron absorption methods. Moreover, polarized Raman spectra have been measured at room temperature. These studies showed that the Mo{sup 6+} and Te{sup 4+} ions are in asymmetric coordination environment, and CoTeMoO{sub 6} has the largest flexibility index among MTeMoO{sub 6} family of telluro-molybdates (M=Zn, Mg, Cd, Mn, Co), making this compound attractive NLO material. Raman and IR studies allowed assigning the observed modes to respective motions of atoms in the unit cell. They have also showed evidence for spin–phonon coupling at low temperatures and suggested that CoTeMoO{sub 6} is prospective material for solid-state Raman laser-frequency converters. Analysis of electron absorption data has shown that Co{sup 2+} ions are located in sites of weak crystal field with the crystal field parameters Dq and B equal to 548 cm{sup −1} and 882 cm{sup −1}, respectively. - Graphical abstract: View of CoTeMoO{sub 6} crystal structure along the b-axis. - Highlights: • Single crystals of nonlinear optical telluromolybdate CoTeMoO{sub 6} were grown. • Crystal structure was solved by means of single crystal X-ray diffraction. • Raman and IR spectra were measured and analyzed. • Crystal field strength acting on Co{sup 2+} ions was established from analysis of electron absorption spectra.

  7. Atomic mass compilation 2012

    SciTech Connect

    Pfeiffer, B.; Venkataramaniah, K.; Czok, U.; Scheidenberger, C.

    2014-03-15

    Atomic mass reflects the total binding energy of all nucleons in an atomic nucleus. Compilations and evaluations of atomic masses and derived quantities, such as neutron or proton separation energies, are indispensable tools for research and applications. In the last decade, the field has evolved rapidly after the advent of new production and measuring techniques for stable and unstable nuclei resulting in substantial ameliorations concerning the body of data and their precision. Here, we present a compilation of atomic masses comprising the data from the evaluation of 2003 as well as the results of new measurements performed. The relevant literature in refereed journals and reports as far as available, was scanned for the period beginning 2003 up to and including April 2012. Overall, 5750 new data points have been collected. Recommended values for the relative atomic masses have been derived and a comparison with the 2003 Atomic Mass Evaluation has been performed. This work has been carried out in collaboration with and as a contribution to the European Nuclear Structure and Decay Data Network of Evaluations.

  8. Linear accelerators for TeV colliders

    SciTech Connect

    Wilson, P.B.

    1985-05-01

    This paper summarizes four tutorial lectures on linear electron accelerators: Electron Linacs for TeV Colliders, Emittance and Damping Rings, Wake Fields: Basic Concepts, and Wake Field Effects in Linacs.

  9. Perspective on TeV-scale physics

    SciTech Connect

    Chanowitz, M.S.

    1989-02-01

    These lectures review theoretical motivations and experimental prospects for the study of TeV-scale physics. Three clues to the importance of TeV physics are discussed: implications of quantum corrections for the masses of a fourth generation quark-lepton family, the gauge hierarchy problem and known solutions, and implications of symmetry and unitarity for the symmetry-breaking sector of the electroweak gauge theory. The experimental prospects are reviewed with emphasis on the multi-TeV pp colliders that may be built in the 1990's. The topics include new phenomena that might occur - e.g., a fourth generation, heavy gauge bosons, composite structure, and supersymmetry - as well as the signals of the unknown SU(2)/sub L/ /times/ U(1)/sub Y/ breaking mechanism that must occur within the TeV domain. 96 refs., 21 figs.

  10. Thermodynamic and Transport Properties of YTe3, LaTe3 and CeTe3

    SciTech Connect

    Ru, N.

    2011-08-19

    Measurements of heat capacity, susceptibility, and electrical resistivity are presented for single crystals of the charge density wave compounds YTe{sub 3}, LaTe{sub 3}, and CeTe{sub 3}. The materials are metallic to low temperatures, but have a small density of states due to the charge density wave gapping large portions of the Fermi surface. CeTe{sub 3} is found to be a weak Kondo lattice, with an antiferromagnetic ground state and T{sub N} = 2.8 K. The electrical resistivity of all three compounds is highly anisotropic, confirming the weak dispersion perpendicular to Te planes predicted by band structure calculations.

  11. Phase transitions in CdTe/ZnTe strained-layer superlattices

    NASA Astrophysics Data System (ADS)

    Dunstan, D. J.; Prins, A. D.; Gil, B.; Faurie, J. P.

    1991-08-01

    In CdTe/ZnTe strained-layer superlattices under hydrostatic pressure, the CdTe phase transition does not occur until around 60 kbar, compared with the bulk CdTe value of 35 kbar. This dramatic superpressing cannot be explained by the model proposed to explain superpressing in unstrained (Al,Ga)As superlattices [Weinstein et al., Phys. Rev. Lett. 58, 781 (1987)] but can be accounted for by consideration of a probable microscopic mechanism of the phase transition, by shear on (111) planes. The results show that most semiconductors may be superpressed.

  12. Electronic properties of exciton and biexciton in a CdTe/ZnTe nano-heterostructure

    SciTech Connect

    Sujanah, P.; Peter, A. John

    2015-06-24

    Energy eigen values and the binding energies of exciton and biexciton in a CdTe/ZnTe quantum dot are studied with the geometrical confinement effect. The single exciton binding energy and the biexciton binding energy are calculated as a function of dot radius. Overlap integral of the exciton and the biexciton is found in the CdTe/ZnTe quantum dot. The electron and hole potentials are calculated from the Poisson equations. Self-consistent method is to compute the energy eigenvalues of the exciton and the biexciton. The Hartree potential is employed to obtain the Coulomb interaction energy.

  13. Phonon blocking by two dimensional electron gas in polar CdTe/PbTe heterojunctions

    SciTech Connect

    Zhang, Bingpo; Cai, Chunfeng; Zhu, He; Wu, Feifei; Ye, Zhenyu; Chen, Yongyue; Li, Ruifeng; Kong, Weiguang; Wu, Huizhen

    2014-04-21

    Narrow-gap lead telluride crystal is an important thermoelectric and mid-infrared material in which phonon functionality is a critical issue to be explored. In this Letter, efficient phonon blockage by forming a polar CdTe/PbTe heterojunction is explicitly observed by Raman scattering. The unique phonon screening effect can be interpreted by recent discovery of high-density two dimensional electrons at the polar CdTe/PbTe(111) interface which paves a way for design and fabrication of thermoelectric devices.

  14. Colloidal CdTe/HgTe quantum dots with high photoluminescence quantum efficiency at room temperature

    NASA Astrophysics Data System (ADS)

    Kershaw, Stephen V.; Burt, Mike; Harrison, Mike; Rogach, Andrey; Weller, Horst; Eychmüller, Alex

    1999-09-01

    We have used an aqueous colloidal growth technique to form hybrid CdTe/HgTe quantum dots with a broad, strong fluorescence in the infrared (800-1200 nm). The quantum efficiency is high, around 44%, when pumped in the visible (488 nm), and the excited state lifetime is around 130 ns, making the material interesting as an optical amplifier medium. Using a pump-probe experiment, we have demonstrated weak optical amplification in a dilute aqueous suspension of CdTe/HgTe dots in the short wavelength wing of the emission spectrum at 808 nm.

  15. IMPROVEMENT OF CdMnTe DETECTOR PERFORMANCE BY MnTe PURIFICATION

    SciTech Connect

    Kim, K.H.; Bolotnikov, A.E.; Camarda, G.S.; Tappero, R.; Hossain, A.; Cui, Y.; Yang, G.; Gul, R.; and James, R.B.

    2011-04-25

    Residual impurities in manganese (Mn) are a big obstacle to obtaining high-performance CdMnTe (CMT) X-ray and gamma-ray detectors. Generally, the zone-refining method is an effective way to improve the material's purity. In this work, we purified the MnTe compounds combining the zone-refining method with molten Te, which has a very high solubility for most impurities. We confirmed the improved purity of the material by glow-discharge mass spectrometry (GDMS). We also found that CMT crystals from a multiply-refined MnTe source, grown by the vertical Bridgman method, yielded better performing detectors.

  16. Direct imaging of crystal structure and defects in metastable Ge{sub 2}Sb{sub 2}Te{sub 5} by quantitative aberration-corrected scanning transmission electron microscopy

    SciTech Connect

    Ross, Ulrich; Lotnyk, Andriy Thelander, Erik; Rauschenbach, Bernd

    2014-03-24

    Knowledge about the atomic structure and vacancy distribution in phase change materials is of foremost importance in order to understand the underlying mechanism of fast reversible phase transformation. In this Letter, by combining state-of-the-art aberration-corrected scanning transmission electron microscopy with image simulations, we are able to map the local atomic structure and composition of a textured metastable Ge{sub 2}Sb{sub 2}Te{sub 5} thin film deposited by pulsed laser deposition with excellent spatial resolution. The atomic-resolution scanning transmission electron microscopy investigations display the heterogeneous defect structure of the Ge{sub 2}Sb{sub 2}Te{sub 5} phase. The obtained results are discussed. Highly oriented Ge{sub 2}Sb{sub 2}Te{sub 5} thin films appear to be a promising approach for further atomic-resolution investigations of the phase change behavior of this material class.

  17. CHANDRA/VLA Follow-up of TeV J2032+4131, the Only Unidentified TeV Gamma-ray Source

    NASA Astrophysics Data System (ADS)

    Butt, Y.; Benaglia, P.; Combi, J.; Corcoran, M.; Dame, T.; Drake, J.; Kaufman Bernado, M.; Milne, P.; Miniati, F.; Pohl, M.; Reimer, O.; Romero, G.; Rupen, M.

    2003-05-01

    The HEGRA Cherenkov telescope array group recently reported a steady and extended unidentified TeV gamma-ray source lying at the outskirts of Cygnus OB2. This is the most massive stellar association known in the Galaxy, estimated to contain ˜2600 OB type members alone. It has been previously argued that the large scale shocks and turbulence in such associations may play a role in accelerating Galactic cosmic rays. Indeed, Cyg OB2 also coincides with the MeV-GeV range unidentified EGRET source, 3EG 2033+4118. We report on the near-simultaneous follow-up observations of the extended TeV source region with the CHANDRA X-ray Observatory and the Very Large Array (VLA) radio telescope obtained in order to explore this possibility. Analysis of the CO, HI, and IRAS 100 micron emissions shows that the TeV source region coincides with an outlying sub-group of powerful OB stars which have evacuated or destroyed much of the ambient atomic, molecular and dust material, and which may be related to the very high-energy emissions. An interesting SNR-like structure is also revealed near the TeV source region in the CO, HI and radio emission maps. Applying a numerical simulation which accurately tracks the radio to gamma-ray emission from primary hadrons as well as primary and secondary e+/-, we find that the broadband spectrum of the TeV source region favors a predominantly nucleonic - rather than electronic - origin of the high-energy flux, though deeper X-ray and radio observations are needed to confirm this. A very reasonable, ˜0.1 conversion efficiency of Cyg OB2's extreme stellar wind mechanical luminosity to nucleonic acceleration to PeV (1015 eV) energies is sufficient to explain the multifrequency emissions. This research was supported by NASA & other contracts & grants

  18. The system SnTe-InSe

    SciTech Connect

    Gurshumov, A.P.; Alidzhanov, M.A.; Aliev, A.S.; Gadzhiev, T.G.; Mamedov, N.A.

    1986-03-01

    This paper discusses the nature of the interaction and physicochemical properties of the alloys of the system SnTe-InSe. The DTA was performed on an NTR-74 pyrometer, XPA on a Dron-2.0 diffractometer and MSA on an MIM-7 metallographic microscope. The microhardness of the samples was determined on a PMT-3 microhardness tester. The congruently melting compound SnInTeSe and solid solutions based on the starting components are formed in the system.

  19. GaTe semiconductor for radiation detection

    DOEpatents

    Payne, Stephen A.; Burger, Arnold; Mandal, Krishna C.

    2009-06-23

    GaTe semiconductor is used as a room-temperature radiation detector. GaTe has useful properties for radiation detectors: ideal bandgap, favorable mobilities, low melting point (no evaporation), non-hygroscopic nature, and availability of high-purity starting materials. The detector can be used, e.g., for detection of illicit nuclear weapons and radiological dispersed devices at ports of entry, in cities, and off shore and for determination of medical isotopes present in a patient.

  20. Near-infrared emitting AgInTe2 and Zn-Ag-In-Te colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Langevin, Marc-Antoine; Pons, Thomas; Ritcey, Anna M.; Nì. Allen, Claudine

    2015-06-01

    The synthesis of AgInTe2 nanocrystals emitting between 1095 nm and 1160 nm is presented. Evolution of the Ag:In:Te ratio shows progressive incorporation of In3+ in Ag2Te, leading to the formation of orthorhombic AgInTe2. When zinc is added to the synthesis, the photoluminescence quantum yield reaches 3.4 %.

  1. Disorder-induced structural transitions in topological insulating Ge-Sb-Te compounds

    SciTech Connect

    Kim, Jeongwoo; Jhi, Seung-Hoon

    2015-05-21

    The mechanism for the fast switching between amorphous, metastable, and crystalline structures in chalcogenide phase-change materials has been a long-standing puzzle. Based on first-principles calculations, we study the atomic and electronic properties of metastable Ge{sub 2}Sb{sub 2}Te{sub 5} and investigate the atomic disorder to understand the transition between crystalline hexagonal and cubic structures. In addition, we study the topological insulating property embedded in these compounds and its evolution upon structural changes and atomic disorder. We also discuss the role of the surface-like states arising from the topological insulating property in the metal-insulator transition observed in the hexagonal structure.

  2. Impact of Pb content on the physical parameters of Se-Te-Pb system

    SciTech Connect

    Anjali,; Sharma, Raman; Thakur, Nagesh; Patial, Balbir Singh; Tripathi, S. K.

    2015-05-15

    In the present study, we have investigated the impact of Pb content on the physical parameters in Se-Te-Pb system via average coordination number, constraints, the fraction of floppy modes, cross-linking density, lone pairs electrons, heat of atomization, mean bond energy, cohesive energy and electronegativity. The bulk samples have been prepared by using melt quenching technique. X-ray diffraction pattern of various samples indicates the amorphous nature of investigated glassy alloys. It is observed that average coordination number, average number of constraints and cross-linking density increase with Pb content. However, lone-pair electrons, floppy modes, average heat of atomization, cohesive energy and mean bond energy are found to decrease with Pb atomic percentage.

  3. Atom-atom inelastic collisions and three-body atomic recombination in weakly ionized argon plasmas

    NASA Technical Reports Server (NTRS)

    Braun, C. G.; Kunc, J. A.

    1989-01-01

    A stationary collisional-radiative model including both inelastic electron-atom and atom-atom collisions is used to examine nonequilibrium weakly ionized argon plasmas with atomic densities 10 to the 16th to 10 to the 20th/cu cm, temperatures below 6000 K, and with different degrees of radiation trapping. It is shown that three-body atomic recombination becomes important at high particle densities. Comparison is made between the present approach and Thomson's theory for atomic recombination.

  4. First-principles calculations of the magnetic properties of (Cd,Mn)Te nanocrystals

    NASA Astrophysics Data System (ADS)

    Echeverría-Arrondo, C.; Pérez-Conde, J.; Ayuela, A.

    2009-04-01

    We investigate the electronic and magnetic properties of Mn-doped CdTe nanocrystals (NCs) with ˜2nm in diameter which can be experimentally synthesized with Mn atoms inside. Using the density-functional theory, we consider two doping cases: NCs containing one or two Mn impurities. Although the Mnd peaks carry five up electrons in the dot, the local magnetic moment on the Mn site is 4.65μB . It is smaller than 5μB because of the sp-d hybridization between the localized 3d electrons of the Mn atoms and the s - and p -type valence states of the host compound. The sp-d hybridization induces small magnetic moments on the Mn-nearest-neighbor Te sites, antiparallel to the Mn moment affecting the p -type valence states of the undoped dot, as usual for a kinetic-mediated exchange magnetic coupling. Furthermore, we calculate the parameters standing for the sp-d exchange interactions. Conduction N0α and valence N0β are close to the experimental bulk values when the Mn impurities occupy bulklike NCs’ central positions, and they tend to zero close to the surface. This behavior is further explained by an analysis of valence-band-edge states showing that symmetry breaking splits the states and in consequence reduces the exchange. For two Mn atoms in several positions, the valence edge states show a further departure from an interpretation based in a perturbative treatment. We also calculate the d-d exchange interactions |Jdd| between Mn spins. The largest |Jdd| value is also for Mn atoms on bulklike central sites; in comparison with the experimental d-d exchange constant in bulk Cd0.95Mn0.05Te , it is four times smaller.

  5. High thermoelectric potential of Bi2Te3 alloyed GeTe-rich phases

    NASA Astrophysics Data System (ADS)

    Madar, Naor; Givon, Tom; Mogilyansky, Dmitry; Gelbstein, Yaniv

    2016-07-01

    In an attempt to reduce our reliance on fossil fuels, associated with severe environmental effects, the current research is focused on the identification of the thermoelectric potential of p-type (GeTe)1-x(Bi2Te3)x alloys, with x values of up to 20%. Higher solubility limit of Bi2Te3 in GeTe, than previously reported, was identified around ˜9%, extending the doping potential of GeTe by the Bi2Te3 donor dopant, for an effective compensation of the high inherent hole concentration of GeTe toward thermoelectrically optimal values. Around the solubility limit of 9%, an electronic optimization resulted in an impressive maximal thermoelectric figure of merit, ZT, of ˜1.55 at ˜410 °C, which is one of the highest ever reported for any p-type GeTe-rich alloys. Beyond the solubility limit, a Fermi Level Pinning effect of stabilizing the Seebeck coefficient was observed in the x = 12%-17% range, leading to stabilization of the maximal ZTs over an extended temperature range; an effect that was associated with the potential of the governed highly symmetric Ge8Bi2Te11 and Ge4Bi2Te7 phases to create high valence band degeneracy with several bands and multiple hole pockets on the Fermi surface. At this compositional range, co-doping with additional dopants, creating shallow impurity levels (in contrast to the deep lying level created by Bi2Te3), was suggested for further electronic optimization of the thermoelectric properties.

  6. Atomic spectrometry update - atomic mass spectrometry.

    SciTech Connect

    Bacon, J.; Crain, J. S.; McMahon, A. W.; Williams, J. G.; Analytical Chemistry Laboratory; The Macaulay Land Use Research Inst.; Manchester Metropolitan Univ.; Imperial Coll.

    1996-10-01

    The MS and XRF updates have been published together since their introduction in 1988. In the last few years, however, the two sections have been prepared independently of each other and it therefore seemed appropriate to publish the two sections separately. With effect from this issue, the MS Update will appear in the October issue of JAAS and the XRF Update in the November issue. The format used for the MS section is broadly similar to that used last year, with some additional sub-headings. This Update is intended to cover all atomic and stable isotopic MS techniques, but not those used in studies of fundamental nuclear physics and exotic nuclei far from stability. Also excluded are those reports in which MS is used as a tool in the study of molecular processes and of gaseous components. the review is based on critical selection of developments in instrumentation and methodology, notable for their innovation, originality or achievement of significant advances, and is not intended to be comprehensive in its coverage. Conference papers are only included if they contain enough information to show they meet these criteria, and our policy in general remains one of waiting for a development to appear in a full paper before inclusion in the review. a similar policy applies to foreign language papers unlikely to reach a wide audience. Routine applications of atomic MS are not included in this Update and the reader is referred to the Updates on Industrial Analysis: Metals, Chemicals and Advanced Materials (96/416), Environmental Analysis (96/1444) and Clinical and Biological Materials, Food and Beverages (96/2479). Also excluded are those applications, even if not routine, which use atomic spectroscopy as a tool for the study of a non-atomic property, for example, the use of stable isotope labeling of carbon or nitrogen in biomolecules in metabolic studies. There have been few general reviews on atomic MS of note in the period covered by this update. That of Colodner et al

  7. A Model for Predicting Thermoelectric Properties of Bi2Te3

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; VonAllmen, Paul

    2009-01-01

    A parameterized orthogonal tight-binding mathematical model of the quantum electronic structure of the bismuth telluride molecule has been devised for use in conjunction with a semiclassical transport model in predicting the thermoelectric properties of doped bismuth telluride. This model is expected to be useful in designing and analyzing Bi2Te3 thermoelectric devices, including ones that contain such nano - structures as quantum wells and wires. In addition, the understanding gained in the use of this model can be expected to lead to the development of better models that could be useful for developing other thermoelectric materials and devices having enhanced thermoelectric properties. Bi2Te3 is one of the best bulk thermoelectric materials and is widely used in commercial thermoelectric devices. Most prior theoretical studies of the thermoelectric properties of Bi2Te3 have involved either continuum models or ab-initio models. Continuum models are computationally very efficient, but do not account for atomic-level effects. Ab-initio models are atomistic by definition, but do not scale well in that computation times increase excessively with increasing numbers of atoms. The present tight-binding model bridges the gap between the well-scalable but non-atomistic continuum models and the atomistic but poorly scalable ab-initio models: The present tight-binding model is atomistic, yet also computationally efficient because of the reduced (relative to an ab-initio model) number of basis orbitals and flexible parameterization of the Hamiltonian.

  8. Photoelectric properties of defect chalcogenide HgGa2X4 (x=S, Se, Te)

    NASA Astrophysics Data System (ADS)

    Sharma, Ramesh; Dwivedi, Shalini; Sharma, Yamini

    2016-05-01

    We present results of ab initio study of ordered vacancy compounds of mercury. The electronic structure, charge density, optical and transport properties of the semiconductor family HgGa2X4 (X=S, Se, Te) are calculated using the full potential linearized augmented plane wave method which is based on the density functional theory. A direct bandgap is observed in these compounds, which reduces in the order S>Se>Te. From the density of states it is observed that there is strong hybridization of Hg-d, Ga-d and X-p states. The optical properties show a red shift with increasing size and atomic no. of the chalcogenide atoms. We have also reported the transport properties of mercury thiogallates for the first time. The selenide compound exhibits n-type nature whereas HgGa2S4 and HgGa2Te4 show p-type behavior. The power factor and ZT for the HGS increases at low temperatures, the figure of merit is highest for HgGa2Se4 (1.17) at 19 K.

  9. Structural origin of resistance drift in amorphous GeTe

    NASA Astrophysics Data System (ADS)

    Zipoli, Federico; Krebs, Daniel; Curioni, Alessandro

    2016-03-01

    We used atomistic simulations to study the origin of the change of resistance over time in the amorphous phase of GeTe, a prototypical phase-change material (PCM). Understanding the cause of resistance drift is one of the biggest challenges to improve multilevel storage technology. For this purpose, we generated amorphous structures via classical molecular-dynamics simulations under conditions as close as possible to the experimental operating ones of such memory devices. Moreover, we used the replica-exchange technique to generate structures comparable with those obtained in the experiment after long annealing that show an increase of resistance. This framework allowed us to overcome the main limitation of previous simulations, based on density-functional theory, that suffered from being computationally too expensive therefore limited to the nanosecond time scale. We found that resistance drift is caused by consumption of Ge atom clusters in which the coordination of at least one Ge atom differs from that of the crystalline phase and by removal of stretched bonds in the amorphous network, leading to a shift of the Fermi level towards the middle of the band gap. These results show that one route to design better memory devices based on current chalcogenide alloys is to reduce the resistance drift by increasing the rigidity of the amorphous network.

  10. Computational discovery of ferromagnetic semiconducting single-layer CrSnTe3

    DOE PAGESBeta

    Zhuang, Houlong L.; Xie, Yu; Kent, P. R. C.; Ganesh, P.

    2015-07-06

    Despite many single-layer materials being reported in the past decade, few of them exhibit magnetism. Here we perform first-principles calculations using accurate hybrid density functional methods (HSE06) to predict that single-layer CrSnTe3 (CST) is a ferromagnetic semiconductor, with band gaps of 0.9 and 1.2 eV for the majority and minority spin channels, respectively. We determine the Curie temperature as 170 K, significantly higher than that of single-layer CrSiTe3 (90K) and CrGeTe3 (130 K). This is due to the enhanced ionicity of the Sn-Te bond, which in turn increases the superexchange coupling between the magnetic Cr atoms. We further explore themore » mechanical and dynamical stability and strain response of this single-layer material for possible epitaxial growth. Lastly, our study provides an intuitive approach to understand and design novel single-layer magnetic semiconductors for a wide range of spintronics and energy applications.« less

  11. High thermoelectric performance by resonant dopant indium in nanostructured SnTe.

    PubMed

    Zhang, Qian; Liao, Bolin; Lan, Yucheng; Lukas, Kevin; Liu, Weishu; Esfarjani, Keivan; Opeil, Cyril; Broido, David; Chen, Gang; Ren, Zhifeng

    2013-08-13

    From an environmental perspective, lead-free SnTe would be preferable for solid-state waste heat recovery if its thermoelectric figure-of-merit could be brought close to that of the lead-containing chalcogenides. In this work, we studied the thermoelectric properties of nanostructured SnTe with different dopants, and found indium-doped SnTe showed extraordinarily large Seebeck coefficients that cannot be explained properly by the conventional two-valence band model. We attributed this enhancement of Seebeck coefficients to resonant levels created by the indium impurities inside the valence band, supported by the first-principles simulations. This, together with the lower thermal conductivity resulting from the decreased grain size by ball milling and hot pressing, improved both the peak and average nondimensional figure-of-merit (ZT) significantly. A peak ZT of ∼1.1 was obtained in 0.25 atom % In-doped SnTe at about 873 K. PMID:23901106

  12. Pb2MnTeO6 Double Perovskite: An Antipolar Anti-ferromagnet.

    PubMed

    Retuerto, Maria; Skiadopoulou, Stella; Li, Man-Rong; Abakumov, Artem M; Croft, Mark; Ignatov, Alexander; Sarkar, Tapati; Abbett, Brian M; Pokorný, Jan; Savinov, Maxim; Nuzhnyy, Dmitry; Prokleška, Jan; Abeykoon, Milinda; Stephens, Peter W; Hodges, Jason P; Vaněk, Přemysl; Fennie, Craig J; Rabe, Karin M; Kamba, Stanislav; Greenblatt, Martha

    2016-05-01

    Pb2MnTeO6, a new double perovskite, was synthesized. Its crystal structure was determined by synchrotron X-ray and powder neutron diffraction. Pb2MnTeO6 is monoclinic (I2/m) at room temperature with a regular arrangement of all the cations in their polyhedra. However, when the temperature is lowered to ∼120 K it undergoes a phase transition from I2/m to C2/c structure. This transition is accompanied by a displacement of the Pb atoms from the center of their polyhedra due to the 6s(2) lone-pair electrons, together with a surprising off-centering of Mn(2+) (d(5)) magnetic cations. This strong first-order phase transition is also evidenced by specific heat, dielectric, Raman, and infrared spectroscopy measurements. The magnetic characterizations indicate an anti-ferromagnetic (AFM) order below TN ≈ 20 K; analysis of powder neutron diffraction data confirms the magnetic structure with propagation vector k = (0 1 0) and collinear AFM spins. The observed jump in dielectric permittivity near ∼150 K implies possible anti-ferroelectric behavior; however, the absence of switching suggests that Pb2MnTeO6 can only be antipolar. First-principle calculations confirmed that the crystal and magnetic structures determined are locally stable and that anti-ferroelectric switching is unlikely to be observed in Pb2MnTeO6. PMID:27058393

  13. Growth and characterization of nonlinear optical telluromolybdate CoTeMoO6 single crystals

    NASA Astrophysics Data System (ADS)

    Mączka, Mirosław; Hermanowicz, Krzysztof; Majchrowski, Andrzej; Kroenke, Łukasz; Pietraszko, Adam; Ptak, Maciej

    2014-12-01

    Nonlinear optical (NLO) crystals CoTeMoO6 have been grown from high temperature solution by means of spontaneous crystallization. These crystals have been characterized by temperature-dependent X-ray diffraction, infrared and electron absorption methods. Moreover, polarized Raman spectra have been measured at room temperature. These studies showed that the Mo6+ and Te4+ ions are in asymmetric coordination environment, and CoTeMoO6 has the largest flexibility index among MTeMoO6 family of telluro-molybdates (M=Zn, Mg, Cd, Mn, Co), making this compound attractive NLO material. Raman and IR studies allowed assigning the observed modes to respective motions of atoms in the unit cell. They have also showed evidence for spin-phonon coupling at low temperatures and suggested that CoTeMoO6 is prospective material for solid-state Raman laser-frequency converters. Analysis of electron absorption data has shown that Co2+ ions are located in sites of weak crystal field with the crystal field parameters Dq and B equal to 548 cm-1 and 882 cm-1, respectively.

  14. Resonance photoelectron spectroscopy of TiX{sub 2} (X = S, Se, Te) titanium dichalcogenides

    SciTech Connect

    Shkvarin, A. S. Yarmoshenko, Yu. M.; Skorikov, N. A.; Yablonskikh, M. V.; Merentsov, A. I.; Shkvarina, E. G.; Titov, A. N.

    2012-11-15

    The photoelectron valence band spectra of TiS{sub 2}, TiSe{sub 2}, and TiTe{sub 2} dichalcogenides are investigated in the Ti 2p-3d resonance regime. Resonance bands in the vicinity of the Fermi energy are found for TiS{sub 2} and TiTe{sub 2}. The nature of these bands is analyzed based on model calculations of the density of electronic states in TiS{sub 2}, TiSe{sub 2}, and TiTe{sub 2} compounds intercalated by titanium atoms. Analysis of experimental data and their comparison with model calculations showed that these bands have different origins. It is found that the resonance enhancement of an additional band observed in TiS{sub 2} is explained by self-intercalation by titanium during the synthesis of this compound. The resonance enhancement in TiTe{sub 2} is caused by occupation of the 3d band in Ti.

  15. Lateral Diffusion Length Changes in HgCdTe Detectors in a Proton Environment

    NASA Technical Reports Server (NTRS)

    Hubbs, John E.; Marshall, Paul W.; Marshall, Cheryl J.; Gramer, Mark E.; Maestas, Diana; Garcia, John P.; Dole, Gary A.; Anderson, Amber A.

    2007-01-01

    This paper presents a study of the performance degradation in a proton environment of very long wavelength infrared (VLWIR) HgCdTe detectors. The energy dependence of the Non-Ionizing Energy Loss (NIEL) in HgCdTe provides a framework for estimating the responsivity degradation in VLWIR HgCdTe due to on orbit exposure from protons. Banded detector arrays that have different detector designs were irradiated at proton energies of 7, 12, and 63 MeV. These banded detector arrays allovedin sight into how the fundamental detector parameters degraded in a proton environment at the three different proton energies. Measured data demonstrated that the detector responsivity degradation at 7 MeV is 5 times larger than the degradation at 63 MeV. The comparison of the responsivity degradation at the different proton energies suggests that the atomic Columbic interaction of the protons with the HgCdTe detector is likely the primary mechanism responsible for the degradation in responsivity at proton energies below 30 MeV.

  16. Nanoscale Imaging of Band Gap and Defects in Polycrystalline CdTe Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Zhitenev, Nikolai; Yoon, Yohan; Chae, Jungseok; Katzenmeyer, Aaron; Yoon, Heayoung; An, Sangmin; Shumacher, Joshua; Centrone, Andrea

    To further increase the power efficiency of polycrystalline thin film photovoltaic (PV) technology, a detailed understanding of microstructural properties of the devices is required. In this work, we investigate the microstructure of CdTe PV devices using two optical spectroscopies. Sub-micron thickness lamella samples were cut out from a PV device, either in cross-section or in-plane, by focused ion beam. The first technique is the photothermal induced resonance (PTIR) used to obtain absorption spectra over a broad range of wavelengths. In PTIR, a wavelength tunable pulsed laser is combined with an atomic force microscope to detect the local thermal expansion of lamella CdTe sample induced by light absorption. The second technique based on a near-field scanning optical microscope maps the local absorption at fixed near-IR wavelengths with energies at or below CdTe band-gap energy. The variation of the band gap throughout the CdTe absorber determined from PTIR spectra is ~ 20 meV. Both techniques detect strong spatial variation of shallow defects over different grains. The spatial distribution of mid-gap defects appears to be more uniform. The resolution, the sensitivity and the applicability of these two approaches are compared.

  17. The theoretical calculation of the phase diagram of infrared detector materials (Hg,Zn)Te and (Cd,Zn)Te

    NASA Astrophysics Data System (ADS)

    Li, Chi; Huang, Xingliang

    1989-05-01

    A technique for constructing the phase diagrams of Te-based pseudobinary IR detector materials on the basis of thermodynamics theory is described and demonstrated. The fundamental principles of the segregation-coefficient and shape-statement methods are reviewed; the computational procedure is explained; and results are presented for HgTe-ZnTe and CdTe-ZnTe. The temperatures in the diagrams are found to be within 0.6 and 15 C, respectively, of the experimentally measured values.

  18. Atomic resolution holography.

    PubMed

    Hayashi, Kouichi

    2014-11-01

    Atomic resolution holography, such as X-ray fluorescence holography (XFH)[1] and photoelectron holography (PH), has the attention of researcher as an informative local structure analysis, because it provides three dimensional atomic images around specific elements within a range of a few nanometers. It can determine atomic arrangements around a specific element without any prior knowledge of structures. It is considered that the atomic resolution holographic is a third method of structural analysis at the atomic level after X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS). As known by many researchers, XRD and XAFS are established methods that are widespread use in various fields. XRD and XAFS provide information on long-range translational periodicities and very local environments, respectively, whereas the atomic resolution holography gives 3D information on the local order and can visualize surrounding atoms with a large range of coordination shells. We call this feature "3D medium-range local structure observation".In addition to this feature, the atomic resolution holography is very sensitive to the displacement of atoms from their ideal positions, and one can obtain quantitative information about local lattice distortions by analyzing reconstructed atomic images[2] When dopants with different atomic radii from the matrix elements are present, the lattices around the dopants are distorted. However, using the conventional methods of structural analysis, one cannot determine the extent to which the local lattice distortions are preserved from the dopants. XFH is a good tool for solving this problem.Figure 1 shows a recent achievement on a relaxor ferroelectric of Pb(Mg1/3Nb2/3)O3 (PMN) using XFH. The structural studies of relaxor ferroelectrics have been carried out by X-ray or neutron diffractions, which suggested rhombohedral distortions of their lattices. However, their true pictures have not been obtained, yet. The Nb Kα holograms showed

  19. Effects of Sb Content (x) on (Bi(1-x)Sb(x))2Te3 Thermoelectric Thin Film Deposited by Effusion Cell Evaporator.

    PubMed

    Yong, Ho; Na, Sekwon; Gang, Jun-Gu; Jeon, Seong-Jae; Hyun, Seungmin; Lee, Hoo-Jeong

    2015-10-01

    This paper investigates the effects of the Sb content (x) on (Bi(1-x)Sb(x))2Te3 thermoelectric films with x changing widely from 0 (Sb2Te3) to 1 (Bi2Te3). First, the XRD analysis discloses that with the Sb content (x) increasing, the phase changed gradually from Bi2Te3 to Sb2Te3 as Sb atoms replaced substitutionally Bi atoms. Further microstructure analysis reveals that an extensive grain growth occurred during post-annealing for the samples with high Sb contents. According to the measurement of electrical and thermoelectric properties, the polarity of the charge carrier and Seebeck coefficient switched n-type to p-type in the range of x = 0.45~0.63. For the n-type samples, the power factor is highest when x = 0.18 around 46.01 μW/K(2) whereas Sb2Te3, for the p-type samples, shows the highest value, 62.48 μW/K(2)cm. PMID:26726497

  20. Study of Pb-doped Ge{sub 2}Sb{sub 2}Te{sub 5} in crystalline phase using first principle calculations

    SciTech Connect

    Singh, Janpreet; Tripathi, S. K. E-mail: surya-tr@yahoo.com; Singh, Gurinder; Kaura, Aman

    2015-08-28

    To improve the phase change characteristics of Ge{sub 2}Sb{sub 2}Te{sub 5} (GST), doping is used as one of the effective methods. 4.4 atomic % of Pb doped GST has been studied using first principle calculations. No effect of doping on Te-Ge and Te-Sb bond length has been observed, but the Te-Te bond gets shrink with Pb doping. Due to which the Sb{sub 2}Te{sub 3} segregates as a second phase, with increased doping concentration of Pb in GST alloy. Using such type of calculation, we can calculate the desirable concentration of dopant atoms to prepare the desired material. We can control any segregation in required material with pre-theoretical calculations. The metallic nature of Pd doped GST has been discussed with band structure plots. The metallic character of alloys calculated as in this paper will be helpful to understand the tuning of conductivity of phase change materials, which helps to enhance the phase change properties.