Science.gov

Sample records for 123-group neutron cross-section

  1. (Fast neutron cross section measurements)

    SciTech Connect

    Not Available

    1991-01-01

    In the 14 MeV Neutron Laboratory, we have continued the development of a facility that is now the only one of its kind in operation in the United States. We have refined the klystron bunching system described in last year's report to the point that 1.2 nanosecond pulses have been directly measured. We have tested the pulse shape discrimination capability of our primary NE 213 neutron detector. We have converted the RF sweeper section of the beamline to a frequency of 1 MHz to replace the function of the high voltage pulser described in last year's report which proved to be difficult to maintain and unreliable in its operation. We have also overcome several other significant experimental difficulties, including a major problem with a vacuum leak in the main accelerator column. We have completed additional testing to prove the remainder of the generation and measurement systems, but overcoming some of these experimental difficulties has delayed the start of actual data taking. We are now in a position to begin our first series of ring geometry elastic scattering measurements, and these will be underway before the end of the current contract year. As part of our longer term planning, we are continuing the conceptual analysis of several schemes to improve the intensity of our current pulsed beam. These include the provision of a duoplasmatron ion source and/or the provision of preacceleration bunching. Additional details are given later in this report. A series of measurements were carried out at the Tandem Dynamatron Facility involving the irradiation of a series of yttrium foils and the determination of activation cross sections using absolute counting techniques. The experimental work has been completed, and final analysis of the cross section data will be completed within several months.

  2. [Fast neutron cross section measurements

    SciTech Connect

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are clean'' and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its data production'' phase.

  3. Neutron capture cross section of 136 Xe

    NASA Astrophysics Data System (ADS)

    Daugherty, Sean; Albert, Joshua; Johnson, Tessa; O'Conner, Thomasina; Kaufman, Lisa

    2015-04-01

    136 Xe is an important 0 νββ candidate, studied in experiments such as EXO-200 and, in the future, nEXO. These experiments require a precise study of neutron capture for their background models. The neutron capture cross section of 136 Xe has been measured at the Detector for Advanced Capture Experiments (DANCE) at the Los Alamos Neutron Science Center. A neutron beam ranging from thermal energy to 100 keV was incident on a gas cell filled with isotopically pure 136 Xe . We will discuss the measurement of partial neutron capture cross sections at thermal and first neutron resonance energies along with corresponding capture gamma cascades.

  4. Undergraduate Measurements of Neutron Cross Sections

    NASA Astrophysics Data System (ADS)

    Hicks, S. F.; Vanhoy, J. R.; French, A. J.; Santonil, Z. C.; Crider, B. P.; Peters, E. E.; McEllistrem, M. T.; Prados-Estévez, F. M.; Ross, T. J.; Yates, S. W.

    Undergraduate students at the University of Dallas have investigated basic properties of nuclei through γ-ray and neutron spectroscopy following neutron scattering. The former has been used primarily for nuclear structure investigations, while the latter has been used to measure neutron scattering cross sections important for fission reactor applications. A series of (n,n') and (n,n'γ) measurements have been made on 54Fe and 56Fe to determine neutron cross sections for scattering to excited levels in these nuclei. The former provides the cross sections directly and the latter are used to deduce inelastic neutron scattering cross sections by measuring the γ-ray production cross sections to states not easily resolved in neutron spectroscopy. All measurements have been completed at the University of Kentucky Accelerator Laboratory using a 7-MV Model CN Van de Graaff accelerator, along with the neutron production and neutron and γ-ray detection systems located there. Students participate in accelerator operation, experimental setup, data acquisition, and data analyses. An overview of the research program and student contributions is presented.

  5. Precise neutron inelastic cross section measurements

    SciTech Connect

    Negret, Alexandru

    2012-11-20

    The design of a new generation of nuclear reactors requires the development of a very precise neutron cross section database. Ongoing experiments performed at dedicated facilities aim to the measurement of such cross sections with an unprecedented uncertainty of the order of 5% or even smaller. We give an overview of such a facility: the Gamma Array for Inelastic Neutron Scattering (GAINS) installed at the GELINA neutron source of IRMM, Belgium. Some of the most challenging difficulties of the experimental approach are emphasized and recent results are shown.

  6. Covariance Evaluation Methodology for Neutron Cross Sections

    SciTech Connect

    Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.

    2008-09-01

    We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.

  7. International Evaluation of Neutron Cross Section Standards

    NASA Astrophysics Data System (ADS)

    Carlson, A. D.; Pronyaev, V. G.; Smith, D. L.; Larson, N. M.; Chen, Zhenpeng; Hale, G. M.; Hambsch, F.-J.; Gai, E. V.; Oh, Soo-Youl; Badikov, S. A.; Kawano, T.; Hofmann, H. M.; Vonach, H.; Tagesen, S.

    2009-12-01

    Neutron cross section standards are the basis for the determination of most neutron cross sections. They are used for both measurements and evaluations of neutron cross sections. Not many cross sections can be obtained absolutely - most cross sections are measured relative to the cross section standards and converted using evaluations of the standards. The previous complete evaluation of the neutron cross section standards was finished in 1987 and disseminated as the NEANDC/INDC and ENDF/B-VI standards. R-matrix model fits for the light elements and non-model least-squares fits for all the cross sections in the evaluation were the basis of the combined fits for all of the data. Some important reactions and constants are not standards, but they assist greatly in the determination of the standard cross sections and reduce their uncertainties - these data were also included in the combined fits. The largest experimental database used in the evaluation was prepared by Poenitz and included about 400 sets of experimental data with covariance matrices of uncertainties that account for all cross-energy, cross-reaction and cross-material correlations. For the evaluation GMA, a least-squares code developed by Poenitz, was used to fit all types of cross sections (absolute and shape), their ratios, spectrum-averaged cross sections and thermal constants in one full analysis. But, the uncertainties derived in this manner, and especially those obtained in the R-matrix model fits, have been judged to be too low and unrealistic. These uncertainties were substantially increased prior to their release in the recommended data files of 1987. Modified percentage uncertainties were reassigned by the United States Cross Section Evaluation Working Group's Standards Subcommittee for a wide range of energies, and no covariance (or correlation) matrices were supplied at that time. The need to re-evaluate the cross section standards is based on the appearance of a significant amount of precise

  8. Neutron Capture Cross Sections for Radioactive Nuclei

    NASA Astrophysics Data System (ADS)

    Tonchev, Anton; Bedrossian, Peter; Escher, Jutta; Scielzo, Nicholas

    2015-10-01

    Accurate neutron-capture cross sections for radioactive nuclei near or far away from the line of beta stability are crucial for understanding the nucleosynthesis of heavy elements. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining observables that can constrain Hauser-Feshbach statistical model calculations of capture cross sections. Specifically, we will consider photon scattering, transfer reactions, and beta-delayed neutron emission. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes far from stability will be discussed. This work was performed under the auspices of US DOE by LLNL under contract DE-AC52-07NA27344. Funding was provided via the LDRD-ERD-069 project.

  9. New Parameterization of Neutron Absorption Cross Sections

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.; Wilson, John W.; Cucinotta, Francis A.

    1997-01-01

    Recent parameterization of absorption cross sections for any system of charged ion collisions, including proton-nucleus collisions, is extended for neutron-nucleus collisions valid from approx. 1 MeV to a few GeV, thus providing a comprehensive picture of absorption cross sections for any system of collision pairs (charged or uncharged). The parameters are associated with the physics of the problem. At lower energies, optical potential at the surface is important, and the Pauli operator plays an increasingly important role at intermediate energies. The agreement between the calculated and experimental data is better than earlier published results.

  10. Cross sections of neutron-induced reactions

    SciTech Connect

    Mukhopadhyay, Tapan; Lahiri, Joydev; Basu, D. N.

    2010-10-15

    We study the properties of the neutron-nucleus total and reaction cross sections for several nuclei. We have applied an analytical model, the nuclear Ramsauer model, justified it from the nuclear reaction theory approach, and extracted the values of 12 parameters used in the model. The given parametrization has an advantage as phenomenological optical model potentials are limited up to 150-200 MeV. The present model provides good estimates of the total cross sections for several nuclei particularly at high energies.

  11. Neutron Capture Cross Section of 239Pu

    NASA Astrophysics Data System (ADS)

    Mosby, S.; Arnold, C.; Bredeweg, T. A.; Couture, A.; Jandel, M.; O'Donnell, J. M.; Rusev, G.; Ullmann, J. L.; Chyzh, A.; Henderson, R.; Kwan, E.; Wu, C. Y.

    2014-09-01

    The 239Pu(n,γ) cross section has been measured over the energy range 10 eV - 10 keV using the Detector for Advanced Neutron Capture Experiments (DANCE) as part of a campaign to produce precision (n,γ) measurements on 239Pu in the keV region. Fission coincidences were measured with a PPAC and used to characterize the prompt fission γ-ray spectrum in this region. The resulting spectra will be used to better characterize the fission component of another experiment with a thicker target to extend the (n,γ) cross section measurement well into the keV region.

  12. Neutron cross section standards and instrumentation

    NASA Astrophysics Data System (ADS)

    1992-09-01

    This report from the National Institute of Standards and Technology contains a summary of the accomplishments of the Neutron Cross Section Standards and Instrumentation Project during the second year of a three-year interagency agreement. This program includes a broad range of data measurements and evaluations. An emphasis has been focused on the (sup 10)B cross sections where serious discrepancies in the nuclear data base remain. In particular, there are important problems with the interpretation of the helium gas production associated with diagnostic measurements of interest in nuclear technology. The enhanced use of this isotope for medical treatment is also of significance. New measurements of neutron reaction cross sections for (sup 10)B are in progress in collaboration with scientists at the Oak Ridge National Laboratory. New experiments are in progress on the important dosimetry standards (sup 237)Np(n,f) and (sup 239)Pu(n,f) below 1 MeV neutron energy. In addition, new measurements of charged-particle production in basic biological elements for medical applications are underway. Further measurements are planned or in progress in collaborations which include fission fragment energy and angular distributions, and neutron energy spectra and angular distributions from neutron-induced fission. Also measurements of angular distributions of neutrons from scattering on protons, and determinations of capture cross section of gold are planned for a later time. Data evaluation will shift to include a unified international effort to motivate new measurements and evaluations. In response to the requests of the measurement community, NIST is beginning the formation of a national depository for fissionable isotope mass standards. This action will preserve for future measurements the valuable and irreplaceable critical samples whose masses and composition have been carefully determined and documented over the past 30 years of the nuclear program.

  13. Neutron removal cross section as a measure of neutron skin

    SciTech Connect

    Fang, D. Q.; Ma, Y. G.; Cai, X. Z.; Tian, W. D.; Wang, H. W.

    2010-04-15

    We study the relation between neutron removal cross section (sigma{sub -N}) and neutron skin thickness for finite neutron-rich nuclei using the statistical abrasion ablation model. Different sizes of neutron skin are obtained by adjusting the diffuseness parameter of neutrons in the Fermi distribution. It is demonstrated that there is a good linear correlation between sigma{sub -N} and the neutron skin thickness for neutron-rich nuclei. Further analysis suggests that the relative increase of neutron removal cross section could be used as a quantitative measure for neutron skin thickness in neutron-rich nuclei.

  14. Neutronic Cross Section Calculations on Fluorine Nucleus

    NASA Astrophysics Data System (ADS)

    Kara, A.; Tel, E.

    2013-06-01

    Certain light nuclei such as Lithium (Li), Beryllium (Be), Fluorine (F) (which are known as FLİBE) and its molten salt compounds (LiF, BeF2 and NaF) can serve as a coolant which can be used at high temperatures without reaching a high vapor pressure. These molten salt compounds are also a good neutron moderator. In this study, cross sections of neutron induced reactions have been calculated for fluorine target nucleus. The new calculations on the excitation functions of 19F( n, 2n), 19F( n, p), 19F( n, xn), 19F( n, xp) have been made. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve the full exciton model and the cascade exciton model. The equilibrium effects are calculated according to the Weisskopf-Ewing model. Also in the present work, the ( n, 2n) and ( n, p) reaction cross sections have calculated by using evaluated empirical formulas developed by Tel et al. at 14-15 MeV energy. The multiple pre-equilibrium mean free path constant from internal transition have been investigated for 19F nucleus. The obtained results have been discussed and compared with the available experimental data.

  15. Actinide Targets for Neutron Cross Section Measurements

    SciTech Connect

    John D. Baker; Christopher A. McGrath

    2006-10-01

    The Advanced Fuel Cycle Initiative (AFCI) and the Generation IV Reactor Initiative have demonstrated a lack of detailed neutron cross-sections for certain "minor" actinides, those other than the most common (235U, 238U, and 239Pu). For some closed-fuel-cycle reactor designs more than 50% of reactivity will, at some point, be derived from "minor" actinides that currently have poorly known or in some cases not measured (n,?) and (n,f) cross sections. A program of measurements under AFCI has begun to correct this. One of the initial hurdles has been to produce well-characterized, highly isotopically enriched, and chemically pure actinide targets on thin backings. Using a combination of resurrected techniques and new developments, we have made a series of targets including highly enriched 239Pu, 240Pu, and 242Pu. Thus far, we have electrodeposited these actinide targets. In the future, we plan to study reductive distillation to achieve homogeneous, adherent targets on thin metal foils and polymer backings. As we move forward, separated isotopes become scarcer, and safety concerns become greater. The chemical purification and electodeposition techniques will be described.

  16. APPARATUS FOR MEASURING TOTAL NEUTRON CROSS SECTIONS

    DOEpatents

    Cranberg, L.

    1959-10-13

    An apparatus is described for measuring high-resolution total neutron cross sections at high counting rate in the range above 50-kev neutron energy. The pulsed-beam time-of-flight technique is used to identify the neutrons of interest which are produced in the target of an electrostatic accelerator. Energy modulation of the accelerator . makes it possible to make observations at 100 energy points simultaneously. 761O An apparatus is described for monitoring the proton resonance of a liquid which is particulariy useful in the continuous purity analysis of heavy water. A hollow shell with parallel sides defines a meander chamber positioned within a uniform magnetic fieid. The liquid passes through an inlet at the outer edge of the chamber and through a spiral channel to the central region of the chamber where an outlet tube extends into the chamber perpendicular to the magnetic field. The radiofrequency energy for the monitor is coupled to a coil positioned coaxially with the outlet tube at its entrance point within the chamber. The improvement lies in the compact mechanical arrangement of the monitor unit whereby the liquid under analysis is subjected to the same magnetic field in the storage and sensing areas, and the entire unit is shielded from external electrostatic influences.

  17. [Fast neutron cross section measurements]. Progress report

    SciTech Connect

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are ``clean`` and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its ``data production`` phase.

  18. Radiative neutron capture cross sections on 176Lu at DANCE

    NASA Astrophysics Data System (ADS)

    Roig, O.; Jandel, M.; Méot, V.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.

    2016-03-01

    The cross section of the neutron capture reaction 176Lu(n ,γ ) has been measured for a wide incident neutron energy range with the Detector for Advanced Neutron Capture Experiments at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be (1912 ±132 ) b for one of the Lu natural isotopes, 176Lu. The resonance part was measured and compared to the Mughabghab's atlas using the R -matrix code, sammy. At higher neutron energies the measured cross sections are compared to ENDF/B-VII.1, JEFF-3.2, and BRC evaluated nuclear data. The Maxwellian averaged cross sections in a stellar plasma for thermal energies between 5 keV and 100 keV were extracted using these data.

  19. Actinide neutron-induced fission cross section measurements at LANSCE

    SciTech Connect

    Tovesson, Fredrik K; Laptev, Alexander B; Hill, Tony S

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications in a wide energy range from sub-thermal energies up to 200 MeV. A parallel-plate ionization chamber are used to measure fission cross sections ratios relative to the {sup 235}U standard while incident neutron energies are determined using the time-of-flight method. Recent measurements include the {sup 233,238}U, {sup 239-242}Pu and {sup 243}Am neutron-induced fission cross sections. Obtained data are presented in comparison with ex isting evaluations and previous data.

  20. Accurate universal parameterization of absorption cross sections II--neutron absorption cross sections

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.

    1997-01-01

    A recent parameterization (here after referred as paper I, Ref. [4]) of absorption cross sections for any system of charged ions collisions including proton -nucleus collisions, is extended for neutron-nucleus collisions valid from approximately 1 MeV to a few GeV, thus providing a comprehensive picture of absorption cross sections for any system of collision pair (charged and/or uncharged). The parameters are associated with the physics of the problem. At lower energies, the optical potential at the surface is important and the Pauli operator plays an increasingly important role at intermediate energies. The agreement between the calculated and experimental data is better than earlier published results.

  1. Studies of 54,56Fe Neutron Scattering Cross Sections

    NASA Astrophysics Data System (ADS)

    Hicks, S. F.; Vanhoy, J. R.; French, A. J.; Henderson, S. L.; Howard, T. J.; Pecha, R. L.; Santonil, Z. C.; Crider, B. P.; Liu, S.; McEllistrem, M. T.; Peters, E. E.; Prados-Estévez, F. M.; Ross, T. J.; Yates, S. W.

    2015-05-01

    Elastic and inelastic neutron scattering differential cross sections and γ-ray production cross sections have been measured on 54,56Fe at several incident energies in the fast neutron region between 1.5 and 4.7 MeV. All measurements were completed at the University of Kentucky Accelerator Laboratory (UKAL) using a 7-MV Model CN Van de Graaff accelerator, along with the neutron production and neutron and γ-ray detection systems located there. The facilities at UKAL allow the investigation of both elastic and inelastic scattering with nearly mono-energetic incident neutrons. Time-of-flight techniques were used to detect the scattered neutrons for the differential cross section measurements. The measured cross sections are important for fission reactor applications and also for testing global model calculations such as those found at ENDF, since describing both the elastic and inelastic scattering is important for determining the direct and compound components of the scattering mechanism. The γ-ray production cross sections are used to determine cross sections to unresolved levels in the neutron scattering experiments. Results from our measurements and comparisons to model calculations are presented.

  2. Neutron capture cross section standards for BNL 325, Fourth Edition

    SciTech Connect

    Holden, N.E.

    1981-01-01

    This report evaluates the experimental data and recommends values for the thermal neutron cross sections and resonance integrals for the neutron capture reactions: /sup 55/Mn(n,..gamma..), /sup 59/Co(n,..gamma..) and /sup 197/Au(n,..gamma..). The failure of lithium and boron as standards due to the natural variation of the absorption cross sections of these elements is discussed. The Westcott convention, which describes the neutron spectrum as a thermal Maxwellian distribution with an epithermal component, is also discussed.

  3. Application of simple ramsauer model to neutron total cross sections

    SciTech Connect

    Bauer, R.W.; Anderson, J.D.; Grimes, S.M.; Madsen, V.A.

    1997-04-29

    The simple nuclear Ramsauer model has been used successfully to fit neutron cross sections for three decades, but has not been widely used because the foundations of the model seem to be so unrealistic. We have shown that the Glauber calculations with the inclusion of refraction and optical model calculations essentially validate this simple model for neutron total cross sections in the neutron energy range of 5-50 MeV. This model yields a simple formula for parameterizing the energy dependence of the neutron cross section. We have applied the model to nuclei ranging from vanadium to bismuth. With the addition of a single parameter, we can improve these fits to less than 1.5%.

  4. Lanl Neutron-Induced Fission Cross Section Measurement Program

    NASA Astrophysics Data System (ADS)

    Laptev, A. B.; Tovesson, F.; Hill, T. S.

    2014-09-01

    A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). Combining measurements at two LANSCE facilities, the Lujan Center and the Weapons Neutron Research facility (WNR), cover neutron energies over 10 orders of magnitude: from sub-thermal up to 200 MeV. A parallel-plate fission ionization chamber was used as a fission fragment detector. The 235U(n,f) standard was used as the reference. Fission cross sections have been measured for multiple actinides. The new data presented here completes the suite of long-lived Uranium isotopes that were investigated with this experimental approach. The cross section data are presented in comparison with existing evaluations and previous measurements.

  5. Measurement of the NP Elastic Cross Section by Neutron Transmission

    NASA Astrophysics Data System (ADS)

    Daub, Brian; Kovash, Michael; Henzl, Vladimir; Shoniyozov, Khayrullo

    2010-11-01

    There are very few previous measurements of the cross section for neutron-proton elastic scattering at energies between 200 and 500 keV. To improve this situation, we used a pulsed proton beam from the Van de Graaff accelerator at the University of Kentucky to produce 200-800 keV neutrons via the ^7Li(p,n)^7Be reaction. We determined the total n-p elastic cross section by measuring the transmission of the neutron beam in samples of CH2 and carbon, using a BC501 liquid scintillator. The cross section obtained by taking ratios between normalized sample-in and sample-out yields is independent of both detector efficiency and dead time.

  6. Neutron capture cross section of {sup 241}Am

    SciTech Connect

    Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Kawano, T.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Parker, W. E.; Wu, C. Y.; Becker, J. A.

    2008-09-15

    The neutron capture cross section of {sup 241}Am for incident neutrons from 0.02 eV to 320 keV has been measured with the detector for advanced neutron capture experiments (DANCE) at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be 665{+-}33 b. Our result is in good agreement with other recent measurements. Resonance parameters for E{sub n}<12 eV were obtained using an R-matrix fit to the measured cross section. The results are compared with values from the ENDF/B-VII.0, Mughabghab, JENDL-3.3, and JEFF-3.1 evaluations. {gamma}{sub n} neutron widths for the first three resonances are systematically larger by 5-15% than the ENDF/B-VII.0 values. The resonance integral above 0.5 eV was determined to be 1553{+-}7 b. Cross sections in the resolved and unresolved energy regions above 12 eV were calculated using the Hauser-Feshbach theory incorporating the width-fluctuation correction of Moldauer. The calculated results agree well with the measured data, and the extracted averaged resonance parameters in the unresolved resonance region are consistent with those for the resolved resonances.

  7. ACTIV87: Fast Neutron Activation Cross Section File

    Energy Science and Technology Software Center (ESTSC)

    1993-08-01

    4. HISTORICAL BACKGROUND AND INFORMATION ACTIV87 is a compilation of fast neutron induced activation reaction cross-sections. The compilation covers energies from threshold to 20 MeV and is based on evaluated data taken from other evaluated data libraries and individual evaluations. The majority of these evaluations were performed by using available experimental data. The aforementioned available experimental data were used in the selection of needed parameters for theoretical computations and for normalizing the results of suchmore » computations. Theoretical calculations were also used for interpolation and extrapolation of experimental cross-section data. All of the evaluated data curves were compared with experimental data that had been reported over the four year period preceding 1987. Only those cross-sections not in contradiction with experimental data that was current in 1987 were retained in the activation file, ACTIV87. In cases of several conflicting evaluations, that evaluation was chosen which best corresponded to the experimental data. A few evaluated curves were renormalized in accordance with the results of the latest precision measurements. 5. APPLICATION OF THE DATA 6. SOURCE AND SCOPE OF DATA The following libraries and individual files of evaluated neutron cross-section data were used for the selection of the activation cross-sections: the BOSPOR Library, the Activation File of the Evaluated Nuclear Data Library, the Evaluated Neutron Data File (ENDF/B-V) Activation File, the International Reactor Dosimetry File (IRDF-82), and individual evaluations carried out under various IAEA research contracts. The file of selected reactions contains 206 evaluated cross-section curves of the (n,2n), (n,p) and (n,a) reactions which lead to radioactive products and may be used in many practical applications of neutron activation analysis. Some competing activation reactions, usually with low cross-section values, are given for completeness.« less

  8. Measurement of the 242Pu neutron capture cross section

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Chyzh, A.; Dance Collaboration

    2015-10-01

    Precision (n,f) and (n, γ) cross sections are important for the network calculations of the radiochemical diagnostic chain for the U.S. DOE's Stockpile Stewardship Program. 242Pu(n, γ) cross section is relevant to the network calculations of Pu and Am. Additionally, new reactor concepts have catalyzed considerable interest in the measurement of improved cross sections for neutron-induced reactions on key actinides. To date, little or no experimental data has been reported on 242Pu(n, γ) for incident neutron energy below 50 keV. A new measurement of the 242Pu(n, γ) reaction was performed with the DANCE together with an improved PPAC for fission-fragment detection at LANSCE during FY14. The relative scale of the 242Pu(n, γ) cross section spans four orders of magnitude for incident neutron energies from thermal to ~ 30 keV. The absolute scale of the 242Pu(n, γ) cross section is set according to the measured 239Pu(n,f) resonance at 7.8 eV; the target was spiked with 239Pu for this measurement. The absolute 242Pu(n, γ) neutron capture cross section is ~ 30% higher than the cross section reported in ENDF for the 2.7 eV resonance. Latest results to be reported. Funded by U.S. DOE Contract No. DE-AC52-07NA27344 (LLNL) and DE-AC52-06NA25396 (LANL). U.S. DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development. Isotopes (ORNL).

  9. Evaluation of the /sup 238/U neutron total cross section

    SciTech Connect

    Smith, A.; Poenitz, W.P.; Howerton, R.J.

    1982-12-01

    Experimental energy-averaged neutron total cross sections of /sup 238/U were evaluated from 0.044 to 20.0 MeV using regorous numerical methods. The evaluated results are presented together with the associated uncertainties and correlation matrix. They indicate that this energy-averaged neutron total cross section is known to better than 1% over wide energy regions. There are somwewhat larger uncertainties at low energies (e.g., less than or equal to 0.2 MeV), near 8 MeV and above 15 MeV. The present evaluation is compard with values given in ENDF/B-V.

  10. Neutrino Cross-Section Measurements at the Spallation Neutron Source

    SciTech Connect

    Stancu, Ion

    2008-02-21

    In this paper we discuss the proposal to build a neutrino facility at the recently-completed Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL). This facility can host an extensive, long-term program to study neutrino-nucleus cross-sections in the range of interest for nuclear astrophysics and nuclear theory.

  11. Neutrino Cross-Section Measurements at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Stancu, Ion

    2008-02-01

    In this paper we discuss the proposal to build a neutrino facility at the recently-completed Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL). This facility can host an extensive, long-term program to study neutrino-nucleus cross-sections in the range of interest for nuclear astrophysics and nuclear theory.

  12. Neutron Capture Cross Sections of 236U and 234U

    NASA Astrophysics Data System (ADS)

    Rundberg, R. S.; Bredeweg, T. A.; Bond, E. M.; Haight, R. C.; Hunt, L. F.; Kronenberg, A.; O'Donnell, J. M.; Schwantes, J. M.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.

    2006-03-01

    Accurate neutron capture cross sections of the actinide elements at neutron energies up to 1 MeV are needed to better interpret archived nuclear test data, for post-detonation nuclear attribution, and the Advanced Fuel Cycle Initiative. The Detector for Advance Neutron Capture Experiments, DANCE, has unique capabilities that allow the differentiation of capture gamma rays from fission gamma rays and background gamma rays from scattered neutrons captured by barium isotopes in the barium fluoride scintillators. The DANCE array has a high granularity, 160 scintillators, high efficiency, and nearly 4-π solid angle. Through the use of cuts in cluster multiplicity and calorimetric energy the capture gamma-rays are differentiated from other sources of gamma rays. The preliminary results for the capture cross sections of 236U are in agreement with the ENDF/B-VI evaluation. The preliminary results for 234U lower are than ENDF/B-VI evaluation and are closer to older evaluations.

  13. Neutron Capture Cross Sections of 236U and 234U

    SciTech Connect

    Rundberg, R. S.; Bredeweg, T. A.; Bond, E. M.; Haight, R. C.; Hunt, L. F.; O'Donnell, J. M.; Schwantes, J. M.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Kronenberg, A.

    2006-03-13

    Accurate neutron capture cross sections of the actinide elements at neutron energies up to 1 MeV are needed to better interpret archived nuclear test data, for post-detonation nuclear attribution, and the Advanced Fuel Cycle Initiative. The Detector for Advance Neutron Capture Experiments, DANCE, has unique capabilities that allow the differentiation of capture gamma rays from fission gamma rays and background gamma rays from scattered neutrons captured by barium isotopes in the barium fluoride scintillators. The DANCE array has a high granularity, 160 scintillators, high efficiency, and nearly 4-{pi} solid angle. Through the use of cuts in cluster multiplicity and calorimetric energy the capture gamma-rays are differentiated from other sources of gamma rays. The preliminary results for the capture cross sections of 236U are in agreement with the ENDF/B-VI evaluation. The preliminary results for 234U lower are than ENDF/B-VI evaluation and are closer to older evaluations.

  14. Thermal Neutron Capture Cross Sections of the PalladiumIsotopes

    SciTech Connect

    Firestone, R.B.; Krticka, M.; McNabb, D.P.; Sleaford, B.; Agvaanluvsan, U.; Belgya, T.; Revay, Zs.

    2006-07-17

    Precise gamma-ray thermal neutron capture cross sectionshave been measured at the Budapest Reactor for all elements withZ=1-83,92 except for He and Pm. These measurements and additional datafrom the literature been compiled to generate the Evaluated Gamma-rayActivation File (EGAF), which is disseminated by LBNL and the IAEA. Thesedata are nearly complete for most isotopes with Z<20 so the totalradiative thermal neutron capture cross sections can be determineddirectly from the decay scheme. For light isotopes agreement with therecommended values is generally satisfactory although large discrepanciesexist for 11B, 12,13C, 15N, 28,30Si, 34S, 37Cl, and 40,41K. Neutroncapture decay data for heavier isotopes are typically incomplete due tothe contribution of unresolved continuum transitions so only partialradiative thermal neutron capture cross sections can be determined. Thecontribution of the continuum to theneutron capture decay scheme arisesfrom a large number of unresolved levels and transitions and can becalculated by assuming that the fluctuations in level densities andtransition probabilities are statistical. We have calculated thecontinuum contribution to neutron capture decay for the palladiumisotopes with the Monte Carlo code DICEBOX. These calculations werenormalized to the experimental cross sections deexciting low excitationlevels to determine the total radiative thermal neutron capture crosssection. The resulting palladium cross sections values were determinedwith a precision comparable to the recommended values even when only onegamma-ray cross section was measured. The calculated and experimentallevel feedings could also be compared to determine spin and parityassignments for low-lying levels.

  15. Stellar neutron capture cross sections of the Nd isotopes

    SciTech Connect

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Kazakov, L.; Reffo, G.

    1998-01-01

    The neutron capture cross sections of {sup 142}Nd, {sup 143}Nd, {sup 144}Nd, {sup 145}Nd, {sup 146}Nd, and {sup 148}Nd have been measured in the energy range from 3 to 225 keV at the Karlsruhe 3.75 MV Van de Graaff accelerator. Neutrons were produced via the {sup 7}Li(p,n){sup 7}Be reaction by bombarding metallic Li targets with a pulsed proton beam. Capture events were registered with the Karlsruhe 4{pi} Barium Fluoride Detector. The cross sections were determined relative to the gold standard. The experiment was difficult due to the small cross sections of the even isotopes at or near the magic neutron number N=82, and also since the isotopic enrichment of some samples was comparably low. The necessary corrections for capture of scattered neutrons and for isotopic impurities could be determined reliably thanks to the high efficiency and the spectroscopic quality of the BaF{sub 2} detector, resulting in a consistent set of (n,{gamma}) cross sections for the six stable neodymium isotopes involved in the s process with typical uncertainties of 1.5{endash}2{percent}. From these data, Maxwellian averaged cross sections were calculated between kT=10 and 100 keV. The astrophysical implications of these results were investigated in an s-process analysis, which deals with the role of the s-only isotope {sup 142}Nd for the N{sub s}{l_angle}{sigma}{r_angle} systematics near the magic neutron number N=82, the decomposition of the Nd abundances into the respective r-, s-, and p-process components, and the interpretation of isotopic anomalies in meteoritic material. {copyright} {ital 1998} {ital The American Physical Society}

  16. Thermal neutron capture cross sections of the potassium isotopes

    NASA Astrophysics Data System (ADS)

    Firestone, R. B.; Krtička, M.; Révay, Zs.; Szentmiklosi, L.; Belgya, T.

    2013-02-01

    Precise thermal neutron capture γ-ray cross sections σγ for 39,40,41K were measured on a natural potassium target with the guided neutron beam at the Budapest Reactor. The cross sections were internally standardized using a stoichiometric KCl target with well-known 35Cl(n,γ) γ-ray cross sections [Révay and Molnár, Radiochimica ActaRAACAP0033-823010.1524/ract.91.6.361.20027 91, 361 (2003); Molnár, Révay, and Belgya, Nucl. Instrum. Meth. Phys. Res. BNIMBEU0168-583X10.1016/S0168-583X(03)01529-5 213, 32 (2004)]. These data were combined with γ-ray intensities from von Egidy [von Egidy, Daniel, Hungerford, Schmidt, Lieb, Krusche, Kerr, Barreau, Borner, Brissot , J. Phys. G. Nucl. Phys.JPHGBM0305-461610.1088/0305-4616/10/2/013 10, 221 (1984)] and Krusche [Krusche, Lieb, Ziegler, Daniel, von Egidy, Rascher, Barreau, Borner, and Warner, Nucl. Phys. ANUPABL0375-947410.1016/0375-9474(84)90506-2 417, 231 (1984); Krusche, Winter, Lieb, Hungerford, Schmidt, von Egidy, Scheerer, Kerr, and Borner, Nucl. Phys. ANUPABL0375-947410.1016/0375-9474(85)90429-4 439, 219 (1985)] to generate nearly complete capture γ-ray level schemes. Total radiative neutron cross sections were deduced from the total γ-ray cross section feeding the ground state, σ0=Σσγ(GS) after correction for unobserved statistical γ-ray feeding from levels near the neutron capture energy. The corrections were performed with Monte Carlo simulations of the potassium thermal neutron capture decay schemes using the computer code dicebox where the simulated populations of low-lying levels are normalized to the measured cross section depopulating those levels. Comparisons of the simulated and experimental level feeding intensities have led to proposed new spins and parities for selected levels in the potassium isotopes where direct reactions are not a significant contribution. We determined the total radiative neutron cross sections σ0(39K)=2.28±0.04 b, σ0(40K)=90±7 b, and σ0(41K)=1.62±0.03 b from the

  17. Improved Actinide Neutron Capture Cross Sections Using Accelerator Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bauder, W.; Pardo, R. C.; Kondev, F. G.; Kondrashev, S.; Nair, C.; Nusair, O.; Palchan, T.; Scott, R.; Seweryniak, D.; Vondrasek, R.; Collon, P.; Paul, M.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Maddock, T.; Imel, G.

    2014-09-01

    The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are developing a technique to inject solid material into the ECR with laser ablation. With laser ablation, we can better control material injection and potentially increase efficiency in the ECR, thus creating less contamination in the source and reducing cross talk. I will present work on the laser ablation system and preliminary results from our AMS measurements. The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are

  18. Fast-neutron scattering cross sections of elemental zirconium

    SciTech Connect

    Smith, A.B.; Guenther, P.T.

    1982-12-01

    Differential neturon-elastic-scattering cross sections of elemental zirconium are measured from 1.5 to 4.0 MeV at intervals of less than or equal to 200 keV. Inelastic-neutron-scattering cross sections corresponding to the excitation of levels at observed energies of: 914 +- 25, 1476 +- 37, 1787 +- 23, 2101 +- 26, 2221 +- 17, 2363 +- 14, 2791 +- 15 and 3101 +- 25 keV are determined. The experimental results are interpreted in terms of the optical-statistical model and are compared with corresponding quantities given in ENDF/B-V.

  19. Stellar neutron capture cross sections of the Lu isotopes

    SciTech Connect

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Kazakov, L.

    2006-01-15

    The neutron capture cross sections of {sup 175}Lu and {sup 176}Lu have been measured in the energy range 3-225 keV at the Karlsruhe 3.7 MV Van de Graaff accelerator. Neutrons were produced via the {sup 7}Li(p,n){sup 7}Be reaction by bombarding metallic Li targets with a pulsed proton beam, and capture events were registered with the Karlsruhe 4{pi} barium fluoride detector. The cross sections were determined relative to the gold standard using isotopically enriched as well as natural lutetium oxide samples. Overall uncertainties of {approx}1% could be achieved in the final cross section ratios to the gold standard, about a factor of 5 smaller than in previous works. Maxwellian averaged neutron capture cross sections were calculated for thermal energies between kT = 8 and 100 keV. These values are systematically larger by {approx}7% than those reported in recent evaluations. These results are of crucial importance for the assessment of the s-process branchings at A 175/176.

  20. Stellar neutron capture cross sections of the tin isotopes

    SciTech Connect

    Wisshak, K.; Voss, F.; Theis, C.; Kaeppeler, F.; Guber, K.; Kazakov, L.; Kornilov, N.; Reffo, G.

    1996-09-01

    The neutron capture cross sections of {sup 114}Sn, {sup 115}Sn, {sup 116}Sn, {sup 117}Sn, {sup 118}Sn, and {sup 120}Sn were measured in the energy range from 3 to 225 keV at the Karlsruhe 3.75 MV Van de Graaff accelerator. Neutrons were produced via the {sup 7}Li({ital p},{ital n}){sup 7}Be reaction using a pulsed proton beam. Capture events were registered with the Karlsruhe 4{pi} barium fluoride detector. The experiment was complicated by the small ({ital n},{gamma}) cross sections of the proton magic tin isotopes and by the comparably low enrichment of the rare isotopes {sup 114}Sn and {sup 115}Sn. Despite significant corrections for capture of scattered neutrons and for isotopic impurities, the high efficiency and the spectroscopic quality of the BaF{sub 2} detector allowed the determination of the cross-section ratios with overall uncertainties of 1{endash}2{percent}, five times smaller compared to existing data. Based on these results, Maxwellian averaged ({ital n},{gamma}) cross sections were calculated for thermal energies between {ital kT}=10 and 100 keV. These data are used for a discussion of the solar tin abundance and for an improved determination of the isotopic {ital s}- and {ital r}-process components. {copyright} {ital 1996 The American Physical Society.}

  1. Measurement of Neutron Capture Cross Sections of Selenium Isotopes

    NASA Astrophysics Data System (ADS)

    Dearmon, Howard D.; Krane, Kenneth S.

    2011-10-01

    There have been numerous measurements of the neutron capture cross sections of the stable Se isotopes, most dating from at least 40 years ago. The various results for individual isotopes are often in poor agreement with one another, but as yet there has been no attempt at a systematic measurement of the capture cross sections leading to all seven radioisotopes formed from capture by natural Se, which range in halflife from 17 s to 120 d. Using cadmium-shielded and unshielded irradiations of natural Se in various irradiation sites in OSU's TRIGA reactor, we have determined the thermal cross sections and resonance integrals for captures leading to ^75,77m,79m,81g,81m,83g,83mSe.

  2. Accurate Development of Thermal Neutron Scattering Cross Section Libraries

    SciTech Connect

    Hawari, Ayman; Dunn, Michael

    2014-06-10

    The objective of this project is to develop a holistic (fundamental and accurate) approach for generating thermal neutron scattering cross section libraries for a collection of important enutron moderators and reflectors. The primary components of this approach are the physcial accuracy and completeness of the generated data libraries. Consequently, for the first time, thermal neutron scattering cross section data libraries will be generated that are based on accurate theoretical models, that are carefully benchmarked against experimental and computational data, and that contain complete covariance information that can be used in propagating the data uncertainties through the various components of the nuclear design and execution process. To achieve this objective, computational and experimental investigations will be performed on a carefully selected subset of materials that play a key role in all stages of the nuclear fuel cycle.

  3. Fast-neutron scattering cross sections of elemental silver

    SciTech Connect

    Smith, A.B.; Guenther, P.T.

    1982-05-01

    Differential neutron elastic- and inelastic-scattering cross sections of elemental silver are measured from 1.5 to 4.0 MeV at intervals of less than or equal to 200 keV and at 10 to 20 scattering angles distributed between 20 and 160/sup 0/. Inelastically-scattered neutron groups are observed corresponding to the excitation of levels at; 328 +- 13, 419 +- 50, 748 +- 25, 908 +- 26, 1150 +- 38, 1286 +- 25, 1507 +- 20, 1623 +- 30, 1835 +- 20 and 1944 +- 26 keV. The experimental results are used to derive an optical-statistical model that provides a good description of the observed cross sections. The measured values are compared with corresponding quantities given in ENDF/B-V.

  4. Overview of recent U235 neutron cross section evaluation work

    SciTech Connect

    Lubitz, C.

    1998-10-01

    This report is an overview (through 1997) of the U235 neutron cross section evaluation work at Oak Ridge National Laboratory (ORNL), AEA Technology (Harwell) and Lockheed Martin Corp.-Schenectady (LMS), which has influenced, or appeared in, ENDF/B-VI through Release 5. The discussion is restricted to the thermal and resolved resonance regions, apart from some questions about the unresolved region which still need investigation. The important role which benchmark testing has played will be touched on.

  5. Neutron cross section standards and instrumentation. Annual report

    SciTech Connect

    Wasson, O.A.

    1993-07-01

    The objective of this interagency program is to provide accurate neutron interaction measurements for the US Department of Energy nuclear programs which include waste disposal, fusion, safeguards, defense, fission, and personnel protection. These measurements are also useful to other energy programs which indirectly use the unique properties of the neutron for diagnostic and analytical purposes. The work includes the measurement of reference cross sections and related neutron data employing unique facilities and capabilities at NIST and other laboratories as required; leadership and participation in international intercomparisons and collaborations; the preservation of standard reference deposits and the development of improved neutron detectors and measurement methods. A related and essential element of the program is critical evaluation of neutron interaction data including international coordinations. Data testing of critical data for important applications is included. The program is jointly supported by the Department of Energy and the National Institute of Standards and Technology. This report from the National Institute of Standards and Technology contains a summary of the accomplishments of the Neutron Cross Section Standards and Instrumentation Project during the third year of this three-year interagency agreement. The proposed program and required budget for the following three years are also presented. The program continues the shifts in priority instituted in order to broaden the program base.

  6. Neutron Capture Cross Sections for the Re/Os Clock

    SciTech Connect

    Mosconi, M.; Heil, M.; Kaeppeler, F.; Plag, R.; Voss, F.; Wisshak, K.; Mengoni, A.; Cennini, P.; Chiaveri, E.; Ferrari, A.; Fitzpatrick, L.; Herrera-Martinez, A.; Kadi, Y.; Sarchiapone, L.; Vlachoudis, V.; Wendler, H.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.

    2005-05-24

    The radioactive decay of 187Re {yields} 187Os (t1/2 = 43 Gyr) is suited for dating the onset of heavy-element nucleosynthesis. The radiogenic contribution to the 187Os abundance is the difference between the natural abundance and the corresponding s-process component. This component can be obtained via the well-established {sigma}N systematics using the neighboring s-only isotope 186Os, provided the neutron-capture cross sections of both isotopes are known with sufficient accuracy. We report on a new set of experiments performed with a C6D6 detector array at the n{sub T}OF neutron spallation facility of CERN. The capture cross sections of 186Os, 187Os, and 188Os have been measured in the neutron-energy range between 1 eV and 1 MeV, and Maxwellian-averaged cross sections were deduced for the relevant thermal energies from kT=5 keV to 100 keV.

  7. Summary of the Workshop on Neutron Cross Section Covariances

    SciTech Connect

    Smith, Donald L.

    2008-12-15

    A Workshop on Neutron Cross Section Covariances was held from June 24-27, 2008, in Port Jefferson, New York. This Workshop was organized by the National Nuclear Data Center, Brookhaven National Laboratory, to provide a forum for reporting on the status of the growing field of neutron cross section covariances for applications and for discussing future directions of the work in this field. The Workshop focused on the following four major topical areas: covariance methodology, recent covariance evaluations, covariance applications, and user perspectives. Attention was given to the entire spectrum of neutron cross section covariance concerns ranging from light nuclei to the actinides, and from the thermal energy region to 20 MeV. The papers presented at this conference explored topics ranging from fundamental nuclear physics concerns to very specific applications in advanced reactor design and nuclear criticality safety. This paper provides a summary of this workshop. Brief comments on the highlights of each Workshop contribution are provided. In addition, a perspective on the achievements and shortcomings of the Workshop as well as on the future direction of research in this field is offered.

  8. Realizing the Opportunities of Neutron Cross Section Measurements at RIA

    SciTech Connect

    Ahle, L; Hausmann, M; Reifarth, R; Roberts, K; Roeben, M; Rusnak, B; Vieira, D

    2004-10-13

    The Rare Isotope Accelerator will produce many isotopes at never before seen rates. This will allow for the first time measurements on isotopes very far from stability and new measurement opportunities for unstable nuclei near stability. In fact, the production rates are such that it should be possible to collect 10 micrograms of many isotopes with a half-life of 1 day or more. This ability to make targets of short-lived nuclei enables the possibility of making neutron cross-section measurements important to the astrophysics and the stockpile stewardship communities. But to fully realize this opportunity, the appropriate infrastructure must be included at the RIA facility. This includes isotope harvesting capabilities, radiochemical areas for processing collected material, and an intense, ''mono-energetic'', tunable neutron source. As such, we have been developing a design for neutron source facility to be included at the RIA site. This facility would produce neutrons via intense beams of deuterons and protons on a variety of targets. The facility would also include the necessary radiochemical facilities for target processing. These infrastructure needs will be discussed in addition to the methods that would be employed at RIA for measuring these neutron cross-sections.

  9. Neutron average cross sections of {sup 237}Np

    SciTech Connect

    Noguere, G.

    2010-04-15

    This work reports {sup 237}Np neutron resonance parameters obtained from the simultaneous analysis of time-of-flight data measured at the GELINA, ORELA, KURRI, and LANSCE facilities. A statistical analysis of these resonances relying on average R-matrix and optical model calculations was used to establish consistent l-dependent average resonance parameters involved in the description of the unresolved resonance range of the {sup 237}Np neutron cross sections. For neutron orbital angular momentum l=0, we obtained an average radiation width =39.3+-1.0 meV, a neutron strength function 10{sup 4}S{sub 0}=1.02+-0.14, a mean level spacing D{sub 0}=0.60+-0.03 eV, and a potential scattering length R{sup '}=9.8+-0.1 fm.

  10. Effects of silicon cross section and neutron spectrum on the radial uniformity in neutron transmutation doping.

    PubMed

    Kim, Haksung; Ho Pyeon, Cheol; Lim, Jae-Yong; Misawa, Tsuyoshi

    2012-01-01

    The effects of silicon cross section and neutron spectrum on the radial uniformity of a Si-ingot are examined experimentally with various neutron spectrum conditions. For the cross section effect, the numerical results using silicon single crystal cross section reveal good agreements with experiments within relative difference of 6%, whereas the discrepancy is approximately 20% in free-gas cross section. For the neutron spectrum effect, the radial uniformity in hard neutron spectrum is found to be more flattening than that in soft spectrum. PMID:21917470

  11. Evaluation of Neutron Resonance Cross Section Data at GELINA

    NASA Astrophysics Data System (ADS)

    Schillebeeckx, P.; Becker, B.; Capote, R.; Emiliani, F.; Guber, K.; Heyse, J.; Kauwenberghs, K.; Kopecky, S.; Lampoudis, C.; Massimi, C.; Mondelaers, W.; Moxon, M.; Noguere, G.; Plompen, A. J. M.; Pronyaev, V.; Siegler, P.; Sirakov, I.; Trkov, A.; Volev, K.; Zerovnik, G.

    2014-05-01

    Over the last decade, the EC-JRC-IRMM, in collaboration with other institutes such as INRNE Sofia (BG), INFN Bologna (IT), ORNL (USA), CEA Cadarache (FR) and CEA Saclay (FR), has made an intense effort to improve the quality of neutron-induced cross section data in the resonance region. These improvements relate to both the infrastructure of the facility and the measurement setup, and the data reduction and analysis procedures. As a result total and reaction cross section data in the resonance region with uncertainties better than 0.5 % and 2 %, respectively, can be produced together with evaluated data files for both the resolved and unresolved resonance region. The methodology to produce full ENDF compatible files, including covariances, is illustrated by the production of resolved resonance parameter files for 241Am, Cd and W and an evaluation for 197Au in the unresolved resonance region.

  12. Neutron Cross Section Covariances for Structural Materials and Fission Products

    NASA Astrophysics Data System (ADS)

    Hoblit, S.; Cho, Y.-S.; Herman, M.; Mattoon, C. M.; Mughabghab, S. F.; Obložinský, P.; Pigni, M. T.; Sonzogni, A. A.

    2011-12-01

    We describe neutron cross section covariances for 78 structural materials and fission products produced for the new US evaluated nuclear reaction library ENDF/B-VII.1. Neutron incident energies cover full range from 10 eV to 20 MeV and covariances are primarily provided for capture, elastic and inelastic scattering as well as (n,2n). The list of materials follows priorities defined by the Advanced Fuel Cycle Initiative, the major application being data adjustment for advanced fast reactor systems. Thus, in addition to 28 structural materials and 49 fission products, the list includes also 23Na which is important fast reactor coolant. Due to extensive amount of materials, we adopted a variety of methodologies depending on the priority of a specific material. In the resolved resonance region we primarily used resonance parameter uncertainties given in Atlas of Neutron Resonances and either applied the kernel approximation to propagate these uncertainties into cross section uncertainties or resorted to simplified estimates based on integral quantities. For several priority materials we adopted MF32 covariances produced by SAMMY at ORNL, modified by us by adding MF33 covariances to account for systematic uncertainties. In the fast neutron region we resorted to three methods. The most sophisticated was EMPIRE-KALMAN method which combines experimental data from EXFOR library with nuclear reaction modeling and least-squares fitting. The two other methods used simplified estimates, either based on the propagation of nuclear reaction model parameter uncertainties or on a dispersion analysis of central cross section values in recent evaluated data files. All covariances were subject to quality assurance procedures adopted recently by CSEWG. In addition, tools were developed to allow inspection of processed covariances and computed integral quantities, and for comparing these values to data from the Atlas and the astrophysics database KADoNiS.

  13. Neutron Cross Section Covariances for Structural Materials and Fission Products

    SciTech Connect

    Hoblit, S.; Hoblit,S.; Cho,Y.-S.; Herman,M.; Mattoon,C.M.; Mughabghab,S.F.; Oblozinsky,P.; Pigni,M.T.; Sonzogni,A.A.

    2011-12-01

    We describe neutron cross section covariances for 78 structural materials and fission products produced for the new US evaluated nuclear reaction library ENDF/B-VII.1. Neutron incident energies cover full range from 10{sup -5} eV to 20 MeV and covariances are primarily provided for capture, elastic and inelastic scattering as well as (n,2n). The list of materials follows priorities defined by the Advanced Fuel Cycle Initiative, the major application being data adjustment for advanced fast reactor systems. Thus, in addition to 28 structural materials and 49 fission products, the list includes also {sup 23}Na which is important fast reactor coolant. Due to extensive amount of materials, we adopted a variety of methodologies depending on the priority of a specific material. In the resolved resonance region we primarily used resonance parameter uncertainties given in Atlas of Neutron Resonances and either applied the kernel approximation to propagate these uncertainties into cross section uncertainties or resorted to simplified estimates based on integral quantities. For several priority materials we adopted MF32 covariances produced by SAMMY at ORNL, modified by us by adding MF33 covariances to account for systematic uncertainties. In the fast neutron region we resorted to three methods. The most sophisticated was EMPIRE-KALMAN method which combines experimental data from EXFOR library with nuclear reaction modeling and least-squares fitting. The two other methods used simplified estimates, either based on the propagation of nuclear reaction model parameter uncertainties or on a dispersion analysis of central cross section values in recent evaluated data files. All covariances were subject to quality assurance procedures adopted recently by CSEWG. In addition, tools were developed to allow inspection of processed covariances and computed integral quantities, and for comparing these values to data from the Atlas and the astrophysics database KADoNiS.

  14. Stellar (n, gamma) cross sections of neutron-rich nuclei

    SciTech Connect

    Marganiec, J.; Domingo Pardo, C.; Kaeppeler, F.

    2010-03-01

    The present measurements were performed by means of the activation technique. Neutrons were produced at the Karlsruhe Van de Graaff accelerator via the {sup 7}Li(p,n){sup 7}Be reaction. For proton energies just above threshold, one obtains a neutron spectrum similar to a Maxwellian distribution for kT = 25 keV. This quasi-stellar neutron spectrum allowed us to measure the Maxwellian averaged cross sections directly. The experimental results of {sup 174,176}Yb, {sup 184,186}W, {sup 190,192}Os, {sup 196,198}Pt, and {sup 202}Hg were extrapolated from kT = 25 keV to lower and higher temperatures.

  15. Thermal neutron cross section of liquid and solid mesitylene

    NASA Astrophysics Data System (ADS)

    Cantargi, F.; Blostein, J. J.; Torres, L.; Granada, J. R.

    2006-08-01

    Total cross sections of mesitylene at 293 K and at 89 K were measured at the electron LINAC based pulsed neutron source of Centro Atómico Bariloche. Preliminary frequency spectra were proposed for liquid and solid mesitylene at those temperatures combining experimental and synthetic contributions. Scattering law data files were generated with the NJOY nuclear data processing system. Good agreement between experiments and calculations is found, which represents a primary validation of the scattering kernels which are now being used for the design and optimization of a cold moderator employing that material.

  16. Radioactive targets for neutron-induced cross section measurements

    SciTech Connect

    Kronenberg, A.; Bond, E. M.; Glover, S. E.; Rundberg, R. S.; Vieira, D. J.; Esch, E. I.; Reifarth, R.; Ullmann, J. L.; Haight, Robert C.; Rochmann, D.

    2004-01-01

    Measurements using radioactive targets are important for the determination of key reaction path ways associated with the synthesis of the elements in nuclear astrophysics (sprocess), advanced fuel cycle initiative (transmutation of radioactive waste), and stockpile stewardship. High precision capture cross-section measurements are needed to interpret observations, predict elemental or isotopical ratios, and unobserved abundances. There are two new detector systems that are presently being commissioned at Los Alamos National Laboratory for very precise measurements of (n,{gamma}) and (n,f) cross-sections using small quantities of radioactive samples. DANCE (Detector for Advanced Neutron-Capture Experiments), a 4 {pi} gamma array made up of 160 BaF{sub 2} detectors, is designed to measure neutron capture cross-sections of unstable nuclei in the low-energy range (thermal to {approx}500 keV). The high granularity and high detection efficiency of DANCE, combined with the high TOF-neutron flux available at the Lujan Center provides a versatile tool for measuring many important cross section data using radioactive and isotopically enriched targets of about 1 milligram. Another powerful instrument is the Lead-slowing down spectrometer (LSDS), which will enable the measurement of neutron-induced fission cross-section of U-235m and other short-lived actinides in a energy range from 1-200 keV with sample sizes down to 10 nanograms. Due to the short half-life of the U-235m isomer (T{sub 1/2} = 26 minutes), the samples must be rapidly and repeatedly extracted from its {sup 239}Pu parent. Since {sup 239}Pu is itself highly fissile, the separation must not only be rapid, but must also be of very high purity (the Pu must be removed from the U with a decontamination factor >10{sup 12}). Once extracted and purified, the {sup 235m}U isomer would be electrodeposited on solar cells as a fission detector and placed within the LSDS for direct (n,f) cross section measurements. The

  17. Research on Fast-Doppler-Broadening of neutron cross sections

    SciTech Connect

    Li, S.; Wang, K.; Yu, G.

    2012-07-01

    A Fast-Doppler-Broadening method is developed in this work to broaden Continuous Energy neutron cross-sections for Monte Carlo calculations. Gauss integration algorithm and parallel computing are implemented in this method, which is unprecedented in the history of cross section processing. Compared to the traditional code (NJOY, SIGMA1, etc.), the new Fast-Doppler-Broadening method shows a remarkable speedup with keeping accuracy. The purpose of using Gauss integration is to avoid complex derivation of traditional broadening formula and heavy load of computing complementary error function that slows down the Doppler broadening process. The OpenMP environment is utilized in parallel computing which can take full advantage of modern multi-processor computers. Combination of the two can reduce processing time of main actinides (such as {sup 238}U, {sup 235}U) to an order of magnitude of 1{approx}2 seconds. This new method is fast enough to be applied to Online Doppler broadening. It can be combined or coupled with Monte Carlo transport code to solve temperature dependent problems and neutronics-thermal hydraulics coupled scheme which is a big challenge for the conventional NJOY-MCNP system. Examples are shown to determine the efficiency and relative errors compared with the NJOY results. A Godiva Benchmark is also used in order to test the ACE libraries produced by the new method. (authors)

  18. AFCI-2.0 Library of Neutron Cross Section Covariances

    SciTech Connect

    Herman, M.; Herman,M.; Oblozinsky,P.; Mattoon,C.; Pigni,M.; Hoblit,S.; Mughabghab,S.F.; Sonzogni,A.; Talou,P.; Chadwick,M.B.; Hale.G.M.; Kahler,A.C.; Kawano,T.; Little,R.C.; Young,P.G.

    2011-06-26

    Neutron cross section covariance library has been under development by BNL-LANL collaborative effort over the last three years. The primary purpose of the library is to provide covariances for the Advanced Fuel Cycle Initiative (AFCI) data adjustment project, which is focusing on the needs of fast advanced burner reactors. The covariances refer to central values given in the 2006 release of the U.S. neutron evaluated library ENDF/B-VII. The preliminary version (AFCI-2.0beta) has been completed in October 2010 and made available to the users for comments. In the final 2.0 release, covariances for a few materials were updated, in particular new LANL evaluations for {sup 238,240}Pu and {sup 241}Am were adopted. BNL was responsible for covariances for structural materials and fission products, management of the library and coordination of the work, while LANL was in charge of covariances for light nuclei and for actinides.

  19. Modeling of High Precision Neutron Nonelastic Cross Sections

    SciTech Connect

    Dietrich, F S; Anderson, J D; Bauer, R W; Grimes, S M; McNabb, D P

    2007-02-05

    A new method has been applied to the determination of neutron nonelastic cross sections for iron {sup 56}Fe and lead {sup 208}Pb for energies between 5 and 26 MeV. These data have estimated errors of only a few percent and do not suffer from the ambiguities encountered in earlier nonelastic data. We attempt to fit these high precision data using both a semiclassical single phase shift model (nuclear Ramsauer model) as well as a recent global optical model that well reproduces a wide body of neutron scattering observables. At the 5% uncertainty level, both models produce satisfactory fits. However, neither model gives satisfactory fits to these new precise data. We conclude that fitting precise data, i.e., data with errors of approximately 2% or less, may require a nuclear mass dependence of radii that reflects structure effects such as shell closures.

  20. Performing Neutron Cross-Section Measurements at RIA

    SciTech Connect

    Ahle, L E

    2003-05-20

    The Rare Isotope Accelerator (RIA) is a proposed accelerator for the low energy nuclear physics community. Its goal is to understand the natural abundances of the elements heavier than iron, explore the nuclear force in systems far from stability, and study symmetry violation and fundamental physics in nuclei. To achieve these scientific goals, RIA promises to produce isotopes far from stability in sufficient quantities to allow experiments. It would also produce near stability isotopes at never before seen production rates, as much as 10{sup 12} pps. Included in these isotopes are many that are important to stockpile stewardship, such as {sup 87}Y, {sup 146-50}Eu, and {sup 231}Th. Given the expected production rates at RIA and a reasonably intense neutron source, one can expect to make {approx} 10 {micro}g targets of nuclei with a half-life of {approx}1 day. Thus, it will be possible at RIA to obtain experimental information on the neutron cross section for isotopes that have to date only been determined by theory. There are two methods to perform neutron cross-section measurements, prompt and delayed. The prompt method tries to measure each reaction as it happens. The exact technique employed will depend on the reaction of interest, (n,2n), (n,{gamma}), (n,p), etc. The biggest challenge with this method is designing a detector system that can handle the gamma ray background from the target. The delayed method, which is the traditional radiochemistry method for determining the cross-section, irradiates the targets and then counts the reaction products after the fact. While this allows one to avoid the target background, the allowed fraction of target impurities is extremely low. This is especially true for the desired reaction product with the required impurity fraction on the order of 10{sup -9}. This is particularly problematic for (n,2n) and (n,{gamma}) reactions, whose reaction production cannot be chemically separated from the target. In either case, the

  1. Actinide Targets for Neutron Cross Section Measurements (C)

    SciTech Connect

    J. D. Baker; C. A. McGrath

    2006-04-01

    The Advanced Fuel Cycle Initiative (AFCI) and the Generation IV Reactor Initiative have demonstrated a lack of detailed neutron cross-sections for certain "minor" actinides, those other than the most common (235U, 238U, and 239Pu). For some closed-fuel-cycle reactor designs more than 50% of reactivity will, at some point, be derived from “minor” actinides that currently have poorly known (n,g) and (n,f) cross sections. A program of measurements under AFCI has begun to correct this. One of the initial hurdles has been to produce well-characterized, highly isotopically enriched, and chemically pure actinide targets on thin backings. Using a combination of resurrected techniques and new developments, we have made a series of targets including highly enriched 240Pu, and 242Pu. Thus far, we have electrodeposited these actinide targets. In the future, we plan to study reductive distillation to achieve homogeneous, adherent targets on thin metal foils and polymer backings. As we move forward, separated isotopes become scarcer, and safety concerns become greater. The chemical purification and electodeposition techniques will be described.

  2. Measurements of Neutron Capture Cross-Section for Tantalum at the Neutron Filtered Beams

    NASA Astrophysics Data System (ADS)

    Gritzay, Olena; Libman, Volodymyr

    2009-08-01

    The neutron capture cross sections of tantalum have been measured for the neutron energies 2 and 59 keV using the WWR-M Kyiv Research Reactor (KRR) of the Institute for Nuclear Research of the National Academy of Science of Ukraine. The cross sections of 181Ta (n, γ) 182Ta reaction were obtained by the activation method using a gamma-spectrometer with Ge(Li)-detector. The obtained neutron capture cross sections were compared with the known experimental data from database EXFOR/CSISRS and the ENDF libraries.

  3. AFCI-2.0 Neutron Cross Section Covariance Library

    SciTech Connect

    Herman, M.; Herman, M; Oblozinsky, P.; Mattoon, C.M.; Pigni, M.; Hoblit, S.; Mughabghab, S.F.; Sonzogni, A.; Talou, P.; Chadwick, M.B.; Hale, G.M.; Kahler, A.C.; Kawano, T.; Little, R.C.; Yount, P.G.

    2011-03-01

    The cross section covariance library has been under development by BNL-LANL collaborative effort over the last three years. The project builds on two covariance libraries developed earlier, with considerable input from BNL and LANL. In 2006, international effort under WPEC Subgroup 26 produced BOLNA covariance library by putting together data, often preliminary, from various sources for most important materials for nuclear reactor technology. This was followed in 2007 by collaborative effort of four US national laboratories to produce covariances, often of modest quality - hence the name low-fidelity, for virtually complete set of materials included in ENDF/B-VII.0. The present project is focusing on covariances of 4-5 major reaction channels for 110 materials of importance for power reactors. The work started under Global Nuclear Energy Partnership (GNEP) in 2008, which changed to Advanced Fuel Cycle Initiative (AFCI) in 2009. With the 2011 release the name has changed to the Covariance Multigroup Matrix for Advanced Reactor Applications (COMMARA) version 2.0. The primary purpose of the library is to provide covariances for AFCI data adjustment project, which is focusing on the needs of fast advanced burner reactors. Responsibility of BNL was defined as developing covariances for structural materials and fission products, management of the library and coordination of the work; LANL responsibility was defined as covariances for light nuclei and actinides. The COMMARA-2.0 covariance library has been developed by BNL-LANL collaboration for Advanced Fuel Cycle Initiative applications over the period of three years, 2008-2010. It contains covariances for 110 materials relevant to fast reactor R&D. The library is to be used together with the ENDF/B-VII.0 central values of the latest official release of US files of evaluated neutron cross sections. COMMARA-2.0 library contains neutron cross section covariances for 12 light nuclei (coolants and moderators), 78 structural

  4. Neutron-capture Cross Sections from Indirect Measurements

    SciTech Connect

    Escher, J E; Burke, J T; Dietrich, F S; Ressler, J J; Scielzo, N D; Thompson, I J

    2011-10-18

    Cross sections for compound-nuclear reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  5. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    DOE PAGESBeta

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Calarco, J.; Crawford, C.; Craycraft, K.; Evans, D.; Fomin, N.; et al

    2015-05-08

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g(r) inferred from neutron scattering measurements of the differential cross section dσ/dΩ from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component)more » using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. Furthermore, we describe our measurements and compare them with previous work.« less

  6. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    SciTech Connect

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Calarco, J.; Crawford, C.; Craycraft, K.; Evans, D.; Fomin, N.; Fry, J.; Gericke, M.; Gillis, R. C.; Greene, G. L.; Hamblen, J.; Hayes, C.; Kucuker, S.; Mahurin, R.; Maldonado-Velázquez, M.; Martin, E.; McCrea, M.; Mueller, P. E.; Musgrave, M.; Nann, H.; Penttilä, S. I.; Snow, W. M.; Tang, Z.; Wilburn, W. S.

    2015-05-08

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g(r) inferred from neutron scattering measurements of the differential cross section dσ/dΩ from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. Furthermore, we describe our measurements and compare them with previous work.

  7. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    NASA Astrophysics Data System (ADS)

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Calarco, J.; Crawford, C.; Craycraft, K.; Evans, D.; Fomin, N.; Fry, J.; Gericke, M.; Gillis, R. C.; Greene, G. L.; Hamblen, J.; Hayes, C.; Kucuker, S.; Mahurin, R.; Maldonado-Velázquez, M.; Martin, E.; McCrea, M.; Mueller, P. E.; Musgrave, M.; Nann, H.; Penttilä, S. I.; Snow, W. M.; Tang, Z.; Wilburn, W. S.

    2015-05-01

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g (r ) inferred from neutron scattering measurements of the differential cross section d/σ d Ω from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. We describe our measurements and compare them with previous work.

  8. The Status of Cross Section Measurements for Neutron-induced Reactions Needed for Cosmic Ray Studies

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.

    2003-01-01

    Cosmic ray interactions with lunar rocks and meteorites produce small amounts of radionuclides and stable isotopes. Advances in Accelerator Mass Spectrometry (AMS) allow production rates to be measured routinely in well-documented lunar rocks and meteorites. These measurements are analyzed using theoretical models to learn about the object itself and the history of the cosmic rays that fell on it. Good cross section measurements are essential input to the theoretical calculations. Most primary cosmic ray particles are protons so reliable cross sections for proton-induced reactions are essential. A cross section is deemed accurate if measurements made by different experimenters using different techniques result in consistent values. Most cross sections for proton induced reactions are now well measured. However, good cross section measurements for neutron-induced reactions are still needed. These cross sections are required to fully account for all galactic cosmic ray interactions at depth in an extraterrestrial object. When primary galactic cosmic ray (GCR) particles interact with an object many secondary neutrons are produced, which also initiate spallation reactions. Thus, the total GCR contribution to the overall cosmogenic nuclide archive has to include the contribution from the secondary neutron interactions. Few relevant cross section measurements have been reported for neutron-induced reactions at neutron energies greater than approximately 20 MeV. The status of the cross section measurements using quasi-monoenergetic neutron energies at iThemba LABS, South Africa and white neutron beams at Los Alamos Neutron Science Center (LANSCE), Los Alamos are reported here.

  9. Cross sections and isomeric cross-section ratios in the interactions of fast neutrons with isotopes of mercury

    SciTech Connect

    Al-Abyad, M.; Sudar, S.; Qaim, S. M.; Comsan, M.N.H.

    2006-06-15

    Excitation functions were measured for the reactions {sup 196}Hg(n, 2n){sup 195}Hg{sup m,g},{sup 198}Hg(n, 2n){sup 197}Hg{sup m,g},{sup 204}Hg(n, 2n){sup 203}Hg,{sup 198}Hg(n,p){sup 198}Au{sup g}, and {sup 199}Hg(n,p){sup 199}Au over the neutron energy range of 7.6-12.5 MeV. Quasimonoenergetic neutrons were produced via the {sup 2}H(d,n){sup 3}He reaction using a deuterium gas target at the Juelich variable energy compact cyclotron CV 28. Use was made of the activation technique in combination with high-resolution, high-purity Ge detector {gamma}-ray spectroscopy. All the data were measured for the first time over the investigated energy range. The transition from the present low-energy data to the literature data around 14 MeV is generally good. Nuclear model calculations using the codes STAPRE and EMPIRE-2.19, which employ the statistical and precompound model formalisms, were undertaken to describe the formation of both the isomeric and ground states of the products. The total reaction cross section of a particular channel is reproduced fairly well by the model calculations, with STAPRE giving slightly better results. Regarding the isomeric cross sections, the agreement between the experiment and theory is only in approximate terms. A description of the isomeric cross-section ratio by the model was possible only with a very low value of {eta}, i.e., the {theta}{sub eff}/{theta}{sub rig} ratio.

  10. Measurements of Neutron Induced Cross Sections at the Oak Ridge Electron Linear Accelerator

    SciTech Connect

    Guber, K.H.; Harvey, J.A.; Hill, N.W.; Koehler, P.E.; Leal, L.C.; Sayer, R.O.; Spencer, R.R.

    1999-09-20

    We have used the Oak Ridge Electron Linear Accelerator (ORELA) to measure neutron total and the fission cross sections of 233U in the energy range from 0.36 eV to ~700 keV. We report average fission and total cross sections. Also, we measured the neutron total cross sections of 27Al and Natural chlorine as well as the capture cross section of Al over an energy range from 100 eV up to about 400 keV.

  11. Estimation of neutron energy for first resonance from absorption cross section for thermal neutrons

    NASA Technical Reports Server (NTRS)

    Bogart, Donald

    1951-01-01

    Examination of published data for some 52 isotopes indicates that the neutron energy for which the first resonance occurs is related to the magnitude of the thermal absorption cross section. The empirical relation obtained is in qualitative agreement with the results of a simplified version of the resonance theory of the nucleus of Breit-Wigner.

  12. Advanced Neutron Source Cross Section Libraries (ANSL-V): ENDF/B-V based multigroup cross-section libraries for advanced neutron source (ANS) reactor studies

    SciTech Connect

    Ford, W.E. III; Arwood, J.W.; Greene, N.M.; Moses, D.L.; Petrie, L.M.; Primm, R.T. III; Slater, C.O.; Westfall, R.M.; Wright, R.Q.

    1990-09-01

    Pseudo-problem-independent, multigroup cross-section libraries were generated to support Advanced Neutron Source (ANS) Reactor design studies. The ANS is a proposed reactor which would be fueled with highly enriched uranium and cooled with heavy water. The libraries, designated ANSL-V (Advanced Neutron Source Cross Section Libraries based on ENDF/B-V), are data bases in AMPX master format for subsequent generation of problem-dependent cross-sections for use with codes such as KENO, ANISN, XSDRNPM, VENTURE, DOT, DORT, TORT, and MORSE. Included in ANSL-V are 99-group and 39-group neutron, 39-neutron-group 44-gamma-ray-group secondary gamma-ray production (SGRP), 44-group gamma-ray interaction (GRI), and coupled, 39-neutron group 44-gamma-ray group (CNG) cross-section libraries. The neutron and SGRP libraries were generated primarily from ENDF/B-V data; the GRI library was generated from DLC-99/HUGO data, which is recognized as the ENDF/B-V photon interaction data. Modules from the AMPX and NJOY systems were used to process the multigroup data. Validity of selected data from the fine- and broad-group neutron libraries was satisfactorily tested in performance parameter calculations.

  13. 70 Group Neutron Fast Reactor Cross Section Set and 25 Group Neutron Fast Reactor Cross Section Set.

    Energy Science and Technology Software Center (ESTSC)

    1984-10-29

    Version 00 These multigroup cross sections are used in fast reactor calculations. The benchmark calculations for the 23 fast critical assemblies used in the benchmark tests of JFS-2 were performed with one-dimensional diffusion theory by using the JFS-3-J2 set.

  14. Method and apparatus for determination of temperature, neutron absorption cross section and neutron moderating power

    DOEpatents

    Vagelatos, Nicholas; Steinman, Donald K.; John, Joseph; Young, Jack C.

    1981-01-01

    A nuclear method and apparatus determines the temperature of a medium by injecting fast neutrons into the medium and detecting returning slow neutrons in three first energy ranges by producing three respective detection signals. The detection signals are combined to produce three derived indicia each systematically related to the population of slow neutrons returning from the medium in a respective one of three second energy ranges, specifically exclusively epithermal neutrons, exclusively substantially all thermal neutrons and exclusively a portion of the thermal neutron spectrum. The derived indicia are compared with calibration indicia similarly systematically related to the population of slow neutrons in the same three second energy ranges returning from similarly irradiated calibration media for which the relationships temperature, neutron absorption cross section and neutron moderating power to such calibration indicia are known. The comparison indicates the temperature at which the calibration indicia correspond to the derived indicia and consequently the temperature of the medium. The neutron absorption cross section and moderating power of the medium can be identified at the same time.

  15. Production cross section of neutron-rich isotopes with radioactive and stable beams

    NASA Astrophysics Data System (ADS)

    Mun, Myeong-Hwan; Adamian, G. G.; Antonenko, N. V.; Oh, Yongseok; Kim, Youngman

    2014-03-01

    The production cross section of neutron-rich isotopes of Ca, Zn, Te, Xe, and Pt are predicted in the diffusive multinucleon transfer reactions with stable and radioactive beams. With these isotopes one can treat the neutron shell evolution beyond N =28, 50, 82, and 126. Because of the small cross sections, the production of nuclei near the neutron drip line requires the optimal choice of reaction partners and bombarding energies.

  16. Modeled Neutron Induced Nuclear Reaction Cross Sections for Radiochemistry in the region of Iriduim and Gold

    SciTech Connect

    Hoffman, R D; Dietrich, F S; Kelley, K; Escher, J; Bauer, R; Mustafa, M

    2008-02-26

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron induced nuclear reaction cross sections for targets ranging from osmium (Z = 76) to gold (Z = 79). Of particular interest are the cross sections on Ir and Au including reactions on isomeric targets.

  17. Determination of the 243,246,248Cm thermal neutron induced fission cross sections

    NASA Astrophysics Data System (ADS)

    Serot, O.; Wagemans, C.; Vermote, S.; Heyse, J.; Soldner, T.; Geltenbort, P.

    2005-11-01

    The minor actinide waste produced in nuclear power plants contains various Cm-isotopes, and transmutation scenarios require improved fission cross section data. The available thermal neutron induced fission cross section data for 243Cm, 246Cm and 248Cm are not very accurate, so new cross section measurements have been performed at the high flux reactor of the ILL in Grenoble (France) under better experimental conditions (highly enriched samples, very intense and clean neutron beam). The measurements were performed at a neutron energy of 5.38 meV, yielding fission cross section values of (1240±28)b for 243Cm, (25±47)mb for 246Cm and (685±84)mb for 248Cm. From these results, thermal fission cross section values of (572±14)b; (12±25)mb and (316±43)mb have been deduced for 243Cm, 246Cm and 248Cm, respectively.

  18. Neutron-induced fission cross sections of short-lived actinides with the surrogate reaction method.

    SciTech Connect

    Kessedijian, G.; Jurado, B.; Aiche, M.; Barreau, G.; Bidaud, A.; Czajkowski, S.; Dassie, D.; Haas, B.; Mathieu, L.; Audouin, L.; Capellan, N.; Tassan-Got, L.; Wilson, J. N.; Berthoumieux, E.; Gunsing, F.; Theisen, Ch.; Serot, O.; Bauge, E.; Ahmad, I.; Greene, J. P.; Janssens, R. V. F.

    2010-09-13

    Neutron-induced fission cross sections for {sup 242,243}Cm and {sup 241}Am have been obtained with the surrogate reaction method. Recent results for the neutron-induced cross section of {sup 243}Cm are questioned by the present data. For the first time, the {sup 242}Cm cross section has been determined up to the onset of second-chance fission. The good agreement at the lowest excitation energies between the present results and the existing neutron-induced data indicates that the distributions in spin and parity of states populated with both techniques are similar.

  19. Resonance Analysis and Evaluation of the Uranium -235 Neutron-Induced Cross-Sections

    NASA Astrophysics Data System (ADS)

    Leal, Luiz Carlos

    Neutron cross sections of fissile nuclei are of considerable interest for the understanding of parameters such as resonance absorption, resonance escape probability, resonance self-shielding, and the dependence of the reactivity on temperature. In the present study, new techniques for the evaluation of the ^{235}U neutron cross sections are described. The Reich-Moore formalism of the Bayesian computer code SAMMY was used to perform consistent R-matrix multilevel analyses of the selected neutron cross-section data. The Delta_3 -statistics of Dyson and Mehta, along with high -resolution data and the spin-separated fission cross-section data, have provided the possibility of developing a new methodology for the analysis and evaluation of neutron -nucleus cross-sections. The result of the analysis consists of a set of resonance parameters which describe the ^{235}U neutron cross sections up to 500 eV. The set of resonance parameters obtained through a R-matrix analysis are expected to satisfy statistical properties which lead to information on the nuclear structure. The resonance parameters were tested and showed good agreement with the theory. It is expected that the parametrization of the ^{235}U neutron cross sections obtained in this dissertation represents the current state of art in data as well as in theory and, therefore, can be of direct use in reactor calculations.

  20. Status of the International Neutron Cross-Section Standards File

    SciTech Connect

    Pronyaev, Vladimir G.; Badikov, Sergei A.; Gai, Evgeny V.; Chen Zhenpeng; Carlson, Allan D.; Hale, Gerald M.; Hambsch, Franz-Josef; Hofmann, Hartmut M.; Larson, Nancy M.; Smith, Donald L.; Oh, Soo-Youl; Tagesen, Siegfried; Vonach, Herbert

    2005-05-24

    A report is given of the progress achieved in an IAEA Co-ordinated Research Project (CRP) to improve the cross-section standards. The objectives of the CRP, started in 2002, were initially the understanding of the origin of the strong uncertainty reduction in R-matrix model fits and the improvement of the evaluation methodology. These aims were extended in 2003 to the preparation of new evaluations for the standard 6Li(n,t), 10B(n,{alpha}), 10B(n,{alpha}1), 197Au(n,{gamma}), 235U(n,f), and 238U(n,f) reactions. The methodology, codes, and experimental database developed by Poenitz and Hale for the ENDF/B-VI standards evaluation were taken as the basis for the new evaluation. The major results achieved by the CRP participants include the testing and intercomparison of a number of codes that can be used in the standards evaluation, updating the database of experimental results, analysis of the reasons leading to the strong uncertainty reduction in model fits, and a study of the bias in evaluated data caused by the Peelles's Pertinent Puzzle (PPP) effect, which has been widely discussed in the nuclear data community since the ENDF/B-VI standards evaluation was completed. Preliminary results of the new standards evaluation are shown. The use of the new 235U(n,f) cross section leads to better consistency in calculations of some important integral experiments.

  1. A Neutron Source Facility for Neutron Cross-Section Measurements on Radioactive Targets at RIA

    SciTech Connect

    Ahle, L E; Bernstein, L; Rusnak, B; Berio, R

    2003-05-20

    The stockpile stewardship program is interested in neutron cross-section measurements on nuclei that are a few nucleons away from stability. Since neutron targets do not exist, radioactive targets are the only way to directly perform these measurements. This requires a facility that can provide high production rates for these short-lived nuclei as well as a source of neutrons. The Rare Isotope Accelerator (RIA) promises theses high production rates. Thus, adding a co-located neutron source facility to the RIA project baseline would allow these neutron cross-section measurements to be made. A conceptual design for such a neutron source has been developed, which would use two accelerators, a Dynamitron and a linac, to create the neutrons through a variety of reactions (d-d, d-t, deuteron break-up, p-Li). This range of reactions is needed in order to provide the desired energy range from 10's of keV to 20 MeV. The facility would also have hot cells to perform chemistry on the radioactive material both before and after neutron irradiation. The present status of this design and direction of future work will be discussed.

  2. Determination of Unknown Neutron Cross Sections for the Production of Medical Isotopes

    SciTech Connect

    Stephen E. Binney

    2004-04-09

    Calculational assessment and experimental verification of certain neutron cross sections that are related to widely needed new medical isotopes. Experiments were performed at the Oregon State University TRIGA Reactor and the High Flux Irradiation Reactor at Oak Ridge National Laboratory.

  3. Neutron capture cross section and capture gamma-ray spectra of 89Y

    NASA Astrophysics Data System (ADS)

    Katabuchi, Tatsuya; Okamiya, Tohomohiro; Yanagida, Shotaro; Mizumoto, Motoharu; Terada, Kazushi; Kimura, Atsushi; Iwamoto, Nobuyuki; Igashira, Masayuki

    2016-06-01

    The neutron capture cross section of 89Y was measured by the time-of-flight method in an energy range from 15 to 100 keV. A pulse-height weighting technique was applied to derive the capture yield. The absolute cross section was determined based on the standard reaciotn 197 Au(n, γ)198 Au reaction. The neutron capture γ-ray spectrum was derived by unfolding the pulse-height spectrum with detector response functions.

  4. Measurements of the neutron activation cross sections for Bi and Co at 386 MeV.

    PubMed

    Yashima, H; Sekimoto, S; Ninomiya, K; Kasamatsu, Y; Shima, T; Takahashi, N; Shinohara, A; Matsumura, H; Satoh, D; Iwamoto, Y; Hagiwara, M; Nishiizumi, K; Caffee, M W; Shibata, S

    2014-10-01

    Neutron activation cross sections for Bi and Co at 386 MeV were measured by activation method. A quasi-monoenergetic neutron beam was produced using the (7)Li(p,n) reaction. The energy spectrum of these neutrons has a high-energy peak (386 MeV) and a low-energy tail. Two neutron beams, 0° and 25° from the proton beam axis, were used for sample irradiation, enabling a correction for the contribution of the low-energy neutrons. The neutron-induced activation cross sections were estimated by subtracting the reaction rates of irradiated samples for 25° irradiation from those of 0° irradiation. The measured cross sections were compared with the findings of other studies, evaluated in relation to nuclear data files and the calculated data by Particle and Heavy Ion Transport code System code. PMID:24368868

  5. Observation of large enhancements of charge exchange cross sections with neutron-rich carbon isotopes

    NASA Astrophysics Data System (ADS)

    Tanihata, I.; Terashima, S.; Kanungo, R.; Ameil, F.; Atkinson, J.; Ayyad, Y.; Cortina-Gil, D.; Dillmann, I.; Estradé, A.; Evdokimov, A.; Farinon, F.; Geissel, H.; Guastalla, G.; Janik, R.; Knoebel, R.; Kurcewicz, J.; Litvinov, Yu. A.; Marta, M.; Mostazo, M.; Mukha, I.; Nociforo, C.; Ong, H. J.; Pietri, S.; Prochazka, A.; Scheidenberger, C.; Sitar, B.; Strmen, P.; Takechi, M.; Tanaka, J.; Toki, H.; Vargas, J.; Winfield, J. S.; Weick, H.

    2016-04-01

    Production cross sections of nitrogen isotopes from high-energy (˜ 950 MeV per nucleon) carbon isotopes on hydrogen and carbon targets have been measured for the first time for a wide range of isotopes (A = 12 to 19). The fragment separator FRS at GSI was used to deliver C-isotope beams. The cross sections of the production of N-isotopes were determined by charge measurements of forward-going fragments. The cross sections show a rapid increase with the number of neutrons in the projectile. Since the production of nitrogen is mostly due to charge-exchange (Cex) reactions below the proton separation energies, the present data suggests a concentration of Gamow-Teller and/or Fermi transition strength at low excitation energies for neutron-rich carbon isotopes. It was also observed that the Cex cross sections were enhanced much more strongly for neutron-rich isotopes in the C-target data.

  6. Texture imaging of zirconium based components by total neutron cross-section experiments

    NASA Astrophysics Data System (ADS)

    Santisteban, J. R.; Vicente-Alvarez, M. A.; Vizcaino, P.; Banchik, A. D.; Vogel, S. C.; Tremsin, A. S.; Vallerga, J. V.; McPhate, J. B.; Lehmann, E.; Kockelmann, W.

    2012-06-01

    The transmission of thermal neutrons through an object is affected by the microstructure and crystallographic texture of the composing material. As a result, the total neutron cross section of common metallic objects departs largely from that expected for polycrystalline materials without preferred orientation. In this work we present the wavelength dependence of the total cross section of different Zr-based components of nuclear reactors, such as pressure tubes, rolled plates and welds. The experimental values found for the total cross section are discussed in terms of the crystallographic texture that results from the component manufacturing. The discussion is based on energy-resolved radiographies taken at the ISIS Facility, UK, using a novel micro-channel plate detector; and theoretical calculations of the elastic coherent total cross section from the orientation distribution function (ODF) of the crystallites composing a sample. The connection existing between texture and neutron transmission is exploited to investigate the spatial variation of texture across Zr-based components.

  7. Neutron cross section measurements at ORELA for improved nuclear data and their application.

    PubMed

    Guber, K H; Leal, L C; Sayer, R O; Koehler, P E; Valentine, T E; Derrien, H; Harvey, J A

    2005-01-01

    To support the Nuclear Criticality Safety Program, the Oak Ridge Electron Linear Accelerator (ORELA) has been used to measure the total and capture neutron cross sections of several nuclides in the energy range from 100 eV to -600 keV. Concerns about the use of existing cross section data in nuclear criticality calculations have been a prime motivator for the new cross-section measurements. Our new capture cross sections of aluminium, silicon, chlorine, fluorine and potassium in the energy range from 100 eV to 600 keV are substantially different from the cross sections in evaluated nuclear data files of ENDF/B-VI and JENDL-3.2. PMID:16604703

  8. Cross sections for fast-neutron interaction with Lu, Tb, and Ta isotopes

    SciTech Connect

    Dzysiuk, N.; Kadenko, I.; Yermolenko, R.; Koning, A. J.

    2010-01-15

    The cross sections for (n,x) reactions with Lu, Tb, and Ta isotopes were measured at (d,t) neutron energies around 14 MeV with the activation technique using metal foils of natural composition. Additionally, tantalum samples were irradiated with (d,d) neutrons and filtered neutron beams. To ensure an acceptable precision of the results all major sources of uncertainties were taken into account. Calculations of efficiency and correction factors were performed with the Monte Carlo technique. The cross section results obtained for the {sup 175}Lu(n,{alpha}){sup 172}Tm reaction at (d,t) neutron energies are reported for the first time. {sup 181}Ta(n,{gamma}){sup 182}Ta{sup m2} reaction cross sections were also measured for the first time at 1.9, 58.7, and 144.3 keV and at 2.85 MeV. The earlier evaluated cross section upper estimate for the nuclear reaction {sup 159}Tb(n,n{sup '}{alpha}){sup 155}Eu is reported in this article to be one order lower. Some other cross sections were obtained with higher precision. Theoretical calculations of excitation functions were performed with the TALYS-1.0 code and compared with the experimental cross section values.

  9. Neutron source investigations in support of the cross section program at the Argonne Fast-Neutron Generator

    SciTech Connect

    Meadows, J.W.; Smith, D.L.

    1980-05-01

    Experimental methods related to the production of neutrons for cross section studies at the Argonne Fast-Neutron Generator are reviewed. Target assemblies commonly employed in these measurements are described, and some of the relevant physical properties of the neutron source reactions are discussed. Various measurements have been performed to ascertain knowledge about these source reaction that is required for cross section data analysis purposes. Some results from these studies are presented, and a few specific examples of neutron-source-related corrections to cross section data are provided. 16 figures, 3 tables.

  10. Use of Neutron Benchmark Fields for the Validation of Dosimetry Cross Sections

    NASA Astrophysics Data System (ADS)

    Griffin, Patrick

    2016-02-01

    The evolution of validation metrics for dosimetry cross sections in neutron benchmark fields is explored. The strength of some of the metrics in providing validation evidence is examined by applying them to the 252Cf spontaneous fission standard neutron benchmark field, the 235U thermal neutron fission reference benchmark field, the ACRR pool-type reactor central cavity reference benchmark fields, and the SPR-III fast burst reactor central cavity. The IRDFF dosimetry cross section library is used in the validation study and observations are made on the amount of coverage provided to the library contents by validation data available in these benchmark fields.

  11. RIA R&D for Enabling Direct Neutron Cross-Section Measurements

    SciTech Connect

    Ahle, L E; Rusnak, B; Stoyer, M

    2003-08-22

    The expected production rates at RIA imply it should be possible to collect 10-{micro}g of a one-day half-life isotope. The amount of material should be sufficient to enable direct neutron cross-section measurements for many unstable isotopes. This capability is crucial for many of the stockpile stewardship and some of the astrophysical cross-section measurements. Enabling this capability at RIA requires the ability to harvest the desired isotopes, process highly radioactive material into targets, and irradiate targets with neutrons. This paper will discuss the changes and additions to the RIA complex that are necessary in order to enable direct neutron cross-section measurements. This will include a discussion of harvesting as well as a conceptual design for a co-located experimental facility with radiochemistry capability and a variable 'mono-energetic' neutron source.

  12. Thermal neutron capture cross section for the K isomer {sup 177}Lu{sup m}

    SciTech Connect

    Belier, G.; Roig, O.; Daugas, J.-M.; Giarmana, O.; Meot, V.; Letourneau, A.; Marie, F.; Foucher, Y.; Aupiais, J.; Abt, D.; Jutier, Ch.; Le Petit, G.; Bettoni, C.; Gaudry, A.; Veyssiere, Ch.; Barat, E.; Dautremer, T.; Trama, J.-Ch.

    2006-01-15

    The thermal neutron radiative capture cross section for the K isomeric state in {sup 177}Lu has been measured for the first time. Several {sup 177}Lu{sup m} targets have been prepared and irradiated in various neutron fluxes at the Lauee Langevin Institute in Grenoble and at the CEA reactors OSIRIS and ORPHEE in Saclay. The method consists of measuring the {sup 178}Lu activity by {gamma}-ray spectroscopy. The values obtained in four different neutron spectra have been used to calculate the resonance integral of the radiative capture cross section for {sup 177}Lu{sup m}. In addition, an indirect method leads to the determination of the {sup 177}Lu{sup g} neutron radiative capture cross section.

  13. Cross section for inelastic neutron ''acceleration'' by {sup 178}Hf{sup m2}

    SciTech Connect

    Karamian, S. A.; Carroll, J. J.

    2011-02-15

    The scattering of thermal neutrons from isomeric nuclei may include events in which the outgoing neutrons have increased kinetic energy. This process has been called inelastic neutron acceleration, or INNA, and occurs when the final nucleus, after emission of the neutron, is left in a state with lower energy than that of the isomer. The result, therefore, is an induced depletion of the isomer to the ground state. A cascade of several {gamma}'s must accompany the neutron emission to release the high angular momentum of the initial isomeric state. INNA was previously observed in a few cases, and the measured cross sections were only in modest agreement with theoretical estimates. The most recent measurement of an INNA cross section was {sigma}{sub INNA}=258{+-}58 b for neutron scattering by {sup 177}Lu{sup m}. In the present work, an INNA cross section of {sigma}{sub INNA}=168 {+-} 33 b was deduced from measurements of the total burnup of the high-spin, four-quasiparticle isomer {sup 178}Hf{sup m2} during irradiation by thermal neutrons. Statistical estimates for the probability of different reaction channels past neutron absorption were used in the analysis, and the deduced {sigma}{sub INNA} was compared to the theoretically predicted cross section.

  14. Covariance of Neutron Cross Sections for {sup 16}O through R-matrix Analysis

    SciTech Connect

    Kunieda, S.; Kawano, T.; Paris, M.; Hale, G.M.; Shibata, K.; Fukahori, T.

    2015-01-15

    Through the R-matrix analysis, neutron cross sections as well as the covariance are estimated for {sup 16}O in the resolved resonance range. Although we consider the current results are still preliminary, we present the summary of the cross section analysis and the results of data uncertainty/covariance, including those for the differential cross sections. It is found that the values obtained highlight consequences of nature in the theory as well as knowledge from measurements, which gives a realistic quantification of evaluated nuclear data covariances.

  15. Target correlation effects on neutron-nucleus total, absorption, and abrasion cross sections

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.

    1991-01-01

    Second order optical model solutions to the elastic scattering amplitude were used to evaluate total, absorption, and abrasion cross sections for neutron nucleus scattering. Improved agreement with experimental data for total and absorption cross sections is found when compared with first order (coherent approximation) solutions, especially below several hundred MeV. At higher energies, the first and second order solutions are similar. There are also large differences in abrasion cross section calculations; these differences indicate a crucial role for cluster knockout in the abrasion step.

  16. Neutron Elastic and Inelastic Scattering Cross Sections on ^NatFe and ^23Na

    NASA Astrophysics Data System (ADS)

    Kersting, Luke; Lueck, Collin J.; Hicks, S. F.; Crider, B. P.; McEllistrem, M. T.; Peters, E. E.; Vanhoy, J. R.

    2010-10-01

    Neutron elastic and inelastic scattering angular distributions from ^NatFe and ^23Na at incident neutron energies of 3.57 and 3.81 MeV have been measured at the University of Kentucky 7 MV Van de Graaff laboratory using neutron time-of-flight techniques. The neutron beam was produced using the ^3H(p,n)He^3reaction. The scattered neutrons were detected at angles between 20 and 150 in 10 intervals with a hexafluorbenzene detector located approximately 3 m from the scattering samples. Neutron scattering differential cross sections were deduced. These cross sections and their uncertainties are important for understanding neutron-induced reactions in fission reactors and are important for fission reactor criticality calculations.

  17. Neutron Capture Cross Section Measurement on $^{238}$Pu at DANCE

    SciTech Connect

    Chyzh, A; Wu, C Y

    2011-02-14

    The proposed neutron capture measurement for {sup 238}Pu was carried out in Nov-Dec, 2010, using the DANCE array at LANSCE, LANL. The total beam-on-target time is about 14 days plus additional 5 days for the background measurement. The target was prepared at LLNL with the new electrplating cell capable of plating the {sup 238}Pu isotope simultaneously on both sides of the 3-{micro}m thick Ti backing foil. A total mass of 395 {micro}g with an activity of 6.8 mCi was deposited onto the area of 7 mm in diameter. The {sup 238}Pu sample was enriched to 99.35%. The target was covered by 1.4 {micro}m double-side aluminized mylar and then inserted into a specially designed vacuum-tight container, shown in Fig. 1, for the {sup 238}Pu containment. The container was tested for leaks in the vacuum chamber at LLNL. An identical container without {sup 238}Pu was made as well and used as a blank for the background measurement.

  18. Absolute measurement of the 242Pu neutron-capture cross section

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Dance Collaboration

    2016-04-01

    The absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. The first direct measurement of the 242Pu(n ,γ ) cross section was made over the incident neutron energy range from thermal to ≈6 keV, and the absolute scale of the (n ,γ ) cross section was set according to the known 239Pu(n ,f ) resonance at En ,R=7.83 eV. This was accomplished by adding a small quantity of 239Pu to the 242Pu sample. The relative scale of the cross section, with a range of four orders of magnitude, was determined for incident neutron energies from thermal to ≈40 keV. Our data, in general, are in agreement with previous measurements and those reported in ENDF/B-VII.1; the 242Pu(n ,γ ) cross section at the En ,R=2.68 eV resonance is within 2.4 % of the evaluated value. However, discrepancies exist at higher energies; our data are ≈30 % lower than the evaluated data at En≈1 keV and are approximately 2 σ away from the previous measurement at En≈20 keV.

  19. Secondary neutron-production cross sections from heavy-ion interactions in composite targets

    SciTech Connect

    Heilbronn, L.; Iwata, Y.; Murakami, T.; Iwase, H.; Sato, H.; Nakamura, T.; Ronningen, R.M.; Ieki, K.; Gudowska, I.; Sobolevsky, N.

    2006-02-15

    Secondary neutron-production cross sections have been measured from interactions of 290 MeV/nucleon C and 600 MeV/nucleon Ne in a target composed of simulated Martian regolith and polyethylene, and from 400 MeV/nucleon Ne interactions in wall material from the International Space Station. The data were measured between 5 deg. and 80 deg. in the laboratory. We report the double-differential cross sections, angular distributions, and total neutron-production cross sections from all three systems. The spectra from all three systems exhibit behavior previously reported in other heavy-ion neutron-production experiments, namely, a peak at forward angles near the energy corresponding to the beam velocity, with the remaining spectra generated by pre-equilibrium and equilibrium processes. The double-differential cross sections are fitted with a moving-source parametrization. Also reported are the data without corrections for neutron flux attenuation in the target and other intervening materials and for neutron production in nontarget materials near the target position. These uncorrected spectra are compared with SHIELD-HIT and PHITS transport model calculations. The transport model calculations reproduce the spectral shapes well but, on average, underestimate the magnitudes of the cross sections.

  20. Secondary neutron-production cross sections from heavy-ioninteractions in composite targets.

    SciTech Connect

    Heilbronn, L.; Iwata, Y.; Iwase,H.; Murakami, T.; Sato, H.; Nakamura, T.; Ronningen, R.M.; Ieki, K.; Gudowska, I.; Sobolevsky, N.

    2005-12-19

    Secondary neutron-production cross-sections have been measured from interactions of 290 MeV/nucleon C and 600 MeV/nucleon Ne in a target composed of simulated Martian regolith and polyethylene, and from 400 MeV/nucleon Ne interactions in wall material from the International Space Station. The data were measured between 5 and 80 deg in the laboratory. We report the double-differential cross sections, angular distributions, and total neutron-production cross sections from all three systems. The spectra from all three systems exhibit behavior previously reported in other heavy-ion, neutron production experiments; namely, a peak at forward angles near the energy corresponding to the beam velocity, with the remaining spectra generated by pre-equilibrium and equilibrium processes. The double differential cross sections are fitted with a moving-source parameterization. Also reported are the data without corrections for neutron flux attenuation in the target and other intervening materials, and for neutron production in non-target materials near the target position. These uncorrected spectra are compared with SHIELD-HIT and PHITS transport model calculations. The transport model calculations reproduce the spectral shapes well, but, on average, underestimate the magnitudes of the cross sections.

  1. Stellar neutron capture cross sections of 41K and 45Sc

    NASA Astrophysics Data System (ADS)

    Heil, M.; Plag, R.; Uberseder, E.; Bisterzo, S.; Käppeler, F.; Mengoni, A.; Pignatari, M.

    2016-05-01

    The neutron capture cross sections of light nuclei (A <56 ) are important for s -process scenarios since they act as neutron poisons. We report on measurements of the neutron capture cross sections of 41K and 45Sc, which were performed at the Karlsruhe 3.7 MV Van de Graaff accelerator via the activation method in a quasistellar neutron spectrum corresponding to a thermal energy of k T =25 keV. Systematic effects were controlled by repeated irradiations, resulting in overall uncertainties of less than 3%. The measured spectrum-averaged data have been used to normalize the energy-dependent (n ,γ ) cross sections from the main data libraries JEFF-3.2, JENDL-4.0, and ENDF/B-VII.1, and a set of Maxwellian averaged cross sections was calculated for improving the s -process nucleosynthesis yields in AGB stars and in massive stars. At k T =30 keV, the new Maxwellian averaged cross sections of 41K and 45Sc are 19.2 ±0.6 mb and 61.3 ±1.8 mb, respectively. Both values are 20% lower than previously recommended. The effect of neutron poisons is discussed for nuclei with A <56 in general and for the investigated isotopes in particular.

  2. Neutron single particle structure in 131Sn and direct neutron capture cross sections

    SciTech Connect

    Kozub, R. L.; Arbanas, Goran; Adekola, A. S.; Bardayan, Daniel W; Blackmon, Jeffery C; Chae, Kyung Yuk; Chipps, K.; Cizewski, J. A.; Erikson, Luke; Hatarik, Robert; Hix, William Raphael; Jones, K. L.; Krolas, W.; Liang, J Felix; Ma, Z.; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D; Pain, Steven D; Shapira, Dan; ShrinerJr., J. F.; Smith, Michael Scott; Swan, T. P.

    2012-01-01

    Recent calculations suggest that the rate of neutron capture by 130Sn has a significant impact on late-time nucleosynthesis in the r-process. Direct capture into low-lying bound states is expected to be significant in neutron capture near the N=82 closed shell, so r- process reaction rates may be strongly impacted by the properties of neutron single particle states in this region. In order to investigate these properties, the (d, p) reaction has been studied in inverse kinematics using a 630 MeV beam of 130Sn (4.8 MeV/u) and a (CD2)n target. An array of Si strip detectors, including SIDAR and an early implementation of the ORRUBA, was used to detect reaction products. Results for the 130Sn(d, p)131Sn reaction are found to be very similar to those from the previously reported 132Sn(d, p)133Sn reaction. Direct-semidirect (n, ) cross section calculations, based for the first time on experimental data, are presented. The uncertainties in these cross sections are thus reduced by orders of magnitude from previous estimates.

  3. Neutron Single Particle Structure in Sn131 and Direct Neutron Capture Cross Sections

    NASA Astrophysics Data System (ADS)

    Kozub, R. L.; Arbanas, G.; Adekola, A. S.; Bardayan, D. W.; Blackmon, J. C.; Chae, K. Y.; Chipps, K. A.; Cizewski, J. A.; Erikson, L.; Hatarik, R.; Hix, W. R.; Jones, K. L.; Krolas, W.; Liang, J. F.; Ma, Z.; Matei, C.; Moazen, B. H.; Nesaraja, C. D.; Pain, S. D.; Shapira, D.; Shriner, J. F., Jr.; Smith, M. S.; Swan, T. P.

    2012-10-01

    Recent calculations suggest that the rate of neutron capture by Sn130 has a significant impact on late-time nucleosynthesis in the r process. Direct capture into low-lying bound states is expected to be significant in neutron capture near the N=82 closed shell, so r-process reaction rates may be strongly impacted by the properties of neutron single particle states in this region. In order to investigate these properties, the (d,p) reaction has been studied in inverse kinematics using a 630 MeV beam of Sn130 (4.8MeV/u) and a (CD2)n target. An array of Si strip detectors, including the Silicon Detector Array and an early implementation of the Oak Ridge Rutgers University Barrel Array, was used to detect reaction products. Results for the Sn130(d,​p)Sn131 reaction are found to be very similar to those from the previously reported Sn132(d,​p)Sn133 reaction. Direct-semidirect (n,γ) cross section calculations, based for the first time on experimental data, are presented. The uncertainties in these cross sections are thus reduced by orders of magnitude from previous estimates.

  4. Neutron single particle structure in 131Sn and direct neutron capture cross sections.

    PubMed

    Kozub, R L; Arbanas, G; Adekola, A S; Bardayan, D W; Blackmon, J C; Chae, K Y; Chipps, K A; Cizewski, J A; Erikson, L; Hatarik, R; Hix, W R; Jones, K L; Krolas, W; Liang, J F; Ma, Z; Matei, C; Moazen, B H; Nesaraja, C D; Pain, S D; Shapira, D; Shriner, J F; Smith, M S; Swan, T P

    2012-10-26

    Recent calculations suggest that the rate of neutron capture by (130)Sn has a significant impact on late-time nucleosynthesis in the r process. Direct capture into low-lying bound states is expected to be significant in neutron capture near the N=82 closed shell, so r-process reaction rates may be strongly impacted by the properties of neutron single particle states in this region. In order to investigate these properties, the (d,p) reaction has been studied in inverse kinematics using a 630 MeV beam of (130)Sn (4.8 MeV/u) and a (CD(2))(n) target. An array of Si strip detectors, including the Silicon Detector Array and an early implementation of the Oak Ridge Rutgers University Barrel Array, was used to detect reaction products. Results for the (130)Sn(d, p)(131)Sn reaction are found to be very similar to those from the previously reported (132)Sn(d, p)(133)Sn reaction. Direct-semidirect (n,γ) cross section calculations, based for the first time on experimental data, are presented. The uncertainties in these cross sections are thus reduced by orders of magnitude from previous estimates. PMID:23215181

  5. Neutron scattering cross section measurements for thulium-169 via the time-of-flight technique

    NASA Astrophysics Data System (ADS)

    Alimeti, Afrim

    This research provides the first direct neutron scattering cross section measurements for 169Tm via the time-of-flight technique. The neutron elastic and inelastic scattering cross-section angular distributions for 169Tm were measured at 590-keV and 1000-keV incident neutron energies. Differential cross-section excitation functions were also measured in 0.1-MeV steps at 125° (scattering angle) from 495-keV to 1000-keV incident neutron energy. The measured neutron scattering cross sections for the elastic group at 0.5-MeV to 1.0-MeV incident neutron energy range are in reasonable agreement with the JENDL-4.0 evaluation, which is based on nuclear reaction model calculations, and with the earlier measurements made by Ko et al. via the (n, n' gamma) technique for states above 100 keV via the (n, n' gamma) reaction at incident energies in the 0.2-MeV to 1.0-MeV range. The 5.5-MeV Van de Graaff accelerator at Lowell was operated in the pulsed and bunched beam mode producing subnanosecond pulses at a 5-MHz repetition frequency to generate neutrons via the 7Li(p,n) 7Be reaction using a thin metallic elemental lithium target.

  6. Fast-neutron total and scattering cross sections of sup 58 Ni and nuclear models

    SciTech Connect

    Smith, A.B.; Guenther, P.T.; Whalen, J.F. ); Chiba, S. . Tokai Research Establishment)

    1991-07-01

    The neutron total cross sections of {sup 58}Ni were measured from {approx} 1 to > 10 MeV using white-source techniques. Differential neutron elastic-scattering cross sections were measured from {approx} 4.5 to 10 MeV at {approx} 0.5 MeV intervals with {ge} 75 differential values per distribution. Differential neutron inelastic-scattering cross sections were measured, corresponding to fourteen levels with excitations up to 4.8 MeV. The measured results, combined with relevant values available in the literature, were interpreted in terms of optical-statistical and coupled-channels model using both vibrational and rotational coupling schemes. The physical implications of the experimental results nd their interpretation are discussed in the contexts of optical-statistical, dispersive-optical, and coupled-channels models. 61 refs.

  7. Measurements of neutron capture cross section for {sup 207,208}Pb

    SciTech Connect

    Segawa, M.; Toh, Y.; Harada, H.; Kitatani, F.; Koizumi, M.; Fukahori, T.; Iwamoto, N.; Iwamoto, O.; Oshima, M.; Hatsukawa, Y.; Nagai, Y.; Igashira, M.; Kamada, S.; Tajika, M.

    2014-05-02

    The neutron capture cross sections for {sup 207,208}Pb have been measured in the neutron energy region from 10 to 110 keV. The γ-rays cascaded from a capture state to the ground state or low-lying states of {sup 208,209}Pb were observed for the first time, using an anti-Compton Nal(Tl) spectrometer and a TOF method. The observed discrete γ-ray energy spectra enabled us to determine neutron capture cross sections for {sup 207,208}Pb with small systematic errors, since we could distinguish γ-ray of {sup 207,208}Pb(n,γ) reactions from background γ-ray with use of the γ-ray spectra. The obtained cross sections include both contributions of resonance and direct capture components different from the previous TOF measurements.

  8. How Can the Accuracy of Neutron Nonelastic Cross Sections be Improved?

    NASA Astrophysics Data System (ADS)

    Dietrich, Frank

    2008-10-01

    The nonelastic cross section for incident neutrons is particularly important for applications because it directly determines the sum of all reaction processes other than elastic scattering, and is closely related to the compound-nucleus formation cross section. Scatter in available measurements of the nonelastic cross section shows that this quantity is not known very accurately ( 5--10%). We will show examples of this, together with results from a new technique that shows promise of reducing uncertainties to 2--3% in the range of a few MeV to a few tens of MeV [1]. Comparison of results using this technique on Fe, Pb, Th, and U with optical model calculations suggests that optical potentials are not reliable for predicting nonelastic cross sections to better than 5%, even when they reproduce total cross sections well ( 1%). We will suggest a limited set of high-accuracy measurements of nonelastic cross sections that could be made to guide the further development of optical models that are able to predict nonelastic cross sections reliably. [1] F. S. Dietrich, J. D. Anderson, R. W. Bauer, and S. M. Grimes, Phys. Rev. C68, 064608 (2003).

  9. Cross-section measurements of neutron threshold reactions in various materials

    NASA Astrophysics Data System (ADS)

    Vrzalová, J.; Svoboda, O.; Kugler, A.; Suchopár, M.; Wagner, V.

    As members of international collaboration "Energy and Transmutation of radioactive Waste" we routinely use (n,xn) threshold reactions in various materials to measure high energy neutron flux from spallation reactions. The cross-sections of many reactions important for our activation detectors are missing. To improve situation, we studied the neutron cross-sections using different quasi-monoenergetic neutron sources based on proton reaction on 7Li target. The measurements were performed in Nuclear Physics Institute of the Academy of Sciences of the Czech Republic in Řež near Prague and in The Svedberg Laboratory in Uppsala (Sweden). We used neutron energies 17, 22, 30 and 35 MeV from the quasi-monoenergetic neutron source in Řež and neutron energies 22, 47 and 94 MeV in Uppsala. The last experiment was carried out in February 2010 in Uppsala using neutron energies 59, 66, 72 and 89 MeV. The study of neutron threshold reactions in yttrium was performed first time during this irradiation. We have developed procedure for the subtraction of contribution of the background neutrons. We studied various materials in the form of thin foils and observed good agreement with the data in EXFOR database and also with the calculations performed in deterministic code TALYS. Many cross-sections were measured in the energy regions where no experimental data are available so far.

  10. A New Signal Processing Technique for Neutron Capture Cross Section Measurement Based on Pulse Width Analysis

    NASA Astrophysics Data System (ADS)

    Katabuchi, T.; Matsuhashi, T.; Terada, K.; Mizumoto, M.; Hirose, K.; Kimura, A.; Furutaka, K.; Hara, K. Y.; Harada, H.; Hori, J.; Igashira, M.; Kamiyama, T.; Kitatani, F.; Kino, K.; Kiyanagi, Y.; Koizumi, M.; Nakamura, S.; Oshima, M.; Toh, Y.

    2014-05-01

    A fast data acquisition method based on pulse width analysis was developed for γ-ray spectroscopy with an NaI(Tl) detector. The new method was tested in experiments with standard γ-ray sources and pulsed neutron beam from a spallation neutron source. Pulse height spectra were successfully reconstructed from pulse width distribution by use of an energy calibration curve. The 197Au(n, γ)198Au cross section was measured by this method to test the viability. The obtained experimental cross section showed a good agreement with a calculation using the resonance parameters of JENDL-4.0.

  11. Neutron cross section covariances in the resonance region: 52Cr, 56Fe, 58Ni

    SciTech Connect

    Oblozinsky, P.; Cho, Y.-S.; Mattoon, C.M.; Mughabghab, S.F.

    2010-08-03

    We evaluated covariances for neutron capture and elastic scattering cross sections on major structural materials, {sup 52}Cr, {sup 56}Fe and {sup 58}Ni, in the resonance region which extends beyond 800 keV for each of them. Use was made of the recently developed covariance formalism based on kernel approximation along with data in the Atlas of Neutron Resonances. The data of most interest for AFCI applications, elastic scattering cross section uncertainties at energies above about few hundred keV, are on the level of about 12% for {sup 52}Cr, 7-8% for {sup 56}Fe and 5-6% for {sup 58}Ni.

  12. Parameterization of nuclear cross-sections for coupled neutronic- thermalhydraulic codes

    SciTech Connect

    Miro, R.; Verdu, G.; Barrachina, T.; Rosello, O.

    2006-07-01

    The present work consists of developing an in-house methodology, called SIMTAB, to characterize, in a simplified way, the reactor core of LWR Nuclear Power Plants. Specifically, a cross-sections and kinetic parameters set are obtained as a function of the prompt and control variables. So that, the core can be modeled using a limited number of neutronic regions, in such a way that the reactor kinetic behavior is properly characterized. This simplification of the reactor core permits, from an operative point of view, the use of few cross sections data sets in coupled 3D neutronic-thermalhydraulic codes. (authors)

  13. Error Assessment of Homogenized Cross Sections Generation for Whole Core Neutronic Calculation

    SciTech Connect

    Hursin, Mathieu; Kochunas, Brendan; Downar, Thomas J.

    2007-10-26

    The objective of the work here was to assess the errors introduced by using 2D, few group homogenized cross sections to perform neutronic analysis of BWR problems with significant axial heterogeneities. The 3D method of characteristics code DeCART is used to generate 2-group assembly homogenized cross sections first using a conventional 2D lattice model and then using a full 3D solution of the assembly. A single BWR fuel assembly model based on an advanced BWR lattice design is used with a typical void distribution applied to the fuel channel coolant. This model is validated against an MCNP model. A comparison of the cross sections is performed for the assembly homogenized planar cross sections from the DeCART 3D and DeCART 2D solutions.

  14. Average Neutron Total Cross Sections in the Unresolved Energy Range From ORELA High Resolutio Transmission Measurements

    SciTech Connect

    Derrien, H

    2004-05-27

    Average values of the neutron total cross sections of {sup 233}U, {sup 235}U, {sup 238}U, and {sup 239}Pu have been obtained in the unresolved resonance energy range from high-resolution transmission measurements performed at ORELA in the past two decades. The cross sections were generated by correcting the effective total cross sections for the self-shielding effects due to the resonance structure of the data. The self-shielding factors were found by calculating the effective and true cross sections with the computer code SAMMY for the same Doppler and resolution conditions as for the transmission measurements, using an appropriate set of resonance parameters. Our results are compared to results of previous measurements and to the current ENDF/B-VI data.

  15. Thermal neutron capture cross sections for 16,171,18O and 2H

    NASA Astrophysics Data System (ADS)

    Firestone, R. B.; Revay, Zs.

    2016-04-01

    Thermal neutron capture γ -ray spectra for 16,17,18O and 2H have been measured with guided cold neutron beams from the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) reactor and the Budapest Research Reactor (BRR) on natural and O,1817 enriched D2O targets. Complete neutron capture γ -ray decay schemes for the 16,17,18O(n ,γ ) reactions were measured. Absolute transition probabilities were determined for each reaction by a least-squares fit of the γ -ray intensities to the decay schemes after accounting for the contribution from internal conversion. The transition probability for the 870.76-keV γ ray from 16O(n ,γ ) was measured as Pγ(871 )=96.6 ±0.5 % and the thermal neutron cross section for this γ ray was determined as 0.164 ±0.003 mb by internal standardization with multiple targets containing oxygen and stoichiometric quantities of hydrogen, nitrogen, and carbon whose γ -ray cross sections were previously standardized. The γ -ray cross sections for the O,1817(n ,γ ) and 2H(n ,γ ) reactions were then determined relative to the 870.76-keV γ -ray cross section after accounting for the isotopic abundances in the targets. We determined the following total radiative thermal neutron cross sections for each isotope from the γ -ray cross sections and transition probabilities; σ0(16O )=0.170 ±0.003 mb; σ0(17O )=0.67 ±0.07 mb; σ0(18O )=0.141 ±0.006 mb; and σ0(2H )=0.489 ±0.006 mb.

  16. Methods and procedures for evaluation of neutron-induced activation cross sections

    SciTech Connect

    Gardner, M.A.

    1981-09-01

    One cannot expect measurements alone to supply all of the neutron-induced activation cross-section data required by the fission reactor, fusion reactor, and nuclear weapons development communities, given the wide ranges of incident neutron energies, the great variety of possible reaction types leading to activation, and targets both stable and unstable. Therefore, the evaluator must look to nuclear model calculations and systematics to aid in fulfilling these cross-section data needs. This review presents some of the recent developments and improvements in the prediction of neutron activation cross sections, with specific emphasis on the use of empirical and semiempirical methods. Since such systematics require much less nuclear informaion as input and much less computational time than do the multistep Hauser-Feshbach codes, they can often provide certain cross-section data at a sufficient level of accuracy within a minimum amount of time. The cross-section information that these systematics can and cannot provide and those cases in which they can be used most reliably are discussed.

  17. Reaction cross sections on carbon for neutron energies from 11. 5 to 19 MeV

    SciTech Connect

    Antolkovic, B. ); Dietze, G.; Klein, H. )

    1991-01-01

    This paper reports on neutron-induced reaction cross sections for carbon measured in the 11.5- to 19-MeV energy range. The response of an NE-213 scintillation detector is measured in steps of at least 0.5 MeV for monoenergetic neutrons, applying suitable time-of-flight techniques, and compared with Monte Carlo simulations. The total cross sections of all reactions with charged particles (except carbon recoil protons) in the exit channel are determined with respect to the n-p scattering cross section. In addition, the {sup 12}C(n,n{prime}3{alpha}) reaction is investigated for neutron energies of 11.9, 12.9, 14.0, 14.8, 17.0, and 19.0 MeV using the nuclear emulsion technique. As it is kinematically complete, this measurement yields the total and partial cross sections for the various channels of the {sup 12}C(n,n{prime}3{alpha}) reaction. The experimental data show deviations of up to {plus minus}25% from those recommended in ENDF/B-V, while a recent evaluation by Axton is partially confirmed. Reasonable agreement is found with most of the recent scattering experiments; thus, this data set represents a valuable constraint for further evaluations. The analysis performed, however, has shown that additional data from some partial reaction cross sections are needed.

  18. Absolute measurement of the 242Pu neutron-capture cross section

    DOE PAGESBeta

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; et al

    2016-04-21

    Here, the absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. The first direct measurement of the 242Pu(n,γ) cross section was made over the incident neutron energy range from thermal to ≈ 6 keV, and the absolute scale of the (n,γ) cross section was set according to the known 239Pu(n,f) resonance at En,R = 7.83 eV. This was accomplished by adding a small quantity of 239Pu to the 242Pu sample. The relative scale of the crossmore » section, with a range of four orders of magnitude, was determined for incident neutron energies from thermal to ≈ 40 keV. Our data, in general, are in agreement with previous measurements and those reported in ENDF/B-VII.1; the 242Pu(n,γ) cross section at the En,R = 2.68 eV resonance is within 2.4% of the evaluated value. However, discrepancies exist at higher energies; our data are ≈30% lower than the evaluated data at En ≈ 1 keV and are approximately 2σ away from the previous measurement at En ≈ 20 keV.« less

  19. Determination of Thermal Neutron Capture Cross-Sections at Budapest PGAA Facility

    SciTech Connect

    Revay, Zsolt; Belgya, Tamas; Firestone, Richard B.

    2007-10-26

    Prompt gamma activation analysis (PGAA) is a powerful nuclear analytical technique to determine the elemental and isotopic composition of materials. The PGAA facility at Budapest, Hungary is one of the leading laboratories of the world, determining spectroscopic data for chemical analysis to be used in other laboratories. These partial gamma-ray production cross-sections and k{sub 0} values, being proportional to the analytical sensitivities of the chemical elements, can be transformed into thermal neutron capture cross-sections, i.e. the probabilities of the (n,{gamma}) reactions, which are of broader interest in different fields of nuclear physics. Some preliminary results on thermal neutron capture cross-sections are presented.

  20. Elastic and inelastic neutron scattering cross sections for fission reactor applications

    SciTech Connect

    Hicks, S. F.; Combs, B.; Downes, L.; Girgis, J.; Kersting, L. J.; Lueck, C. J.; McDonough, P. J.; Schniederjan, J.; Sidwell, L.; Sigillito, A. J.; Chakraborty, A.; Crider, B. P.; Kumar, A.; McEllistrem, M. T.; Peters, E. E.; Prados-Estevz, F. M.; Vanhoy, J. R.; Watts, D.; Yates, S. W.

    2013-04-19

    Nuclear data important for the design and development of the next generation of light-water reactors and future fast reactors include neutron elastic and inelastic scattering cross sections on important structural materials, such as Fe, and on coolant materials, such as Na. These reaction probabilities are needed since neutron reactions impact fuel performance during irradiations and the overall efficiency of reactors. While neutron scattering cross sections from these materials are available for certain incident neutron energies, the fast neutron region, particularly above 2 MeV, has large gaps for which no measurements exist, or the existing uncertainties are large. Measurements have been made at the University of Kentucky Accelerator Laboratory to measure neutron scattering cross sections on both Fe and Na in the region where these gaps occur and to reduce the uncertainties on scattering from the ground state and first excited state of these nuclei. Results from measurements on Fe at incident neutron energies between 2 and 4 MeV will be presented and comparisons will be made to model calculations available from data evaluators.

  1. Elastic and inelastic neutron scattering cross sections for fission reactor applications

    NASA Astrophysics Data System (ADS)

    Hicks, S. F.; Chakraborty, A.; Combs, B.; Crider, B. P.; Downes, L.; Girgis, J.; Kersting, L. J.; Kumar, A.; Lueck, C. J.; McDonough, P. J.; McEllistrem, M. T.; Peters, E. E.; Prados-Estevz, F. M.; Schniederjan, J.; Sidwell, L.; Sigillito, A. J.; Vanhoy, J. R.; Watts, D.; Yates, S. W.

    2013-04-01

    Nuclear data important for the design and development of the next generation of light-water reactors and future fast reactors include neutron elastic and inelastic scattering cross sections on important structural materials, such as Fe, and on coolant materials, such as Na. These reaction probabilities are needed since neutron reactions impact fuel performance during irradiations and the overall efficiency of reactors. While neutron scattering cross sections from these materials are available for certain incident neutron energies, the fast neutron region, particularly above 2 MeV, has large gaps for which no measurements exist, or the existing uncertainties are large. Measurements have been made at the University of Kentucky Accelerator Laboratory to measure neutron scattering cross sections on both Fe and Na in the region where these gaps occur and to reduce the uncertainties on scattering from the ground state and first excited state of these nuclei. Results from measurements on Fe at incident neutron energies between 2 and 4 MeV will be presented and comparisons will be made to model calculations available from data evaluators.

  2. Reducing Uncertainties in Neutron-Induced Fission Cross Sections Using a Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Manning, Brett; Niffte Collaboration

    2015-10-01

    Neutron-induced fission cross sections for actinides have long been of great interest for nuclear energy and stockpile stewardship. Traditionally, measurements were performed using fission chambers which provided limited information about the detected fission events. For the case of 239Pu(n,f), sensitivity studies have shown a need for more precise measurements. Recently the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) has developed the fission Time Projection Chamber (fissionTPC) to measure fission cross sections to better than 1% uncertainty by providing 3D tracking of fission fragments. The fissionTPC collected data to calculate the 239Pu(n,f) cross section at the Weapons Neutron Research facility at the Los Alamos Neutron Science Center during the 2014 run cycle. Preliminary analysis has been focused on studying particle identification and target and beam non-uniformities to reduce the uncertainty on the cross section. Additionally, the collaboration is investigating other systematic errors that could not be well studied with a traditional fission chamber. LA-UR-15-24906.

  3. Cross Section Sensitivity and Uncertainty Analysis Including Secondary Neutron Energy and Angular Distributions.

    Energy Science and Technology Software Center (ESTSC)

    1991-03-12

    Version 00 SUSD calculates sensitivity coefficients for one- and two-dimensional transport problems. Variance and standard deviation of detector responses or design parameters can be obtained using cross-section covariance matrices. In neutron transport problems, this code can perform sensitivity-uncertainty analysis for secondary angular distribution (SAD) or secondary energy distribution (SED).

  4. ORELA measurements to meet fusion energy neutron cross section needs. [2 to 80 MeV

    SciTech Connect

    Larson, D C

    1980-01-01

    Major neutron cross section measurements made at the Oak Ridge Electron Linear Accelerator (ORELA) that are useful to the fusion energy program are reviewed. Cross sections for production of gamma rays with energies 0.3 < E/sub ..gamma../ < 10.5 MeV were measured as a function of neutron energy over the range 0.1 < E/sub n/ < 20.0 MeV for Li, C, N, O, F, Na, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Nb, Mo, Ag, Sn, Ta, W, Au, Pb, and Th. Neutron emission cross sections have been measured for /sup 7/Li, Al, Ti, Cu, and Nb for 1 < E/sub n/ < 20 MeV. Some results of recent neutron total cross section measurements from 2 to 80 MeV for eleven materials (C, O, Al, Si, Ca, Cr, Fe, Ni, Cu, Au, and Pb) of interest to the FMIT project are presented. Finally, future directions of the ORELA program are outlined. 4 figures, 3 tables.

  5. 137 and 26 Neutron Multigroup Cross Section Library with the Bondarenko Type Shielding Table.

    Energy Science and Technology Software Center (ESTSC)

    1986-02-16

    Version 00 The basic function of MGCLIB is to generate effective neutron cross section sets in either 137 or 26 group structures for use in the discrete ordinates codes ANISN-JR or DOT 3.5 or in the Monte Carlo codes KENO-IV or MULTI-KENO.

  6. A facility for neutrino-nucleus cross-section measurements at the spallation neutron source

    NASA Astrophysics Data System (ADS)

    Efremenko, Yu.

    2005-01-01

    In this paper we discuss the possibility of building a neutrino facility at the Spallation Neutron Source presently under construction at ORNL. At such a facility an extensive long-term program can be established to study neutrino nucleus cross-sections in the range of interest for nuclear astrophysics and nuclear theory.

  7. Measurement of dijet cross sections for events with a leading neutron in photoproduction at HERA

    NASA Astrophysics Data System (ADS)

    Breitweg, J.; Chekanov, S.; Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Pellegrino, A.; Repond, J.; Stanek, R.; Yoshida, R.; Mattingly, M. C. K.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Giusti, P.; Iacobucci, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Sartorelli, G.; Zichichi, A.; Amelung, C.; Bornheim, A.; Brock, I.; Coböken, K.; Crittenden, J.; Deffner, R.; Hartmann, H.; Heinloth, K.; Hilger, E.; Irrgang, P.; Jakob, H.-P.; Kappes, A.; Katz, U. F.; Kerger, R.; Paul, E.; Rautenberg, J.; Schnurbusch, H.; Stifutkin, A.; Tandler, J.; Voss, K. C.; Weber, A.; Wieber, H.; Bailey, D. S.; Barret, O.; Brook, N. H.; Foster, B.; Heath, G. P.; Heath, H. F.; Rodrigues, E.; Scott, J.; Tapper, R. J.; Capua, M.; Schioppa, M.; Susinno, G.; Jeoung, H. Y.; Kim, J. Y.; Lee, J. H.; Lim, I. T.; Ma, K. J.; Pac, M. Y.; Caldwell, A.; Liu, W.; Liu, X.; Mellado, B.; Paganis, S.; Sampson, S.; Schmidke, W. B.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Klimek, K.; Olkiewicz, K.; Piotrzkowski, K.; Przybycień, M. B.; Stopa, P.; Zawiejski, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowal, A. M.; Kowalski, T.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Szuba, D.; Kotański, A.; Bauerdick, L. A. T.; Behrens, U.; Bienlein, J. K.; Borras, K.; Chiochia, V.; Dannheim, D.; Desler, K.; Drews, G.; Fox-Murphy, A.; Fricke, U.; Goebel, F.; Goers, S.; Göttlicher, P.; Graciani, R.; Haas, T.; Hain, W.; Hartner, G. F.; Hebbel, K.; Hillert, S.; Koch, W.; Kötz, U.; Kowalski, H.; Labes, H.; Löhr, B.; Mankel, R.; Martens, J.; Martínez, M.; Milite, M.; Moritz, M.; Notz, D.; Petrucci, M. C.; Polini, A.; Rohde, M.; Savin, A. A.; Schneekloth, U.; Selonke, F.; Sievers, M.; Stonjek, S.; Wolf, G.; Wollmer, U.; Youngman, C.; Zeuner, W.; Coldewey, C.; Lopez-Duran Viani, A.; Meyer, A.; Schlenstedt, S.; Straub, P. B.; Barbagli, G.; Gallo, E.; Parenti, A.; Pelfer, P. G.; Bamberger, A.; Benen, A.; Coppola, N.; Eisenhardt, S.; Markun, P.; Raach, H.; Wölfle, S.; Bussey, P. J.; Bell, M.; Doyle, A. T.; Glasman, C.; Lee, S. W.; Lupi, A.; Macdonald, N.; McCance, G. J.; Saxon, D. H.; Sinclair, L. E.; Skillicorn, I. O.; Waugh, R.; Bohnet, I.; Gendner, N.; Holm, U.; Meyer-Larsen, A.; Salehi, H.; Wick, K.; Carli, T.; Garfagnini, A.; Gialas, I.; Gladilin, L. K.; Kçira, D.; Klanner, R.; Lohrmann, E.; Gonçalo, R.; Long, K. R.; Miller, D. B.; Tapper, A. D.; Walker, R.; Cloth, P.; Filges, D.; Ishii, T.; Kuze, M.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Ahn, S. H.; Lee, S. B.; Park, S. K.; Lim, H.; Son, D.; Barreiro, F.; García, G.; González, O.; Labarga, L.; del Peso, J.; Redondo, I.; Terrón, J.; Vázquez, M.; Barbi, M.; Corriveau, F.; Hanna, D. S.; Ochs, A.; Padhi, S.; Stairs, D. G.; Wing, M.; Tsurugai, T.; Antonov, A.; Bashkirov, V.; Danilov, M.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Suchkov, S.; Dementiev, R. K.; Ermolov, P. F.; Golubkov, Yu. A.; Katkov, I. I.; Khein, L. A.; Korotkova, N. A.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Solomin, A. N.; Vlasov, N. N.; Zotkin, S. A.; Bokel, C.; Botje, M.; Brümmer, N.; Engelen, J.; Grijpink, S.; Koffeman, E.; Kooijman, P.; Schagen, S.; van Sighem, A.; Tassi, E.; Tiecke, H.; Tuning, N.; Velthuis, J. J.; Vossebeld, J.; Wiggers, L.; de Wolf, E.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Boogert, S.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Große-Knetter, J.; Matsushita, T.; Ruske, O.; Sutton, M. R.; Walczak, R.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dusini, S.; Limentani, S.; Longhin, A.; Posocco, M.; Stanco, L.; Turcato, M.; Adamczyk, L.; Iannotti, L.; Oh, B. Y.; Okrasiński, J. R.; Saull, P. R. B.; Toothacker, W. S.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cormack, C.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Epperson, D.; Heusch, C.; Sadrozinski, H. F.-W.; Seiden, A.; Wichmann, R.; Williams, D. C.; Park, I. H.; Pavel, N.; Abramowicz, H.; Dagan, S.; Kananov, S.; Kreisel, A.; Levy, A.; Abe, T.; Fusayasu, T.; Kohno, T.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Inuzuka, M.; Kitamura, S.; Matsuzawa, K.; Nishimura, T.; Arneodo, M.; Cartiglia, N.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Bailey, D. C.; Fagerstroem, C.-P.; Galea, R.; Koop, T.; Levman, G. M.; Martin, J. F.; Mirea, A.; Sabetfakhri, A.; Butterworth, J. M.; Hayes, M. E.; Heaphy, E. A.; Jones, T. W.; Lane, J. B.; West, B. J.; Ciborowski, J.; Ciesielski, R.; Grzelak, G.; Nowak, R. J.; Pawlak, J. M.; Pawlak, R.; Smalska, B.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Gadaj, T.; Deppe, O.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Badgett, W. F.; Chapin, D.; Cross, R.; Foudas, C.; Mattingly, S.; Reeder, D. D.; Smith, W. H.; Vaiciulis, A.; Wildschek, T.; Wodarczyk, M.; Deshpande, A.; Dhawan, S.; Hughes, V. W.; Bhadra, S.; Catterall, C.; Cole, J. E.; Frisken, W. R.; Hall-Wilton, R.; Khakzad, M.; Menary, S.; ZEUS Collaboration

    2001-02-01

    Differential cross sections for dijet photoproduction in association with a leading neutron using the reaction e++ p→ e++ n+jet+jet+ Xr have been measured with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb -1. The fraction of dijet events with a leading neutron in the final state was studied as a function of the jet kinematic variables. The cross sections were measured for jet transverse energies ETjet>6 GeV, neutron energy En>400 GeV, and neutron production angle θn<0.8 mrad. The data are broadly consistent with factorization of the lepton and hadron vertices and with a simple one-pion-exchange model.

  8. FY07 LDRD Final Report Neutron Capture Cross-Section Measurements at DANCE

    SciTech Connect

    Parker, W; Agvaanluvsan, U; Wilk, P; Becker, J; Wang, T

    2008-02-08

    We have measured neutron capture cross sections intended to address defense science problems including mix and the Quantification of Margins and Uncertainties (QMU), and provide details about statistical decay of excited nuclei. A major part of this project included developing the ability to produce radioactive targets. The cross-section measurements were made using the white neutron source at the Los Alamos Neutron Science Center, the detector array called DANCE (The Detector for Advanced Neutron Capture Experiments) and targets important for astrophysics and stockpile stewardship. DANCE is at the leading edge of neutron capture physics and represents a major leap forward in capability. The detector array was recently built with LDRD money. Our measurements are a significant part of the early results from the new experimental DANCE facility. Neutron capture reactions are important for basic nuclear science, including astrophysics and the statistics of the {gamma}-ray cascades, and for applied science, including stockpile science and technology. We were most interested in neutron capture with neutron energies in the range between 1 eV and a few hundred keV, with targets important to basic science, and the s-process in particular. Of particular interest were neutron capture cross-section measurements of rare isotopes, especially radioactive isotopes. A strong collaboration between universities and Los Alamos due to the Academic Alliance was in place at the start of our project. Our project gave Livermore leverage in focusing on Livermore interests. The Lawrence Livermore Laboratory did not have a resident expert in cross-section measurements; this project allowed us to develop this expertise. For many radionuclides, the cross sections for destruction, especially (n,{gamma}), are not well known, and there is no adequate model that describes neutron capture. The modeling problem is significant because, at low energies where capture reactions are important, the neutron

  9. Cross Section and Analyzing Power Measurements for Neutron Scattering from Aluminum and Cobalt and Spin - Cross Section Calculations

    NASA Astrophysics Data System (ADS)

    Nagadi, Mahmoud Mohamud

    Differential cross sections and analyzing power data have been measured for ^{27} Al and ^{59}Co at 15.5 MeV. Cross section data was also measured for ^{59}Co at 10, 12, 14, 17, and 19 MeV using standard time-of-flight techniques at the Triangle Universities Nuclear Laboratory (TUNL). Absolute normalization of the sigma(theta) data was performed using n-p scattering measurements. Both sigma(theta) and rm A_{y}(theta) were corrected for finite geometry, attenuation, relative efficiency, and multiple scattering effects using Monte Carlo techniques. A large data base was formed from our data and the existing data on ^{27}Al and ^{59}Co. This data base was used to develop a Dispersive Optical Model (DOM) and a Coupled Channels Model (CCM). The DOM model describes the data quite well above 8 MeV for ^{27 }Al and ^{59}Co. However, for data below 8 MeV the model is not as satisfactory, perhaps because of angular momentum l-dependencies in the absorptive potential. The CCM improved the description of the data over the DOM, but still does not describe the data well at low energies. The DOM and CCM for ^{27} Al and ^{59}Co were used to describe the spin-spin cross section data for ^{27}Al and ^{59}Co. We obtained a good fit for the spin-spin cross section with both the DOM and CCM with the spin-spin real surface parameters of V _{rm ss} = 0.80 MeV, r _{rm ss} = 1.00 fm and a _{rm ss} = 0.654 for both ^{27}Al and ^{59}Co. A surprising relation between the spin-spin cross section and the derivative of the total cross section with respect to energy, was discovered: sigma_{ss } = c {dsigma_{T} over dE} where c is a constant related to the slope of the real central potential and spin-spin potential strength. This observation is not yet understood.

  10. Neutron-photon multigroup cross sections for neutron energies less than or equal to400 MeV. Revision 1

    SciTech Connect

    Alsmiller, R.G. Jr.; Barnes, J.M.; Drischler, J.D.

    1986-01-01

    For a variety of applications, e.g., accelerator shielding design, neutrons in radiotherapy, radiation damage studies, etc., it is necessary to carry out transport calculations involving medium-energy (greater than or equal to20 MeV) neutrons. A previous paper described neutron-photon multigroup cross sections in the ANISN format for neutrons from thermal to 400 MeV. In the present paper the cross-section data presented previously have been revised to make them agree with available experimental data. 7 refs., 1 fig.

  11. Measurements of the breakup and neutron removal cross sections for {sup 16}C

    SciTech Connect

    Ashwood, N. I.; Freer, M.; Clarke, N.M.; Curtis, N.; Soic, N.; Ziman, V.A.; Angelique, J.C.; Lecouey, J.L.; Marques, F.M.; Normand, G.; Orr, N.A.; Timis, C.; Bouchat, V.; Hanappe, F.; Kerckx, Y.; Materna, T.; Catford, W.N.; Dorvaux, O.; Stuttge, L.

    2004-12-01

    Measurements of the breakup and the neutron removal reactions of {sup 16}C have been made at 46 MeV/A and the decay cross sections measured. A correlation between the cluster breakup channels and the reaction Q value suggests that the reaction mechanism is strongly linked to quasielastic processes. No enhancement of the two-body cluster breakup cross section is seen for {sup 16}C. This result would indicate that {sup 16}C does not have a well developed cluster structure in the ground state, in agreement with recent calculations.

  12. Theoretical study of evaporation cross sections in the synthesis of very neutron-deficient nuclei

    SciTech Connect

    Wang Chengbin; Zhang Jinjuan; Ren, Z. Z.

    2011-07-15

    The synthesis of rare-earth neutron-deficient nuclei with large Z/N ratio {approx_equal}0.88 is studied within the framework of the standard statistical model. The fusion cross sections are calculated on the basis of the nuclear reaction video model. The deexcitation process is calculated with the help of the statistical code alice. It is found that the excitation functions can be predicted using a few exited experimental data by carefully choosing the input parameters in the statistical model. The results obtained show that a satisfactory description of the experimental evaporation cross sections requires a great reduction in the theoretical fission barriers.

  13. Cross sections for one-neutron knock-out from 37Ca at intermediate energy

    NASA Astrophysics Data System (ADS)

    Bürger, A.; Azaiez, F.; Algora, A.; Al-Khatib, A.; Bastin, B.; Benzoni, G.; Borcea, R.; Bourgeois, C.; Bringel, P.; Clément, E.; Dalouzy, J.-C.; Dlouhý, Z.; Dombrádi, Z.; Drouart, A.; Engelhardt, C.; Franchoo, S.; Fülöp, Z.; Görgen, A.; Grévy, S.; Hübel, H.; Ibrahim, F.; Korten, W.; Mrázek, J.; Navin, A.; Rotaru, F.; Roussel Chomaz, P.; Saint-Laurent, M.-G.; Sletten, G.; Sohler, D.; Sorlin, O.; Stanoiu, M.; Stefan, I.; Theisen, C.; Timis, C.; Verney, D.; Williams, S.

    2012-12-01

    The cross section for the knock-out of a deeply bound valence neutron from 37Ca at an incident beam energy of 60AMeV has been measured along with momentum distributions of the residual nuclei and γ rays from the de-excitation of the first excited state in 36Ca. As for other cases of deeply bound nucleons studied using knock-out reactions, the reduction of the measured cross section compared to theoretical predictions is stronger than those observed for near-magic stable nuclei. Both the momentum distributions and the excitation energy of the first excited state in 36Ca indicate a sizable N=16 gap.

  14. Thermal neutron capture and resonance integral cross sections of 45Sc

    NASA Astrophysics Data System (ADS)

    Van Do, Nguyen; Duc Khue, Pham; Tien Thanh, Kim; Thi Hien, Nguyen; Kim, Guinyun; Kim, Kwangsoo; Shin, Sung-Gyun; Cho, Moo-Hyun; Lee, Manwoo

    2015-11-01

    The thermal neutron cross section (σ0) and resonance integral (I0) of the 45Sc(n,γ)46Sc reaction have been measured relative to that of the 197Au(n,γ)198Au reaction by means of the activation method. High-purity natural scandium and gold foils without and with a cadmium cover of 0.5 mm thickness were irradiated with moderated pulsed neutrons produced from the Pohang Neutron Facility (PNF). The induced activities in the activated foils were measured with a high purity germanium (HPGe) detector. In order to improve the accuracy of the experimental results the counting losses caused by the thermal (Gth) and resonance (Gepi) neutron self-shielding, the γ-ray attenuation (Fg) and the true γ-ray coincidence summing effects were made. In addition, the effect of non-ideal epithermal spectrum was also taken into account by determining the neutron spectrum shape factor (α). The thermal neutron cross-section and resonance integral of the 45Sc(n,γ)46Sc reaction have been determined relative to the reference values of the 197Au(n,γ)198Au reaction, with σo,Au = 98.65 ± 0.09 barn and Io,Au = 1550 ± 28 barn. The present thermal neutron cross section has been determined to be σo,Sc = 27.5 ± 0.8 barn. According to the definition of cadmium cut-off energy at 0.55 eV, the present resonance integral cross section has been determined to be Io,Sc = 12.4 ± 0.7 barn. The present results are compared with literature values and discussed.

  15. Neutron capture cross section measurements at the beam line 04 of J-PARC/MLF

    SciTech Connect

    Igashira, Masayuki; Harada, Hideo; Kiyanagi, Yoshiaki

    2012-11-12

    An Accurate Neutron-Nucleus Reaction measurement Instrument (ANNRI) at the beam line 04 of MLF (Material and Life Sciences Experimental Facilities) of J-PARC (Japan Proton Accelerator Research Complex) was installed to measure neutron capture cross sections related to the research and development of innovative nuclear systems, the study on nuclear astrophysics, etc. ANNRI has two gamma-ray spectrometers: one is a Ge detector array placed at 22 m from the coupled type moderator of the spallation neutron source of J-PARC/MLF and the other is a pair of NaI(Tl) detectors at 28 m. Until the 11th of March, 2011, when we had big earthquakes, we measured capture cross sections of Zr-93, Tc-99, Pd-107, I-129, Cm-244, Cm-246, etc. After checking and repairing ANNRI, we restarted measurements, and ANNRI has been open to worldwide users at present.

  16. Neutron, Proton, and Photonuclear Cross Sections for Radiation Therapy and Radiation Protection

    SciTech Connect

    Chadwick, M.B.

    1998-09-10

    The authors review recent work at Los Alamos to evaluate neutron, proton, and photonuclear cross section up to 150 MeV (to 250 MeV for protons), based on experimental data and nuclear model calculations. These data are represented in the ENDF format and can be used in computer codes to simulate radiation transport. They permit calculations of absorbed dose in the body from therapy beams, and through use of kerma coefficients allow absorbed dose to be estimated for a given neutron energy distribution. For radiation protection, these data can be used to determine shielding requirements in accelerator environments, and to calculate neutron, proton, gamma-ray, and radionuclide production. Illustrative comparisons of the evaluated cross section and kerma coefficient data with measurements are given.

  17. Neutron-induced Fission Cross Section of 240,242Pu

    NASA Astrophysics Data System (ADS)

    Salvador-Castiñeira, P.; Bryś, T.; Eykens, R.; Hambsch, F.-J.; Göök, A.; Oberstedt, S.; Pretel, C.; Sibbens, G.; Vanleeuw, D.; Vidali, M.

    A sensitivity analysis for the new generation of fast reactors [Salvatores (2008)] has shown the importance of improved cross section data for several actinides. Among them, the 240,242Pu(n,f) cross sections require an accuracy improvement to 1-3% and 3-5%, respectively, from the current level of 6% and 20%. At the Van de Graaff facility of the Institute for Reference Materials and Measurements (JRC-IRMM) the fission cross section of the two isotopes was measured relative to two secondary standard reactions, 237Np(n,f) and 238U(n,f), using a twin Frisch-grid ionization chamber. The secondary standard reactions were benchmarked through measurements against the primary standard reaction 235U(n,f) in the same geometry. Sample masses were determined by means of low-geometry alpha counting or/and a 2π Frisch-grid ionization chamber, with an uncertainty lower than 2%. The neutron flux and the impact of scattering from material between source and target was examined, the largest effect having been found in cross section ratio measurements between a fissile and a fertile isotope. Our 240,242Pu(n,f) cross sections are in agreement with previous experimental results and slightly lower than present evaluations. In case of the 242Pu(n,f) reaction no evidence for a resonance at En=1.1 MeV was found.

  18. Interactive Graphic User Interface to View Neutron and Gamma-Ray Interaction Cross Sections.

    Energy Science and Technology Software Center (ESTSC)

    2001-12-20

    Version 00 VIEW-CXS is an interactive, user-friendly interface to graphically view neutron and gamma-ray cross-sections of isotopes available in different data libraries. The names of isotopes for which the cross-sections are available is shown in a data base grid on the selection of a particular library. Routines have been developed in Visual Basic 6.0 to retrieve required information from each of the binary files or random access files. The present program can fetch data from:more » 1) ACE random access file used with MCNP code, 2) AMPX binary file used with KENO code, 3) ANISN group cross-sections used with discrete ordinate codes. It is possible to compare the data of cross-sections for any isotope from selected libraries. Besides it is possible to extract a particular nuclear reaction cross-section from ACE library files. Context sensitive help is an attractive feature of the program and aids the novice user to extract the required data.« less

  19. Covariances Obtained from an Evaluation of the Neutron Cross Section Standards

    SciTech Connect

    Carlson, A. D.; Badikov, S. A.; Chen, Zhenpeng; Gai, E.; Pronyaev, V. G.; Hale, G. M.; Kawano, T.; Hambsch, F.; Hoffman, H.; Larson, Nancy M; Oli, S.; Smith, D. L.; Tagesen, S.; Vonach, H.

    2008-12-01

    New measurements and an improved evaluation process were used to obtain a new evaluation of the neutron cross section standards. Efforts were made to include as much information as possible on the components of the data uncertainties that were then used to obtain the covariance matrices for the experimental data. Evaluations were produced from this process for the 6Li(n,t), 10B(n, ), 10B(n, 1 ), 197Au(n, ), 235U(n,f), and 238U(n,f) standard cross sections as well as the non-standard 6Li(n,n), 10B(n,n), 238U(n, ) and 239Pu(n,f) cross sections. There is a general increase in the cross sections for most of the new evaluations, by as much as about 5%, compared with the ENDF/B-VI results. Covariance data were obtained for the 6Li(n,t), 6Li(n,n), 10B(n, ), 10B(n, 1 ), 10B(n,n), 197Au(n, ), 235U(n,f), 238U(n,f), 238U(n, ) and 239Pu(n,f) reactions. Also an independent R-Matrix evaluation was produced for the H(n,n) standard cross-section, however, covariance data are not available for this reaction. The evaluations were used in the new ENDF/B-VII library.

  20. Techniques for obtaining high vertical resolution formation capture cross sections from pulsed neutron logs

    SciTech Connect

    Smith, H.D. Jr.; Wyatt, D.F. Jr.; Smith, M.P.

    1991-02-05

    This patent describes a method for measuring high vertical resolution earth formation thermal neutron capture cross sections of earth formations in the vicinity of a well borehole. It comprises repetitively emitting in a well borehole relatively short duration bursts of fast neutrons; detecting, as a function of depth, in the borehole during time intervals between the repetitive bursts of fast neutrons; filtering count rate signals to reduce statistical fluctuations in subsequent computations; combining at least two filtered count rate signals; selecting at least one of the at least two filtered gate count rate signals.

  1. Neutron capture cross section of {sup 15}N at stellar energies

    SciTech Connect

    Meissner, J.; Schatz, H.; Herndl, H.; Wiescher, M.; Beer, H.; Kaeppeler, F.

    1996-02-01

    The neutron capture rate on {sup 15}N may be of considerable importance for {ital s}-process nucleosynthesis in red giants as well as for the nucleosynthesis in inhomogeneous big bang scenarios. We measured the reaction cross section of {sup 15}N({ital n},{gamma}){sup 16}N at the Forschungszentrum Karlsruhe with a fast cyclic neutron activation technique at laboratory neutron energies of 25, 152, and 370 keV. Direct capture and shell model calculations were performed to interpret the results. The presented reaction rate is 30{endash}50{percent} smaller than the previously used theoretical rates. {copyright} {ital 1996 The American Physical Society.}

  2. NEUTRON CROSS SECTION COVARIANCES FROM THERMAL ENERGY TO 20 MeV.

    SciTech Connect

    ROCHMAN,D.; HERMAN, M.; OBLOZINSKY, P.; MUGHABGHAB, S.F.; PIGNI, M.; KAWANO, T.

    2007-04-27

    We describe new method for energy-energy covariance calculation from the thermal energy up to 20 MeV. It is based on three powerful basic components: (i) Atlas of Neutron Resonances in the resonance region; (ii) the nuclear reaction model code EMPIRE in the unresolved resonance and fast neutron regions, and (iii) the Bayesian code KALMAN for correlations and error propagation. Examples for cross section uncertainties and correlations on {sup 90}Zr and {sup 193}Ir illustrate this approach in the resonance and fast neutron regions.

  3. Proton capture cross sections on neutron-magic 144Sm at astrophysically relevant energies

    NASA Astrophysics Data System (ADS)

    Kinoshita, N.; Hayashi, K.; Ueno, S.; Yatsu, Y.; Yokoyama, A.; Takahashi, N.

    2016-02-01

    Background: The p nuclei, which are not produced by neutron capture processes, are present with a typical isotopic abundance of 0.01%-0.3%. Abundance decreases with an increase in atomic number. However, the neutron-magic isotopes of 92Mo and 144Sm exhibit unusually large abundances in comparison. A combination of proton and α -particle capture reactions and neutron emission reactions are key to understanding this issue. Currently, complex network calculations do not have access to much experimental data, and hence require theoretically predicted reaction rates in order to estimate final abundances produced in nucleosynthesis. Purpose: Few experimental cross sections of (p ,γ) reactions on heavy nuclides with mass numbers of 130-150 have been reported. The 144Sm(p ,γ )145Eu reaction is the main destruction pathway for the nucleosynthesis of the 144Sm nuclide. In the present paper, experimental cross sections of the 144Sm(p ,γ )145Eu reaction at a range including astrophysically relevant energies for the p process were determined to compare with theoretical predictions using the Hauser-Feshback statistical model. Methods: The 144Sm was deposited on a high-purity Al foil with the molecular plating method. Stacks consisting of Ta degrader foils, 144Sm targets, and Cu foils used as flux monitors were irradiated with 14.0-MeV proton beams. The 144Sm(p ,γ )145Eu cross sections were determined from the 145Eu activities and the proton fluence estimated from the 65Zn activity in the Cu monitor foil. The proton energies bombarded on each 144Sm target were estimated using srim2013. Results: We determined the 144Sm(p ,γ )145Eu cross sections at proton energies between 2.8 and 7.6 MeV. These energies encompass nucleosynthesis temperatures between 3 and 5 GK. The cross sections at energies higher than 3.8 MeV agreed well with theoretically predicted cross sections using talys using the generalized superfluid (GS) model for level densities. However, calculations using non

  4. Photo-neutron Cross Section Calculations of Several Structural Fusion Materials

    NASA Astrophysics Data System (ADS)

    Kaplan, A.; Özdoğan, H.; Aydın, A.; Tel, E.

    2013-06-01

    In this study, the theoretical photo-neutron cross-sections produced by (γ,n) reactions for several structural fusion materials such as 51V, 55Mn, 58Ni, 90,91,92,94Zr, and 181Ta have been investigated in the incident energy range of 7-40 MeV. Reaction cross-sections as a function of photon energy have been calculated theoretically using the PCROSS and TALYS 1.2 computer codes. TALYS 1.2 default and pre-equilibrium models have been used to calculate the pre-equilibrium photo-neutron cross-sections. For the reaction equilibrium component, PCROSS Weisskopf-Ewing model calculations have been preferred. The calculated results have been compared with each other and against the experimental data in the existing databases EXFOR and TENDL-2011. PCROSS Weisskopf-Ewing model calculations show a similar structure with experimental data but they are higher than the experimental values for all reactions except for 90Zr(γ,n)89Zr reaction. Generally, TALYS 1.2 default and pre-equilibrium model cross-section calculations are the best agreement with the experimental data for all reactions except for 58Ni(γ,n)57Ni reaction along the incident photon energy in this study. The TALYS 1.2 curves fit the TENDL-2011 data the best. If photo-neutron cross-section data is needed for an isotope where there is no experimental data available for comparison, TALYS 1.2 pre-equilibrium option has been recommended.

  5. RSAP - A Code for Display of Neutron Cross Section Data and SAMMY Fit Results

    SciTech Connect

    Sayer, R.O.

    2001-02-02

    RSAP is a computer code for display of neutron cross section data and selected SAMMY output. SAMMY is a multilevel R-matrix code for fitting neutron time-of-flight cross-section data using Bayes' method. RSAP, which runs on the Digital Unix Alpha platform, reads ORELA Data Files (ODF) created by SAMMY and uses graphics routines from the PLPLOT package. In addition, RSAP can read data and/or computed values from ASCII files with a format specified by the user. Plot output may be displayed in an X window, sent to a postscript file (rsap.ps), or sent to a color postscript file (rsap.psc). Thirteen plot types are supported, allowing the user to display cross section data, transmission data, errors, theory, Bayes fits, and residuals in various combinations. In this document the designations theory and Bayes refer to the initial and final theoretical cross sections, respectively, as evaluated by SAMMY. Special plot types include Bayes/Data, Theory--Data, and Bayes--Data. Output from two SAMMY runs may be compared by plotting the ratios Theory2/Theory1 and Bayes2/Bayes1 or by plotting the differences (Theory2-Theory1) and (Bayes2-Bayes1).

  6. Neutron capture cross-section studies of Tellurium isotopes for neutrinoless double beta decay applications

    NASA Astrophysics Data System (ADS)

    Bhike, Megha; Tornow, Werner

    2014-09-01

    The CUORE detector at Gran Sasso, aimed at searching for neutrinoless double-beta decay of 130Te, employs an array of TeO2 bolometer modules. To understand and identify the contribution of muon and (α,n) induced neutrons to the CUORE background, fast neutron cature cross-section data of the tellurium isotopes 126Te, 128Te and 130Te have been measured with the activation method at eight different energies in the neutron energy range 0.5-7.5 MeV. Plastic pill boxes of diameter 1.6 cm and width 1 cm containing Te were irradiated with mono-energetic neutrons produced via the 3H(p,n)3He and 2H(d,n)3He reactions. The cross-sections were determined relative to the 197Au(n, γ)198Au and 115In(n,n')115m In standard cross sections. The activities of the products were measured using 60% lead-shielded HPGe detectors at TUNL's low background counting facility. The present results are compared with the evaluated data from TENDL-2012, ENDF/B-VII.1, JEFF-3.2 and JENDL-4.0, as well as with literature data.

  7. Stellar Neutron Capture Cross Sections of the Lu and Hf Isotopes

    SciTech Connect

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Kazakov, L.; Krticka, M.

    2005-05-24

    The neutron capture cross sections of 175,176Lu and 176,177,178,179,180Hf have been measured in the energy range from 3 to 225 keV at the Karlsruhe 3.7 MV Van de Graaff accelerator relative to the gold standard. Neutrons were produced by the 7Li(p,n)7Be reaction and capture events were detected by the Karlsruhe 4{pi}BaF2 detector. The cross section ratios could be determined with uncertainties between 0.9 and 1.8% about a factor of five more accurate than previous data. A strong population of isomeric states was found in neutron capture of the Hf isotopes, which are only partially explained by CASINO/GEANT simulations based on the known level schemes.Maxwellian averaged neutron capture cross sections were calculated for thermal energies between kT = 8 keV and 100 keV. Severe differences up to40% were found to the data of a recent evaluation based on existing experimental results. The new data allow for a much more reliable analysis of the important branching in the s-process synthesis path at 176Lu which can be interpreted as an s-process thermometer.

  8. NEUTRON CROSS SECTION EVALUATIONS OF FISSION PRODUCTS BELOW THE FAST ENERGY REGION

    SciTech Connect

    OH,S.Y.; CHANG,J.; MUGHABGHAB,S.

    2000-05-11

    Neutron cross section evaluations of the fission-product isotopes, {sup 95}Mo, {sup 99}Tc, {sup 101}Ru, {sup 103}Rh, {sup 105}Pd, {sup 109}Ag, {sup 131}Xe, {sup 133}Cs, {sup 141}Pr, {sup 141}Nd, {sup 147}Sm, {sup 149}Sm, {sup 150}Sm, {sup 151}Sm, {sup 152}Sm, {sup 153}Eu, {sup 155}Gd, and {sup 157}Gd were carried out below the fast neutron energy region within the framework of the BNL-KAERI international collaboration. In the thermal energy region, the energy dependence of the various cross-sections was calculated by applying the multi-level Breit-Wigner formalism. In particular, the strong energy dependence of the coherent scattering lengths of {sup 155}Gd and {sup 157}Gd were determined and were compared with recent calculations of Lynn and Seeger. In the resonance region, the recommended resonance parameters, reported in the BNL compilation, were updated by considering resonance parameter information published in the literature since 1981. The s-wave and, if available, p-wave reduced neutron widths were analyzed in terms of the Porter-Thomas distribution to determine the average level spacings and the neutron strength functions. Average radiative widths were also calculated from measured values of resolved energy resonances. The average resonance parameters determined in this study were compared with those in the BNL and other compilations, as well as the ENDF/B-VI, JEF-2.2, and JENDL-3.2 data libraries. The unresolved capture cross sections of these isotopes, computed with the determined average resonance parameters, were compared with measurements, as well as the ENDF/B-VI evaluations. To achieve agreement with the measurements, in a few cases minor adjustments in the average resonance parameters were made. Because of astrophysical interest, the Maxwellian capture cross sections of these nuclides at a neutron temperature of 30 keV were computed and were compared with other compilations and evaluations.

  9. Model for neutron total cross-section at low energies for nuclear grade graphite

    NASA Astrophysics Data System (ADS)

    Galván Josa, V. M.; Dawidowski, J.; Santisteban, J. R.; Malamud, F.; Oliveira, R. G.

    2015-04-01

    At subthermal neutron energies, polycrystalline graphite shows a large total cross-section due to small angle scattering processes. In this work, a new methodology to determine pore size distributions through the neutron transmission technique at subthermal energies is proposed and its sensitivity is compared with standard techniques. A simple model based on the form factor for spherical particles, normally used in the Small Angle Neutron Scattering technique, is employed to calculate the contribution of small angle effect to the total scattering cross-section, with the width and center of the radii distributions as free parameters in the model. Small Angle X-ray Scattering experiments were performed to compare results as a means to validate the method. The good agreement reached reveals that the neutron transmission technique is a useful tool to explore small angle scattering effects. This fact can be exploited in situations where large samples must be scanned and it is difficult to investigate them with conventional methods. It also opens the possibility to apply this method in energy-resolved neutron imaging. Also, since subthermal neutron transmission experiments are perfectly feasible in small neutron sources, the present findings open new possibilities to the work done in such kind of facilities.

  10. Neutron capture cross section of unstable 63Ni: implications for stellar nucleosynthesis.

    PubMed

    Lederer, C; Massimi, C; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krtička, M; Kroll, J; Langer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T J; Zugec, P

    2013-01-11

    The 63Ni(n,γ) cross section has been measured for the first time at the neutron time-of-flight facility n_TOF at CERN from thermal neutron energies up to 200 keV. In total, capture kernels of 12 (new) resonances were determined. Maxwellian averaged cross sections were calculated for thermal energies from   kT=5-100  keV with uncertainties around 20%. Stellar model calculations for a 25M⊙ star show that the new data have a significant effect on the s-process production of 63Cu, 64Ni, and 64Zn in massive stars, allowing stronger constraints on the Cu yields from explosive nucleosynthesis in the subsequent supernova. PMID:23383895

  11. High resolution measurement of neutron inelastic scattering cross-sections for 23Na

    NASA Astrophysics Data System (ADS)

    Rouki, C.; Archier, P.; Borcea, C.; De Saint Jean, C.; Drohé, J. C.; Kopecky, S.; Moens, A.; Nankov, N.; Negret, A.; Noguère, G.; Plompen, A. J. M.; Stanoiu, M.

    2012-04-01

    The neutron inelastic scattering cross-section of 23Na has been measured in response to the relevant request of the OECD-NEA High Priority Request List, which requires a target uncertainty of 4% in the energy range up to 1.35 MeV for the development of sodium-cooled fast reactors. The measurement was performed at the GELINA facility with the Gamma Array for Inelastic Neutron Scattering (GAINS), featuring eight high purity germanium detectors. The setup is installed at a 200 m flight path from the neutron source and provides high resolution measurements using the (n,n'γ)-technique. The sample was an 80 mm diameter metallic sodium disk prepared at IRMM. Transitions up to the seventh excited state were observed and the differential gamma cross-sections at 110° and 150° were measured, showing mostly isotropic gamma emission. From these the gamma production, level and inelastic cross-sections were determined for neutron energies up to 3838.9 keV. The results agree well with the existing data and the evaluated nuclear data libraries in the low energies, and provide new experimental points in the little studied region above 2 MeV. Following a detailed review of the methodology used for the gamma efficiency calibrations and flux normalization of GAINS data, an estimated total uncertainty of 2.2% was achieved for the inelastic cross-section integrals over the energy ranges 0.498-1.35 MeV and 1.35-2.23 MeV, meeting the required targets.

  12. Measurement and evaluation of selected 14-MeV neutron cross sections for fusion

    SciTech Connect

    Meadows, J.W.; Smith, D.L.; Cox, S.A.

    1985-01-01

    Experimental neutron-activation cross-section data in the vicinity of 14 MeV are evaluated for several reactions of fusion-related interest using a least-squares method. New experimental measurements are performed at 14.7 MeV for all of these considered reactions and for some commonly-used standard reactions as well. Comparison is made between measured and evaluated results.

  13. A unified Monte Carlo approach to fast neutron cross section data evaluation.

    SciTech Connect

    Smith, D.; Nuclear Engineering Division

    2008-03-03

    A unified Monte Carlo (UMC) approach to fast neutron cross section data evaluation that incorporates both model-calculated and experimental information is described. The method is based on applications of Bayes Theorem and the Principle of Maximum Entropy as well as on fundamental definitions from probability theory. This report describes the formalism, discusses various practical considerations, and examines a few numerical examples in some detail.

  14. Differential Cross Sections for Neutron Elastic and Inelastic Scattering on 23Na

    NASA Astrophysics Data System (ADS)

    Vanhoy, J. R.; Hicks, S. F.; Chakraborty, A.; Champine, B. R.; Combs, B.; Crider, B. P.; Kersting, L. J.; Kumar, A.; Lueck, C. J.; McDonough, P. J.; McEllistrem, M. T.; Peters, E. E.; Prados-Estévez, F. M.; Sidwell, L.; Sigillito, A.; Watts, D. W.; Yates, S. W.

    2014-03-01

    Measurements of neutron elastic and inelastic scattering from 23Na have been performed for sixteen incident neutron energies above 1.5 MeV with the 7-MV University of Kentucky Accelerator using the 3H(p,n) reaction as the neutron source. These measurements were complemented by γ-ray excitation functions using the (n,n'γ) reaction. The time-of-flight technique is employed for background reduction in both neutron and γ- ray measurements and for determining the energy of the scattered neutrons. Cross section determinations support fuel cycle and structural materials research and development. Previous reaction model evaluations [1] relied primarily on total cross sections and four (n,n0) and (n,n1) angular distributions in the En = 5 to 9 MeV range. The inclusion of more inelastic channels at lower neutron energies provides additional information on direct couplings between elastic and inelastic scattering as a function of angular momentum transfer. Reaction model calculations examining direct collective and statistical properties were performed.

  15. Assessment of the neutron cross section database for mercury for the ORNL spallation source

    SciTech Connect

    Leal, L.C.; Spencer, R.R.; Ingersoll, D.T.; Gabriel, T.A.

    1996-06-01

    Neutron source generation based on a high energy particle accelerator has been considered as an alternative to the canceled Advanced Neutron Source project at Oak Ridge National Laboratory. The proposed technique consists of a spallation neutron source in which neutrons are produced via the interaction of high-energy charged particles in a heavy metal target. Preliminary studies indicate that liquid mercury bombarded with GeV protons provides an excellent neutron source. Accordingly, a survey has been made of the available neutron cross-section data. Since it is expected that spectral modifiers, specifically moderators, will also be incorporated into the source design, the survey included thermal energy, resonance region, and high energy data. It was found that data of individual isotopes were almost non-existent and that the only evaluation found for the natural element had regions of missing data or discrepant data. Therefore, it appears that to achieve the desired degree of accuracy in the spallation source design it is necessary to re-evaluate the mercury database including making new measurements. During the presentation the currently available data will be presented and experiments proposed which can lead to design quality cross sections.

  16. Resonance neutron-capture cross sections of stable magnesium isotopes and their astrophysical implications

    NASA Astrophysics Data System (ADS)

    Massimi, C.; Koehler, P.; Bisterzo, S.; Colonna, N.; Gallino, R.; Gunsing, F.; Käppeler, F.; Lorusso, G.; Mengoni, A.; Pignatari, M.; Vannini, G.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Álvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Barbagallo, M.; Baumann, P.; Bečvář, F.; Belloni, F.; Bennett, M.; Berthoumieux, E.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Dolfini, R.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fujii, K.; Furman, W.; Goncalves, I.; González-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Herwig, F.; Hirschi, R.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Ketlerov, V.; Konovalov, V.; Kopecky, S.; Kossionides, E.; Krtička, M.; Lampoudis, C.; Leeb, H.; Lederer, C.; Lindote, A.; Lopes, I.; Losito, R.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Martínez, T.; Mastinu, P.; Mendoza, E.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rockefeller, G.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Salgado, J.; Santos, C.; Sarchiapone, L.; Sarmento, R.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vaz, P.; Ventura, A.; Villamarin, D.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescher, M.; Wisshak, K.

    2012-04-01

    We have measured the neutron capture cross sections of the stable magnesium isotopes 24,25,26Mg in the energy range of interest to the s process using the neutron time-of-flight facility n_TOF at CERN. Capture events from a natural metal sample and from samples enriched in 25Mg and 26Mg were recorded using the total energy method based on C62H6 detectors. Neutron resonance parameters were extracted by a simultaneous resonance shape analysis of the present capture data and existing transmission data on a natural isotopic sample. Maxwellian-averaged capture cross sections for the three isotopes were calculated up to thermal energies of 100 keV and their impact on s-process analyses was investigated. At 30 keV the new values of the stellar cross section for 24Mg, 25Mg, and 26Mg are 3.8±0.2 mb, 4.1±0.6 mb, and 0.14±0.01 mb, respectively.

  17. γ production and neutron inelastic scattering cross sections for 76Ge

    NASA Astrophysics Data System (ADS)

    Rouki, C.; Domula, A. R.; Drohé, J. C.; Koning, A. J.; Plompen, A. J. M.; Zuber, K.

    2013-11-01

    The 2040.7-keV γ ray from the 69th excited state of 76Ge was investigated in the interest of Ge-based double-β-decay experiments like the Germanium Detector Array (GERDA) experiment. The predicted transition could interfere with valid 0νββ events at 2039.0 keV, creating false signals in large-volume 76Ge enriched detectors. The measurement was performed with the Gamma Array for Inelastic Neutron Scattering (GAINS) at the Geel Electron Linear Accelerator (GELINA) white neutron source, using the (n,n'γ) technique and focusing on the strongest γ rays originating from the level. Upper limits obtained for the production cross section of the 2040.7-keV γ ray showed no possible influence on GERDA data. Additional analysis of the data yielded high-resolution cross sections for the low-lying states of 76Ge and related γ rays, improving the accuracy and extending existing data for five transitions and five levels. The inelastic scattering cross section for 76Ge was determined for incident neutron energies up to 2.23 MeV, significantly increasing the energy range for which experimental data are available. Comparisons with model calculations using the talys code are presented indicating that accounting for the recently established asymmetric rotor structure should lead to an improved description of the data.

  18. Sensitivity Analysis of Nuclide Importance to One-Group Neutron Cross Sections

    SciTech Connect

    Sekimoto, Hiroshi; Nemoto, Atsushi; Yoshimura, Yoshikane

    2001-07-15

    The importance of nuclides is useful when investigating nuclide characteristics in a given neutron spectrum. However, it is derived using one-group microscopic cross sections, which may contain large errors or uncertainties. The sensitivity coefficient shows the effect of these errors or uncertainties on the importance.The equations for calculating sensitivity coefficients of importance to one-group nuclear constants are derived using the perturbation method. Numerical values are also evaluated for some important cases for fast and thermal reactor systems.Many characteristics of the sensitivity coefficients are derived from the derived equations and numerical results. The matrix of sensitivity coefficients seems diagonally dominant. However, it is not always satisfied in a detailed structure. The detailed structure of the matrix and the characteristics of coefficients are given.By using the obtained sensitivity coefficients, some demonstration calculations have been performed. The effects of error and uncertainty of nuclear data and of the change of one-group cross-section input caused by fuel design changes through the neutron spectrum are investigated. These calculations show that the sensitivity coefficient is useful when evaluating error or uncertainty of nuclide importance caused by the cross-section data error or uncertainty and when checking effectiveness of fuel cell or core design change for improving neutron economy.

  19. Stellar neutron capture cross section of the unstable s-process branching point {sup 151}Sm

    SciTech Connect

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Krticka, M.; Raman, S.; Mengoni, A.; Gallino, R.

    2006-01-15

    The neutron capture cross sections of the radioactive isotope {sup 151}Sm and of natural samarium have been measured in the energy range from 3 keV to 225 keV at the Karlsruhe 3.7 MV Van de Graaff accelerator. Neutrons were produced via the {sup 7}Li(p,n){sup 7}Be reaction by bombarding metallic Li targets with a pulsed proton beam and capture events were registered with the Karlsruhe 4{pi} Barium Fluoride Detector. The cross sections were determined relative to the gold standard using a 206 mg sample of samarium oxide with 90% enrichment in {sup 151}Sm. Over most of the measured energy range uncertainties of {approx}2-3% could be achieved for the {sup 151}Sm/{sup 197}Au ratio. Maxwellian averaged neutron capture cross sections of {sup 151}Sm were calculated for thermal energies between kT = 8 keV and 100 keV with due consideration of the stellar enhancement factor and were found to be systematically larger than all previous theoretical predictions used in the analysis of the s-process branching at {sup 151}Sm. In the context of the branching analysis, an experimental determination of the stellar enhancement factor due to captures in thermally excited states is proposed, and the tentative determination of the p-process residual of {sup 152}Gd and a few other cases is discussed.

  20. Stellar neutron capture cross sections of Nd, Pm, and Sm isotopes

    SciTech Connect

    Toukan, K.A. ); Debus, K.; Kaeppeler, F. ); Reffo, G. )

    1995-03-01

    The neutron capture cross sections of [sup 146,148,150]Nd have been determined relative to that of gold by means of the activation method. The samples were irradiated in a quasistellar neutron spectrum for [ital kT]=25 keV using the [sup 7]Li([ital p],[ital n])[sup 7]Be reaction near threshold. Variation of the experimental conditions in different activations and the use of different samples allowed for the reliable determination of corrections and the evaluation of systematic uncertainties. The resulting stellar cross sections can be given with uncertainties around 6%, which represents a considerable improvement compared to previous measurements. These data are complemented by a new set of calculated cross sections for the unstable isotopes [sup 147]Nd, [sup 147,148,149]Pm, and [sup 151]Sm, which act as branching points in the [ital s]-process path. Based on these results, the [ital s]-process flow in the Nd-Pm-Sm region is discussed with respect to the neutron density during stellar helium burning and to isotopic anomalies in meteorites. The updated [ital s]-abundances are also used for a discussion of [ital r]- and [ital p]-process residuals.

  1. Measurement of neutron total cross-section and resonance parameters of xenon

    NASA Astrophysics Data System (ADS)

    Skoy, V. R.; Wang, T. F.; Kim, G. N.; Oh, Y. D.; Cho, M. H.; Ko, I. S.; Namkung, W.

    2009-07-01

    We measured the neutron total cross-sections of natural xenon in the neutron energy region from 0.1 to 40 eV by using the time-of-flight method at the Pohang neutron facility, which consists of an electron linear accelerator, a water-cooled tantalum target with a water moderator, and a 12-m long time-of-flight path. A 6Li-ZnS(Ag) scintillator with a diameter of 12.5 cm and a thickness of 1.6 cm was used as a neutron detector. Notch filters composed of Co, In, Cd were used to estimate the background level and to calculate the neutron flight path length. The present measurement was compared with the existing experimental and the evaluated data. The resonance parameters of Xe isotopes were obtained from the transmission ratio by using the SAMMY code and were compared with other previous results.

  2. A measurement of actinide neutron transmutations with accelerator mass spectrometry in order to infer neutron capture cross sections

    NASA Astrophysics Data System (ADS)

    Bauder, William K.

    Improved neutron capture cross section data for transuranic and minor actinides are essential for assessing possibilities for next generation reactors and advanced fuel cycles. The Measurement of Actinide Neutron TRAnsmutation (MANTRA) project aims to make a comprehensive set of energy integrated neutron capture cross section measurements for all relevant isotopes from Th to Cf. The ability to extract these cross sections relies on the use of Accelerator Mass Spectrometry (AMS) to analyze isotopic concentrations in samples irradiated in the Advanced Test Reactor (ATR). The AMS measurements were performed at the Argonne Tandem Linear Accelerator System (ATLAS) and required a number of key technical developments to the ion source, accelerator, and detector setup. In particular, a laser ablation material injection system was developed at the electron cyclotron resonance ion source. This system provides a more effective method to produce ion beams from samples containing only 1% actinide material and offers some benefits for reducing cross talk in the source. A series of four actinide measurements are described in this dissertation. These measurements represent the most substantial AMS work attempted at ATLAS and the first results of the MANTRA project. Isotopic ratios for one and two neutron captures were measured in each sample with total uncertainties around 10%. These results can be combined with a MCNP model for the neutron fluence to infer actinide neutron capture cross sections.

  3. Commentary: exciting new developments in fast neutron cross sections and dosimetry

    NASA Astrophysics Data System (ADS)

    Bielajew, A. F.; Chadwick, M. B.

    1998-12-01

    The field of fast neutron therapy, and to some extent the practice of radiation protection in the vicinity of medical linear accelerators, requires accurate physical data. The paucity of physical data for neutron cross sections above about 15 MeV in low- Z materials is best exemplified (and somewhat exaggerated!) in the late Herb Attix's standard textbook Introduction to Radiological Physics and Radiation Dosimetry (Attix 1986). On page 464, the contributions to kerma in tissue from neutrons stops abruptly shortly above about 15 MeV. Photon and electron dosimetry has benefited from a well established and highly cohesive relationship between measurement and theory due to the enormous success of quantum electrodynamics. In contrast, measurements in the field of neutron radiotherapy have benefited less from theory because of the complexity of the quantum mechanics of nuclear structure, especially for light elements. This is because the nuclear levels are widely spaced at low excitation energies unlike for heavy elements where the energy level spacing is more dense and statistical assumptions can be applied with success. This means that accurate measurements are crucial for guiding and testing theoretical development. Measurements contributing to the field of fast neutron dosimetry are few and far between. Amazingly, in this issue of Physics in Medicine and Biology there are two such contributions! The paper by Benck, Slypen, Meulders and Corcalciuc (1998) entitled `Experimental double differential cross sections and derived kerma factors for oxygen at incident neutron energies from reaction thresholds to 65 MeV' reports on a set of measurements of the doubly-differential cross sections (energy and angle) for fast neutrons on for 9 energies between 25 and 65 MeV. The reaction channels measured were (n, px), (n, dx), (n, tx) and (n, x). These cross sections were then integrated to produce partial and total kerma factors. There are several features of this paper that are

  4. Nuclear astrophysics from neutron cross-section measurements on radiactive samples

    SciTech Connect

    Koehler, P.E.; O'Brien, H.A.

    1988-01-01

    Reaction rates for both big-bang and stellar nucleosynthesis calculations can be obtained from the measurement of (n,p) (n, ..cap alpha..) and (n,..gamma..) cross sections for radioactive nuclei. In the past, large backgrounds associated with the sample activity limited these types of measurements to radioisotopes with very long half lives. The advent of the high-intensity neutron source at the Los Alamos Neutron Scattering CEnter (LANSCE) has greatly increased the number of nuclei which can be studied. Results of recent measurements on samples with half lives as short as fifty-three days are given. Plans for future measurements are discussed. 32 refs., 3 figs.

  5. Cross section measurement on 139La (γ,γ') below neutron separation energy

    NASA Astrophysics Data System (ADS)

    Makinaga, A.; Rusev, G.; Schwengner, R.; Dönau, F.; Beyer, R.; Bemmerer, D.; Crespo, P.; Erhard, M.; Junghans, A. R.; Klug, J.; Nair, C.; Schilling, K. D.; Wagner, A.

    2010-06-01

    The γ-ray strength function is an important input quantity for the determination of the photoreaction rate and the neutron capture rate for astrophysics as well as for nuclear technologies. Recent studies show that extra γ-ray strength near the neutron separation energy Sn (pygmy resonance) affects the stellar reaction rate strongly. In this work, the photoabsorption cross section for 139La below Sn was measured using bremsstrahlung produced at the electron accelerator ELBE of Eorschungszentrum Dresden-Rossendorf with an electron beam of 11.5 MeV kinetic energy. Experimental result of 139La is presented.

  6. Neutron total cross section and resonance parameters of /sup 231/Pa

    SciTech Connect

    Hussein, A.R.Z.; Harvey, J.A.; Hill, N.W.; Patterson, J.R.

    1981-08-01

    Time-of-flight measurements of the neutron total cross section of /sup 231/Pa were carried out, in the energy range 0.01 to 10,000 eV, on two sample thicknesses using the Oak Ridge Electron Linear Accelerator as the pulsed neutron source. The multilevel R matrix code MULTI, which includes instrumental resolution and the Doppler broadening, has been used to fit the data. The resonance parameters obtained from the present multilevel R matrix analysis of /sup 231/Pa transmission data from 0.03 to 120 eV are given. 14 refs.

  7. Surrogate ratio methodology for the indirect determination of neutron capture cross sections

    NASA Astrophysics Data System (ADS)

    Goldblum, B. L.; Prussin, S. G.; Bernstein, L. A.; Younes, W.; Guttormsen, M.; Nyhus, H. T.

    2010-05-01

    The relative γ-decay probabilities of the Dy162 to Dy161 and Dy162 to Dy164 residual nuclei, produced using light-ion-induced direct reactions, were measured as a function of excitation energy using the CACTUS array at the Oslo Cyclotron Laboratory. The external surrogate ratio method (SRM) was used to convert these relative γ-decay probabilities into the Dy161(n,γ) cross section in an equivalent neutron energy range of 130-560 keV. The directly measured Dy161(n,γ) cross section, obtained from the Evaluated Nuclear Data Files (ENDF/B-VII.0), was compared to the experimentally determined surrogate Dy161(n,γ) cross section obtained using compound-nucleus pairs with both similar (Dy162 to Dy164) and dissimilar (Dy162 to Dy161) nuclear structures. A γ-ray energy threshold was identified, based upon pairing gap parameters, that provides a first-order correction to the statistical γ-ray tagging approach and improves the agreement between the surrogate cross-section data and the evaluated result.

  8. Surrogate ratio methodology for the indirect determination of neutron capture cross sections

    SciTech Connect

    Goldblum, B. L.; Prussin, S. G.; Bernstein, L. A.; Younes, W.; Guttormsen, M.; Nyhus, H. T.

    2010-05-15

    The relative gamma-decay probabilities of the {sup 162}Dy to {sup 161}Dy and {sup 162}Dy to {sup 164}Dy residual nuclei, produced using light-ion-induced direct reactions, were measured as a function of excitation energy using the CACTUS array at the Oslo Cyclotron Laboratory. The external surrogate ratio method (SRM) was used to convert these relative gamma-decay probabilities into the {sup 161}Dy(n,gamma) cross section in an equivalent neutron energy range of 130-560 keV. The directly measured {sup 161}Dy(n,gamma) cross section, obtained from the Evaluated Nuclear Data Files (ENDF/B-VII.0), was compared to the experimentally determined surrogate {sup 161}Dy(n,gamma) cross section obtained using compound-nucleus pairs with both similar ({sup 162}Dy to {sup 164}Dy) and dissimilar ({sup 162}Dy to {sup 161}Dy) nuclear structures. A gamma-ray energy threshold was identified, based upon pairing gap parameters, that provides a first-order correction to the statistical gamma-ray tagging approach and improves the agreement between the surrogate cross-section data and the evaluated result.

  9. Measuring Neutron-Proton Radiative Capture Cross-section at Low Energy

    NASA Astrophysics Data System (ADS)

    Yu, To Chin; Kovash, Michael; Matthews, June; Yang, Hongwei; Yang, Yunjie

    2015-10-01

    The experiment aims to fill in a gap in our data for the cross-section of neutron-proton radiative capture (p(n,d γ)) at energies below 500 keV. Current measurements in this energy range are scarce and inconsistent with theoretical predictions and with each other. A well-determined cross-section of the capture reaction in the low energy range is useful in nuclear physics due to its fundamental nature. The measurement is also of interest in cosmology. Big Bang Nucleosynthesis (BBN), the process by which light elements are formed in early universe, is very sensitive to the p(n,d γ) cross-section in the low energy range. The measurement enables us to put tighter constraints on the theoretical predictions of BBN. We have conducted preliminary measurements in the van de Graaff accelerator facility at the University of Kentucky. Our array of detectors consists of three plastic scintillators to serve as proton targets and deuteron detectors, and five BGO scintillators to detect γ-rays. The combination results in an over-determination of reaction kinematics that discriminates against scattering processes and other backgrounds. We have obtained some early results which show promise for the precise measurement of the p(n,d γ) cross-section.

  10. Thermal neutron capture cross section of gadolinium by pile-oscillation measurements in MINERVE

    SciTech Connect

    Leconte, P.; Di-Salvo, J.; Antony, M.; Pepino, A.; Hentati, A.

    2012-07-01

    Natural gadolinium is used as a burnable poison in most LWR to account for the excess of reactivity of fresh fuels. For an accurate prediction of the cycle length, its nuclear data and especially its neutron capture cross section needs to be known with a high precision. Recent microscopic measurements at Rensselaer Polytechnic Inst. (RPI) suggest a 11% smaller value for the thermal capture cross section of {sup 157}Gd, compared with most of evaluated nuclear data libraries. To solve this inconsistency, we have analyzed several pile-oscillation experiments, performed in the MINERVE reactor. They consist in the measurement of the reactivity variation involved by the introduction in the reactor of small-samples, containing different mass amounts of natural gadolinium. The analysis of these experiments is done through the exact perturbation theory, using the PIMS calculation tool, in order to link the reactivity effect to the thermal capture cross section. The measurement of reactivity effects is used to deduce the 2200 m.s-1 capture cross section of {sup nat}Gd which is (49360 {+-} 790) b. This result is in good agreement with the JEFF3.1.1 value (48630 b), within 1.6% uncertainty at 1{sigma}, but is strongly inconsistent with the microscopic measurements at RPI which give (44200 {+-} 500) b. (authors)

  11. Empirical formula on (n,(3)He) reaction cross sections at 14.6MeV neutrons.

    PubMed

    Yiğit, Mustafa

    2015-11-01

    The systematic behavior of the cross sections of (n,(3)He) nuclear reactions has been studied by various researches at neutron energy of 14.6MeV. A new empirical formula based on the Q-value dependence of the cross sections of the investigated reaction has been proposed. The cross sections obtained from the new formula are compared with the other proposed formulae results and the experimental data. It seems that the present formula based on the Q-value dependence provides the good description for cross sections of neutron-induced (n,(3)He) nuclear reactions at 14.6MeV. PMID:26218596

  12. Neutron capture cross section measurements for 238U in the resonance region at GELINA

    NASA Astrophysics Data System (ADS)

    Kim, H. I.; Paradela, C.; Sirakov, I.; Becker, B.; Capote, R.; Gunsing, F.; Kim, G. N.; Kopecky, S.; Lampoudis, C.; Lee, Y.-O.; Massarczyk, R.; Moens, A.; Moxon, M.; Pronyaev, V. G.; Schillebeeckx, P.; Wynants, R.

    2016-06-01

    Measurements were performed at the time-of-flight facility GELINA to determine the 238U(n, γ) cross section in the resonance region. Experiments were carried out at a 12.5 and 60m measurement station. The total energy detection principle in combination with the pulse height weighting technique was applied using C6D6 liquid scintillators as prompt γ-ray detectors. The energy dependence of the neutron flux was measured with ionisation chambers based on the 10B(n, α) reaction. The data were normalised to the isolated and saturated 238U resonance at 6.67 eV. Special procedures were applied to reduce bias effects due to the weighting function, normalization, dead time and background corrections, and corrections related to the sample properties. The total uncertainty due to the weighting function, normalization, neutron flux and sample characteristics is about 1.5%. Resonance parameters were derived from a simultaneous resonance shape analysis of the GELINA capture data and transmission data obtained previously at a 42m and 150m station of ORELA. The parameters of resonances below 500 eV are in good agreement with those resulting from an evaluation that was adopted in the main data libraries. Between 500 eV and 1200 eV a systematic difference in the neutron width is observed. Average capture cross section data were derived from the experimental capture yield in the energy region between 3.5 keV and 90 keV. The results are in good agreement with an evaluated cross section resulting from a least squares fit to experimental data available in the literature prior to this work. The average cross section data derived in this work were parameterised in terms of average resonance parameters and included in a least squares analysis together with other experimental data reported in the literature.

  13. Theoretical and experimental cross sections for neutron reactions on /sup 64/Zinc

    SciTech Connect

    Rutherford, D.A.

    1988-03-01

    Accurate measurements of the /sup 64/Zn (n,2n)/sup 63/Zn and /sup 64/Zn (n,p)/sup 64/Cu cross sections at 14.8 MeV have been made using a Texas Nuclear Neutron Generator and the activation technique. A NaI(Tl) spectrometer (using two 6'' x 6'' NaI detectors/crystals) was ued to measure the gamma radiation emitted in coincidence from the positron-emitting decay products. The measurements were made relative to /sup 65/Cu (n,2n)/sup 64/Cu and /sup 63/Cu (n,2n)/sup 62/Cu cross sections, which have similar half-lives, radiation emission, and were previously measured to high accuracy (2%). The value obtained for the (n,2n) measurement was 199 +- 6 millibarns, and a value of 176 +- 4.5 millibarns was obtained for the (n,p) measurement. In concert, a theoretical analysis of neutron induced reactions on /sup 64/Zn was performed at Los Alamos National Laboratory using the Hauser-Feshbach statistical theory in the GNASH code over an energy range of 100 keV to 20 MeV. Calculations included width fluctuation corrections, direct reaction contributions, and preequilibrium corrections above 6 MeV. Neutron optical model potentials were determined for zinc. The theoretical values agree with the new 14.8 MeV measurements approximately within experimental error, with calculations of 201 millibarns for the (n,2n) cross section and 170 millibarns for the (n,p) cross section. Results from the analysis will be made available in National Evaluated Nuclear Data Format (ENDF/B) for fusion energy applications. 50 refs., 34 figs., 10 tabs.

  14. Realizing the Opportunities of Neutron Cross-Section Measurements at RIA

    SciTech Connect

    Ahle, Larry; Roberts, Kevin; Roeben, Martin; Rusnak, Brian; Hausmann, Marc; Reifarth, Rene; Vieira, Dave

    2005-05-24

    The Rare Isotope Accelerator will produce many isotopes at never before seen rates. This will allow for the first-time measurements on isotopes very far from stability and new measurement opportunities for unstable nuclei near stability. In fact, the production rates are such that it should be possible to collect 10 micrograms of many isotopes with a half-life of 1 day or more. This ability to make targets of short-lived nuclei enables the possibility of making neutron cross-section measurements important to the astrophysics and the stockpile stewardship communities. But to fully realize this opportunity, the appropriate infrastructure must be included at the RIA facility. This includes isotope harvesting capabilities, radiochemical areas for processing collected material, and an intense, ''mono-energetic,'' tunable neutron source. As such, we have been developing a design for neutron source facility to be included at the RIA site. This facility would produce neutrons via intense beams of deuterons and protons on a variety of targets. The facility would also include the necessary radiochemical facilities for target processing. These infrastructure needs will be discussed in addition to the methods that would be employed at RIA for measuring these neutron cross sections.

  15. Validation of multigroup neutron cross sections and calculational methods for the advanced neutron source against the FOEHN critical experiments measurements

    SciTech Connect

    Smith, L.A.; Gallmeier, F.X.; Gehin, J.C.

    1995-05-01

    The FOEHN critical experiment was analyzed to validate the use of multigroup cross sections and Oak Ridge National Laboratory neutronics computer codes in the design of the Advanced Neutron Source. The ANSL-V 99-group master cross section library was used for all the calculations. Three different critical configurations were evaluated using the multigroup KENO Monte Carlo transport code, the multigroup DORT discrete ordinates transport code, and the multigroup diffusion theory code VENTURE. The simple configuration consists of only the fuel and control elements with the heavy water reflector. The intermediate configuration includes boron endplates at the upper and lower edges of the fuel element. The complex configuration includes both the boron endplates and components in the reflector. Cross sections were processed using modules from the AMPX system. Both 99-group and 20-group cross sections were created and used in two-dimensional models of the FOEHN experiment. KENO calculations were performed using both 99-group and 20-group cross sections. The DORT and VENTURE calculations were performed using 20-group cross sections. Because the simple and intermediate configurations are azimuthally symmetric, these configurations can be explicitly modeled in R-Z geometry. Since the reflector components cannot be modeled explicitly using the current versions of these codes, three reflector component homogenization schemes were developed and evaluated for the complex configuration. Power density distributions were calculated with KENO using 99-group cross sections and with DORT and VENTURE using 20-group cross sections. The average differences between the measured values and the values calculated with the different computer codes range from 2.45 to 5.74%. The maximum differences between the measured and calculated thermal flux values for the simple and intermediate configurations are {approx} 13%, while the average differences are < 8%.

  16. The Neutron Time-of-Flight Cross Section Program at the University of Kentucky - Adventures in Analysis II

    NASA Astrophysics Data System (ADS)

    Vanhoy, J. R.; Hicks, S. F.; Combs, B. C.; Crider, B. P.; French, A. J.; Garza, E. A.; Henderson, S. L.; Howard, T. J.; Liu, S. H.; Nigam, S.; Pecha, R. L.; Peters, E. E.; Prados-Estévez, F. M.; McEllistrem, M. T.; Rice, B. J.; Ross, T. J.; Santonil, Z. C.; Sidwell, L. C.; Steves, J. L.; Yates, S. W.

    2015-05-01

    Elastic and inelastic neutron differential cross sections are measured at the University of Kentucky Accelerator Laboratory (www.pa.uky.edu/accelerator/) at incident energies in the fast neutron region. The labo- ratorys facilities and instrumentation will be described and our measurement and analysis procedures outlined. Many corrections are required for neutron scattering experiments and the analysis utilizes information from many other cross section data sets and model calculations. Exploring and understanding the limitations of the foundational information and procedures are important for controlling the accuracy of the cross section results. We are examining the limitations in neutron detection efficiency, the normalization of (n,n'γ) cross sections,background reduction, spectrum stripping techniques, and attenuation and multiple scattering corrections. The resulting differential cross sections provide information on the compound elastic and coupled channels reaction mechanisms important for advanced reactor designs

  17. Principle and Uncertainty Quantification of an Experiment Designed to Infer Actinide Neutron Capture Cross-Sections

    SciTech Connect

    G. Youinou; G. Palmiotti; M. Salvatorre; G. Imel; R. Pardo; F. Kondev; M. Paul

    2010-01-01

    An integral reactor physics experiment devoted to infer higher actinide (Am, Cm, Bk, Cf) neutron cross sections will take place in the US. This report presents the principle of the planned experiment as well as a first exercise aiming at quantifying the uncertainties related to the inferred quantities. It has been funded in part by the DOE Office of Science in the framework of the Recovery Act and has been given the name MANTRA for Measurement of Actinides Neutron TRAnsmutation. The principle is to irradiate different pure actinide samples in a test reactor like INL’s Advanced Test Reactor, and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after neutron irradiation allows the energy integrated neutron cross-sections to be inferred since the relation between the two are the well-known neutron-induced transmutation equations. This approach has been used in the past and the principal novelty of this experiment is that the atom densities of the different transmutation products will be determined with the Accelerator Mass Spectroscopy (AMS) facility located at ANL. While AMS facilities traditionally have been limited to the assay of low-to-medium atomic mass materials, i.e., A < 100, there has been recent progress in extending AMS to heavier isotopes – even to A > 200. The detection limit of AMS being orders of magnitude lower than that of standard mass spectroscopy techniques, more transmutation products could be measured and, potentially, more cross-sections could be inferred from the irradiation of a single sample. Furthermore, measurements will be carried out at the INL using more standard methods in order to have another set of totally uncorrelated information.

  18. Total cross section of solid mesitylene, toluene and a mixture of them at thermal neutron energies

    NASA Astrophysics Data System (ADS)

    Rodríguez Palomino, L. A.; Cantargi, F.; Blostein, J. J.; Dawidowski, J.; Granada, J. R.

    2009-01-01

    The total neutron cross sections of mesitylene, toluene and a solution 3:2 by volume of mesitylene and toluene were measured at the electron LINAC based pulsed neutron source of Centro Atómico Bariloche. Measurements were performed at 180 K, 120 K and 31.6 K for mesitylene and at 120 K and 31.6 K for toluene and a solution 3:2 by volume of mesitylene and toluene. The systems are potential moderator materials to be considered in the design of a cold neutron source due to their high resistance to radiation and the richness in low-energy excitations of their frequency spectra, that lead to produce an enhanced cold neutron flux.

  19. Measurement of Neutron Capture Cross Section of 62Ni in the keV-Region

    SciTech Connect

    Alpizar-Vicente, A. M.; Hatarik, R.; Bredeweg, T. A.; Esch, E.-I.; Haight, R. C.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Greife, U.

    2006-03-13

    The neutron capture cross section of 62Ni, relative to gold as a standard, was determined in the energy range from 250 eV to 100 keV. This energy range covers the region between 5 keV to 20 keV, which is not available in ENDF. Capture events are detected with the 160-fold 4{pi} BaF2 Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center. One of the challenges was to process the high count rate of 4 MHz, which required an optimization of the data acquisition software. The neutron energy was determined by the time-of-flight technique using a flight path of 20.25 m. The sample mass of the 96% enriched 62Ni target was 210 mg and it was mounted in a 1.5 {mu}m thick Mylar foil.

  20. Vibrational spectra of light and heavy water with application to neutron cross section calculations

    SciTech Connect

    Damian, J. I. Marquez; Granada, J. R.; Malaspina, D. C.

    2013-07-14

    The design of nuclear reactors and neutron moderators require a good representation of the interaction of low energy (E < 1 eV) neutrons with hydrogen and deuterium containing materials. These models are based on the dynamics of the material, represented by its vibrational spectrum. In this paper, we show calculations of the frequency spectrum for light and heavy water at room temperature using two flexible point charge potentials: SPC-MPG and TIP4P/2005f. The results are compared with experimental measurements, with emphasis on inelastic neutron scattering data. Finally, the resulting spectra are applied to calculation of neutron scattering cross sections for these materials, which were found to be a significant improvement over library data.

  1. MANTRA: Measuring Neutron Capture Cross Sections in Actinides with Accelerator Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bauder, W.; Pardo, R. C.; Collon, P.; Palchan, T.; Scott, R.; Vondrasek, R.; Nusair, O.; Nair, C.; Paul, M.; Kondev, F.; Chen, J.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Maddock, T.; Imel, G.

    2013-10-01

    With rising global energy needs, there is substantial interest in nuclear energy research. To explore possibilities for advanced fuel cycles, better neutron cross section data are needed for the minor actinides. The MANTRA (Measurement of Actinide Neutron TRAsmutation) project will improve these data by measuring integral (n, γ) cross sections. The cross sections will be extracted by measuring isotopic ratios in pure actinide samples, irradiated in the Advanced Test Reactor at Idaho National Lab, using Accelerator Mass Spectrometry(AMS) at the Argonne Tandem Linac Accelerator System (ATLAS). MANTRA presents a unique AMS challenge because of the goal to measure multiple isotopic ratios on a large number of samples. To meet these challenges, we have modified the AMS setup at ATLAS to include a laser ablation system for solid material injection into our ECR ion source. I will present work on the laser ablation system and modified source geometry, as well as preliminary measurements of unirradiated actinide samples at ATLAS. This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.

  2. Fast neutron capture on the Hf isotopes: Cross sections, isomer production, and stellar aspects

    SciTech Connect

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Kazakov, L.; Becvar, F.; Krticka, M.; Gallino, R.; Pignatari, M.

    2006-04-15

    The (n,{gamma}) cross sections of {sup 176}Hf, {sup 177}Hf, {sup 178}Hf, {sup 179}Hf, and {sup 180}Hf have been measured in the energy range from 3 to 225 keV relative to the gold standard. Neutrons were produced via the {sup 7}Li(p,n){sup 7}Be reaction and capture events were registered with the Karlsruhe 4{pi} barium fluoride detector. The overall uncertainties are between 0.9 and 2.6%, about 5 times smaller than in previous experiments. Partial cross sections to ground and isomeric states could be experimentally identified for neutron capture on {sup 176,177,178,179}Hf, indicating a strong population of yet-unknown isomeric states in {sup 177}Hf and {sup 180}Hf. This feature was confirmed by extensive GEANT simulations based on calculated capture cascades. The deduced Maxwellian-averaged (n,{gamma}) cross sections for thermal energies between kT=8 and 100 keV contribute to the analysis of the s-process branchings at A=176 and A=179/180 and have significant consequences for the separation of the solar s- and r-process components.

  3. Covariances Obtained from an Evaluation of the Neutron Cross Section Standards

    SciTech Connect

    Carlson, A.D. Badikov, S.A.; Chen, Zhenpeng; Gai, E.; Hale, G.M.; Hambsch, F.-J.; Hofmann, H.M.; Kawano, T.; Larson, N.M.; Oh, S.Y.; Pronyaev, V.G.; Smith, D.L.; Tagesen, S.; Vonach, H.

    2008-12-15

    New measurements and an improved evaluation process were used to obtain a new evaluation of the neutron cross section standards. Efforts were made to include as much information as possible on the components of the data uncertainties that were then used to obtain the covariance matrices for the experimental data. Evaluations were produced from this process for the {sup 6}Li(n,t), {sup 10}B(n,{alpha}), {sup 10}B(n,{alpha}{sub 1}{gamma}), {sup 197}Au(n,{gamma}), {sup 235}U(n,f), and {sup 238}U(n,f) standard cross sections as well as the non-standard {sup 6}Li(n,n), {sup 10}B(n,n), {sup 238}U(n,{gamma}) and {sup 239}Pu(n,f) cross sections. There is a general increase in the cross sections for most of the new evaluations, by as much as about 5%, compared with the ENDF/B-VI results. Covariance data were obtained for the {sup 6}Li(n,t), {sup 6}Li(n,n), {sup 10}B(n,{alpha}), {sup 10}B(n,{alpha}{sub 1}{gamma}), {sup 10}B(n,n), {sup 197}Au(n,{gamma}), {sup 235}U(n,f), {sup 238}U(n,f), {sup 238}U(n,{gamma}) and {sup 239}Pu(n,f) reactions. Also an independent R-Matrix evaluation was produced for the H(n,n) standard cross-section, however, covariance data are not available for this reaction. The evaluations were used in the new ENDF/B-VII library.

  4. Measurement of the 240,242Pu Neutron-induced Fission Cross Sections

    NASA Astrophysics Data System (ADS)

    Salvador-Castiñeira, P.; Bevilacqua, R.; Bryś, T.; Hambsch, F.-J.; Oberstedt, S.; Pretel, C.; Vidali, M.

    The neutron-induced fission cross section of 240,242Pu has been measured at the Van de Graaff facility of the Institute for Reference Materials and Measurements (JRC-IRMM). A Twin-Frisch Grid Ionization Chamber (TFGIC) has been used in a back-to-back geometry with the secondary standards 237Np and 238U to normalize the cross section. The energy range measured is from 0.2 keV up to 3 MeV. Preliminary results show some discrepancies around 1 MeV for the 242Pu with the ENDF/B-VII.1 evaluation. The spontaneous fission half-life has been measured for both isotopes, too. Preliminary results show reasonable agreement with the recommended values.

  5. Measurement of the thermal neutron capture cross section and the resonance integral of radioactive Hf182

    NASA Astrophysics Data System (ADS)

    Vockenhuber, C.; Bichler, M.; Wallner, A.; Kutschera, W.; Dillmann, I.; Käppeler, F.

    2008-04-01

    The neutron capture cross sections of the radioactive isotope Hf182 (t1/2=8.9×106 yr) in the thermal and epithermal energy regions have been measured by activation at the TRIGA Mark-II reactor of the Atomic Institute of the Austrian Universities in Vienna, Austria, and subsequent γ-ray spectroscopy of Hf183. High values for the thermal (kT=25 meV) cross section σ0=133±10 b and for the resonance integral I0=5850±660 b were found. Additionally, the absolute intensities of the main γ-ray transitions in the decay of Hf182 have been considerably improved.

  6. A measurement of the thermal neutron capture cross section of /sup 232/Th

    SciTech Connect

    Jones, R.T.; Merritt, J.S.; Okazaki, A.

    1986-06-01

    The thermal neutron capture cross section of /sup 232/Th has been measured relative to that of /sup 197/Au. Foils of gold, thorium metal, and thoria were irradiated together in the NRU reactor thermal column. The /sup 198/Au activity was assayed in a 4..pi gamma.. ionization chamber, which had been previously calibrated with samples of /sup 198/Au standardized by the 4..pi beta..-..gamma.. coincidence method. Protactinium-233 sources were also standardized by this method. Comparison of these sources with the irradiated thorium, by means of a Ge(Li) spectrometer, enabled the /sup 233/Pa activity in the thorium-bearing foils to be determined. Taking the 2200 m/s capture cross section of /sup 197/Au to be 98.8 b, that of /sup 232/Th is found to be 7.33+.0.06b. The uncertainty is at the 95% confidence level and includes an estimate of the systematic uncertainties.

  7. Estimated 55Mn and 90Zr cross section covariances in the fast neutron energy region

    SciTech Connect

    Pigni,M.T.; Herman, M.; Oblozinsky, P.

    2008-06-24

    We completed estimates of neutron cross section covariances for {sup 55}Mn and {sup 90}Zr, from keV range to 25 MeV, considering the most important reaction channels, total, elastic, inelastic, capture, and (n,2n). The nuclear reaction model code EMPIRE was used to calculate sensitivity to model parameters by perturbation of parameters that define the optical model potential, nuclear level densities and strength of the pre-equilibrium emission. The sensitivity analysis was performed with the set of parameters which reproduces the ENDF/B-VII.0 cross sections. The experimental data were analyzed and both statistical and systematic uncertainties were extracted from almost 30 selected experiments. Then, the Bayesian code KALMAN was used to combine the sensitivity analysis and the experiments to obtain the evaluated covariance matrices.

  8. LOW-FIDELITY CROSS SECTION COVARIANCES FOR 219 FISSION PRODUCTS IN THE FIRST NEUTRON REGION.

    SciTech Connect

    PIGNI,M.T.; HERMAN, M.; OBLOZINSKY, P.; ROCHMAN, D.

    2007-04-27

    An extensive set of covariances for neutron cross sections in the energy range 5 keV-20 MeV has been developed to provide initial, low-fidelity but consistent uncertainty data for nuclear criticality safety applications. The methodology for the determination of such covariances combines the nuclear reaction model code EMPIRE, which calculates sensitivity to nuclear reaction model parameters, and the Bayesian code KALMAN to propagate uncertainty of the model parameters to cross sections. Taking into account the large scale of the project (219 fission products), only partial reference to experimental data has been made. Therefore, the covariances are, to a large extent, derived from the perturbation of several critical model parameters selected through the sensitivity analysis. These parameters define optical potential, level densities and pre-equilibrium emission. This work represents the first attempt ever to generate nuclear data covariances on such a scale.

  9. Neutron total and scattering cross sections of /sup 6/Li in the few MeV region

    SciTech Connect

    Smith, A.; Guenther, P.; Whalen, J.

    1980-02-01

    Neutron total cross sections of /sup 6/Li are measured from approx. 0.5 to approx. 4.8 MeV at intervals of approx.< 10 keV. Neutron differential elastic-scattering cross sections are measured from 1.5 to 4.0 MeV at approx.> 10 scattering angles and at incident-neutron intervals of approx.< 100 keV. Neutron differential inelastic-scattering cross sections are measured in the incident-energy range 3.5 to 4.0 MeV. The experimental results are extended to lower energies using measured neutron total cross sections recently reported elsewhere by the authors. The composite experimental data (total cross sections from 0.1 to 4.8 MeV and scattering cross sections from 0.22 to 4.0 MeV) are interpreted in terms of a simple two-level R-matrix model which describes the observed cross sections and implies the reaction cross section in unobserved channels; notably the (n;..cap alpha..)t reaction (Q = 4.783 MeV). The experimental and calculational results are compared with previously reported results as summarized in the ENDF/B-V evaluated nuclear data file.

  10. An integral test of the inelastic cross sections of Pb and Mo using measured neutron spectra

    NASA Technical Reports Server (NTRS)

    Shook, D. F.; Fieno, D.; Ford, C. H.; Wrights, G. N.

    1972-01-01

    Comparison of measurements and calculations of fast neutron spectra from a radioactive neutron source inside spheres of Mo or Pb and from a cylindrical reactor containing a thick Pb or Mo reflector are used as a test of ENDF cross sections. The sphere leakage spectra were measured at a sphere-to-spectrometer distance of 2 meters using a 54 Ci spherical Am-Be neutron source. Reactor leakage spectrum measurements were made at the surface of the ZP-1 reactor when bare, with a Pb radial reflector 21 cm thick, and with a metallic Mo radial reflector 10 cm thick. In the case of the thin Mo sphere there is agreement between the calculation and measurement. The Pb calculation is much lower than the measurement except at the highest neutron energy. Two-dimensional calculations of reactor spectra result indicate that the reactor source is reasonably well known. Significant differences in leakage spectrum shape for both Mo and Pb reflectors suggest that there are large uncertainties in the inelastic cross sections for Pb and some for Mo.

  11. Transitions, cross sections and neutron binding energy in 186Re by Prompt Gamma Activation Analysis

    NASA Astrophysics Data System (ADS)

    Lerch, A. G.; Hurst, A. M.; Firestone, R. B.; Revay, Zs.; Szentmiklosi, L.; McHale, S. R.; McClory, J. W.; Detwiler, B.; Carroll, J. J.

    2014-03-01

    The nuclide 186Re possesses an isomer with 200,000 year half-life while its ground state has a half-life of 3.718 days. It is also odd-odd and well-deformed nucleus, so should exhibit a variety of other interesting nuclear-structure phenomena. However, the available nuclear data is rather sparse; for example, the energy of the isomer is only known to within + 7 keV and, with the exception of the J?=1- ground state, every proposed level is tentative in the ENSDF. Previously, Prompt Gamma Activation Analysis (PGAA) was utilized to study natRe with 186,188Re being produced via thermal neutron capture. Recently, an enriched 185Re target was irradiated by thermal neutrons at the Budapest Research Reactor to build on those results. Prompt (primary and secondary) and delayed gamma-ray transitions were measured with a large-volume, Compton-suppressed HPGe detector. Absolute cross sections for each gamma transition were deduced and corrected for self attenuation within the sample. Fifty-two primary gamma-ray transitions were newly identified and used to determine a revised value of the neutron binding energy. DICEBOX was used to simulate the decay scheme and the total radiative thermal neutron capture cross section was found to be 97+/-3 b Supported by DTRA (Detwiler) through HDTRA1-08-1-0014.

  12. Thermal neutron capture cross section of the radioactive isotope 60Fe

    NASA Astrophysics Data System (ADS)

    Heftrich, T.; Bichler, M.; Dressler, R.; Eberhardt, K.; Endres, A.; Glorius, J.; Göbel, K.; Hampel, G.; Heftrich, M.; Käppeler, F.; Lederer, C.; Mikorski, M.; Plag, R.; Reifarth, R.; Stieghorst, C.; Schmidt, S.; Schumann, D.; Slavkovská, Z.; Sonnabend, K.; Wallner, A.; Weigand, M.; Wiehl, N.; Zauner, S.

    2015-07-01

    Background: Fifty percent of the heavy element abundances are produced via slow neutron capture reactions in different stellar scenarios. The underlying nucleosynthesis models need the input of neutron capture cross sections. Purpose: One of the fundamental signatures for active nucleosynthesis in our galaxy is the observation of long-lived radioactive isotopes, such as 60Fe with a half-life of 2.60 ×106 yr. To reproduce this γ activity in the universe, the nucleosynthesis of 60Fe has to be understood reliably. Methods: An 60Fe sample produced at the Paul Scherrer Institut (Villigen, Switzerland) was activated with thermal and epithermal neutrons at the research reactor at the Johannes Gutenberg-Universität Mainz (Mainz, Germany). Results: The thermal neutron capture cross section has been measured for the first time to σth=0.226 (-0.049+0.044) b . An upper limit of σRI<0.50 b could be determined for the resonance integral. Conclusions: An extrapolation towards the astrophysically interesting energy regime between k T =10 and 100 keV illustrates that the s -wave part of the direct capture component can be neglected.

  13. Use of Neutron Transfer Reactions to Indirectly Determine Neutron Capture Cross Sections on Neutron-Rich Nuclei

    SciTech Connect

    McCleskey, M.; Mukhamedzhanov, A. M.; Tribble, R. E.; Simmons, E.; Spiridon, A.; Banu, A.; Roeder, B.; Goldberg, V.; Trache, L.; Chen, X. F.; Lui, Y.-W.

    2010-03-01

    {sup 14}C(n,gamma){sup 15}C is being used as a test case in the development of an indirect method to determine neutron capture cross sections on neutron-rich unstable nuclei at astrophysical energies. Our approach makes use of two reactions: one peripheral used to find the asymptotic normalization coefficient (ANC) and a second non-peripheral reaction to determine the spectroscopic factor. The ANC for {sup 15}C has been determined using a HI neutron transfer reaction with a 12 MeV/nucleon {sup 14}C beam on a {sup 13}C target. The spectroscopic factor will be determined using {sup 14}C(d,p) in forward kinematics with an incident deuteron energy of 60 MeV. Both experiments were performed using the MDM high-resolution spectrometer at Texas A and M University.

  14. Development and Testing of Neutron Cross Section Covariance Data for SCALE 6.2

    SciTech Connect

    Marshall, William BJ J; Williams, Mark L; Wiarda, Dorothea; Rearden, Bradley T; Dunn, Michael E; Mueller, Don; Clarity, Justin B; Jones, Elizabeth L

    2015-01-01

    Neutron cross-section covariance data are essential for many sensitivity/uncertainty and uncertainty quantification assessments performed both within the TSUNAMI suite and more broadly throughout the SCALE code system. The release of ENDF/B-VII.1 included a more complete set of neutron cross-section covariance data: these data form the basis for a new cross-section covariance library to be released in SCALE 6.2. A range of testing is conducted to investigate the properties of these covariance data and ensure that the data are reasonable. These tests include examination of the uncertainty in critical experiment benchmark model keff values due to nuclear data uncertainties, as well as similarity assessments of irradiated pressurized water reactor (PWR) and boiling water reactor (BWR) fuel with suites of critical experiments. The contents of the new covariance library, the testing performed, and the behavior of the new covariance data are described in this paper. The neutron cross-section covariances can be combined with a sensitivity data file generated using the TSUNAMI suite of codes within SCALE to determine the uncertainty in system keff caused by nuclear data uncertainties. The Verified, Archived Library of Inputs and Data (VALID) maintained at Oak Ridge National Laboratory (ORNL) contains over 400 critical experiment benchmark models, and sensitivity data are generated for each of these models. The nuclear data uncertainty in keff is generated for each experiment, and the resulting uncertainties are tabulated and compared to the differences in measured and calculated results. The magnitude of the uncertainty for categories of nuclides (such as actinides, fission products, and structural materials) is calculated for irradiated PWR and BWR fuel to quantify the effect of covariance library changes between the SCALE 6.1 and 6.2 libraries. One of the primary applications of sensitivity/uncertainty methods within SCALE is the

  15. Thermal neutron radiative cross sections for Li,76,9Be,B,1110,C,1312, and N,1514

    NASA Astrophysics Data System (ADS)

    Firestone, R. B.; Revay, Zs.

    2016-05-01

    Total thermal radiative neutron cross sections have been measured on natural and enriched isotopic targets containing Li,76,9Be,B,1110,C,1312, and N,1514 with neutron beams from the Budapest Reactor. Complete neutron capture γ -ray decay schemes were measured for each isotope. Absolute transition probabilities have been determined by a least-squares fit of the transition intensities, corrected for internal conversion, to the (n ,γ ) decay schemes. The γ -ray cross sections were standardized using stoichiometric compounds containing both the isotope of interest and another element whose γ -ray cross sections are well known. Total cross sections σ0 were then determined for each isotope from the γ -ray cross sections and transition probabilities. For the 11B(n ,γ )12B reaction decay transition probabilities were determined for the γ rays from 12B (t1 /2=20.20 ms) β- decay.

  16. Preparation of iridium targets by electrodeposition for neutron capture cross section measurements

    SciTech Connect

    Bond, Evelyn M.; Moody, W. Allen; Arnold, Charles; Bredeweg, Todd A.; Jandel, Marian; Rusev, Gencho Y.

    2015-11-18

    Here, the preparation of 191Ir and 193Ir electrodeposits for neutron capture cross-section measurements at the detector for advanced neutron capture experiments located at the at Los Alamos Neutron Science Center is described. The electrodeposition of iridium in the desired thickness of 0.4–1 mg/cm2 is challenging. Better yields and thicknesses were obtained using electrodeposition from isopropyl alcohol solutions than from ammonium sulfate solutions. 191Ir and 193Ir targets were initially prepared using the standard single-sided electrodeposition cell. Iridium electrodepositions using a double-sided electrodeposition cell were developed and were optimized, resulting in thick, uniform iridium deposits. LA UR 15-22475.

  17. Preparation of iridium targets by electrodeposition for neutron capture cross section measurements

    DOE PAGESBeta

    Bond, Evelyn M.; Moody, W. Allen; Arnold, Charles; Bredeweg, Todd A.; Jandel, Marian; Rusev, Gencho Y.

    2016-03-01

    Here, the preparation of 191Ir and 193Ir electrodeposits for neutron capture cross-section measurements at the detector for advanced neutron capture experiments located at the at Los Alamos Neutron Science Center is described. The electrodeposition of iridium in the desired thickness of 0.4–1 mg/cm2 is challenging. Better yields and thicknesses were obtained using electrodeposition from isopropyl alcohol solutions than from ammonium sulfate solutions. 191Ir and 193Ir targets were initially prepared using the standard single-sided electrodeposition cell. Iridium electrodepositions using a double-sided electrodeposition cell were developed and were optimized, resulting in thick, uniform iridium deposits. LA UR 15-22475.

  18. Neutron cross-sections for next generation reactors: new data from n_TOF.

    PubMed

    Colonna, N; Abbondanno, U; Aerts, G; Alvarez, H; Alvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Assimakopoulos, P; Audouin, L; Badurek, G; Baumann, P; Becvar, F; Berthoumieux, E; Calviani, M; Calviño, F; Cano-Ott, D; Capote, R; de Albornoz, A Carrillo; Cennini, P; Chepel, V; Chiaveri, E; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillman, I; Dolfini, R; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Frais-Koelbl, H; Fujii, K; Furman, W; Goncalves, I; González-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Igashira, M; Isaev, S; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Kerveno, M; Ketlerov, V; Koehler, P; Konovalov, V; Kossionides, E; Krticka, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marques, L; Marrone, S; Martínez, T; Massimi, C; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Oshima, M; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Sarchiapone, L; Savvidis, I; Stephan, C; Tagliente, G; Tain, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vicente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K

    2010-01-01

    In 2002, an innovative neutron time-of-flight facility started operation at CERN: n_TOF. The main characteristics that make the new facility unique are the high instantaneous neutron flux, high resolution and wide energy range. Combined with state-of-the-art detectors and data acquisition system, these features have allowed to collect high accuracy neutron cross-section data on a variety of isotopes, many of which radioactive, of interest for Nuclear Astrophysics and for applications to advanced reactor technologies. A review of the most important results on capture and fission reactions obtained so far at n_TOF is presented, together with plans for new measurements related to nuclear industry. PMID:20096595

  19. Neutron and Charged-Particle Induced Cross Sections for Radiochemistry in the Region of Samarium, Europium, and Gadolinium

    SciTech Connect

    Hoffman, R D; Kelley, K; Dietrich, F S; Bauer, R; Mustafa, M

    2004-11-30

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron and proton induced nuclear reaction cross sections in the mass region of samarium, europium and gadolinium (62 {le} Z {le} 64, 82 {le} N {le} 96).

  20. Neutron and Charged-Particle Induced Cross Sections for Radiochemistry in the Region of Bromine and Krypton

    SciTech Connect

    Hoffman, R; Dietrich, F; Bauer, R; Kelley, K; Mustafa, M

    2004-07-23

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron and proton induced nuclear reaction cross sections in the mass region of bromine and krypton (34 {le} Z {le} 37, 40 {le} N {le} 47).

  1. Bayesian Evaluation Including Covariance Matrices of Neutron-induced Reaction Cross Sections of {sup 181}Ta

    SciTech Connect

    Leeb, H. Schnabel, G.; Srdinko, Th.; Wildpaner, V.

    2015-01-15

    A new evaluation of neutron-induced reactions on {sup 181}Ta using a consistent procedure based on Bayesian statistics is presented. Starting point of the evaluation is the description of nuclear reactions via nuclear models implemented in TALYS 1.4. A retrieval of experimental data was performed and covariance matrices of the experiments were generated from an extensive study of the corresponding literature. All reaction channels required for a transport file up to 200 MeV have been considered and the covariance matrices of cross section uncertainties for the most important channels are determined. The evaluation has been performed in one step including all available experimental data. A comparison of the evaluated cross sections and spectra with experimental data and available evaluations is performed. In general the evaluated cross section reflect our best knowledge and give a fair description of the observables. However, there are few deviations from expectation which clearly indicate the impact of the prior and the need to account for model defects. Using the results of the evaluation a complete ENDF-file similarly to those of the TENDL library is generated.

  2. Advanced nodal neutron diffusion method with space-dependent cross sections: ILLICO-VX

    SciTech Connect

    Rajic, H.L.; Ougouag, A.M.

    1987-01-01

    Advanced transverse integrated nodal methods for neutron diffusion developed since the 1970s require that node- or assembly-homogenized cross sections be known. The underlying structural heterogeneity can be accurately accounted for in homogenization procedures by the use of heterogeneity or discontinuity factors. Other (milder) types of heterogeneity, burnup-induced or due to thermal-hydraulic feedback, can be resolved by explicitly accounting for the spatial variations of material properties. This can be done during the nodal computations via nonlinear iterations. The new method has been implemented in the code ILLICO-VX (ILLICO variable cross-section method). Numerous numerical tests were performed. As expected, the convergence rate of ILLICO-VX is lower than that of ILLICO, requiring approx. 30% more outer iterations per k/sub eff/ computation. The methodology has also been implemented as the NOMAD-VX option of the NOMAD, multicycle, multigroup, two- and three-dimensional nodal diffusion depletion code. The burnup-induced heterogeneities (space dependence of cross sections) are calculated during the burnup steps.

  3. Statistical Model Analysis of (n, α) Cross Sections for 4.0-6.5 MeV Neutrons

    NASA Astrophysics Data System (ADS)

    Khuukhenkhuu, G.; Odsuren, M.; Gledenov, Y. M.; Zhang, G. H.; Sedysheva, M. V.; Munkhsaikhan, J.; Sansarbayar, E.

    2016-02-01

    The statistical model based on the Weisskopf-Ewing theory and constant nuclear temperature approximation is used for systematical analysis of the 4.0-6.5 MeV neutron induced (n, α) reaction cross sections. The α-clusterization effect was considered in the (n, α) cross sections. A certain dependence of the (n, α) cross sections on the relative neutron excess parameter of the target nuclei was observed. The systematic regularity of the (n, α) cross sections behaviour is useful to estimate the same reaction cross sections for unstable isotopes. The results of our analysis can be used for nuclear astrophysical calculations such as helium burning and possible branching in the s-process.

  4. Isotopic molybdenum total neutron cross section in the unresolved resonance region

    SciTech Connect

    Bahran, R.; Barry, D.; Block, R.; Leinweber, G.; Rapp, M.; Daskalakis, A.; Blain, E.; Williams, D.; McDermott, B.; Leal, L.; Danon, Y.

    2015-08-04

    Accurate isotopic molybdenum nuclear data are important because molybdenum can exist in nuclear reactor components including fuel, cladding, or as a high yield fission product. High-resolution time-of-flight neutron transmission measurements on highly enriched isotopic metallic samples of 95Mo, 96Mo, 98Mo, and 100Mo were performed in the resonance energy range from 1 to 620 keV. The measurements were taken with the newly developed modular 6Li-glass transmission detector positioned at the 100-m experimental flight station. For the unresolved energy region (URR), new comprehensive methods of analysis were developed and validated in order to obtain accurate neutron total cross-section data from the measurement by correcting for background and transmission enhancement effects. Average parameters and fits to the total cross section for 95Mo were obtained using the Hauser-Feshbach statistical model code FITACS, which is currently incorporated into the SAMMY code. Moreover, fits to the experimental data deviate from the current evaluated nuclear data file/B-VII.1 isotopic Mo evaluations by several percent in the URR.

  5. Isotopic molybdenum total neutron cross section in the unresolved resonance region

    DOE PAGESBeta

    Bahran, R.; Barry, D.; Block, R.; Leinweber, G.; Rapp, M.; Daskalakis, A.; Blain, E.; Williams, D.; McDermott, B.; Leal, L.; et al

    2015-08-04

    Accurate isotopic molybdenum nuclear data are important because molybdenum can exist in nuclear reactor components including fuel, cladding, or as a high yield fission product. High-resolution time-of-flight neutron transmission measurements on highly enriched isotopic metallic samples of 95Mo, 96Mo, 98Mo, and 100Mo were performed in the resonance energy range from 1 to 620 keV. The measurements were taken with the newly developed modular 6Li-glass transmission detector positioned at the 100-m experimental flight station. For the unresolved energy region (URR), new comprehensive methods of analysis were developed and validated in order to obtain accurate neutron total cross-section data from the measurementmore » by correcting for background and transmission enhancement effects. Average parameters and fits to the total cross section for 95Mo were obtained using the Hauser-Feshbach statistical model code FITACS, which is currently incorporated into the SAMMY code. Moreover, fits to the experimental data deviate from the current evaluated nuclear data file/B-VII.1 isotopic Mo evaluations by several percent in the URR.« less

  6. Isotopic molybdenum total neutron cross section in the unresolved resonance region

    NASA Astrophysics Data System (ADS)

    Bahran, R.; Barry, D.; Block, R.; Leinweber, G.; Rapp, M.; Daskalakis, A.; Blain, E.; Williams, D.; McDermott, B.; Leal, L.; Danon, Y.

    2015-08-01

    Accurate isotopic molybdenum nuclear data are important because molybdenum can exist in nuclear reactor components including fuel, cladding, or as a high yield fission product. High-resolution time-of-flight neutron transmission measurements on highly enriched isotopic metallic samples of 95Mo , 96Mo , 98Mo , and 100Mo were performed in the resonance energy range from 1 to 620 keV . The measurements were taken with the newly developed modular 6Li -glass transmission detector positioned at the 100-m experimental flight station. In the unresolved energy region (URR), new comprehensive methods of analysis were developed and validated in order to obtain accurate neutron total cross-section data from the measurement by correcting for background and transmission enhancement effects. Average parameters and fits to the total cross section for 95Mo were obtained using the Hauser-Feshbach statistical model code fitacs, which is currently incorporated into the sammy code. The fits to the experimental data deviate from the current evaluated nuclear data file/B-VII.1 isotopic Mo evaluations by several percent in the URR.

  7. EVALUATION OF TUNGSTEN ISOTOPES IN THE FAST NEUTRON RANGE INCLUDING CROSS-SECTION COVARIANCE ESTIMATION.

    SciTech Connect

    CAPOTE,R.; SIN, M.; TRKOV, A.; HERMAN, M.; CARLSON, B.V.; OBLOZINSKY, P.

    2007-04-22

    New evaluations for the tungsten isotopes {sup 180,182,183,184,186}W in the neutron energy range up to 60 MeV were produced. In the resonance range only minor adjustments to the resonance parameters were made due to a lack of adequate experimental data. Evaluations in the fast energy region were based on nuclear model calculations using the EMPIRE-2.19 code. Recently derived dispersive coupled-channel optical model potentials for W and Ta isotopes were instrumental to achieve a very good description of the available microscopic cross-section database. Model covariance data were generated with the Monte Carlo technique to produce a prior estimate for the covariance matrix. Experimental data were introduced through the GANDR system. The evaluated files were tested on selected fusion neutronics benchmarks and showed marked improvement compared to other existing evaluations.

  8. Neutron-induced Fission Cross Section of 240242Pu up to En = 3 MeV

    NASA Astrophysics Data System (ADS)

    Salvador-Castiñeira, P.; Bryś, T.; Hambsch, F.-J.; Oberstedt, S.; Pretel, C.; Vidali, M.

    2014-05-01

    The neutron-induced fission cross sections of 240,242Pu have been measured at JRC-IRMM with incident neutron energy from 0.2 MeV up to 3 MeV. A Twin-Frisch Grid Ionization Chamber (TFGIC) has been used in a back-to-back geometry. The measurements have been performed using the secondary standards 237Np and 238U as a reference. The purity of the plutonium samples was 99.89% for 240Pu and 99.97% for 242Pu. The results obtained follow the ENDF/B-VII.1 evaluation for 240Pu, but some discrepancies are visible around E/n = 1 MeV for 242Pu. In addition, the spontaneous fission half-life has been measured for both isotopes.

  9. Neutron-Induced Fission Cross Sections Measurements at n_TOF

    SciTech Connect

    Audouin, L.; Tassan-Got, L.; Isaev, S.; Koehler, Paul Edward; Collaboration, n_TOF

    2008-01-01

    The neutron-induced fission cross sections of {sup 233}U, {sup 234}U, {sup 235}U, {sup 238}U, {sup 232}Th, {sup 237}Np, {sup 209}Bi, {sup nat}Pb have been measured at the n{_}TOF facility at CERN over 9 orders of magnitude in neutron energy using {sup 235}U as a reference. Parallel Plate Avalanche Counters were used to detect both fission fragments in coincidence, thus efficiently discriminating fissions from other reactions. Data benefit from the remarkable energy resolution of the n{_}TOF facility. They are found in overall good agreement with databases and previous measurements, but some clear discrepancies can be put in evidence. These data are the first full coverage of the high-energy region (up to 1 GeV).

  10. Activation cross sections for reactions induced by 14 MeV neutrons on natural tantalum

    SciTech Connect

    Luo Junhua; Tuo Fei; Kong Xiangzhong

    2009-05-15

    Cross sections for (n,2n), (n,p), (n,n{sup '}{alpha}), (n,t), (n,d{sup '}), and (n,{alpha}) reactions have been measured on tantalum isotopes at the neutron energies of 13.5 to 14.7 MeV using the activation technique. Data are reported for the following reactions: {sup 181}Ta(n,2n){sup 180}Ta{sup g}, {sup 181}Ta(n,p){sup 181}Hf, {sup 181}Ta(n,n{sup '}{alpha}){sup 177}Lu{sup m}, {sup 181}Ta(n,t){sup 179}Hf{sup m2}, {sup 181}Ta(n,d{sup '}){sup 180}Hf{sup m}, and {sup 181}Ta(n,{alpha}){sup 178}Lu{sup m}. The neutron fluences were determined using the monitor reaction {sup 27}Al(n,{alpha}){sup 24}Na. Results were discussed and compared with the previous works.

  11. Neutron-induced fission cross section of 233Pa between 1.0 and 3.0 MeV.

    PubMed

    Tovesson, F; Hambsch, F J; Oberstedt, A; Fogelberg, B; Ramström, E; Oberstedt, S

    2002-02-11

    The energy dependent neutron-induced fission cross section of 233Pa has for the first time been measured directly with monoenergetic neutrons. This nuclide is an important intermediary in a thorium based fuel cycle, and its fission cross section is a key parameter in the modeling of future advanced fuel and reactor concepts. A first experiment resulted in four cross section values between 1.0 and 3.0 MeV, establishing a fission threshold in excess of 1 MeV. Significant discrepancies were found with a previous indirect experimental determination and with model estimates. PMID:11863801

  12. Neutron total cross section of sulfur: Single level to multilevel to optical model

    NASA Astrophysics Data System (ADS)

    Johnson, C. H.; Winters, R. R.

    1980-06-01

    This paper is a further analysis of the high resolution total cross section of sulfur for 25-1100 keV neutrons that previously were measured by Halperin, Johnson, Winters, and Macklin and evaluated by single-level analysis. The usual procedure in reporting the results of high resolution neutron cross sections has been to present the data and resonance parameters with corresponding neutron strength functions resulting from some type of R-matrix analysis. Often the important nonresonant phase shifts are not reported. In this paper, making use of both strength functions and phase shifts, we extend the analysis to include an average nuclear potential (a spherical optical model). An optical model analysis not only facilitates comparison with a broad spectrum of other nucleon-nucleus experiments, but also may provide an incentive for microstructure calculations. Six average empirical functions, two each for s12, p12, and p32 partial waves, are derived from the R-matrix analysis. From these we deduce optical model parameters, the real and imaginary well depths for s- and p-wave neutrons, and the spin-orbit well depth for p waves. The resulting real well is deeper for p waves than for s waves and for averages over partial waves at higher energies. The depth of the imaginary wells are about half those deduced at higher energies. An interesting feature of the analysis is that the multilevel curve including interference effects is produced from single-level parameters including the phase shifts. NUCLEAR REACTIONS 32S(n,n), En=25-1100 keV, multilevel analysis of σn,tot(E), deduced R', strength functions for l=0 and 1, optical model parameters for l=0 and 1.

  13. Deep inelastic neutron scattering from orthorhombic ordered HCl: Short-time proton dynamics and anomalous neutron cross sections

    SciTech Connect

    Senesi, R.; Colognesi, D.; Pietropaolo, A.; Abdul-Redah, T.

    2005-08-01

    Deep inelastic neutron scattering measurements from orthorhombic ordered HCl are presented and analyzed in order to clarify the problem of an anomalous deficit in the neutron-proton cross section found in previous experiments on various materials. A reliable model for the HCl short-time single-particle dynamics, including atomic vibrational anisotropies and deviations from the impulsive approximation, is set up. The model HCl response function is transformed into simulated time-of-flight spectra, taking carefully into account the effects of instrumental resolution and the filter absorption profile used for neutron energy analysis. Finally, the experimental values of the anomalous reduction factor for the neutron-proton cross section are extracted by comparing simulated and experimental data. Results show a 34% reduction of the H cross section, varying with the scattering angle in a range centered at 53 deg. In addition, the same approximate procedure used in earlier studies is also employed, providing results in reasonable agreement with the more rigorous ones, and confirming the substantial reliability of the past work on this subject.

  14. Measurements of fusion neutron yields by neutron activation technique: Uncertainty due to the uncertainty on activation cross-sections

    NASA Astrophysics Data System (ADS)

    Stankunas, Gediminas; Batistoni, Paola; Sjöstrand, Henrik; Conroy, Sean

    2015-07-01

    The neutron activation technique is routinely used in fusion experiments to measure the neutron yields. This paper investigates the uncertainty on these measurements as due to the uncertainties on dosimetry and activation reactions. For this purpose, activation cross-sections were taken from the International Reactor Dosimetry and Fusion File (IRDFF-v1.05) in 640 groups ENDF-6 format for several reactions of interest for both 2.5 and 14 MeV neutrons. Activation coefficients (reaction rates) have been calculated using the neutron flux spectra at JET vacuum vessel, both for DD and DT plasmas, calculated by MCNP in the required 640-energy group format. The related uncertainties for the JET neutron spectra are evaluated as well using the covariance data available in the library. These uncertainties are in general small, but not negligible when high accuracy is required in the determination of the fusion neutron yields.

  15. Neutron Cross Section Processing Methods for Improved Integral Benchmarking of Unresolved Resonance Region Evaluations

    NASA Astrophysics Data System (ADS)

    Walsh, Jonathan A.; Forget, Benoit; Smith, Kord S.; Brown, Forrest B.

    2016-03-01

    In this work we describe the development and application of computational methods for processing neutron cross section data in the unresolved resonance region (URR). These methods are integrated with a continuous-energy Monte Carlo neutron transport code, thereby enabling their use in high-fidelity analyses. Enhanced understanding of the effects of URR evaluation representations on calculated results is then obtained through utilization of the methods in Monte Carlo integral benchmark simulations of fast spectrum critical assemblies. First, we present a so-called on-the-fly (OTF) method for calculating and Doppler broadening URR cross sections. This method proceeds directly from ENDF-6 average unresolved resonance parameters and, thus, eliminates any need for a probability table generation pre-processing step in which tables are constructed at several energies for all desired temperatures. Significant memory reduction may be realized with the OTF method relative to a probability table treatment if many temperatures are needed. Next, we examine the effects of using a multi-level resonance formalism for resonance reconstruction in the URR. A comparison of results obtained by using the same stochastically-generated realization of resonance parameters in both the single-level Breit-Wigner (SLBW) and multi-level Breit-Wigner (MLBW) formalisms allows for the quantification of level-level interference effects on integrated tallies such as keff and energy group reaction rates. Though, as is well-known, cross section values at any given incident energy may differ significantly between single-level and multi-level formulations, the observed effects on integral results are minimal in this investigation. Finally, we demonstrate the calculation of true expected values, and the statistical spread of those values, through independent Monte Carlo simulations, each using an independent realization of URR cross section structure throughout. It is observed that both probability table

  16. Secondary Neutron-Production Cross Sections from Heavy-IonInteractions between 230 and 600 MeV/nucleon

    SciTech Connect

    Heilbronn, L.H.; Zeitlin, C.J.; Iwata, Y.; Murakami, T.; Iwase,H.; Nakamura, T.; Nunomiya, T.; Sato, H.; Yashima, H.; Ronningen, R.M.; Ieki, K.

    2006-10-04

    Secondary neutron-production cross-sections have beenmeasured from interactions of 230 MeV/nucleon He, 400 MeV/nucleon N, 400MeV/nucleon Kr, 400 MeV/nucleon Xe, 500 MeV/nucleon Fe, and 600MeV/nucleon Ne interacting in a variety of elemental and compositetargets. We report the double-differential production cross sections,angular distributions, energy spectra, and total cross sections from allsystems. Neutron energies were measured using the time-of-flighttechnique, and were measured at laboratory angles between 5 deg and 80deg. The spectra exhibit behavior previously reported in otherheavy-ion-induced neutron production experiments; namely, a peak atforward angles near the energy corresponding to the beam velocity, withthe remaining spectra generated by preequilibrium and equilibriumprocesses. The double-differential spectra are fitted with amoving-source parameterization. Observations on the dependence of thetotal cross sections on target and projectile mass arediscussed.

  17. A direct measurement of the 6Li(n,t)4He cross section at sub-thermal neutron energy

    NASA Astrophysics Data System (ADS)

    Yue, A.; Dewey, M.; Gilliam, D.; Nico, J.; Greene, G.; Laptev, A.

    2014-09-01

    The thermal neutron capture cross section for the 6Li(n,t)4He reaction is an important neutron cross section standard. Yet few measurements of it have been performed and the ENDF/B-VII recommended value of (938 . 5 +/- 1 . 3) b is based heavily on measurements performed at higher energies. The first absolute, direct measurement of the 6Li(n,t)4He cross section at sub-thermal neutron energy has been performed at the NIST Center for Neutron Research. An alpha-gamma counter was used to measure the absolute neutron fluence of a monoenergetic neutron beam to sub-0.1% precision. The alpha-gamma counter used a thick, totally absorbing target of 10B-enriched boron carbide. The rate of absorbed neutrons was determined by counting the 478 keV 10B(n, γ)7Li gamma rays with calibrated high-purity germanium detectors. Simultaneously, the absolute rate of neutron-induced charged particles was measured for three thin 6Li targets of known density with a defined solid-angle counter. Using the known density of the 6Li targets and measurements of the rate of charged particles from the 6Li targets, the fluence of the neutron beam, and the energy of the neutron beam, we determine the 6Li(n,t)4He cross section at En = 3 . 3 meV to 0.3% uncertainty.

  18. (65)Cu isomeric cross sections for (n,α) reaction using approximately 14MeV neutrons.

    PubMed

    Durusoy, Ayşe; Reyhancan, Iskender Atilla; Akçalı, Özgür

    2015-05-01

    In this paper, activation cross-section measurements for the (65)Cu(n,α)(62m)Co (T1/2=13.86min.) reaction at six different neutron energies ranging from 13.6 and 14.9MeV are presented. The fast neutrons were produced via (3)H(d, n)(4)He reactions from an SAMES T-400 neutron generator. An activation technique was used to measure induced gamma activities. A high-resolution gamma-ray spectrometer with a high-purity germanium (HpGe) detector was used to acquire the data. The measured cross section data were corrected for gamma-ray attenuations, pulse pile-up effects, dead time, variations in neutron flux, and contributions from scattered low-energy neutrons. The measured cross sections were compared with statistical model calculations (TALYS 1.6 code), the experimental data available in the literature and the data obtained from TENDL. PMID:25728005

  19. Neutron Scattering Cross Section Measurements for 169Tm via the (n,n') Technique

    SciTech Connect

    Alimeti, Afrim; Kegel, Gunter H.R.; Egan, James J.; DeSimone, David J.; McKittrick, Thomas M.; Ji, Chuncheng; Tremblay, Steven E.; Roldan, Carlos; Chen Xudong; Kim, Don S.

    2005-05-24

    The neutron physics group at the University of Massachusetts Lowell (UML) has been involved in a program of scattering cross-section measurements for highly deformed nuclei such as 159Tb, 169Tm, 232Th, 235U, 238U, and 239Pu. Ko et al. have reported neutron inelastic scattering data from 169Tm for states above 100 keV via the (n,n'{gamma}) reaction at incident energies in the 0.2 MeV to 1.0 MeV range. In the present research, in which the time-of-flight method was employed, direct (n,n') measurements of neutrons scattered from 169Tm in the 0.2 to 1.0 MeV range were taken. It requires that our 5.5-MeV Van de Graaff accelerator be operated in the pulsed and bunched beam mode producing subnanosecond pulses at a 5-MHz repetition frequency. Neutrons are produced by the 7Li(p,n)7Be reaction using a thin metallic elemental lithium target.

  20. EVALUATION OF NEUTRON CROSS SECTIONS FOR A COMPLETE SET OF Nd ISOTOPES.

    SciTech Connect

    KIM,H.; HERMAN, M.; MUGHABGHAB, S.F.; OBLOZINSKY, P.; ROCHMAN, D.; LEE. Y.-O.

    2007-10-29

    Neutron cross sections for a complete set of Nd isotopes, {sup 142,143,144,145,146,147,148,150}Nd, were evaluated in the incident energy range from 10{sup -5} eV to 20 MeV. In the low energy region, including thermal and resolved resonances, our evaluations are based on the latest data published in the Atlas of Neutron Resonances. In the unresolved resonance region we performed additional evaluation by using the averages of the resolved resonances and adjusting them to the experimental data. In the fast neutron region, we used the nuclear reaction model code EMPIRE-2.19 validated against the experimental data. The results are compared to the existing nuclear data libraries, including ENDF/B-VI.8, JENDL-3.3 and JEFF-3.1, and to the available experimental data. The new evaluations are suitable for neutron transport calculations and they were adopted by the new evaluated nuclear data file of the United States, ENDF/B-VII.0, released in December 2006.

  1. Monte Carlo Calculation of Thermal Neutron Inelastic Scattering Cross Section Uncertainties by Sampling Perturbed Phonon Spectra

    NASA Astrophysics Data System (ADS)

    Holmes, Jesse Curtis

    Nuclear data libraries provide fundamental reaction information required by nuclear system simulation codes. The inclusion of data covariances in these libraries allows the user to assess uncertainties in system response parameters as a function of uncertainties in the nuclear data. Formats and procedures are currently established for representing covariances for various types of reaction data in ENDF libraries. This covariance data is typically generated utilizing experimental measurements and empirical models, consistent with the method of parent data production. However, ENDF File 7 thermal neutron scattering library data is, by convention, produced theoretically through fundamental scattering physics model calculations. Currently, there is no published covariance data for ENDF File 7 thermal libraries. Furthermore, no accepted methodology exists for quantifying or representing uncertainty information associated with this thermal library data. The quality of thermal neutron inelastic scattering cross section data can be of high importance in reactor analysis and criticality safety applications. These cross sections depend on the material's structure and dynamics. The double-differential scattering law, S(alpha, beta), tabulated in ENDF File 7 libraries contains this information. For crystalline solids, S(alpha, beta) is primarily a function of the material's phonon density of states (DOS). Published ENDF File 7 libraries are commonly produced by calculation and processing codes, such as the LEAPR module of NJOY, which utilize the phonon DOS as the fundamental input for inelastic scattering calculations to directly output an S(alpha, beta) matrix. To determine covariances for the S(alpha, beta) data generated by this process, information about uncertainties in the DOS is required. The phonon DOS may be viewed as a probability density function of atomic vibrational energy states that exist in a material. Probable variation in the shape of this spectrum may be

  2. Activation Cross-Sections for 14.2 MeV Neutrons on Molybdenum

    NASA Astrophysics Data System (ADS)

    Srinivasa Rao, C. V.; Lakshmana Das, N.; Thirumala Rao, B. V.; Rama Rao, J.

    1981-12-01

    Using the activation method, the cross-section for the following reactions on molybdenum were measured employing the mixed powder technique and Ge(Li) gamma-ray spectroscopy: 94Mo(n, 2n)93mMo, 3.5 ± 0.5 mbarn; 92Mo(n, 2n)91mMo, 19 ± 3 mbarn; 92Mo(n, 2n)91m+gMo, 226 ± 11 mbarn; 100Mo(n, p)100m2Nb, 9 ± 1 mbarn; 98Mo(n, p)98Nb, 10 ± 1 mbarn; 97Mo(n, p)97mNb, 5 ± 1 mbarn; 96Mo(n, p)96Nb, 12 ± 2 mbarn; 92Mo(n, α)89mZr, 2.1 ± 0.5 mbarn; and 92Mo(n, α)89m+gZr 24 ± 6 mbarn; the neutron energy was 14.2 ± 0.2 MeV. The experimental cross-sections were compared with the predictions of evaporation model and of different versions of pre-equilibrium model. The master equation approach appears to give satisfactory results.

  3. Neutron total cross-sections and resonance parameters of Mo and Ta

    NASA Astrophysics Data System (ADS)

    Moinul Haque Meaze, A. K. M.; Devan, K.; Lee, Y. S.; Oh, Y. D.; Kim, G. N.; Son, D.

    2007-02-01

    Experimental results of transmissions for the samples of natural molybdenum with thickness 0.0192 atoms/barn and for the four samples of natural tantalum with thickness 0.0222, 0.0111, 0.0055 and 0.0025 atoms/barn are presented in this work. Measurements were carried out at the Pohang Neutron Facility which consists of a 100 MeV Linac, water-cooled tantalum target, and 12 m flight path length. Effective total cross-sections were extracted from the transmission data, and resonance parameters were obtained by using the code SAMMY. The present measurements were compared with other measurements and with the evaluated nuclear data file ENDF/B-VI.8.

  4. Neutron Capture by Cadmium: Thermal Cross Sections and Resonance Integrals of ^106,108,110,112,114,116Cd

    NASA Astrophysics Data System (ADS)

    Gicking, Allison M.; Krane, Kenneth S.

    2011-10-01

    The neutron capture cross sections of the stable, even-mass Cd isotopes (A = 106, 108, 110, 112, 114, and 116) have been previously measured in sources of natural abundance or low enrichment, often making the results uncertain owing to the large absorption cross section of naturally occurring ^113Cd. Ambiguities in values of the isomeric branching ratios have also contributed to uncertainties in previous results. We have remeasured the Cd neutron capture cross sections using samples of greater than 90% isotopic enrichment irradiated in the OSU TRIGA reactor. Gamma-ray emission spectra were analyzed to determine the effective resonance integrals and thermal cross sections leading to eight radioactive ground and isomeric states in the Cd isotopes.

  5. Evaluation of {sup 28,29,30}Si neutron induced cross sections for ENDF/B-VI

    SciTech Connect

    Hetrick, D.M.; Larson, D.C.; Larson, N.M.; Leal, L.C.; Epperson, S.J.

    1997-04-01

    Separate evaluations have been done for the three stable isotopes of silicon for ENDF/B-VI. The evaluations are based on analysis of experimental data, supplemented by results of nuclear model calculations. The computational methods and the parameters required as input to the nuclear model codes are reviewed. Discussion of the evaluated data given for resonance parameters, neutron induced reaction cross sections, associated angular and energy distributions, and gamma-ray production cross sections is included. Extensive comparisons of the evaluated cross sections to measured data are shown in this report. The evaluations include all necessary data to allow KERMA (Kinetic Energy Released in MAterials) and displacement cross sections to be calculated directly. These quantities are fundamental to studies of neutron heating and radiation damage.

  6. Neutron Scattering Cross Sections for Natural Carbon in the Energy Range 2-133 keV

    SciTech Connect

    Gritzay, O; Gnidak, M; Kolotyi, V; Korol, O; Razbudey, V; Venedyktov, V; Richardson, J H; Sale, K

    2006-06-14

    Natural carbon is well known as reactor structure material and at the same time as one of the most important neutron scattering standards, especially at energies less than 2 MeV, where the neutron total and neutron scattering cross sections are essentially identical. The best neutron total cross section experimental data for natural carbon in the range 1-500 keV have uncertainties of 1-4%. However, the difference between these data and those based on R-matrix analysis and used in the ENDF libraries is evident, especially in the energy range 1-60 keV. Experimental data for total scattering neutron cross sections for this element in the energy range 1-200 keV are scanty. The use of the technique of neutron filtered beams developed at the Kyiv Research Reactor makes it possible to reduce the uncertainty of the experimental data and to measure the neutron scattering cross sections on natural carbon in the energy range 2-149 keV with accuracies of 3-6%. Investigations of the neutron scattering cross section on carbon were carried out using 5 filters with energies 2, 3.5, 24, 54 and 133 keV. The neutron scattering cross sections were measured using a detector system covering nearly 2{pi}. The detector consisting of {sup 3}He counters (58 units), was located just above the carbon samples. The {sup 3}He counters (CHM-37, 7 atm, diameter =18 mm, L=50 cm) are placed in five layers (12 or 11 in each layer). To determine the neutron scattering cross section on carbon the relative method of measurement was used. The isotope {sup 208}Pb was used as the standard. The normalization factor, which is a function of detector efficiency, thickness of the carbon samples, thickness of the {sup 208}Pb sample, geometry, etc., for each sample and for each filter energy has been obtained through Monte Carlo calculations by means of the MCNP4C code. The results of measurements of the neutron scattering cross sections at reactor neutron filtered beams with energies in the range 2-133 keV on

  7. Study of Neutron-Induced Fission Cross Sections of U, Am, and Cm at n{sub T}OF

    SciTech Connect

    Milazzo, P. M.; Abbondanno, U.; Belloni, F.; Fujii, K.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Ferrant, L.; Gunsing, F.; Pancin, J.; Perrot, L.; Plukis, A.; Stephan, C.; Tassan-Got, L.; Alvarez-Velarde, F.; Cano-Ott, D.

    2010-08-04

    Neutron induced fission cross sections of several isotopes have been measured at the CERN n{sub T}OF spallation neutron facility. Between them some measurements involve isotopes ({sup 233}U, {sup 241}Am, {sup 243}Am, {sup 245}Cm) relevant for applications to nuclear technologies. The n{sub T}OF facility delivers neutrons with high instantaneous flux and in a wide energy range, from thermal up to 250 MeV. The experimental apparatus consists of an ionization chamber that discriminates fission fragments and {alpha} particles coming from natural radioactivity of the samples. All the measurements were performed referring to the standard cross section of {sup 235}U.

  8. Measurement of the sup 3 He( n ,. gamma. ) sup 4 He cross section at thermal neutron energies

    SciTech Connect

    Wolfs, F.L.H.; Freedman, S.J.; Nelson, J.E. ); Dewey, M.S.; Greene, G.L. )

    1989-12-18

    We have measured the cross section for radiative capture of thermal neutrons on {sup 3}He. The measured cross section of 54{plus minus}6 {mu}b is used to estimate the astrophysical {ital S} factor for the reaction {sup 3}He({ital p},{ital e}{sup +}{nu}){sup 4}He which gives rise to high-energy neutrinos from the Sun.

  9. Neutron scattering differential cross sections for 23Na from 1.5 to 4.5 MeV

    NASA Astrophysics Data System (ADS)

    Vanhoy, J. R.; Hicks, S. F.; Chakraborty, A.; Champine, B. R.; Combs, B. M.; Crider, B. P.; Kersting, L. J.; Kumar, A.; Lueck, C. J.; Liu, S. H.; McDonough, P. J.; McEllistrem, M. T.; Peters, E. E.; Prados-Estévez, F. M.; Sidwell, L. C.; Sigillito, A. J.; Watts, D. W.; Yates, S. W.

    2015-07-01

    Measurements of neutron elastic and inelastic scattering cross sections from 23Na have been performed for sixteen incident neutron energies between 1.5 and 4.5 MeV. These measurements were complemented by γ-ray excitation functions using the (n ,n‧ γ) reaction to include excited levels not resolved in the neutron detection measurements. The time-of-flight (TOF) technique was employed for background reduction in both neutron and γ-ray measurements and for energy determination in neutron detection measurements. Previous reaction model evaluations relied primarily on neutron total cross sections and four (n, n0) and (n, n1) angular distributions in the 5 to 9 MeV range. The inclusion of more inelastic channels and measurements at lower incident neutron energies provide additional information on direct couplings between elastic and inelastic scattering as a function of angular momentum transfer. Reaction model calculations examining collective direct-coupling and compound absorption components were performed.

  10. Review and Assessment of Neutron Cross Section and Nubar Covariances for Advanced Reactor Systems

    SciTech Connect

    Maslov,V.M.; Oblozinsky, P.; Herman, M.

    2008-12-01

    In January 2007, the National Nuclear Data Center (NNDC) produced a set of preliminary neutron covariance data for the international project 'Nuclear Data Needs for Advanced Reactor Systems'. The project was sponsored by the OECD Nuclear Energy Agency (NEA), Paris, under the Subgroup 26 of the International Working Party on Evaluation Cooperation (WPEC). These preliminary covariances are described in two recent BNL reports. The NNDC used a simplified version of the method developed by BNL and LANL that combines the recent Atlas of Neutron Resonances, the nuclear reaction model code EMPIRE and the Bayesian code KALMAN with the experimental data used as guidance. There are numerous issues involved in these estimates of covariances and it was decided to perform an independent review and assessment of these results so that better covariances can be produced for the revised version in future. Reviewed and assessed are uncertainties for fission, capture, elastic scattering, inelastic scattering and (n,2n) cross sections as well as prompt nubars for 15 minor actinides ({sup 233,234,236}U, {sup 237}Np, {sup 238,240,241,242}Pu, {sup 241,242m,243}Am and {sup 242,243,244,245}Cm) and 4 major actinides ({sup 232}Th, {sup 235,238}U and {sup 239}Pu). We examined available evaluations, performed comparison with experimental data, taken into account uncertainties in model parameterization and made use state-of-the-art nuclear reaction theory to produce the uncertainty assessment.

  11. High-Resolution Neutron Total and Capture Cross-Section Measurements on 206Pb

    SciTech Connect

    Borella, A.; Brusegan, A.; Siegler, P.; Schillebeeckx, P.; Moxon, M.C.; Aerts, G.; Gunsing, F.

    2005-05-24

    High-resolution neutron total and capture cross-section measurements have been performed on a 99.82% enriched 206Pb metallic sample. The transmission and capture measurements were carried out at the 25- and 60-m stations, respectively, of the Time-Of-Flight facility GELINA of the IRMM in Geel (B). The small amount of material allowed us to detect 13 resonances below 80 keV in the transmission measurements and 70 were seen in the capture measurements below 150 keV. The resonance parameters for the resonances seen in transmission agree within the uncertainties of the parameters determined by Horen et al. at ORELA. The capture yield was measured up to 600 keV and the capture areas for resonances up to 150 keV were compared with published data. This comparison reveals systematic differences, which are due to the detection geometry, the different neutron sensitivity in the detection systems, the applied weighting function, and normalisation.

  12. Production of Short-lived Radionuclides by Protons and Neutrons in Fe and Ni Targets: Cross Sections Needed for Cosmic Ray Studies

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Vincent, J.; Jones, D. T. L.; Binns, P. J.; Langen, K.; Schroeder, I.; Buthelezi, Z.; Brooks, F. D.; Buffler, A.; Allie, M. S.

    2000-01-01

    New neutron and proton cross sections for short-lived radionuclides produced in Fe and Ni are presented. These cross sections are essential to understand cosmic ray interactions with meteorites and the lunar surface.

  13. Revised Production Rates for Na-22 and Mn-54 in Meteorites Using Cross Sections Measured for Neutron-induced Reactions

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Kim, K. J.; Reedy, R. C.

    2004-01-01

    The interactions of galactic cosmic rays (GCR) with extraterrestrial bodies produce small amounts of radionuclides and stable isotopes. The production rates of many relatively short-lived radionuclides, including 2.6-year Na-22 and 312-day Mn-54, have been measured in several meteorites collected very soon after they fell. Theoretical models used to calculate production rates for comparison with the measured values rely on input data containing good cross section measurements for all relevant reactions. Most GCR particles are protons, but secondary neutrons make most cosmogenic nuclides. Calculated production rates using only cross sections for proton-induced reactions do not agree well with measurements. One possible explanation is that the contribution to the production rate from reactions initiated by secondary neutrons produced in primary GCR interactions should be included explicitly. This, however, is difficult to do because so few of the relevant cross sections for neutron-induced reactions have been measured.

  14. Determination of neutron-induced alpha-particle cross sections on carbon using the response of a liquid scintillation detector

    SciTech Connect

    Brede, H.J.; Dietze, G.; Klein, H.; Schoelermann, H. )

    1991-01-01

    This paper presents the sums of the cross section {sup 12}C(n, {alpha}{sub 0}) {sup 9}Be and {sup 12}C(n, N{prime}3{alpha}) determined in the neutron energy range between 7.4 and 11 MeV. An NE-213 scintillation detector is simultaneously used as a carbon target, an alpha-particle detector, and a neutron fluence monitor. By comparing the measured and calculated response spectra, the neutron-induced alpha-particle events in the scintillation volume are separated and the cross sections {sigma}{sub n,{alpha}0} + {sigma}{sub n,n{prime}3{alpha}} are determined relative to the n-p scattering cross section. The pulse-height distribution due to alpha particles allows the angular distribution to be extracted on the basis of the reaction kinematics and an accurately determined light output function for alpha particles in the NE-213 detector.

  15. Stellar (n ,γ ) cross sections of neutron-rich nuclei: Completing the isotope chains of Yb, Os, Pt, and Hg

    NASA Astrophysics Data System (ADS)

    Marganiec, J.; Dillmann, I.; Domingo-Pardo, C.; Käppeler, F.

    2014-12-01

    The (n ,γ ) cross sections of the most neutron-rich stable isotopes of Yb, Os, Pt, and Hg have been determined in a series of activation measurements at the Karlsruhe 3.7 MV Van de Graaff accelerator, using the quasistellar neutron spectrum for k T =25 keV that can be produced with the 7Li(p ,n ) 7Be reaction. In this way, Maxwellian averaged cross sections could be directly obtained with only minor corrections. After irradiation the induced activities were counted with a HPGe detector via the strongest γ -ray lines. The stellar neutron capture cross sections of Yb,176174, Os,192190, Pt,198196, and Hg,204202, extrapolated to k T =30 keV, were found to be 157 ±6 mb, 114 ±8 mb, 278 ±11 mb, 160 ±7 mb, 171 ±19 mb, 94 ±4 mb, 62 ±2 mb, and 32 ±15 mb, respectively. In the case of 196Pt the partial cross section to the isomeric state at 399.5 keV could be determined as well. With these results the cross section data for long isotopic chains could be completed for a discussion of the predictive power of statistical model calculations towards the neutron-rich and proton-rich sides of the stability valley.

  16. Neutron Cross section Covariances in the Resonance region: 50,53Cr, 54,57Fe and 60Ni

    SciTech Connect

    Oblozinsky, P.; Cho,Y.-S.; Mattoon,C.M.; Mughabghab,S.F.

    2010-11-23

    We evaluated covariances in the neutron resonance region for capture and elastic scattering cross sections on minor structural materials, {sup 50,53}Cr, {sup 54,57}Fe and {sup 60}Ni. Use was made of the recently developed covariance formalism based on kernel approximation along with data in the Atlas of Neutron Resonances. Our results of most interest for advanced fuel cycle applications, elastic scattering cross section uncertainties at energies around 100 keV, are on the level of about 7-10%.

  17. Neutron capture cross section measurements for 197Au from 3.5 to 84 keV at GELINA

    NASA Astrophysics Data System (ADS)

    Massimi, C.; Becker, B.; Dupont, E.; Kopecky, S.; Lampoudis, C.; Massarczyk, R.; Moxon, M.; Pronyaev, V.; Schillebeeckx, P.; Sirakov, I.; Wynants, R.

    2014-08-01

    Cross section measurements have been performed at the time-of-flight facility GELINA to determine the average capture cross section for 197Au in the energy region between 3.5 keV and 84 keV. Prompt γ-rays, originating from neutron-induced capture events, were detected by two C6 D6 liquid scintillators. The sample was placed at about 13m distance from the neutron source. The total energy detection principle in combination with the pulse height weighting technique was applied. The energy dependence of the neutron flux was measured with a double Frisch-gridded ionization chamber based on the 10B(n,α) reaction. The data have been normalized to the well-isolated and saturated 197Au resonance at 4.9 eV. Special care was taken to reduce bias effects due to the weighting function, normalization, dead time and background corrections. The total uncertainty due to normalization, neutron flux and weighting function is 1.0%. An additional uncertainty of 0.5% results from the correction for self-shielding and multiple interaction events. Fluctuations due to resonance structures have been studied by complementary measurements at a 30m flight path station. The results reported in this work deviate systematically by more than 5% from the cross section that is recommended as a reference for astrophysical applications. They are about 2% lower compared to an evaluation of the 197Au(n, γ) cross section, which was based on a least squares fit of experimental data available in the literature prior to this work. The average capture cross section as a function of neutron energy has been parameterized in terms of average resonance parameters. Maxwellian average cross sections at different temperatures have been calculated.

  18. Measurement of secondary neutron emission double-differential cross sections for 9Be induced by 21.65 ± 0.07 MeV neutrons

    NASA Astrophysics Data System (ADS)

    Lan, Changlin; Ruan, Xichao; Chen, Guochang; Nie, Yangbo; Huang, Hanxiong; Bao, Jie; Zhou, Zuying; Tang, Hongqing; Kong, Xiangzhong; Peng, Meng

    2016-05-01

    The neutron emission double-differential cross sections (DDX) of 9Be was measured at an incident neutron energy of 21.65 MeV, using the multi-detector fast neutron time-of-flight (TOF) spectrometer on HI-13 Tandem Accelerator at the China Institute of Atomic Energy (CIAE). The data were deduced by comparing the measured TOF spectra with the calculated ones using a realistic Monte-Carlo simulation. The DDX were normalized to n-p scattering cross sections which are a neutron scattering standard. The results of the elastic scattering angular distributions (DX) and the secondary neutron emission DDX at 25 different angles from 15 deg to 145 deg were presented. Meanwhile, a theoretical model based on the unified Hauser-Feshbach and exciton model for light nuclei was used to describe the double-differential cross sections of n+9Be, and the theoretical calculation results were compared with the measured cross sections.

  19. Neutron Capture Cross Section of 90Zr: Bottleneck in the s-Process Reaction Flow

    SciTech Connect

    Tagliente, G.; Koehler, Paul Edward; Collaboration, n_TOF

    2008-03-01

    The neutron capture cross sections of the Zr isotopes have important implications in nuclear astrophysics and for reactor design. The small cross section of the neutron magic nucleus {sup 90}Zr, which accounts for more than 50% of natural zirconium represents one of the key isotopes for the stellar s-process, because it acts as a bottleneck in the neutron capture chain between the Fe seed and the heavier isotopes. The same element, Zr, also is an important component of the structural materials used in traditional and advanced nuclear reactors. The (n,{gamma}) cross section has been measured at CERN, using the n{_}TOF spallation neutron source. In total, 45 resonances could be resolved in the neutron energy range below 70 keV, 10 being observed for the first time thanks to the high resolution and low backgrounds at n{_}TOF. On average, the {Lambda}{sub {gamma}}widths obtained in resonance analyses with the R-matrix code SAMMY were 15% smaller than reported previously. By these results, the accuracy of the Maxwellian averaged cross section for s-process calculations has been improved by more than a factor of 2.

  20. MENDF71x. Multigroup Neutron Cross Section Data Tables Based upon ENDF/B-VII.1

    SciTech Connect

    Conlin, Jeremy Lloyd; Parsons, Donald Kent; Gardiner, Steven J.; Gray, Mark Girard; Lee, Mary Beth; White, Morgan Curtis

    2015-12-17

    A new multi-group neutron cross section library has been released along with the release of NDI version 2.0.20. The library is named MENDF71x and is based upon the evaluations released in ENDF/B-VII.1 which was made publicly available in December 2011. ENDF/B-VII.1 consists of 423 evaluations of which ten are excited states evaluations and 413 are ground state evaluations. MENDF71x was created by processing the 423 evaluations into 618-group, downscatter only NDI data tables. The ENDF/B evaluation files were processed using NJOY version 99.393 with the exception of 35Cl and 233U. Those two isotopes had unique properties that required that we process the evaluation using NJOY version 2012. The MENDF71x library was only processed to room temperature, i.e., 293.6 K. In the future, we plan on producing a multi-temperature library based on ENDF/B-VII.1 and compatible with MENDF71x.

  1. Cross Sections for Neutron-induced Reactions on Actinide Targets Extracted from Surrogate Experiments: A Status Report

    SciTech Connect

    Escher, J E; Burke, J T; Dietrich, F S; Lesher, S R; Scielzo, N D; Thompson, I J; Younes, W

    2009-10-01

    The Surrogate nuclear reactions method, an indirect approach for determining cross sections for compound-nuclear reactions involving difficult-to-measure targets, is reviewed. Focusing on cross sections for neutron-induced reactions on actinides, we review the successes of past and present applications of the method and assess its uncertainties and limitations. The approximations used in the analyses of most experiments work reasonably well for (n,f) cross sections for neutron energies above 1-2 MeV, but lead to discrepancies for low-energy (n,f) reactions, as well as for (n,{gamma}) applications. Correcting for some of the effects neglected in the approximate analyses leads to improved (n,f) results. We outline steps that will further improve the accuracy and reliability of the Surrogate method and extend its applicability to reactions that cannot be approached with the present implementation of the method.

  2. Updated Users' Guide for RSAP -- A Code for Display and Manipulation of Neutron Cross Section Data and SAMMY Fit Results

    SciTech Connect

    Sayer, R.O.

    2003-07-29

    RSAP [1] is a computer code for display and manipulation of neutron cross section data and selected SAMMY output. SAMMY [2] is a multilevel R-matrix code for fitting neutron time-of-flight cross-section data using Bayes' method. This users' guide provides documentation for the recently updated RSAP code (version 6). The code has been ported to the Linux platform, and several new features have been added, including the capability to read cross section data from ASCII pointwise ENDF files as well as double-precision PLT output from SAMMY. A number of bugs have been found and corrected, and the input formats have been improved. Input items are parsed so that items may be separated by spaces or commas.

  3. COMBINE7.0 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    SciTech Connect

    Woo Y. Yoon; David W. Nigg

    2008-09-01

    COMBINE7.0 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.0 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 finegroup cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B-3 or B-1 approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko selfshielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. The fine group cross sections in the thermal energy range are replaced by those selfshielded with the Amouyal/Benoist/Horowitz method in the three region geometry when this option is requested. COMBINE7.0 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constant may be output in any of several standard formats including ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a onedimensional, discrete

  4. COMBINE7.1 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    SciTech Connect

    Woo Y. Yoon; David W. Nigg

    2009-08-01

    COMBINE7.1 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.1 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 fine-group cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B-3 or B-1 approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko self-shielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. The fine group cross sections in the thermal energy range are replaced by those self-shielded with the Amouyal/Benoist/Horowitz method in the three region geometry when this option is requested. COMBINE7.1 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constant may be output in any of several standard formats including ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a one-dimensional, discrete

  5. Using a Time Projection Chamber to Measure High Precision Neutron-Induced Fission Cross Sections

    SciTech Connect

    Manning, Brett

    2015-08-06

    2014 LANSCE run cycle data will provide a preliminary 239Pu(n,f) cross section and will quantify uncertainties: PID and Target/beam non-uniformities. Continued running during the 2015 LANSCE run cycle: Thin targets to see both fission fragments and 239Pu(n,f) cross section and fully quantified uncertainties

  6. A New Method for Estimating Neutron Reaction Cross Sections Based on Wick's Limit

    SciTech Connect

    Dietrich, F S; Anderson, J D; Bauer, R W; Grimes, S M

    2004-10-13

    Wick's limit is an inequality that relates the zero-degree differential elastic scattering cross section to the total cross section. The deviation of Wick's limit from an exact equality is small over a wide range of incident energies and target masses. Under these circumstances we show that Wick's limit can be used to correlate the uncertainties in the two terms of the reaction (nonelastic) cross section expressed as the difference between the total and angle-integrated elastic cross sections. When suitable elastic angular distributions are available, we show that the reaction cross section may be obtained with small errors (typically 1.5-3%). Examples are shown for {sup 208P}b, {sup 54-56}Fe, {sup 232}Th, and {sup 238}U.

  7. A New Method for Estimating Neutron Reaction Cross Sections Based on Wick's Limit

    SciTech Connect

    Dietrich, F.S.; Anderson, J.D.; Bauer, R.W.; Grimes, S.M.

    2005-05-24

    Wick's limit is an inequality that relates the zero-degree differential elastic scattering cross section to the total cross section. The deviation of Wick's limit from an exact equality is small over a wide range of incident energies and target masses. Under these circumstances we show that Wick's limit can be used to correlate the uncertainties in the two terms of the reaction (nonelastic) cross section expressed as the difference between the total and angle-integrated elastic cross sections. When suitable elastic angular distributions are available, we show that the reaction cross section may be obtained with small errors (typically 1.5-3%). Examples are shown for 208Pb, 54-56Fe, 232Th, and 238U.

  8. R-Matrix Evaluation of {sup 16}O neutron cross sections up to 6.3 MeV

    SciTech Connect

    Sayer, R.O.; Leal, L.C.; Larson, N.M.; Spencer, R.R.; and Wright, R.Q.

    2000-08-01

    In this paper the authors describe an evaluation of {sup 16}O neutron cross sections in the resolved resonance region with the multilevel Reich-Moore R-matrix formalism. Resonance analyses were performed with the computer code SAMMY [LA98] which utilizes Bayes' method, a generalized least squares technique.

  9. Revised Calculations of the Production Rates for Co Isotopes in Meteorites Using New Cross Sections for Neutron-induced Reactions

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Brooks, F. D.; Buffler, A.; Allie, M. S.; Herbert, M. S.; Nchodu, M. R.; Makupula, S.; Ullmann, J.; Reedy, R. C.; Jones, D. T. L.

    2002-01-01

    New cross section measurements for reactions induced by neutrons with energies greater than 70 MeV are used to calculate the production rates for cobalt isotopes in meteorites and these new calculations are compared to previous estimates. Additional information is contained in the original extended abstract.

  10. Neutron cross sections of 122Te, 123Te, and 124Te between 1 and 60 keV

    NASA Astrophysics Data System (ADS)

    Xia, Y.; Gerstenhöfer, Th. W.; Jaag, S.; Käppeler, F.; Wisshak, K.

    1992-05-01

    The currently favored s process scenario of helium shell burning in low mass stars involves a range of thermal energies from kT=12 to 25 keV with most of the neutron exposure taking place at low temperatures. Therefore, differential cross sections are required down to the region of resolved resonances for the reliable determination of the Maxwellian-averaged cross sections typical of the stellar plasma. This work deals with the neutron capture cross sections of the important s only isotopes 122Te, 123Te, and 124Te, which were measured between 1 and 60 keV neutron energy with a setup of Moxon-Rae detectors. The systematic uncertainties achieved in this experiment are ~5%, but statistical uncertainties are smaller than 2%. In addition to the Moxon-Rae detectors, the setup includes a 6Li glass detector which could be used to determine the total neutron cross sections simultaneously. These results represent the first set of experimental data in this energy range.

  11. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234 , 236 , 238U Neutron-Capture Cross Sections

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Krticka, M.; Kawano, T.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Haight, R. C.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Wu, C. Y.; Chyzh, A.

    2015-10-01

    Calculations of the neutron-capture cross section at low neutron energies (10 eV through 100's of keV) are very sensitive to the nuclear level density and radiative strength function. These quantities are often poorly known, especially for radioactive targets, and actual measurements of the capture cross section are usually required. An additional constraint on the calculation of the capture cross section is provided by measurements of the cascade gamma spectrum following neutron capture. Recent measurements of 234 , 236 , 238U(n, γ) emission spectra made using the DANCE 4 π BaF2 array at the Los Alamos Neutron Science Center will be presented. Calculations of gamma-ray spectra made using the DICEBOX code and of the capture cross section made using the CoH3 code will also be presented. These techniques may be also useful for calculations of more unstable nuclides. This work was performed with the support of the U.S. Department of Energy, National Nuclear Security Administration by Los Alamos National Security, LLC (Contract DE-AC52-06NA25396) and Lawrence Livermore National Security, LLC (Contract DE-AC52-07NA2734).

  12. Measurement of the Absolute Elastic and Inelastic Differential Neutron Cross Sections for 23Na Between 2 and 4 MeV

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Chakraborty, A.; Crider, B. P.; McEllistrem, M. T.; Peters, E. E.; Prados-Estévez, F. M.; Yates, S. W.; Hicks, S. F.; Kersting, L. J.; Luke, C. J.; McDonough, P. J.; Sigillito, A. J.; Vanhoy, J. R.

    2013-03-01

    Elastic and inelastic neutron scattering angular distributions have been measured from 23Na for incident neutron energies between 2 and 4 MeV at the University of Kentucky using neutron time-of-flight techniques. The cross sections obtained are important for applications in nuclear reactor development and other areas, and they are an energy region in which existing data are very sparse. Absolute cross sections were obtained by normalizing Na angular distributions to the well-known np cross sections.

  13. Application of a Simple Ramsauer Model for Neutron Total Cross Sections for Nuclear Mass Numbers A < 40

    SciTech Connect

    Grimes, S.M.; Anderson, J.D.; Bauer, R.W.

    2000-07-15

    A recent paper discussed fits of the nuclear Ramsauer model to total neutron cross sections for mass numbers A > 40 and for neutron energies between 6 and 60 MeV. These results are extended to nuclei of mass <40. A reasonably simple parameterization is found that gives a good representation of a recent set of precision data in this mass range. Particular emphasis is placed on the elements of biological importance: carbon, nitrogen, and oxygen.

  14. COMBINE7.1 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    SciTech Connect

    Woo Y. Yoon; David W. Nigg

    2011-09-01

    COMBINE7.1 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.1 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 fine-group cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B3 or B1 zero-dimensional approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko self-shielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. COMBINE7.1 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constants may be output in any of several standard formats including INL format, ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a one-dimensional (1-D) discrete-ordinate transport code, is incorporated into COMBINE7.1. As an option, the 167 fine-group constants generated by zero-dimensional COMBINE portion in the program can be

  15. Effect of diameter of nanoparticles and capture cross-section library on macroscopic dose enhancement in boron neutron capture therapy

    PubMed Central

    Farhood, Bagher

    2014-01-01

    Purpose The aim of this study is evaluation of the effect of diameter of 10B nanoparticles and various neutron capture cross-section libraries on macroscopic dose enhancement in boron neutron capture therapy (BNCT). Material and methods MCNPX Monte Carlo code was used for simulation of a 252Cf source, a soft tissue phantom and a tumor containing 10B nanoparticles. Using 252Cf as a neutron source, macroscopic dose enhancement factor (MDEF) and total dose rate in tumor in the presence of 100, 200, and 500 ppm of 10B nanoparticles with 25 nm, 50 nm, and 100 nm diameters were calculated. Additionally, the effect of ENDF, JEFF, JENDL, and CENDL neutron capture cross-section libraries on MDEF was evaluated. Results There is not a linear relationship between the average MDEF value and nanoparticles’ diameter but the average MDEF grows with increased concentration of 10B nanoparticles. There is an increasing trend for average MDEF with the tumor distance. The average MDEF values were obtained the same for various neutron capture cross-section libraries. The maximum and minimum doses that effect on the total dose in tumor were neutron and secondary photon doses, respectively. Furthermore, the boron capture related dose component reduced in some extent with increase of diameter of 10B nanoparticles. Conclusions Based on the results of this study, it can be concluded that from physical point of view, various nanoparticle diameters have no dominant effect on average MDEF value in tumor. Furthermore, it is concluded that various neutron capture cross-section libraries are resulted to the same macroscopic dose enhancements. However, it is predicted that taking into account the biological effects for various nanoparticle diameters will result in different dose enhancements. PMID:25834582

  16. Transport analysis of measured neutron leakage spectra from spheres as tests of evaluated high energy cross sections

    NASA Technical Reports Server (NTRS)

    Bogart, D. D.; Shook, D. F.; Fieno, D.

    1973-01-01

    Integral tests of evaluated ENDF/B high-energy cross sections have been made by comparing measured and calculated neutron leakage flux spectra from spheres of various materials. An Am-Be (alpha,n) source was used to provide fast neutrons at the center of the test spheres of Be, CH2, Pb, Nb, Mo, Ta, and W. The absolute leakage flux spectra were measured in the energy range 0.5 to 12 MeV using a calibrated NE213 liquid scintillator neutron spectrometer. Absolute calculations of the spectra were made using version 3 ENDF/B cross sections and an S sub n discrete ordinates multigroup transport code. Generally excellent agreement was obtained for Be, CH2, Pb, and Mo, and good agreement was observed for Nb although discrepancies were observed for some energy ranges. Poor comparative results, obtained for Ta and W, are attributed to unsatisfactory nonelastic cross sections. The experimental sphere leakage flux spectra are tabulated and serve as possible benchmarks for these elements against which reevaluated cross sections may be tested.

  17. A broad-group cross-section library based on ENDF/B-VII.0 for fast neutron dosimetry Applications

    SciTech Connect

    Alpan, F.A.

    2011-07-01

    A new ENDF/B-VII.0-based coupled 44-neutron, 20-gamma-ray-group cross-section library was developed to investigate the latest evaluated nuclear data file (ENDF) ,in comparison to ENDF/B-VI.3 used in BUGLE-96, as well as to generate an objective-specific library. The objectives selected for this work consisted of dosimetry calculations for in-vessel and ex-vessel reactor locations, iron atom displacement calculations for reactor internals and pressure vessel, and {sup 58}Ni(n,{gamma}) calculation that is important for gas generation in the baffle plate. The new library was generated based on the contribution and point-wise cross-section-driven (CPXSD) methodology and was applied to one of the most widely used benchmarks, the Oak Ridge National Laboratory Pool Critical Assembly benchmark problem. In addition to the new library, BUGLE-96 and an ENDF/B-VII.0-based coupled 47-neutron, 20-gamma-ray-group cross-section library was generated and used with both SNLRML and IRDF dosimetry cross sections to compute reaction rates. All reaction rates computed by the multigroup libraries are within {+-} 20 % of measurement data and meet the U. S. Nuclear Regulatory Commission acceptance criterion for reactor vessel neutron exposure evaluations specified in Regulatory Guide 1.190. (authors)

  18. Fragmentation cross sections and binding energies of neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Tsang, M. B.; Lynch, W. G.; Friedman, W. A.; Mocko, M.; Sun, Z. Y.; Aoi, N.; Cook, J. M.; Delaunay, F.; Famiano, M. A.; Hui, H.; Imai, N.; Iwasaki, H.; Motobayashi, T.; Niikura, M.; Onishi, T.; Rogers, A. M.; Sakurai, H.; Suzuki, H.; Takeshita, E.; Takeuchi, S.; Wallace, M. S.

    2007-10-01

    An exponential dependence of the fragmentation cross section on the average binding energy is observed and reproduced with a statistical model. The observed functional dependence is robust and allows the extraction of binding energies from measured cross sections. From the systematics of Cu isotope cross sections, the binding energies of Cu76,77,78,79 have been extracted. They are 636.94±0.4,647.1±0.4,651.6±0.4, and 657.8±0.5 MeV, respectively. Specifically, the uncertainty of the binding energy of Cu75 is reduced from 980 keV, as listed in the 2003 mass table of Audi, Wapstra, and Thibault to 400 keV. The predicted cross sections of two near drip-line nuclei, Na39 and Mg40 from the fragmentation of Ca48 are discussed.

  19. Fragmentation cross sections and binding energies of neutron-rich nuclei

    SciTech Connect

    Tsang, M. B.; Lynch, W. G.; Mocko, M.; Cook, J. M.; Delaunay, F.; Famiano, M. A.; Hui, H.; Rogers, A. M.; Wallace, M. S.; Friedman, W. A.; Sun, Z. Y.; Aoi, N.; Imai, N.; Motobayashi, T.; Takeuchi, S.; Iwasaki, H.; Onishi, T.; Sakurai, H.; Suzuki, H.; Niikura, M.

    2007-10-15

    An exponential dependence of the fragmentation cross section on the average binding energy is observed and reproduced with a statistical model. The observed functional dependence is robust and allows the extraction of binding energies from measured cross sections. From the systematics of Cu isotope cross sections, the binding energies of {sup 76,77,78,79}Cu have been extracted. They are 636.94{+-}0.4,647.1{+-}0.4,651.6{+-}0.4, and 657.8{+-}0.5 MeV, respectively. Specifically, the uncertainty of the binding energy of {sup 75}Cu is reduced from 980 keV, as listed in the 2003 mass table of Audi, Wapstra, and Thibault to 400 keV. The predicted cross sections of two near drip-line nuclei, {sup 39}Na and {sup 40}Mg from the fragmentation of {sup 48}Ca are discussed.

  20. Thulium-169 neutron inelastic scattering cross section measurements via the (169)Tm(n,n'gamma) reaction

    NASA Astrophysics Data System (ADS)

    Ko, Young June

    1999-11-01

    A neutron inelastic scattering study for low-lying states of thulium-169 below 1 MeV has been pursued by the detection of gamma rays from the 169Tm(n,n'γ) reaction. The inelastic level cross sections, which are important to obtain nuclear potential parameters and to understand reaction mechanisms, were obtained in this study. Incident neutrons were generated by bombarding a metallic lithium target with protons from the Lowell Van de Graaff accelerator. A germanium detector was used for gamma-ray observation. Excitation functions were measured from 0.2 to 1 MeV in 50 keV intervals at a scattering angle of 125°. Gamma-ray production cross sections were obtained for 37 observed transitions from 16 levels. Gamma-ray angular distributions from 35° to 135°, in 10° steps were measured at a neutron energy of 750 keV. The angular distributions were fitted with Legendre polynomials of even (up to fourth) order. Neutron inelastic level cross sections were inferred from the excitation functions and the angular distributions. Because cross-section data from previous experimental or theoretical work were not available, no direct comparison with previous work was made. A comparison of the magnitude and behavior of the (n,inelastic) cross section for thulium with those of neighboring odd-A nuclei indicated reasonable agreement. A classical model for angular momentum transfer indicates that states with spin >=/(+) may be excited only through the compound nucleus process, but for states with spin <=/(-) compound nucleus and direct interaction processes may both participate in the excitation.

  1. Influence of the neutron numbers of projectile and target on the evaporation residue cross sections in hot fusion reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Long; Su, Jun; Zhang, Feng-Shou

    2016-06-01

    Within the framework of a dinuclear system model, the influence of projectile and target neutron number on capture cross section, fusion probability, and survival probability for the reactions S,3634+238U and 48Ca+Pu 239 ,240 ,242 ,244 are investigated. The calculated excitation functions are in good agreement with the experimental data. To synthesize more unknown neutron-deficient isotopes of already-known superheavy elements, the possibility of using lighter calcium isotopes to induce hot fusion reactions is investigated and the maximal evaporation residual cross sections for Ca 44 ,46 ,48 -induced hot fusion reactions to produce unknown neutron-deficient superheavy nuclei with Z =112 -116 are predicted.

  2. The total neutron cross-section of an ortho-para mixture of gaseous hydrogen at 75K

    NASA Astrophysics Data System (ADS)

    Corradi, G.; Celli, M.; Rhodes, N.; Soper, A. K.; Zoppi, M.

    2004-07-01

    From the data of a transmission experiment we have extracted the total neutron cross-section of a sample of gaseous hydrogen (T=75.03K, p=84.8bar, n=8.42nm-3) with a thermodynamic equilibrium ortho-para content (48% ortho, 52% para). The experiment was carried out on the PEARL instrument operating at the ISIS pulsed neutron source. After an accurate data reduction, the neutron spectra have been analyzed in the framework of the Modified Young and Koppel (MYK) theory, which is a successful extension to interacting fluids of the original Young and Koppel model valid for a dilute gas of hydrogen molecules. The total cross-section calculated with MYK theory, whose unique unknown parameter-the mean kinetic energy of the molecular centre of mass-was obtained through an independent path integral Monte Carlo simulation, shows a satisfactory agreement with the experimental results.

  3. Systematic Studies of (n,p) Reaction Cross Sections for 14.5 MeV Neutrons

    SciTech Connect

    Belgaid, M.; Kadem, F.; Arezki, A.

    2006-04-26

    A new semi-empirical formula for the calculation of the (n,p) cross section at 14.5 MeV neutron energy is obtained. Derived from the evaporation statistical model, the new formula includes five parameters and shows for the first times a strong dependence of the (n,p) cross section on terms of the parameter (2Z-1)/A. Fitting this formula to the existing cross section data on 161 nuclei with 40{<=}A{<=}209, the adjustable parameters have been determined and the systematics of the (n,p) reaction have been studied. The predictions of this formula are compared with those of the existing formulae and with the experimental data. The formula with five parameters is found to give a better fit to the data than the previous comparable formulae.

  4. Precision Measurement of 56Fe(n,n γ) Cross Sections Using 14.1 MeV Neutrons

    NASA Astrophysics Data System (ADS)

    Wang, Haoyu; Koltick, David

    2016-03-01

    Integral production cross sections for 846.8 keV and 1238.3 keV prompt gamma rays from 14.1 MeV neutrons interactions on 56Fe are reported. The experimental technique takes advantage of the 1.5 nanosecond coincidence timing resolution between the neutron production time and the gamma ray detection time to reject noise, together with the large 30% solid angle gamma ray coverage. The scattering angle coverage with respect to the neutron beam direction extends from 60 degrees to 120 degrees. The neutron flux is measured using the detected associated alpha-particle from the D-T fusion reaction produced using an associated particle neutron generator. Present cross section measurements using other techniques with limited timing resolution and solid angle coverage are in agreement at neutron energies lower than 6 MeV. At higher neutron energies reported results can disagree by more than 20%. The more accurate technique used in these measurements can distinguish between the differences in the present reported results at higher neutron energies. The author would like to thank TechSource, Inc. and Advanced Physics Technologies, LLC. for their support in this work.

  5. Gamma ray production cross section from energetic neutron inelastic scattering for methodical improvements in planetary gamma-ray spectroscopy

    SciTech Connect

    Castaneda, C.M.; Gearhart, R.; Sanii, B.; Englert, P.A.J.; Drake, D.M.; Reedy, R.C.

    1991-12-31

    Planetary Gamma ray spectroscopy can be used to chemically analyze the top soil from planets in future planetary missions. The production from inelastic neutron interaction plays an effective role in the determination on the C and H at the surface. The gamma ray production cross section from the strongest lines excited in the neutron bombardment of Fe have been measured by the use of a time analyzed quasi-mono-energetic neutron beam and a high purity germanium detector. The results from En=6.5, 32, 43, and 65 MeV are presented.

  6. Differential Neutron Scattering Cross-Sections for the Low-Lying Levels of THORIUM-232, URANIUM-235 and URANIUM-238.

    NASA Astrophysics Data System (ADS)

    Goswami, Ganesh Chandra

    Differential cross sections have been measured for the ground state and for the low-lying levels of ('232)Th, ('235)U, ('238)U via neutron time-of-flight technique. This work consists of the study of neutron scattering cross sections in the following areas: (i) The cross sections of ('232)Th in the incident energy range 185-2400 keV for ground state rotational band (GSRB) levels 0('+) (ground state), 2('+) (49 keV), and 4('+) (162 keV), (ii) the cross sections of ('235)U at incident energies of 185 keV and 550 keV for groups of levels, ground state + 77 eV + 13 keV and 46 + 52 keV, and (iii) the cross sections of ('238)U in the incident energy range 185-920 keV for GSRB levels 0('+) (ground state), 2('+) (45 keV) and 4('+) (148 keV). The University of Lowell 5.5 MV pulsed Van -de-Graaff accelerator with Mobley bunching system was employed. Neutrons were generated via the ('7)Li(p,n)('7)Be reaction in a metallic lithium target having thickness 8-10 keV. An overall resolution of 15-20 keV was maintained throughout the measurements. The scatterers were disk shaped. Careful attention has been paid to data reduction, angular resolution, multiple scattering corrections, and attenuation corrections. The results are compared with data of other investigators and ENDF/B-V.

  7. Velocity autocorrelation by quantum simulations for direct parameter-free computations of the neutron cross sections. II. Liquid deuterium

    NASA Astrophysics Data System (ADS)

    Guarini, E.; Neumann, M.; Bafile, U.; Celli, M.; Colognesi, D.; Bellissima, S.; Farhi, E.; Calzavara, Y.

    2016-06-01

    Very recently we showed that quantum centroid molecular dynamics (CMD) simulations of the velocity autocorrelation function provide, through the Gaussian approximation (GA), an appropriate representation of the single-molecule dynamic structure factor of liquid H2, as witnessed by a straightforward absolute-scale agreement between calculated and experimental values of the total neutron cross section (TCS) at thermal and epithermal incident energies. Also, a proper quantum evaluation of the self-dynamics was found to guarantee, via the simple Sköld model, a suitable account of the distinct (intermolecular) contributions that influence the neutron TCS of para-H2 for low-energy neutrons (below 10 meV). The very different role of coherent nuclear scattering in D2 makes the neutron response from this liquid much more extensively determined by the collective dynamics, even above the cold neutron range. Here we show that the Sköld approximation maintains its effectiveness in producing the correct cross section values also in the deuterium case. This confirms that the true key point for reliable computational estimates of the neutron TCS of the hydrogen liquids is, together with a good knowledge of the static structure factor, the modeling of the self part, which must take into due account quantum delocalization effects on the translational single-molecule dynamics. We demonstrate that both CMD and ring polymer molecular dynamics (RPMD) simulations provide similar results for the velocity autocorrelation function of liquid D2 and, consequently, for the neutron double differential cross section and its integrals. This second investigation completes and reinforces the validity of the proposed quantum method for the prediction of the scattering law of these cryogenic liquids, so important for cold neutron production and related condensed matter research.

  8. Radiative thermal neutron-capture cross sections for the 180W(n ,γ ) reaction and determination of the neutron-separation energy

    NASA Astrophysics Data System (ADS)

    Hurst, A. M.; Firestone, R. B.; Szentmiklósi, L.; Sleaford, B. W.; Basunia, M. S.; Belgya, T.; Escher, J. E.; Krtička, M.; Révay, Zs.; Summers, N. C.

    2015-09-01

    Prompt thermal neutron-capture partial γ -ray production cross sections were measured for the first time for the 180W(n ,γ ) reaction using a cold guided-neutron beam at the Budapest Research Reactor. Absolute 181Wγ -ray cross sections were internally standardized using well-known comparator γ -ray cross sections belonging to the other tungsten isotopes present in the 11.35% enriched 180W sample. Transitions were assigned to levels in 181W based largely upon information available in the literature. The total radiative thermal neutron-capture cross section σ0 was determined from the sum of direct prompt γ -ray cross sections populating the ground state and a modeled contribution accounting for ground-state feeding from the quasicontinuum. In this work, we find σ0=21.67 (77 ) b. A new measurement of the cross section for the 5 /2- metastable isomer at 365.6 keV, σ5 /2-(181Wm,14.6 μ s ) =19.96 (55 ) b, is also determined. Additionally, primary γ rays, observed for the first time in the 180W(n ,γ ) reaction, provide the most precise determination for the 181W neutron-separation energy, Sn=6669.02 (16 ) keV.

  9. Deformation effect on total reaction cross sections for neutron-rich Ne isotopes

    SciTech Connect

    Minomo, Kosho; Sumi, Takenori; Ogata, Kazuyuki; Shimizu, Yoshifumi R.; Yahiro, Masanobu; Kimura, Masaaki

    2011-09-15

    The isotope dependence of measured reaction cross sections in the scattering of {sup 28-32}Ne isotopes from a {sup 12}C target at 240 MeV/nucleon is analyzed by the double-folding model with the Melbourne g matrix. The density of the projectile is calculated by the mean-field model with the deformed Woods-Saxon potential. The deformation is evaluated by antisymmetrized molecular dynamics. The deformation of the projectile enhances calculated reaction cross sections to the measured values.

  10. Fast neutron scattering cross sections for terbium-159 via the (n,n'gamma) and (n,n') techniques

    NASA Astrophysics Data System (ADS)

    Seo, Pil-Neyo

    2001-08-01

    Scattering cross sections for fast neutrons were measured for low-lying levels of 159Tb, a deformed odd-A nucleus. Levels from 400 keV up to 1000 keV in excitation were studied by the (n,n'γ) technique, while elastic and inelastic scattering for the lower lying excited states were studied via the (n,n') technique. For the (n,n'γ) experiment, a Ge detector was used in conjunction with the pulsed beam time-of-flight technique to observe de-excitation gamma decays. A NaI(Tl) annulus was used to suppress signals caused by Compton scattered gamma rays. Gamma-ray production cross sections were measured in the 400- to 1000-keV incident neutron energy range in 50-keV intervals at a scattering angle of 125°. Thirty six gamma-ray transitions from 16 levels of 159.Tb were observed and placed in the decay scheme. Neutron level cross sections were inferred from the differential gamma- ray production cross sections. Neutron elastic and inelastic scattering angular distributions for this nuclide were measured via the time-of-flight technique at incident neutron energies of 575 keV and 995 keV. The neutron detector consisted of a plastic scintillator mounted on a fast photomultiplier tube. Measurements were made at 11 angles from 35° to 135° in 10-degree steps for 995 keV and at 5 angles for 575 keV. Neutrons were produced in a thin lithium target using the 7Li(p,n)7Be reaction with protons generated by the University of Massachusetts Lowell Van de Graaff Accelerator. Level cross section results using the (n,n'γ) technique are compared with the those using the (n,n') technique for lower-lying levels, 241 keV(9/2+), a three-level cluster of 348 keV(5/2+), 363 keV(5/2-), and 388 keV(7/2-), and 428 keV(7/2+) states. The results are also compared with previous work and to the ENDF/B-VI, JEF-2, and JENDL-3 evaluations.

  11. Towards high accurate neutron-induced fission cross sections of 240,242Pu: Spontaneous fission half-lives

    NASA Astrophysics Data System (ADS)

    Salvador-Castiñeira, P.; Bryś, T.; Eykens, R.; Hambsch, F.-J.; Moens, A.; Oberstedt, S.; Pretel, C.; Sibbens, G.; Vanleeuw, D.; Vidali, M.

    2013-12-01

    Fast spectrum neutron-induced fission cross sections of transuranic isotopes are being of special demand in order to provide accurate data for the new GEN-IV nuclear power plants. To minimize the uncertainties on these measurements accurate data on spontaneous fission half-lives and detector efficiencies are a key point. High α-active actinides need special attention since the misinterpretation of detector signals can lead to low efficiency values or underestimation in fission fragment detection. In that context, 240,242Pu isotopes have been studied by means of a Twin Frisch-Grid Ionization Chamber (TFGIC) for measurements of their neutron-induced fission cross section. Gases with different drift velocities have been used, namely P10 and CH4. The detector efficiencies for both samples have been determined and improved spontaneous fission half-life values were obtained.

  12. Neutron total cross section measurements in the energy region from 47 keV to 20 MeV

    SciTech Connect

    Poenitz, W.P.; Whalen, J.F.

    1983-05-01

    Neutron total cross sections were measured for 26 elements. Data were obtained in the energy range from 47 keV to 20 MeV for 11 elements in the range of light-mass fission products. Previously reported measurements for eight heavy and actinide isotopes were extended to 20 MeV. Data were also obtained for Cu (47 keV to 1.4 MeV) and for Sc, Zn, Nd, Hf, and Pt (1.8 to 20 MeV). The present work is part of a continuing effort to provide accurate neutron total cross sections for evaluations and for optical-model parameteriztions. The latter are required for the derivation of other nuclear-data information of importance to applied programs. 37 references.

  13. Computer codes for checking, plotting and processing of neutron cross-section covariance data and their application

    SciTech Connect

    Sartori, E.

    1992-12-31

    This paper presents a brief review of computer codes concerned with checking, plotting, processing and using of covariances of neutron cross-section data. It concentrates on those available from the computer code information centers of the United States and the OECD/Nuclear Energy Agency. Emphasis will be placed also on codes using covariances for specific applications such as uncertainty analysis, data adjustment and data consistency analysis. Recent evaluations contain neutron cross section covariance information for all isotopes of major importance for technological applications of nuclear energy. It is therefore important that the available software tools needed for taking advantage of this information are widely known as hey permit the determination of better safety margins and allow the optimization of more economic, I designs of nuclear energy systems.

  14. Calculated neutron-induced cross sections for /sup 53/Cr from 1 to 20 MeV

    SciTech Connect

    Shibata, K.; Hetrick, D.M.

    1987-05-01

    Neutron-induced cross sections of /sup 53/Cr have been calculated in the energy regions from 1 to 20 MeV. The quantities obtained are the cross sections for the reactions (n,n'..gamma..), (n,2n), (n,np), (n,n..cap alpha..), (n,p..gamma..), (n,pn), (n,..cap alpha gamma..), (n,..cap alpha..n), (n,d), (n,t), (n,/sup 3/He), and (n,..gamma..), as well as the spectra of emitted neutrons, protons, alpha particles, and gamma rays. The precompound process was included above 5 MeV in addition to the compound process. For the inelastic scattering, the contribution of the direct interaction was calculated with DWBA. 36 refs., 23 figs., 11 tabs.

  15. How the projectile neutron number influences the evaporation cross section in complete fusion reactions with heavy ions

    SciTech Connect

    Wang Chengbin; Zhang Jinjuan; Ren, Z. Z.; Shen, C. W.

    2010-11-15

    The influence of the projectile neutron number on the evaporation residue cross sections for the reactions {sup 208}Pb({sup 52,54}Cr,n,2n){sup 258-261}Sg and {sup 208}Pb({sup 48,50}Ti,n,2n){sup 254-257}Rf has been studied within the framework of a fusion-fission statistical model. The results obtained with the kewpie2 code are compared with recent experimental data. The excitation functions represent the experimental results well both in the maximum value and the lactation of the peak. The calculations show that the projectile neutron number greatly influences both the capture cross section and the fusion probability.

  16. Measurement of the ratio of total and differential cross sections on neutrons and protons for charged-current neutrino events

    NASA Astrophysics Data System (ADS)

    Armenise, N.; Calicchio, M.; Erriquez, O.; Fogli-Muciaccia, M. T.; Natali, S.; Nuzzo, S.; Romano, F.; Belusevic, R.; Colley, D. C.; Jones, G. T.; O'Neale, S.; Sewell, S. J.; Votruba, M. F.; Bertrand, D.; Moreels, J.; Sacton, J.; Vander Velde-Wilquet, C.; Van Doninck, W.; Wilquet, G.; Brisson, V.; Francois, T.; Petiau, P.; Cooper, A. M.; Guy, J. G.; Michette, A. G.; Tyndel, M.; Venus, W.; Alitti, J.; Baton, J. P.; Gerbier, G.; Iori, M.; Kochowski, C.; Neveu, M.; Azemoon, T.; Bartley, J. H.; Bullock, F. W.; Davis, D. H.; Jones, T. W.; Parker, M. A.; BEBC TST Neutrino Collaboration

    1981-06-01

    Charged-current neutrino interactions have been analysed in a sample of pictures from BEBC equipped with a TST. Using a method independent of both the neutrino flux and nuclear interaction corrections, the ratio R= σn/ σp has been measured. The result is R=1.98±0.19 for the ratio of total cross sections. Bjorken x distributions for proton and neutron targets and for u and d quarks are compared.

  17. Code System for Producing Pointwise and Multigroup Neutron and Photon Cross Sections from ENDF/B Data.

    Energy Science and Technology Software Center (ESTSC)

    1996-12-19

    Version 03 The NJOY nuclear data processing system is a comprehensive computer code system for producing pointwise and multigroup cross sections and related quantities from ENDF/B evaluated nuclear data in the ENDF format, including the latest US library, ENDF/B-VI. The NJOY code works with neutrons, photons, and charged particles and produces libraries for a wide variety of particle transport and reactor analysis codes.

  18. Determination of Resonance Parameters and their Covariances from Neutron Induced Reaction Cross Section Data

    SciTech Connect

    Schillebeeckx, P.; Becker, B.; Danon, Y.; Guber, K.; Harada, H.; Heyse, J.; Junghans, A.R.; Kopecky, S.; Massimi, C.; Moxon, M.C.; Otuka, N.; Sirakov, I.; Volev, K.

    2012-12-15

    Cross section data in the resolved and unresolved resonance region are represented by nuclear reaction formalisms using parameters which are determined by fitting them to experimental data. Therefore, the quality of evaluated cross sections in the resonance region strongly depends on the experimental data used in the adjustment process and an assessment of the experimental covariance data is of primary importance in determining the accuracy of evaluated cross section data. In this contribution, uncertainty components of experimental observables resulting from total and reaction cross section experiments are quantified by identifying the metrological parameters involved in the measurement, data reduction and analysis process. In addition, different methods that can be applied to propagate the covariance of the experimental observables (i.e. transmission and reaction yields) to the covariance of the resonance parameters are discussed and compared. The methods being discussed are: conventional uncertainty propagation, Monte Carlo sampling and marginalization. It is demonstrated that the final covariance matrix of the resonance parameters not only strongly depends on the type of experimental observables used in the adjustment process, the experimental conditions and the characteristics of the resonance structure, but also on the method that is used to propagate the covariances. Finally, a special data reduction concept and format is presented, which offers the possibility to store the full covariance information of experimental data in the EXFOR library and provides the information required to perform a full covariance evaluation.

  19. 70 Group Neutron Fast Reactor Cross Section Set Based on JENDL-2B.

    Energy Science and Technology Software Center (ESTSC)

    1984-02-06

    Version 00 These multigroup cross sections are used in fast reactor calculations. The benchmark calculations for the 23 fast critical assemblies used in the benchmark tests of JFS-2 were performed with one-dimensional diffusion theory by using the JFS-3-J2 set.

  20. Tables of Neutron-Induced Fission Cross Section for Various Pu, U, and Th Isotopes, Deduced from Measured Fission Probabilites

    SciTech Connect

    Younes, W; Britt, H C

    2003-03-31

    Cross sections for neutron-induced fission of {sup 231,233}Th, {sup 234,235,236,237,239}U, and {sup 240,241,243}Pu are presented in tabular form for incident neutron energies of 0.1 {le} E{sub n}(MeV) {le} 2.5. The cross sections were obtained by converting measured fission probabilities from (t,pf) reactions on mass-A targets to (n,f) cross sections on mass-A + 1 neutron targets, by using modeling to compensate for the differences in the reaction mechanisms. Data from Britt et al. were used for the {sup 234}U(t,pf) reaction, from Cramer et al. for the {sup 230,232}Th(t,pf), {sup 236,238}U(t,pf), and {sup 240,242}Pu(t,pf) reactions, and from Britt et al. for the {sup 233,235}U(t,pf) and {sup 239}Pu(t,pf) reactions. The fission probabilities P{sub (t,pf)}(E{sub x}), measured as a function of excitation energy E{sub x} of the compound system formed by the (t,p) reaction, are listed in the tables with the corresponding deduced cross sections as a function of incident neutron energy E{sub n}, {sigma}{sub (n,f)}(E{sub n}). The excitation energy and incident neutron energy are related by E{sub x} = E{sub n} + B{sub n}, where B{sub n}, where B{sub n} is the neutron binding energy. Comparison with ENDF/B-VI evaluations of the well-measured {sup 234,235,236}U(n,f) and {sup 240,241}Pu(n,f) cross sections confirms the accuracy of the present results within a 10% standard deviation above E{sub n} = 1 MeV. Below E{sub n} = 1 MeV, localized deviations of at most {+-} 20% are observed.

  1. Determination of radiative neutron capture cross sections for unstable nuclei by the {gamma}-ray strength function method

    SciTech Connect

    Utsunomiya, H.; Goriely, S.

    2012-11-12

    An indirect method referred to as the {gamma}-ray strength function method has been devised to determine radiative neutron capture cross sections for unstable nuclei along the valley of {beta}-stability. This method is based on the {gamma}-ray strength function which interconnects radiative neutron capture and photoneutron emission within the statistical model. The method was applied to several unstable nuclei such as {sup 93,95}Zr, {sup 107}Pd, and 121,123Sn. This method offers a versatile application extended to unstable nuclei far from the stability when combined with Coulomb dissociation experiments at RIKEN-RIBF and GSI.

  2. Neutron capture and inelastic scattering cross sections for {sup 186}Os, {sup 187}Os, and {sup 189}Os and the Re-Os chronology

    SciTech Connect

    Segawa, M.; Nagai, Y.; Masaki, T.; Temma, Y.; Shima, T.; Mishima, K.; Igashira, M.; Goriely, S.; Koning, A.; Hilaire, S.

    2008-05-21

    We measured the neutron capture cross sections of {sup 186,187,189}Os taking for the first time their pulse height spectra for neutrons between 5 and 90 keV by means of an anti-Compton NaI(Tl) spectrometer. The neutron inelastic scattering cross section for {sup 187}Os as well as the neutron elastic scattering cross sections for {sup 186,187}Os were also observed with use of {sup 6}Li-glass scintillation detectors with a small systematic uncertainty.

  3. ENDF/B-VII.1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks and Reactor Experiments

    NASA Astrophysics Data System (ADS)

    Kahler, A. C.; MacFarlane, R. E.; Mosteller, R. D.; Kiedrowski, B. C.; Frankle, S. C.; Chadwick, M. B.; McKnight, R. D.; Lell, R. M.; Palmiotti, G.; Hiruta, H.; Herman, M.; Arcilla, R.; Mughabghab, S. F.; Sublet, J. C.; Trkov, A.; Trumbull, T. H.; Dunn, M.

    2011-12-01

    The ENDF/B-VII.1 library is the latest revision to the United States' Evaluated Nuclear Data File (ENDF). The ENDF library is currently in its seventh generation, with ENDF/B-VII.0 being released in 2006. This revision expands upon that library, including the addition of new evaluated files (was 393 neutron files previously, now 423 including replacement of elemental vanadium and zinc evaluations with isotopic evaluations) and extension or updating of many existing neutron data files. Complete details are provided in the companion paper [M. B. Chadwick et al., "ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data," Nuclear Data Sheets, 112, 2887 (2011)]. This paper focuses on how accurately application libraries may be expected to perform in criticality calculations with these data. Continuous energy cross section libraries, suitable for use with the MCNP Monte Carlo transport code, have been generated and applied to a suite of nearly one thousand critical benchmark assemblies defined in the International Criticality Safety Benchmark Evaluation Project's International Handbook of Evaluated Criticality Safety Benchmark Experiments. This suite covers uranium and plutonium fuel systems in a variety of forms such as metallic, oxide or solution, and under a variety of spectral conditions, including unmoderated (i.e., bare), metal reflected and water or other light element reflected. Assembly eigenvalues that were accurately predicted with ENDF/B-VII.0 cross sections such as unmoderated and uranium reflected 235U and 239Pu assemblies, HEU solution systems and LEU oxide lattice systems that mimic commercial PWR configurations continue to be accurately calculated with ENDF/B-VII.1 cross sections, and deficiencies in predicted eigenvalues for assemblies containing selected materials, including titanium, manganese, cadmium and tungsten are greatly reduced. Improvements are also confirmed for selected

  4. ENDF/B-VII.1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks and Reactor Experiments

    SciTech Connect

    Kahler, A.C.; Herman, M.; Kahler,A.C.; MacFarlane,R.E.; Mosteller,R.D.; Kiedrowski,B.C.; Frankle,S.C.; Chadwick,M.B.; McKnight,R.D.; Lell,R.M.; Palmiotti,G.; Hiruta,H.; Herman,M.; Arcilla,R.; Mughabghab,S.F.; Sublet,J.C.; Trkov,A.; Trumbull,T.H.; Dunn,M.

    2011-12-01

    The ENDF/B-VII.1 library is the latest revision to the United States Evaluated Nuclear Data File (ENDF). The ENDF library is currently in its seventh generation, with ENDF/B-VII.0 being released in 2006. This revision expands upon that library, including the addition of new evaluated files (was 393 neutron files previously, now 423 including replacement of elemental vanadium and zinc evaluations with isotopic evaluations) and extension or updating of many existing neutron data files. Complete details are provided in the companion paper [M. B. Chadwick et al., 'ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data,' Nuclear Data Sheets, 112, 2887 (2011)]. This paper focuses on how accurately application libraries may be expected to perform in criticality calculations with these data. Continuous energy cross section libraries, suitable for use with the MCNP Monte Carlo transport code, have been generated and applied to a suite of nearly one thousand critical benchmark assemblies defined in the International Criticality Safety Benchmark Evaluation Project's International Handbook of Evaluated Criticality Safety Benchmark Experiments. This suite covers uranium and plutonium fuel systems in a variety of forms such as metallic, oxide or solution, and under a variety of spectral conditions, including unmoderated (i.e., bare), metal reflected and water or other light element reflected. Assembly eigenvalues that were accurately predicted with ENDF/B-VII.0 cross sections such as unmoderated and uranium reflected {sup 235}U and {sup 239}Pu assemblies, HEU solution systems and LEU oxide lattice systems that mimic commercial PWR configurations continue to be accurately calculated with ENDF/B-VII.1 cross sections, and deficiencies in predicted eigenvalues for assemblies containing selected materials, including titanium, manganese, cadmium and tungsten are greatly reduced. Improvements are also confirmed for

  5. Measurement of the 477.6-keV γ -ray production cross section following inelastic neutron scattering by 7Li

    NASA Astrophysics Data System (ADS)

    Nyman, M.; Belloni, F.; Ichinkhorloo, D.; Pirovano, E.; Plompen, A. J. M.; Rouki, C.

    2016-02-01

    The γ -ray production cross section for the 477.6-keV 1 /2-→3 /2g.s . - transition in 7Li following inelastic neutron scattering has been measured from the reaction threshold up to 18 MeV. This cross section is interesting as a possible standard for other γ -ray production cross-section measurements. The experiment was conducted at the GELINA pulsed white neutron source with the GAINS spectrometer consisting of 12 high-purity germanium detectors. The time-of-flight method was used for neutron energy determination. The sample was an optical-quality lithium fluoride disk and the neutron flux was monitored using a 235U fission chamber. Previous measurements of this cross section are reviewed and compared with our results. Recently, the examined cross section has been calculated using the continuum-discretized coupled-channels method. The results are found to be in reasonable agreement with the experimental data.

  6. Isomeric Cross-Section Study of Neutron-Induced Reactions on Ge

    SciTech Connect

    Vlastou, R.; Galanopoulos, S.; Papadopoulos, C. T.; Kokkoris, M.; Serris, M.; Lagoyannis, A.; Demetriou, P.

    2009-01-28

    The {sup 72}Ge(n,{alpha}){sup 69m}Zn, {sup 74}Ge(n,{alpha}){sup 71m}Zn, {sup 76}Ge(n,2n){sup 75g+m}Ge reaction cross sections have been measured from 9.6 to 11.4 MeV and studied, along with data from literature, within the frame of the statistical model using the code EMPIRE-II.

  7. MCNP Continuous-Energy Neutron Cross Section Libraries for Temperatures from 300 to 1365K.

    Energy Science and Technology Software Center (ESTSC)

    2001-04-19

    Version 00 UTXS is a project whereby continuous-energy cross section libraries in ACE format suitable for the MCNP code were generated using the NJOY94.105 processing code. Libraries for various materials were generated at typical operating temperatures of the US Pressurized Water Reactor (PWR), Boiling Water Reactor (BWR), and the Russian PWR (VVER) as well as libraries for other non-reactor applications such as nuclear medicine.

  8. Measurement of the 6Li(n,α) neutron standard cross-section at the GELINA facility

    NASA Astrophysics Data System (ADS)

    Jansson, Kaj; Al-Adili, Ali; Bevilacqua, Riccardo; Gustavsson, Cecilia; Hambsch, Franz-Josef; Pomp, Stephan; Vidali, Marzio

    2016-06-01

    The 6Li(n,α) reaction cross-section is commonly used as a reference cross section. However, it is only considered a neutron standard up to 1MeV. For higher energies, there are discrepancies of several per cents between recent measurements and evaluated data files. In order to extend and establish 6Li(n,α) as a neutron standard above 1MeV these discrepancies must be resolved. Our measurement at the GELINA facility at JRC-IRMM in Geel, Belgium is ongoing. We are using a double twin Frisch-grid setup to detect both α-particles from two 6Li targets and fission products from two 235U reference targets. Our targets have thick backings but are employed in pairs, one forward facing and one backward facing. In this way we still cover, in principle, a solid angle of 4π. We present some preliminary results showing that the existing cross-section data is well reproduced around the resonance at 240 keV. The final data taking will start in the beginning of 2016, when the GELINA facility goes online again after a few months of shut down.

  9. Measurement of activation cross-sections for high-energy neutron-induced reactions of Bi and Pb

    NASA Astrophysics Data System (ADS)

    Zaman, Muhammad; Kim, Guinyun; Kim, Kwangsoo; Naik, Haladhara; Shahid, Muhammad; Lee, Manwoo

    2015-08-01

    The cross-sections for 209Bi(n, 4n)206Bi, 209Bi(n, 5n)205Bi, natPb(n, xn)204mPb, natPb(n, xn)203Pb, natPb(n, xn)202mPb,natPb(n, xn)201Pb, natPb(n, xn)200Pb, natPb(n, αxn)203Hg and natPb(n, p xn)202Tl reactions were determined at the Korean Institute of Radiological and Medical Sciences (KIRAMS), Korea in the neutron energy range of 15.2 to 37.2 MeV. The above cross-sections were obtained by using the activation and off-line γ-ray spectrometric technique. The quasi-monoenergetic neutron used for the above reactions are based on the 9Be(p, n) reaction. Simulations of the spectral flux from the Be target were done using the MCNPX program. The cross-sections were estimated with the TALYS 1.6 code using the default parameter. The data from the present work and literature were compared with the data from the EAF-2010 and the TENDL-2013 libraries, and calculated values of TALYS 1.6 code. It shows that appropriate level density model, the γ-ray strength function, and the spin cut-off parameter are needed to obtain a good agreement between experimental data and theoretical values from TALYS 1.6 code.

  10. Systematics Studies of (n,{alpha}) reaction cross sections at 14.5 MeV neutrons energy

    SciTech Connect

    Belgaid, M.; Kadem, F.; Amokrane, A.

    2008-05-12

    A new semi-empirical formula for the calculation of the (n,{alpha}) cross section at 14.5 MeV neutron energy is obtained. It is based on the pre-equilibrium exciton and evaporation models and uses the Droplet model of Myers and Swiatecki to express the reaction energy Q(n,{alpha}). The systematics behavior of the different terms of the Droplet model involved in Q(n,{alpha}) was checked individually before choosing the pertinent terms and setting up the formula. Fitting this formula to the existing cross section data on 120 nuclei with 40{<=}A{<=}209, the adjustable parameters have been determined and the systematics of the (n,{alpha}) reaction have been studied. The predictions of this formula are compared with those of the existing formulae and with the experimental data. The formula with five parameters is found to give a better fit to the data than the previous comparable formulae.

  11. Estimated {sup 55}Mn and {sup 90}Zr Cross Section Covariances in the Fast Neutron Energy Region

    SciTech Connect

    Pigni, M.T. Herman, M.; Oblozinsky, P.

    2008-12-15

    We completed estimates of neutron cross section covariances for {sup 55}Mn and {sup 90}Zr, from the keV energy range to 25 MeV, considering the most important reaction channels, total, elastic, inelastic, capture, and (n,2n). The nuclear reaction model code EMPIRE was used to calculate sensitivity to model parameters by a perturbation of parameters that define the optical model potential, nuclear level densities and strength of the pre-equilibrium emission. The sensitivity analysis was performed with the set of parameters which reproduces the ENDF/B-VII.0 cross sections. The experimental data were analyzed and both statistical and systematic uncertainties were extracted from almost 30 selected experiments. Then, the Bayesian code KALMAN was used to combine the sensitivity analysis and the experiments to obtain the evaluated covariance matrices.

  12. Measurement of the thermal neutron capture cross section and the resonance integral of radioactive {sup 182}Hf

    SciTech Connect

    Vockenhuber, C.; Bichler, M.; Wallner, A.; Kutschera, W.; Dillmann, I.; Kaeppeler, F.

    2008-04-15

    The neutron capture cross sections of the radioactive isotope {sup 182}Hf (t{sub 1/2}=8.9x10{sup 6} yr) in the thermal and epithermal energy regions have been measured by activation at the TRIGA Mark-II reactor of the Atomic Institute of the Austrian Universities in Vienna, Austria, and subsequent {gamma}-ray spectroscopy of {sup 183}Hf. High values for the thermal (kT=25 meV) cross section {sigma}{sub 0}=133{+-}10 b and for the resonance integral I{sub 0}=5850{+-}660 b were found. Additionally, the absolute intensities of the main {gamma}-ray transitions in the decay of {sup 182}Hf have been considerably improved.

  13. Preliminary evaluation of neutron capture cross sections for /sup 144/Sm, /sup 145/Sm and /sup 145/Pm

    SciTech Connect

    Gardner, D.G.; Gardner, M.A.

    1986-02-13

    We have made preliminary neutron-capture cross-section calculations of the Hauser-Feshbach type for the isotopes /sup 144/Sm, /sup 145/Sm, and /sup 145/Pm to investigate the production of radioactive /sup 145/Pm by neutron capture on the stable isotope /sup 144/Sm. The calculations were made for incident neutron energies from 2.5 MeV to about 1/sup -4/ or 10/sup -5/ MeV, wherever the first unbound resonance was estimated to occur in each case. At that energy, the calculated value was reduced by a somewhat arbitrary factor, and the excitation function extended down to thermal energy using a (E/sub n/)/sup -1/2/ energy dependence. Since very large uncertainties are associated with the position and magnitude of the first unbound resonance and the subsequent extrapolation back to thermal energy, the cross sections in this low-energy region should not be considered more accurate than +- a factor of 10. For incident neutron energies above each step, the calculations represent an average through the separated and overlapping resonance regions and may be accurate to better than +- a factor of 2. 18 refs., 7 figs., 5 tabs.

  14. Evaluated cross-section libraries and kerma factors for neutrons up to 100 MeV on {sup 12}C

    SciTech Connect

    Chadwick, M.B.; Blann, M.; Cox, L.; Young, P.G.; Meigooni, A.

    1995-04-11

    A program is being carried out at Lawrence Livermore National Laboratory to develop high-energy evaluated nuclear data libraries for use in Monte Carlo simulations of cancer radiation therapy. In this report we describe evaluated cross sections and kerma factors for neutrons with incident energies up to 100 MeV on {sup 12}C. The aim of this effort is to incorporate advanced nuclear physics modeling methods, with new experimental measurements, to generate cross section libraries needed for an accurate simulation of dose deposition in fast neutron therapy. The evaluated libraries are based mainly on nuclear model calculations, benchmarked to experimental measurements where they exist. We use the GNASH code system, which includes Hauser-Feshbach, preequilibrium, and direct reaction mechanisms. The libraries tabulate elastic and nonelastic cross sections, angle-energy correlated production spectra for light ejectiles with A{le}and kinetic energies given to light ejectiles and heavy recoil fragments. The major steps involved in this effort are: (1) development and validation of nuclear models for incident energies up to 100 MeV; (2) collation of experimental measurements, including new results from Louvain-la-Nueve and Los Alamos; (3) extension of the Livermore ENDL formats for representing high-energy data; (4) calculation and evaluation of nuclear data; and (5) validation of the libraries. We describe the evaluations in detail, with particular emphasis on our new high-energy modeling developments. Our evaluations agree well with experimental measurements of integrated and differential cross sections. We compare our results with the recent ENDF/B-VI evaluation which extends up to 32 MeV.

  15. Self-consistent calculations of the strength function and radiative neutron capture cross section for stable and unstable tin isotopes

    SciTech Connect

    Avdeenkov, A.; Goriely, S.; Kamerdzhiev, S.; Krewald, S.

    2011-06-15

    The E1 strength function for 15 stable and unstable Sn even-even isotopes from A=100 to A=176 are calculated using a self-consistent microscopic theory which, in addition to the standard (quasiparticle) random-phase approximation [(Q)RPA] approach, takes into account phonon coupling and the single-particle continuum (by means of the discretization procedure) with a cutoff of 100 MeV. Our analysis shows two distinct regions for which the integral characteristics of both the giant and pygmy resonances behave rather differently. For neutron-rich nuclei, starting from {sup 132}Sn, we obtain a giant E1 resonance which significantly deviates from the widely used systematics extrapolated from experimental data in the {beta}-stability valley. We show that the inclusion of phonon coupling is necessary for a proper description of the low-energy pygmy resonances and the corresponding transition densities for A<132 nuclei, while in the A>132 region the influence of phonon coupling is significantly smaller. The radiative neutron capture cross sections leading to the stable {sup 124}Sn and unstable {sup 132}Sn and {sup 150}Sn nuclei are calculated with both the (Q)RPA and the beyond-(Q)RPA strength functions and shown to be sensitive to both the predicted low-lying strength and the phonon-coupling contribution. The comparison with the widely used phenomenological generalized Lorentzian approach shows considerable differences both for the strength function and the radiative neutron capture cross section. In particular, for the neutron-rich {sup 150}Sn, the reaction cross section is found to be increased by a factor greater than 20. We conclude that the present approach may provide a complete and coherent description of the {gamma}-ray-strength function for astrophysics applications. In particular, such calculations are highly recommended for a reliable estimate of the electromagnetic properties of exotic nuclei.

  16. Fission cross-sections, prompt fission neutron and γ-ray emission in request for nuclear applications

    NASA Astrophysics Data System (ADS)

    Hambsch, F.-J.; Salvador-Castiñeira, P.; Oberstedt, S.; Göök, A.; Billnert, R.

    2016-06-01

    In recent years JRC-IRMM has been investigating fission cross-sections of 240,242Pu in the fast-neutron energy range relevant for innovative reactor systems and requested in the High Priority Request List (HPRL) of the OECD/Nuclear Energy Agency (NEA). In addition to that, prompt neutron multiplicities are being investigated for the major isotopes 235U, 239Pu in the neutron-resonance region using a newly developed scintillation detector array (SCINTIA) and an innovative modification of the Frisch-grid ionisation chamber for fission-fragment detection. These data are highly relevant for improved neutron data evaluation and requested by the OECD/Working Party on Evaluation Cooperation (WPEC). Thirdly, also prompt fission γ-ray emission is investigated using highly efficient lanthanide-halide detectors with superior timing resolution. Again, those data are requested in the HPRL for major actinides to solve open questions on an under-prediction of decay heat in nuclear reactors. The information on prompt fission neutron and γ-ray emission is crucial for benchmarking nuclear models to study the de-excitation process of neutron-rich fission fragments. Information on γ-ray emission probabilities is also useful in decommissioning exercises on damaged nuclear power plants like Fukushima Daiichi to which JRC-IRMM is contributing. The results on the 240,242Pu fission cross section, 235U prompt neutron multiplicity in the resonance region and correlations with fission fragments and prompt γ-ray emission for several isotopes will be presented and put into perspective.

  17. ENDF/B-VII.1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks and Reactor Experiments

    SciTech Connect

    G. Palmiotti

    2011-12-01

    The ENDF/B-VII.1 library is the latest revision to the United States' Evaluated Nuclear Data File (ENDF). The ENDF library is currently in its seventh generation, with ENDF/B-VII.0 being released in 2006. This revision expands upon that library, including the addition of new evaluated files (was 393 neutron files previously, now 418 including replacement of elemental vanadium and zinc evaluations with isotopic evaluations) and extension or updating of many existing neutron data files. Complete details are provided in the companion paper [1]. This paper focuses on how accurately application libraries may be expected to perform in criticality calculations with these data. Continuous energy cross section libraries, suitable for use with the MCNP Monte Carlo transport code, have been generated and applied to a suite of nearly one thousand critical benchmark assemblies defined in the International Criticality Safety Benchmark Evaluation Project's International Handbook of Evaluated Criticality Safety Benchmark Experiments. This suite covers uranium and plutonium fuel systems in a variety of forms such as metallic, oxide or solution, and under a variety of spectral conditions, including unmoderated (i.e., bare), metal reflected and water or other light element reflected. Assembly eigenvalues that were accurately predicted with ENDF/B-VII.0 cross sections such as unmoderated and uranium reflected 235U and 239Pu assemblies, HEU solution systems and LEU oxide lattice systems that mimic commercial PWR configurations continue to be accurately calculated with ENDF/B-VII.1 cross sections, and deficiencies in predicted eigenvalues for assemblies containing selected materials, including titanium, manganese, cadmium and tungsten are greatly reduced. Improvements are also confirmed for selected actinide reaction rates such as 236U capture. Other deficiencies, such as the overprediction of Pu solution system critical eigenvalues and a decreasing trend in calculated eigenvalue for

  18. Measurement of Neutron Total Cross Sections in Support of the APT Program

    SciTech Connect

    Abfalterer, W.P.; Haight, R.C.; Morgan, G.L.; Bateman, F.B.; Dietrich, F.S.; Finlay, R.W.

    1998-11-04

    The authors have completed a new set of total cross section measurements of 37 samples spanning the periodic table. The authors employed the same technique as in a previous measurement, with refinements intended to allow measurements on separated isotopes, and with improved systematic error control. The goal of the new measurement was 1% statistical accuracy in 1% energy bins with systematic errors less than 1%. This was achieved for all but the smallest samples, for which the statistical accuracy was as large as 2% in 1% bins.

  19. Cross-Section Measurements for Proton- and Neutron-Induced Reactions Needed to Understand Cosmic-Ray Interactions on Earth and in Space

    NASA Astrophysics Data System (ADS)

    Sisterson, Janet M.

    2005-05-01

    Primary cosmic rays interact directly with extraterrestrial bodies and cosmic-ray shower particles interact with the earth's surface to produce small quantities of radionuclides and stable isotopes, which are measured routinely using appropriate techniques. Theoretical models are used to analyze these measurements to learn the history of the object or the cosmic rays that fell upon it. Cross sections for reactions producing these cosmogenic nuclides are essential input to these models. Most primary cosmic rays are protons, and good measurements of the cross sections for proton-induced reactions are essential. Most relevant cross sections are now well measured, but discrepancies still exist between the measurements and calculations. One explanation is that neutrons produced in primary cosmic-ray interactions also initiate spallation reactions contributing significantly to the cosmogenic nuclide inventory, but few of the relevant cross sections have been measured at energies >30 MeV. We have measured many of these needed cross sections for neutron-induced reactions using two different techniques. Cross sections at selected unique neutron energies >70 MeV are measured at iThemba LABS, South Africa (iTL) using quasi-monoenergetic neutron beams. Energy integrated (average) cross sections are measured at the Los Alamos Neutron Science Center (LANSCE), using `white' neutron beams with an energy range of 0.1-750 MeV.

  20. The 234U Neutron Capture Cross Section Measurement at the n_TOF Facility

    SciTech Connect

    Lampoudis, C.; Koehler, Paul Edward; Collaboration, n_TOF

    2008-01-01

    The neutron capture cross-section of {sup 234}U has been measured for energies from thermal up to the keV region in the neutron time-of-flight facility n{_}TOF, based on a spallation source located at CERN. A 4n BaF{sub 2} array composed of 40 crystals, placed at a distance of 184.9 m from the neutron source, was employed as a total absorption calorimeter (TAC) for detection of the prompt {gamma}-ray cascade from capture events in the sample. This text describes the experimental setup, all necessary steps followed during the data analysis procedure. Results are presented in the form of R-matrix resonance parameters from fits with the SAMMY code and compared to the evaluated data of ENDF in the relevant energy region, indicating the good performance of the n{_}TOF facility and the TAC.

  1. Use of new ENDF/B-VI proton and neutron cross sections for single event upset calculations

    SciTech Connect

    Chadwick, M.B.; Normand, E.

    1999-12-01

    Single-event upsets (SEU) in microelectronics are calculated from newly-developed silicon nuclear reaction recoil data for incident protons and neutrons with energies up to 150 MeV. This paper focuses on the nuclear reaction physics that is important for calculating recoil spectra, and burst generation rate spectra. Comparisons are made with previous results, obtained from intranuclear cascade calculations as well as from previous ENDF data below 20 MeV, to demonstrate new features in the present calculations. Calculated SEU cross sections are compared with measured data.

  2. 69-Group Thermal-Reactor Neutron Cross Section Data from ENDF/B-V in MATXS Format.

    Energy Science and Technology Software Center (ESTSC)

    1985-12-30

    Version: 00 The library contains 80 materials (no photon production) and includes self-shielded cross sections for the important actinides. Thermal scattering data are given for all materials, with bound scattering for the important moderators. The group structure contains 42 thermal groups extending to 4 eV. The data were generated with PSR-171/NJOY-II [2]. The energy group structure for MATXS7A is listed in Table 1, the materials with neutron scattering data in Table 2, and those withmore » thermal scattering data in Table 3.« less

  3. R-Matrix Evaluation of Cl Neutron Cross Sections up to 1.2 MeV

    SciTech Connect

    Sayer, R.O.

    2003-03-27

    We have performed an evaluation of {sup 35}Cl, {sup 37}Cl, and {sup nat}Cl neutron cross sections in the resolved resonance region with the multilevel Reich-Moore R-matrix formalism. Resonance analyses were carried out with the computer code SAMMY, which utilizes Bayes' method, a generalized least squares technique. A recent modification of SAMMY enabled us to calculate charged particle penetrabilities for the proton exit channel. Our resonance parameter representation describes the data much better than does ENDF/B-VI, and it should lead to improved criticality safety calculations for systems where Cl is present.

  4. Impact of the γ _{ν } NN* Electrocoupling Parameters at High Photon Virtualities and Preliminary Cross Sections off the Neutron

    NASA Astrophysics Data System (ADS)

    Gothe, Ralf W.; Tian, Ye

    2016-06-01

    Meson-photoproduction measurements and their reaction-amplitude analyses can establish more sensitively, and in some cases in an almost model-independent way, nucleon excitations and non-resonant reaction amplitudes. However, to investigate the strong interaction from already explored—where meson-cloud degrees of freedom contribute substantially to the baryon structure—to still unexplored distance scales—where quark degrees of freedom dominate and the transition from dressed to current quarks occurs—we depend on experiments that allow us to measure observables that are probing this evolving non-perturbative QCD regime over its full range. Elastic and transition form factors are uniquely suited to trace this evolution by measuring elastic electron scattering and exclusive single-meson and double-pion electroproduction cross sections off the nucleon. These exclusive measurements will be extended to higher momentum transfers with the energy-upgraded CEBAF beam at JLab to study the quark degrees of freedom, where their strong interaction is responsible for the ground and excited nucleon state formations. After establishing unprecedented high-precision data, the imminent next challenge is a high-quality analysis to extract these relevant electrocoupling parameters for various resonances that can then be compared to state-of-the-art models and QCD-based calculations. The vast majority of the available exclusive electroproduction cross sections are off the proton. Hence flavor-dependent analyses of excited light-quark baryons are lacking experimental data off the neutron. The goal is to close this gap by providing exclusive {γ }_{ν }(n) → p+ {π }- reaction cross section off deuterium and to establish a kinematical final-state-interaction (FSI) correction factor (R) map that can be determined from the data set itself. The "e1e" Jefferson Lab CLAS data set, that is analyzed, includes both a hydrogen and deuterium target run period, which allows a combined

  5. Validation of HELIOS Neutron Cross-Section Library for RBMK Reactors Against the Data From the Critical Facility Experiments

    SciTech Connect

    Jasiulevicius, Audrius; Sehgal, Bal Raj

    2002-07-01

    The RBMK reactors are channel type, water-cooled and graphite moderated reactors. The first RBMK type electricity production reactor was put on-line in 1973. Currently there are 13 operating reactors of this type. Two of the RBMK-1500 reactors are at the Ignalina NPP in Lithuania. Experimental Critical Facility for RBMK reactors, located at Kurchatov Institute, Moscow was designed to carry out critical reactivity experiments on assemblies, which imitate parts of the RBMK reactor core. The facility is composed of Control and Protection Rods (CPR's), fuel assemblies with different enrichment in U-235 and other elements, typical for RBMK reactor core loadings, e.g. additional absorber assemblies, CPR imitators, etc. A simulation of a set of the experiments, performed at the Experimental Critical Facility, was carried out at the Royal Institute of Technology (RIT), Nuclear Power Safety Division, using CORETRAN 3-D neutron dynamics code. The neutron cross sections for assemblies were calculated using HELIOS code. The aim of this work was to evaluate capabilities of the HELIOS code to provide correct cross section data for the RBMK reactor. The calculation results were compared to the similar CORETRAN calculations, when employing WIMS-D4 code generated cross section data. For some of the experiments, where calculation results with CASMO-4 code generated cross sections are available, the comparison is also performed against CASMO-4 results. Eleven different experiments were simulated. Experiments differ in size of the facility core (number of assemblies loaded): from simple core loadings, composed only of a few fuel assemblies, to complicated configurations, which represent a part of the RBMK reactor core. Diverse types of measurements were carried out during these experiments: reactivity, neutron flux distributions (both axial and radial), rod reactivity worth and the voiding effects. Results of the reactivity measurements and relative neutron flux distributions were

  6. Neutron Cross Section Library Based on JEFF3.1 for Use with MCNP.

    Energy Science and Technology Software Center (ESTSC)

    2007-03-20

    Version 00 This continuous energy cross-section data library in ACE format is for shielding and criticality applications done with MCNP. In addition to the description of the NJOY processing procedure used to create the library, the included report NEA/NSC/DOC(2006)18 contains results from the benchmarking activity aimed at testing the quality of the data for criticality and shielding applications. The library at 300K has been verified: visually (no discontinuities, correct processing in all range) and withmore » comparisons with other libraries available for the same purposes (ENDF/B-VI.8, JEF2.2, JENDL3.3, …) A set of experiments using MCNP4c are used in order to validate the processed library.« less

  7. 66 Neutron, 22 Gamma-Ray Group Cross Sections for Radiation Transport for Neutron Energies Up to 400 MeV.

    Energy Science and Technology Software Center (ESTSC)

    1995-12-12

    Version 00 For a variety of applications (accelerator shielding, the use of neutrons in radiotherapy, radiation damage studies, etc.) It is necessary to carry out transport calculations involving medium-energy neutrons. HILO86R multigroup cross sections are in the form needed for the CCC-254/ANISN-ORNL and CCC-543/TORT-DORT discrete ordinates codes and in the CCC-474/MORSE-CGA Monte Carlo code.

  8. Optimization of the Efficiency of a Neutron Detector to Measure (α, n) Reaction Cross-Section

    NASA Astrophysics Data System (ADS)

    Perello, Jesus; Montes, Fernando; Ahn, Tony; Meisel, Zach; Joint InstituteNuclear Astrophysics Team

    2015-04-01

    Nucleosynthesis, the origin of elements, is one of the greatest mysteries in physics. A recent particular nucleosynthesis process of interest is the charge-particle process (cpp). In the cpp, elements form by nuclear fusion reactions during supernovae. This process of nuclear fusion, (α,n), will be studied by colliding beam elements produced and accelerated at the National Superconducting Cyclotron Laboratory (NSCL) to a helium-filled cell target. The elements will fuse with α (helium nuclei) and emit neutrons during the reaction. The neutrons will be detected for a count of fused-elements, thus providing us the probability of such reactions. The neutrons will be detected using the Neutron Emission Ratio Observer (NERO). Currently, NERO's efficiency varies for neutrons at the expected energy range (0-12 MeV). To study (α,n), NERO's efficiency must be near-constant at these energies. Monte-Carlo N-Particle Transport Code (MCNP6), a software package that simulates nuclear processes, was used to optimize NERO configuration for the experiment. MCNP6 was used to simulate neutron interaction with different NERO configurations at the expected neutron energies. By adding additional 3He detectors and polyethylene, a near-constant efficiency at these energies was obtained in the simulations. With the new NERO configuration, study of the (α,n) reactions can begin, which may explain how elements are formed in the cpp. SROP MSU, NSF, JINA, McNair Society.

  9. Pulse-width analysis for neutron capture cross-section measurement using an NaI(Tl) detector

    NASA Astrophysics Data System (ADS)

    Katabuchi, Tatsuya; Matsuhashi, Taihei; Terada, Kazushi; Arai, Takuro; Furutaka, Kazuyoshi; Hara, Kaoru Y.; Harada, Hideo; Hirose, Kentaro; Hori, Jun-ichi; Igashira, Masayuki; Kamiyama, Takashi; Kimura, Atsushi; Kino, Koichi; Kitatani, Fumito; Kiyanagi, Yoshiaki; Koizumi, Mitsuo; Mizumoto, Motoharu; Nakamura, Shoji; Oshima, Masumi; Toh, Yosuke

    2014-11-01

    A fast data acquisition method based on pulse-width analysis was developed for measuring neutron capture cross-sections using an NaI(Tl) detector. The new method was tested by detecting γ-rays from standard γ-ray sources and neutron-induced reactions. Non-linear relation between the γ-ray energy and the pulse width of the detector output signal was studied. The neutron beam experiments were performed using a pulsed neutron beam from a spallation neutron source at the Japan Proton Accelerator Research Complex. Detector-deposited energy spectra were reconstructed from the pulse-width spectra using the parameterized relation between the pulse width and the γ-ray energy. Time response properties of the pulse-width analysis method were compared with the traditional pulse-height analysis method. Detailed analysis of the experimental results demonstrated that the present method was more resistive to intense γ-ray bursts from the spallation neutron source.

  10. Neutron Cross-Section Evaluations for 70,72,73,74,76Ge

    SciTech Connect

    Iwamoto, O.; Herman, M.; Mughabghab, S.F.; Oblozinsky, P.; Trkov, A.

    2005-05-24

    Entirely new evaluations have been performed for neutrons on all isotopes of Ge, from a thermal energy up to 20 MeV, with a focus on photon production. The resonance parameters were considerably improved compared to earlier evaluations. The fast-neutron region has been evaluated using the EMPIRE-2.19 code. The results were validated against photon data on Fe and Nb. Isotopic evaluations for Ge were summed up and compared with available measurements on natural Ge. Various quantities related to photon production, showing strong dependence on neutron incident energy, are discussed.

  11. Benchmarking of the FENDL-3 Neutron Cross-section Data Starter Library for Fusion Applications

    SciTech Connect

    Fischer, U.; Angelone, M.; Bohm, T.; Kondo, K.; Konno, C.; Sawan, M.; Villari, R.; Walker, B.

    2014-06-15

    This paper summarizes the benchmark analyses performed in a joint effort of ENEA (Italy), JAEA (Japan), KIT (Germany), and the University of Wisconsin (USA) on a computational ITER benchmark and a series of 14 MeV neutron benchmark experiments. The computational benchmark revealed a modest increase of the neutron flux levels in the deep penetration regions and a substantial increase of the gas production in steel components. The comparison to experimental results showed good agreement with no substantial differences between FENDL-3.0 and FENDL-2.1 for most of the responses. In general, FENDL-3 shows an improved performance for fusion neutronics applications.

  12. Photo-neutron cross-section calculations of 142,143,144,145,146,150Nd rare-earth isotopes for ( γ, n) reaction

    NASA Astrophysics Data System (ADS)

    Kaplan, A.; Özdoğan, H.; Aydin, A.; Tel, E.

    2014-11-01

    The theoretical photo-neutron cross sections for ( γ, n) reaction have been calculated on 142,143,144,145,146,150Nd rare-earth isotopes at photon energies of 8-23 MeV using the PCROSS, TALYS 1.2, and EMPIRE 3.1 computer codes. TALYS 1.2 two-component exciton model and EMPIRE 3.1 exciton model has been used to calculate the pre-equilibrium photo-neutron cross sections. PCROSS Weisskopf-Ewing model has been used for the reaction equilibrium cross-section calculations. The obtained cross sections have been compared with each other and against the experimental values existing in the EXFOR database. Generally, pre-equilibrium model cross-section calculations are in good agreement with the experimental data for all reactions along the incident photon energy in this study.

  13. Inelastic neutron scattering cross sections for 76Ge relevant to background in neutrinoless double-β decay experiments

    NASA Astrophysics Data System (ADS)

    Crider, B. P.; Peters, E. E.; Allmond, J. M.; McEllistrem, M. T.; Prados-Estévez, F. M.; Ross, T. J.; Vanhoy, J. R.; Yates, S. W.

    2015-09-01

    The experimental signature in searches for the neutrinoless double-β decay of 76Ge is a peak near 2039 keV in the spectrum. Given the low probability of the process, it is important that the background in this region be well understood. Inelastic scattering reactions with neutrons from muon-induced interactions and (α ,n ) reactions in the surrounding materials or in the detector can provide contributions to the background. We have measured the production cross sections for γ rays from the 76Ge(n ,n'γ ) reaction in the 2039-keV region at incident neutron energies up to 4.9 MeV. In addition to determining that the cross sections of a previously known 2040.7-keV γ ray from the 3952-keV level in 76Ge are rather small, we find that a larger contribution arises from a 2037.5-keV γ ray which is attributed to a newly identified level at 3147 keV in 76Ge. A third contribution is also possible from another new level at 3577 keV. These results indicate that the 2039-keV region in 76Ge neutrinoless double-β decay searches is more complex than was previously thought.

  14. Design and construction of the RPI enhanced thermal neutron target and thermal cross-section measurements of rare earth isotopes

    SciTech Connect

    Danon, Y.

    1993-12-31

    In order to perform thermal cross section measurements the neutron flux in the RPI linac facility had to be increased. A new Enhanced Thermal Target (ETT) was designed, constructed and used. The thermal flux of the new target was up to six times higher than the previous RPI Bounce Target (BT). The ETT was also designed to be coupled to a cold moderator that will give an additional flux increase in the MeV energy region. Design calculations for the cold moderator including neutronics and cryogenics are also presented. The ETT was used for transmission measurements of rare earth metal samples of Ho, Er and Tm and enriched oxide samples of {sup 166}Er{sub 2}O{sub 3} and {sup 167}Er{sub 2}O{sub 3} in the energy range from 0.001 eV to 20 eV. The measurements were done with a 15 meter time-of-flight spectrometer and provide high quality data in the thermal and subthermal region as well as in the low energy resonance region. These measurements allowed a systematic study of paramagnetic scattering for the materials with Z = 67, 68 and 69 for which the paramagnetic scattering has the strongest effect. The paramagnetic scattering was inferred from the total cross section and compared to theoretical results and other experiments.

  15. Structure of hydrogenous liquids: separation of coherent and incoherent cross sections using polarised neutrons

    NASA Astrophysics Data System (ADS)

    Stunault, A.; Vial, S.; Pusztai, L.; Cuello, G. J.; Temleitner, L.

    2016-04-01

    The determination of the coherent structure factor of hydrogenous liquids is very difficult: while X-rays are barely sensitive to hydrogen, neutrons results still lack accuracy due to the contamination of the scattering intensities by a huge spin-incoherent signal from the 1H atoms. Using polarised neutrons with polarisation analysis, one can experimentally separate the coherent and incoherent contributions to the scattered intensity. We present the upgrade of the D3 polarised hot neutron diffractometer at ILL to study hydrogenated liquids. We show first data obtained from a test sample of water and detail the data reduction leading to an unprecedented accuracy in the extraction of the coherent signal, representative of the structure.

  16. Measurement of neutron capture cross section of Li-7 at J-PARC / MLF / ANNRI

    SciTech Connect

    Makii, H.; Ota, S.; Nishinaka, I.; Nishio, I.; Segawa, M.; Kimura, A.; Harada, H.

    2014-05-02

    We have measured the {sup 7}Li(n,γ){sup 8}Li reaction at Accurate Neutron-Nucleus Reaction Measurement Instrument (ANNRI) installed at the Material and Life science experimental Facility in the Japan Proton Accelerator Research Complex (J-PARC / MLF). In this experiment, we used intense pulsed neutron beam provided by J-PARC / MLF and high performance Ge spectrometer, which is one of the main detectors of the ANNRI. We clearly detected γ rays from the {sup 7}Li(n,γ){sup 8}Li reaction with sufficient signal-to-noise ratio.

  17. 30-Group Neutron, 12-Group Photon Cross Sections from ENDF/B-VI in MATXS Format.

    Energy Science and Technology Software Center (ESTSC)

    1994-02-28

    Version 00 MATXS10 is useful for many high-energy calculations, including coupled neutron-photon-heating calculations in fusion systems, the analysis of fast critical assemblies like GODIVA, and some shielding calculations for which resonance self shielding effects are not too important. It has the advantage of being compact, and TRANSX2 and particle transport calculations run very fast with this library.

  18. One-group fission cross sections for plutonium and minor actinides inserted in calculated neutron spectra of fast reactor cooled with lead-208 or lead-bismuth eutectic

    SciTech Connect

    Khorasanov, G. L.; Blokhin, A. I.

    2012-07-01

    The paper is dedicated to one-group fission cross sections of Pu and MA in LFRs spectra with the aim to increase these values by choosing a coolant which hardens neutron spectra. It is shown that replacement of coolant from Pb-Bi with Pb-208 in the fast reactor RBEC-M, designed in Russia, leads to increasing the core mean neutron energy. As concerns fuel Pu isotopes, their one-group fission cross sections become slightly changed, while more dramatically Am-241 one-group fission cross section is changed. Another situation occurs in the lateral blanket containing small quantities of minor actinides. It is shown that as a result of lateral blanket mean neutron energy hardening the one-group fission cross sections of Np-237, Am-241 and Am-243 increases up to 8-11%. This result allows reducing the time of minor actinides burning in FRs. (authors)

  19. Cross section and γ-ray spectra for U238(n,γ) measured with the DANCE detector array at the Los Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Kawano, T.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Chyzh, A.; Wu, C. Y.; Baramsai, B.; Mitchell, G. E.; Krtička, M.

    2014-03-01

    Background: Accurate knowledge of the U238(n,γ) cross section is important for developing theoretical nuclear reaction models and for applications. However, capture cross sections are difficult to calculate accurately and often must be measured. Purpose: We seek to confirm previous measurements and test cross-section calculations with an emphasis on the unresolved resonance region from 1 to 500 keV. Method: Cross sections were measured from 10 eV to 500 keV using the DANCE detector array at the LANSCE spallation neutron source. The measurements used a thin target, 48 mg/cm2 of depleted uranium. Gamma cascade spectra were also measured to provide an additional constraint on calculations. The data are compared to cross-section calculations using the code CoH3 and cascade spectra calculations made using the code dicebox. Results: This new cross-section measurement confirms the previous data. The measured gamma-ray spectra suggest the need for additional low-lying dipole strength in the radiative strength function. New Hauser-Feshbach calculations including this strength accurately predict the capture cross section without renormalization. Conclusions: The present cross-section data confirm previous measurements. Including additional low-lying dipole strength in the radiative strength function may lead to more accurate cross-section calculations in nuclei where <Γγ> has not been measured.

  20. R-Matrix Evaluation of 16O Neutron Cross Sections up to 6.3 MeV

    SciTech Connect

    Sayer, R.O.

    2000-08-21

    In this paper we describe an evaluation of {sup 16}O neutron cross sections in the resolved resonance region with the multilevel Reich-Moore R-matrix formalism. Resonance analyses were performed with the computer code SAMMY [LA98] which utilizes Bayes method, a generalized least squares technique. Over the years the nuclear community has developed a collection of evaluated nuclear data for applications in thermal, fast reactor, and fusion systems. However, typical neutron spectra in criticality safety applications are different from the spectra relevant to thermal, fast reactor, and fusion systems. In fact, the neutron spectra important for these non-reactor systems appear to peak in the epithermal energy range. Nuclear data play a major role in the calculation of the criticality safety margins for these systems. A thorough examination of how the present collection of nuclear data evaluations behaves in criticality safety calculations is needed. Many older evaluations will probably need to be revised, and new evaluations will be needed. Oxygen is an important element in criticality safety applications where oxides are present in significant abundance. The existing ENDF/B-VI.5 evaluation is expressed in terms of point-wise cross sections derived from the analysis of G. Hale [HA91]. Unfortunately such an evaluation is not directly useful for resonance analysis of data from samples in which oxygen is combined with other elements; for that purpose, Reich-Moore resonance parameters are needed. This paper addresses the task of providing those parameters. In the following sections we discuss the data, resonance analysis procedure, and results.

  1. Sensitivity Analysis of Neutron Cross-Sections Considered for Design and Safety Studies of Lfr and SFR Generation IV Systems

    NASA Astrophysics Data System (ADS)

    Tucek, Kamil; Carlsson, Johan; Wider, Hartmut

    2006-04-01

    We evaluated the sensitivity of several design and safety parameters with regard to five different nuclear data libraries, JEF2.2, JEFF3.0, ENDF/B-VI.8, JENDL3.2, and JENDL3.3. More specifically, the effective multiplication factor, burn-up reactivity swing and decay heat generation in available LFR and SFR designs were estimated. Monte Carlo codes MCNP and MCB were used in the analyses of the neutronic and burn-up performance of the systems. Thermo-hydraulic safety calculations were performed by the STAR-CD CFD code. For the LFR, ENDF/B-VI.8 and JEF2.2 showed to give a harder neutron spectrum than JEFF3.0, JENDL3.2, and JENDL3.3 data due to the lower inelastic scattering cross-section of lead in these libraries. Hence, the neutron economy of the system becomes more favourable and keff is higher when calculated with ENDF/B-VI.8 and JEF2.2 data. As for actinide cross-section data, the uncertainties in the keff values appeared to be mainly due to 239Pu, 240Pu and 241Am. Differences in the estimated burn-up reactivity swings proved to be significant, for an SFR as large as a factor of three (when comparing ENDF/B-VI.8 results to those of JENDL3.2). Uncertainties in the evaluation of short-term decay heat generation showed to be of the order of several per cent. Significant differences were, understandably, observed between decay heat generation data quoted in literature for LWR-UOX and those calculated for an LFR (U,TRU)O2 spent fuel. A corresponding difference in calculated core parameters (outlet coolant temperature) during protected total Loss-of-Power was evaluated.

  2. Compilation and evaluation of 14-MeV neutron-activation cross sections for nuclear technology applications. Set I

    SciTech Connect

    Evain, B.P.; Smith, D.L.; Lucchese, P.

    1985-04-01

    Available 14-MeV experimental neutron activation cross sections are compiled and evaluated for the following reactions of interest for nuclear-energy technology applications: /sup 27/Al(n,p)/sup 27/Mg, Si(n,X)/sup 28/Al, Ti(n,X)/sup 46/Sc, Ti(n,X)/sup 47/Sc, Ti(n,X)/sup 48/Sc, /sup 51/V(n,p)/sup 51/Ti, /sup 51/V(n,..cap alpha..)/sup 48/Sc, Cr(n,X)/sup 52/V, /sup 55/Mn(n,..cap alpha..)/sup 52/V, /sup 55/Mn(n,2n)/sup 54/Mn, Fe(n,X)/sup 54/Mn, /sup 54/Fe(n,..cap alpha..)/sup 51/Cr, /sup 59/Co(n,p)/sup 59/Fe, /sup 59/Co(n,..cap alpha..)/sup 56/Mn, /sup 59/Co(n,2n)/sup 58/Co, /sup 65/Cu(n,p)/sup 65/Ni, Zn(n,X)/sup 64/Cu, /sup 64/Zn(n,2n)/sup 63/Zn, /sup 113/In(n,n')/sup 113m/In, /sup 115/In(n,n') /sup 115m/In. The compiled values are listed and plotted for reference without adjustments. From these collected results those values for which adequate supplementary information on nuclear constants, standards and experimental errors is provided are selected for use in reaction-by-reaction evaluations. These data are adjusted as needed to account for recent revisions in the nuclear constants and cross section standards. The adjusted results are subsequently transformed to equivalent cross sections at 14.7 MeV for the evaluation process. The evaluations are performed utilizing a least-squares method which considers correlations between the experimental data. 440 refs., 41 figs., 46 tabs.

  3. Evaluated 182,183,184,186W Neutron Cross Sections and Covariances in the Resolved Resonance Region

    SciTech Connect

    Pigni, Marco T; Leal, Luiz C

    2015-01-01

    Oak Ridge National Laboratory (ORNL) has recently completed the resonance parameter evaluation of four tungsten isotopes, i.e., 182,183,184,186W, in the neutron energy range of thermal up to several keV. This nuclear data work was performed with support from the US Nuclear Criticality Safety Program (NCSP) in an effort to provide improved tungsten cross section and covariance data for criticality safety analyses. The evaluation methodology uses the Reich-Moore approximation of the R-matrix formalism of the code SAMMY to fit high-resolution measurements performed in 2010 and 2012 at the Geel linear accelerator facility (GELINA), as well as other experimental data sets on natural tungsten available in the EXFOR library. In the analyzed energy range, this work nearly doubles the resolved resonance region (RRR) present in the latest US nuclear data library ENDF/B-VII.1. In view of the interest in tungsten for distinct types of nuclear applications and the relatively homogeneous distribution of the isotopic tungsten—namely, 182W(26.5%), 183W(14.31%), 184W(30.64%), and 186W(28.43%) - the completion of these four evaluations represents a significant contribution to the improvement of the ENDF library. This paper presents an overview of the evaluated resonance parameters and related covariances for total and capture cross sections on the four tungsten isotopes.

  4. LOW-FIDELITY COVARIANCES FOR NEUTRON CROSS SECTIONS ON 57 STRUCTURAL AND 31 HEAVY NUCLEI IN THE FAST REGION.

    SciTech Connect

    PIGNI,M.T.; HERMAN, M.; OBLOZINSKY, P.

    2008-03-01

    We produced a large set of neutron cross section covariances in the energy range of 5 keV-20 MeV. The present set of data on 57 structural materials and 31 heavy nuclei follows our earlier work on 219 fission product materials and completes our extensive contribution to the low-fidelity covariance project (307 materials). This project aims to provide initial, low-fidelity yet consistent estimates of covariance data for nuclear criticality safety applications. The evaluation methodology combines the nuclear reaction model code EMPIRE which calculates sensitivity to nuclear reaction model parameters, and the Bayesian code KALMAN that propagates uncertainties of the model parameters to cross sections. Taking into account the large scale of the project, only marginal reference to experimental data was made. The covariances were derived from the perturbation of several key model parameters selected by the sensitivity analysis. These parameters refer to the optical model potential, the level densities and the strength of the pre-equilibrium emission. This work represents the first attempt ever to generate nuclear data covariances on such a large scale.

  5. 30-Group Neutron, 12-Group Photon Cross Sections from ENDF/B-V in MATSX Format.

    Energy Science and Technology Software Center (ESTSC)

    1985-12-30

    Version: 00 The library was prepared with a fusion + fission + l/E + thermal Maxwellian weight function and has proved useful for many high energy calculations, including criticals such as GODIVA. It works reasonably well for many shielding problems where resonance selfshielding is not too important. The energy group structures for MATXSSA are listed in Table 1, the materials with neutron scattering data in Table 2, those with photon production data in Table 3,more » and those with photon scattering data In Table 4.« less

  6. 30-Group Neutron, 12-Group Photon Cross Sections from ENDF/B-IV in MATXS Format.

    Energy Science and Technology Software Center (ESTSC)

    1985-12-30

    Version: 00 The library was prepared with a fusion + fission + l/E + thermal Maxwellian weight function and has proved useful for many high energy calculations, including criticals such as GODIVA. It works reasonably well for many shielding problems where resonance selfshielding is not too important. The energy group structures for MATXSl are listed in Table 1, the materials with neutron scattering data in Table 2, those with photon production data in Table 3,more » and those with photon scattering data in Table 4.« less

  7. Evaluation of cross sections for neutron-induced reactions in sodium. [10/sup -5/ eV to 20 MeV

    SciTech Connect

    Larson, D.C.

    1980-09-01

    An evaluation of the neutron-induced cross sections of /sup 23/Na has been done for the energy range from 10/sup -5/ eV to 20 MeV. All significant cross sections are given, including differential cross sections for production of gamma rays. The recommended values are based on experimental data where available, and use results of a consistent model code analysis of available data to predict cross sections where there are no experimental data. This report describes the evaluation that was submitted to the Cross Section Evaluation Working Group (CSEWG) for consideration as a part of the Evaluated Nuclear Data File, Version V, and subsequently issued as MAT 1311. 126 references, 130 figures, 14 tables.

  8. Neutron physics of the Re/Os clock. II. The (n,n{sup '}) cross section of {sup 187}Os at 30 keV neutron energy

    SciTech Connect

    Mosconi, M.; Heil, M.; Kaeppeler, F.; Plag, R.; Mengoni, A.

    2010-07-15

    The inelastic neutron-scattering cross section of {sup 187}Os has been determined in a time-of-flight experiment at the Karlsruhe 3.7-MV Van de Graaff accelerator. An almost monoenergetic beam of 30-keV neutrons was produced at the threshold of the {sup 7}Li(p,n){sup 7}Be reaction. Information on the inelastic channel is required for reliable calculations of the so-called stellar enhancement factor, by which the laboratory cross section of {sup 187}Os must be corrected in order to account for the thermal population of low-lying excited states at the temperatures of s-process nucleosynthesis, in particular of the important state at 9.75 keV. This correction represents a crucial step in the interpretation of the {sup 187}Os/{sup 187}Re pair as a cosmochronometer.

  9. Neutron physics of the Re/Os clock. II. The (n,n') cross section of Os187 at 30 keV neutron energy

    NASA Astrophysics Data System (ADS)

    Mosconi, M.; Heil, M.; Käppeler, F.; Plag, R.; Mengoni, A.

    2010-07-01

    The inelastic neutron-scattering cross section of Os187 has been determined in a time-of-flight experiment at the Karlsruhe 3.7-MV Van de Graaff accelerator. An almost monoenergetic beam of 30-keV neutrons was produced at the threshold of the Li7(p,n)Be7 reaction. Information on the inelastic channel is required for reliable calculations of the so-called stellar enhancement factor, by which the laboratory cross section of Os187 must be corrected in order to account for the thermal population of low-lying excited states at the temperatures of s-process nucleosynthesis, in particular of the important state at 9.75 keV. This correction represents a crucial step in the interpretation of the Os187/Re187 pair as a cosmochronometer.

  10. Systematics Studies of the Production Cross Sections of (n,tritium) Reaction Via 14.5 MeV Neutrons

    SciTech Connect

    Belgaid, M.; Kadem, F.; Asghar, M

    2005-07-15

    A new semi-empirical formula with five parameters has been derived to systematize the (n,t) cross section data of 14.5MeV neutrons. It is based on the evaporation model and uses the droplet model of Myers and Swiatecki to express the Q{sub (n,t)}. The behavior of the different terms of the droplet model involved in Q{sub (n,t)} was checked individually before choosing the pertinent terms and setting up the formula. This relation leads to the lowest value of {chi}{sup 2} compared with the existing formulae, when used to correlate the experimental {sigma}{sub (n,t)} data for 25 nuclei.

  11. Measurement of the Neutron Induced Fission Cross Section on Transuranic (TRU) Elements at the n_TOF Facility at CERN

    SciTech Connect

    Mastinu, P. F.; Koehler, Paul Edward; Collaboration, n_TOF

    2007-01-01

    During the 2004 campaign, the n{_}TOF collaboration measured neutron fission cross sections for 233U, 241,243Am, 245Cm, as well as the fission standards 235,238U, using a sealed Fission Ionization Chamber (FIC). The setup included a total of 16 targets and 18 electrodes mounted together in a 50-cm length chamber, allowing the measurements of all isotopes at the same time, thus in the same experimental conditions. A brief description of the facility and of the detector setup will be presented followed by the preliminary results of the analysis of 235U, 233U, and 245Cm from thermal energies up to some tenths of MeV

  12. Scaling of charge-changing interaction cross sections and point-proton radii of neutron-rich carbon isotopes.

    PubMed

    Yamaguchi, T; Hachiuma, I; Kitagawa, A; Namihira, K; Sato, S; Suzuki, T; Tanihata, I; Fukuda, M

    2011-07-15

    Charge-changing cross sections σ(cc) of stable and unstable nuclei ((9-11)Be, (14-16)C, and (16-18)O) on a carbon target were investigated at 300  MeV/nucleon. A phenomenological analysis based on the Glauber theory indicates an approximate, but universal, scaling of σ(cc) over a wide range of A/Z. This allows the determination of the density distributions of protons tightly bound in the nuclei. An application to (16)C, which is considered to be an anomalously deformed nucleus, indicates a systematic evolution of proton root-mean-square radii and has revealed for the first time a neutron skin effect in carbon isotopes. Being complementary to isotope-shift and electron-scattering experiments, the present method can open up a new approach to explore the structure of exotic nuclei. PMID:21838353

  13. Cross Sections and Analyzing Powers of Nitrogen -15(PROTON, NEUTRON)OXYGEN-15 at 200 Mev and 494 Mev.

    NASA Astrophysics Data System (ADS)

    Ciskowski, Douglas Edward

    Differential cross sections and analyzing powers have been measured for the ^{15} N(p,n)^{15}O(g.s.) reaction at bombarding energies of 200 MeV and 494 MeV. The 494 MeV data were obtained at the LAMPF Neutron Time-Of -Flight Facility on an 82 m flight path with a resolution of about 2.7 MeV. The 200 MeV data were obtained at IUCF on a 76 m flight path with a resolution of about 1.1 MeV. At both energies, the measured analyzing power is small, the magnitude is less than.2 for momentum transfers of less than 1 fm^{-1}. In contrast, both Relativistic and standard DWIA calculations predict a maximum of A = -.7 near q = 0.7 fm ^{-1}.

  14. Code System for Producing Pointwise and Multigroup Neutron and Photon Cross Sections from ENDF/B Data.

    Energy Science and Technology Software Center (ESTSC)

    1995-06-01

    Version 04 The NJOY nuclear data processing system is a comprehensive computer code package for producing pointwise and multigroup neutron and photon cross sections from ENDF/B evaluated nuclear data. This is the last NJOY-91 series. It uses the same module structure as the earlier versions and its graphics options depend on DISSPLA. This new release, designated NJOY91.119, includes bug fixes, improvements in several modules, and some new capabilities. Information on the changes is included inmore » the README file. A new test problem was added to test some ENDF-6 features, including Reich-Moore resonance reconstruction, energy-angle matrices in GROUPR, and energy-angle distributions in ACER. The 91.119 release is basically configured for UNIX.« less

  15. Measurement of the Absolute Elastic and Inelastic Differential Neutron Cross Sections for 23Na between 2 and 4 MeV

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; McEllistrem, M. T.; Crider, B. P.; Peters, E. E.; Prados-Estevez, F. M.; Chakraborty, A.; Yates, S. W.; Sigillito, A.; McDonough, P. J.; Kersting, L. J.; Luke, C. J.; Hicks, S. F.; Vanhoy, J. R.

    2011-10-01

    Elastic and inelastic neutron scattering angular distributions for 23Na sample were measured at the University of Kentucky using the time-of-flight (ToF) technique, between 2 and 4 MeV incident neutron energies.Normalization of yields into scattering cross sections was accomplished by comparison of Na yields to the yields obtained from hydrogen in polyethylene samples via the well-known n-p scattering cross sections.The 3H(p,n) differential cross sections are used to determine the energy-dependent efficiency of the main detector. Because the efficiency of this detector appears as a ratio in the comparison of scattered yields from different samples, the absolute values of the 3H(p,n) cross sections are not critical, but their energy dependence is. This work is supported by the U.S. DOE contract no. DE-AC07-051D14517.

  16. Neutron capture cross sections of /sup 178/,/sup 179/,/sup 180/Hf and the origin of nature's rarest stable isotope /sup 180/Ta

    SciTech Connect

    Beer, H.; Macklin, R.L.

    1982-01-01

    The neutron capture cross sections of /sup 178/,/sup 179/,/sup 180/Hf were measured in the energy range 2.6 keV to 2 MeV. The average capture cross sections were derived and fitted in terms of strength functions. Resonance parameters for the observed resonances below 10 keV were determined by shape analysis. Maxwellian-averaged capture cross sections were computed for thermal energies with kT between 5 and 100 keV. The cross sections for kT = 30 keV were used to determine the population probability of the 8- isomeric level in /sup 180/Hf by neutron capture as (1.24 +- 0.06)% and the r-process abundance of /sup 180/Hf as 0.0290 (Si = 10/sup 6/). These quantities served to analyze s- and r-process nucleosynthesis of /sup 180/Ta, nature's rarest stable isotope.

  17. Measurement of the keV-neutron capture cross section and capture gamma-ray spectrum of isotopes around N=82 region

    SciTech Connect

    Katabuchi, Tatsuya; Igashira, Masayuki

    2012-11-12

    The keV-neutron capture cross section and capture {gamma}-ray spectra of nuclides with a neutron magic number N= 82, {sup 139}La and {sup 142}Nd, were newly measured by the time-of-flight method. Capture {gamma}-rays were detected with an anti-Compton NaI(T1) spectrometer, and the pulse-height weighting technique was applied to derive the neutron capture cross section. The results were provided with our previous measurements of other nuclides around N= 82, {sup 140}Ce, {sup 141}Pr, {sup 143}Nd and {sup 145}Nd.

  18. Impact of a low-energy enhancement in the gamma-ray strength function on the neutron-capture cross section

    SciTech Connect

    Larsen, A. C.; Goriely, S.

    2010-07-15

    A low-energy enhancement of the gamma-ray strength function in several light and medium-mass nuclei has been observed recently in {sup 3}He-induced reactions. The effect of this enhancement on (n,gamma) cross sections is investigated for stable and unstable neutron-rich Fe, Mo, and Cd isotopes. Our results indicate that the radiative neutron capture cross sections may increase considerably due to the low-energy enhancement when approaching the neutron drip line. This could have non-negligible consequences on r-process nucleosynthesis calculations.

  19. Neutron-induced fission cross section of {sup nat}Pb and {sup 209}Bi from threshold to 1 GeV: An improved parametrization

    SciTech Connect

    Tarrio, D.; Duran, I.; Paradela, C.; Tassan-Got, L.; Audouin, L.; Berthier, B.; Ferrant, L.; Isaev, S.; Le Naour, C.; Stephan, C.; Trubert, D.; David, S.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.

    2011-04-15

    Neutron-induced fission cross sections for {sup nat}Pb and {sup 209}Bi were measured with a white-spectrum neutron source at the CERN Neutron Time-of-Flight (n{sub T}OF) facility. The experiment, using neutrons from threshold up to 1 GeV, provides the first results for these nuclei above 200 MeV. The cross sections were measured relative to {sup 235}U and {sup 238}U in a dedicated fission chamber with parallel plate avalanche counter detectors. Results are compared with previous experimental data. Upgraded parametrizations of the cross sections are presented, from threshold energy up to 1 GeV. The proposed new sets of fitting parameters improve former results along the whole energy range.

  20. Cross sections of ground and isomeric states for (n,p) reaction on Sm-154 between 13.57 and 14.83MeV neutrons.

    PubMed

    Reyhancan, Iskender Atilla

    2016-07-01

    In this study, the activation cross sections were measured for the (154)Sm(n,p)(154g)Pm, and (154)Sm(n,p)(154m)Pm reactions at several neutron energies between 13.57 and 14.83MeV, which were produced by the neutron generator (SAMES T-400) through the (3)H((2)H,n)(4)He reaction. The production of short-lived activity and the spectra accumulation were performed by the cyclic activation technique. Induced gamma-ray activities were measured using a high resolution gamma ray spectrometer equipped with a high-purity Germanium (HPGe) detector. In the cross section measurements, corrections were made regarding the effects of gamma-ray attenuation, dead-time, fluctuation of neutron flux, and low energy neutrons. The measured cross sections were compared with data reported in literature as well as model calculations using the code TALYS 1.6. PMID:27149398

  1. Measurements of isomeric cross sections for the (n,α) reaction on the ¹⁴²Nd isotope at approximately 14 MeV neutrons.

    PubMed

    Reyhancan, Iskender Atilla

    2014-09-01

    In this study, the activation cross sections were measured for (142)Nd(n,α)(139m)Ce reaction at four neutron energies between 13.57 and 14.83 MeV, which were produced by a neutron generator through (3)H((2)H,n)(4)He reaction. The production of short-lived activity and the spectra accumulation were performed by the cyclic activation technique. Induced gamma-ray activities were measured using a high resolution gamma ray spectrometer equipped with a high-purity Germanium (HpGe) detector. In the cross section measurements, corrections were made regarding the effects of the gamma-ray attenuation, the dead-time, the fluctuation of the neutron flux, and low energy neutrons. The measured cross sections were compared with the published literature and the results of the model calculation (TALYS 1.4). PMID:24886965

  2. A Modified Version of XLACS-II for Processing ENDF Data into Multigroup Neutron Cross Sections in AMPX Master Library Format.

    Energy Science and Technology Software Center (ESTSC)

    1982-05-07

    XLACS-IIA calculates fine-group averaged neutron cross sections from ENDF data. Its primary purpose is to produce full range multigroup libraries for the XSDRN-PM program. It also serves this purpose in the AMPX system. Provisions are included for treating fast, resonance, and thermal ENDF/B data. Fine-group energy structures and expansion orders used to represent differential cross sections for XSDRN can be arbitrarily specified by the user. Cross sections can be averaged over an arbitrary user-supplied weightingmore » function or by any of several built-in weighting functions.« less

  3. Evaluation of Neutron Capture Cross Sections and Covariances on 99Tc and 129I in the keV Energy Region

    NASA Astrophysics Data System (ADS)

    Iwamoto, Nobuyuki

    2016-03-01

    Neutron capture cross sections and covariances on radioactive 99Tc and 129I have been required for developing environmental load-reducing technology. Their evaluation was performed by using nuclear reaction calculation code CCONE and Baysian code KALMAN with data assumed on the basis of measured data. The obtained total and capture cross sections are in good agreement with the measured data. The resulting uncertainties of capture cross section were 12-18% and 20-29% for 99Tc and 129I, respectively, in the keV energy region.

  4. Au, Bi, Co and Nb cross-section measured by quasimonoenergetic neutrons from p + 7Li reaction in the energy range of 18-36 MeV

    NASA Astrophysics Data System (ADS)

    Majerle, M.; Bém, P.; Novák, J.; Šimečková, E.; Štefánik, M.

    2016-09-01

    Au, Bi, Co and Nb samples were irradiated several times with quasi-monoenergetic neutrons from p + 7Li reaction in the energy range of 18-36 MeV. The activities of the samples were measured with the HPGe detector and the reaction rates were calculated. The cross-sections were extracted using the SAND-II method with the reference cross-sections from the EAF-2010 database. The uncertainties of the final results are discussed.

  5. Measurement of neutron capture cross-section of the 71Ga(n, γ) 72Ga reaction at 0.0536 eV energy

    NASA Astrophysics Data System (ADS)

    Uddin, M. S.; Chowdhury, M. H.; Hossain, S. M.; Latif, Sk. A.; Hafiz, M. A.; Islam, M. A.; Zakaria, A. K. M.; Yunus, S. M.; Azharul Islam, S. M.

    2008-08-01

    The neutron capture cross-section for the 71Ga(n, γ) 72Ga reaction at 0.0536 eV energy was measured using activation technique based on TRIGA Mark-II research reactor. The 197Au(n, γ) 198Au monitor reaction was used to determine the effective neutron flux. Neutron absorption and γ-ray attenuation in gallium oxide pellet were corrected in determination of cross-section. The cross-section for the above reaction at 0.0536 eV amounts to 2.75 ± 0.14 b. As far as we know there are no experimental data available at our investigated energy. So far we are the first, who carried out experiment with 0.0536 eV neutrons for cross-section measurement. The present result is larger than that of JENDL-3.3, but consistent within the uncertainty range. The value of ENDF/B-VII is higher than this work. The result of this work will be useful to observe energy dependence of neutron capture cross-sections.

  6. Low-Fidelity Covariances: Neutron Cross Section Covariance Estimates for 387 Materials

    DOE Data Explorer

    The Low-fidelity Covariance Project (Low-Fi) was funded in FY07-08 by DOEÆs Nuclear Criticality Safety Program (NCSP). The project was a collaboration among ANL, BNL, LANL, and ORNL. The motivation for the Low-Fi project stemmed from an imbalance in supply and demand of covariance data. The interest in, and demand for, covariance data has been in a continual uptrend over the past few years. Requirements to understand application-dependent uncertainties in simulated quantities of interest have led to the development of sensitivity / uncertainty and data adjustment software such as TSUNAMI [1] at Oak Ridge. To take full advantage of the capabilities of TSUNAMI requires general availability of covariance data. However, the supply of covariance data has not been able to keep up with the demand. This fact is highlighted by the observation that the recent release of the much-heralded ENDF/B-VII.0 included covariance data for only 26 of the 393 neutron evaluations (which is, in fact, considerably less covariance data than was included in the final ENDF/B-VI release).[Copied from R.C. Little et al., "Low-Fidelity Covariance Project", Nuclear Data Sheets 109 (2008) 2828-2833] The Low-Fi covariance data are now available at the National Nuclear Data Center. They are separate from ENDF/B-VII.0 and the NNDC warns that this information is not approved by CSEWG. NNDC describes the contents of this collection as: "Covariance data are provided for radiative capture (or (n,ch.p.) for light nuclei), elastic scattering (or total for some actinides), inelastic scattering, (n,2n) reactions, fission and nubars over the energy range from 10(-5{super}) eV to 20 MeV. The library contains 387 files including almost all (383 out of 393) materials of the ENDF/B-VII.0. Absent are data for (7{super})Li, (232{super})Th, (233,235,238{super})U and (239{super})Pu as well as (223,224,225,226{super})Ra, while (nat{super})Zn is replaced by (64,66,67,68,70{super})Zn

  7. {sup 48}Ti(n,xnpa{gamma}) reaction cross sections using spallation neutrons for E{sub n} = 1 to 20 MeV

    SciTech Connect

    Dashdorj, D; Mitchell, G E; Garrett, P E; Agvaanluvsan, U; Becker, J A; Bernstein, L A; Cooper, J R; Hoffman, R D; Younes, W; Devlin, N; Fotiades, N; Nelson, R O

    2005-01-06

    {gamma}-ray excitation functions have been measured for the interaction of fast neutrons with {sup 48}Ti (neutron energy from 1 MeV to 250 MeV). The Los Alamos National Laboratory spallation neutron source, at the LANSCE/WNR facility, provided a ''white'' neutron beam which is produced by bombarding a natural W target with a pulsed proton beam. The prompt-reaction {gamma} rays were measured with the large-scale Compton-suppressed Ge spectrometer, GEANIE. Neutron energies were determined by the time-of-flight technique. Excitation functions were converted to partial {gamma}-ray cross sections, taking into account the dead-time correction, the target thickness, the detector efficiency, and neutron flux (monitored with an in-line fission chamber). The data analysis is presented here for neutron energies between 1 to 20 MeV. Partial {gamma}-ray cross sections for transitions in {sup 47,48}Ti, {sup 48}Sc, and {sup 45}Ca have been determined. These results are compared to Hauser-Feshbach predictions calculated using the STAPRE code, which includes compound nuclear and pre-equilibrium emission. The partial cross sections for {gamma} rays, whose discrete {gamma}-ray cascade path leads to the ground state in {sup 48}Ti, {sup 47}Ti, {sup 48}Sc, and {sup 45}Ca have been summed to obtain estimates of the lower limits for reaction cross sections. Partial cross sections for unobserved {gamma}-rays are predicted from the STAPRE code. These lower limits are combined with Hauser-Feshbach calculations to deduce {sup 48}Ti(n,n'){sup 48}Ti, {sup 48}Ti(n,2n){sup 47}Ti, {sup 48}Ti(n,p){sup 48}Sc, and {sup 48}Ti(n,{alpha}){sup 45}Ca reaction channel cross sections.

  8. Status report on multigroup cross section generation code development for high-fidelity deterministic neutronics simulation system.

    SciTech Connect

    Yang, W. S.; Lee, C. H.

    2008-05-16

    Under the fast reactor simulation program launched in April 2007, development of an advanced multigroup cross section generation code was initiated in July 2007, in conjunction with the development of the high-fidelity deterministic neutron transport code UNIC. The general objectives are to simplify the existing multi-step schemes and to improve the resolved and unresolved resonance treatments. Based on the review results of current methods and the fact that they have been applied successfully to fast critical experiment analyses and fast reactor designs for last three decades, the methodologies of the ETOE-2/MC{sup 2}-2/SDX code system were selected as the starting set of methodologies for multigroup cross section generation for fast reactor analysis. As the first step for coupling with the UNIC code and use in a parallel computing environment, the MC{sup 2}-2 code was updated by modernizing the memory structure and replacing old data management package subroutines and functions with FORTRAN 90 based routines. Various modifications were also made in the ETOE-2 and MC{sup 2}-2 codes to process the ENDF/B-VII.0 data properly. Using the updated ETOE-2/MC{sup 2}-2 code system, the ENDF/B-VII.0 data was successfully processed for major heavy and intermediate nuclides employed in sodium-cooled fast reactors. Initial verification tests of the MC{sup 2}-2 libraries generated from ENDF/B-VII.0 data were performed by inter-comparison of twenty-one group infinite dilute total cross sections obtained from MC{sup 2}-2, VIM, and NJOY. For almost all nuclides considered, MC{sup 2}-2 cross sections agreed very well with those from VIM and NJOY. Preliminary validation tests of the ENDF/B-VII.0 libraries of MC{sup 2}-2 were also performed using a set of sixteen fast critical benchmark problems. The deterministic results based on MC{sup 2}-2/TWODANT calculations were in good agreement with MCNP solutions within {approx}0.25% {Delta}{rho}, except a few small LANL fast assemblies

  9. Inelastic neutron scattering cross sections for 76Ge relevant to background in neutrinoless double-beta decay experiments

    DOE PAGESBeta

    Crider, Ben; Peters, Erin; Allmond, James M; McEllistrem, M; Prados-Estevez, F.; Ross, T.J.; Vanhoy, J.R.; Yates, S.W.

    2015-01-01

    The experimental signature in searches for the neutrinoless double- decay of 76Ge is a peak near 2039 keV in the spectrum. Given the low probability of the process, it is important that the background in this region be well understood. Inelastic scattering reactions with neutrons from muon-induced interactions and ( ,n) reactions in the surrounding materials or in the detector can provide contributions to the background. We have measured the production cross sections for rays from the 76Ge(n,n ) reaction in the 2039-keV region at incident neutron energies up to 4.9 MeV. In addition to determining that the cross sectionsmore » of a previously known 2040.7-keV ray from the 3952-keV level in 76 Ge are rather small, we find that a larger contribution arises from a 2037.5-keV ray which is attributed to a newly identified level at 3147 keV in 76Ge. A third contribution is also possible from another new level at 3577 keV. These results indicate that the 2039-keV region in 76Ge neutrinoless double- decay searches is more complex than was previously thought.« less

  10. Inelastic neutron scattering cross sections for Ge76 relevant to background in neutrinoless double- β decay experiments

    DOE PAGESBeta

    Crider, B. P.; Peters, E. E.; Allmond, J. M.; McEllistrem, M. T.; Prados-Estévez, F. M.; Ross, T. J.; Vanhoy, J. R.; Yates, S. W.

    2015-09-11

    The experimental signature in searches for the neutrinoless double- decay of 76Ge is a peak near 2039 keV in the spectrum. Given the low probability of the process, it is important that the background in this region be well understood. Moreover, inelastic scattering reactions with neutrons from muon-induced interactions and ( ,n) reactions in the surrounding materials or in the detector can provide contributions to the background. We also measured the production cross sections for rays from the 76Ge(n,n ) reaction in the 2039-keV region at incident neutron energies up to 4.9 MeV. In addition to determining that the crossmore » sections of a previously known 2040.7-keV ray from the 3952-keV level in 76 Ge are rather small, we find that a larger contribution arises from a 2037.5-keV ray which is attributed to a newly identified level at 3147 keV in 76Ge. Finally, a third contribution is also possible from another new level at 3577 keV. These results indicate that the 2039-keV region in 76Ge neutrinoless double- decay searches is more complex than was previously thought.« less

  11. Neutron capture cross-section measurement for the 186W(n,gamma)187W reaction at 0.0536eV energy.

    PubMed

    Uddin, M S; Chowdhury, M H; Hossain, S M; Latif, Sk A; Hafiz, M A; Islam, M A; Zakaria, A K M; Azharul Islam, S M

    2008-09-01

    The thermal neutron-induced activation cross section for the (186)W(n,gamma)(187)W reaction was measured at 0.0536eV neutron energy using TRIGA Mark-II research reactor, Atomic Energy Research Establishment, Savar, Dhaka, Bangladesh. The (197)Au(n,gamma)(198)Au monitor reaction induced in a high-purity gold foil was used to determine the effective neutron beam intensity. The activities induced in sample and monitor foils were measured nondestructively by a high-resolution HPGe gamma-ray detector. The present experimental cross-section value is the first one at 0.0536eV. The obtained new cross section that amounts to 26.6+/-1.6b is 2% higher than the recently reported data in ENDF/B-VII and 5% lower than that of JENDL-3.3. PMID:18325774

  12. {sup 241}Am(n,{gamma}) cross section in the neutron energy region between 0.02 eV and 300 keV

    SciTech Connect

    Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O' Donnell, J. M.; Haight, R. C.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Macri, R. A.; Wu, C. Y.; Becker, J. A.

    2008-04-17

    The Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL) was used for a neutron capture cross section measurement on {sup 241}Am. The high granularity of the DANCE array (160 BaF2 detectors in a 4{pi} geometry) enables an efficient detection of prompt gamma rays following neutron capture. The preliminary results on the {sup 241}Am(n,{gamma}) cross section are presented from 0.02 eV to 300 keV. The cross section at thermal energy E{sub n} = 0.0253 eV was determined to be 665{+-}33 barns. Resonance parameters were obtained using the SAMMY7 fit to the measured cross section in the resonance region. Significant discrepancies were found between our results and data evaluations for the first three lowest lying resonances. The cross section for neutrons with E{sub n}>l keV agrees well with the ENDF/B-VII.0 and JENDL-3.3 evaluations.

  13. Validation Analyses of IEAF-2001 Activation Cross-Section Data for SS-316 and F82H Steels Irradiated in a White d-Li Neutron Field

    NASA Astrophysics Data System (ADS)

    Simakov, S. P.; Fischer, U.; v. Möllendorff, U.; Schmuck, I.; Tsige-Tamirat, H.; Wilson, P. P. H.

    2005-05-01

    The evaluated intermediate-energy activation cross-section library IEAF-2001 has been tested against integral experiments with SS-316 and F82H steels exposed to a white neutron flux spectrum extending up to 55 MeV. By making use of the ALARA inventory code the expected γ-active product nuclide inventories were calculated and compared with the measured one. It was found that IEAF-2001 reasonably agrees with experimental data for most of the detected radioisotopes. The reasons for some larger disagreements were found to be the uncertainty of the sample elemental composition, non-validated neutron activation reaction cross sections, and sequential charge particle reactions.

  14. (n,2n) and (n,3n) cross sections of neutron-induced reactions on 150Sm for En from threshold to 35 MeV

    SciTech Connect

    Dashdorj, D; Mitchell, G; Kawano, T; Becker, J; Wu, C; Devlin, M; Fotiades, N; Nelson, R; Kunieda, S

    2009-03-16

    Cross-section measurements were made of prompt discrete {gamma}-ray production as a function of incident neutron energy (E{sub n} = 1 to 35 MeV) on a {sup 150}Sm sample fo 1550 mg/cm{sup 2} of Sm{sub 2}O{sub 3} enriched to 95.6% in {sup 150}Sm. Results are compared with enhanced Hauser-Feshbach model calculations including the pre-equilibrium reactions. Energetic neutrons were delivered by the Los Alamos Neutron Science Center facility. The prompt-reaction {gamma} rays were detected with the Compton-suppressed Germanium Array for Neutron Induced Excitations (GEANIE). Incident neutron energies were determined by the time-of-flight technique. Excitation functions for thirteen individual {gamma}-rays up to E{sub x} = 0.8 MeV in {sup 149}Sm and one {gamma}-ray transition between the first excited and ground state in {sup 148}Sm were measured. Partial {gamma}-ray cross sections were calculated using GNASH, an enhanced Hauser-Feshbach statistical nuclear reaction model code, and compared with the experimental results. The particle transmission coefficients were calculated with new systematic 'global' optical model potential parameters. The coupled-channel optical model based on the soft rotor model was employed to calculate the particle transmission coefficients. The pre-equilibrium part of the spin distribution in {sup 150}Sm was calculated using the quantum mechanical theory of Feshbach, Kerman, and Koonin (FKK) and incorporated into the GNASH reaction model code. the partial cross sections for discrete {gamma}-ray cascade paths leading to the ground state in {sup 149}Sm and {sup 148}Sm have been summed (without double counting) to estimate lower limits for reaction cross sections. These lower limits are combined with Hauser-Feshbach model calculations to deduce the reaction channel cross sections. These reaction channel cross sections agree with previously measured experimental and ENDF/B-VII evaluations.

  15. Neutron Thermal Cross Sections, Westcott Factors, Resonance Integrals, Maxwellian Averaged Cross Sections and Astrophysical Reaction Rates Calculated from the ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0, ROSFOND-2010, CENDL-3.1 and EAF-2010 Evaluated Data Libraries

    SciTech Connect

    Pritychenko, B.; Mughabghab, S.F.

    2012-12-15

    We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-process Maxwellian-averaged cross sections and astrophysical reaction rates, systematically calculate uncertainties, and provide additional insights on currently available neutron-induced reaction data. Nuclear reaction calculations are discussed and new results are presented. Due to space limitations, the present paper contains only calculated Maxwellian-averaged cross sections and their uncertainties. The complete data sets for all results are published in the Brookhaven National Laboratory report.

  16. Neutron Thermal Cross Sections, Westcott Factors, Resonance Integrals, Maxwellian Averaged Cross Sections and Astrophysical Reaction Rates Calculated from the ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0, ROSFOND-2010, CENDL-3.1 and EAF-2010 Evaluated Data Libraries

    NASA Astrophysics Data System (ADS)

    Pritychenko, B.; Mughabghab, S. F.

    2012-12-01

    We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-process Maxwellian-averaged cross sections and astrophysical reaction rates, systematically calculate uncertainties, and provide additional insights on currently available neutron-induced reaction data. Nuclear reaction calculations are discussed and new results are presented. Due to space limitations, the present paper contains only calculated Maxwellian-averaged cross sections and their uncertainties. The complete data sets for all results are published in the Brookhaven National Laboratory report.

  17. Neutron capture cross sections of {sup 186}Os, {sup 187}Os, and {sup 189}Os for the Re-Os chronology

    SciTech Connect

    Segawa, M.; Masaki, T.; Nagai, Y.; Temma, Y.; Shima, T.; Mishima, K.; Igashira, M.; Goriely, S.; Koning, A.; Hilaire, S.

    2007-08-15

    Discrete as well as continuum {gamma}-ray energy spectra from the neutron capture by {sup 186}Os, {sup 187}Os, and {sup 189}Os have been taken for the first time at 5{<=}E{sub n}{<=}90 keV by an anti-Compton NaI(Tl) spectrometer. The detection of a weak discrete {gamma}-ray, about 0.5% of total {gamma}-ray strength, demonstrates the high sensitivity of the present measurement. The energy spectra enabled us to accurately determine the reaction cross sections with a small systematic uncertainty. Based on the new cross sections, we reestimate on the basis of a careful reaction cross section calculation the correction factor F{sub {sigma}} for the neutron capture on the 9.75-keV first excited state in {sup 187}Os as a function of stellar temperature, as required to derive the age of the galaxy within the Re-Os chronology.

  18. Cross sections of proton- and neutron-induced reactions by the Liège intranuclear cascade model

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Dong, Tiekuang; Ren, Zhongzhou

    2016-06-01

    The purpose of the paper is mainly to test the validity of the Liège intranuclear cascade (INCL) model in calculating the cross sections of proton-induced reactions for cosmogenic nuclei using the newly compiled database of proton cross sections. The model calculations of 3He display the rising tendency of cross sections with the increase of energy, in accordance with the experimental data. Meanwhile, the differences between the theoretical results and experimental data of production cross sections (10Be and 26Al) are generally within a factor of 3, meaning that the INCL model works quite well for the proton-induced reactions. Based on the good agreement, we predict the production cross sections of 26Al from reactions n + 27Al, n + 28Si, and n + 40Ca and those of 10Be from reactions n + 16O and n + 28Si. The results also show a good agreement with a posteriori excitation functions.

  19. Neutron cross sections of sup 122 Te, sup 123 Te, and sup 124 Te between 1 and 60 keV

    SciTech Connect

    Xia, Y.; Gerstenhoefer, T.W.; Jaag, S.; Kaeppeler, F.; Wisshak, K. )

    1992-05-01

    The currently favored {ital s} process scenario of helium shell burning in low mass stars involves a range of thermal energies from {ital kT}=12 to 25 keV with most of the neutron exposure taking place at low temperatures. Therefore, differential cross sections are required down to the region of resolved resonances for the reliable determination of the Maxwellian-averaged cross sections typical of the stellar plasma. This work deals with the neutron capture cross sections of the important {ital s} only isotopes {sup 122}Te, {sup 123}Te, and {sup 124}Te, which were measured between 1 and 60 keV neutron energy with a setup of Moxon-Rae detectors. The systematic uncertainties achieved in this experiment are {similar to}5%, but statistical uncertainties are smaller than 2%. In addition to the Moxon-Rae detectors, the setup includes a {sup 6}Li glass detector which could be used to determine the total neutron cross sections simultaneously. These results represent the first set of experimental data in this energy range.

  20. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234,236,238U Neutron-Capture Cross Sections

    SciTech Connect

    Ullmann, John Leonard; Kawano, Toshihiko; Bredeweg, Todd Allen; Baramsai, Bayarbadrakh; Couture, Aaron Joseph; Haight, Robert Cameron; Jandel, Marian; Mosby, Shea Morgan; O'Donnell, John M.; Rundberg, Robert S.; Vieira, David J.; Wilhelmy, Jerry B.; Becker, John A.; Wu, Ching-Yen; Krticka, Milan

    2015-05-28

    Neutron capture cross sections in the “continuum” region (>≈1 keV) and gamma-emission spectra are of importance to basic science and many applied fields. Careful measurements have been made on most common stable nuclides, but physicists must rely on calculations (or “surrogate” reactions) for rare or unstable nuclides. Calculations must be benchmarked against measurements (cross sections, gamma-ray spectra, and <Γγ>). Gamma-ray spectrum measurements from resolved resonances were made with 1 - 2 mg/cm2 thick targets; cross sections at >1 keV were measured using thicker targets. The results show that the shape of capture cross section vs neutron energy is not sensitive to the form of the strength function (although the magnitude is); the generalized Lorentzian E1 strength function is not sufficient to describe the shape of observed gamma-ray spectra; MGLO + “Oslo M1” parameters produces quantitative agreement with the measured 238U(n,γ) cross section; additional strength at low energies (~ 3 MeV) -- likely M1-- is required; and careful study of complementary results on low-lying giant resonance strength is needed to consistently describe observations.

  1. Recent fission cross section standards measurements

    SciTech Connect

    Wasson, O.A.

    1985-01-01

    The /sup 235/U(n,f) reaction is the standard by which most neutron induced fission cross sections are determined. Most of these cross sections are derived from relatively easy ratio measurements to /sup 235/U. However, the more difficult /sup 235/U(n,f) cross section measurements require the use of advanced neutron detectors for the determination of the incident neutron fluence. Examples of recent standard cross section measurements are discussed, various neutron detectors are described, and the status of the /sup 235/U(n,f) cross section standard is assessed. 23 refs., 8 figs., 4 tabs.

  2. Measurement of reaction cross-sections for 89Y at average neutron energies of 7.24-24.83 MeV

    NASA Astrophysics Data System (ADS)

    Zaman, Muhammad; Kim, Guinyun; Naik, Haladhara; Kim, Kwangsoo; Shahid, Muhammad

    2015-05-01

    We measured neutron-induced reaction cross-sections for 89Y(n,γ)90mY and 89Y(n,α)86Rb reactions with the average neutron energy region from 7.45 to 24.83 MeV by an activation and off-line γ-ray spectrometric technique using the MC-50 Cyclotron at Korea Institute of Radiological and Medical Sciences. The neutron-induced reaction cross-sections of 89Y as a function of neutron energy were taken from the TENDL-2013 library. The flux-weighted average cross-sections for 89Y(n,γ)90mY and 89Y(n,α)86Rb reactions were calculated from the TENDL-2013 values based on mono-energetic neutron and by using the neutron energy spectrum from MCNPX 2.6.0 code. The present results are compared with the flux-weighted values of TENDL-2013 and are found to be in good agreement

  3. Comparison of IUPAC k0 Values and Neutron Cross Sections to Determine a Self-consistent Set of Data for Neutron Activation Analysis

    SciTech Connect

    Firestone, Richard B; Revay, Zsolt

    2009-12-01

    Independent databases of nuclear constants for Neutron Activation Analysis (NAA) have been independently maintained by the physics and chemistry communities for many year. They contain thermal neturon cross sections s0, standardization values k0, and transition probabilities Pg. Chemistry databases tend to rely upon direct measurements of the nuclear constants k0 and Pg which are often published in chemistry journals while the physics databases typically include evaluated s0 and Pg data from a variety of experiments published mainly in physics journals. The IAEA/LBNL Evaluated Gamma-ray Activation File (EGAF) also contains prompt and delayed g-ray cross sections sg from Prompt Gamma-ray Activation Analysis (PGAA) measurements that can also be used to determine k0 and s0 values. As a result several independent databases of fundamental constants for NAA have evolved containing slightly different and sometimes discrepant results. An IAEA CRP for a Reference Database for Neutron Activation Analysis was established to compare these databases and investigate the possibilitiy of producing a self-consistent set of s0, k0, sg, and Pg values for NAA and other applications. Preliminary results of this IAEA CRP comparison are given in this paper.

  4. Measurement of the cross section for the reaction 20Ne( n,α)17O in the neutron-energy between 4 and 7 MeV

    NASA Astrophysics Data System (ADS)

    Khryachkov, V. A.; Bondarenko, I. P.; Kuzminov, B. D.; Semenova, N. N.; Sergachev, A. I.

    2012-04-01

    The cross section for the reaction 20Ne( n, α)17O was measured in the neutron-energy range 4-7 MeV. An ionization chamber equipped with a Frisch grid combined with a pulse-shape digitizer was used as a detector. Gaseous neon that served as a target on which the reaction being studied proceeded was added to the gas filling the ionization chamber. The partial cross sections for the α 0, α 1, α 2, and α 3 channels of the reaction 20Ne( n, α)17O were obtained for the first time.

  5. TREND code for reconstruction of neutron reaction cross sections and calculation of the Doppler broadening in the region of resolved resonances

    SciTech Connect

    Chichulin, N. L. Kulakov, A. S.

    2010-12-15

    The TREND code is developed for reconstruction of neutron cross sections in the region of resolved resonances from the data of the international evaluated nuclear data libraries using the Reich-Moore, Adler-Adler, and Breit-Wigner formalisms and for calculation of the Doppler broadening of the resulting cross sections within the classical approximation. The TREND code is incorporated into the MCU code package for Monte Carlo reactor calculations. The TREND and MCU codes have been used to evaluate the data of the ROSFOND data bank on uranium and plutonium isotopes in comparison with the data of the ICSBEP data bank.

  6. MANTA. An Integral Reactor Physics Experiment to Infer the Neutron Capture Cross Sections of Actinides and Fission Products in Fast and Epithermal Spectra

    SciTech Connect

    Youinou, Gilles Jean-Michel

    2015-10-01

    Neutron cross-sections characterize the way neutrons interact with matter. They are essential to most nuclear engineering projects and, even though theoretical progress has been made as far as the predictability of neutron cross-section models, measurements are still indispensable to meet tight design requirements for reduced uncertainties. Within the field of fission reactor technology, one can identify the following specializations that rely on the availability of accurate neutron cross-sections: (1) fission reactor design, (2) nuclear fuel cycles, (3) nuclear safety, (4) nuclear safeguards, (5) reactor monitoring and neutron fluence determination and (6) waste disposal and transmutation. In particular, the assessment of advanced fuel cycles requires an extensive knowledge of transuranics cross sections. Plutonium isotopes, but also americium, curium and up to californium isotope data are required with a small uncertainty in order to optimize significant features of the fuel cycle that have an impact on feasibility studies (e.g. neutron doses at fuel fabrication, decay heat in a repository, etc.). Different techniques are available to determine neutron cross sections experimentally, with the common denominator that a source of neutrons is necessary. It can either come from an accelerator that produces neutrons as a result of interactions between charged particles and a target, or it can come from a nuclear reactor. When the measurements are performed with an accelerator, they are referred to as differential since the analysis of the data provides the cross-sections for different discrete energies, i.e. σ(Ei), and for the diffusion cross sections for different discrete angles. Another approach is to irradiate a very pure sample in a test reactor such as the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after

  7. Photofission and photoneutron cross sections and photofission neutron multiplicities for /sup 233/U, /sup 234/U, /sup 237/Np, and /sup 239/Pu

    SciTech Connect

    Berman, B.L.; Caldwell, J.T.; Dowdy, E.J.; Dietrich, S.S.; Meyer, P.; Alvarez, R.A.

    1986-12-01

    The photonuclear cross sections for /sup 233/U, /sup 234/U, /sup 237/Np, and /sup 239/Pu have been measured from threshold up to 18 MeV. The source of radiation was the monoenergetic photon beam from the annihilation in flight of fast positrons. The branching among the neutron-producing reaction channels was determined by measuring the photofission prompt neutron multiplicities nu-bar/sub p/. One interesting result is the complete absence of any (..gamma..,2n) cross section for /sup 233/U and /sup 234/U. The values of nu-bar/sub p/(E) for /sup 234/U agree with those measured with neutrons incident on /sup 233/U. The parameters of the giant dipole resonance deduced from the total photonuclear cross sections show that these nuclei have large static deformations, as expected. The integrated photofission cross sections are large (as are the absolute fission probabilities), and account for 60% to 80% of the total photonuclear absorption strength.

  8. A New High Energy Resolution Neutron Transmission Detector at the Gaerttner LINAC Center and Isotopic Molybdenum Total Cross Section Measurements in the keV-Region

    NASA Astrophysics Data System (ADS)

    Bahran, Rian M.

    The Gaerttner LINAC Center at Rensselaer Polytechnic Institute is home to a 60 MeV electron linear accelerator (LINAC) that is used as a pulsed neutron source for TOF nuclear data experiments. High energy resolution total cross section measurements for the stable molybdenum isotopes of Mo-95, Mo-96, Mo-98, and Mo-100 were performed with a newly developed modular neutron transmission detector positioned at a 100 m experimental flight station. This work is part of an effort to both improve existing neutron total cross section libraries and measurement capabilities at the Gaerttner LINAC Center in and above the resolved resonance energy region (from 5-620 keV). The overall design optimization process and qualification of the new high resolution detector is presented. Additionally, a new method to quantify the energy-dependent neutron and gamma-ray experimental background of the detector was developed. High resolution isotopic molybdenum total cross section data are of particular importance because stable Mo isotopes can be found in significant concentrations in a nuclear fuel cycle either as a high yield fission product or in alloyed form with applications in reactor piping, fuel cladding, and as an advanced nuclear fuel in the form of U-Mo. The measured total cross section energy range encompasses the resolved resonance region and extends into the unresolved resonance region for each molybdenum isotope. New high accuracy resonance parameters for Mo-95 were generated from fitting experimental data using the multilevel R-matrix Bayesian code SAMMY in the resolved resonance region. In the unresolved resonance region, average resonance parameters and fits to the total cross section were obtained using the Hauser-Feshbach statistical model code FITACS which is embedded in SAMMY.

  9. Post irradiation experiment analysis using the APOLLO2 deterministic tool. Validation of JEFF-3.1.1 thermal and epithermal actinides neutron induced cross sections through MELUSINE experiments

    SciTech Connect

    Bernard, D.; Fabbris, O.

    2012-07-01

    Two different experiments performed in the 8 MWth MELUSINE experimental power pool reactor aimed at analyzing 1 GWd/t spent fuel pellets doped with several actinides. The goal was to measure the averaged neutron induced capture cross section in two very different neutron spectra (a PWR-like and an under-moderated one). This paper summarizes the combined deterministic APOLLO2-stochastic TRIPOLI4 analysis using the JEFF-3.1.1 European nuclear data library. A very good agreement is observed for most of neutron induced capture cross section of actinides and a clear underestimation for the {sup 241}Am(n,{gamma}) as an accurate validation of its associated isomeric ratio are emphasized. Finally, a possible huge resonant fluctuation (factor of 2.7 regarding to the 1=0 resonance total orbital momenta) is suggested for isomeric ratio. (authors)

  10. Determination of cross sections of 60Ni(n,2n)59Ni induced by 14 MeV neutrons with accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    He, Ming; Xu, Yongning; Guan, Yongjing; Shen, Hongtao; Du, Liang; Hongtao, Chen; Dong, Kejun; Jiang, Shan; Yang, Xuran; Wang, Xiaoming; Ruan, Xiang dong; Liu, Jiancheng; Wu, Shaoyong; Zhao, Qingzhang; Cai, Li; Pang, Fangfang

    2015-10-01

    The cross section of the 60Ni(n,2n)59Ni induced by neutron with energy around 14 MeV is important for a fusion environment. However, the published values are strongly discordant. By taking advantage of the high sensitivity of 59Ni measurement at China Institute of Atomic Energy (CIAE), determination of the cross section has been carried out. A natural Nickel foil was irradiated by neutrons produce by a T(D,n)α neutron generator. 57Co and 58Co which produced in the Nickel foil were chosen for the neutron fluence determination. Then the ratio of 59Ni/60Ni for the irradiated sample was determined via accelerator mass spectrometry (AMS) utilizing a 13MV tandem accelerator and a Q3D magnet spectrometry at CIAE. As a result, the cross section of 60Ni(n,2n)59Ni for the incident neutron energy of (14.60 ± 0.40) MeV was determined to be (426 ± 53) mb.

  11. Investigation of the pairing effect using newly evaluated empirical studies for 14-15 MeV neutron reaction cross sections

    SciTech Connect

    Tel, E.; Tanir, G.; Aydin, A.

    2007-03-15

    The asymmetry term effects for the cross sections of (n, charged particle) and (n,2n) reactions at 14-15 MeV neutron incident energy have been investigated. The effects of pairing and odd-even nucleon numbers in new data and in the formula of Tel et al. [J. Phys. G. 29, 2169 (2003)] are discussed. We have determined three different parameters groups by the classification of nuclei into even-even, even-odd, and odd-even (n,d) reactions. In addition, since there are not enough experimental data available, we have considered two different parameters groups by the classification of nuclei into odd-A and even-A (n,t) reaction cross sections. The empirical formulas with two parameters for the evaluation of the (n,d) and (n,t) reactions cross sections are discussed in the present study.

  12. Neutron-induced fission cross section of Np237 in the keV to MeV range at the CERN n_TOF facility

    DOE PAGESBeta

    Diakaki, M.; Karadimos, D.; Vlastou, R.; Kokkoris, M.; Demetriou, P.; Skordis, E.; Tsinganis, A.; Abbondanno, U.; Aerts, G.; Álvarez, H.; et al

    2016-03-17

    We experimentally determined the neutron-induced fission cross section of Np-237 at the high-resolution and high-intensity facility n_TOF, at CERN, in the energy range 100 keV to 9 MeV, using the U-235(n, f) and U-238(n, f) cross section standards below and above 2 MeV, respectively. Moreover, a fast ionization chamber was used in order to detect the fission fragments from the reactions and the targets were characterized as far as their mass and homogeneity are concerned by means of a spectroscopy and Rutherford backscattering spectroscopy respectively. Finally, theoretical calculations within the Hauser-Feshbach formalism have been performed, employing the EMPIRE code, andmore » the model parameters were tuned in order to successfully reproduce the experimental fission cross-sectional data and simultaneously all the competing reaction channels.« less

  13. Evaluated cross section libraries and kerma factors for neutrons up to 100 MeV on {sup 16}O and {sup 14}N

    SciTech Connect

    Chadwick, M.B.; Young, P.G.

    1995-07-01

    We present evaluations of the interaction of 20 to 100 MeV neutrons with oxygen and nitrogen nuclei, which follows on from our previous work on carbon. Our aim is to accurately represent integrated cross sections, inclusive emission spectra, and kerma factors, in a data library which can be used in radiation transport calculations. We apply the FKK-GNASH nuclear model code, which includes Hauser-Feshbach, preequilibrium, and direct reaction mechanisms, and use experimental measurements to optimize the calculations. We determine total, elastic, and nonelastic cross sections, angle-energy correlated emission spectra, for light ejectiles with A{<=}4 and gamma-rays, and average energy depositions. Our results for charged-particle emission spectra agree well with the measurements of Subramanian et al.. We compare kerma factors derived from our evaluated cross sections with experimental data, providing an integral benchmarking of our work. The evaluated data libraries are available as electronic files.

  14. Neutron-induced fission cross section of 237Np in the keV to MeV range at the CERN n_TOF facility

    NASA Astrophysics Data System (ADS)

    Diakaki, M.; Karadimos, D.; Vlastou, R.; Kokkoris, M.; Demetriou, P.; Skordis, E.; Tsinganis, A.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; David, S.; Dolfini, R.; Domingo-Pardo, C.; Dorochenko, A.; Dridi, W.; Duran, I.; Eleftheriadis, Ch.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fuji, K.; Furman, W.; Goncalves, I.; Gallino, R.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Ioannidis, K.; Isaev, S.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karamanis, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Kolokolov, D.; Konovalov, V.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Sedysheva, M.; Stamoulis, K.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Voss, F.; Wendler, H.; Wiescher, M.; Wisshak, K.; n TOF Collaboration

    2016-03-01

    The neutron-induced fission cross section of 237Np was experimentally determined at the high-resolution and high-intensity facility n_TOF, at CERN, in the energy range 100 keV to 9 MeV, using the 235U(n ,f ) and 238U(n ,f ) cross section standards below and above 2 MeV, respectively. A fast ionization chamber was used in order to detect the fission fragments from the reactions and the targets were characterized as far as their mass and homogeneity are concerned by means of α spectroscopy and Rutherford backscattering spectroscopy respectively. Theoretical calculations within the Hauser-Feshbach formalism have been performed, employing the empire code, and the model parameters were tuned in order to successfully reproduce the experimental fission cross-sectional data and simultaneously all the competing reaction channels.

  15. Validating the ENDF-B/VII{sup 235}U(n{sub th},f) prompt fission neutron spectrum using updated dosimetry cross sections (IRDFF)

    SciTech Connect

    Capote, R.; Zolotarev, K. I.; Pronyaev, V. G.; Trkov, A.

    2012-07-01

    The International Reactor Dosimetry File IRDF-2002 released in 2004 by the IAEA contains cross-section data and corresponding uncertainties for 66 dosimetry reactions. New cross-section evaluations have become available recently that re-define some of these dosimetry reactions for reactor applications including: 1) high fidelity evaluation work undertaken by one of the authors (KIZ); 2) evaluations from the ENDF/B-VII libraries that cover reactions within the International Evaluation of Neutron Cross-Section Standards; and 3) evaluations from JENDL-3.1 and JENDL-4 libraries. Overall, 37 new evaluations of dosimetry reactions have been assessed to determine whether they should be adopted to update and improve IRDF-2002. A new dosimetry library (International Reactor Dosimetry File for Fission and Fusion - IRDFF) was assembled based on new evaluations combined with selected IRDF-2002 evaluations. A grand-total of 74 dosimetry reactions are included into the IRDFF dosimetry library available at www-nds.iaea.org/IRDFFI. The assembled library was used to validate the {sup 235}U(n{sub th},f) ENDF-B/VII.0 prompt fission neutron spectrum. An excellent average C/E value of 1.002 +/- 0.02 is achieved for reactions with mean neutron energy of the integrated response (E50%) lower than 11 MeV. C/E data for reactions with E50%-response higher than 11 MeV decreases up to 0.8. We conclude that the ENDF-B/VII.0 {sup 235}U(n{sub th},f) prompt fission neutron spectrum from 1-11 MeV is validated within quoted uncertainties by available integral measurements in {sup 235}U(n{sub th},f) neutron field. Further investigations for high-threshold reactions are needed and new measurements of spectrum average cross sections for those reactions in the {sup 235}U(n{sub th},f) neutron field are recommended. (authors)

  16. Design and construction of a large area detector system and neutron total cross section measurements in the energy range 0.4 to 20 MeV

    NASA Astrophysics Data System (ADS)

    Rapp, Michael James

    In an effort to extend the measurement capabilities of the Gaerttner LINAC Laboratory at Rensselaer Polytechnic Institute (RPI) into the MeV region, a new detector system and analysis methods were developed. A large volume modular proton recoil detector was constructed and placed in a collimated neutron beam at an effective distance of 99.95 meters from the neutron source. Transmission measurements were done on natural carbon (graphite), beryllium, molybdenum, zirconium, titanium and tantalum using the time-of-flight method. Combining the long flight path, fast detector response and electronics, and a narrow neutron pulse width, provided good energy resolution, enabling some of the measurements to resolve structure in neutron total cross section never before seen. In order to obtain accurate transmission calculations, a method was developed to determine the time-dependent background component associated with the measurement, using a combination of experimental data and Monte Carlo methods. This background, combined with the high neutron flux provided by the RPI LINAC, generated high signal-to-background ratios. This signal-to-background and low counting statistics error resulted in low uncertainties and highly accurate data, with uncertainties of less than one percent seen through much of the measured energy range. The carbon measurement, which has a well measured and agreed upon neutron total cross section in the energy range 0.4 to 20 MeV, provided verification of the accuracy in the measurement and analytical methods used, with an average difference of less than one percent seen between the experimental and evaluated data. The measurements of beryllium, molybdenum, zirconium, titanium and tantalum, also resulted in accurate measurements of neutron total cross section. These high-resolution, high-accuracy results showed that improvements can be made in the current neutron total cross section evaluations, some of which show differences up to 10 %. The experimental

  17. Cross-section measurements for (n, 2n) and (n, alpha) reactions on yttrium at neutron energies from 13.5 to 14.6 MeV.

    PubMed

    Zhou, Fengqun; Zhang, Hongwei; Huang, Hongchun; Li, Kuohu; Yi, Yanling; Tuo, Fei; Kong, Xiangzhong

    2008-12-01

    The cross sections for the reactions (89)Y(n, 2n) (88m+g)Y and (89)Y(n, alpha) (86m+g)RB induced by 14MeV neutrons have been measured using the activation technique and a coaxial HPGe gamma-ray detector. Spectroscopically pure Y(2)O(3) powder was used. Fast neutrons were produced by the T(d, n) (4)He reaction. The neutron fluencies were determined using the monitor reaction (93)Nb(n, 2n) (92m)Nb. PMID:18650098

  18. Neutron Radiative Capture Cross Section of {sup 232}Th in the Energy Range from 0.06 to 2 MeV

    SciTech Connect

    Karamanis, D.; Petit, M.; Andriamonje, S.; Barreau, G.; Bercion, M.; Billebaud, A.; Blank, B.; Czajkowski, S.; Moral, R. del; Giovinazzo, J.; Lacoste, V.; Marchand, C.; Perrot, L.; Pravikoff, M.; Thomas, J.C.

    2001-11-15

    The neutron capture cross section of {sup 232}Th has been measured relative to {sigma}(n, {gamma}) for {sup 197}Au and {sigma}(n,f) for {sup 235}U in the energy range from 60 keV to 2 MeV. Neutrons were produced by the {sup 7}Li(p,n) and T(p,n) reactions at the 4-MV Van de Graaff Accelerator of CEN Bordeaux-Gradignan. The activation technique was used, and the cross section was measured relative to the {sup 197}Au(n,{gamma}) standard cross section up to 1 MeV. The characteristic gamma lines of the product nuclei {sup 233}Pa and {sup 198}Au were measured with a 40% high-purity germanium detector. Above this energy, the reaction {sup 235}U(n,f) was also used as a second standard, and the fission fragments were detected with a photovoltaic cell. The results, after applying the appropriate corrections, indicate that the cross sections are close to the JENDL-3 database values up to 800 keV and over 1.4 MeV. For energies in the intermediate range, our values are slightly lower than those from all the libraries.

  19. Neutron-Induced Fission Cross Sections of Nuclei in the Vicinity of 208Pb at Incident Energies below 60 MeV

    NASA Astrophysics Data System (ADS)

    Ryzhov, Igor V.; Tutin, Gennady A.; Eismont, Vilen P.; Mitryukhin, Andrey G.; Oplavin, Valery S.; Soloviev, Sergey M.; Meulders, Jean-Pierre; El Masri, Youssef; Keutgen, Thomas; Prieels, René; Nolte, Ralf

    2005-05-01

    Neutron-induced fission cross sections of 205Tl, 204, 206, 207, 208Pb, and 209Bi have been measured at incident energies of 32.8, 45.3, and 59.9 MeV. The measurements were performed at the Louvain-la-Neuve neutron beam facility using the 7Li (p, n) reaction as neutron source. Fission fragments were detected with a multi-section Frisch-gridded ionization chamber (MFGIC). Neutron fluence measurements were based on the 238U(n, f) reaction. The neutron fluence monitoring procedure was asserted by crosscheck measurement, in which the 59.9-MeV neutron beam fluence was simultaneously determined with the MFGIC and with a fission chamber monitor calibrated relative to a proton-recoil telescope.

  20. Neutron-induced fission cross section of {sup 234}U and {sup 237}Np measured at the CERN Neutron Time-of-Flight (n{sub T}OF) facility

    SciTech Connect

    Paradela, C.; Duran, I.; Tarrio, D.; Alvarez, H.; Tassan-Got, L.; Berthier, B.; Ferrant, L.; Isaev, S.; Le Naour, C.; Stephan, C.; Trubert, D.; David, S.; Abbondanno, U.; Fujii, K.; Milazzo, P. M.; Moreau, C.; Aerts, G.

    2010-09-15

    A high-resolution measurement of the neutron-induced fission cross section of {sup 234}U and {sup 237}Np has been performed at the CERN Neutron Time-of-Flight facility. The cross sections have been determined in a wide energy range from 1 eV to 1 GeV using the evaluated {sup 235}U cross section as reference. In these measurements the energy determination for the {sup 234}U resonances could be improved, whereas previous discrepancies for the {sup 237}Np resonances were confirmed. New cross-section data are provided for high neutron energies that go beyond the limits of prior evaluations, obtaining important differences in the case of {sup 237}Np.

  1. R-matrix analysis of the {sup 240}Pu neutron cross sections in the thermal to 5700 eV energy range

    SciTech Connect

    Derrien, H.; Bouland, O.; Larson, N.M.; Leal, L.C.

    1997-08-01

    Resonance analysis of high resolution neutron transmission data and of fission cross sections were performed in the neutron energy range from the thermal regions to 5,700 eV by using the Reich-Moore Bayesian code SAMMY. The experimental data base is described and the method of analysis is given. The experimental data were carefully examined in order to identify more resonances than those found in the current evaluated data files. The statistical properties of the resonance parameters are given. A new set of the average values of the parameters is proposed, which could be used for calculation of the average cross sections in the unresolved resonance region. The resonance parameters are available IN ENDF-6 format at the national or international data centers.

  2. Measurement of neutron-production double-differential cross-sections on carbon bombarded with 290-MeV/nucleon carbon and oxygen ions

    NASA Astrophysics Data System (ADS)

    Satoh, D.; Moriguchi, D.; Kajimoto, T.; Uehara, H.; Shigyo, N.; Ueyama, M.; Yoshioka, M.; Uozumi, Y.; Sanami, T.; Koba, Y.; Takada, M.; Matsufuji, N.

    2011-07-01

    Neutron-production double-differential cross-sections on carbon-carbon and oxygen-carbon reactions with incident heavy-ion energy of 290 MeV/nucleon were measured by time-of-flight method using liquid organic scintillators. By use of a detection system specialized for low-energy neutrons, the cross-sections were obtained in a wide energy region from several hundred MeV down to 0.6 MeV for the oxygen-ion incidences. The experimental data were compared with the calculation results using the Monte-Carlo simulation code, PHITS. The PHITS results gave an overall agreement with the measured data within a factor of two.

  3. Measurement of the neutron-capture cross section on 63,65Cu between 0.4 and 7.5 MeV

    NASA Astrophysics Data System (ADS)

    Bray, Isabel; Bhike, Megha; Krishichayan, (None); Tornow, W.

    2015-10-01

    Copper is currently being used as a cooling and shielding material in most experimental searches for 0 ν β β decay. In order to accurately interpret background events in these experiments, the cross section of neutron-induced reactions on copper must be known. The purpose of this work was to measure the cross section of the 63,65Cu(n, γ)64,66Cu reactions. Data were collected through the activation method at a range of energies from approximately 0.4 MeV to 7.5 MeV, employing the neutron production reactions 3H(p,n)3Heand2H(d,n)3He. Previous data were limited to energies below approximately 3 MeV. The results are compared to predictions from the nuclear data libraries ENDF/B-VII.1 and TENDL-2014.

  4. Measurement of thermal neutron cross section and resonance integral for the {sup 170}Er(n,{gamma}){sup 171}Er reaction by using a {sup 55}Mn monitor

    SciTech Connect

    Yuecel, Haluk; Budak, M. Gueray; Karadag, Mustafa

    2007-09-15

    The thermal neutron cross section and the resonance integral of the reaction {sup 170}Er(n,{gamma}){sup 171}Er were measured by the Cd-ratio method using a {sup 55}Mn monitor as single comparator. Analytical grade MnO{sub 2} and Er{sub 2}O{sub 3} powder samples with and without a cylindrical 1 mm Cd shield box were irradiated in an isotropic neutron field obtained from three {sup 241}Am-Be neutron sources. The induced activities in the samples were measured with a 120.8% relative efficiency p-type HPGe detector. The correction factors for gamma-ray attenuation (F{sub g}), thermal neutron self-shielding (G{sub th}), and resonance neutron self-shielding (G{sub epi}) effects, and the epithermal neutron spectrum shape factor ({alpha}) were taken into account. The thermal neutron cross section for the (n,{gamma}) reaction in {sup 170}Er has been determined to be 8.00 {+-} 0.56 b, relative to that of the {sup 55}Mn monitor. However, some previously reported experimental results compared to the present result show a large discrepancy ranging from 8.3 to 86%. The present result is, in general, in good agreement with the recently measured values by 9%. According to the definition of Cd cut-off energy at 0.55 eV, the resonance integral obtained is 44.5 {+-} 4.0 b, which is determined relative to the reference integral value of the {sup 55}Mn monitor by using cadmium ratios. The existing experimental data for the resonance integral are distributed between 18 and 43 b. The present resonance integral value agrees only with the measurement of 43 {+-} 5 b by Gillette [Thermal Cross Section and Resonance Integral Studies, ORNL-4155, 15 (1967)] within uncertainty limits.

  5. X-ray spectrometry applied to 14 MeV neutron reaction cross-section measurements on iridium

    NASA Astrophysics Data System (ADS)

    Reggoug, A.; Berrada, M.

    1987-03-01

    In the activation technique, the simultaneous measurement of cross-sections by detection of X-and γ-rays allows to compare the obtained results and also to check the available nuclear data used in each method. For residual nuclei which have very weak gamma intensity, the X-ray detection becomes the most adequate method for cross section measurements. It is the case of 193Ir(n,2n) 192m 1Ir (1.45 min) and 191Ir (n,2n) 190m 1Ir (1.2 h) reactions where the residual nuclei have an almost absent gamma intensity. We have measured for the first time the cross section ratio of these reactions by detecting the L X-rays emitted by both residual nuclei. Cross section of reactions 191Ir(n,2n) 190m 2Ir (3.2 h); 191Ir(n,2n) 190m+gIr(11.8 d) and 193Ir(n,2n) 192m+gIr (74 d), where the residual nuclei emit simultaneously X and gamma rays, have been measured by K X-rays detection and compared to other reported values.

  6. ANSL-V: ENDF/B-V based multigroup cross-section libraries for Advanced Neutron Source (ANS) reactor studies. Supplement 1

    SciTech Connect

    Wright, R.Q.; Renier, J.P.; Bucholz, J.A.

    1995-08-01

    The original ANSL-V cross-section libraries (ORNL-6618) were developed over a period of several years for the physics analysis of the ANS reactor, with little thought toward including the materials commonly needed for shielding applications. Materials commonly used for shielding applications include calcium barium, sulfur, phosphorous, and bismuth. These materials, as well as {sup 6}Li, {sup 7}Li, and the naturally occurring isotopes of hafnium, have been added to the ANSL-V libraries. The gamma-ray production and gamma-ray interaction cross sections were completely regenerated for the ANSL-V 99n/44g library which did not exist previously. The MALOCS module was used to collapse the 99n/44g coupled library to the 39n/44g broad- group library. COMET was used to renormalize the two-dimensional (2- D) neutron matrix sums to agree with the one-dimensional (1-D) averaged values. The FRESH module was used to adjust the thermal scattering matrices on the 99n/44g and 39n/44g ANSL-V libraries. PERFUME was used to correct the original XLACS Legendre polynomial fits to produce acceptable distributions. The final ANSL-V 99n/44g and 39n/44g cross-section libraries were both checked by running RADE. The AIM module was used to convert the master cross-section libraries from binary coded decimal to binary format (or vice versa).

  7. 242Amm fission cross section

    NASA Astrophysics Data System (ADS)

    Browne, J. C.; White, R. M.; Howe, R. E.; Landrum, J. H.; Dougan, R. J.; Dupzyk, R. J.

    1984-06-01

    The neutron-induced fission cross section of 242Amm has been measured over the energy region from 10-3 eV to ~20 MeV in a series of experiments utilizing a linac-produced "white" neutron source and a monoenergetic source of 14.1 MeV neutrons. The cross section was measured relative to that of 235U in the thermal (0.001 to ~3 eV) and high energy (1 keV to ~20 MeV) regions and normalized to the ENDF/B-V 235U(n,f) evaluated cross section. In the resonance energy region (0.5 eV to 10 keV) the neutron flux was measured using thin lithium glass scintillators and the relative cross section thus obtained was normalized to the thermal energy measurement. This procedure allowed a consistency check between the thermal and high energy data. The cross section data have a statistical accuracy of ~0.5% at thermal energies and in the 1-MeV energy region, and a systematic uncertainty of ~5%. We confirmed that 242Amm has the largest thermal fission cross section known with a 2200 m/sec value of 6328 b. Results of a Breit-Wigner sum-of-single-levels analysis of 48 fission resonances up to 20 eV are presented and the connection of these resonance properties to the large thermal cross section is discussed. Our measurements are compared with previously reported results.

  8. Determination of cross sections for the 238U(n,3n)236U reaction induced by 14-MeV neutrons with accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Xianggao; Jiang, Shan; He, Ming; Dong, Kejun; Xiao, Caijing; Hu, Yueming; You, Qubo; Chen, Hongtao; Hou, Long; Yu, WeiXiang; Ruan, Xichao

    2013-01-01

    The cross sections of the 238U(n,3n)236U reaction induced by neutrons with energies around 14 MeV were determined using a combination of the activation technique and accelerator mass spectrometry (AMS) at the China Institute of Atomic Energy (CIAE). U3O8 samples were irradiated for 198 h by neutrons produced by the 3H(d,n)4He reaction on a 600-kV neutron generator at CIAE. Neutron flux was continuously determined by the activation of flux monitors, Co foils, closely attached to the sample. To accurately determine the long half-life product 236U, an AMS procedure was established with a sensitivity of about 10-11 for 236U/238U. As a result, the cross sections of 238U(n,3n)236U for the incident neutron energies of (14.18±0.30) and (14.65±0.40) MeV were obtained to be (489.3±48.0) and (556.7±27.8) mb, respectively.

  9. Measurements of Neutron-Induced Fission Cross Sections of 205Tl, 204, 206, 207, 208Pb, and 209Bi using Quasi-Monoenergetic Neutrons in the Energy Range 35 - 174 MeV

    NASA Astrophysics Data System (ADS)

    Tutin, Gennady A.; Ryzhov, Igor V.; Eismont, Vilen P.; Mitryukhin, Andrey G.; Oplavin, Valery S.; Soloviev, Sergey M.; Blomgren, Jan; Condè, Henri; Olsson, Nils; Renberg, Per-Ulf

    2005-05-01

    Cross sections for neutron-induced fission of 205Tl, 204, 206, 207, 208Pb, and 209Bi were measured in the energy range from 35 MeV to 174 MeV. The experiments were done at the neutron beam facility of The Svedberg Laboratory, using a multi-section Frisch-gridded ionization chamber for detection of the fission fragments. The neutron-induced fission cross section of 238U was employed as a reference. The results of the measurements are compared with existing experimental data.

  10. Neutron capture and fission cross section of /sup 243/Am in the energy range from 5 to 250 keV

    SciTech Connect

    Wisshak, K.; Kappeler, F.

    1983-11-01

    The neutron capture and subthreshold fission cross section of /sup 243/Am was measured in the energy range from 5 to 250 keV using /sup 197/Au and /sup 235/U as the respective standards. Neutrons were produced via the /sup 7/Li(p,n) and the T(p,n) reaction with the Karlsruhe 3-MV pulsed Van de Graaff accelerator. Capture events were detected by two Moxon-Rae detectors with graphite and bismuth graphite converters, respectively. Fission events were registered by an Ne-213 liquid scintillator with pulse-shape discriminator equipment. Flight paths as short as 50 to 70 mm were used to obtain an optimum signal-to-background ratio. After correction for the different efficiency of the individual converter materials, the capture cross section could be determined with a total uncertainty of 3 to 6%. The respective values for the fission cross section are 8 to 12%. The results are compared to predictions of recent evaluations, which in some cases are severely discrepant.

  11. Measurement of double-differential (/n,xp) cross sections of natural nickel in 14.6 MeV neutron energy

    NASA Astrophysics Data System (ADS)

    Ye, Bangjiao; Wang, Zhongmin; Fan, Yangmei; Han, Rongdian; Xiao, Zhenxi

    1997-01-01

    The energy spectra and angular distributions of proton emission in the reaction of natNi(n, xp) at neutron energy 14.6 MeV have been measured by the USTC multitelescope system. The double-differential cross sections of 16 reaction angles from 25° to 164.5° have been obtained in this measurement. The statistical error can be reduced because of the thicktarget used. The angular distributions show a slightly energy-dependent forward-backward asymmetry. The angle-integrated proton spectrum is compared with ENDF/B-VI evaluation and Grimes' result. The total p-emission cross section is in fair agreement with prediction and evaluation.

  12. Neutron-capture cross-section measurements of Xe136 between 0.4 and 14.8 MeV

    NASA Astrophysics Data System (ADS)

    Bhike, Megha; Tornow, W.

    2014-03-01

    Fast-neutron-capture cross-section data on Xe136 have been measured with the activation method between 0.4 and 14.8 MeV. The cross section was found to be of the order of 1 mb at the eleven energies investigated. This result is important to interpret potential neutron-induced backgrounds in the enriched xenon observatory and KamLAND-Zen neutrinoless double-β decay searches that use xenon as both source and detector. A high-pressure sphere filled with Xe136 was irradiated with monoenergetic neutrons produced by the reactions 3H(p ,n)3He, 2H(d ,n)3He, and 3H(d ,n)4He. Indium and gold monitor foils were irradiated simultaneously with the Xe136 to determine the incident neutron flux. The activities of the reaction products were measured with high-resolution γ-ray spectroscopy. The present results are compared to predictions from ENDF/B-VII.1 and TENDL-2012.

  13. Neutron-induced fission cross section of 240Pu from 0.5 MeV to 3 MeV

    NASA Astrophysics Data System (ADS)

    Salvador-Castiñeira, P.; Bryś, T.; Eykens, R.; Hambsch, F.-J.; Göök, A.; Moens, A.; Oberstedt, S.; Sibbens, G.; Vanleeuw, D.; Vidali, M.; Pretel, C.

    2015-07-01

    240Pu has recently been pointed out by a sensitivity study of the Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) to be one of the isotopes whose fission cross section lacks accuracy to meet the upcoming needs for the future generation of nuclear power plants (GEN-IV). In the High Priority Request List (HPRL) of the OECD, it is suggested that the knowledge of the 240Pu(n ,f ) cross section should be improved to an accuracy within 1-3 %, compared to the present 5%. A measurement of the 240Pu cross section has been performed at the Van de Graaff accelerator of the Joint Research Center (JRC) Institute for Reference Materials and Measurements (IRMM) using quasi-monoenergetic neutrons in the energy range from 0.5 MeV to 3 MeV. A twin Frisch-grid ionization chamber (TFGIC) has been used in a back-to-back configuration as fission fragment detector. The 240Pu(n ,f ) cross section has been normalized to three different isotopes: 237Np(n ,f ) , 235U (n ,f ) , and 238U (n ,f ) . Additionally, the secondary standard reactions were benchmarked through measurements against the primary standard reaction 235U (n ,f ) in the same geometry. A comprehensive study of the corrections applied to the data and the associated uncertainties is given. The results obtained are in agreement with previous experimental data at the threshold region. For neutron energies higher than 1 MeV, the results of this experiment are slightly lower than the ENDF/B-VII.1 evaluation, but in agreement with the experiments of Laptev et al. (2004) as well as Staples and Morley (1998).

  14. Neutron capture cross sections of natural Yb, /sup 170/Yb, /sup 175/Lu, and /sup 184/W in the energy range from 5 to 200 keV for the /sup 176/Lu-chronometer

    SciTech Connect

    Beer, H.; Wisshak, K.; Kaeppeler, F.

    1980-09-01

    The neutron capture cross sections of natural Yb, /sup 170/Yb, /sup 175/Lu and /sup 184/W have been measured in the keV neutron energy range with a pulsed Van de Graaff accelerator using the kinematically collimated neutron beam from the /sup 7/Li(p,n) and the T(p,n) reaction. Prompt capture gamma rays were registered by a Moxon-Rae detector. All measurements were performed in a single run relative to the /sup 197/Au cross section as a standard. The cross sections of /sup 175/Lu and /sup 170/Yb were used to investigate the /sup 176/Lu-cosmic clock.

  15. Measurement of the cross section for electromagnetic dissociation with neutron emission in Pb-Pb collisions at sqrt[s(NN)] = 2.76 TeV.

    PubMed

    Abelev, B; Adam, J; Adamová, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agocs, A G; Agostinelli, A; Aguilar Salazar, S; Ahammed, Z; Ahmad Masoodi, A; Ahmad, N; Ahn, S U; Akindinov, A; Aleksandrov, D; Alessandro, B; Alfaro Molina, R; Alici, A; Alkin, A; Almaráz Aviña, E; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Augustinus, A; Averbeck, R; Awes, T C; Aystö, J; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bailhache, R; Bala, R; Baldini Ferroli, R; Baldisseri, A; Baldit, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batyunya, B; Baumann, C; Bearden, I G; Beck, H; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Berzano, D; Betev, L; Bhasin, A; Bhati, A K; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blanco, F; Blau, D; Blume, C; Bock, N; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bose, S; Bossú, F; Botje, M; Böttger, S; Boyer, B; Braidot, E; Braun-Munzinger, P; Bregant, M; Breitner, T; Browning, T A; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Bugaiev, K; Busch, O; Buthelezi, Z; Caballero Orduna, D; Caffarri, D; Cai, X; Caines, H; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, F; Carena, W; Carminati, F; Casanova Díaz, A; Castillo Castellanos, J; Casula, E A R; Catanescu, V; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chawla, I; Cherney, M; Cheshkov, C; Cheynis, B; Chiavassa, E; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Coccetti, F; Colamaria, F; Colella, D; Conesa Balbastre, G; Conesa Del Valle, Z; Constantin, P; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortés Maldonado, I; Cortese, P; Cosentino, M R; Costa, F; Cotallo, M E; Crochet, P; Cruz Alaniz, E; Cuautle, E; Cunqueiro, L; Erasmo, G D; Dainese, A; Dalsgaard, H H; Danu, A; Das, D; Das, I; Das, K; Dash, A; Dash, S; De, S; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; de Rooij, R; Del Castillo Sanchez, E; Delagrange, H; Deloff, A; Demanov, V; Dénes, E; Deppman, A; Di Bari, D; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Diaz Corchero, M A; Dietel, T; Divià, R; Djuvsland, O; Dobrin, A; Dobrowolski, T; Domínguez, I; Dönigus, B; Dordic, O; Driga, O; Dubey, A K; Ducroux, L; Dupieux, P; Dutta Majumdar, A K; Dutta Majumdar, M R; Elia, D; Emschermann, D; Engel, H; Erdal, H A; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fearick, R; Fedunov, A; Fehlker, D; Feldkamp, L; Felea, D; Fenton-Olsen, B; Feofilov, G; Fernández Téllez, A; Ferretti, A; Ferretti, R; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Fragkiadakis, M; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Garishvili, I; Gerhard, J; Germain, M; Geuna, C; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Gianotti, P; Girard, M R; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Gomez, R; Ferreiro, E G; González-Trueba, L H; González-Zamora, P; Gorbunov, S; Goswami, A; Gotovac, S; Grabski, V; Graczykowski, L K; Grajcarek, R; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerra Gutierrez, C; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Gutbrod, H; Haaland, O; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Hanratty, L D; Hansen, A; Harmanova, Z; Harris, J W; Hartig, M; Hasegan, D; Hatzifotiadou, D; Hayrapetyan, A; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, N; Hess, B A; Hetland, K F; Hicks, B; Hille, P T; Hippolyte, B; Horaguchi, T; Hori, Y; Hristov, P; Hřivnáčová, I; Huang, M; Humanic, T J; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, G M; Ippolitov, M; Irfan, M; Ivan, C; Ivanov, A; Ivanov, M; Ivanov, V; Ivanytskyi, O; Jachołkowski, A; Jacobs, P M; Jancurová, L; Jang, H J; Jangal, S; Janik, M A; Janik, R; Jayarathna, P H S Y; Jena, S; Jha, D M; Jimenez Bustamante, R T; Jirden, L; Jones, P G; Jung, H; Jusko, A; Kakoyan, V; Kalcher, S; Kaliňák, P; Kalisky, M; Kalliokoski, T; Kalweit, A; Kanaki, K; Kang, J H; Kaplin, V; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Khan, M M; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, B; Kim, D J; Kim, D W; Kim, J H; Kim, J S; Kim, M; Kim, S; Kim, S H; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Klay, J L; Klein, J; Klein-Bösing, C; Kliemant, M; Kluge, A; Knichel, M L; Knospe, A G; Koch, K; Köhler, M K; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Korneev, A; Kour, R; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kraus, I; Krawutschke, T; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Kryshen, E; Krzewicki, M; Kucheriaev, Y; Kuhn, C; Kuijer, P G; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kushpil, V; Kweon, M J; Kwon, Y; La Pointe, S L; La Rocca, P; Ladrón de Guevara, P; Lakomov, I; Langoy, R; Lara, C; Lardeux, A; Lazzeroni, C; Le Bornec, Y; Lea, R; Lechman, M; Lee, K S; Lee, S C; Lefèvre, F; Lehnert, J; Leistam, L; Lemmon, R C; Lenhardt, M; Lenti, V; León Monzón, I; León Vargas, H; Leoncino, M; Lévai, P; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Liu, L; Loenne, P I; Loggins, V R; Loginov, V; Lohn, S; Lohner, D; Loizides, C; Loo, K K; Lopez, X; López Torres, E; Løvhøiden, G; Lu, X-G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luquin, L; Luzzi, C; Ma, R; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Mal'kevich, D; Malaev, M; Maldonado Cervantes, I; Malinina, L; Malzacher, P; Mamonov, A; Manceau, L; Manko, V; Manso, F; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Marín, A; Marin Tobon, C A; Markert, C; Martashvili, I; Martinengo, P; Martínez, M I; Martínez Davalos, A; Martínez García, G; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Mastromarco, M; Mastroserio, A; Matthews, Z L; Matyja, A; Mayani, D; Mayer, C; Mazer, J; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitu, C; Mlynarz, J; Mohanty, A K; Mohanty, B; Molnar, L; Montaño Zetina, L; Monteno, M; Montes, E; Moon, T; Morando, M; Moreira De Godoy, D A; Moretto, S; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Musa, L; Musso, A; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Naumov, N P; Navin, S; Nayak, T K; Nazarenko, S; Nazarov, G; Nedosekin, A; Nicassio, M; Nielsen, B S; Niida, T; Nikolaev, S; Nikolic, V; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Novitzky, N; Nyanin, A; Nyatha, A; Nygaard, C; Nystrand, J; Oeschler, H; Oh, S; Oh, S K; Oleniacz, J; Oppedisano, C; Ortiz Velasquez, A; Ortona, G; Oskarsson, A; Otwinowski, J; Oyama, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Paić, G; Painke, F; Pajares, C; Pal, S; Pal, S K; Palaha, A; Palmeri, A; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Patalakha, D I; Paticchio, V; Pavlinov, A; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Perez Lezama, E; Perini, D; Perrino, D; Peryt, W; Pesci, A; Peskov, V; Pestov, Y; Petráček, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Piccotti, A; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piuz, F; Piyarathna, D B; Płoskoń, M; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Pop, A; Porteboeuf-Houssais, S; Pospíšil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puchagin, S; Puddu, G; Pujol Teixido, J; Pulvirenti, A; Punin, V; Putiš, M; Putschke, J; Quercigh, E; Qvigstad, H; Rachevski, A; Rademakers, A; Radomski, S; Räihä, T S; Rak, J; Rakotozafindrabe, A; Ramello, L; Ramírez Reyes, A; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Read, K F; Real, J S; Redlich, K; Reichelt, P; Reicher, M; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Riccati, L; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rodrigues Fernandes Rabacal, B; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Rosnet, P; Rossegger, S; Rossi, A; Roukoutakis, F; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Ryabinkin, E; Rybicki, A; Sadovsky, S; Safařík, K; Sahoo, R; Sahu, P K; Saini, J; Sakaguchi, H; Sakai, S; Sakata, D; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Sándor, L; Sandoval, A; Sano, M; Sano, S; Santo, R; Santoro, R; Sarkamo, J; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schreiner, S; Schuchmann, S; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, P A; Scott, R; Segato, G; Selyuzhenkov, I; Senyukov, S; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Sgura, I; Shabetai, A; Shabratova, G; Shahoyan, R; Sharma, N; Sharma, S; Shigaki, K; Shimomura, M; Shtejer, K; Sibiriak, Y; Siciliano, M; Sicking, E; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simonetti, G; Singaraju, R; Singh, R; Singha, S; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Søgaard, C; Soltz, R; Son, H; Song, J; Song, M; Soos, C; Soramel, F; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stefanek, G; Stefanini, G; Steinbeck, T; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strabykin, K; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Sukhorukov, M; Sultanov, R; Sumbera, M; Susa, T; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szostak, A; Tagridis, C; Takahashi, J; Tapia Takaki, J D; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terrevoli, C; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Tlusty, D; Toia, A; Torii, H; Tosello, F; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ulery, J; Ullaland, K; Ulrich, J; Uras, A; Urbán, J; Urciuoli, G M; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Vallero, S; van der Kolk, N; van Leeuwen, M; Vande Vyvre, P; Vannucci, L; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Vikhlyantsev, O; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopyanov, A; Voloshin, K; Voloshin, S; Volpe, G; von Haller, B; Vranic, D; Ovrebekk, G; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, V; Wan, R; Wang, D; Wang, M; Wang, Y; Wang, Y; Watanabe, K; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, A; Wilk, G; Williams, M C S; Windelband, B; Xaplanteris Karampatsos, L; Yaldo, C G; Yang, H; Yang, S; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I-K; Yoon, J; Yu, W; Yuan, X; Yushmanov, I; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zgura, I S; Zhalov, M; Zhang, H; Zhang, X; Zhou, D; Zhou, F; Zhou, Y; Zhu, J; Zhu, X; Zichichi, A; Zimmermann, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M

    2012-12-21

    The first measurement of neutron emission in electromagnetic dissociation of ^{208}Pb nuclei at the LHC is presented. The measurement is performed using the neutron zero degree calorimeters of the ALICE experiment, which detect neutral particles close to beam rapidity. The measured cross sections of single and mutual electromagnetic dissociation of Pb nuclei at sqrt[s(NN)]=2.76 TeV with neutron emission are σ(singleEMD)=187.4 ± 0.2(stat)(-11.2)(+13.2) (syst) b and σ(mutualEMD) = 5.7 ± 0.1(stat) ± 0.4(syst) b, respectively. The experimental results are compared to the predictions from a relativistic electromagnetic dissociation model. PMID:23368454

  16. Measurements of the differential cross sections for elastic and inelastic scattering of 14-MeV neutrons in natural chromium, iron, nickel, and niobium

    SciTech Connect

    Christodoulou, E.G. . Dept. of Radiology); Tsirliganis, N.C. . Dept. of Electrical Engineering and Electronics); Knoll, G.F. . Dept. of Nuclear Engineering and Radiological Sciences)

    1999-07-01

    The time-of-flight technique was used with the ring scattering geometry in a laboratory with low neutron-scattering background to measure the angular distributions of the cross sections for elastic and inelastic scattering of 14-MeV neutrons in natural chromium, iron, nickel, and niobium. Specifically for inelastic scattering, the measurements included the 1.43- and 4.56-MeV levels of [sup 52]Cr; the 0.85-, (2.94 to 3.12)-, and (4.46 to 4.51)-MeV level groups of [sup 56]Fe; the 1.33-MeV level of [sup 60]Ni combined with the 1.45-MeV level of [sup 58]Ni; and the 4.48-MeV level of [sup 58]Ni. Pulses of neutrons with time width of 0.9 to 1.1 ns were produced via the D-T reaction in a 150-keV linear accelerator, with average intensities of 9 [times] 10[sup 8] n/s. The scattering angles ranged from [approximately]16 to [approximately]160 deg, with a typical step of [approximately]10 deg. The overall uncertainty for the elastic scattering cross section was in the range of 7 to 10% for all materials, except around the minima of the angular distribution for niobium. The uncertainties for the inelastic scattering cross sections were estimated to be between 8 and 24%. The measured angular distributions were compared with the evaluations in the ENDF/B-VI, JENDL-3, CENDL-2, BROND-2, and JEF-2 nuclear data libraries. For elastic scattering, there are no significant discrepancies in general, neither among the evaluations nor between the present data and the evaluations. For the inelastic scattering there are substantial discrepancies both in shape and magnitude among the evaluations (when available) as well as between the present data and the evaluations.

  17. Neutron-capture cross-section measurements of ^40Ar and ^136Xe in the energy region 0.7-14.8 MeV

    NASA Astrophysics Data System (ADS)

    Bhike, Megha; Tornow, Werner

    2013-04-01

    Cross-section measurements for the reaction ^40Ar(n,γ)^41Ar have been carried out with the activation method in the neutron energy region 0.7-14.8 MeV. These results are important to identify backgrounds in liquid argon based neutrino detectors and in the neutrinoless double-β decay experiment GERDA, which uses argon as cooling and shielding medium. A high-pressure gas cell of ^40Ar was irradiated with monoenergetic neutrons produced either by the ^3H(p,n)^3He, ^2H(d,n)^3He or ^3H(d,n)^4He reactions. Indium and Au monitor foils were irradiated simultaneously to determine the incident neutron flux. The activities induced by the reaction products were measured using high-resolution γ-ray spctroscopy. The data are compared with the available data evaluations. Measurements of the ^136Xe(n,γ)^137Xe cross section are underway and preliminary results will be presented as well. The latter data are important for the EXO and KamLAND-Zen neutrinoless double-β decay searches.

  18. Extracting the cross section angular distributions for 15C high-energy resonance excited via the (18O,16O) two-neutron transfer reaction

    NASA Astrophysics Data System (ADS)

    Carbone, D.; Agodi, C.; Cappuzzello, F.; Cavallaro, M.; Foti, A.; Linares, R.

    2016-05-01

    The 13C(18O,16O)15C reaction has been studied at 84 MeV incident energy. The ejectiles have been momentum analized by the MAGNEX spectrometer and 15C excitation energy spectra have been obtained up to about 20 MeV. In the region above the two-neutron separation energy, a bump has been observed at 13.7 MeV. The extracted cross section angular distribution for this structure, obtained by using different models for background, displays a clear oscillating pattern, typical of resonant state of the residual nucleus.

  19. Measurement of Neutron-Induced Fission Cross Sections of {sup 229}Th and {sup 231}Pa Using Linac-Driven Lead Slowing-Down Spectrometer

    SciTech Connect

    Kobayashi, Katsuhei; Yamamoto, Shuji; Lee, Samyol; Cho, Hyun-Je; Yamana, Hajimu; Moriyama, Hirotake; Fujita, Yoshiaki; Mitsugashira, Toshiaki

    2001-11-15

    Use is made of a back-to-back type of double fission chamber and an electron linear accelerator-driven lead slowing-down spectrometer to measure the neutron-induced fission cross sections of {sup 229}Th and {sup 231}Pa below 10 keV relative to that of {sup 235}U. A measurement relative to the {sup 10}B(n, {alpha}) reaction is also made using a BF{sub 3} counter at energies below 1 keV and normalized to the absolute value obtained by using the cross section of the {sup 235}U(n,f) reaction between 200 eV and 1 keV.The experimental data of the {sup 229}Th(n,f) reaction, which was measured by Konakhovich et al., show higher cross-section values, especially at energies of 0.1 to 0.4 eV. The data by Gokhberg et al. seem to be lower than the current measurement above 6 keV. Although the evaluated data in JENDL-3.2 are in general agreement with the measurement, the evaluation is higher from 0.25 to 5 eV and lower above 10 eV. The ENDF/B-VI data evaluated above 10 eV are also lower. The current thermal neutron-induced fission cross section at 0.0253 eV is 32.4 {+-} 10.7 b, which is in good agreement with results of Gindler et al., Mughabghab, and JENDL-3.2.The mean value of the {sup 231}Pa(n,f) cross sections between 0.37 and 0.52 eV, which were measured by Leonard and Odegaarden, is close to the current measurement. The evaluated data in ENDF/B-VI are lower below 0.15 eV and higher above {approx}30 eV. The ENDF/B-VI and the JEF-2.2 are extremely higher above 1 keV. The JENDL-3.2 data are in general agreement with the measurement, although they are lower above {approx}100 eV.

  20. Measurement of gamma-ray production cross sections in neutron-induced reactions for Al and Pb

    SciTech Connect

    Pavlik, A.; Vonach, H.; Hitzenberger, H.; Nelson, R.O.; Haight, R.C.; Wender, S.A.; Young, P.G.; Chadwick, M.B.

    1995-02-01

    The prompt gamma-radiation from the interaction of fast neutrons with aluminum and lead was measured using the white neutron beam of the WNR facility at the Los Alamos National Laboratory. The samples (Al and isotopically enriched {sup 207}Pb and {sup 208}Pb) were positioned at about 20 m or 41 m distance from the neutron production target. The spectra of the emitted gamma-rays were measured with a high-resolution HPGe detector. The incident neutron energy was determined by the time-of-flight method and the neutron fluence was measured with a U fission chamber. From the aluminum gamma-ray spectra excitation functions for prominent gamma-transitions in various residual nuclei (in the range from O to Al) were derived for neutron energies from 3 MeV to 400 MeV. For lead (n,xn{gamma}) reactions were studied for neutron energies up to 200 MeV by analyzing prominent gamma-transitions in the residual nuclei {sup 200,202,204,206,207,208}Pb. The experimental results were compared with nuclear model calculations using the code GNASH. A good overall agreement was obtained without special parameter adjustments.

  1. Neutron-induced fission cross sections of 242Pu from 0.3 MeV to 3 MeV

    NASA Astrophysics Data System (ADS)

    Salvador-Castiñeira, P.; Bryś, T.; Eykens, R.; Hambsch, F.-J.; Göök, A.; Moens, A.; Oberstedt, S.; Sibbens, G.; Vanleeuw, D.; Vidali, M.; Pretel, C.

    2015-10-01

    The majority of the next generation of nuclear power plants (GEN-IV) will work in the fast-neutron-energy region, as opposed to present day thermal reactors. This leads to new and more accurate nuclear-data needs for some minor actinides and structural materials. Following those upcoming demands, the Organisation for Economic Cooperation and Development Nuclear Energy Agency performed a sensitivity study. Based on the latter, an improvement in accuracy from the present 20% to 5% is required for the 242Pu(n ,f ) cross section. Within the same project both the 240Pu(n ,f ) cross section and the 242Pu(n ,f ) cross section were measured at the Van de Graaff accelerator of the Joint Research Centre at the Institute for Reference Materials and Measurements, where quasimonoenergetic neutrons were produced in an energy range from 0.3 MeV up to 3 MeV. A twin Frisch-grid ionization chamber has been used in a back-to-back configuration as fission-fragment detector. The 242Pu(n ,f ) cross section has been normalized to three different isotopes: 237Np(n ,f ) , 235U(n ,f ) , and 238U(n ,f ) . A comprehensive study of the corrections applied to the data and the uncertainties associated is given. The results obtained are in agreement with previous experimental data at the threshold region up to 0.8 MeV. The resonance-like structure at 0.8 to 1.1 MeV, visible in the evaluations and in most previous experimental values, was not reproduced with the same intensity in this experiment. For neutron energies higher than 1.1 MeV, the results of this experiment are slightly lower than the Evaluated Nuclear Data File/B-VII.1 evaluation but in agreement with the experiment of Tovesson et al. (2009) as well as Staples and Morley (1998). Finally, for energies above 1.5 MeV, the results show consistency with the present evaluations.

  2. Neutron physics of the Re/Os clock. III. Resonance analyses and stellar (n,gamma) cross sections of {sup 186,187,188}Os

    SciTech Connect

    Fujii, K.; Abbondanno, U.; Belloni, F.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Kaeppeler, F.; Audouin, L.; Dillmann, I.; Heil, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.; Mengoni, A.; Domingo-Pardo, C.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.

    2010-07-15

    Neutron resonance analyses have been performed for the capture cross sections of {sup 186}Os, {sup 187}Os, and {sup 188}Os measured at the n{sub T}OF facility at cern. Resonance parameters have been extracted up to 5, 3, and 8 keV, respectively, using the sammy code for a full R-matrix fit of the capture yields. From these results average resonance parameters were derived by a statistical analysis to provide a comprehensive experimental basis for modeling of the stellar neutron capture rates of these isotopes in terms of the Hauser-Feshbach statistical model. Consistent calculations for the capture and inelastic reaction channels are crucial for the evaluation of stellar enhancement factors to correct the Maxwellian averaged cross sections obtained from experimental data for the effect of thermally populated excited states. These factors have been calculated for the full temperature range of current scenarios of s-process nucleosynthesis using the combined information of the experimental data in the region of resolved resonances and in the continuum. The consequences of this analysis for the s-process component of the {sup 187}Os abundance and the related impact on the evaluation of the time duration of galactic nucleosynthesis via the Re/Os cosmochronometer are discussed.

  3. New Measurements of Reaction Cross Sections and Reduced Strong Absorption Radii of Neutron-Rich Exotic Nuclei in the Vicinity of Closed Shells N=20 and N=28

    NASA Astrophysics Data System (ADS)

    Khouaja, A.; Villari, A. C. C.; Benjelloun, M.; Hirata, D.; Savajols; Mittig, W.; Roussel-Chomaz, P.; Orr, N. A.; Pita, S.; Demonchy, C. E.; Giot, L.; Chartier, M.; Gillibert, A.; Baiborodin, D.; Penionzhkevich, Y.; Catford, W. N.; Lépine-Szily, A.; Dlouhy, Z.

    2005-09-01

    Mean energy integrated reaction cross-section measurements for various neutron-rich nuclei covering the region of closed shells N=20 and N=28 were performed, at intermediate energy (30 - 65 A.MeV), via direct method, where the Silicon detectors are used as an active target. Assuming that the energy dependence of the reaction cross-section is well described by the parametrization of S.Kox, the reduced strong absorption radius r02 is extracted for the first time, for 19 new nuclei, i.e. 27F, 27,30Ne, 33Na, 28,34-35Mg, 36-38Al, 38-40Si, 41-42P, 42-44S, 45Cl. Other 60 radii also measured in this experiment are compared to results from literature. The evolution of the reduced strong absorption radius is studied as a function of the neutrons excess. A new quadratic parametrization is therefore proposed for the nuclear radius as a function of the isospin in the region of closed shells N=8 and N=28. According to this parametrization, the skin effect is well reproduced and anomalous behaviours are observed to the nuclei 23N, 29Ne, 33Na, 35Mg, 44S, 45Cl and 45Ar.

  4. Scaling and asymptotic properties of evaporated neutron inclusive cross sections in high energy hadron-nucleus and nucleus-nucleus interactions

    NASA Astrophysics Data System (ADS)

    Galoyan, A. S.; Ribon, A.; Uzhinsky, V. V.

    2015-09-01

    New properties of the evaporated neutron ( E < 30 MeV) energy spectra in hadron-nucleus interactions have been found. Particularly, the spectra approach the asymptotic regime, namely, they weakly depend on the collision energy at momenta of projectile protons larger than 5-6 GeV/ c; the spectra for various nuclei are similar, and can be approximately described by the function A n f( E). Experimental data on neutron spectra in the case of projectile π-mesons show analogous behavior, but the statistics of the data do not allow one to draw clear conclusions. In our analysis we used ITEP experimental data on inclusive cross sections of neutrons produced in interactions of π-mesons and protons with various nuclei in the energy range from 747 MeV up to 8.1 GeV. The observed properties allow one to predict neutron yields in the nucleus-nucleus interactions at high and super high energies. Predictions for the NICA/MPD experiment at JINR are presented. It is shown that the FTF (Fritiof)-model of the Geant4 toolkit qualitatively reproduces the observed regularities. For the first time estimates of the neutron energy flows are obtained at both RHIC and LHC energies.

  5. s-process studies in the light of new experimental cross sections - Distribution of neutron fluences and r-process residuals

    NASA Technical Reports Server (NTRS)

    Kaeppeler, F.; Beer, H.; Wisshak, K.; Clayton, D. D.; Macklin, R. L.; Ward, R. A.

    1982-01-01

    A best set of neutron-capture cross sections has been evaluated for the most important s-process isotopes. With this data base, s-process studies have been carried out using the traditional model which assumes a steady neutron flux and an exponential distribution of neutron irradiations. The calculated sigma-N curve is in excellent agreement with the empirical sigma-N-values of pure s-process nuclei. Simultaneously, good agreement is found between the difference of solar and s-process abundances and the abundances of pure r-process nuclei. The abundance pattern of the iron group elements where s-process results complement the abundances obtained from explosive nuclear burning is discussed. The results obtained from the traditional s-process model such as seed abundances, mean neutron irradiations, or neutron densities are compared to recent stellar model calculations which assume the He-burning shells of red giant stars as the site for the s-process.

  6. Development of a gaseous proton-recoil detector for fission cross section measurements below 1 MeV neutron energy

    NASA Astrophysics Data System (ADS)

    Marini, P.; Mathieu, L.; Aïche, M.; Czajkowski, S.; Jurado, B.; Tsekhanovich, I.

    2016-03-01

    The elastic H(n,p) reaction is sometimes used to measure neutron flux, in order to produce high precision measurements. The use of this technique is not straightforward to use below incident neutron energy of 1 MeV, due to a high background in the detected proton spectrum. Experiments have been carried out at the AIFIRA facility to investigate such background and determine its origin and components. Based on these investigations, a gaseous proton-recoil detector has been designed, with a reduced low energy background.

  7. Jet inclusive cross sections

    SciTech Connect

    Del Duca, V.

    1992-11-01

    Minijet production in jet inclusive cross sections at hadron colliders, with large rapidity intervals between the tagged jets, is evaluated by using the BFKL pomeron. We describe the jet inclusive cross section for an arbitrary number of tagged jets, and show that it behaves like a system of coupled pomerons.

  8. Extracting the photoproduction cross sections off the neutron, via the γn→π-p reaction, from deuteron data with final-state interaction effects

    NASA Astrophysics Data System (ADS)

    Tarasov, V. E.; Briscoe, W. J.; Gao, H.; Kudryavtsev, A. E.; Strakovsky, I. I.

    2011-09-01

    The incoherent pion photoproduction reaction γd→π-pp is considered theoretically in a wide energy region Eth≤Eγ≤2700 MeV. The model applied contains the impulse approximation as well as the NN and πN final-state-interaction (FSI) amplitudes. The aim of the paper is to study a reliable way for getting the information on elementary γn→π-p reaction cross sections beyond the impulse approximation for γd→π-pp. For the elementary γN→πN, NN→NN, and πN→πN amplitudes, the results of The George Washington University (GW) Data Analysis Center (DAC) are used. There are no additional theoretical constraints. The calculated cross sections dσ/dΩ(γd→π-pp) are compared with existing data. The procedure used to extract information on the differential cross section dσ/dΩ(γn→π-p) on the neutron from the deuteron data using the FSI correction factor R is discussed. The calculations for R versus π-p center-of-mass (CM) angle θ1 of the outgoing pion are performed at different photon-beam energies with kinematic cuts for a “quasifree” process γn→π-p. The results show a sizable FSI effect R≠1 from the S-wave part of pp-FSI at small angles close to θ1˜0: this region narrows as the photon energy increases. At larger angles, the effect is small (|R-1|≪1) and agrees with estimations of FSI in the Glauber approach.

  9. Cross sections for neutron-producing reactions induced by 14. 1 MeV neutrons incident on /sup 6/Li, /sup 7/Li, /sup 10/B, /sup 11/B, and carbon

    SciTech Connect

    Drosg, M.; Lisowski, P.W.; Drake, D.M.; Hardekopf, R.A.; Muellner, M.

    1988-10-01

    Using the time-of-flight technique, we have measured neutron emission spectra for /sup 6/Li, /sup 7/Li, /sup 10/B, /sup 11/B and carbon at an incident neutron energy of 14.1 MeV and at 10 angles between 30/degree/ and 143/degree/. Double differential cross sections and their integrated values have been extracted and are presented in tables and graphs. The nonelastic portion of the neutron emission spectra is noticeably higher than expected which may be due to uncertainties in the input library (ENDF/B-IV) used in the Monte Carlo correction for multiple scattering. In particular, the library for /sup 11/B appears to be very unrealistic with an integrated elastic cross section which should be higher by 50%. 20 refs., 1 fig., 12 tabs.

  10. Cross sections and differential spectra for reactions of 2-20 MeV neutrons of /sup 27/Al

    SciTech Connect

    Blann, M.; Komoto, T.T.

    1988-01-01

    This report summarizes product yields, secondary n,p and ..cap alpha.. spectra, and ..gamma..-ray spectra calculated for incident neutrons of 2-20 MeV on /sup 27/Al targets. Results are all from the code ALICE, using the version ALISO which does weighting of results for targets which are a mix of isotopes. Where natural isotopic targets are involved, yields and n,p,..cap alpha.. spectra will be reported weighted over isotopic yields. Gamma-ray spectra, however, will be reported for the most abundant isotope.

  11. Differential cross section of γn→K+Σ- on bound neutrons with incident photons from 1.1 to 3.6 GeV

    DOE PAGESBeta

    Pereira, S. Anefalos; Mirazita, M.; Rossi, P.; De Sanctis, E.; Niculescu, G.; Niculescu, I.; Stepanyan, S.; Adhikari, K. P.; Aghasyan, M.; Anghinolfi, M.; et al

    2010-05-01

    Differential cross sections of the reaction γd → K+Σ–(p) have been measured with the CLAS detector at Jefferson Lab using incident photons with energies between 1.1 and 3.6 GeV. This is the first complete set of strangeness photoproduction data on the neutron covering a broad angular range. At energies close to threshold and up to Eγ ~ 1.8 GeV, the shape of the angular distribution is suggestive of the presence of s -channel production mechanisms. For Eγ > 1.8 GeV, a clear forward peak appears and becomes more prominent as the photon energy increases, suggesting contributions from t-channel production mechanisms.more » Furthermore, these data can be used to constrain future analysis of this reaction.« less

  12. Calculation of pre-equilibrium effects in neutron-induced cross section on 32,34S isotopes using the EMPIRE 3.2 code

    NASA Astrophysics Data System (ADS)

    Yettou, Leila; Belgaid, Mohamed

    2015-07-01

    In this study, a new version EMPIRE 3.2 code was used in the cross section calculations of (n,p) reactions and in the calculation of proton emission spectra produced by (n,xp) reactions. Exciton model predictions combined with the Kalbach angular distribution systematics were used and some parameters such as those of mean free path, cluster emission in terms of Iwamoto-Harada model, optical model potentials of Morillon for neutrons and protons in the energy range up to 20 MeV, level density for spherical nuclei of Gilbert-Cameron model and width fluctuation correction in terms of compound nucleus have been investigated our calculations. The excitation functions and the proton emission spectra for 32,34S nuclei were calculated, discussed and found in good agreement with available experimental data.

  13. Differential cross section of γn→K+Σ- on bound neutrons with incident photons from 1.1 to 3.6 GeV

    NASA Astrophysics Data System (ADS)

    Pereira, S. Anefalos; Mirazita, M.; Rossi, P.; De Sanctis, E.; Niculescu, G.; Niculescu, I.; Stepanyan, S.; Adhikari, K. P.; Aghasyan, M.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Berman, B. L.; Biselli, A. S.; Bookwalter, C.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Careccia, S. L.; Carman, D. S.; Cole, P. L.; Collins, P.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; De Vita, R.; Deur, A.; Dey, B.; Dhamija, S.; Dickson, R.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; El Alaoui, A.; Eugenio, P.; Fegan, S.; Forest, T. A.; Gabrielyan, M. Y.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hakobyan, H.; Hanretty, C.; Hassall, N.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jawalkar, S. S.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Kuleshov, S. V.; Kuznetsov, V.; Livingston, K.; Mayer, M.; McCracken, M. E.; McKinnon, B.; Meyer, C. A.; Mikhailov, K.; Mineeva, T.; Mokeev, V.; Moreno, B.; Moriya, K.; Morrison, B.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Niccolai, S.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Park, S.; Pasyuk, E.; Perrin, Y.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Sabatié, F.; Saini, M. S.; Salamanca, J.; Salgado, C.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Tedeschi, D. J.; Tkachenko, S.; Vernarsky, B.; Vineyard, M. F.; Voutier, E.; Watts, D. P.; Weygand, D. P.; Wood, M. H.; Zana, L.; Zhang, J.; Zhao, B.; CLAS Collaboration

    2010-05-01

    Differential cross sections of the reaction γd→KΣ(p) have been measured with the CLAS detector at Jefferson Lab using incident photons with energies between 1.1 and 3.6 GeV. This is the first complete set of strangeness photoproduction data on the neutron covering a broad angular range. At energies close to threshold and up to Eγ∼1.8 GeV, the shape of the angular distribution is suggestive of the presence of s-channel production mechanisms. For Eγ>1.8 GeV, a clear forward peak appears and becomes more prominent as the photon energy increases, suggesting contributions from t-channel production mechanisms. These data can be used to constrain future analysis of this reaction.

  14. Recommended Dosimetry Cross Section Compendium.

    Energy Science and Technology Software Center (ESTSC)

    1994-07-11

    Version 00 The data is recommended for spectrum determination applications and for the prediction of neutron activation of typical radiation sensor materials. The library has been tested for consistency of the cross sections in a wide variety of neutron environments. The results and cautions from this testing have been documented. The data has been interfaced with radiation transport codes, such as TWODANT-SYS (CCC-547) and MCNP (CCC-200), in order to compare calculated and measured activities formore » benchmark reactor experiments.« less

  15. A PROPOSAL TO MEASURE THE CROSS SECTION OF THE SPACE STAR IN NEUTRON-DEUTERON BREAKUP IN A RECOIL GEOMETRY SETUP

    SciTech Connect

    Benjamin J. Crowe III

    2009-09-30

    Nucleon-deuteron (Nd) breakup is an important tool for obtaining a better understanding of three-nucleon (3N) dynamics and for developing meson exchange descriptions of nuclear systems. The kinematics of the nd breakup reaction enable observables to be studied in a variety of exit-channel configurations that show sensitivity to realistic nucleon-nucleon (NN) potential models and three-nucleon force (3NF) models. Rigorous 3N calculations give very good descriptions of most 3N reaction data. However, there are still some serious discrepancies between data and theory. The largest discrepancy observed between theory and data for nd breakup is for the cross section for the space-star configuration. This discrepancy is known as the “Space star Anomaly”. Several experimental groups have obtained results consistent with the “Space Star Anomaly”, but it is important to note that they all used essentially the same experimental setup and so their experimental results are subject to the same systematic errors. We propose to measure the space-star cross-section at the Triangle Universities Nuclear Laboratory (TUNL) using an experimental technique that is significantly different from the one used in previous breakup experiments. This technique has been used by a research group from the University of Bonn to measure the neutron-neutron scattering length. There are three possible scenarios for the outcome of this work: 1) the new data are consistent with previous measurements; 2) the new data are not in agreement with previous measurements, but are in agreement with theory; and 3) the new data are not in agreement with either theory or previous measurements. Any one of the three scenarios will provide valuable insight on the Space Star Anomaly.

  16. Measurements of neutron-induced fission cross-sections of 205Tl, 204,206,207,208Pb and 209Bi with a multi-section Frisch-gridded ionization chamber

    NASA Astrophysics Data System (ADS)

    Ryzhov, I. V.; Tutin, G. A.; Mitryukhin, A. G.; Oplavin, V. S.; Soloviev, S. M.; Blomgren, J.; Renberg, P.-U.; Meulders, J. P.; El Masri, Y.; Keutgen, Th.; Prieels, R.; Nolte, R.

    2006-06-01

    Neutron-induced fission cross-sections of 205Tl, 204,206,207,208Pb and 209Bi have been measured in the energy range from 30 to 180 MeV. The measurements were performed with quasi-monoenergetic neutron beams using a multi-section Frisch-gridded ionization chamber. The neutron-induced fission cross-sections of 238U were used as reference data. The experimental techniques are described in detail as well as the data processing. The results are compared with existing experimental data.

  17. Code System for Producing Pointwise and Multigroup Neutron and Photon Cross Sections from ENDF/B Data.

    Energy Science and Technology Software Center (ESTSC)

    1998-05-13

    Version 00 The NJOY nuclear data processing system is a modular computer code used for converting evaluated nuclear data in the ENDF format into libraries useful for applications calculations. Because the Evaluated Nuclear Data File (ENDF) format is used all around the world (e.g., ENDF/B-VI in the US, JEF-2.2 in Europe, JENDL-3.2 in Japan, BROND-2.2 in Russia), NJOY gives its users access to a wide variety of the most up-to-date nuclear data. NJOY provides comprehensivemore » capabilities for processing evaluated data, and it can serve applications ranging from continuous-energy Monte Carlo (MCNP), through deterministic transport codes (DANT, ANISN, DORT), to reactor lattice codes (WIMS, EPRI). NJOY handles a wide variety of nuclear effects, including resonances, Doppler broadening, heating (KERMA), radiation damage, thermal scattering (even cold moderators), gas production, neutrons and charged particles, photoatomic interactions, self shielding, probability tables, photon production, and high-energy interactions (to 150 MeV). Output can include printed listings, special library files for applications, and Postscript graphics (plus color). More information on NJOY is available from the developer's home page at http://t2.lanl.gov. Follow the Tourbus section of the Tour area to find notes from the ICTP lectures held at Trieste in March 1998 on the ENDF format and on the NJOY code.« less

  18. Code System for Producing Pointwise and Multigroup Neutron and Photon Cross Sections from ENDF/B Data.

    Energy Science and Technology Software Center (ESTSC)

    2000-03-28

    Version 00 The NJOY nuclear data processing system is a modular computer code used for converting evaluated nuclear data in the ENDF format into libraries useful for applications calculations. Because the Evaluated Nuclear Data File (ENDF) format is used all around the world (e.g., ENDF/B‑VI in the US, JEF‑2.2 in Europe, JENDL‑3.2 in Japan, BROND‑2.2 in Russia), NJOY gives its users access to a wide variety of the most up‑to‑date nuclear data. NJOY provides comprehensivemore » capabilities for processing evaluated data, and it can serve applications ranging from continuous‑energy Monte Carlo (MCNP), through deterministic transport codes (DANT, ANISN, DORT), to reactor lattice codes (WIMS, EPRI). NJOY handles a wide variety of nuclear effects, including resonances, Doppler broadening, heating (KERMA), radiation damage, thermal scattering (even cold moderators), gas production, neutrons and charged particles, photoatomic interactions, self shielding, probability tables, photon production, and high‑energy interactions (to 150 MeV). Output can include printed listings, special library files for applications, and Postscript graphics (plus color).« less

  19. Time features of delayed neutrons and partial emissive-fission cross sections for the neutron-induced fission of {sup 232}Th nuclei in the energy range 3.2-17.9 MeV

    SciTech Connect

    Roshchenko, V. A. Piksaikin, V. M. Korolev, G. G.; Egorov, A. S.

    2010-06-15

    The energy dependence of the relative abundances of delayed neutrons and the energy dependence of the half-lives of their precursors in the neutron-induced fission of {sup 232}Th nuclei in the energy range 3.2-17.9 MeV were measured for the first time. A systematics of the time features of delayed neutrons is developed. This systematics makes it possible to estimate the half-life of delayed-neutron precursors as a function of the nucleonic composition of fissile nuclei by using a single parameter set for all nuclides. The energy dependence of the partial cross sections for emissive fission in the reaction {sup 232}Th(n, f) was analyzed on the basis of data obtained for the relative abundances of delayed neutrons and the aforementioned half-lives and on the basis of the created systematics of the time features of delayed neutrons. It was shown experimentally for the first time that the decrease in the cross section after the reaction threshold in the fission of {sup 232}Th nuclei (it has a pronounced first-chance plateau) is not an exclusion among the already studied uranium, plutonium, and curium isotopes and complies with theoretical predictions obtained for the respective nuclei with allowance for shell, superfluid, and collective effects in the nuclear-level density and with allowance for preequilibrium neutron emission

  20. Neutron capture by Ru: Neutron cross sections of {sup 96,102,104}Ru and gamma-ray spectroscopy in the decays of {sup 97,103,105}Ru

    SciTech Connect

    Krane, K. S.

    2010-04-15

    Cross sections for radiative capture of neutrons have been measured for stable isotopes of Ru with mass numbers 96,102, and 104. From separate irradiations using thermal and epithermal neutrons, independent values for the thermal cross section and effective resonance integral have been determined. Spectroscopic studies of the gamma rays emitted in the decays of {sup 97,103,105}Ru have enabled improvements in the precision of the energies and intensities of the radiations along with corresponding improvements in the beta-decay feeding intensities and the energies of the levels in the respective daughter nuclei. Similar spectroscopic measurements of the decays of {sup 105}Rh (daughter of {sup 105}Ru) and {sup 96}Tc (produced from n,p reactions on {sup 96}Ru) have resulted in improved gamma-ray energies and intensities in those decays.

  1. A measurement of. Delta. sigma. sub L (np), the difference between neutron-proton total cross sections in pure longitudinal spin states

    SciTech Connect

    Beddo, M.E.

    1990-10-01

    A measurement off {Delta}{sigma}{sub L}(np), the difference between neutron-proton total cross sections in pure longitudinal spin states, is described. The results will help determine the isospin-zero (I = 0) scattering amplitudes, which are not well known above laboratory energies of 500 MeV, whereas the isospin-one (I = 1) amplitudes are fairly well-determined to 1 GeV. Data points were taken at the Los Alamos Meson Physics Facility (LAMPF) at Los Alamos, New Mexico, for five neutron beam energies: 484, 568, 634,720 and 788 MeV; they are the first in this energy range. Polarized neutrons were produced by charge-exchange of polarized protons on a liquid deuterium target (LD{sub 2}). Large-volume neutron counters detected the neutrons that passed through a polarized proton target. The counters subtended a range of solid angles large enough to allow extrapolation of the scattered neutrons to 0{degree}. Two modifications to the LAMPF accelerator system which were made for this work are described. They included a beam buncher,'' which modified the normal rf-time structure of the proton beam and allowed for the selection of peak-energy neutrons by time-of-flight means, and a computerized beam steering program, which reduced systematic effects due to beam motion at the LD{sub 2} target. The experimental values of {Delta}{sigma}{sub L}(np) are found to be consistent with other np data, including preliminary data from SIN and Saclay, but not with some results from Argonne which used a polarized proton beam and a polarized deuteron target. The I = 0 component was extracted from {Delta}{sigma}{sub L}(np) using existing pp data (I = 1), with the unexpected result that {Delta}{sigma}{sub L}(I = 0) was found to be essentially identical in shape to {Delta}{sigma}{sub L}(I = 1). The significance of this is not yet understood.

  2. Neutron Resonance Parameters of 238U and the Calculated Cross Sections from the Reich-Moore Analysis of Experimental Data in the Neutron Energy Range from 0 keV to 20 keV

    SciTech Connect

    Derrien, H

    2005-12-05

    The neutron resonance parameters of {sup 238}U were obtained from a SAMMY analysis of high-resolution neutron transmission measurements and high-resolution capture cross section measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA) in the years 1970-1990, and from more recent transmission and capture cross section measurements performed at the Geel Linear Accelerator (GELINA). Compared with previous evaluations, the energy range for this resonance analysis was extended from 10 to 20 keV, taking advantage of the high resolution of the most recent ORELA transmission measurements. The experimental database and the method of analysis are described in this report. The neutron transmissions and the capture cross sections calculated with the resonance parameters are compared with the experimental data. A description is given of the statistical properties of the resonance parameters and of the recommended values of the average parameters. The new evaluation results in a slight decrease of the effective capture resonance integral and improves the prediction of integral thermal benchmarks by 70 pcm to 200 pcm.

  3. Neutron-Induced Partial Cross-Section Measurements on ^76Ge Motivated by The Majorana Project 0νββ Decay Search

    NASA Astrophysics Data System (ADS)

    Hilderbrand, S.; Kwan, E.; Angell, C.; Fallin, B.; Howell, C. R.; Hutcheson, A.; Karwowski, H. J.; Kelley, J. H.; Tonchev, A. P.; Tornow, W.; Masters, D. B.; Pedroni, R. S.; Weisel, G. J.

    2007-10-01

    The goal of the Majorana Collaboration is to study 0νββ in order to verify that the neutrino is its own anti-particle; and if so, what is the mass ofthe electron neutrino. Observation of a sharp peak at the ββ endpoint energy will confirm 0νββ as a decay mode, and determination of the partial width will determine the matrix element which depends directly on the electron neutrino mass. In order to observe and verify the existence of 0νββ, it is important to reduce intrinsic, extrinsic,& cosmogenic backgrounds. The Majorana Project will operate with HPGe detectors deep underground to achieve a low-background environment. Recent advances in signal processing and detector design have also enabled scientists to further understand background sources. γ-ray spectra from the interaction of pulsed mono-energetic neutrons with ^76Ge were measured at TUNL using segmented HPGe clover detectors. The neutron-induced partial cross-sections for γ transitions in ^76Ge were measured at En = 8 and 12MeV.

  4. Reaction cross-section and reduced strong absorption radius measurements of neutron-rich nuclei in the vicinity of closed shells N=20 and N=28

    NASA Astrophysics Data System (ADS)

    Khouaja, A.; Villari, A. C. C.; Benjelloun, M.; Hirata, D.; Auger, G.; Savajols, H.; Mittig, W.; Roussel-Chomaz, P.; Orr, N. A.; Saint-Laurent, M. G.; Pita, S.; Gillibert, A.; Chartier, M.; Demonchy, C. E.; Giot, L.; Baiborodin, D.; Penionzhkevich, Y.; Catford, W. N.; Lépine-Szily, A.; Dlouhy, Z.

    2006-12-01

    The energy-integrated reaction cross-sections of several neutron-rich nuclei ( 17-22N, 19-24O, 21-27F, 23-30Ne, 26-33Na, 28-35Mg, 31-38Al, 33-40Si, 36-42P, 39-44S, 42-45Cl, 45,46Ar), measured at intermediate energy (30-65 A MeV), via direct method, are presented. Silicon detectors have been used as the active target as well as for particles identification. The reduced strong absorption radii r02 are extracted and compared to the data available from the literature. New measurements for 19 nuclei ( 27F, 27,30Ne, 33Na, 28,34-35Mg, 36-38Al, 38-40Si, 41-42P, 42-44S, 45Cl) are revealed. From the study of the isospin dependence of the reduced strong absorption radius, a new quadratic parameterisation of the nuclear radii in the closed shell regions N=8 and N=28, is proposed. According to this parameterisation, the proton/neutron rich nuclei skin effect is well described and a new anomalous structure: halo-structure or large deformation is suggested for 35Mg and 44S nuclei.

  5. High-Resolution Neutron Capture and Total Cross-Section Measurements, and the Astrophysical 95Mo(n,gamma) Reaction Rate at s-process Temperatures

    SciTech Connect

    Koehler, Paul Edward; Guber, Klaus H; Harvey, John A; Wiarda, Dorothea

    2008-01-01

    Abundances of Mo isotopes predicted by stellar models of the s process are, except for {sup 95}Mo, in good agreement with data from single grains of mainstream presolar SiC. Because the meteorite data seemed sound and no reasonable modification to stellar theory resulted in good agreement for {sup 95}Mo, it has been suggested that the recommended neutron capture reaction rate for this nuclide is 30% too low. Therefore, we have made a new determination of the {sup 95}Mo(n,{gamma}) reaction rate via high-resolution measurements of the neutron-capture and total cross sections of {sup 95}Mo at the Oak Ridge Electron Linear Accelerator. These data were analyzed with the R-matrix code SAMMY to obtain parameters for resonances up to E{sub n} = 10 keV. Also, a small change to our capture apparatus allowed us to employ a new technique to vastly improve resonance spin and parity assignments. These new resonance parameters, together with our data in the unresolved range, were used to calculate the {sup 95}Mo(n,{gamma}) reaction rate at s-process temperatures. We compare the currently recommended rate to our new results and discuss their astrophysical impact.

  6. Cross sections for U238(n,n'γ) and U238(n,2nγ) reactions at incident neutron energies between 5 and 14 MeV

    NASA Astrophysics Data System (ADS)

    Hutcheson, A.; Angell, C.; Becker, J. A.; Crowell, A. S.; Dashdorj, D.; Fallin, B.; Fotiades, N.; Howell, C. R.; Karwowski, H. J.; Kawano, T.; Kelley, J. H.; Kwan, E.; Macri, R. A.; Nelson, R. O.; Pedroni, R. S.; Tonchev, A. P.; Tornow, W.

    2009-07-01

    Precision measurements of U238(n,n'γ) and U238(n,2nγ) partial cross sections have been performed at Triangle Universities Nuclear Laboratory (TUNL) to improve crucial data needed for testing nuclear reaction models in the actinide mass region. A pulsed and monoenergetic neutron beam was used in combination with high-resolution γ-ray spectroscopy to obtain partial cross sections for incident neutron energies between 5 and 14 MeV. γ-ray yields were measured with high-purity germanium clover and planar detectors. Measured partial cross-section data are compared with previous results using white and monoenergetic neutron beams and calculations from the GNASH and TALYS Hauser-Feshbach statistical-model codes. Present experimental results are in fair to good agreement with most of the existing data for the U238(n,n'γ) reaction. However, significant discrepancies are observed for the U238(n,2nγ) reaction.

  7. Cross-section measurement of the 18F(alpha,p)21Ne reaction and possible implication for neutron production in explosive helium burning

    SciTech Connect

    Couture, Aaron Joseph; Lee, Hye Young; Couder, Manoel; Falahat, Sascha; Gorres, Joachim; Lamm, Larry O; Le Blanc, P J; O' Brien, Shawn P; Palumbo, Annalia; Stech, Edward J; Strandberg, Elizabeth; Tan, Wanpeng; Ugalde, Claudio; Wiescher, Michael C. F.

    2009-01-01

    At the high temperature and density conditions of hot or explosive helium burning, the {sup 18}F({alpha},p){sup 21}Ne reaction may compete successfully wilh the {sup 18}F({beta}{sup +}{nu}) decay. This suggesls {sup 21}Ne({alpha},n) as an alternative neutron source in Ihe r-process. We have determined the total cross section of the {sup 18}F({alpha},p){sup 21}Ne reaction by studying the time-reverse reaction {sup 21}Ne(p,{alpha}){sup 18}F. Using the activation technique, the total reaction yield was measured in the proton beam energy range of 2.3-4.0 MeV, which corresponds to energies of 0.5-2.1 MeV in the {sup 18}F + {alpha} system. The resulting yield curve was analyzed in terms of the thick target formalism and the R-matrix theory. The reaction rate was deduced experimentally for the first time for the temperature of 0.1 < T{sub 9} < I. The experimemal reaction rate was compared with Hauser-Feshbach predictions. The astrophysical implications of the new rate are discussed.

  8. A nuclear cross section data handbook

    SciTech Connect

    Fisher, H.O.M.

    1989-12-01

    Isotopic information, reaction data, data availability, heating numbers, and evaluation information are given for 129 neutron cross-section evaluations, which are the source of the default cross sections for the Monte Carlo code MCNP. Additionally, pie diagrams for each nuclide displaying the percent contribution of a given reaction to the total cross section are given at 14 MeV, 1 MeV, and thermal energy. Other information about the evaluations and their availability in continuous-energy, discrete-reaction, and multigroup forms is provided. The evaluations come from ENDF/B-V, ENDL85, and the Los Alamos Applied Nuclear Science Group T-2. Graphs of all neutron and photon production cross-section reactions for these nuclides have been categorized and plotted. 21 refs., 5 tabs.

  9. MODELING AND FISSION CROSS SECTIONS FOR AMERICIUM.

    SciTech Connect

    ROCHMAN, D.; HERMAN, M.; OBLOZINSKY, P.

    2005-05-01

    This is the final report of the work performed under the LANL contract on the modeling and fission cross section for americium isotopes (May 2004-June 2005). The purpose of the contract was to provide fission cross sections for americium isotopes with the nuclear reaction model code EMPIRE 2.19. The following work was performed: (1) Fission calculations capability suitable for americium was implemented to the EMPIRE-2.19 code. (2) Calculations of neutron-induced fission cross sections for {sup 239}Am to {sup 244g}Am were performed with EMPIRE-2.19 for energies up to 20 MeV. For the neutron-induced reaction of {sup 240}Am, fission cross sections were predicted and uncertainties were assessed. (3) Set of fission barrier heights for each americium isotopes was chosen so that the new calculations fit the experimental data and follow the systematics found in the literature.

  10. Cross Section Evaluations for Arsenic Isotopes

    SciTech Connect

    Pruet, J; McNabb, D P; Ormand, W E

    2005-03-10

    The authors present an evaluation of cross sections describing reactions with neutrons incident on the arsenic isotopes with mass numbers 75 and 74. Particular attention is paid to (n,2n) reactions. The evaluation for {sup 75}As, the only stable As isotope, is guided largely by experimental data. Evaluation for {sup 74}As is made through calculations with the EMPIRE statistical-model reaction code. Cross sections describing the production and destruction of the 26.8 ns isomer in {sup 74}As are explicitly considered. Uncertainties and covariances in some evaluated cross sections are also estimated.

  11. Nucleon-Nucleon Total Cross Section

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    2008-01-01

    The total proton-proton and neutron-proton cross sections currently used in the transport code HZETRN show significant disagreement with experiment in the GeV and EeV energy ranges. The GeV range is near the region of maximum cosmic ray intensity. It is therefore important to correct these cross sections, so that predictions of space radiation environments will be accurate. Parameterizations of nucleon-nucleon total cross sections are developed which are accurate over the entire energy range of the cosmic ray spectrum.

  12. A Code For Calculating Self-Shielded Multigroup Neutron Cross Sections and Self-Shielding Factors From Preprocessed ENDF/B Basic Data Files.

    Energy Science and Technology Software Center (ESTSC)

    1990-11-20

    Version 00 REX2-87 is a computer code developed for the calculation of self-shielded multigroup average cross sections, and self-shielding factors for total, elastic, fission and capture processes from an ENDF/B formatted nuclear data file in which the tabulated cross sections follow linear interpolation throughout.

  13. New JEFF-3.2 Sodium Neutron Induced Cross-sections Evaluation for Neutron Fast Reactors Applications: from 0 to 20 MeV

    NASA Astrophysics Data System (ADS)

    Archier, P.; Noguère, G.; De Saint Jean, C.; Plompen, A. J. M.; Rouki, C.

    2014-04-01

    In the framework of the ASTRID project, a new 23Na evaluation, containing re-evaluated nuclear data and associated covariances, has been prepared to be submitted for the future JEFF-3.2 library. This work has been motivated mainly because the current JEFF-3.1.1 sodium evaluation showed large differences with microscopic measurements and does not have covariances data. Recent experimental data from IRMM and high resolution measurements from Larson have been simultaneously analyzed with the data assimilation code CONRAD and a good agreement with the evaluated cross-sections has been achieved. Experimental systematic uncertainties have been propagated to the nuclear reaction model parameters in order to produce a coherent set of covariance data. Several figures are provided in this paper to illustrate the new features of this evaluation.

  14. (n,p), (n,2n), (n,d), and (n,α) cross-section calculations of 16O with 0-40 MeV energy neutrons

    NASA Astrophysics Data System (ADS)

    Faruk Ozdemir, Omer; Arasoglu, Ali

    2015-07-01

    Oxygen is one of the elements which interacts with emitted neutrons after fission reactions. Oxygen exists abundantly both in nuclear fuel (UO2) and moderators (H2O). Nuclear reactions of oxygen with neutrons are important in terms of stability of nuclear fuel and neutron economy. In this study, equilibrium and pre-equilibrium models have been used to calculate (n,p), (n,d), (n,2n) and (n,α) nuclear reaction cross-sections of 16O. In these calculations, neutron incident energy has been taken up to 40 MeV. Hybrid and Standard Weisskopf-Ewing Models in ALICE-2011 program, Weisskopf-Ewing and Full Exciton Models in PCROSS program, and Cascade Exciton Model in CEM03.01 program have been utilized. The calculated results have been compared with experimental and theroretical cross-section data which are obtained from libraries of EXFOR and ENDF/B VII.1.

  15. Measurement and analysis of the neutron-induced fission cross sections of {sup 247}Cm, {sup 250}Cr and {sup 254}Es

    SciTech Connect

    Danon, Y.; Moore, M.S.; Koehler, P.E.; Lougheed, R.W.; Hoff, R.W.; Hill, N.W.

    1994-05-01

    A series of fission cross section measurements were performed on {sup 247}Cm, {sup 250}Cf and {sup 254}Es. This paper summarizes the most recent results and details the resonance parameter analysis done on {sup 247}Cm.

  16. Measurements of the {sup 71}Ga(n,2n){sup 70}Ga cross section in the neutron energy range of 13.5-14.7 MeV

    SciTech Connect

    Wang Jishan; Wang Xuezhi; Su Tongling

    2005-09-01

    Cross sections for {sup 71}Ga(n, 2n){sup 70}Ga reaction have been measured in the neutron energies of 13.5-14.7 MeV using the activation technique, with the gallium sample irradiated under low neutron fluxes and short irradiation time. The data for {sup 71}Ga(n, 2n){sup 70}Ga reaction cross sections are reported to be 782 {+-} 80, 896 {+-} 91, and 1169 {+-} 120 mb at 13.5 {+-} 0.2, 14.1 {+-} 0.1, and 14.7 {+-} 0.2 MeV incident neutron energies, respectively. The results are discussed and compared with the literature. From the comparison we see that the values show well agreement with the theoretical results calculated from the code STAPRE.

  17. Cross sections for (n, 2n), (n, p) and (n, ) reactions on osmium isotopes in the neutron energy range of 13.5-14.8 MeV.

    PubMed

    Zhao, Liangyong; Yuan, Jilong; Tuo, Fei; Zhang, Yanbin; Kong, Xiangzhong; Liu, Rong; Jiang, Li

    2008-10-01

    Cross sections for (n, 2n), (n, p) and (n, alpha) reactions on the osmium isotopes were measured in the neutron energies 13.5-14.8 MeV by the activation technique with the monitor reaction (93)Nb(n, 2n)(92 m)Nb. Our measurements were carried out by gamma-detection using a coaxial high-purity germanium (HPGe) detector. Natural high-purity osmium powder (99.9%) was fabricated as the samples. The neutron energies were determined by the cross-section ratios for (93)Nb(n, 2n)(92 m)Nb and (90)Zr(n, 2n)(89 m+g)Zr reactions. The fast neutrons were produced by the T(d, n)(4)He reaction. The results obtained were compared with previous data. PMID:18468910

  18. Optical Model and Cross Section Uncertainties

    SciTech Connect

    Herman,M.W.; Pigni, M.T.; Dietrich, F.S.; Oblozinsky, P.

    2009-10-05

    Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.

  19. Measurement of the 115In(n,γ)116 m In reaction cross-section at the neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV

    NASA Astrophysics Data System (ADS)

    Lawriniang, Bioletty Mary; Badwar, Sylvia; Ghosh, Reetuparna; Jyrwa, Betylda; Vansola, Vibha; Naik, Haladhara; Goswami, Ashok; Naik, Yeshwant; Datrik, Chandra Shekhar; Gupta, Amit Kumar; Singh, Vijay Pal; Pol, Sudir Shibaji; Subramanyam, Nagaraju Balabenkata; Agarwal, Arun; Singh, Pitambar

    2015-08-01

    The 115In(n,γ)116 m In reaction cross section at neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV was determined by using an activation and off-line γ-ray spectrometric technique. The monoenergetic neutron energies of 1.12 - 4.12 MeV were generated from the 7Li(p,n) reaction by using proton beam with energies of 3 and 4 MeV from the folded tandem ion beam accelerator (FOTIA) at Bhabha Atomic Research Centre (BARC) and with energies of 5 and 6 MeV from the Pelletron facility at Tata Institute of Fundamental Research (TIFR), Mumbai. The 197Au(n,γ)198Au reaction cross-section was used as the neutron flux monitor.The 115In(n,γ)116 m In reaction cross section at neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV was determined by using an activation and off-line γ-ray spectrometric technique. The monoenergetic neutron energies of 1.12 - 4.12 MeV were generated from the 7Li(p,n) reaction by using proton beam with energies of 3 and 4 MeV from the folded tandem ion beam accelerator (FOTIA) at Bhabha Atomic Research Centre (BARC) and with energies of 5 and 6 MeV from the Pelletron facility at Tata Institute of Fundamental Research (TIFR), Mumbai. The 197Au(n,γ)198 Au reaction cross-section was used as the neutron flux monitor. The 115In(n,γ)116 m In reaction cross-sections at neutron energies of 1.12 - 4.12 MeV were compared with the literature data and were found to be in good agreement with one set of data, but not with others. The 115In(n,γ)116 m In cross-section was also calculated theoretically by using the computer code TALYS 1.6 and was found to be slightly lower than the experimental data from the present work and the literature.)198Au reaction cross-section was used as the neutron flux monitor. The 115In(n,γ)116 m In reaction cross-sections at neutron energies of 1.12 - 4.12 MeV were compared with the literature data and were found to be in good agreement with one set of data, but not with others. The 115In(n,γ)116 m In cross-section was also calculated

  20. Path forward for dosimetry cross sections

    SciTech Connect

    Griffin, P.J.; Peters, C.D.

    2011-07-01

    In the 1980's the dosimetry community embraced the need for a high fidelity quantification of uncertainty in nuclear data used for dosimetry applications. This led to the adoption of energy-dependent covariance matrices as the accepted manner of quantifying the uncertainty data. The trend for the dosimetry community to require high fidelity treatment of uncertainty estimates has continued to the current time where requirements on nuclear data are codified in standards such as ASTM E 1018. This paper surveys the current state of the dosimetry cross sections and investigates the quality of the current dosimetry cross section evaluations by examining calculated-to-experimental ratios in neutron benchmark fields. In recent years more nuclear-related technical areas are placing an emphasis on uncertainty quantification. With the availability of model-based cross sections and covariance matrices produced by nuclear data codes, some nuclear-related communities are considering the role these covariance matrices should play. While funding within the dosimetry community for cross section evaluations has been very meager, other areas, such as the solar-related astrophysics community and the US Nuclear Criticality Safety Program, have been supporting research in the area of neutron cross sections. The Cross Section Evaluation Working Group (CSEWG) is responsible for the creation and maintenance of the ENDF/B library which has been the mainstay for the reactor dosimetry community. Given the new trends in cross section evaluations, this paper explores the path forward for the US nuclear reactor dosimetry community and its use of the ENDF/B cross-sections. The major concern is maintenance of the sufficiency and accuracy of the uncertainty estimate when used for dosimetry applications. The two major areas of deficiency in the proposed ENDF/B approach are: 1) the use of unrelated covariance matrices in ENDF/B evaluations and 2) the lack of 'due consideration' of experimental data

  1. Actinide cross section program at ORELA

    SciTech Connect

    Dabbs, J.W.T.

    1980-01-01

    The actinide cross section program at ORELA, the Oak Ridge Electron Linear Accelerator, is aimed at obtaining accurate neutron cross sections (primarily fission, capture, and total) for actinide nuclides which occur in fission reactors. Such cross sections, measured as a function of neutron energy over as wide a range of energies as feasible, comprise a data base that permits calculated predictions of the formation and removal of these nuclides in reactors. The present program is funded by the Division of Basic Energy Sciences of DOE, and has components in several divisions at ORNL. For intensively ..cap alpha..-active nuclides, many of the existing fission cross section data have been provided by underground explosions. New measurement techniques, developed at ORELA, now permit linac measurements on fissionable nuclides with alpha half-lives as short as 28 years. Capture and capture-plus-fission measurements utilize scintillation detectors (of capture ..gamma.. rays and fission neutrons) in which pulse shape discrimination plays an important role. Total cross sections can be measured at ORELA on samples of only a few milligrams. A simultaneous program of chemical and isotopic analyses of samples irradiated in EBR-II is in progress to provide benchmarks for the existing differential measurements. These analyses are being studied with updated versions of ORIGEN and with sensitivity determinations. Calculations of the sensitivity to cross section changes of various aspects of the nuclear fuel cycle are also being made. Even in this relatively mature field, many cross sections still require improvements to provide an adequate data base. Examples of recent techniques and measurements are presented. 12 figures, 3 tables.

  2. Partial Photoneutron Cross Sections for 207,208Pb

    NASA Astrophysics Data System (ADS)

    Kondo, T.; Utsunomiya, H.; Goriely, S.; Iwamoto, C.; Akimune, H.; Yamagata, T.; Toyokawa, H.; Harada, H.; Kitatani, F.; Lui, Y.-W.; Hilaire, S.; Koning, A. J.

    2014-05-01

    Using linearly-polarized laser-Compton scattering γ-rays, partial E1 and M1 photoneutron cross sections along with total cross sections were determined for 207,208Pb at four energies near neutron threshold by measuring anisotropies in photoneutron emission. Separately, total photoneutron cross sections were measured for 207,208Pb with a high-efficiency 4π neutron detector. The partial cross section measurement provides direct evidence for the presence of pygmy dipole resonance (PDR) in 207,208Pb in the vicinity of neutron threshold. The strength of PDR amounts to 0.32%-0.42% of the Thomas-Reiche-Kuhn sum rule. Several μN2 units of B(M1)↑ strength were observed in 207,208Pb just above neutron threshold, which correspond to M1 cross sections less than 10% of the total photoneutron cross sections.

  3. Partial Cross Sections of Neutron-Induced Reactions on nCu at En = 6, 8, 10, 12, 14, and 16 MeV for 0νββ Background Studies

    NASA Astrophysics Data System (ADS)

    Gooden, M. E.; Fallin, B. A.; Finch, S. W.; Kelley, J. H.; Howell, C. R.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Stanislav, V.

    2014-05-01

    Partial cross-section measurements of (n,n'γ) reactions on natCu were carried out at TUNL using monoenergetic neutrons at six energies of En = 6, 8, 10, 12, 14, 16 MeV. These studies were performed to provide accurate cross-section data on materials abundant in experimental setups involving HPGe detectors used to search for rare events, like the neutrino-less double-beta decay of 76Ge. Spallation and (α,n) neutrons are expected to cause the largest source of external background in the energy region of interest. At TUNL pulsed neutron beams were produced via the 2H(d,n)3He reaction and the deexcitation γ rays from the reaction natCu(n,xγ) were detected with clover HPGe detectors. Cross-section results for the strongest transtions in 63Cu and 65Cu will be reported, and will compared to model calculations and to data recently obtained at LANL with a white neutron beam.

  4. Thermal neutron calibration of a tritium extraction facility using the /sup 6/Li(n,t)/sup 4/He//sup 197/Au(n,. gamma. )/sup 198/Au cross section ratio for standardization

    SciTech Connect

    Bretscher, M.M.; Smith, D.L.

    1980-08-01

    Absolute tritium activities in a neutron-activated metallic lithium samples have been measured by liquid scintillation methods to provide data needed for the determination of capture-to-fission ratios in fast breeder reactor spectra and for recent measurements of the /sup 7/Li(n,n't)/sup 4/He cross section. The tritium extraction facility used for all these experiments has now been calibrated by measuring the /sup 6/Li(n,t)/sup 4/He//sup 197/Au/n,..gamma..)/sup 198/Au activity ratio for thermal neutrons and comparing the result with the well-known cross sections. The calculated-to-measured activity ratio was found to be 1.033 +- 0.018. 2 figures, 20 tables.

  5. Cross sections required for FMIT dosimetry

    SciTech Connect

    Gold, R.; McElroy, W.N.; Lippincott, E.P.; Mann, F.M.; Oberg, D.L.; Roberts, J.H.; Ruddy, F.H.

    1980-05-02

    The Fusion Materials Irradiation Test (FMIT) facility, currently under construction, is designed to produce a high flux of high energy neutrons for irradiation effects experiments on fusion reactor materials. Characterization of the flux-fluence-spectrum in this rapidly varying neutron field requires adaptation and extension of currently available dosimetry techniques. This characterization will be carried out by a combination of active, passive, and calculational dosimetry. The goal is to provide the experimenter with accurate neutron flux-fluence-spectra at all positions in the test cell. Plans have been completed for a number of experimental dosimetry stations and provision for these facilities has been incorporated into the FMIT design. Overall needs of the FMIT irradiation damage program delineate goal accuracies for dosimetry that, in turn, create new requirements for high energy neutron cross section data. Recommendations based on these needs have been derived for required cross section data and accuracies.

  6. Absolute np and pp cross section determinations aimed at improving the standard for cross section measurements

    SciTech Connect

    Laptev, Alexander B; Haight, Robert C; Tovesson, Fredrik; Arndt, Richard A; Briscoe, William J; Paris, Mark W; Strakovsky, Igor I; Workman, Ron L

    2010-01-01

    Purpose of present research is a keeping improvement of the standard for cross section measurements of neutron-induced reactions. The cross sections for np and pp scattering below 1000 MeV are determined based on partial-wave analyses (PW As) of nucleon-nucleon scattering data. These cross sections are compared with the most recent ENDF/B-V11.0 and JENDL-4.0 data files, and the Nijmegen PWA. Also a comparison of evaluated data with recent experimental data was made to check a quality of evaluation. Excellent agreement was found between the new experimental data and our PWA predictions.

  7. Absolute np and pp Cross Section Determinations Aimed At Improving The Standard For Cross Section Measurements

    SciTech Connect

    Laptev, A. B.; Haight, R. C.; Tovesson, F.; Arndt, R. A.; Briscoe, W. J.; Paris, M. W.; Strakovsky, I. I.; Workman, R. L.

    2011-06-01

    Purpose of present research is a keeping improvement of the standard for cross section measurements of neutron-induced reactions. The cross sections for np and pp scattering below 1 GeV are determined based on partial-wave analyses (PWAs) of nucleon-nucleon scattering data. These cross sections are compared with the most recent ENDF/B-VII.0 and JENDL-4.0 data files, and the Nijmegen PWA. Also a comparison of evaluated data with recent experimental data was made to check a quality of evaluation. Excellent agreement was found between the new experimental data and our PWA predictions.

  8. Neutron Total Cross Sections of {sup 235}U From Transmission Measurements in the Energy Range 2 keV to 300 keV and Statistical Model Analysis of the Data

    SciTech Connect

    Derrien, H.; Harvey, J.A.; Larson, N.M.; Leal, L.C.; Wright, R.Q.

    2000-05-01

    The average {sup 235}U neutron total cross sections were obtained in the energy range 2 keV to 330 keV from high-resolution transmission measurements of a 0.033 atom/b sample.1 The experimental data were corrected for the contribution of isotope impurities and for resonance self-shielding effects in the sample. The results are in very good agreement with the experimental data of Poenitz et al.4 in the energy range 40 keV to 330 keV and are the only available accurate experimental data in the energy range 2 keV to 40 keV. ENDF/B-VI evaluated data are 1.7% larger. The SAMMY/FITACS code 2 was used for a statistical model analysis of the total cross section, selected fission cross sections and data in the energy range 2 keV to 200 keV. SAMMY/FITACS is an extended version of SAMMY which allows consistent analysis of the experimental data in the resolved and unresolved resonance region. The Reich-Moore resonance parameters were obtained 3 from a SAMMY Bayesian fits of high resolution experimental neutron transmission and partial cross section data below 2.25 keV, and the corresponding average parameters and covariance data were used in the present work as input for the statistical model analysis of the high energy range of the experimental data. The result of the analysis shows that the average resonance parameters obtained from the analysis of the unresolved resonance region are consistent with those obtained in the resolved energy region. Another important result is that ENDF/B-VI capture cross section could be too small by more than 10% in the energy range 10 keV to 200 keV.

  9. NEUTRON TOTAL CROSS SECTIONS OF 235U FROM TRANSMISSION MEASUREMENTS IN THE ENERGY RANGE 2 keV to 300 keV AND STATISTICAL MODEL ANALYSIS OF THE DATA

    SciTech Connect

    Derrien, H.

    2000-05-22

    The average {sup 235}U neutron total cross sections were obtained in the energy range 2 keV to 330 keV from high-resolution transmission measurements of a 0.033 atom/b sample. The experimental data were corrected for the contribution of isotope impurities and for resonance self-shielding effects in the sample. The results are in very good agreement with the experimental data of Poenitz et al. in the energy range 40 keV to 330 keV and are the only available accurate experimental data in the energy range 2 keV to 40 keV. ENDF/B-VI evaluated data are 1.7% larger. The SAMMY/FITACS code was used for a statistical model analysis of the total cross section, selected fission cross sections and {alpha} data in the energy range 2 keV to 200 keV. SAMMY/FITACS is an extended version of SAMMY which allows consistent analysis of the experimental data in the resolved and unresolved resonance region. The Reich-Moore resonance parameters were obtained from a SAMMY Bayesian fits of high resolution experimental neutron transmission and partial cross section data below 2.25 keV, and the corresponding average parameters and covariance data were used in the present work as input for the statistical model analysis of the high energy range of the experimental data. The result of the analysis shows that the average resonance parameters obtained from the analysis of the unresolved resonance region are consistent with those obtained in the resolved energy region. Another important result is that ENDF/B-VI capture cross section could be too small by more than 10% in the energy range 10 keV to 200 keV.

  10. Neutron-capture cross-section measurements of 74Ge and 76Ge in the energy region 0.4-14.8 MeV for neutrinoless double β decay applications

    NASA Astrophysics Data System (ADS)

    Bhike, Megha; Tornow, Werner

    2013-10-01

    Fast neutron capture cross sections for the reactions 74Ge(n, γ)75Ge and 76Ge(n, γ)77Ge have been measured in the neutron energy region 0.4-14.8 MeV with the activation method. The results are important to identify backgrounds in the neutrinoless double- β decay experiments GERDA and MAJORANA, which use germanium as both source and detector. Isotopically enriched targets which consisted of 86% of 76Ge and 14% of 74Ge were irradiated with mono-energetic neutrons produced via 3H(p,n)3He, 2H(d,n)3He and 3H(d,n)4He reactions. The cross sections were determined relative to 197Au(n, γ)198Au, 115In(n,n')115mIn and 197Au(n,2n)196Au standard cross sections. The activities of the products were measured using high-resolution γ-ray spctroscopy. The present results are compared with the evaluated data from ENDF/B-VII.1 and TALYS.

  11. Cross sections for {sup 238}U(n,n{sup '}{gamma}) and {sup 238}U(n,2n{gamma}) reactions at incident neutron energies between 5 and 14 MeV

    SciTech Connect

    Hutcheson, A.; Crowell, A. S.; Fallin, B.; Howell, C. R.; Kwan, E.; Tonchev, A. P.; Tornow, W.; Angell, C.; Karwowski, H. J.; Becker, J. A.; Macri, R. A.; Dashdorj, D.; Fotiades, N.; Kawano, T.; Nelson, R. O.; Kelley, J. H.; Pedroni, R. S.

    2009-07-15

    Precision measurements of {sup 238}U(n,n{sup '}{gamma}) and {sup 238}U(n,2n{gamma}) partial cross sections have been performed at Triangle Universities Nuclear Laboratory (TUNL) to improve crucial data needed for testing nuclear reaction models in the actinide mass region. A pulsed and monoenergetic neutron beam was used in combination with high-resolution {gamma}-ray spectroscopy to obtain partial cross sections for incident neutron energies between 5 and 14 MeV. {gamma}-ray yields were measured with high-purity germanium clover and planar detectors. Measured partial cross-section data are compared with previous results using white and monoenergetic neutron beams and calculations from the GNASH and TALYS Hauser-Feshbach statistical-model codes. Present experimental results are in fair to good agreement with most of the existing data for the {sup 238}U(n,n{sup '}{gamma}) reaction. However, significant discrepancies are observed for the {sup 238}U(n,2n{gamma}) reaction.

  12. Determination of the {sup 233}Pa(n,f) reaction cross section from 11.5 to 16.5 MeV neutron energy by the hybrid surrogate ratio approach

    SciTech Connect

    Nayak, B. K.; Saxena, A.; Biswas, D. C.; Mirgule, E. T.; John, B. V.; Santra, S.; Vind, R. P.; Choudhury, R. K.; Ganesan, S.

    2008-12-15

    A new hybrid surrogate ratio approach has been employed to determine neutron-induced fission cross sections of {sup 233}Pa in the energy range of 11.5 to 16.5 MeV for the first time. The fission probability of {sup 234}Pa and {sup 236}U compound nuclei produced in {sup 232}Th({sup 6}Li, {alpha}){sup 234}Pa and {sup 232}Th({sup 6}Li, d){sup 236}U transfer reaction channels has been measured at E{sub lab}=38.0 MeV in the excitation energy range of 17.0 to 22.0 MeV within the framework of the absolute surrogate method. The {sup 233}Pa(n,f) cross sections are then deduced from the measured fission decay probability ratios of {sup 234}Pa and {sup 236}U compound nuclei using the surrogate ratio method. The {sup 233}Pa(n,f) cross section data from the present experiment along with the data from the literature, covering the neutron energy range of 1.0 to 16.5 MeV have been compared with the predictions of statistical model code EMPIRE-2.19. While the present data are consistent with the model predictions, there is a discrepancy between the earlier experimental data and EMPIRE-2.19 predictions in the neutron energy range of 7.0 to 10.0 MeV.

  13. Photonuclear absorption cross sections

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1989-01-01

    Neutron multiplicity in photonuclear reactions; invariance of classical electromagnetism; momentum transfer models in ion collisions; cosmic ray electromagnetic interactions; quadrupole excitations in nucleus-nucleus collisons and Y-89 interactions with relativistic nuclei; and the Weizsacker-Williams theory for nucleon emission via electromagnetic excitations in nucleus-nucleus collisions are discussed.

  14. Neutron Capture Cross-Section Measurement of Rhodium in the Energy Region from 0.003 eV to 80 keV by Linac Time-of-Flight Method

    SciTech Connect

    Lee, Samyol; Yamamoto, Shuji; Kobayashi, Katsuhei; Kim, Guinyun; Chang, Jonghwa

    2003-05-15

    The neutron capture cross section of rhodium has been measured in the energy region from 0.003 eV to 80 keV by the neutron time-of-flight method with a 46-MeV electron linear accelerator of the Kyoto University, Research Reactor Institute. An assembly of Bi{sub 4}Ge{sub 3}O{sub 12} (BGO) scintillators, which was composed of 12 pieces of BGO and placed at a distance 12.7 {+-} 0.02 m from the neutron source, was employed as a total energy absorption detector for the prompt capture gamma-ray measurement from the sample. In order to determine the neutron flux impinging on the capture sample, a plug of {sup 10}B powder sample and the {sup 10}B(n, {alpha}{gamma}) standard cross section were used.The existing experimental data and evaluated capture cross sections in ENDF/B-VI, JENDL-3.2, and JEF-2.2 have been compared with the current measurement. Popov and Shapiro obtained poor energy resolution data in the resonance region with a lead slowing-down spectrometer. Furthermore, their data are a little higher than the current values above {approx}1 keV. The experimental data measured by Weston et al., Hockenbury et al., Macklin and Halperin, Fricke et al., and Block et al. are somewhat higher than the current values. The data measured by Moxon and Rae are somewhat lower than the current values above {approx}100 eV. The data measured by Wisshak et al. and Bokhovko et al. are in general agreement with the measurement above 4 keV within the experimental error. The evaluated data in ENDF/B-VI, JENDL-3.2, and JEF-2.2 have been in good agreement with the current result, although the JENDL-3.2 and the JEF-2.2 values are somewhat lower than the measurement in the cross section minimum region from 10 to 100 eV.The thermal neutron cross sections (2200 m/s values) measured by Seren et al. and Walker et al. are in good agreement with the current measurement (133.0 {+-} 0.93 b) within the experimental error. Other experimental data and the evaluated data are discrepant by 9 to 29% from

  15. Fission cross section measurements of actinides at LANSCE

    SciTech Connect

    Tovesson, Fredrik; Laptev, Alexander B; Hill, Tony S

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications. By combining measurement at two LANSCE facilities, Lujan Center and the Weapons Neutron Research center (WNR), differential cross sections can be measured from sub-thermal energies up to 200 MeV. Incident neutron energies are determined using the time-of-flight method, and parallel-plate ionization chambers are used to measure fission cross sections relative to the {sup 235}U standard. Recent measurements include the {sup 233,238}U, {sup 239,242}Pu and {sup 243}Am neutron-induced fission cross sections. In this paper preliminary results for cross section data of {sup 243}Am and {sup 233}U will be presented.

  16. Radar cross section of insects

    NASA Astrophysics Data System (ADS)

    Riley, J. R.

    1985-02-01

    X-band measurements of radar cross section as a function of the angle between insect body axis and the plane of polarization are presented. A finding of particular interest is that in larger insects, maximum cross section occurs when the E-vector is perpendicular to the body axis. A new range of measurements on small insects (aphids, and planthoppers) is also described, and a comprehensive summary of insect cross-section data at X-band is given.

  17. Neutron physics of the Re/Os clock. I. Measurement of the (n,gamma) cross sections of {sup 186,187,188}Os at the CERN n{sub T}OF facility

    SciTech Connect

    Mosconi, M.; Kaeppeler, F.; Audouin, L.; Dillmann, I.; Heil, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.; Fujii, K.; Abbondanno, U.; Belloni, F.; Milazzo, P. M.; Moreau, C.; Mengoni, A.; Domingo-Pardo, C.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.

    2010-07-15

    The precise determination of the neutron capture cross sections of {sup 186}Os and {sup 187}Os is important to define the s-process abundance of {sup 187}Os at the formation of the solar system. This quantity can be used to evaluate the radiogenic component of the abundance of {sup 187}Os due to the decay of the unstable {sup 187}Re (t{sub 1/2}=41.2 Gyr) and from this to infer the time duration of the nucleosynthesis in our galaxy (Re/Os cosmochronometer). The neutron capture cross sections of {sup 186}Os, {sup 187}Os, and {sup 188}Os have been measured at the CERN n{sub T}OF facility from 1 eV to 1 MeV, covering the entire energy range of astrophysical interest. The measurement has been performed by time-of-flight technique using isotopically enriched samples and two C{sub 6}D{sub 6} scintillation detectors for recording the prompt gamma rays emitted in the capture events. Maxwellian averaged capture cross sections have been determined for thermal energies between kT=5 and 100 keV corresponding to all possible s-process scenarios. The estimated uncertainties for the values at 30 keV are 4.1, 3.3, and 4.7% for {sup 186}Os, {sup 187}Os, and {sup 188}Os, respectively.

  18. AMPX-77: A modular code system for generating coupled multigroup neutron-gamma cross-section libraries from ENDF/B-IV and/or ENDF/B-V

    SciTech Connect

    Greene, N.M.; Ford, W.E. III; Petrie, L.M.; Arwood, J.W.

    1992-10-01

    AMPX-77 is a modular system of computer programs that pertain to nuclear analyses, with a primary emphasis on tasks associated with the production and use of multigroup cross sections. AH basic cross-section data are to be input in the formats used by the Evaluated Nuclear Data Files (ENDF/B), and output can be obtained in a variety of formats, including its own internal and very general formats, along with a variety of other useful formats used by major transport, diffusion theory, and Monte Carlo codes. Processing is provided for both neutron and gamma-my data. The present release contains codes all written in the FORTRAN-77 dialect of FORTRAN and wig process ENDF/B-V and earlier evaluations, though major modules are being upgraded in order to process ENDF/B-VI and will be released when a complete collection of usable routines is available.

  19. Measurement of the cross section for the reaction {sup 20}Ne(n,{alpha}){sup 17}O in the neutron-energy between 4 and 7 MeV

    SciTech Connect

    Khryachkov, V. A.; Bondarenko, I. P.; Kuzminov, B. D.; Semenova, N. N.; Sergachev, A. I.

    2012-04-15

    The cross section for the reaction {sup 20}Ne(n, {alpha}){sup 17}O was measured in the neutron-energy range 4-7 MeV. An ionization chamber equipped with a Frisch grid combined with a pulse-shape digitizer was used as a detector. Gaseous neon that served as a target on which the reaction being studied proceeded was added to the gas filling the ionization chamber. The partial cross sections for the {alpha}{sub 0}, {alpha}{sub 1}, {alpha}{sub 2}, and {alpha}{sub 3} channels of the reaction {sup 20}Ne(n, {alpha}){sup 17}O were obtained for the first time.

  20. Nucleon-nucleon cross sections in nuclear matter

    SciTech Connect

    Schulze, H.; Schnell, A.; Roepke, G.; Lombardo, U.

    1997-06-01

    We provide a microscopic calculation of neutron-proton and neutron-neutron cross sections in symmetric nuclear matter at various densities, using the Brueckner-Hartree-Fock approximation scheme with the Paris potential. We investigate separately the medium effects on the effective mass and on the scattering amplitude. We determine average cross sections suitable for application in the dynamical simulation of heavy ion collisions, including a parametrization of their energy and density dependence. {copyright} {ital 1997} {ital The American Physical Society}

  1. XCOM: Photon Cross Sections Database

    National Institute of Standards and Technology Data Gateway

    SRD 8 XCOM: Photon Cross Sections Database (Web, free access)   A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z <= 100) at energies from 1 keV to 100 GeV.

  2. The total charm cross section

    SciTech Connect

    Vogt, R

    2007-09-14

    We assess the theoretical uncertainties on the total charm cross section. We discuss the importance of the quark mass, the scale choice and the parton densities on the estimate of the uncertainty. We conclude that the uncertainty on the total charm cross section is difficult to quantify.

  3. Uncertainty quantification in fission cross section measurements at LANSCE

    SciTech Connect

    Tovesson, F.

    2015-01-09

    Neutron-induced fission cross sections have been measured for several isotopes of uranium and plutonium at the Los Alamos Neutron Science Center (LANSCE) over a wide range of incident neutron energies. The total uncertainties in these measurements are in the range 3–5% above 100 keV of incident neutron energy, which results from uncertainties in the target, neutron source, and detector system. The individual sources of uncertainties are assumed to be uncorrelated, however correlation in the cross section across neutron energy bins are considered. The quantification of the uncertainty contributions will be described here.

  4. Uncertainty Quantification in Fission Cross Section Measurements at LANSCE

    SciTech Connect

    Tovesson, F.

    2015-01-15

    Neutron-induced fission cross sections have been measured for several isotopes of uranium and plutonium at the Los Alamos Neutron Science Center (LANSCE) over a wide range of incident neutron energies. The total uncertainties in these measurements are in the range 3–5% above 100 keV of incident neutron energy, which results from uncertainties in the target, neutron source, and detector system. The individual sources of uncertainties are assumed to be uncorrelated, however correlation in the cross section across neutron energy bins are considered. The quantification of the uncertainty contributions will be described here.

  5. Fission cross sections in the intermediate energy region

    SciTech Connect

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J. ); Carlson, A.D.; Wasson, O.A. ); Hill, N.W. )

    1991-01-01

    Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for {sup 235}U and {sup 238}U compared to intranuclear cascade and statistical model predictions.

  6. Three-Dimensional (X,Y,Z) Deterministic Analysis of the PCA-Replica Neutron Shielding Benchmark Experiment using the TORT-3.2 Code and Group Cross Section Libraries for LWR Shielding and Pressure Vessel Dosimetry

    NASA Astrophysics Data System (ADS)

    Pescarini, Massimo; Orsi, Roberto; Frisoni, Manuela

    2016-02-01

    The PCA-Replica 12/13 (H2O/Fe) neutron shielding benchmark experiment was analysed using the ORNL TORT-3.2 3D SN code. PCA-Replica, specifically conceived to test the accuracy of nuclear data and transport codes employed in LWR shielding and radiation damage calculations, reproduces a PWR ex-core radial geometry with alternate layers of water and steel including a PWR pressure vessel simulator. Three broad-group coupled neutron/photon working cross section libraries in FIDO-ANISN format with the same energy group structure (47 n + 20 γ) and based on different nuclear data were alternatively used: the ENEA BUGJEFF311.BOLIB (JEFF-3.1.1) and BUGENDF70.BOLIB (ENDF/B-VII.0) libraries and the ORNL BUGLE-96 (ENDF/B-VI.3) library. Dosimeter cross sections derived from the IAEA IRDF-2002 dosimetry file were employed. The calculated reaction rates for the Rh-103(n,n')Rh-103 m, In-115(n,n')In-115m and S-32(n,p)P-32 threshold activation dosimeters and the calculated neutron spectra are compared with the corresponding experimental results.

  7. Thermal neutron capture cross sections for the 152Sm(n,γ) 153Sm and 154Sm(n,γ) 155Sm reactions at 0.0536 eV energy

    NASA Astrophysics Data System (ADS)

    Uddin, M. S.; Chowdhury, M. H.; Hossain, S. M.; Latif, Sk. A.; Islam, M. A.; Hafiz, M. A.; Mubin, S. H.; Zakaria, A. K. M.; Yunus, S. M.; Azharul Islam, S. M.

    2008-11-01

    The neutron capture cross sections for the 152Sm(n,γ) 153Sm and 154Sm(n,γ) 155Sm reactions at 0.0536 eV neutron energy were measured using an activation technique based on the TRIGA Mark-II research reactor, relative to the reference reaction 197Au(n,γ) 198Au. The activity was measured nondestructively using gamma-ray spectroscopy. Our measured values at this neutron energy are the first ones and are compared with 1/ v based evaluated cross sections reported in the ENDF/B-VII and JENDL-3.3 libraries. The measured value for the 152Sm(n,γ) 153Sm reaction is 0.28% lower than JENDL-3.3 and 0.48% higher than ENDF/B-VII. Our value for the production of 155Sm is about 3% and 2.3% higher than the evaluated value with ENDF/B-VII and JENDL-3.3 at 0.0536 eV, respectively.

  8. Re-evaluation of the 16O(N, γ)17O Cross Section at Astrophysical Energies and Its Role as a Neutron Poison in the s-process

    NASA Astrophysics Data System (ADS)

    Mohr, Peter; Heinz, Christian; Pignatari, Marco; Dillmann, Iris; Mengoni, Alberto; Käppeler, Franz

    2016-08-01

    The doubly magic nucleus 16O has a small neutron-capture cross section of just a few tens of microbarns in the astrophysical energy region. Despite this, 16O plays an important role as a neutron poison in the astrophysical slow neutron capture (s) process due to its high abundance. We present in this paper a re-evaluation of the available experimental data for 16O(n,γ )17O and derive a new recommendation for the Maxwellian-averaged cross sections between kT = 5 and 100 keV. Our new recommendations are lower up to kT = 60 keV compared to the previously recommended values but up to 14% higher at kT = 100 keV. We explore the impact of this different energy dependence on the weak s-process during core helium burning (kT = 26 keV) and shell carbon burning (kT = 90 keV) in massive stars where 16O is the most abundant isotope.

  9. Determination of the cross section of the proton, pion and neutron inelastic interaction with lead and carbon nuclei at 0.5 - 5.0 TeV energies (PION experiment)

    NASA Technical Reports Server (NTRS)

    Keropian, M. I.; Martirosov, R. M.; Avakian, V. V.; Karagjozian, G. V.; Mamidjanian, E. A.; Ovsepian, G. G.; Sokhoyan, S. O.

    1985-01-01

    Experimental results on the cross section of the single pion, proton and neutron inelastic interaction with carbon and lead nuclei in the 0.5 to 5.0 TeV energy interval obtained on the PION installation (Mount Aragats, Armenia, 3250 m) are presented. For this purpose the (N pi)/(N p) and inelastic (p Fe)/(pi Fe) ratios measured directly on the installation as well as the calculated inelastic (p A)/(pi A) dependence on the target nucleus atomic numbers were used.

  10. Documentation of Uncertainties in Experimental Cross Sections for EXFOR

    SciTech Connect

    Otuka, N.; Smith, D.L.

    2014-06-15

    Documentation of uncertainties and covariances in experimental nuclear reaction cross sections has been assessed. Following consideration of the importance of covariances for nuclear data in various nuclear applications, and presentation of a simple numerical example to demonstrate this point, the minimum basic concepts (mean, covariance, standard derivation, partial uncertainties, micro- and macro-correlation coefficients) are introduced. A deterministic approach to propagating the covariances in primary measured parameters (e.g., counts) to the derived cross sections is discussed, using a neutron-induced activation cross section measurement as an example. Finally, various approaches to documentation (publication, compilation) of experimental cross sections to facilitate their use in future evaluations are mentioned.

  11. Cross sections at hadron colliders

    SciTech Connect

    Paige, F.E.

    1982-01-01

    The predicted cross sections are given for new Z'/sup 0/ bosons, for the Drell-Yan continuum of ..mu../sup +/..mu../sup -/ pairs, for high p/sub T/ hadron jets, for high p/sub T/ single photons, and for the associated production of heavy quarks. These processes have been selected not to cover the most interesting physics, but to provide a representative selection of cross sections for which to compare various energies and luminosities.

  12. Cross sections of the (n ,p ) reaction on the 78Se and 80Se isotopes measured for 13.73 MeV to 14.77 MeV and estimated for 10 MeV to 20 MeV neutron energies

    NASA Astrophysics Data System (ADS)

    Attar, F. M. D.; Dhole, S. D.; Bhoraskar, V. N.

    2014-12-01

    The cross sections of 78Se(n ,p ) 78As and 80Se(n ,p ) 80As reactions were measured at five neutron energies over the range 13.73 MeV to 14.77 MeV using 56Fe and 19F as monitor elements, respectively. The cross sections were also theoretically estimated using EMPIRE-II and TALYS codes over 10 MeV to 20 MeV neutrons and matched with the experimental cross sections by making proper choice of the model parameters. The theoretical and experimental cross sections of 80Se(n ,p ) 80As reaction are smaller as compared to the 78Se(n ,p ) 78As reaction at each neutron energy. This difference is attributed to the competing 80Se(n ,2 n )79Se and 80Se( n ,α )Ge77m reactions, which effectively decrease the cross sections of 80Se(n ,p ) 80As reaction as compared to that of the 78Se(n ,p ) 78As reaction over the neutron energy range used in the present work. The cross sections of 78Se(n ,p ) 78As and 80Se(n ,p ) 80As reactions estimated by the EMPIRE-II code initially increase but later on decrease with neutron energy, respectively, above 16 MeV and 19 MeV, whereas those estimated by the TALYS code continuously increase with neutron energy. The present results indicate that the trends in the variation of cross section with neutron energy depend on the model used in the calculations. The cross sections of the 80Se(n ,p ) 80As reaction at different neutron energies reported in the present work can be added as a new data in the nuclear data library.

  13. A Multigroup Library of Neutron and Gamma Cross Sections and Response Functions in the Energy Range up to 800 MeV.

    Energy Science and Technology Software Center (ESTSC)

    1987-05-20

    Version 00 The energy range of the library, from thermal to 800 MeV is relevant to the solution of shielding, nuclear heating, and other radiation protection problems connected with the accelerator neutron sources e.g. spallation target. The data contains 10 elements of shielding and biological importance. They can be easily implemented to the neutron transport codes like ANISN and DOT by using the activity option.

  14. Inelastic neutron scattering cross sections for Ge76 relevant to background in neutrinoless double- β decay experiments

    SciTech Connect

    Crider, B. P.; Peters, E. E.; Allmond, J. M.; McEllistrem, M. T.; Prados-Estévez, F. M.; Ross, T. J.; Vanhoy, J. R.; Yates, S. W.

    2015-09-11

    The experimental signature in searches for the neutrinoless double- decay of 76Ge is a peak near 2039 keV in the spectrum. Given the low probability of the process, it is important that the background in this region be well understood. Moreover, inelastic scattering reactions with neutrons from muon-induced interactions and ( ,n) reactions in the surrounding materials or in the detector can provide contributions to the background. We also measured the production cross sections for rays from the 76Ge(n,n ) reaction in the 2039-keV region at incident neutron energies up to 4.9 MeV. In addition to determining that the cross sections of a previously known 2040.7-keV ray from the 3952-keV level in 76 Ge are rather small, we find that a larger contribution arises from a 2037.5-keV ray which is attributed to a newly identified level at 3147 keV in 76Ge. Finally, a third contribution is also possible from another new level at 3577 keV. These results indicate that the 2039-keV region in 76Ge neutrinoless double- decay searches is more complex than was previously thought.

  15. Calculation of improved spallation cross sections

    NASA Technical Reports Server (NTRS)

    Tsao, C. H.; Silberberg, R.; Letaw, J. R.

    1985-01-01

    Several research groups have recently carried out highly precise measurements (to about 10 percent) of high-energy nuclear spallation cross sections. These measurements, above 5 GeV, cover a broad range of elements: V, Fe, Cu, Ag, Ta and Au. Even the small cross sections far off the peak of the isotopic distribution curves have been measured. The semiempirical calculations are compared with the measured values. Preliminary comparisons indicate that the parameters of our spallation relations (Silberberg and Tsao, 1973) for atomic numbers 20 to 83 need modifications, e.g. a reduced slope of the mass yield distribution, broader isotopic distributions, and a shift of the isotopic distribution toward the neutron-deficient side. The required modifications are negligible near Fe and Cu, but increase with increasing target mass.

  16. Measurements of double-differential cross sections of charged-particle emission reactions for several structural elements of fusion power reactors by 14.1-MeV incident neutrons

    SciTech Connect

    Kokooo; Murata, Isao; Takahashi, Akito

    1999-05-01

    A two-dimensional energy and time-of-flight charged-particle spectrometer has been developed and used to measure the double-differential cross-section (DDX) data of (n,xp) and (n,x{alpha}) reactions for several elements with 14.1-MeV incident neutrons at OKTAVIAN, the Intense 14-MeV Neutron Source Facility of Osaka University. The DDX data of the {sup 51}V(n, xp), {sup 51}V(n, x{alpha}), {sup nat}Fe(n, xp), {sup nat}Fe(n,x{alpha}), {sup 59}Co(n, xp), {sup 59}Co(n, x{alpha}), {sup nat}Ni(n, x{alpha}), {sup nat}Cu(n, x{alpha}), {sup 93}Nb(n, xp), {sup 93}Nb(n, x{alpha}), and {sup nat}Mo(n, xp) reactions are measured. The angle-integrated energy differential cross-section (EDX) data were deduced from the measured DDX data and compared with other experimental results [except for the {sup 59}Co(n, xp) reaction] and evaluated nuclear data of JENDL fusion file (JENDL-FF). A comparison was also done with the ENDF/B-VI for the total reaction cross sections of all measured reactions except for the {sup nat}Mo(n, xp) reaction and the EDX of the {sup nat}Ni(n, x{alpha}) and {sup nat}Cu(n, x{alpha}) reactions. The theoretical calculations were done by using the SINCROS-II code. The measured data agreed fairly well with other data for almost all the reactions. the JENDL-FF and SINCROS-II data underestimate the measured EDX data for the reactions of {sup 93}Nb(n, x{alpha}) and {sup nat}Mo(n, xp). For the {sup nat}Fe(n, xp), {sup nat}Fe(n, x{alpha}), {sup 59}Co(n, x{alpha}), and {sup nat}Ni(n, x{alpha}) reactions, smaller data are given than other data, i.e., other experimental data, JENDL-FF, and ENDF/B-VI. The SINCROS-II code can reproduce well for both the proton and alpha-particle emission cross-section values.

  17. Fusion cross sections measurements with MUSIC

    NASA Astrophysics Data System (ADS)

    Carnelli, P. F. F.; Fernández Niello, J. O.; Almaraz-Calderon, S.; Rehm, K. E.; Albers, M.; Digiovine, B.; Esbensen, H.; Henderson, D.; Jiang, C. L.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Ugalde, C.; Paul, M.; Alcorta, M.; Bertone, P. F.; Lai, J.; Marley, S. T.

    2014-09-01

    The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. This work is supported by the U.S. DOE Office of Nuclear Physics under Contract No. DE-AC02-06CH11357 and the Universidad Nacional de San Martin, Argentina, Grant SJ10/39.

  18. Accurate Cross Sections for Microanalysis

    PubMed Central

    Rez, Peter

    2002-01-01

    To calculate the intensity of x-ray emission in electron beam microanalysis requires a knowledge of the energy distribution of the electrons in the solid, the energy variation of the ionization cross section of the relevant subshell, the fraction of ionizations events producing x rays of interest and the absorption coefficient of the x rays on the path to the detector. The theoretical predictions and experimental data available for ionization cross sections are limited mainly to K shells of a few elements. Results of systematic plane wave Born approximation calculations with exchange for K, L, and M shell ionization cross sections over the range of electron energies used in microanalysis are presented. Comparisons are made with experimental measurement for selected K shells and it is shown that the plane wave theory is not appropriate for overvoltages less than 2.5 V. PMID:27446747

  19. Inelastic cross sections from gamma-ray measurements

    SciTech Connect

    Nelson, Ronald Owen

    2010-12-06

    Measurements of gamma rays following neutron induced reactions have been studied with the Germanium Array for Neutron-induced Excitations (GEANIE) at the Los Alamos Neutron Science Center (LANSCE) for many years. Gamma-ray excitation functions and coincidence studies provide insight into nuclear reaction mechanisms as well as expanding our knowledge of energy levels and gamma-rays. Samples studied with Ge detectors at LANSCE range from Be to Pu. Fe, Cr and Ti have been considered for use as reference cross sections. An overview of the measurements and efforts to create a reliable neutron-induced gamma-ray reference cross section will be presented.

  20. Neutron total and capture cross section measurements and resonance parameter analysis of tungsten from 0.01 eV to 200 eV

    SciTech Connect

    Werner, C.J.; Block, R.C.; Slovacek, R.E.; Overberg, M.E.; Moretti, B.E.; Burke, J.A.; Leinweber, G.; Drindak, N.J.

    1998-06-15

    Natural tungsten metal was measured using neutron time-of-flight spectroscopy at the Rensselaer Polytechnic Institute (RPI) Gaerttner Laboratory linear accelerator to determine the tungsten resonance parameters. Three separate measurements were performed: transmission, capture, and self-indication. Previous measurements did not employ all three experiment types and used less sophisticated methods. The current work improves on the published tungsten data base and reduces resonance parameter uncertainties.

  1. Absolute photoneutron cross sections of Sm isotopes

    SciTech Connect

    Gheorghe, I.; Glodariu, T.; Utsunomiya, H.; Filipescu, D.; Nyhus, H.-T.; Renstrom, T.; Tesileanu, O.; Shima, T.; Takahisa, K.; Miyamoto, S.

    2015-02-24

    Photoneutron cross sections for seven samarium isotopes, {sup 144}Sm, {sup 147}Sm, {sup 148}Sm, {sup 149}Sm, {sup 150}Sm, {sup 152}Sm and {sup 154}Sm, have been investigated near neutron emission threshold using quasimonochromatic laser-Compton scattering γ-rays produced at the synchrotron radiation facility NewSUBARU. The results are important for nuclear astrophysics calculations and also for probing γ-ray strength functions in the vicinity of neutron threshold. Here we describe the neutron detection system and we discuss the related data analysis and the necessary method improvements for adapting the current experimental method to the working parameters of the future Gamma Beam System of Extreme Light Infrastructure - Nuclear Physics facility.

  2. Neutrino cross-sections: Experiments

    SciTech Connect

    Sánchez, F.

    2015-07-15

    Neutrino-nucleus cross-sections are as of today the main source of systematic errors for oscillation experiments together with neutrino flux uncertainties. Despite recent experimental and theoretical developments, future experiments require even higher precisions in their search of CP violation. We will review the experimental status and explore possible future developments required by next generation of experiments.

  3. Development and Implementation of Photonuclear Cross-Section Data for Mutually Coupled Neutron-Photon Transport Calculations in the Monte Carlo N-Particle (MCNP) Radiation Transport Code

    SciTech Connect

    Morgan C. White

    2000-07-01

    The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V&V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second, the ability to

  4. Production and Testing of the VITAMIN-B6 Fine Group and the BUGLE-93 Broad-Group Neutron/Photon Cross-Section Libraries Derived from ENDF/B-VI Nuclear Data

    SciTech Connect

    White, J.E.

    2001-04-19

    A revised multigroup cross-section library based on Release 3 of ENDF/B-VI data has been produced and tested for light-water-reactor shielding and reactor pressure vessel dosimetry applications. This new broad-group library, which is designated BUGLE-96, represents an improvement over the BUGLE-93 data library released in February 1994 and replaces the data package for BUGLE-93 in the Radiation Safety Information Computational Center (formerly RSIC). The processing methodology is the same as that used for producing BUGLE-93 and is consistent with ANSI/ANS 6.1.2. The ENDF data were first processed into a fine-group, pseudo-problem-independent format and then collapsed into the final broad-group format. The fine-group library, which is designated VITAMIN-B6, contains 120 nuclides. The BUGLE-96 47-neutron-group/20-gamma-ray-group library contains the same 120 nuclides processed as infinitely dilute and collapsed using a weighting spectrum typical of a concrete shield. Additionally, nuclides processed with resonance self-shielding and weighted using spectra specific to BWR and PWR material compositions and reactor models are available. As an added feature of BUGLE-96, cross-section sets having upscatter data for four thermal neutron groups are included. The upscattering data should improve the application of BUGLE-96 to the calculation of more accurate thermal fluences, although more computer time will be required. Several new dosimetry response functions and kerma factors for all 120 nuclides are also included in the library. The incorporation of feedback from users has resulted in a data library that addresses a wider spectrum of user needs.

  5. Experimental nuclear cross sections for spacecraft shield analysis

    NASA Technical Reports Server (NTRS)

    Peelle, R. W.

    1972-01-01

    Experiments have been performed to validate and to supplement the intranuclear cascade model as a method for estimating cross sections of importance to spacecraft shield design. The experimental situation is inconclusive particularly for neutron-producing reactions, but is relatively sound for reaction cross sections and for proton spectra at several hundred MeV at medium forward angles. Secondary photon contributions are imprecisely known.

  6. Neutron-induced fission cross section measurement of 233U, 241Am and 243Am in the energy range 0.5 MeV En 20 MeV at nTOF at CERN

    SciTech Connect

    Belloni, F.; Milazzo, P. M.; Calviani, M.; Colonna, N.; Mastinu, P. F.; Abbondanno, U.; Aerts, G.; Alvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P. A.; Audouin, L.; Barbagallo, M.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Calvino, F.; Cerutti, F.; Cano-Ott, D.; Capote, R.; Carrapico, C.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Dolfini, R.; Domingo-Pardo, C.; Koehler, Paul; The n_TOF Collaboration,

    2012-01-01

    Neutron-induced fission cross section measurements of 233U, 243Am and 241Am relative to 235U have been carried out at the neutron time-of-flight facility n TOF at CERN. A fast ionization chamber has been employed. All samples were located in the same detector; therefore the studied elements and the reference 235U target are subject to the same neutron beam.

  7. Nucleon-nucleus interaction data base: Total nuclear and absorption cross sections

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Townsend, L. W.; Buck, W. W.; Chun, S. Y.; Hong, B. S.; Lamkin, S. L.

    1988-01-01

    Neutron total cross sections are represented for Li to Pu targets at energies above 0.1 MeV and less than 100 MeV using a modified nuclear Ramsauer formalism. The formalism is derived for energies above 100 MeV by fitting theoretical cross sections. Neutron absorption cross sections are represented by analytic expressions of similar form, but shape resonance phenomena of the Ramsauer effect is not present. Elastic differential cross sections are given as a renormalized impulse approximation. These cross section data bases are useful for nucleon transport applications.

  8. /sup 242/Am/sup m/ fission cross section

    SciTech Connect

    Browne, J.C.; White, R.M.; Howe, R.E.; Landrum, J.H.; Dougan, R.J.; Dupzyk, R.J.

    1984-06-01

    The neutron-induced fission cross section of /sup 242/Am/sup m/ has been measured over the energy region from 10/sup -3/ eV to approx.20 MeV in a series of experiments utilizing a linac-produced ''white'' neutron source and a monoenergetic source of 14.1 MeV neutrons. The cross section was measured relative to that of /sup 235/U in the thermal (0.001 to approx.3 eV) and high energy (1 keV to approx.20 MeV) regions and normalized to the ENDF/B-V /sup 235/U(n,f) evaluated cross section. In the resonance energy region (0.5 eV to 10 keV) the neutron flux was measured using thin lithium glass scintillators and the relative cross section thus obtained was normalized to the thermal energy measurement. This procedure allowed a consistency check between the thermal and high energy data. The cross section data have a statistical accuracy of approx.0.5% at thermal energies and in the 1-MeV energy region, and a systematic uncertainty of approx.5%. We confirmed that /sup 242/Am/sup m/ has the largest thermal fission cross section known with a 2200 m/sec value of 6328 b. Results of a Breit-Wigner sum-of-single-levels analysis of 48 fission resonances up to 20 eV are presented and the connection of these resonance properties to the large thermal cross section is discussed. Our measurements are compared with previously reported results.

  9. Cross Section Sensitivity and Propagated Errors in HZE Exposures

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.; Wilson, John W.; Blatnig, Steve R.; Qualls, Garry D.; Badavi, Francis F.; Cucinotta, Francis A.

    2005-01-01

    It has long been recognized that galactic cosmic rays are of such high energy that they tend to pass through available shielding materials resulting in exposure of astronauts and equipment within space vehicles and habitats. Any protection provided by shielding materials result not so much from stopping such particles but by changing their physical character in interaction with shielding material nuclei forming, hopefully, less dangerous species. Clearly, the fidelity of the nuclear cross-sections is essential to correct specification of shield design and sensitivity to cross-section error is important in guiding experimental validation of cross-section models and database. We examine the Boltzmann transport equation which is used to calculate dose equivalent during solar minimum, with units (cSv/yr), associated with various depths of shielding materials. The dose equivalent is a weighted sum of contributions from neutrons, protons, light ions, medium ions and heavy ions. We investigate the sensitivity of dose equivalent calculations due to errors in nuclear fragmentation cross-sections. We do this error analysis for all possible projectile-fragment combinations (14,365 such combinations) to estimate the sensitivity of the shielding calculations to errors in the nuclear fragmentation cross-sections. Numerical differentiation with respect to the cross-sections will be evaluated in a broad class of materials including polyethylene, aluminum and copper. We will identify the most important cross-sections for further experimental study and evaluate their impact on propagated errors in shielding estimates.

  10. Windowed multipole for cross section Doppler broadening

    NASA Astrophysics Data System (ADS)

    Josey, C.; Ducru, P.; Forget, B.; Smith, K.

    2016-02-01

    This paper presents an in-depth analysis on the accuracy and performance of the windowed multipole Doppler broadening method. The basic theory behind cross section data is described, along with the basic multipole formalism followed by the approximations leading to windowed multipole method and the algorithm used to efficiently evaluate Doppler broadened cross sections. The method is tested by simulating the BEAVRS benchmark with a windowed multipole library composed of 70 nuclides. Accuracy of the method is demonstrated on a single assembly case where total neutron production rates and 238U capture rates compare within 0.1% to ACE format files at the same temperature. With regards to performance, clock cycle counts and cache misses were measured for single temperature ACE table lookup and for windowed multipole. The windowed multipole method was found to require 39.6% more clock cycles to evaluate, translating to a 7.9% performance loss overall. However, the algorithm has significantly better last-level cache performance, with 3 fewer misses per evaluation, or a 65% reduction in last-level misses. This is due to the small memory footprint of the windowed multipole method and better memory access pattern of the algorithm.

  11. APPARATUS FOR MEASURING NEUTRON CROSS SECTIONS

    DOEpatents

    Cranberg, L.

    1959-07-14

    An apparatus is described for analyzing the nuclear reaction products resulting from impingement of nuclear particles against a selected target material and automatically recording the number of reaction prcducts in selected energy levels. The target is bombarded by ions from a particle accelerator and the target potential is cyclicly varied over a particular energy range by a modulator. A nuclear reaction detector is lccated adjacent the target to produce pulses for each reaction product. The output from the detector and the modulator are coupled to a function sampler, for generating a pulse in respcnse to each detected event having an amplitude proportional to the amplitude of the instantaneous target potential. The later pulses are coupled to a multichannel analyzer, whereby nuclear reactions are recorded in appropriate channels of the analyzer in correspcndence with the magnitude of the energy of the impinging ions.

  12. Electron-Impact Ionization Cross Section Database

    National Institute of Standards and Technology Data Gateway

    SRD 107 Electron-Impact Ionization Cross Section Database (Web, free access)   This is a database primarily of total ionization cross sections of molecules by electron impact. The database also includes cross sections for a small number of atoms and energy distributions of ejected electrons for H, He, and H2. The cross sections were calculated using the Binary-Encounter-Bethe (BEB) model, which combines the Mott cross section with the high-incident energy behavior of the Bethe cross section. Selected experimental data are included.

  13. 63Ni (n ,γ ) cross sections measured with DANCE

    NASA Astrophysics Data System (ADS)

    Weigand, M.; Bredeweg, T. A.; Couture, A.; Göbel, K.; Heftrich, T.; Jandel, M.; Käppeler, F.; Lederer, C.; Kivel, N.; Korschinek, G.; Krtička, M.; O'Donnell, J. M.; Ostermöller, J.; Plag, R.; Reifarth, R.; Schumann, D.; Ullmann, J. L.; Wallner, A.

    2015-10-01

    The neutron capture cross section of the s -process branch nucleus 63Ni affects the abundances of other nuclei in its region, especially 63Cu and 64Zn. In order to determine the energy-dependent neutron capture cross section in the astrophysical energy region, an experiment at the Los Alamos National Laboratory has been performed using the calorimetric 4 π BaF2 array DANCE. The (n ,γ ) cross section of 63Ni has been determined relative to the well-known 197Au standard with uncertainties below 15%. Various 63Ni resonances have been identified based on the Q value. Furthermore, the s -process sensitivity of the new values was analyzed with the new network calculation tool NETZ.

  14. Photoproduction total cross section and shower development

    NASA Astrophysics Data System (ADS)

    Cornet, F.; García Canal, C. A.; Grau, A.; Pancheri, G.; Sciutto, S. J.

    2015-12-01

    The total photoproduction cross section at ultrahigh energies is obtained using a model based on QCD minijets and soft-gluon resummation and the ansatz that infrared gluons limit the rise of total cross sections. This cross section is introduced into the Monte Carlo system AIRES to simulate extended air showers initiated by cosmic ray photons. The impact of the new photoproduction cross section on common shower observables, especially those related to muon production, is compared with previous results.

  15. Electron Photon Interaction Cross Sections

    Energy Science and Technology Software Center (ESTSC)

    2014-11-01

    Version 00 The Electron Photon Interaction Cross Sections, EPICS, provides the atomic data needed to perform coupled Electron-Photon transport calculations, to produce accurate macroscopic results, such as energy deposit and dose. Atomic data is provided for elements, Z = 1 to 100, over the energy range 10 eV to 100 GeV; note that nuclear data, such as photo-nuclear, and data for compounds, are not included. All data is in a simple computer independent text formatmore » that is standard and presented to a high precision that can be easily read by computer codes written in any computer language, e.g., C, C++, and FORTRAN. EPICS includes four separate data bases that are designed to be used in combination, these include, • The Evaluated Electron Data Library (EEDL), to describe the interaction of electrons with matter. • The Evaluated Photon Data Library (EPDL), to describe the interaction of photons with matter. • The Evaluated Atomic Data Library (EADL), to describe the emission of electrons and photons back to neutrality following an ionizing event, caused by either electron or photon interactions. • The Evaluated Excitation Data Library (EXDL), to describe the excitation of atoms due to photon interaction. All of these are available in the Extended ENDL format (ENDLX) in which the evaluations were originally performed. The first three are also available in the ENDF format; as yet ENDF does not include formats to handle excitation data (EXDL).« less

  16. Electron Photon Interaction Cross Sections

    SciTech Connect

    Cullen, D. E.

    2014-11-01

    Version 00 The Electron Photon Interaction Cross Sections, EPICS, provides the atomic data needed to perform coupled Electron-Photon transport calculations, to produce accurate macroscopic results, such as energy deposit and dose. Atomic data is provided for elements, Z = 1 to 100, over the energy range 10 eV to 100 GeV; note that nuclear data, such as photo-nuclear, and data for compounds, are not included. All data is in a simple computer independent text format that is standard and presented to a high precision that can be easily read by computer codes written in any computer language, e.g., C, C++, and FORTRAN. EPICS includes four separate data bases that are designed to be used in combination, these include, • The Evaluated Electron Data Library (EEDL), to describe the interaction of electrons with matter. • The Evaluated Photon Data Library (EPDL), to describe the interaction of photons with matter. • The Evaluated Atomic Data Library (EADL), to describe the emission of electrons and photons back to neutrality following an ionizing event, caused by either electron or photon interactions. • The Evaluated Excitation Data Library (EXDL), to describe the excitation of atoms due to photon interaction. All of these are available in the Extended ENDL format (ENDLX) in which the evaluations were originally performed. The first three are also available in the ENDF format; as yet ENDF does not include formats to handle excitation data (EXDL).

  17. Low-Energy Neutrino Cross-Section Measurements at SNS

    NASA Astrophysics Data System (ADS)

    Stancu, Ion

    2006-05-01

    We discuss the proposal to build a neutrino facility at the Spallation Neutron Source (SNS) presently under construction at the Oak Ridge National Laboratory (ORNL). This facility can host an extensive, long-term program to study neutrino-nucleus cross-sections in the range of interest for nuclear astrophysics and nuclear theory.

  18. FTR Set 500: a multigroup cross-section set for FTR analysis

    SciTech Connect

    Mann, F M

    1982-02-01

    FTR Set 500 is a 53-neutron-group, 20-photon-group, cross-section set based on ENDF/B-V cross sections and neutron spectra typical of the Fast Test Reactor (FTR). This report describes the specifications and processing of Set 500 and provides one-group values of this set for use in limited FTR analyses.

  19. Partial (gamma)-Ray Cross Sections for the Reaction 239Pu(n,2n(gamma)i) and the 239Pu(n,2n) Cross Section

    SciTech Connect

    Beacker, J.A.; Bernstein, L.A.; Younes, W.; McNabb, D.P.; Garrett, P.E.; Archer, D.; McGrath, C.A.; Stoyer, M.A.; Chen, H.; Ormand, W.E.; Nelson, R.O.; Chadwick, M.B.; Johns, G.D.; Drake, D.; Young, P.G.; Devlin, M.; Fotiades, N.; Wilburn, W.S.

    2001-09-14

    Absolute partial {gamma}-ray cross sections for production of discrete {gamma} rays in the {sup 239}Pu(n,2n{gamma}i){sup 238}Pu reaction have been measured. The experiments were performed at LANSCE/WNR on the 60R flight line. Reaction {gamma}-rays were measured using the large-scale Compton-suppressed array of Ge detectors, GEANIE. The motivation for this experiment, an overview of the partial {gamma}-ray cross-section measurement, and an introduction to the main experimental issues will be presented. The energy resolution of the Ge detectors allowed identification of reaction {gamma} rays above the background of sample radioactivity and fission {gamma} rays. The use of planar Ge detectors with their reduced sensitivity to neutron interactions and improved line shape was also important to the success of this experiment. Absolute partial {gamma}-ray cross sections are presented for the 6{sub 1}{sup +} {yields} 4{sub 1}{sup +} member of the ground state rotational band in {sup 238}Pu, together with miscellaneous other {gamma}-ray partial cross sections. The n,2n reaction cross section shape and magnitude as a function of neutron energy was extracted from these partial cross sections using nuclear modeling (enhanced Hauser-Feshbach) to relate partial {gamma}-ray cross sections to the n,2n cross section. The critical nuclear modeling issue is the ratio of a partial cross section to the reaction channel cross section, and not the prediction of the absolute magnitude.

  20. SNL RML recommended dosimetry cross section compendium

    SciTech Connect

    Griffin, P.J.; Kelly, J.G.; Luera, T.F.; VanDenburg, J.

    1993-11-01

    A compendium of dosimetry cross sections is presented for use in the characterization of fission reactor spectrum and fluence. The contents of this cross section library are based upon the ENDF/B-VI and IRDF-90 cross section libraries and are recommended as a replacement for the DOSCROS84 multigroup library that is widely used by the dosimetry community. Documentation is provided on the rationale for the choice of the cross sections selected for inclusion in this library and on the uncertainty and variation in cross sections presented by state-of-the-art evaluations.