Science.gov

Sample records for 12-14cr ods ferritic

  1. High heat flux testing of 12-14Cr ODS ferritic steels

    NASA Astrophysics Data System (ADS)

    Pintsuk, G.; Oksiuta, Z.; Linke, J.; Baluc, N.

    2010-01-01

    The thermal performance of Fe-(12-14)Cr-2W-0.3Ti-0.3Y 2O 3 ODS reduced activation ferritic steels, which are considered as candidate first wall materials for the future fusion power reactors and were manufactured by mechanical alloying in hydrogen and hot isostatic pressing, was assessed by high heat flux (HHF) testing with the electron beam JUDITH facility at the Forschungszentrum Jülich (FZJ), Germany. An analysis of the microhardness and microstructure of the specimens was done before and after HHF tests. In general, both materials present a ferritic (α-Fe, bcc) microstructure with a wide range of grain sizes from 100 to 500 nm up to a few micrometers. The coarse grains are almost dislocation-free, while the smaller ones are surrounded by tangles of dislocations. Oxide and carbide impurities (about a few hundreds nm in size) and a high density of Y-Ti-O nano-clusters, with a mean size of about 5 nm, are also present. The microhardness, density and tensile strength of the 14Cr material are slightly larger than those of the 12Cr material. HHF tests revealed that there is no difference in thermal performance, level of degradation and erosion behaviour of 12Cr and 14Cr ODS steels. The onset of melting of the materials occurs for an energy density between 1 and 1.5 MJ/m 2. Below this value only some kind of thermal etching takes place. This is a significant improvement compared to stainless steel, for which severe plastic deformation at the material surface was observed.

  2. Microstructure and Charpy impact properties of 12 14Cr oxide dispersion-strengthened ferritic steels

    NASA Astrophysics Data System (ADS)

    Oksiuta, Z.; Baluc, N.

    2008-02-01

    This paper describes the microstructure and Charpy impact properties of 12-14 Cr ODS ferritic steels fabricated by mechanical alloying of pure Fe, Cr, W, Ti and Y 2O 3 powders in a Retsch ball mill in argon atmosphere, followed by hot isostatic pressing at 1100 °C under 200 MPa for 4 h and heat treatment at 850 °C for 1 h. Weak Charpy impact properties were obtained in the case of both types of as-hipped materials. In the case of 14Cr materials, the weak Charpy properties appeared related to a bimodal grain size distribution and a heterogeneous dislocation density between the coarse and fine grains. No changes in microstructure were evidenced after heat treatment at 850 °C. Significant improvement in the transition temperature and upper shelf energy of 12Cr materials was obtained by heat treatment at 850 °C for 1 h, which was attributed to the formation of smaller grains, homogenous in size and containing fewer dislocations, with respect to the as-hipped microstructure. This modified microstructure results in a good compromise between strength and Charpy impact properties.

  3. Joining Techniques for Ferritic ODS Alloys

    SciTech Connect

    V.G. Krishnardula; V.G. Krishnardula; D.E. Clark; T.C. Totemeier

    2005-06-01

    This report presents results of research on advanced joining techniques for ferritic oxide-dispersion strengthened alloys MA956 and PM2000. The joining techniques studied were resistance pressure welding (also known as pressure forge welding), transient liquid phase bonding, and diffusion bonding. All techniques were shown to produce sound joints in fine-grained, unrecrystallized alloys. Post-bond heat treatment to produce a coarse-grained, recrystallized microstructure resulted in grain growth across the bondline for transient liquid phase and diffusion bonds, giving microstructures essentially identical to that of the parent alloy in the recrystallized condition. The effects of bond orientation, boron interlayer thickness, and bonding parameters are discussed for transient liquid phase and diffusion bonding. The report concludes with a brief discussion of ODS joining techniques and their applicability to GEN IV reactor systems.

  4. Residual ferrite formation in 12CrODS steels

    NASA Astrophysics Data System (ADS)

    Ukai, S.; Kudo, Y.; Wu, X.; Oono, N.; Hayashi, S.; Ohtsuka, S.; Kaito, T.

    2014-12-01

    Increasing Cr content from 9 to 12 mass% leads to superior corrosion and high-temperature oxidation resistances, and usually changes microstructure from martensite to a ferrite. To make transformable martensitic type of 12CrODS steels that have superior processing capability by using α/γ phase transformation, alloy design was conducted through varying nickel content. The structure of 12CrODS steels was successfully modified from full ferrite to a transformable martensite-base matrix containing ferrite. This ferrite consists of both equilibrium ferrite and a metastable residual ferrite. It was shown that the fraction of the equilibrium ferrite is predictable by computed phase diagram and formation of the residual ferrite was successfully evaluated through pinning of α/γ interfacial boundaries by oxide particles.

  5. The filler powders laser welding of ODS ferritic steels

    NASA Astrophysics Data System (ADS)

    Liang, Shenyong; Lei, Yucheng; Zhu, Qiang

    2015-01-01

    Laser welding was performed on Oxide Dispersion Strengthened (ODS) ferritic steel with the self-designed filler powders. The filler powders were added to weld metal to produce nano-particles (Y-M-O and TiC), submicron particles (Y-M-O) and dislocation rings. The generated particles were evenly distributed in the weld metal and their forming mechanism and behavior were analyzed. The results of the tests showed that the nano-particles, submicron particles and dislocation rings were able to improve the micro-hardness and tensile strength of welded joint, and the filler powders laser welding was an effective welding method of ODS ferritic steel.

  6. Mechanical behaviour of ferritic ODS steels - Temperature dependancy and anisotropy

    NASA Astrophysics Data System (ADS)

    Fournier, B.; Steckmeyer, A.; Rouffie, A.-L.; Malaplate, J.; Garnier, J.; Ratti, M.; Wident, P.; Ziolek, L.; Tournie, I.; Rabeau, V.; Gentzbittel, J. M.; Kruml, T.; Kubena, I.

    2012-11-01

    Ferritic 14%Cr and 18%Cr ODS steels produced at CEA in round bars or plates were tested mechanically. The present paper reports results obtained in tension, impact, fatigue, creep and toughness tests. These tests were carried out at various temperatures and in different directions. These materials show a pronounced anisotropy at all tested temperatures. No matter the loading, the transversal direction is always found to be far less resistant than the longitudinal one. This anisotropy is mainly observed in terms of damage mechanisms, with intergranular fracture preferentially occurring along the extrusion direction. This intergranular fracture mode leads to very low and anisotropic toughness values and to the absence of tertiairy creep stage, pointing out the unstable nature of fracture, even at high temperature. The unrealistically high values of the Norton exponent measured in creep suggests the existence of a threshold stress, which is consistent with the mainly kinematic nature of the stress as revealed by fatigue tests.

  7. Precipitates and boundaries interaction in ferritic ODS steels

    NASA Astrophysics Data System (ADS)

    Sallez, Nicolas; Hatzoglou, Constantinos; Delabrouille, Fredéric; Sornin, Denis; Chaffron, Laurent; Blat-Yrieix, Martine; Radiguet, Bertrand; Pareige, Philippe; Donnadieu, Patricia; Bréchet, Yves

    2016-04-01

    In the course of a recrystallization study of Oxide Dispersion Strengthened (ODS) ferritic steels during extrusion, particular interest was paid to the (GB) Grain Boundaries interaction with precipitates. Complementary and corresponding characterization experiments using Transmission Electron Microscopy (TEM), Energy Dispersive X-ray spectroscopy (EDX) and Atom Probe Tomography (APT) have been carried out on a voluntarily interrupted extrusion or extruded samples. Microscopic observations of Precipitate Free Zones (PFZ) and precipitates alignments suggest precipitate interaction with migrating GB involving dissolution and Oswald ripening of the precipitates. This is consistent with the local chemical information gathered by EDX and APT. This original mechanism for ODS steels is similar to what had been proposed in the late 80s for similar observation made on Ti alloys reinforced by nanosized yttrium oxides: An interaction mechanism between grain boundaries and precipitates involving a diffusion controlled process of precipitates dissolution at grain boundaries. It is believed that this mechanism can be of primary importance to explain the mechanical behaviour of such steels.

  8. Hot-rolling of reduced activation 8CrODS ferritic steel

    NASA Astrophysics Data System (ADS)

    Wu, Xiaochao; Ukai, Shigeharu; Leng, Bin; Oono, Naoko; Hayashi, Shigenari; Sakasegawa, Hideo; Tanigawa, Hiroyasu

    2013-11-01

    The 8CrODS ferritic steel is based on J1-lot developed for the advanced fusion blanket material to increase the coolant outlet temperature. A hot-rolling was conducted at the temperature above Ar3 of 716 °C, and its effect on the microstructure and tensile strength in 8CrODS ferritic steel was evaluated, comparing together with normalized and tempered specimen. It was confirmed that hot-rolling leads to slightly increased fraction of the ferrite and highly improved tensile strength. This ferrite was formed by transformation from the hot-rolled austenite during cooling due to fine austenite grains induced by hot-rolling. The coarsening of the transformed ferrite in hot-rolled specimen can be attributed to the crystalline rotation and coalescence of the similar oriented grains. The improved strength of hot-rolled specimen was ascribed to the high dislocation density and replacement of easily deformed martensite with the transformed coarse ferrite.

  9. Microstructure and mechanical properties of friction stir processed ODS ferritic steels

    NASA Astrophysics Data System (ADS)

    Noh, Sanghoon; Kasada, Ryuta; Kimura, Akihiko; Park, Seung Hwan C.; Hirano, Satoshi

    2011-10-01

    Oxide dispersion strengthened (ODS) steels are considered to be one of the candidate structural materials for advanced blanket systems because of its excellent properties in fusion environments. For more applications of the ODS steels to fusion systems with a huge and complex structure, development of joining technologies is a key issue to be solved. To reserve nano-oxide particles in the matrix homogeneously, the friction stir welding (FSW) is a suitable way to get good welding characteristics as a solid-state processing technique. In this research, effects of friction stir processing (FSP) on microstructure and mechanical properties of a ODS steel were studied to apply FSW process to ODS steels. The microstructure of FSPed ODS steel consists of stirred zone (SZ) and base metal (BM), as reported for other ferritic steels. Although equiaxed grain coarsening occurred through dynamic recrystallization during FSP, the nano-oxide particles in SZ showed fewer change in the size distribution. This resulted that FSP is effective to suppress the anisotropy and minimize the change of nano-oxide particles dispersion morphologies of ODS steel.

  10. The influence of Cr content on the mechanical properties of ODS ferritic steels

    NASA Astrophysics Data System (ADS)

    Li, Shaofu; Zhou, Zhangjian; Jang, Jinsung; Wang, Man; Hu, Helong; Sun, Hongying; Zou, Lei; Zhang, Guangming; Zhang, Liwei

    2014-12-01

    The present investigation aimed at researching the mechanical properties of the oxide dispersion strengthened (ODS) ferritic steels with different Cr content, which were fabricated through a consolidation of mechanical alloyed (MA) powders of 0.35 wt.% nano Y2O3 dispersed Fe-12.0Cr-0.5Ti-1.0W (alloy A), Fe-16.0Cr-0.5Ti-1.0W (alloy B), and Fe-18.0Cr-0.5Ti-1.0W (alloy C) alloys (all in wt.%) by hot isostatic pressing (HIP) with 100 MPa pressure at 1150 °C for 3 h. The mechanical properties, including the tensile strength, hardness, and impact fracture toughness were tested by universal testers, while Young's modulus was determined by ultrasonic wave non-destructive tester. It was found that the relationship between Cr content and the strength of ODS ferritic steels was not a proportional relationship. However, too high a Cr content will cause the precipitation of Cr-enriched segregation phase, which is detrimental to the ductility of ODS ferritic steels.

  11. Structure of Oxide Nanoparticles in Fe-16Cr MA/ODS Ferritic Steel

    SciTech Connect

    Hsiung, L; Fluss, M; Kimura, A

    2010-04-06

    Oxide nanoparticles in Fe-16Cr ODS ferritic steel fabricated by mechanical alloying (MA) method have been examined using high-resolution transmission electron microscopy (HRTEM) techniques. A partial crystallization of oxide nanoparticles was frequently observed in as-fabricated ODS steel. The crystal structure of crystalline oxide particles is identified to be mainly Y{sub 4}Al{sub 2}O{sub 9} (YAM) with a monoclinic structure. Large nanoparticles with a diameter larger than 20 nm tend to be incoherent and have a nearly spherical shape, whereas small nanoparticles with a diameter smaller than 10 nm tend to be coherent or semi-coherent and have faceted boundaries. The oxide nanoparticles become fully crystallized after prolonged annealing at 900 C. These results lead us to propose a three-stage formation mechanism of oxide nanoparticles in MA/ODS steels.

  12. Long-term high temperature oxidation behavior of ODS ferritics

    NASA Astrophysics Data System (ADS)

    Pint, B. A.; Wright, I. G.

    2002-12-01

    Four oxide dispersion strengthened Fe-(13-14 at.%) Cr ferritic compositions were exposed in air and air with 10 vol.% water vapor for up to 10 000 h at 700-1100 °C. At 700-800 °C in air, the reaction rates were very low for all of the alloys compared to stainless steels. At 900 °C, a dispersion of Y 2O 3, compared to Al 2O 3, showed a distinct benefit in improving the oxidation resistance, due to a reactive element effect. However, failure occurred after 7000 h at 900 °C when only 13% Cr was present. The absence of Ti and W in one alloy appeared to result in a thinner reaction product after oxidation at 800 °C. One composition was exposed in 10 vol.% water vapor at 800 and 900 °C and in air at 1000 and 1100 °C. Under both of these conditions, there was a significant increase in the rates of oxidation. With the relatively low Cr contents in these alloys, their corrosion-limited operating temperature in air is near 900 °C.

  13. HRTEM Study of the Role of Nanoparticles in ODS Ferritic Steel

    SciTech Connect

    Hsiung, L; Tumey, S; Fluss, M; Serruys, Y; Willaime, F

    2011-08-30

    Structures of nanoparticles and their role in dual-ion irradiated Fe-16Cr-4.5Al-0.3Ti-2W-0.37Y{sub 2}O{sub 3} (K3) ODS ferritic steel produced by mechanical alloying (MA) were studied using high-resolution transmission electron microscopy (HRTEM) techniques. The observation of Y{sub 4}Al{sub 2}O{sub 9} complex-oxide nanoparticles in the ODS steel imply that decomposition of Y{sub 2}O{sub 3} in association with internal oxidation of Al occurred during mechanical alloying. HRTEM observations of crystalline and partially crystalline nanoparticles larger than {approx}2 nm and amorphous cluster-domains smaller than {approx}2 nm provide an insight into the formation mechanism of nanoparticles/clusters in MA/ODS steels, which we believe involves solid-state amorphization and re-crystallization. The role of nanoparticles/clusters in suppressing radiation-induced swelling is revealed through TEM examinations of cavity distributions in (Fe + He) dual-ion irradiated K3-ODS steel. HRTEM observations of helium-filled cavities (helium bubbles) preferably trapped at nanoparticle/clusters in dual-ion irradiated K3-ODS are presented.

  14. Microstructure of a 14Cr-ODS ferritic steel before and after helium ion implantation

    NASA Astrophysics Data System (ADS)

    Lu, Chenyang; Lu, Zheng; Xie, Rui; Liu, Chunming; Wang, Lumin

    2014-12-01

    A 14Cr-ODS ferritic steel with the nominal compositions of Fe-14Cr-2 W-0.3Ti-0.3Y2O3 (wt.%) was produced by mechanical alloying (MA) and hot isostatic pressing (HIP). Helium ion was implanted into the 14Cr-ODS steel along with Eurofer 97 steel as reference at 400 °C to a fluence of 1 × 1017 He+/cm2. High resolution transmission electron microscopy (HRTEM), high angle annual dark field (HAADF) scanning TEM (STEM) and atom probe tomography (APT) were used to characterize the microstructure of 14Cr-ODS and Eurofer 97 steels before and after helium implantation. High-density Y-Ti-O-rich nanoclusters and Y2Ti2O7 precipitates as well as large Cr-Ti rich oxides were observed in the 14Cr-ODS steel. The average size of Y-Ti-O nanoclusters and Y2Ti2O7 precipitates is 9 nm. After helium implantation, the helium bubbles formed in the 14Cr-ODS steel exhibit the smaller size and the lower volume fraction than that in Eurofer 97 steel, indicating high-density nano-scale precipitates can effectively suppress the coarsening of helium bubbles.

  15. Microstructure examination of Fe-14Cr ODS ferritic steels produced through different processing routes

    NASA Astrophysics Data System (ADS)

    Oksiuta, Z.; Hosemann, P.; Vogel, S. C.; Baluc, N.

    2014-08-01

    Various thermo-mechanical treatments were applied to refine and homogenise grain size and improve mechanical properties of hot-isostatically pressed (HIP) 14%Cr ODS ferritic steel. The grain size was reduced, improving mechanical properties, tensile strength and Charpy impact, however bimodal-like distribution was also observed. As a result, larger, frequently elongated grains with size above 1 μm and refined, equiaxed grains with a diameter ranging from 250 to 500 nm. Neutron diffraction measurements revealed that for HIP followed by hydrostatic extrusion material the strongest fiber texture was observed oriented parallel to the extrusion direction. In comparison with hot rolling and hot pressing methods, this material exhibited promising mechanical properties: the ultimate tensile strength of 1350 MPa, yield strength of 1280 MPa, total elongation of 21.7% and Charpy impact energy of 5.8 J. Inferior Charpy impact energy of ∼3.0 J was measured for HIP and hot rolled material, emphasising that parameters of this manufacturing process still have to be optimised. As an alternative manufacturing route, due to the uniform microstructure and simplicity of the process, hot pressing might be a promising method for production of smaller parts of ODS ferritic steels. Besides, the ductile-to-brittle transition temperature of all thermo-mechanically treated materials, in comparison with as-HIPped ODS steel, was improved by more than 50%, the transition temperature ranging from 50 to 70 °C (323 and 343 K) remains still unsatisfactory.

  16. Microstructural development under irradiation in European ODS ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Schäublin, R.; Ramar, A.; Baluc, N.; de Castro, V.; Monge, M. A.; Leguey, T.; Schmid, N.; Bonjour, C.

    2006-06-01

    Oxide dispersion strengthened steels based on the ferritic/martensitic steel EUROFER97 are promising candidates for a fusion reactor because of their improved high temperature mechanical properties and their potential higher radiation resistance relative to the base material. Several EUROFER97 based ODS F/M steels are investigated in this study. There are the Plansee ODS steels containing 0.3 wt% yttria, and the CRPP ODS steels, whose production route is described in detail. The reinforcing particles represent 0.3-0.5% weight and are composed of yttria. The effect of 0.3 wt% Ti addition is studied. ODS steel samples have been irradiated with 590 MeV protons to 0.3 and 1.0 dpa at room temperature and 350 °C. Microstructure is investigated by transmission electron microscopy and mechanical properties are assessed by tensile and Charpy tests. While the Plansee ODS presents a ferritic structure, the CRPP ODS material presents a tempered martensitic microstructure and a uniform distribution of the yttria particles. Both materials provide a yield stress higher than the base material, but with reduced elongation and brittle behaviour. Ti additions improve elongation at high temperatures. After irradiation, mechanical properties of the material are only slightly altered with an increase in the yield strength, but without significant decrease in the total elongation, relative to the base material. Samples irradiated at room temperature present radiation induced defects in the form of blacks dots with a size range from 2 to 3 nm, while after irradiation at 350 °C irradiation induced a0<1 0 0>{1 0 0} dislocation loops are clearly visible along with nanocavities. The dispersed yttria particles with an average size of 6-8 nm are found to be stable for all irradiation conditions. The density of the defects and the dispersoid are measured and found to be about 2.3 × 10 22 m -3 and 6.2 × 10 22 m -3, respectively. The weak impact of irradiation on mechanical properties of ODS F

  17. Microstructural characterizations of 14Cr ODS ferritic steels subjected to hot torsion

    NASA Astrophysics Data System (ADS)

    Karch, A.; Sornin, D.; Barcelo, F.; Bosonnet, S.; de Carlan, Y.; Logé, R.

    2015-04-01

    Oxide dispersion strengthened (ODS) steels are very promising materials for nuclear applications. In this paper, the hot working behavior of ODS ferritic steels, consolidated by hot extrusion, is studied through torsion tests. Three ODS steels are produced acting on both the quantity of Ti and Y2O3 added to the matrix (wt% Fe-14Cr-1W), and the density and size of the nanoparticles. A temperature range of 1000-1200 °C and strain rates from 5 ṡ 10-2 to 5 s-1 are considered. The microstructures of deformed samples are examined by Electron Back-Scatter Diffraction and X-ray diffraction techniques. It is observed that hot plastic strain leads to an early damage with nucleation and growth of cavities along grain boundaries. Except for the damage, very few microstructural and textural evolutions are noticed. The three tested ODS steels exhibit almost the same behavior under hot torsion straining, regardless of the precipitation state. Overall, the experimental results are interpreted through a mechanism of strain accommodation at grain boundaries, with low dislocation activity in the bulk of the grains.

  18. Ion-induced swelling of ODS ferritic alloy MA957 tubing to 500 dpa

    NASA Astrophysics Data System (ADS)

    Toloczko, M. B.; Garner, F. A.; Voyevodin, V. N.; Bryk, V. V.; Borodin, O. V.; Mel'nychenko, V. V.; Kalchenko, A. S.

    2014-10-01

    In order to study the potential swelling behavior of the ODS ferritic alloy MA957 at very high dpa levels, specimens were prepared from pressurized tubes that were unirradiated archives of tubes previously irradiated in FFTF to doses as high as 110 dpa. These unirradiated specimens were irradiated with 1.8 MeV Cr+ ions to doses ranging from 100 to 500 dpa and examined by transmission electron microscopy. No co-injection of helium or hydrogen was employed. It was shown that compared to several tempered ferritic/martensitic steels irradiated in the same facility, these tubes were rather resistant to void swelling, reaching a maximum value of only 4.5% at 500 dpa and 450 °C. In this fine-grained material, the distribution of swelling was strongly influenced by the presence of void denuded zones along the grain boundaries.

  19. Ion-induced swelling of ODS ferritic alloy MA957 tubing to 500 dpa

    SciTech Connect

    Toloczko, Mychailo B.; Garner, F. A.; Voyevodin, V.; Bryk, V. V.; Borodin, O. V.; Melnichenko, V. V.; Kalchenko, A. S.

    2014-10-01

    In order to study the potential swelling behavior of the ODS ferritic alloy MA957 at very high dpa levels, specimens were prepared from pressurized tubes that were unirradiated archives of tubes previously irradiated in FFTF to doses as high at 110 dpa. These unirradiated specimens were irradiated with 1.8 MeV Cr+ ions to doses ranging from 100 to 500 dpa and examined by transmission electron microscopy. No coinjection of helium or hydrogen was employed. It was shown that compared to several ferritic/martensitic steels irradiated in the same facility, these tubes were rather resistant to void swelling, reaching a maximum value of only 4.5% at 500 dpa and 450°C. In this fine-grained material, the distribution of swelling was strongly influenced by the presence of void denuded zones along the grain boundaries.

  20. ODS Ferritic/martensitic alloys for Sodium Fast Reactor fuel pin cladding

    NASA Astrophysics Data System (ADS)

    Dubuisson, Philippe; Carlan, Yann de; Garat, Véronique; Blat, Martine

    2012-09-01

    The development of ODS materials for the cladding for Sodium Fast Reactors is a key issue to achieve the objectives required for the GEN IV reactors. CEA, AREVA and EDF have launched in 2007 an important program to determine the optimal fabrication parameters, and to measure and understand the microstructure and properties before, under and after irradiation of such cladding materials. The aim of this paper is to present the French program and the major results obtained recently at CEA on Fe-9/14/18Cr1WTiY2O3 ferritic/martensitic ODS materials. The first step of the program was to consolidate Fe-9/14/18Cr ODS materials as plates and bars to study the microstructure and the mechanical properties of the new alloys. The second step consists in producing tubes at a geometry representative of the cladding of new Sodium Fast Reactors. The optimization of the fabrication route at the laboratory scale is conducted and different tubes were produced. Their microstructure depends on the martensitic (Fe-9Cr) or ferritic (Fe-14Cr) structure. To join the plug to the tube, the reference process is the welding resistance. A specific approach is developed to model the process and support the development of the welds performed within the "SOPRANO" facility. The development at CEA of Fe-9/14/18Cr new ODS materials for the cladding for GENIV Sodium Fast Reactors is in progress. The first microstructural and mechanical characterizations are very encouraging and the full assessment and qualification of this new alloys and products will pass through the irradiation of specimens, tubes, fuel pins and subassemblies up to high doses.

  1. Irradiation hardening of ODS ferritic steels under helium implantation and heavy-ion irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Hengqing; Zhang, Chonghong; Yang, Yitao; Meng, Yancheng; Jang, Jinsung; Kimura, Akihiko

    2014-12-01

    Irradiation hardening of ODS ferritic steels after multi-energy He-ion implantation, or after irradiation with energetic heavy ions including Xe and Bi-ions was investigated with nano-indentation technique. Three kinds of high-Cr ODS ferritic steels including the commercial MA956 (19Cr-3.5Al), the 16Cr-0.1Ti and the 16Cr-3.5Al-0.1Zr were used. Data of nano-hardness were analyzed with an approach based on Nix-Gao model. The depth profiles of nano-hardness can be understood by the indentation size effect (ISE) in specimens of MA956 implanted with multi-energy He-ions or irradiated with 328 MeV Xe ions, which produced a plateau damage profile in the near-surface region. However, the damage gradient overlaps the ISE in the specimens irradiated with 9.45 Bi ions. The dose dependence of the nano-hardness shows a rapid increase at low doses and a slowdown at higher doses. An 1/2-power law dependence on dpa level is obtained. The discrepancy in nano-hardness between the helium implantation and Xe-ion irradiation can be understood by using the average damage level instead of the peak dpa level. Helium-implantation to a high dose (7400 appm/0.5 dpa) causes an additional hardening, which is possibly attributed to the impediment of motion dislocations by helium bubbles formed in high concentration in specimens.

  2. Tensile anisotropy and creep properties of a Fe-14CrWTi ODS ferritic steel

    NASA Astrophysics Data System (ADS)

    Steckmeyer, A.; Rodrigo, Vargas Hideroa; Gentzbittel, J. M.; Rabeau, V.; Fournier, B.

    2012-07-01

    A Fe-14Cr oxide dispersion strengthened (ODS) ferritic steel is studied as a potential material for cladding tube application for the next generation of fast-breeder nuclear reactors. Tensile specimens machined out from a hot extruded round bar in three different orientations are used to evaluate the mechanical anisotropy of this steel for temperatures in the range 20-750 °C. Its anisotropy is discussed both in terms of mechanical strength and fracture mode. At high temperatures (HTs), above 500 °C, the longitudinal direction appears to be the most ductile and most resistant direction. Longitudinal creep tests between 650 °C and 900 °C were also carried out. They show this ODS steel has a high HT creep lifetime and a low creep failure strain. Intergranular cracks aligned along the loading axis were observed on fractured creep specimens. They reveal a particular weakness of prior particle boundaries and suggest to modify the elaboration process through mechanical alloying and hot extrusion.

  3. HRTEM Study of Oxide Nanoparticles in K3-ODS Ferritic Steel Developed for Radiation Tolerance

    SciTech Connect

    Hsiung, L; Fluss, M; Tumey, S; Kuntz, J; El-Dasher, B; Wall, M; Choi, W; Kimura, A; Willaime, F; Serruys, Y

    2009-11-02

    Crystal and interfacial structures of oxide nanoparticles and radiation damage in 16Cr-4.5Al-0.3Ti-2W-0.37 Y{sub 2}O{sub 3} ODS ferritic steel have been examined using high-resolution transmission electron microscopy (HRTEM) techniques. Oxide nanoparticles with a complex-oxide core and an amorphous shell were frequently observed. The crystal structure of complex-oxide core is identified to be mainly monoclinic Y{sub 4}Al{sub 2}O{sub 9} (YAM) oxide compound. Orientation relationships between the oxide and the matrix are found to be dependent on the particle size. Large particles (> 20 nm) tend to be incoherent and have a spherical shape, whereas small particles (< 10 nm) tend to be coherent or semi-coherent and have a faceted interface. The observations of partially amorphous nanoparticles and multiple crystalline domains formed within a nanoparticle lead us to propose a three-stage mechanism to rationalize the formation of oxide nanoparticles containing core/shell structures in as-fabricated ODS steels. Effects of nanoparticle size and density on cavity formation induced by (Fe{sup 8+} + He{sup +}) dual-beam irradiation are briefly addressed.

  4. Effect of mechanical alloying atmosphere on the microstructure and Charpy impact properties of an ODS ferritic steel

    NASA Astrophysics Data System (ADS)

    Oksiuta, Z.; Baluc, N.

    2009-04-01

    Two types of oxide dispersion strengthened (ODS) ferritic steels, with the composition of Fe-14Cr-2W-0.3Ti-0.3Y 2O 3 (in weight percent), have been produced by mechanically alloying elemental powders of Fe, Cr, W, and Ti with Y 2O 3 particles either in argon atmosphere or in hydrogen atmosphere, degassing at various temperatures, and compacting the mechanically alloyed powders by hot isostatic pressing. It was found in particular that mechanical alloying in hydrogen yields a significant reduction in oxygen content in the materials, a lower dislocation density, and a strong improvement in the fast fracture properties of the ODS ferritic steels, as measured by Charpy impact tests.

  5. High temperature deformation mechanism of 15CrODS ferritic steels at cold-rolled and recrystallized conditions

    NASA Astrophysics Data System (ADS)

    Sugino, Yoshito; Ukai, Shigeharu; Oono, Naoko; Hayashi, Shigenari; Kaito, Takeji; Ohtsuka, Satoshi; Masuda, Hiroshi; Taniguchi, Satoshi; Sato, Eiichi

    2015-11-01

    The ODS ferritic steels realize potentially higher operating temperature due to structural stability by the dispersed nano-size oxide particles. The deformation process and mechanism of 15CrODS ferritic steels were investigated at 1073 K and 1173 K for the cold-rolled and recrystallized conditions. Tensile and creep tests were conducted at the stress in parallel (LD) and perpendicular (TD) directions to the grain boundaries. Strain rate varied from 10-1 to 10-9 s-1. For the LD specimens, deformation in the cold rolled and recrystallized conditions is reinforced by finely dispersed oxide particles. The dominant deformation process for the recrystallized TD specimen is controlled through the grain boundary sliding and stress accommodation via diffusional creep at temperature of 1173 K and lower strain rate less than 10-4 s-1. The grain boundary sliding couldn't be rate-controlling process at 1073 K for the as-cold rolled TD specimen, where a dynamic recovery of the dislocation produced by cold-rolling is related to the deformation process.

  6. Load partitioning between ferrite/martensite and dispersed nanoparticles of a 9Cr ferritic/martensitic (F/M) ODS steel at high temperatures

    SciTech Connect

    Zhang, Guangming; Mo, Kun; Miao, Yinbin; Liu, Xiang; Almer, Jonathan; Zhou, Zhangjian; Stubbins, James F.

    2015-06-18

    In this study, a high-energy synchrotron radiation X-ray technique was used to investigate the tensile deformation processes of a 9Cr-ODS ferritic/martensitic (F/M) steel at different temperatures. Two minor phases within the 9Cr-ODS F/M steel matrix were identified as Y2Ti2O7 and TiN by the high-energy X-ray diffraction, and confirmed by the analysis using energy dispersive X-ray spectroscopy (EDS) of scanning transmission electron microscope (STEM). The lattice strains of the matrix and particles were measured through the entire tensile deformation process. During the tensile tests, the lattice strains of the ferrite/martensite and the particles (TiN and Y2Ti2O7) showed a strong temperature dependence, decreasing with increasing temperature. Analysis of the internal stress at three temperatures showed that the load partitioning between the ferrite/martensite and the particles (TiN and Y2Ti2O7) was initiated during sample yielding and reached to a peak during sample necking. At three studied temperatures, the internal stress of minor phases (Y2Ti2O7 and TiN) was about 2 times that of F/M matrix at yielding position, while the internal stress of Y2Ti2O7 and TiN reached about 4.5-6 times and 3-3.5 times that of the F/M matrix at necking position, respectively. It indicates that the strengthening of the matrix is due to minor phases (Y2Ti2O7 and TiN), especially Y2Ti2O7 particles. Although the internal stresses of all phases decreased with increasing temperature from RT to 600 degrees C, the ratio of internal stresses of each phase at necking position stayed in a stable range (internal stresses of Y2Ti2O7 and TiN were about 4.5-6 times and 3-3.5 times of that of F/M matrix, respectively). The difference between internal stress of the F/M matrix and the applied stress at 600 degrees C is slightly lower than those at RI and 300 degrees C, indicating that the nanoparticles still have good strengthening effect at 600 degrees C. (C) 2015 Elsevier B.V. All rights reserved.

  7. Effect of thermo-mechanical treatments on the microstructure and mechanical properties of an ODS ferritic steel

    NASA Astrophysics Data System (ADS)

    Oksiuta, Z.; Mueller, P.; Spätig, P.; Baluc, N.

    2011-05-01

    The Fe-14Cr-2W-0.3Ti-0.3Y 2O 3 oxide dispersion strengthened (ODS) reduced activation ferritic (RAF) steel was fabricated by mechanical alloying of a pre-alloyed, gas atomised powder with yttria nano-particles, followed by hot isostatic pressing and thermo-mechanical treatments (TMTs). Two kinds of TMT were applied: (i) hot pressing, or (ii) hot rolling, both followed by annealing in vacuum at 850 °C. The use of a thermo-mechanical treatment was found to yield strong improvement in the microstructure and mechanical properties of the ODS RAF steel. In particular, hot pressing leads to microstructure refinement, equiaxed grains without texture, and an improvement in Charpy impact properties, especially in terms of the upper shelf energy (about 4.5 J). Hot rolling leads to elongated grains in the rolling direction, with a grain size ratio of 6:1, higher tensile strength and reasonable ductility up to 750 °C, and better Charpy impact properties, especially in terms of the ductile-to-brittle transition temperature (about 55 °C).

  8. Hot deformation behavior and processing map of a 9Cr ferritic/martensitic ODS steel

    NASA Astrophysics Data System (ADS)

    Zhang, Guangming; Zhou, Zhangjian; Sun, Hongying; Zou, Lei; Wang, Man; Li, Shaofu

    2014-12-01

    The hot deformation behavior of 9Cr oxide-dispersion-strengthened (ODS) steel fabricated through the process of mechanical alloying and hot isostatic pressing (HIP) as investigated through hot compression deformation tests on the Gleeble-1500D simulator in the temperature range of 1050-1200 °C and strain rate range of 0.001 s-1-1 s-1. The relationship between the rheological stress and the strain rate was also studied. The activation energy and the stress and material parameters of the hyperbolic-sine equation were resolved according to the data obtained. The processing map was also proposed. The results show that the flow stress decreases as the temperature increases, and that decreasing of the strain rate of the 9Cr ODS steel results in a positive strain rate sensitivity. It is clear that dynamic recrystallization is influenced by both temperature and strain rate. The results of this study may provide a good reference for the selection of hot working parameters for 9Cr ODS steel. The optimum processing domains are at 1200 °C with a strain rate of 1 s-1 and in the range of 1080-1100 °C with a strain rate between 0.018 s-1 and 0.05 s-1.

  9. Mantle region accommodating two-dimensional grain boundary sliding in ODS ferritic steel

    NASA Astrophysics Data System (ADS)

    Masuda, Hiroshi; Tobe, Hirobumi; Sato, Eiichi; Sugino, Yoshito; Ukai, Shigeharu

    2015-07-01

    Two-dimensional grain-boundary sliding (GBS) was achieved microscopically in an oxide-dispersion-strengthened ferritic steel with an elongated and aligned grain structure, which was deformed perpendicular to the long axis. At the border between superplastic regions II and III, microscopic deformation was observed using sub-micron grids drawn on the material surface using a focused ion beam. GBS was accommodated by intragranular deformations in narrow areas around grain boundaries, which has been predicted by earlier researchers as characteristics of the core-mantle model. These observations suggest that dislocations slip only in the mantle regions around wavy boundaries to relax the stress concentration caused by GBS during superplasticity.

  10. Tensile properties and deformation mechanisms of a 14Cr ODS ferritic steel

    NASA Astrophysics Data System (ADS)

    Steckmeyer, A.; Praud, M.; Fournier, B.; Malaplate, J.; Garnier, J.; Béchade, J. L.; Tournié, I.; Tancray, A.; Bougault, A.; Bonnaillie, P.

    2010-10-01

    The search for a new cladding material is part of the research studies carried out at CEA to develop a sodium-cooled fast reactor meeting the expectations of the Generation IV International Forum. In this study, the tensile properties of a ferritic oxide dispersion strengthened steel produced by hot extrusion at CEA have been evaluated. They prove the studied alloy to be as resistant as and more ductile than the other nano-reinforced alloys of literature. The effects of the strain rate and temperature on the total plastic strain of the material remind of diffusion phenomena. Intergranular damage and intergranular decohesion are clearly highlighted.

  11. Innovative Powder Processing of Oxide Dispersion Strengthened ODS Ferritic Stainless Steels

    SciTech Connect

    Rieken, Joel; Anderson, Iver; Kramer, Matthew

    2011-04-01

    An innovative gas atomization reaction synthesis technique was employed as a viable method to dramatically lower the processing cost for precursor oxide dispersion forming ferritic stainless steel powders (i.e., Fe-Cr-(Hf,Ti)-Y). During this rapid solidification process the atomized powders were enveloped by a nano-metric Cr-enriched metastable oxide film. Elevated temperature heat treatment was used to dissociate this metastable oxide phase through oxygen exchange reactions with Y-(Hf,Ti) enriched intermetallic compound precipitates. These solid state reactions resulted in the formation of highly stable nano-metric mixed oxide dispersoids (i.e., Y-Ti-O or Y-Hf-O) throughout the alloy microstructure. Subsequent high temperature (1200 C) heat treatments were used to elucidate the thermal stability of each nano-metric oxide dispersoid phase. Transmission electron microscopy coupled with X-ray diffraction was used to evaluate phase evolution within the alloy microstructure.

  12. Past research and fabrication conducted at SCK•CEN on ferritic ODS alloys used as cladding for FBR's fuel pins

    NASA Astrophysics Data System (ADS)

    De Bremaecker, Anne

    2012-09-01

    In the 1960s in the frame of the sodium-cooled fast breeders, SCK•CEN decided to develop claddings made with ferritic stainless materials because of their specific properties, namely a higher thermal conductivity, a lower thermal expansion, a lower tendency to He-embrittlement, and a lower swelling than the austenitic stainless steels. To enhance their lower creep resistance at 650-700 °C arose the idea to strengthen the microstructure by oxide dispersions. This was the starting point of an ambitious programme where both the matrix and the dispersions were optimized. A purely ferritic 13 wt% Cr matrix was selected and its mechanical strength was improved through addition of ferritizing elements. Results of tensile and stress-rupture tests showed that Ti and Mo were the most beneficial elements, partly because of the chi-phase precipitation. In 1973 the optimized matrix composition was Fe-13Cr-3.5Ti-2Mo. To reach creep properties similar to those of AISI 316, different dispersions and methods were tested: internal oxidation (that was not conclusive), and the direct mixing of metallic and oxide powders (Al2O3, MgO, ZrO2, TiO2, ZrSiO4) followed by pressing, sintering, and extrusion. The compression and extrusion parameters were determined: extrusion as hollow at 1050 °C, solution annealing at 1050 °C/15 min, cleaning, cold drawing to the final dimensions with intermediate annealings at 1050 °C, final annealing at 1050 °C, straightening and final aging at 800 °C. The choice of titania and yttria powders and their concentrations were finalized on the basis of their out-of-pile and in-pile creep and tensile strength. As soon as a resistance butt welding machine was developed and installed in a glove-box, fuel segments with PuO2 were loaded in the Belgian MTR BR2. The fabrication parameters were continuously optimized: milling and beating, lubrication, cold drawing (partial and final reduction rates, temperature, duration, atmosphere and furnace). Specific non

  13. Development and characterisation of a new ODS ferritic steel for fusion reactor application

    NASA Astrophysics Data System (ADS)

    Oksiuta, Z.; Olier, P.; de Carlan, Y.; Baluc, N.

    2009-08-01

    This paper describes the microstructure, tensile properties and Charpy impact resistance of a reduced activation oxide dispersion strengthened ferritic steel Fe-14Cr-2W-0.3Ti-0.3Y 2O 3 produced by mechanical alloying of a pre-alloyed, gas atomised steel powder with Y 2O 3 particles, compaction by hot extrusion at 1100 °C, hot rolling at 700 °C and heat treatment at 1050 °C for 1 h. At room temperature the material exhibits a high ultimate tensile strength of about 1420 MPa and high yield strength of about 1340 MPa in the transverse direction. In the longitudinal direction the values are about 10% lower, due to the anisotropy of the microstructure (elongated grains in the rolling direction). At 750 °C the material still exhibits relatively high yield strengths of about 325 MPa and 305 MPa in the longitudinal and transverse directions, respectively. The material exhibits reasonable uniform and total elongation values over the temperature range 23-750 °C, in both transverse and longitudinal directions. The material exhibits weak Charpy impact properties in the transverse direction. Charpy impact properties are slightly better in the longitudinal direction, with upper shelf energy of about 4.2 J and a ductile-to-brittle transition temperature of about 8.8 °C.

  14. Energy-filtered TEM imaging and EELS study of ODS particles and argon-filled cavities in ferritic-martensitic steels.

    PubMed

    Klimiankou, M; Lindau, R; Möslang, A

    2005-01-01

    Oxide-dispersion-strengthened (ODS) ferritic-martensitic steels with yttrium oxide (Y(2)O(3)) have been produced by mechanical alloying and hot isostatic pressing for use as advanced material in fusion power reactors. Argon gas, usually widely used as inert gas during mechanical alloying, was surprisingly detected in the nanodispersion-strengthened materials. Energy-filtered transmission electron microscopy (EFTEM) and electron energy loss spectroscopy (EELS) led to the following results: (i) chemical composition of ODS particles, (ii) voids with typical diameters of 1-6 nm are formed in the matrix, (iii) these voids are filled with Ar gas, and (iv) the high-density nanosized ODS particles serve as trapping centers for the Ar bubbles. The Ar L(3,2) energy loss edge at 245 eV as well as the absorption features of the ODS particle elements were identified in the EELS spectrum. The energy resolution in the EEL spectrum of about 1.0 eV allows to identify the electronic structure of the ODS particles. PMID:15582472

  15. Optimization of the chemical composition and manufacturing route for ODS RAF steels for fusion reactor application

    NASA Astrophysics Data System (ADS)

    Oksiuta, Z.; Baluc, N.

    2009-05-01

    As the upper temperature for use of reduced activation ferritic/martensitic steels is presently limited by a drop in mechanical strength at about 550 °C, Europe, Japan and the US are actively researching steels with high strength at higher operating temperatures, mainly using stable oxide dispersion. In addition, the numerous interfaces between matrix and oxide particles are expected to act as sinks for the irradiation-induced defects. The main R&D activities aim at finding a compromise between good tensile and creep strength and sufficient ductility, especially in terms of fracture toughness. Oxide dispersion strengthened (ODS) reduced activation ferritic (RAF) steels appear as promising materials for application in fusion power reactors up to about 750 °C. Six different ODS RAF steels, with compositions of Fe-(12-14)Cr-2W-(0.1-0.3-0.5)Ti-0.3Y2O3 (in wt%), were produced by powder metallurgy techniques, including mechanical alloying, canning and degassing of the milled powders and compaction of the powders by hot isostatic pressing, using various devices and conditions. The materials have been characterized in terms of microstructure and mechanical properties. The results have been analysed in terms of optimal chemical composition and manufacturing conditions. In particular, it was found that the composition of the materials should lie in the range Fe-14Cr-2W-(0.3-0.4)Ti-(0.25-0.3)Y2O3, as 14Cr ODS RAF steels exhibit higher tensile strength and better Charpy impact properties and are more stable than 12Cr materials (no risk of martensitic transformation), while materials with 0.5% Ti or more should not be further investigated, due to potential embrittlement by large TiO2 particles.

  16. R&D of ferritic-martensitic steel EP450 ODS for fuel pin claddings of prospective fast reactors

    NASA Astrophysics Data System (ADS)

    Nikitina, A. A.; Ageev, V. S.; Chukanov, A. P.; Tsvelev, V. V.; Porezanov, N. P.; Kruglov, O. A.

    2012-09-01

    Present paper performs research results of structure and mechanical properties of the ODS steel on the base of steel EP450 (Fe-13Cr-2Mo-Nb-V-B-0,12C) on all stages of producing: from powders to thin-walled tubes. Also, the results of research on method of sealing thin-walled tubes from steel EP450 ODS by pressurized resistance welding are shown.

  17. The evolution of internal stress and dislocation during tensile deformation in a 9Cr ferritic/martensitic (F/M) ODS steel investigated by high-energy X-rays

    SciTech Connect

    Zhang, Guangming; Zhou, Zhangjian; Mo, Kun; Miao, Yinbin; Liu, Xiang; Almer, Jonathan; Stubbins, James F.

    2015-12-01

    An application of high-energy wide angle synchrotron X-ray diffraction to investigate the tensile deformation of 9Cr ferritic/martensitic (F/M) ODS steel is presented. With tensile loading and in-situ Xray exposure, the lattice strain development of matrix was determined. The lattice strain was found to decrease with increasing temperature, and the difference in Young's modulus of six different reflections at different temperatures reveals the temperature dependence of elastic anisotropy. The mean internal stress was calculated and compared with the applied stress, showing that the strengthening factor increased with increasing temperature, indicating that the oxide nanoparticles have a good strengthening impact at high temperature. The dislocation density and character were also measured during tensile deformation. The dislocation density decreased with increasing of temperature due to the greater mobility of dislocation at high temperature. The dislocation character was determined by best-fit methods for different dislocation average contrasts with various levels of uncertainty. The results shows edge type dislocations dominate the plastic strain at room temperature (RT) and 300 C, while the screw type dislocations dominate at 600 C. The dominance of edge character in 9Cr F/M ODS steels at RT and 300 C is likely due to the pinning effect of nanoparticles for higher mobile edge dislocations when compared with screw dislocations, while the stronger screw type of dislocation structure at 600 C may be explained by the activated cross slip of screw segments.

  18. The evolution of internal stress and dislocation during tensile deformation in a 9Cr ferritic/martensitic (F/M) ODS steel investigated by high-energy X-rays

    NASA Astrophysics Data System (ADS)

    Zhang, Guangming; Zhou, Zhangjian; Mo, Kun; Miao, Yinbin; Liu, Xiang; Almer, Jonathan; Stubbins, James F.

    2015-12-01

    An application of high-energy wide angle synchrotron X-ray diffraction to investigate the tensile deformation of 9Cr ferritic/martensitic (F/M) ODS steel is presented. With tensile loading and in-situ X-ray exposure, the lattice strain development of matrix was determined. The lattice strain was found to decrease with increasing temperature, and the difference in Young's modulus of six different reflections at different temperatures reveals the temperature dependence of elastic anisotropy. The mean internal stress was calculated and compared with the applied stress, showing that the strengthening factor increased with increasing temperature, indicating that the oxide nanoparticles have a good strengthening impact at high temperature. The dislocation density and character were also measured during tensile deformation. The dislocation density decreased with increasing of temperature due to the greater mobility of dislocation at high temperature. The dislocation character was determined by best-fit methods for different dislocation average contrasts with various levels of uncertainty. The results shows edge type dislocations dominate the plastic strain at room temperature (RT) and 300 °C, while the screw type dislocations dominate at 600 °C. The dominance of edge character in 9Cr F/M ODS steels at RT and 300 °C is likely due to the pinning effect of nanoparticles for higher mobile edge dislocations when compared with screw dislocations, while the stronger screw type of dislocation structure at 600 °C may be explained by the activated cross slip of screw segments.

  19. Microstructural behavior of 8Cr-ODS martensitic steels during creep deformation

    NASA Astrophysics Data System (ADS)

    Shinozuka, K.; Esaka, H.; Tamura, M.; Tanigawa, H.

    2011-10-01

    Oxide dispersion strengthened (ODS) steels show a high anisotropy in their creep behavior because of the δ-ferrite grain elongated in the hot-rolled direction and the characteristic formation of creep cavities. In this work, the relationship between the δ-ferrite grain and the growth of creep cavities in 8Cr-ODS steels was investigated. The samples of two ODS steels with different δ-ferrite volume fractions were machined parallel and perpendicular to the hot-rolled direction. Creep rupture tests and interrupted tests were performed at 700 °C and about 197 MPa. Cavities formed in the martensite along δ-ferrite grains during creep deformation. The area fraction of the cavities of all specimens increased in proportion to the cube root of test time. When the volume fraction of δ-ferrite was high and δ-ferrite grains elongated parallel to the load direction, δ-ferrite then obstructed the propagation of cracks. However, when the volume fraction of δ-ferrite was low and δ-ferrite grains elongated perpendicular to the load direction, δ-ferrite grains had little effect on crack propagation.

  20. TEM characterization of simultaneous triple ion implanted ODS Fe12Cr

    NASA Astrophysics Data System (ADS)

    de Castro, Vanessa; Briceno, Martha; Lozano-Perez, Sergio; Trocellier, Patrick; Roberts, Steve G.; Pareja, Ramiro

    2014-12-01

    Understanding the behavior of oxide dispersion strengthened (ODS) ferritic/martensitic steels under irradiation is vital in the design of advanced fusion reactors. In this work, a simultaneous triple ion implanted ODS Fe12Cr steel was investigated by transmission electron microscopy in order to determine the effect of irradiation on the grain and dislocation structures, oxide nanoparticles and other secondary phases present in the steel. The ODS steel was irradiated at RT with Fe8+, He+ and H+ at the JANNUS-Saclay facility to a damage of 4.4 dpa. Results show that ODS nanoparticles appear very stable under these irradiation conditions.

  1. ODS iron aluminides

    SciTech Connect

    Wright, I.G.; McKamey, C.G.; Pint, B.A.

    1995-07-01

    Since oxide dispersion-strengthened (ODS) FeCrAl-based alloys have sufficient creep strength and good oxidation resistance at the very high temperatures of interest for the primary heat exchanger in advanced, closed-cycle gas turbine systems, they constitute viable alternative candidates to ceramics. A major life-limiting factor of these alloys is the ability to continue to form a protective scale of aluminum oxide, a factor proportional to the total amount of aluminum contained in the alloy. Fe{sub 3}Al has oxidation resistance comparable to that of the FeCrAl-based alloys, and significantly superior sulfidation resistance. Also, because of its larger reservoir of aluminum, Fe{sub 3}Al would be expected to exhibit longer lifetimes at the temperatures of interest. Since the strengthening effects of ODS processing are expected to confer similar high-temperature creep properties to those found for the FeCrAl-based alloys, ODS-Fe{sub 3}Al is considered to have excellent potential for the very high-temperature heat exchanger application. The program effort on ODS Fe{sub 3}Al includes examination of the properties of available ODS-FeCrAl alloys; development of mechanical alloying parameters for ODS-Fe{sub 3}Al; determination of the effects of a dispersion of reactive element oxides on the high-temperature oxidation behavior of Fe{sub 3}Al; and evaluation of methods for joining them.

  2. ODS iron aluminides

    SciTech Connect

    Wright, I.G.; Pint, B.A.; Ohriner, E.K.; Tortorelli, P.F.

    1996-08-01

    The overall goal of this program is to develop an oxide dispersion-strengthened (ODS) version of Fe{sub 3}Al that has sufficient creep strength and resistance to oxidation at temperatures in the range 1000 to 1200{degrees}C to be suitable for application as heat exchanger tubing in advanced power generation cycles. The program has two main thrusts: (a) alloy processing, which involves mechanical alloying and thermomechanical processing to achieve the desired size and distribution of the oxide dispersoid, and (b) optimization of the oxidation behavior to provide increased service life compared to ODS-FeCrAl alloys intended for the same applications. Control of the grain size and shape in the final alloy is very dependent on the homogeneity of the alloy powder, in terms of the size and distribution of the dispersed oxide particles, and on the level of strain and temperature applied in the recrystallization step. Studies of the effects of these variables are being made using mechanically-alloyed powder from two sources: a commercial powder metallurgy alloy vendor and an in-house, controlled environment high-energy mill. The effects of milling parameters on the microstructure and composition of the powder and consolidated alloy are described. Comparison of the oxidation kinetics of ODS-Fe{sub 3}Al alloys with commercial ODS-FeCrAl alloys in air at 1000-1300{degrees}C indicated that the best Fe{sub 3}Al-based alloys oxidized isothermally at the same rate as the ODS-FeCrAl alloys but, under thermal cycling conditions, the oxidation rate of ODS-Fe{sub 3}Al was faster. The main difference was that the ODS-Fe{sub 3}Al experienced significantly more scale spallation above 1000{degrees}C. The differences in oxidation behavior were translated into expected lifetimes which indicated that, for an alloy section thickness of 2.5 mm, the scale spallation of ODS-Fe{sub 3}Al leads to an expected service lifetime similar to that for the INCO alloy MA956 at 1100 to 1300{degrees}C.

  3. ODS iron aluminides

    SciTech Connect

    Wright, I.G.; Pint, B.A.; Tortorelli, P.F.; Ohriner, E.K.

    1996-06-01

    Interest in advanced cycles that involve indirectly-fired gas turbines, in which coal- or gas-fired high-temperature heat exchangers are used to heat a working fluid in a closed system, has led to investigation of materials for heat exchangers capable of operation at temperatures of the order of 1200 to 1300{degrees}C. The candidate materials are ceramics and, possibly, oxide dispersion-strengthened (ODS) alloys. An ODS FeCrAl alloy was found to meet the strength requirements for such an application, in which the working fluid at 0.9 MPa was to be heated from 800 to 1100{degrees}C over a tube length of 4 m. The oxidation life of ODS FeCrAl alloys is determined by their ability to form or reform a protective alumina scale, and can be related to the time for the aluminum content of the alloy to be depleted to some minimum level. As a result, the service life is a function of the available aluminum content of the alloys and the minimum aluminum level at which breakaway oxidation occurs, hence there is a limit on the minimum cross section which can be safely employed at temperatures above 1200{degrees}C. Because of their significantly higher aluminum content ({ge}28 atom %/{ge}16 wt. percent compared to {approx}9 atom %15 wt. percent), alloys based on Fe{sub 3}Al afford a potentially larger reservoir of aluminum to sustain oxidation resistance at higher temperatures and, therefore, offer a possible improvement over the currently-available ODS FeCrAl alloys, providing they can be strengthened in a similar manner.

  4. In situ synchrotron tensile investigations on 14YWT, MA957, and 9-Cr ODS alloys

    NASA Astrophysics Data System (ADS)

    Lin, Jun-Li; Mo, Kun; Yun, Di; Miao, Yinbin; Liu, Xiang; Zhao, Huijuan; Hoelzer, David T.; Park, Jun-Sang; Almer, Jonathan; Zhang, Guangming; Zhou, Zhangjian; Stubbins, James F.; Yacout, Abdellatif M.

    2016-04-01

    Advanced ODS alloys provide exceptional radiation tolerance and high-temperature mechanical properties when compared to traditional ferritic and ferritic/martensitic (F/M) steels. Their remarkable properties result from ultrahigh density and ultrafine size of Y-Ti-O nanoclusters within the ferritic matrix. In this work, we applied a high-energy synchrotron radiation X-ray to study the deformation process of three advanced ODS materials including 14YWT, MA957, and 9-Cr ODS steel. Only the relatively large nanoparticles in the 9-Cr ODS were observed in the synchrotron X-ray diffraction. The nanoclusters in both 14YWT and MA957 were invisible in the measurement due to their non-stoichiometric nature. Due to the different sizes of nanoparticles and nanoclusters in the materials, the Orowan looping was considered to be the major strengthening mechanism in the 9-Cr ODS, while the dispersed-barrier-hardening is dominant strengthening mechanism in both 14YWT and MA957, This analysis was inferred from the different build-up rates of dislocation density when plastic deformation was initiated. Finally, the dislocation densities interpreted from the X-ray measurements were successfully modeled using the Bergström's dislocation models.

  5. ODS iron aluminides

    SciTech Connect

    Wright, I.G.; McKamey, C.G.; Pint, B.A.

    1995-06-01

    There has been a recent increase of interest in advanced cycles that involve indirectly-fired gas turbines, in which coal- or gas-fired high-temperature heat exchangers are used to heat a working fluid in a closed system. In a program conducted as part of the European COST-501 Concerted Action Project, available alloys based on FeCrAl-Y{sub 2}O{sub 3} were evaluated for use in the main heat exchanger in a similar closed-cycle gas turbine application. One of the currently available ODS FeCrAl alloys was found to meet the strength requirements for this application, in which the working fluid at 0.9 MPa (131 psi) flowing at 5,889 kg/hr (12,955 lb/hr) was to be heated from 800 to 1100{degrees}C (1472 to 2012{degrees}F) over a tube length of 4 m (13 ft).

  6. Irradiation creep and microstructural changes of ODS steels of different Cr-contents during helium implantation under stress

    NASA Astrophysics Data System (ADS)

    Chen, J.; Jung, P.; Henry, J.; de Carlan, Y.; Sauvage, T.; Duval, F.; Barthe, M. F.; Hoffelner, W.

    2013-06-01

    Irradiation creep and microstructural changes of two ferritic ODS steels with 12% and 14% Cr have been studied by homogeneously implantation with helium under uniaxial tensile stresses from 40 to 300 MPa. The maximum dose was about 1.2 dpa (5000 appm-He) with displacement damage rates of 1 × 10-5 dpa/s at a temperature of 300 °C. Irradiation creep compliances were measured to be 4.0 × 10-6 dpa-1 MPa-1 and 10 × 10-6 dpa-1 MPa-1 for 12 and 14Cr ODS, respectively. Subsequently, microstructural evolution was studied in detail by TEM observations, showing dislocation loops and bubbles distributed homogenously in the matrix. Some bubbles were attached to ODS particles. Finally, the effects of Cr content on irradiation creep and microstructural changes are discussed, including earlier results of a 19Cr ODS and a PM2000 ferritic steel. Irradiation creep rates of both 12Cr and 14Cr-ODS ferritic steels a temperature of 300 °C show linear stress dependence up to 300 MPa at. Irradiation creep rate per dose rate and stress at a temperature of 300 °C amounts to 4.0 × 10-6 dpa-1 MPa-1 and 10 × 10-6 dpa-1 MPa-1 for 12Cr- and 14Cr-ODS, respectively. Irradiation creep properties are remarkably insensitive to Cr content, grain size and dispersoid size. Dislocation loops and helium bubbles are distributed homogenously in the matrix. In the case of high density fine dispersoids, most bubbles are attached to ODS particles. This may suppress loop formation as well as growth of bubbles, thereby increasing the resistance of ODS ferritic steels against helium embrittlement.

  7. In Situ Synchrotron Tensile Investigations on 14YWT, MA957 and 9-Cr ODS Alloys

    SciTech Connect

    Lin, Jun-Li; Mo, Kun; Yun, Di; Miao, Yinbin; Liu, Xiang; Zhao, Huijuan; Hoelzer, David T; Park, Jun-Sang; Almer, Jonathan; Zhang, Guangming; Zhou, Zhangjian; Stubbins, James; Yacout, Abdellatif

    2016-01-01

    Nanostructured ferritic alloys (NFAs) provide exceptional radiation tolerance and high-temperature mechanical properties when compared to traditional ferritic and ferritic/martensitic (F/M) steels. Their remarkable properties result from ultrahigh density and ultrafine size of Y-Ti-O nanoclusters within the ferritic matrix. In this work, we applied a high-energy synchrotron radiation X-ray to study the deformation process of two NFAs including 14YWT and MA957, and a 9-Cr ODS steel. Only the relatively large nanoparticles in the 9-Cr ODS were observed in the synchrotron X-ray diffraction. The nanoclusters in both 14 YWT and MA957 were invisible in the measurement due to their non-stoichiometric nature. Due to the different sizes of nanoparticles and nanoclusters in the materials, the Orowan looping was considered to be the major strengthening mechanism in the 9-Cr ODS, while the dispersed-barrier-hardening is dominant strengthening mechanism in both 14YWT and MA957, respectively. This analysis was inferred from the different build-up rates of dislocation density when plastic deformation was initiated. Finally, the dislocation densities interpreted from the X-ray measurements were successfully modeled using the Bergstr m s dislocation models.

  8. Fabrication of oxide dispersion strengthened ferritic clad fuel pins

    SciTech Connect

    Zirker, L.R. ); Bottcher, J.H. ); Shikakura, S. ); Tsai, C.L. . Dept. of Welding Engineering); Hamilton, M.L. )

    1991-01-01

    A resistance butt welding procedure was developed and qualified for joining ferritic fuel pin cladding to end caps. The cladding are INCO MA957 and PNC ODS lots 63DSA and 1DK1, ferritic stainless steels strengthened by oxide dispersion, while the end caps are HT9 a martensitic stainless steel. With adequate parameter control the weld is formed without a residual melt phase and its strength approaches that of the cladding. This welding process required a new design for fuel pin end cap and weld joint. Summaries of the development, characterization, and fabrication processes are given for these fuel pins. 13 refs., 6 figs., 1 tab.

  9. Assessment of a new fabrication route for Fe-9Cr-1W ODS cladding tubes

    NASA Astrophysics Data System (ADS)

    Toualbi, L.; Cayron, C.; Olier, P.; Malaplate, J.; Praud, M.; Mathon, M.-H.; Bossu, D.; Rouesne, E.; Montani, A.; Logé, R.; de Carlan, Y.

    2012-09-01

    Oxide Dispersion Strengthened ferritic/martensitic steels are developed as future cladding materials for Generation IV Sodium-Cooled Fast Reactors. ODS alloys are elaborated by powder metallurgy, consolidated by hot extrusion and manufactured into tube cladding using cold rolling process. ODS steels present low ductility and high hardness at room temperature which complicate their manufacturing. Cold working leads to the hardening of the tube which needs to be softened by heat treatment. A new high temperature fabrication route performed on a Fe-9Cr-1W-Ti-Y2O3-ODS martensitic steel has been designed by following the hardness values, the morphological and crystallographic anisotropy and the nano-precipitation size evolution at each step of the fabrication route. Observations show that phase transformation from ferrite (α) to austenite (γ) is crucial to reduce the morphological and the crystallographic anisotropy induced by the manufacturing processes. The high temperature heat treatments permit to make the austenitic grain grow leading to an improvement of the cold workability. Ultimate Tensile Strength values obtained in the hoop direction remain about 315 MPa at 650 °C which is slightly lower compared to other Fe-9Cr ODS tubes but the new microstructure could be more favorable for creep properties.

  10. Development of oxide dispersion strengthened ferritic steels for fusion

    SciTech Connect

    Mukhopadhyay, D.K.; Froes, F.H.; Gelles, D.S.

    1998-03-01

    An oxide dispersion strengthened (ODS) ferritic steel with high temperature strength has been developed in line with low activation criteria for application in fusion power systems. The composition Fe-13.5Cr-2W-0.5Ti-0.25Y{sub 2}O{sup 3} was chosen to provide a minimum chromium content to insure fully delta-ferrite stability. High temperature strength has been demonstrated by measuring creep response of the ODS alloy in uniaxial tension at 650 and 900 C in an inert atmosphere chamber. Results of tests at 900 C demonstrate that this alloy has creep properties similar to other alloys of similar design and can be considered for use in high temperature fusion power system designs. The alloy selection process, materials production, microstructural evaluation and creep testing are described.

  11. Development of Austenitic ODS Strengthened Alloys for Very High Temperature Applications

    SciTech Connect

    Stubbins, James; Heuser, Brent; Robertson, Ian; Sehitoglu, Huseyin; Sofronis, Petros; Gewirth, Andrew

    2015-04-22

    This “Blue Sky” project was directed at exploring the opportunities that would be gained by developing Oxide Dispersion Strengthened (ODS) alloys based on the Fe-Cr-Ni austenitic alloy system. A great deal of research effort has been directed toward ferritic and ferritic/martensitic ODS alloys which has resulted in reasonable advances in alloy properties. Similar gains should be possible with austenitic alloy which would also take advantage of other superior properties of that alloy system. The research effort was aimed at the developing an in-depth understanding of the microstructural-level strengthening effects of ODS particles in austentic alloys. This was accomplished on a variety of alloy compositions with the main focus on 304SS and 316SS compositions. A further goal was to develop an understanding other the role of ODS particles on crack propagation and creep performance. Since these later two properties require bulk alloy material which was not available, this work was carried out on promising austentic alloy systems which could later be enhanced with ODS strengthening. The research relied on a large variety of micro-analytical techniques, many of which were available through various scientific user facilities. Access to these facilities throughout the course of this work was instrumental in gathering complimentary data from various analysis techniques to form a well-rounded picture of the processes which control austenitic ODS alloy performance. Micromechanical testing of the austenitic ODS alloys confirmed their highly superior mechanical properties at elevated temperature from the enhanced strengthening effects. The study analyzed the microstructural mechanisms that provide this enhanced high temperature performance. The findings confirm that the smallest size ODS particles provide the most potent strengthening component. Larger particles and other thermally- driven precipitate structures were less effective contributors and, in some cases, limited

  12. Microstructure and oxidation properties of 16Cr-5Al-ODS steel prepared by sol-gel and spark plasma sintering methods

    NASA Astrophysics Data System (ADS)

    Xia, Y. P.; Wang, X. P.; Zhuang, Z.; Sun, Q. X.; Zhang, T.; Fang, Q. F.; Hao, T.; Liu, C. S.

    2013-01-01

    The 16Cr-5Al oxide dispersion strengthened (ODS) ferritic steel was fabricated by sol-gel method in combination with hydrogen reduction, mechanical alloying (MA) and spark plasma sintering (SPS) techniques. The phase characterization, microstructure and oxidation resistance of the 16Cr-5Al-ODS steel were investigated in comparison with the Al free 16Cr-ODS steel. X-ray diffraction (XRD) patterns showed that the Al free and Al added 16Cr-ODS steels exhibited typical ferritic characteristic structure. The microstructure analysis investigated by transmission electron microscopy (TEM) and energy dispersive spectrometry (EDS) revealed that Y-Ti-O complexes with particle size of 10-30 nm were formed in the Al free matrix and Y-Al-O complexes with particle size of 20-100 nm were formed in the Al contained high-Cr ODS steel matrix. These complexes are homogeneously distributed in the matrices. The fabricated 16Cr-5Al-ODS steel exhibited superior oxidation resistance compared with the Al free 16Cr-ODS steel and the commercial 304 stainless steel owing to the formation of continuous and dense Al2O3 film on the surface.

  13. Effect of recrystallization on ion-irradiation hardening and microstructural changes in 15Cr-ODS steel

    NASA Astrophysics Data System (ADS)

    Ha, Yoosung; Kimura, Akihiko

    2015-12-01

    The effects of recrystallization on ion-irradiation hardening and microstructural changes were investigated for a 15Cr-ODS ferritic steel. Dual ion-irradiation experiments were performed at 470 °C using 6.4 MeV Fe3+ ions simultaneously with energy-degraded 1 MeV He+ ions. The displacement of damage at 600 nm depth from the specimen surface was 30 dpa. Nano-indentation test with Berkovich type indentation tip was measured by constant stiffness measurement (CSM) technique. Results from nano-indentation tests indicate irradiation hardening in ODS steels even at 470 °C, while it wasn't observed in reduced activation ferritic steel. Recrystallized ODS steel shows a larger irradiation hardening, which is considered to be due to the reduction of grain boundaries and interfaces of matrix/oxide particles. In 20% cold rolled ODS steel after recrystallization, both the hardening and bubble number density were lower than those of recrystallized ODS steel, suggesting that dislocations generated by cold rolling suppress bubble formation. Based on the estimation of irradiation hardening from TEM observation results, it is considered that the bubbles are not the main factor controlling ion-irradiation hardening.

  14. R&D of low activation ferritic steels for fusion in japanese universities*1

    NASA Astrophysics Data System (ADS)

    Kohyama, Akira; Kohno, Yutaka; Asakura, Kentaro; Kayano, Hideo

    1994-09-01

    Following the brief review of the R&D of low activation ferritic steels in Japanese universities, the status of 9Cr-2W type ferritic steels development is presented. The main emphasis is on mechanical property changes by fast neutron irradiation in FFTF. Bend test, tensile test, CVN test and in-reactor creep results are provided including some data about low activation ferritic steels with Cr variation from 2.25 to 12%. The 9Cr-2W ferritic steel, denoted as JLF-1, showed excellent mechanical properties under fast neutron irradiation as high as 60 dpa. As potential materials for DEMO and beyond, innovative oxide dispersion strengthened (ODS) quasi-amorphous low activation ferritic steels are introduced. The baseline properties, microstructural evolution under ion irradiation and the recent progress of new processes are provided.

  15. The oxidation and corrosion of ODS alloys

    NASA Technical Reports Server (NTRS)

    Lowell, Carl E.; Barrett, Charles A.

    1990-01-01

    The oxidation and hot corrosion of high temperature oxide dispersion strengthened (ODS) alloys are reviewed. The environmental resistance of such alloys are classified by oxide growth rate, oxide volatility, oxide spalling, and hot corrosion limitations. Also discussed are environmentally resistant coatings for ODS materials. It is concluded that ODS NiCrAl and FeCrAl alloys are highly oxidation and corrosion resistant and can probably be used uncoated.

  16. Characterization of Two ODS Alloys: Chromium-18 ODS and Chromium-9 ODS

    NASA Astrophysics Data System (ADS)

    Goddard, Julianne

    ODS alloys, or oxide dispersion strengthened alloys, are made from elemental or pre-alloyed metal powders mechanically alloyed with oxide powders in a high-energy attributor mill, and then consolidated by either hot isostatic pressing or hot extrusion causing the production of nanometer scale oxide and carbide particles within the alloy matrix; crystalline properties such as creep strength, ductility, corrosion resistance, tensile strength, swelling resistance, and resistance to embrittlement are all observed to be improved by the presence of nanoparticles in the matrix. The presented research uses various methods to observe and characterize the microstructural and microchemical properties of two experimental ODS alloys, 18Cr ODS and 9Cr ODS. The results found aid in assessing the influence of chemical and structural variations on the effectiveness of the alloy, and further aid in the optimization of these advanced alloys for future use in nuclear cladding and structural applications in Generation IV nuclear reactors. Characterization of these alloys has been conducted in order to identify the second-phase small precipitates through FESEM, TEM, EDS, Synchrotron X-ray diffraction analysis, and CuKalpha XRD analysis of bulk samples and of nanoparticles after extraction from the alloy matrix. Comparison of results from these methods allows further substantiation of the accuracy of observed nanoparticle composition and identification. Also, TEM samples of the two alloys have been irradiated in-situ with 1 MeV Kr and 300 keV Fe ions to various doses and temperatures at the IVEM-Tandem TEM at Argonne National Laboratory and post-irradiated characterization has been conducted and compared to the pre-irradiated characterization results in order to observe the microstructural and microchemical evolution of nanoparticles under irradiation. Overall in the as-received state, the initial Y2O3 is not found anymore and in addition to oxide particles the alloys contain carbides

  17. ODS steel raw material local structure analysis using X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cintins, A.; Anspoks, A.; Purans, J.; Kuzmin, A.; Timoshenko, J.; Vladimirov, P.; Gräning, T.; Hoffmann, J.

    2015-03-01

    Oxide dispersion strengthened (ODS) steels are promising materials for fusion power reactors, concentrated solar power plants, jet engines, chemical reactors as well as for hydrogen production from thermolysis of water. In this study we used X-ray absorption spectroscopy at the Fe and Cr K-edges as a tool to get insight into the local structure of ferritic and austenitic ODS steels around Fe and Cr atoms and its transformation during mechanical alloying process. Using the analysis of X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) we found that for austenitic samples a transformation of ferritic steel to austenitic steel is detectable after 10 hours of milling and proceeds till 40 hours of milling; only small amount of a-phase remains after 80 hours of milling. We found that the Cr K-edge EXAFS can be used to observe distortions inside the material and to get an impression on the formation of chromium clusters. In-situ EXAFS experiments offer a reliable method to investigate the ferritic to austenitic transformation.

  18. Comminuting irradiated ferritic steel

    DOEpatents

    Bauer, Roger E.; Straalsund, Jerry L.; Chin, Bryan A.

    1985-01-01

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  19. XXIst Century Ferrites

    NASA Astrophysics Data System (ADS)

    Mazaleyrat, F.; Zehani, K.; Pasko, A.; Loyau, V.; LoBue, M.

    2012-05-01

    Ferrites have always been a subject of great interest from point of view of magnetic application, since the fist compass to present date. In contrast, the scientific interest for iron based magnetic oxides decreased after Ørsted discovery as they where replaced by coil as magnetizing sources. Neel discovery of ferrimagnetism boosted again interest and leads to strong developments during two decades before being of less interest. Recently, the evolution of power electronics toward higher frequency, the downsizing of ceramics microstucture to nanometer scale, the increasing price of rare-earth elements and the development of magnetocaloric materials put light again on ferrites. A review on three ferrite families is given herein: harder nanostructured Ba2+Fe12O19 magnet processed by spark plasma sintering, magnetocaloric effect associated to the spin transition reorientation of W-ferrite and low temperature spark plasma sintered Ni-Zn-Cu ferrites for high frequency power applications.

  20. A Results-Oriented Approach to OD.

    ERIC Educational Resources Information Center

    Moravec, Milan

    1978-01-01

    Describes Bechtel Corporation's Organization Development (OD) system, which focuses on action/task identification, planning, operating decisions, and productivity. Presents eight-step process through which OD specialists help managers assess work-related problems (largely through interviews), action planning, implementation, and followup. Process…

  1. Progress in ODS Alloys: A Synopsis of a 2010 Workshop on Fe- Based ODS Alloys

    SciTech Connect

    Kad, Bimal; Dryepondt, Sebastien N; Jones, Andy R.; Vito, Cedro III; Tatlock, Gordon J; Pint, Bruce A; Tortorelli, Peter F; Rawls, Patricia A.

    2012-01-01

    In Fall 2010, a workshop on the role and future of Fe-based Oxide Dispersion Strengthened (ODS) alloys gathered together ODS alloy suppliers, potential industrial end-users, and technical experts in relevant areas. Presentations and discussions focused on the current state of development of these alloys, their availability from commercial suppliers, past major evaluations of ODS alloy components in fossil and nuclear energy applications, and the technical and economic issues attendant to commercial use of ODS alloys. Significant progress has been achieved in joining ODS alloys, with creep resistant joints successfully made by inertia welding, friction stir welding and plasma-assisted pulse diffusion bonding, and in improving models for the prediction of lifetime components. New powder and alloy fabrication methods to lower cost or improve endproduct properties were also described. The final open discussion centered on challenges and pathways for further development and large-scale use of ODS alloys.

  2. Radiation damage of F/M and ODS alloys after Fe3+-ion irradiation at 300 °C

    NASA Astrophysics Data System (ADS)

    Kang, Suk Hoon; Chun, Young-Bum; Noh, Sanghoon; Jang, Jinsung; Jeong, Yong-Hwan; Kim, Tae Kyu

    2015-02-01

    In this study, Fe3+ self-ion irradiation is used as means of introducing irradiation damage in ferritic/martensitic (F/M) steel and oxide dispersion strengthened (ODS) steel. The ion accelerator named DuET (at Kyoto University, Japan) was used for irradiation with 6.4 MeV Fe3+ ions at 300 °C. The total number of accelerated ions was 2.5 × 1020 ions/m2, and the maximum damage rates in the F/M and the ODS steels were estimated to be roughly 6 dpa. The irradiation-induced hardness change in the damaged layer was evaluated by using nano-indentation. The F/M steel and the ODS steel commonly exhibited irradiation hardening; however, the irradiation hardening was more active in the F/M steel than in the ODS steel. The microstructure evolutions after the irradiation were investigated; point or line defects were dominantly observed in the F/M steel, while small circular cavities were typically observed in ODS steel.

  3. Impedance calculation for ferrite inserts

    SciTech Connect

    Breitzmann, S.C.; Lee, S.Y.; Ng, K.Y.; /Fermilab

    2005-01-01

    Passive ferrite inserts were used to compensate the space charge impedance in high intensity space charge dominated accelerators. They study the narrowband longitudinal impedance of these ferrite inserts. they find that the shunt impedance and the quality factor for ferrite inserts are inversely proportional to the imaginary part of the permeability of ferrite materials. They also provide a recipe for attaining a truly passive space charge impedance compensation and avoiding narrowband microwave instabilities.

  4. Effects of heat treatment conditions on the microstructure and impact properties of EUROFER 97 ODS steel

    NASA Astrophysics Data System (ADS)

    Di Martino, S. F.; Faulkner, R. G.; Riddle, N. B.; Monge, M. A.; Munoz, A.

    2011-12-01

    Probably the most important range of materials to consider for the blanket material in the tokamak design for fusion reactors such as ITER and DEMO is the high alloy Fe9Cr oxide dispersion strengthened (ODS) ferritic steels. These steels possess exceptional thermal conductivity and low thermal expansion while being strongly resistant to void swelling. Their main drawback is the high ductile-to-brittle transition temperature (DBTT), particularly in the ODS versions of the material. This paper describes attempts that are being made to reduce this DBTT in as yet unirradiated materials by a novel heat treatment procedure. The principle behind this approach is that low DBTT in the unirradiated materials will lead to relatively low DBTT even in He-containing material that has been irradiated with fusion blanket-type irradiations. New batches of high alloy Fe9Cr ODS (EUROFER) ferritic steel have been produced by a powder metallurgical route, and relatively homogeneous material has been produced by a hot isostatic pressing procedure. Mini-Charpy test specimens were made from materials that had been subjected to a matrix of heat treatments designed to show up variations in solution treatment (ST) temperature, cooling rate from the ST temperature and tempering treatment. The initial DBTT was in the range 150-200 °C. Extremely interesting results have been obtained. DBTT downward shifts of up to 200 °C have been observed by using a high 1300 °C ST temperature and a low cooling rate. The paper goes on to describe the microstructure of this material, and discusses the possible microstructural factors needed to produce these very high DBTT downward shifts. Low dissolved carbon and higher proportions of low-angle grain boundaries seem to provide the key to the understanding of the alloy behaviour.

  5. Ferrite logic reliability study

    NASA Technical Reports Server (NTRS)

    Baer, J. A.; Clark, C. B.

    1973-01-01

    Development and use of digital circuits called all-magnetic logic are reported. In these circuits the magnetic elements and their windings comprise the active circuit devices in the logic portion of a system. The ferrite logic device belongs to the all-magnetic class of logic circuits. The FLO device is novel in that it makes use of a dual or bimaterial ferrite composition in one physical ceramic body. This bimaterial feature, coupled with its potential for relatively high speed operation, makes it attractive for high reliability applications. (Maximum speed of operation approximately 50 kHz.)

  6. SEDS Tether M/OD Damage Analyses

    NASA Technical Reports Server (NTRS)

    Hayashida, K. B.; Robinson, J. H.; Hill, S. A.

    1997-01-01

    The Small Expendable Deployer System (SEDS) was designed to deploy an endmass at the end of a 20-km-long tether which acts as an upper stage rocket, and the threats from the meteoroid and orbital debris (M/OD) particle environments on SEDS components are important issues for the safety and success of any SEDS mission. However, the possibility of severing the tether due to M/OD particle impacts is an even more serious concern, since the SEDS tether has a relatively large exposed area to the M/OD environments although its diameter is quite small. The threats from the M/OD environments became a very important issue for the third SEDS mission, since the project office proposed using the shuttle orbiter as a launch platform instead of the second stage of a Delta II expendable rocket, which was used for the first two SEDS missions. A series of hyper-velocity impact tests were performed at the Johnson Space Center and Arnold Engineering Development Center to help determine the critical particle sizes required to sever the tether. The computer hydrodynamic code or hydrocode called CTH, developed by the Sandia National Laboratories, was also used to simulate the damage on the SEDS tether caused by both the orbital debris and test particle impacts. The CTH hydrocode simulation results provided the much needed information to help determine the critical particle sizes required to sever the tether. The M/OD particle sizes required to sever the tether were estimated to be less than 0.1 cm in diameter from these studies, and these size particles are more abundant in low-Earth orbit than larger size particles. Finally, the authors performed the M/OD damage analyses for the three SEDS missions; i.e., SEDS-1, -2, and -3 missions, by using the information obtained from the hypervelocity impact test and hydrocode simulations results.

  7. Development and characterization of advanced 9Cr ferritic/martensitic steels for fission and fusion reactors

    NASA Astrophysics Data System (ADS)

    Saroja, S.; Dasgupta, A.; Divakar, R.; Raju, S.; Mohandas, E.; Vijayalakshmi, M.; Bhanu Sankara Rao, K.; Raj, Baldev

    2011-02-01

    This paper presents the results on the physical metallurgy studies in 9Cr Oxide Dispersion Strengthened (ODS) and Reduced Activation Ferritic/Martensitic (RAFM) steels. Yttria strengthened ODS alloy was synthesized through several stages, like mechanical milling of alloy powders and yttria, canning and consolidation by hot extrusion. During characterization of the ODS alloy, it was observed that yttria particles possessed an affinity for Ti, a small amount of which was also helpful in refining the dispersoid particles containing mixed Y and Ti oxides. The particle size and their distribution in the ferrite matrix, were studied using Analytical and High Resolution Electron Microscopy at various stages. The results showed a distribution of Y 2O 3 particles predominantly in the size range of 5-20 nm. A Reduced Activation Ferritic/Martensitic steel has also been developed with the replacement of Mo and Nb by W and Ta with strict control on the tramp and trace elements (Mo, Nb, B, Cu, Ni, Al, Co, Ti). The transformation temperatures ( Ac1, Ac3 and Ms) for this steel have been determined and the transformation behavior of the high temperature austenite phase has been studied. The complete phase domain diagram has been generated which is required for optimization of the processing and fabrication schedules for the steel.

  8. Reduction in Defect Content of ODS Alloys

    SciTech Connect

    Ritherdon, J

    2001-05-15

    The work detailed within this report is a continuation of earlier work carried out under contract number 1DX-SY382V. The earlier work comprises a literature review of the sources and types of defects found principally in Fe-based ODS alloys as well as experimental work designed to identify defects in the prototype ODS-Fe{sub 3}Al alloy, deduce their origins and to recommend methods of defect reduction. The present work is an extension of the experimental work already reported and concentrates on means of reduction of defects already identified rather than the search for new defect types. This report also includes results gathered during powder separation trials, conducted by the University of Groningen, Netherlands and coordinated by the University of Liverpool, involving the separation of different metallic powders in terms of their differing densities. The scope and objectives of the present work were laid out in the technical proposal ''Reduction in Defect Content in ODS Alloys-III''. All the work proposed in the ''Statement of Work'' section of the technical proposal has been carried out and all work extra to the ''Statement of Work'' falls within the context of an ODS-Fe{sub 3}Al alloy of improved overall quality and potential creep performance in the consolidated form. The outturn of the experimental work performed is reported in the following sections.

  9. Low activation ferritic alloys

    DOEpatents

    Gelles, D.S.; Ghoniem, N.M.; Powell, R.W.

    1985-02-07

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  10. Low activation ferritic alloys

    DOEpatents

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  11. 75 FR 9232 - Office of Dietary Supplements (ODS) 2010-2014 Strategic Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ... Knowledge and Understanding of Dietary Supplements. The strategic plan is available in pdf format on the ODS Web site: http://ods.od.nih.gov/pubs/strategicplan/StrategicPlan2010-2014.pdf . The ODS strategic...

  12. Reduction in Defect Content of ODS Alloys

    SciTech Connect

    Ritherdon, J

    2003-11-17

    The work detailed within this report is a continuation of earlier work carried out under contract number 1DX-SY382V. The earlier work comprises a literature review of the sources and types of defects found principally in Fe-based ODS alloys as well as experimental work designed to identify defects in the prototype ODS-Fe{sub 3}Al alloy, deduce their origins and to recommend methods of defect reduction. The present work is an extension of the experimental work already reported and concentrates on means of reduction of defects already identified rather than the search for new defect types. This report also includes work regarding the manipulation of grain structures via deformation processing and further results gathered during powder separation trials involving the separation of different metallic powders in terms of their differing densities. The scope and objectives of the present work were laid out in the technical proposal ''Reduction in Defect Content in ODS Alloys-IV''. All the work proposed in the ''Statement of Work'' section of the technical proposal has been carried out except for some of that dependent on the acquisition of materials from other sources. However, wherever omissions from the ''Plan of Action'' detailed in the ''Statement of Work'' have occurred due to lack of suitable materials, other related experimental work has been devised to fill the gaps where possible. All work extra to the ''Statement of Work'' falls within the context of an ODS-Fe{sub 3}Al alloy of improved overall quality and potential creep performance in the consolidated form. The outturn of the experimental work performed is reported in the following sections.

  13. Role of Y-Al oxides during extended recovery process of a ferritic ODS alloy

    DOE PAGESBeta

    Capdevila, C.; Pimentel, G.; Aranda, M. M.; Rementeria, R.; Dawson, K.; Urones-Garrote, E.; Tatlock, G. J.; Miller, Michael K.

    2015-08-04

    The microstructural stability of Y-Al oxides during the recrystallization of Fe-Cr-Al oxide dispersion strengthened alloy is studied in this work. The goal is to determine the specific distribution pattern of oxides depending where they are located: in the matrix or at the grain boundaries. It was concluded that those located at the grain boundaries yielded a faster coarsening than the ones in the matrix, although no significant differences in composition and/or crystal structure were observed. However, the recrystallization heat treatment leads to the dissolution of the Y2O3 and its combination with Al to form the YAlO3 perovskite oxide particles process,more » mainly located at the grain boundaries. Lastly, atom probe tomography analysis revealed a significant Ti build-up at the grain boundaries that might affect subsequent migration during recrystallization.« less

  14. Role of Y-Al oxides during extended recovery process of a ferritic ODS alloy

    SciTech Connect

    Capdevila, C.; Pimentel, G.; Aranda, M. M.; Rementeria, R.; Dawson, K.; Urones-Garrote, E.; Tatlock, G. J.; Miller, Michael K.

    2015-08-04

    The microstructural stability of Y-Al oxides during the recrystallization of Fe-Cr-Al oxide dispersion strengthened alloy is studied in this work. The goal is to determine the specific distribution pattern of oxides depending where they are located: in the matrix or at the grain boundaries. It was concluded that those located at the grain boundaries yielded a faster coarsening than the ones in the matrix, although no significant differences in composition and/or crystal structure were observed. However, the recrystallization heat treatment leads to the dissolution of the Y2O3 and its combination with Al to form the YAlO3 perovskite oxide particles process, mainly located at the grain boundaries. Lastly, atom probe tomography analysis revealed a significant Ti build-up at the grain boundaries that might affect subsequent migration during recrystallization.

  15. Role of Y-Al Oxides During Extended Recovery Process of a Ferritic ODS Alloy

    NASA Astrophysics Data System (ADS)

    Capdevila, C.; Pimentel, G.; Aranda, M. M.; Rementeria, R.; Dawson, K.; Urones-Garrote, E.; Tatlock, G. J.; Miller, M. K.

    2015-08-01

    The microstructural stability of Y-Al oxides during the recrystallization of Fe-Cr-Al oxide dispersion strengthened alloy is studied in this work. The goal is to determine the specific distribution pattern of oxides depending where they are located: in the matrix or at the grain boundaries. It was concluded that those located at the grain boundaries yielded a faster coarsening than the ones in the matrix, although no significant differences in composition and/or crystal structure were observed. However, the recrystallization heat treatment leads to the dissolution of the Y2O3 and its combination with Al to form the YAlO3 perovskite oxide particles process, mainly located at the grain boundaries. Finally, atom probe tomography analysis revealed a significant Ti build-up at the grain boundaries that might affect subsequent migration during recrystallization.

  16. Reduction in Defect Content in ODS Alloys

    SciTech Connect

    Jones, A.R.; Ritherdon, J.; Prior, D.J.

    2003-04-22

    In order to develop FeCrAl-based ODS alloy tubing with the coarse, high aspect ratio, appropriately oriented grain structures likely to deliver enhanced high temperature (11000C) hoop creep strength compared to conventionally formed ODS alloy tubing, flow forming techniques were explored in a European funded programme. The evolution of microstructure in PM2000 alloy tubing formed by warm flow forming techniques has been the subject of continuing investigation and more detailed study in the current work. The warm flow formed tubes investigated were produced by reverse flow forming using three, 1200 opposed rollers described around a tube preform supported on a driven mandrel. This produced a complex pattern of shape changing deformation, driven from the outer surface of the tube preforms. The grain size and shape together with the pattern of nucleation and growth of secondary recrystallization that developed through the thickness of the tube wall during the subsequent high temperature annealing (13800C) of these warm flow formed samples is described, as are the textures that formed. The unusual pattern and shape of secondary recrystallized grain structures that formed on the outer surfaces of the flow formed tubes closely follows the pattern and pitch of the flow forming rollers. The local texture, grain shape and pattern of misorientation in the surface of warm flow formed tubes that was associated with the development of these outer surface microstructures are described. Parallel studies have continued on the influence of microstructural inhomogeneities on the development of secondary recrystallized grain structures in ODS alloys. As part of this work, a separate variant of PM2000 alloy with additions of 1 wt.% ODS-free Fe powder have been manufactured as extruded bar by Plansee GmbH. The initial recrystallization behavior of the variant has been studied and cross-compared with the recrystallization behavior found in a prototype ODS-Fe3Al alloy, notably where the

  17. Dual and Triple Ion-Beam Irradiations of Fe, Fe(Cr) and Fe(Cr)-ODS Final Report: IAEA SMoRE CRP

    SciTech Connect

    Fluss, M J; Hsiung, L L; Marian, J

    2011-11-20

    Structures of nanoparticles in Fe-16Cr-4.5Al-0.3Ti-2W-0.37Y2O3 (K3) and Fe-20Cr-4.5Al-0.34Ti-0.5Y2O3 (MA956) oxide dispersion strengthened (ODS) ferritic steels produced by mechanical alloying (MA) and followed by hot extrusion have been studied using high-resolution transmission electron microscopy (HRTEM) techniques to gain insight about the formation mechanism of nanoparticles in MA/ODS steels. The observations of Y-Al-O complex-oxide nanoparticles in both ODS steels imply that decomposition of Y2O3 in association with internal oxidation of Al occurred during mechanical alloying. While the majority of oxide nanoparticles formed in both steels is Y4Al2O9, a few oxide particles of YAlO3 are also occasionally observed. These results reveal that Ti (0.3 wt %) plays an insignificant role in forming oxide nanoparticles in the presence of Al (4.5 wt %). HRTEM observations of crystalline nanoparticles larger than {approx}2 nm and amorphous or disordered cluster domains smaller than {approx}2 nm provide an insight into the formation mechanism of oxide nanoparticle in MA/ODS steels, which we believe from our observations involves a solid-state amorphous precursor followed by recrystallization. Dual ion-beam irradiations using He{sup +} + Fe{sup +8} ions were employed to gain more detailed insight about the role of nanoparticles in suppressing radiation-induced swelling. This is elaborated through TEM examinations of cavity distributions in ion-irradiated Fe-14Cr and K3-ODS ferritic steels. HRTEM observations of helium-filled cavities (helium bubbles) preferably trapped at nanoscale oxide particles and clusters in ion-irradiated K3-ODS are presented. Finally, we describe the results from triple ion-beam irradiations using H{sup +} + He{sup +} + Fe{sup +8} ions to emulate fusion first wall radiation effects. Preliminary work is reported that confirms the existence of significant hydrogen synergistic effects described earlier by Tanaka et al., for Fe(Cr) and by Wakai et al

  18. High temperature tensile properties and fracture characteristics of bimodal 12Cr-ODS steel

    NASA Astrophysics Data System (ADS)

    Chauhan, Ankur; Litvinov, Dimitri; Aktaa, Jarir

    2016-01-01

    This article describes the tensile properties and fracture characteristics of a 12Cr oxide dispersion strengthened (ODS) ferritic steel with unique elongated bimodal grain size distribution. The tensile tests were carried out at four different temperatures, ranging from room temperature to 700 °C, at a nominal strain rate of 10-3 s-1. At room temperature the material exhibits a high tensile strength of 1294 MPa and high yield strength of 1200 MPa. At 700 °C, the material still exhibits relatively high tensile strength of 300 MPa. The total elongation-to-failure exceeds 18% over the whole temperature range and has a maximum value of 29% at 600 °C. This superior ductility is attributed to the material's bimodal grain size distribution. In comparison to other commercial, as well as experimental, ODS steels, the material shows an excellent compromise between strength and ductility. The fracture surface studies reveal a change in fracture behavior from a mixed mode fracture at room temperature to fully ductile fracture at 600 °C. At 700 °C, the fracture path changes from intragranular to intergranular fracture, which is associated with a reduced ductility.

  19. High-pressure Raman studies on laurionite-type hydroxides Ba(OD)X (X = Cl, Br, I) and Sr(OD) 2

    NASA Astrophysics Data System (ADS)

    Jung, C.; Lutz, H. D.

    1996-07-01

    High-pressure Raman studies on Sr(OD) 2 and laurionite-type barium hydroxide halides Ba(OD)Cl, Ba(OD)Br, and Ba(OD)I were performed under hydrostatic compression up to 5 GPa using a diamond anvil cell. The pressure evolution of the OD stretching vibrations of the isostructural Ba(OD)X and Sr(OD) 2 is discussed with respect to the different behaviours of the respective hydrogen bond systems. The OD stretching modes slightly increase ( {dν OD}/{dp } = 4 cm-1 GPa -1) with increase in pressure if the respective ions are not involved in hydrogen bonds as in the case of Ba(OD)I and OD(2) of Sr(OD) 2 (lattice repulsion effect). The wavenumbers of OD stretching modes of ions involved in hydrogen bonds, as OD(1) of Sr(OD) 2, decrease due to a strengthening of the respective bonds with increasing pressure. A discontinuous decrease of νOD is observed for Ba(OD)Br indicating transition from a weakly hydrogen-bonded structure to a more strongly bonded one via reorientation of the OD - ions. In the case of Sr(OD) 2, it is confirmed that one of two crystallographically different hydroxide ions is involved in hydrogen bonding but the other is not.

  20. Irradiation Creep and Swelling from 400 C to 600 C of the Oxide Dispersion Strengthened Ferritic Alloy MA957

    SciTech Connect

    Toloczko, Mychailo B.; Gelles, David S.; Garner, Francis A.; Kurtz, Richard J.; Abe, Katsunori

    2004-04-24

    Recently, there has been a growing interest in the use of oxide dispersion strengthened (ODS) ferritic steels for fusion reactor applications. As part of an extensive study performed at PNNL on the ODS steel MA957 [1], irradiation creep tests were performed on pressurized tubes made from MA957 by two different methods. The tubes were made either by gun drilling alone or by a combination of rod drawing and gun drilling. The different fabrication methods were explored because ODS steels have been difficult to form. The pressurized tubes were irradiated in the Fast Flux Test Facility (FFTF) to doses ranging from 40 dpa to 110 dpa at temperatures ranging from 400 C to 600 C. The effective stresses resulting from the pressurization of the tubes ranged from 0 MPa to 175 MPa.

  1. High strength ferritic alloy

    DOEpatents

    Hagel, William C.; Smidt, Frederick A.; Korenko, Michael K.

    1977-01-01

    A high-strength ferritic alloy useful for fast reactor duct and cladding applications where an iron base contains from about 9% to about 13% by weight chromium, from about 4% to about 8% by weight molybdenum, from about 0.2% to about 0.8% by weight niobium, from about 0.1% to about 0.3% by weight vanadium, from about 0.2% to about 0.8% by weight silicon, from about 0.2% to about 0.8% by weight manganese, a maximum of about 0.05% by weight nitrogen, a maximum of about 0.02% by weight sulfur, a maximum of about 0.02% by weight phosphorous, and from about 0.04% to about 0.12% by weight carbon.

  2. Excimer laser ablation of ferrites

    NASA Astrophysics Data System (ADS)

    Tam, A. C.; Leung, W. P.; Krajnovich, D.

    1991-02-01

    Laser etching of ferrites was previously done by scanning a focused continuous-wave laser beam on a ferrite sample in a chemical environment. We study the phenomenon of photo-ablation of Ni-Zn or Mn-Zn ferrites by pulsed 248-nm KrF excimer laser irradiation. A transfer lens system is used to project a grating pattern of a mask irradiated by the pulsed KrF laser onto the ferrite sample. The threshold fluence for ablation at the ferrite surface is about 0.3 J/cm2. A typical fluence of 1 J/cm2 is used. The etched grooves produced are typically 20-50 μm wide, with depths achieved as deep as 70 μm . Groove straightness is good as long as a sharp image is projected onto the sample surface. The wall angle is steeper than 60 degrees. Scanning electron microscopy of the etched area shows a ``glassy'' skin with extensive microcracks and solidified droplets being ejected that is frozen in action. We found that this skin can be entirely removed by ultrasonic cleaning. A fairly efficient etching rate of about 10 nm/pulse for a patterned area of about 2 mm×2 mm is obtained at a fluence of 1 J/cm2. This study shows that projection excimer laser ablation is useful for micromachining of ferrite ceramics, and indicates that a hydrodynamic sputtering mechanism involving droplet emission is a cause of material removal.

  3. Photoabsorption cross section of OD at 115-180 nm

    NASA Technical Reports Server (NTRS)

    Nee, J. B.; Lee, L. C.

    1984-01-01

    The photoabsorption cross sections of OD in the 115-180 nm region were measured. The OD radicals were produced from a pulsed discharge in a mixture containing a trace of D2O in a few Torr of argon. Results are compared with the photoabsorption of OH previously measured.

  4. Development of oxide dispersion strengthened ferritic steel prepared by chemical reduction and mechanical milling

    NASA Astrophysics Data System (ADS)

    Sun, Q. X.; Fang, Q. F.; Zhou, Y.; Xia, Y. P.; Zhang, T.; Wang, X. P.; Liu, C. S.

    2013-08-01

    The oxide dispersion strengthened ferritic steel with a nominal composition of Fe-14Cr-2W-0.5Ti-0.06Si-0.2V-0.1Mn-0.05Ta-0.03C-0.3Y2O3 (14Cr-ODS) was fabricated by sol-gel method in combination with hydrogen reduction, mechanical alloying (MA) and hot isostatic pressing (HIP) techniques. Pure Fe-1.5Y2O3 precursor was obtained by a sol-gel process and a reduction process at 650 °C for 3 h and pure 14Cr-ODS alloy powders were obtained from this precursor and the alloying metallic powders by mechanical alloying. The microstructure analysis investigated by transmission electron microscopy (TEM) and energy dispersive spectrometry (EDS) reveal that Y-Ti-O complexes and V-Ti-O complexes with a main particle size of 8 nm are formed in the 14Cr-ODS steel matrix. After HIP sintering the weight and the relative density of the compacted ingots are about 0.8 kg and 99.7%. The uniform elongation and ultimate tensile strength of the ODS steel obtained by HIP after annealing at 1100 °C for 5 h are about 13% and 840 MPa, respectively.

  5. Influence of hot rolling and high speed hydrostatic extrusion on the microstructure and mechanical properties of an ODS RAF steel

    NASA Astrophysics Data System (ADS)

    Oksiuta, Z.; Lewandowska, M.; Kurzydlowski, K. J.; Baluc, N.

    2011-02-01

    An argon gas atomized, pre-alloyed Fe-14Cr-2W-0.3Ti (wt.%) reduced activation ferritic (RAF) steel powder was mechanically alloyed with 0.3wt.% Y 2O 3 nano-particles in an attritor ball mill and consolidated by hot isostatic pressing at 1150 °C under a pressure of 200 MPa for 3 h. In the aim to improve its mechanical properties the ODS steel was then submitted to a thermo-mechanical treatment (TMT): hot rolling (HR) at 850 °C or high speed hydrostatic extrusion (HSHE) at 900 °C, followed by heat treatment (HT). Transmission electron microscopy (TEM) observations of the ODS alloys after TMT and heat treatment revealed the presence of elongated grains in the longitudinal direction, with an average width of 8 μm and an average length of 75 μm, and equiaxed grains, a few microns in diameter, in the transverse direction. Two populations of oxide particles were observed by TEM: large Ti-Al-O particles, up to 250 nm in diameter, usually located at the grain boundaries and small Y-Ti-O nanoclusters, about 2.5 nm in diameter, uniformly distributed in the matrix. Charpy impact tests revealed that the HSHE material exhibits a larger upper shelf energy (5.8 J) than the HR material (2.9 J). The ductile-to-brittle transition temperature of both alloys is relatively high, in the range of 55-72 °C. Tensile mechanical properties of both ODS alloys were found satisfactory over the full range of investigated temperatures (23-750 °C). The HSHE material exhibits better tensile strength and ductility than the HR material. These results indicate that HSHE can be considered as a promising TMT method for improving the mechanical properties of ODS RAF steels.

  6. Optimization and testing results of Zr-bearing ferritic steels

    SciTech Connect

    Tan, Lizhen; Yang, Ying; Tyburska-Puschel, Beata; Sridharan, K.

    2014-09-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools) is an important path to more efficient alloy development and process optimization. Ferritic-martensitic (FM) steels are important structural materials for nuclear reactors due to their advantages over other applicable materials like austenitic stainless steels, notably their resistance to void swelling, low thermal expansion coefficients, and higher thermal conductivity. However, traditional FM steels exhibit a noticeable yield strength reduction at elevated temperatures above ~500°C, which limits their applications in advanced nuclear reactors which target operating temperatures at 650°C or higher. Although oxide-dispersion-strengthened (ODS) ferritic steels have shown excellent high-temperature performance, their extremely high cost, limited size and fabricability of products, as well as the great difficulty with welding and joining, have limited or precluded their commercial applications. Zirconium has shown many benefits to Fe-base alloys such as grain refinement, improved phase stability, and reduced radiation-induced segregation. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of a new generation of Zr-bearing ferritic alloys to be fabricated using conventional

  7. Ferrite attenuator modulation improves antenna performance

    NASA Technical Reports Server (NTRS)

    Hooks, J. C.; Larson, S. G.; Shorkley, F. H.; Williams, B. T.

    1970-01-01

    Ferrite attenuator inserted into appropriate waveguide reduces the gain of the antenna element which is causing interference. Modulating the ferrite attenuator to change the antenna gain at the receive frequency permits ground tracking until the antenna is no longer needed.

  8. Effect of ferrite on cast stainless steels

    SciTech Connect

    Nadezhdin, A.; Cooper, K. ); Timbers, G. . Kraft Pulp Division)

    1994-09-01

    Premature failure of stainless steel castings in bleach washing service is attributed to poor casting quality high porosity and to a high ferrite content, which makes the castings susceptible to corrosion by hot acid chloride solutions. A survey of the chemical compositions and ferrite contents of corrosion-resistant castings in bleach plants at three pulp mills found high [delta]-ferrite levels in the austenitic matrix due to the improper balance between austenite and ferrite stabilizers.

  9. High power ferrite microwave switch

    NASA Technical Reports Server (NTRS)

    Bardash, I.; Roschak, N. K.

    1975-01-01

    A high power ferrite microwave switch was developed along with associated electronic driver circuits for operation in a spaceborne high power microwave transmitter in geostationary orbit. Three units were built and tested in a space environment to demonstrate conformance to the required performance characteristics. Each unit consisted of an input magic-tee hybrid, two non-reciprocal latching ferrite phase shifters, an out short-slot 3 db quadrature coupler, a dual driver electronic circuit, and input logic interface circuitry. The basic mode of operation of the high power ferrite microwave switch is identical to that of a four-port, differential phase shift, switchable circulator. By appropriately designing the phase shifters and electronic driver circuits to operate in the flux-transfer magnetization mode, power and temperature insensitive operation was achieved. A list of the realized characteristics of the developed units is given.

  10. Articles comprising ferritic stainless steels

    DOEpatents

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  11. Small high directivity ferrite antennas

    NASA Astrophysics Data System (ADS)

    Wright, T. M. B.

    A centimeter-wavelength antenna of millimetric dimensions, which uses the intrinsic angular sensitivity of ferrites, is described, with an emphasis on the modification of the material's permeability. The construction of both the ferrite film lens antenna and the ferrite film cassegrain antenna are detailed; both can be devised in a number of configurations for appropriate beam positioning and rf filtering. The antenna design, discussed primarily in the context of smart missiles, electronic warfare, and satellite systems, presents the possibility of magnetically switching between the transmit and receive modes within the antenna structure itself. Finally, it is noted that for a simple 2-dipole array the angular resolution can be two orders of magnitude higher than with the conventional techniques.

  12. Ferrite morphology and variations in ferrite content in austenitic stainless steel welds

    SciTech Connect

    David, S.A.; Hanzelka, S.E.; Haltom, C.P.

    1981-07-01

    Four distinct ferrite morphologies have been identified in type 308 stainless steel multipass welds: vermicular, lacy, acicular, and globular. The first three ferrite types are related to transformations following solidification and the fourth is related to the shape instability of the residual ferrite. An earlier study showed that most of the ferrite observed in austenitic stainless steel welds contaning a duplex structure may be identified as residual primary ferrite resulting from incomplete delta ..-->.. ..gamma.. transformation during solidification and/or residual ferrite after Widmanstaetten austenite precipitation in primary ferrite. These modes of ferrite formation can be used to explain observed ferrite morphologies in austenitic stainless steel welds. Variations in ferrite content within the weld were related to weld metal composition, ferrite morphology, and dissolution of ferrite resulting from thermal cycles during subsequent weld passes. An investigation of the type 308 stainless steel filler metal solidified over cooling rates ranging from 7 to 1600/sup 0/C/s showed that the cooling rate of the weld metal within the freezing range of the alloy affects the amount of ferrite in the microstructure very litte. However, the scale of the solidification substructure associated with various solidification rates may influence the ferrite dissolution kinetics.

  13. Ferrite morphology and variations in ferrite content in austenitic stainless steel welds

    SciTech Connect

    David, S.A.

    1981-04-01

    Four distinct ferrite morphologies have been identified in Type 308 stainless steel multipass welds: vermicular, lacy, acicular, and globular. The first three ferrite types are related to transformations following solidfication and the fourth is related to the shape instability of the residual ferrite. An earlier study showed that most of the ferrite observed in austenitic stainless steel welds containing a duplex structure may be identified as residual primary ferrite resulting from incomplete delta ..-->.. ..gamma.. transformation during solidification and/or residual ferrite after Widmanstatten austenite precipitation in primary ferrite. These modes of ferrite formation can be used to explain observed ferrite morphologies in austenitic stainless steel welds. Variations in ferrite content within the weld were also related to weld metal composition, ferrite morphology, and dissolution of ferrite resulting from thermal cycles during subsequent weld passes. An investigation of the Type 308 stainless steel filler metal solidified over cooling rates ranging from 7 to 1600/sup 0/C/s (44.6 to 2912/sup 0/F/s) showed that the cooling rate of the weld metal within the freezing range of the alloy affects the amount of ferrite in the microstructure very little. However, the scale of the solidification substructure associated with various solidification rates may influence the ferrite dissolution kinetics.

  14. Newly Released Inmates Account for 1 in 10 Fatal ODs

    MedlinePlus

    ... fullstory_159858.html Newly Released Inmates Account for 1 in 10 Fatal ODs Many may not realize ... the general population," Persaud added. Not only did one in 10 overdose deaths involve a recently released ...

  15. Gas porosity evolution and ion-implanted helium behavior in reactor ferritic/martensitic and austenitic steels

    NASA Astrophysics Data System (ADS)

    Chernov, I. I.; Kalin, B. A.; Staltsov, M. S.; Oo, Kyi Zin; Binyukova, S. Yu.; Staltsova, O. S.; Polyansky, A. A.; Ageev, V. S.; Nikitina, A. A.

    2015-04-01

    The peculiarities of gas porosity formation and helium retention and release in reactor ferritic/martensitic EP-450 and EP-450-ODS and austenitic ChS-68 steels are investigated by transmission electron microscopy and helium thermal desorption spectrometry (HTDS). The samples were irradiated by 40 keV He+ ions up to a fluence of 5 · 1020 m-2 at 293 and 923 K. An nonuniform distribution of helium bubbles and high-level gas swelling in ferritic/martensitic steels were found at high-temperature helium implantation. The same irradiation conditions result in formation of uniformly distributed helium bubbles and low-level swelling in ChS-68 steel. Temperature range of helium release from EP-450-ODS steel was considerably wider in comparison to HTDS-spectra of the EP-450 steel. A considerable quantity of helium is released from ODS steel in the high-temperature range after the main peak of the HTDS-spectrum.

  16. The Optical Depth Sensor (ODS) for Mars atmosphere

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.

    2015-10-01

    A small and sophisticated optical depth sensor (ODS) has been designed to work in both Martian and Earth environments. The principal goal of ODS is to carry out the opacity due to the Martian dust as well as to characterize the high altitude clouds at twilight, crucial parameters in understanding of Martian meteorology. The instrument was initially designed for the failed MARS96 Russian mission, and also was included in the payload of several other missions [1]. Until recently, it was selected (NASA/ESA AO) in the payload of the atmospheric package DREAMS onboard the MARS 2016 mission. But following a decision of the CNES, it is no more included in the payload. In order to study the performance of ODS under a wide range of conditions as well as its capable to provide daily measurements of both dust optical thickness and high altitude clouds properties, the instrument has participated in different terrestrial campaigns. A good performance of ODS prototype (Figure 1) on cirrus clouds detection and in dust opacity estimation was previously archived in Africa during 2004-2005 and in Brasil from 2012 to nowadays. Moreover, a campaign in the arctic is expected before 2016 where fifteen ODSs will be part of an integrated observing system over the Arctic Ocean, allowing test the ODS performance in extreme conditions. In this presentation we present main principle of the retrieval, the instrumental concept, the result of the tests performed and the principal objectives of ODS in Mars.

  17. Multiferroic bismuth ferrite material core based inductive displacement sensor

    NASA Astrophysics Data System (ADS)

    Rajeswari, R.; Biswal, M. R.; Nanda, J.; Mishra, N. C.

    2012-07-01

    In this research, an inductive displacement sensor with multiferroic bismuth ferrite core has been realized. The bismuth ferrite sample is synthesized and its structural and dielectric properties are studied. A rod-shaped bismuth ferrite core is prepared and displaced through the inductor of a RLC circuit. The performance of the prepared bismuth ferrite core has been compared with a commercially available ferrite core.

  18. Defect and void evolution in oxide dispersion strengthened ferritic steels under 3.2 MeV Fe + ion irradiation with simultaneous helium injection

    NASA Astrophysics Data System (ADS)

    Kim, I.-S.; Hunn, J. D.; Hashimoto, N.; Larson^1, D. L.; Maziasz, P. J.; Miyahara, K.; Lee, E. H.

    2000-08-01

    In an attempt to explore the potential of oxide dispersion strengthened (ODS) ferritic steels for fission and fusion structural materials applications, a set of ODS steels with varying oxide particle dispersion were irradiated at 650°C, using 3.2 MeV Fe + and 330 keV He + ions simultaneously. The void formation mechanisms in these ODS steels were studied by juxtaposing the response of a 9Cr-2WVTa ferritic/martensitic steel and solution annealed AISI 316LN austenitic stainless steel under the same irradiation conditions. The results showed that void formation was suppressed progressively by introducing and retaining a higher dislocation density and finer precipitate particles. Theoretical analyses suggest that the delayed onset of void formation in ODS steels stems from the enhanced point defect recombination in the high density dislocation microstructure, lower dislocation bias due to oxide particle pinning, and a very fine dispersion of helium bubbles caused by trapping helium atoms at the particle-matrix interfaces.

  19. Latent tracks of swift heavy ions in Cr23C6 and Y-Ti-O nanoparticles in ODS alloys

    NASA Astrophysics Data System (ADS)

    Skuratov, V. A.; Sohatsky, A. S.; O'Connell, J. H.; Kornieieva, K.; Nikitina, A. A.; Uglov, V. V.; Neethling, J. H.; Ageev, V. S.

    2016-05-01

    The radiation stability of dielectric nanoparticles embedded into a metallic matrix is of considerable practical value due to the growing interest in oxide dispersion strengthened (ODS) steels as promising nuclear reactor materials. In this report the results of a TEM study of structural changes in Cr23C6 and Y-Ti-O nanoparticles in several ODS alloys irradiated with 1.2 MeV/amu Xe and 3.4 MeV/amu Bi ions is presented. It was found that swift heavy ion irradiation leads to the formation of amorphous latent tracks in both materials. The upper limit of the threshold electronic stopping power for track formation in carbides is estimated to be around 35 keV/nm. Multiple ion track overlapping leads to complete amorphization of carbide and Y-Ti oxide nanoparticles. Microstructural analysis have revealed a strong influence of the ferritic matrix on track morphology in Y2Ti2O7 nanoparticles in pre-thinned TEM targets after postradiation annealing and irradiation at elevated temperatures.

  20. Development of a monolithic ferrite memory array

    NASA Technical Reports Server (NTRS)

    Heckler, C. H., Jr.; Bhiwandker, N. C.

    1972-01-01

    The results of the development and testing of ferrite monolithic memory arrays are presented. This development required the synthesis of ferrite materials having special magnetic and physical characteristics and the development of special processes; (1) for making flexible sheets (laminae) of the ferrite composition, (2) for embedding conductors in ferrite, and (3) bonding ferrite laminae together to form a monolithic structure. Major problems encountered in each of these areas and their solutions are discussed. Twenty-two full-size arrays were fabricated and fired during the development of these processes. The majority of these arrays were tested for their memory characteristics as well as for their physical characteristics and the results are presented. The arrays produced during this program meet the essential goals and demonstrate the feasibility of fabricating monolithic ferrite memory arrays by the processes developed.

  1. Magnetocaloric effect in ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Poddar, P.; Gass, J.; Rebar, D. J.; Srinath, S.; Srikanth, H.; Morrison, S. A.; Carpenter, E. E.

    2006-12-01

    A comparative study of the magnetocaloric effect (MCE) is reported in two different types of chemically synthesized magnetic nanoparticle systems—cobalt ferrite and manganese zinc ferrite with mean size around 5 and 15 nm, respectively. While CoFe 2O 4 nanoparticles were synthesized using co-precipitation, the Mn 0.68Zn 0.25Fe 2.07O 4 (MZFO) nanoparticles were prepared by reverse micelle technique using AOT as surfactant. Our results indicate that the change in entropy with the change in applied magnetic field (d S/d H) is reasonably large for this class of nanoparticles and has a wide distribution over a broad temperature range covering the region above and below the blocking temperature. The maximum entropy change is influenced by the particle size, overall distribution in anisotropy and magnetic moments.

  2. Irradiation effects in ferritic steels

    NASA Astrophysics Data System (ADS)

    Lechtenberg, Thomas

    1985-08-01

    Since 1979 the Alloy Development for Irradiation Performance (ADIP) task funded by the US Department of Energy has been studying the 2-12Cr class of ferritic steels to establish the feasibility of using them in fusion reactor first wall/breeding blanket (FW/B) applications. The advantages of ferritic steels include superior swelling resistance, low thermal stresses compared to austenitic stainless steels, attractive mechanical properties up to 600°C. and service histories exceeding 100 000 h. These steels are commonly used in a range of microstructural conditions which include ferritic, martensitic. tempered martensitic, bainitic etc. Throughout this paper where the term "ferritic" is used it should be taken to mean any of these microstructures. The ADIP task is studying several candidate alloy systems including 12Cr-1MoWV (HT-9), modified 9Cr-1MoVNb, and dual-phased steels such as EM-12 and 2 {1}/{4}Cr-Mo. These materials are ferromagnetic (FM), body centered cubic (bcc), and contain chromium additions between 2 and 12 wt% and molybdenum additions usually below 2%. The perceived issues associated with the application of this class of steel to fusion reactors are the increase in the ductile-brittle transition temperature (DBTT) with neutron damage, the compatibility of these steels with liquid metals and solid breeding materials, and their weldability. The ferromagnetic character of these steels can also be important in reactor design. It is the purpose of this paper to review the current understanding of these bcc steels and the effects of irradiation. The major points of discussion will be irradiation-induced or -enhanced dimensional changes such as swelling and creep, mechanical properties such as tensile strength and various measurements of toughness, and activation by neutron interactions with structural materials.

  3. Multifunctionality of nanocrystalline lanthanum ferrite

    NASA Astrophysics Data System (ADS)

    Rai, Atma; Thakur, Awalendra K.

    2016-05-01

    Nanocrystalline lanthanum ferrite has been synthesized by adopting modified Pechini route. No evidence of impurity or secondary phase has been detected up to the detection of error limit of X-ray diffractometer (XRD). Rietveld refinement of X-ray diffraction pattern reveals orthorhombic crystal system with space group Pnma (62).Crystallite size and lattice strain was found to be ˜42.8nm and 0.306% respectively. Optical band gap was found to be 2.109 eV, by UV-Visible diffused reflectance spectrum (DRS). Brunauer-Emmet-Teller (BET) surface area was found to be ˜3.45 m2/g. Magnetization-hysteresis (M-H) loop was recorded at room temperature (300K) reveals weak ferromagnetism in Nanocrystalline lanthanum ferrite. The weak ferromagnetism in lanthanum ferrite is due to the uncompensated antiferromagnetic spin ordering. Ferroelectric loop hysteresis observed at room temperature at 100Hz depicts the presence of ferroelectric ordering in LaFeO3.Simultanious presence of magnetic and ferroelectric ordering at room temperature makes it suitable candidate of Multiferroic family.

  4. Irradiation creep and swelling from 400 to 600 °C of the oxide dispersion strengthened ferritic alloy MA957

    NASA Astrophysics Data System (ADS)

    Toloczko, M. B.; Gelles, D. S.; Garner, F. A.; Kurtz, R. J.; Abe, K.

    2004-08-01

    An irradiation creep and swelling study was performed on the Y 2O 3-strengthened ODS ferritic steel MA957. Pressurized tubes were irradiated in the Fast Flux Test Facility (FFTF) to doses ranging from 40 to 110 dpa at temperatures ranging from 400 to 600 °C. None of the stress-free tubes exhibited any evidence of swelling as determined by diameter change measurements. With a few exceptions, the irradiation creep behavior is similar to that of conventional ferritic-martensitic steels. Calculated creep compliance values are equal to those of HT9 irradiated within the same temperature range, except at 600 °C where the creep rate of MA957 is about one-half the value for HT9. The magnitude of the creep transient for MA957 is comparable to HT9, again except at 600 °C where the transient is much lower for MA957.

  5. Exchange coupled ferrite nanocomposites through chemical synthesis.

    PubMed

    Dai, Qilin; Patel, Ketan; Ren, Shenqiang

    2016-08-16

    Exchange coupling between magnetically hard and soft phases has the potential to yield a large gain in the energy product. In this work, we present a scalable chemical synthetic route to produce magnetic iron oxide based nanocomposites, consisting of cobalt ferrite (CoFe2O4) and strontium ferrite (SrFe12O19) components. PMID:27476744

  6. Abnormal ferrite in hyper-eutectoid steels

    SciTech Connect

    Chairuangsri, T.; Edmonds, D.V.

    2000-04-19

    The microstructural characteristics of ultra-high carbon hyper-eutectoid Fe-C and Fe-C-Cu experimental steels have been examined after isothermal transformation in a range just beneath the eutectoid temperature. Particular attention was paid to the formation of so-called abnormal ferrite, which refers to coarse ferrite grains which can form, in hyper-eutectoid compositions, on the pro-eutectoid cementite before the pearlite reaction occurs. Thus it is confirmed that the abnormal ferrite is not a result of pearlite coarsening, but of austenite decomposition before the conditions for coupled growth of pearlite are established. The abnormal ferrite formed on both allotriomorphic and Widmanstaetten forms of pro-eutectoid cementite, and significantly, it was observed that the pro-eutectoid cementite continued to grow, despite being enclosed by the abnormal ferrite. Under certain conditions this could lead to the eventual formation of substantially reduced amounts of pearlite. Thus, a model for carbon redistribution that allows the proeutectoid cementite to thicken concurrently with the abnormal ferrite is presented. The orientation relationships between the abnormal ferrite and pro-eutectoid cementite were also determined and found to be close to those which have been reported between pearlitic ferrite and pearlitic cementite.

  7. 46 CFR 280.4 - Standards governing payment of ODS.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Standards governing payment of ODS. 280.4 Section 280.4 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION REGULATIONS AFFECTING SUBSIDIZED VESSELS AND OPERATORS LIMITATIONS ON THE AWARD AND PAYMENT OF OPERATING-DIFFERENTIAL SUBSIDY FOR LINER OPERATORS §...

  8. 46 CFR 280.4 - Standards governing payment of ODS.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Standards governing payment of ODS. 280.4 Section 280.4 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION REGULATIONS AFFECTING SUBSIDIZED VESSELS AND OPERATORS LIMITATIONS ON THE AWARD AND PAYMENT OF OPERATING-DIFFERENTIAL SUBSIDY FOR LINER OPERATORS §...

  9. Delta ferrite in the weld metal of reduced activation ferritic martensitic steel

    NASA Astrophysics Data System (ADS)

    Sam, Shiju; Das, C. R.; Ramasubbu, V.; Albert, S. K.; Bhaduri, A. K.; Jayakumar, T.; Rajendra Kumar, E.

    2014-12-01

    Formation of delta(δ)-ferrite in the weld metal, during autogenous bead-on-plate welding of Reduced Activation Ferritic Martensitic (RAFM) steel using Gas Tungsten Arc Welding (GTAW) process, has been studied. Composition of the alloy is such that delta-ferrite is not expected in the alloy; but examination of the weld metal revealed presence of delta-ferrite in the weld metal. Volume fraction of delta-ferrite is found to be higher in the weld interface than in the rest of the fusion zone. Decrease in the volume fraction of delta-ferrite, with an increase in preheat temperature or with an increase in heat input, is observed. Results indicate that the cooling rate experienced during welding affects the volume fraction of delta-ferrite retained in the weld metal and variation in the delta-ferrite content with cooling rate is explained with variation in the time that the weld metal spends in various temperature regimes in which delta-ferrite is stable for the alloy during its cooling from the liquid metal to the ambient temperature. This manuscript will discuss the effect of welding parameters on formation of delta-ferrite and its retention in the weld metal of RAFM steel.

  10. Investigation on different oxides as candidates for nano-sized ODS particles in reduced-activation ferritic (RAF) steels

    NASA Astrophysics Data System (ADS)

    Hoffmann, Jan; Rieth, Michael; Lindau, Rainer; Klimenkov, Michael; Möslang, Anton; Sandim, Hugo Ricardo Zschommler

    2013-11-01

    Future generation reactor concepts are based on materials that can stand higher temperatures and higher neutron doses in corrosive environments. Oxide dispersion strengthened steels with chromium contents ranging from 9 to 14 wt.% - produced by mechanical alloying - are typical candidate materials for future structural materials in fission and fusion power plants.

  11. Progress in the R and D Project on Oxide Dispersion Strengthened and Precipitation Hardened Ferritic Steels for Sodium Cooled Fast Breeder Reactor Fuels

    SciTech Connect

    Kaito, Takeji; Ohtsuka, Satoshi; Inoue, Masaki

    2007-07-01

    High burnup capability of sodium cooled fast breeder reactor (SFR) fuels depends significantly on irradiation performance of their component materials. Japan Atomic Energy Agency (JAEA) has been developing oxide dispersion strengthened (ODS) ferritic steels and a precipitation hardened (PH) ferritic steel as the most prospective materials for fuel pin cladding and duct tubes, respectively. Technology for small-scale manufacturing is already established, and several hundreds of ODS steel cladding tubes and dozens of PH steel duct tubes were successfully produced. We will step forward to develop manufacturing technology for mass production to supply these steels for future SFR fuels. Mechanical properties of the products were examined by out-of-pile and in-pile tests including material irradiation tests in the experimental fast reactor JOYO and foreign fast reactors. The material strength standards (MSSs) were tentatively compiled in 2005 for ODS steels and in 1993 for PH steel. In order to upgrade the MSSs and to demonstrate high burnup capability of the materials, we will perform a series of irradiation tests in BOR-60 and JOYO until 2015 and contribute to design study for a demonstration SFR of which operation is expected after 2025. (authors)

  12. Development of ODS-Fe{sub 3}Al alloys

    SciTech Connect

    Wright, I.G.; Pint, B.A.; Tortorelli, P.F.; McKamey, C.G.

    1997-12-01

    The overall goal of this program is to develop an oxide dispersion-strengthened (ODS) version of Fe{sub 3}Al that has sufficient creep strength and resistance to oxidation at temperatures in the range 1000 to 1200 C to be suitable for application as heat exchanger tubing in advanced power generation cycles. The main areas being addressed are: (a) alloy processing to achieve the desired alloy grain size and shape, and (b) optimization of the oxidation behavior to provide increased service life compared to semi-commercial ODS-FeCrAl alloys intended for the same applications. The recent studies have focused on mechanically-alloyed powder from a commercial alloy vendor. These starting alloy powders were very clean in terms of oxygen content compared to ORNL-produced powders, but contained similar levels of carbon picked up during the milling process. The specific environment used in milling the powder appears to exert a considerable influence on the post-consolidation recrystallization behavior of the alloy. A milling environment which produced powder particles having a high surface carbon content resulted in a consolidated alloy which readily recrystallized, whereas powder with a low surface carbon level after milling resulted in no recrystallization even at 1380 C. A feature of these alloys was the appearance of voids or porosity after the recrystallization anneal, as had been found with ORNL-produced alloys. Adjustment of the recrystallization parameters did not reveal any range of conditions where recrystallization could be accomplished without the formation of voids. Initial creep tests of specimens of the recrystallized alloys indicated a significant increase in creep strength compared to cast or wrought Fe{sub 3}Al, but the specimens failed prematurely by a mechanism that involved brittle fracture of one of the two grains in the test cross section, followed by ductile fracture of the remaining grain. The reasons for this behavior are not yet understood. The

  13. Structural analysis of emerging ferrite: Doped nickel zinc ferrite

    SciTech Connect

    Kumar, Rajinder; Kumar, Hitanshu; Singh, Ragini Raj; Barman, P. B.

    2015-08-28

    Ni{sub 0.6-x}Zn{sub 0.4}Co{sub x}Fe{sub 2}O{sub 4} (x = 0, 0.033, 0.264) nanoparticles were synthesized by sol-gel method and annealed at 900°C. Structural properties of all prepared samples were examined with X-ray diffraction (XRD). The partial formation of hematite (α-Fe{sub 2}O{sub 3}) secondary phase with spinel phase cubic structure of undoped and cobalt doped nickel zinc ferrite was found by XRD peaks. The variation in crystallite size and other structural parameters with cobalt doping has been calculated for most prominent peak (113) of XRD and has been explained on the basis of cations ionic radii difference.

  14. Humidity sensing properties of CNT-OD-VETP nanocomposite films

    NASA Astrophysics Data System (ADS)

    Saleem, M.; Karimov, Kh. S.; Karieva, Z. M.; Mateen, A.

    2010-11-01

    In this study, the blend of orange dye (OD), C 17H 17N 5O 2 (5 wt%), vinyl-ethynyl-trimethyl-piperidole (VETP), C 12H 19NO, (5 wt%) and carbon nanotube (CNT) powder (10 wt%) in a mixture of distilled water (80 wt%) and spirit were drop-casted on glass substrates with pre-deposited surface-type silver electrodes to fabricate CNT-OD-VETP nanocomposite thin films. In the process of thin films deposition, 2 V DC was applied to Ag electrodes. The thicknesses of the CNT-OD-VETP films were in the range of 10-15 μm. The I-V characteristics of the surface-type Ag/CNT-OD-VETP/Ag samples showed rectification behavior. The effect of humidity on the electrical properties of the nanocomposite films was investigated by measurement of the capacitance and dissipation of the samples at two different frequencies of the applied voltage: 120 Hz and 1 kHz. The resistance of the samples was determined from values of dissipation. It was observed that at 120 Hz and 1 kHz, under humidity of up to 90% RH, the capacitance of the cell increased by 7.4×10 3 and 740 times and resistance decreased by 2.3×10 4 and 3.8×10 4 times, accordingly, with respect to 40% RH conditions. The average response and recovery times of the films were obtained by capacitance-time measurements to evaluate the dynamics of the water vapor absorption and desorption processes. The experimental results have been supported by the simulation of the capacitance-humidity relationship. It is assumed that the humidity response of the cell is associated with diffusion of water vapors and doping of the semiconductor nanocomposite by water molecules.

  15. Influence of structural-phase state of ferritic-martensitic steels on the helium porosity development

    NASA Astrophysics Data System (ADS)

    Chernov, I. I.; Staltsov, M. S.; Kalin, B. A.; Bogachev, I. A.; Guseva, L. Yu; Dzhumaev, P. S.; Emelyanova, O. V.; Drozhzhina, M. V.; Manukovsky, K. V.; Nikolaeva, I. D.

    2016-04-01

    Transmission electron microscopy (TEM) has been used to study the effect of the initial structural-phase state (SPhS) of ferritic-martensitic steels EK-181, EP-450 and EP-450- ODS (with 0.5 wt.% nanoparticles of Y2O3) on the of helium porosity formation and gas swelling. Different SPhS of steel EK-181 was produced by water quenching, annealing, normalizing plus tempered, intensive plastic deformation by torsion (HPDT). Irradiation was carried out by He+-40 keV ions at 923 K up to fluence of 5-1020 He+/m2. It is shown that the water quenching causes the formation of uniformly distributed small bubbles (d¯ ∼ 2 nm) of the highest density (ρ∼ 1025 m-3). After normalization followed by tempering as well as after annealing bubbles distribution is highly non-uniform both by volume and in size. Very large faceted bubbles (pre-equilibrium gas-filled voids) are formed in ferrite grains resulting in high level of gas swelling of the irradiated layer with S = 4,9 ± 1,2 and 3.8 ± 0.9% respectively. Nano- and microcrystalline structure created by HPDT completely degenerate at irradiation temperature and ion irradiation formed bubbles of the same parameters as in the annealed steel. Bubbles formed in EP-450-ODS steel are smaller in size and density, which led to a decrease of helium swelling by 4 times (S = 0.8 ± 0.2%) as compared to the swelling of the matrix steel EP-450 (S = 3.1 ± 0.7%).

  16. Microstructural Characterization of Co-Based ODS Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Qu, Xuanhui; He, Xinbo; Din, Rafi-ud; Liu, Hengsan; Qin, Mingli; Zhu, Hongmin

    2012-11-01

    Co-based ODS alloys, strengthened by nanosized oxide dispersion and γ' precipitates, are potential high-temperature structural materials. The characteristics of the mechanically alloyed powder and the microstructural evolution of the Co-based ODS alloys were investigated. The results revealed that mechanical alloying had induced the formation of supersaturated solid solution in immiscible Co-Al-W-based alloys, originating mainly from extensive grain boundary region, high dislocation density, and ample point defect. Chemical compositions of mechanically alloyed Co-Al-W-based ODS alloys easily deviate from the γ/γ' two-phase region, leading to the existence of Al x Co, Co3W, Co7W6, and W phases in addition to the γ and γ' phases. Nonuniform distribution of alloying elements brings about the differences in morphologies and sizes of γ' precipitates. Microstructural formation process is impelled by spinodal decomposition mode, and spinodal decomposition behavior has been accelerated in the fine-grained alloy because of the presence of short-circuited diffusion paths for atomic movement.

  17. Ferrite Nanoparticles in Pharmacological Modulation of Angiogenesis

    NASA Astrophysics Data System (ADS)

    Deshmukh, Aparna; Radha, S.; Khan, Y.; Tilak, Priya

    2011-07-01

    Nanoparticles are being explored in the targeted drug delivery of pharmacological agents : angiogenesis being one such novel application which involves formation of new blood vessels or branching of existing ones. The present study involves the use of ferrite nanoparticles for precise therapeutic modulation of angiogenesis. The ferrite nanoparticles synthesized by co-precipitation of ferrous and ferric salts by a suitable base, were found to be 10-20 nm from X-ray diffraction and TEM measurements. The magnetization measurements showed superparamagnetic behavior of the uncoated nanoparticles. These ferrite nanoparticles were found to be bio-compatible with lymphocytes and neural cell lines from the biochemical assays. The chick chorioallantoic membrane(CAM) from the shell of fertile white Leghorn eggs was chosen as a model to study angiogenic activity. An enhancement in the angiogenic activity in the CAM due to addition of uncoated ferrite nanoparticles was observed.

  18. ALL-FERRITE RHIC INJECTION KICKER

    SciTech Connect

    HAHN,H.; FISCHER,W.; PTITSYN,V.I.; TUOZZOLO,J.E.

    2001-06-18

    Ion beams are transferred from the AGS into RHIC in boxcar fashion as single bunches. The nominal design assumes 60 bunches per ring but increasing the number of bunches to gain luminosity is possible, thereby requiring injection kickers with a shorter rise time. The original injection system consists of traveling-wave dielectric loaded kicker magnets and a Blumlein pulser with a rise time adequate for the present operation. Voltage breakdown in the dielectric kickers suggested the use of all-ferrite magnets. In order to minimize the conversion cost, the design of the all-ferrite kicker uses the same components as the dielectric loaded units. The all-ferrite kickers showed in bench measured good breakdown properties and a current rise time of < 50 ns. A prototype kicker has been installed in the blue ring and was tested with beam. Beam measurements indicate suitability of all-ferrite kicker magnets for upgraded operation.

  19. Ferrite HOM Absorber for the RHIC ERL

    SciTech Connect

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  20. Ferrite insertion at Recycler Flying Wire System

    SciTech Connect

    K.Y. Ng

    2004-02-27

    Ferrite rods are installed inside the flying-wire cavity of the Recycler Ring and at entrance and exit beam pipes in order to absorb high-frequency electromagnetic waves excited by the beam. However, these rods may also deteriorate the vacuum pressure of the ring. An investigation is made to analyze the necessity of the ferrite rods at the entrance and exit beam pipes.

  1. Metal-bonded Co-ferrite composites for magnetorestrictive torque sensor applications

    SciTech Connect

    Chen, Y.; Snyder, J.E.; Schwichtenberg, C.R.; Dennis, K.W.; McCallum, R.W.; Jiles, D.C.

    1999-09-01

    A new class of magnetomechanical sensor materials, co-ferrite (CoO {center{underscore}dot} Fe{sub 2}O{sub 3}) and metal-bonded (Ag, Ni, Co) Co-ferrite composites, has been investigated. These materials exhibited magnetostriction in excess of 200 ppm and high d{sub 33} ({partial{underscore}derivative}{lambda}/{partial{underscore}derivative}H){sub {sigma}} coefficient, 1.3 x 10{sup {minus}9} A{sup {minus}1}m, at low applied field (<100 kA/m). Selected compositions were formed into test samples in the form of rings brazed to stainless steel through-shafts. Changes of surface axial magnetic field in response to applied torque as high as 64 AN{sup {minus}1}m{sup {minus}2} were observed for a demonstration sample of dimensions 25 mm OD, 12.5 mm ID, and 8 mm high. A hysteresis of {+-}0.5 N{center{underscore}dot}m was observed. These materials appear to be promising candidates for torque sensors, and other magnetostrictive sensor and actuator applications.

  2. HRTEM Study of Oxide Nanoparticles in 16Cr-4Al-2W-0.3Ti-0.3Y2O3 ODS Steel

    SciTech Connect

    Hsiung, L; Fluss, M; Wall, M; Kimura, A

    2009-11-18

    Crystal and interfacial structures of oxide nanoparticles in 16Cr-4Al-2W-0.3Ti-0.3Y{sub 2}O{sub 3} ODS ferritic steel have been examined using high-resolution transmission electron microscopy (HRTEM) techniques. Oxide nanoparticles with a complex-oxide core and an amorphous shell were frequently observed. The crystal structure of complex-oxide core is identified to be mainly monoclinic Y{sub 4}Al{sub 2}O{sub 9} (YAM) oxide compound. Orientation relationships between the oxide and matrix are found to be dependent on the particle size. Large particles (> 20 nm) tend to be incoherent and have a spherical shape, whereas small particles (< 10 nm) tend to be coherent or semi-coherent and have a faceted interface. The observations of partially amorphous nanoparticles lead us to propose three-stage mechanisms to rationalize the formation of oxide nanoparticles containing core/shell structures in as-fabricated ODS steels.

  3. Annealing effects on the microstructure and mechanical properties of hot-rolled 14Cr-ODS steel

    NASA Astrophysics Data System (ADS)

    Gao, R.; Zhang, T.; Ding, H. L.; Jiang, Y.; Wang, X. P.; Fang, Q. F.; Liu, C. S.

    2015-10-01

    The oxide dispersion strengthened ferritic steels with nominal composition (weight percent) of Fe-14Cr-2W-0.5Ti-0.06Si-0.2V-0.1Mn-0.05Ta-0.03C-0.3Y2O3 were fabricated by sol-gel method, mechanical alloying, and hot isostatic pressing techniques. The evolution of microstructure and mechanical properties of the hot-rolled specimens with heat treatment was investigated. Tensile strength and hardness of hot-rolled ODS steel are significantly enhanced due to the formation of mechanical twins and high density dislocations. Uniformly dispersed oxide particles (10-40 nm) and fine-grained structure (200-400 nm) are responsible for the superior mechanical properties of the hot-rolled specimen annealed between 650 °C and 850 °C. With further increasing annealing temperature, the grain size of the hot-rolled specimens increases while the size of oxide particles decreases, which leads to lower strength and hardness but better ductility. The tensile strength and total elongation of samples in the rolling direction are higher than those in the transverse direction after the same treatments owing to the grain anisotropy induced by the large mechanical deformation.

  4. Magnetocaloric effect in ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Rebar, D.

    2005-03-01

    Miniaturization of the electronic devices for space, military and consumer applications requires cooling devices to be fabricated on a chip for power efficient, noise-free operations. Refrigeration based on the adiabatic-demagnetization has been used for several decades for cooling down to sub-kelvin temperatures. Superparamagnetic particles also hold tremendous potential towards this application. We have studied magnetocaloric effect (MCE) properties in chemically synthesized ferrite nanoparticles over a broad range in temperature and magnetic fields. Nanoparticles investigated include Fe3O4 (average size = 8 nm, synthesized using co-precipitation method), MnZnFe2O4 (average size = 15 nm, synthesized using reverse-micelle technique) and CoFe2O4 (average size 8 nm, synthesized using pyrolectic technique). The magnetic entropy change was calculated by applying Maxwell's relations to magnetization vs magnetic field curves at various temperatures. Our results indicate that the single-domain particles in their superparamagnetic state show a considerable entropy change near the blocking temperature. The influence of interactions on MCE effect will also be discussed. Work supported by NSF through Grant No. CTS-0408933

  5. Mechanical properties of oxide dispersion strengthened (ODS) molybdenum alloys

    SciTech Connect

    Bianco, R.; Buckman, R.W. Jr.

    1998-03-01

    Oxide dispersion strengthened molybdenum, Mo-ODS, developed by a proprietary powder metallurgy process, exhibits a creep rupture life at 0.65T{sub m} (1,600 C) of three to five orders of magnitude greater than unalloyed molybdenum, while maintaining ductile fracture behavior at temperatures significantly below room temperature. In comparison, the creep rupture life of the Mo-50Re solid solution strengthened alloy at 1,600 C is only an order of magnitude greater than unalloyed molybdenum. The results of microstructural characterization and thermal stability and mechanical property testing are discussed.

  6. Iridium porphyrins in CD3OD: reduction of Ir(III), CD3-OD bond cleavage, Ir-D acid dissociation and alkene reactions.

    PubMed

    Bhagan, Salome; Imler, Gregory H; Wayland, Bradford B

    2013-04-15

    Methanol solutions of iridium(III) tetra(p-sulfonatophenyl)porphyrin [(TSPP)Ir(III)] form an equilibrium distribution of methanol and methoxide complexes ([(TSPP)Ir(III)(CD3OD)(2-n)(OCD3)n]((3+n)-)). Reaction of [(TSPP)Ir(III) with dihydrogen (D2) in methanol produces an iridium hydride [(TSPP)Ir(III)-D(CD3OD)](4-) in equilibrium with an iridium(I) complex ([(TSPP)Ir(I)(CD3OD)](5-)). The acid dissociation constant of the iridium hydride (Ir-D) in methanol at 298 K is 3.5 × 10(-12). The iridium(I) complex ([(TSPP)Ir(I)(CD3OD)](5-)) catalyzes reaction of [(TSPP)Ir(III)-D(CD3OD)](4-) with CD3-OD to produce an iridium methyl complex [(TSPP)Ir(III)-CD3(CD3OD)](4-) and D2O. Reactions of the iridium hydride with ethene and propene produce iridium alkyl complexes, but the Ir-D complex fails to give observable addition with acetaldehyde and carbon monoxide in methanol. Reaction of the iridium hydride with propene forms both the isopropyl and propyl complexes with free energy changes (ΔG° 298 K) of -1.3 and -0.4 kcal mol(-1) respectively. Equilibrium thermodynamics and reactivity studies are used in discussing relative Ir-D, Ir-OCD3 and Ir-CD2- bond energetics in methanol. PMID:23540797

  7. ODS Characterization Progress Report 06/27/08

    SciTech Connect

    El-Dasher, B

    2008-11-25

    This progress report is intended to help keep track of the work that has been performed in characterizing ODS steels for the LIFE project. This specific report details the current status of the characterization of a 24% Cr, 1% Y{sub 2}O{sub 3} ODS steel obtained from Wayne King via Geoff Campbell. Since no pedigree of the material could be obtained, a baseline characterization was necessary prior to studying processing, welding, and corrosion behavior. This document details the results obtained from analysis performed using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and energy dispersive spectroscopy (EDS). At the time of writing, transmission electron microscopy (TEM) and microhardness measurements have not been completed, and will be included in a future report. The results are presented in two sections: microstructure, and phase identification. As the names suggest, the first section will report on the microstructure in the general sense and include details such as grain size and texture, and the second section will include the identification of the phases present in the baseline material.

  8. Rapid phase synthesis of nanocrystalline cobalt ferrite

    SciTech Connect

    Shanmugavel, T.; Raj, S. Gokul; Rajarajan, G.; Kumar, G. Ramesh

    2014-04-24

    Synthesis of single phase nanocrystalline Cobalt Ferrite (CoFe{sub 2}O{sub 4}) was achieved by single step autocombustion technique with the use of citric acid as a chelating agent in mono proportion with metal. Specimens prepared with this method showed significantly higher initial permeability's than with the conventional process. Single phase nanocrystalline cobalt ferrites were formed at very low temperature. Surface morphology identification were carried out by transmission electron microscopy (TEM) analysis. The average grain size and density at low temperature increased gradually with increasing the temperature. The single phase formation is confirmed through powder X-ray diffraction analysis. Magnetization measurements were obtained at room temperature by using a vibrating sample magnetometer (VSM), which showed that the calcined samples exhibited typical magnetic behaviors. Temperature dependent magnetization results showed improved behavior for the nanocrystalline form of cobalt ferrite when compared to the bulk nature of materials synthesized by other methods.

  9. Excimer laser ablation of ferrite ceramics

    NASA Astrophysics Data System (ADS)

    Tam, A. C.; Leung, W. P.; Krajnovich, D.

    We study the ablation of Ni-Zn or Mn-7n ferrites by 248-nm KrF excimer laser irradiation for high-resolution patterning. A transfer lens system is used to project the image of a mask irradiated by the pulsed KrF laser onto the ferrite sample. The threshold fluente for ablation of the ferrite surface is about 0.3 J/cm2. A typical fluente of 1 J/cm2 is used to produce good-quality patterning. Scanning electron microscopy of the ablated area shows a "glassy" skin with extensive microcracks and solidified droplets being ejected that is frozen in action. This skin can be removed by ultrasonic cleaning.

  10. Development of Lanthanum Ferrite SOFC Cathodes

    SciTech Connect

    Simner, Steve P.; Bonnett, Jeff F.; Canfield, Nathan L.; Meinhardt, Kerry D.; Shelton, Jayne P.; Sprenkle, Vince L.; Stevenson, Jeffry W.

    2003-01-01

    A number of studies have been conducted concerning compositional/microstructural modifications of a Sr-doped lanthanum ferrite (LSF) cathode and protective Sm-doped ceria (SDC) layer in an anode supported solid oxide fuel cell (SOFC). Emphasis was placed on achieving enhanced low temperature (700-800 degrees C) performance, and long-term cell stability. Investigations involved manipulation of the lanthanum ferrite chemistry, addition of noble metal oxygen reduction catalysts, incorporation of active cathode layer compositions containing Co, Fe and higher Sr contents, and attempts to optimize the ceria barrier layer between the LSF cathode and YSZ electrolyte.

  11. Cation distributions on rapidly solidified cobalt ferrite

    NASA Technical Reports Server (NTRS)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  12. A preliminary ferritic-martensitic stainless steel constitution diagram

    SciTech Connect

    Balmforth, M.C.; Lippold, J.C.

    1998-01-01

    This paper describes preliminary research to develop a constitution diagram that will more accurately predict the microstructure of ferritic and martensitic stainless steel weld deposits. A button melting technique was used to produce a wide range of compositions using mixtures of conventional ferritic and martensitic stainless steels, including types 403, 409, 410, 430, 439 and 444. These samples were prepared metallographically, and the vol-% ferrite and martensite was determined quantitatively. In addition, the hardness and ferrite number (FN) were measured. Using this data, a preliminary constitution diagram is proposed that provides a more accurate method for predicting the microstructures of arc welds in ferritic and martensitic stainless steels.

  13. ENABLING THE PRACTICAL APPLICATION OF OXIDE DISPERSION-STRENGTHENED FERRITIC STEELS

    SciTech Connect

    Wright, Ian G; Pint, Bruce A; Dyadko, Dr. Eugene G.; Bornstein, Norman S.; Tatlock, Gordon J

    2007-01-01

    Effort has continued to evaluate joints made in oxide dispersion-strengthened (ODS) FeCrAl by (i) pulsed plasma-assisted diffusion (PPAD) bonding, and (ii) transient liquid phase (TLP) bonding. Creep tests of PPAD-bonded butt joints in air at 1000 C, using small, shoulder-loaded, dog bone-shaped specimens and an incrementally-loaded test technique, indicated that failure occurred at loads of up to 82% of that required to fail the parent alloy in the same test. For high creep-strength ferritic steels joined by conventional welding methods, strength reduction factors of 50-80% are considered to be acceptable. The failures apparently did not initiate along the joints; the observed mode of failure of the joined specimens was the same as observed for monolithic specimens of this alloy, by crack-initiated transgranular brittle fracture, followed by ductile overload failure. The progress of TLP bonding has been slower, with the major effort focused on understanding the behavior of the transient liquid phase and its interaction with the alloy microstructure during the various stages of bonding. Creep testing using the same procedures also has been used to evaluate changes resulting from torsional deformation of ODS-FeCrAl tubes in an attempt to modify their microstructures and increase their hoop strength. Interpretation of the results so far has not shown a clear trend, largely due to difficulties in measuring the effective angle of twist in the specimen gauge lengths. Other issues that have been addressed are the refinement of an approach for prediction of the oxidation-limited service lifetime of alumina scale-forming ODS alloys, and alternative routes for ODS alloy powder processing. Analysis of alloy specimens oxidized to failure (in some cases involving exposures for many thousands of hours) over a range of temperatures has provided an improved basis for calculating the values of parameters required in the lifing model (minimum Al content for protective behavior

  14. Thermodynamic studies on lithium ferrites

    SciTech Connect

    Rakshit, S.K.; Parida, S.C.; Naik, Y.P.; Chaudhary, Ziley Singh; Venugopal, V.

    2011-05-15

    Thermodynamic studies on ternary oxides of Li-Fe-O systems were carried out using differential scanning calorimetry, Knudsen effusion mass spectrometry, and solid-state electrochemical technique based on fluoride electrolyte. Heat capacities of LiFe{sub 5}O{sub 8}(s) and LiFeO{sub 2}(s) were determined in the temperature range 127-861 K using differential scanning calorimetry. Gibbs energies of formation of LiFe{sub 5}O{sub 8}(s) and LiFeO{sub 2}(s) were determined using Knudsen effusion mass spectrometry and solid-state galvanic cell technique. The combined least squares fits can be represented as {Delta}{sub f}G{sub m}{sup o}(LiFe{sub 5}O{sub 8},s,T)/kJ mol{sup -1} ({+-}6)=-2341+0.6764(T/K) (588{<=}T/K{<=}971) {Delta}{sub f}G{sub m}{sup o}(LiFeO{sub 2},s,T)/kJ mol{sup -1} ({+-}3)=-708+0.1656(T/K) (569{<=}T/K{<=}1021) The temperature independent term of the above equations represents {Delta}{sub f}H{sup o}{sub m}(T{sub av}) and temperature dependent term represents negative change in entropy of the respective compounds. Thermodynamic analysis shows that LiFe{sub 5}O{sub 8}(s) is more stable compared to LiFeO{sub 2}(s). -- Graphical abstract: Comparison of {Delta}{sub f}G{sub m}{sup o}(T) of lithium ferrites determined using different techniques. Display Omitted Highlights: {yields} Thermodynamic studies on Li-Fe-O system using DSC, KEQMS and galvanic cell. {yields} Heat capacities of LiFe{sub 5}O{sub 8}(s) and LiFeO{sub 2}(s) were determined using DSC 127-861 K. {yields} {Delta}{sub f}G{sup o}{sub m} of these compounds were determined and compared. {yields} Thermodynamic tables for LiFe{sub 5}O{sub 8}(s) and LiFeO{sub 2}(s) were constructed.

  15. Microstructural study of a mechanically alloyed ODS superalloy

    SciTech Connect

    Mujahid, M.; Gater, C.A.; Martin, J.W.

    1998-08-01

    Extruded bars of oxide-dispersion-strengthened (ODS) alloy MA-6000 have been annealed isothermally as well as in temperature gradients. The temperatures used for annealing produced secondary recrystallization in all the samples, although the final grain aspect ratio was different for each annealing process. Interrupted gradient anneal experiments showed a curved secondary recrystallization front, with the surface recrystallizing at a lower temperature than the interior. It is believed this is caused indirectly by the strain gradients arising during extrusion. Grain-orientation analysis of recrystallized material revealed that a <110> fiber texture is present. A progressive grain reorientation toward <110> has been measured behind the recrystallization front using microbeam electron diffraction. In addition, changes in the distribution, size, and morphology of different types of precipitates and particles occurring during various stages of annealing have also been studied. Grain-boundary pinning by the stable oxide particles plays an important role in determining the grain growth behavior at high temperatures.

  16. Contact material for pressure-sintering ferrites

    NASA Technical Reports Server (NTRS)

    Wentworth, C.

    1970-01-01

    Pressure-sintering, in which the unfired laminated ferrite plane is placed between two flat punches and pressed during firing, reduces lateral firing shrinkage to less than one percent. A decrease in thickness of the laminate produces the required volume shrinkage. Phlogopite is the most suitable contact material investigated.

  17. Adding calcium improves lithium ferrite core

    NASA Technical Reports Server (NTRS)

    Lessoff, H.

    1969-01-01

    Adding calcium increases uniformity of grain growth over a wide range of sintering temperatures and reduces porosity within the grain. Ferrite cores containing calcium have square hysteresis loops and high curie temperatures, making them useful in coincident current memories of digital electronic computers.

  18. Tantalum modified ferritic iron base alloys

    NASA Technical Reports Server (NTRS)

    Oldrieve, R. E.; Blankenship, C. P. (Inventor)

    1977-01-01

    Strong ferritic alloys of the Fe-CR-Al type containing 0.4% to 2% tantalum were developed. These alloys have improved fabricability without sacrificing high temperature strength and oxidation resistance in the 800 C (1475 F) to 1040 C (1900 F) range.

  19. Effect of ferrite addition above the base ferrite on the coupling factor of wireless power transfer for vehicle applications

    NASA Astrophysics Data System (ADS)

    Batra, T.; Schaltz, E.; Ahn, S.

    2015-05-01

    Power transfer capability of wireless power transfer systems is highly dependent on the magnetic design of the primary and secondary inductors and is measured quantitatively by the coupling factor. The inductors are designed by placing the coil over a ferrite base to increase the coupling factor and reduce magnetic emissions to the surroundings. Effect of adding extra ferrite above the base ferrite at different physical locations on the self-inductance, mutual inductance, and coupling factor is under investigation in this paper. The addition can increase or decrease the mutual inductance depending on the placement of ferrite. Also, the addition of ferrite increases the self-inductance of the coils, and there is a probability for an overall decrease in the coupling factor. Correct placement of ferrite, on the other hand, can increase the coupling factor relatively higher than the base ferrite as it is closer to the other inductor. Ferrite being a heavy compound of iron increases the inductor weight significantly and needs to be added judiciously. Four zones have been identified in the paper, which shows different sensitivity to addition of ferrite in terms of the two inductances and coupling factor. Simulation and measurement results are presented for different air gaps between the coils and at different gap distances between the ferrite base and added ferrite. This paper is beneficial in improving the coupling factor while adding minimum weight to wireless power transfer system.

  20. 74 FR 51869 - ODS Nutrient Biomarkers Analytical Methodology: Vitamin D Workshop; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2009-10-08

    ... HUMAN SERVICES National Institutes of Health ODS Nutrient Biomarkers Analytical Methodology: Vitamin D... Supplements (ODS) Nutrient Biomarkers Analytical Methodology: Vitamin D Workshop to be held Wednesday.... Summary: Vitamin D is a fat-soluble vitamin that is naturally present in very few foods, added to...

  1. Friction Stir Welding of ODS and RAFM Steels

    NASA Astrophysics Data System (ADS)

    Yu, Zhenzhen; Feng, Zhili; Hoelzer, David; Tan, Lizhen; Sokolov, Mikhail A.

    2015-09-01

    Advanced structural materials such as oxide dispersion strengthened steels and reduced-activation ferritic/martensitic steels are desired in fusion reactors as primary candidate materials for first wall and blanket structures, due to their excellent radiation and high-temperature creep resistance. However, their poor fusion weldability has been the major technical challenge limiting practical applications. For this reason, solid-state friction stir welding (FSW) has been considered for such applications. In this work, the effect of FSW parameters on joining similar and dissimilar advanced structural steels was investigated. Scanning electron microscopy and electron backscatter diffraction methods were used to reveal the effects of FSW on grain size, micro-texture distribution, and phase stability. Hardness mapping was performed to evaluate mechanical properties. Post weld heat treatment was also performed to tailor the microstructure in the welds in order to match the weld zone mechanical properties to the base material.

  2. Friction Stir Welding of ODS and RAFM Steels

    DOE PAGESBeta

    Yu, Zhenzhen; Feng, Zhili; Hoelzer, David; Tan, Lizhen; Sokolov, Mikhail A.

    2015-09-14

    Advanced structural materials such as oxide dispersion strengthened steels and reduced-activation ferritic/martensitic steels are desired in fusion reactors as primary candidate materials for first wall and blanket structures, due to their excellent radiation and high-temperature creep resistance. However, their poor fusion weldability has been the major technical challenge limiting practical applications. For this reason, solid-state friction stir welding (FSW) has been considered for such applications. In this paper, the effect of FSW parameters on joining similar and dissimilar advanced structural steels was investigated. Scanning electron microscopy and electron backscatter diffraction methods were used to reveal the effects of FSW onmore » grain size, micro-texture distribution, and phase stability. Hardness mapping was performed to evaluate mechanical properties. Finally, post weld heat treatment was also performed to tailor the microstructure in the welds in order to match the weld zone mechanical properties to the base material.« less

  3. Friction Stir Welding of ODS and RAFM Steels

    SciTech Connect

    Yu, Zhenzhen; Feng, Zhili; Hoelzer, David; Tan, Lizhen; Sokolov, Mikhail A.

    2015-09-14

    Advanced structural materials such as oxide dispersion strengthened steels and reduced-activation ferritic/martensitic steels are desired in fusion reactors as primary candidate materials for first wall and blanket structures, due to their excellent radiation and high-temperature creep resistance. However, their poor fusion weldability has been the major technical challenge limiting practical applications. For this reason, solid-state friction stir welding (FSW) has been considered for such applications. In this paper, the effect of FSW parameters on joining similar and dissimilar advanced structural steels was investigated. Scanning electron microscopy and electron backscatter diffraction methods were used to reveal the effects of FSW on grain size, micro-texture distribution, and phase stability. Hardness mapping was performed to evaluate mechanical properties. Finally, post weld heat treatment was also performed to tailor the microstructure in the welds in order to match the weld zone mechanical properties to the base material.

  4. Differential cytotoxicity of copper ferrite nanoparticles in different human cells.

    PubMed

    Ahmad, Javed; Alhadlaq, Hisham A; Alshamsan, Aws; Siddiqui, Maqsood A; Saquib, Quaiser; Khan, Shams T; Wahab, Rizwan; Al-Khedhairy, Abdulaziz A; Musarrat, Javed; Akhtar, Mohd Javed; Ahamed, Maqusood

    2016-10-01

    Copper ferrite nanoparticles (NPs) have the potential to be applied in biomedical fields such as cell labeling and hyperthermia. However, there is a lack of information concerning the toxicity of copper ferrite NPs. We explored the cytotoxic potential of copper ferrite NPs in human lung (A549) and liver (HepG2) cells. Copper ferrite NPs were crystalline and almost spherically shaped with an average diameter of 35 nm. Copper ferrite NPs induced dose-dependent cytotoxicity in both types of cells, evident by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide and neutral red uptake assays. However, we observed a quite different susceptibility in the two kinds of cells regarding toxicity of copper ferrite NPs. Particularly, A549 cells showed higher susceptibility against copper ferrite NP exposure than those of HepG2 cells. Loss of mitochondrial membrane potential due to copper ferrite NP exposure was observed. The mRNA level as well as activity of caspase-3 enzyme was higher in cells exposed to copper ferrite NPs. Cellular redox status was disturbed as indicated by induction of reactive oxygen species (oxidant) generation and depletion of the glutathione (antioxidant) level. Moreover, cytotoxicity induced by copper ferrite NPs was efficiently prevented by N-acetylcysteine treatment, which suggests that reactive oxygen species generation might be one of the possible mechanisms of cytotoxicity caused by copper ferrite NPs. To the best of our knowledge, this is the first report showing the cytotoxic potential of copper ferrite NPs in human cells. This study warrants further investigation to explore the mechanisms of differential toxicity of copper ferrite NPs in different types of cells. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26918645

  5. Design of ferrite-tuned accelerator cavities using perpendicular-biased high-Q ferrites

    SciTech Connect

    Kaspar, K.

    1984-11-01

    Microwave ferrites with dc bias fields perpendicular to the rf fields exhibit magnetic and dielectric quality factors 1 order of magnitude above that of ferrites used in ferrite-tuned synchrotron accelerating cavities built in the past. For the LAMPF II project, these ferrites appear to allow the design of synchrotron cavities with high gap voltages and high efficiency. A simple coaxial quarter-wave-resonator geometry, first considered only as a model for preliminary studies, turned out to be a good basis for the solution of most technical problems such as generation of the bias field, cooling of the ferrites, and installation of a generous high-voltage gap design. Two quarter-wave resonators combined to form one accelerating unit of about 2.5-m length and 0.6-m diameter should be capable of delivering 120 kV of accelerating voltage in the tuning range 50-60 MHz, up to 200 kV in the range 59-60 MHz. The main advantage of the given resonator design is its full rotational symmetry, which allows calculation and optimization of all electrical properties with maximum reliability.

  6. Ferritization treatment of copper in soil by electrokinetic remediation.

    PubMed

    Kimura, Tomoyuki; Takase, Ken-Ichi; Terui, Norifumi; Tanaka, Shunitz

    2007-05-17

    The usefulness of the combined use of the electrokinetic (EK) remediation and a ferrite treatment zone (FTZ) was demonstrated for a treatment of the contaminated soil with heavy metal ions. Copper ions in contaminated soil were transferred into the FTZ by the EK technology and were ferritized in this system. The distribution of copper in a migration chamber after EK treatment with FTZ for 48h showed the large difference in the total and eluted concentration of copper. This indicated that copper ions transferred by EK into the FTZ were ferritized there with ferrite reagent in soil alkalified by EK process. The copper-ferrite compound, which was not dissolved with diluted acid, was retained in the FTZ and accumulated there. The ratio of the ferritized amount of copper against total copper was 92% in the EK process with FTZ after 48 h. PMID:17374444

  7. Processing and characterization of oxide dispersion strengthened 14YWT ferritic alloys

    NASA Astrophysics Data System (ADS)

    West, Michael Keith

    Oxide dispersion strengthened (ODS) ferritic steels are currently being investigated as candidate materials for nuclear applications due to their increased high temperature strength and low activation characteristics. Recent studies have shown that ODS ferritic steels containing Ti exhibit enhanced high temperature properties due to the formation of a very fine dispersion of nanometer-sized oxide clusters based on Ti, Y, and O. Studies are currently underway to examine so called 14YWT alloys with nominal compositions of Fe-14Cr-3W-0.4Ti (wt. %) mechanically alloyed with 0.25 (wt.%) Y2O3. The focus of this study was to investigate how the early stages of processing of 14YWT alloys during mechanical milling, heat treatment, and consolidation affect the structure and properties of the alloys. The 14YWT alloys were milled at different times up to 80 hours, along with alloy powder compositions of Fe-14Cr + 0.25 wt.% Y2O 3 (14Y) and Fe-14Cr without Y2O3 (Fe-14Cr). The evolution of the microstructure and mechanical properties during milling was examined with a combination of optical metallography, x-ray diffraction, electron microscopy, atom probe tomography, and nanoindentation. Alloy powders were also heat treated and studied using high temperature x-ray diffraction and differential scanning calorimetry methods. Special attention was paid to milling parameters and temperature ranges which lead to the formation of nanosized oxide clusters in the alloys. Finally, the microstructure of consolidated alloys was examined and related to milling and heat treatment methods. Mechanical properties and microstructure during milling were similar in the three alloy powders examined regardless of dispersoid or alloy addition. Mechanical mixing of the alloy powders was inefficient after 40 hours of milling. Milling did not produce bulk amorphous phases but quickly reduced the crystallite size to ˜10-20 nm. Milling also resulted in relatively uniform dissolution of Y2O3. Thermal

  8. Lithium ferrite nanoparticles for ferrofluid applications

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, V. K.; Prakash, Om; Pant, R. P.; Islam, Mohammad

    2002-11-01

    Nanoparticles of Lithium ferrite in the particle size range of 10 nm have been prepared by a citrate precursor method at a relatively low temperature of 200°C. The particles show characteristic infra red (IR) spectrum of lithium ferrite and broadened X-ray diffraction (XRD) patterns typical of the nanoparticle nature. The sample decomposed at 200°C has the β-LiFe 5O 8 type (a disordered type of spinel) structure which on annealing at 350°C transforms to the α-LiFe 5O 8 type (an ordered type spinel) structure as shown by both IR spectra and XRD studies. Magnetization curves indicate a particle size distribution consisting of both ferromagnetic particles and a superparamagnetic fraction. With 4 ΠMs values of 2000 G these particles could be useful for applications in certain low magnetization ferrofluids.

  9. Low temperature synthesis of zinc ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Bardhan, A.; Ghosh, C. K.; Mitra, M. K.; Das, G. C.; Mukherjee, S.; Chattopadhyay, K. K.

    2010-05-01

    Zinc ferrite (ZnFe 2O 4) nanocrystalline powder materials with various particle sizes were prepared by a unique solid-state combustion method. Phase purity of ZnFe 2O 4 was confirmed by X-ray diffraction studies. High resolution transmission electron microscopic analysis and selected area diffraction pattern also confirmed the correct crystalline phase formation. Particle size was determined from both the transmission electron microscopic images and also from the XRD peak broadening analysis. Oxidation states of different elements present in ZnFe 2O 4 were determined by X-ray photoelectron spectroscopy. Frequency dependent dielectric constant and a.c. conductivity were measured as a function of particle size and both of them were found to decrease with decreasing particle size. These studies indicated that good quality zinc ferrite nanocrystalline powdered materials can be synthesized at low temperature.

  10. End Closure Joining of Ferritic-Martensitic and Oxide-Dispersion Strengthened Steel Cladding Tubes by Magnetic Pulse Welding

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Gu; Park, Jin-Ju; Lee, Min-Ku; Rhee, Chang-Kyu; Kim, Tae-Kyu; Spirin, Alexey; Krutikov, Vasiliy; Paranin, Sergey

    2015-07-01

    The magnetic pulse welding (MPW) technique was employed for the end closure joining of fuel pin cladding tubes made of ferritic-martensitic (FM) steel and oxide-dispersion strengthened (ODS) steel. The technique is a solid-state impact joining process based on the electromagnetic force, similar to explosive welding. For a given set of optimal process parameters, e.g., the end-plug geometry, the rigid metallurgical bonding between the tube and end plug was obtained by high-velocity impact collision accompanied with surface jetting. The joint region showed a typical wavy morphology with a narrow grain boundary-like bonding interface. There was no evidence of even local melting, and only the limited grain refinement was observed in the vicinity of the bonding interface without destructing the original reinforcement microstructure of the FM-ODS steel, i.e., a fine grain structure with oxide dispersion. No leaks were detected during helium leakage test, and moreover, the rupture occurred in the cladding tube section without leaving any joint damage during internal pressure burst test. All of the results proved the integrity and durability of the MPWed joints and signified the great potential of this method of end closure joining for advanced fast reactor fuel pin fabrication.

  11. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Hyun; Lee, Se-Ho; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Shim, In-Bo; Lee, Yong-Keun

    2005-05-01

    We investigated the cytotoxicity of the prepared various ferrites (Fe-, Li-, Ni/Zn/Cu-, Ba-, Sr-, Co-, Co/Ni-ferrites) using MTT assay as well as agar diffusion method. Their cytotoxicity was compared with that of alginate-encapsulated ferrites. In the MTT assay, Fe 3O 4 and SrFe 12O 19 ferrite showed the highest cell viability of 90%. Alginate-encapsulated Ba-ferrite was ranked mildly cytotoxic, whereas their ferrite particles were ranked cytotoxic.

  12. Atomically flat ultrathin cobalt ferrite islands.

    PubMed

    Martín-García, Laura; Quesada, Adrián; Munuera, Carmen; Fernández, Jose F; García-Hernández, Mar; Foerster, Michael; Aballe, Lucía; de la Figuera, Juan

    2015-10-21

    A route for fabricating structurally perfect cobalt ferrite magnetic nanostructures is demonstrated. Ultrathin islands of up to 100 μm(2) with atomically flat surfaces and free from antiphase boundaries are developed. The extremely low defect concentration leads to a robust magnetic order, even for thicknesses below 1 nm, and exceptionally large magnetic domains. This approach allows the evaluation of the influence of specific extrinsic effects on domain wall pinning. PMID:26306027

  13. Cold worked ferritic alloys and components

    DOEpatents

    Korenko, Michael K.

    1984-01-01

    This invention relates to liquid metal fast breeder reactor and steam generator precipitation hardening fully ferritic alloy components which have a microstructure substantially free of the primary precipitation hardening phase while having cells or arrays of dislocations of varying population densities. It also relates to the process by which these components are produced, which entails solution treating the alloy followed by a final cold working step. In this condition, the first significant precipitation hardening of the component occurs during high temperature use.

  14. Characterizing and Modeling Ferrite-Core Probes

    NASA Astrophysics Data System (ADS)

    Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.; Aldrin, John C.

    2010-02-01

    In this paper, we accurately and carefully characterize a ferrite-core probe that is widely used for aircraft inspections. The characterization starts with the development of a model that can be executed using the proprietary volume-integral code, VIC-3D©, and then the model is fitted to measured multifrequency impedance data taken with the probe in freespace and over samples of a titanium alloy and aluminum. Excellent results are achieved, and will be discussed.

  15. Behavior of Fe-ODS Alloys After Thermal Aging Treatments

    NASA Astrophysics Data System (ADS)

    Serrano Garcia, Marta; Hernández-Mayoral, Mercedes; Esparraguera, Elvira Oñorbe

    2016-03-01

    Oxide dispersion alloys are one of the candidates as cladding materials for Gen IV fast reactors, due to their high strength at high temperature, good creep properties, and swelling resistance. This good performance is mainly due to a fine dispersion of nano-oxide particles on the microstructure and to non-grained structure. The microstructural stability and the mechanical properties of a Fe-ODS alloy are studied after different thermal aging experiments at 973 K (700 °C), 5000 hours; 973 K (700 °C), 10,000 hours; and 1123 K (850 °C), 10,000 hours. SEM/EBSD and TEM together with tensile and impact tests on the as-received and thermally aged material have been carried out. In general, for all the tested conditions, a slight softening effect is observed attributed to the changes in the grain structure as well as to the changes in the amount and size of nano-oxide particles. In addition, the aged material shows a lower impact USE value while the DBTT is maintained.

  16. [Enantioseparation behavior of chiral stationary phases AD, AS and OD].

    PubMed

    Li, Liqun; Fan, Jun; Zhang, Jing; Chen, Xiaodong; Wang, Tai; He, Jianfeng; Zhang, Weiguang

    2016-01-01

    Over the past decades, HPLC enantioseparation with chiral stationary phases (CSPs) has been widely applied in chiral analysis and preparation of new pharmaceuticals, pesticides, food, etc. Herein, enantioseparation of 20 chiral compounds have been carried out on three polysaccharide-based CSPs (EnantioPak AD, AS and OD) with normal phases by HPLC, separately. The influences of skeletal structure and the kinds of derivative groups on separation behaviors of these CSPs have been studied in detail. As results indicated, except for compound 13, the other compounds were baseline separated on EnantioPak AD, with most of resolution over 2. 0; in addition, better separation for acidic or basic compounds was achieved through adding acidic/basic additives into the mobile phase of hexane-alcohol. For four aromatic alcohols (compounds 13-16), their retention in the EnantioPak AD column showed a weakening tendency with increase of carbon number in side chain group, and the reverse trend of their resolution was observed. Furthermore, EnantioPak AD showed much better separation performance for eight compounds (13-20) than the others. In short, these results have provided some references for further investigation of separation behavior and applications of polysaccharide-based CSPs. PMID:27319174

  17. Behavior of Fe-ODS Alloys After Thermal Aging Treatments

    NASA Astrophysics Data System (ADS)

    Serrano Garcia, Marta; Hernández-Mayoral, Mercedes; Esparraguera, Elvira Oñorbe

    2016-06-01

    Oxide dispersion alloys are one of the candidates as cladding materials for Gen IV fast reactors, due to their high strength at high temperature, good creep properties, and swelling resistance. This good performance is mainly due to a fine dispersion of nano-oxide particles on the microstructure and to non-grained structure. The microstructural stability and the mechanical properties of a Fe-ODS alloy are studied after different thermal aging experiments at 973 K (700 °C), 5000 hours; 973 K (700 °C), 10,000 hours; and 1123 K (850 °C), 10,000 hours. SEM/EBSD and TEM together with tensile and impact tests on the as-received and thermally aged material have been carried out. In general, for all the tested conditions, a slight softening effect is observed attributed to the changes in the grain structure as well as to the changes in the amount and size of nano-oxide particles. In addition, the aged material shows a lower impact USE value while the DBTT is maintained.

  18. The BGO Calorimeter of BGO-OD Experiment

    NASA Astrophysics Data System (ADS)

    Bantes, B.; Bayadilov, D.; Beck, R.; Becker, M.; Bella, A.; Bielefeldt, P.; Bieling, J.; Bleckwenn, M.; Böse, S.; Braghieri, A.; Brinkmann, K.-Th; Burdeynyi, D.; Curciarello, F.; De Leo, V.; Di Salvo, R.; Dutz, H.; Elsner, D.; Fantini, A.; Freyermuth, O.; Friedrich, S.; Frommberger, F.; Ganenko, V.; Geffers, D.; Gervino, G.; Ghio, F.; Giardina, G.; Girolami, B.; Glazier, D.; Goertz, S.; Gridnev, A.; Gutz, E.; Hammann, D.; Hannappel, J.; Hartmann, P.-F.; Hillert, W.; Ignatov, A.; Jahn, R.; Joosten, R.; Jude, T. C.; Klein, F.; Koop, K.; Krusche, B.; Lapik, A.; Levi Sandri, P.; Lopatin, I.; Mandaglio, G.; Mei, P.; Messi, F.; Messi, R.; Metag, V.; Moricciani, D.; Nanova, M.; Nedorezov, V.; Novinskiy, D.; Pedroni, P.; Romaniuk, M.; Rostomyan, T.; Rudnev, N.; Schaerf, C.; Scheluchin, G.; Schmieden, H.; Sumachev, V.; Tarakanov, V.; Vegna, V.; Walther, D.; Watts, D.; Zaunick, H.-G.; Zimmermann, T.

    2015-02-01

    The BGO Rugby Ball is a large solid angle electromagnetic calorimeter now installed in the ELSA Facility in Bonn. The BGO is operating in the BGO-OD experiment aiming to study meson photoproduction off proton and neutron induced by a Bremsstrahlung polarized gamma beam of energies from 0.2 to 3.2 GeV and an intensity of 5 × 107 photons per second. The scintillating material characteristics and the photomultiplier read-out make this detector particularly suited for the detection of medium energy photons and electrons with very good energy resolution. The detector has been equipped with a new electronics read-out system, consisting of 30 sampling ADC Wie-Ne-R modules which perform the off-line reconstruction of the signal start-time allowing for a good timing resolution. Performances in linearity, resolution and time response have been carefully tested at the Beam Test Facility of the INFN National Laboratories in Frascati by using a matrix of 7 BGO crystals coupled to photomultipliers and equipped with the Wie-Ne-R sampling ADCs.

  19. Microstructure Evolution of Gas Atomized Iron Based ODS Alloys

    SciTech Connect

    Rieken, J.R.; Anderson, I.E.; Kramer, M.J.

    2011-08-09

    In a simplified process to produce precursor powders for oxide dispersion-strengthened (ODS) alloys, gas-atomization reaction synthesis (GARS) was used to induce a surface oxide layer on molten droplets of three differing erritic stainless steel alloys during break-up and rapid solidification. The chemistry of the surface oxide was identified using auger electron spectroscopy (AES) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The precursor iron-base powders were consolidated at 850 C and 1,300 C using hot isostatic pressing (HIPing). Consolidation at the lower temperature resulted in a fully dense microstructure, while preventing substantial prior particle-boundary-oxide dissociation. Microstructural analysis of the alloys consolidated at the higher temperature confirmed a significant reduction in prior-particle-boundary-oxide volume fraction, in comparison with the lower-temperature-consolidated sample. This provided evidence that a high-temperature internal oxygen-exchange reaction occurred between the metastable prior particle-boundary-oxide phase (chromium oxide) and the yttrium contained within each prior particle. This internal oxygen-exchange reaction is shown to result in the formation of yttrium-enriched oxide dispersoids throughout the alloy microstructure. The evolving microstructure was characterized using transmission electron microscopy (TEM) and high-energy X-ray diffraction (HE-XRD).

  20. Microstructure Evolution of Gas Atomized Iron Based ODS Alloys

    SciTech Connect

    Rieken, J.R.; Anderson, I.E.; Kramer, M.J.; Anderegg, J.W.; Shechtman, D.

    2009-12-01

    In a simplified process to produce precursor powders for oxide dispersion-strength- ened (ODS) alloys, gas-atomization reaction synthesis (GARS) was used to induce a surface oxide layer on molten droplets of three differing erritic stainless steel alloys during break-up and rapid solidification. The chemistry of the surface oxide was identified using auger electron spectroscopy (AES) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The precursor iron-base powders were consolidated at 850 C and 1,300 C using hot isostatic pressing (HIPing). Consolidation at the lower temperature resulted in a fully dense microstructure, while preventing substantial prior particle-boundary-oxide dissociation. Microstructural analysis of the alloys consolidated at the higher temperature confirmed a significant reduction in prior-particle-boundary-oxide volume fraction, in comparison with the lower-temperature-consolidated sample. This provided evidence that a high-temperature internal oxygen-exchange reaction occurred between the metastable prior particle-boundary-oxide phase (chromium oxide) and the yttrium contained within each prior particle. This internal oxygen-exchange reaction is shown to result in the formation of yttrium-enriched oxide dispersoids throughout the alloy microstructure. The evolving microstructure was characterized using transmission electron microscopy (TEM) and high-energy X-ray diffraction (HE-XRD).

  1. Radiation effects on the microstructure of a 9Cr-ODS alloy.

    SciTech Connect

    Gan, J.; Allen, T. R.; Birtcher, R. C.; Shutthanandan, S.; Thevothasan, S.; Materials Science Division; INL; Univ. of Wisconsin at Madison; PNNL

    2008-01-01

    Oxide dispersion strengthened (ODS) steels are prime candidates for high-temperature, high-dose cladding in advanced nuclear reactors. When a 9Cr-ODS alloy was irradiated with 5 MeV nickel ions at temperatures of 500-700 C to doses up to 150 dpa, there was no significant change in the dislocation arrangement. For oxide particles, there is a small shrinkage in size and increase in density with increasing irradiation dose. This work confirms that oxide particles and the microstructure of the 9Cr-ODS show minimal changes under irradiation at temperatures up to 700 C and doses up to 150 dpa.

  2. Nanosized copper ferrite materials: Mechanochemical synthesis and characterization

    SciTech Connect

    Manova, Elina; Tsoncheva, Tanya; Paneva, Daniela; Popova, Margarita; Velinov, Nikolay; Kunev, Boris; Tenchev, Krassimir; Mitov, Ivan

    2011-05-15

    Nanodimensional powders of cubic copper ferrite are synthesized by two-steps procedure of co-precipitation of copper and iron hydroxide carbonates, followed by mechanochemical treatment. X-ray powder diffraction, Moessbauer spectroscopy and temperature-programmed reduction are used for the characterization of the obtained materials. Their catalytic behavior is tested in methanol decomposition to hydrogen and CO and total oxidation of toluene. Formation of nanosized ferrite material is registered even after one hour of milling time. It is established that the prolonging of treatment procedure decreases the dispersion of the obtained product with the appearance of Fe{sub 2}O{sub 3}. It is demonstrated that the catalytic behavior of the samples depends not only on their initial phase composition, but on the concomitant ferrite phase transformations by the influence of the reaction medium. -- Graphical abstract: It is demonstrated that the catalytic behavior of the obtained copper ferrites depends not only on their initial phase composition, but on the concomitant phase transformations by the influence of the reaction medium. Display Omitted Highlights: {yields} Two-step co-precipitation-ball-milling procedure for copper ferrites preparation. {yields} The phase composition of ferrites depends on the milling duration. {yields} Ferrites transforms under the reaction medium, which affects their catalytic behavior. {yields} Ferrites decompose to magnetite and carbides during methanol decomposition. {yields} Agglomeration and further crystallization of ferrite occur during toluene oxidation.

  3. Preparation of single-crystal copper ferrite nanorods and nanodisks

    SciTech Connect

    Du Jimin; Liu Zhimin . E-mail: liuzm@iccas.ac.cn; Wu Weize; Li Zhonghao; Han Buxing . E-mail: hanbx@iccas.ac.cn; Huang Ying

    2005-06-15

    This article, for the first time, reports the preparation of single-crystal copper ferrite nanorods and nanodisks. Using amorphous copper ferrite nanoparticles synthesized by reverse micelle as reaction precursor, single-crystal copper ferrite nanorods were synthesized via hydrothermal method in the presence of surfactant polyethylene glycol (PEG), however, copper ferrite nanodisks were prepared through the same procedures except the surfactant PEG. The resulting nanomaterials have been characterized by powder X-ray diffraction (XRD), selected electron area diffraction (SEAD), and transmission electron microscopy (TEM). The bulk composition of the samples was determined by means of X-ray photoelectron spectroscopy (XPS)

  4. Tunable Dielectric Properties of Ferrite-Dielectric Based Metamaterial

    PubMed Central

    Bi, K.; Huang, K.; Zeng, L. Y.; Zhou, M. H.; Wang, Q. M.; Wang, Y. G.; Lei, M.

    2015-01-01

    A ferrite-dielectric metamaterial composed of dielectric and ferrite cuboids has been investigated by experiments and simulations. By interacting with the electromagnetic wave, the Mie resonance can take place in the dielectric cuboids and the ferromagnetic precession will appear in the ferrite cuboids. The magnetic field distributions show the electric Mie resonance of the dielectric cuboids can be influenced by the ferromagnetic precession of ferrite cuboids when a certain magnetic field is applied. The effective permittivity of the metamaterial can be tuned by modifying the applied magnetic field. A good agreement between experimental and simulated results is demonstrated, which confirms that these metamaterials can be used for tunable microwave devices. PMID:25993433

  5. Tunable dielectric properties of ferrite-dielectric based metamaterial.

    PubMed

    Bi, K; Huang, K; Zeng, L Y; Zhou, M H; Wang, Q M; Wang, Y G; Lei, M

    2015-01-01

    A ferrite-dielectric metamaterial composed of dielectric and ferrite cuboids has been investigated by experiments and simulations. By interacting with the electromagnetic wave, the Mie resonance can take place in the dielectric cuboids and the ferromagnetic precession will appear in the ferrite cuboids. The magnetic field distributions show the electric Mie resonance of the dielectric cuboids can be influenced by the ferromagnetic precession of ferrite cuboids when a certain magnetic field is applied. The effective permittivity of the metamaterial can be tuned by modifying the applied magnetic field. A good agreement between experimental and simulated results is demonstrated, which confirms that these metamaterials can be used for tunable microwave devices. PMID:25993433

  6. Magnetoelastic coupling in epitaxial cobalt ferrite/barium titanate heterostructures

    NASA Astrophysics Data System (ADS)

    Gräfe, Joachim; Welke, Martin; Bern, Francis; Ziese, Michael; Denecke, Reinhard

    2013-08-01

    Ultra-thin cobalt ferrite films have been synthesised on ferroelectric barium titanate crystals. The cobalt ferrite films exhibit a magnetic response to strain induced by structural changes in the barium titanate substrate, suggesting a pathway to multiferroic coupling. These structural changes are achieved by heating through the phase transition temperatures of barium titanate. In addition the ferromagnetic signal of the substrate itself is taken into account, addressing the influence of impurities or defects in the substrate. The cobalt ferrite/barium titanate heterostructure is a suitable oxidic platform for future magnetoelectric applications with an established ferroelectric substrate and widely tuneable magnetic properties by changing the transition metal in the ferrite film.

  7. Compact magnetooptical isolator with cobalt ferrite on silicon photonic circuits

    NASA Astrophysics Data System (ADS)

    Yanaga, Megumi; Shoji, Yuya; Takamura, Yota; Nakagawa, Shigeki; Mizumoto, Tetsuya

    2015-08-01

    In the telecom wavelength range, the magnetooptical effect of cobalt ferrites is approximately 10 times larger than that of conventional magnetooptical materials such as yttrium iron garnets. In this study, we focus on an application of cobalt ferrite to a magnetooptical isolator that is to be miniaturized and made suitable for integration. First, we prepare polycrystalline cobalt ferrite films deposited on a silicon substrate using a MgO buffer layer. Next, we fabricate a waveguide optical isolator of silicon waveguides by the partial deposition of the cobalt ferrite films. An optical isolation ratio of 5.5 dB is demonstrated.

  8. Properties of ferrites important to their friction and wear behavior

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    Environmental, chemical and crystallographical effects on the fundamental nature on friction and wear of the ferrites in contact with metals, magnetic tapes and themselves are reviewed. The removal of adsorbed films from the surfaces of ferrites results in very strong interfacial adhesion and high friction in ferrite to metal and ferrite to magnetic tape contacts. The metal ferrite bond at the interface is primarily a chemical bond between the metal atoms and the large oxygen anions in the ferrite surface, and the strength of these bonds is related to the oxygen to metal bond strength in the metal oxide. The more active the metal, the higher is the coefficient of friction. Not only under adhesive conditions, but also under abrasive conditions the friction and wear properties of ferrites are related to the crystallographic orientation. With ferrite to ferrite contact the mating of highest atomic density (most closely packed) direction on matched crystallographic planes, that is, 110 directions on /110/planes, results in the lowest coefficient of friction.

  9. Preferential spin canting in nanosize zinc ferrite

    NASA Astrophysics Data System (ADS)

    Pandey, Brajesh; Litterst, F. J.; Baggio-Saitovitch, E. M.

    2015-07-01

    Zinc ferrite nanoparticles powder with average size of 10.0±0.5 nm was synthesized by the citrate precursor route. We studied the structural and magnetic properties using X-ray diffraction, vibrating sample magnetometry and Mössbauer spectroscopy. X-ray diffraction patterns show that the synthesized zinc ferrite possesses good spinel structure. Both Mössbauer and magnetization data indicate superparamagnetic ferrimagnetic particles at room temperature. The magnetic behavior is determined by a considerable degree of cation inversion with FeIII in tetrahedral A-sites. Mössbauer spectroscopy at low temperature and in high applied magnetic field reveals that A-site spins are aligned antiparallel to the applied field with some possible angular scatter whereas practically all octahedral B-site spins are canted contrasting some earlier reported partial B-site spin canting in nanosize zinc ferrite. Deviations from the antiferromagnetic arrangement of B-site spins are supposed to be caused by magnetic frustration effects.

  10. Ferrite nanoparticles for future heart diagnostics

    NASA Astrophysics Data System (ADS)

    Hong, Nguyen Hoa; Raghavender, A. T.; Ciftja, O.; Phan, M.-H.; Stojak, K.; Srikanth, H.; Zhang, Yin Hua

    2013-08-01

    Normally, CoFe2O4 has been known as ferromagnetic ferrite with a quite large magnetic moment. However, since we aim to inject the particles into the human body, we are also interested in ZnFe2O4 because in the human body, Fe and Zn exist, so that adding ZnFe2O4 is safer. In both cases, the nanoparticles are coated by silica in order to get rid of toxicity. Our main purpose is to test whether these nanoparticles affect the contractile function of heart cells. Our results on rat's heart cells have shown that both Zn and Co ferrites improved the contractility of heart cells. Notably, although both nanoparticles increased contraction and delayed relaxation, Co ferrites induced a greater contraction but with a slower relaxation. We can theoretically argue that the magnetization effects of the quantum dots have a considerable effect on the pulsating properties of the heart cells. Through this effect, the locally applied magnetic field is able to induce as well as turn on/off various regular beating patterns, thus, resetting the heart beatings.

  11. Studies on the activation energy from the ac conductivity measurements of rubber ferrite composites containing manganese zinc ferrite

    NASA Astrophysics Data System (ADS)

    Hashim, Mohd.; Alimuddin; Kumar, Shalendra; Shirsath, Sagar E.; Mohammed, E. M.; Chung, Hanshik; Kumar, Ravi

    2012-11-01

    Manganese zinc ferrites (MZF) have resistivities between 0.01 and 10 Ω m. Making composite materials of ferrites with either natural rubber or plastics will modify the electrical properties of ferrites. The moldability and flexibility of these composites find wide use in industrial and other scientific applications. Mixed ferrites belonging to the series Mn(1-x)ZnxFe2O4 were synthesized for different ‘x’ values in steps of 0.2, and incorporated in natural rubber matrix (RFC). From the dielectric measurements of the ceramic manganese zinc ferrite and rubber ferrite composites, ac conductivity and activation energy were evaluated. A program was developed with the aid of the LabVIEW package to automate the measurements. The ac conductivity of RFC was then correlated with that of the magnetic filler and matrix by a mixture equation which helps to tailor properties of these composites.

  12. Ferritic steel melt and FLiBe/steel experiment : melting ferritic steel.

    SciTech Connect

    Troncosa, Kenneth P.; Smith, Brandon M.; Tanaka, Tina Joan

    2004-11-01

    In preparation for developing a Z-pinch IFE power plant, the interaction of ferritic steel with the coolant, FLiBe, must be explored. Sandia National Laboratories Fusion Technology Department was asked to drop molten ferritic steel and FLiBe in a vacuum system and determine the gas byproducts and ability to recycle the steel. We tried various methods of resistive heating of ferritic steel using available power supplies and easily obtained heaters. Although we could melt the steel, we could not cause a drop to fall. This report describes the various experiments that were performed and includes some suggestions and materials needed to be successful. Although the steel was easily melted, it was not possible to drip the molten steel into a FLiBe pool Levitation melting of the drop is likely to be more successful.

  13. Microstructural and mechanical property characterization of ingot metallurgy ODS iron aluminide

    SciTech Connect

    Sikka, V.K.; Howell, C.R.; Hall, F.; Valykeo, J.

    1997-12-01

    This paper deals with a novel, lower cost method of producing a oxide dispersion strengthened (ODS) iron-aluminide alloy. A large 250-kg batch of ODS iron-aluminide alloy designated as FAS was produced by Hoskins Manufacturing Company (Hoskins) [Hamburg, Michigan] using the new process. Plate and bar stock of the ODS alloy were the two major products received. Each of the products was characterized for its microstructure, including grain size and uniformity of oxide dispersion. Tensile tests were completed from room temperature to 1100 C. Only 100-h creep tests were completed at 800 and 1000 C. The results of these tests are compared with the commercial ODS alloy designated as MA-956. An assessment of these data is used to develop future plans for additional work and identifying applications.

  14. Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Rieken, Joel Rodney

    Gas atomization reaction synthesis (GARS) was employed as a simplified method for producing precursor powders for oxide dispersion strengthened (ODS) ferritic stainless steels (e.g., Fe-Cr-Y-(Ti,Hf)-O), departing from the conventional mechanical alloying (MA) process. During GARS processing a reactive atomization gas (i.e., Ar-O2) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 150 nm) metastable Cr-enriched oxide layer that was used as a vehicle for solid-state transport of O into the consolidated microstructure. In an attempt to better understand the kinetics of this GARS reaction, theoretical cooling curves for the atomized droplets were calculated and used to establish an oxidation model for this process. Subsequent elevated temperature heat treatments, which were derived from Rhines pack measurements using an internal oxidation model, were used to promote thermodynamically driven O exchange reactions between trapped films of the initial Cr-enriched surface oxide and internal Y-enriched intermetallic precipitates. This novel microstructural evolution process resulted in the successful formation of nano-metric Y-enriched dispersoids, as confirmed using high energy X-ray diffraction and transmission electron microscopy (TEM), equivalent to conventional ODS alloys from MA powders. The thermal stability of these Y-enriched dispersoids was evaluated using high temperature (1200°C) annealing treatments ranging from 2.5 to 1,000 hrs of exposure. In a further departure from current ODS practice, replacing Ti with additions of Hf appeared to improve the Y-enriched dispersoid thermal stability by means of crystal structure modification. Additionally, the spatial distribution of the dispersoids was found to depend strongly on the original rapidly solidified microstructure. To exploit this, ODS microstructures were engineered from different

  15. Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel

    SciTech Connect

    Rieken, Joel

    2011-12-13

    Gas atomization reaction synthesis (GARS) was employed as a simplified method for producing precursor powders for oxide dispersion strengthened (ODS) ferritic stainless steels (e.g., Fe-Cr-Y-(Ti,Hf)-O), departing from the conventional mechanical alloying (MA) process. During GARS processing a reactive atomization gas (i.e., Ar-O2) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 150 nm) metastable Cr-enriched oxide layer that was used as a vehicle for solid-state transport of O into the consolidated microstructure. In an attempt to better understand the kinetics of this GARS reaction, theoretical cooling curves for the atomized droplets were calculated and used to establish an oxidation model for this process. Subsequent elevated temperature heat treatments, which were derived from Rhines pack measurements using an internal oxidation model, were used to promote thermodynamically driven O exchange reactions between trapped films of the initial Cr-enriched surface oxide and internal Y-enriched intermetallic precipitates. This novel microstructural evolution process resulted in the successful formation of nano-metric Y-enriched dispersoids, as confirmed using high energy X-ray diffraction and transmission electron microscopy (TEM), equivalent to conventional ODS alloys from MA powders. The thermal stability of these Y-enriched dispersoids was evaluated using high temperature (1200°C) annealing treatments ranging from 2.5 to 1,000 hrs of exposure. In a further departure from current ODS practice, replacing Ti with additions of Hf appeared to improve the Y-enriched dispersoid thermal stability by means of crystal structure modification. Additionally, the spatial distribution of the dispersoids was found to depend strongly on the original rapidly solidified microstructure. To exploit this, ODS microstructures were engineered from

  16. Optical Depth Sensor (ODS) for the measurement of dust and clouds properties in the Mars atmosphere

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.

    2014-04-01

    A small and sophisticated optical depth sensor (ODS) has been designed to work in both Martian and Earth environments. The principal goal of ODS is to carry out the opacity due to the Martian dust as well as to characterize the high altitude clouds at twilight, crucial parameters in understanding of Martian meteorology. The instrument was initially designed for the failed MARS96 Russian mission, and also was included in the payload of several other missions [1]. Until recently, it was selected (NASA/ESA AO) in the payload of the atmospheric package DREAMS onboard the MARS 2016 mission. But following a decision of the CNES, it is no more included in the payload. In order to study the performance of ODS under a wide range of conditions as well as its capable to provide daily measurements of both dust optical thickness and high altitude clouds properties, the instrument has participated in different terrestrial campaigns. A good performance of ODS prototype (Figure 1) on cirrus clouds detection and in dust opacity estimation was previously archived in Africa during 2004-2005 and in Brasil from 2012 to nowadays. Moreover, a campaign in the arctic is expected before 2016 where fifteen ODSs will be part of an integrated observing system over the Arctic Ocean, allowing test the ODS performance in extreme conditions. In this presentation we present main principle of the retrieval, the instrumental concept, the result of the tests performed and the principal objectives of ODS in Mars.

  17. odNEAT: An Algorithm for Decentralised Online Evolution of Robotic Controllers.

    PubMed

    Silva, Fernando; Urbano, Paulo; Correia, Luís; Christensen, Anders Lyhne

    2015-01-01

    Online evolution gives robots the capacity to learn new tasks and to adapt to changing environmental conditions during task execution. Previous approaches to online evolution of neural controllers are typically limited to the optimisation of weights in networks with a prespecified, fixed topology. In this article, we propose a novel approach to online learning in groups of autonomous robots called odNEAT. odNEAT is a distributed and decentralised neuroevolution algorithm that evolves both weights and network topology. We demonstrate odNEAT in three multirobot tasks: aggregation, integrated navigation and obstacle avoidance, and phototaxis. Results show that odNEAT approximates the performance of rtNEAT, an efficient centralised method, and outperforms IM-(μ + 1), a decentralised neuroevolution algorithm. Compared with rtNEAT and IM-(μ + 1), odNEAT's evolutionary dynamics lead to the synthesis of less complex neural controllers with superior generalisation capabilities. We show that robots executing odNEAT can display a high degree of fault tolerance as they are able to adapt and learn new behaviours in the presence of faults. We conclude with a series of ablation studies to analyse the impact of each algorithmic component on performance. PMID:25478664

  18. Ferritic weldment of grain-refined ferritic steels for cryogenic use

    SciTech Connect

    Kim, H.J.; Syn, C.K.; Morris, J.W. Jr.

    1981-08-01

    The problem of welding grain-refined Fe-12Ni-0.25Ti for 4K service was first approached in this laboratory by using high nickel filler metals such as are often specified for ferritic steel weldments at 77K. This approach led to an undesirable brittleness in the fusion zone and a low yield strength in the weld metal. A more promising approach was developed in joint research between the Japanese steel companies, who showed that quench-and-tempered 9Ni steel may be welded for 77K service with a matching ferritic filler if a multipass GTAW technique is employed. The present paper reports the initial resultsof similar studies on ferritic GTA weldments in grain-refined 9Ni steel. Information is included on the preparation of the 9Ni steel and the weld filler metal, on the welding procedure, the microstructure of both the weld metal and the heat affected zone, and on impact toughness and fracture toughness testing at 77/sup 0/K and 4.2/sup 0/K. The results show that it is possible to weld grain-refined 9Ni steel with ferritic weld filler metal so as to retain good toughness at cryogenic temperatures. The results of this work may permit the utilization of retreated commercial grade 9Ni steel in structural applications within helium-cooled cryogenic devices where high strength and good toughness are required. (LCL)

  19. Intragranular ferrite nucleation in medium-carbon vanadium steels

    SciTech Connect

    Ishikawa, Fusao; Takahashi, Toshihiko ); Ochi, Tatsurou . Muroran R D Lab.)

    1994-05-01

    In this study, the mechanism of intragranular ferrite nucleation is investigated. It is found that intragranular ferrite idiomorphs'' nucleate at vanadium nitrides which precipitate at manganese sulfide particles during cooling in the austenite region. It is observed that intragranular ferrite has the Baker-Nutting orientation relationship with vanadium nitride which precipitated at manganese sulfide. According to classical nucleation theory, the proeutectoid ferrite nucleation rate depends on the following factors: (1) the driving free energy for ferrite nucleation, (2) the diffusivity of carbon atoms in austenite, and (3) the increase in the interfacial energy associated with ferrite nucleation. In the Baker-Nutting orientation relationship, the lattice mismatch across the habit planes is likely to be very small. Depleted zones of solute atoms such as vanadium are assumed to be formed in the austenite matrix around precipitates. The effect of the depleted zones on factors (1) and (2) is estimated thermodynamically and it is proved that those effects are negligibly small. Thus, the authors conclude that the most important factor in nucleation kinetics of intragranular ferrite is the formation of precipitates which can develop coherent, low energy interfaces with ferrite.

  20. Irradiation embrittlement of neutron-irradiated low activation ferritic steels

    NASA Astrophysics Data System (ADS)

    Kayano, H.; Kimura, A.; Narui, M.; Sasaki, Y.; Suzuki, Y.; Ohta, S.

    1988-07-01

    Effects of neutron irradiation and additions of small amounts of alloying elements on the ductile-brittle transition temperature (DBTT) of three different groups of ferritic steels were investigated by means of the Charpy impact test in order to gain an insight into the development of low-activation ferritic steels suitable for the nuclear fusion reactor. The groups of ferritic steels used in this study were (1) basic 0-5% Cr ferritic steels, (2) low-activation ferritic steels which are FeCrW steels with additions of small amounts of V, Mn, Ta, Ti, Zr, etc. and (3) FeCrMo, Nb or V ferritic steels for comparison. In Fe-0-15% Cr and FeCrMo steels, Fe-3-9% Cr steels showed minimum brittleness and provided good resistance against irradiation embrittlement. Investigations on the effects of additions of trace amounts of alloying elements on the fracture toughness of low-activation ferritic steels made clear the optimum amounts of each alloying element to obtain higher toughness and revealed that the 9Cr-2W-Ta-Ti-B ferritic steel showed the highest toughness. This may result from the refinement of crystal grains and improvement of quenching characteristics caused by the complex effect of Ti and B.

  1. Microstructure control for high strength 9Cr ferritic-martensitic steels

    SciTech Connect

    Tan, Lizhen; Hoelzer, David T; Busby, Jeremy T; Sokolov, Mikhail A; Klueh, Ronald L

    2012-01-01

    Ferritic-martensitic (F-M) steels with 9 wt.%Cr are important structural materials for use in advanced nuclear reactors. Alloying composition adjustment, guided by computational thermodynamics, and thermomechanical treatment (TMT) were employed to develop high strength 9Cr F-M steels. Samples of four heats with controlled compositions were subjected to normalization and tempering (N&T) and TMT, respectively. Their mechanical properties were assessed by Vickers hardness and tensile testing. Ta-alloying showed significant strengthening effect. The TMT samples showed strength superior to the N&T samples with similar ductility. All the samples showed greater strength than NF616, which was either comparable to or greater than the literature data of the PM2000 oxide-dispersion-strengthened (ODS) steel at temperatures up to 650 C without noticeable reduction in ductility. A variety of microstructural analyses together with computational thermodynamics provided rational interpretations on the strength enhancement. Creep tests are being initiated because the increased yield strength of the TMT samples is not able to deduce their long-term creep behavior.

  2. Effect of Process Parameters on Microstructure and Hardness of Oxide Dispersion Strengthened 18Cr Ferritic Steel

    NASA Astrophysics Data System (ADS)

    Nagini, M.; Vijay, R.; Rajulapati, Koteswararao V.; Rao, K. Bhanu Sankara; Ramakrishna, M.; Reddy, A. V.; Sundararajan, G.

    2016-08-01

    Pre-alloyed ferritic 18Cr steel (Fe-18Cr-2.3W-0.3Ti) powder was milled with and without nano-yttria in high-energy ball mill for varying times until steady-state is reached. The milled powders were consolidated by upset forging followed by hot extrusion. Microstructural changes were examined at all stages of processing (milling, upset forging, and extrusion). In milled powders, crystallite size decreases and hardness increases with increasing milling time reaching a steady-state beyond 5 hours. The size of Y2O3 particles in powders decreases with milling time and under steady-state milling conditions; the particles either dissolve in matrix or form atomic clusters. Upset forged sample consists of unrecrystallized grain structure with few pockets of fine recrystallized grains and dispersoids of 2 to 4 nm. In extruded and annealed rods, the particles are of cuboidal Y2Ti2O7 at all sizes and their size decreased from 15 nm to 5 nm along with significant increase in number density. The oxide particles in ODS6 are of cuboidal Y2Ti2O7 with diamond cubic crystal structure ( Fd bar{3} m) having a lattice parameter of 10.1 Å and are semicoherent with the matrix. The hardness values of extruded and annealed samples predicted by linear summation model compare well with measured values.

  3. Effect of Process Parameters on Microstructure and Hardness of Oxide Dispersion Strengthened 18Cr Ferritic Steel

    NASA Astrophysics Data System (ADS)

    Nagini, M.; Vijay, R.; Rajulapati, Koteswararao V.; Rao, K. Bhanu Sankara; Ramakrishna, M.; Reddy, A. V.; Sundararajan, G.

    2016-06-01

    Pre-alloyed ferritic 18Cr steel (Fe-18Cr-2.3W-0.3Ti) powder was milled with and without nano-yttria in high-energy ball mill for varying times until steady-state is reached. The milled powders were consolidated by upset forging followed by hot extrusion. Microstructural changes were examined at all stages of processing (milling, upset forging, and extrusion). In milled powders, crystallite size decreases and hardness increases with increasing milling time reaching a steady-state beyond 5 hours. The size of Y2O3 particles in powders decreases with milling time and under steady-state milling conditions; the particles either dissolve in matrix or form atomic clusters. Upset forged sample consists of unrecrystallized grain structure with few pockets of fine recrystallized grains and dispersoids of 2 to 4 nm. In extruded and annealed rods, the particles are of cuboidal Y2Ti2O7 at all sizes and their size decreased from 15 nm to 5 nm along with significant increase in number density. The oxide particles in ODS6 are of cuboidal Y2Ti2O7 with diamond cubic crystal structure (Fd bar{3} m) having a lattice parameter of 10.1 Å and are semicoherent with the matrix. The hardness values of extruded and annealed samples predicted by linear summation model compare well with measured values.

  4. Electrical transport behavior of nonstoichiometric magnesium-zinc ferrite

    SciTech Connect

    Ghatak, S.; Sinha, M.; Meikap, A.K.; Pradhan, S.K.

    2010-08-15

    This paper presents the direct current conductivity, alternate current conductivity and dielectric properties of nonstoichiometric magnesium-zinc ferrite below room temperature. The frequency exponent (s) of conductivity shows an anomalous temperature dependency. The magnitude of the temperature exponent (n) of dielectric permittivity strongly depends on frequency and its value decreases with increasing frequency. The grain boundary contribution is dominating over the grain contribution in conduction process and the temperature dependence of resistance due to grain and grain boundary contribution exhibits two activation regions. The ferrite shows positive alternating current magnetoconductivity. The solid state processing technique was used for the preparation of nanocrystalline ferrite powder from oxides of magnesium, zinc and iron. The X-ray diffraction methods were used in determining the structure and composition of obtained ferrite, while multimeter, impedance analyzer, liquid nitrogen cryostat and electromagnet were used in the study of conducting and dielectric properties of ferrite.

  5. Synthesis And Characterization Of Reduced Size Ferrite Reinforced Polymer Composites

    SciTech Connect

    Borah, Subasit; Bhattacharyya, Nidhi S.

    2008-04-24

    Small sized Co{sub 1-x}Ni{sub x}Fe{sub 2}O{sub 4} ferrite particles are synthesized by chemical route. The precursor materials are annealed at 400, 600 and 800 C. The crystallographic structure and phases of the samples are characterized by X-ray diffraction (XRD). The annealed ferrite samples crystallized into cubic spinel structure. Transmission Electron Microscopy (TEM) micrographs show that the average particle size of the samples are <20 nm. Particulate magneto-polymer composite materials are fabricated by reinforcing low density polyethylene (LDPE) matrix with the ferrite samples. The B-H loop study conducted at 10 kHz on the toroid shaped composite samples shows reduction in magnetic losses with decrease in size of the filler sample. Magnetic losses are detrimental for applications of ferrite at high powers. The reduction in magnetic loss shows a possible application of Co-Ni ferrites at high microwave power levels.

  6. Ferrites and Different Winding Types in Permanent Magnet Synchronous Motor

    NASA Astrophysics Data System (ADS)

    Sekerák, Peter; Hrabovcová, Valéria; Pyrhönen, Juha; Kalamen, Lukáš; Rafajdus, Pavol; Onufer, Matúš

    2012-05-01

    This paper deals with design of permanent magnet synchronous machines with ferrites. The ferrites became popular due to their low cost and cost increasing of NdFeB. The progress in ferrite properties in the last decade allows the use of ferrites in high power applications. Three models of ferrite motors are presented. It is shown that also the type of stator winding and the shape of the slot opening have an important effect on the PMSM properties. The first motor has a distributed winding, the second motor has concentrated, non-overlapping winding and open stator slots. The third motor has a concentrated non-overlapping winding and semi - open slots. All models are designed for the same output power and they do not have the same dimensions. The paper shows how important the design of an electric machine is for excellent motor properties or better to say how the motor properties can be improved by an appropriate design.

  7. Cobalt ferrite nanoparticles under high pressure

    SciTech Connect

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V.; Errandonea, D.

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  8. Helium entrapment in a nanostructured ferritic alloy

    SciTech Connect

    Edmondson, Philip D; Parish, Chad M; Zhang, Yanwen; Hallen, Dr Anders; Miller, Michael K

    2011-01-01

    The nanostructured ferritic alloy 14YWT has been irradiated with He ions to simulate accumulation of He during the service life of a nuclear reactor to test the hypothesis that the large surface area for nanoclusters is a preferential nucleation site for bubbles. Transmission electron microscopy and atom probe tomography showed that high number densities of He bubbles were formed on the surface of nanoclusters and Ti(C,N) precipitates, and along grain boundaries and dislocations. At higher fluences, facetted bubbles are formed and it is postulated that the lowest energy state configuration is the truncated rhombic dodecahedron.

  9. Soft ferrite cores characterization for integrated micro-inductors

    NASA Astrophysics Data System (ADS)

    Nguyen, Yen Mai; Bourrier, David; Charlot, Samuel; Valdez-Nava, Zarel; Bley, Vincent; Combettes, Céline; Lopez, Thomas; Laur, Jean-Pierre; Brunet, Magali

    2014-10-01

    Low-profile soft ferrite films constitute a competitive solution for the integration of micro-inductors on silicon in low-power medium frequency dc-dc conversion applications. The high resistivity of soft ferrites is indeed a major advantage for operating frequencies in the range of 5‒10 MHz. We have studied several soft ferrites, including commercial ferrite films and ferrites made in-house. Test inductors were fabricated at a wafer level using micro-machining and assembling techniques. The proposed process is based on a sintered ferrite core placed between thick electroplated copper windings. The low-profile ferrite cores of 1.2  ×  2.6  ×  0.1 mm3 were produced by two methods using green tape-cast films or ferrite powders. This article presents the magnetic characterization of the fabricated ferrite cores, cut and printed in a rectangular shape and sintered at different temperatures. Comparisons are made in order to find the best material for the core that can offer micro-inductors a high inductance in the range of 200-1000 nH at 6 MHz, and that generate the smallest losses. Thanks to a test inductor, it is demonstrated that with a commercial ferrite core, an inductance density of 215 nH mm-2 up to 6 MHz could be reached. Extracted losses at 6 MHz, under 10 mT are in the range of 0.7 to 2.5 W cm-3.

  10. Corrosion behavior of magnetic ferrite coating prepared by plasma spraying

    SciTech Connect

    Liu, Yi; Wei, Shicheng Tong, Hui; Tian, Haoliang; Liu, Ming; Xu, Binshi

    2014-12-15

    Graphical abstract: The saturation magnetization (M{sub s}) of the ferrite coating is 34.417 emu/g while the M{sub s} value of the ferrite powder is 71.916 emu/g. It can be seen that plasma spray process causes deterioration of the room temperature soft magnetic properties. - Highlights: • Spinel ferrite coatings have been prepared by plasma spraying. • The coating consists of nanocrystalline grains. • The saturation magnetization of the ferrite coating is 34.417 emu/g. • Corrosion behavior of the ferrite coating was examined in NaCl solution. - Abstract: In this study, spray dried spinel ferrite powders were deposited on the surface of mild steel substrate through plasma spraying. The structure and morphological studies on the ferrite coatings were carried out using X-ray diffraction, scanning electron microscope and Raman spectroscopy. It was showed that spray dried process was an effective method to prepare thermal spraying powders. The coating showed spinel structure with a second phase of LaFeO{sub 3}. The magnetic property of the ferrite samples were measured by vibrating sample magnetometer. The saturation magnetization (M{sub s}) of the ferrite coating was 34.417 emu/g. The corrosion behavior of coating samples was examined by electrochemical impedance spectroscopy. EIS diagrams showed three corrosion processes as the coating immersed in 3.5 wt.% NaCl solution. The results suggested that plasma spraying was a promising technology for the production of magnetic ferrite coatings.

  11. Continuation of Studies on Development of ODS Heat Exchanger Tubing

    SciTech Connect

    Lawrence Brown; David Workman; Bimal Kad; Gaylord Smith; Archie Robertson; Ian Wright

    2008-04-15

    The Department of Energy (DOE), National Energy Technology Center (NETL), has initiated a strategic plan for the development of advanced technologies needed to design and build fossil fuel plants with very high efficiency and environmental performance. These plants, referred to as 'Vision 21' and FutureGen programs by DOE, will produce electricity, chemicals, fuels, or a combination of these products, and possibly secondary products such as steam/heat for industrial use. MA956 is a prime candidate material being considered for a high temperature heat exchanger in the 'Vision 21' and FutureGen programs. This material is an oxide dispersion strengthened (ODS) alloy; however, there are some gaps in the data required to commit to the use of these alloys in a full-size plant. To fill the technology gaps for commercial production and use of the material for 'Advanced Power Generation Systems' this project has performed development activity to significant increase in circumferential strength of MA956 as compared to currently available material, investigated bonding technologies for bonding tube-to-tube joints through joining development, and performed tensile, creep and fire-side corrosion tests to validate the use and fabrication processes of MA956 to heat exchanger tubing applications. Development activities within this projected has demonstrated increased circumferential strength of MA956 tubes through flow form processing. Of the six fabrication technologies for bonding tube-to-tube joints, inertia friction welding (IFW) and flash butt welding (FBW) were identified as processes for joining MA956 tubes. Tensile, creep, and fire-side corrosion test data were generated for both base metal and weld joints. The data can be used for design of future systems employing MA956. Based upon the positive development activities, two test probes were designed and fabricated for field exposure testing at 1204 C ({approx}2200 F) flue gas. The probes contained tube portions with FBW

  12. Anomalous magnetic behaviour of zinc and chromium ferrites without any hyperfine splitting

    NASA Astrophysics Data System (ADS)

    Pandey, B.; Verma, H. C.

    2008-04-01

    Two groups of ferrite namely zinc ferrite and chromium ferrite were synthesized by citrate precursor route in the size range of 8 to 35 nm. We have studied the structural and magnetic behaviour of these ferrites using X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and Mössbauer spectroscopic techniques. Our studies show that the nanocrystalline ferrites interact with the hand magnet strongly and give large magnetization in the VSM measurement. The maximum magnetization in the samples sensitively depends on the particle size of synthesized ferrites. We observed as large as 28 Am2/kg of magnetization in the zinc ferrite nanoparticles while that in chromium ferrite is around 11 Am2/kg. In spite of the large magnetization in the zinc ferrite nanoparticles we did not observe any hyperfine splitting even down to 12 K of temperature. Similar behaviour is also observed for chromium ferrite down to 16 K.

  13. Phase transformation of strontium hexagonal ferrite

    NASA Astrophysics Data System (ADS)

    Bilovol, V.; Martínez-García, R.

    2015-11-01

    The phase transformation of strontium hexagonal ferrite (SrFe12O19) to magnetite (Fe3O4) as main phase and strontium carbonate (SrCO3) as secondary phase is reported here. SrFe12O19 powder was obtained by a heat treatment at 250 °C under controlled oxygen flow. It was observed that the phase transformation occurred when the SrFe12O19 ferrite was heated up to 625 °C in confinement conditions. This transformation took place by a combination of three factors: the presence of stresses in the crystal lattice of SrFe12O19 due to a low synthesis temperature, the reduction of Fe3+ to Fe2+ during the heating up to 625 °C, and the similarity of the coordination spheres of the iron atoms present in the S-block of SrFe12O19 and Fe3O4. X-ray diffraction analysis confirmed the existence of strain and crystal deformation in SrFe12O19 and the absence of them in the material after the phase transformation. Dispersive X-ray absorption spectroscopy and Fe57 Mössbauer spectroscopy provided evidences of the reduction of Fe3+ to Fe2+ in the SrFe12O19 crystal.

  14. A 30-GHz Hexagonal Ferrite Phase Shifter

    NASA Astrophysics Data System (ADS)

    Semenov, A. S.; Slavin, A. N.; Mantese, J. V.

    2005-03-01

    Highly-anisotropic hexaferrites, such as barium ferrite BaFe12O19 (BFO), are ideal for millimeter wave phase shifters due to a large ferromagnetic resonance frequency at low magnetic bias field H. It enables one to make millimeter-wave devices with compact magnetic systems. Here we discuss the design, fabrication and characterization of a BFO phase shifter. A microstrip line deposited on a ferrite substrate supports the propagation of electromagnetic wave, leading to a phase shift kb, where k is the wave number and b is the length of the microstrip line. As k is a function of the bias H, we obtain a differential phase shift with a change of H. A phase shifter consisting of a single crystal (7 x 7 x 0.5 mm^3) BFO and a 500 μm wide stripline was evaluated at 30 GHz. A differential phase shift of 30 deg. was measured for H=1.2 kOe. The measured value of the insertion loss was about 10 dB. -Work supported by a grant from the Delphi Automotive Corporation.

  15. Cast Stainless Steel Ferrite and Grain Structure

    SciTech Connect

    Ruud, Clayton O.; Ramuhalli, Pradeep; Meyer, Ryan M.; Mathews, Royce; Diaz, Aaron A.; Anderson, Michael T.

    2012-09-01

    In-service inspection requirements dictate that piping welds in the primary pressure boundary of light-water reactors be subject to a volumetric examination based on the rules contained within the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section XI. The purpose of the inspection is the reliable detection and accurate sizing of service-induced degradation and/or material flaws introduced during fabrication. The volumetric inspection is usually carried out using ultrasonic testing (UT) methods. However, the varied metallurgical macrostructures and microstructures of cast austenitic stainless steel piping and fittings, including statically cast stainless steel and centrifugally cast stainless steel (CCSS), introduce significant variations in the propagation and attenuation of ultrasonic energy. These variations complicate interpretation of the UT responses and may compromise the reliability of UT inspection. A review of the literature indicated that a correlation may exist between the microstructure and the delta ferrite content of the casting alloy. This paper discusses the results of a recent study where the goal was to determine if a correlation existed between measured and/or calculated ferrite content and grain structure in CCSS pipe.

  16. Advanced characterizations of austenitic oxide dispersion-strengthened (ODS) steels for high-temperature reactor applications

    NASA Astrophysics Data System (ADS)

    Miao, Yinbin

    Future advanced nuclear systems involve higher operation temperatures, intenser neutron flux, and more aggressive coolants, calling for structural materials with excellent performances in multiple aspects. Embedded with densely and dispersedly distributed oxide nanoparticles that are capable of not only pinning dislocations but also trapping radiation-induced defects, oxide dispersion-strengthened (ODS) steels provide excellence in mechanical strength, creep resistance, and radiation tolerance. In order to develop ODS steels with qualifications required by advanced nuclear applications, it is important to understand the fundamental mechanisms of the enhancement of ODS steels in mechanical properties. In this dissertation, a series of austenitic ODS stainless steels were investigated by coordinated state-of-the-art techniques. A series of different precipitate phases, including multiple Y-Ti-O, Y-Al-O, and Y-Ti-Hf-O complex oxides, were observed to form during mechanical alloying. Small precipitates are likely to have coherent or cubic-on-cubic orientation relationships with the matrix, allowing the dislocation to shear through. The Orowan looping mechanism is the dominant particle-dislocation interaction mode as the temperature is low, whereas the shearing mechanism and the Hirsch mechanism are also observed. Interactions between the particles and the dislocations result in the load-partitioning phenomenon. Smaller particles were found to have the stronger loading-partitioning effect. More importantly, the load-partitioning of large size particles are marginal at elevated temperatures, while the small size particles remain sustaining higher load, explaining the excellent high temperature mechanical performance of ODS steels.

  17. Simulations of ferrite-dielectric-wire composite negative index materials.

    PubMed

    Rachford, Frederic J; Armstead, Douglas N; Harris, Vincent G; Vittoria, Carmine

    2007-08-01

    We perform extensive finite difference time domain simulations of ferrite based negative index of refraction composites. A wire grid is employed to provide negative permittivity. The ferrite and wire grid interact to provide both negative and positive index of refraction transmission peaks in the vicinity of the ferrite resonance. Notwithstanding the extreme anisotropy in the index of refraction of the composite, negative refraction is seen at the composite air interface allowing the construction of a focusing concave lens with a magnetically tunable focal length. PMID:17930783

  18. Nickel hydroxide/cobalt-ferrite magnetic nanocatalyst for alcohol oxidation.

    PubMed

    Bhat, Pooja B; Inam, Fawad; Bhat, Badekai Ramachandra

    2014-08-11

    A magnetically separable, active nickel hydroxide (Brønsted base) coated nanocobalt ferrite catalyst has been developed for oxidation of alcohols. High surface area was achieved by tuning the particle size with surfactant. The surface area of 120.94 m2 g(-1) has been achieved for the coated nanocobalt ferrite. Improved catalytic activity and selectivity were obtained by synergistic effect of transition metal hydroxide (basic hydroxide) on nanocobalt ferrite. The nanocatalyst oxidizes primary and secondary alcohols efficiently (87%) to corresponding carbonyls in good yields. PMID:25075969

  19. Processing and microstructure characterisation of oxide dispersion strengthened Fe-14Cr-0.4Ti-0.25Y2O3 ferritic steels fabricated by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Zhang, Hongtao; Huang, Yina; Ning, Huanpo; Williams, Ceri A.; London, Andrew J.; Dawson, Karl; Hong, Zuliang; Gorley, Michael J.; Grovenor, Chris R. M.; Tatlock, Gordon J.; Roberts, Steve G.; Reece, Michael J.; Yan, Haixue; Grant, Patrick S.

    2015-09-01

    Ferritic steels strengthened with Ti-Y-O nanoclusters are leading candidates for fission and fusion reactor components. A Fe-14Cr-0.4Ti + 0.25Y2O3 (14YT) alloy was fabricated by mechanical alloying and subsequently consolidated by spark plasma sintering (SPS). The densification of the 14YT alloys significantly improved with an increase in the sintering temperature. Scanning electron microscopy and electron backscatter diffraction revealed that 14YT SPS-sintered at 1150 °C under 50 MPa for 5 min had a high density (99.6%), a random grain orientation and a bimodal grain size distribution (<500 nm and 1-20 μm). Synchrotron X-ray diffraction patterns showed bcc ferrite, Y2Ti2O7, FeO, and chromium carbides, while transmission electron microscopy and atom probe tomography showed uniformly dispersed Y2Ti2O7 nanoclusters of <5 nm diameter and number density of 1.04 × 1023 m-3. Due to the very much shorter consolidation times and lower pressures used in SPS compared with the more usual hot isostatic pressing routes, SPS is shown to be a cost-effective technique for oxide dispersion strengthened (ODS) alloy manufacturing with microstructural features consistent with the best-performing ODS alloys.

  20. Magnetooptical and crystalline properties of sputtered garnet ferrite film on spinel ferrite buffer layer

    NASA Astrophysics Data System (ADS)

    Furuya, Akinori; Sasaki, Ai-ichiro; Morimura, Hiroki; Kagami, Osamu; Tanabe, Takaya

    2016-09-01

    The purpose of this study is to provide garnet films for volumetric magnetic holography. Volumetric magnetic holography usually employs an easily obtainable short-wavelength laser (visible light, not infrared light) with a large diffraction intensity. Bi-substituted garnet ferrite with a large Faraday rotation is promising for volumetric magnetic holography applications in the visible light region. However, a garnet film without a deteriorated layer must be obtained because a deteriorated layer (minute polycrystalline grains containing an amorphous phase) is formed during the initial deposition on a glass substrate. In particular, the required magnetooptical properties have not been obtained in a thin garnet film (100 nm or less) after annealing (1 h, 700 °C, oxygen atmosphere). Therefore, there is a need for excellent garnet films with the required magnetooptical (MO) properties even if the films are thin. By using a spinel ferrite buffer layer for garnet film deposition, we could obtain a thin garnet film with excellent MO properties. We determined the effect of the initial buffer layer on the crystallinity of the deposited garnet films by observing the film cross section. In addition, we undertook a qualitative estimation of the influence of the crystallinity and optical properties of the garnet film on a glass substrate with a spinel ferrite buffer layer.

  1. Investigation of microstructure changes in ODS-EUROFER after hydrogen loading

    NASA Astrophysics Data System (ADS)

    Emelyanova, O. V.; Ganchenkova, M. G.; Malitskii, E.; Yagodzinskyy, Y. N.; Klimenkov, M.; Borodin, V. A.; Vladimirov, P. V.; Lindau, R.; Möslang, A.; Hänninen, H.

    2016-01-01

    The effect of hydrogen on the microstructure of mechanically tested ODS-EUROFER steel was investigated by means of transmission electron microscopy, thermal desorption spectroscopy, and atomistic simulations. The presence of yttrium oxide particles notably increases hydrogen uptake in ODS-EUROFER steel as compared to ODS-free EUROFER 97. Under tensile loading, hydrogen accumulation promotes the loss of cohesion at the oxide particle interfaces. First-principles molecular dynamics simulations indicate that hydrogen can be trapped at nanoparticle/matrix interface, creating OH-groups. The accumulation of hydrogen atoms at the oxide particle surface can be the reason for the observed hydrogen-induced oxide/matrix interface weakening and de-cohesion under the action of external tensile stress.

  2. Tensile and fracture toughness properties of the nanostructured oxide dispersion strengthened ferritic alloy 13Cr-1W-0.3Ti-0.3Y 2O 3

    NASA Astrophysics Data System (ADS)

    Eiselt, Ch. Ch.; Klimenkov, M.; Lindau, R.; Möslang, A.; Odette, G. R.; Yamamoto, T.; Gragg, D.

    2011-10-01

    The realization of fusion power as an attractive energy source requires advanced structural materials that can cope with ultra-severe thermo-mechanical loads and high neutron fluxes experienced by fusion power plant components, such as the first wall, divertor and blanket structures. Towards this end, two variants of a 13Cr-1W-0.3Ti-0.3Y 2O 3 reduced activation ferritic (RAF-) ODS steel were produced by ball milling phase blended Fe-13Cr-1W, 0.3Y 20 3 and 0.3Ti powders in both argon and hydrogen atmospheres. The milled powders were consolidated by hot isostatic pressing (HIP). The as-HIPed alloys were then hot rolled into 6 mm plates. Microstructural, tensile and fracture toughness characterization of the hot rolled alloys are summarized here and compared to results previously reported for the as-HIPed condition.

  3. Optimization of High Temperature Hoop Creep Response in ODS-Fe3Al Tubes

    SciTech Connect

    Kad, B.K.; Heatherington, J.H.; McKamey, C.; Wright, I.; Sikka, V.; Judkins, R.

    2003-04-22

    Oxide dispersion strengthened (ODS) Fe3Al alloys are currently being developed for heat-exchanger tubes for eventual use at operating temperatures of up to 1100 C in the power generation industry. The development challenges include (a) efforts to produce thin walled ODS-Fe3Al tubes, employing powder extrusion methodologies, with (b) adequate increased strength for service at operating temperatures to (c) mitigate creep failures by enhancing the as-processed grain size. A detailed and comprehensive research and development methodology is prescribed to produce ODS-Fe3Al thin walled tubes. Current single step extrusion consolidation methodologies typically yield 8ft. lengths of 1-3/8 inch diameter, 1/8 inch wall thickness ODS-Fe3Al tubes. The process parameters for such consolidation methodologies have been prescribed and evaluated as being routinely reproducible. Recrystallization treatments at 1200 C produce elongated grains (with their long axis parallel to the extrusion axis), typically 200-2000 {micro}m in diameter, and several millimeters long. The dispersion distribution is unaltered on a micro scale by recrystallization, but the high aspect ratio grain shape typically obtained limits grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloys requires an understanding and manipulating the factors that control grain alignment and recrystallization behavior. Current efforts are focused on examining the processing dependent longitudinal vs. transverse creep anisotropy, and exploring post-extrusion methods to improve hoop creep response in ODS-Fe3Al alloy tubes. In this report we examine the mechanisms of hoop creep failure and describe our efforts to improve creep performance via variations in thermal-mechanical treatments.

  4. Experimental study of the reactions of limonene with OH and OD radicals: kinetics and products.

    PubMed

    Braure, Tristan; Bedjanian, Yuri; Romanias, Manolis N; Morin, Julien; Riffault, Véronique; Tomas, Alexandre; Coddeville, Patrice

    2014-10-01

    The kinetics of the reactions of limonene with OH and OD radicals has been studied using a low-pressure flow tube reactor coupled with a quadrupole mass spectrometer: OH + C10H16 → products (1), OD + C10H16 → products (2). The rate constants of the title reactions were determined using four different approaches: either monitoring the kinetics of OH (OD) radicals or limonene consumption in excess of limonene or of the radicals, respectively (absolute method), and by the relative rate method using either the reaction OH (OD) + Br2 or OH (OD) + DMDS (dimethyl disulfide) as the reference one and following HOBr (DOBr) formation or DMDS and limonene consumption, respectively. As a result of the absolute and relative measurements, the overall rate coefficients, k1 = (3.0 ± 0.5) × 10(-11) exp((515 ± 50)/T) and k2 = (2.5 ± 0.6) × 10(-11) exp((575 ± 60)/T) cm(3) molecule(-1) s(-1), were determined at a pressure of 1 Torr of helium over the temperature ranges 220-360 and 233-353 K, respectively. k1 was found to be pressure independent over the range 0.5-5 Torr. There are two possible pathways for the reaction between OH (OD) and limonene: addition of the radical to one of the limonene double bonds (reactions 1a and 2a ) and abstraction of a hydrogen atom (reactions 1b and 2b ), resulting in the formation of H2O (HOD). Measurements of the HOD yield as a function of temperature led to the following branching ratio of the H atom abstraction channel: k2b/k2 = (0.07 ± 0.03) × exp((460 ± 140)/T) for T = (253-355) K. PMID:25211148

  5. Characterization of Irradiated Nanostructured Ferritic Steels

    SciTech Connect

    Bentley, James; Hoelzer, David T; Tanigawa, H.; Yamamoto, T.; Odette, George R.

    2007-01-01

    The past decade has seen the development of a new class of mechanically alloyed (MA) ferritic steels with outstanding mechanical properties that come, at least in part, from the presence of high concentrations (>10{sup 23} m{sup -3}) of Ti-, Y-, and O-enriched nanoclusters (NC). From the outset, there has been much interest in their potential use for applications to fission and proposed fusion reactors, not only because of their attractive high-temperature strength, but also because the presence of NC may result in a highly radiation-resistant material by efficiently trapping point defects to enhance recombination. Of special interest for fusion applications is the potential of NC to trap transmutation-produced He in high concentrations of small cavities, rather than in fewer but larger cavities that lead to greater radiation-induced swelling and other degraded properties.

  6. Ethanol sensor based on nanocrystallite cadmium ferrite

    SciTech Connect

    Gadkari, Ashok B.; Shinde, Tukaram J.; Vasambekar, Pramod N.

    2015-06-24

    The cadmium ferrite was synthesized by oxalate co-precipitation method. The crystal structure and surface morphology were examined by X-ray diffraction and SEM techniques, respectively. The nanocrystallite CdFe{sub 2}O{sub 4} sensor was tested for LPG, Cl{sub 2} and C{sub 2}H{sub 5}OH. The sensitivity was measured at various operating temperatures in the range of 100-400°C. The sensor shows highest sensitivity and selectivity to C{sub 2}H{sub 5}OH at 350°C. The response and recovery time was measured at operating temperature of 350°C. The sensor exhibits a lower response and recovery time for LPG and Cl{sub 2} as compared to ethanol.

  7. High strength ferritic alloy-D53

    DOEpatents

    Hagel, William C.; Smidt, Frederick A.; Korenko, Michael K.

    1977-01-01

    A high strength ferritic alloy is described having from about 0.2% to about 0.8% by weight nickel, from about 2.5% to about 3.6% by weight chromium, from about 2.5% to about 3.5% by weight molybdenum, from about 0.1% to about 0.5% by weight vanadium, from about 0.1% to about 0.5% by weight silicon, from about 0.1% to about 0.6% by weight manganese, from about 0.12% to about 0.20% by weight carbon, from about 0.02% to about 0.1% by weight boron, a maximum of about 0.05% by weight nitrogen, a maximum of about 0.02% by weight phosphorous, a maximum of about 0.02% by weight sulfur, and the balance iron.

  8. Initial Development in Joining of ODS Alloys Using Friction Stir Welding

    SciTech Connect

    Ren, Weiju; Feng, Zhili

    2007-08-01

    Solid-state welding of oxide-dispersion-strengthened (ODS) alloy MA956 sheets using friction stir welding (FSW) was investigated. Butt weld was successfully produced. The weld and base metals were characterized using optical microscopy, scanning electronic microscopy, transmission electronic microscopy, and energy dispersion x-ray spectrum. Microhardness mapping was also conducted over the weld region. Analyses indicate that the distribution of the strengthening oxides was preserved in the weld. Decrease in microhardness of the weld was observed but was insignificant. The preliminary results seem to confirm the envisioned feasibility of FSW application to ODS alloy joining. For application to Gen IV nuclear reactor heat exchanger, further investigation is suggested.

  9. Development of ODS FeCrAl alloys for accident-tolerant fuel cladding

    SciTech Connect

    Dryepondt, Sebastien N.; Hoelzer, David T.; Pint, Bruce A.; Unocic, Kinga A.

    2015-09-18

    FeCrAl alloys are prime candidates for accident-tolerant fuel cladding due to their excellent oxidation resistance up to 1400 C and good mechanical properties at intermediate temperature. Former commercial oxide dispersion strengthened (ODS) FeCrAl alloys such as PM2000 exhibit significantly better tensile strength than wrought FeCrAl alloys, which would alloy for the fabrication of a very thin (~250 m) ODS FeCrAl cladding and limit the neutronic penalty from the replacement of Zr-based alloys by Fe-based alloys. Several Fe-12-Cr-5Al ODS alloys where therefore fabricated by ball milling FeCrAl powders with Y2O3 and additional oxides such as TiO2 or ZrO2. The new Fe-12Cr-5Al ODS alloys showed excellent tensile strength up to 800 C but limited ductility. Good oxidation resistance in steam at 1200 and 1400 C was observed except for one ODS FeCrAl alloy containing Ti. Rolling trials were conducted at 300, 600 C and 800 C to simulate the fabrication of thin tube cladding and a plate thickness of ~0.6mm was reached before the formation of multiple edge cracks. Hardness measurements at different stages of the rolling process, before and after annealing for 1h at 1000 C, showed that a thinner plate thickness could likely be achieved by using a multi-step approach combining warm rolling and high temperature annealing. Finally, new Fe-10-12Cr-5.5-6Al-Z gas atomized powders have been purchased to fabricate the second generation of low-Cr ODS FeCrAl alloys. The main goals are to assess the effect of O, C, N and Zr contents on the ODS FeCrAl microstructure and mechanical properties, and to optimize the fabrication process to improve the ductility of the 2nd gen ODS FeCrAl while maintaining good mechanical strength and oxidation resistance.

  10. The photodissociation lifetimes of the OH and OD radicals in comets

    NASA Technical Reports Server (NTRS)

    Singh, P. D.; Van Dishoeck, E. F.; Dalgarno, A.

    1983-01-01

    The photodissociation rates of OH and OD molecules due to absorption of solar radiation in the X(2)Pi-A(2)Sigma(+) electronic transition are calculated to lie between 3.5 and 6.7 x 10 to the -6th/sec for OH for heliocentric velocities between -60 and +60 km/sec and at about 4.7 x 10 to the -7th/sec for OD at 1 AU from the sun. The corresponding lifetimes, which are upper bounds to the actual lifetimes, are generally consistent with the observational cometary data.

  11. Irradiation effects in oxide dispersion strengthened (ODS) Ni-base alloys for Gen. IV nuclear reactors

    NASA Astrophysics Data System (ADS)

    Oono, Naoko; Ukai, Shigeharu; Kondo, Sosuke; Hashitomi, Okinobu; Kimura, Akihiko

    2015-10-01

    Oxide particle dispersion strengthened (ODS) Ni-base alloys are irradiated by using simulation technique (Fe/He dual-ion irradiation) to investigate the reliability to Gen. IV high-temperature reactors. The fine oxide particles with less than 10 nm in average size and approximately 8.0 × 1022 m-3 in number density remained after 101 dpa irradiation. The tiny helium bubbles were inside grains, not at grain-boundaries; it is advantageous effect of oxide particles which trap the helium atoms at the particle-matrix interface. Ni-base ODS alloys demonstrated their great ability to overcome He embrittlement.

  12. Dynamic recrystallization of ferrite in interstitial free steel

    SciTech Connect

    Tsuji, N.; Matsubara, Y.; Saito, Y.

    1997-08-15

    The present study using IF steel confirmed that dynamic recrystallization can occur also in ferrite where it has been generally considered that recovery is an only restoration process during hot deformation. Although the occurrence of DRX has been clarified by microstructural observations and crystallographic determinations, stress-strain curves do not show obvious drop of stress which has been typically reported in the case of DRX of austenite. This result indicates that it is quite difficult to distinguish whether DRX occurs in ferrite only by stress-strain behavior. The noticeable feature of DRX of ferrite is inhomogeneity of recrystallization, i.e., some of the initial grains are hard to recrystallize. This is presumably due to orientation dependence of recrystallization, which is the essential feature of ferrite.

  13. New sintering process adjusts magnetic value of ferrite cores

    NASA Technical Reports Server (NTRS)

    Vinal, A. W.

    1964-01-01

    A two-phase sintering technique based on time and temperature permits reversible control of the coercive threshold of sintered ferrite cores. Threshold coercivity may be controlled over a substantial range of values by selective control of the cooling rate.

  14. Dielectric investigations of polycrystalline samarium bismuth ferrite ceramic

    SciTech Connect

    Palaimiene, E.; Macutkevic, J.; Banys, J.; Karpinsky, D. V.; Kholkin, A. L.

    2015-01-05

    Results of broadband dielectric investigations of samarium doped bismuth ferrite ceramics are presented in wide temperature range (20–800 K). At temperatures higher than 400 K, the dielectric properties of samarium bismuth ferrite ceramics are governed by Maxwell-Wagner relaxation and electrical conductivity. The DC conductivity increases and activation energy decreases with samarium concentration. In samarium doped bismuth ferrite, the ferroelectric phase transition temperature decreases with samarium concentration and finally no ferroelectric order is observed at x = 0.2. At lower temperatures, the dielectric properties of ferroelectric samarium doped bismuth ferrite are governed by ferroelectric domains dynamics. Ceramics with x = 0.2 exhibit the relaxor-like behaviour.

  15. Design of tough ferritic steels for cryogenic use

    SciTech Connect

    Morris, J.W. Jr.

    1985-10-01

    This paper describes the design of ferritic steels and weldments that combine strength and toughness at cryogenic temperatures. The alloy must have a ductile-brittle transition temperature below the intended service temperature and a high fracture toughness in the ductile mode. Its systematic design uses the microstructure-property relations that govern the transition temperature and fracture toughness to identify a suitable microstructure, and then employs the microstructure-processing relations that govern its thermal response to manipulate the microstructure into the appropriate form. The procedure is illustrated by describing the heat treatments, microstructures and properties of a variety of laboratory and commercial alloys, including conventional ''9Ni'' steel, the low-Ni and Fe-Mn ferritic steels that have been developed as an alternative to 9Ni, the 12Ni steels that are promising for use at 4K, and the welding procedures and ferritic filler metals that are useful for ferritic cryogenic steels.

  16. Ferrite core coupled slapper detonator apparatus and method

    DOEpatents

    Boberg, Ralph E.; Lee, Ronald S.; Weingart, Richard C.

    1989-01-01

    Method and apparatus are provided for coupling a temporally short electric power pulse from a thick flat-conductor power cable into a thin flat-conductor slapper detonator circuit. A first planar and generally circular loop is formed from an end portion of the power cable. A second planar and generally circular loop, of similar diameter, is formed from all or part of the slapper detonator circuit. The two loops are placed together, within a ferrite housing that provides a ferrite path that magnetically couples the two loops. Slapper detonator parts may be incorporated within the ferrite housing. The ferrite housing may be made vacuum and water-tight, with the addition of a hermetic ceramic seal, and provided with an enclosure for protecting the power cable and parts related thereto.

  17. Controlled ferrite content improves weldability of corrosion-resistant steel

    NASA Technical Reports Server (NTRS)

    Malin, C. O.

    1967-01-01

    Corrosion-resistant steel that adds restrictions on chemical composition to ensure sufficient ferrite content decreases the tendency of CRES to develop cracks during welding. The equations restricting composition are based on the Schaeffler constitution diagram.

  18. Sustainable synthesis of monodispersed spinel nano-ferrites

    EPA Science Inventory

    A sustainable approach for the synthesis of various monodispersed spinel ferrite nanoparticles has been developed that occurs at water-toluene interface under both conventional and microwave hydrothermal conditions. This general synthesis procedure utilizes readily available and ...

  19. Ferrite core coupled slapper detonator apparatus and method

    DOEpatents

    Boberg, R.E.; Lee, R.S.; Weingart, R.C.

    1989-08-01

    Method and apparatus are provided for coupling a temporally short electric power pulse from a thick flat-conductor power cable into a thin flat-conductor slapper detonator circuit. A first planar and generally circular loop is formed from an end portion of the power cable. A second planar and generally circular loop, of similar diameter, is formed from all or part of the slapper detonator circuit. The two loops are placed together, within a ferrite housing that provides a ferrite path that magnetically couples the two loops. Slapper detonator parts may be incorporated within the ferrite housing. The ferrite housing may be made vacuum and water-tight, with the addition of a hermetic ceramic seal, and provided with an enclosure for protecting the power cable and parts related thereto. 10 figs.

  20. MHD Effects of a Ferritic Wall on Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Hughes, Paul E.

    It has been recognized for some time that the very high fluence of fast (14.1MeV) neutrons produced by deuterium-tritium fusion will represent a major materials challenge for the development of next-generation fusion energy projects such as a fusion component test facility and demonstration fusion power reactor. The best-understood and most promising solutions presently available are a family of low-activation steels originally developed for use in fission reactors, but the ferromagnetic properties of these steels represent a danger to plasma confinement through enhancement of magnetohydrodynamic instabilities and increased susceptibility to error fields. At present, experimental research into the effects of ferromagnetic materials on MHD stability in toroidal geometry has been confined to demonstrating that it is still possible to operate an advanced tokamak in the presence of ferromagnetic components. In order to better quantify the effects of ferromagnetic materials on tokamak plasma stability, a new ferritic wall has been installated in the High Beta Tokamak---Extended Pulse (HBT-EP) device. The development, assembly, installation, and testing of this wall as a modular upgrade is described, and the effect of the wall on machine performance is characterized. Comparative studies of plasma dynamics with the ferritic wall close-fitting against similar plasmas with the ferritic wall retracted demonstrate substantial effects on plasma stability. Resonant magnetic perturbations (RMPs) are applied, demonstrating a 50% increase in n = 1 plasma response amplitude when the ferritic wall is near the plasma. Susceptibility of plasmas to disruption events increases by a factor of 2 or more with the ferritic wall inserted, as disruptions are observed earlier with greater frequency. Growth rates of external kink instabilities are observed to be twice as large in the presence of a close-fitting ferritic wall. Initial studies are made of the influence of mode rotation frequency

  1. Charpy impact test results for low-activation ferritic alloys

    SciTech Connect

    Cannon, N.S.; Hu, W.L.; Gelles, D.S.

    1987-05-01

    The objective of this work is to evaluate the shift of the ductile to brittle transition temperature (DBTT) and the reduction of the upper shelf energy (USE) due to neutron irradiation of low activation ferritic alloys. Six low activation ferritic alloys have been tested following irradiation at 365/sup 0/C to 10 dpa and compared with control specimens in order to assess the effect of irradiation on Charpy impact properties.

  2. DARHT-II Injector Transients and the Ferrite Damper

    SciTech Connect

    Waldron, Will; Reginato, Lou; Chow, Ken; Houck, Tim; Henestroza, Enrique; Yu, Simon; Kang, Michael; Briggs, Richard

    2006-08-04

    This report summarizes the transient response of the DARHT-II Injector and the design of the ferrite damper. Initial commissioning of the injector revealed a rise time excited 7.8 MHz oscillation on the diode voltage and stalk current leading to a 7.8 MHz modulation of the beam current, position, and energy. Commissioning also revealed that the use of the crowbar to decrease the voltage fall time excited a spectrum of radio frequency modes which caused concern that there might be significant transient RF electric field stresses imposed on the high voltage column insulators. Based on the experience of damping the induction cell RF modes with ferrite, the concept of a ferrite damper was developed to address the crowbar-excited oscillations as well as the rise-time-excited 7.8 MHz oscillations. After the Project decided to discontinue the use of the crowbar, further development of the concept focused exclusively on damping the oscillations excited by the rise time. The design was completed and the ferrite damper was installed in the DARHT-II Injector in February 2006. The organization of this report is as follows. The suite of injector diagnostics are described in Section 2. The data and modeling of the injector transients excited on the rise-time and also by the crowbar are discussed in Section 3; the objective is a concise summary of the present state of understanding. The design of the ferrite damper, and the small scale circuit simulations used to evaluate the ferrite material options and select the key design parameters like the cross sectional area and the optimum gap width, are presented in Section 4. The details of the mechanical design and the installation of the ferrite damper are covered in Section 5. A brief summary of the performance of the ferrite damper following its installation in the injector is presented in Section 6.

  3. On the Role of Alloy Composition and Sintering Parameters in the Bimodal Grain Size Distribution and Mechanical Properties of ODS Ferritic Steels

    NASA Astrophysics Data System (ADS)

    García-Junceda, Andrea; Campos, Mónica; García-Rodríguez, Nerea; Torralba, José Manuel

    2016-04-01

    A sintered 14Cr-5Al-3W oxide dispersion strengthened steel was produced by mechanical alloying and consolidated by field-assisted hot pressing. First, a nanostructured powder was developed thanks to the high-energy milling used for introducing 0.4Ti-0.25Y2O3-0.6ZrO2 into the prealloyed Fe-Cr-Al-W powder, and then the processed powders were consolidated under a low diffusive technique to better retain the microstructure inherited from milling. The effect of the addition of zirconia and of the pressure applied during sintering on the final bimodal grain microstructure and mechanical properties is assessed. Both parameters are responsible for the refinement of the microstructure by increasing the volume fraction of the ultrafine grains (0 to 400 nm), leading to an enhancement of the mechanical properties, such as the microhardness and tensile strength.

  4. Epitaxial single crystalline ferrite films for high frequency applications

    SciTech Connect

    Suzuki, Y.; Dover, R.B. van; Korenivski, V.; Werder, D.; Chen, C.H.; Felder, R.J.; Phillips, J.M.

    1996-11-01

    The successful growth of single crystal ferrites in thin film form is an important step towards their future incorporation into integrated circuits operating at microwave frequencies. The authors have successfully grown high quality single crystalline spinel ferrite thin films of (Mn,Zn)Fe{sub 2}O{sub 4} and CoFe{sub 2}O{sub 4} on (100) and (110) SrTiO{sub 3} and MgAl{sub 2}O{sub 4} at low temperature. These ferrite films are buffered with spinel structure layers that are paramagnetic at room temperature. In contrast to ferrite films grown directly on the substrates, ferrite films grown on buffered substrates exhibit excellent crystallinity and bulk saturation magnetization values, thus indicating the importance of lattice match and structural similarity between the film and the immediately underlying layer. X-ray, RBS, AFM and TEM analysis provide a consistent picture of the structural properties of these ferrite films. The authors then use this technique to grow exchange-coupled bilayers of single crystalline CoFe{sub 2}O{sub 4} and (Mn,Zn)Fe{sub 2}O{sub 4}. In these bilayers, they observe strong exchange coupling across the interface that is similar in strength to the exchange coupling in the individual layers.

  5. Exchange-spring mechanism of soft and hard ferrite nanocomposites

    SciTech Connect

    Manjura Hoque, S.; Srivastava, C.; Kumar, V.; Venkatesh, N.; Das, H.N.; Saha, D.K.; Chattopadhyay, K.

    2013-08-01

    Graphical abstract: - Highlights: • Exchange-spring behaviour of soft and hard ferrites was studied. • XRD patterns indicated soft and hard ferrites as fcc and hcp structure. • Hysteresis loops indicate wide difference in coercivity of soft and hard phases. • Nanocomposites produced convex hysteresis loop characteristic of single-phase. - Abstract: The paper reports exchange-spring soft and hard ferrite nanocomposites synthesized by chemical co-precipitation with or without the application of ultrasonic vibration. The composites contained BaFe{sub 12}O{sub 19} as the hard phase and CoFe{sub 2}O{sub 4}/MgFe{sub 2}O{sub 4} as the soft phase. X-ray diffraction patterns of the samples in the optimum calcined condition indicated the presence of soft ferrites as face-centred cubic (fcc) and hard ferrites as hexagonal close packed (hcp) structure respectively. Temperature dependence of magnetization in the range of 20–700 °C demonstrated distinct presence of soft and hard ferrites as magnetic phases which are characterized by wide difference in magnetic anisotropy and coercivity. Exchange-spring mechanism led these nanocomposite systems to exchange-coupled, which ultimately produced convex hysteresis loops characteristic of a single-phase permanent magnet. Fairly high value of coercivity and maximum energy product were observed for the samples in the optimum calcined conditions with a maximum applied field of 1600 kA/m (2 T)

  6. Ongoing Ferritic Wall Mode studies on HBT-EP

    NASA Astrophysics Data System (ADS)

    Hughes, P. E.; Mauel, M. E.; Levesque, J. P.; Navratil, G. A.

    2015-11-01

    Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective US component test facility and DEMO. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these experiments. Although the ferritic wall mode (FWM) was seen in a linear machine, ferritic steel was observed to be compatible with high-performance operation in JFT-2M. Using its high-resolution magnetic diagnostics and adjustable wall segments, HBT-EP now operates successfully with a high-permeability tiled ferritic first wall. Initial measurements showed the ferritic wall enhances the growth rate of the m/n = 3/1 kink mode. In this poster, we report results of our study of the evolution of naturally rotating modes, increased plasma response to phase-flip resonant magnetic perturbations (RMPs), and enhanced plasma disruptivity as the walls are adjusted from stainless wall to ferritic wall configuration. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  7. Preparation of high-permeability NiCuZn ferrite*

    PubMed Central

    Hu, Jun; Yan, Mi

    2005-01-01

    Appropriate addition of CuO/V2O5 and the reduction of the granularity of the raw materials particle decrease the sintering temperature of NiZn ferrite from 1200 °C to 930 °C. Furthermore, the magnetic properties of the NiZn ferrite prepared at low temperature of 930 °C is superior to that of the NiZn ferrite prepared by sintering at high temperature of 1200 °C because the microstructure of the NiZn ferrite sintered at 930 °C is more uniform and compact than that of the NiZn ferrite sintered at 1200 °C. The high permeability of 1700 and relative loss coefficient tanδ/μi of 9.0×10−6 at 100 kHz was achieved in the (Ni0.17Zn0.63Cu0.20)Fe1.915O4 ferrite. PMID:15909348

  8. Kinetics of Ferrite Recrystallization and Austenite Formation During Intercritical Annealing of the Cold-Rolled Ferrite/Martensite Duplex Structures

    NASA Astrophysics Data System (ADS)

    Mazaheri, Y.; Kermanpur, A.; Najafizadeh, A.; Kalashami, A. Ghatei

    2016-03-01

    Ultrafine-grained, dual-phase (UFG DP) steels were produced by a new route using an uncommon cold-rolling and subsequent intercritical annealing of ferrite/martensite duplex starting microstructures. The effects of processing parameters such as rolling reduction, intercritical annealing temperature, and time on the microstructural evaluations have been studied. UFG DP steels with an average grain size of about 1 to 2 μm were achieved by short intercritical annealing of the 80 pct cold-rolled duplex microstructures. The kinetics of ferrite recrystallization and austenite formation were studied based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model. The proposed model for describing the isothermal austenite formation kinetics was applied successfully to the nonisothermal conditions. It was found that complete recrystallization of ferrite before the austenite formation led to the formation of a large extent randomly distributed austenite in the ferrite matrix and a chain-networked structure.

  9. Differences in ODS formatting for HTML with Proc Print and Proc Report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While proc print is a terrific tool for data checking and data summary, proc report is similar to, but more powerful because it can do some basic calculations or statistics and data can be broken more effectively into manageable fields. The ODS procedure can produce HTML files from either procedure...

  10. The optical depth sensor (ODS) for column dust opacity measurements and cloud detection on martian atmosphere

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Foujols, T.

    2016-08-01

    A lightweight and sophisticated optical depth sensor (ODS) able to measure alternatively scattered flux at zenith and the sum of the direct flux and the scattered flux in blue and red has been developed to work in martian environment. The principal goals of ODS are to perform measurements of the daily mean dust opacity and to retrieve the altitude and optical depth of high altitude clouds at twilight, crucial parameters in the understanding of martian meteorology. The retrieval procedure of dust opacity is based on the use of radiative transfer simulations reproducing observed changes in the solar flux during the day as a function of 4 free parameters: dust opacity in blue and red, and effective radius and effective width of dust size distribution. The detection of clouds is undertaken by looking at the time variation of the color index (CI), defined as the ratio between red and blue ODS channels, at twilight. The retrieval of altitude and optical depth of clouds is carried out using a radiative transfer model in spherical geometry to simulate the CI time variation at twilight. Here the different retrieval procedures to analyze ODS signals, as well as the results obtained in different sensitivity analysis are presented and discussed.

  11. PROVIDING SCHEDULED-RELEASE WEB REPORTS THAT LOOK GOOD, AND ALMOST MAINTAIN THEMSELVES USING SAS ODS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Even a novice SAS® programmer with a little knowledge of HTML can create great Internet reports using ODS. With a few additional procedures, including some simple macro steps and a data _null_ or two, it is possible to produce highly customized output that practically manages itself. Programs can be...

  12. 46 CFR 280.3 - Standards governing award of an ODS agreement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Standards governing award of an ODS agreement. 280.3 Section 280.3 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION REGULATIONS AFFECTING SUBSIDIZED VESSELS AND OPERATORS LIMITATIONS ON THE AWARD AND PAYMENT OF OPERATING-DIFFERENTIAL SUBSIDY...

  13. odò: weed management issues in North American edamame

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite the fact that the United States is a global leader in commodity soybean production, most of the vegetable soybean (i.e. edamame or máodò) consumed in North America is imported from Asia. Interest in domestically grown edamame is on the rise among consumers; however, the U.S. vegetable proces...

  14. The optical depth sensor (ODS) for column dust opacity measurements and cloud detection on martian atmosphere

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Foujols, T.

    2016-05-01

    A lightweight and sophisticated optical depth sensor (ODS) able to measure alternatively scattered flux at zenith and the sum of the direct flux and the scattered flux in blue and red has been developed to work in martian environment. The principal goals of ODS are to perform measurements of the daily mean dust opacity and to retrieve the altitude and optical depth of high altitude clouds at twilight, crucial parameters in the understanding of martian meteorology. The retrieval procedure of dust opacity is based on the use of radiative transfer simulations reproducing observed changes in the solar flux during the day as a function of 4 free parameters: dust opacity in blue and red, and effective radius and effective width of dust size distribution. The detection of clouds is undertaken by looking at the time variation of the color index (CI), defined as the ratio between red and blue ODS channels, at twilight. The retrieval of altitude and optical depth of clouds is carried out using a radiative transfer model in spherical geometry to simulate the CI time variation at twilight. Here the different retrieval procedures to analyze ODS signals, as well as the results obtained in different sensitivity analysis are presented and discussed.

  15. Deep catalytic oxidative desulfurization (ODS) of dibenzothiophene (DBT) with oxalate-based deep eutectic solvents (DESs).

    PubMed

    Lü, Hongying; Li, Pengcheng; Deng, Changliang; Ren, Wanzhong; Wang, Shunan; Liu, Pan; Zhang, Han

    2015-07-01

    An oxalate-based DES with a tetrabutyl ammonium chloride and oxalate acid molar ratio of 1/2 (TBO1 : 2) exhibited high activity in oxidative desulfurization (ODS) of dibenzothiophene (DBT) under mild reaction conditions. It is potentially a promising and highly environmentally friendly approach for desulfurization of fuels. PMID:26051675

  16. 46 CFR 280.9 - Special rules for last year of ODS agreement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Special rules for last year of ODS agreement. 280.9 Section 280.9 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION REGULATIONS AFFECTING SUBSIDIZED VESSELS AND OPERATORS LIMITATIONS ON THE AWARD AND PAYMENT OF OPERATING-DIFFERENTIAL SUBSIDY...

  17. Advanced ODS FeCrAl alloys for accident-tolerant fuel cladding

    SciTech Connect

    Dryepondt, Sebastien N; Unocic, Kinga A; Hoelzer, David T; Pint, Bruce A

    2014-09-01

    ODS FeCrAl alloys are being developed with optimum composition and properties for accident tolerant fuel cladding. Two oxide dispersion strengthened (ODS) Fe-15Cr-5Al+Y2O3 alloys were fabricated by ball milling and extrusion of gas atomized metallic powder mixed with Y2O3 powder. To assess the impact of Mo on the alloy mechanical properties, one alloy contained 1%Mo. The hardness and tensile properties of the two alloys were close and higher than the values reported for fine grain PM2000 alloy. This is likely due to the combination of a very fine grain structure and the presence of nano oxide precipitates. The nano oxide dispersion was however not sufficient to prevent grain boundary sliding at 800 C and the creep properties of the alloys were similar or only slightly superior to fine grain PM2000 alloy. Both alloys formed a protective alumina scale at 1200 C in air and steam and the mass gain curves were similar to curves generated with 12Cr-5Al+Y2O3 (+Hf or Zr) ODS alloys fabricated for a different project. To estimate the maximum temperature limit of use for the two alloys in steam, ramp tests at a rate of 5 C/min were carried out in steam. Like other ODS alloys, the two alloys showed a significant increase of the mas gains at T~ 1380 C compared with ~1480 C for wrought alloys of similar composition. The beneficial effect of Yttrium for wrought FeCrAl does not seem effective for most ODS FeCrAl alloys. Characterization of the hardness of annealed specimens revealed that the microstructure of the two alloys was not stable above 1000 C. Concurrent radiation results suggested that Cr levels <15wt% are desirable and the creep and oxidation results from the 12Cr ODS alloys indicate that a lower Cr, high strength ODS alloy with a higher maximum use temperature could be achieved.

  18. Development of ferritic weldments for grain-refined ferritic steels for 4. 2K service

    SciTech Connect

    Kim, H.J.

    1982-11-01

    The weldability of grain-refined ferritic nickel steels designed for structural use in liquid helium was investigated. Plates of interstitial-free Fe-12Ni-0.25Ti alloy and carbon-containing 9 Ni steel were welded with 14 Ni ferritic fillers using a gas tungsten arc welding (GTAW) process with pure argon gas shielding. The ferritic weldments made have a strength closely matching those of the base plates without a significant loss in base metal toughness at temperatures as low as 4.2 K. The comparable toughness obtained in the welded region is attributed to three factors; the defect-free weldment, the chemical cleanliness of the GTAW weld deposit, and the in-process formation of an appropriate microstructure in the welded region. Special emphasis in this study was placed on changes in microstructures with respect to the characteristic of the weld thermal cycles and the effect of the resultant microstructures on low temperature toughness. In the heat-affected zone (HAZ) of multipass welded 9Ni steel, the retained (or precipitated) austenite is removed by the weld heat cycles but the sequential rapid heat cycles to successively lower peak temperatures associated with succeeding weld passes re-establish high toughness by sequentially refining the grain size and gettering carbon in the form of cementite precipitates. On the other hand, the high toughness in the HAZ of the 12Ni alloy and in the weld deposit is a direct consequence of repeated grain refinement through the overlapped austenitizing cycles and is not affected by the tempering cycles because of the carbon-free nature of these materials. 46 figures.

  19. Development of ferritic weldments for grain-refined ferritic steels for 4. 2K service

    SciTech Connect

    Kim, H.J.

    1982-01-01

    The weldability of grain-refined ferritic nickel steels designed for structural use in liquid helium was investigated. Plates of interstitial-free Fe-12Ni-0.25Ti alloy and carbon-containing 9Ni steel were welded with 14Ni ferritic fillers using a gas tungsten arc welding (GTAW) process with pure argon gas shielding. The ferritic weldments made have a strength closely matching those of the base plates without a significant loss in base metal toughness at temperatures as low as 4.2K. The comparable toughness obtained in the welded region is attributed to three factors; the defect-free weldment, the chemical cleanliness of the GTAW weld deposit, and the in-process formation of an appropriate microstructure in the welded region. Special emphasis in this study was placed on changes in microstructures with respect to the characteristic of the weld thermal cycles and the effect of the resultant microstructures on low temperature toughness. In the heat-affected zone (HAZ) of multipass welded 9Ni steel, the retained (or precipitated) austenite is removed by the weld heat cycles but the sequential rapid heat cycles to successively lower peak temperatures associated with succeeding weld passes re-establish high toughness by sequentially refining the grain size and gettering carbon in the form of cementite precipitates. On the other hand, the high toughness in the HAZ of the 12Ni alloy and in the weld deposit is a direct consequence of repeated grain refinement through the overlapped austenitizing cycles and is not affected by the tempering cycles because of the carbon-free nature of these materials.

  20. Lift-Off Performance of Ferrite Enhanced Generation Emats

    NASA Astrophysics Data System (ADS)

    Fan, Yichao; Dixon, Steve; Jian, Xiaoming

    2008-02-01

    Electromagnetic Acoustic Transducers (EMATs) are non-contact ultrasonic transducers capable of generating wide-band ultrasonic waves on electrically conductive and magnetostrictive samples. The lack of physical contact makes EMATs particularly suitable for online inspection applications, or situations where samples may be moving or hot. The generation efficiency of a given EMAT on a given sample is dependent on the "lift-off", which is the distance between the EMAT and the sample surface. Efficiency dramatically reducing with increased lift-off. This requirement to be in close proximity to the sample imposes a practical limit of operation and changes in lift-off due to phenomena such as sample vibration can have practical implications in certain NDE applications. This paper describes some results from experiments comparing the performance of a ferrite enhanced EMAT design to one of our `standard' EMATs, where we have substituted the permanent magnet from the standard EMAT with a suitable ferrite material. When the EMAT coil is placed in proximity to the ferrite, but not wrapped around the ferrite, the increase in the generated eddy current amplitude is significant, whilst the inductance or bandwidth of the EMAT is not significantly affected. Using a ferrite material eliminated eddy current losses in the permanent magnet, and also enhances the self-field generation mechanism, which generates a repulsive normal force on the sample surface. Direct experimental results show the ferrite enhanced EMAT generation efficiency can be higher at large stand-offs and is also less sensitive to lift-off variations. Although the example we describe here only applies to EMAT generation, there are situations where ferrite could be used to enhance detector efficiencies.

  1. Unraveling the Effect of Thermomechanical Treatment on the Dissolution of Delta Ferrite in Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Rezayat, Mohammad; Mirzadeh, Hamed; Namdar, Masih; Parsa, Mohammad Habibi

    2016-02-01

    Considering the detrimental effects of delta ferrite stringers in austenitic stainless steels and the industrial considerations regarding energy consumption, investigating, and optimizing the kinetics of delta ferrite removal is of vital importance. In the current study, a model alloy prone to the formation of austenite/delta ferrite dual phase microstructure was subjected to thermomechanical treatment using the wedge rolling test aiming to dissolve delta ferrite. The effect of introducing lattice defects and occurrence of dynamic recrystallization (DRX) were investigated. It was revealed that pipe diffusion is responsible for delta ferrite removal during thermomechanical process, whereas when the DRX is dominant, the kinetics of delta ferrite dissolution tends toward that of the static homogenization treatment for delta ferrite removal that is based on the lattice diffusion of Cr and Ni in austenite. It was concluded that the optimum condition for dissolution of delta ferrite can be defined by the highest rolling temperature and strain in which DRX is not pronounced.

  2. Synthesis of Novel Ferrite Based Recyclable Catalyst Used to Clean Dye and Emerging Contaminates from Water

    EPA Science Inventory

    Herein, we describe synthesis of novel palladium, copper, cobalt and vanadium ferrites. The ferrites were synthesized by combustion method using polyvinyl alcohol. The particles phases were confirmed using X-ray diffraction and sizes were determined using particle size analyzer. ...

  3. Development of advanced barium ferrite tape media

    NASA Astrophysics Data System (ADS)

    Shimizu, Osamu; Oyanagi, Masahito; Morooka, Atsushi; Mori, Masahiko; Kurihashi, Yuich; Tada, Toshio; Suzuki, Hiroyuki; Harasawa, Takeshi

    2016-02-01

    We developed an advanced particulate magnetic tape using fine barium ferrite (BaFe) particles for magnetic-tape storage systems. The new tape showed a signal-to-noise ratio (SNR) that was 3.5 dB higher than that of the commercially available BaFe tape used for the Linear Tape Open generation 6 tape-storage system, at a linear density of 300 kfci measured with a giant magnetoresistive head with a reader width of 0.45 μm. Such significant increase in SNR was achieved by reducing the magnetic particle volume from 1950 to 1350 nm3, while maintaining a sufficiently high thermal stability, improving the perpendicular squareness ratio from 0.66 to 0.83, and improving the surface roughness from 2.5 to 2.0 nm when measured by atomic force microscopy and from 2.4 to 0.9 nm when measured by optical interferometry. This paper describes the characteristics of the new BaFe particles and media, which are expected to be employed for future high-capacity linear-tape systems.

  4. A biosensor system using nickel ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, Prachi; Rathore, Deepshikha

    2016-05-01

    NiFe2O4 ferrite nanoparticles were synthesized by chemical co-precipitation method and the structural characteristics were investigated using X-ray diffraction technique, where single cubic phase formation of nanoparticles was confirmed. The average particle size of NiFe2O4 was found to be 4.9 nm. Nanoscale magnetic materials are an important source of labels for biosensing due to their strong magnetic properties which are not found in biological systems. This property of the material was exploited and the fabrication of the NiFe2O4 nanoparticle based biosensor was done in the form of a capacitor system, with NiFe2O4 as the dielectric material. The biosensor system was tested towards different biological materials with the help of electrochemical workstation and the same was analysed through Cole-Cole plot of NiFe2O4. The performance of the sensor was determined based on its sensitivity, response time and recovery time.

  5. Towards Radiation Tolerant Nanostructured Ferritic Alloys

    SciTech Connect

    Miller, Michael K; Hoelzer, David T; Russell, Kaye F

    2010-01-01

    The high temperature and irradiation response of a new class of nanostructured ferritic alloys have been investigated by atom probe tomography. These materials are candidate materials for use in the extreme environments that will be present in the next generation of power generating systems. Atom probe tomography has revealed that the yttria powder is forced into solid solution during the mechanical alloying process andsubsequently 2-nm-diameter Ti-, Y- and O-enriched nanoclusters are formedduring the extrusion process. These nanoclusters have been shown to be remarkably stable during isothermal annealing treatments up to 0.92 of the melting temperature and during proton irradiation up to 3 displacements per atom. No significant difference in sizes, compositions and number densities of the nanoclusters was also observed between the unirradiated and proton irradiated conditions. The grain boundaries were found to have high number densities of nanoclusters as well as chromium and tungsten segregation which pin the grain boundary to minimize creep and grain growth.

  6. Development of low activation Ferritic steels

    NASA Astrophysics Data System (ADS)

    Noda, T.; Abe, F.; Araki, H.; Okada, M.

    1986-11-01

    Fe-(2-15)%Cr-(0-4)%W-0.1%C and Fe-9%Cr-(0-l)%V-0.1%C steels were prepared on the basis of reduced activation of ferritic steels. Tempering characteristics of these alloys were studied as a preliminary evaluation of mechanical properties. Alloys except for 12-15%Cr, 9%Cr-4%W, and 9%Cr-1%V showed a single phase of martensite. Carbides which precipitated in as-tempered steels are M 23C 6, M 6C, and W 2C for Cr-W steels and M 23C 6 and V 4C 3 for Cr-V steels. The toughness of the alloys was examined with Charpy impact test. The minimum DBTT (ductile-brittle transition temperature) was observed at around 0.25 at% of W or V concentration for 9%Cr steels. 9%Cr-V steels were superior to commercial 9%Cr-2%Mo steel in the point of toughness. The order of alloying element with a low DBTT was V > Mo > W.

  7. Spinel cobalt ferrite by complexometric synthesis

    NASA Astrophysics Data System (ADS)

    Thang, Pham D.; Rijnders, Guus; Blank, Dave H. A.

    2005-09-01

    Magnetic fine particles of cobalt ferrite (CoFe 2O 4) have been synthesized using complexometric method in which ethylene diamine tetra acetic acid C 10H 16N 2O 8 (EDTA) acts as a complexing agent. The crystallographic structure, microstructure and magnetic properties of the synthesized powder were characterized by using X-ray diffraction (XRD), particle size analysis and vibrating sample magnetometry (VSM). The material crystallized in cubic spinel structure with lattice parameter of about 8.38 Å. Depending on the calcining temperature, the particle size of the powders varies in the range of hundreds of nanometers to tens of micrometers. A desired relative density above 95% of the theoretical value is obtained for the bulk sample after sintering. The calcined powders and sintered sample exhibit saturation magnetizations around 80 Am 2/kg which is expected for inverse CoFe 2O 4. With increasing calcining temperature the coercivity of these samples decreases. This simple synthesis route leads to a reproducible and stoichiometric material.

  8. Feedback controlled hybrid fast ferrite tuners

    SciTech Connect

    Remsen, D.B.; Phelps, D.A.; deGrassie, J.S.; Cary, W.P.; Pinsker, R.I.; Moeller, C.P.; Arnold, W.; Martin, S.; Pivit, E.

    1993-09-01

    A low power ANT-Bosch fast ferrite tuner (FFT) was successfully tested into (1) the lumped circuit equivalent of an antenna strap with dynamic plasma loading, and (2) a plasma loaded antenna strap in DIII-D. When the FFT accessible mismatch range was phase-shifted to encompass the plasma-induced variation in reflection coefficient, the 50 {Omega} source was matched (to within the desired 1.4 : 1 voltage standing wave ratio). The time required to achieve this match (i.e., the response time) was typically a few hundred milliseconds, mostly due to a relatively slow network analyzer-computer system. The response time for the active components of the FFT was 10 to 20 msec, or much faster than the present state-of-the-art for dynamic stub tuners. Future FFT tests are planned, that will utilize the DIII-D computer (capable of submillisecond feedback control), as well as several upgrades to the active control circuit, to produce a FFT feedback control system with a response time approaching 1 msec.

  9. Energy of domain walls in ferrite films

    NASA Astrophysics Data System (ADS)

    Gomez, M. E.; Prieto, P.; Mendoza, A.; Guzman, O.

    2007-03-01

    MnZn Ferrite films were deposited by RF sputtering on (001) single crystal MgO substrates. AFM images show an increment in grain size with the film thickness. Grains with diameter between φ ˜ 70 and 700 nm have been observed. The coercive field Hc as a function of the grain size reaches a maximum value of about 80 Oe for φc˜ 300 nm. The existence of a multidomain structure associated with a critical grain size was identified by Magneto-optical Kerr effect technique (MOKE). The transition of the one-domain regime to the two-domain regime was observed at a critical grain size of Dc˜ 530 nm. This value agree with values predicted previously. The Jiles-Atherton model (JAM) was used to discuss the experimental hysteresis loops. The k pinning parameter obtained from JAM shows a maximum value of k/μo = 67 Am^2 for grains with Lc˜ 529 nm. The total energy per unit area E was correlated with k and D. We found a simple phenomenological relationship given by E α kD; where D is the magnetic domain width.

  10. Must we use ferritic steel in TBM?

    SciTech Connect

    Salavy, Jean-Francois; Boccaccini, Lorenzo V.; Chaudhuri, Paritosh; Cho, Seungyon; Enoeda, Mikio; Giancarli, Luciano; Kurtz, Richard J.; Luo, Tian Y.; Rao, K. Bhanu Sankara; Wong, Clement

    2010-12-13

    Mock-ups of DEMO breeding blankets, called Test Blanket Modules (TBMs), inserted and tested in ITER in dedicated equatorial ports directly facing the plasma, are expected to provide the first experimental answers on the necessary performance of the corresponding DEMO breeding blankets. Several DEMO breeding blanket designs have been studied and assessed in the last 20 years. At present, after considering various coolant and breeder combinations, all the TBM concepts proposed by the seven ITER Parties use Reduced-Activation Ferritic/Martensitic (RAFM) steel as the structural material. In order to perform valuable tests in ITER, the TBMs are expected to use the same structural material as corresponding DEMO blankets. However, due to the fact that this family of steels is ferromagnetic, their presence in the ITER vacuum vessel will create perturbations of the ITER magnetic fields that could reduce the quality of the plasma confinement during H-mode. As a consequence, a legitimate question has been raised on the necessity of using RAFM steel for TBMs structural material in ITER. By giving a short description of the main TBM testing objectives in ITER and assessing the consequences of not using such a material, this paper gives a comprehensive answer to this question. According to the working group author of the study, the use of RAFM steel as structural material for TBM is judged mandatory.