Science.gov

Sample records for 123-group neutron cross-section

  1. (Fast neutron cross section measurements)

    SciTech Connect

    Not Available

    1991-01-01

    In the 14 MeV Neutron Laboratory, we have continued the development of a facility that is now the only one of its kind in operation in the United States. We have refined the klystron bunching system described in last year's report to the point that 1.2 nanosecond pulses have been directly measured. We have tested the pulse shape discrimination capability of our primary NE 213 neutron detector. We have converted the RF sweeper section of the beamline to a frequency of 1 MHz to replace the function of the high voltage pulser described in last year's report which proved to be difficult to maintain and unreliable in its operation. We have also overcome several other significant experimental difficulties, including a major problem with a vacuum leak in the main accelerator column. We have completed additional testing to prove the remainder of the generation and measurement systems, but overcoming some of these experimental difficulties has delayed the start of actual data taking. We are now in a position to begin our first series of ring geometry elastic scattering measurements, and these will be underway before the end of the current contract year. As part of our longer term planning, we are continuing the conceptual analysis of several schemes to improve the intensity of our current pulsed beam. These include the provision of a duoplasmatron ion source and/or the provision of preacceleration bunching. Additional details are given later in this report. A series of measurements were carried out at the Tandem Dynamatron Facility involving the irradiation of a series of yttrium foils and the determination of activation cross sections using absolute counting techniques. The experimental work has been completed, and final analysis of the cross section data will be completed within several months.

  2. [Fast neutron cross section measurements

    SciTech Connect

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are clean'' and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its data production'' phase.

  3. Neutron capture cross section of 136 Xe

    NASA Astrophysics Data System (ADS)

    Daugherty, Sean; Albert, Joshua; Johnson, Tessa; O'Conner, Thomasina; Kaufman, Lisa

    2015-04-01

    136 Xe is an important 0 νββ candidate, studied in experiments such as EXO-200 and, in the future, nEXO. These experiments require a precise study of neutron capture for their background models. The neutron capture cross section of 136 Xe has been measured at the Detector for Advanced Capture Experiments (DANCE) at the Los Alamos Neutron Science Center. A neutron beam ranging from thermal energy to 100 keV was incident on a gas cell filled with isotopically pure 136 Xe . We will discuss the measurement of partial neutron capture cross sections at thermal and first neutron resonance energies along with corresponding capture gamma cascades.

  4. Undergraduate Measurements of Neutron Cross Sections

    NASA Astrophysics Data System (ADS)

    Hicks, S. F.; Vanhoy, J. R.; French, A. J.; Santonil, Z. C.; Crider, B. P.; Peters, E. E.; McEllistrem, M. T.; Prados-Estévez, F. M.; Ross, T. J.; Yates, S. W.

    Undergraduate students at the University of Dallas have investigated basic properties of nuclei through γ-ray and neutron spectroscopy following neutron scattering. The former has been used primarily for nuclear structure investigations, while the latter has been used to measure neutron scattering cross sections important for fission reactor applications. A series of (n,n') and (n,n'γ) measurements have been made on 54Fe and 56Fe to determine neutron cross sections for scattering to excited levels in these nuclei. The former provides the cross sections directly and the latter are used to deduce inelastic neutron scattering cross sections by measuring the γ-ray production cross sections to states not easily resolved in neutron spectroscopy. All measurements have been completed at the University of Kentucky Accelerator Laboratory using a 7-MV Model CN Van de Graaff accelerator, along with the neutron production and neutron and γ-ray detection systems located there. Students participate in accelerator operation, experimental setup, data acquisition, and data analyses. An overview of the research program and student contributions is presented.

  5. Covariance Evaluation Methodology for Neutron Cross Sections

    SciTech Connect

    Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.

    2008-09-01

    We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.

  6. Precise neutron inelastic cross section measurements

    SciTech Connect

    Negret, Alexandru

    2012-11-20

    The design of a new generation of nuclear reactors requires the development of a very precise neutron cross section database. Ongoing experiments performed at dedicated facilities aim to the measurement of such cross sections with an unprecedented uncertainty of the order of 5% or even smaller. We give an overview of such a facility: the Gamma Array for Inelastic Neutron Scattering (GAINS) installed at the GELINA neutron source of IRMM, Belgium. Some of the most challenging difficulties of the experimental approach are emphasized and recent results are shown.

  7. International Evaluation of Neutron Cross Section Standards

    NASA Astrophysics Data System (ADS)

    Carlson, A. D.; Pronyaev, V. G.; Smith, D. L.; Larson, N. M.; Chen, Zhenpeng; Hale, G. M.; Hambsch, F.-J.; Gai, E. V.; Oh, Soo-Youl; Badikov, S. A.; Kawano, T.; Hofmann, H. M.; Vonach, H.; Tagesen, S.

    2009-12-01

    Neutron cross section standards are the basis for the determination of most neutron cross sections. They are used for both measurements and evaluations of neutron cross sections. Not many cross sections can be obtained absolutely - most cross sections are measured relative to the cross section standards and converted using evaluations of the standards. The previous complete evaluation of the neutron cross section standards was finished in 1987 and disseminated as the NEANDC/INDC and ENDF/B-VI standards. R-matrix model fits for the light elements and non-model least-squares fits for all the cross sections in the evaluation were the basis of the combined fits for all of the data. Some important reactions and constants are not standards, but they assist greatly in the determination of the standard cross sections and reduce their uncertainties - these data were also included in the combined fits. The largest experimental database used in the evaluation was prepared by Poenitz and included about 400 sets of experimental data with covariance matrices of uncertainties that account for all cross-energy, cross-reaction and cross-material correlations. For the evaluation GMA, a least-squares code developed by Poenitz, was used to fit all types of cross sections (absolute and shape), their ratios, spectrum-averaged cross sections and thermal constants in one full analysis. But, the uncertainties derived in this manner, and especially those obtained in the R-matrix model fits, have been judged to be too low and unrealistic. These uncertainties were substantially increased prior to their release in the recommended data files of 1987. Modified percentage uncertainties were reassigned by the United States Cross Section Evaluation Working Group's Standards Subcommittee for a wide range of energies, and no covariance (or correlation) matrices were supplied at that time. The need to re-evaluate the cross section standards is based on the appearance of a significant amount of precise

  8. Neutron Capture Cross Sections for Radioactive Nuclei

    NASA Astrophysics Data System (ADS)

    Tonchev, Anton; Bedrossian, Peter; Escher, Jutta; Scielzo, Nicholas

    2015-10-01

    Accurate neutron-capture cross sections for radioactive nuclei near or far away from the line of beta stability are crucial for understanding the nucleosynthesis of heavy elements. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining observables that can constrain Hauser-Feshbach statistical model calculations of capture cross sections. Specifically, we will consider photon scattering, transfer reactions, and beta-delayed neutron emission. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes far from stability will be discussed. This work was performed under the auspices of US DOE by LLNL under contract DE-AC52-07NA27344. Funding was provided via the LDRD-ERD-069 project.

  9. New Parameterization of Neutron Absorption Cross Sections

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.; Wilson, John W.; Cucinotta, Francis A.

    1997-01-01

    Recent parameterization of absorption cross sections for any system of charged ion collisions, including proton-nucleus collisions, is extended for neutron-nucleus collisions valid from approx. 1 MeV to a few GeV, thus providing a comprehensive picture of absorption cross sections for any system of collision pairs (charged or uncharged). The parameters are associated with the physics of the problem. At lower energies, optical potential at the surface is important, and the Pauli operator plays an increasingly important role at intermediate energies. The agreement between the calculated and experimental data is better than earlier published results.

  10. Cross sections of neutron-induced reactions

    SciTech Connect

    Mukhopadhyay, Tapan; Lahiri, Joydev; Basu, D. N.

    2010-10-15

    We study the properties of the neutron-nucleus total and reaction cross sections for several nuclei. We have applied an analytical model, the nuclear Ramsauer model, justified it from the nuclear reaction theory approach, and extracted the values of 12 parameters used in the model. The given parametrization has an advantage as phenomenological optical model potentials are limited up to 150-200 MeV. The present model provides good estimates of the total cross sections for several nuclei particularly at high energies.

  11. Neutron Capture Cross Section of 239Pu

    NASA Astrophysics Data System (ADS)

    Mosby, S.; Arnold, C.; Bredeweg, T. A.; Couture, A.; Jandel, M.; O'Donnell, J. M.; Rusev, G.; Ullmann, J. L.; Chyzh, A.; Henderson, R.; Kwan, E.; Wu, C. Y.

    2014-09-01

    The 239Pu(n,γ) cross section has been measured over the energy range 10 eV - 10 keV using the Detector for Advanced Neutron Capture Experiments (DANCE) as part of a campaign to produce precision (n,γ) measurements on 239Pu in the keV region. Fission coincidences were measured with a PPAC and used to characterize the prompt fission γ-ray spectrum in this region. The resulting spectra will be used to better characterize the fission component of another experiment with a thicker target to extend the (n,γ) cross section measurement well into the keV region.

  12. Neutron cross section standards and instrumentation

    NASA Astrophysics Data System (ADS)

    1992-09-01

    This report from the National Institute of Standards and Technology contains a summary of the accomplishments of the Neutron Cross Section Standards and Instrumentation Project during the second year of a three-year interagency agreement. This program includes a broad range of data measurements and evaluations. An emphasis has been focused on the (sup 10)B cross sections where serious discrepancies in the nuclear data base remain. In particular, there are important problems with the interpretation of the helium gas production associated with diagnostic measurements of interest in nuclear technology. The enhanced use of this isotope for medical treatment is also of significance. New measurements of neutron reaction cross sections for (sup 10)B are in progress in collaboration with scientists at the Oak Ridge National Laboratory. New experiments are in progress on the important dosimetry standards (sup 237)Np(n,f) and (sup 239)Pu(n,f) below 1 MeV neutron energy. In addition, new measurements of charged-particle production in basic biological elements for medical applications are underway. Further measurements are planned or in progress in collaborations which include fission fragment energy and angular distributions, and neutron energy spectra and angular distributions from neutron-induced fission. Also measurements of angular distributions of neutrons from scattering on protons, and determinations of capture cross section of gold are planned for a later time. Data evaluation will shift to include a unified international effort to motivate new measurements and evaluations. In response to the requests of the measurement community, NIST is beginning the formation of a national depository for fissionable isotope mass standards. This action will preserve for future measurements the valuable and irreplaceable critical samples whose masses and composition have been carefully determined and documented over the past 30 years of the nuclear program.

  13. Neutron removal cross section as a measure of neutron skin

    SciTech Connect

    Fang, D. Q.; Ma, Y. G.; Cai, X. Z.; Tian, W. D.; Wang, H. W.

    2010-04-15

    We study the relation between neutron removal cross section (sigma{sub -N}) and neutron skin thickness for finite neutron-rich nuclei using the statistical abrasion ablation model. Different sizes of neutron skin are obtained by adjusting the diffuseness parameter of neutrons in the Fermi distribution. It is demonstrated that there is a good linear correlation between sigma{sub -N} and the neutron skin thickness for neutron-rich nuclei. Further analysis suggests that the relative increase of neutron removal cross section could be used as a quantitative measure for neutron skin thickness in neutron-rich nuclei.

  14. Neutronic Cross Section Calculations on Fluorine Nucleus

    NASA Astrophysics Data System (ADS)

    Kara, A.; Tel, E.

    2013-06-01

    Certain light nuclei such as Lithium (Li), Beryllium (Be), Fluorine (F) (which are known as FLİBE) and its molten salt compounds (LiF, BeF2 and NaF) can serve as a coolant which can be used at high temperatures without reaching a high vapor pressure. These molten salt compounds are also a good neutron moderator. In this study, cross sections of neutron induced reactions have been calculated for fluorine target nucleus. The new calculations on the excitation functions of 19F( n, 2n), 19F( n, p), 19F( n, xn), 19F( n, xp) have been made. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve the full exciton model and the cascade exciton model. The equilibrium effects are calculated according to the Weisskopf-Ewing model. Also in the present work, the ( n, 2n) and ( n, p) reaction cross sections have calculated by using evaluated empirical formulas developed by Tel et al. at 14-15 MeV energy. The multiple pre-equilibrium mean free path constant from internal transition have been investigated for 19F nucleus. The obtained results have been discussed and compared with the available experimental data.

  15. Actinide Targets for Neutron Cross Section Measurements

    SciTech Connect

    John D. Baker; Christopher A. McGrath

    2006-10-01

    The Advanced Fuel Cycle Initiative (AFCI) and the Generation IV Reactor Initiative have demonstrated a lack of detailed neutron cross-sections for certain "minor" actinides, those other than the most common (235U, 238U, and 239Pu). For some closed-fuel-cycle reactor designs more than 50% of reactivity will, at some point, be derived from "minor" actinides that currently have poorly known or in some cases not measured (n,?) and (n,f) cross sections. A program of measurements under AFCI has begun to correct this. One of the initial hurdles has been to produce well-characterized, highly isotopically enriched, and chemically pure actinide targets on thin backings. Using a combination of resurrected techniques and new developments, we have made a series of targets including highly enriched 239Pu, 240Pu, and 242Pu. Thus far, we have electrodeposited these actinide targets. In the future, we plan to study reductive distillation to achieve homogeneous, adherent targets on thin metal foils and polymer backings. As we move forward, separated isotopes become scarcer, and safety concerns become greater. The chemical purification and electodeposition techniques will be described.

  16. APPARATUS FOR MEASURING TOTAL NEUTRON CROSS SECTIONS

    DOEpatents

    Cranberg, L.

    1959-10-13

    An apparatus is described for measuring high-resolution total neutron cross sections at high counting rate in the range above 50-kev neutron energy. The pulsed-beam time-of-flight technique is used to identify the neutrons of interest which are produced in the target of an electrostatic accelerator. Energy modulation of the accelerator . makes it possible to make observations at 100 energy points simultaneously. 761O An apparatus is described for monitoring the proton resonance of a liquid which is particulariy useful in the continuous purity analysis of heavy water. A hollow shell with parallel sides defines a meander chamber positioned within a uniform magnetic fieid. The liquid passes through an inlet at the outer edge of the chamber and through a spiral channel to the central region of the chamber where an outlet tube extends into the chamber perpendicular to the magnetic field. The radiofrequency energy for the monitor is coupled to a coil positioned coaxially with the outlet tube at its entrance point within the chamber. The improvement lies in the compact mechanical arrangement of the monitor unit whereby the liquid under analysis is subjected to the same magnetic field in the storage and sensing areas, and the entire unit is shielded from external electrostatic influences.

  17. [Fast neutron cross section measurements]. Progress report

    SciTech Connect

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are ``clean`` and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its ``data production`` phase.

  18. Radiative neutron capture cross sections on 176Lu at DANCE

    NASA Astrophysics Data System (ADS)

    Roig, O.; Jandel, M.; Méot, V.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.

    2016-03-01

    The cross section of the neutron capture reaction 176Lu(n ,γ ) has been measured for a wide incident neutron energy range with the Detector for Advanced Neutron Capture Experiments at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be (1912 ±132 ) b for one of the Lu natural isotopes, 176Lu. The resonance part was measured and compared to the Mughabghab's atlas using the R -matrix code, sammy. At higher neutron energies the measured cross sections are compared to ENDF/B-VII.1, JEFF-3.2, and BRC evaluated nuclear data. The Maxwellian averaged cross sections in a stellar plasma for thermal energies between 5 keV and 100 keV were extracted using these data.

  19. Actinide neutron-induced fission cross section measurements at LANSCE

    SciTech Connect

    Tovesson, Fredrik K; Laptev, Alexander B; Hill, Tony S

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications in a wide energy range from sub-thermal energies up to 200 MeV. A parallel-plate ionization chamber are used to measure fission cross sections ratios relative to the {sup 235}U standard while incident neutron energies are determined using the time-of-flight method. Recent measurements include the {sup 233,238}U, {sup 239-242}Pu and {sup 243}Am neutron-induced fission cross sections. Obtained data are presented in comparison with ex isting evaluations and previous data.

  20. Accurate universal parameterization of absorption cross sections II--neutron absorption cross sections

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.

    1997-01-01

    A recent parameterization (here after referred as paper I, Ref. [4]) of absorption cross sections for any system of charged ions collisions including proton -nucleus collisions, is extended for neutron-nucleus collisions valid from approximately 1 MeV to a few GeV, thus providing a comprehensive picture of absorption cross sections for any system of collision pair (charged and/or uncharged). The parameters are associated with the physics of the problem. At lower energies, the optical potential at the surface is important and the Pauli operator plays an increasingly important role at intermediate energies. The agreement between the calculated and experimental data is better than earlier published results.

  1. Studies of 54,56Fe Neutron Scattering Cross Sections

    NASA Astrophysics Data System (ADS)

    Hicks, S. F.; Vanhoy, J. R.; French, A. J.; Henderson, S. L.; Howard, T. J.; Pecha, R. L.; Santonil, Z. C.; Crider, B. P.; Liu, S.; McEllistrem, M. T.; Peters, E. E.; Prados-Estévez, F. M.; Ross, T. J.; Yates, S. W.

    2015-05-01

    Elastic and inelastic neutron scattering differential cross sections and γ-ray production cross sections have been measured on 54,56Fe at several incident energies in the fast neutron region between 1.5 and 4.7 MeV. All measurements were completed at the University of Kentucky Accelerator Laboratory (UKAL) using a 7-MV Model CN Van de Graaff accelerator, along with the neutron production and neutron and γ-ray detection systems located there. The facilities at UKAL allow the investigation of both elastic and inelastic scattering with nearly mono-energetic incident neutrons. Time-of-flight techniques were used to detect the scattered neutrons for the differential cross section measurements. The measured cross sections are important for fission reactor applications and also for testing global model calculations such as those found at ENDF, since describing both the elastic and inelastic scattering is important for determining the direct and compound components of the scattering mechanism. The γ-ray production cross sections are used to determine cross sections to unresolved levels in the neutron scattering experiments. Results from our measurements and comparisons to model calculations are presented.

  2. Neutron capture cross section standards for BNL 325, Fourth Edition

    SciTech Connect

    Holden, N.E.

    1981-01-01

    This report evaluates the experimental data and recommends values for the thermal neutron cross sections and resonance integrals for the neutron capture reactions: /sup 55/Mn(n,..gamma..), /sup 59/Co(n,..gamma..) and /sup 197/Au(n,..gamma..). The failure of lithium and boron as standards due to the natural variation of the absorption cross sections of these elements is discussed. The Westcott convention, which describes the neutron spectrum as a thermal Maxwellian distribution with an epithermal component, is also discussed.

  3. Lanl Neutron-Induced Fission Cross Section Measurement Program

    NASA Astrophysics Data System (ADS)

    Laptev, A. B.; Tovesson, F.; Hill, T. S.

    2014-09-01

    A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). Combining measurements at two LANSCE facilities, the Lujan Center and the Weapons Neutron Research facility (WNR), cover neutron energies over 10 orders of magnitude: from sub-thermal up to 200 MeV. A parallel-plate fission ionization chamber was used as a fission fragment detector. The 235U(n,f) standard was used as the reference. Fission cross sections have been measured for multiple actinides. The new data presented here completes the suite of long-lived Uranium isotopes that were investigated with this experimental approach. The cross section data are presented in comparison with existing evaluations and previous measurements.

  4. Application of simple ramsauer model to neutron total cross sections

    SciTech Connect

    Bauer, R.W.; Anderson, J.D.; Grimes, S.M.; Madsen, V.A.

    1997-04-29

    The simple nuclear Ramsauer model has been used successfully to fit neutron cross sections for three decades, but has not been widely used because the foundations of the model seem to be so unrealistic. We have shown that the Glauber calculations with the inclusion of refraction and optical model calculations essentially validate this simple model for neutron total cross sections in the neutron energy range of 5-50 MeV. This model yields a simple formula for parameterizing the energy dependence of the neutron cross section. We have applied the model to nuclei ranging from vanadium to bismuth. With the addition of a single parameter, we can improve these fits to less than 1.5%.

  5. Measurement of the NP Elastic Cross Section by Neutron Transmission

    NASA Astrophysics Data System (ADS)

    Daub, Brian; Kovash, Michael; Henzl, Vladimir; Shoniyozov, Khayrullo

    2010-11-01

    There are very few previous measurements of the cross section for neutron-proton elastic scattering at energies between 200 and 500 keV. To improve this situation, we used a pulsed proton beam from the Van de Graaff accelerator at the University of Kentucky to produce 200-800 keV neutrons via the ^7Li(p,n)^7Be reaction. We determined the total n-p elastic cross section by measuring the transmission of the neutron beam in samples of CH2 and carbon, using a BC501 liquid scintillator. The cross section obtained by taking ratios between normalized sample-in and sample-out yields is independent of both detector efficiency and dead time.

  6. Neutron capture cross section of {sup 241}Am

    SciTech Connect

    Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Kawano, T.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Parker, W. E.; Wu, C. Y.; Becker, J. A.

    2008-09-15

    The neutron capture cross section of {sup 241}Am for incident neutrons from 0.02 eV to 320 keV has been measured with the detector for advanced neutron capture experiments (DANCE) at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be 665{+-}33 b. Our result is in good agreement with other recent measurements. Resonance parameters for E{sub n}<12 eV were obtained using an R-matrix fit to the measured cross section. The results are compared with values from the ENDF/B-VII.0, Mughabghab, JENDL-3.3, and JEFF-3.1 evaluations. {gamma}{sub n} neutron widths for the first three resonances are systematically larger by 5-15% than the ENDF/B-VII.0 values. The resonance integral above 0.5 eV was determined to be 1553{+-}7 b. Cross sections in the resolved and unresolved energy regions above 12 eV were calculated using the Hauser-Feshbach theory incorporating the width-fluctuation correction of Moldauer. The calculated results agree well with the measured data, and the extracted averaged resonance parameters in the unresolved resonance region are consistent with those for the resolved resonances.

  7. ACTIV87: Fast Neutron Activation Cross Section File

    Energy Science and Technology Software Center (ESTSC)

    1993-08-01

    4. HISTORICAL BACKGROUND AND INFORMATION ACTIV87 is a compilation of fast neutron induced activation reaction cross-sections. The compilation covers energies from threshold to 20 MeV and is based on evaluated data taken from other evaluated data libraries and individual evaluations. The majority of these evaluations were performed by using available experimental data. The aforementioned available experimental data were used in the selection of needed parameters for theoretical computations and for normalizing the results of suchmore » computations. Theoretical calculations were also used for interpolation and extrapolation of experimental cross-section data. All of the evaluated data curves were compared with experimental data that had been reported over the four year period preceding 1987. Only those cross-sections not in contradiction with experimental data that was current in 1987 were retained in the activation file, ACTIV87. In cases of several conflicting evaluations, that evaluation was chosen which best corresponded to the experimental data. A few evaluated curves were renormalized in accordance with the results of the latest precision measurements. 5. APPLICATION OF THE DATA 6. SOURCE AND SCOPE OF DATA The following libraries and individual files of evaluated neutron cross-section data were used for the selection of the activation cross-sections: the BOSPOR Library, the Activation File of the Evaluated Nuclear Data Library, the Evaluated Neutron Data File (ENDF/B-V) Activation File, the International Reactor Dosimetry File (IRDF-82), and individual evaluations carried out under various IAEA research contracts. The file of selected reactions contains 206 evaluated cross-section curves of the (n,2n), (n,p) and (n,a) reactions which lead to radioactive products and may be used in many practical applications of neutron activation analysis. Some competing activation reactions, usually with low cross-section values, are given for completeness.« less

  8. Measurement of the 242Pu neutron capture cross section

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Chyzh, A.; Dance Collaboration

    2015-10-01

    Precision (n,f) and (n, γ) cross sections are important for the network calculations of the radiochemical diagnostic chain for the U.S. DOE's Stockpile Stewardship Program. 242Pu(n, γ) cross section is relevant to the network calculations of Pu and Am. Additionally, new reactor concepts have catalyzed considerable interest in the measurement of improved cross sections for neutron-induced reactions on key actinides. To date, little or no experimental data has been reported on 242Pu(n, γ) for incident neutron energy below 50 keV. A new measurement of the 242Pu(n, γ) reaction was performed with the DANCE together with an improved PPAC for fission-fragment detection at LANSCE during FY14. The relative scale of the 242Pu(n, γ) cross section spans four orders of magnitude for incident neutron energies from thermal to ~ 30 keV. The absolute scale of the 242Pu(n, γ) cross section is set according to the measured 239Pu(n,f) resonance at 7.8 eV; the target was spiked with 239Pu for this measurement. The absolute 242Pu(n, γ) neutron capture cross section is ~ 30% higher than the cross section reported in ENDF for the 2.7 eV resonance. Latest results to be reported. Funded by U.S. DOE Contract No. DE-AC52-07NA27344 (LLNL) and DE-AC52-06NA25396 (LANL). U.S. DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development. Isotopes (ORNL).

  9. Evaluation of the /sup 238/U neutron total cross section

    SciTech Connect

    Smith, A.; Poenitz, W.P.; Howerton, R.J.

    1982-12-01

    Experimental energy-averaged neutron total cross sections of /sup 238/U were evaluated from 0.044 to 20.0 MeV using regorous numerical methods. The evaluated results are presented together with the associated uncertainties and correlation matrix. They indicate that this energy-averaged neutron total cross section is known to better than 1% over wide energy regions. There are somwewhat larger uncertainties at low energies (e.g., less than or equal to 0.2 MeV), near 8 MeV and above 15 MeV. The present evaluation is compard with values given in ENDF/B-V.

  10. Neutrino Cross-Section Measurements at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Stancu, Ion

    2008-02-01

    In this paper we discuss the proposal to build a neutrino facility at the recently-completed Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL). This facility can host an extensive, long-term program to study neutrino-nucleus cross-sections in the range of interest for nuclear astrophysics and nuclear theory.

  11. Neutrino Cross-Section Measurements at the Spallation Neutron Source

    SciTech Connect

    Stancu, Ion

    2008-02-21

    In this paper we discuss the proposal to build a neutrino facility at the recently-completed Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL). This facility can host an extensive, long-term program to study neutrino-nucleus cross-sections in the range of interest for nuclear astrophysics and nuclear theory.

  12. Neutron Capture Cross Sections of 236U and 234U

    NASA Astrophysics Data System (ADS)

    Rundberg, R. S.; Bredeweg, T. A.; Bond, E. M.; Haight, R. C.; Hunt, L. F.; Kronenberg, A.; O'Donnell, J. M.; Schwantes, J. M.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.

    2006-03-01

    Accurate neutron capture cross sections of the actinide elements at neutron energies up to 1 MeV are needed to better interpret archived nuclear test data, for post-detonation nuclear attribution, and the Advanced Fuel Cycle Initiative. The Detector for Advance Neutron Capture Experiments, DANCE, has unique capabilities that allow the differentiation of capture gamma rays from fission gamma rays and background gamma rays from scattered neutrons captured by barium isotopes in the barium fluoride scintillators. The DANCE array has a high granularity, 160 scintillators, high efficiency, and nearly 4-π solid angle. Through the use of cuts in cluster multiplicity and calorimetric energy the capture gamma-rays are differentiated from other sources of gamma rays. The preliminary results for the capture cross sections of 236U are in agreement with the ENDF/B-VI evaluation. The preliminary results for 234U lower are than ENDF/B-VI evaluation and are closer to older evaluations.

  13. Neutron Capture Cross Sections of 236U and 234U

    SciTech Connect

    Rundberg, R. S.; Bredeweg, T. A.; Bond, E. M.; Haight, R. C.; Hunt, L. F.; O'Donnell, J. M.; Schwantes, J. M.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Kronenberg, A.

    2006-03-13

    Accurate neutron capture cross sections of the actinide elements at neutron energies up to 1 MeV are needed to better interpret archived nuclear test data, for post-detonation nuclear attribution, and the Advanced Fuel Cycle Initiative. The Detector for Advance Neutron Capture Experiments, DANCE, has unique capabilities that allow the differentiation of capture gamma rays from fission gamma rays and background gamma rays from scattered neutrons captured by barium isotopes in the barium fluoride scintillators. The DANCE array has a high granularity, 160 scintillators, high efficiency, and nearly 4-{pi} solid angle. Through the use of cuts in cluster multiplicity and calorimetric energy the capture gamma-rays are differentiated from other sources of gamma rays. The preliminary results for the capture cross sections of 236U are in agreement with the ENDF/B-VI evaluation. The preliminary results for 234U lower are than ENDF/B-VI evaluation and are closer to older evaluations.

  14. Stellar neutron capture cross sections of the Nd isotopes

    SciTech Connect

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Kazakov, L.; Reffo, G.

    1998-01-01

    The neutron capture cross sections of {sup 142}Nd, {sup 143}Nd, {sup 144}Nd, {sup 145}Nd, {sup 146}Nd, and {sup 148}Nd have been measured in the energy range from 3 to 225 keV at the Karlsruhe 3.75 MV Van de Graaff accelerator. Neutrons were produced via the {sup 7}Li(p,n){sup 7}Be reaction by bombarding metallic Li targets with a pulsed proton beam. Capture events were registered with the Karlsruhe 4{pi} Barium Fluoride Detector. The cross sections were determined relative to the gold standard. The experiment was difficult due to the small cross sections of the even isotopes at or near the magic neutron number N=82, and also since the isotopic enrichment of some samples was comparably low. The necessary corrections for capture of scattered neutrons and for isotopic impurities could be determined reliably thanks to the high efficiency and the spectroscopic quality of the BaF{sub 2} detector, resulting in a consistent set of (n,{gamma}) cross sections for the six stable neodymium isotopes involved in the s process with typical uncertainties of 1.5{endash}2{percent}. From these data, Maxwellian averaged cross sections were calculated between kT=10 and 100 keV. The astrophysical implications of these results were investigated in an s-process analysis, which deals with the role of the s-only isotope {sup 142}Nd for the N{sub s}{l_angle}{sigma}{r_angle} systematics near the magic neutron number N=82, the decomposition of the Nd abundances into the respective r-, s-, and p-process components, and the interpretation of isotopic anomalies in meteoritic material. {copyright} {ital 1998} {ital The American Physical Society}

  15. Thermal Neutron Capture Cross Sections of the PalladiumIsotopes

    SciTech Connect

    Firestone, R.B.; Krticka, M.; McNabb, D.P.; Sleaford, B.; Agvaanluvsan, U.; Belgya, T.; Revay, Zs.

    2006-07-17

    Precise gamma-ray thermal neutron capture cross sectionshave been measured at the Budapest Reactor for all elements withZ=1-83,92 except for He and Pm. These measurements and additional datafrom the literature been compiled to generate the Evaluated Gamma-rayActivation File (EGAF), which is disseminated by LBNL and the IAEA. Thesedata are nearly complete for most isotopes with Z<20 so the totalradiative thermal neutron capture cross sections can be determineddirectly from the decay scheme. For light isotopes agreement with therecommended values is generally satisfactory although large discrepanciesexist for 11B, 12,13C, 15N, 28,30Si, 34S, 37Cl, and 40,41K. Neutroncapture decay data for heavier isotopes are typically incomplete due tothe contribution of unresolved continuum transitions so only partialradiative thermal neutron capture cross sections can be determined. Thecontribution of the continuum to theneutron capture decay scheme arisesfrom a large number of unresolved levels and transitions and can becalculated by assuming that the fluctuations in level densities andtransition probabilities are statistical. We have calculated thecontinuum contribution to neutron capture decay for the palladiumisotopes with the Monte Carlo code DICEBOX. These calculations werenormalized to the experimental cross sections deexciting low excitationlevels to determine the total radiative thermal neutron capture crosssection. The resulting palladium cross sections values were determinedwith a precision comparable to the recommended values even when only onegamma-ray cross section was measured. The calculated and experimentallevel feedings could also be compared to determine spin and parityassignments for low-lying levels.

  16. Thermal neutron capture cross sections of the potassium isotopes

    NASA Astrophysics Data System (ADS)

    Firestone, R. B.; Krtička, M.; Révay, Zs.; Szentmiklosi, L.; Belgya, T.

    2013-02-01

    Precise thermal neutron capture γ-ray cross sections σγ for 39,40,41K were measured on a natural potassium target with the guided neutron beam at the Budapest Reactor. The cross sections were internally standardized using a stoichiometric KCl target with well-known 35Cl(n,γ) γ-ray cross sections [Révay and Molnár, Radiochimica ActaRAACAP0033-823010.1524/ract.91.6.361.20027 91, 361 (2003); Molnár, Révay, and Belgya, Nucl. Instrum. Meth. Phys. Res. BNIMBEU0168-583X10.1016/S0168-583X(03)01529-5 213, 32 (2004)]. These data were combined with γ-ray intensities from von Egidy [von Egidy, Daniel, Hungerford, Schmidt, Lieb, Krusche, Kerr, Barreau, Borner, Brissot , J. Phys. G. Nucl. Phys.JPHGBM0305-461610.1088/0305-4616/10/2/013 10, 221 (1984)] and Krusche [Krusche, Lieb, Ziegler, Daniel, von Egidy, Rascher, Barreau, Borner, and Warner, Nucl. Phys. ANUPABL0375-947410.1016/0375-9474(84)90506-2 417, 231 (1984); Krusche, Winter, Lieb, Hungerford, Schmidt, von Egidy, Scheerer, Kerr, and Borner, Nucl. Phys. ANUPABL0375-947410.1016/0375-9474(85)90429-4 439, 219 (1985)] to generate nearly complete capture γ-ray level schemes. Total radiative neutron cross sections were deduced from the total γ-ray cross section feeding the ground state, σ0=Σσγ(GS) after correction for unobserved statistical γ-ray feeding from levels near the neutron capture energy. The corrections were performed with Monte Carlo simulations of the potassium thermal neutron capture decay schemes using the computer code dicebox where the simulated populations of low-lying levels are normalized to the measured cross section depopulating those levels. Comparisons of the simulated and experimental level feeding intensities have led to proposed new spins and parities for selected levels in the potassium isotopes where direct reactions are not a significant contribution. We determined the total radiative neutron cross sections σ0(39K)=2.28±0.04 b, σ0(40K)=90±7 b, and σ0(41K)=1.62±0.03 b from the

  17. Improved Actinide Neutron Capture Cross Sections Using Accelerator Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bauder, W.; Pardo, R. C.; Kondev, F. G.; Kondrashev, S.; Nair, C.; Nusair, O.; Palchan, T.; Scott, R.; Seweryniak, D.; Vondrasek, R.; Collon, P.; Paul, M.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Maddock, T.; Imel, G.

    2014-09-01

    The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are developing a technique to inject solid material into the ECR with laser ablation. With laser ablation, we can better control material injection and potentially increase efficiency in the ECR, thus creating less contamination in the source and reducing cross talk. I will present work on the laser ablation system and preliminary results from our AMS measurements. The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are

  18. Fast-neutron scattering cross sections of elemental zirconium

    SciTech Connect

    Smith, A.B.; Guenther, P.T.

    1982-12-01

    Differential neturon-elastic-scattering cross sections of elemental zirconium are measured from 1.5 to 4.0 MeV at intervals of less than or equal to 200 keV. Inelastic-neutron-scattering cross sections corresponding to the excitation of levels at observed energies of: 914 +- 25, 1476 +- 37, 1787 +- 23, 2101 +- 26, 2221 +- 17, 2363 +- 14, 2791 +- 15 and 3101 +- 25 keV are determined. The experimental results are interpreted in terms of the optical-statistical model and are compared with corresponding quantities given in ENDF/B-V.

  19. Stellar neutron capture cross sections of the tin isotopes

    SciTech Connect

    Wisshak, K.; Voss, F.; Theis, C.; Kaeppeler, F.; Guber, K.; Kazakov, L.; Kornilov, N.; Reffo, G.

    1996-09-01

    The neutron capture cross sections of {sup 114}Sn, {sup 115}Sn, {sup 116}Sn, {sup 117}Sn, {sup 118}Sn, and {sup 120}Sn were measured in the energy range from 3 to 225 keV at the Karlsruhe 3.75 MV Van de Graaff accelerator. Neutrons were produced via the {sup 7}Li({ital p},{ital n}){sup 7}Be reaction using a pulsed proton beam. Capture events were registered with the Karlsruhe 4{pi} barium fluoride detector. The experiment was complicated by the small ({ital n},{gamma}) cross sections of the proton magic tin isotopes and by the comparably low enrichment of the rare isotopes {sup 114}Sn and {sup 115}Sn. Despite significant corrections for capture of scattered neutrons and for isotopic impurities, the high efficiency and the spectroscopic quality of the BaF{sub 2} detector allowed the determination of the cross-section ratios with overall uncertainties of 1{endash}2{percent}, five times smaller compared to existing data. Based on these results, Maxwellian averaged ({ital n},{gamma}) cross sections were calculated for thermal energies between {ital kT}=10 and 100 keV. These data are used for a discussion of the solar tin abundance and for an improved determination of the isotopic {ital s}- and {ital r}-process components. {copyright} {ital 1996 The American Physical Society.}

  20. Stellar neutron capture cross sections of the Lu isotopes

    SciTech Connect

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Kazakov, L.

    2006-01-15

    The neutron capture cross sections of {sup 175}Lu and {sup 176}Lu have been measured in the energy range 3-225 keV at the Karlsruhe 3.7 MV Van de Graaff accelerator. Neutrons were produced via the {sup 7}Li(p,n){sup 7}Be reaction by bombarding metallic Li targets with a pulsed proton beam, and capture events were registered with the Karlsruhe 4{pi} barium fluoride detector. The cross sections were determined relative to the gold standard using isotopically enriched as well as natural lutetium oxide samples. Overall uncertainties of {approx}1% could be achieved in the final cross section ratios to the gold standard, about a factor of 5 smaller than in previous works. Maxwellian averaged neutron capture cross sections were calculated for thermal energies between kT = 8 and 100 keV. These values are systematically larger by {approx}7% than those reported in recent evaluations. These results are of crucial importance for the assessment of the s-process branchings at A 175/176.

  1. Measurement of Neutron Capture Cross Sections of Selenium Isotopes

    NASA Astrophysics Data System (ADS)

    Dearmon, Howard D.; Krane, Kenneth S.

    2011-10-01

    There have been numerous measurements of the neutron capture cross sections of the stable Se isotopes, most dating from at least 40 years ago. The various results for individual isotopes are often in poor agreement with one another, but as yet there has been no attempt at a systematic measurement of the capture cross sections leading to all seven radioisotopes formed from capture by natural Se, which range in halflife from 17 s to 120 d. Using cadmium-shielded and unshielded irradiations of natural Se in various irradiation sites in OSU's TRIGA reactor, we have determined the thermal cross sections and resonance integrals for captures leading to ^75,77m,79m,81g,81m,83g,83mSe.

  2. Accurate Development of Thermal Neutron Scattering Cross Section Libraries

    SciTech Connect

    Hawari, Ayman; Dunn, Michael

    2014-06-10

    The objective of this project is to develop a holistic (fundamental and accurate) approach for generating thermal neutron scattering cross section libraries for a collection of important enutron moderators and reflectors. The primary components of this approach are the physcial accuracy and completeness of the generated data libraries. Consequently, for the first time, thermal neutron scattering cross section data libraries will be generated that are based on accurate theoretical models, that are carefully benchmarked against experimental and computational data, and that contain complete covariance information that can be used in propagating the data uncertainties through the various components of the nuclear design and execution process. To achieve this objective, computational and experimental investigations will be performed on a carefully selected subset of materials that play a key role in all stages of the nuclear fuel cycle.

  3. Fast-neutron scattering cross sections of elemental silver

    SciTech Connect

    Smith, A.B.; Guenther, P.T.

    1982-05-01

    Differential neutron elastic- and inelastic-scattering cross sections of elemental silver are measured from 1.5 to 4.0 MeV at intervals of less than or equal to 200 keV and at 10 to 20 scattering angles distributed between 20 and 160/sup 0/. Inelastically-scattered neutron groups are observed corresponding to the excitation of levels at; 328 +- 13, 419 +- 50, 748 +- 25, 908 +- 26, 1150 +- 38, 1286 +- 25, 1507 +- 20, 1623 +- 30, 1835 +- 20 and 1944 +- 26 keV. The experimental results are used to derive an optical-statistical model that provides a good description of the observed cross sections. The measured values are compared with corresponding quantities given in ENDF/B-V.

  4. Overview of recent U235 neutron cross section evaluation work

    SciTech Connect

    Lubitz, C.

    1998-10-01

    This report is an overview (through 1997) of the U235 neutron cross section evaluation work at Oak Ridge National Laboratory (ORNL), AEA Technology (Harwell) and Lockheed Martin Corp.-Schenectady (LMS), which has influenced, or appeared in, ENDF/B-VI through Release 5. The discussion is restricted to the thermal and resolved resonance regions, apart from some questions about the unresolved region which still need investigation. The important role which benchmark testing has played will be touched on.

  5. Neutron cross section standards and instrumentation. Annual report

    SciTech Connect

    Wasson, O.A.

    1993-07-01

    The objective of this interagency program is to provide accurate neutron interaction measurements for the US Department of Energy nuclear programs which include waste disposal, fusion, safeguards, defense, fission, and personnel protection. These measurements are also useful to other energy programs which indirectly use the unique properties of the neutron for diagnostic and analytical purposes. The work includes the measurement of reference cross sections and related neutron data employing unique facilities and capabilities at NIST and other laboratories as required; leadership and participation in international intercomparisons and collaborations; the preservation of standard reference deposits and the development of improved neutron detectors and measurement methods. A related and essential element of the program is critical evaluation of neutron interaction data including international coordinations. Data testing of critical data for important applications is included. The program is jointly supported by the Department of Energy and the National Institute of Standards and Technology. This report from the National Institute of Standards and Technology contains a summary of the accomplishments of the Neutron Cross Section Standards and Instrumentation Project during the third year of this three-year interagency agreement. The proposed program and required budget for the following three years are also presented. The program continues the shifts in priority instituted in order to broaden the program base.

  6. Neutron Capture Cross Sections for the Re/Os Clock

    SciTech Connect

    Mosconi, M.; Heil, M.; Kaeppeler, F.; Plag, R.; Voss, F.; Wisshak, K.; Mengoni, A.; Cennini, P.; Chiaveri, E.; Ferrari, A.; Fitzpatrick, L.; Herrera-Martinez, A.; Kadi, Y.; Sarchiapone, L.; Vlachoudis, V.; Wendler, H.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.

    2005-05-24

    The radioactive decay of 187Re {yields} 187Os (t1/2 = 43 Gyr) is suited for dating the onset of heavy-element nucleosynthesis. The radiogenic contribution to the 187Os abundance is the difference between the natural abundance and the corresponding s-process component. This component can be obtained via the well-established {sigma}N systematics using the neighboring s-only isotope 186Os, provided the neutron-capture cross sections of both isotopes are known with sufficient accuracy. We report on a new set of experiments performed with a C6D6 detector array at the n{sub T}OF neutron spallation facility of CERN. The capture cross sections of 186Os, 187Os, and 188Os have been measured in the neutron-energy range between 1 eV and 1 MeV, and Maxwellian-averaged cross sections were deduced for the relevant thermal energies from kT=5 keV to 100 keV.

  7. Summary of the Workshop on Neutron Cross Section Covariances

    SciTech Connect

    Smith, Donald L.

    2008-12-15

    A Workshop on Neutron Cross Section Covariances was held from June 24-27, 2008, in Port Jefferson, New York. This Workshop was organized by the National Nuclear Data Center, Brookhaven National Laboratory, to provide a forum for reporting on the status of the growing field of neutron cross section covariances for applications and for discussing future directions of the work in this field. The Workshop focused on the following four major topical areas: covariance methodology, recent covariance evaluations, covariance applications, and user perspectives. Attention was given to the entire spectrum of neutron cross section covariance concerns ranging from light nuclei to the actinides, and from the thermal energy region to 20 MeV. The papers presented at this conference explored topics ranging from fundamental nuclear physics concerns to very specific applications in advanced reactor design and nuclear criticality safety. This paper provides a summary of this workshop. Brief comments on the highlights of each Workshop contribution are provided. In addition, a perspective on the achievements and shortcomings of the Workshop as well as on the future direction of research in this field is offered.

  8. Realizing the Opportunities of Neutron Cross Section Measurements at RIA

    SciTech Connect

    Ahle, L; Hausmann, M; Reifarth, R; Roberts, K; Roeben, M; Rusnak, B; Vieira, D

    2004-10-13

    The Rare Isotope Accelerator will produce many isotopes at never before seen rates. This will allow for the first time measurements on isotopes very far from stability and new measurement opportunities for unstable nuclei near stability. In fact, the production rates are such that it should be possible to collect 10 micrograms of many isotopes with a half-life of 1 day or more. This ability to make targets of short-lived nuclei enables the possibility of making neutron cross-section measurements important to the astrophysics and the stockpile stewardship communities. But to fully realize this opportunity, the appropriate infrastructure must be included at the RIA facility. This includes isotope harvesting capabilities, radiochemical areas for processing collected material, and an intense, ''mono-energetic'', tunable neutron source. As such, we have been developing a design for neutron source facility to be included at the RIA site. This facility would produce neutrons via intense beams of deuterons and protons on a variety of targets. The facility would also include the necessary radiochemical facilities for target processing. These infrastructure needs will be discussed in addition to the methods that would be employed at RIA for measuring these neutron cross-sections.

  9. Neutron average cross sections of {sup 237}Np

    SciTech Connect

    Noguere, G.

    2010-04-15

    This work reports {sup 237}Np neutron resonance parameters obtained from the simultaneous analysis of time-of-flight data measured at the GELINA, ORELA, KURRI, and LANSCE facilities. A statistical analysis of these resonances relying on average R-matrix and optical model calculations was used to establish consistent l-dependent average resonance parameters involved in the description of the unresolved resonance range of the {sup 237}Np neutron cross sections. For neutron orbital angular momentum l=0, we obtained an average radiation width =39.3+-1.0 meV, a neutron strength function 10{sup 4}S{sub 0}=1.02+-0.14, a mean level spacing D{sub 0}=0.60+-0.03 eV, and a potential scattering length R{sup '}=9.8+-0.1 fm.

  10. Effects of silicon cross section and neutron spectrum on the radial uniformity in neutron transmutation doping.

    PubMed

    Kim, Haksung; Ho Pyeon, Cheol; Lim, Jae-Yong; Misawa, Tsuyoshi

    2012-01-01

    The effects of silicon cross section and neutron spectrum on the radial uniformity of a Si-ingot are examined experimentally with various neutron spectrum conditions. For the cross section effect, the numerical results using silicon single crystal cross section reveal good agreements with experiments within relative difference of 6%, whereas the discrepancy is approximately 20% in free-gas cross section. For the neutron spectrum effect, the radial uniformity in hard neutron spectrum is found to be more flattening than that in soft spectrum. PMID:21917470

  11. Evaluation of Neutron Resonance Cross Section Data at GELINA

    NASA Astrophysics Data System (ADS)

    Schillebeeckx, P.; Becker, B.; Capote, R.; Emiliani, F.; Guber, K.; Heyse, J.; Kauwenberghs, K.; Kopecky, S.; Lampoudis, C.; Massimi, C.; Mondelaers, W.; Moxon, M.; Noguere, G.; Plompen, A. J. M.; Pronyaev, V.; Siegler, P.; Sirakov, I.; Trkov, A.; Volev, K.; Zerovnik, G.

    2014-05-01

    Over the last decade, the EC-JRC-IRMM, in collaboration with other institutes such as INRNE Sofia (BG), INFN Bologna (IT), ORNL (USA), CEA Cadarache (FR) and CEA Saclay (FR), has made an intense effort to improve the quality of neutron-induced cross section data in the resonance region. These improvements relate to both the infrastructure of the facility and the measurement setup, and the data reduction and analysis procedures. As a result total and reaction cross section data in the resonance region with uncertainties better than 0.5 % and 2 %, respectively, can be produced together with evaluated data files for both the resolved and unresolved resonance region. The methodology to produce full ENDF compatible files, including covariances, is illustrated by the production of resolved resonance parameter files for 241Am, Cd and W and an evaluation for 197Au in the unresolved resonance region.

  12. Neutron Cross Section Covariances for Structural Materials and Fission Products

    SciTech Connect

    Hoblit, S.; Hoblit,S.; Cho,Y.-S.; Herman,M.; Mattoon,C.M.; Mughabghab,S.F.; Oblozinsky,P.; Pigni,M.T.; Sonzogni,A.A.

    2011-12-01

    We describe neutron cross section covariances for 78 structural materials and fission products produced for the new US evaluated nuclear reaction library ENDF/B-VII.1. Neutron incident energies cover full range from 10{sup -5} eV to 20 MeV and covariances are primarily provided for capture, elastic and inelastic scattering as well as (n,2n). The list of materials follows priorities defined by the Advanced Fuel Cycle Initiative, the major application being data adjustment for advanced fast reactor systems. Thus, in addition to 28 structural materials and 49 fission products, the list includes also {sup 23}Na which is important fast reactor coolant. Due to extensive amount of materials, we adopted a variety of methodologies depending on the priority of a specific material. In the resolved resonance region we primarily used resonance parameter uncertainties given in Atlas of Neutron Resonances and either applied the kernel approximation to propagate these uncertainties into cross section uncertainties or resorted to simplified estimates based on integral quantities. For several priority materials we adopted MF32 covariances produced by SAMMY at ORNL, modified by us by adding MF33 covariances to account for systematic uncertainties. In the fast neutron region we resorted to three methods. The most sophisticated was EMPIRE-KALMAN method which combines experimental data from EXFOR library with nuclear reaction modeling and least-squares fitting. The two other methods used simplified estimates, either based on the propagation of nuclear reaction model parameter uncertainties or on a dispersion analysis of central cross section values in recent evaluated data files. All covariances were subject to quality assurance procedures adopted recently by CSEWG. In addition, tools were developed to allow inspection of processed covariances and computed integral quantities, and for comparing these values to data from the Atlas and the astrophysics database KADoNiS.

  13. Neutron Cross Section Covariances for Structural Materials and Fission Products

    NASA Astrophysics Data System (ADS)

    Hoblit, S.; Cho, Y.-S.; Herman, M.; Mattoon, C. M.; Mughabghab, S. F.; Obložinský, P.; Pigni, M. T.; Sonzogni, A. A.

    2011-12-01

    We describe neutron cross section covariances for 78 structural materials and fission products produced for the new US evaluated nuclear reaction library ENDF/B-VII.1. Neutron incident energies cover full range from 10 eV to 20 MeV and covariances are primarily provided for capture, elastic and inelastic scattering as well as (n,2n). The list of materials follows priorities defined by the Advanced Fuel Cycle Initiative, the major application being data adjustment for advanced fast reactor systems. Thus, in addition to 28 structural materials and 49 fission products, the list includes also 23Na which is important fast reactor coolant. Due to extensive amount of materials, we adopted a variety of methodologies depending on the priority of a specific material. In the resolved resonance region we primarily used resonance parameter uncertainties given in Atlas of Neutron Resonances and either applied the kernel approximation to propagate these uncertainties into cross section uncertainties or resorted to simplified estimates based on integral quantities. For several priority materials we adopted MF32 covariances produced by SAMMY at ORNL, modified by us by adding MF33 covariances to account for systematic uncertainties. In the fast neutron region we resorted to three methods. The most sophisticated was EMPIRE-KALMAN method which combines experimental data from EXFOR library with nuclear reaction modeling and least-squares fitting. The two other methods used simplified estimates, either based on the propagation of nuclear reaction model parameter uncertainties or on a dispersion analysis of central cross section values in recent evaluated data files. All covariances were subject to quality assurance procedures adopted recently by CSEWG. In addition, tools were developed to allow inspection of processed covariances and computed integral quantities, and for comparing these values to data from the Atlas and the astrophysics database KADoNiS.

  14. Stellar (n, gamma) cross sections of neutron-rich nuclei

    SciTech Connect

    Marganiec, J.; Domingo Pardo, C.; Kaeppeler, F.

    2010-03-01

    The present measurements were performed by means of the activation technique. Neutrons were produced at the Karlsruhe Van de Graaff accelerator via the {sup 7}Li(p,n){sup 7}Be reaction. For proton energies just above threshold, one obtains a neutron spectrum similar to a Maxwellian distribution for kT = 25 keV. This quasi-stellar neutron spectrum allowed us to measure the Maxwellian averaged cross sections directly. The experimental results of {sup 174,176}Yb, {sup 184,186}W, {sup 190,192}Os, {sup 196,198}Pt, and {sup 202}Hg were extrapolated from kT = 25 keV to lower and higher temperatures.

  15. Thermal neutron cross section of liquid and solid mesitylene

    NASA Astrophysics Data System (ADS)

    Cantargi, F.; Blostein, J. J.; Torres, L.; Granada, J. R.

    2006-08-01

    Total cross sections of mesitylene at 293 K and at 89 K were measured at the electron LINAC based pulsed neutron source of Centro Atómico Bariloche. Preliminary frequency spectra were proposed for liquid and solid mesitylene at those temperatures combining experimental and synthetic contributions. Scattering law data files were generated with the NJOY nuclear data processing system. Good agreement between experiments and calculations is found, which represents a primary validation of the scattering kernels which are now being used for the design and optimization of a cold moderator employing that material.

  16. Radioactive targets for neutron-induced cross section measurements

    SciTech Connect

    Kronenberg, A.; Bond, E. M.; Glover, S. E.; Rundberg, R. S.; Vieira, D. J.; Esch, E. I.; Reifarth, R.; Ullmann, J. L.; Haight, Robert C.; Rochmann, D.

    2004-01-01

    Measurements using radioactive targets are important for the determination of key reaction path ways associated with the synthesis of the elements in nuclear astrophysics (sprocess), advanced fuel cycle initiative (transmutation of radioactive waste), and stockpile stewardship. High precision capture cross-section measurements are needed to interpret observations, predict elemental or isotopical ratios, and unobserved abundances. There are two new detector systems that are presently being commissioned at Los Alamos National Laboratory for very precise measurements of (n,{gamma}) and (n,f) cross-sections using small quantities of radioactive samples. DANCE (Detector for Advanced Neutron-Capture Experiments), a 4 {pi} gamma array made up of 160 BaF{sub 2} detectors, is designed to measure neutron capture cross-sections of unstable nuclei in the low-energy range (thermal to {approx}500 keV). The high granularity and high detection efficiency of DANCE, combined with the high TOF-neutron flux available at the Lujan Center provides a versatile tool for measuring many important cross section data using radioactive and isotopically enriched targets of about 1 milligram. Another powerful instrument is the Lead-slowing down spectrometer (LSDS), which will enable the measurement of neutron-induced fission cross-section of U-235m and other short-lived actinides in a energy range from 1-200 keV with sample sizes down to 10 nanograms. Due to the short half-life of the U-235m isomer (T{sub 1/2} = 26 minutes), the samples must be rapidly and repeatedly extracted from its {sup 239}Pu parent. Since {sup 239}Pu is itself highly fissile, the separation must not only be rapid, but must also be of very high purity (the Pu must be removed from the U with a decontamination factor >10{sup 12}). Once extracted and purified, the {sup 235m}U isomer would be electrodeposited on solar cells as a fission detector and placed within the LSDS for direct (n,f) cross section measurements. The

  17. Research on Fast-Doppler-Broadening of neutron cross sections

    SciTech Connect

    Li, S.; Wang, K.; Yu, G.

    2012-07-01

    A Fast-Doppler-Broadening method is developed in this work to broaden Continuous Energy neutron cross-sections for Monte Carlo calculations. Gauss integration algorithm and parallel computing are implemented in this method, which is unprecedented in the history of cross section processing. Compared to the traditional code (NJOY, SIGMA1, etc.), the new Fast-Doppler-Broadening method shows a remarkable speedup with keeping accuracy. The purpose of using Gauss integration is to avoid complex derivation of traditional broadening formula and heavy load of computing complementary error function that slows down the Doppler broadening process. The OpenMP environment is utilized in parallel computing which can take full advantage of modern multi-processor computers. Combination of the two can reduce processing time of main actinides (such as {sup 238}U, {sup 235}U) to an order of magnitude of 1{approx}2 seconds. This new method is fast enough to be applied to Online Doppler broadening. It can be combined or coupled with Monte Carlo transport code to solve temperature dependent problems and neutronics-thermal hydraulics coupled scheme which is a big challenge for the conventional NJOY-MCNP system. Examples are shown to determine the efficiency and relative errors compared with the NJOY results. A Godiva Benchmark is also used in order to test the ACE libraries produced by the new method. (authors)

  18. AFCI-2.0 Library of Neutron Cross Section Covariances

    SciTech Connect

    Herman, M.; Herman,M.; Oblozinsky,P.; Mattoon,C.; Pigni,M.; Hoblit,S.; Mughabghab,S.F.; Sonzogni,A.; Talou,P.; Chadwick,M.B.; Hale.G.M.; Kahler,A.C.; Kawano,T.; Little,R.C.; Young,P.G.

    2011-06-26

    Neutron cross section covariance library has been under development by BNL-LANL collaborative effort over the last three years. The primary purpose of the library is to provide covariances for the Advanced Fuel Cycle Initiative (AFCI) data adjustment project, which is focusing on the needs of fast advanced burner reactors. The covariances refer to central values given in the 2006 release of the U.S. neutron evaluated library ENDF/B-VII. The preliminary version (AFCI-2.0beta) has been completed in October 2010 and made available to the users for comments. In the final 2.0 release, covariances for a few materials were updated, in particular new LANL evaluations for {sup 238,240}Pu and {sup 241}Am were adopted. BNL was responsible for covariances for structural materials and fission products, management of the library and coordination of the work, while LANL was in charge of covariances for light nuclei and for actinides.

  19. Modeling of High Precision Neutron Nonelastic Cross Sections

    SciTech Connect

    Dietrich, F S; Anderson, J D; Bauer, R W; Grimes, S M; McNabb, D P

    2007-02-05

    A new method has been applied to the determination of neutron nonelastic cross sections for iron {sup 56}Fe and lead {sup 208}Pb for energies between 5 and 26 MeV. These data have estimated errors of only a few percent and do not suffer from the ambiguities encountered in earlier nonelastic data. We attempt to fit these high precision data using both a semiclassical single phase shift model (nuclear Ramsauer model) as well as a recent global optical model that well reproduces a wide body of neutron scattering observables. At the 5% uncertainty level, both models produce satisfactory fits. However, neither model gives satisfactory fits to these new precise data. We conclude that fitting precise data, i.e., data with errors of approximately 2% or less, may require a nuclear mass dependence of radii that reflects structure effects such as shell closures.

  20. Performing Neutron Cross-Section Measurements at RIA

    SciTech Connect

    Ahle, L E

    2003-05-20

    The Rare Isotope Accelerator (RIA) is a proposed accelerator for the low energy nuclear physics community. Its goal is to understand the natural abundances of the elements heavier than iron, explore the nuclear force in systems far from stability, and study symmetry violation and fundamental physics in nuclei. To achieve these scientific goals, RIA promises to produce isotopes far from stability in sufficient quantities to allow experiments. It would also produce near stability isotopes at never before seen production rates, as much as 10{sup 12} pps. Included in these isotopes are many that are important to stockpile stewardship, such as {sup 87}Y, {sup 146-50}Eu, and {sup 231}Th. Given the expected production rates at RIA and a reasonably intense neutron source, one can expect to make {approx} 10 {micro}g targets of nuclei with a half-life of {approx}1 day. Thus, it will be possible at RIA to obtain experimental information on the neutron cross section for isotopes that have to date only been determined by theory. There are two methods to perform neutron cross-section measurements, prompt and delayed. The prompt method tries to measure each reaction as it happens. The exact technique employed will depend on the reaction of interest, (n,2n), (n,{gamma}), (n,p), etc. The biggest challenge with this method is designing a detector system that can handle the gamma ray background from the target. The delayed method, which is the traditional radiochemistry method for determining the cross-section, irradiates the targets and then counts the reaction products after the fact. While this allows one to avoid the target background, the allowed fraction of target impurities is extremely low. This is especially true for the desired reaction product with the required impurity fraction on the order of 10{sup -9}. This is particularly problematic for (n,2n) and (n,{gamma}) reactions, whose reaction production cannot be chemically separated from the target. In either case, the

  1. Actinide Targets for Neutron Cross Section Measurements (C)

    SciTech Connect

    J. D. Baker; C. A. McGrath

    2006-04-01

    The Advanced Fuel Cycle Initiative (AFCI) and the Generation IV Reactor Initiative have demonstrated a lack of detailed neutron cross-sections for certain "minor" actinides, those other than the most common (235U, 238U, and 239Pu). For some closed-fuel-cycle reactor designs more than 50% of reactivity will, at some point, be derived from “minor” actinides that currently have poorly known (n,g) and (n,f) cross sections. A program of measurements under AFCI has begun to correct this. One of the initial hurdles has been to produce well-characterized, highly isotopically enriched, and chemically pure actinide targets on thin backings. Using a combination of resurrected techniques and new developments, we have made a series of targets including highly enriched 240Pu, and 242Pu. Thus far, we have electrodeposited these actinide targets. In the future, we plan to study reductive distillation to achieve homogeneous, adherent targets on thin metal foils and polymer backings. As we move forward, separated isotopes become scarcer, and safety concerns become greater. The chemical purification and electodeposition techniques will be described.

  2. Measurements of Neutron Capture Cross-Section for Tantalum at the Neutron Filtered Beams

    NASA Astrophysics Data System (ADS)

    Gritzay, Olena; Libman, Volodymyr

    2009-08-01

    The neutron capture cross sections of tantalum have been measured for the neutron energies 2 and 59 keV using the WWR-M Kyiv Research Reactor (KRR) of the Institute for Nuclear Research of the National Academy of Science of Ukraine. The cross sections of 181Ta (n, γ) 182Ta reaction were obtained by the activation method using a gamma-spectrometer with Ge(Li)-detector. The obtained neutron capture cross sections were compared with the known experimental data from database EXFOR/CSISRS and the ENDF libraries.

  3. AFCI-2.0 Neutron Cross Section Covariance Library

    SciTech Connect

    Herman, M.; Herman, M; Oblozinsky, P.; Mattoon, C.M.; Pigni, M.; Hoblit, S.; Mughabghab, S.F.; Sonzogni, A.; Talou, P.; Chadwick, M.B.; Hale, G.M.; Kahler, A.C.; Kawano, T.; Little, R.C.; Yount, P.G.

    2011-03-01

    The cross section covariance library has been under development by BNL-LANL collaborative effort over the last three years. The project builds on two covariance libraries developed earlier, with considerable input from BNL and LANL. In 2006, international effort under WPEC Subgroup 26 produced BOLNA covariance library by putting together data, often preliminary, from various sources for most important materials for nuclear reactor technology. This was followed in 2007 by collaborative effort of four US national laboratories to produce covariances, often of modest quality - hence the name low-fidelity, for virtually complete set of materials included in ENDF/B-VII.0. The present project is focusing on covariances of 4-5 major reaction channels for 110 materials of importance for power reactors. The work started under Global Nuclear Energy Partnership (GNEP) in 2008, which changed to Advanced Fuel Cycle Initiative (AFCI) in 2009. With the 2011 release the name has changed to the Covariance Multigroup Matrix for Advanced Reactor Applications (COMMARA) version 2.0. The primary purpose of the library is to provide covariances for AFCI data adjustment project, which is focusing on the needs of fast advanced burner reactors. Responsibility of BNL was defined as developing covariances for structural materials and fission products, management of the library and coordination of the work; LANL responsibility was defined as covariances for light nuclei and actinides. The COMMARA-2.0 covariance library has been developed by BNL-LANL collaboration for Advanced Fuel Cycle Initiative applications over the period of three years, 2008-2010. It contains covariances for 110 materials relevant to fast reactor R&D. The library is to be used together with the ENDF/B-VII.0 central values of the latest official release of US files of evaluated neutron cross sections. COMMARA-2.0 library contains neutron cross section covariances for 12 light nuclei (coolants and moderators), 78 structural

  4. Neutron-capture Cross Sections from Indirect Measurements

    SciTech Connect

    Escher, J E; Burke, J T; Dietrich, F S; Ressler, J J; Scielzo, N D; Thompson, I J

    2011-10-18

    Cross sections for compound-nuclear reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  5. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    DOE PAGESBeta

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Calarco, J.; Crawford, C.; Craycraft, K.; Evans, D.; Fomin, N.; et al

    2015-05-08

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g(r) inferred from neutron scattering measurements of the differential cross section dσ/dΩ from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component)more » using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. Furthermore, we describe our measurements and compare them with previous work.« less

  6. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    SciTech Connect

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Calarco, J.; Crawford, C.; Craycraft, K.; Evans, D.; Fomin, N.; Fry, J.; Gericke, M.; Gillis, R. C.; Greene, G. L.; Hamblen, J.; Hayes, C.; Kucuker, S.; Mahurin, R.; Maldonado-Velázquez, M.; Martin, E.; McCrea, M.; Mueller, P. E.; Musgrave, M.; Nann, H.; Penttilä, S. I.; Snow, W. M.; Tang, Z.; Wilburn, W. S.

    2015-05-08

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g(r) inferred from neutron scattering measurements of the differential cross section dσ/dΩ from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. Furthermore, we describe our measurements and compare them with previous work.

  7. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    NASA Astrophysics Data System (ADS)

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Calarco, J.; Crawford, C.; Craycraft, K.; Evans, D.; Fomin, N.; Fry, J.; Gericke, M.; Gillis, R. C.; Greene, G. L.; Hamblen, J.; Hayes, C.; Kucuker, S.; Mahurin, R.; Maldonado-Velázquez, M.; Martin, E.; McCrea, M.; Mueller, P. E.; Musgrave, M.; Nann, H.; Penttilä, S. I.; Snow, W. M.; Tang, Z.; Wilburn, W. S.

    2015-05-01

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g (r ) inferred from neutron scattering measurements of the differential cross section d/σ d Ω from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. We describe our measurements and compare them with previous work.

  8. The Status of Cross Section Measurements for Neutron-induced Reactions Needed for Cosmic Ray Studies

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.

    2003-01-01

    Cosmic ray interactions with lunar rocks and meteorites produce small amounts of radionuclides and stable isotopes. Advances in Accelerator Mass Spectrometry (AMS) allow production rates to be measured routinely in well-documented lunar rocks and meteorites. These measurements are analyzed using theoretical models to learn about the object itself and the history of the cosmic rays that fell on it. Good cross section measurements are essential input to the theoretical calculations. Most primary cosmic ray particles are protons so reliable cross sections for proton-induced reactions are essential. A cross section is deemed accurate if measurements made by different experimenters using different techniques result in consistent values. Most cross sections for proton induced reactions are now well measured. However, good cross section measurements for neutron-induced reactions are still needed. These cross sections are required to fully account for all galactic cosmic ray interactions at depth in an extraterrestrial object. When primary galactic cosmic ray (GCR) particles interact with an object many secondary neutrons are produced, which also initiate spallation reactions. Thus, the total GCR contribution to the overall cosmogenic nuclide archive has to include the contribution from the secondary neutron interactions. Few relevant cross section measurements have been reported for neutron-induced reactions at neutron energies greater than approximately 20 MeV. The status of the cross section measurements using quasi-monoenergetic neutron energies at iThemba LABS, South Africa and white neutron beams at Los Alamos Neutron Science Center (LANSCE), Los Alamos are reported here.

  9. Cross sections and isomeric cross-section ratios in the interactions of fast neutrons with isotopes of mercury

    SciTech Connect

    Al-Abyad, M.; Sudar, S.; Qaim, S. M.; Comsan, M.N.H.

    2006-06-15

    Excitation functions were measured for the reactions {sup 196}Hg(n, 2n){sup 195}Hg{sup m,g},{sup 198}Hg(n, 2n){sup 197}Hg{sup m,g},{sup 204}Hg(n, 2n){sup 203}Hg,{sup 198}Hg(n,p){sup 198}Au{sup g}, and {sup 199}Hg(n,p){sup 199}Au over the neutron energy range of 7.6-12.5 MeV. Quasimonoenergetic neutrons were produced via the {sup 2}H(d,n){sup 3}He reaction using a deuterium gas target at the Juelich variable energy compact cyclotron CV 28. Use was made of the activation technique in combination with high-resolution, high-purity Ge detector {gamma}-ray spectroscopy. All the data were measured for the first time over the investigated energy range. The transition from the present low-energy data to the literature data around 14 MeV is generally good. Nuclear model calculations using the codes STAPRE and EMPIRE-2.19, which employ the statistical and precompound model formalisms, were undertaken to describe the formation of both the isomeric and ground states of the products. The total reaction cross section of a particular channel is reproduced fairly well by the model calculations, with STAPRE giving slightly better results. Regarding the isomeric cross sections, the agreement between the experiment and theory is only in approximate terms. A description of the isomeric cross-section ratio by the model was possible only with a very low value of {eta}, i.e., the {theta}{sub eff}/{theta}{sub rig} ratio.

  10. Measurements of Neutron Induced Cross Sections at the Oak Ridge Electron Linear Accelerator

    SciTech Connect

    Guber, K.H.; Harvey, J.A.; Hill, N.W.; Koehler, P.E.; Leal, L.C.; Sayer, R.O.; Spencer, R.R.

    1999-09-20

    We have used the Oak Ridge Electron Linear Accelerator (ORELA) to measure neutron total and the fission cross sections of 233U in the energy range from 0.36 eV to ~700 keV. We report average fission and total cross sections. Also, we measured the neutron total cross sections of 27Al and Natural chlorine as well as the capture cross section of Al over an energy range from 100 eV up to about 400 keV.

  11. Estimation of neutron energy for first resonance from absorption cross section for thermal neutrons

    NASA Technical Reports Server (NTRS)

    Bogart, Donald

    1951-01-01

    Examination of published data for some 52 isotopes indicates that the neutron energy for which the first resonance occurs is related to the magnitude of the thermal absorption cross section. The empirical relation obtained is in qualitative agreement with the results of a simplified version of the resonance theory of the nucleus of Breit-Wigner.

  12. Advanced Neutron Source Cross Section Libraries (ANSL-V): ENDF/B-V based multigroup cross-section libraries for advanced neutron source (ANS) reactor studies

    SciTech Connect

    Ford, W.E. III; Arwood, J.W.; Greene, N.M.; Moses, D.L.; Petrie, L.M.; Primm, R.T. III; Slater, C.O.; Westfall, R.M.; Wright, R.Q.

    1990-09-01

    Pseudo-problem-independent, multigroup cross-section libraries were generated to support Advanced Neutron Source (ANS) Reactor design studies. The ANS is a proposed reactor which would be fueled with highly enriched uranium and cooled with heavy water. The libraries, designated ANSL-V (Advanced Neutron Source Cross Section Libraries based on ENDF/B-V), are data bases in AMPX master format for subsequent generation of problem-dependent cross-sections for use with codes such as KENO, ANISN, XSDRNPM, VENTURE, DOT, DORT, TORT, and MORSE. Included in ANSL-V are 99-group and 39-group neutron, 39-neutron-group 44-gamma-ray-group secondary gamma-ray production (SGRP), 44-group gamma-ray interaction (GRI), and coupled, 39-neutron group 44-gamma-ray group (CNG) cross-section libraries. The neutron and SGRP libraries were generated primarily from ENDF/B-V data; the GRI library was generated from DLC-99/HUGO data, which is recognized as the ENDF/B-V photon interaction data. Modules from the AMPX and NJOY systems were used to process the multigroup data. Validity of selected data from the fine- and broad-group neutron libraries was satisfactorily tested in performance parameter calculations.

  13. 70 Group Neutron Fast Reactor Cross Section Set and 25 Group Neutron Fast Reactor Cross Section Set.

    Energy Science and Technology Software Center (ESTSC)

    1984-10-29

    Version 00 These multigroup cross sections are used in fast reactor calculations. The benchmark calculations for the 23 fast critical assemblies used in the benchmark tests of JFS-2 were performed with one-dimensional diffusion theory by using the JFS-3-J2 set.

  14. Method and apparatus for determination of temperature, neutron absorption cross section and neutron moderating power

    DOEpatents

    Vagelatos, Nicholas; Steinman, Donald K.; John, Joseph; Young, Jack C.

    1981-01-01

    A nuclear method and apparatus determines the temperature of a medium by injecting fast neutrons into the medium and detecting returning slow neutrons in three first energy ranges by producing three respective detection signals. The detection signals are combined to produce three derived indicia each systematically related to the population of slow neutrons returning from the medium in a respective one of three second energy ranges, specifically exclusively epithermal neutrons, exclusively substantially all thermal neutrons and exclusively a portion of the thermal neutron spectrum. The derived indicia are compared with calibration indicia similarly systematically related to the population of slow neutrons in the same three second energy ranges returning from similarly irradiated calibration media for which the relationships temperature, neutron absorption cross section and neutron moderating power to such calibration indicia are known. The comparison indicates the temperature at which the calibration indicia correspond to the derived indicia and consequently the temperature of the medium. The neutron absorption cross section and moderating power of the medium can be identified at the same time.

  15. Production cross section of neutron-rich isotopes with radioactive and stable beams

    NASA Astrophysics Data System (ADS)

    Mun, Myeong-Hwan; Adamian, G. G.; Antonenko, N. V.; Oh, Yongseok; Kim, Youngman

    2014-03-01

    The production cross section of neutron-rich isotopes of Ca, Zn, Te, Xe, and Pt are predicted in the diffusive multinucleon transfer reactions with stable and radioactive beams. With these isotopes one can treat the neutron shell evolution beyond N =28, 50, 82, and 126. Because of the small cross sections, the production of nuclei near the neutron drip line requires the optimal choice of reaction partners and bombarding energies.

  16. Modeled Neutron Induced Nuclear Reaction Cross Sections for Radiochemistry in the region of Iriduim and Gold

    SciTech Connect

    Hoffman, R D; Dietrich, F S; Kelley, K; Escher, J; Bauer, R; Mustafa, M

    2008-02-26

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron induced nuclear reaction cross sections for targets ranging from osmium (Z = 76) to gold (Z = 79). Of particular interest are the cross sections on Ir and Au including reactions on isomeric targets.

  17. Determination of the 243,246,248Cm thermal neutron induced fission cross sections

    NASA Astrophysics Data System (ADS)

    Serot, O.; Wagemans, C.; Vermote, S.; Heyse, J.; Soldner, T.; Geltenbort, P.

    2005-11-01

    The minor actinide waste produced in nuclear power plants contains various Cm-isotopes, and transmutation scenarios require improved fission cross section data. The available thermal neutron induced fission cross section data for 243Cm, 246Cm and 248Cm are not very accurate, so new cross section measurements have been performed at the high flux reactor of the ILL in Grenoble (France) under better experimental conditions (highly enriched samples, very intense and clean neutron beam). The measurements were performed at a neutron energy of 5.38 meV, yielding fission cross section values of (1240±28)b for 243Cm, (25±47)mb for 246Cm and (685±84)mb for 248Cm. From these results, thermal fission cross section values of (572±14)b; (12±25)mb and (316±43)mb have been deduced for 243Cm, 246Cm and 248Cm, respectively.

  18. Neutron-induced fission cross sections of short-lived actinides with the surrogate reaction method.

    SciTech Connect

    Kessedijian, G.; Jurado, B.; Aiche, M.; Barreau, G.; Bidaud, A.; Czajkowski, S.; Dassie, D.; Haas, B.; Mathieu, L.; Audouin, L.; Capellan, N.; Tassan-Got, L.; Wilson, J. N.; Berthoumieux, E.; Gunsing, F.; Theisen, Ch.; Serot, O.; Bauge, E.; Ahmad, I.; Greene, J. P.; Janssens, R. V. F.

    2010-09-13

    Neutron-induced fission cross sections for {sup 242,243}Cm and {sup 241}Am have been obtained with the surrogate reaction method. Recent results for the neutron-induced cross section of {sup 243}Cm are questioned by the present data. For the first time, the {sup 242}Cm cross section has been determined up to the onset of second-chance fission. The good agreement at the lowest excitation energies between the present results and the existing neutron-induced data indicates that the distributions in spin and parity of states populated with both techniques are similar.

  19. Resonance Analysis and Evaluation of the Uranium -235 Neutron-Induced Cross-Sections

    NASA Astrophysics Data System (ADS)

    Leal, Luiz Carlos

    Neutron cross sections of fissile nuclei are of considerable interest for the understanding of parameters such as resonance absorption, resonance escape probability, resonance self-shielding, and the dependence of the reactivity on temperature. In the present study, new techniques for the evaluation of the ^{235}U neutron cross sections are described. The Reich-Moore formalism of the Bayesian computer code SAMMY was used to perform consistent R-matrix multilevel analyses of the selected neutron cross-section data. The Delta_3 -statistics of Dyson and Mehta, along with high -resolution data and the spin-separated fission cross-section data, have provided the possibility of developing a new methodology for the analysis and evaluation of neutron -nucleus cross-sections. The result of the analysis consists of a set of resonance parameters which describe the ^{235}U neutron cross sections up to 500 eV. The set of resonance parameters obtained through a R-matrix analysis are expected to satisfy statistical properties which lead to information on the nuclear structure. The resonance parameters were tested and showed good agreement with the theory. It is expected that the parametrization of the ^{235}U neutron cross sections obtained in this dissertation represents the current state of art in data as well as in theory and, therefore, can be of direct use in reactor calculations.

  20. Status of the International Neutron Cross-Section Standards File

    SciTech Connect

    Pronyaev, Vladimir G.; Badikov, Sergei A.; Gai, Evgeny V.; Chen Zhenpeng; Carlson, Allan D.; Hale, Gerald M.; Hambsch, Franz-Josef; Hofmann, Hartmut M.; Larson, Nancy M.; Smith, Donald L.; Oh, Soo-Youl; Tagesen, Siegfried; Vonach, Herbert

    2005-05-24

    A report is given of the progress achieved in an IAEA Co-ordinated Research Project (CRP) to improve the cross-section standards. The objectives of the CRP, started in 2002, were initially the understanding of the origin of the strong uncertainty reduction in R-matrix model fits and the improvement of the evaluation methodology. These aims were extended in 2003 to the preparation of new evaluations for the standard 6Li(n,t), 10B(n,{alpha}), 10B(n,{alpha}1), 197Au(n,{gamma}), 235U(n,f), and 238U(n,f) reactions. The methodology, codes, and experimental database developed by Poenitz and Hale for the ENDF/B-VI standards evaluation were taken as the basis for the new evaluation. The major results achieved by the CRP participants include the testing and intercomparison of a number of codes that can be used in the standards evaluation, updating the database of experimental results, analysis of the reasons leading to the strong uncertainty reduction in model fits, and a study of the bias in evaluated data caused by the Peelles's Pertinent Puzzle (PPP) effect, which has been widely discussed in the nuclear data community since the ENDF/B-VI standards evaluation was completed. Preliminary results of the new standards evaluation are shown. The use of the new 235U(n,f) cross section leads to better consistency in calculations of some important integral experiments.

  1. A Neutron Source Facility for Neutron Cross-Section Measurements on Radioactive Targets at RIA

    SciTech Connect

    Ahle, L E; Bernstein, L; Rusnak, B; Berio, R

    2003-05-20

    The stockpile stewardship program is interested in neutron cross-section measurements on nuclei that are a few nucleons away from stability. Since neutron targets do not exist, radioactive targets are the only way to directly perform these measurements. This requires a facility that can provide high production rates for these short-lived nuclei as well as a source of neutrons. The Rare Isotope Accelerator (RIA) promises theses high production rates. Thus, adding a co-located neutron source facility to the RIA project baseline would allow these neutron cross-section measurements to be made. A conceptual design for such a neutron source has been developed, which would use two accelerators, a Dynamitron and a linac, to create the neutrons through a variety of reactions (d-d, d-t, deuteron break-up, p-Li). This range of reactions is needed in order to provide the desired energy range from 10's of keV to 20 MeV. The facility would also have hot cells to perform chemistry on the radioactive material both before and after neutron irradiation. The present status of this design and direction of future work will be discussed.

  2. Determination of Unknown Neutron Cross Sections for the Production of Medical Isotopes

    SciTech Connect

    Stephen E. Binney

    2004-04-09

    Calculational assessment and experimental verification of certain neutron cross sections that are related to widely needed new medical isotopes. Experiments were performed at the Oregon State University TRIGA Reactor and the High Flux Irradiation Reactor at Oak Ridge National Laboratory.

  3. Neutron capture cross section and capture gamma-ray spectra of 89Y

    NASA Astrophysics Data System (ADS)

    Katabuchi, Tatsuya; Okamiya, Tohomohiro; Yanagida, Shotaro; Mizumoto, Motoharu; Terada, Kazushi; Kimura, Atsushi; Iwamoto, Nobuyuki; Igashira, Masayuki

    2016-06-01

    The neutron capture cross section of 89Y was measured by the time-of-flight method in an energy range from 15 to 100 keV. A pulse-height weighting technique was applied to derive the capture yield. The absolute cross section was determined based on the standard reaciotn 197 Au(n, γ)198 Au reaction. The neutron capture γ-ray spectrum was derived by unfolding the pulse-height spectrum with detector response functions.

  4. Measurements of the neutron activation cross sections for Bi and Co at 386 MeV.

    PubMed

    Yashima, H; Sekimoto, S; Ninomiya, K; Kasamatsu, Y; Shima, T; Takahashi, N; Shinohara, A; Matsumura, H; Satoh, D; Iwamoto, Y; Hagiwara, M; Nishiizumi, K; Caffee, M W; Shibata, S

    2014-10-01

    Neutron activation cross sections for Bi and Co at 386 MeV were measured by activation method. A quasi-monoenergetic neutron beam was produced using the (7)Li(p,n) reaction. The energy spectrum of these neutrons has a high-energy peak (386 MeV) and a low-energy tail. Two neutron beams, 0° and 25° from the proton beam axis, were used for sample irradiation, enabling a correction for the contribution of the low-energy neutrons. The neutron-induced activation cross sections were estimated by subtracting the reaction rates of irradiated samples for 25° irradiation from those of 0° irradiation. The measured cross sections were compared with the findings of other studies, evaluated in relation to nuclear data files and the calculated data by Particle and Heavy Ion Transport code System code. PMID:24368868

  5. Observation of large enhancements of charge exchange cross sections with neutron-rich carbon isotopes

    NASA Astrophysics Data System (ADS)

    Tanihata, I.; Terashima, S.; Kanungo, R.; Ameil, F.; Atkinson, J.; Ayyad, Y.; Cortina-Gil, D.; Dillmann, I.; Estradé, A.; Evdokimov, A.; Farinon, F.; Geissel, H.; Guastalla, G.; Janik, R.; Knoebel, R.; Kurcewicz, J.; Litvinov, Yu. A.; Marta, M.; Mostazo, M.; Mukha, I.; Nociforo, C.; Ong, H. J.; Pietri, S.; Prochazka, A.; Scheidenberger, C.; Sitar, B.; Strmen, P.; Takechi, M.; Tanaka, J.; Toki, H.; Vargas, J.; Winfield, J. S.; Weick, H.

    2016-04-01

    Production cross sections of nitrogen isotopes from high-energy (˜ 950 MeV per nucleon) carbon isotopes on hydrogen and carbon targets have been measured for the first time for a wide range of isotopes (A = 12 to 19). The fragment separator FRS at GSI was used to deliver C-isotope beams. The cross sections of the production of N-isotopes were determined by charge measurements of forward-going fragments. The cross sections show a rapid increase with the number of neutrons in the projectile. Since the production of nitrogen is mostly due to charge-exchange (Cex) reactions below the proton separation energies, the present data suggests a concentration of Gamow-Teller and/or Fermi transition strength at low excitation energies for neutron-rich carbon isotopes. It was also observed that the Cex cross sections were enhanced much more strongly for neutron-rich isotopes in the C-target data.

  6. Texture imaging of zirconium based components by total neutron cross-section experiments

    NASA Astrophysics Data System (ADS)

    Santisteban, J. R.; Vicente-Alvarez, M. A.; Vizcaino, P.; Banchik, A. D.; Vogel, S. C.; Tremsin, A. S.; Vallerga, J. V.; McPhate, J. B.; Lehmann, E.; Kockelmann, W.

    2012-06-01

    The transmission of thermal neutrons through an object is affected by the microstructure and crystallographic texture of the composing material. As a result, the total neutron cross section of common metallic objects departs largely from that expected for polycrystalline materials without preferred orientation. In this work we present the wavelength dependence of the total cross section of different Zr-based components of nuclear reactors, such as pressure tubes, rolled plates and welds. The experimental values found for the total cross section are discussed in terms of the crystallographic texture that results from the component manufacturing. The discussion is based on energy-resolved radiographies taken at the ISIS Facility, UK, using a novel micro-channel plate detector; and theoretical calculations of the elastic coherent total cross section from the orientation distribution function (ODF) of the crystallites composing a sample. The connection existing between texture and neutron transmission is exploited to investigate the spatial variation of texture across Zr-based components.

  7. Neutron cross section measurements at ORELA for improved nuclear data and their application.

    PubMed

    Guber, K H; Leal, L C; Sayer, R O; Koehler, P E; Valentine, T E; Derrien, H; Harvey, J A

    2005-01-01

    To support the Nuclear Criticality Safety Program, the Oak Ridge Electron Linear Accelerator (ORELA) has been used to measure the total and capture neutron cross sections of several nuclides in the energy range from 100 eV to -600 keV. Concerns about the use of existing cross section data in nuclear criticality calculations have been a prime motivator for the new cross-section measurements. Our new capture cross sections of aluminium, silicon, chlorine, fluorine and potassium in the energy range from 100 eV to 600 keV are substantially different from the cross sections in evaluated nuclear data files of ENDF/B-VI and JENDL-3.2. PMID:16604703

  8. Cross sections for fast-neutron interaction with Lu, Tb, and Ta isotopes

    SciTech Connect

    Dzysiuk, N.; Kadenko, I.; Yermolenko, R.; Koning, A. J.

    2010-01-15

    The cross sections for (n,x) reactions with Lu, Tb, and Ta isotopes were measured at (d,t) neutron energies around 14 MeV with the activation technique using metal foils of natural composition. Additionally, tantalum samples were irradiated with (d,d) neutrons and filtered neutron beams. To ensure an acceptable precision of the results all major sources of uncertainties were taken into account. Calculations of efficiency and correction factors were performed with the Monte Carlo technique. The cross section results obtained for the {sup 175}Lu(n,{alpha}){sup 172}Tm reaction at (d,t) neutron energies are reported for the first time. {sup 181}Ta(n,{gamma}){sup 182}Ta{sup m2} reaction cross sections were also measured for the first time at 1.9, 58.7, and 144.3 keV and at 2.85 MeV. The earlier evaluated cross section upper estimate for the nuclear reaction {sup 159}Tb(n,n{sup '}{alpha}){sup 155}Eu is reported in this article to be one order lower. Some other cross sections were obtained with higher precision. Theoretical calculations of excitation functions were performed with the TALYS-1.0 code and compared with the experimental cross section values.

  9. Neutron source investigations in support of the cross section program at the Argonne Fast-Neutron Generator

    SciTech Connect

    Meadows, J.W.; Smith, D.L.

    1980-05-01

    Experimental methods related to the production of neutrons for cross section studies at the Argonne Fast-Neutron Generator are reviewed. Target assemblies commonly employed in these measurements are described, and some of the relevant physical properties of the neutron source reactions are discussed. Various measurements have been performed to ascertain knowledge about these source reaction that is required for cross section data analysis purposes. Some results from these studies are presented, and a few specific examples of neutron-source-related corrections to cross section data are provided. 16 figures, 3 tables.

  10. Use of Neutron Benchmark Fields for the Validation of Dosimetry Cross Sections

    NASA Astrophysics Data System (ADS)

    Griffin, Patrick

    2016-02-01

    The evolution of validation metrics for dosimetry cross sections in neutron benchmark fields is explored. The strength of some of the metrics in providing validation evidence is examined by applying them to the 252Cf spontaneous fission standard neutron benchmark field, the 235U thermal neutron fission reference benchmark field, the ACRR pool-type reactor central cavity reference benchmark fields, and the SPR-III fast burst reactor central cavity. The IRDFF dosimetry cross section library is used in the validation study and observations are made on the amount of coverage provided to the library contents by validation data available in these benchmark fields.

  11. RIA R&D for Enabling Direct Neutron Cross-Section Measurements

    SciTech Connect

    Ahle, L E; Rusnak, B; Stoyer, M

    2003-08-22

    The expected production rates at RIA imply it should be possible to collect 10-{micro}g of a one-day half-life isotope. The amount of material should be sufficient to enable direct neutron cross-section measurements for many unstable isotopes. This capability is crucial for many of the stockpile stewardship and some of the astrophysical cross-section measurements. Enabling this capability at RIA requires the ability to harvest the desired isotopes, process highly radioactive material into targets, and irradiate targets with neutrons. This paper will discuss the changes and additions to the RIA complex that are necessary in order to enable direct neutron cross-section measurements. This will include a discussion of harvesting as well as a conceptual design for a co-located experimental facility with radiochemistry capability and a variable 'mono-energetic' neutron source.

  12. Thermal neutron capture cross section for the K isomer {sup 177}Lu{sup m}

    SciTech Connect

    Belier, G.; Roig, O.; Daugas, J.-M.; Giarmana, O.; Meot, V.; Letourneau, A.; Marie, F.; Foucher, Y.; Aupiais, J.; Abt, D.; Jutier, Ch.; Le Petit, G.; Bettoni, C.; Gaudry, A.; Veyssiere, Ch.; Barat, E.; Dautremer, T.; Trama, J.-Ch.

    2006-01-15

    The thermal neutron radiative capture cross section for the K isomeric state in {sup 177}Lu has been measured for the first time. Several {sup 177}Lu{sup m} targets have been prepared and irradiated in various neutron fluxes at the Lauee Langevin Institute in Grenoble and at the CEA reactors OSIRIS and ORPHEE in Saclay. The method consists of measuring the {sup 178}Lu activity by {gamma}-ray spectroscopy. The values obtained in four different neutron spectra have been used to calculate the resonance integral of the radiative capture cross section for {sup 177}Lu{sup m}. In addition, an indirect method leads to the determination of the {sup 177}Lu{sup g} neutron radiative capture cross section.

  13. Cross section for inelastic neutron ''acceleration'' by {sup 178}Hf{sup m2}

    SciTech Connect

    Karamian, S. A.; Carroll, J. J.

    2011-02-15

    The scattering of thermal neutrons from isomeric nuclei may include events in which the outgoing neutrons have increased kinetic energy. This process has been called inelastic neutron acceleration, or INNA, and occurs when the final nucleus, after emission of the neutron, is left in a state with lower energy than that of the isomer. The result, therefore, is an induced depletion of the isomer to the ground state. A cascade of several {gamma}'s must accompany the neutron emission to release the high angular momentum of the initial isomeric state. INNA was previously observed in a few cases, and the measured cross sections were only in modest agreement with theoretical estimates. The most recent measurement of an INNA cross section was {sigma}{sub INNA}=258{+-}58 b for neutron scattering by {sup 177}Lu{sup m}. In the present work, an INNA cross section of {sigma}{sub INNA}=168 {+-} 33 b was deduced from measurements of the total burnup of the high-spin, four-quasiparticle isomer {sup 178}Hf{sup m2} during irradiation by thermal neutrons. Statistical estimates for the probability of different reaction channels past neutron absorption were used in the analysis, and the deduced {sigma}{sub INNA} was compared to the theoretically predicted cross section.

  14. Covariance of Neutron Cross Sections for {sup 16}O through R-matrix Analysis

    SciTech Connect

    Kunieda, S.; Kawano, T.; Paris, M.; Hale, G.M.; Shibata, K.; Fukahori, T.

    2015-01-15

    Through the R-matrix analysis, neutron cross sections as well as the covariance are estimated for {sup 16}O in the resolved resonance range. Although we consider the current results are still preliminary, we present the summary of the cross section analysis and the results of data uncertainty/covariance, including those for the differential cross sections. It is found that the values obtained highlight consequences of nature in the theory as well as knowledge from measurements, which gives a realistic quantification of evaluated nuclear data covariances.

  15. Target correlation effects on neutron-nucleus total, absorption, and abrasion cross sections

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.

    1991-01-01

    Second order optical model solutions to the elastic scattering amplitude were used to evaluate total, absorption, and abrasion cross sections for neutron nucleus scattering. Improved agreement with experimental data for total and absorption cross sections is found when compared with first order (coherent approximation) solutions, especially below several hundred MeV. At higher energies, the first and second order solutions are similar. There are also large differences in abrasion cross section calculations; these differences indicate a crucial role for cluster knockout in the abrasion step.

  16. Neutron Elastic and Inelastic Scattering Cross Sections on ^NatFe and ^23Na

    NASA Astrophysics Data System (ADS)

    Kersting, Luke; Lueck, Collin J.; Hicks, S. F.; Crider, B. P.; McEllistrem, M. T.; Peters, E. E.; Vanhoy, J. R.

    2010-10-01

    Neutron elastic and inelastic scattering angular distributions from ^NatFe and ^23Na at incident neutron energies of 3.57 and 3.81 MeV have been measured at the University of Kentucky 7 MV Van de Graaff laboratory using neutron time-of-flight techniques. The neutron beam was produced using the ^3H(p,n)He^3reaction. The scattered neutrons were detected at angles between 20 and 150 in 10 intervals with a hexafluorbenzene detector located approximately 3 m from the scattering samples. Neutron scattering differential cross sections were deduced. These cross sections and their uncertainties are important for understanding neutron-induced reactions in fission reactors and are important for fission reactor criticality calculations.

  17. Neutron Capture Cross Section Measurement on $^{238}$Pu at DANCE

    SciTech Connect

    Chyzh, A; Wu, C Y

    2011-02-14

    The proposed neutron capture measurement for {sup 238}Pu was carried out in Nov-Dec, 2010, using the DANCE array at LANSCE, LANL. The total beam-on-target time is about 14 days plus additional 5 days for the background measurement. The target was prepared at LLNL with the new electrplating cell capable of plating the {sup 238}Pu isotope simultaneously on both sides of the 3-{micro}m thick Ti backing foil. A total mass of 395 {micro}g with an activity of 6.8 mCi was deposited onto the area of 7 mm in diameter. The {sup 238}Pu sample was enriched to 99.35%. The target was covered by 1.4 {micro}m double-side aluminized mylar and then inserted into a specially designed vacuum-tight container, shown in Fig. 1, for the {sup 238}Pu containment. The container was tested for leaks in the vacuum chamber at LLNL. An identical container without {sup 238}Pu was made as well and used as a blank for the background measurement.

  18. Secondary neutron-production cross sections from heavy-ion interactions in composite targets

    SciTech Connect

    Heilbronn, L.; Iwata, Y.; Murakami, T.; Iwase, H.; Sato, H.; Nakamura, T.; Ronningen, R.M.; Ieki, K.; Gudowska, I.; Sobolevsky, N.

    2006-02-15

    Secondary neutron-production cross sections have been measured from interactions of 290 MeV/nucleon C and 600 MeV/nucleon Ne in a target composed of simulated Martian regolith and polyethylene, and from 400 MeV/nucleon Ne interactions in wall material from the International Space Station. The data were measured between 5 deg. and 80 deg. in the laboratory. We report the double-differential cross sections, angular distributions, and total neutron-production cross sections from all three systems. The spectra from all three systems exhibit behavior previously reported in other heavy-ion neutron-production experiments, namely, a peak at forward angles near the energy corresponding to the beam velocity, with the remaining spectra generated by pre-equilibrium and equilibrium processes. The double-differential cross sections are fitted with a moving-source parametrization. Also reported are the data without corrections for neutron flux attenuation in the target and other intervening materials and for neutron production in nontarget materials near the target position. These uncorrected spectra are compared with SHIELD-HIT and PHITS transport model calculations. The transport model calculations reproduce the spectral shapes well but, on average, underestimate the magnitudes of the cross sections.

  19. Absolute measurement of the 242Pu neutron-capture cross section

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Dance Collaboration

    2016-04-01

    The absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. The first direct measurement of the 242Pu(n ,γ ) cross section was made over the incident neutron energy range from thermal to ≈6 keV, and the absolute scale of the (n ,γ ) cross section was set according to the known 239Pu(n ,f ) resonance at En ,R=7.83 eV. This was accomplished by adding a small quantity of 239Pu to the 242Pu sample. The relative scale of the cross section, with a range of four orders of magnitude, was determined for incident neutron energies from thermal to ≈40 keV. Our data, in general, are in agreement with previous measurements and those reported in ENDF/B-VII.1; the 242Pu(n ,γ ) cross section at the En ,R=2.68 eV resonance is within 2.4 % of the evaluated value. However, discrepancies exist at higher energies; our data are ≈30 % lower than the evaluated data at En≈1 keV and are approximately 2 σ away from the previous measurement at En≈20 keV.

  20. Stellar neutron capture cross sections of 41K and 45Sc

    NASA Astrophysics Data System (ADS)

    Heil, M.; Plag, R.; Uberseder, E.; Bisterzo, S.; Käppeler, F.; Mengoni, A.; Pignatari, M.

    2016-05-01

    The neutron capture cross sections of light nuclei (A <56 ) are important for s -process scenarios since they act as neutron poisons. We report on measurements of the neutron capture cross sections of 41K and 45Sc, which were performed at the Karlsruhe 3.7 MV Van de Graaff accelerator via the activation method in a quasistellar neutron spectrum corresponding to a thermal energy of k T =25 keV. Systematic effects were controlled by repeated irradiations, resulting in overall uncertainties of less than 3%. The measured spectrum-averaged data have been used to normalize the energy-dependent (n ,γ ) cross sections from the main data libraries JEFF-3.2, JENDL-4.0, and ENDF/B-VII.1, and a set of Maxwellian averaged cross sections was calculated for improving the s -process nucleosynthesis yields in AGB stars and in massive stars. At k T =30 keV, the new Maxwellian averaged cross sections of 41K and 45Sc are 19.2 ±0.6 mb and 61.3 ±1.8 mb, respectively. Both values are 20% lower than previously recommended. The effect of neutron poisons is discussed for nuclei with A <56 in general and for the investigated isotopes in particular.

  1. Secondary neutron-production cross sections from heavy-ioninteractions in composite targets.

    SciTech Connect

    Heilbronn, L.; Iwata, Y.; Iwase,H.; Murakami, T.; Sato, H.; Nakamura, T.; Ronningen, R.M.; Ieki, K.; Gudowska, I.; Sobolevsky, N.

    2005-12-19

    Secondary neutron-production cross-sections have been measured from interactions of 290 MeV/nucleon C and 600 MeV/nucleon Ne in a target composed of simulated Martian regolith and polyethylene, and from 400 MeV/nucleon Ne interactions in wall material from the International Space Station. The data were measured between 5 and 80 deg in the laboratory. We report the double-differential cross sections, angular distributions, and total neutron-production cross sections from all three systems. The spectra from all three systems exhibit behavior previously reported in other heavy-ion, neutron production experiments; namely, a peak at forward angles near the energy corresponding to the beam velocity, with the remaining spectra generated by pre-equilibrium and equilibrium processes. The double differential cross sections are fitted with a moving-source parameterization. Also reported are the data without corrections for neutron flux attenuation in the target and other intervening materials, and for neutron production in non-target materials near the target position. These uncorrected spectra are compared with SHIELD-HIT and PHITS transport model calculations. The transport model calculations reproduce the spectral shapes well, but, on average, underestimate the magnitudes of the cross sections.

  2. Neutron Single Particle Structure in Sn131 and Direct Neutron Capture Cross Sections

    NASA Astrophysics Data System (ADS)

    Kozub, R. L.; Arbanas, G.; Adekola, A. S.; Bardayan, D. W.; Blackmon, J. C.; Chae, K. Y.; Chipps, K. A.; Cizewski, J. A.; Erikson, L.; Hatarik, R.; Hix, W. R.; Jones, K. L.; Krolas, W.; Liang, J. F.; Ma, Z.; Matei, C.; Moazen, B. H.; Nesaraja, C. D.; Pain, S. D.; Shapira, D.; Shriner, J. F., Jr.; Smith, M. S.; Swan, T. P.

    2012-10-01

    Recent calculations suggest that the rate of neutron capture by Sn130 has a significant impact on late-time nucleosynthesis in the r process. Direct capture into low-lying bound states is expected to be significant in neutron capture near the N=82 closed shell, so r-process reaction rates may be strongly impacted by the properties of neutron single particle states in this region. In order to investigate these properties, the (d,p) reaction has been studied in inverse kinematics using a 630 MeV beam of Sn130 (4.8MeV/u) and a (CD2)n target. An array of Si strip detectors, including the Silicon Detector Array and an early implementation of the Oak Ridge Rutgers University Barrel Array, was used to detect reaction products. Results for the Sn130(d,​p)Sn131 reaction are found to be very similar to those from the previously reported Sn132(d,​p)Sn133 reaction. Direct-semidirect (n,γ) cross section calculations, based for the first time on experimental data, are presented. The uncertainties in these cross sections are thus reduced by orders of magnitude from previous estimates.

  3. Neutron single particle structure in 131Sn and direct neutron capture cross sections.

    PubMed

    Kozub, R L; Arbanas, G; Adekola, A S; Bardayan, D W; Blackmon, J C; Chae, K Y; Chipps, K A; Cizewski, J A; Erikson, L; Hatarik, R; Hix, W R; Jones, K L; Krolas, W; Liang, J F; Ma, Z; Matei, C; Moazen, B H; Nesaraja, C D; Pain, S D; Shapira, D; Shriner, J F; Smith, M S; Swan, T P

    2012-10-26

    Recent calculations suggest that the rate of neutron capture by (130)Sn has a significant impact on late-time nucleosynthesis in the r process. Direct capture into low-lying bound states is expected to be significant in neutron capture near the N=82 closed shell, so r-process reaction rates may be strongly impacted by the properties of neutron single particle states in this region. In order to investigate these properties, the (d,p) reaction has been studied in inverse kinematics using a 630 MeV beam of (130)Sn (4.8 MeV/u) and a (CD(2))(n) target. An array of Si strip detectors, including the Silicon Detector Array and an early implementation of the Oak Ridge Rutgers University Barrel Array, was used to detect reaction products. Results for the (130)Sn(d, p)(131)Sn reaction are found to be very similar to those from the previously reported (132)Sn(d, p)(133)Sn reaction. Direct-semidirect (n,γ) cross section calculations, based for the first time on experimental data, are presented. The uncertainties in these cross sections are thus reduced by orders of magnitude from previous estimates. PMID:23215181

  4. Neutron single particle structure in 131Sn and direct neutron capture cross sections

    SciTech Connect

    Kozub, R. L.; Arbanas, Goran; Adekola, A. S.; Bardayan, Daniel W; Blackmon, Jeffery C; Chae, Kyung Yuk; Chipps, K.; Cizewski, J. A.; Erikson, Luke; Hatarik, Robert; Hix, William Raphael; Jones, K. L.; Krolas, W.; Liang, J Felix; Ma, Z.; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D; Pain, Steven D; Shapira, Dan; ShrinerJr., J. F.; Smith, Michael Scott; Swan, T. P.

    2012-01-01

    Recent calculations suggest that the rate of neutron capture by 130Sn has a significant impact on late-time nucleosynthesis in the r-process. Direct capture into low-lying bound states is expected to be significant in neutron capture near the N=82 closed shell, so r- process reaction rates may be strongly impacted by the properties of neutron single particle states in this region. In order to investigate these properties, the (d, p) reaction has been studied in inverse kinematics using a 630 MeV beam of 130Sn (4.8 MeV/u) and a (CD2)n target. An array of Si strip detectors, including SIDAR and an early implementation of the ORRUBA, was used to detect reaction products. Results for the 130Sn(d, p)131Sn reaction are found to be very similar to those from the previously reported 132Sn(d, p)133Sn reaction. Direct-semidirect (n, ) cross section calculations, based for the first time on experimental data, are presented. The uncertainties in these cross sections are thus reduced by orders of magnitude from previous estimates.

  5. Neutron scattering cross section measurements for thulium-169 via the time-of-flight technique

    NASA Astrophysics Data System (ADS)

    Alimeti, Afrim

    This research provides the first direct neutron scattering cross section measurements for 169Tm via the time-of-flight technique. The neutron elastic and inelastic scattering cross-section angular distributions for 169Tm were measured at 590-keV and 1000-keV incident neutron energies. Differential cross-section excitation functions were also measured in 0.1-MeV steps at 125° (scattering angle) from 495-keV to 1000-keV incident neutron energy. The measured neutron scattering cross sections for the elastic group at 0.5-MeV to 1.0-MeV incident neutron energy range are in reasonable agreement with the JENDL-4.0 evaluation, which is based on nuclear reaction model calculations, and with the earlier measurements made by Ko et al. via the (n, n' gamma) technique for states above 100 keV via the (n, n' gamma) reaction at incident energies in the 0.2-MeV to 1.0-MeV range. The 5.5-MeV Van de Graaff accelerator at Lowell was operated in the pulsed and bunched beam mode producing subnanosecond pulses at a 5-MHz repetition frequency to generate neutrons via the 7Li(p,n) 7Be reaction using a thin metallic elemental lithium target.

  6. Measurements of neutron capture cross section for {sup 207,208}Pb

    SciTech Connect

    Segawa, M.; Toh, Y.; Harada, H.; Kitatani, F.; Koizumi, M.; Fukahori, T.; Iwamoto, N.; Iwamoto, O.; Oshima, M.; Hatsukawa, Y.; Nagai, Y.; Igashira, M.; Kamada, S.; Tajika, M.

    2014-05-02

    The neutron capture cross sections for {sup 207,208}Pb have been measured in the neutron energy region from 10 to 110 keV. The γ-rays cascaded from a capture state to the ground state or low-lying states of {sup 208,209}Pb were observed for the first time, using an anti-Compton Nal(Tl) spectrometer and a TOF method. The observed discrete γ-ray energy spectra enabled us to determine neutron capture cross sections for {sup 207,208}Pb with small systematic errors, since we could distinguish γ-ray of {sup 207,208}Pb(n,γ) reactions from background γ-ray with use of the γ-ray spectra. The obtained cross sections include both contributions of resonance and direct capture components different from the previous TOF measurements.

  7. Fast-neutron total and scattering cross sections of sup 58 Ni and nuclear models

    SciTech Connect

    Smith, A.B.; Guenther, P.T.; Whalen, J.F. ); Chiba, S. . Tokai Research Establishment)

    1991-07-01

    The neutron total cross sections of {sup 58}Ni were measured from {approx} 1 to > 10 MeV using white-source techniques. Differential neutron elastic-scattering cross sections were measured from {approx} 4.5 to 10 MeV at {approx} 0.5 MeV intervals with {ge} 75 differential values per distribution. Differential neutron inelastic-scattering cross sections were measured, corresponding to fourteen levels with excitations up to 4.8 MeV. The measured results, combined with relevant values available in the literature, were interpreted in terms of optical-statistical and coupled-channels model using both vibrational and rotational coupling schemes. The physical implications of the experimental results nd their interpretation are discussed in the contexts of optical-statistical, dispersive-optical, and coupled-channels models. 61 refs.

  8. How Can the Accuracy of Neutron Nonelastic Cross Sections be Improved?

    NASA Astrophysics Data System (ADS)

    Dietrich, Frank

    2008-10-01

    The nonelastic cross section for incident neutrons is particularly important for applications because it directly determines the sum of all reaction processes other than elastic scattering, and is closely related to the compound-nucleus formation cross section. Scatter in available measurements of the nonelastic cross section shows that this quantity is not known very accurately ( 5--10%). We will show examples of this, together with results from a new technique that shows promise of reducing uncertainties to 2--3% in the range of a few MeV to a few tens of MeV [1]. Comparison of results using this technique on Fe, Pb, Th, and U with optical model calculations suggests that optical potentials are not reliable for predicting nonelastic cross sections to better than 5%, even when they reproduce total cross sections well ( 1%). We will suggest a limited set of high-accuracy measurements of nonelastic cross sections that could be made to guide the further development of optical models that are able to predict nonelastic cross sections reliably. [1] F. S. Dietrich, J. D. Anderson, R. W. Bauer, and S. M. Grimes, Phys. Rev. C68, 064608 (2003).

  9. Cross-section measurements of neutron threshold reactions in various materials

    NASA Astrophysics Data System (ADS)

    Vrzalová, J.; Svoboda, O.; Kugler, A.; Suchopár, M.; Wagner, V.

    As members of international collaboration "Energy and Transmutation of radioactive Waste" we routinely use (n,xn) threshold reactions in various materials to measure high energy neutron flux from spallation reactions. The cross-sections of many reactions important for our activation detectors are missing. To improve situation, we studied the neutron cross-sections using different quasi-monoenergetic neutron sources based on proton reaction on 7Li target. The measurements were performed in Nuclear Physics Institute of the Academy of Sciences of the Czech Republic in Řež near Prague and in The Svedberg Laboratory in Uppsala (Sweden). We used neutron energies 17, 22, 30 and 35 MeV from the quasi-monoenergetic neutron source in Řež and neutron energies 22, 47 and 94 MeV in Uppsala. The last experiment was carried out in February 2010 in Uppsala using neutron energies 59, 66, 72 and 89 MeV. The study of neutron threshold reactions in yttrium was performed first time during this irradiation. We have developed procedure for the subtraction of contribution of the background neutrons. We studied various materials in the form of thin foils and observed good agreement with the data in EXFOR database and also with the calculations performed in deterministic code TALYS. Many cross-sections were measured in the energy regions where no experimental data are available so far.

  10. Neutron cross section covariances in the resonance region: 52Cr, 56Fe, 58Ni

    SciTech Connect

    Oblozinsky, P.; Cho, Y.-S.; Mattoon, C.M.; Mughabghab, S.F.

    2010-08-03

    We evaluated covariances for neutron capture and elastic scattering cross sections on major structural materials, {sup 52}Cr, {sup 56}Fe and {sup 58}Ni, in the resonance region which extends beyond 800 keV for each of them. Use was made of the recently developed covariance formalism based on kernel approximation along with data in the Atlas of Neutron Resonances. The data of most interest for AFCI applications, elastic scattering cross section uncertainties at energies above about few hundred keV, are on the level of about 12% for {sup 52}Cr, 7-8% for {sup 56}Fe and 5-6% for {sup 58}Ni.

  11. A New Signal Processing Technique for Neutron Capture Cross Section Measurement Based on Pulse Width Analysis

    NASA Astrophysics Data System (ADS)

    Katabuchi, T.; Matsuhashi, T.; Terada, K.; Mizumoto, M.; Hirose, K.; Kimura, A.; Furutaka, K.; Hara, K. Y.; Harada, H.; Hori, J.; Igashira, M.; Kamiyama, T.; Kitatani, F.; Kino, K.; Kiyanagi, Y.; Koizumi, M.; Nakamura, S.; Oshima, M.; Toh, Y.

    2014-05-01

    A fast data acquisition method based on pulse width analysis was developed for γ-ray spectroscopy with an NaI(Tl) detector. The new method was tested in experiments with standard γ-ray sources and pulsed neutron beam from a spallation neutron source. Pulse height spectra were successfully reconstructed from pulse width distribution by use of an energy calibration curve. The 197Au(n, γ)198Au cross section was measured by this method to test the viability. The obtained experimental cross section showed a good agreement with a calculation using the resonance parameters of JENDL-4.0.

  12. Parameterization of nuclear cross-sections for coupled neutronic- thermalhydraulic codes

    SciTech Connect

    Miro, R.; Verdu, G.; Barrachina, T.; Rosello, O.

    2006-07-01

    The present work consists of developing an in-house methodology, called SIMTAB, to characterize, in a simplified way, the reactor core of LWR Nuclear Power Plants. Specifically, a cross-sections and kinetic parameters set are obtained as a function of the prompt and control variables. So that, the core can be modeled using a limited number of neutronic regions, in such a way that the reactor kinetic behavior is properly characterized. This simplification of the reactor core permits, from an operative point of view, the use of few cross sections data sets in coupled 3D neutronic-thermalhydraulic codes. (authors)

  13. Error Assessment of Homogenized Cross Sections Generation for Whole Core Neutronic Calculation

    SciTech Connect

    Hursin, Mathieu; Kochunas, Brendan; Downar, Thomas J.

    2007-10-26

    The objective of the work here was to assess the errors introduced by using 2D, few group homogenized cross sections to perform neutronic analysis of BWR problems with significant axial heterogeneities. The 3D method of characteristics code DeCART is used to generate 2-group assembly homogenized cross sections first using a conventional 2D lattice model and then using a full 3D solution of the assembly. A single BWR fuel assembly model based on an advanced BWR lattice design is used with a typical void distribution applied to the fuel channel coolant. This model is validated against an MCNP model. A comparison of the cross sections is performed for the assembly homogenized planar cross sections from the DeCART 3D and DeCART 2D solutions.

  14. Average Neutron Total Cross Sections in the Unresolved Energy Range From ORELA High Resolutio Transmission Measurements

    SciTech Connect

    Derrien, H

    2004-05-27

    Average values of the neutron total cross sections of {sup 233}U, {sup 235}U, {sup 238}U, and {sup 239}Pu have been obtained in the unresolved resonance energy range from high-resolution transmission measurements performed at ORELA in the past two decades. The cross sections were generated by correcting the effective total cross sections for the self-shielding effects due to the resonance structure of the data. The self-shielding factors were found by calculating the effective and true cross sections with the computer code SAMMY for the same Doppler and resolution conditions as for the transmission measurements, using an appropriate set of resonance parameters. Our results are compared to results of previous measurements and to the current ENDF/B-VI data.

  15. Thermal neutron capture cross sections for 16,171,18O and 2H

    NASA Astrophysics Data System (ADS)

    Firestone, R. B.; Revay, Zs.

    2016-04-01

    Thermal neutron capture γ -ray spectra for 16,17,18O and 2H have been measured with guided cold neutron beams from the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) reactor and the Budapest Research Reactor (BRR) on natural and O,1817 enriched D2O targets. Complete neutron capture γ -ray decay schemes for the 16,17,18O(n ,γ ) reactions were measured. Absolute transition probabilities were determined for each reaction by a least-squares fit of the γ -ray intensities to the decay schemes after accounting for the contribution from internal conversion. The transition probability for the 870.76-keV γ ray from 16O(n ,γ ) was measured as Pγ(871 )=96.6 ±0.5 % and the thermal neutron cross section for this γ ray was determined as 0.164 ±0.003 mb by internal standardization with multiple targets containing oxygen and stoichiometric quantities of hydrogen, nitrogen, and carbon whose γ -ray cross sections were previously standardized. The γ -ray cross sections for the O,1817(n ,γ ) and 2H(n ,γ ) reactions were then determined relative to the 870.76-keV γ -ray cross section after accounting for the isotopic abundances in the targets. We determined the following total radiative thermal neutron cross sections for each isotope from the γ -ray cross sections and transition probabilities; σ0(16O )=0.170 ±0.003 mb; σ0(17O )=0.67 ±0.07 mb; σ0(18O )=0.141 ±0.006 mb; and σ0(2H )=0.489 ±0.006 mb.

  16. Methods and procedures for evaluation of neutron-induced activation cross sections

    SciTech Connect

    Gardner, M.A.

    1981-09-01

    One cannot expect measurements alone to supply all of the neutron-induced activation cross-section data required by the fission reactor, fusion reactor, and nuclear weapons development communities, given the wide ranges of incident neutron energies, the great variety of possible reaction types leading to activation, and targets both stable and unstable. Therefore, the evaluator must look to nuclear model calculations and systematics to aid in fulfilling these cross-section data needs. This review presents some of the recent developments and improvements in the prediction of neutron activation cross sections, with specific emphasis on the use of empirical and semiempirical methods. Since such systematics require much less nuclear informaion as input and much less computational time than do the multistep Hauser-Feshbach codes, they can often provide certain cross-section data at a sufficient level of accuracy within a minimum amount of time. The cross-section information that these systematics can and cannot provide and those cases in which they can be used most reliably are discussed.

  17. Reaction cross sections on carbon for neutron energies from 11. 5 to 19 MeV

    SciTech Connect

    Antolkovic, B. ); Dietze, G.; Klein, H. )

    1991-01-01

    This paper reports on neutron-induced reaction cross sections for carbon measured in the 11.5- to 19-MeV energy range. The response of an NE-213 scintillation detector is measured in steps of at least 0.5 MeV for monoenergetic neutrons, applying suitable time-of-flight techniques, and compared with Monte Carlo simulations. The total cross sections of all reactions with charged particles (except carbon recoil protons) in the exit channel are determined with respect to the n-p scattering cross section. In addition, the {sup 12}C(n,n{prime}3{alpha}) reaction is investigated for neutron energies of 11.9, 12.9, 14.0, 14.8, 17.0, and 19.0 MeV using the nuclear emulsion technique. As it is kinematically complete, this measurement yields the total and partial cross sections for the various channels of the {sup 12}C(n,n{prime}3{alpha}) reaction. The experimental data show deviations of up to {plus minus}25% from those recommended in ENDF/B-V, while a recent evaluation by Axton is partially confirmed. Reasonable agreement is found with most of the recent scattering experiments; thus, this data set represents a valuable constraint for further evaluations. The analysis performed, however, has shown that additional data from some partial reaction cross sections are needed.

  18. Absolute measurement of the 242Pu neutron-capture cross section

    DOE PAGESBeta

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; et al

    2016-04-21

    Here, the absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. The first direct measurement of the 242Pu(n,γ) cross section was made over the incident neutron energy range from thermal to ≈ 6 keV, and the absolute scale of the (n,γ) cross section was set according to the known 239Pu(n,f) resonance at En,R = 7.83 eV. This was accomplished by adding a small quantity of 239Pu to the 242Pu sample. The relative scale of the crossmore » section, with a range of four orders of magnitude, was determined for incident neutron energies from thermal to ≈ 40 keV. Our data, in general, are in agreement with previous measurements and those reported in ENDF/B-VII.1; the 242Pu(n,γ) cross section at the En,R = 2.68 eV resonance is within 2.4% of the evaluated value. However, discrepancies exist at higher energies; our data are ≈30% lower than the evaluated data at En ≈ 1 keV and are approximately 2σ away from the previous measurement at En ≈ 20 keV.« less

  19. Determination of Thermal Neutron Capture Cross-Sections at Budapest PGAA Facility

    SciTech Connect

    Revay, Zsolt; Belgya, Tamas; Firestone, Richard B.

    2007-10-26

    Prompt gamma activation analysis (PGAA) is a powerful nuclear analytical technique to determine the elemental and isotopic composition of materials. The PGAA facility at Budapest, Hungary is one of the leading laboratories of the world, determining spectroscopic data for chemical analysis to be used in other laboratories. These partial gamma-ray production cross-sections and k{sub 0} values, being proportional to the analytical sensitivities of the chemical elements, can be transformed into thermal neutron capture cross-sections, i.e. the probabilities of the (n,{gamma}) reactions, which are of broader interest in different fields of nuclear physics. Some preliminary results on thermal neutron capture cross-sections are presented.

  20. Elastic and inelastic neutron scattering cross sections for fission reactor applications

    SciTech Connect

    Hicks, S. F.; Combs, B.; Downes, L.; Girgis, J.; Kersting, L. J.; Lueck, C. J.; McDonough, P. J.; Schniederjan, J.; Sidwell, L.; Sigillito, A. J.; Chakraborty, A.; Crider, B. P.; Kumar, A.; McEllistrem, M. T.; Peters, E. E.; Prados-Estevz, F. M.; Vanhoy, J. R.; Watts, D.; Yates, S. W.

    2013-04-19

    Nuclear data important for the design and development of the next generation of light-water reactors and future fast reactors include neutron elastic and inelastic scattering cross sections on important structural materials, such as Fe, and on coolant materials, such as Na. These reaction probabilities are needed since neutron reactions impact fuel performance during irradiations and the overall efficiency of reactors. While neutron scattering cross sections from these materials are available for certain incident neutron energies, the fast neutron region, particularly above 2 MeV, has large gaps for which no measurements exist, or the existing uncertainties are large. Measurements have been made at the University of Kentucky Accelerator Laboratory to measure neutron scattering cross sections on both Fe and Na in the region where these gaps occur and to reduce the uncertainties on scattering from the ground state and first excited state of these nuclei. Results from measurements on Fe at incident neutron energies between 2 and 4 MeV will be presented and comparisons will be made to model calculations available from data evaluators.

  1. Elastic and inelastic neutron scattering cross sections for fission reactor applications

    NASA Astrophysics Data System (ADS)

    Hicks, S. F.; Chakraborty, A.; Combs, B.; Crider, B. P.; Downes, L.; Girgis, J.; Kersting, L. J.; Kumar, A.; Lueck, C. J.; McDonough, P. J.; McEllistrem, M. T.; Peters, E. E.; Prados-Estevz, F. M.; Schniederjan, J.; Sidwell, L.; Sigillito, A. J.; Vanhoy, J. R.; Watts, D.; Yates, S. W.

    2013-04-01

    Nuclear data important for the design and development of the next generation of light-water reactors and future fast reactors include neutron elastic and inelastic scattering cross sections on important structural materials, such as Fe, and on coolant materials, such as Na. These reaction probabilities are needed since neutron reactions impact fuel performance during irradiations and the overall efficiency of reactors. While neutron scattering cross sections from these materials are available for certain incident neutron energies, the fast neutron region, particularly above 2 MeV, has large gaps for which no measurements exist, or the existing uncertainties are large. Measurements have been made at the University of Kentucky Accelerator Laboratory to measure neutron scattering cross sections on both Fe and Na in the region where these gaps occur and to reduce the uncertainties on scattering from the ground state and first excited state of these nuclei. Results from measurements on Fe at incident neutron energies between 2 and 4 MeV will be presented and comparisons will be made to model calculations available from data evaluators.

  2. A facility for neutrino-nucleus cross-section measurements at the spallation neutron source

    NASA Astrophysics Data System (ADS)

    Efremenko, Yu.

    2005-01-01

    In this paper we discuss the possibility of building a neutrino facility at the Spallation Neutron Source presently under construction at ORNL. At such a facility an extensive long-term program can be established to study neutrino nucleus cross-sections in the range of interest for nuclear astrophysics and nuclear theory.

  3. Reducing Uncertainties in Neutron-Induced Fission Cross Sections Using a Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Manning, Brett; Niffte Collaboration

    2015-10-01

    Neutron-induced fission cross sections for actinides have long been of great interest for nuclear energy and stockpile stewardship. Traditionally, measurements were performed using fission chambers which provided limited information about the detected fission events. For the case of 239Pu(n,f), sensitivity studies have shown a need for more precise measurements. Recently the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) has developed the fission Time Projection Chamber (fissionTPC) to measure fission cross sections to better than 1% uncertainty by providing 3D tracking of fission fragments. The fissionTPC collected data to calculate the 239Pu(n,f) cross section at the Weapons Neutron Research facility at the Los Alamos Neutron Science Center during the 2014 run cycle. Preliminary analysis has been focused on studying particle identification and target and beam non-uniformities to reduce the uncertainty on the cross section. Additionally, the collaboration is investigating other systematic errors that could not be well studied with a traditional fission chamber. LA-UR-15-24906.

  4. Cross Section Sensitivity and Uncertainty Analysis Including Secondary Neutron Energy and Angular Distributions.

    Energy Science and Technology Software Center (ESTSC)

    1991-03-12

    Version 00 SUSD calculates sensitivity coefficients for one- and two-dimensional transport problems. Variance and standard deviation of detector responses or design parameters can be obtained using cross-section covariance matrices. In neutron transport problems, this code can perform sensitivity-uncertainty analysis for secondary angular distribution (SAD) or secondary energy distribution (SED).

  5. 137 and 26 Neutron Multigroup Cross Section Library with the Bondarenko Type Shielding Table.

    Energy Science and Technology Software Center (ESTSC)

    1986-02-16

    Version 00 The basic function of MGCLIB is to generate effective neutron cross section sets in either 137 or 26 group structures for use in the discrete ordinates codes ANISN-JR or DOT 3.5 or in the Monte Carlo codes KENO-IV or MULTI-KENO.

  6. ORELA measurements to meet fusion energy neutron cross section needs. [2 to 80 MeV

    SciTech Connect

    Larson, D C

    1980-01-01

    Major neutron cross section measurements made at the Oak Ridge Electron Linear Accelerator (ORELA) that are useful to the fusion energy program are reviewed. Cross sections for production of gamma rays with energies 0.3 < E/sub ..gamma../ < 10.5 MeV were measured as a function of neutron energy over the range 0.1 < E/sub n/ < 20.0 MeV for Li, C, N, O, F, Na, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Nb, Mo, Ag, Sn, Ta, W, Au, Pb, and Th. Neutron emission cross sections have been measured for /sup 7/Li, Al, Ti, Cu, and Nb for 1 < E/sub n/ < 20 MeV. Some results of recent neutron total cross section measurements from 2 to 80 MeV for eleven materials (C, O, Al, Si, Ca, Cr, Fe, Ni, Cu, Au, and Pb) of interest to the FMIT project are presented. Finally, future directions of the ORELA program are outlined. 4 figures, 3 tables.

  7. Measurement of dijet cross sections for events with a leading neutron in photoproduction at HERA

    NASA Astrophysics Data System (ADS)

    Breitweg, J.; Chekanov, S.; Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Pellegrino, A.; Repond, J.; Stanek, R.; Yoshida, R.; Mattingly, M. C. K.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Giusti, P.; Iacobucci, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Sartorelli, G.; Zichichi, A.; Amelung, C.; Bornheim, A.; Brock, I.; Coböken, K.; Crittenden, J.; Deffner, R.; Hartmann, H.; Heinloth, K.; Hilger, E.; Irrgang, P.; Jakob, H.-P.; Kappes, A.; Katz, U. F.; Kerger, R.; Paul, E.; Rautenberg, J.; Schnurbusch, H.; Stifutkin, A.; Tandler, J.; Voss, K. C.; Weber, A.; Wieber, H.; Bailey, D. S.; Barret, O.; Brook, N. H.; Foster, B.; Heath, G. P.; Heath, H. F.; Rodrigues, E.; Scott, J.; Tapper, R. J.; Capua, M.; Schioppa, M.; Susinno, G.; Jeoung, H. Y.; Kim, J. Y.; Lee, J. H.; Lim, I. T.; Ma, K. J.; Pac, M. Y.; Caldwell, A.; Liu, W.; Liu, X.; Mellado, B.; Paganis, S.; Sampson, S.; Schmidke, W. B.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Klimek, K.; Olkiewicz, K.; Piotrzkowski, K.; Przybycień, M. B.; Stopa, P.; Zawiejski, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowal, A. M.; Kowalski, T.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Szuba, D.; Kotański, A.; Bauerdick, L. A. T.; Behrens, U.; Bienlein, J. K.; Borras, K.; Chiochia, V.; Dannheim, D.; Desler, K.; Drews, G.; Fox-Murphy, A.; Fricke, U.; Goebel, F.; Goers, S.; Göttlicher, P.; Graciani, R.; Haas, T.; Hain, W.; Hartner, G. F.; Hebbel, K.; Hillert, S.; Koch, W.; Kötz, U.; Kowalski, H.; Labes, H.; Löhr, B.; Mankel, R.; Martens, J.; Martínez, M.; Milite, M.; Moritz, M.; Notz, D.; Petrucci, M. C.; Polini, A.; Rohde, M.; Savin, A. A.; Schneekloth, U.; Selonke, F.; Sievers, M.; Stonjek, S.; Wolf, G.; Wollmer, U.; Youngman, C.; Zeuner, W.; Coldewey, C.; Lopez-Duran Viani, A.; Meyer, A.; Schlenstedt, S.; Straub, P. B.; Barbagli, G.; Gallo, E.; Parenti, A.; Pelfer, P. G.; Bamberger, A.; Benen, A.; Coppola, N.; Eisenhardt, S.; Markun, P.; Raach, H.; Wölfle, S.; Bussey, P. J.; Bell, M.; Doyle, A. T.; Glasman, C.; Lee, S. W.; Lupi, A.; Macdonald, N.; McCance, G. J.; Saxon, D. H.; Sinclair, L. E.; Skillicorn, I. O.; Waugh, R.; Bohnet, I.; Gendner, N.; Holm, U.; Meyer-Larsen, A.; Salehi, H.; Wick, K.; Carli, T.; Garfagnini, A.; Gialas, I.; Gladilin, L. K.; Kçira, D.; Klanner, R.; Lohrmann, E.; Gonçalo, R.; Long, K. R.; Miller, D. B.; Tapper, A. D.; Walker, R.; Cloth, P.; Filges, D.; Ishii, T.; Kuze, M.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Ahn, S. H.; Lee, S. B.; Park, S. K.; Lim, H.; Son, D.; Barreiro, F.; García, G.; González, O.; Labarga, L.; del Peso, J.; Redondo, I.; Terrón, J.; Vázquez, M.; Barbi, M.; Corriveau, F.; Hanna, D. S.; Ochs, A.; Padhi, S.; Stairs, D. G.; Wing, M.; Tsurugai, T.; Antonov, A.; Bashkirov, V.; Danilov, M.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Suchkov, S.; Dementiev, R. K.; Ermolov, P. F.; Golubkov, Yu. A.; Katkov, I. I.; Khein, L. A.; Korotkova, N. A.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Solomin, A. N.; Vlasov, N. N.; Zotkin, S. A.; Bokel, C.; Botje, M.; Brümmer, N.; Engelen, J.; Grijpink, S.; Koffeman, E.; Kooijman, P.; Schagen, S.; van Sighem, A.; Tassi, E.; Tiecke, H.; Tuning, N.; Velthuis, J. J.; Vossebeld, J.; Wiggers, L.; de Wolf, E.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Boogert, S.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Große-Knetter, J.; Matsushita, T.; Ruske, O.; Sutton, M. R.; Walczak, R.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dusini, S.; Limentani, S.; Longhin, A.; Posocco, M.; Stanco, L.; Turcato, M.; Adamczyk, L.; Iannotti, L.; Oh, B. Y.; Okrasiński, J. R.; Saull, P. R. B.; Toothacker, W. S.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cormack, C.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Epperson, D.; Heusch, C.; Sadrozinski, H. F.-W.; Seiden, A.; Wichmann, R.; Williams, D. C.; Park, I. H.; Pavel, N.; Abramowicz, H.; Dagan, S.; Kananov, S.; Kreisel, A.; Levy, A.; Abe, T.; Fusayasu, T.; Kohno, T.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Inuzuka, M.; Kitamura, S.; Matsuzawa, K.; Nishimura, T.; Arneodo, M.; Cartiglia, N.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Bailey, D. C.; Fagerstroem, C.-P.; Galea, R.; Koop, T.; Levman, G. M.; Martin, J. F.; Mirea, A.; Sabetfakhri, A.; Butterworth, J. M.; Hayes, M. E.; Heaphy, E. A.; Jones, T. W.; Lane, J. B.; West, B. J.; Ciborowski, J.; Ciesielski, R.; Grzelak, G.; Nowak, R. J.; Pawlak, J. M.; Pawlak, R.; Smalska, B.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Gadaj, T.; Deppe, O.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Badgett, W. F.; Chapin, D.; Cross, R.; Foudas, C.; Mattingly, S.; Reeder, D. D.; Smith, W. H.; Vaiciulis, A.; Wildschek, T.; Wodarczyk, M.; Deshpande, A.; Dhawan, S.; Hughes, V. W.; Bhadra, S.; Catterall, C.; Cole, J. E.; Frisken, W. R.; Hall-Wilton, R.; Khakzad, M.; Menary, S.; ZEUS Collaboration

    2001-02-01

    Differential cross sections for dijet photoproduction in association with a leading neutron using the reaction e++ p→ e++ n+jet+jet+ Xr have been measured with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb -1. The fraction of dijet events with a leading neutron in the final state was studied as a function of the jet kinematic variables. The cross sections were measured for jet transverse energies ETjet>6 GeV, neutron energy En>400 GeV, and neutron production angle θn<0.8 mrad. The data are broadly consistent with factorization of the lepton and hadron vertices and with a simple one-pion-exchange model.

  8. FY07 LDRD Final Report Neutron Capture Cross-Section Measurements at DANCE

    SciTech Connect

    Parker, W; Agvaanluvsan, U; Wilk, P; Becker, J; Wang, T

    2008-02-08

    We have measured neutron capture cross sections intended to address defense science problems including mix and the Quantification of Margins and Uncertainties (QMU), and provide details about statistical decay of excited nuclei. A major part of this project included developing the ability to produce radioactive targets. The cross-section measurements were made using the white neutron source at the Los Alamos Neutron Science Center, the detector array called DANCE (The Detector for Advanced Neutron Capture Experiments) and targets important for astrophysics and stockpile stewardship. DANCE is at the leading edge of neutron capture physics and represents a major leap forward in capability. The detector array was recently built with LDRD money. Our measurements are a significant part of the early results from the new experimental DANCE facility. Neutron capture reactions are important for basic nuclear science, including astrophysics and the statistics of the {gamma}-ray cascades, and for applied science, including stockpile science and technology. We were most interested in neutron capture with neutron energies in the range between 1 eV and a few hundred keV, with targets important to basic science, and the s-process in particular. Of particular interest were neutron capture cross-section measurements of rare isotopes, especially radioactive isotopes. A strong collaboration between universities and Los Alamos due to the Academic Alliance was in place at the start of our project. Our project gave Livermore leverage in focusing on Livermore interests. The Lawrence Livermore Laboratory did not have a resident expert in cross-section measurements; this project allowed us to develop this expertise. For many radionuclides, the cross sections for destruction, especially (n,{gamma}), are not well known, and there is no adequate model that describes neutron capture. The modeling problem is significant because, at low energies where capture reactions are important, the neutron

  9. Cross Section and Analyzing Power Measurements for Neutron Scattering from Aluminum and Cobalt and Spin - Cross Section Calculations

    NASA Astrophysics Data System (ADS)

    Nagadi, Mahmoud Mohamud

    Differential cross sections and analyzing power data have been measured for ^{27} Al and ^{59}Co at 15.5 MeV. Cross section data was also measured for ^{59}Co at 10, 12, 14, 17, and 19 MeV using standard time-of-flight techniques at the Triangle Universities Nuclear Laboratory (TUNL). Absolute normalization of the sigma(theta) data was performed using n-p scattering measurements. Both sigma(theta) and rm A_{y}(theta) were corrected for finite geometry, attenuation, relative efficiency, and multiple scattering effects using Monte Carlo techniques. A large data base was formed from our data and the existing data on ^{27}Al and ^{59}Co. This data base was used to develop a Dispersive Optical Model (DOM) and a Coupled Channels Model (CCM). The DOM model describes the data quite well above 8 MeV for ^{27 }Al and ^{59}Co. However, for data below 8 MeV the model is not as satisfactory, perhaps because of angular momentum l-dependencies in the absorptive potential. The CCM improved the description of the data over the DOM, but still does not describe the data well at low energies. The DOM and CCM for ^{27} Al and ^{59}Co were used to describe the spin-spin cross section data for ^{27}Al and ^{59}Co. We obtained a good fit for the spin-spin cross section with both the DOM and CCM with the spin-spin real surface parameters of V _{rm ss} = 0.80 MeV, r _{rm ss} = 1.00 fm and a _{rm ss} = 0.654 for both ^{27}Al and ^{59}Co. A surprising relation between the spin-spin cross section and the derivative of the total cross section with respect to energy, was discovered: sigma_{ss } = c {dsigma_{T} over dE} where c is a constant related to the slope of the real central potential and spin-spin potential strength. This observation is not yet understood.

  10. Neutron-photon multigroup cross sections for neutron energies less than or equal to400 MeV. Revision 1

    SciTech Connect

    Alsmiller, R.G. Jr.; Barnes, J.M.; Drischler, J.D.

    1986-01-01

    For a variety of applications, e.g., accelerator shielding design, neutrons in radiotherapy, radiation damage studies, etc., it is necessary to carry out transport calculations involving medium-energy (greater than or equal to20 MeV) neutrons. A previous paper described neutron-photon multigroup cross sections in the ANISN format for neutrons from thermal to 400 MeV. In the present paper the cross-section data presented previously have been revised to make them agree with available experimental data. 7 refs., 1 fig.

  11. Theoretical study of evaporation cross sections in the synthesis of very neutron-deficient nuclei

    SciTech Connect

    Wang Chengbin; Zhang Jinjuan; Ren, Z. Z.

    2011-07-15

    The synthesis of rare-earth neutron-deficient nuclei with large Z/N ratio {approx_equal}0.88 is studied within the framework of the standard statistical model. The fusion cross sections are calculated on the basis of the nuclear reaction video model. The deexcitation process is calculated with the help of the statistical code alice. It is found that the excitation functions can be predicted using a few exited experimental data by carefully choosing the input parameters in the statistical model. The results obtained show that a satisfactory description of the experimental evaporation cross sections requires a great reduction in the theoretical fission barriers.

  12. Measurements of the breakup and neutron removal cross sections for {sup 16}C

    SciTech Connect

    Ashwood, N. I.; Freer, M.; Clarke, N.M.; Curtis, N.; Soic, N.; Ziman, V.A.; Angelique, J.C.; Lecouey, J.L.; Marques, F.M.; Normand, G.; Orr, N.A.; Timis, C.; Bouchat, V.; Hanappe, F.; Kerckx, Y.; Materna, T.; Catford, W.N.; Dorvaux, O.; Stuttge, L.

    2004-12-01

    Measurements of the breakup and the neutron removal reactions of {sup 16}C have been made at 46 MeV/A and the decay cross sections measured. A correlation between the cluster breakup channels and the reaction Q value suggests that the reaction mechanism is strongly linked to quasielastic processes. No enhancement of the two-body cluster breakup cross section is seen for {sup 16}C. This result would indicate that {sup 16}C does not have a well developed cluster structure in the ground state, in agreement with recent calculations.

  13. Cross sections for one-neutron knock-out from 37Ca at intermediate energy

    NASA Astrophysics Data System (ADS)

    Bürger, A.; Azaiez, F.; Algora, A.; Al-Khatib, A.; Bastin, B.; Benzoni, G.; Borcea, R.; Bourgeois, C.; Bringel, P.; Clément, E.; Dalouzy, J.-C.; Dlouhý, Z.; Dombrádi, Z.; Drouart, A.; Engelhardt, C.; Franchoo, S.; Fülöp, Z.; Görgen, A.; Grévy, S.; Hübel, H.; Ibrahim, F.; Korten, W.; Mrázek, J.; Navin, A.; Rotaru, F.; Roussel Chomaz, P.; Saint-Laurent, M.-G.; Sletten, G.; Sohler, D.; Sorlin, O.; Stanoiu, M.; Stefan, I.; Theisen, C.; Timis, C.; Verney, D.; Williams, S.

    2012-12-01

    The cross section for the knock-out of a deeply bound valence neutron from 37Ca at an incident beam energy of 60AMeV has been measured along with momentum distributions of the residual nuclei and γ rays from the de-excitation of the first excited state in 36Ca. As for other cases of deeply bound nucleons studied using knock-out reactions, the reduction of the measured cross section compared to theoretical predictions is stronger than those observed for near-magic stable nuclei. Both the momentum distributions and the excitation energy of the first excited state in 36Ca indicate a sizable N=16 gap.

  14. Thermal neutron capture and resonance integral cross sections of 45Sc

    NASA Astrophysics Data System (ADS)

    Van Do, Nguyen; Duc Khue, Pham; Tien Thanh, Kim; Thi Hien, Nguyen; Kim, Guinyun; Kim, Kwangsoo; Shin, Sung-Gyun; Cho, Moo-Hyun; Lee, Manwoo

    2015-11-01

    The thermal neutron cross section (σ0) and resonance integral (I0) of the 45Sc(n,γ)46Sc reaction have been measured relative to that of the 197Au(n,γ)198Au reaction by means of the activation method. High-purity natural scandium and gold foils without and with a cadmium cover of 0.5 mm thickness were irradiated with moderated pulsed neutrons produced from the Pohang Neutron Facility (PNF). The induced activities in the activated foils were measured with a high purity germanium (HPGe) detector. In order to improve the accuracy of the experimental results the counting losses caused by the thermal (Gth) and resonance (Gepi) neutron self-shielding, the γ-ray attenuation (Fg) and the true γ-ray coincidence summing effects were made. In addition, the effect of non-ideal epithermal spectrum was also taken into account by determining the neutron spectrum shape factor (α). The thermal neutron cross-section and resonance integral of the 45Sc(n,γ)46Sc reaction have been determined relative to the reference values of the 197Au(n,γ)198Au reaction, with σo,Au = 98.65 ± 0.09 barn and Io,Au = 1550 ± 28 barn. The present thermal neutron cross section has been determined to be σo,Sc = 27.5 ± 0.8 barn. According to the definition of cadmium cut-off energy at 0.55 eV, the present resonance integral cross section has been determined to be Io,Sc = 12.4 ± 0.7 barn. The present results are compared with literature values and discussed.

  15. Neutron, Proton, and Photonuclear Cross Sections for Radiation Therapy and Radiation Protection

    SciTech Connect

    Chadwick, M.B.

    1998-09-10

    The authors review recent work at Los Alamos to evaluate neutron, proton, and photonuclear cross section up to 150 MeV (to 250 MeV for protons), based on experimental data and nuclear model calculations. These data are represented in the ENDF format and can be used in computer codes to simulate radiation transport. They permit calculations of absorbed dose in the body from therapy beams, and through use of kerma coefficients allow absorbed dose to be estimated for a given neutron energy distribution. For radiation protection, these data can be used to determine shielding requirements in accelerator environments, and to calculate neutron, proton, gamma-ray, and radionuclide production. Illustrative comparisons of the evaluated cross section and kerma coefficient data with measurements are given.

  16. Neutron capture cross section measurements at the beam line 04 of J-PARC/MLF

    SciTech Connect

    Igashira, Masayuki; Harada, Hideo; Kiyanagi, Yoshiaki

    2012-11-12

    An Accurate Neutron-Nucleus Reaction measurement Instrument (ANNRI) at the beam line 04 of MLF (Material and Life Sciences Experimental Facilities) of J-PARC (Japan Proton Accelerator Research Complex) was installed to measure neutron capture cross sections related to the research and development of innovative nuclear systems, the study on nuclear astrophysics, etc. ANNRI has two gamma-ray spectrometers: one is a Ge detector array placed at 22 m from the coupled type moderator of the spallation neutron source of J-PARC/MLF and the other is a pair of NaI(Tl) detectors at 28 m. Until the 11th of March, 2011, when we had big earthquakes, we measured capture cross sections of Zr-93, Tc-99, Pd-107, I-129, Cm-244, Cm-246, etc. After checking and repairing ANNRI, we restarted measurements, and ANNRI has been open to worldwide users at present.

  17. Interactive Graphic User Interface to View Neutron and Gamma-Ray Interaction Cross Sections.

    Energy Science and Technology Software Center (ESTSC)

    2001-12-20

    Version 00 VIEW-CXS is an interactive, user-friendly interface to graphically view neutron and gamma-ray cross-sections of isotopes available in different data libraries. The names of isotopes for which the cross-sections are available is shown in a data base grid on the selection of a particular library. Routines have been developed in Visual Basic 6.0 to retrieve required information from each of the binary files or random access files. The present program can fetch data from:more » 1) ACE random access file used with MCNP code, 2) AMPX binary file used with KENO code, 3) ANISN group cross-sections used with discrete ordinate codes. It is possible to compare the data of cross-sections for any isotope from selected libraries. Besides it is possible to extract a particular nuclear reaction cross-section from ACE library files. Context sensitive help is an attractive feature of the program and aids the novice user to extract the required data.« less

  18. Neutron-induced Fission Cross Section of 240,242Pu

    NASA Astrophysics Data System (ADS)

    Salvador-Castiñeira, P.; Bryś, T.; Eykens, R.; Hambsch, F.-J.; Göök, A.; Oberstedt, S.; Pretel, C.; Sibbens, G.; Vanleeuw, D.; Vidali, M.

    A sensitivity analysis for the new generation of fast reactors [Salvatores (2008)] has shown the importance of improved cross section data for several actinides. Among them, the 240,242Pu(n,f) cross sections require an accuracy improvement to 1-3% and 3-5%, respectively, from the current level of 6% and 20%. At the Van de Graaff facility of the Institute for Reference Materials and Measurements (JRC-IRMM) the fission cross section of the two isotopes was measured relative to two secondary standard reactions, 237Np(n,f) and 238U(n,f), using a twin Frisch-grid ionization chamber. The secondary standard reactions were benchmarked through measurements against the primary standard reaction 235U(n,f) in the same geometry. Sample masses were determined by means of low-geometry alpha counting or/and a 2π Frisch-grid ionization chamber, with an uncertainty lower than 2%. The neutron flux and the impact of scattering from material between source and target was examined, the largest effect having been found in cross section ratio measurements between a fissile and a fertile isotope. Our 240,242Pu(n,f) cross sections are in agreement with previous experimental results and slightly lower than present evaluations. In case of the 242Pu(n,f) reaction no evidence for a resonance at En=1.1 MeV was found.

  19. Covariances Obtained from an Evaluation of the Neutron Cross Section Standards

    SciTech Connect

    Carlson, A. D.; Badikov, S. A.; Chen, Zhenpeng; Gai, E.; Pronyaev, V. G.; Hale, G. M.; Kawano, T.; Hambsch, F.; Hoffman, H.; Larson, Nancy M; Oli, S.; Smith, D. L.; Tagesen, S.; Vonach, H.

    2008-12-01

    New measurements and an improved evaluation process were used to obtain a new evaluation of the neutron cross section standards. Efforts were made to include as much information as possible on the components of the data uncertainties that were then used to obtain the covariance matrices for the experimental data. Evaluations were produced from this process for the 6Li(n,t), 10B(n, ), 10B(n, 1 ), 197Au(n, ), 235U(n,f), and 238U(n,f) standard cross sections as well as the non-standard 6Li(n,n), 10B(n,n), 238U(n, ) and 239Pu(n,f) cross sections. There is a general increase in the cross sections for most of the new evaluations, by as much as about 5%, compared with the ENDF/B-VI results. Covariance data were obtained for the 6Li(n,t), 6Li(n,n), 10B(n, ), 10B(n, 1 ), 10B(n,n), 197Au(n, ), 235U(n,f), 238U(n,f), 238U(n, ) and 239Pu(n,f) reactions. Also an independent R-Matrix evaluation was produced for the H(n,n) standard cross-section, however, covariance data are not available for this reaction. The evaluations were used in the new ENDF/B-VII library.

  20. Neutron capture cross section of {sup 15}N at stellar energies

    SciTech Connect

    Meissner, J.; Schatz, H.; Herndl, H.; Wiescher, M.; Beer, H.; Kaeppeler, F.

    1996-02-01

    The neutron capture rate on {sup 15}N may be of considerable importance for {ital s}-process nucleosynthesis in red giants as well as for the nucleosynthesis in inhomogeneous big bang scenarios. We measured the reaction cross section of {sup 15}N({ital n},{gamma}){sup 16}N at the Forschungszentrum Karlsruhe with a fast cyclic neutron activation technique at laboratory neutron energies of 25, 152, and 370 keV. Direct capture and shell model calculations were performed to interpret the results. The presented reaction rate is 30{endash}50{percent} smaller than the previously used theoretical rates. {copyright} {ital 1996 The American Physical Society.}

  1. Techniques for obtaining high vertical resolution formation capture cross sections from pulsed neutron logs

    SciTech Connect

    Smith, H.D. Jr.; Wyatt, D.F. Jr.; Smith, M.P.

    1991-02-05

    This patent describes a method for measuring high vertical resolution earth formation thermal neutron capture cross sections of earth formations in the vicinity of a well borehole. It comprises repetitively emitting in a well borehole relatively short duration bursts of fast neutrons; detecting, as a function of depth, in the borehole during time intervals between the repetitive bursts of fast neutrons; filtering count rate signals to reduce statistical fluctuations in subsequent computations; combining at least two filtered count rate signals; selecting at least one of the at least two filtered gate count rate signals.

  2. NEUTRON CROSS SECTION COVARIANCES FROM THERMAL ENERGY TO 20 MeV.

    SciTech Connect

    ROCHMAN,D.; HERMAN, M.; OBLOZINSKY, P.; MUGHABGHAB, S.F.; PIGNI, M.; KAWANO, T.

    2007-04-27

    We describe new method for energy-energy covariance calculation from the thermal energy up to 20 MeV. It is based on three powerful basic components: (i) Atlas of Neutron Resonances in the resonance region; (ii) the nuclear reaction model code EMPIRE in the unresolved resonance and fast neutron regions, and (iii) the Bayesian code KALMAN for correlations and error propagation. Examples for cross section uncertainties and correlations on {sup 90}Zr and {sup 193}Ir illustrate this approach in the resonance and fast neutron regions.

  3. Proton capture cross sections on neutron-magic 144Sm at astrophysically relevant energies

    NASA Astrophysics Data System (ADS)

    Kinoshita, N.; Hayashi, K.; Ueno, S.; Yatsu, Y.; Yokoyama, A.; Takahashi, N.

    2016-02-01

    Background: The p nuclei, which are not produced by neutron capture processes, are present with a typical isotopic abundance of 0.01%-0.3%. Abundance decreases with an increase in atomic number. However, the neutron-magic isotopes of 92Mo and 144Sm exhibit unusually large abundances in comparison. A combination of proton and α -particle capture reactions and neutron emission reactions are key to understanding this issue. Currently, complex network calculations do not have access to much experimental data, and hence require theoretically predicted reaction rates in order to estimate final abundances produced in nucleosynthesis. Purpose: Few experimental cross sections of (p ,γ) reactions on heavy nuclides with mass numbers of 130-150 have been reported. The 144Sm(p ,γ )145Eu reaction is the main destruction pathway for the nucleosynthesis of the 144Sm nuclide. In the present paper, experimental cross sections of the 144Sm(p ,γ )145Eu reaction at a range including astrophysically relevant energies for the p process were determined to compare with theoretical predictions using the Hauser-Feshback statistical model. Methods: The 144Sm was deposited on a high-purity Al foil with the molecular plating method. Stacks consisting of Ta degrader foils, 144Sm targets, and Cu foils used as flux monitors were irradiated with 14.0-MeV proton beams. The 144Sm(p ,γ )145Eu cross sections were determined from the 145Eu activities and the proton fluence estimated from the 65Zn activity in the Cu monitor foil. The proton energies bombarded on each 144Sm target were estimated using srim2013. Results: We determined the 144Sm(p ,γ )145Eu cross sections at proton energies between 2.8 and 7.6 MeV. These energies encompass nucleosynthesis temperatures between 3 and 5 GK. The cross sections at energies higher than 3.8 MeV agreed well with theoretically predicted cross sections using talys using the generalized superfluid (GS) model for level densities. However, calculations using non

  4. Photo-neutron Cross Section Calculations of Several Structural Fusion Materials

    NASA Astrophysics Data System (ADS)

    Kaplan, A.; Özdoğan, H.; Aydın, A.; Tel, E.

    2013-06-01

    In this study, the theoretical photo-neutron cross-sections produced by (γ,n) reactions for several structural fusion materials such as 51V, 55Mn, 58Ni, 90,91,92,94Zr, and 181Ta have been investigated in the incident energy range of 7-40 MeV. Reaction cross-sections as a function of photon energy have been calculated theoretically using the PCROSS and TALYS 1.2 computer codes. TALYS 1.2 default and pre-equilibrium models have been used to calculate the pre-equilibrium photo-neutron cross-sections. For the reaction equilibrium component, PCROSS Weisskopf-Ewing model calculations have been preferred. The calculated results have been compared with each other and against the experimental data in the existing databases EXFOR and TENDL-2011. PCROSS Weisskopf-Ewing model calculations show a similar structure with experimental data but they are higher than the experimental values for all reactions except for 90Zr(γ,n)89Zr reaction. Generally, TALYS 1.2 default and pre-equilibrium model cross-section calculations are the best agreement with the experimental data for all reactions except for 58Ni(γ,n)57Ni reaction along the incident photon energy in this study. The TALYS 1.2 curves fit the TENDL-2011 data the best. If photo-neutron cross-section data is needed for an isotope where there is no experimental data available for comparison, TALYS 1.2 pre-equilibrium option has been recommended.

  5. RSAP - A Code for Display of Neutron Cross Section Data and SAMMY Fit Results

    SciTech Connect

    Sayer, R.O.

    2001-02-02

    RSAP is a computer code for display of neutron cross section data and selected SAMMY output. SAMMY is a multilevel R-matrix code for fitting neutron time-of-flight cross-section data using Bayes' method. RSAP, which runs on the Digital Unix Alpha platform, reads ORELA Data Files (ODF) created by SAMMY and uses graphics routines from the PLPLOT package. In addition, RSAP can read data and/or computed values from ASCII files with a format specified by the user. Plot output may be displayed in an X window, sent to a postscript file (rsap.ps), or sent to a color postscript file (rsap.psc). Thirteen plot types are supported, allowing the user to display cross section data, transmission data, errors, theory, Bayes fits, and residuals in various combinations. In this document the designations theory and Bayes refer to the initial and final theoretical cross sections, respectively, as evaluated by SAMMY. Special plot types include Bayes/Data, Theory--Data, and Bayes--Data. Output from two SAMMY runs may be compared by plotting the ratios Theory2/Theory1 and Bayes2/Bayes1 or by plotting the differences (Theory2-Theory1) and (Bayes2-Bayes1).

  6. Neutron capture cross-section studies of Tellurium isotopes for neutrinoless double beta decay applications

    NASA Astrophysics Data System (ADS)

    Bhike, Megha; Tornow, Werner

    2014-09-01

    The CUORE detector at Gran Sasso, aimed at searching for neutrinoless double-beta decay of 130Te, employs an array of TeO2 bolometer modules. To understand and identify the contribution of muon and (α,n) induced neutrons to the CUORE background, fast neutron cature cross-section data of the tellurium isotopes 126Te, 128Te and 130Te have been measured with the activation method at eight different energies in the neutron energy range 0.5-7.5 MeV. Plastic pill boxes of diameter 1.6 cm and width 1 cm containing Te were irradiated with mono-energetic neutrons produced via the 3H(p,n)3He and 2H(d,n)3He reactions. The cross-sections were determined relative to the 197Au(n, γ)198Au and 115In(n,n')115m In standard cross sections. The activities of the products were measured using 60% lead-shielded HPGe detectors at TUNL's low background counting facility. The present results are compared with the evaluated data from TENDL-2012, ENDF/B-VII.1, JEFF-3.2 and JENDL-4.0, as well as with literature data.

  7. Stellar Neutron Capture Cross Sections of the Lu and Hf Isotopes

    SciTech Connect

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Kazakov, L.; Krticka, M.

    2005-05-24

    The neutron capture cross sections of 175,176Lu and 176,177,178,179,180Hf have been measured in the energy range from 3 to 225 keV at the Karlsruhe 3.7 MV Van de Graaff accelerator relative to the gold standard. Neutrons were produced by the 7Li(p,n)7Be reaction and capture events were detected by the Karlsruhe 4{pi}BaF2 detector. The cross section ratios could be determined with uncertainties between 0.9 and 1.8% about a factor of five more accurate than previous data. A strong population of isomeric states was found in neutron capture of the Hf isotopes, which are only partially explained by CASINO/GEANT simulations based on the known level schemes.Maxwellian averaged neutron capture cross sections were calculated for thermal energies between kT = 8 keV and 100 keV. Severe differences up to40% were found to the data of a recent evaluation based on existing experimental results. The new data allow for a much more reliable analysis of the important branching in the s-process synthesis path at 176Lu which can be interpreted as an s-process thermometer.

  8. NEUTRON CROSS SECTION EVALUATIONS OF FISSION PRODUCTS BELOW THE FAST ENERGY REGION

    SciTech Connect

    OH,S.Y.; CHANG,J.; MUGHABGHAB,S.

    2000-05-11

    Neutron cross section evaluations of the fission-product isotopes, {sup 95}Mo, {sup 99}Tc, {sup 101}Ru, {sup 103}Rh, {sup 105}Pd, {sup 109}Ag, {sup 131}Xe, {sup 133}Cs, {sup 141}Pr, {sup 141}Nd, {sup 147}Sm, {sup 149}Sm, {sup 150}Sm, {sup 151}Sm, {sup 152}Sm, {sup 153}Eu, {sup 155}Gd, and {sup 157}Gd were carried out below the fast neutron energy region within the framework of the BNL-KAERI international collaboration. In the thermal energy region, the energy dependence of the various cross-sections was calculated by applying the multi-level Breit-Wigner formalism. In particular, the strong energy dependence of the coherent scattering lengths of {sup 155}Gd and {sup 157}Gd were determined and were compared with recent calculations of Lynn and Seeger. In the resonance region, the recommended resonance parameters, reported in the BNL compilation, were updated by considering resonance parameter information published in the literature since 1981. The s-wave and, if available, p-wave reduced neutron widths were analyzed in terms of the Porter-Thomas distribution to determine the average level spacings and the neutron strength functions. Average radiative widths were also calculated from measured values of resolved energy resonances. The average resonance parameters determined in this study were compared with those in the BNL and other compilations, as well as the ENDF/B-VI, JEF-2.2, and JENDL-3.2 data libraries. The unresolved capture cross sections of these isotopes, computed with the determined average resonance parameters, were compared with measurements, as well as the ENDF/B-VI evaluations. To achieve agreement with the measurements, in a few cases minor adjustments in the average resonance parameters were made. Because of astrophysical interest, the Maxwellian capture cross sections of these nuclides at a neutron temperature of 30 keV were computed and were compared with other compilations and evaluations.

  9. Model for neutron total cross-section at low energies for nuclear grade graphite

    NASA Astrophysics Data System (ADS)

    Galván Josa, V. M.; Dawidowski, J.; Santisteban, J. R.; Malamud, F.; Oliveira, R. G.

    2015-04-01

    At subthermal neutron energies, polycrystalline graphite shows a large total cross-section due to small angle scattering processes. In this work, a new methodology to determine pore size distributions through the neutron transmission technique at subthermal energies is proposed and its sensitivity is compared with standard techniques. A simple model based on the form factor for spherical particles, normally used in the Small Angle Neutron Scattering technique, is employed to calculate the contribution of small angle effect to the total scattering cross-section, with the width and center of the radii distributions as free parameters in the model. Small Angle X-ray Scattering experiments were performed to compare results as a means to validate the method. The good agreement reached reveals that the neutron transmission technique is a useful tool to explore small angle scattering effects. This fact can be exploited in situations where large samples must be scanned and it is difficult to investigate them with conventional methods. It also opens the possibility to apply this method in energy-resolved neutron imaging. Also, since subthermal neutron transmission experiments are perfectly feasible in small neutron sources, the present findings open new possibilities to the work done in such kind of facilities.

  10. Neutron capture cross section of unstable 63Ni: implications for stellar nucleosynthesis.

    PubMed

    Lederer, C; Massimi, C; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krtička, M; Kroll, J; Langer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T J; Zugec, P

    2013-01-11

    The 63Ni(n,γ) cross section has been measured for the first time at the neutron time-of-flight facility n_TOF at CERN from thermal neutron energies up to 200 keV. In total, capture kernels of 12 (new) resonances were determined. Maxwellian averaged cross sections were calculated for thermal energies from   kT=5-100  keV with uncertainties around 20%. Stellar model calculations for a 25M⊙ star show that the new data have a significant effect on the s-process production of 63Cu, 64Ni, and 64Zn in massive stars, allowing stronger constraints on the Cu yields from explosive nucleosynthesis in the subsequent supernova. PMID:23383895

  11. Measurement and evaluation of selected 14-MeV neutron cross sections for fusion

    SciTech Connect

    Meadows, J.W.; Smith, D.L.; Cox, S.A.

    1985-01-01

    Experimental neutron-activation cross-section data in the vicinity of 14 MeV are evaluated for several reactions of fusion-related interest using a least-squares method. New experimental measurements are performed at 14.7 MeV for all of these considered reactions and for some commonly-used standard reactions as well. Comparison is made between measured and evaluated results.

  12. High resolution measurement of neutron inelastic scattering cross-sections for 23Na

    NASA Astrophysics Data System (ADS)

    Rouki, C.; Archier, P.; Borcea, C.; De Saint Jean, C.; Drohé, J. C.; Kopecky, S.; Moens, A.; Nankov, N.; Negret, A.; Noguère, G.; Plompen, A. J. M.; Stanoiu, M.

    2012-04-01

    The neutron inelastic scattering cross-section of 23Na has been measured in response to the relevant request of the OECD-NEA High Priority Request List, which requires a target uncertainty of 4% in the energy range up to 1.35 MeV for the development of sodium-cooled fast reactors. The measurement was performed at the GELINA facility with the Gamma Array for Inelastic Neutron Scattering (GAINS), featuring eight high purity germanium detectors. The setup is installed at a 200 m flight path from the neutron source and provides high resolution measurements using the (n,n'γ)-technique. The sample was an 80 mm diameter metallic sodium disk prepared at IRMM. Transitions up to the seventh excited state were observed and the differential gamma cross-sections at 110° and 150° were measured, showing mostly isotropic gamma emission. From these the gamma production, level and inelastic cross-sections were determined for neutron energies up to 3838.9 keV. The results agree well with the existing data and the evaluated nuclear data libraries in the low energies, and provide new experimental points in the little studied region above 2 MeV. Following a detailed review of the methodology used for the gamma efficiency calibrations and flux normalization of GAINS data, an estimated total uncertainty of 2.2% was achieved for the inelastic cross-section integrals over the energy ranges 0.498-1.35 MeV and 1.35-2.23 MeV, meeting the required targets.

  13. A unified Monte Carlo approach to fast neutron cross section data evaluation.

    SciTech Connect

    Smith, D.; Nuclear Engineering Division

    2008-03-03

    A unified Monte Carlo (UMC) approach to fast neutron cross section data evaluation that incorporates both model-calculated and experimental information is described. The method is based on applications of Bayes Theorem and the Principle of Maximum Entropy as well as on fundamental definitions from probability theory. This report describes the formalism, discusses various practical considerations, and examines a few numerical examples in some detail.

  14. Differential Cross Sections for Neutron Elastic and Inelastic Scattering on 23Na

    NASA Astrophysics Data System (ADS)

    Vanhoy, J. R.; Hicks, S. F.; Chakraborty, A.; Champine, B. R.; Combs, B.; Crider, B. P.; Kersting, L. J.; Kumar, A.; Lueck, C. J.; McDonough, P. J.; McEllistrem, M. T.; Peters, E. E.; Prados-Estévez, F. M.; Sidwell, L.; Sigillito, A.; Watts, D. W.; Yates, S. W.

    2014-03-01

    Measurements of neutron elastic and inelastic scattering from 23Na have been performed for sixteen incident neutron energies above 1.5 MeV with the 7-MV University of Kentucky Accelerator using the 3H(p,n) reaction as the neutron source. These measurements were complemented by γ-ray excitation functions using the (n,n'γ) reaction. The time-of-flight technique is employed for background reduction in both neutron and γ- ray measurements and for determining the energy of the scattered neutrons. Cross section determinations support fuel cycle and structural materials research and development. Previous reaction model evaluations [1] relied primarily on total cross sections and four (n,n0) and (n,n1) angular distributions in the En = 5 to 9 MeV range. The inclusion of more inelastic channels at lower neutron energies provides additional information on direct couplings between elastic and inelastic scattering as a function of angular momentum transfer. Reaction model calculations examining direct collective and statistical properties were performed.

  15. Assessment of the neutron cross section database for mercury for the ORNL spallation source

    SciTech Connect

    Leal, L.C.; Spencer, R.R.; Ingersoll, D.T.; Gabriel, T.A.

    1996-06-01

    Neutron source generation based on a high energy particle accelerator has been considered as an alternative to the canceled Advanced Neutron Source project at Oak Ridge National Laboratory. The proposed technique consists of a spallation neutron source in which neutrons are produced via the interaction of high-energy charged particles in a heavy metal target. Preliminary studies indicate that liquid mercury bombarded with GeV protons provides an excellent neutron source. Accordingly, a survey has been made of the available neutron cross-section data. Since it is expected that spectral modifiers, specifically moderators, will also be incorporated into the source design, the survey included thermal energy, resonance region, and high energy data. It was found that data of individual isotopes were almost non-existent and that the only evaluation found for the natural element had regions of missing data or discrepant data. Therefore, it appears that to achieve the desired degree of accuracy in the spallation source design it is necessary to re-evaluate the mercury database including making new measurements. During the presentation the currently available data will be presented and experiments proposed which can lead to design quality cross sections.

  16. Resonance neutron-capture cross sections of stable magnesium isotopes and their astrophysical implications

    NASA Astrophysics Data System (ADS)

    Massimi, C.; Koehler, P.; Bisterzo, S.; Colonna, N.; Gallino, R.; Gunsing, F.; Käppeler, F.; Lorusso, G.; Mengoni, A.; Pignatari, M.; Vannini, G.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Álvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Barbagallo, M.; Baumann, P.; Bečvář, F.; Belloni, F.; Bennett, M.; Berthoumieux, E.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Dolfini, R.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fujii, K.; Furman, W.; Goncalves, I.; González-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Herwig, F.; Hirschi, R.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Ketlerov, V.; Konovalov, V.; Kopecky, S.; Kossionides, E.; Krtička, M.; Lampoudis, C.; Leeb, H.; Lederer, C.; Lindote, A.; Lopes, I.; Losito, R.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Martínez, T.; Mastinu, P.; Mendoza, E.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rockefeller, G.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Salgado, J.; Santos, C.; Sarchiapone, L.; Sarmento, R.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vaz, P.; Ventura, A.; Villamarin, D.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescher, M.; Wisshak, K.

    2012-04-01

    We have measured the neutron capture cross sections of the stable magnesium isotopes 24,25,26Mg in the energy range of interest to the s process using the neutron time-of-flight facility n_TOF at CERN. Capture events from a natural metal sample and from samples enriched in 25Mg and 26Mg were recorded using the total energy method based on C62H6 detectors. Neutron resonance parameters were extracted by a simultaneous resonance shape analysis of the present capture data and existing transmission data on a natural isotopic sample. Maxwellian-averaged capture cross sections for the three isotopes were calculated up to thermal energies of 100 keV and their impact on s-process analyses was investigated. At 30 keV the new values of the stellar cross section for 24Mg, 25Mg, and 26Mg are 3.8±0.2 mb, 4.1±0.6 mb, and 0.14±0.01 mb, respectively.

  17. γ production and neutron inelastic scattering cross sections for 76Ge

    NASA Astrophysics Data System (ADS)

    Rouki, C.; Domula, A. R.; Drohé, J. C.; Koning, A. J.; Plompen, A. J. M.; Zuber, K.

    2013-11-01

    The 2040.7-keV γ ray from the 69th excited state of 76Ge was investigated in the interest of Ge-based double-β-decay experiments like the Germanium Detector Array (GERDA) experiment. The predicted transition could interfere with valid 0νββ events at 2039.0 keV, creating false signals in large-volume 76Ge enriched detectors. The measurement was performed with the Gamma Array for Inelastic Neutron Scattering (GAINS) at the Geel Electron Linear Accelerator (GELINA) white neutron source, using the (n,n'γ) technique and focusing on the strongest γ rays originating from the level. Upper limits obtained for the production cross section of the 2040.7-keV γ ray showed no possible influence on GERDA data. Additional analysis of the data yielded high-resolution cross sections for the low-lying states of 76Ge and related γ rays, improving the accuracy and extending existing data for five transitions and five levels. The inelastic scattering cross section for 76Ge was determined for incident neutron energies up to 2.23 MeV, significantly increasing the energy range for which experimental data are available. Comparisons with model calculations using the talys code are presented indicating that accounting for the recently established asymmetric rotor structure should lead to an improved description of the data.

  18. Sensitivity Analysis of Nuclide Importance to One-Group Neutron Cross Sections

    SciTech Connect

    Sekimoto, Hiroshi; Nemoto, Atsushi; Yoshimura, Yoshikane

    2001-07-15

    The importance of nuclides is useful when investigating nuclide characteristics in a given neutron spectrum. However, it is derived using one-group microscopic cross sections, which may contain large errors or uncertainties. The sensitivity coefficient shows the effect of these errors or uncertainties on the importance.The equations for calculating sensitivity coefficients of importance to one-group nuclear constants are derived using the perturbation method. Numerical values are also evaluated for some important cases for fast and thermal reactor systems.Many characteristics of the sensitivity coefficients are derived from the derived equations and numerical results. The matrix of sensitivity coefficients seems diagonally dominant. However, it is not always satisfied in a detailed structure. The detailed structure of the matrix and the characteristics of coefficients are given.By using the obtained sensitivity coefficients, some demonstration calculations have been performed. The effects of error and uncertainty of nuclear data and of the change of one-group cross-section input caused by fuel design changes through the neutron spectrum are investigated. These calculations show that the sensitivity coefficient is useful when evaluating error or uncertainty of nuclide importance caused by the cross-section data error or uncertainty and when checking effectiveness of fuel cell or core design change for improving neutron economy.

  19. Stellar neutron capture cross sections of Nd, Pm, and Sm isotopes

    SciTech Connect

    Toukan, K.A. ); Debus, K.; Kaeppeler, F. ); Reffo, G. )

    1995-03-01

    The neutron capture cross sections of [sup 146,148,150]Nd have been determined relative to that of gold by means of the activation method. The samples were irradiated in a quasistellar neutron spectrum for [ital kT]=25 keV using the [sup 7]Li([ital p],[ital n])[sup 7]Be reaction near threshold. Variation of the experimental conditions in different activations and the use of different samples allowed for the reliable determination of corrections and the evaluation of systematic uncertainties. The resulting stellar cross sections can be given with uncertainties around 6%, which represents a considerable improvement compared to previous measurements. These data are complemented by a new set of calculated cross sections for the unstable isotopes [sup 147]Nd, [sup 147,148,149]Pm, and [sup 151]Sm, which act as branching points in the [ital s]-process path. Based on these results, the [ital s]-process flow in the Nd-Pm-Sm region is discussed with respect to the neutron density during stellar helium burning and to isotopic anomalies in meteorites. The updated [ital s]-abundances are also used for a discussion of [ital r]- and [ital p]-process residuals.

  20. Stellar neutron capture cross section of the unstable s-process branching point {sup 151}Sm

    SciTech Connect

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Krticka, M.; Raman, S.; Mengoni, A.; Gallino, R.

    2006-01-15

    The neutron capture cross sections of the radioactive isotope {sup 151}Sm and of natural samarium have been measured in the energy range from 3 keV to 225 keV at the Karlsruhe 3.7 MV Van de Graaff accelerator. Neutrons were produced via the {sup 7}Li(p,n){sup 7}Be reaction by bombarding metallic Li targets with a pulsed proton beam and capture events were registered with the Karlsruhe 4{pi} Barium Fluoride Detector. The cross sections were determined relative to the gold standard using a 206 mg sample of samarium oxide with 90% enrichment in {sup 151}Sm. Over most of the measured energy range uncertainties of {approx}2-3% could be achieved for the {sup 151}Sm/{sup 197}Au ratio. Maxwellian averaged neutron capture cross sections of {sup 151}Sm were calculated for thermal energies between kT = 8 keV and 100 keV with due consideration of the stellar enhancement factor and were found to be systematically larger than all previous theoretical predictions used in the analysis of the s-process branching at {sup 151}Sm. In the context of the branching analysis, an experimental determination of the stellar enhancement factor due to captures in thermally excited states is proposed, and the tentative determination of the p-process residual of {sup 152}Gd and a few other cases is discussed.

  1. Measurement of neutron total cross-section and resonance parameters of xenon

    NASA Astrophysics Data System (ADS)

    Skoy, V. R.; Wang, T. F.; Kim, G. N.; Oh, Y. D.; Cho, M. H.; Ko, I. S.; Namkung, W.

    2009-07-01

    We measured the neutron total cross-sections of natural xenon in the neutron energy region from 0.1 to 40 eV by using the time-of-flight method at the Pohang neutron facility, which consists of an electron linear accelerator, a water-cooled tantalum target with a water moderator, and a 12-m long time-of-flight path. A 6Li-ZnS(Ag) scintillator with a diameter of 12.5 cm and a thickness of 1.6 cm was used as a neutron detector. Notch filters composed of Co, In, Cd were used to estimate the background level and to calculate the neutron flight path length. The present measurement was compared with the existing experimental and the evaluated data. The resonance parameters of Xe isotopes were obtained from the transmission ratio by using the SAMMY code and were compared with other previous results.

  2. A measurement of actinide neutron transmutations with accelerator mass spectrometry in order to infer neutron capture cross sections

    NASA Astrophysics Data System (ADS)

    Bauder, William K.

    Improved neutron capture cross section data for transuranic and minor actinides are essential for assessing possibilities for next generation reactors and advanced fuel cycles. The Measurement of Actinide Neutron TRAnsmutation (MANTRA) project aims to make a comprehensive set of energy integrated neutron capture cross section measurements for all relevant isotopes from Th to Cf. The ability to extract these cross sections relies on the use of Accelerator Mass Spectrometry (AMS) to analyze isotopic concentrations in samples irradiated in the Advanced Test Reactor (ATR). The AMS measurements were performed at the Argonne Tandem Linear Accelerator System (ATLAS) and required a number of key technical developments to the ion source, accelerator, and detector setup. In particular, a laser ablation material injection system was developed at the electron cyclotron resonance ion source. This system provides a more effective method to produce ion beams from samples containing only 1% actinide material and offers some benefits for reducing cross talk in the source. A series of four actinide measurements are described in this dissertation. These measurements represent the most substantial AMS work attempted at ATLAS and the first results of the MANTRA project. Isotopic ratios for one and two neutron captures were measured in each sample with total uncertainties around 10%. These results can be combined with a MCNP model for the neutron fluence to infer actinide neutron capture cross sections.

  3. Commentary: exciting new developments in fast neutron cross sections and dosimetry

    NASA Astrophysics Data System (ADS)

    Bielajew, A. F.; Chadwick, M. B.

    1998-12-01

    The field of fast neutron therapy, and to some extent the practice of radiation protection in the vicinity of medical linear accelerators, requires accurate physical data. The paucity of physical data for neutron cross sections above about 15 MeV in low- Z materials is best exemplified (and somewhat exaggerated!) in the late Herb Attix's standard textbook Introduction to Radiological Physics and Radiation Dosimetry (Attix 1986). On page 464, the contributions to kerma in tissue from neutrons stops abruptly shortly above about 15 MeV. Photon and electron dosimetry has benefited from a well established and highly cohesive relationship between measurement and theory due to the enormous success of quantum electrodynamics. In contrast, measurements in the field of neutron radiotherapy have benefited less from theory because of the complexity of the quantum mechanics of nuclear structure, especially for light elements. This is because the nuclear levels are widely spaced at low excitation energies unlike for heavy elements where the energy level spacing is more dense and statistical assumptions can be applied with success. This means that accurate measurements are crucial for guiding and testing theoretical development. Measurements contributing to the field of fast neutron dosimetry are few and far between. Amazingly, in this issue of Physics in Medicine and Biology there are two such contributions! The paper by Benck, Slypen, Meulders and Corcalciuc (1998) entitled `Experimental double differential cross sections and derived kerma factors for oxygen at incident neutron energies from reaction thresholds to 65 MeV' reports on a set of measurements of the doubly-differential cross sections (energy and angle) for fast neutrons on for 9 energies between 25 and 65 MeV. The reaction channels measured were (n, px), (n, dx), (n, tx) and (n, x). These cross sections were then integrated to produce partial and total kerma factors. There are several features of this paper that are

  4. Cross section measurement on 139La (γ,γ') below neutron separation energy

    NASA Astrophysics Data System (ADS)

    Makinaga, A.; Rusev, G.; Schwengner, R.; Dönau, F.; Beyer, R.; Bemmerer, D.; Crespo, P.; Erhard, M.; Junghans, A. R.; Klug, J.; Nair, C.; Schilling, K. D.; Wagner, A.

    2010-06-01

    The γ-ray strength function is an important input quantity for the determination of the photoreaction rate and the neutron capture rate for astrophysics as well as for nuclear technologies. Recent studies show that extra γ-ray strength near the neutron separation energy Sn (pygmy resonance) affects the stellar reaction rate strongly. In this work, the photoabsorption cross section for 139La below Sn was measured using bremsstrahlung produced at the electron accelerator ELBE of Eorschungszentrum Dresden-Rossendorf with an electron beam of 11.5 MeV kinetic energy. Experimental result of 139La is presented.

  5. Nuclear astrophysics from neutron cross-section measurements on radiactive samples

    SciTech Connect

    Koehler, P.E.; O'Brien, H.A.

    1988-01-01

    Reaction rates for both big-bang and stellar nucleosynthesis calculations can be obtained from the measurement of (n,p) (n, ..cap alpha..) and (n,..gamma..) cross sections for radioactive nuclei. In the past, large backgrounds associated with the sample activity limited these types of measurements to radioisotopes with very long half lives. The advent of the high-intensity neutron source at the Los Alamos Neutron Scattering CEnter (LANSCE) has greatly increased the number of nuclei which can be studied. Results of recent measurements on samples with half lives as short as fifty-three days are given. Plans for future measurements are discussed. 32 refs., 3 figs.

  6. Neutron total cross section and resonance parameters of /sup 231/Pa

    SciTech Connect

    Hussein, A.R.Z.; Harvey, J.A.; Hill, N.W.; Patterson, J.R.

    1981-08-01

    Time-of-flight measurements of the neutron total cross section of /sup 231/Pa were carried out, in the energy range 0.01 to 10,000 eV, on two sample thicknesses using the Oak Ridge Electron Linear Accelerator as the pulsed neutron source. The multilevel R matrix code MULTI, which includes instrumental resolution and the Doppler broadening, has been used to fit the data. The resonance parameters obtained from the present multilevel R matrix analysis of /sup 231/Pa transmission data from 0.03 to 120 eV are given. 14 refs.

  7. Surrogate ratio methodology for the indirect determination of neutron capture cross sections

    NASA Astrophysics Data System (ADS)

    Goldblum, B. L.; Prussin, S. G.; Bernstein, L. A.; Younes, W.; Guttormsen, M.; Nyhus, H. T.

    2010-05-01

    The relative γ-decay probabilities of the Dy162 to Dy161 and Dy162 to Dy164 residual nuclei, produced using light-ion-induced direct reactions, were measured as a function of excitation energy using the CACTUS array at the Oslo Cyclotron Laboratory. The external surrogate ratio method (SRM) was used to convert these relative γ-decay probabilities into the Dy161(n,γ) cross section in an equivalent neutron energy range of 130-560 keV. The directly measured Dy161(n,γ) cross section, obtained from the Evaluated Nuclear Data Files (ENDF/B-VII.0), was compared to the experimentally determined surrogate Dy161(n,γ) cross section obtained using compound-nucleus pairs with both similar (Dy162 to Dy164) and dissimilar (Dy162 to Dy161) nuclear structures. A γ-ray energy threshold was identified, based upon pairing gap parameters, that provides a first-order correction to the statistical γ-ray tagging approach and improves the agreement between the surrogate cross-section data and the evaluated result.

  8. Surrogate ratio methodology for the indirect determination of neutron capture cross sections

    SciTech Connect

    Goldblum, B. L.; Prussin, S. G.; Bernstein, L. A.; Younes, W.; Guttormsen, M.; Nyhus, H. T.

    2010-05-15

    The relative gamma-decay probabilities of the {sup 162}Dy to {sup 161}Dy and {sup 162}Dy to {sup 164}Dy residual nuclei, produced using light-ion-induced direct reactions, were measured as a function of excitation energy using the CACTUS array at the Oslo Cyclotron Laboratory. The external surrogate ratio method (SRM) was used to convert these relative gamma-decay probabilities into the {sup 161}Dy(n,gamma) cross section in an equivalent neutron energy range of 130-560 keV. The directly measured {sup 161}Dy(n,gamma) cross section, obtained from the Evaluated Nuclear Data Files (ENDF/B-VII.0), was compared to the experimentally determined surrogate {sup 161}Dy(n,gamma) cross section obtained using compound-nucleus pairs with both similar ({sup 162}Dy to {sup 164}Dy) and dissimilar ({sup 162}Dy to {sup 161}Dy) nuclear structures. A gamma-ray energy threshold was identified, based upon pairing gap parameters, that provides a first-order correction to the statistical gamma-ray tagging approach and improves the agreement between the surrogate cross-section data and the evaluated result.

  9. Measuring Neutron-Proton Radiative Capture Cross-section at Low Energy

    NASA Astrophysics Data System (ADS)

    Yu, To Chin; Kovash, Michael; Matthews, June; Yang, Hongwei; Yang, Yunjie

    2015-10-01

    The experiment aims to fill in a gap in our data for the cross-section of neutron-proton radiative capture (p(n,d γ)) at energies below 500 keV. Current measurements in this energy range are scarce and inconsistent with theoretical predictions and with each other. A well-determined cross-section of the capture reaction in the low energy range is useful in nuclear physics due to its fundamental nature. The measurement is also of interest in cosmology. Big Bang Nucleosynthesis (BBN), the process by which light elements are formed in early universe, is very sensitive to the p(n,d γ) cross-section in the low energy range. The measurement enables us to put tighter constraints on the theoretical predictions of BBN. We have conducted preliminary measurements in the van de Graaff accelerator facility at the University of Kentucky. Our array of detectors consists of three plastic scintillators to serve as proton targets and deuteron detectors, and five BGO scintillators to detect γ-rays. The combination results in an over-determination of reaction kinematics that discriminates against scattering processes and other backgrounds. We have obtained some early results which show promise for the precise measurement of the p(n,d γ) cross-section.

  10. Thermal neutron capture cross section of gadolinium by pile-oscillation measurements in MINERVE

    SciTech Connect

    Leconte, P.; Di-Salvo, J.; Antony, M.; Pepino, A.; Hentati, A.

    2012-07-01

    Natural gadolinium is used as a burnable poison in most LWR to account for the excess of reactivity of fresh fuels. For an accurate prediction of the cycle length, its nuclear data and especially its neutron capture cross section needs to be known with a high precision. Recent microscopic measurements at Rensselaer Polytechnic Inst. (RPI) suggest a 11% smaller value for the thermal capture cross section of {sup 157}Gd, compared with most of evaluated nuclear data libraries. To solve this inconsistency, we have analyzed several pile-oscillation experiments, performed in the MINERVE reactor. They consist in the measurement of the reactivity variation involved by the introduction in the reactor of small-samples, containing different mass amounts of natural gadolinium. The analysis of these experiments is done through the exact perturbation theory, using the PIMS calculation tool, in order to link the reactivity effect to the thermal capture cross section. The measurement of reactivity effects is used to deduce the 2200 m.s-1 capture cross section of {sup nat}Gd which is (49360 {+-} 790) b. This result is in good agreement with the JEFF3.1.1 value (48630 b), within 1.6% uncertainty at 1{sigma}, but is strongly inconsistent with the microscopic measurements at RPI which give (44200 {+-} 500) b. (authors)

  11. Empirical formula on (n,(3)He) reaction cross sections at 14.6MeV neutrons.

    PubMed

    Yiğit, Mustafa

    2015-11-01

    The systematic behavior of the cross sections of (n,(3)He) nuclear reactions has been studied by various researches at neutron energy of 14.6MeV. A new empirical formula based on the Q-value dependence of the cross sections of the investigated reaction has been proposed. The cross sections obtained from the new formula are compared with the other proposed formulae results and the experimental data. It seems that the present formula based on the Q-value dependence provides the good description for cross sections of neutron-induced (n,(3)He) nuclear reactions at 14.6MeV. PMID:26218596

  12. Neutron capture cross section measurements for 238U in the resonance region at GELINA

    NASA Astrophysics Data System (ADS)

    Kim, H. I.; Paradela, C.; Sirakov, I.; Becker, B.; Capote, R.; Gunsing, F.; Kim, G. N.; Kopecky, S.; Lampoudis, C.; Lee, Y.-O.; Massarczyk, R.; Moens, A.; Moxon, M.; Pronyaev, V. G.; Schillebeeckx, P.; Wynants, R.

    2016-06-01

    Measurements were performed at the time-of-flight facility GELINA to determine the 238U(n, γ) cross section in the resonance region. Experiments were carried out at a 12.5 and 60m measurement station. The total energy detection principle in combination with the pulse height weighting technique was applied using C6D6 liquid scintillators as prompt γ-ray detectors. The energy dependence of the neutron flux was measured with ionisation chambers based on the 10B(n, α) reaction. The data were normalised to the isolated and saturated 238U resonance at 6.67 eV. Special procedures were applied to reduce bias effects due to the weighting function, normalization, dead time and background corrections, and corrections related to the sample properties. The total uncertainty due to the weighting function, normalization, neutron flux and sample characteristics is about 1.5%. Resonance parameters were derived from a simultaneous resonance shape analysis of the GELINA capture data and transmission data obtained previously at a 42m and 150m station of ORELA. The parameters of resonances below 500 eV are in good agreement with those resulting from an evaluation that was adopted in the main data libraries. Between 500 eV and 1200 eV a systematic difference in the neutron width is observed. Average capture cross section data were derived from the experimental capture yield in the energy region between 3.5 keV and 90 keV. The results are in good agreement with an evaluated cross section resulting from a least squares fit to experimental data available in the literature prior to this work. The average cross section data derived in this work were parameterised in terms of average resonance parameters and included in a least squares analysis together with other experimental data reported in the literature.

  13. Theoretical and experimental cross sections for neutron reactions on /sup 64/Zinc

    SciTech Connect

    Rutherford, D.A.

    1988-03-01

    Accurate measurements of the /sup 64/Zn (n,2n)/sup 63/Zn and /sup 64/Zn (n,p)/sup 64/Cu cross sections at 14.8 MeV have been made using a Texas Nuclear Neutron Generator and the activation technique. A NaI(Tl) spectrometer (using two 6'' x 6'' NaI detectors/crystals) was ued to measure the gamma radiation emitted in coincidence from the positron-emitting decay products. The measurements were made relative to /sup 65/Cu (n,2n)/sup 64/Cu and /sup 63/Cu (n,2n)/sup 62/Cu cross sections, which have similar half-lives, radiation emission, and were previously measured to high accuracy (2%). The value obtained for the (n,2n) measurement was 199 +- 6 millibarns, and a value of 176 +- 4.5 millibarns was obtained for the (n,p) measurement. In concert, a theoretical analysis of neutron induced reactions on /sup 64/Zn was performed at Los Alamos National Laboratory using the Hauser-Feshbach statistical theory in the GNASH code over an energy range of 100 keV to 20 MeV. Calculations included width fluctuation corrections, direct reaction contributions, and preequilibrium corrections above 6 MeV. Neutron optical model potentials were determined for zinc. The theoretical values agree with the new 14.8 MeV measurements approximately within experimental error, with calculations of 201 millibarns for the (n,2n) cross section and 170 millibarns for the (n,p) cross section. Results from the analysis will be made available in National Evaluated Nuclear Data Format (ENDF/B) for fusion energy applications. 50 refs., 34 figs., 10 tabs.

  14. Realizing the Opportunities of Neutron Cross-Section Measurements at RIA

    SciTech Connect

    Ahle, Larry; Roberts, Kevin; Roeben, Martin; Rusnak, Brian; Hausmann, Marc; Reifarth, Rene; Vieira, Dave

    2005-05-24

    The Rare Isotope Accelerator will produce many isotopes at never before seen rates. This will allow for the first-time measurements on isotopes very far from stability and new measurement opportunities for unstable nuclei near stability. In fact, the production rates are such that it should be possible to collect 10 micrograms of many isotopes with a half-life of 1 day or more. This ability to make targets of short-lived nuclei enables the possibility of making neutron cross-section measurements important to the astrophysics and the stockpile stewardship communities. But to fully realize this opportunity, the appropriate infrastructure must be included at the RIA facility. This includes isotope harvesting capabilities, radiochemical areas for processing collected material, and an intense, ''mono-energetic,'' tunable neutron source. As such, we have been developing a design for neutron source facility to be included at the RIA site. This facility would produce neutrons via intense beams of deuterons and protons on a variety of targets. The facility would also include the necessary radiochemical facilities for target processing. These infrastructure needs will be discussed in addition to the methods that would be employed at RIA for measuring these neutron cross sections.

  15. Validation of multigroup neutron cross sections and calculational methods for the advanced neutron source against the FOEHN critical experiments measurements

    SciTech Connect

    Smith, L.A.; Gallmeier, F.X.; Gehin, J.C.

    1995-05-01

    The FOEHN critical experiment was analyzed to validate the use of multigroup cross sections and Oak Ridge National Laboratory neutronics computer codes in the design of the Advanced Neutron Source. The ANSL-V 99-group master cross section library was used for all the calculations. Three different critical configurations were evaluated using the multigroup KENO Monte Carlo transport code, the multigroup DORT discrete ordinates transport code, and the multigroup diffusion theory code VENTURE. The simple configuration consists of only the fuel and control elements with the heavy water reflector. The intermediate configuration includes boron endplates at the upper and lower edges of the fuel element. The complex configuration includes both the boron endplates and components in the reflector. Cross sections were processed using modules from the AMPX system. Both 99-group and 20-group cross sections were created and used in two-dimensional models of the FOEHN experiment. KENO calculations were performed using both 99-group and 20-group cross sections. The DORT and VENTURE calculations were performed using 20-group cross sections. Because the simple and intermediate configurations are azimuthally symmetric, these configurations can be explicitly modeled in R-Z geometry. Since the reflector components cannot be modeled explicitly using the current versions of these codes, three reflector component homogenization schemes were developed and evaluated for the complex configuration. Power density distributions were calculated with KENO using 99-group cross sections and with DORT and VENTURE using 20-group cross sections. The average differences between the measured values and the values calculated with the different computer codes range from 2.45 to 5.74%. The maximum differences between the measured and calculated thermal flux values for the simple and intermediate configurations are {approx} 13%, while the average differences are < 8%.

  16. The Neutron Time-of-Flight Cross Section Program at the University of Kentucky - Adventures in Analysis II

    NASA Astrophysics Data System (ADS)

    Vanhoy, J. R.; Hicks, S. F.; Combs, B. C.; Crider, B. P.; French, A. J.; Garza, E. A.; Henderson, S. L.; Howard, T. J.; Liu, S. H.; Nigam, S.; Pecha, R. L.; Peters, E. E.; Prados-Estévez, F. M.; McEllistrem, M. T.; Rice, B. J.; Ross, T. J.; Santonil, Z. C.; Sidwell, L. C.; Steves, J. L.; Yates, S. W.

    2015-05-01

    Elastic and inelastic neutron differential cross sections are measured at the University of Kentucky Accelerator Laboratory (www.pa.uky.edu/accelerator/) at incident energies in the fast neutron region. The labo- ratorys facilities and instrumentation will be described and our measurement and analysis procedures outlined. Many corrections are required for neutron scattering experiments and the analysis utilizes information from many other cross section data sets and model calculations. Exploring and understanding the limitations of the foundational information and procedures are important for controlling the accuracy of the cross section results. We are examining the limitations in neutron detection efficiency, the normalization of (n,n'γ) cross sections,background reduction, spectrum stripping techniques, and attenuation and multiple scattering corrections. The resulting differential cross sections provide information on the compound elastic and coupled channels reaction mechanisms important for advanced reactor designs

  17. Principle and Uncertainty Quantification of an Experiment Designed to Infer Actinide Neutron Capture Cross-Sections

    SciTech Connect

    G. Youinou; G. Palmiotti; M. Salvatorre; G. Imel; R. Pardo; F. Kondev; M. Paul

    2010-01-01

    An integral reactor physics experiment devoted to infer higher actinide (Am, Cm, Bk, Cf) neutron cross sections will take place in the US. This report presents the principle of the planned experiment as well as a first exercise aiming at quantifying the uncertainties related to the inferred quantities. It has been funded in part by the DOE Office of Science in the framework of the Recovery Act and has been given the name MANTRA for Measurement of Actinides Neutron TRAnsmutation. The principle is to irradiate different pure actinide samples in a test reactor like INL’s Advanced Test Reactor, and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after neutron irradiation allows the energy integrated neutron cross-sections to be inferred since the relation between the two are the well-known neutron-induced transmutation equations. This approach has been used in the past and the principal novelty of this experiment is that the atom densities of the different transmutation products will be determined with the Accelerator Mass Spectroscopy (AMS) facility located at ANL. While AMS facilities traditionally have been limited to the assay of low-to-medium atomic mass materials, i.e., A < 100, there has been recent progress in extending AMS to heavier isotopes – even to A > 200. The detection limit of AMS being orders of magnitude lower than that of standard mass spectroscopy techniques, more transmutation products could be measured and, potentially, more cross-sections could be inferred from the irradiation of a single sample. Furthermore, measurements will be carried out at the INL using more standard methods in order to have another set of totally uncorrelated information.

  18. Measurement of Neutron Capture Cross Section of 62Ni in the keV-Region

    SciTech Connect

    Alpizar-Vicente, A. M.; Hatarik, R.; Bredeweg, T. A.; Esch, E.-I.; Haight, R. C.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Greife, U.

    2006-03-13

    The neutron capture cross section of 62Ni, relative to gold as a standard, was determined in the energy range from 250 eV to 100 keV. This energy range covers the region between 5 keV to 20 keV, which is not available in ENDF. Capture events are detected with the 160-fold 4{pi} BaF2 Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center. One of the challenges was to process the high count rate of 4 MHz, which required an optimization of the data acquisition software. The neutron energy was determined by the time-of-flight technique using a flight path of 20.25 m. The sample mass of the 96% enriched 62Ni target was 210 mg and it was mounted in a 1.5 {mu}m thick Mylar foil.

  19. Total cross section of solid mesitylene, toluene and a mixture of them at thermal neutron energies

    NASA Astrophysics Data System (ADS)

    Rodríguez Palomino, L. A.; Cantargi, F.; Blostein, J. J.; Dawidowski, J.; Granada, J. R.

    2009-01-01

    The total neutron cross sections of mesitylene, toluene and a solution 3:2 by volume of mesitylene and toluene were measured at the electron LINAC based pulsed neutron source of Centro Atómico Bariloche. Measurements were performed at 180 K, 120 K and 31.6 K for mesitylene and at 120 K and 31.6 K for toluene and a solution 3:2 by volume of mesitylene and toluene. The systems are potential moderator materials to be considered in the design of a cold neutron source due to their high resistance to radiation and the richness in low-energy excitations of their frequency spectra, that lead to produce an enhanced cold neutron flux.

  20. Vibrational spectra of light and heavy water with application to neutron cross section calculations

    SciTech Connect

    Damian, J. I. Marquez; Granada, J. R.; Malaspina, D. C.

    2013-07-14

    The design of nuclear reactors and neutron moderators require a good representation of the interaction of low energy (E < 1 eV) neutrons with hydrogen and deuterium containing materials. These models are based on the dynamics of the material, represented by its vibrational spectrum. In this paper, we show calculations of the frequency spectrum for light and heavy water at room temperature using two flexible point charge potentials: SPC-MPG and TIP4P/2005f. The results are compared with experimental measurements, with emphasis on inelastic neutron scattering data. Finally, the resulting spectra are applied to calculation of neutron scattering cross sections for these materials, which were found to be a significant improvement over library data.

  1. MANTRA: Measuring Neutron Capture Cross Sections in Actinides with Accelerator Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bauder, W.; Pardo, R. C.; Collon, P.; Palchan, T.; Scott, R.; Vondrasek, R.; Nusair, O.; Nair, C.; Paul, M.; Kondev, F.; Chen, J.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Maddock, T.; Imel, G.

    2013-10-01

    With rising global energy needs, there is substantial interest in nuclear energy research. To explore possibilities for advanced fuel cycles, better neutron cross section data are needed for the minor actinides. The MANTRA (Measurement of Actinide Neutron TRAsmutation) project will improve these data by measuring integral (n, γ) cross sections. The cross sections will be extracted by measuring isotopic ratios in pure actinide samples, irradiated in the Advanced Test Reactor at Idaho National Lab, using Accelerator Mass Spectrometry(AMS) at the Argonne Tandem Linac Accelerator System (ATLAS). MANTRA presents a unique AMS challenge because of the goal to measure multiple isotopic ratios on a large number of samples. To meet these challenges, we have modified the AMS setup at ATLAS to include a laser ablation system for solid material injection into our ECR ion source. I will present work on the laser ablation system and modified source geometry, as well as preliminary measurements of unirradiated actinide samples at ATLAS. This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.

  2. Fast neutron capture on the Hf isotopes: Cross sections, isomer production, and stellar aspects

    SciTech Connect

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Kazakov, L.; Becvar, F.; Krticka, M.; Gallino, R.; Pignatari, M.

    2006-04-15

    The (n,{gamma}) cross sections of {sup 176}Hf, {sup 177}Hf, {sup 178}Hf, {sup 179}Hf, and {sup 180}Hf have been measured in the energy range from 3 to 225 keV relative to the gold standard. Neutrons were produced via the {sup 7}Li(p,n){sup 7}Be reaction and capture events were registered with the Karlsruhe 4{pi} barium fluoride detector. The overall uncertainties are between 0.9 and 2.6%, about 5 times smaller than in previous experiments. Partial cross sections to ground and isomeric states could be experimentally identified for neutron capture on {sup 176,177,178,179}Hf, indicating a strong population of yet-unknown isomeric states in {sup 177}Hf and {sup 180}Hf. This feature was confirmed by extensive GEANT simulations based on calculated capture cascades. The deduced Maxwellian-averaged (n,{gamma}) cross sections for thermal energies between kT=8 and 100 keV contribute to the analysis of the s-process branchings at A=176 and A=179/180 and have significant consequences for the separation of the solar s- and r-process components.

  3. Covariances Obtained from an Evaluation of the Neutron Cross Section Standards

    SciTech Connect

    Carlson, A.D. Badikov, S.A.; Chen, Zhenpeng; Gai, E.; Hale, G.M.; Hambsch, F.-J.; Hofmann, H.M.; Kawano, T.; Larson, N.M.; Oh, S.Y.; Pronyaev, V.G.; Smith, D.L.; Tagesen, S.; Vonach, H.

    2008-12-15

    New measurements and an improved evaluation process were used to obtain a new evaluation of the neutron cross section standards. Efforts were made to include as much information as possible on the components of the data uncertainties that were then used to obtain the covariance matrices for the experimental data. Evaluations were produced from this process for the {sup 6}Li(n,t), {sup 10}B(n,{alpha}), {sup 10}B(n,{alpha}{sub 1}{gamma}), {sup 197}Au(n,{gamma}), {sup 235}U(n,f), and {sup 238}U(n,f) standard cross sections as well as the non-standard {sup 6}Li(n,n), {sup 10}B(n,n), {sup 238}U(n,{gamma}) and {sup 239}Pu(n,f) cross sections. There is a general increase in the cross sections for most of the new evaluations, by as much as about 5%, compared with the ENDF/B-VI results. Covariance data were obtained for the {sup 6}Li(n,t), {sup 6}Li(n,n), {sup 10}B(n,{alpha}), {sup 10}B(n,{alpha}{sub 1}{gamma}), {sup 10}B(n,n), {sup 197}Au(n,{gamma}), {sup 235}U(n,f), {sup 238}U(n,f), {sup 238}U(n,{gamma}) and {sup 239}Pu(n,f) reactions. Also an independent R-Matrix evaluation was produced for the H(n,n) standard cross-section, however, covariance data are not available for this reaction. The evaluations were used in the new ENDF/B-VII library.

  4. A measurement of the thermal neutron capture cross section of /sup 232/Th

    SciTech Connect

    Jones, R.T.; Merritt, J.S.; Okazaki, A.

    1986-06-01

    The thermal neutron capture cross section of /sup 232/Th has been measured relative to that of /sup 197/Au. Foils of gold, thorium metal, and thoria were irradiated together in the NRU reactor thermal column. The /sup 198/Au activity was assayed in a 4..pi gamma.. ionization chamber, which had been previously calibrated with samples of /sup 198/Au standardized by the 4..pi beta..-..gamma.. coincidence method. Protactinium-233 sources were also standardized by this method. Comparison of these sources with the irradiated thorium, by means of a Ge(Li) spectrometer, enabled the /sup 233/Pa activity in the thorium-bearing foils to be determined. Taking the 2200 m/s capture cross section of /sup 197/Au to be 98.8 b, that of /sup 232/Th is found to be 7.33+.0.06b. The uncertainty is at the 95% confidence level and includes an estimate of the systematic uncertainties.

  5. Estimated 55Mn and 90Zr cross section covariances in the fast neutron energy region

    SciTech Connect

    Pigni,M.T.; Herman, M.; Oblozinsky, P.

    2008-06-24

    We completed estimates of neutron cross section covariances for {sup 55}Mn and {sup 90}Zr, from keV range to 25 MeV, considering the most important reaction channels, total, elastic, inelastic, capture, and (n,2n). The nuclear reaction model code EMPIRE was used to calculate sensitivity to model parameters by perturbation of parameters that define the optical model potential, nuclear level densities and strength of the pre-equilibrium emission. The sensitivity analysis was performed with the set of parameters which reproduces the ENDF/B-VII.0 cross sections. The experimental data were analyzed and both statistical and systematic uncertainties were extracted from almost 30 selected experiments. Then, the Bayesian code KALMAN was used to combine the sensitivity analysis and the experiments to obtain the evaluated covariance matrices.

  6. Measurement of the 240,242Pu Neutron-induced Fission Cross Sections

    NASA Astrophysics Data System (ADS)

    Salvador-Castiñeira, P.; Bevilacqua, R.; Bryś, T.; Hambsch, F.-J.; Oberstedt, S.; Pretel, C.; Vidali, M.

    The neutron-induced fission cross section of 240,242Pu has been measured at the Van de Graaff facility of the Institute for Reference Materials and Measurements (JRC-IRMM). A Twin-Frisch Grid Ionization Chamber (TFGIC) has been used in a back-to-back geometry with the secondary standards 237Np and 238U to normalize the cross section. The energy range measured is from 0.2 keV up to 3 MeV. Preliminary results show some discrepancies around 1 MeV for the 242Pu with the ENDF/B-VII.1 evaluation. The spontaneous fission half-life has been measured for both isotopes, too. Preliminary results show reasonable agreement with the recommended values.

  7. Measurement of the thermal neutron capture cross section and the resonance integral of radioactive Hf182

    NASA Astrophysics Data System (ADS)

    Vockenhuber, C.; Bichler, M.; Wallner, A.; Kutschera, W.; Dillmann, I.; Käppeler, F.

    2008-04-01

    The neutron capture cross sections of the radioactive isotope Hf182 (t1/2=8.9×106 yr) in the thermal and epithermal energy regions have been measured by activation at the TRIGA Mark-II reactor of the Atomic Institute of the Austrian Universities in Vienna, Austria, and subsequent γ-ray spectroscopy of Hf183. High values for the thermal (kT=25 meV) cross section σ0=133±10 b and for the resonance integral I0=5850±660 b were found. Additionally, the absolute intensities of the main γ-ray transitions in the decay of Hf182 have been considerably improved.

  8. LOW-FIDELITY CROSS SECTION COVARIANCES FOR 219 FISSION PRODUCTS IN THE FIRST NEUTRON REGION.

    SciTech Connect

    PIGNI,M.T.; HERMAN, M.; OBLOZINSKY, P.; ROCHMAN, D.

    2007-04-27

    An extensive set of covariances for neutron cross sections in the energy range 5 keV-20 MeV has been developed to provide initial, low-fidelity but consistent uncertainty data for nuclear criticality safety applications. The methodology for the determination of such covariances combines the nuclear reaction model code EMPIRE, which calculates sensitivity to nuclear reaction model parameters, and the Bayesian code KALMAN to propagate uncertainty of the model parameters to cross sections. Taking into account the large scale of the project (219 fission products), only partial reference to experimental data has been made. Therefore, the covariances are, to a large extent, derived from the perturbation of several critical model parameters selected through the sensitivity analysis. These parameters define optical potential, level densities and pre-equilibrium emission. This work represents the first attempt ever to generate nuclear data covariances on such a scale.

  9. Neutron total and scattering cross sections of /sup 6/Li in the few MeV region

    SciTech Connect

    Smith, A.; Guenther, P.; Whalen, J.

    1980-02-01

    Neutron total cross sections of /sup 6/Li are measured from approx. 0.5 to approx. 4.8 MeV at intervals of approx.< 10 keV. Neutron differential elastic-scattering cross sections are measured from 1.5 to 4.0 MeV at approx.> 10 scattering angles and at incident-neutron intervals of approx.< 100 keV. Neutron differential inelastic-scattering cross sections are measured in the incident-energy range 3.5 to 4.0 MeV. The experimental results are extended to lower energies using measured neutron total cross sections recently reported elsewhere by the authors. The composite experimental data (total cross sections from 0.1 to 4.8 MeV and scattering cross sections from 0.22 to 4.0 MeV) are interpreted in terms of a simple two-level R-matrix model which describes the observed cross sections and implies the reaction cross section in unobserved channels; notably the (n;..cap alpha..)t reaction (Q = 4.783 MeV). The experimental and calculational results are compared with previously reported results as summarized in the ENDF/B-V evaluated nuclear data file.

  10. Transitions, cross sections and neutron binding energy in 186Re by Prompt Gamma Activation Analysis

    NASA Astrophysics Data System (ADS)

    Lerch, A. G.; Hurst, A. M.; Firestone, R. B.; Revay, Zs.; Szentmiklosi, L.; McHale, S. R.; McClory, J. W.; Detwiler, B.; Carroll, J. J.

    2014-03-01

    The nuclide 186Re possesses an isomer with 200,000 year half-life while its ground state has a half-life of 3.718 days. It is also odd-odd and well-deformed nucleus, so should exhibit a variety of other interesting nuclear-structure phenomena. However, the available nuclear data is rather sparse; for example, the energy of the isomer is only known to within + 7 keV and, with the exception of the J?=1- ground state, every proposed level is tentative in the ENSDF. Previously, Prompt Gamma Activation Analysis (PGAA) was utilized to study natRe with 186,188Re being produced via thermal neutron capture. Recently, an enriched 185Re target was irradiated by thermal neutrons at the Budapest Research Reactor to build on those results. Prompt (primary and secondary) and delayed gamma-ray transitions were measured with a large-volume, Compton-suppressed HPGe detector. Absolute cross sections for each gamma transition were deduced and corrected for self attenuation within the sample. Fifty-two primary gamma-ray transitions were newly identified and used to determine a revised value of the neutron binding energy. DICEBOX was used to simulate the decay scheme and the total radiative thermal neutron capture cross section was found to be 97+/-3 b Supported by DTRA (Detwiler) through HDTRA1-08-1-0014.

  11. An integral test of the inelastic cross sections of Pb and Mo using measured neutron spectra

    NASA Technical Reports Server (NTRS)

    Shook, D. F.; Fieno, D.; Ford, C. H.; Wrights, G. N.

    1972-01-01

    Comparison of measurements and calculations of fast neutron spectra from a radioactive neutron source inside spheres of Mo or Pb and from a cylindrical reactor containing a thick Pb or Mo reflector are used as a test of ENDF cross sections. The sphere leakage spectra were measured at a sphere-to-spectrometer distance of 2 meters using a 54 Ci spherical Am-Be neutron source. Reactor leakage spectrum measurements were made at the surface of the ZP-1 reactor when bare, with a Pb radial reflector 21 cm thick, and with a metallic Mo radial reflector 10 cm thick. In the case of the thin Mo sphere there is agreement between the calculation and measurement. The Pb calculation is much lower than the measurement except at the highest neutron energy. Two-dimensional calculations of reactor spectra result indicate that the reactor source is reasonably well known. Significant differences in leakage spectrum shape for both Mo and Pb reflectors suggest that there are large uncertainties in the inelastic cross sections for Pb and some for Mo.

  12. Thermal neutron capture cross section of the radioactive isotope 60Fe

    NASA Astrophysics Data System (ADS)

    Heftrich, T.; Bichler, M.; Dressler, R.; Eberhardt, K.; Endres, A.; Glorius, J.; Göbel, K.; Hampel, G.; Heftrich, M.; Käppeler, F.; Lederer, C.; Mikorski, M.; Plag, R.; Reifarth, R.; Stieghorst, C.; Schmidt, S.; Schumann, D.; Slavkovská, Z.; Sonnabend, K.; Wallner, A.; Weigand, M.; Wiehl, N.; Zauner, S.

    2015-07-01

    Background: Fifty percent of the heavy element abundances are produced via slow neutron capture reactions in different stellar scenarios. The underlying nucleosynthesis models need the input of neutron capture cross sections. Purpose: One of the fundamental signatures for active nucleosynthesis in our galaxy is the observation of long-lived radioactive isotopes, such as 60Fe with a half-life of 2.60 ×106 yr. To reproduce this γ activity in the universe, the nucleosynthesis of 60Fe has to be understood reliably. Methods: An 60Fe sample produced at the Paul Scherrer Institut (Villigen, Switzerland) was activated with thermal and epithermal neutrons at the research reactor at the Johannes Gutenberg-Universität Mainz (Mainz, Germany). Results: The thermal neutron capture cross section has been measured for the first time to σth=0.226 (-0.049+0.044) b . An upper limit of σRI<0.50 b could be determined for the resonance integral. Conclusions: An extrapolation towards the astrophysically interesting energy regime between k T =10 and 100 keV illustrates that the s -wave part of the direct capture component can be neglected.

  13. Use of Neutron Transfer Reactions to Indirectly Determine Neutron Capture Cross Sections on Neutron-Rich Nuclei

    SciTech Connect

    McCleskey, M.; Mukhamedzhanov, A. M.; Tribble, R. E.; Simmons, E.; Spiridon, A.; Banu, A.; Roeder, B.; Goldberg, V.; Trache, L.; Chen, X. F.; Lui, Y.-W.

    2010-03-01

    {sup 14}C(n,gamma){sup 15}C is being used as a test case in the development of an indirect method to determine neutron capture cross sections on neutron-rich unstable nuclei at astrophysical energies. Our approach makes use of two reactions: one peripheral used to find the asymptotic normalization coefficient (ANC) and a second non-peripheral reaction to determine the spectroscopic factor. The ANC for {sup 15}C has been determined using a HI neutron transfer reaction with a 12 MeV/nucleon {sup 14}C beam on a {sup 13}C target. The spectroscopic factor will be determined using {sup 14}C(d,p) in forward kinematics with an incident deuteron energy of 60 MeV. Both experiments were performed using the MDM high-resolution spectrometer at Texas A and M University.

  14. Development and Testing of Neutron Cross Section Covariance Data for SCALE 6.2

    SciTech Connect

    Marshall, William BJ J; Williams, Mark L; Wiarda, Dorothea; Rearden, Bradley T; Dunn, Michael E; Mueller, Don; Clarity, Justin B; Jones, Elizabeth L

    2015-01-01

    Neutron cross-section covariance data are essential for many sensitivity/uncertainty and uncertainty quantification assessments performed both within the TSUNAMI suite and more broadly throughout the SCALE code system. The release of ENDF/B-VII.1 included a more complete set of neutron cross-section covariance data: these data form the basis for a new cross-section covariance library to be released in SCALE 6.2. A range of testing is conducted to investigate the properties of these covariance data and ensure that the data are reasonable. These tests include examination of the uncertainty in critical experiment benchmark model keff values due to nuclear data uncertainties, as well as similarity assessments of irradiated pressurized water reactor (PWR) and boiling water reactor (BWR) fuel with suites of critical experiments. The contents of the new covariance library, the testing performed, and the behavior of the new covariance data are described in this paper. The neutron cross-section covariances can be combined with a sensitivity data file generated using the TSUNAMI suite of codes within SCALE to determine the uncertainty in system keff caused by nuclear data uncertainties. The Verified, Archived Library of Inputs and Data (VALID) maintained at Oak Ridge National Laboratory (ORNL) contains over 400 critical experiment benchmark models, and sensitivity data are generated for each of these models. The nuclear data uncertainty in keff is generated for each experiment, and the resulting uncertainties are tabulated and compared to the differences in measured and calculated results. The magnitude of the uncertainty for categories of nuclides (such as actinides, fission products, and structural materials) is calculated for irradiated PWR and BWR fuel to quantify the effect of covariance library changes between the SCALE 6.1 and 6.2 libraries. One of the primary applications of sensitivity/uncertainty methods within SCALE is the

  15. Thermal neutron radiative cross sections for Li,76,9Be,B,1110,C,1312, and N,1514

    NASA Astrophysics Data System (ADS)

    Firestone, R. B.; Revay, Zs.

    2016-05-01

    Total thermal radiative neutron cross sections have been measured on natural and enriched isotopic targets containing Li,76,9Be,B,1110,C,1312, and N,1514 with neutron beams from the Budapest Reactor. Complete neutron capture γ -ray decay schemes were measured for each isotope. Absolute transition probabilities have been determined by a least-squares fit of the transition intensities, corrected for internal conversion, to the (n ,γ ) decay schemes. The γ -ray cross sections were standardized using stoichiometric compounds containing both the isotope of interest and another element whose γ -ray cross sections are well known. Total cross sections σ0 were then determined for each isotope from the γ -ray cross sections and transition probabilities. For the 11B(n ,γ )12B reaction decay transition probabilities were determined for the γ rays from 12B (t1 /2=20.20 ms) β- decay.

  16. Neutron cross-sections for next generation reactors: new data from n_TOF.

    PubMed

    Colonna, N; Abbondanno, U; Aerts, G; Alvarez, H; Alvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Assimakopoulos, P; Audouin, L; Badurek, G; Baumann, P; Becvar, F; Berthoumieux, E; Calviani, M; Calviño, F; Cano-Ott, D; Capote, R; de Albornoz, A Carrillo; Cennini, P; Chepel, V; Chiaveri, E; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillman, I; Dolfini, R; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Frais-Koelbl, H; Fujii, K; Furman, W; Goncalves, I; González-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Igashira, M; Isaev, S; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Kerveno, M; Ketlerov, V; Koehler, P; Konovalov, V; Kossionides, E; Krticka, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marques, L; Marrone, S; Martínez, T; Massimi, C; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Oshima, M; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Sarchiapone, L; Savvidis, I; Stephan, C; Tagliente, G; Tain, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vicente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K

    2010-01-01

    In 2002, an innovative neutron time-of-flight facility started operation at CERN: n_TOF. The main characteristics that make the new facility unique are the high instantaneous neutron flux, high resolution and wide energy range. Combined with state-of-the-art detectors and data acquisition system, these features have allowed to collect high accuracy neutron cross-section data on a variety of isotopes, many of which radioactive, of interest for Nuclear Astrophysics and for applications to advanced reactor technologies. A review of the most important results on capture and fission reactions obtained so far at n_TOF is presented, together with plans for new measurements related to nuclear industry. PMID:20096595

  17. Preparation of iridium targets by electrodeposition for neutron capture cross section measurements

    SciTech Connect

    Bond, Evelyn M.; Moody, W. Allen; Arnold, Charles; Bredeweg, Todd A.; Jandel, Marian; Rusev, Gencho Y.

    2015-11-18

    Here, the preparation of 191Ir and 193Ir electrodeposits for neutron capture cross-section measurements at the detector for advanced neutron capture experiments located at the at Los Alamos Neutron Science Center is described. The electrodeposition of iridium in the desired thickness of 0.4–1 mg/cm2 is challenging. Better yields and thicknesses were obtained using electrodeposition from isopropyl alcohol solutions than from ammonium sulfate solutions. 191Ir and 193Ir targets were initially prepared using the standard single-sided electrodeposition cell. Iridium electrodepositions using a double-sided electrodeposition cell were developed and were optimized, resulting in thick, uniform iridium deposits. LA UR 15-22475.

  18. Preparation of iridium targets by electrodeposition for neutron capture cross section measurements

    DOE PAGESBeta

    Bond, Evelyn M.; Moody, W. Allen; Arnold, Charles; Bredeweg, Todd A.; Jandel, Marian; Rusev, Gencho Y.

    2016-03-01

    Here, the preparation of 191Ir and 193Ir electrodeposits for neutron capture cross-section measurements at the detector for advanced neutron capture experiments located at the at Los Alamos Neutron Science Center is described. The electrodeposition of iridium in the desired thickness of 0.4–1 mg/cm2 is challenging. Better yields and thicknesses were obtained using electrodeposition from isopropyl alcohol solutions than from ammonium sulfate solutions. 191Ir and 193Ir targets were initially prepared using the standard single-sided electrodeposition cell. Iridium electrodepositions using a double-sided electrodeposition cell were developed and were optimized, resulting in thick, uniform iridium deposits. LA UR 15-22475.

  19. Neutron and Charged-Particle Induced Cross Sections for Radiochemistry in the Region of Bromine and Krypton

    SciTech Connect

    Hoffman, R; Dietrich, F; Bauer, R; Kelley, K; Mustafa, M

    2004-07-23

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron and proton induced nuclear reaction cross sections in the mass region of bromine and krypton (34 {le} Z {le} 37, 40 {le} N {le} 47).

  20. Neutron and Charged-Particle Induced Cross Sections for Radiochemistry in the Region of Samarium, Europium, and Gadolinium

    SciTech Connect

    Hoffman, R D; Kelley, K; Dietrich, F S; Bauer, R; Mustafa, M

    2004-11-30

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron and proton induced nuclear reaction cross sections in the mass region of samarium, europium and gadolinium (62 {le} Z {le} 64, 82 {le} N {le} 96).

  1. Bayesian Evaluation Including Covariance Matrices of Neutron-induced Reaction Cross Sections of {sup 181}Ta

    SciTech Connect

    Leeb, H. Schnabel, G.; Srdinko, Th.; Wildpaner, V.

    2015-01-15

    A new evaluation of neutron-induced reactions on {sup 181}Ta using a consistent procedure based on Bayesian statistics is presented. Starting point of the evaluation is the description of nuclear reactions via nuclear models implemented in TALYS 1.4. A retrieval of experimental data was performed and covariance matrices of the experiments were generated from an extensive study of the corresponding literature. All reaction channels required for a transport file up to 200 MeV have been considered and the covariance matrices of cross section uncertainties for the most important channels are determined. The evaluation has been performed in one step including all available experimental data. A comparison of the evaluated cross sections and spectra with experimental data and available evaluations is performed. In general the evaluated cross section reflect our best knowledge and give a fair description of the observables. However, there are few deviations from expectation which clearly indicate the impact of the prior and the need to account for model defects. Using the results of the evaluation a complete ENDF-file similarly to those of the TENDL library is generated.

  2. Advanced nodal neutron diffusion method with space-dependent cross sections: ILLICO-VX

    SciTech Connect

    Rajic, H.L.; Ougouag, A.M.

    1987-01-01

    Advanced transverse integrated nodal methods for neutron diffusion developed since the 1970s require that node- or assembly-homogenized cross sections be known. The underlying structural heterogeneity can be accurately accounted for in homogenization procedures by the use of heterogeneity or discontinuity factors. Other (milder) types of heterogeneity, burnup-induced or due to thermal-hydraulic feedback, can be resolved by explicitly accounting for the spatial variations of material properties. This can be done during the nodal computations via nonlinear iterations. The new method has been implemented in the code ILLICO-VX (ILLICO variable cross-section method). Numerous numerical tests were performed. As expected, the convergence rate of ILLICO-VX is lower than that of ILLICO, requiring approx. 30% more outer iterations per k/sub eff/ computation. The methodology has also been implemented as the NOMAD-VX option of the NOMAD, multicycle, multigroup, two- and three-dimensional nodal diffusion depletion code. The burnup-induced heterogeneities (space dependence of cross sections) are calculated during the burnup steps.

  3. Statistical Model Analysis of (n, α) Cross Sections for 4.0-6.5 MeV Neutrons

    NASA Astrophysics Data System (ADS)

    Khuukhenkhuu, G.; Odsuren, M.; Gledenov, Y. M.; Zhang, G. H.; Sedysheva, M. V.; Munkhsaikhan, J.; Sansarbayar, E.

    2016-02-01

    The statistical model based on the Weisskopf-Ewing theory and constant nuclear temperature approximation is used for systematical analysis of the 4.0-6.5 MeV neutron induced (n, α) reaction cross sections. The α-clusterization effect was considered in the (n, α) cross sections. A certain dependence of the (n, α) cross sections on the relative neutron excess parameter of the target nuclei was observed. The systematic regularity of the (n, α) cross sections behaviour is useful to estimate the same reaction cross sections for unstable isotopes. The results of our analysis can be used for nuclear astrophysical calculations such as helium burning and possible branching in the s-process.

  4. Isotopic molybdenum total neutron cross section in the unresolved resonance region

    SciTech Connect

    Bahran, R.; Barry, D.; Block, R.; Leinweber, G.; Rapp, M.; Daskalakis, A.; Blain, E.; Williams, D.; McDermott, B.; Leal, L.; Danon, Y.

    2015-08-04

    Accurate isotopic molybdenum nuclear data are important because molybdenum can exist in nuclear reactor components including fuel, cladding, or as a high yield fission product. High-resolution time-of-flight neutron transmission measurements on highly enriched isotopic metallic samples of 95Mo, 96Mo, 98Mo, and 100Mo were performed in the resonance energy range from 1 to 620 keV. The measurements were taken with the newly developed modular 6Li-glass transmission detector positioned at the 100-m experimental flight station. For the unresolved energy region (URR), new comprehensive methods of analysis were developed and validated in order to obtain accurate neutron total cross-section data from the measurement by correcting for background and transmission enhancement effects. Average parameters and fits to the total cross section for 95Mo were obtained using the Hauser-Feshbach statistical model code FITACS, which is currently incorporated into the SAMMY code. Moreover, fits to the experimental data deviate from the current evaluated nuclear data file/B-VII.1 isotopic Mo evaluations by several percent in the URR.

  5. Isotopic molybdenum total neutron cross section in the unresolved resonance region

    DOE PAGESBeta

    Bahran, R.; Barry, D.; Block, R.; Leinweber, G.; Rapp, M.; Daskalakis, A.; Blain, E.; Williams, D.; McDermott, B.; Leal, L.; et al

    2015-08-04

    Accurate isotopic molybdenum nuclear data are important because molybdenum can exist in nuclear reactor components including fuel, cladding, or as a high yield fission product. High-resolution time-of-flight neutron transmission measurements on highly enriched isotopic metallic samples of 95Mo, 96Mo, 98Mo, and 100Mo were performed in the resonance energy range from 1 to 620 keV. The measurements were taken with the newly developed modular 6Li-glass transmission detector positioned at the 100-m experimental flight station. For the unresolved energy region (URR), new comprehensive methods of analysis were developed and validated in order to obtain accurate neutron total cross-section data from the measurementmore » by correcting for background and transmission enhancement effects. Average parameters and fits to the total cross section for 95Mo were obtained using the Hauser-Feshbach statistical model code FITACS, which is currently incorporated into the SAMMY code. Moreover, fits to the experimental data deviate from the current evaluated nuclear data file/B-VII.1 isotopic Mo evaluations by several percent in the URR.« less

  6. Isotopic molybdenum total neutron cross section in the unresolved resonance region

    NASA Astrophysics Data System (ADS)

    Bahran, R.; Barry, D.; Block, R.; Leinweber, G.; Rapp, M.; Daskalakis, A.; Blain, E.; Williams, D.; McDermott, B.; Leal, L.; Danon, Y.

    2015-08-01

    Accurate isotopic molybdenum nuclear data are important because molybdenum can exist in nuclear reactor components including fuel, cladding, or as a high yield fission product. High-resolution time-of-flight neutron transmission measurements on highly enriched isotopic metallic samples of 95Mo , 96Mo , 98Mo , and 100Mo were performed in the resonance energy range from 1 to 620 keV . The measurements were taken with the newly developed modular 6Li -glass transmission detector positioned at the 100-m experimental flight station. In the unresolved energy region (URR), new comprehensive methods of analysis were developed and validated in order to obtain accurate neutron total cross-section data from the measurement by correcting for background and transmission enhancement effects. Average parameters and fits to the total cross section for 95Mo were obtained using the Hauser-Feshbach statistical model code fitacs, which is currently incorporated into the sammy code. The fits to the experimental data deviate from the current evaluated nuclear data file/B-VII.1 isotopic Mo evaluations by several percent in the URR.

  7. Activation cross sections for reactions induced by 14 MeV neutrons on natural tantalum

    SciTech Connect

    Luo Junhua; Tuo Fei; Kong Xiangzhong

    2009-05-15

    Cross sections for (n,2n), (n,p), (n,n{sup '}{alpha}), (n,t), (n,d{sup '}), and (n,{alpha}) reactions have been measured on tantalum isotopes at the neutron energies of 13.5 to 14.7 MeV using the activation technique. Data are reported for the following reactions: {sup 181}Ta(n,2n){sup 180}Ta{sup g}, {sup 181}Ta(n,p){sup 181}Hf, {sup 181}Ta(n,n{sup '}{alpha}){sup 177}Lu{sup m}, {sup 181}Ta(n,t){sup 179}Hf{sup m2}, {sup 181}Ta(n,d{sup '}){sup 180}Hf{sup m}, and {sup 181}Ta(n,{alpha}){sup 178}Lu{sup m}. The neutron fluences were determined using the monitor reaction {sup 27}Al(n,{alpha}){sup 24}Na. Results were discussed and compared with the previous works.

  8. EVALUATION OF TUNGSTEN ISOTOPES IN THE FAST NEUTRON RANGE INCLUDING CROSS-SECTION COVARIANCE ESTIMATION.

    SciTech Connect

    CAPOTE,R.; SIN, M.; TRKOV, A.; HERMAN, M.; CARLSON, B.V.; OBLOZINSKY, P.

    2007-04-22

    New evaluations for the tungsten isotopes {sup 180,182,183,184,186}W in the neutron energy range up to 60 MeV were produced. In the resonance range only minor adjustments to the resonance parameters were made due to a lack of adequate experimental data. Evaluations in the fast energy region were based on nuclear model calculations using the EMPIRE-2.19 code. Recently derived dispersive coupled-channel optical model potentials for W and Ta isotopes were instrumental to achieve a very good description of the available microscopic cross-section database. Model covariance data were generated with the Monte Carlo technique to produce a prior estimate for the covariance matrix. Experimental data were introduced through the GANDR system. The evaluated files were tested on selected fusion neutronics benchmarks and showed marked improvement compared to other existing evaluations.

  9. Neutron-induced Fission Cross Section of 240242Pu up to En = 3 MeV

    NASA Astrophysics Data System (ADS)

    Salvador-Castiñeira, P.; Bryś, T.; Hambsch, F.-J.; Oberstedt, S.; Pretel, C.; Vidali, M.

    2014-05-01

    The neutron-induced fission cross sections of 240,242Pu have been measured at JRC-IRMM with incident neutron energy from 0.2 MeV up to 3 MeV. A Twin-Frisch Grid Ionization Chamber (TFGIC) has been used in a back-to-back geometry. The measurements have been performed using the secondary standards 237Np and 238U as a reference. The purity of the plutonium samples was 99.89% for 240Pu and 99.97% for 242Pu. The results obtained follow the ENDF/B-VII.1 evaluation for 240Pu, but some discrepancies are visible around E/n = 1 MeV for 242Pu. In addition, the spontaneous fission half-life has been measured for both isotopes.

  10. Neutron-Induced Fission Cross Sections Measurements at n_TOF

    SciTech Connect

    Audouin, L.; Tassan-Got, L.; Isaev, S.; Koehler, Paul Edward; Collaboration, n_TOF

    2008-01-01

    The neutron-induced fission cross sections of {sup 233}U, {sup 234}U, {sup 235}U, {sup 238}U, {sup 232}Th, {sup 237}Np, {sup 209}Bi, {sup nat}Pb have been measured at the n{_}TOF facility at CERN over 9 orders of magnitude in neutron energy using {sup 235}U as a reference. Parallel Plate Avalanche Counters were used to detect both fission fragments in coincidence, thus efficiently discriminating fissions from other reactions. Data benefit from the remarkable energy resolution of the n{_}TOF facility. They are found in overall good agreement with databases and previous measurements, but some clear discrepancies can be put in evidence. These data are the first full coverage of the high-energy region (up to 1 GeV).

  11. Neutron-induced fission cross section of 233Pa between 1.0 and 3.0 MeV.

    PubMed

    Tovesson, F; Hambsch, F J; Oberstedt, A; Fogelberg, B; Ramström, E; Oberstedt, S

    2002-02-11

    The energy dependent neutron-induced fission cross section of 233Pa has for the first time been measured directly with monoenergetic neutrons. This nuclide is an important intermediary in a thorium based fuel cycle, and its fission cross section is a key parameter in the modeling of future advanced fuel and reactor concepts. A first experiment resulted in four cross section values between 1.0 and 3.0 MeV, establishing a fission threshold in excess of 1 MeV. Significant discrepancies were found with a previous indirect experimental determination and with model estimates. PMID:11863801

  12. Neutron total cross section of sulfur: Single level to multilevel to optical model

    NASA Astrophysics Data System (ADS)

    Johnson, C. H.; Winters, R. R.

    1980-06-01

    This paper is a further analysis of the high resolution total cross section of sulfur for 25-1100 keV neutrons that previously were measured by Halperin, Johnson, Winters, and Macklin and evaluated by single-level analysis. The usual procedure in reporting the results of high resolution neutron cross sections has been to present the data and resonance parameters with corresponding neutron strength functions resulting from some type of R-matrix analysis. Often the important nonresonant phase shifts are not reported. In this paper, making use of both strength functions and phase shifts, we extend the analysis to include an average nuclear potential (a spherical optical model). An optical model analysis not only facilitates comparison with a broad spectrum of other nucleon-nucleus experiments, but also may provide an incentive for microstructure calculations. Six average empirical functions, two each for s12, p12, and p32 partial waves, are derived from the R-matrix analysis. From these we deduce optical model parameters, the real and imaginary well depths for s- and p-wave neutrons, and the spin-orbit well depth for p waves. The resulting real well is deeper for p waves than for s waves and for averages over partial waves at higher energies. The depth of the imaginary wells are about half those deduced at higher energies. An interesting feature of the analysis is that the multilevel curve including interference effects is produced from single-level parameters including the phase shifts. NUCLEAR REACTIONS 32S(n,n), En=25-1100 keV, multilevel analysis of σn,tot(E), deduced R', strength functions for l=0 and 1, optical model parameters for l=0 and 1.

  13. Deep inelastic neutron scattering from orthorhombic ordered HCl: Short-time proton dynamics and anomalous neutron cross sections

    SciTech Connect

    Senesi, R.; Colognesi, D.; Pietropaolo, A.; Abdul-Redah, T.

    2005-08-01

    Deep inelastic neutron scattering measurements from orthorhombic ordered HCl are presented and analyzed in order to clarify the problem of an anomalous deficit in the neutron-proton cross section found in previous experiments on various materials. A reliable model for the HCl short-time single-particle dynamics, including atomic vibrational anisotropies and deviations from the impulsive approximation, is set up. The model HCl response function is transformed into simulated time-of-flight spectra, taking carefully into account the effects of instrumental resolution and the filter absorption profile used for neutron energy analysis. Finally, the experimental values of the anomalous reduction factor for the neutron-proton cross section are extracted by comparing simulated and experimental data. Results show a 34% reduction of the H cross section, varying with the scattering angle in a range centered at 53 deg. In addition, the same approximate procedure used in earlier studies is also employed, providing results in reasonable agreement with the more rigorous ones, and confirming the substantial reliability of the past work on this subject.

  14. Measurements of fusion neutron yields by neutron activation technique: Uncertainty due to the uncertainty on activation cross-sections

    NASA Astrophysics Data System (ADS)

    Stankunas, Gediminas; Batistoni, Paola; Sjöstrand, Henrik; Conroy, Sean

    2015-07-01

    The neutron activation technique is routinely used in fusion experiments to measure the neutron yields. This paper investigates the uncertainty on these measurements as due to the uncertainties on dosimetry and activation reactions. For this purpose, activation cross-sections were taken from the International Reactor Dosimetry and Fusion File (IRDFF-v1.05) in 640 groups ENDF-6 format for several reactions of interest for both 2.5 and 14 MeV neutrons. Activation coefficients (reaction rates) have been calculated using the neutron flux spectra at JET vacuum vessel, both for DD and DT plasmas, calculated by MCNP in the required 640-energy group format. The related uncertainties for the JET neutron spectra are evaluated as well using the covariance data available in the library. These uncertainties are in general small, but not negligible when high accuracy is required in the determination of the fusion neutron yields.

  15. Neutron Cross Section Processing Methods for Improved Integral Benchmarking of Unresolved Resonance Region Evaluations

    NASA Astrophysics Data System (ADS)

    Walsh, Jonathan A.; Forget, Benoit; Smith, Kord S.; Brown, Forrest B.

    2016-03-01

    In this work we describe the development and application of computational methods for processing neutron cross section data in the unresolved resonance region (URR). These methods are integrated with a continuous-energy Monte Carlo neutron transport code, thereby enabling their use in high-fidelity analyses. Enhanced understanding of the effects of URR evaluation representations on calculated results is then obtained through utilization of the methods in Monte Carlo integral benchmark simulations of fast spectrum critical assemblies. First, we present a so-called on-the-fly (OTF) method for calculating and Doppler broadening URR cross sections. This method proceeds directly from ENDF-6 average unresolved resonance parameters and, thus, eliminates any need for a probability table generation pre-processing step in which tables are constructed at several energies for all desired temperatures. Significant memory reduction may be realized with the OTF method relative to a probability table treatment if many temperatures are needed. Next, we examine the effects of using a multi-level resonance formalism for resonance reconstruction in the URR. A comparison of results obtained by using the same stochastically-generated realization of resonance parameters in both the single-level Breit-Wigner (SLBW) and multi-level Breit-Wigner (MLBW) formalisms allows for the quantification of level-level interference effects on integrated tallies such as keff and energy group reaction rates. Though, as is well-known, cross section values at any given incident energy may differ significantly between single-level and multi-level formulations, the observed effects on integral results are minimal in this investigation. Finally, we demonstrate the calculation of true expected values, and the statistical spread of those values, through independent Monte Carlo simulations, each using an independent realization of URR cross section structure throughout. It is observed that both probability table

  16. Secondary Neutron-Production Cross Sections from Heavy-IonInteractions between 230 and 600 MeV/nucleon

    SciTech Connect

    Heilbronn, L.H.; Zeitlin, C.J.; Iwata, Y.; Murakami, T.; Iwase,H.; Nakamura, T.; Nunomiya, T.; Sato, H.; Yashima, H.; Ronningen, R.M.; Ieki, K.

    2006-10-04

    Secondary neutron-production cross-sections have beenmeasured from interactions of 230 MeV/nucleon He, 400 MeV/nucleon N, 400MeV/nucleon Kr, 400 MeV/nucleon Xe, 500 MeV/nucleon Fe, and 600MeV/nucleon Ne interacting in a variety of elemental and compositetargets. We report the double-differential production cross sections,angular distributions, energy spectra, and total cross sections from allsystems. Neutron energies were measured using the time-of-flighttechnique, and were measured at laboratory angles between 5 deg and 80deg. The spectra exhibit behavior previously reported in otherheavy-ion-induced neutron production experiments; namely, a peak atforward angles near the energy corresponding to the beam velocity, withthe remaining spectra generated by preequilibrium and equilibriumprocesses. The double-differential spectra are fitted with amoving-source parameterization. Observations on the dependence of thetotal cross sections on target and projectile mass arediscussed.

  17. A direct measurement of the 6Li(n,t)4He cross section at sub-thermal neutron energy

    NASA Astrophysics Data System (ADS)

    Yue, A.; Dewey, M.; Gilliam, D.; Nico, J.; Greene, G.; Laptev, A.

    2014-09-01

    The thermal neutron capture cross section for the 6Li(n,t)4He reaction is an important neutron cross section standard. Yet few measurements of it have been performed and the ENDF/B-VII recommended value of (938 . 5 +/- 1 . 3) b is based heavily on measurements performed at higher energies. The first absolute, direct measurement of the 6Li(n,t)4He cross section at sub-thermal neutron energy has been performed at the NIST Center for Neutron Research. An alpha-gamma counter was used to measure the absolute neutron fluence of a monoenergetic neutron beam to sub-0.1% precision. The alpha-gamma counter used a thick, totally absorbing target of 10B-enriched boron carbide. The rate of absorbed neutrons was determined by counting the 478 keV 10B(n, γ)7Li gamma rays with calibrated high-purity germanium detectors. Simultaneously, the absolute rate of neutron-induced charged particles was measured for three thin 6Li targets of known density with a defined solid-angle counter. Using the known density of the 6Li targets and measurements of the rate of charged particles from the 6Li targets, the fluence of the neutron beam, and the energy of the neutron beam, we determine the 6Li(n,t)4He cross section at En = 3 . 3 meV to 0.3% uncertainty.

  18. (65)Cu isomeric cross sections for (n,α) reaction using approximately 14MeV neutrons.

    PubMed

    Durusoy, Ayşe; Reyhancan, Iskender Atilla; Akçalı, Özgür

    2015-05-01

    In this paper, activation cross-section measurements for the (65)Cu(n,α)(62m)Co (T1/2=13.86min.) reaction at six different neutron energies ranging from 13.6 and 14.9MeV are presented. The fast neutrons were produced via (3)H(d, n)(4)He reactions from an SAMES T-400 neutron generator. An activation technique was used to measure induced gamma activities. A high-resolution gamma-ray spectrometer with a high-purity germanium (HpGe) detector was used to acquire the data. The measured cross section data were corrected for gamma-ray attenuations, pulse pile-up effects, dead time, variations in neutron flux, and contributions from scattered low-energy neutrons. The measured cross sections were compared with statistical model calculations (TALYS 1.6 code), the experimental data available in the literature and the data obtained from TENDL. PMID:25728005

  19. Neutron Scattering Cross Section Measurements for 169Tm via the (n,n') Technique

    SciTech Connect

    Alimeti, Afrim; Kegel, Gunter H.R.; Egan, James J.; DeSimone, David J.; McKittrick, Thomas M.; Ji, Chuncheng; Tremblay, Steven E.; Roldan, Carlos; Chen Xudong; Kim, Don S.

    2005-05-24

    The neutron physics group at the University of Massachusetts Lowell (UML) has been involved in a program of scattering cross-section measurements for highly deformed nuclei such as 159Tb, 169Tm, 232Th, 235U, 238U, and 239Pu. Ko et al. have reported neutron inelastic scattering data from 169Tm for states above 100 keV via the (n,n'{gamma}) reaction at incident energies in the 0.2 MeV to 1.0 MeV range. In the present research, in which the time-of-flight method was employed, direct (n,n') measurements of neutrons scattered from 169Tm in the 0.2 to 1.0 MeV range were taken. It requires that our 5.5-MeV Van de Graaff accelerator be operated in the pulsed and bunched beam mode producing subnanosecond pulses at a 5-MHz repetition frequency. Neutrons are produced by the 7Li(p,n)7Be reaction using a thin metallic elemental lithium target.

  20. EVALUATION OF NEUTRON CROSS SECTIONS FOR A COMPLETE SET OF Nd ISOTOPES.

    SciTech Connect

    KIM,H.; HERMAN, M.; MUGHABGHAB, S.F.; OBLOZINSKY, P.; ROCHMAN, D.; LEE. Y.-O.

    2007-10-29

    Neutron cross sections for a complete set of Nd isotopes, {sup 142,143,144,145,146,147,148,150}Nd, were evaluated in the incident energy range from 10{sup -5} eV to 20 MeV. In the low energy region, including thermal and resolved resonances, our evaluations are based on the latest data published in the Atlas of Neutron Resonances. In the unresolved resonance region we performed additional evaluation by using the averages of the resolved resonances and adjusting them to the experimental data. In the fast neutron region, we used the nuclear reaction model code EMPIRE-2.19 validated against the experimental data. The results are compared to the existing nuclear data libraries, including ENDF/B-VI.8, JENDL-3.3 and JEFF-3.1, and to the available experimental data. The new evaluations are suitable for neutron transport calculations and they were adopted by the new evaluated nuclear data file of the United States, ENDF/B-VII.0, released in December 2006.

  1. Monte Carlo Calculation of Thermal Neutron Inelastic Scattering Cross Section Uncertainties by Sampling Perturbed Phonon Spectra

    NASA Astrophysics Data System (ADS)

    Holmes, Jesse Curtis

    Nuclear data libraries provide fundamental reaction information required by nuclear system simulation codes. The inclusion of data covariances in these libraries allows the user to assess uncertainties in system response parameters as a function of uncertainties in the nuclear data. Formats and procedures are currently established for representing covariances for various types of reaction data in ENDF libraries. This covariance data is typically generated utilizing experimental measurements and empirical models, consistent with the method of parent data production. However, ENDF File 7 thermal neutron scattering library data is, by convention, produced theoretically through fundamental scattering physics model calculations. Currently, there is no published covariance data for ENDF File 7 thermal libraries. Furthermore, no accepted methodology exists for quantifying or representing uncertainty information associated with this thermal library data. The quality of thermal neutron inelastic scattering cross section data can be of high importance in reactor analysis and criticality safety applications. These cross sections depend on the material's structure and dynamics. The double-differential scattering law, S(alpha, beta), tabulated in ENDF File 7 libraries contains this information. For crystalline solids, S(alpha, beta) is primarily a function of the material's phonon density of states (DOS). Published ENDF File 7 libraries are commonly produced by calculation and processing codes, such as the LEAPR module of NJOY, which utilize the phonon DOS as the fundamental input for inelastic scattering calculations to directly output an S(alpha, beta) matrix. To determine covariances for the S(alpha, beta) data generated by this process, information about uncertainties in the DOS is required. The phonon DOS may be viewed as a probability density function of atomic vibrational energy states that exist in a material. Probable variation in the shape of this spectrum may be

  2. Activation Cross-Sections for 14.2 MeV Neutrons on Molybdenum

    NASA Astrophysics Data System (ADS)

    Srinivasa Rao, C. V.; Lakshmana Das, N.; Thirumala Rao, B. V.; Rama Rao, J.

    1981-12-01

    Using the activation method, the cross-section for the following reactions on molybdenum were measured employing the mixed powder technique and Ge(Li) gamma-ray spectroscopy: 94Mo(n, 2n)93mMo, 3.5 ± 0.5 mbarn; 92Mo(n, 2n)91mMo, 19 ± 3 mbarn; 92Mo(n, 2n)91m+gMo, 226 ± 11 mbarn; 100Mo(n, p)100m2Nb, 9 ± 1 mbarn; 98Mo(n, p)98Nb, 10 ± 1 mbarn; 97Mo(n, p)97mNb, 5 ± 1 mbarn; 96Mo(n, p)96Nb, 12 ± 2 mbarn; 92Mo(n, α)89mZr, 2.1 ± 0.5 mbarn; and 92Mo(n, α)89m+gZr 24 ± 6 mbarn; the neutron energy was 14.2 ± 0.2 MeV. The experimental cross-sections were compared with the predictions of evaporation model and of different versions of pre-equilibrium model. The master equation approach appears to give satisfactory results.

  3. Neutron total cross-sections and resonance parameters of Mo and Ta

    NASA Astrophysics Data System (ADS)

    Moinul Haque Meaze, A. K. M.; Devan, K.; Lee, Y. S.; Oh, Y. D.; Kim, G. N.; Son, D.

    2007-02-01

    Experimental results of transmissions for the samples of natural molybdenum with thickness 0.0192 atoms/barn and for the four samples of natural tantalum with thickness 0.0222, 0.0111, 0.0055 and 0.0025 atoms/barn are presented in this work. Measurements were carried out at the Pohang Neutron Facility which consists of a 100 MeV Linac, water-cooled tantalum target, and 12 m flight path length. Effective total cross-sections were extracted from the transmission data, and resonance parameters were obtained by using the code SAMMY. The present measurements were compared with other measurements and with the evaluated nuclear data file ENDF/B-VI.8.

  4. Evaluation of {sup 28,29,30}Si neutron induced cross sections for ENDF/B-VI

    SciTech Connect

    Hetrick, D.M.; Larson, D.C.; Larson, N.M.; Leal, L.C.; Epperson, S.J.

    1997-04-01

    Separate evaluations have been done for the three stable isotopes of silicon for ENDF/B-VI. The evaluations are based on analysis of experimental data, supplemented by results of nuclear model calculations. The computational methods and the parameters required as input to the nuclear model codes are reviewed. Discussion of the evaluated data given for resonance parameters, neutron induced reaction cross sections, associated angular and energy distributions, and gamma-ray production cross sections is included. Extensive comparisons of the evaluated cross sections to measured data are shown in this report. The evaluations include all necessary data to allow KERMA (Kinetic Energy Released in MAterials) and displacement cross sections to be calculated directly. These quantities are fundamental to studies of neutron heating and radiation damage.

  5. Neutron Capture by Cadmium: Thermal Cross Sections and Resonance Integrals of ^106,108,110,112,114,116Cd

    NASA Astrophysics Data System (ADS)

    Gicking, Allison M.; Krane, Kenneth S.

    2011-10-01

    The neutron capture cross sections of the stable, even-mass Cd isotopes (A = 106, 108, 110, 112, 114, and 116) have been previously measured in sources of natural abundance or low enrichment, often making the results uncertain owing to the large absorption cross section of naturally occurring ^113Cd. Ambiguities in values of the isomeric branching ratios have also contributed to uncertainties in previous results. We have remeasured the Cd neutron capture cross sections using samples of greater than 90% isotopic enrichment irradiated in the OSU TRIGA reactor. Gamma-ray emission spectra were analyzed to determine the effective resonance integrals and thermal cross sections leading to eight radioactive ground and isomeric states in the Cd isotopes.

  6. Neutron Scattering Cross Sections for Natural Carbon in the Energy Range 2-133 keV

    SciTech Connect

    Gritzay, O; Gnidak, M; Kolotyi, V; Korol, O; Razbudey, V; Venedyktov, V; Richardson, J H; Sale, K

    2006-06-14

    Natural carbon is well known as reactor structure material and at the same time as one of the most important neutron scattering standards, especially at energies less than 2 MeV, where the neutron total and neutron scattering cross sections are essentially identical. The best neutron total cross section experimental data for natural carbon in the range 1-500 keV have uncertainties of 1-4%. However, the difference between these data and those based on R-matrix analysis and used in the ENDF libraries is evident, especially in the energy range 1-60 keV. Experimental data for total scattering neutron cross sections for this element in the energy range 1-200 keV are scanty. The use of the technique of neutron filtered beams developed at the Kyiv Research Reactor makes it possible to reduce the uncertainty of the experimental data and to measure the neutron scattering cross sections on natural carbon in the energy range 2-149 keV with accuracies of 3-6%. Investigations of the neutron scattering cross section on carbon were carried out using 5 filters with energies 2, 3.5, 24, 54 and 133 keV. The neutron scattering cross sections were measured using a detector system covering nearly 2{pi}. The detector consisting of {sup 3}He counters (58 units), was located just above the carbon samples. The {sup 3}He counters (CHM-37, 7 atm, diameter =18 mm, L=50 cm) are placed in five layers (12 or 11 in each layer). To determine the neutron scattering cross section on carbon the relative method of measurement was used. The isotope {sup 208}Pb was used as the standard. The normalization factor, which is a function of detector efficiency, thickness of the carbon samples, thickness of the {sup 208}Pb sample, geometry, etc., for each sample and for each filter energy has been obtained through Monte Carlo calculations by means of the MCNP4C code. The results of measurements of the neutron scattering cross sections at reactor neutron filtered beams with energies in the range 2-133 keV on

  7. Study of Neutron-Induced Fission Cross Sections of U, Am, and Cm at n{sub T}OF

    SciTech Connect

    Milazzo, P. M.; Abbondanno, U.; Belloni, F.; Fujii, K.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Ferrant, L.; Gunsing, F.; Pancin, J.; Perrot, L.; Plukis, A.; Stephan, C.; Tassan-Got, L.; Alvarez-Velarde, F.; Cano-Ott, D.

    2010-08-04

    Neutron induced fission cross sections of several isotopes have been measured at the CERN n{sub T}OF spallation neutron facility. Between them some measurements involve isotopes ({sup 233}U, {sup 241}Am, {sup 243}Am, {sup 245}Cm) relevant for applications to nuclear technologies. The n{sub T}OF facility delivers neutrons with high instantaneous flux and in a wide energy range, from thermal up to 250 MeV. The experimental apparatus consists of an ionization chamber that discriminates fission fragments and {alpha} particles coming from natural radioactivity of the samples. All the measurements were performed referring to the standard cross section of {sup 235}U.

  8. Measurement of the sup 3 He( n ,. gamma. ) sup 4 He cross section at thermal neutron energies

    SciTech Connect

    Wolfs, F.L.H.; Freedman, S.J.; Nelson, J.E. ); Dewey, M.S.; Greene, G.L. )

    1989-12-18

    We have measured the cross section for radiative capture of thermal neutrons on {sup 3}He. The measured cross section of 54{plus minus}6 {mu}b is used to estimate the astrophysical {ital S} factor for the reaction {sup 3}He({ital p},{ital e}{sup +}{nu}){sup 4}He which gives rise to high-energy neutrinos from the Sun.

  9. Neutron scattering differential cross sections for 23Na from 1.5 to 4.5 MeV

    NASA Astrophysics Data System (ADS)

    Vanhoy, J. R.; Hicks, S. F.; Chakraborty, A.; Champine, B. R.; Combs, B. M.; Crider, B. P.; Kersting, L. J.; Kumar, A.; Lueck, C. J.; Liu, S. H.; McDonough, P. J.; McEllistrem, M. T.; Peters, E. E.; Prados-Estévez, F. M.; Sidwell, L. C.; Sigillito, A. J.; Watts, D. W.; Yates, S. W.

    2015-07-01

    Measurements of neutron elastic and inelastic scattering cross sections from 23Na have been performed for sixteen incident neutron energies between 1.5 and 4.5 MeV. These measurements were complemented by γ-ray excitation functions using the (n ,n‧ γ) reaction to include excited levels not resolved in the neutron detection measurements. The time-of-flight (TOF) technique was employed for background reduction in both neutron and γ-ray measurements and for energy determination in neutron detection measurements. Previous reaction model evaluations relied primarily on neutron total cross sections and four (n, n0) and (n, n1) angular distributions in the 5 to 9 MeV range. The inclusion of more inelastic channels and measurements at lower incident neutron energies provide additional information on direct couplings between elastic and inelastic scattering as a function of angular momentum transfer. Reaction model calculations examining collective direct-coupling and compound absorption components were performed.

  10. Production of Short-lived Radionuclides by Protons and Neutrons in Fe and Ni Targets: Cross Sections Needed for Cosmic Ray Studies

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Vincent, J.; Jones, D. T. L.; Binns, P. J.; Langen, K.; Schroeder, I.; Buthelezi, Z.; Brooks, F. D.; Buffler, A.; Allie, M. S.

    2000-01-01

    New neutron and proton cross sections for short-lived radionuclides produced in Fe and Ni are presented. These cross sections are essential to understand cosmic ray interactions with meteorites and the lunar surface.

  11. Review and Assessment of Neutron Cross Section and Nubar Covariances for Advanced Reactor Systems

    SciTech Connect

    Maslov,V.M.; Oblozinsky, P.; Herman, M.

    2008-12-01

    In January 2007, the National Nuclear Data Center (NNDC) produced a set of preliminary neutron covariance data for the international project 'Nuclear Data Needs for Advanced Reactor Systems'. The project was sponsored by the OECD Nuclear Energy Agency (NEA), Paris, under the Subgroup 26 of the International Working Party on Evaluation Cooperation (WPEC). These preliminary covariances are described in two recent BNL reports. The NNDC used a simplified version of the method developed by BNL and LANL that combines the recent Atlas of Neutron Resonances, the nuclear reaction model code EMPIRE and the Bayesian code KALMAN with the experimental data used as guidance. There are numerous issues involved in these estimates of covariances and it was decided to perform an independent review and assessment of these results so that better covariances can be produced for the revised version in future. Reviewed and assessed are uncertainties for fission, capture, elastic scattering, inelastic scattering and (n,2n) cross sections as well as prompt nubars for 15 minor actinides ({sup 233,234,236}U, {sup 237}Np, {sup 238,240,241,242}Pu, {sup 241,242m,243}Am and {sup 242,243,244,245}Cm) and 4 major actinides ({sup 232}Th, {sup 235,238}U and {sup 239}Pu). We examined available evaluations, performed comparison with experimental data, taken into account uncertainties in model parameterization and made use state-of-the-art nuclear reaction theory to produce the uncertainty assessment.

  12. High-Resolution Neutron Total and Capture Cross-Section Measurements on 206Pb

    SciTech Connect

    Borella, A.; Brusegan, A.; Siegler, P.; Schillebeeckx, P.; Moxon, M.C.; Aerts, G.; Gunsing, F.

    2005-05-24

    High-resolution neutron total and capture cross-section measurements have been performed on a 99.82% enriched 206Pb metallic sample. The transmission and capture measurements were carried out at the 25- and 60-m stations, respectively, of the Time-Of-Flight facility GELINA of the IRMM in Geel (B). The small amount of material allowed us to detect 13 resonances below 80 keV in the transmission measurements and 70 were seen in the capture measurements below 150 keV. The resonance parameters for the resonances seen in transmission agree within the uncertainties of the parameters determined by Horen et al. at ORELA. The capture yield was measured up to 600 keV and the capture areas for resonances up to 150 keV were compared with published data. This comparison reveals systematic differences, which are due to the detection geometry, the different neutron sensitivity in the detection systems, the applied weighting function, and normalisation.

  13. Revised Production Rates for Na-22 and Mn-54 in Meteorites Using Cross Sections Measured for Neutron-induced Reactions

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Kim, K. J.; Reedy, R. C.

    2004-01-01

    The interactions of galactic cosmic rays (GCR) with extraterrestrial bodies produce small amounts of radionuclides and stable isotopes. The production rates of many relatively short-lived radionuclides, including 2.6-year Na-22 and 312-day Mn-54, have been measured in several meteorites collected very soon after they fell. Theoretical models used to calculate production rates for comparison with the measured values rely on input data containing good cross section measurements for all relevant reactions. Most GCR particles are protons, but secondary neutrons make most cosmogenic nuclides. Calculated production rates using only cross sections for proton-induced reactions do not agree well with measurements. One possible explanation is that the contribution to the production rate from reactions initiated by secondary neutrons produced in primary GCR interactions should be included explicitly. This, however, is difficult to do because so few of the relevant cross sections for neutron-induced reactions have been measured.

  14. Determination of neutron-induced alpha-particle cross sections on carbon using the response of a liquid scintillation detector

    SciTech Connect

    Brede, H.J.; Dietze, G.; Klein, H.; Schoelermann, H. )

    1991-01-01

    This paper presents the sums of the cross section {sup 12}C(n, {alpha}{sub 0}) {sup 9}Be and {sup 12}C(n, N{prime}3{alpha}) determined in the neutron energy range between 7.4 and 11 MeV. An NE-213 scintillation detector is simultaneously used as a carbon target, an alpha-particle detector, and a neutron fluence monitor. By comparing the measured and calculated response spectra, the neutron-induced alpha-particle events in the scintillation volume are separated and the cross sections {sigma}{sub n,{alpha}0} + {sigma}{sub n,n{prime}3{alpha}} are determined relative to the n-p scattering cross section. The pulse-height distribution due to alpha particles allows the angular distribution to be extracted on the basis of the reaction kinematics and an accurately determined light output function for alpha particles in the NE-213 detector.

  15. Stellar (n ,γ ) cross sections of neutron-rich nuclei: Completing the isotope chains of Yb, Os, Pt, and Hg

    NASA Astrophysics Data System (ADS)

    Marganiec, J.; Dillmann, I.; Domingo-Pardo, C.; Käppeler, F.

    2014-12-01

    The (n ,γ ) cross sections of the most neutron-rich stable isotopes of Yb, Os, Pt, and Hg have been determined in a series of activation measurements at the Karlsruhe 3.7 MV Van de Graaff accelerator, using the quasistellar neutron spectrum for k T =25 keV that can be produced with the 7Li(p ,n ) 7Be reaction. In this way, Maxwellian averaged cross sections could be directly obtained with only minor corrections. After irradiation the induced activities were counted with a HPGe detector via the strongest γ -ray lines. The stellar neutron capture cross sections of Yb,176174, Os,192190, Pt,198196, and Hg,204202, extrapolated to k T =30 keV, were found to be 157 ±6 mb, 114 ±8 mb, 278 ±11 mb, 160 ±7 mb, 171 ±19 mb, 94 ±4 mb, 62 ±2 mb, and 32 ±15 mb, respectively. In the case of 196Pt the partial cross section to the isomeric state at 399.5 keV could be determined as well. With these results the cross section data for long isotopic chains could be completed for a discussion of the predictive power of statistical model calculations towards the neutron-rich and proton-rich sides of the stability valley.

  16. Neutron Cross section Covariances in the Resonance region: 50,53Cr, 54,57Fe and 60Ni

    SciTech Connect

    Oblozinsky, P.; Cho,Y.-S.; Mattoon,C.M.; Mughabghab,S.F.

    2010-11-23

    We evaluated covariances in the neutron resonance region for capture and elastic scattering cross sections on minor structural materials, {sup 50,53}Cr, {sup 54,57}Fe and {sup 60}Ni. Use was made of the recently developed covariance formalism based on kernel approximation along with data in the Atlas of Neutron Resonances. Our results of most interest for advanced fuel cycle applications, elastic scattering cross section uncertainties at energies around 100 keV, are on the level of about 7-10%.

  17. Neutron capture cross section measurements for 197Au from 3.5 to 84 keV at GELINA

    NASA Astrophysics Data System (ADS)

    Massimi, C.; Becker, B.; Dupont, E.; Kopecky, S.; Lampoudis, C.; Massarczyk, R.; Moxon, M.; Pronyaev, V.; Schillebeeckx, P.; Sirakov, I.; Wynants, R.

    2014-08-01

    Cross section measurements have been performed at the time-of-flight facility GELINA to determine the average capture cross section for 197Au in the energy region between 3.5 keV and 84 keV. Prompt γ-rays, originating from neutron-induced capture events, were detected by two C6 D6 liquid scintillators. The sample was placed at about 13m distance from the neutron source. The total energy detection principle in combination with the pulse height weighting technique was applied. The energy dependence of the neutron flux was measured with a double Frisch-gridded ionization chamber based on the 10B(n,α) reaction. The data have been normalized to the well-isolated and saturated 197Au resonance at 4.9 eV. Special care was taken to reduce bias effects due to the weighting function, normalization, dead time and background corrections. The total uncertainty due to normalization, neutron flux and weighting function is 1.0%. An additional uncertainty of 0.5% results from the correction for self-shielding and multiple interaction events. Fluctuations due to resonance structures have been studied by complementary measurements at a 30m flight path station. The results reported in this work deviate systematically by more than 5% from the cross section that is recommended as a reference for astrophysical applications. They are about 2% lower compared to an evaluation of the 197Au(n, γ) cross section, which was based on a least squares fit of experimental data available in the literature prior to this work. The average capture cross section as a function of neutron energy has been parameterized in terms of average resonance parameters. Maxwellian average cross sections at different temperatures have been calculated.

  18. Measurement of secondary neutron emission double-differential cross sections for 9Be induced by 21.65 ± 0.07 MeV neutrons

    NASA Astrophysics Data System (ADS)

    Lan, Changlin; Ruan, Xichao; Chen, Guochang; Nie, Yangbo; Huang, Hanxiong; Bao, Jie; Zhou, Zuying; Tang, Hongqing; Kong, Xiangzhong; Peng, Meng

    2016-05-01

    The neutron emission double-differential cross sections (DDX) of 9Be was measured at an incident neutron energy of 21.65 MeV, using the multi-detector fast neutron time-of-flight (TOF) spectrometer on HI-13 Tandem Accelerator at the China Institute of Atomic Energy (CIAE). The data were deduced by comparing the measured TOF spectra with the calculated ones using a realistic Monte-Carlo simulation. The DDX were normalized to n-p scattering cross sections which are a neutron scattering standard. The results of the elastic scattering angular distributions (DX) and the secondary neutron emission DDX at 25 different angles from 15 deg to 145 deg were presented. Meanwhile, a theoretical model based on the unified Hauser-Feshbach and exciton model for light nuclei was used to describe the double-differential cross sections of n+9Be, and the theoretical calculation results were compared with the measured cross sections.

  19. Neutron Capture Cross Section of 90Zr: Bottleneck in the s-Process Reaction Flow

    SciTech Connect

    Tagliente, G.; Koehler, Paul Edward; Collaboration, n_TOF

    2008-03-01

    The neutron capture cross sections of the Zr isotopes have important implications in nuclear astrophysics and for reactor design. The small cross section of the neutron magic nucleus {sup 90}Zr, which accounts for more than 50% of natural zirconium represents one of the key isotopes for the stellar s-process, because it acts as a bottleneck in the neutron capture chain between the Fe seed and the heavier isotopes. The same element, Zr, also is an important component of the structural materials used in traditional and advanced nuclear reactors. The (n,{gamma}) cross section has been measured at CERN, using the n{_}TOF spallation neutron source. In total, 45 resonances could be resolved in the neutron energy range below 70 keV, 10 being observed for the first time thanks to the high resolution and low backgrounds at n{_}TOF. On average, the {Lambda}{sub {gamma}}widths obtained in resonance analyses with the R-matrix code SAMMY were 15% smaller than reported previously. By these results, the accuracy of the Maxwellian averaged cross section for s-process calculations has been improved by more than a factor of 2.

  20. Updated Users' Guide for RSAP -- A Code for Display and Manipulation of Neutron Cross Section Data and SAMMY Fit Results

    SciTech Connect

    Sayer, R.O.

    2003-07-29

    RSAP [1] is a computer code for display and manipulation of neutron cross section data and selected SAMMY output. SAMMY [2] is a multilevel R-matrix code for fitting neutron time-of-flight cross-section data using Bayes' method. This users' guide provides documentation for the recently updated RSAP code (version 6). The code has been ported to the Linux platform, and several new features have been added, including the capability to read cross section data from ASCII pointwise ENDF files as well as double-precision PLT output from SAMMY. A number of bugs have been found and corrected, and the input formats have been improved. Input items are parsed so that items may be separated by spaces or commas.

  1. Cross Sections for Neutron-induced Reactions on Actinide Targets Extracted from Surrogate Experiments: A Status Report

    SciTech Connect

    Escher, J E; Burke, J T; Dietrich, F S; Lesher, S R; Scielzo, N D; Thompson, I J; Younes, W

    2009-10-01

    The Surrogate nuclear reactions method, an indirect approach for determining cross sections for compound-nuclear reactions involving difficult-to-measure targets, is reviewed. Focusing on cross sections for neutron-induced reactions on actinides, we review the successes of past and present applications of the method and assess its uncertainties and limitations. The approximations used in the analyses of most experiments work reasonably well for (n,f) cross sections for neutron energies above 1-2 MeV, but lead to discrepancies for low-energy (n,f) reactions, as well as for (n,{gamma}) applications. Correcting for some of the effects neglected in the approximate analyses leads to improved (n,f) results. We outline steps that will further improve the accuracy and reliability of the Surrogate method and extend its applicability to reactions that cannot be approached with the present implementation of the method.

  2. MENDF71x. Multigroup Neutron Cross Section Data Tables Based upon ENDF/B-VII.1

    SciTech Connect

    Conlin, Jeremy Lloyd; Parsons, Donald Kent; Gardiner, Steven J.; Gray, Mark Girard; Lee, Mary Beth; White, Morgan Curtis

    2015-12-17

    A new multi-group neutron cross section library has been released along with the release of NDI version 2.0.20. The library is named MENDF71x and is based upon the evaluations released in ENDF/B-VII.1 which was made publicly available in December 2011. ENDF/B-VII.1 consists of 423 evaluations of which ten are excited states evaluations and 413 are ground state evaluations. MENDF71x was created by processing the 423 evaluations into 618-group, downscatter only NDI data tables. The ENDF/B evaluation files were processed using NJOY version 99.393 with the exception of 35Cl and 233U. Those two isotopes had unique properties that required that we process the evaluation using NJOY version 2012. The MENDF71x library was only processed to room temperature, i.e., 293.6 K. In the future, we plan on producing a multi-temperature library based on ENDF/B-VII.1 and compatible with MENDF71x.

  3. COMBINE7.1 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    SciTech Connect

    Woo Y. Yoon; David W. Nigg

    2009-08-01

    COMBINE7.1 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.1 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 fine-group cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B-3 or B-1 approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko self-shielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. The fine group cross sections in the thermal energy range are replaced by those self-shielded with the Amouyal/Benoist/Horowitz method in the three region geometry when this option is requested. COMBINE7.1 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constant may be output in any of several standard formats including ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a one-dimensional, discrete

  4. COMBINE7.0 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    SciTech Connect

    Woo Y. Yoon; David W. Nigg

    2008-09-01

    COMBINE7.0 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.0 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 finegroup cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B-3 or B-1 approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko selfshielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. The fine group cross sections in the thermal energy range are replaced by those selfshielded with the Amouyal/Benoist/Horowitz method in the three region geometry when this option is requested. COMBINE7.0 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constant may be output in any of several standard formats including ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a onedimensional, discrete

  5. Using a Time Projection Chamber to Measure High Precision Neutron-Induced Fission Cross Sections

    SciTech Connect

    Manning, Brett

    2015-08-06

    2014 LANSCE run cycle data will provide a preliminary 239Pu(n,f) cross section and will quantify uncertainties: PID and Target/beam non-uniformities. Continued running during the 2015 LANSCE run cycle: Thin targets to see both fission fragments and 239Pu(n,f) cross section and fully quantified uncertainties

  6. A New Method for Estimating Neutron Reaction Cross Sections Based on Wick's Limit

    SciTech Connect

    Dietrich, F S; Anderson, J D; Bauer, R W; Grimes, S M

    2004-10-13

    Wick's limit is an inequality that relates the zero-degree differential elastic scattering cross section to the total cross section. The deviation of Wick's limit from an exact equality is small over a wide range of incident energies and target masses. Under these circumstances we show that Wick's limit can be used to correlate the uncertainties in the two terms of the reaction (nonelastic) cross section expressed as the difference between the total and angle-integrated elastic cross sections. When suitable elastic angular distributions are available, we show that the reaction cross section may be obtained with small errors (typically 1.5-3%). Examples are shown for {sup 208P}b, {sup 54-56}Fe, {sup 232}Th, and {sup 238}U.

  7. A New Method for Estimating Neutron Reaction Cross Sections Based on Wick's Limit

    SciTech Connect

    Dietrich, F.S.; Anderson, J.D.; Bauer, R.W.; Grimes, S.M.

    2005-05-24

    Wick's limit is an inequality that relates the zero-degree differential elastic scattering cross section to the total cross section. The deviation of Wick's limit from an exact equality is small over a wide range of incident energies and target masses. Under these circumstances we show that Wick's limit can be used to correlate the uncertainties in the two terms of the reaction (nonelastic) cross section expressed as the difference between the total and angle-integrated elastic cross sections. When suitable elastic angular distributions are available, we show that the reaction cross section may be obtained with small errors (typically 1.5-3%). Examples are shown for 208Pb, 54-56Fe, 232Th, and 238U.

  8. R-Matrix Evaluation of {sup 16}O neutron cross sections up to 6.3 MeV

    SciTech Connect

    Sayer, R.O.; Leal, L.C.; Larson, N.M.; Spencer, R.R.; and Wright, R.Q.

    2000-08-01

    In this paper the authors describe an evaluation of {sup 16}O neutron cross sections in the resolved resonance region with the multilevel Reich-Moore R-matrix formalism. Resonance analyses were performed with the computer code SAMMY [LA98] which utilizes Bayes' method, a generalized least squares technique.

  9. Revised Calculations of the Production Rates for Co Isotopes in Meteorites Using New Cross Sections for Neutron-induced Reactions

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Brooks, F. D.; Buffler, A.; Allie, M. S.; Herbert, M. S.; Nchodu, M. R.; Makupula, S.; Ullmann, J.; Reedy, R. C.; Jones, D. T. L.

    2002-01-01

    New cross section measurements for reactions induced by neutrons with energies greater than 70 MeV are used to calculate the production rates for cobalt isotopes in meteorites and these new calculations are compared to previous estimates. Additional information is contained in the original extended abstract.

  10. Neutron cross sections of 122Te, 123Te, and 124Te between 1 and 60 keV

    NASA Astrophysics Data System (ADS)

    Xia, Y.; Gerstenhöfer, Th. W.; Jaag, S.; Käppeler, F.; Wisshak, K.

    1992-05-01

    The currently favored s process scenario of helium shell burning in low mass stars involves a range of thermal energies from kT=12 to 25 keV with most of the neutron exposure taking place at low temperatures. Therefore, differential cross sections are required down to the region of resolved resonances for the reliable determination of the Maxwellian-averaged cross sections typical of the stellar plasma. This work deals with the neutron capture cross sections of the important s only isotopes 122Te, 123Te, and 124Te, which were measured between 1 and 60 keV neutron energy with a setup of Moxon-Rae detectors. The systematic uncertainties achieved in this experiment are ~5%, but statistical uncertainties are smaller than 2%. In addition to the Moxon-Rae detectors, the setup includes a 6Li glass detector which could be used to determine the total neutron cross sections simultaneously. These results represent the first set of experimental data in this energy range.